
Requirements
Writing for System
Engineering

—
Project success through realistic
requirements
—
George Koelsch

 Requirements
Writing for System

 Engineering

 George Koelsch

Requirements Writing for System Engineering

George Koelsch
Herndon, Virginia, USA

ISBN-13 (pbk): 978-1-4842-2098-6 ISBN-13 (electronic): 978-1-4842-2099-3
DOI 10.1007/978-1-4842-2099-3

Library of Congress Control Number: 2016956399

Copyright © 2016 by George Koelsch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Development Editor: Chris Nelson
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Todd Green, Robert Hutchinson,
Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott,
Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles.
For more information, reference our Special Bulk Sales–eBook Licensing web page at
 www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

 Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

 Th is is dedicated to the people who work to protect others around the world, men
and women, military and civilian, especially those I served with in Afghanistan

(yes, you too, Blue Devil).

v

Contents at a Glance

About the Author .. xxi

Acknowledgments .. xxiii

 ■Part I: The Foundation of Requirements 1

 ■Chapter 1: The Importance of Requirements 3

 ■Chapter 2: What Makes a Good Requirement? 31

 ■Chapter 3: Specialized Language ... 75

 ■Part II: Types of Requirements 81

 ■Chapter 4: Functional Requirements .. 83

 ■Chapter 5: Nonfunctional Requirements 107

 ■ Chapter 6: Lists of Items and the Order of
Steps and Data Elements .. 151

 ■Chapter 7: Data Interfaces and Documents 169

 ■Chapter 8: Physical Requirements ... 195

 ■Part III: Cradle to Grave Requirements 209

 ■Chapter 9: How to Collect Requirements 211

 ■Chapter 10: User Interface Requirements 245

 ■Chapter 11: Managing Requirements ... 257

■ CONTENTS AT A GLANCE

vi

 ■Part IV: Alternatives to Shall Requirements 273

 ■ Chapter 12: Supplementing or Replacing
Standard Requirements .. 275

 ■Chapter 13: User Stories ... 301

 ■Chapter 14: Use Cases .. 327

 ■ Chapter 15: Revisiting Requirement Problems and
Their Solutions ... 349

 ■Part V: Appendixes ... 357

 ■Appendix A: Acronyms and Abbreviations 359

 ■Appendix B: Requirements Documents 365

 ■Appendix C: Section 508 Compliance ... 369

 ■Glossary .. 379

 ■Bibliography ... 389

Index .. 393

vii

Contents

About the Author .. xxi

Acknowledgments .. xxiii

 ■Part I: The Foundation of Requirements 1

 ■Chapter 1: The Importance of Requirements 3

Requirements Conventions Used in the Book ... 5

Projects Used in This Book .. 6

FBI Record Management Project .. 7

Radiation Dosimetry Project ... 7

Basic Defi nitions ... 8

Defi nitions of Requirements-Related Terms ... 8

How Long Does It Take Requirements Engineers to… ... 9

What Makes a Good RE? ... 11

Personality Traits .. 11

Good Communications Skills .. 17

Summary .. 19

Challenges for Writing Effective Requirements 19

Insuffi cient Requirements .. 19

Scope .. 21

Requirements Creep ... 22

Volatility .. 22

Stove-Piped Requirements ... 23

■ CONTENTS

viii

Users Are Not Sure What They Need ... 24

User Needs Not Satisfi ed .. 25

Multiple Interpretations Cause Disagreements .. 26

Are the Requirements Verifi able? ... 26

Wasted Time and Resources Building the Wrong Functions 27

Summary .. 28

References .. 29

Exercises ... 29

Exercise 1 ... 29

Exercise 2 ... 29

 ■Chapter 2: What Makes a Good Requirement? 31

Understanding Requirements .. 31

The Form of a Requirement .. 31

Dealing with Negatives in Requirements .. 33

Attributes of a Good Requirement ... 34

Accurate ... 36

Atomic .. 36

Complete .. 38

Concise ... 43

Consistent ... 44

Does Not Confl ict with Other Requirements ... 46

Does Not Duplicate Other Requirements .. 47

Independent .. 48

Prioritized ... 51

Realistic .. 53

Traceable .. 55

Unambiguous .. 58

Understandable by Stakeholders .. 64

■ CONTENTS

ix

Unique .. 66

Verifi able ... 66

One More Attribute: Modifi able .. 70

Capability Within a Requirement ... 71

Types of Errors That Can Occur with Requirements 71

Dangerous or Toxic Requirements .. 72

Extra, Superfl uous Requirements ... 72

Incomplete Requirements... 72

Others ... 73

References .. 73

Exercises ... 73

Exercise 1 ... 73

Exercise 2 ... 74

Exercise 3 ... 74

Exercise 4 ... 74

Exercise 5 ... 74

 ■Chapter 3: Specialized Language ... 75

The Use of Language ... 75

Defi ning Specialized Terms ... 77

Acronyms and Abbreviations ... 78

Summary ... 80

Exercises ... 80

Exercise 1 ... 80

Exercise 2 ... 80

■ CONTENTS

x

 ■Part II: Types of Requirements 81

 ■Chapter 4: Functional Requirements .. 83

Understanding Types of Requirements .. 83

Types of Functional Requirements .. 84

Business Rules ... 85

Transactions ... 86

Administrative Functions .. 88

Authentication .. 89

Authorization Levels ... 90

Audit Tracking ... 91

External Interfaces ... 92

Certifi cation Requirements ... 93

Searching and Reporting Requirements ... 94

Compliance, Legal, or Regulatory Requirements .. 97

Historical Data .. 98

Archiving ... 99

Structural .. 100

Algorithms .. 101

Database ... 101

Power ... 102

Network .. 103

Infrastructure .. 103

Backup and Recovery ... 104

Summary ... 105

Exercises ... 105

Exercise 1 ... 105

Exercise 2 ... 105

■ CONTENTS

xi

 ■Chapter 5: Nonfunctional Requirements 107

The Types of Nonfunctional Requirements .. 107
Architectural ... 108

Capacity .. 109

Constraints ... 110

Documentation ... 111

Effi ciency .. 111

Effectiveness .. 112

Fault Tolerance ... 112

Privacy .. 113

Quality... 113

Resilience ... 114

Robustness ... 114

Environmental ... 115

Data Integrity .. 115

Standards ... 115

Performance ... 116

Reliability, Availability, and Maintainability (RAM) ... 121

Security .. 129

Scalability ... 136

Usability .. 139

Accessibility .. 140

Interoperability ... 141

Portability ... 142

Stability ... 143

Supportability ... 144

Testability ... 144

Recoverability ... 145

Serviceability .. 145

Manageability ... 146

■ CONTENTS

xii

Summary ... 146

References .. 147

Exercises ... 147

Exercise 1 ... 147

Exercise 2 ... 147

Exercise 3 ... 147

Exercise 4 ... 147

Exercise 5 ... 148

Exercise 6 ... 148

Exercise 7 ... 148

Exercise 8 ... 148

Exercise 9 ... 149

Exercise 10 ... 149

Exercise 11 ... 149

 ■ Chapter 6: Lists of Items and the Order of
Steps and Data Elements .. 151

Lists of Items in Requirements .. 151

Lists of Data Elements... 155

Diagnostics Request ... 156

Diagnostics Response .. 157

Image Request Message .. 159

Image Response Message .. 159

Order of Steps in Requirements .. 164

Order of Data Elements in Requirements .. 166

Exercises ... 167

Exercise 1 ... 167

Exercise 2 ... 168

■ CONTENTS

xiii

 ■Chapter 7: Data Interfaces and Documents 169

Defi ning Requirement Data Elements ... 169

Defi ning Data Elements Within a Requirement ... 169

Defi ning Data Elements Within a Database .. 171

Interface Control Documents ... 174

Input/Outputs .. 177

Outputs ... 177

Inputs .. 179

Transformations .. 180

Interface Control Document Formats .. 181

HUD Guidelines for the Data Requirements Document Checklist 182

DoD ... 184

NASA Training Manual for Elements of Interface Defi nition and Control 187

Centers for Medicare & Medicaid Services CMS eXpedited Life Cycle (XLC).......... 192

References .. 193

Exercises ... 194

Exercise 1 ... 194

Exercise 2 ... 194

 ■Chapter 8: Physical Requirements ... 195

Physical Hardware Characteristics .. 195

Overall Weight ... 196

Size ... 196

Geometric Shape ... 197

Volume ... 198

Density .. 198

Center of Gravity ... 198

Human Portable .. 199

Safety Features .. 199

■ CONTENTS

xiv

Storage ... 200

Packaging, Cooling, Heating, and Integration Constraints 200

Power Consumption ... 201

Material .. 201

Surface Coeffi cient of Friction .. 202

Physical Robustness ... 202

Reliability .. 202

Throughput ... 202

Physical Computer Characteristics ... 203

Throughput Characteristics ... 204

Throughput ... 204

Latency ... 206

References .. 207

Exercises ... 207

Exercise 1 ... 207

Exercise 2 ... 207

 ■Part III: Cradle to Grave Requirements 209

 ■Chapter 9: How to Collect Requirements 211

Elicitation... 212

Techniques of Elicitation ... 213

Elicitation Basics .. 213

Requirements Sources ... 213

An Overview of Elicitation Techniques .. 214

Questionnaires/Surveys .. 216

Group Meetings .. 217

Interviewing .. 220

Following People Around/Observation .. 226

Models .. 227

■ CONTENTS

xv

Document Analysis ... 227

Prototyping ... 231

Use Cases/Scenarios/User Stories ... 231

Working in the Target Environment .. 232

Request for Proposals .. 232

Reverse Engineering ... 232

Tools ... 233

Purpose of Elicitation .. 234

Problems with Elicitation... 238

Problems of Scope.. 239

Problems of Understanding .. 239

Problems of Volatility: Requirements Evolve... 241

Process Improvement ... 241

References .. 243

Exercises ... 243

Exercise 1 ... 243

Exercise 2 ... 243

 ■Chapter 10: User Interface Requirements 245

Introducing UI Requirements ... 245

Improving the User Interface ... 247

Government UI Improvements .. 247

Candidate UI Topics for Requirements .. 249

Error Conditions .. 250

Human Factors ... 251

Section 508 Compliance .. 253

References .. 254

Exercises ... 255

Exercise 1 ... 255

■ CONTENTS

xvi

 ■Chapter 11: Managing Requirements ... 257

Why Should You Manage Requirements? .. 257

A Bit of a History Lesson ... 258

What Types of Tools Should You Consider? ... 259

Attributes of Effective Requirement Management Tools 260

The Tools ... 261

Rating of the Tools .. 261

Importing .. 264

What Requirement Values Should You Manage? 265

Requirements Fields ... 265

Requirements Associated with Testing Fields .. 270

Requirements Associated with Agile Fields .. 270

References .. 271

Exercises ... 272

Exercise 1 ... 272

Exercise 2 ... 272

Exercise 3 ... 272

 ■Part IV: Alternatives to Shall Requirements 273

 ■ Chapter 12: Supplementing or Replacing
Standard Requirements .. 275

User Stories and Use Cases .. 276

User Stories .. 276

Use Cases ... 277

Supplementing Your Requirements .. 279

Replacements for Requirements .. 279

■ CONTENTS

xvii

Modeling.. 280

General Modeling .. 281

Models for Ordinary Requirements ... 282

Specialized Modeling.. 287

Tools That Can Aid Requirements Gathering ... 288

Other Supplements to Requirements Process..................................... 294

Off-the-Shelf Solutions ... 294

IEEE Standards ... 296

ISO 9001:2008 .. 297

CMM/CMMI Levels of Maturity ... 297

INCOSE .. 299

References .. 299

 ■Chapter 13: User Stories ... 301

Anatomy of a User Story.. 301

Parts of a User Story ... 301

Attributes of a User Story ... 303

Acceptance Criteria ... 314

Size of stories .. 316

Complement vs. Supplement to Requirements 318

Complement to Requirements .. 318

Replacement for Requirements .. 319

User Stories Traceability .. 319

Maintain User Stories .. 322

What Can Go Wrong with Writing User Stories? 323

Summary ... 325

References .. 325

■ CONTENTS

xviii

Exercises ... 326

Exercise 1 ... 326

Exercise 2 ... 326

Exercise 3 ... 326

Exercise 4 ... 326

Exercise 5 ... 326

Exercise 6 ... 326

 ■Chapter 14: Use Cases .. 327

Writing Use Cases ... 327

Use Case Sequence .. 327

Login Use Case ... 329

Unit Dosimetry Report Use Case ... 336

Gap Analysis ... 340

Advantages and Disadvantages of Use Cases 342

Advantages ... 343

Disadvantages .. 344

Complement vs. Replacement to Requirements 346

Complement to Requirements .. 346

Replacement for Requirements .. 347

All Three Together ... 348

References .. 348

Exercises ... 348

Exercise 1 ... 348

Exercise 2 ... 348

 ■ Chapter 15: Revisiting Requirement Problems and
Their Solutions ... 349

Insuffi cient Requirements ... 349

Requirements Creep .. 350

■ CONTENTS

xix

Volatility ... 350

Stove-Piped Requirements .. 351

Scope: Boundaries Can Be Ill-Defi ned ... 351

Understanding Users Are Not Sure What They Need 352

May Not Satisfy User Needs .. 353

Misinterpretation: Cause Disagreements .. 353

Cannot Verify the Requirements .. 354

Wasted Time and Resources Building the Wrong Functions 355

Summary ... 355

 ■Part V: Appendixes ... 357

 ■Appendix A: Acronyms and Abbreviations 359

 ■Appendix B: Requirements Documents 365

DoD FRD Template ... 365

FUNCTIONAL REQUIREMENTS DOCUMENT (FRD) FOR DEPARTMENT
OF DEFENSE (DOD) <PROJECT NAME> .. 366

Comments on This DoD FRD ... 367

IEEE Document Formats .. 367

Final Comments on Requirements Document Formats 367

References .. 368

 ■Appendix C: Section 508 Compliance ... 369

The Background for Section 508 ... 369

Background .. 369

Exemptions to Section 508 .. 370

Section 1194.3 General Exceptions .. 370

Section 508 Technical Standards .. 370

Subpart B – Technical Standards.. 370

■ CONTENTS

xx

Section 508 Functional Performance Criteria 377

Subpart C – Functional Performance Criteria ... 377

Section 508 Information, Documentation, and Support 377

Subpart D – Information, Documentation, and Support .. 378

 ■Glossary .. 379

 ■Bibliography ... 389

Index .. 393

xxi

 About the Author

 George Koelsch is a system engineer who resides in
Northern Virginia within the DC metro area. He started
writing requirements 40 years ago while in the U.S.
Army and has continued that work for the last 30 years
as a contractor for the federal government. With a
five-year stint as an industrial engineer at Michelin Tire
Corporation, he learned to become an efficiency expert,
which he then applied to system engineering to tailor
the lifecycle development process before his
contemporaries in the DC area were . In his spare time,
he authored ten nonfiction articles on computers, coin
collecting, stamp collecting, and high-energy physics.
He decided to combine his two passions, system
engineering and writing recently.

xxiii

 Acknowledgments

 Over my career spanning four decades, I have worked with hundreds of people, many
who helped mentor me in this field of system engineering, with a strong focus on
requirements engineering, even before we called it that. To name all those people
would produce too numerous a list, even if I could remember all their names, which
unfortunately I cannot. Many of them when they read this book will recognize their
contribution, and I hope that is sufficient, for that is all I can provide at this point.

 That said, there is one individual who I would like to recognize for his contribution.
I had been planning to write this book for some time; I was just not certain when I
would begin. Over the last decade or so, I have been mentoring others in the fine art
of requirements engineering. I had noted that the requirements books I had, as well as
others I had read, did not measure up to my standard of what I thought a requirements
book should be. I mentioned it to one particular co-worker who promptly said that I
should write that book. That person is Adam Heath. It clicked. That was the time to start
writing. So I did. Not only was he the spark for this project, but because of his background
in book publishing, especially IT, his guidance has proved invaluable. He guided me
through the query letter, book proposal, and refinement of the book itself. Adam, I cannot
give you enough kudos.

 Jonathan Gennick, the assistant editorial director at Apress, initially discovered me
on behalf of one of the best IT publishing firms in the world, Apress, and worked with
me to get the manuscript into the book it is. Jill Balzano, the project manager at Apress,
worked with me throughout the entire day-to-day process from the initial upload until
the book appeared in my hand. She never tired of the endless questions I had, answered
them gladly, and kept everything moving along smoothly. The one person who made this
text a much better book by his development editor tutelage is Chris Nelson. He taught me
so much about writing a technical book that I cannot begin to mention. If you find this
an excellent book, it is because of Chris. On the other hand, if there is any deficiency, it
falls to me. To all the other people at Apress who I may not even be aware of, thank you so
much. Each of you contributed to this book.

 And, to all the other unnamed people out there, thank you.

 PART I

 The Foundation of
Requirements

3© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_1

 CHAPTER 1

 The Importance of
Requirements

 Writing requirements is the most crucial aspect of systems engineering (SE) . In this book,
you will learn the best way to accomplish this. You will explore the requirements world,
you will use the best tools, and you will learn to employ these tools. This book is intended
for those of you who consider yourselves as beginners or maybe advancing to an
intermediate level. You will acquire a good foundation that you can use throughout your
career. Even if you never plan to write a requirement, use case, or user story yourself, you
will learn what a good requirements engineer will do for you. Think about it. As a project
manager, you need to know the capability of everyone on your team. Requirements
are the most important part, as you will soon learn. Get it wrong, and you will have
problems—significant problems. You will be exposed to the most likely problems and
how to prevent them.

 You may have read some survey of development methodologies before reading this
book (or taking a system development course). If you haven’t, it might be useful, but it
certainly is not required. The traditional method used in lifecycle development is the
waterfall method. The waterfall method consists of several major functional areas, where
you perform one after completing the previous functional area.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2099-3_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

4

 Notice that the requirements function occurs first, appropriately, given its
importance in development. Much of this book examines requirements—covered in
much more detail later or this would be a very small volume indeed.

 You may now begin your exploration of the advances in requirements engineering.
 Requirements have moved along with the advances in systems engineering over

the last several decades, as engineers tried to improve the process of SE as technology
and demands of the marketplace influenced it, especially in software development
(but not totally divorced from hardware). The waterfall methodology moved first to the
V-method and then Spiral; then Rapid Application Development (RAD) and also eXtreme
Programming (XP) came into vogue; and finally the last land to explore is agile, the latest
and arguably the best methodology yet. Again, you will learn more on these various
methods later in the book.

 ■ Note You will see the use of acronyms and abbreviations in this book. If you are new
to the systems engineering environment , this use is indicative of the industry, so please get
used to it. Chapter 3 will spend more time on this topic, where the “Language and Jargon”
section expands on this usage.

 Not only will you learn about requirements for software development, but also you
will use these same skills for hardware development. As you will see in this book, the
distinction within a project becomes blurred, as many projects have both a software
segment and a hardware segment.

Design

Code

Verification

Maintenance

Requirements

 Figure 1-1. Waterfall methodology

http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

5

 In this book, you will spend time reading about why you write requirements,
how best to collect and document them, and how to maintain them. Basically, this
does not change appreciably with the previously mentioned methodologies. This skill
may go out of fashion. That said, the emphasis of agile has added user stories to the
requirements function, which you will spend some time on, but you will also examine
how requirements and user stories can and will complement each other.

 There may be some proponents within the SE community who advocate that
requirements are no longer necessary. Just as other people stand behind their beliefs,
this book will defend the position presented here, which is that currently requirements
are still necessary. Does that mean the approach presented here fits every situation you
will encounter in your career? No, but what this book will also present are the conditions
under which requirements work best. That way, you, as the requirements engineer, can
determine the best way to control the requirements for your project. To quote Indiana
Jones’ father: “I want to teach you self-reliance.”

 The importance of requirements to a project will be discussed in this chapter.
First, you need some introductory topics to help you with the focus of this book and its
chapters, along with some conventions used throughout the book. Basically, you need a
foundation before you build a house. The same applies to any endeavor—like learning
about requirements.

 Requirements Conventions Used in the Book
 You will see references to BOSS. This is a system name used throughout the book to help
write sample requirements, where BOSS means big organization’s suite of services —just a
name to use that shortens to BOSS for convenience. It will look like this:

 1-1 The BOSS Access Control Function shall allow an
authorized user to access the system.

 Notice a number appears in front of the statement, the format used consistently
throughout the book. First, you always need to identify a requirement uniquely. For
this book, the number format starts with the chapter number, a hyphen, and then the
sequential number for each requirement in the chapter. Second, this allows referencing
requirements earlier in the book during discussions throughout this book. You will also
see some requirements that have another number beside the n-m format. These numbers
are being used to illustrate some aspect of the project and will more likely represent what
you might consider in a requirements set, especially if done in a hard-copy document.

 In some cases, you will see DRAFT in front of the requirement’s shall statement . It
will look like this:

 1-2 DRAFT—The BOSS Access Control Function shall allow
users to access anything on the system.

 That means it may or may not be a good requirement. Thus, if you work in the
future, you may not want to consider it as a good example, without reading the text
surrounding it.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

6

 There will be additional situations where requirements will have a parent and
child relationship. The first requirement has PARENT after the requirements number,
indicating it is the parent. The subsequent requirements with CHILDREN after the
number are subordinate to the parent requirement . They will look like this:

 1-3 PARENT—The BOSS Audit Function shall allow system
administrators to generate an audit report.

 1-4 CHILD—The BOSS Audit Report shall include all login
attempts, all failed login attempts, and who attempted the
login.

 1-5 CHILD—The BOSS Audit Report shall include who added,
changed, or deleted database records.

 In some situations (e.g., a format required by an organization for its hard-copy
requirements document), these may be numbered 1-3, 1-3.1, or 1-3.2 to show the parent-
child relationship. The use of the words PARENT and CHILD are just an aid to learning in
this text. They are not recommended on the job, unless you find there is benefit for doing
it that numbering alone does not alert people to it. It is your call.

 You may also see the following:

 1-6 (1-1) The BOSS Access Control Function shall allow an
authorized user to access the system.

 Why are there two numbers here to reference a requirement? This means that the
next sequential number, 1-6, happens to be a repeat of one earlier in the book (in this
case requirement 1-1). In many cases in this book, there is a need to refer to requirements
from a previous chapter, so it might look like this:

 12-73 (5-27) The BOSS shall…

 Projects Used in This Book
 Throughout this book, two projects will be examined to emphasize elements of
importance to you. Not every example will use these two projects, but the vast majority of
them will. Some examples may not fit the following two projects, but they will be invoked
whenever it is most appropriate.

 This book, as is used in the SE industry, follows the convention related to
abbreviations and acronyms. In the previous sentence, you have seen the abbreviation
SE for systems engineering. The convention dictates the first time an abbreviation
or an acronym is used, you must spell it out and show its abbreviation or acronym in
parentheses after it—like systems engineering (SE) in the first paragraph of this chapter.
Then the next time you use systems engineering , you only need to write SE. This is a
shorthand method that is used extensively in the industry, and you need to become
proficient in it.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

7

 FBI Record Management Project
 The first project mentioned earlier is the Federal Bureau of Investigation (FBI) Records
Management System for the primary software-based project in this book. The federal
government has to follow the dictates of the National Archives and Records Administration
(NARA), which spells out the rules for how long temporary records are maintained.
You will see various requirements dealing with the FBI’s records management that expand
on this project.

 Remember, in most software-based projects, there may be some hardware aspects
related to this system. That said, the primary hardware-based project in this book
comes next.

 Radiation Dosimetry Project
 The second project will be a radiation dosimetry project for the United States Army.
The purpose of dosimetry is to measure the radiation a person is exposed to, either in a
laboratory, in a nuclear power plant, or in a nuclear battle field. The primary emphasis
here is to examine radiation exposures to U.S. Army soldiers in a nuclear battlefield. There
are five basic devices that make up the entirety of the system. They are the following:

• Individual radiation dosimeter

• Unit radiation dosimeter

• Dosimeter archive laptop

• Radiation dose rate meter

• Radiation dose rate mapping laptop

 The Individual Radiation Dosimeter will be a small, portable device that will
capture what one person, a soldier, is exposed to while in a nuclear environment. This
device will be like a small watch that the person wears all the time and that stays with
them regardless of what unit they are assigned to during their career .

 The Unit Radiation Dosimeter is the device that will read the individual soldiers’
Individual Radiation Dosimeters to collect all the readings. This can then be used to
determine the effectiveness of the unit based on how much radiation they have been
exposed to collectively.

 The Dosimeter Archive Laptop collects all the information from the various Unit
Radiation Dosimeters and consolidates them for archive/backup purposes as well as
allowing higher-level roll-up of information reporting.

 The Radiation Dose Rate Meter collects all the radiation information from various
vehicles in a unit. Unlike an Individual Radiation Dosimeter, which collects what
radiation that soldier experiences, whether or not shielded in a vehicle or shelter, the
Radiation Dose Rate Meter collects the raw, unshielded radiation exposure. This can be
the raw data to collect the dangerous areas for military operations. This is a snapshot in
time, where the dosimeter captures the total exposure.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

8

 The Radiation Dose Rate Mapping Laptop collects all the information from the
various Radiation Dose Rate Meters, plots the radiation data onto a map, and displays
the designated radiation contours as an overlay. This allows commanders to modify their
military operations based on the radiation remaining in their areas of operations.

 Basic Definitions
 Before going further, you need to understand some language that will be used extensively
throughout this book. There are many more definitions throughout this book, but these
are the foundations for your understanding.

 Definitions of Requirements-Related Terms
 Here are some foundational terms. First, let’s start with what requirements are.

 The definition of a requirement :

 Define a need, desire, or want to be satisfied by a product or
 service .

 That sounds reasonable. You will find service is used extensively to talk about
 service-oriented architecture (SOA) , but again, you’ll learn more about that later in the
book. Think of a service as a function within a software application, (e.g., cut, copy, and
paste in a word processer) and you have the idea. A product would be like a mouse, a
printer, a scanner, or even your cell phone. Obviously, any of these products would take
more than one requirement to define it fully. There is not a situation where only one
requirement would ever define a product or service.

 The definition of a system :

 Meriam–Webster Online defines it as a group of related parts
that move or work together.

 Now think of this definition with respect to the samples used previously. You see that
it applies to not only the mouse, printer, scanner, and cell phone but also to the cut, copy,
and paste functions in a word processer. A system applies to both software and hardware.
In fact, most systems these days combine both software and hardware.

 The definition of an application :

 Meriam–Webster Online defines it as a program (as a word
processor or a spreadsheet) that performs one of the major
tasks for which a computer is used.

 An application is a collection of one or more functions, ranging from something as
sophisticated as software running a nuclear power plant to something as small as a cell
phone app, like the game Angry Birds.

 The definition of a stakeholder :

 Meriam–Webster Online defines it as one that has a stake in
an enterprise.

http://www.merriam-webster.com/dictionary/stake

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

9

 You will spend a significant amount of time learning about stakeholders, especially
in Chapter 9 , as they are the people who will help define the requirements for the
system. Keep in mind, though, one stakeholder rarely represents all the users of the
system. For example, the people who enter health information in a Medicare system
may not represent the people responsible for fraud detection, and neither stakeholders
will understand system monitoring and steps necessary to keep the wide area network
(WAN) working.

 What role defines someone who works with requirements? That someone is called a
 requirements engineer (RE) . Again, how do you define that role ?

 The definition of a requirements engineer :

 Someone who collects, coordinates, advocates, and manages
requirements.

 ■ Tip Did you notice that there now are two different definitions for RE, requirements
engineering first and now requirements engineer? This can and will happen on your
project, as it will happen again in this book. You will have to learn to handle this. Usually,
you can see from the context what meaning makes sense. If not, ask to find out what
meaning is correct.

 While the requirements definition is quite self-evident, the terms used in the
definition of the requirements engineer may not be well understood in this context.
That means you are reading the proper book. By the time you are finished reading
this complete text, not only will you understand all the functions an RE does, but also
you will be able to perform those functions. Each of these terms will be examined in
detail throughout the book, so do not worry. In addition, the reason the role of RE was
mentioned versus the RE is because the role covers one engineer or a team of engineers.
You will work both ways, as a one-person team and as one person on a team, and you
may even lead a team of engineers doing nothing but requirements engineering. The size
of the project drives the role of the RE.

 How Long Does It Take Requirements Engineers to…
 No, this is not a joke about REs. Are you kidding? The most important engineers on the
project are the REs (and do not let anyone else tell you differently). However, that is a
slight digression.

 But seriously, folks…. You might logically ask how many engineers does each
project need? The correct answer is that it depends. As you move through the various
systems development methodologies throughout this book, you will see how it differs.
For example, in the traditional waterfall method mentioned earlier, you would start with
a significant team and spend nothing but months and even some cases years defining
requirements.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

10

 ■ Real-World Note Yes, I have done RE for three years on a ten-year project.
Whereas with the agile methodology (more on that later), I have supported two dozen
or more implementation team members by myself. Of course, that system was already
deployed, with significant policy changes that kept me busy. It might not always have
been that size, as that project had about 4 to 5 percent of the team as REs while I
was there.

 Does the size of projects affect what REs do? Yes, as the project size grows, one RE
becomes insufficient, and you will need more. Your first reaction might be to say the
following:

 When the project grows beyond one person, the answer
depends on too many factors to discuss here or to give
concrete guidance. Part of it depends on experience, and in
fact, many times you do not know until you see it growing
beyond the size of your team. This will be examined more
later in the book.

 However, the industry has some data on this. Capers Jones performed an industry
survey in 2000, which he documented in the book Software Assessments, Benchmarks, and
Best Practices (Addison-Wesley Professional, 2000). Jones discusses “very large projects
of 10,000 function points in size (approximately one million lines of code).” Loosely, think
of function points as a feature, say on a menu, just to give a reference. Specifically, Jones
looked at the following types of projects:

• Management information systems

• Systems software

• Commercial products

• Military software

• Outsourced projects

 On the low end, the percentage of “total effort on requirements development”
for management information systems was 3.7 percent. The others ranged from 7 to 10
percent of total effort. The time involved in developing requirements was significant,
ranging from 4.4 months for management information systems to 22.7 months for
commercial products. Jones’ book is an excellent resource if you want to dig more deeply
into this (and other) topics. However, this shows roughly how much time requirements
definition can take.

 The first question that should pop into your head is, “How successful were these
projects?” Alas, the author did not provide that data. The averages are for all teams
regardless of how successful each project was. This is how you have to analyze data
to understand truly what it means. At least there is an estimate for how much time
a project should invest. As you will see with some of the defects that requirements

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

11

generate, spending more time on requirements definition is better—provided you do
not get trapped in analysis paralysis. What is that? Excellent question. Paralysis occurs
when you spent so much time getting everything precisely right that you lose sight
of what you’re trying to collect. If you question every point of all stakeholders, then
you take too much of their valuable time and they become reluctant to talk with you.
(Remember, they have a day job to do—more about this in Chapter 9 .) You will spend
more time on how to enhance requirements definition when you get to the user story
material in Chapters 12 and 13 .

 What Makes a Good RE?
 This section will focus on two major areas, good communication skills and the attributes
a good RE should have. We will examine each in detail with the various items a good RE
should have. Not having one or more of these is not going to doom your chances to be a
good RE. You have to exploit the strengths you have. Experience working requirements
for years will more than compensate for a lacking in a particular attribute.

 Personality Traits
 Now you will examine the traits a good requirements engineer should have. Keep in
mind, none of these is an absolute. It’s more like the Pirates’ Code, kind of like guidelines
(although do not ask Captain Jack Sparrow’s father). The point is, you need to have some
aspects of these to be reasonably successful.

 Patience
 This process can take some time, as you saw earlier. Not every stakeholder or every user
will know all aspects of a process. Sometimes it will take various techniques to tease
their real needs from them. You will learn more about these in Chapter 9 to help with
that. Other times, the participant may not be the best fit. You will search for better ones
or spend more time with some you already have. In fact, asking people for suggestions
can work. Showing you value their opinion goes a long way in establishing a rapport with
people. Remember, nothing is more satisfying when a stakeholder recommends you to
do requirements work for another person’s project because, as they say, “He (or she) does
excellent requirements work. Use him (or her) for your project.” (I speak to that first hand,
as it happened to me.)

 Another aspect of patience deals with the time it takes to collect all the information
needed. For example, you will run meetings that can run into hours. After an hour or
two of meetings where you exchange information, you may feel mentally drained. It
is hard work doing this. Obviously, this kind of work is not physical in a manual labor
sense, but it can be taxing. When you have to focus hard listening very intently, you
will lose energy. Think of those two three- or four-hour exams you may have had; you
probably felt it then .

http://dx.doi.org/10.1007/978-1-4842-2099-3_9
http://dx.doi.org/10.1007/978-1-4842-2099-3_12
http://dx.doi.org/10.1007/978-1-4842-2099-3_13
http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

12

 ■ Real- World Note My record here in the United States is a solid two weeks in the
same meeting. Yes, about 80 hours. In addition, my all-time record is overseas where I was
essentially in the same meeting for three weeks. Think of how draining those meetings can be.

 Meetings this long are exceptions. It was not that I sat in the same room, with the same people,
for two or three weeks straight. In the two-week one, I was involved exchanging information only
for my block for a day and a half. In the three-week meeting, it was actually several different
meetings, with different groups of people. Also, I did not run the entire three weeks of meeting.
The first day was a kickoff meeting where both the American and foreign representatives
spoke. Then there was one meeting that talked about the interfaces between the respective
systems. One of the developers ran that meeting. I also had one of my requirements engineers
lead one day of meetings where I sat and advised as the purpose was to train this engineer to
do customization of the system whereas she had become proficient in collecting requirements
for the standard system up to that point. This gave me relief from having to ask questions, take
notes, ask for clarifications, summarize what was said, and so on, for the entire 15 days.

 Unlike the previous Real-World Note, usually you measure meetings in hours, not
days. You need to know that it can happen. Having a team where you can take turns
gathering the requirements certainly helps, but you do not always have that opportunity.

 The exception for me occurred on many of my overseas trips. I was the only one
collecting requirements. Granted, I was a senior engineer at that point. Nevertheless, you
do not always control the number of people performing requirements analysis.

 Again, you will improve with practice and experience. Just like World of Warcraft, you
gain experience points as you play the game longer.

 For one of my projects’ meetings with stakeholders, I took an engineer to teach her
how to collect customization requirements to our standard project. During the meeting,
I could tell she was frustrated with how long it was taking to get what she needed. Part of
the challenge was that we were overseas, and the language barrier contributed. After that
meeting, I gently pointed out how challenging the process was and explained how getting
the requirements on a particular schedule may not be practical in every case.

 Clarity of Thought
 This is one of the most important aspects of an RE. You always have to think and analyze
what you hear. Understanding everything the stakeholders say is essential. This is so
you can capture the “what” of their business process. In fact, you might want to consider
writing what is called the Business Process Description (BPD) document. In this, you
listen to what the stakeholders say and write it all down. However, you write the major
and minor steps of what they do, not how they do it. Their steps could be done by hand,
written on paper, or on a computer system, whatever they do, just not precisely how. Is
this an exact science? No. Is this something you have to provide to people? No. You do
it for your use. That said, sometimes you may want to check it with the stakeholders to

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

13

ensure the steps are correct. Also, some organizations may create this document formally.
If so, follow the required process.

 Are you the person who has to capture it all? Not if you don’t have to. This does not
mean you should not have all the information, far from it. Instead, do not reinvent the
wheel. Find out whether the stakeholders have something already that describes this.
For example, do they have some documentation for a new person coming into their
organization? It is usually good to start from this document. Naturally, you will have a
lot of “how” they do it. However, you will have to think how that translates to “what.”
Sometimes they just have a document they have used to brief upper management. Do
some digging and you will be surprised how much may be available.

 User manuals may give some clues, but remember its primary focus is to describe how
a system works, so you will have all the “how” and you will have to think about the “what.”

 ■ Tip Many user manuals may just list a description of everything that is in the system
without showing how a person will use it, like having a workflow or a scenario. The latter is
important, whereas the former may not be.

 Here is an example from a personal project I am working on:
 Transfer
 This is how you take candidate coins into your collection:

 1. Androida will say, “Please select which denomination you
want to transfer coins.” She points to a pop-up menu that lists
each denomination that includes coins you own. Click which
of the denominations you want.

 2. After you click, Androida will say, “Please click which specific
coins by years and their associated mintmarks you want to
transfer from Circulation List to Own List. Then click the
Ready to Transfer button on the bottom.” She points to all the
coins in the denomination you own. Check the boxes of the
one or more coins you wish to transfer. Then click the Ready
to Transfer button.

 3. After the transfer occurs, the denomination list reappears.
You can continue to select coins to transfer until you click the
Done with Transfer button at the bottom of the list. Then you
return to the pull-down menu.

 4. Hitting the Esc key clears the submenu.

 Notice all the implementation here that says thing like “click” this or “select” that.
This is not a user requirement. The essence of what the user really needs is more like the
following statement that you could use to write requirements from:

 The user had indicated all they wanted was a way to select
some coins they had and put them into a coin collection. She
did not specify all these steps—just the one function of moving
some candidate coins into this designation of a coin collection.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

14

 Test procedures may also have some useful information. Again, these are specific
steps without the reason why it is done. Keep in mind, however, they are testing some
wrong conditions on purpose to check range limits and other error conditions. One
advantage is that test procedures should test all possible paths that a user may skip over,
maybe because they do not remember something that rarely happens.

 There is one additional aspect to clarity of thought, as you learn some of the
limitations of requirements definition. Once you learn these limitations later in this
book, you need to understand why something is a limitation. The reason is that when
a new approach is available to fix the limitation, you will need to discern whether this
improvement truly eliminates or at least reduces the problem. You will have to compare
to the current limitation and see whether their fix is better or not by analyzing the before
and after requirements.

 Flexibility
 No, this does not refer to being a gymnast but being flexible in your attitude. You must
be adaptable to the situation. This is complemented by thinking, in that you have to
understand the situation so that you can change when the situation demands it.

 ■ Real-World Note On a recent project, I had begun capturing the requirements the
traditional way. In six to eight months, I had managed to capture the requirements for
only the search function of the system. We had about a dozen major functional areas
like this. The program manager was extremely frustrated by the lack of cooperation from
the stakeholders, which was epitomized when she had said, “It’s going to take us five
years at this rate!” Thus, we needed a new approach. We decided to capture user stories
(see part IV) with the stakeholders, but only capture shall statement requirements for
the development and test teams. In the same amount of time as it had taken to capture
requirements for search, we captured all the user stories for items that did not work
well and areas that could be our ideal approach for all the remaining functional areas.
In the next six to eight month, we performed gap analysis to cover the user stories for
everything that was missing and then completed the requirements definition, with tracing
between the user stories and requirements. By analyzing what was not working and
thinking about alternate approaches, we came up with a better way. This worked because
the customer was flexible.

 Extrovertism
 Extroverts are more comfortable working with people, and in fact, they can be energized
by talking and working with people. Introverts are less inclined to be so energized. In
some cases, exposure to people can be draining.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

15

 I know an Olympic gymnast who found meeting a dozen people in a social setting
draining. Yet, performing in front of 30,000 people at the Olympics did not phase her. She
blocked out the audience and focused on her small little world where she was queen. This
approach worked for her as she has five Olympic medals.

 Much of your work will occur in meetings. Sometimes they are just one-on-one;
other times they have a dozen or more participants. If you are maintaining requirements
for an existing project, you might not have a great deal of people to deal with.
Alternatively, you will have worked with the people for a long time and feel comfortable
with them.

 Yes, extrovertism is not a requirement of all REs, but it certainly helps. If you are
more introverted, working with people you know and are already comfortable with helps.
Ask those you have a rapport with to assist in working with people or at least gather
advice on dealing with people to help raise your confidence in dealing with certain
people. It may be as simple as having more than one person from your team be involved
to share exposure.

 Confidence
 Confidence flows both ways. You need to have it. So believe in yourself. Also, people will
need to have confidence in you. Once you have experience, you will gain that confidence,
both in yourself and others in you as you gain a reputation.

 How do you gain that reputation? You need to be prepared, by covering the right
subjects, by not wasting time by digressing, and by listening. As will be talked about in
Chapter 9 , asking clarification questions to help understand the subject discussed and
summarizing what you have heard helps them gain confidence in you.

 This isn’t always about you coming across as knowing everything. If you give the
impression that you know something and you do not, people will lose confidence in you
quickly.

 It also includes helping the stakeholders feel confident about themselves.

 ■ Real-World Note Once when I was overseas, one of the stakeholders mentioned how
they did something in their manual process that we were going to automate for them. I
told them how that was an improvement over how we did it. I went on to add that we had
included improvements that other countries had provided, because we American do not
have a lock on being the most intelligent in the world. Many people have excellent ideas.
I explained that the development team had already incorporated some, and they were
planning others. What this did was establish a rapport between our two countries.

 In this example, I demonstrated that I had confidence in those I was working with, both their
country and others my team had dealt with. They know what they do and why. I trusted their
understanding and knowledge.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

16

 Confidence does not equate to arrogance. When someone comes across as a know-
it-all, people are less likely to have confidence in that person, from my experience. How
you word a response can help establish confidence or not. For example, saying, “Let me
check for understand,” helps to establish confidence rather than saying, “Yeah, I got that!”
as you wave your hand to dismiss the stakeholder’s point.

 Negative Traits
 Of course, there certainly are more traits, but you need to avoid the negative ones. For
example, impatience will inhibit your abilities. Naturally, being short-tempered will be
disastrous.

 Thus, even temperedness and calmness are desirable qualities for you to embrace.
 Ego can certainly get in the way, so check it at the door. These are not your

requirements; you are just the vehicle by which they are captured. The stakeholders
and users really own them. When someone suggests a change to something you have
captured, remember that they are clarifying what they need, and they are working hard
to ensure proper communications. If you attempt to own the requirements, you will be a
reason some of the things that can go wrong will, as you will see next.

 Remember in the “Patience” section, where I talked about the engineer who was
frustrated about not maintaining her perceived schedule? I could see on her face that she
was impatient. Knowing her, she was a short way from losing her temper, which would
achieve nothing. Sometimes, fixing it may be a matter of taking a break. If need be, defer
to another meeting so you can talk with some other people to get their assistance in
clearing up any impediments to success. Ask people more seasoned what you should do.
Do whatever you can to defuse a situation.

 One minor point to be aware of is that you may not get to see the results of your work.
You rarely will work on a project from initiation to the end.

 ■ Real-World Note At least that has been my experience. Maybe it is a manifestation
of working on government projects where people move around a lot. I probably spent an
average two years on a project, sometimes as long as four, but not often. Sometimes it was
even shorter, but that was usually for other reasons, such as projects being canceled or
delayed for things totally unrelated to anything I could control.

 Maybe in the commercial arena, you may stay longer. That said, if people find you are a
good requirements engineer, you will be in demand. When the next new and high-priority
item comes along, they will want you. Thus, you may not see a project to completion.
Alternatively, as in other cases, you are brought in to fix something that someone else did,
and they did not do it so well. Again, this has happened. Don’t let your ego keep you on
a project longer than you should. Anyone (well, almost everyone) can maintain a well-
established program. However, not everyone can start a project and turn it into a well-run
program. Strive to be that person that people want. It probably won’t be your very first
project. Yet, it will come with time. In addition, this book should help you get there. This way
you will not be one of those REs that cause requirements problems.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

17

 Good Communications Skills
 We will examine the following aspect of good communication skills :

• The ability to respond to people’s needs

• The ability to translate ideas

• A capacity for moderating different views or differences of opinion

• Persuasiveness

 Of course, you will need to be able to write good requirements, user stories, use
cases, and every other piece of documentation needed to capture requirements. This
book will go a long way to help you get there for requirements specifics. However, if your
grasp of English (or whatever language is appropriate for your project) is not so good,
then maybe you need to rethink doing requirements engineering. This is not to say you
need to create literary masterpieces, but you need to be able to write an understandable
sentence. You will need to present your information to others so they understand it. For
example, you may need to present requirements at a requirements review, so you will
need to get up in front of people to explain not only your process but also your results. In
addition, you must populate your requirements document or requirements database with
everything you have created. You must write them well enough to be comprehensible.
If your grasp of language is not up to the standards needed for the project, then take
whatever steps necessary to ensure you can listen and write to the appropriate level.

 Throughout my career, communication has been the source of the most
problems. Some people have said that is not true because technology is the main
challenge. However, I have seen communication problems repeatedly affect projects
involving different types of technology and many different people on various teams.
Communication failure is the common thread. Communication issues can be the fault
of the RE, other people may be the cause, or both. Establishing a common language,
as you will see in Chapter 3 , will help immensely. One other part of the problem is that
some people do not listen well. Back to the original point, some of those people felt that
technology fixes all problems, so they stop listening to what other, more experienced
people had seen. Listening is one significant aspect of communications.

 Responsiveness
 Because you must understand the full needs of the stakeholders, you have to put yourself
in their shoes, so to speak. You need to understand how issues affect them and capture
those needs. Some stakeholders may not get much visibility; for example, the people
who administer the system may not have representatives in stakeholder meetings.
Nevertheless, they have needs. What kinds of information and capabilities do they have?
If you cannot find a good representative, you need to capture their needs somehow. How
about the people who monitor the system, get the audit logs, track the system resource
usage, and so on? They have needs as well. If you are in an information technology shop,
you should have people like this around you. Talk with them. Or database administrators.
Remember, if you talk to them about their needs, you will ingratiate yourself with them.
(Well, most of them. Occasionally, you will meet the crusty old curmudgeon, but they are
the exception rather than the rule.)

http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

18

 Translator
 You are a translator of what the users and stakeholders say they need into words that the
information technology (IT) department in your organization (or whatever it is called)
needs. Basically, you are writing a contract between the two. Think of yourself as a lawyer
for the two parties involved, without having to go through law school. Oh, and what
you will write will be much more readable and understandable than the “conspiracy of
obfuscation” that real lawyers perform.

 ■ Note Yes, I have opinions, and I will express them here. Most of the time I will be
demonstrating the passion for requirements, but sometimes I use it to reinforce a point, like now.

 Now, examine an example of translation (and you will see more examples in the
next chapter and in Chapter 9). A stakeholder says, “When this specific error happens
<insert their error here>, I need a red flashing button up in the upper-right corner of the
screen.” As you will see in the next chapter, they are telling you how to implement what
they think they need. What they really mean is, “When an error condition happens, I
need a message of what is wrong and how to proceed.” This is not only getting rid of the
implementation (the how) but also making it in what they need and, in this particular
case, making it general enough to address all error conditions. This is a good point to
generalize for groups of errors whenever you can. For example, if you have operating
system (OS) errors, you might need a different requirement. Again, you’ll learn more
about that later in the book.

 Communications goes two ways. Just as important as speaking and writing
is listening. Some may argue that listening is the more important aspect of
communications. Listening is at least equal in importance. When you are collecting
requirements, you must listen intently. By that, you have to understand everything
the person says but also the implications of what they say. For example, someone may
say they need to export query results to a spreadsheet. Naturally, you will capture the
statement, but then you need to ask the one question you will ask more than any other
during your career—why? Why do you need to do that? It turns out that the user says they
need the spreadsheet because the current query results tool does not provide the ability
to manipulate the query results in the query tool (yes, this is an actual instance). They
wanted to be able to move columns around and expand or contract the column sizes—
maybe because the column does not display fully. Here are additional requirements that
they may not have identified. That is why questions like, “What does not work for you?” or
“What can be improved in, say, search?” are very useful questions .

 Moderator
 There are two aspects to this attribute. First, you must be able to run meetings, whether
one-on-one meetings or groups of people. As an RE, you will have many of these. This is
where you collect many requirements. They can be informal or formal. A workshop may
be more structured than a face-to-face meeting, where that latter meeting may be just
question and answer. With time, if you are not as comfortable with being a moderator at
first, you will get very good at it with experience.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

19

 Second, you need to be able to moderate disagreements between people. Not that
you are going to get into major controversies that splash across the headlines, but you
will encounter people whose opinions or understanding do not match. It is your job to
moderate those discussions. Sometimes it is nothing more than not speaking the same
“language,” but you’ll learn more about that in the discussion about language and jargon
in Chapter 3 . Other times, the needs are very different, and you’ll need to work with
people to get to the heart of the matter. Maybe upper management needs to resolve it, so
you must aid that process. In other cases, you may have someone who tries to dominate
the conversation, not letting others speak. You will need to ensure everyone gets a
chance, maybe going around the table, calling on each person so no one is left out, and
not allowing the “dominator” to grab the floor much of the time.

 Persuasiveness
 This is a corollary to moderator. You will need to be the proponent for the requirements.
You will need to sell what you have captured, whether on paper, in a database, or during
a presentation. In addition, you will need to be able to convince people in positions of
authority when they initially may not initially accept them. For example, it may require
them to make some minor modification to their current system to save a significant amount
of time when they convert to a new system. How do you do that? The best way is to show
what is in it for them. If, in the long run, it is better for them, they generally will accept it.

 Summary
 You have learned about many good personal traits and some to avoid along with needing
excellent communications skills to make you a good requirements engineer. Naturally,
you will get better as you gain experience. Nevertheless, you should have some insight
into what it takes to become a better RE as of a result of this discussion.

 Of course, just because you are reading this book does not mean you will absolutely
become a requirements engineer. Instead, you may be reading this so you know what an
RE will do on a team you work on, or maybe you are managing the requirements team.
Regardless, you need to know what REs can and should be able to do.

 With that segue…

 Challenges for Writing Effective Requirements
 There are risks to writing requirements that can severely impact the system being
developed or even while it is in operation. You will learn about these potential problem
areas and general solutions that will then be expanded upon during the course of this
book, with the intent of overcoming these challenges.

 Insufficient Requirements
 Insufficient requirements means that you are missing some or even all of the
requirements. If you are missing requirements, when the system is deployed, the users or
a subset of users will not have the functions you have.

http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

20

 Before analyzing this topic, a differentiation must be made from the agile
methodology where you do just-in-time requirements. With agile, you must have all the
requirements you need, when you need them. Insufficient requirements means that all
the requirements needed are not provided when they are needed. You will learn more
about agile in Part IV .

 ■ Real-World Note When I was teaching myself to use a new programming language,
I wrote my first real program to manage my book collection. Yes, I could have found a
program to do that, but this was a learning technique. After I had defined all my needs, I built
a database with a user interface to perform CRUD. That is the standard IT term to represent
Change, Read, Update, Delete. These were all the functions I needed. I had defined all the
fields that I wanted maintained for my collection. Then I showed it to my wife who said it
was missing the International Standard Book Number (ISBN) . Now this number is used track
the published versions of books around the world. If others would use these programs, that
is a valid requirement. However, my wife said she wanted it, so I accepted that as a valid
requirement (even though I believed she would never use it). I put that under the “Marriage
Maintenance” section of requirements. Trust me, if you are married, you will understand.
However, even I am not perfect when it comes to crafting requirements.

 Insufficient requirements means there are gaps in the full description of the system.
For example, maybe you forgot to include auditing of the user access function. If this is
captured later and the function is added, without capturing the data associated with the
people prior to that time, you will not have full auditing of the system.

 Approaches to mitigate this problem are the following:

 1. You should come up with preliminary requirement areas.

 2. You should research if working in a new area.

 3. You should go through the full process for gathering
requirements covered in the rest of the book.

 Insufficient requirements are more likely because #3 isn’t done well than #1 or #2.
As a result, you will spend extensive time learning how to perform good requirements
gathering.

 One way to look at insufficient or wrong requirements is to look at the cost to fix a
problem with a requirement .

 The Davis book states that fixing requirements left until after deployment is 100 to
200 times more than fixing the requirements during requirements definition phase. Thus,
it is imperative to get requirements correct. Bear in mind, people will review (validate)
the requirements so that you have the ability to correct them early. There are other
techniques you will see throughout the book that will help to improve your requirements.
The point is that you should get each requirement correct from the beginning to
significantly reduce the cost of error fixing.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

21

 There is a variation on an insufficient set of requirements— no requirements . There
is a joke where a programmer says to the requirements engineer, “I don’t need any
requirements; just let me code.” To which the response should be, “Code what?” How
would the coder know what to code? They coded what they thought the stakeholders
needed. How do you think that went? You are correct if you said not well.

 ■ Tip Programmers do not think like users. This is not meant in a disparaging way. It is
true that a good coder must think in computer language terms with a very special logic to be
successful. Most users of systems are good at what they do, but they are not programmers.
Thus, REs become the translator between users and coders.

 Clearly, having no requirements is a recipe for disaster. No one—users,
programmers, designers, testers, or even managers—know what to expect. Thus, any
development effort must have some requirements .

 Scope
 Understanding the scope of a project is critical to establishing requirements for it. In
some cases, it may be simple and clearly defined. However, in other cases, a project’s
boundaries can be vague or poorly defined, and this is one of the biggest sources of
problems for writing effective requirements.

 ■ Real-World Note In my first foray into commercial software, I wrote a card game to
run on PCs. You played against the computer only. You did not play with other players or over
the internet. Simple and well-defined boundaries. My next effort that I am still working on
is a game that is multiplayer and playable over the Internet. Here, the beginning and ending
points are less well-defined.

 Think of a personnel system that defines everything about a new employee when hired
for the company. You define all their information about the person: name, address, phone
numbers, and e-mail addresses. Does it include salary? Maybe. Maybe not, as that may fall
under the payroll system. Does it include next of kin? Maybe that falls under the Benefits
system as that deals with beneficiaries. Alternatively, maybe it falls under the Security
group, which needs a list of the person’s family because the person needs to checked out.

 Any time there is a “maybe” answer, the boundary between systems, between
services, between functions, or between applications must be defined. To reiterate, in
most cases, that is not something you can do yourself. You must work with others to come
to a common agreement. If it is between functions within your project, it is relatively easy
since it is someone you probably work with regularly, and you have a project manager
who can help make any decisions. If, however, your project interfaces with another
organization or major project that you have no real connection with, the management
chain up to the common manager may come into play. These negotiations become more
complex, as budgetary constraints, schedules, and other factors complicate the process.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

22

 ■ Note When having to work across organizational boundaries or with those working
on other projects, competing egos can be another factor. This is why a good RE must
have some of the attributes described earlier and be able to facilitate communication and
cooperation.

 The point is, define the boundaries of your scope precisely. This definition is
necessary for establishing clear project requirements and thus helps ensure that
resources are distributed efficiently. You need the definition to know what you need to be
working on to begin with. It will also prevent two (or more) people or projects duplicating
work or, worse, working in opposite directions .

 Requirements Creep
 Requirements creep , also called scope creep , means that the requirements change
significantly from when they are initially defined until the system is completed.

 We all have heard about an aircraft, weapons system, building, or other project that
was planned to cost $X million but ended up costing twice that amount or more by the
time it was finally completed. A significant factor in many of these cases is requirements
creep (or scope creep). This requirements creep occurs in hardware, software, or both.
Defining requirements expecting that nothing will change with time is unreasonable.
Nothing stays the same. Later, some people realize they need those inevitable
requirements. Then, they say, “While we are here, we need to add….”

 To combat this scope creep, the agile methodology was developed based on the
Toyota production system founded between 1948 and 1975. This lean approach to
requirements is to craft them just before they are needed (using the analogy of “just-in-
time” production).

 In this approach, you define functional needs near the beginning of the project. Then
designers and stakeholders prioritized what functions they want (and can do) when.
Then you craft requirements as they are needed.

 Volatility
 Volatility is different from scope creep (i.e., added requirements). Volatility means that
already existing requirements change; requirements have not been added. For example,
the original requirement for availability says this:

 1-6 The BOSS system shall be available 99% of the time.

 Then someone realizes that this system will become a probe that will travel to Pluto.
Oops, that availability is not sufficient so they change it to the following:

 1-7 The BOSS system shall be available 99.999% of the time.

 Trust me, this later requirement will cost a lot more than the original estimate. You
will see this more in Chapter 9 .

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

23

 Stove-Piped Requirements
 Stove-piped requirements mean this project is done in a vacuum. I don’t mean in a
physical vacuum like outer space, but the team works in a vacuum compared to the rest
of the organization. This is more likely to happen in large organizations where it may
be difficult to communicate every project throughout the organization. Or think of the
Department of Defense, where security issues or classified projects limit the access to
information; it can be even harder for people to know what everyone else is doing. Thus,
the possibility could exist that duplication of effort occurs. Note that siloed projects mean
the same thing as stove-piped.

 Think of every project designing its own security access portion of the application.
The user is required to enter a user ID and a password. The security team has deemed
that the person can try three times, and if they fail, then they are locked out. How much
time and cost are associated with defining the requirements, developing the code, testing
it, and implementing it for each project? Rather, one approach should be developed and
tested and then used by all of them.

 This is something you may not run into on your first effort. In fact, you may never
encounter it. Why? Because many, if not most, organizations have fixed this issue.

 Recently, the federal government continued to shrink IT budgets. One of the benefits
is that they were forced to see the light for standardizing approaches for their IT projects.
By that, they had to not only share code, by reusing services that had been already
developed and worked well, but also share things like requirements, architecture, coding
standards, and so on.

 Why do things more than once, when one time will do? You would think that
people would have done this decades ago. However, there are factors that have worked
against it. Because of environments that fostered restricted communications such as
security access, people did not necessarily know what people in adjacent offices and
organizations were doing. Only when they had to be creative did they begin the steps
toward standards and sharing. That’s not to say it was easy.

 I attempted to reuse the solutions for addressing existing similar needs by finding
requirements on a large document retrieval project that was already in production. I
had little success. In part, I found the reason was that while the organization was using
a service-oriented architecture (SOA) , there were no real requirements defined for it.
At first I assumed that I could not access the requirements for the document retrieval
system. Once I did find the requirements, I found they had documented very few of the
requirements, especially for the SOA portion of the system. I was the one who created
these requirements, and then my project shared them with others, so other projects did
not have to re-invent the wheel.

 The preceding example illustrates the kinds of clues to look for. If you are going
to write requirements for common items, like a report generator or access control or
searching capabilities, you might want to ask around to see what other people have
done.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

24

 PROJECT-SPECIFIC REQUIREMENTS VS. COMMON ONES

 There is a difference between requirements specific to your project and what should
be common requirements . Here are some examples:

• 1-8 The BOSS search functions shall provide Boolean operators:
AND, OR, and NOT .

• 1-9 The BOSS search functions shall default the search results to
the following fields:

• Spacecraft type

• Spacecraft dimensions

• Spacecraft weight

• Spacecraft storage capacity

 Clearly, the first requirement (1-8) is a standard type requirement that should apply
to any project that has a search capability. Yet the second one (1-9) would only apply
to a program that applies to spacecraft specifically.

 How do you overcome not being able to find out what other projects are doing?
Very carefully. This is not something you can do yourself, in most cases. Work with your
supervisor, say the requirements lead, or if this is you, work with your program/project
manager. Without their buy-in, it will prove daunting because as a team you must go to
the other projects and convince them to share their requirements. If the other team is not
on board with the approach, you will not get their requirements, and there will be no way
to share requirements between the teams.

 Assuming you get cooperation, you need to compare your needs. Find the common
ground. Then articulate your particular differences. Those are the ones you need to
define. You will see more detail later how best to accomplish that.

 Users Are Not Sure What They Need
 The challenge here is the users you are talking with are not certain what they need.
Sometimes they have not been thoroughly informed why they are participating in
your effort. Other times, they are totally unfamiliar with how new systems or improved
replacement systems are developed. While they do not need to understand all the details
of how a system is conceived until it is delivered to them, they will at least need to know
what the requirements process should be.

 You will definitely learn much more about this when you get to Chapter 9 . That said, if
your users/stakeholders do not know what they need, that is going to put you at risk. If they
do not know, who will? You will learn more about how to find the right people to interview,
techniques like structured questions, group interviews, brainstorming, and so on.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

25

 Therefore, you need to find the right people, which may not always be easy or even
possible. In that case, you need to help the users find out what they need. Earlier in the
chapter, you read about how you need to be a translator from what they say they need to
what they really need. You also need to guide them to help them to find what they need.

 Back when I was a graduate student, running labs to supplement the lectures, the
students would come to me asking questions how to find an answer. To ensure that they
would understand how to find answers in the future, what I generally did was ask a series
of guided questions that led them to find the answer themselves. I could generally tell
when they figured it out, as their face would light up, so to speak, when they discovered it.
They felt engaged because they had done it.

 You can do the same also. If you said, “I understand their process is X, Y, and Z.
Is that right?” They would have an answer. Maybe yes, maybe no, but it would not be
enlightening for them and would provide little value added to you. Instead, follow the
approach provided here and guide them with questions that start at the general level and
work down more detailed, engaging them in the process. Again, this will be emphasized
later.

 User Needs Not Satisfied
 All your work has been implemented, and it’s the big day of the delivery of the system,
and the first team of users sits down at their computer and use it. Then the open revolt
happens. They do not like it and demand that the old system be returned to them.

 Think this will not happen? Trust me, I have heard of it happening more than once.
Fortunately, it had not happened on one of my projects.

 If the outcome of a project is that users’ needs are not satisfied, it means you have
missed requirements or that you wrote them insufficiently to focus on the real need.
If you leave requirements out, you missed some aspects that the users need. This will
cause people to reject the system, or at best, they may be slow to embrace the system.
This could be as bad as work stoppage or people being reluctant to use the new system.
There are ways to mitigate this. For example, have the users review your requirements
work. It may not need to be the detailed requirements, but it should the business process
description that helped generate the requirements, or better yet, the user stories. As you
will see later, you write user stories in terms of what a user understands, rather than as
requirement “shall statements.”

 Missing the focus is slightly different. For example, you write a series of requirements
describing the system monitor functions for the system. However, when you deliver
it, they say, “Wait a minute, I do not know who changed what records are saved in the
system. That’s what I need to know.” What you had heard and described in requirements
and what the developers coded was “tracking how many records were added.” In reality,
the users were trying to determine when storage needed to be added over time. That is
not what you heard. So you completely missed the mark.

 A way to help prevent this is to rephrase what the user stated in different words.
What this does is force you to think about what the user said, convert it to terms you
understand, and validate their need. The users will be glad to correct you if you miss
your mark. Moreover, do not take offense, as you are trying to capture what they want.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

26

 Multiple Interpretations Cause Disagreements
 Every statement you write should have only one meaning, or interpretation. If there is the
possibility of multiple interpretations, then there is likely to be disagreements among the
people who interpret those statements .

 If the language used in the requirements is incorrect or not understood by everyone,
then someone may not interpret it (and design it) the way the stakeholders and ultimate
users may want. You will find out more about this in Chapter 3 . You will learn the
importance of word interpretation .

 For example, there was a project with two different groups involved in the
development effort. Those people who had a history of developing large systems within
the organization used the word recall to mean removing a bad record from the database.
However, the people who would use the new system used recall to mean calling for
a group of hard-copy documents from an archive to be given to someone. Neither
definition was incorrect. However, because of people’s background, they meant different
things and initially caused confusion.

 Other times you use a word, but just not precisely enough. For example, look at the
following requirement:

 1-10 DRAFT The BOSS record function shall capture the time
that the record is added to the database.

 That looks OK on the surface. However, time can be interpreted multiple ways.
For example, most people might figure that is just the local time that the transaction
took place. OK, if that is what is meant. What if this is a system that is for a nationwide
company that has offices in four time zones? Then which is it? You must specify one time
so the system compares like times. Now, assume this need exists for a bank system in one
time zone, so local time is satisfactory. Well, is it, say, Central Standard Time or Central
Daylight Time or both? If the latter, when does it change over?

 A requirement engineer must be very precise.

 Are the Requirements Verifiable ?
 If you cannot verify that a need has been met, what good is that need? How will you
know when it is done? The point is that you must have a means of verifying or validating
the accuracy and efficacy of the requirements that you write. There can be various ways
of doing this, such as having the test team validate them or, as discussed in preceding
sections, having users verify that the requirements actually describe what is needed.

 You must be able to envision some verification method for the requirement. There
is more later about the various forms besides actually testing it. Suffice to say, you or
someone else on your team should be able to say, “Yes, I can verify this.” Having your
test team validate your requirements is an excellent technique. Moreover, as you gain
experience, you will continue to improve in your own ability to check your work.

 However, examine the following example:

 1-11 DRAFT The BOSS user interface shall be so easy to use
that my great-great grandfather will be able to use it.

http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

27

 For the time being, ignore whether this is a worthwhile goal. Look at the criteria you
need to test—my great-great grandfather.

 When I was young, I met two great-grandfathers, and one lived until I was a late teen.
However, I never met one of my great-great grandfathers because he had died before I
was born.

 Therefore, that brings up a real issue for verifying the statement. You cannot verify
it. Yes, this is a ludicrous example, but it does make a point. You cannot validate some
statements. The following is another example:

 1-12 DRAFT The BOSS software shall operate on the surface
of Jupiter.

 Since humans currently have no hardware that can operate on Jupiter, there is no
way to test it. This is a little more representative, but not a great deal, but at least you are
getting the idea of the kind of issue identified here.

 Wasted Time and Resources Building the Wrong
Functions
 Sometimes a system is built, and the first reaction from users is, “Where is the search
function? That’s what I need the most.” This is not limited to search but any number of
functions the users want but did not get.

 This problem could indicate some requirements are missing. On the other hand, too
much emphasis was placed on items that do not have the same importance. The implied
importance of each requirement is that they carry the same weights unless you specify
otherwise. By that, if you have 100 requirements for the system administrator and only 10
for the other 80 percent of the users, you will spend about 89 percent of your time working
the requirements for only 20 percent of the users. If the system is not primarily focused on
system administration functions, they you may have captured too many requirements for
system administration rather than the rest of the function. You must assign priorities to
fix this issue. You must really examine the importance of each requirement. Then if most
of your high-priority areas do not have many requirements, you may need to spend more
time defining those areas. Another way is to look at each function and see how important
it is. How many requirements define it? The more time you have spent defining this
function may dictate the number of requirements associated with the function. However,
something that is very complex will take more time to define, potentially skewing its
importance. You will see more focus on this as you examine requirements throughout the
rest of this book.

 There are shortcuts, as will be talked about in user interface design, architecture, and
so on, where the use of standards can significantly change the importance.

 Regarding the missing requirements, the elicitation phase presentation will help to
prevent this.

 There is also a potential source caused by the developers who include functions
that users did not ask for. They may think it is a neat improvement. Alternatively, it is
something they have wanted to do for a long time. There are some elegant items coders
like to add, which cost time and money at the expense of important functions. This is why
developers need to have their proposed changes approved, regardless if it is waterfall,

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

28

agile, or any other development methodology. Developers are not the only ones who
have things added. Some managers, whether part of the development team or managers
in charge of users, can decide they want functions added at the expense of the functions
users need. Another technique you will hear more about later may help reduce this by
getting people to state how often a particular function is used. Granted, legal or policy
reasons may demand it. However, if such justifications do not exist, that is an indication
that a function is not necessary.

 As you can see, controlling this is important. Also, the distinction between this
problem and scope or requirements creep can be blurred. The important point is to
understand the challenge to overcome it.

 Summary
 You have been introduced to the most common and most important challenges in writing
effective requirements, insufficient requirements, scope, requirements creep, volatility,
stove-piped (siloed) requirements, users who are not sure what they need, user needs are
not satisfied, multiple interpretations causing disagreements, whether the requirements
are verifiable, and wasted time and resources building the wrong functions. The goal is to
teach you how to mitigate these problems. You have seen some general solutions to these
challenges. The rest of the book will dive into the details of how to eliminate each of these
or significantly mitigate the impact of the challenges. In addition, in the last chapter, these
problems will be examined against what was presented to see whether the addressed
techniques helped to prevent them.

 An early study cited in B.W. Boehm’s Software Engineering Economics found that
“approximately 60 percent of errors occur during the requirements definition.” Yes, this is
an older study, yet there doesn’t appear to be more recent studies or evidence to suggest
that this has changed. The point is, the problems listed in this chapter do occur. This book
will present ways to help prevent them. Keep in mind, if there are missing requirements
or misinterpreted requirements, they may not manifest themselves until much later in the
project’s lifecycle, possibly when it gets deployed. That is problematic as it can cost much
more to fix them then. You need to vigilant to help prevent this.

 Now, you will see what good requirements can accomplish.
 Will this book teach you to manage all aspects of RE such that you can immediately

become a manager of a team? This book can give some guidance. There are many other
good sources that can help with that. This book will give you the foundation for your first
job as an RE; it’s basically an excellent introduction to crafting good requirements. The
most important element to help with higher responsibility is experience doing the job.
You learn by doing.

 That said, in the right person’s hands and in a startup project where almost everyone
is new, you might be able to use this text as a guide, but that is the exception rather than
the rule. You will see throughout this book, there are rules and there are guidelines, and
many times the distinctions are blurred. Remember, earlier in this chapter I stated that
you need to think. Well, you are going to learn how to do that when going through the
requirements process. It is left to you to implement it—to gain your needed experience.

CHAPTER 1 ■ THE IMPORTANCE OF REQUIREMENTS

29

 References
 Boehm, B.W. Software Engineering Economics . Englewood Cliffs, NJ: Prentice-Hall, 1981.

 Davis, Alan M. Software requirements: Objects, Functions, and States . Prentice-Hall,
Inc. Upper Saddle River, NJ, 1993, p25–26.

 Jones, Capers. Software Assessments, Benchmarks, and Best Practices . Addison-
Wesley Professional, 2000.

 Exercises
 We are going to do something out of the ordinary here. Rather than ask for specific
questions and answers for this chapter, we will do something differently. You will do the
two exercises for this chapter, based on the limited information you have from Chapter 1
(and if you have any experience as a requirements engineer). Then, put your responses
aside, as you will look at it again at the end of Chapter 15 to see if you have the same
answers. There is no right or wrong answer; just see whether your understanding changes
with time.

 Exercise 1
 Examine the problems that can happen as described in the “Challenges for Writing
Effective Requirements” section in this chapter and rank which ones you think are the
most critical to fix and why.

 Exercise 2
 Examine the problems that can happen as described in the “Challenges for Writing
Effective Requirements” section in this chapter and rank which ones you think occur
most frequently and why.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_15

31© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_2

 CHAPTER 2

 What Makes a Good
Requirement?

 Now that you understand why you need requirements and what happens if you do them
improperly, you must begin in earnest to learn what makes a good requirement. First you
must understand the fundamentals of a good requirement, including the proper form of
a requirement and how to handle negatives within a requirement statement. The bulk of
this chapter will address the attributes that make a good requirement. Then I will finish
with how to deal with common errors in requirement statements.

 Understanding Requirements
 In Chapter 1 , you saw some examples of requirements. A requirement was defined as a
need, desire, or want to be satisfied by a product or service. Now in this chapter, you will
examine the important elements of a requirement.

 Wikipedia defines a requirement as “a singular documented physical and functional
need that a particular design, product, or process must be able to perform.” (Wikipedia’s
reputation may not be as strong as some other sources, but sometimes its definitions
are very accurate.) Wikipedia also adds that it is a statement that identifies a necessary
attribute, capability, characteristic, or quality of a system for it to have value and utility to
a customer, organization, internal user, or other stakeholder.

 ■ Note In Chapter 13 , you will see a definition that is similar, reinforcing the similarity
between requirement statements and user stories.

 The Form of a Requirement
 Now, let’s examine some of the key aspects of a requirement. It is a singular statement.
One requirement will address a physical and functional need that the product must
perform. Focus on that one statement. That is important. There will be only one need
per statement. Of course, there is the need as well—a necessary attribute, capability,

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_13

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

32

characteristic, or quality of a system. This is something you get from the stakeholder,
whoever it may be. The third part is the product, process, function, service, app (we will
default to the word function as a lowest common denominator in this book from now on).

 ■ Note Obviously one requirement cannot do everything related to a need all in one
statement. Multiple requirements are necessary to ensure all aspects of that capability are
addressed.

 Each singular (singular described part earlier) requirement must consist of these
following three elements :

• Function (function described part earlier)

• Verb

• Need (value to the customer, whoever that customer is, which
varies greatly)

 Now, deconstruct one of the requirement samples used in Chapter 1 :

 2-1 (1-1) The BOSS Access Control Function shall allow an
authorized user to access the system.

 This requirement breaks down accordingly:

 The BOSS Access Control Function = Function

 shall allow = Verb

 an authorized user to access the system = Need

 The verb is absolutely critical. In all your work, the requirement statement must
have the word shall as part of the verb to indicate that is it a required statement (aka
requirement). Without it, it is not required.

 There are different schools of thought on the use of shall , should , will , must , and
 may . The convention in this book, however, is that every requirement statement must
have one and only one shall in it. That makes it a requirement. The other four words
in the previous paragraph do not make it a requirement. They are called qualifiers .
Statements with those as verbs are like the adjectives of a normal sentence; they are nice
to have but not necessary.

 ■ Note If your organization uses a variation on that, adapt accordingly.

 IEEE also uses the shall approach . Similarly, the federal government, including the
Department of Defense (DoD), typically uses shall . In their book Software Requirements,
Third Edition , Karl Wiegers and Joy Beatty advocate shall because

 We have seen the verb ‘will’ to be used statements of facts, ‘should’ to be
a goal that needs to be achieved, ‘must’ to be a performance statement.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

33

 Furthermore, Requirement Experts Website, on October 2012, stated, “Shall is used
to indicate a requirement that is contractually binding, meaning it must be implemented,
and its implementation verified.” It also states, “Will is used to indicate a statement of
fact.” In addition, it defines should as, “Should is used to indicate a goal which must be
addressed by the design team but is not formally verified.” I agree with these definitions
completely. Other sources reinforce them. Most projects use the same definition. May
carries no force at all, and must really is not well defined.

 Thus, use shall in every requirement (as shown in this book) unless you are on a
project that uses a different approach to which you need to adapt.

 Dealing with Negatives in Requirements
 There are some rules that people will tell you about writing requirements. One rule,
which does not fit well as part of the attributes, is that you should never write a negative
requirement. Part of the reason some people use as justification is that you cannot state
everything a system should not do, as the entire universe is infinite.

 Now, look at an example:

 2-2 DRAFT The BOSS Sampling function shall not use more
than ten percent of the raw data in a sample.

 Usually, there is a better way to say a negative. For example, you could state the
previous requirement as follows:

 2-3 The BOSS Sampling function shall limit sampling of the
raw data to more than ten percent of the total.

 There are other words you can use instead of no , never , not , or none such as prohibit ,
 limit (as earlier), or some other construct.

 Does that mean you would never use a negative? Purists would say so.

 ■ Real-World Note As you will see in this text, I am not purist. I have spent too many
years in the real world writing requirements. I have found the rule is more like the
Pirate Code in the first two Pirates of the Caribbean movies: it is more of a guideline
than a rigid rule.

 Sometimes there is just no other way to write something other than with a negative.
 OK, so what is an example?
 It is hard to find good example, but having said that, here are some examples:

 2-4 The system shall not override user selected contrast
and color selections as prescribed in Section 508. (United
States Government. “Resources for understanding and
implementing Section 508.” Feb. 2015, www.section508.gov/)

 2-5 The system shall not disrupt or disable activated operating
system accessibility features.

http://www.section508.gov/

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

34

 2-6 If the search is too complex, the system shall not crash
while executing a search.

 2-7 The system report generator shall not require a per seat
license fee for every user .

 Now, you will examine the many elements that are necessary to make a good
requirement. This is different from the different types of requirements, such as security
requirement or business rules to name a couple, but are the attributes that basically every
requirement statement should have regardless of the type of requirement.

 Attributes of a Good Requirement
 The attributes of a good requirement are the following:

• Accurate, or correct*

• Atomic

• Complete*

• Concise

• Consistent*

• Does not conflict with other requirements

• Does not duplicate with other requirements

• Independent

• Prioritized*

• Realistic

• Traceable*

• Traced to a source

• Unambiguous*

• Understandable by stakeholders

• Unique

• Verifiable*

 Some books you will read will show more and show less. Nothing is gospel here.
These are teaching elements. The Institute of Electrical and Electronics Engineers (IEEE)
standard 830-1998, titled Recommended Practice for Software Requirements Specifications ,
recommends the attributes marked with an asterisk (*) in the previous list.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

35

 ■ Note Modifiable is included in the IEEE list, whereas this deals with the ability to
modify requirements, and this deals more with the document as a whole rather than an
individual statement. They are correct, but you will examine the list of attributes as being
associated with an individual statement.

 This shows that no one really agrees on exactly how many attributes comprise a good
requirement.

 ■ Real-World Note Some books I have seen include thirteen attributes or ten or the same
eight as IEEE depending on their focus. However, from a teaching standpoint, I tend toward
a more comprehensive approach so that you consider as many aspects as practical. With
time, this will become second nature for you.

 At this point, all these various attributes may not be obvious, yet as you read further
in this book, you will see the benefit of having a wider list of attributes than a smaller list.
Gap analysis is one area that benefits from this expanded list. However, you will see more
about that much later in this text.

 When you are first starting out, you will want to review your requirements and check
them against the list of attributes. Eventually, you will not need to think about it as it will
become instinctual.

 That said, you will examine each one of these attributes in the following sections
of this chapter. You will see references to them throughout this book, as they are the
foundation of everything you will do hereafter.

 Some of these attributes you will see again, when you get to user stories later in
the book, as well you should. Good requirements and good user stories should have
attributes in common.

 Here is the mnemonic to help you remember them:

 This mnemonic is CUD CRUD and CAV, IT CAPUT. Clearly, it is not the best one
ever invented, but hey, it is a method for you to try to remember them. It is not as elegant
as ROYGBIV for the colors of the rainbow, or HOMES for the names of the Great Lakes.
However, if this helps you remember the attributes, then this is a successful mnemonic.
(If you want to be immortalized, you come up with a better one, send it in, and you can
receive credit in the next version of this book. You will achieve your 15 minutes of fame.)

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

36

 There is no significance to the order these attribute are listed in or to the order that
they are examined. Each attribute has its own significance that you should understand
within that context. Without further ado, onto these attributes.

 Now you will examine each attribute individually.

 Accurate
 An accurate requirement is defined as a precise statement of the system’s capability, its
inputs, its outputs, its interfaces, and how it interacts with its environment.

 When crafting a requirement, the potential exists for not being precise or accurate.
One obvious mistake would be if a user says they need the results of queries within five
seconds of initiating a query and you wrote the requirement as follows:

 2-8 DRAFT The BOSS query function shall begin displaying
the results of a query within 10 seconds of initiating a query.

 You can see this statement did not accurately capture what was requested (ten
seconds versus the needed five seconds). A simple misstatement of a metric is rarely the
issue when not accurately capturing the need. More likely, it is an inaccurate translation
of the need. For example, the user says they need the display of all the cards dealt out
within six seconds.

 What was captured was the following:

 2-9 DRAFT The BOSS Solitaire Dealing function shall begin
displaying the first card within six seconds of activating the
Dealing option.

 What the user actually wanted was the following:

 2-10 The BOSS Solitaire Dealing function shall finish
displaying the last card within six seconds of activating the
Dealing option.

 This is a simple example, but you get the idea. The first requirement deals with the
start of the function, whereas what the user wanted, and the correct requirement, was the
display of the final dealt card.

 Chapter 9 will spend some time on how to tease out what the users really need.
Chapter 1 stated how you are a translator. Getting what the users’ needs are accurately is a
challenge. It takes practice .

 Atomic
 You need to define each requirement at the atomic level .

 No, you are not going to get into nuclear physics; this refers to decomposing the
requirement down to its lowest, logical level. Not only is it important to show what should
be done (e.g., not have multiple requirements in one statement), but also you will see the
explanation why. For a given system, you might see the statement that said this:

 2-11 DRAFT The BOSS Access Control function shall provide a
display and print capability of the access control list.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9
http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

37

 For example’s sake, say for this system, there are ten such functions, and they all
need the same print and display capability. Testing begins. Then you learn that the print
capability does not work. That means all ten requirements fail, or 100 percent. However,
when you break the statements into ten print and ten display requirements, only 50
percent of the requirements fail. You now know accurately what failed. Take the previous
requirement and break it down as follows:

 2-12 The BOSS Access Control function shall provide a display
capability of the access control list.

 2-13 The BOSS Access Control function shall provide a print
capability of the access control list.

 There is another reason why you should split the requirement into two
statements. Following this example, say that the development manager has one
person working the display functions and one person working the print functions.
This way you have provided each with their respective ten requirements, rather than
having to share the responsibility. You have allocated the requirements uniquely, as
you should.

 You should look for connecting words like and , or , nor , yet and but to remove by
splitting requirements to individual requirements. You will learn about cases where you
cannot split requirements in Chapter 6 . Even in these, you can eliminate the conjunctions
(those connecting words from grammar. Yes, the reason you went into engineering was to
get away from English. Alas, you failed!).

 Parent-Child Requirements
 Another variation exists in decomposing requirements to the atomic level. This is the
situation where you have a parent requirement that has requirements subordinate to
that requirement, or child requirements. Here is an example of a parent requirement (the
second requirements number after the 2-14 is the requirements number in this system’s
set of requirements, which is included to show how a parent-child requirement should be
numbered to show the relationship):

 2-14 3.1.1 PARENT The BOSS Authentication function shall
require all users to authenticate themselves before they can
use the system.

 Because you need to explain what this means, you need to provide more information
to completely describe authentication. Thus, you should add the following:

 2-15 3.1.1.1 CHILD The BOSS Authentication function shall
require all users to enter a valid username.

 2-16 3.1.1.2 CHILD The BOSS Authentication function shall
require all users to enter a valid password.

 2-17 3.1.1.3 CHILD The BOSS Authentication function shall
require all users to enter a valid system domain name.

http://dx.doi.org/10.1007/978-1-4842-2099-3_6

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

38

 2-18 3.1.1.4 CHILD The BOSS Authentication function shall
require all users to enter a valid username, password, and
system domain name in three tries or they are locked out of
the system.

 2-19 3.1.1.5 CHILD The BOSS Authentication function
shall lock out users for one hour or when reset by a system
administrator.

 ■ Note This last requirement is not a compound requirement that needs to be broken
apart. Yes, it has an or in it, but in this case, either condition can be met to allow the user
to try to authenticate again. Breaking them apart really would not capture the conditional
aspect of this requirement.

 Now, move onto the children of the original requirement. Each requirement stands
on its own, as it should. The only real difference is that they are related to the first
requirement, 3.1.1. You should also reflect this with the numbering scheme. Instead
of numbering the second through sixth statements 3.1.2 through 3.1.6, you should use
3.1.1.1 through 3.1.1.5 reflecting that they are subordinate to 3.1.1. You will examine more
about this in the “Traced to a Source” section later in this chapter.

 Complete
 This is an interesting and difficult attribute to capture, so you will spend some time on
it. This is a value that addresses both the individual requirement and the entire set of
requirements.

 Completeness of an Individual Requirement
 At the requirement level, is all the information necessary to define the function, the verb
that describes what action it should do, and the result of that action that completes the
description of the need?

 Examine this example:

 2-20 DRAFT The BOSS Access Control function shall provide
a display.

 What should the system display? Yes, it’s a simple example, but it illustrates the
missing data. Sometimes, as the last set of requirements where you looked at parent-
child requirements, you should provide the complete set of data by providing additional
requirements related to the particular topic. That gets into looking at the system
description as a whole, which you will come back to shortly.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

39

 In the meantime, focus on individual requirements for now. You have a challenge
to read each requirement you craft to determine whether it is complete. Look at the
following requirement:

 2-21 DRAFT The BOSS individual radiation dosimeter shall
capture exposure of 1000 rem.

 You are not expected to be radiation experts; just accept that the statement has
legitimate expressions of radiation exposure. (FYI, this radiation exposure is very
significant, in fact, as it is likely to be lethal.) Nevertheless, you need to answer the
question, is this complete? The answer is no. Why? This one statement by itself means
there are many more requirements necessary to show all the values that need to be
captured. The user said they needed an individual radiation dosimeter that captured up
to 1000 rem. Thus, you might need to write the following 999 requirements:

 2-22 DRAFT The BOSS individual radiation dosimeter shall
capture exposure of 999 rem.

 2-23 DRAFT The BOSS individual radiation dosimeter shall
capture exposure of 998 rem.

 2-24 DRAFT The BOSS individual radiation dosimeter shall
capture exposure of 997 rem.

 And down to the following:

 2-25 DRAFT The BOSS individual radiation dosimeter shall
capture exposure of 1 rem.

 Clearly, this is not practical. While complete, do you really want to write it that way?
Of course not. You could write it as follows:

 2-26 The BOSS individual radiation dosimeter shall capture
exposures of a maximum of 1000 rem.

 If so, then you need to write a requirement for the minimum value.

 2-27 The BOSS individual radiation dosimeter shall capture
exposures of a minimum of 1 rem.

 Of course, you could write it as one requirement as follows:

 2-28 The BOSS individual radiation dosimeter shall capture
exposures in a range of 1 to 1000 rem.

 That looks complete, correct? Well, yes and no. What is missing? What increments
must the exposures be captured in? Well, you ask when the stakeholder, they say it in
individual rem values .

 2-29 The BOSS individual radiation dosimeter shall capture
exposures in increments of 1 rem.

 Wait, you can write all that in one requirement as follows:

 2-30 DRAFT The BOSS individual radiation dosimeter shall capture
exposures in a range of 1 to 1000 rem in increments of 1 rem.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

40

 So, should you capture it this way? The requirement is complete. Yes, but you
should not combine them because this is not atomic as was discussed in the previous
section. The reason is the range of values is one requirement, and the increment is
another. In addition, these two values would require testing them in different manners.
While you have not learned about verification yet, it helps to think about all attributes
whenever you can.

 Now, move on to another aspect of individual requirements. There are situations
where you may have an incomplete requirement temporarily. In the previous case,
the user said they wanted the individual radiation dosimeter from one rem to some
higher number that he did not know and would have to check with someone else to
get the upper limit. You should capture the requirement so it is not lost or forgotten
about, as follows:

 2-31 The BOSS individual radiation dosimeter shall capture
exposures in a range of 1 to (TBD) rem.

 What is TBD? It stands for To Be Determined . In this case, some other expert is going
to determine the upper maximum. The original stakeholder knew that 450 rem was a
value of interest to people in the military battlefield, but the stakeholder did not know if
that was correct so he or she deferred the decision.

 If you have a TBD, that means the requirement is not complete. So, why do you even
address it here? Because it comes up—a lot. In fact, back in the ancient days when REs
did requirements documents on paper (yes, even before word processing), you had TBD
sections with a work-off plan for all of them. A work-off plan is a listing of each TBD and
how it will be eliminated, as well as when each will be completed if possible. Some books
will recommend you do this. In fact, they would assign unique numbers to each TBD to
aid in tracking. If you have more than a handful, this might be a wise approach to take.
Once you get the information, place it in the requirement and, voila , it is complete.

 There is a variation on the TBD called the TBR, which stands for To Be Reviewed . In
the case of a TBD, the stakeholder did not know the value of interest; the stakeholder did
not provide any value. What if this same stakeholder had guessed 800 rem but said the
stakeholder was uncertain if that was correct and needed confirmation. In this case, the
requirement would look like this:

 2-32 The BOSS individual radiation dosimeter shall capture
exposures in a range of 1 to 800 (TBR) rem.

 Notice that this includes the suggested value, as it at least gives some indication of a
reasonable limit. Again, once you confirm the upper limit, remove the TBR, completing
the requirement. These TBRs can be included in the TBD/TBR work-off plan.

 Completeness of a Group of Requirements
 How do you determine when you have completely described the system of interest? Look
at Figure 2-1 . The rectangle is the universe of everything outside the project of interest.
The circle inside that rectangle is the project of interest.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

41

 The key is the boundary, the edge of the circle. Remember in Chapter 1 , you read
about the scope of the project, “…that means that the boundary between systems/
services/functions/applications must be defined.” When you have described everything
inside the edge of the circle and on the edge, you are complete.

 Sounds simple, right? Yes, it sounds simple, but it is not in practice. You need to
define every action, every need, all performance needs, design constraints, architectural
constraints, policy constraints, environmental constraints, and all external system
interfaces with all inputs and outputs.

 If you have a self-contained system with no external interfaces, say a game like
Microsoft Solitaire, you have it much easier. In many, if not most, cases, you will have
other systems/apps to exchange data, which means you have a much broader stakeholder
base. There is one additional complication in defining your requirements. If you require
external interfaces to make changes, you may have resistance because of budgetary,
political, or even egotistical reasons. This complicates your efforts significantly.
Ideally, the first time you do this, you will have a mentor because this is the most
challenging aspect of capturing requirements. During the discussion about collection of
requirements, you will learn about this more.

 Meanwhile, back at the project requirements focus, there are items to consider. Make
certain you define any graphics well such as figures, tables, and diagrams labeled with all
units provided and any other pertinent information provided. In fact, speaking of units,
you always need to include them in requirements regardless if they are associated with
graphics. A glossary is useful. You will hear more about this in Chapter 3 .

 Chapter 1 briefly touched on gap analysis. The focus of that emphasis is to capture the
completeness of the requirements set. As mentioned, you will learn more about how to do
this in Chapter 9 on collection requirements. Suffice to say, what you need to do is find all
the missing capabilities. You have to ask yourself, as well as others, what things should this
system do that have not been discussed? Sometimes, this takes a bit of creativity. Actually,
this can make it fun as you can ask some questions you might not normally ask. For
example, should you drop your smartphone onto concrete from 3 feet up?

 The answer is that the phone company and their manufacturers would say no. Why?
They want it not to be survivable to what users might consider reasonable. For the record,
when the U.S. Army was developing radiation detection equipment, their sophisticated
electronic equipment did have such a requirement. Why? Because soldiers might use

The Universe

The Project

Not the Project

 Figure 2-1. The project inside everything it interacts with

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_3
http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

42

these pieces of hardware in the field, in potential combat situations, and the devices
might see some rough treatment. Think of the hardware bounced around in a vehicle as
it jostles over rough terrain. It needs to be tough. Do you think laptops that can take that
kind of treatment? No. If you think they can, Google hardened laptops .

 Therefore, as a phone user, you want the following requirement:

 2-33 The cell phone shall perform all its functions after being
dropped onto concrete from a height of three feet.

 The next time you want to replace your phone, ask what models have been tested to
survive being dropped. You might be surprised—and not necessarily pleasantly.

 Next, continue investigating requirements that you should specify for all conditions
that can occur. Do cell phones need to survive an electromagnetic pulse (EMP) from a
nuclear weapon detonation? What is the likelihood that the cell towers would survive
unless they were nuclear hardened? Probably not. Even if they were then, would there
be a power infrastructure to support the towers? Not likely. Thus, you cannot expect our
phones to survive if the infrastructure around them would not. Thus, EMP survivability
for our cell phones is not a reasonable requirement. This is an extreme example, but
when looking for “all conditions,” this gets to be interesting. You have to do what some
people call “thinking around corners” so you consider items that normally do not occur.
However, are conditions that your system, whether hardware or software, will operate?
Think of the conditions a satellite has to operate in. They are much harsher than on Earth.

 Examining or considering unusual conditions is interesting.

 ■ Real-World Note I will digress just a bit to describe what someone did when
performing my job before I became the test manager. This individual did the Butt Test. Now
this is not something you will find on the Internet (I checked). What this person did when a
new piece of code came in was to turn on the system, put the keyboard on the chair, and
promptly plop down on it. Hence, the name Butt Test. Needless to say, I did not carry on
this (insert your adjective here) test when I took over. The idea, I suppose, was to see what
happened when a lot of different keystrokes happened at the same time. I do not know what
any of the test results were nor, frankly, do I care. The reason is that I had no requirement to
test this. Nor have I ever seen any other project with such a requirement either.

 One aspect to think about in completeness is the data elements in the system. Find
out what the users need, not what the designers and coders need to manage the data.
That is for them to specify. When you collect these values, not only what are their formats,
ranges of values, or other conditions, but why should it be part of the system, and how
will they use it. Why collect someone’s Social Security number when all you are doing is
delivering the Sunday newspaper to him or her? Do you think this does not happen? Oh,
it does. You must understand how stakeholders might use the value.

 Do not fall into the trap that you see the previous set of requirements list a bunch of
values so you assume you need all these values.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

43

 ■ Real-World Note I spent five years as an industrial engineer, basically an efficiency
expert. Our instructors taught us to question every fact we collected and to get each answer
from at least two different sources. I am not advocating that you need to perform this type of
validation, but the principle is important.

 Make certain you understand why each value is important to the users.
 For example, say you have a requirement in the older set of requirements like the

following:

 2-34 DRAFT The system shall maintain an index key field for
the person data.

 Upon investigating, you find, in the old system, the system populated person data in
three separate tables and the software needed a way to link the tables together. However,
you cannot assume the same implementation in this new system (in fact, you learn later,
they do it with one table, so there is no need for this field). This is not a valid requirement.

 You need to consider error conditions under completeness. What kinds of errors do
you want to prevent? In the past, users have asked for error checking of query statements,
as they want proper formatting invoked before initiating the query. This saves the user
from having to correct something before they wait for the system to reject it, sometimes
taking a significant amount of time. In addition, users have asked for the capability for
the system not to crash when a complex search was run (it happened, in fact with quite
regularity).

 There are a couple of minor items to consider. Like when you populate the
requirements in a document, you should number all the pages. You will learn more about
documents in a later chapter. Also, all requirements need to be uniquely identified. You
will see more about this in a later section of this chapter.

 You should specify all applicable requirements to achieve completeness. This is the
toughest attribute to check. Just before you finish requirements definition, the one thing a
requirements engineer dreads is for a user to say, “I forgot that I need….” This text will do
all it can to help prevent this by preparing you satisfactorily.

 Concise
 What you want is requirements that are short and sweet. You have learned about not
having compound sentences, which fits nicely into the concise attribute. The shorter
the statement, the likely the easier it is to read. This means you are using shorter, more
precise words and more active verbs.

 Now, look at two options.
 Here is option 1:

 2-35 DRAFT The BOSS system software shall maintain a
unique sequence of numbers for each record associated with
the person data so someone can retrieve the record based on
these numbers.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

44

 Here is option 2:

 2-36 DRAFT The BOSS code shall assign unique numbers for
each person record.

 Clearly, the second option is better. First, the statement uses 11 words versus 29
words, and it employs more concrete words like code versus system software . Second,
notice the statement dropped the phrase dealing with retrieval using the record numbers
as that really is another requirement.

 Another aspect of concise writing is the clarity that a good requirement should bring.
A requirement should be understandable by a nontechnical person.

 If a non-IT person saw the following requirement:

 2-37 DRAFT The BOSS SOA implementation shall follow OOP
practices on all objects.

 this person would clearly not know what that meant. Try to target every requirement
for that type of person. That is not always practical. However, if a particular stakeholder
asks for a need that you translate into one or more requirements, that person should be
able to understand it. When administrative or systems people have requirements, these
are IT people and they better understand technology statements, even if non-IT people
do not. Thus, sometimes you will have to write to the audience. Maybe you do not even
present the administrative or systems requirements to the standard stakeholders. That
approach has worked well in the past. You are not withholding information; you just focus
on those requirements and needs that affect these typical users. (OOP means object-
oriented programming.)

 Consistent
 Consistent requirements complement each other. Here you will focus on consistent
usage. For example, you must use consistent terms. Many of you may have heard of the
Mars probe that was lost when the vendor who built it used English measurements when
metric measurements were called for. Therefore, if a command was sent that said go
X distance in kilometers, when it measured it in miles, the craft would have gone 60.2
percent farther. So, use consistent measurements in you requirements.

 That also means within a particular grouping of requirements, use the same
measurement. Here’s an example:

 2-38 DRAFT The BOSS query function shall return the results
of a simple query against one table within two seconds.

 2-39 DRAFT The BOSS query function shall return the results
of a complex query against ten tables within three minutes.

 Instead, they should read as follows:

 2-40 DRAFT The BOSS query function shall return the results
of a simple query against one table within two seconds.

 2-41 DRAFT The BOSS query function shall return the results
of a complex query against ten tables within 180 seconds .

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

45

 One reason is that someone reading the requirements may miss the difference of the
unit of measure in the second requirements. This helps to prevent it.

 In addition, how you refer to selection capability is important.

 2-42 DRAFT The BOSS print choices shall be offered from a
picklist.

 2-43 DRAFT The BOSS print choices shall be available from a
pull-down menu

 ■ Warning Usually the two requirements are not written one right after the other. What
happens when there are a few dozen or a few hundred requirements in between them (or
if it was more than a thousand?). It is difficult to spot when you read through them. A way
to check is to have a mechanism that you can filter on topics, and see this limited list on
one screen. For example, when you view a topic in Microsoft Excel, you see the information
much closer together, and it is easier to spot. Another technique is for you to set them aside
and read them some days later, and you might pick up inconsistencies. Alternatively, having
others review your requirements can help. It could be something simple in an airport system
where one requirement says outbound and another time return .

 This book touches on jargon, or the use of terminology in the next chapter, but you
must use terms consistently throughout the document. Do not say query sometimes and
 search another, unless they have different meanings. Be careful here as some people may
use the terms differently. Most people use search to be just that. However, one group
of people use search when they want to research . However, when they are looking for
something specific, then it is query , not search —even though they use the same search
tool. Go figure.

 Here is another example:

 2-44 DRAFT 3.1.69 The BOSS system shall accept dates in the
mm/dd/yyyy format.

 2-45 DRAFT 4.3.2.13 The BOSS Data Entry function shall allow
entry of dates in the format:

• dd/mm/yyyy

• mm/dd/yyyy

• yyyy/mm/dd

 Clearly, the second requirement allows three different formats, whereas the first one
accepts only one. Wait, you say, the requirements cover different areas within the system.
One is at the system level, while the other covers only the data entry function. Good
point, however, the lower one conflicts with the top level. If you write the statements the
following way, you could accept it.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

46

 2-46 3.1.69 The BOSS function shall allow entry of dates in the
format:

• dd/mm/yyyy

• mm/dd/yyyy

• yyyy/mm/dd

 2-47 4.3.2.13 The BOSS Data Entry system shall be accept
dates in the mm/dd/yyyy format.

 Here the more restrictive is acceptable at the function level, whereas the system level
is more general. That said, be certain that you confirm that the function level truly accepts
only the single format and just is not a mistake.

 Does Not Conflict with Other Requirements
 Now, you need to understand about inconsistency between requirements. Look at a set of
 reliability requirements for a hardware system.

 2-48 DRAFT Each BOSS subsystem shall have a reliability of
0.990.

 2-49 DRAFT The BOSS system shall have a reliability of 0.950.

 On the surface that looks reasonable. However, there is some missing information
that masks an inconsistency. What is important to this inconsistency is the number of
subsystems that are in series. In this example, you use the following formula, since all the
subsystems have the same reliability:

 R(system) = R(subsystem)^N(number of subsystems in series)

 ■ Note We will spend more time on reliability so you will understand this better in Chapter 5 .

 Equation 1: R(system) = 0.990^10, which yields a value of 0.904
 Clearly, you cannot achieve the specified system reliability. You have several options.

Option 1 is you should consider changing the number of the subsystems. If you have five
subsystems and calculate .990^5, you get a number of 0.951, which meets the second
requirement. However, the designers say that is not possible.

 The second option is to ask the stakeholders if they would settle for 90 percent
reliability. They say no. Thus, the third option is to change the reliability of the
subsystems. By changing the reliability requirement to 0.995, then you get a value of
0.951. In this case, the users accept the change in the requirement (who wouldn’t when
they provide a better value?) and the designers say it is practical, so you agree on the
following requirements for ten subsystems :

 2-50 Each BOSS subsystem shall have a reliability of 0.995.

 2-51 The BOSS system shall have a reliability of 0.950.

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

47

 Not always is the inconsistency so number intensive. It may be more like the
following:

 2-52 DRAFT The BOSS ranking subsystem shall be high,
medium and low options.

 2-53 DRAFT The BOSS priority function shall allow critical,
high, medium and low options

 Are ranking and priority the same? Yes, in this case. Are subsystem and function the
same? Yes, in this case. Are high , medium , and low and critical , high , medium , and low the
same? Yes, in this case. Although these requirements happen to be consistent at one level,
you can see that the terminology is not, which shows that you can have more than one
inconsistency.

 Now, examine another pair of requirements:

 2-54 DRAFT The BOSS New Phone App shall ensure I can use
the phone based on a biometric.

 2-55 DRAFT The BOSS New Phone App shall be delivered to
existing phones.

 Assume from a design standpoint that the capturing of a biometric cannot be
accomplished without some hardware change to a phone. Then, there is no way that
existing phones that do not have that hardware can accomplish the first requirement. If it
can be done with software, than these two are not in conflict.

 Sometimes the conflict may not be so obvious. Take the case of the following:

 2-56 DRAFT The BOSS New Phone App shall provide state-of-
the-art machine learning capabilities.

 2-57 DRAFT The BOSS New Phone App shall be delivered
within three months to existing phones.

 Here the problem is that machine learning as described here would not fit into,
say, a 16GB smartphone. Thus, it will not occur within three months. Unless you know
a bit more about the system in question and its memory, you might not catch this
inconsistency. If uncertain, ask experts.

 Does Not Duplicate Other Requirements
 This inconsistency is a bit more straightforward than the last ones. Basically, the same
statement is made in two different places. Given that you have hundreds of requirements
(or thousands), this can happen. You may have heard the same requirement from two
different sources, and you did not remember capturing it before. Or, and this is very likely,
as on a bigger project there will be more than one requirements engineer, two (or more)
people will capture the same requirements. It may be as simple as this:

 2-58 DRAFT 3.1.5.5 The BOSS priority function shall allow
critical, high, medium, and low options.

 2-59 DRAFT 4.7.8.2.1The BOSS priority function shall allow
critical, high, medium, and low options.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

48

 Did you notice how far apart the requirements numbers are? That can explain part of
the problem.

 And yes, even I have done it. Of course, my “excuse” to the reviewer who caught it
was, “I had to put something in for you to catch so that you would feel validated in
finding something.”

 You can consider that “excuse” as public domain and use it to your advantage.
However, maybe not in the first couple of years. It does not work when that is one of
hundreds of comments.

 Other times, slight inconsistencies can mask the duplication, as shown here:

 2-60 DRAFT 3.12.5 The BOSS print choices shall be offered
from a picklist.

 2-61 DRAFT 4.1.1.18 The BOSS print choices shall be offered
to the user.

 You might have to spend some time looking through your requirements to catch
these kinds of duplicates. This should become a step in your checklist of the steps you
should take during the review of your complete set of requirements. How you organize
your requirements is important. That may help capture these kinds of errors when they
are close together.

 Independent
 By this attribute, there are two potential meanings for it. First, a requirement should be
able to stand on its own. Second, a requirement should be independent of a particular
implementation.

 Stand on Its Own
 To understand the requirement, there should be no need to know any other requirement.

 2-62 The BOSS Authentication Function shall require the user
to enter a username, password and domain name.

 This requirement has all three parts: the function, the verb and the action.
 Now, examine an alternate statement.

 2-63 DRAFT It shall require the user to enter a username,
password and domain name in that order.

DUPLICATE REQUIREMENTS

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

49

 What is it in this requirement? The author probably assumed it was “The BOSS
Authentication Function,” but he/she should state it so, to ensure a requirement
statement can stand alone. Instead, you should write it as follows:

 2-64 The BOSS Authentication Function shall require the user to
enter a username, password and domain name in that order.

 ■ Real-World Note This does happen; even I have done it when I was crafting a lot of
requirements from notes or even business process descriptions. You are frantically cutting
and pasting and words are flying around in your text, and you miss it (pun fully intended).
I remember the days when I actually did physically cut and paste. Yes, I am a crusty old
curmudgeon.

 That is why you should always go back and read what you have written. Look for
any such pronouns such as it , they , them , some , all , a few , and several . This list is not
exhaustive, but you get the idea .

 Implementation Independent
 This potential violation is more likely, yet as a concept it can be more difficult to find.
A requirement should not contain any unnecessary design and implementation
information. You will come back to the word unnecessary . Why do you not want to specify
a design? First, you are a requirements engineer. Odds are you are not a design engineer
or system architect. Even if you have some training and experience as such, it is not your
role to specify design. Why is that?

 REs are to specify “what” you want the project to do, not “how.” You must leave
the designing and architecting to those responsible for the architecture and design. In
addition, you do not want to limit their design by locking them into a particular approach.
They are paid the big bucks to do that, just like you are paid big bucks to be an expert at
defining requirements. Therefore, you will let them do their job. Now, examine this next
statement:

 2-65 DRAFT The BOSS Personnel Data Capture function shall
store the personnel data in a text file.

 Is this correct? No. Wait a minute, shouldn’t you specify that you want to store the
data? Yes, and you should. The problem is with saying “…in a text file.” That is design, and
that is the designer’s and/or architect’s decision. The requirement should read as follows:

 2-66 The BOSS Personnel Data Capture function shall store
the personnel data.

 Here is another one:

 2-67 DRAFT The BOSS Personnel Radiation Dosimeter shall
be protected in a metal case to prevent damage by the soldier
wearing it while going through normal activities in the field.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

50

 Is this correct? On the surface, it might appear to be. However, maybe a metal case
might interfere with the passage of the particles that are meant to be detected. Again, you
have restricted the designers. Therefore, you should write it as follows:

 2-68 The BOSS Personnel Radiation Dosimeter shall be
protected to prevent damage by the soldier wearing it while
going through normal activities in the field.

 The metal case was taken out. Here is another example to consider:

 2-69 DRAFT The BOSS shall be developed using Java.

 Ha, you say, this clearly is implementation specific. Yes, on first blush, you are
correct.

 When reviewing the requirements on a new project, I found just such a requirement.
I asked the program manager if this was implementation specific. The PM told me that
our project was an umbrella program that other applications would be including under
our umbrella. The customer we were developing it for wanted a common development
environment. Thus, this was a valid requirement.

 A clarification is in order. Some requirements theorists say that this is a constraint,
not a requirement. They mandate all constraints belong in a special section. With
the advent of requirements databases, a special section (as in a document) is not as
easy to do. You can organize requirements into sections somewhat by arranging them
with specific unique identifiers. The point is that this is a valid need so you call it a
requirement. For some projects that want constraints handled separately, you can have a
special constraint field in your database and mark this following requirement as a YES:

 2-70 The BOSS shall be developed using Java.

 ■ Real-World Note I have one more point to make about this requirement. I have used
it as a question in requirements interviews. I state the requirement and ask the interviewee
if it is valid. Most say no, that it is implementation. Only one in the dozens I interviewed
answered it correctly as Maybe. Then I went on to explain why correctly, as a possible
constraint. Therefore, if you ever encounter this question, you now have the right answer.

 Naturally, as a beginning RE, you may not know where the boundary is between
what is design and what is a requirement. This will come with practice. It also helps to
read other requirement sets.

 ■ Warning People write requests for change (RFCs) as a mechanism for modifying
existing projects. In these documents or forms (whatever manner these RFCs come
in), usually there is a “Requirement” section. The potential problem is that anyone can
write these requests, not just REs: users, designers, testers, or even managers. Most of
these people do not have expertise with writing requirements, let alone crafting good

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

51

requirements. If users write these, remember that they are not requirements engineers and
write what they want the system to be. Usually they say something like, “I want a pull-down
to list all my choices” and so on. Know who is writing these statements. Unless you know
that an RE wrote them, do not consider them gospel.

 Prioritized
 Priority is the importance of a requirement or a group of requirements.

 Assigning a priority means assigning a relative importance like high, medium, and
low. This reflects what you need to do with requirements. This helps alleviate the problem
mentioned in Chapter 1 where a list of requirements with no other information gives
the impression that they all have the same importance. They do not. Nor should you list
requirements without some qualification to the importance. You should start assigning
one of four priorities to each requirement. (You can use three, five, or whatever number
works best for your project.)

 There is a distinction between priority and rank. Priority is the level of importance.
In this book, ranking is numbering within a priority. In other words, in what order should
the critical priorities be worked off? Rank 1 should definitely come before rank 10.

 The recommended four priorities are Critical, High, Medium, and Low. Other than the
“critical to life” needs, those items that are necessary for the project or the rest of the functions
to work all are critical. For example, in the radiation dosimetry project, collecting the radiation
exposure is critical, or none of the follow-on functions will work. You should apply the
same approach to a software application. Without collecting and/or ingesting data into the
application, none of the manipulations of that data will work. Those are the critical functions .

 ■ Note In Chapter 5 , the text will use Critical and High functions in one of the definitions
there, so having defined priorities proves useful there to help identify those functions.

 Many High functions are the mission-essential functions that manipulate the data
that the critical functions have provided. This would be analyzing the radiation exposure
or querying the database. The Medium functions would be less important, say reports of
data for management. The Low functions are the remaining items.

 One word of caution when you get to Low functions. If stakeholders find functions
that no one seems to understand, that begs the question why anyone wants them. Here
you may be getting to functions that really do not add value. This is one of the reasons
that requirements engineers need to review the functions that developers want to create,
so they do not provide things that stakeholders and users do not need. Trust me, they like
to do neat things and think they know what users want. Do not let them, at least without
checks and balances. Run it past the users if you are uncertain.

 Who makes the decision on these priorities? While you as a requirements engineer can
propose these values, the responsibility rests with the stakeholders. Even if you propose the
priorities, the stakeholders must review them. If you have thousands or even several hundred,
you might group the requirements together so the stakeholders have fewer decisions to make.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

52

 Here is one set of example requirements with the priority provided after the statement:

 2-71 The BOSS Unit Radiation Dosimeter shall collect the
radiation exposure during the unit’s mission. Critical

 2-72 The BOSS Unit Radiation Dosimeter shall display the
real-time radiation exposure during the unit’s mission when
activated by a user. High

 2-73 The BOSS Unit Radiation Dosimeter shall generate a
display of the radiation exposure values over the unit’s entire
mission. Medium

 2-74 The BOSS Unit Radiation Dosimeter shall generate a
graphic display of the radiation exposure values over the unit’s
entire mission. Low

 Here is another set of example requirements with the priority provided after the
 statement :

 2-75 The BOSS Casualty Data Collection function shall allow an
authorized user to enter each unit’s daily casualties. Critical

 2-76 The BOSS Casualty Query Collection function shall allow
an authorized user to query each unit’s daily casualties. High

 2-77 The BOSS Casualty Report Collection function shall
allow an authorized user to generate a report of all units’ daily
casualties. Medium

 2-78 The BOSS Casualty Query Collection function shall allow
an authorized user to generate a report of one unit’s daily
casualties over a month. Low

 The IEEE standard 830-1998 says that requirements should be ranked for importance
and/or stability to indicate either the importance or the stability of that particular
requirement. First, you addressed the stability of a requirement when you learned about
TDBs and TBRs in the “Complete” section. You should accept that some requirements are
more important than others. IEEE defines stability with how likely it is to change.

 ■ Real-World Note Honestly, as I think back over my career, I never have really estimated
that. Alternatively, for that matter, I am not certain how useful this aspect of the attribute
would be. Part of this may relate to the age of this standard—1998, almost two decades old.
The environment is much more dynamic now than it was in 1998.

 In addition, you will see more later in this chapter and the book how requirements
change over time and how to address that. Thus, you should not worry about this aspect,
unless you encounter a project where the management uses it and insists upon it. Then
follow their well-defined approach (assuming it exists). Beyond that, read the IEEE
standard and other sources to learn more about it.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

53

 IEEE breaks requirements into four ranks: essential, desirable, conditional, and
optional. Essential means absolutely needed, without which the system cannot function.
Think of life-critical aspects of an application. The next highest level is desirable but
not life-threatening or disastrous to the application. Conditional requirements would
enhance the product but would not affect the application if they were not included.

 Finally, optional requirements may or may not be worthwhile.
 Why would you capture something that is optional? This gives the designers some

flexibility. These elements would be included in the design after the coders implemented all
the rest of requirements and resources still exist to finish these needs. Alternatively, sometimes
when designers are working on higher-priority items, they can include these optional items
with very little impact to their effort. You, as a user, get more bang for your buck.

 Does that mean you should not identify essential, desirable, conditional, and
optional? No, if you need to capture this information, do so. Whatever is necessary to
manage your requirements, that is for you to do. You want to clarify the language used
related to your project.

 Wait, you said priority, not rank. IEEE said rank. Here you get into a language
issue. In this text, ranking means assigning a rank number within a priority to each
requirement.

 While IEEE used rank, this text recommends performing ranking within priorities,
so you want to consider that distinction. In fact, when you get to Chapter 13 later in the
book, again you will see prioritizing (with the four values) and then ranking numerically
within each priority. This helps with the backlog management.

 Alan Davis in his book Software Requirements: Objects, Functions, and States uses
annotated as the attribute instead of the IEEE rank attribute. This is used to clarify
terminology again .

 Realistic
 Is each requirement realistic , possible, feasible, or doable (other words for this attribute)
in the timeframe the program wants it? Here’s example:

 2-79 DRAFT The BOSS Venus Probe shall be able to hover at
any altitude using anti-gravity pulse generators.

 First, ignore the possibility that this is implementation specific. Assume it is an
architectural constraint.

 ■ Note It does not take a rocket scientist to know this is not realistic since we currently
have no anti-gravity capability. Nor are we likely to have it any time soon. (I hope I am
proven wrong. That said, I would much rather be pleasantly surprised rather than negatively
so because we counted on such a breakthrough.)

 However, if you had said the following:

 2-80 The BOSS Venus Probe shall be able to descend slowly in
the Venusian atmosphere by using a parachute.

http://dx.doi.org/10.1007/978-1-4842-2099-3_13

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

54

 this is much more feasible as the atmosphere is much denser than Earth’s
atmosphere, making a parachute practical. In fact, the Soviet Union and United States
both have used parachutes in the past .

 What about the following?

 2-81 DRAFT The BOSS Earth Internal Probe shall be capable
to image the fluid interior of the Earth using positrons.

 Current physics understanding and engineering capabilities says that this is not
possible. First, there are not very many positive-charged electrons available. Second, this
is not the right particle to use for this type of imaging (maybe neutrinos, but that is not
state-of-the-art yet). Third, being an anti-particle, it would destroy itself when it hits its
particle pair. So, no, this is not feasible.

 2-82 The BOSS Submarine Probe shall be capable to image
underwater vehicles using sonar.

 Watch any submarine movie, and it will validate this requirement.
 What about software? How do you apply this rule? Look at the following statement:

 2-83 DRAFT The BOSS Chess Software shall be capable of
beating a Chess Grandmaster.

 Is this feasible? If you have read about Gary Kasparov’s two matches with the IBM
computer Deep Blue, then you know that this is feasible, as the computer won the second
match 3½ to 2½. (FYI, Gary won the first encounter 4 to 2.) Therefore, yes, it is feasible.
What about the following?

 2-84 DRAFT The BOSS Physician Diagnosis Software shall
completely duplicate all the diagnostic functions of a
physician.

 While machine learning is making tremendous strides in decision-making
algorithms, it does not appear to be so yet. These types of applications are providing
assistances to doctors, but only that—assistance. Remember that with the advances made
in this field, the previous statement may date this book. For everyone’s sake, we as a
people should hope so.

 How do you determine whether something is feasible? That is the rub. If you do not
have a good understanding of the technology, it will be a challenge. You can do research,
say on the Internet, to find out capabilities and limitations of technology. You can talk
with experts around you. You will find that developers, designers, and architects can be
valuable resources. If they are not overwhelmed with work, you will be surprised how
open they will be to share their knowledge.

 Know that not every requirement will need to be scrutinized so. As you go through
this book, you will recognize many if not most requirements are doable, because you have
seen them done. Think about every application you have ever used, every device, or app
on your phone and you will realize that you have a more extensive field of experience
to draw from. In most cases, it is just common sense. If you use science-fiction books as
textbooks, then you might miss the mark .

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

55

 Here is an actual example. The stakeholder said that he wanted a biometric used to
check every person who used the system. Unfortunately, this was not a situation where
people would use a biometric to authorize people to use a system, a one-to-one match for
each person. One-to-one matching would be using a retinal scan to allow you to enter a
restricted area. The stakeholder wanted to compare the biometric against the complete
set of people in their system, a many-to-many comparison. A many-to- many comparison
would be at the airport where the TSA at U.S. airports are checking all people’s pictures
(many) against their list of people on the “no-fly list,” also many. For this stakeholders
request, he only had a server with networked workstations; he did not have that capability
built into the system to do a many-to-many comparison.

 Given what I described in the previous paragraph, what I did was capture the
requirement. I told the stakeholder that what he had said was a valid need and a realistic
requirement. I did indicate that the capability was not yet built into the system we
were working on, so it would not be part of the first delivery. I did explain that doing a
significant search against a large biometric database was intensive and may not run on
our current hardware configuration. He accepted my explanation. A couple of years later,
we had begun building the biometric capability into the system so that the requirement
was feasible. How did I know this? I had been with the project for more than a year or
so at that point, and I had a good idea of our current capabilities, as well as what we had
planned for the next few years. Therefore, I could speak with some assurance that the
requirement in question was doable. So—feasible.

 Thus, making the determination, while challenging sometimes, it can be done. Trust
your judgment, and validate when you are unsure .

 Traceable
 The IEEE standard 830-1998 defines the traceable attribute as traceability to an origin and
to future development or enhancement documentation. If you look at their document,
they do not differentiate between traceable and traced. This book, as do other texts
(Software Requirements by Davis, and others), does make this distinction. Here, traced
means pointing a requirement to a source, which will be covered in the next section. The
first section will talk about traceability to subsequent documents here.

 Traceability
 Traceability will show what design specifications are written that address the requirement.
Odds are, they will be one or more design specifications. In addition, the testers will
write their test plans and procedures. Every requirement must have at least one design
specification and at least one test procedure. If they do not, you have a problem, as you will
be unable to verify that all the needs are met. Table 2-1 shows examples.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

56

 Table 2-2 shows another example, separate from the BOSS system .

 Table 2-1. Traceability for the BOSS System’s Authentication Requirements to Other
Documents

 Number Requirement Design Spec Test Procedure

 3.1.1.1 The BOSS Authentication function shall
require all users to enter a valid username.

 2.1.1a, 2.1.2,
2.2.2c

 TP-3.1

 3.1.1.2 The BOSS Authentication function shall
require all users to enter a valid password.

 2.1.1b, 2.1.3, TP-3.1

 3.1.1.3 The BOSS Authentication function shall
require all users to enter a valid system
domain name

 2.1.1c, 2.2.2a,
2.2.2b

 TP-3.1

 3.1.1.4 The BOSS Authentication function shall
require all users to enter a valid username,
password and system domain name in three
tries or they are locked out of the system.

 2.1.1d TP-3.1

 Table 2-2. Traceability for a Cell Phone System to Other Documents, Separate from the
BOSS System

 Number Requirement Design Spec Test Procedure

 4.7.2.1 The cell phone shall perform all its
functions after being dropped onto
concrete from a height of three feet.

 4.7.2.1.1, 4.7.2.1.2,
4.7.2.1.3

 PD-7.9

 This is one of the easier aspects to do, just tedious. Some of the work you will do is
not the most exciting part of the job. It is important that you do it nevertheless. You will
also need to do it jointly with other members of the team. Sometimes, you will find you
will force them to do their job when they did not realize they had to. That is satisfying
when you actually influence the design and/or testing.

 Traced to a Source
 As mentioned in the preceding section, this deals with tracing your requirement back to a
source. This may be nothing more than listing the meeting where a group of stakeholders
met to define their needs .

 Do you need to specify exactly who said it? Usually not. A description of the type of
user, if you know, can be helpful. Do you need to know the name of the person, when
they may not be there three years later when you follow up? No. However, if you know
it was a lawyer in the legal department, or the HR rep, that will be useful if you need to
follow up later.

 Sometimes policy documents dictate a requirement. If so, state the policy, even to
the paragraph number if you can.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

57

 What if you have a team of engineers collecting information from various sources
(usually because the project is too big for one person)? You may need to validate other
people’s requirements. This is always a good idea. It helps you learn as well as the person
being reviewed.

 In addition, you may discover someone who is not following the guidance
provided here.

 ■ Real-World Note I had an engineer who wrote a requirement that stipulated that our
existing system needed to be rewritten as a Microsoft Access database. Here comes the
most important question you can ask (which we will spend more time in Chapter 9)—why?
Her rationale was that the stakeholder had asked for it. I must point out that we already
had delivered the system to several other clients, which were several large WANs with an
Oracle database. I asked why this particular customer wanted it that way. She said that their
current system was written in Access and they would not have to do any transition recoding.
So, with this smaller customer, for one WAN we would change the entire implementation
(and the reduced capability of Microsoft Access versus Oracle)? I do not think so.

 Thus, the source of a requirement is important. In addition, as discussed earlier, not
just because it was that way in the old system either. Validate those requirements. How
should you track the source? You should do so like in the previous section, as another
field in your database.

 See some examples in Table 2-3 .

 Table 2-3. Traceability for the BOSS System’s Authentication Function

 Number Requirement Source

 3.1.1.1 The BOSS Authentication function shall require all
users to enter a valid username.

 BOSS Security
Manager

 3.1.1.2 The BOSS Authentication function shall require all
users to enter a valid password.

 BOSS Security
Manager

 3.1.1.3 The BOSS Authentication function shall require all
users to enter a valid system domain name

 BOSS Security
Manager

 3.1.1.4 The BOSS Authentication function shall require
all users to enter a valid username, password and
system domain name in three tries or they are
locked out of the system.

 Network Administrator
at administration
meeting, June 4, 2014.

 Again, Table 2-4 shows an example separate from the BOSS system.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

58

 Unambiguous
 This attribute, dear reader, is the most difficult one of the 16. You will spend more time
trying to get it correct, and in spite of this, you will have continual challenges with it. Even
after doing this for more than 30 years, I still have to work hard at this. It has gotten better,
but it never goes away .

 Ambiguity in General
 Let’s look at ambiguity in general and why it can challenge you. Unambiguous means
that a knowledgeable person interprets each requirement statement only one way. In this
case, a knowledgeable person is someone who is a stakeholder or user of the system or
will be involved in the project in some way, so they will have knowledge of the system. An
English literature major being exposed to Einstein’s theory of relativity will likely not be a
knowledgeable person on that subject.

 Honestly, this particular attribute will cause you more issues in your career than
any others, possibly combined. Why? First, English, despite all those (usually in the
humanities) who will tell you that it is precise, it is not. Have you ever had an argument
with someone when upon further examination (usually after heads have cooled off)
that you learned that what each of you said was correct, just that you did not agree on
the meaning? That is why this text contains a chapter devoted to language and how
to mitigate its flaws. Look at a dictionary. How many words on a page have only one
meaning? That right there is part of the problem—the complexity yet beauty of the
language.

 ■ Real-World Note I was at a conference once where I was talking with someone from
Australia, and he said, “You Americans use the word oversight wrong.” He emphasized the
second syllable to mean a mistake by missing something. The context used in the previous
presentation was oversight with emphasis on the first syllable to mean someone watching
over something. Both definitions are correct, but context was so important.

 How do you fix this?
 There are those who advocate the use of something more precise like mathematics

or models developed for the software and hardware development environment. You
will see more why this may not be as effective as these IT theorists advocate in the next
section on getting the stakeholders’ buy-in.

 Table 2-4. Traceability for a Cell Phone System Separate from the BOSS System

 Number Requirement Source

 4.7.2.1 The cell phone shall perform all its functions after
being dropped onto concrete from a height of 3 feet.

 Every person who has
dropped a cell phone!

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

59

 ■ Note Given that models have limitations for requirement uses, you will see a survey of
some of these tools for you to get at least an understanding of them and can consider them
when appropriate.

 Thus, you will continue to examine using words as precisely as you can. The first
thing you can do is find any words that can have multiple meanings. When you find
them, put them in the glossary to define which one you are using. Now you cannot have
hundreds or thousands of glossary terms. One way to cut this down is to use a specific
phrase rather than two or three individual terms to reduce the number of entries in the
glossary.

 Realize that the stakeholders can review the requirements to help ensure that
statements are unambiguous. Remember that they have particular institutional
knowledge that the developers, who many times are in a different office, may not have.
Thus, there may be a different understanding of the words.

 One of my last projects had a group of developers who had no knowledge of what
the stakeholders did. I had worked on defining the requirements for two years before the
developers began looking at the requirements and found it almost incomprehensible
because they did not understand what the users did. It was a difficult learning curve for
them. We gave them training and had our subject-matter experts (SMEs) talk things over
with them to clarify what their business process was. It wasn’t because the requirements
were wrong or that the developers were dumb; it was like trying to read a foreign language
without the translating dictionary. Ideally this is the worst case; it was for my career.

 One point new ambiguity occurred was during the transition from a document-
based set of requirements to a database set of requirements. That spawned an additional
problem that had not existed before. The document used acronyms and abbreviations—
well, the best way to describe it was an epidemic. The military and most of the rest of
the federal government uses, and will always use, that shorthand. It is the language of a
project and an organization. I will talk learn about it in Chapter 3 . However, they have
been used in this text. The policy was that the first time you used an acronym, you spelled
out its meaning the first time and then put the acronym in parentheses. After that, in the
document you just used the acronym. This saved time and space .

 In documents, that was no problem as people read them sequentially. However,
with the advent of the database, that was not always the case. A developer would not
necessarily look at the complete set of requirements, and if he/she did not see that SME
was spelled out two paragraphs before (like here), then he/she might have missed the
meaning.

 How do you overcome this? Spell out the acronym the first time you use it in a
requirement, and if used again, then use the acronym. While that flies in the face of the
conciseness that acronyms buy for us, it overcomes the potential ambiguity issue.

 You can fall into other traps. For example, look at the following:

 2-85 DRAFT The BOSS Personnel Data Entry Function shall
allow the entry of a name that is up to thirty characters long.

http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

60

 Is that valid? For two reasons, no. First, is that the first name, the last name, or the
whole name? What if it is a Russian name, including the patronymic (middle name)?
Will 30 characters be enough? In addition, it is best to break the name into parts, like first
name, middle name, and last name. Wait a minute. What if it is someone hails from Latin
American or the Middle East where there could be four parts to a name? You have to look
at the range of names you could have.

 Second, what do you mean by up to 30 characters? Do you allow exactly 30
characters? If so, say “up to and including 30 characters.” If it is more than 30, are those
beyond 30 discarded? Does the user get an error message? You need to clarify this.

 Look at the following requirement for another example of a different kind of ambiguity:

 2-86 DRAFT The BOSS Personnel Data Entry Function shall
only allow the user to display one record.

 Does this mean that only one record is displayed? If that was the intent, it does not
say that. It means the display is the only option available to the user, no add, no update,
no delete, no print, nothing but displaying the record. This shows that misplacing one
word can give the wrong requirement. Reword it as follows:

 2-87 The BOSS Personnel Data Entry Function shall allow the
user to display only one record at a time.

 If the intention was to restrict the actions of the users, reword it more clearly.

 2-88 The BOSS Personnel Data Entry Function shall allow
Read-Only user to only display records .

 Subjective Terminology
 Subjective terms also can be difficult. Here is a requirement that was actually written by
someone (granted in the late 1980s but written nevertheless):

 2-89 DRAFT The BOSS shall be user-friendly.

 You can run into a lot of subjective words that everyone will have at least one
different interpretation. The previous alleged requirement falls into that trap. One way
to determine whether something is subjective is to try to define a way to test it. If you
cannot, then it is subjective. Alternatively, if you could think of more than one way to
interpret what it is, it is ambiguous. This alleged requirement begs the question, what is
user-friendly? Each person you talk to would define it differently. They envision the user
interface differently. The solution is to write a requirement like the following:

 2-90 The BOSS shall follow our Organizational User Interface
Standard.

 Of course, that standard has to exist already. You will spend a little more time on user
interfaces in Chapter 10 .

 There is a plethora of words that fall into the subjective (hence ambiguous) trap. This
includes any word that ends in ly , such as the following:

• Accurately

• Adequately

http://dx.doi.org/10.1007/978-1-4842-2099-3_10

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

61

• Effectively

• Efficiently

• Expandability

• Quickly

• Robustly

• Safely

• Timely

 Even taking the root word, like accurate , does not eradicate the issue. Each work
requires a specific statement that defines what accurate means. Here’s an example:

 2-91 The BOSS radiation dose rate meter shall capture
exposures with a minimum accuracy of 0.1 rem per second.

 Is this easy to do for every one of these potential words? No. It is necessary, however,
to ensure the statements are unambiguous .

 Other sources will tell you to fix problems with unspecific words like acronyms, and/
or, TBDs, etc., and so on. Earlier in this section, you saw how to fix acronyms and how to fix
TBDs discussed the Complete attribute. Now, for the phrase and/or that has been used this
in this book, even this chapter. For example, earlier, this chapter said the following, “That is
design and that is the designer’s and/or architect’s decision.” Look at the last six words.

 “…the designer’s and/or architect’s decision.”

 It could mean the following:

 “…the designer’s and architect’s decision.”

 Alternatively, it could mean the following:

 “…the designer’s or architect’s decision.”

 However, the convention in this book is that it means both statements are potential
true. Therefore, if it shows up in a requirement, both ways have to work. Most projects
have used this definition. So, when you are on a new project, find out if this is the case. If
there is no preference, add it as a project convention.

 Etc. and so on used in a requirement means there is missing information. If you
do not have all the options, actions, data elements, or choices, use TBD and follow the
guidance from the Complete attribute .

 Troublesome Parts of Speech
 You can run into vague words (in addition to adverbs, those ly words) like the following
(this list is not exhaustive):

• Complete

• Derive

• Exhaustive

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

62

• Maintain

• Manage

• Handle

• Support

 You will need to spell out what the word means, such as “maintain means add,
change, delete, read, and print.”

 You have to avoid indefinite pronouns. Here are some examples:

• Almost

• Any

• Anybody

• Anything

• Few

• Just about

• Many

• Most

• Much

• Several

• Some

• Somebody

• Someone

 Consider the following candidate requirement:

 2-92 DRAFT The BOSS radiation dose rate meter shall capture
as much radiation exposures as the user experiences during a
mission.

 What does as much mean? What number should be considered, 1 rem/second, 5,
22, or 2897? You must be specific. You have already said the minimum of 0.1 rem/second.
You should specify the upper limit.

 2-93 The BOSS radiation dose rate meter shall capture
exposures with a maximum accuracy of 100.0 rem per second.

 This is good because now you have given the full range, the upper and lower values.
 You may be tempted to use modifying phrases:

• as or if in front of:

• Appropriate

• Needed

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

63

• Necessary

• Required

• Shall be considered

 What do any of those phrases mean? It means the list is either incomplete or you
are not certain if all the items in the list apply. Be specific, or add a TBD or TBR to the
requirement and then work off that TBD or TBR.

 Passive Voice
 Last but not least, you need to consider passive voice. With passive voice, the subject of
the sentence receives the action of the verb rather than performing it. Here’s an example:

 2-93 DRAFT The Social Security number shall be entered by
the user.

 Alternatively, here’s one even less specific:

 2-94 DRAFT The Social Security number shall be entered.

 The first statement demonstrates an example of passive voice.
 Using the active voice, it will read as follows:

 2-95 The user shall enter Social Security number.

 The big difference is the change from shall be entered to shall enter , which is more
active with the verb be removed and more concise, as it has one less word and four fewer
letters. In fact, the sentence went from ten words to seven. This gets the requirement even
more concise, the fourth attribute for a good requirement.

 In the second example, who should enter this code? Should the system use machine
learning because it should know all the Social Security numbers (SSNs) for every
user? That might work if it is internal to a company. In fact, that would be a very good
requirement. Alternatively, should the user enter it? The statement is unclear. Make it
clear by specifying who enters it.

 ■ Note I have to admit that I fail to write in the active voice in every shall statement.
In fact, if you look through this chapter, you may find some examples. In those cases,
I was attempting to make a teaching point, or the requirement structure may dictate
passive verbs.

 An organization’s style may drive you to passive statements sometimes, so watch
for it.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

64

 ■ Real-World Note I will finish up with a situation that happened to show an odd example
of how active verbs were involved with me. Some years ago, I wrote a transition plan for a new
application that we were preparing to replace a legacy system. As part of that effort, I drafted
the plan and then sent the document out within my organization for review. Another person
had a comment on the document where she said, “It needs more active verbs.” Not only was
I a little surprised by this, because the style of the organization was to not attribute who would
do something, therefore forcing passive voice more than I liked to do. That said, she even had
a list of active verbs she recommended that she passed to me—in the meeting, in front of
everyone. I had one of my buddies come up to me later and said, “I could not believe you did
not go off on her.” I did not, as you cannot. If you do, it only gets you a reputation that you may
not want to have. However, I did a little investigation. I looked at her list, and I had included
all of her verbs except one, procure. In addition, it made sense that I would not use that one
since by the transition to production phase, everything had long since been procured. I then
looked through the first three of my seven sections (it was a long document and I did not need
to be exhaustive) to find the active verbs I had used that she had not considered. My list was
comparable to hers. Therefore, I wrote her an email with my findings. I explained about her list
and gave her my list. My point with this anecdote is that active verbs versus passive verbs is a
question of magnitude. A purist will say that you should have no passive verbs. However, when
you have the other attributes to follow, passive verbs sometimes work better.

 Understandable by Stakeholders
 While the previous attribute is the hardest to achieve, this attribute “understandable by
the stakeholder” is the absolute most critical of all the attributes. If the stakeholders do
not understand what you have written, you will never move to the next phase, because
the stakeholders will not accept the system—ever. Interestingly enough, trying to get the
requirement “unambiguous” and “understandable by the stakeholder” may sometimes
be mutually exclusive. English, despite what people will tell you, is not a precise language.
Mathematics is a precise language. Why do you think all the scientists of the world
(and probably universe) use it instead of any other language? Alas, you cannot write
requirements in mathematics. (Hm, unless some smart person discovers a way to do
so…but that is a digression.) That is why some people advocate using modeling and/or
 Extensible Markup Language (XML) or Unified Modeling Language (UML) to get more
precision.

 However, gentle reader, your stakeholders are not mathematicians, may not be able
to follow various models, or read XML or UML (more about this in Chapter 12) because
these techniques are rigorous and most of your stakeholders are not prepared for such
rigor. Does that mean you have the wrong stakeholders? Absolutely not. They are where
they are for a reason. They are the users of the system; they are the resident experts at
using the applications to do their jobs well, which they do; and they are the managers of
those people. If they were IT people, they would be in the IT department.

http://dx.doi.org/10.1007/978-1-4842-2099-3_12

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

65

 So, what is a requirement engineer to do?
 Write, early and often. And listen. Listen intently. You have to listen to what people

say when you interview them, when you sit in meetings with them, and when you read
their e-mails and documents complaining about their problems. You have to read how
they say things. See what is missing. By that, what terms are they not using? That will help
you understand the technology terms that they do not know. Sometimes, you have no
recourse but to teach them the new way. However, keep that to an absolute minimum
when you are writing your requirements.

 The Collection phase in Chapter 9 will examine this in detail; you will learn to listen
carefully, and by getting the users engaged in the process, you will establish a rapport. Do
not destroy that rapport by writing requirements that they do not understand. Once you
lose them, it is very difficult to get them back.

 ■ Real-World Note Some years ago, I was meeting with the stakeholders, the people
who would be actually using the system, not the managers who these people would
report to who had a passing interest in the application. We had been discussing various
requirements. One of the stakeholders gave a very emphatic requirement that they wanted
us to meet. I had a junior requirements engineer with me who started to say that an
International Organization for Standardization (ISO) standard made the requirement invalid. I
put my hand on his arm to stop him talking before he completed his statement. I said, “This
is your system, so we will do what you want. This standard does not apply to your situation.”
That stakeholder had his hand up with his finger pointed at me, as if to argue vehemently
why we must do it. He stopped his finger in mid-jab, and said, “Oh.” It was obvious, he
expected an argument, and he did not receive it. There was a brief pause, and then we
continued in a most congenial environment. I had listened very carefully to their real need
and did not let some perceived standard stand in the way of capturing what they wanted. In
this case, it dealt with some disputed territory that the standard violated their sovereignty. I
established a rapport with them. I never had an issue working with these people thereafter.

 Since you will write your requirements in English (or whatever language you use),
you will need to be grammatically correct. Honestly, if you have difficulty even writing
one sentence, you may want to rethink this as a career path. Alternatively, if you think you
are OK since you will manage the whole team and will not need to write requirements,
you are sadly mistaken. You will be writing a lot of other things instead, like reports up
the management chain and people evaluations, both subordinates as well as your own.
In business, you need to be able to communicate, both verbally and written. If you have a
challenge, fix it. Take classes and practice.

 Part of the challenge to making this attribute work is that for you to succeed here, you
may have to compromise some of the others, succinctness for example (aka conciseness).
You may need to spell it in a bit more detail to convince the stakeholder what you mean.
As stated at the beginning of this section, it is critical that you convince the stakeholders,
so do whatever is necessary to achieve that, even if you must compromise on conciseness

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

66

or other attributes. Thus, succeeding with this attribute will go a long way in mitigating
the requirements problems. That is the payback for making requirements that the
stakeholders understand and therefore accept them as their own.

 Unique
 Unique refers to not only that the requirement statement itself is unique from every other
statement but also that reference to each statement is unique. If you have met the “do not
duplicate” attribute, you will have unique requirement statements.

 Thus, this is probably the easiest requirement attribute to achieve—providing a
unique identifier. This allows you ease of finding and referencing a requirement.

 You have seen several examples throughout this chapter, references like a number
such as 4.3.1.7 or an alphanumeric such as QUE-103. This text does not recommend one
approach over the other. That said, you will need to check your requirements tool as it
may dictate what you can and cannot have. (Don’t you hate dictatorial software?) There is
one potential trap regarding numbers.

 Something as simple as numbering requirements has risks? Yes, and here it is.
Some people assign a group of numbers by functional areas before they start crafting
their requirements. It might look like QUE-101 to QUE-200 for query requirements and
RPT-1301 to RPT-1400. (We do not recommend this approach.) However, if you must, say
because it is already instituted, here is the trap. What happens when you have 253 query
requirements? You have not allowed sufficient space. So if you must do this, allow more
numbers than you ever anticipate. Then multiply that number by at least 2 to ensure you
cover all contingencies.

 Wait, you might say, this text has not provided any examples of requirements written
uniquely. Given how the text presented them, yes it has. Look at the requirements
attribute, traced to a source, and you will see four examples that are uniquely written with
unique identification.

 As I said, this is an easy attribute. The best attribute was saved for last, one that is not
as easy.

 Verifiable
 You must ensure that the developers accomplished what the users need. The key word
here is verifiable. Many people will use the term testable . They are incorrect. Testing is
only one aspect of verification, which can be accomplished by the following means:

• Testing

• Demonstration

• Inspection

• Simulation

• Analysis

 You can remember this with mnemonic STAID. (No, this has nothing to do with the
word staid or its meaning of sedate. Nor does it have anything to do with the character of
a requirements engineer. It is important to put that to rest very quickly.)

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

67

 Now, on to the discussion about each one of these types of verification. Wait, why
do REs need to go into the specifics of the types of verification? For a couple of reasons.
First, on many projects, you will need to propose a candidate verification method for each
requirement. You are not going to define how to verify it; just choose a method. Naturally,
you should work jointly with the test lead. Alternatively, at worst, after you have proposed
a draft, have the test lead review your proposals.

 Second and more importantly, you need to know these types of verification so that
you can make a reasonable assessment regarding the verifiability of your requirements.
You need to look at a definition of each one of the following:

• Test : A measurement to prove or show, usually with precision
measurements or instrumentation, that the project/product
complies with requirements.

• Analysis : A quantitative evaluation of a complete system and/or
subsystems by review/analysis of collected data.

• Demonstration : To prove or show, usually without measurement
or instrumentation, that the project/product complies with the
requirements by observation of results.

• Inspection : To examine visually or use simple physical
measurement techniques to verify conformance to specified
requirements.

• Simulation : Executing a model over time to simulate a portion of
the system.

 Now, here is an example of each type of verification.

 Testing
 This is by far and away the most common form of verification.

 Here is a sample:

 2-96 The BOSS Query Function shall generate results within 2
seconds of entry of the query 80% of the time.

 2-97 The BOSS Query Function shall generate results within
30 seconds of entry of the query 100% of the time.

 The previous definition said that test is a measurement to prove or show, usually
with precision measurements or instrumentation, that the project/product complies with
requirements. Clearly, the example is measurable to determine whether the requirement
is met. Notice this example gave a value less than 100 percent of the time; you need to give
some upper limits. Obviously, with an example for 99.99 percent of the time, it begs the
question what happens that last 0.01 percent of the time. If you never specify anything,
then a developer might think he has an infinite time to complete that last percent. Never
give them an out.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

68

 ■ Real-World Note I had a developer tell me that because the requirements document
did not explicitly state that February 32 was invalid, he did not need to validate dates. He
was categorically wrong as an older version of the requirements document did have it listed,
but it shows you how silly some people can be. The person was being absolutely serious.
You cannot make this stuff up.

 Inspection
 The previous definition said that an inspection examines visually or uses simple physical
measurement techniques to verify conformance to specified requirements. Now, look at
the following example:

 2-98 The BOSS Query Function shall generate its queries
using a SQL server.

 ■ Note SQL = Structured Query Language.

 Accept that this is a valid requirement (some may argue that point, but there are
instances that it applies—for organizational or architectural reasons). In this case,
you need a way to see the query statements generated by BOSS, and by looking at it
(examining) you can determine whether they are SQL statements or not.

 The inspection may be as simple as looking at just one element to pass the
requirement. For example, in the following requirements

 2-99 The BOSS Central Code module shall have the name of
the vendor who wrote it.

 all you have to do is look at the code for that single module and see whether the
vendor’s name exists. If so, the requirement passed.

 Now back to the earlier SQL statement requirement, which may take a great deal of
inspection to ensure the full spectrum of SQL statements is addressed. This could take
dozens or more inspections, depending how they are generated.

 Another example that is more frequent with hardware development is shown here:

 2-100 The BOSS computing device shall have a Universal
Serial Bus (USB) port for connecting external devices.

 All you have to do is look at the outside of the device to see whether a USB port exists.
Naturally you will have to verify that it operates, but that would be additional requirements.

 Demonstration
 A demonstration proves or shows, usually without measurement or instrumentation, that
the project/product complies with requirements by observation of results.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

69

 As a follow-on to the last requirement in the previous section, examine the following
requirement:

 2-101 The BOSS computing device USB port shall allow the
connection of a USB drive and recognize the files therein.

 In this case, you connect the USB drive into the BOSS USB port, and if the BOSS
displayed the files, you have demonstrated this requirement.

 Simulation
 The previous definition said that a simulation is executing a model over time to simulate
a portion of the system. NASA uses this technique quite often to duplicate environments
that do not exist on Earth or are hard to duplicate. Take a look at the following
requirement:

 2-102 The BOSS Venus Probe shall survive 250 mph winds.

 Earth does not have speeds that fast here naturally (thankfully). Therefore, a wind
tunnel of significant speed would need to be built to test this requirement to simulate
the winds. That does not mean you have simulated absolutely every detail, but as closely
as practical. Of course, anyone who knows anything about Venus knows it has very high
temperatures and crushing pressures to consider as well, but you were just examining
one requirement.

 For software, consider the following requirements:

 2-103 The BOSS Query Function shall handle an average of 50
users at a time with no degradation to query response times.

 2-104 The BOSS Query Function shall a peak load of 200 users
for an hour with only twenty percent addition to the query
response times during that hour.

 You may be unable to get 50 users to test this, let alone have 200 people trying to test
this. The best bet is to have a simulation package that duplicates the actions of a user to
put the appropriate levels of stress to the system.

 Analysis
 Analysis is defined as a quantitative evaluation of a complete system and/or subsystems
by review/analysis of collected data. You will verify the following requirement by analysis:

 2-105 The BOSS game device shall have a mean time before
failure of 200 hours. (It costs $10, so don’t expect it to last
forever!)

 Here you would have collected all the run times of the ten devices you ran for
two weeks straight without turning them off. Tabulate all the time they ran before they
failed. Total the number and divide by ten. If the result is greater than 200 hours, the
requirement passes.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

70

 Remember that you may have requirements where you stress the system by turning
it on and off every ten minutes for the entire two weeks to see what that does to the time
to failure. (Who and how they test that for two weeks 24 hours a day is for the test team to
address, and they would suffer through the sore fingers.) You get the idea for analysis.

 Code reviews are a form of analysis where other people on the team, or senior
programmers, look at a developer’s code to see potential errors. For example, if coding
standards exist, the code is analyzed against that standard. Standards help not only to
eliminate bugs, but in the long run to ensure maintenance. Keep in mind that people do
not stay on a project forever, so someone else may have to maintain it. Coding standards
help with that transition.

 Wrap-Up of Verifiable
 A requirement is verifiable if there exists a cost-effective process with which a person or
machine can check that the software product meets the requirement. Think back to that
Venusian probe. If you had a test budget of $100,000 for the entire probe, odds are you
could not verify the wind speeds, let alone the temperature and pressure requirements. In
fact, you probably could not afford to build it, if that is the size of your test budget, but that
is another matter.

 Finally, nonverifiable requirements include phrases like works well , good , user-
friendly (see the earlier example with this as an alleged requirement), and usually
happen . These words cannot be verified because it is impossible to define the terms good ,
 user friendly , well , and usually .

 If a method cannot be devised to determine whether the software meets a particular
requirement, then that requirement is not verifiable and either you should remove it or,
most likely, you should revise it.

 One More Attribute: Modifiable
 You have examined 16 attributes for individual requirements. Granted, some have
applicability to all or part of the entire group, like traceability. You might consider at least
one more that you might hear about—modifiable.

 ■ Note You may read about others in some sources, but they are most likely just different
terminology for ones addressed here. Alternatively, you can consider them so minor as to not
spend time here. You are trained well enough to determine whether their suggestion has merit.

 The 830-1998 standard includes this one. It applies modifiability to both the
individual requirement and the entire group of them. Every requirement is modifiable by
very definition, so there is no reason to focus any time on it.

 Modifiability with regard to a document or a group of requirements deals with how
modifiable that document or database is. Organization is important, and breaking groups
of requirements that have functional similarity is important. This supports a document’s
table of content, index, and cross-references to other documents. Document organization
will be examined in Chapter 7 .

http://dx.doi.org/10.1007/978-1-4842-2099-3_7

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

71

 Capability Within a Requirement
 Examine one more aspect within a shall statement. You will have seen the phrase “the
capability to” in some of the requirements already shown as examples in this book. This is
not an attribute of a requirement but a convention many if not most REs use. This phrase,
“the capability to,” has a very specific meaning. It means allowing the user the option to
do something. Here’s an example:

 2-106 The BOSS Access Control function shall provide a
capability to assign an access control list to search results.

 This means the user has the option to assign an ACL to search results. However, the
user does not need to do it for every search result. Look at the following statement:

 2-107 DRAFT The BOSS Access Control function shall
automatically provide a capability to assign an access control
list to search results.

 Does this make sense? Do automatically and provide the option go together? No, the
system does not make choices every time. Yes, there could be rules where decisions are made,
but those are specific rules, and the system is not really deciding but just following rules.

 Usually the phrase the capability to is written as provide the user the capability to .
There are developers who do not understand this. Therefore, it is your job as the RE to
educate them. Sometimes this is easier than others.

 ■ Real-World Note I had one program where they had been using the phrase for more
than ten years for providing any capability of the system, not as an option. I realized it was
not worth the effort to try to reeducate an entire team. Besides there were more than 1,000
requirements and it was not worth the time and effort to fix it for little value added, since the
system was being replaced and these developers would not be part of the new system.

 Types of Errors That Can Occur with
Requirements
 Capers Jones, on Dr. Dobb’s web site (see the “Reference” section), said there are three
chronic problems with requirements.

• Many requirements are dangerous or toxic and should be
eliminated.

• Some clients insist on stuffing extra, superfluous features into
software.

• Requirements are never complete and grow at rates greater than 1
percent per calendar month.

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

72

 Dangerous or Toxic Requirements
 First, you should learn what one of these kinds of requirements is. These are requirement
defects that testing may not detect. One of the most prominent examples of a toxic
requirement was the Y2K bug. Requirements for years had been written to capture dates
including years. However, no one ever specified the format of the year. That was left to
programmers who for decades, because of space considerations in storage (when it was
very expensive), wrote the year as the last two digits. Instead of 1929, it was stored as 29.
In the 1960s, when a program was written, no one worried about the year 2000 as it was so
far away. However, after the year 2000, if the year was 29, would it be 2029 or 1929?

 How do you prevent these? As was said, testing may not catch it as tests were
written based on the assumption of the year as two digits. So, using formal reviews of
requirements helps to eliminate them. Why? You draw from other people’s experience to
recognize good requirements versus these toxic or dangerous ones.

 Extra, Superfluous Requirements
 This was talked about this earlier in the “Prioritized Attribute” section of this chapter.
When all stakeholders prioritize and rank requirements, this helps to identify these. Even
if people do not say, “I see no need for this,” others will push it so far down the priority list
that it is not likely to ever be worked on.

 ■ Real-World Note Some years ago, I was holding a meeting where we were ranking
changes requested from the users. One of the newer people said, “If my change is
considered a Low priority, even with a High ranking, with emphasis on working off all the
High and Medium priorities, my change is likely to never be worked on.” Absolutely correct.
That was when I knew the whole group of stakeholders really understood.

 Incomplete Requirements
 Studies have shown that requirements grow from 1 to 4 percent per month. This is where
one of the major drawbacks came with the traditional waterfall method. The project
would spend the beginning period of the project defining requirements and freeze them
for the rest of the development.

 In the Jones article mentioned earlier, he states that 15 percent is a good annual
growth rate. Taking that as a conservative representation of reality, in six years, you will
have doubled your number of requirements. If your program took that long, think how
out of touch with the needs of the users you will be.

 How do you fix that? Various methods evolved from the waterfall development
methodology to ultimately (now, at least) achieving the agile approach where
requirements are defined in detail just before the work is done. This helps with capturing
the reality at that point. Then changes are considered as they are known. It may not
be perfect, but it works considerably better than the waterfall approach. This will be
discussed much more in Chapter 13 .

http://dx.doi.org/10.1007/978-1-4842-2099-3_13

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

73

 Others
 Several problems were discussed in the attribute sections, such as missing or wrong
requirements, or ambiguity. In other readings, you may encounter discussions of
 misplaced requirements . This means a requirement is placed in the wrong section in
the document. In Chapter 11 , you will learn about management of requirements in a
database. How is something misplaced in a database? By misplaced requirements, if you
group like requirements (e.g., search, reporting, access) into functional areas and user
access requirements are in the search section, that is what is meant by misplaced.

 However, what if you have a requirement like the following?

 2-108 The BOSS Access Control function shall provide a
capability to assign an access control list to search results.

 You would think this belongs to the Access Control section. However, it also talks
about search. Should it go there instead? On the other hand, should it be in both? You
would argue that it may not be a big deal since a good database has searching and
filtering that will allow you to find these when you need it. Never should it be in both,
since that means you have duplicate requirements. Remember that.

 References
 IEEE-SA Standards Board. “IEEE Std 830-1998, IEEE Recommended Practice for Software
Requirements Specifications.” Sponsor: Software Engineering Standards Committee of
the IEEE Computer Society, Approved 25 June 1998, p4, 6-7, 8.

 Wikipedia. “Requirement.” Feb. 2015. http://en.wikipedia.org/wiki/Requirement
 Wiegers, Karl, and Joy Beatty. Software Requirements, Third Edition, Microsoft Press,

2013.
 Davis, Alan M. Software requirements: Objects, Functions, and States . Prentice-Hall,

Inc. Upper Saddle River, NJ, 1993, p191 to 193
 United States Government. “Resources for understanding and implementing Section

508.” Feb. 2015, www.section508.gov/
 Lou Wheatcraft. October 9, 2012. “Using the correct terms—Shall Will Should.”

Requirement Experts. Feb. 2015, www.reqexperts.com/blog/2012/10/using-the-
correct-terms-shall-will-should

 Jones, Capers. “Chronic requirements problems.” November 26, 2012. The World
of Software Development. Dr Dobb’s. Feb. 2015, www.drdobbs.com/architecture-and-
design/chronic-requirements-problems/240012797

 Exercises
 Exercise 1
 Examine the 16 attributes of a requirement and rank the order that you should
accomplish them and why. Ties are acceptable. Maybe a flow chart or swim lanes might
help depict it.

http://dx.doi.org/10.1007/978-1-4842-2099-3_11
http://en.wikipedia.org/wiki/Requirement
http://www.section508.gov/
http://www.reqexperts.com/blog/2012/10/using-the-correct-terms-shall-will-should
http://www.reqexperts.com/blog/2012/10/using-the-correct-terms-shall-will-should
http://www.drdobbs.com/architecture-and-design/chronic-requirements-problems/240012797
http://www.drdobbs.com/architecture-and-design/chronic-requirements-problems/240012797

CHAPTER 2 ■ WHAT MAKES A GOOD REQUIREMENT?

74

 Exercise 2
 For half of the 16 attributes, write an example hardware requirement for each one, ones
that are different from those already provided in the book. Which half? Good question,
and we don’t care. You can do the first eight, the odd numbers, the even number, or only
the prime numbers. It is your choice.

 Exercise 3
 For the other half of the 16 attributes that you did not use in Exercise 2, write an example
software requirement for each.

 Exercise 4
 Try to rewrite these requirements eliminating the negative from the statement:

 a. The system shall not override use selected contrast and color
selections as prescribed in Section 508.

 b. The system shall not disrupt or disable activated operating
system accessibility features.

 c. The system shall not use color coding as the only means of
conveying information, indicating an action, prompting a
response, or distinguishing a visual element.

 d. The system’s software shall not use flashing or blinking text,
objects, or other elements having a flash or blink frequency
greater than 2Hz or lower than 55 Hz.

 e. If the search is too complex, the system shall not crash while
executing a search.

 f. When the system identifies spelling errors, the system shall
not auto-correct without user acceptance.

 g. The system report generator shall not require a per seat
license fee for every user.

 Exercise 5
 Write requirements to define what the customer wanted in Figure 2-2.

75© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_3

 CHAPTER 3

 Specialized Language

 Every organization, even down to the project level, has its unique way of communicating.
Is it to be exclusionary? No. Well, at least that is the case the vast majority of the time. As
an RE, you will have to be precise with your use of language. As it turns out, most people
have developed special words, phrases, terms, acronyms, abbreviations, and meanings
as a way to do that with their respective organizations, even down to the project level. In
addition, they try to do this the most economical way possible in their communications.
While a requirement or user story is a contract between the user and the developer, it is
 not written in legalese. You do not need to be a lawyer to write requirements. In fact, most
lawyers could not do requirements work, as they are not trained to think like an engineer.

 That said, you have to recognize that when you start on a project, you need to learn
what means what. You need to communicate the way the people do in your organization
and the respective project.

 The Use of Language
 As a requirements engineer, you need to be very precise. Mathematics is very precise. An
equation has only one meaning. Unfortunately, words and language are not so precise.
Words have different meanings. How people use words is influenced by factors such as
who they are, such as HR versus engineers, and how their cultures vary. By cultures, I am
not just talking about cultures in different countries or even regions within a country;
even companies have different cultures. For example, Google has an “innovate” culture,
whereas an organization like the U.S. Army, with its strict discipline, clearly has a
different one. Even departments within an organization can develop different cultures.
A programmer by their need to create software focuses their culture to support that
work, being very detailed and sometimes very structured. However, human resources,
which deals with people on a daily basis, can have a much more flexible approach in
part because no person is identical and how to interact with them is much more of an art
form. These cultural differences can influence the language these diverse people use.

 That means you have to know what the meanings of words signify to the affected
parties. Just because they say the same thing does not equate to the same meaning. Look
at a dictionary, and see how many words have different interpretations. Are they wrong?
No, it is just that where they come from influences what they mean.

CHAPTER 3 ■ SPECIALIZED LANGUAGE

76

 For example, on a project to develop a records management application, the records
managers used the term recall . To them this means recalling a hard-copy document
from the physical archive where it was stored. Meanwhile, to the developers, who think
database-centric, recall means deleting a record in the database that was incorrect.

 Is either definition incorrect? No. However, unless you know these two definitions
existed and they are shared with both parties, you can see that communications will
quickly become difficult.

 How do you fix this? First, you have to listen actively. By that, I mean intently. If the
sentences surrounding specific words seem not to match up, then ask questions about
the meanings. Also, read documentation about how people do their business. You will get
context for words and help to understand their usage. It is not always easy, but with time,
you will get used to it.

 ■ Real-World Note I actually have done rocket science before. As such, I participated in
a meeting where people argued for an hour what a month was. Sounds silly—a month is a
month. Right? Well, in this case, three different groups were arguing. One used a calendar
month, another used a lunar month, and the third used a sidereal month. Therefore, it turns
out they were all correct. Alas, being junior at the time, I did not really understand the issue.
The real issue was that each person had their own system coded with their definition. The
three groups needed to interface with each other. I did not identify the real problem at the
time. It was that group A wanted to keep their definition and make everyone else write the
code to convert their value to their. Group B wanted the same for their definition, as did Group
C. What was the correct solution? Each group should calculate the cost associated with that
group for all three definitions. Then the costs from each group would be totaled for each
definition to determine the total cost that is the least, and that was what should be done.

 The lesson here is that language is important. However, not every issue is the fault
of communication or language, but there are hidden issues and hidden agendas. Not
always are words the real problem. The example in the Real-World Note demonstrates
the phrase “reading between the lines” since the people were using word precisely,
yet their real message was misdirection. In this case, one side will want the other two
to take the cost. Remember, resources are a significant influence. (Sometimes it is
the most easily understood metric, so people default to it.) Empire building is also
important to some. However, that is a topic for another book. Trying to understand
these hidden meanings can be difficult. The example happened earlier in my career,
and I did not recognize the real issue because I had not really experienced enough to
recognize it. By alerting you to it, you may be able to “read between the lines” sooner.
Experience will definitely help with this. You could argue that I have not helped you
if experience is the only solution. On the contrary, telling you to be aware of it will
help you by knowing that this can happen. I wished someone had alerted me to the
likelihood of it back when this happened. That said, it is possible that even my more
seasoned colleagues may not have recognized it. Thus, they may learn something from
this discussion.

CHAPTER 3 ■ SPECIALIZED LANGUAGE

77

 Lexicon on a project is the words and phrases unique to that environment, and they
are very important. The challenge for you as an RE is to understand that phrases have
specific meanings. For example, look at these two definitions:

 SRD: System Requirements Document

 SRS: System Requirements Specifications

 Sometimes SRD and SRS mean the same thing on one project, yet on another
project, the SRD relates to the requirements definition phase, where the SRS relates to the
design phase. Neither is wrong; it just depends on terminology of project or the particular
organization. Because of the importance to each project, you must ask what goes into
each document.

 Defining Specialized Terms
 Words have different meanings, and you need to find those words that have different
meanings as they relate to the project, which can be more specific to the project. You
should identify these specific terms, capture them, be able to use them appropriately, and
even in some cases educate others who are using them inappropriately.

 For example, recall was a jargon word for the database experts. In the software
industry, there are many words that take on specific means, like bit has a very specific
meaning for IT, whereas for the non-IT savvy public it just means something very small.
The previous section dealt with the clash of jargons. The discussion here talks about the
learning you will have to do to become proficient in the project and organizational jargon.

 How do you do this? Pretty much the same way presented in the “The Use of
Language” section in this chapter. Also, read whatever documentation you can find.
There is online help for existing systems that can provide help. Look for any business
process documents, concept of operations, or any other document that might help
to explain what the project and organization does. Most importantly, pay particular
attention to the glossary section. That will go a long way to help you learn the meaning of
jargon for a particular project and/or organization. For example, in the discussion about
 recall , you would provide the two different meanings. It is a good idea to identify what
organization or group of people use the particular meaning. This way, when you meet
with these people, you will likely remember their particular definition.

 It does not hurt to create your own glossary document that is a compilation of all
the terms you run across in your research. It may not hurt to include the source of the
meaning (document, organization, etc.) as you may learn different projects or offices
have different meanings for the same terms. Now you have a cross-reference. Creating
this document early in the program helps you learn and later you have it for reference.
When other new people come on board, you now have something to offer to them to help
them up the learning curve. Also, you should consider terms that apply to requirements
in general. Finally, you need a list specific for your set of requirements. If you write a
requirements document, you will include it in the document. Or, if you have a database
for your requirements, you should include them there also.

 These definitions help when you work with people. When the terms are used, you
can confirm the meaning. Not only does this ensure everyone understands, especially
you, but this may help identify when people are using different meanings. This helps to
mitigate confusion. This helps to eliminate ambiguity, as we talked about in Chapter 2 .

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 3 ■ SPECIALIZED LANGUAGE

78

 The last, tried and true method is just the elapse of time. You will get exposed to
everything important over time. As time advances, the number of jargon words will
diminish. A subset of jargon (and not necessarily a small subset) is abbreviations and
acronyms, which will be presented in the next section.

 Acronyms and Abbreviations
 Every project and every organization has its own list of abbreviations and acronyms . On
your first day on a new program, you will be exposed to all these terms that people use.
For example, if someone said “The RAM requirements generated most of the DRs on
the STB.” What they said was “The reliability, availability, maintainability requirements
generated most of the deficiency reports on the system test bed.” Chances are that you
will not know all those meanings. This is the shorthand the team uses to help with
communications. It gets so ingrained that, after a period of time, not everyone remembers
the precise definition, just what it represents.

 How do you overcome your gap in understanding? You have to learn these
acronyms. All of them? Well, not always, but you do need the ones you use 90 percent of
the time. It just takes time where you hear them a lot, ask people what they mean, read
documents and check which ones they use, and start using the acronyms yourself to get
comfortable with them.

 ■ Real-World Note I have a technique I developed and use for every project. When I first
show up, I capture every abbreviation I hear and ask what they are. I then create a text file
with them listed in alphabetical order. This does two things. One, I have a handy reference
that I can use for reference during the learning curve as I come up to speed on the project.
Over time, as new people come onto the project, I become very popular as I have a tool that
I give to people to help them with their learning curve. Second, by virtue of keying in the
acronym or abbreviation, it helps to reinforce in my mind what it means.

 In the old days when REs wrote requirement documents (before spreadsheets and
databases), the first time they used an abbreviation and acronym, they spelled it out and
showed its abbreviation or acronym in parentheses after it [e.g., United States of America
(USA)], and thereafter in the document, they used only the abbreviation or acronym.

 ■ Note This text follows this practice of writing out the meaning and following it by the
acronym or abbreviation. In addition, the practice includes adding a summary of all acronyms
and abbreviations at the end of the document. See Appendix A for the list in this book.

CHAPTER 3 ■ SPECIALIZED LANGUAGE

79

 When REs moved off the documents to, say, a database, they needed to modify this
approach. You now follow that rule within the requirements or user stories only. By that,
look at the following example:

 3-1 3.2.1 The Audit Reporting Service (ARS) shall only allow
the ARS admin role to access the ARS to prevent unauthorized
users from seeing the report.

 3-2 3.2.2 The Audit Reporting Service (ARS) report shall
consist of…

 Notice requirement 3-2 spelled out the same abbreviation in requirement 3.2.2.
Why? Excellent question. Since they are right next to each other, and if the requirements
were printed out, it would be redundant. Did you say you are supposed to minimize
redundancy? Absolutely. However, with the advent of databases, you might query and/or
print out only a group of requirements. What happens if 3.2.2 is separated from 3.2.1, which
introduced the abbreviation, and it was spelled it out there only? Then the reader would not
know precisely what it means, possibly causing confusion. In addition, one developer might
do the development of the authorization section, whereas a different developer does the
reports. If you spell the acronym out in both, now you can separate the requirements.

 How many should you expect? The realistic answer is that it depends. What is the
breadth of the project and the organization? Sometimes it has been only a few hundred.
Look at how many exist in this book in Appendix A as an example. Long-lived projects
that have wide usage and an organization that is widespread could have orders of
magnitudes more. Yes, more than one order of magnitude.

 Early in my career, someone suggested if it had been a long time (the definition of
 long was subjective) since someone had seen an acronym, it should be redefined. In fact,
some authors use the guidance to spell them out on the first use in each chapter unless
the book is specifically a linear tutorial. Readers of technical books in particular are highly
nonlinear in the way they use the material, so it behooves them to follow this guidance.

 ■ Real-World Note I worked for a DoD organization some years ago. I was in the process of
managing two different source documents that each had more than 400 pages each, with more
than 40 abbreviations and acronyms on each page. If I had access to an intern or summer-only
person who needed something to keep them busy, I might have been able to combine the two
and reconcile the duplicates. I did not, so I had more than 32,000 abbreviations and acronyms
in those documents. Now the two documents included most of the abbreviations and acronyms
used throughout DoD, and this would not be typical of what you will experience. It does give you
an idea of the upper limit. A couple of thousand is not unusual.

 Learn to use the ones you encounter routinely, and just have the list ready for the
infrequent times you need it. You can call up this acronym list as one of the first files each
day to use for reference. It should be one of your everyday tools. This is not limited to just
requirements engineers but anyone on a program. This is also a tool that can be used to
help communication across groups and ensure everyone reading the requirements is on
the same page.

CHAPTER 3 ■ SPECIALIZED LANGUAGE

80

 ■ Note You may have noticed that many times I just said “acronyms” rather than
“acronyms and abbreviations.” To be precise, an acronym is the first letter of a phrase that
is capitalized and it can be pronounced, like RAM used earlier. LASER is another one that
means Light Amplification by Stimulated Emission of Radiation . An abbreviation is the first
letter of a phrase that is capitalized, but it cannot be pronounced. In the earlier phrase in the
first paragraph of this section, DR and SBT fit the abbreviation definition. You just say the
letters DR and SBT rather than trying to force a pronunciation. What has become standard in
the IT industry is to just say “acronyms” to include acronyms and abbreviations.

 Summary
 In this chapter, you learned about precision in language. Many projects and organizations
have special meanings for words that may not be consistent with how you have used it in
the past, so you will have to recognize these meanings. Acronyms are shorthand used by
many, such that it almost appears to be a foreign language the first time you read or hear
it. You will need to learn these frequently used ones, and have a list for the less frequently
ones. Basically, you will learn the specialized language for wherever you work.

 Exercises
 Exercise 1
 List three examples of terms or phrases that you can think of that can have different
meanings that might be important to a project (not ones already presented in this
chapter).

 Exercise 2
 List how many different acronyms have been presented up to this point in this book.

 PART II

 Types of Requirements

83© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_4

 CHAPTER 4

 Functional Requirements

 Now that you understand the attributes of a good requirement, you will consider
the different types of requirements. Why do you care about the different types of
requirements? “Shouldn’t I just start collecting and writing them?” Interesting question.
How will you know where to start? More importantly, how will you know when to stop?
What are the different types or categories of requirements that will help you know when
you have captured all you need?

 There are two major types that will be discussed, functional and nonfunctional
requirements. In this chapter, we will take a general look at requirements but then focus
on the functional types. In Chapter 5 , we’ll examine the nonfunctional types.

 Understanding Types of Requirements
 As noted, there are functional and nonfunctional types of requirements. There are other
types subordinate to them, which you will see in this and the next chapter. When you
look at other sources that discuss requirements, you will see almost as many variations
in what they describe as the different types as there are different sources. The intention
here is not to be the definitive definition but to capture as complete a list of the different
types of requirements you need to capture so you have as comprehensive a set as
practical. Remember one of those sources of errors that was mentioned earlier that said
“not capturing all the requirements?” That is why you are examining these types so you
mitigate the risk of missing requirements.

 So, how do we define the two main types of requirements?

 A functional requirement describes what functions a system (i.e.,
hardware and software) should perform.

 A nonfunctional requirement describes how the system should behave
and defines what constraints are placed upon the system’s behavior.

 You may not fully understand the differences quite yet. In the subsequent sections,
you will examine a list of the different kinds of requirements that fall into each category to
get a better understanding. The quick and easy way is that anything that does not fall into

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

84

the function requirements does fall into the nonfunctional requirements. Some sources
will use the term behavioral requirements instead of functional and use nonbehavioral
requirements instead of nonfunctional. They mean precisely the same thing.

 Naturally, this text will reinforce the requirements with examples, many of which you
saw in Chapter 2 .

 At some point in your career, you may be exposed to some types not considered in
this book. For example, if you are involved with a satellite development program or a DoD
program for the nuclear battlefield, you may have something called survivability . This
means surviving in a hostile environment, like the vacuum of space with the hot and cold
extremes, or surviving blast, thermal, and radiation exposures of a nuclear detonation.
You will have to determine which category these requirements fall into. For the example
of survivability, I would put it in the nonfunctional requirements.

 There are potentially many different stakeholders who have an interest in getting
these nonfunctional and functional requirements correct. This is because for many large
systems the people buying the system are completely different from those who are going
to use it (customers and users). There may be one significant factor that you cannot
control: cost. The reality of financial constraints may limit some of the requirements you
write. That is a trade-off analysis you will not spend time on in this text.

 Now let’s look at the various types of functional requirements and then turn to the
nonfunctional types in the next chapter.

 Types of Functional Requirements
 Functional requirements define what the system should do . You will look at examples
of the various functional types in this chapter. Remember that you have seen many
examples when you examined the attributes of a good requirement, so a number of these
will look familiar. The following list outlines the types of functional requirements we’ll be
looking at in this chapter:

• Business rules

• Transaction corrections, adjustments, and cancellations

• Administrative functions

• Authentication

• Authorization levels

• Audit tracking

• External interfaces

• Certification requirements

• Searching/reporting requirements

• Historical data

• Archiving

• Compliance, legal, or regulatory requirements

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

85

• Structural

• Algorithms

• Database

• Power

• Network

• Infrastructure

• Backup and recovery

 As you look at the list of the types of functional requirements, you might think that
some are unique to software or hardware. This can be the case. However, in most cases,
these types can apply to both. In each subsection, you will examine at least one example
to represent both the hardware and software needs to demonstrate that it applies to
both. You will see a requirement highlighted if one type is unique to one or the other. In
addition, the same approach applies to the nonfunctional requirement types.

 Business Rules
 Business rule requirements will generally be the larger section since many requirements
can fall into this. What do you need your system to do? What are the features you need to
have it do for you?

 For example, in the Radiation collection example, you could start with this:

 4-1 The BOSS Unit Radiation Dosimeter shall collect radiation
exposure from nuclear fallout in a nuclear battlefield for the
individual who is wearing the dosimeter.

 You need to define all the features and activities for the various functions within the
system. This chapter will address all these functional requirement types. In Chapter 7 ,
you will learn how to organize documents (if you need to make a hard copy of your
files or database). In Chapter 11 , you will learn how to organize the requirements in the
requirements database, although using the structure you learn about in this chapter is
one approach. Remember, there is no one correct way to organize it. It is whatever works
for you and your organization. You’ll learn more about that later.

 For a software example, you can have the following:

 4-2 The BOSS Payroll Function shall capture all payroll
activities for the BOSS Company.

 Realize that this is just one of many such requirements you will need to list to
completely define your system. Obviously, this is a high-level requirement that needs
subordinate requirements. For example, you might have the following:

 4-3 The BOSS Payroll Function shall capture all people who
will have payroll activities within the BOSS Company.

 Based on the discussion earlier, 4-2 is a parent requirement, and 4-3 is a child
requirement. That relationship was not obvious until you crafted requirement 4-3.

http://dx.doi.org/10.1007/978-1-4842-2099-3_7
http://dx.doi.org/10.1007/978-1-4842-2099-3_11

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

86

 What kinds of features do you need to capture? The simple answer is everything.
While the answer is simple, actually doing so is more challenging. Naturally, you will
analyze this in more detail in Chapter 9 . However, you will need to define all the kind of
information that needs to be created, read, updated, and deleted (also known as CRUD—
and no, it is not cruddy!), searched, reported on, and any other operations that need to be
performed on it.

 For hardware systems (with embedded software or not), you need to define
everything it must do. Think of a car. At a very high level, you need to move from point A
to point B. Then you get down to details such as moving forward in more than one gear
ratio and going in reverse, steering the vehicle, looking in multiple directions, and so on.

 Think of your phone. You need to be able to communicate with another person. So,
you need to be able to connect with other phones (which implies some phone standards,
but more on that later). You need to be able to receive calls. You want to have preloaded
contacts that are easier to select from rather than remembering the phone numbers from
memory. (Unlike the pre-digital age, you had to remember them.) Now, you want the
ability to take pictures, see video, and so on. You need to break all these functions down
into groups and then define all the requirements.

 Transactions
 This topic will cover several aspects of transactions. Not only will you examine entry of
a transaction, but changing, deleting, deactivating/cancelling, and error checking and
handling. I broke this into three sections, transaction entry, transaction change, and
transaction errors, so you can see how to handle each.

 Transaction Entry
 Now the first logical step to build up information is to add data. You should start with
entering one record. Here is an example:

 4-4 The BOSS Payroll Transaction function shall allow the
designated user to bulk enter Personnel records into the system.

 ■ Note You need to define a person record in other requirements.

 You could also enter multiple records.

 4-5 DRAFT The BOSS Payroll Transaction function shall
allow the designated user to bulk load Person records into the
system.

 You will need to define what bulk means, or you would not be certain what should be
accomplished here.

 4-6 The BOSS Payroll Transaction function shall allow the
designated user to import multiple Person records into the
system.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

87

 Transaction Change
 As was said earlier, if you can enter something, you can craft a requirement for update or
 change an individual transaction.

 4-7 The BOSS Payroll Transaction function shall allow the
designated user to modify a Person record in the system.

 For your specific project, you will have to see whether the same will apply for
multiple transactions.

 Now you must examine delete, cancel, and deactivate. Should all records be deleted?
In most cases, no. Usually once you create a record, you will be doing other things to it.
Take the example where a company hires you, and they create your person record in the
payroll system. You work for five years, and you get a paycheck, so that person record in
the payroll system has five years of salary information. Should that be deleted? No. There
are legal reasons why that information should not be deleted. In this case, once you leave,
they will deactivate your person record.

 4-8 The BOSS Payroll Transaction function shall allow the
designated user to deactivate a Person record in the system.

 Does that mean a record should never be deleted? There are special circumstances,
like when a record is entered with the data so incorrect (especially in an import that went
wrong) that someone should be able to delete it, but on a very restricted basis.

 4-9 The BOSS Payroll Transaction function shall allow the
system administrator to delete a Person record in the system
when the record was entered in error.

 When you are initially populating a database and certain functions are not working
quite correctly, you may need to delete a record. When training takes place on a database,
you also may need to remove certain records. Again, this must be done on a very
limited basis. Alternatively, maybe you will write requirements specifically for a training
database. Should you document a development database? Or are you specifying training,
testing, and development environments? That’s something for you to consider.

 Transaction Errors
 Now look at errors. Maybe information was somehow entered incorrectly and needs to be
fixed. In some cases, this can be done even before the transaction is stored.

 Think of error conditions that occur.

 4-10 The BOSS Payroll Transaction function shall check that
the person identifier already exists in the system.

 If the person is not in the system, what happens? The user should receive an error
message. You may have seen such messages from some applications or maybe even
operating system errors such as this:

 Error code 201

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

88

 As a user, that tells you absolutely nothing. You have no idea what went wrong, and
you certainly do not know how to fix it. You need a good explanation of what is incorrect
and then how to repair it.

 4-11 The BOSS Error Checking Function shall identify in clear
text that an error has occurred with suggestions how to repair
the condition but at least how to continue.

 Whenever possible, you do not want an error message display that provides no way
to continue. If you had a need to check that the area code of your one company building,
you would want it to check the area code portion of the phone number and when 999 is
entered, but 703 is a valid code, rather than just rejecting 999 as invalid. This is one area
where you may spend a bit more time, giving more details. Look at all kinds of errors that
might occur and have the error message give as much information as possible to the user.
However, you have a good start.

 Administrative Functions
 Administrative functional requirements describe the functions that a system
administrator (SA) performs on your system. Think of this as the person who can do
virtually anything that most users cannot. These are the functions that maintain the
system as a whole. The requirement should take the following form:

 4-12 The BOSS System Administrator shall be able to
(describe specific function).

 First, make certain that there are at least two system administrators. The expression
you may hear is, “What if he/she is hit by a bus?” First, you want to know where there are
these crazed bus drivers so you can avoid them. Second, you should never be single-
threaded no matter what management says. Have a requirement like this:

 4-13 The BOSS System Administration function shall ensure at
least two System Administrator accounts exist in the system.

 What functions should they have? In some cases, data management in general is
highly restricted, and the SA will perform all data-related functions, such as adding,
changing, and deleting data. In other cases, there may be only a subset of data that is
restricted to the SA. For example, give people accounts to the system as follows:

 4-14 The BOSS System Administrator shall be able to add user
accounts.

 4-15 The BOSS System Administrator shall be able to change
user accounts.

 4-16 The BOSS System Administrator shall be able to
deactivate user accounts.

 4-17 The BOSS System Administrator shall be able to
reactivate user accounts.

 4-18 The BOSS System Administrator shall be able to delete
user accounts.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

89

 You need to understand the difference between deactivate and delete . Deletion of
accounts is a very rare case, say when a user erred when creating an account. Deactivate
is when a person will no longer need access, although it could be reactivated again when
the need arises—say a person has taken an extended leave of absence or gone to another
part of the company, such as overseas.

 SAs need the capability to manage system preferences and system values, back up
and restore data, and generate and maintain system reports. Some system reports fall
into the system monitoring reports that tell the SAs what the working condition is of the
system, helping them to keep it running smoothly and efficiently.

 If there are specific security levels within the system, the SAs usually maintain that.
In some instances, there may be a security officer (SO) responsible for this function, but
in others, the SA function performs it. Here the SA or SO assigns the different categories
of access of the data or portions of the data. For example, if you have an HR system, most
employees of the organization would have read access only. The HR personnel would
have Add, Change, and Delete access. The SA or SO will create and maintain these levels.

 SAs spend a significant amount of time monitoring the system; hence, most SAs are
network or hardware types of individuals, where the maintenance of the accounts and other
data manipulation is almost a secondary duty for them. However, your mileage may vary.

 Authentication
 Authentication is a mechanism to validate that the person or system is authorized to
interact with the system. This is a mechanism put in place to verify the person/system
is who they say they are. Think about paying for something online. When you pay via
a credit card, you have to put in that three- or four-digit number on your card as a
mechanism to prove you have the card. (Of course, that is not foolproof, such as when
someone has your physical card.) There are devices to access computer systems to prove
who you are. Think of biometrics where they read your fingerprint or perform a retinal
scan as a way to ensure you are who you are.

 Thus, the stakeholders will decide whether authentication is necessary for your
system. It will aid in access control. The level of authentication then is important. For
example, you could specify varying levels, like so:

 4-19 The BOSS HR Regulation Function shall require
fingerprint authentication to perform all tasks other than
reading.

 4-20 The BOSS HR Payroll function shall require retinal scan
authentication to perform all tasks other than reading.

 One area that is growing in use for authentication is biometrics. Therefore, it is
important for you as an RE to know something about biometrics when you need to specify
this type of authentication. First, the two requirements are one-for-one comparison.
The system is only verifying you are who you say you are. This is not using, say, facial
recognition at the airport to look for people on the no-fly list, where you are looking at
all people and comparing them to a list of, say, thousands of people, a many-to-many
comparison, which is much more difficult to accomplish than one-to-one comparison.
One caveat with the many-to-many comparison usually applies only to identification.
Since biometrics is being discussed here, the many-to-many comparison was included for
completeness.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

90

 Additionally, and you can verify this by doing some research, biometric techniques
have varying levels of confidence. Actually, facial recognition is one of the least effective
(at the time of this writing, but it is improving) because of the few discrimination features
and how faces vary day to day, with, say, facial hair or length of hair; the angles of the
imaging versus the standard that it is compared to; and many other factors. Fingerprints
are the most pervasive biometrics as they have been collected by far the longest, by
decades. Retinal scans are the best at this point. (Obviously, DNA is the absolute best, but
that is very difficult to use for a comparison needed in a matter of seconds or minutes—at
least based on current technology.) However, each biometric has limitations for use.

 Retinal scans would be difficult in airports. Think of the delays that would add to
going through security. In addition, the public may be reluctant to expose themselves to
it. Therefore, you must consider these factors. Do you need biometrics? If so, is it one-to-
one, one-to-many, or many-to-many? What biometric should you use? If not biometrics,
say you are in a trusted environment, what do you add to your system to authenticate
the person or system? You need to look at the potential for harm if the system is
compromised and the likelihood of it this compromise occurring. Here’s an example:

 4-21 The Nuclear, Chemical and Biological (NBC) Officer shall
be able to authenticate access to the BOSS Unit Radiation
Dosimeter by entering his/her service number.

 While this information needs a level of control, it is not catastrophic if others
knew the information, which is the reason for the lesser level of authentication. The
payroll system in the first two requirements in this section is more of a risk than the HR
regulations, which is the reason for the higher level of protection.

 Authorization Levels
 Earlier in the “Administrative Functions” section, you briefly saw varying access levels of
the data mentioned. Therefore, for the access, the HR data would look something like this:

 4-22 The BOSS HR regulations shall be able to read by all
company employees.

 4-23 The BOSS HR employee only shall be able to add HR
regulations.

 4-24 The BOSS HR employee only shall be able to change HR
regulations.

 4-25 The BOSS HR employee only shall be able to delete HR
regulations.

 You will have to determine whether deactivate and reactivate is necessary for each
function where deletions are possible.

 You should examine all types of data that reside in your system and determine who
can CRUD (change, read, update, or delete)—HR regulations, personnel information,
payroll data (while it might be nice, should everyone have change privileges to their
salary?), vendor data, billing, and so on.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

91

 This is not limited to only database or software systems. Think of the BOSS radiation
system. You may want to have only the NBC officer in the unit read the values of the BOSS
individual dosimeters so they may be able to determine the likely effectiveness of units after
exposure to a nuclear battlefield. Alternatively, you only allow military medical personnel
to read the values of a given soldier to determine what treatments a given person may need.
For this example, assume it is both. Therefore, you would have something like this:

 4-26 The NBC Officer shall be able to run the BOSS Unit
Radiation Dosimeter to collect the individual radiation
exposures of a designated unit.

 4-27 The Medical Doctor shall be able to run the BOSS Unit
Radiation Dosimeter to collect individual radiation exposure
of a given person to assist with radiation treatment.

 Audit Tracking
 Audit tracking here does not refer to an Internal Revenue Service (IRS) audit, although
there is a similarity. This process tracks important data and what happens to that data.
For example, you want an audit of all transactions that the SA does. Given that is the
most powerful person on your system, you want to know the history of changes made.
Therefore, you want statements like the following:

 4-28 The BOSS Audit Function shall capture all adds, changes,
deletions, deactivations, and reactivations made by all system
administrators.

 4-29 The BOSS Audit Function shall provide a report that
capture all adds, changes, deletions, deactivations, and
reactivations made by all system administrators.

 4-30 The BOSS Audit Function shall provide a report that
capture all adds, changes, deletions, deactivations, and
reactivations made by a specified system administrators.

 4-31 The BOSS Audit Function shall provide a report that
capture all adds, changes, deletions, deactivations, and
reactivations over a given time frame.

 4-32 The BOSS Audit Function shall provide a report that
capture all adds, changes, deletions, deactivations, and
reactivations for specified data records.

 Remember that there are a lot more variations that you may think of or need,
depending on the analysis. Realize that these audits may help if you have an SA that
causes a problem, but that is the rare case (assuming your organization has good policies
and pay in place). More likely, if an issue happens with some data, the auditing will help
track down the reason so that the problem can be fixed or at least prevented in the future.

 You will also want to do auditing for access to the system. Therefore, you will need
the following auditing requirements :

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

92

 4-33 The BOSS Audit Function shall capture all adds, changes,
deletions, deactivations, and reactivations to access made by
all security officers.

 4-34 The BOSS Audit Function shall provide a report that
capture all adds, changes, deletions, deactivations, and
reactivations made by all security officers.

 There are more potential requirements depending on your needs. In addition, here
are some requirements for the Unit Radiation Dosimeter :

 4-35 The BOSS Unit Radiation Dosimeter Audit Function shall
provide a report that capture all adds, changes, deactivations,
reactivations, and deletions of access to the BOSS Unit
Radiation Dosimeter.

 4-36 The BOSS Unit Radiation Dosimeter Audit Function shall
provide a report that capture all adds, changes, deletions,
deactivations, and reactivations for specified data records.

 Do you need auditing of everything that exists in your system? Well, it depends. On
what? It depends on the importance of the data therein. You can see the importance
of the data that an SA or SO does, so it obviously needs to be audited. Now think of the
online game World of Warcraft. Do you think everything that happens on that is audited?
With millions of users and all the activity they do, it is not likely. Therefore, it comes down
to how important it is to track changes to the data. If it does not change frequently, such
as HR regulations, then you probably want it; in fact, it is most likely required.

 On a more business-related note, do you need to audit all reads of the system?
Chances are you do not. That said, there may be specific types of data for which you
may need to do so. For example, you may want to track all queries of the roles and
responsibilities assigned to users. If managers and SAs are reading this information, that
is probably OK, and even a person checking their own data is also permissible. However,
wouldn’t you like to know if one employee is searching all his/her co-workers’ data? This
may be an intrusion of some kind.

 In addition, are there laws or policies that require it? That is a decision for you to make,
but not in a vacuum, as there are specialized stakeholders who will help you decide this .

 External Interfaces
 When you examine external interfaces, you are evaluating a system, program, or
application that is not part of the system, program, or application you are defining.
For example, if you are defining the personnel system for your organization and the
organization already has the access control application implemented organization-wide,
the access control application is external to the personnel system. In this case, you should
capture the following requirement:

 4-37 The BOSS Personnel System shall provide all access
functionality by interfacing with the BOSS Access Control
Application.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

93

 This is only identifying what interface the personnel system must have. You must
specify much more information to define exactly what all the elements are and in what
formats. You will see this level of detail in Chapter 7 .

 You need to apply the same approach to hardware as well. For example, an aircraft
needs to interface with air traffic control, so you need to define that. In this case, the
air traffic control specification is defined first, and then all aircraft need to follow that
interface. Otherwise, if the aircraft defined a different one each time, what kind of
mess would you have in the air? Think of one place where you see this implemented—
especially if you have traveled to other states and countries and had different rental cars.
The dashboards for cars are inconsistently implemented, such that the controls, like
wiper blade activation, are often not where you expect them to be. Thus, for the radiation
detection system, you will define the following interface:

 4-38 The BOSS Individual Radiation Dosimeter shall interface
with the BOSS Unit Radiation Dosimeter using a USB
connection.

 ■ Note Here you have specified what particular connection the system must use. It could
be Bluetooth or other standard ones available.

 Whenever practical (and that is the important aspect), use something that is
commercially available to allow flexibility to use standard equipment. Again, you must
specify much more information to define exactly what all the elements are and in what
formats. As before, you will see this level of detail in the Chapter 7 .

 Certification Requirements
 Are there certifications that your organization or government requires for work done on
your system?

 ■ Real-World Note For example, I have worked on systems where a security certification
is necessary or systems cannot go into production.

 Therefore, you may need a requirement such as the following:

 4-39 The BOSS shall meet the Security Certification specified
by (enter the appropriate organization here, say ABC
Company Security Office).

 This may spawn additional requirements that are specified in the security
certification process, so you need to do some examination of it.

 This also may apply to hardware, both computers, as well as the BOSS Dosimetry project:

 4-40 The BOSS Unit Radiation Dosimeter Calibration Source
shall meet the Nuclear Regulatory Commission Radiation
Certification.

http://dx.doi.org/10.1007/978-1-4842-2099-3_7
http://dx.doi.org/10.1007/978-1-4842-2099-3_7

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

94

 ■ Note Don’t take this reference to the NRC radiation certification as gospel; this is just
fiction made up for this text. You need to know the correct certification to meet. This is just
illustrative.

 You get the idea. This can be an empty section or very small, depending.

 Searching and Reporting Requirements
 For many computer systems, this can be a large portion of the requirements as you
specify what search and reporting requirements you need. This is also important for any
embedded systems where data is resident inside the system that various users need to
retrieve. This section of requirements will tell you how the users can retrieve the data.

 Many of the systems in the past dealt solely with Boolean searches. If you do not
understand what this means, you will need to learn it ASAP. Therefore, this will likely be
your first requirement:

 4-41 The BOSS Search Function shall execute user specified
queries using the following Boolean operators:

 1. AND

 2. OR

 3. NOT

 4. AND NOT

 5. OR NOT

 6. ()

 7. NEAR—Term A and Term B are within N number of words

 With the advent of more sophisticated search capabilities and the fact that many
users are not trained Boolean users, other more robust techniques exist that may help
users find what they need; for example, concept search exploits related terms without
the user having to enter them specifically. For example, a user is interested in bombs.
However, using Boolean-only operators, the user would need to have something like this:

 Find Bombs OR Explosives OR IED OR Weapons of Mass
Destruction

 You can see how quickly it gets complicated and still may miss something if they
forget a particular word or phrase. (FYI, IED stands for Improvised Explosive Device .)

 Thus, you probably want to have something like the following:

 4-42 The BOSS Search Function shall execute user specified
queries using the Concept Search capabilities to find terms
that are related to terms entered by the user.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

95

 Examine an example for a medieval history class you might take. You need to find
out about the Vikings. You would search on Vikings but not the Minnesota Vikings, so
you might also omit football or NFL. However, did you consider Norse or Scandinavia or
Scandinavian?

 Writing good queries is an art form (just like writing good requirements). That said,
requirements engineers need to provide the tools that could aid the user in finding the
most correct information without overloading them with false hits. Another area that
is growing in state-of-the-art querying is the use of machine learning. You will not see a
big dissertation on this here as you can research it yourself if you do not understand it;
however, it provides the capability to find subjects that may be close to what you
are looking for, but you might not necessarily make a connection. There are many
implementations of machine learning such as Latent Semantic Indexing (LSI), Entity
Extraction, Natural Language Processing (NLP) , and many more. You may need to add
requirements for machine learning .

 4-43 The BOSS Search Function shall exploit machine-
learning techniques to find data that are related to terms
entered by the user.

 Again, this may be a high-level requirement that you need to decompose, but this is
the start point.

 Of course, you need to specify what data a user can query. In most cases, users can
see everything within a database. Other times, you will restrict what they want. You will
learn more about that in the “Security” section in Chapter 5 . However, the user may want
to restrict what data elements they want returned. If you have 45 data elements in your
vendor data but you want only the company name, address, phone and fax numbers, and
points of contact, you should allow users to define that.

 4-44 The BOSS Search Function shall allow users to specify
the data elements returned in their query results.

 4-45 The BOSS Search Function shall allow users to specify
the order data elements returned in their query results.

 4-46 The BOSS Search Function shall allow users to specify
the format of the data elements returned in their query results.

 This allows users to control how the data looks to them. Of course, there are many
more query/search requirements. That said, once you define good search requirements,
you should be able to reuse these core requirements the rest of your career. This gets into
the requirements reuse previously mentioned.

 Will there be search requirements unique to systems? Absolutely, just as there are
data elements unique to a particular program or system, the manipulation of some of
these elements will be different. Reuse what you can. In fact, ask around. Someone else
in the company or organization may have done your work for you. Use it if you can find
it. (Sometimes it is hard to locate, but the reward is good once you find it. Think of it as a
requirements treasure hunt—finding the gold at the end of the rainbow.)

 Now, what is the boundary between search and reporting? Well, gentle reader, this
distinction is very distinctly blurred. A search result presented on your screen is in its
essence, a report, usually just provided to the requester. Some define a report as something

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

96

more formal and possibly more detailed. The report may be automatically generated by
the system, on a specific schedule, and even distributed to various consumers of the data.
Of course, the traditional report is printed out, though now reports are often distributed
electronically in PDF or other forms. Printing becomes a personal preference.

 The point is that the need will exist to create a hard copy in some instances. Of
course, you could always save the report to a file also.

 Here comes the quandary. Do you provide only the report generator and let users
define all their reports, or do you have some canned reports that the development team
creates and maintains? Realistically, you will generally see a mixture. How many of the
canned reports are created by development is the main variable.

 You will need to have some of both, then. Therefore, you will start with the following:

 4-47 The BOSS shall provide a report generating capability.

 Again, this is a high-level requirement that you need to decompose, but this is
the start point. Now you need to list all the functions you want the report generator
to provide. As with the general search requirements, once you have described report
generator requirements, that should be the last time you have to define them, reusing
them thereafter. In addition, as stated, reuse if someone else has done the work. Why
reinvent the wheel when someone did it for you?

 If you strike out finding a prebuilt set, what should you do? Actually, this is quite
easy. Do some research of what capabilities report generators do, convert them to
requirements, and you are done. You should look at more than one report generator,
as some may be more specialized than others. Some may focus more on graphical
representations versus textual capabilities. How many different graphical representations
do you want? How much flexibility in column and row specifications do you need?

 Many times, you create several dozen user stories (more about these in Chapters
 12 and 13) and more than 100 requirements. All of these requirements should be of the
following format :

 4-48 The BOSS report generating capability shall provide
(enter the need here).

 Do not forget to provide the ability to create report templates that users can reuse
and modify to suit their needs or to copy existing reports and modify appropriately.

 Next, have a section for the canned reports. Here, you will have the following form :

 4-49 The BOSS Report Function capability shall generate a
(Report Name) Report which included the following data
values scheduled every (enter the time period here, e.g., daily,
weekly, monthly, quarterly, annually, every third Wednesday).

 1. Value A with Format NNNN

 2. Value C with Format A A A A A A

 3. Value D with Format NNA A A

 4. Value Q with Format A

http://dx.doi.org/10.1007/978-1-4842-2099-3_12
http://dx.doi.org/10.1007/978-1-4842-2099-3_13

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

97

 Is the canned report automatically generated, only manually activated, or both
automatically and on occasion activated by a user? You have to specify it. Think about
paper orientation, page size, and so on. What formats are reports saved to? Can they
be exported to other applications, say Microsoft Excel or Microsoft Word or some other
application your organization uses?

 One word of caution with these two areas, search and reporting—cost. Given the
number of capabilities in the market place, one likely solution is for the organization to
buy a commercial, off-the-shelf package to do it. That is good. Why reinvent something
someone else has already done? However, given the size of some organizations, you may
want to place some constraints in the requirements set. For instance, you may want a
requirement that says the following:

 4-50 The BOSS Report Function capability shall not require a
per-seat fee.

 This is so that if you have an organization that has 5,000 people and a $10 per-seat
license per year, you have a $50,000 bill just for your users every year. Some people may
say this is out of scope for requirements, but REs should be responsible for the entire
project, not just technical requirements. You will have to judge how much impact you can
have. Ask for it, and the powers that be will take appropriate steps.

 Compliance, Legal, or Regulatory Requirements
 These are laws, regulations from government, compliance statements from organizations,
and even internal policies and regulations that a given part of the organization or their
particular systems must follow. In records management within the federal government,
for example, there are mandated requirements all federal agencies must follow. State
governments have them as well.

 4-51 The BOSS website shall have every non-text item on a
page is to have a text description to be fully compliant with
Section 508 of the US Rehabilitation Act.

 4-52 The FBI BOSS Records Management function shall
retain a record of every hardcopy document in the permanent
archive for the life of the Republic.

 You will have to follow whatever legal, regulatory, or policy needs specified for your
organization or type of project. It varies depending on what business you are in or project you
are working on. Your stakeholders will know this, in many cases your senior stakeholders.

 There may be other elements that you must comply with. For example, your
company may have particular human resource compliance policies such as the following:

 4-53 The BOSS Human Resource (HR) Policies shall only be
modifiable by HR administrators.

 4-54 The BOSS Human Resource (HR) Policies shall only
allow a person’s Social Security Number to be used for HR
purposes when the person gives permission to do so.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

98

 Legal regulations apply to various mandated laws such as Health Insurance Portability
and Accountability Act (HIPAA) of 1996 levies rules about the release of your personal
medical information.

 4-55 The BOSS Human Resource (HR) Medical Policies shall
be in compliance with HIPAA regulations.

 This previous statement may need to be broken into more detailed requirements
based on what data you collect and need to disseminate. This shows the high-level
requirement you need to decompose, but this is your start point .

 These types of requirements may not come from your typical system users but more
specialized stakeholders, so you will need to do digging. You will see more about this
when in the elicitation phase.

 Historical Data
 If you have a dynamic database, say all the purchases and sales by your large tire-
producing company, you will have growth of data. Given that your data will grow, you
need to define storage and retention requirements to accommodate this growth of data.
Therefore, you can have requirements like the following:

 4-56 The BOSS Tire Purchasing and Sales function shall
generate 3 Gigabytes of data per year for five years.

 You base this on a calculation of 1,000,000 purchases and sales per year and 2,000
bytes per transaction or 2 gigabytes. Then 50 percent was added to accommodate for
unexpected surges.

 You should also have a statement that defines the length of time given data should be
available to be easily recalled by the users.

 4-57 The BOSS Tire Purchasing and Sales data shall be
available online for five years.

 Is it a coincidence that this statement has the same length of time? Probably not.
What drives this time period? How often do people need to access the data, whether for
query or reporting? If it is less than once a year, clearly do not keep it online. However, if it
is dozens of times by several departments, then keep it. Of course, the cost of storage may
affect this decision when development comes along, so be prepared to justify why you
gave the time period.

 For the radiation dosimetry project, you could have this as well:

 4-58 The BOSS Unit Radiation Dosimeter shall be able to
maintain data for 1,000 transactions.

 What happens after 1,000 transactions? Good question. That leads to the subject of
the next section, archiving.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

99

 Archiving
 At some point, the data within your system may grow beyond the storage capacity. In
the case of the radiation dosimetry project’s 1,000 transaction limit, the project has the
capability to archive the data to a hardened laptop for long-term storage. Thus, you will
have requirements like this:

 4-59 The BOSS Unit Radiation Dosimeter shall have the ability
to download up to 1,000 transactions to the BOSS Dosimetry
Archive Laptop.

 4-60 The BOSS Dosimetry Archive function shall be able to
maintain data for 5,000,000 transactions for fifty years.

 Why so long? Think of the medical reasons associated with a soldier applying for
benefits with the Veterans Administration after the war; the government must maintain
the data for as long as the person was alive. Maybe 50 years is too short. Think of an
18-year-old soldier who lives to 90 years old. Don’t forget the following requirement:

 4-61 The BOSS Dosimetry Archive Laptop shall allow the
ability to recall archived transaction data.

 Trust me, the ability to recall it is very important or why bother to archive it?
 You need to apply the same process to the database storage of a computer system.

Think of an FBI records management system. Assume that 10 gigabytes of electronic
information is generated per year. Then you should have requirements as follows:

 4-62 The FBI BOSS Records Management data shall be
archived after five years online.

 4-63 The FBI BOSS Records Management Archived data shall
allow the ability to recall archived transaction data to the
online system.

 How long should the data be archived? The compliance, legal, or regulatory
requirements section earlier would be the likely source that would specify such needs.
For the U.S. government, permanent records are for the life of the Republic. Therefore,
you might have the following:

 4-64 DRAFT The FBI BOSS Records Management Archived
data shall be maintained for the life of the Republic.

 Hm, is that really practical? Are you going to be around to ensure this happens? You
know you will not—life expectancy is not that long. So, how do you handle this? From
past experience, very large systems may last 5 to 15 years, so the life of the Republic
clearly is not met. One way is the following:

 4-65 The FBI BOSS Records Management Archived data
shall be maintained for the life of the FBI BOSS Records
Management System.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

100

 4-66 When the FBI BOSS Records Management System is
being replaced, the FBI BOSS Records Management Archived
data shall be migrated to the replacement archive system so
the data can be maintained for the life of the Republic.

 Elegant, no? Important, clearly. How do you verify that? Hm, good question. That
one cannot be implemented until the next system comes along, but the requirements
should be carried forward, and then it can be verified by the next development effort.

 Structural
 This section primarily applies to hardware systems. You are looking for those items that
address how hardy the part needs to be. For example, if you are building a bridge, how
much of a load must the bridge be able to support? Here’s an example for a bridge across
a small ravine that spans about 100 feet:

 4-67 The BOSS Lost Creek Bridge shall support two lanes of
traffic of 300 tons.

 ■ Real-Word Note I am not specifying a legitimate requirement here. I am using this for
illustrative purposes only. When you are capturing this type of requirement, you need to be an
expert, or more often you will receive such specifications from engineers or other expert sources.

 You will need to consider many factors, such as wind shear, and all other such needs.
You must define any force applied to your system. Will it be exposed to lightning, rain,
snow, hail, salt, seawater, freezing, heat? Will the system be moving? If so, drag will be
a factor. Will oxidation be a factor? The DoD has extensive documentation to help with
these kinds of factors. You need to define all these environment stresses to the hardware
that will affect the structural integrity.

 ■ Real-World Note I am not a structural engineer, so I cannot begin to define all these
requirements. That is true for most REs, so you will need assistance in this. I have written
many requirements for areas I was not an expert by getting help from those who are.

 There could be structure in software, such as architectural structure for a database,
which is specified by architects. Users specify the data that resides within that structure
but not the structure itself. Chapter 7 details the user data needs you need to define in the
database section. Sometimes, you may have specific structural requirements as standards
your organization needs to follow. That is about all you would do for requirements.
Design specifications are another matter. Then the designers would get specific about
what they have chosen. The architect may have identified that the BOSS Architectural
standard must be followed. The designer provides a statement that “the BOSS HR system
will use the ORACLE database, which meets the BOSS architectural standard.”

 Notice that this type of requirement is hardware specific.

http://dx.doi.org/10.1007/978-1-4842-2099-3_7

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

101

 Algorithms
 Algorithms capture any formulas or specific manipulations of data elements that need to
occur. It could be something as simple as calculating how much postage to put on a first-
class envelope based on the weight as follows:

 4-68 The BOSS Cost of First Class Letter Postage data element
shall be determined with the following look-up table:

 Weight Cost

 1 ounce $0.49

 2 ounce $0.70

 3 ounce $0.91

 3.5 ounce $1.12

 Alternatively, it could be something more like Einstein’s famous equation E = MC 2 , as
follows:

 4-69 The BOSS conversion of mass to energy data element
shall be determined by multiplying the change in mass by the
speed of light times the speed of light, using the metric units.

 The requirements are as unique to the needs of your system. For example, in the
radiological collector, the energy is collected by the energy of the particles and photons
incident on the collectors, and a conversion to the REM equivalency must be specified.
You will not do that here as that is beyond the scope of this text, but you understand the
need for it. If you are in a situation where such a technical capability is needed, find the
resident expert that can explain to you what requirement needs to be captured.

 ■ Note REM stands for Roentgen Equivalent in Man. This is a unit of radiation exposure.
You are not expected to understand exactly what it means, just that it is a unit to consider in
the radiation dosimetry project.

 Depending on the kind of project you are working on, you may not have any
algorithms, especially sophisticated mathematical formulas.

 Notice that this type of requirement is software specific. Yes, hardware may have
algorithms embedded in them, but they reside in the software.

 Database
 Here you are going to learn what data elements and formats you should use when
defining data to store in the proposed system. You will spend a significant amount of time
learning how to do this in Chapter 7 . However, you will need to define all the elements
that users need. For example, in the record management example:

http://dx.doi.org/10.1007/978-1-4842-2099-3_7

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

102

 4-70 The FBI BOSS Records Management shall store the
record title/subject in a text field of up to 80 characters.

 For the hardware example, you would do the same:

 4-71 The BOSS Individual Radiation Dosimeter shall store
exposures in a range of 1 to 800 Rem.

 4-72 The BOSS Individual Radiation Dosimeter shall store
exposures in the following format, NNN where N is numeric
only.

 ■ Note You will not specify all the elements that might eventually exist in the database
itself. The programmers and designers will need additional items, such as indexes, key fields,
etc., that a user does not need. You should define only the data elements the users need.

 Notice that this type of requirement is software specific. The dosimetry requirements
are for the software embedded in the system.

 Again, reference Chapter 7 for the detailed examination.

 Power
 This is very straightforward. What power do you need for your system? For the dosimetry
project, you might have the following:

 4-74 The BOSS Individual Radiation Dosimeter shall require 5
volts direct voltage.

 Will this require the individual radiation dosimeter to have an adapter to recharge it?
If so, you may not need to replace batteries. The soldier will be walking around away from
equipment. Thus, the combat situation might mean that the device cannot connect to a
charger easily. However, the Unit Radiation Dosimeter might need all of the following:

 4-75 The BOSS Unit Radiation Dosimeter shall use an internal
12 direct current source of power.

 4-76 The BOSS Unit Radiation Dosimeter shall use an external
110 to 120 alternating current source of power with 60 Hz.

 4-77 The BOSS Unit Radiation Dosimeter shall use an external
220 to 240 alternating current source of power with 50 Hz.

 Why do you need U.S. and non-U.S. specifications? Because this system can be
deployed anywhere in the world.

 Do you need to specify this for the computer system, say the records management
system? If the application will be placed into an existing network, no. If, however, you are
going to specify the hardware for your system, then you do need to. Here’s an example:

 4-78 The FBI BOSS Records Management shall use an external
110 to 120 alternating current source of power with 60 Hz.

http://dx.doi.org/10.1007/978-1-4842-2099-3_7

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

103

 This system will not be deployed anywhere except in the United States; hence, the
U.S. power grid is sufficient.

 Notice that this type of requirement is hardware specific.

 Network
 As part of your requirements, you will define any network that is needed for your project.
Will you need it for the dosimetry project? The individual dosimeters are read by the Unit
Radiation Dosimeter, through a direct connection, so no. The Unit Radiation Dosimeter
is a stand-alone device, so no network is involved. The backup is an external hard drive,
and even the connection to the archive is by Wi-Fi, so technically you have no network.
However, you should ask yourself these questions for each project.

 The records management project is another matter. You will have a network for it. Of
course, if the FBI center you go into has a network that the application will reside on, you
just need to specify that. However, if one does not exist, you will need to specify what your
network should consist of.

 4-79 The FBI BOSS Records Management shall need a server
for application and data records of the system.

 You will need more information about the server. However, you will derive some of
the specifications from the storage that the system needs, how much memory, and so on.
So, let the developers and designers come up with it. What will the user need to connect
to the server?

 4-80 The FBI BOSS Records Management shall need 240
individual devices to connect to the server to access the
application and data records of the system.

 Elsewhere you will learn about any growth, but you should have a good estimate
of the number of users when you write this requirement. What kind of network must
it be? If it is known, capture it. Any other data should be specified also, from the needs
standpoint, not the implementation. Is this a LAN, just a local network, in say one
building, or is it a WAN, a wide area network, say in multiple states, or an entire city? All
these needs affect the network requirements.

 Notice that this type of requirement is hardware specific.

 Infrastructure
 Let me differentiate between structural requirements and infrastructure requirements.
Structural requirements deal with the item itself. This includes what kinds of things
it is made of and how it might be built to withstand its operational environment.
Infrastructure consists of the things around the item so that it can do what it needs to
do. The easiest example is to think of yourself as a “system.” When you go to work, what
things are at your place of employment so you can do your job? Those things are the
infrastructure.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

104

 If you were going to build a call center, what kind of support would you need? If
the building existed, that is one item out of the way. You would need something like the
following:

 4-81 The FBI BOSS Records Management Call Center shall
need an external 110 to 120 alternating current source of
power with 60 Hz.

 What phone connectivity will you need? Will you need Wi-Fi? Internet connectivity?
If so, what throughput will you need? If you do need to construct the building, what
specifications will you need? Here the experts will be necessary.

 For the dosimetry project, will you need infrastructure? Since this is a system
deployed in the field, the system probably will not require infrastructure, except for
possibly the archive system. Where will it reside? How will the system transmit the
archived data to it? Does power, security Internet, possibly Wi-Fi, and so on? Probably
not? If so, you will need the following:

 4-82 The BOSS Dosimetry Archive Laptop shall need a Wi-Fi
source at the Brigade headquarters (HQ) element to receive
archive transmissions from the field BOSS Unit Radiation
Dosimeters.

 Notice that this type of requirement is hardware specific.

 Backup and Recovery
 You will want to have a backup and recovery function within your system. Otherwise,
what happens if your system crashes and wipes out all your data? Therefore, you might
have something like the following:

 4-83 The FBI BOSS Records Management shall have a
complete system and data backup once a week.

 Obviously, losing a week’s worth of data in unsatisfactory, so you should have
maybe a daily incremental backup, where that service captures the difference from the
previous day. However, is even losing one day’s worth of data acceptable? Most likely not.
Therefore, you may want to capture backups of transactions as they occur.

 4-84 The FBI BOSS Records Management shall capture an
incremental backup of each transaction as they occur.

 You will need to specify where the backup is. Will you have one onsite? If so, what
happens if a hurricane, earthquake, terrorist bombing, tsunami, tornado, or flood hits?
You should have a backup site in a completely different site as well.

 For the recovery aspect, you should specify how quickly you should be up and
running. Here’s an example:

 4-85 The FBI BOSS Records Management shall be able to
recover from the operational system within four hours from
the local backup.

CHAPTER 4 ■ FUNCTIONAL REQUIREMENTS

105

 This may be unacceptable for many mission-critical situations, where it may be in
seconds. It depends on your needs. It may be longer if you have to do it from the remote
site. There it may be dependent on getting users to the remote site. It might be a day.

 Would you need the same backup for the dosimetry system? An individual dosimeter
may not be catastrophic, as there are other people in the same unit. The Unit Radiation
Dosimeter might want a hard drive backup and a restore feature.

 4-86 The BOSS Unit Radiation Dosimeter shall capture an
incremental backup of daily transactions.

 4-87 The BOSS Unit Radiation Dosimeter shall be able to
recover from the operational system within four days from the
local backup.

 Why so many days? Good question. If the laptop is inoperable and cannot be
repaired, it needs to be replaced. How quickly can one be acquired? Second, is it critical
that the information be readily available compared to other operational status? Probably
not, so the four days may be acceptable.

 Summary
 This chapter covered a lot of functional requirements. In the next chapter, you will learn
about nonfunctional requirements.

 There are potentially many different stakeholders who have an interest in getting
these nonfunctional and functional requirements correct. This is because for many large
systems the people buying the system are completely different from those who are going
to use it (customers and users). There may be one significant factor that you cannot
control—cost. The realism of financial constraints may limit some of the requirements
you write. That is a trade-off analysis you will not spend time on in this text.

 Exercises
 Exercise 1
 At the Three Mile Island Nuclear Power Plant, their control room had alarms and flashing
lights to alert operators of emergency situations. One factor that inhibited responses
was the constant sounding of the alarms and the flashing of the lights. Should sounding
alarms and flashing lights be used in the future? If so, why and how? If not, why not?

 Exercise 2
 Define the requirements for a phone to only call and receive phone calls, with no other
features.

107© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_5

 CHAPTER 5

 Nonfunctional Requirements

 This chapter defines the nonfunctional requirements. For example, with the advent of
 cybersecurity in the last several years, security is a very important section of any system.
This chapter will cover reliability, availability, maintainability, extensibility (scalability),
and security. Security is not technically spelled with “ility,” yet it is lumped in here. It is
justified if the term became securibility , to coin a term. However, in interest of shorter and
more understandable works, the text will use security , and you know it belongs in this
chapter.

 The government makes up a lot of words that are longer than they need to be, like “it
has utility” rather than “use” or “prioritization” rather than “assign priority,” and the list
goes on. You might keep to the KISS principle . This was something from the Army: Keep It
Simple, Stupid. This is not to say you are stupid; it was targeted for those who made things
a lot more complex than they needed to be so they could sound impressive.

 The Types of Nonfunctional Requirements
 Some sources may call these behavioral requirements, but they are everything that does
not fall into the functional requirements. Nonfunctional requirements define how the
system should do it. Nonfunctional requirements do not specify implementation. Look at
the following list of types, and you will see what is covered.

• Architectural

• Capacity, current, and forecast

• Documentation

• Efficiency

• Effectiveness

• Environmental

• Fault tolerance

• Privacy

• Performance

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

108

• Resilience

• Robustness

• Accessibility

• Availability

• Data integrity

• Extensibility

• Interoperability

• Manageability

• Maintainability

• Portability

• Quality

• Reliability

• Recoverability

• Scalability

• Security

• Serviceability

• Stability

• Supportability

• Testability

• Usability

 Starting with the previous elements from the Stack Overflow web site (“What
is functional and non-functional requirement.” Stack Overflow . Feb. 2015. http://
stackoverflow.com/questions/16475979/what-is-functional-and-nonfunctional-
requirement), most other sources use many of this list, but others are appropriate.

 Architectural
 Your organization may mandate some architecture standards that your system must
follow. Here’s an example:

 5-1 The FBI BOSS Records Management shall be designed
with a Service Oriented Architecture (SOA).

http://stackoverflow.com/questions/16475979/what-is-functional-and-nonfunctional-requirement
http://stackoverflow.com/questions/16475979/what-is-functional-and-nonfunctional-requirement
http://stackoverflow.com/questions/16475979/what-is-functional-and-nonfunctional-requirement

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

109

 As you learned in Chapter 2 , requirement 5-1 could be an implementation if
taken on its face value. However, given that an architectural study by the organization
in question decided this was the best architecture approach for the system being
considered, you will have to capture it. Alternatively, you might have something like the
following (or both):

 5-2 The FBI BOSS Records Management shall follow
Representational State Transfer (REST).

 REST is an architectural style of the World Wide Web. Are there architectural
requirements for hardware? Of course, there can be, so it depends on your organization
and what you are trying to build. Here’s an example:

 5-3 The DoD BOSS Records Management Computer system
shall follow Common Operating Platform Environments
(COPEs) Architecture.

 Even small items like the dosimetry system may have architectural requirements that
may need to be applied. You will have to investigate your organization.

 Capacity
 In this section, you will examine the storage capacity you need for your system. In the FBI
record system, you need to investigate how much capacity you need for these records. Are
these just text documents? If the answer is no (which is very likely), then what resolution
of images do you need to store? Will there be color images? Will you have video? Black
and white or color? What about sound files? How many of these types of records will you
need to store, and how many years’ worth? Once you know all the answers to this type of
information, you can come up with a requirement like the following:

 5-4 The FBI BOSS Records Management shall have a capacity
of 12 Terabytes of data.

 You should also write requirements to answer the questions in the previous
paragraph. This will define how many text documents of what size you will have, how
many other file types will you have, how many years of data, and how long before it goes
to archive, if at all. You will address storage growth in the next chapter in the scalability
section.

 What about hardware that is not a computer system? Will you need some storage
capacity for the individual dosimeter? Here’s an example:

 5-5 The BOSS Individual Radiation Dosimeter shall store 1000
bytes of data.

 5-6 The BOSS Unit Radiation Dosimeter shall store 1,000,000
bytes of data.

 The previous example does not have the ability to expand these two different
dosimeters. However, they could be updated in the future. That is not always the case for
every system. Consider a deep-space probe where there is no way to upgrade the capacity
of the system. There may be more efficient coding, but the hardware itself will not change.

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

110

You have to ask the same kinds of questions as you did for the computer system earlier.
There could be some alphanumeric data. Chances are, however, these probes travel the
solar system to gather images among other types of data. Is color important for images
(probably)? If so, what resolution do you need? How many do you want to store at a time
before you transmit back? There are factors to consider in answering this last question.
What is the transmission rate of the probe? If you can only transmit 1 kilobit per second
of data, it makes no sense of store terabytes of data to transmit every hour. Therefore, you
might come up with a requirement like this:

 5-7 The BOSS Oort Cloud Space Probe shall store 1 gigabyte
of data.

 Then you will need to answer all the questions in the previous paragraph in
requirements as well.

 Constraints
 There can be many constraints to your system that you need to address. These
statements are restrictions on what you can do. Some you will learn about separately, like
environmental or privacy constraints. Others might be architectural constraints, which
you examined earlier.

 For example, the individual dosimeter cannot be a large and cumbersome device that
the individual soldier must wear. It might be similar to a wristwatch, such as the following:

 5-8 The BOSS Individual Radiation Dosimeter shall weigh no
more than 4 ounces.

 For the records management project, you might have the following:

 5-9 The FBI BOSS Records Management shall require all
records to be in one of the following formats only:

• DOC,

• DOCX,

• XLS,

• XLSX,

• PPT,

• PPTX,

• JPG, or

• TIFF.

 Notice that some constraints may be harder than others, such as a device that has to
be moved from a naval ship to a Zodiac inflatable, by a 120-pound sailor. Thus, you have
a carrying constraint and the specification of the minimum size of the person involved.
You will see other types of constraints in this chapter like peak load, availability, capacity,
daily and hourly loads, life spans, and size limitati ons. No doubt, you will encounter
others in your career. Capture them, but highlight them as constraints.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

111

 Documentation
 Documentation is the documents that already exist related to a project. Documentation
is different from a document that captures all your requirements. Are there specific
requirements for documentation that is part of the system? Here’s an example for the
dosimetry project:

 5-10 The BOSS Unit Radiation Dosimeter shall have a
hardcopy user guide that explains all the functions of the
BOSS Unit Radiation Dosimeter.

 For the records management project , you should consider a similar requirement:

 5-11 The FBI BOSS Records Management System shall have
an online user guide that explains all the functions of the
BOSS Records Management System.

 Your organization may require documents, say, a system administrator’s manual or
a frequently asked question guide for a help desk that supports a system. You will need to
find all these needs during the elicitation phase.

 Efficiency
 According to Merriam-Webster’s Collegiate Dictionary, efficiency is

 the ability to do something or produce something without wasting
materials, time, or energy 1

 For hardware, this could be energy efficiency, say the efficiency that solar power
is converted to energy used by a consumer, either a person or hardware. For computer
systems, it can be the efficiency of certain functions and resources. Take a formatting of
the hard drive on your laptop. If a particular operating system consumed 75 percent of
the disc capacity, would that be considered very efficient? Probably not.

 Therefore, you may want the following requirement:

 5-12 The FBI BOSS Records Management System Operating
System shall make 99.5% of the data hard drive available for
storage.

 For the dosimetry project, you can have this:

 5-13 The BOSS Individual Radiation Dosimeter shall alert
the user when the battery drops below 90% power so that the
batteries can be changed.

 1 By permission. From Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by
Merriam-Webster, Inc. (www.merriam-webster.com/)

http://www.merriam-webster.com/

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

112

 At first blush, you might consider 90 percent to be a very high threshold. However,
knowing how logistics system operate, usually slowly, and especially during a combat
situation, the replacement parts for low-priority items may be long. There are factors like
that you may need to consider.

 Effectiveness
 You need to define how good certain functions are within your system.

 For the dosimetry project, you might have this:

 5-14 The BOSS Individual Radiation Dosimeter shall capture
99% of the radiation the individual soldier is exposed to.

 For the records management project, you might have the following:

 5-15 The FBI BOSS Records Management System Operating
System shall ingest 100% of records submitted.

 One hundred percent may seem impossible, but from a legal perspective, it is a
necessity. In addition, you will have statements elsewhere that address the fixing of
records that are submitted but do not meet the proper format or fail ingestion into the
database for some other reason.

 Fault Tolerance
 What happens when a portion of the system, but not the entire system, fails? Think of
a flat tire on your car. You can still drive, even though it is in a degraded mode. You will
need to consider whether such conditions will happen with your system and specify how
effectively it can operate. For example, if a jet fighter has lost one engine of two, would the
pilot be able to land?

 You will have determined what fault tolerance is required for your project. For the
records management project, you should have a similar requirement:

 5-16 The FBI BOSS Records Management System shall
have all functions implemented as services within a service
oriented architecture to allow the system to operate in the
event of one or more services failing.

 For the example of the fighter, you would have the following requirement:

 5-17 The XF-36 jet fighter shall be able to land with only one
of its two engines operating.

 You will need to determine fault tolerances needed for your project. Your
organization may have guidelines on this, so research it.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

113

 Privacy
 There are several situations where you need to consider privacy issues . People are
rightfully concerned about their personal information. This is a critical business
consideration given consumer concerns about their person information. Also, in the
medical field, HIPAA receives a significant emphasis. The Health Insurance Portability
and Accountability Act of 1996 defines what the medical field must follow to protect
an individual’s privacy relating to his or her medical information. Therefore, in the
dosimetry project, you might have the following requirement:

 5-18 The BOSS Unit Radiation Dosimeter shall store ensure
individual radiation dosages are protected in accordance with
HIPAA compliance.

 In addition, even for the records management, the system must protect privacy.
Here’s an example:

 5-19 The FBI BOSS Records Management shall have protect
the privacy of individuals identified in a record in accordance
with Federal Government Privacy policies.

 Check the application of privacy rules for your project and capture them
appropriately.

 Quality
 For our purposes, quality is a degree of goodnesss. There are two levels of quality you
want to consider. First, if you take all these nonfunctional requirements together, it should
define quality for the system. That means you then look at goodness at the individual
requirement level, which we will do now.

 Now examine the records management project. For argument’s sake, assume not all
their documents have been converted to digital format yet. Therefore, they are working
on documents that are 25 to 30 years old. Now you need to address the goodness of the
documents to be converted. Back in that era, people were still using an antique called a
 typewriter . In addition, not all the paper was as good—think multiple-page forms. Also,
documents were copied multiple times. The quality of documents to be scanned can
degrade with age and the fragileness of the paper. Since you are going to scan this, you
need to come up with a quality of the scan.

 5-20 The FBI BOSS Records Management scanning shall
capture 75% of the characters per page to be considered a
quality scan.

 Now the default scan will be 300 dots per inch (DPI). If the scan does not meet the 75
percent, the process will be repeated at the 600 DPI, 1200 DPI, and finally 2400 DPI. If the
75 percent cannot be achieved at 2400 DPI, the quality achieved there will be the default.

 Are there quality requirements that would apply to hardware type systems? Yes. You
will examine a simple example for the radiation dosimetry project.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

114

 5-21 DRAFT The BOSS Unit Radiation Dosimeter shall
capture gamma ray exposure between 200KeV and 1.00 MeV
with a 99% accuracy.

 By the way, this requirement is not correct, so don’t reuse it (but it verifies the
importance of experts). (KeV = Kilo-electron Volts and MeV = Mega-electron Volts.)

 Resilience
 Resiliency requirements define what must be preserved when an outage of the system
occurs. Here’s an example for the records management system:

 5-22 The FBI BOSS Records Management shall maintain all
records during an outage until such time as the system is
restored.

 For the dosimetry project, consider the following:

 5-23 The BOSS Individual Radiation Dosimeter shall maintain
the individual exposure record during the loss of battery
power until such time as the power is restored to the system.

 For both projects, there of course will be other needs, and you will need to define
them all.

 Robustness
 Robustness means that the system does not crash easily and is able to withstand changes
that might weaken it.

 ■ Real-World Note I worked on a system where a very complex query that spanned
multiple tables would cause the user’s connection to it to fail. That is unacceptable. This is
somewhat related to fault tolerance.

 Therefore, you might have a requirement like this:

 5-24 The FBI BOSS Records Management Search Function
shall not cause the system to fail.

 In the radiation dosimetry project, you could have the following:

 5-25 If the energy exposure exceeds 1.00 MeV, the BOSS Unit
Radiation Dosimeter shall ignore the energy rather than
overload the sensor.

 As usual, you will need assistance in capturing such expertise-loaded subject areas.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

115

 Environmental
 What are the external environments that your system will need to operate in? Will this
be a 24-hour, seven-day-a-week computer system? Will this be the same environment
your dosimetry project must operate in? You will need to address temperature ranges,
rain, wind, snow, humidity, and any other such factors. Will a sensitive probe need to be
dropped or banged about (think of a watch on a soldier in a combat zone)? Therefore, you
can have examples like the following:

 5-26 The BOSS Unit Radiation Dosimeter shall be exposed to
temperatures ranging from -40 to 140 degrees Fahrenheit.

 Remember, these devices must operate anywhere in the world.
 For the records management project, you should have the following:

 5-27 The FBI BOSS Records Management shall operate from 6
a.m. to 11 p.m. daily Monday through Friday.

 If it is a job done during the day, why would you not just base it on 8 to 5 in
Washington, D.C.? If you have lived in that area, you will know people will come to work
early to avoid the horrendous traffic. Plus, the FBI is in all four time zones. What about
Hawaii and Alaska? Is 11 p.m. sufficient? Maybe not. For this exercise, you assumed
records management took place in the continental United States. You will need to
confirm that is correct.

 Data Integrity
 Data integrity refers to maintaining and assuring the accuracy and consistency of data over
its entire lifecycle. This could be the corruption or loss of data because of a hardware failure,
such as a spot on a hard drive that goes bad. Alternatively, data integrity is corrupted when
a record cannot be found because the pointer within a database loses its link.

 5-28 To prevent malicious corruption of the BOSS Unit
Radiation Dosimeter, the system shall retain its data for 90
days after a designated user authorizes deletion of a record on
the Unit Dosimeter.

 For the records management project:

 5-29 The FBI BOSS Records Management System shall
maintain data integrity by keeping backups of all updates to
the database for every record transaction.

 Standards
 There may be many and varied standards that are regulated on your project or even that
your organization levies on you because of company policy. There could be programming
standards for your developers. HR has standards of conduct for employees and ethical
standards. The DoD has a whole series called military standards, or MIL-STD for short.
The EPA has environmental standards. There are company architectural standards; even

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

116

Microsoft has standards for its software development. Those are only a few. You learned
about one kind of standard in the previous chapter that might apply to your project, such
as the following:

 5-30 The BOSS shall follow this company’s Organizational
User Interface Standard.

 The DoD has many standards for its hardware development such as DoD Manual
4120.24-M, Defense Standardization Program (DSP) Policy and Procedures. This can
drive you to requirements such as the following:

 5-31 (5-26) The BOSS Unit Radiation Dosimeter shall be
exposed to temperatures ranging from -40 to 140 degrees
Fahrenheit.

 You will need to find all standards that will apply. They should not be difficult to find
as people will let you know what they must follow.

 Performance
 Chapter 4 began with arguably the biggest and most important group of requirements
(business rules), and this topic probably has the second biggest and most important
group of requirements: performance.

 Merriam-Webster’s Collegiate Dictionary defines performance this way:

 1 a: the execution of an action

 b: something accomplished: deed, feat

 2 the fulfillment of a claim, promise, or request: implementation

 3 the manner in which a mechanism performs, e.g., engine performance 2

 How something performs, whether it is hardware or software, is what is important
to us. System performance affects almost every section in this chapter and the preceding
one. In fact, reliability, availability, and maintainability requirements are almost
exclusively performance requirements, as you will soon see. In this section, you will learn
about how many, how often, frequency, confidence levels, and so on—anything you can
quantify. Other than maybe a definition of something, there is a number associated with a
performance requirement.

 Where do you put these requirements? While you could place performance
requirements in their own section, it may work best to do this with the particular function
you are talking about. That helps to reinforce the point that most every function should
have performance requirements, or you should at least spend some time thinking about if
performance requirements are necessary for that function.

 2 By permission. From Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by Merriam-
Webster, Inc. (www.merriam-webster.com/)

http://dx.doi.org/10.1007/978-1-4842-2099-3_4
http://www.merriam-webster.com/

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

117

 I want to look at the following:

• Performance response time

• Workload performance

• Platform performance

 These are good types of performance values, but only as a start. You have seen
many values in this chapter that define performance values such as the number of users,
response times, throughput, concurrency, resources, and many of the nonfunctional
requirements like scalability that you have already examined in this chapter.

 Check out that web site as some explanations of details related to various performance
values. It gives guidance of user reactions to how quickly they receive feedback.

 Now, examine example performance values.

 Performance Response Time
 How quickly do you want your request to be completed, whatever it is? Think of the
 records management project . You have received a request to find a particular set of
documents from 1998. How fast should you get your results?

 5-32 The FBI BOSS Records Management Search Function
shall return the results within 4 seconds, 80% of the time.

 The value “80% of the time” is important. It is the confidence level of your
requirement. The results should meet four seconds in four out of five queries. Does that
sound slow when you compare it to Google? However, think of a database that may have
millions or tens of millions of records that could be megabytes of data each. That is a very
good result.

 What about the other 20 percent of queries? Excellent question. You need to
address them in some way. You can increase the confidence level and the response time
appropriately. Here’s an example:

 5-33 The FBI BOSS Records Management Search Function
shall return the results within 10 seconds, 90% of the time.

 And here’s another:

 5-34 The FBI BOSS Records Management Search Function
shall return the results within one minute, 99% of the time.

 There is more than one way to address the last one percent. One way is parallel to the
requirements you already have, like so:

 5-35 The FBI BOSS Records Management Search Function
shall return the results within ten minute, 100% of the time.

 Or like this:

 5-36 The FBI BOSS Records Management Search Function
shall return all query results in less than ten minutes.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

118

 Workload Performance
 Another factor you need to consider is the workload on the system. Another name for this
you may see in some text is concurrency. How many users will there be for your system? That
is a capacity value (see the “Capacity” section in this chapter). You might have the following:

 5-37 The FBI BOSS Records Management Search Function
shall have 500 users.

 However, those are not concurrent users. If you spread that over 24 hours a day, if it
was a 24/7 system, you would have about 21 per hour. Is this system likely to be used that
way? Probably not. Maybe about 10 hours a day, from the East Coast to the West Coast, so
that would be 13 hours a day, or about 40 an hour.

 5-38 The FBI BOSS Records Management Search Function
shall have 40 average concurrent users.

 However, assume in this case that you have learned that about 40 percent of the
people use it in the first two hours of work and 300 users are in the Eastern Time zone, 50
users in each of the Central and Mountain Time zone, and 100 in the Western Time zone.
You are left with a 120-user peak in the first two hours.

 5-39 The FBI BOSS Records Management Search Function
shall have 120 peak concurrent users.

 Does the same apply for searches? If there are that many people querying the
database, does it affect the response time? That is a question you need to address. Maybe
if each person is doing only one search in those two hours, that is 120 searches in two
hours, or an average of one a minute, so in that case, if that is representative, you may not
need to address your search response time.

 However, if each of the 120 users in the peak two hours is doing ten search each, they
may not be evenly spaced apart, so you may need to specify something like the following:

 5-40 The FBI BOSS Records Management Search Function
shall return the results within 10 seconds, 80% of the time
during the peak two hours of the day.

 Or, you might have to say it this way:

 5-41 The FBI BOSS Records Management Search Function
shall return the results within 10 seconds, 80% of the time
when there are 100 searches initiated within 10 minutes.

 You may need to address each confidence level during the peak times. This is an
important aspect for any performance requirement. Not only should you address normal
activities, but also you need to address peak loads.

 Here you have a relatively low workload for the example system. Think of Google
or Amazon; they would have a much higher set of numbers, probably the high end of
the spectrum of the number of users, frequency of queries, and so on. You may have
situations that are in the thousands or even tens of thousands of users like a Google,
Amazon, or eBay. In those cases, you will have to craft the same type of requirements, but
the values will be significantly different. Analysis and discussion with the experts may be
required to address these situations.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

119

 Platform Performance
 Here you will learn about items like computers, printers, scanner, servers, type of
network, operating system, and any other peripherals you could consider for a computer
system. Naturally, performance applies to other hardware as well. For example, you
should have the following:

 5-42 The BOSS Individual Radiation Dosimeter shall capture
exposure to radiation within one second of exposure.

 Some responses are not driven by the user needing something within a certain time
but driven by other needs like the previous requirement where exposure needs to be
collected quickly in the event of other radiation exposure.

 You need to consider transfer rates. Therefore, you might have the following:

 5-43 The BOSS Unit Radiation Dosimeter shall capture the
readings from the BOSS Individual Radiation Dosimeter
within two seconds once the Individual Dosimeter is locked
into the reader.

 You will need to do the same for all the items within the computer system. Here’s an
example:

 5-44 The BOSS Network Printer shall print at least one
hundred pages a minute.

 Here’s another example:

 5-45 The BOSS Network Scanner shall scan at least twenty
pages a minute at 2400 dots per inch.

 You will need to examine every possible performance value to determine what needs
a requirement. The guiding rule should be, if you find a number associated with a piece of
hardware, consider a requirement for it.

 You may become involved with a piece of hardware that you do not have a strong
background with. For example, many of you may not have had significant experience with
radiation detection. As you have seen from the analysis so far and with more to come, the
challenges will be subdivided sufficiently enough that many aspects are understandable
after the analysis here that then you can work with the experts to harness their knowledge
to translate the needs into good requirements.

 Performance Profiles
 Sometimes you may need to consider performance profiles that are different from one
another. For example, you are looking at a local area network (LAN) for sales offices in
company dispersed around the country. Some offices are larger than others. After some
research, you find that your company has offices with the following sizes:

• Small offices range from 3 to 6 people.

• Medium offices range from 10 to 26 people.

• Large offices range from 30 to 56 people.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

120

 ■ Note You will need to add these definitions to your glossary.

 You will need to provide performance requirements that may vary based on this.
Here are some examples:

 5-46 The BOSS Network Sales Server for a Small Sales Office
shall store 10 megabytes of sales records.

 5-47 The BOSS Network Sales Server for a Medium Sales
Office shall store 40 megabytes of sales records.

 5-48 The BOSS Network Sales Server for a Large Sales Office
shall store 100 megabytes of sales records.

 There may be many values that you have to consider differently depending on
different profiles. Why? First, you would not want to spend the money and resources for
a large office when you are installing a small office. You need to focus the performance to
suit the needs.

 Throughput
 Merriam-Webster’s Collegiate Dictionary defines throughput like this:

 the amount of material, data, etc., that enters and goes through
something (such as a machine or system) 3

 Now examine an example for the dosimetry project. In the archive section, you might
consider the following requirement:

 5-49 DRAFT The BOSS Unit Radiation Dosimeter shall have
the ability to download up to 1000 transactions to the BOSS
Dosimetry Archive Laptop.

 This specifies how many transactions, but there is no time element. Therefore, you
should have something like this:

 5-50 The BOSS Unit Radiation Dosimeter shall have the ability
to download up to 1000 transactions to the BOSS Dosimetry
Archive Laptop in 5 minutes.

 Given that you know each record can be 1,000 bytes of data, that gives you 1
megabyte of data in 60 seconds, or 166,667 bytes per second throughput requirement.
That is quite doable by most systems.

 3 By permission. From Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by
Merriam-Webster, Inc. (www.merriam-webster.com/)

http://www.merriam-webster.com/

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

121

 What about the records management project? Do the same kind of analysis. Consider
the backup capability. You know you should have 10 gigabytes of data each year. Now
assume that will be the maximum you need to back up. You have determined you should
perform a complete backup each week. Does that mean you have an entire week to
accomplish this? Maybe, if it ran in the background yet it did not affect the operation of the
system. That is probably not the case. Could you be updating the database while a backup
is running? Operationally, that is not a good practice. So, what time do you have to do it?

 The same process is applied to the database storage of a computer system. Think of
an FBI records management system. Assume that 10 gigabytes of electronic information is
generated per year. Now assume that the backup can run overnight. Then since you have
the system operational from 6 a.m. Eastern time to 11 p.m., that means you have 7 hours
to do the transfer. Then you would have a requirement as follows:

 5-51 The BOSS Weekly Backup shall be completed between
6 a.m. to 11 p.m. on Thursday night, with a throughput of 400
kilobytes/second.

 Then during your analysis, one manager says that the backup can happen on the
weekends. That yields an additional 48 hours. What does that do to the calculation?

 5-52 The BOSS Weekly Backup shall be completed between
11 p.m. starting on Friday night and 6 a.m. on Monday, with a
throughput of 51 kilobytes/second.

 That is a significant improvement, if that is needed. That gives you the idea of what
performance is like.

 Reliability, Availability, and Maintainability (RAM)
 This is probably the one area within this book that will exploit mathematics to any
significant degree. Network throughput calculations are probably the only other
mathematical area, and that is relatively simple compared to RAM .

 Reliability, availability, and maintainability are values that are related to each other,
which is why they are usually studied as a group. Reliability is how reliable the system.
Reliability is how reliable the system is. Availability is how available the system is.
 Maintainability is how maintainable the system is. To understand them better, there are
specific terms and associated values associated with those terms. We will spend some
time gaining an understanding of them.

 Definitions
 You are going to see many new terms and concepts for RAM. You need these terms to lay
the foundation for RAM calculations.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

122

 Mean Time to Repair (MTTR)

 This describes the average time to repair a failure. If a card dies in your network server
or in a desktop, it could be very quick. Say 15 or 30 minutes. However, what if the entire
server fails? Do you wait for someone to repair it, when it could be several hours or more
than one working day to fix it? Probably not. If it is just the matter of having a hot spare
that switches automatically, you do not even lose any time. Now what if the spare is not
connected and all it requires is connecting the system and it is functional? Then maybe
it takes 30 to 60 minutes to fix it. However, what if all you have is a machine without fully
configured operating system for your use and without the applications installed on your
machine? That will be a significant wait time, at least hours and probably days. Moreover,
what if the people who fix it are not even part of your department? Then you have put in a
repair request, and you have to wait for them to show up before any work begins.

 That brings up a very important question relating to MTTR . Does this include wait
time? If the answer is yes, then you are covered. If, in your organization, the answer is No,
then you need to include wait time. That definition comes next.

 Wait Time

 Wait time is the time from the onset of the failure until the work begins on the failure.
 Some people like to keep the wait time separate to track it. In many cases where a

different organization is responsible for the service of hardware and software, the wait
times create significant impacts on an organization. My experience shows most federal
organizations I have worked with separate the hardware maintenance and software
maintenance so that tracking wait time for that maintenance is very important. This is
not a criticism of how this is done, just that some organizations can use wait time. In
addition, it is not clear that they track how much time they lose in critical functions. This
is something to be aware of in your organization. What good is it to have a small MTTR if
no one looks at how much time is lost to wait time?

 Mean Time Between Failures (MTBF)

 This is the average operational time between failures. If you have three system failures
every 30,000 hours, then your MTBF is 10,000 hours. That is straightforward enough. Of
course, achieving it is another matter, not to mention verifying that kind of requirement.
That is not the responsibility of this text—another course or volume will discuss that.
What you need to define is what the value should be. In this era with so much computing
power and equipment, this value should be quite high.

 As you can see, these MTTR, wait times, and MTBF values seem to be related, which
they are. You will continue to look at them and how they interrelate.

 Availability
 Availability defines how much of the time the system is operational. More precisely,
availability is the percentage of time that the system is up and running. The two most
important types of availability are operational availability and inherent availability.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

123

 Operational availability includes the time to repair a fault, the time spent waiting to
repair the fault, and the time between faults. The formula for it is as follows:

 Operational Availability = MTBF / (MTTR + Wait Time +
MTBF) * 100% EQUATION 1

 ■ Note The more general definition for operational availability is uptime divided by the
sum of the uptime and downtime. This includes the MTTR and logistics downtime or wait
time. In addition, periodic maintenance would come into the calculation, as well as any
unscheduled maintenance. For the examples here, we will not look at the maintenance
downtime.

 Inherent availability includes the time to repair a fault and the time between faults.
Since Wait Time is not included, the formula for inherent availability becomes the following:

 Inherent Availability = MTBF / (MTTR + MTBF) * 100% EQUATION 2

 Let’s look at some examples. You must use wait times as that reflects where problems
can be hidden if not shown.

 Plugging these values:

 MTBF = 1000 hours

 MTTR = 10 hours

 Wait Time = 100 hours

 into this equation 1:

 Operational Availability = MTBF / (MTTR + Wait Time +
MTBF) * 100%

 yields the following:

 Operational Availability = 1000 / (10 + 100 + 1000) * 100% =
90.09%

 The CEO sees this wait time of 100 hours and says that number is totally
unacceptable. He tells his maintenance manager that number must be reduced to 10
hours. What does that do to the availability?

 Now plug these values:

 MTBF = 1000 hours

 MTTR = 10 hours

 Wait Time = 10 hours

 into equation 1:

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

124

 Operational Availability = MTBF / (MTTR + Wait Time +
MTBF) * 100%

 which yields the following:

 Operational Availability = 1000 / (10 + 10 + 1000) * 100% =
98.04%

 As you can see, that made a significant improvement in the availability. Why was
inherent availability never calculated? It was included as you will see some discussion
elsewhere that uses it. However, it is my opinion that inherent av ailability does not
reflect the reality of a system because it ignores the time spent waiting for something to
be repaired. Look at the examples you have seen, and as an exercise for yourself, what
would be the availability without wait time? You will see it is higher than when wait time
is included. When wait time went from 10 hours to 100 hours, the operational availability
dropped significantly. However, it does not reflect the real work. That is why we do not
use it here.

 Wait, you say, shouldn’t maintenance be included in this calculation? Good catch. In
this case, no maintenance downtime is assumed.

 You have to include the time that the system is not in service for maintenance in the
total time calculation.

 Maintainability
 The Department of Defense defines maintainability as a measure of the ease and rapidity
with which a system or equipment can be restored to operational status following a
failure. Now we will analyze the primary calculated values within maintainability.

 Mean Time to Maintain (MTTM)

 This describes the average time the system is down for maintenance.

 Mean Time Between Maintenance (MTBM)

 This is the average operational time between maintenance.
 MTBM defines how much of the time the system is operational. More precisely,

availability is the percentage of time that the system is up and running. The formula for it
is as follows:

 Maintainability = MTBM / (MTTM + Wait Time + MTBM) *
100% EQUATION 3

 When wait time is included in the MTTR, this formula becomes the following:

 Maintainability = MTBM / (MTTM + MTBM) * 100% EQUATION 4

 Again, let’s consider some examples.
 Plugging the following values:

 MTBM = 1000 hours

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

125

 MTTM = 10 hours

 Wait Time = 10 hours

 into equation 3:

 Maintainability = MTBM / (MTTM + Wait Time + MTBM) *
100%

 yields the following result:

 Maintainability = 1000 / (10 + 10 + 1000) * 100% = 98.04 %

 So, how do you include maintenance with inherent availability (which is called
operational availability)?

 You must average the two values. If they both are 99 percent, it averages to 99
percent.

 Now, look at some more examples.
 In this first example, plug the following values:

 MTTM = 10 hours

 MTBM = 1000 hours

 into equation 4:

 Maintainability = 1000 / (10 + 1000) * 100% = 99.0099%

 And, plug the following values:

 MTTR = 1 hour

 MTBF = 1000 hours

 into equation 1:

 Inherent Availability = 1000 / (1 + 1000) * 100% = 99.9001%

 In this second example, plug the following values:

 MTTM = 10 hours

 MTBM = 5000 hours

 into equation 4:

 Maintainability = 5000 / (10 + 5000) * 100% = 99.8004%

 And, plug the following values:

 MTTR = 1 hour

 MTBF = 1000 hours

 into equation 1:

 Inherent Availability = 1000 / (1 + 1000) * 100% = 99.9001%

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

126

 In this third example, plug the following values:

 MTTM = 10 hours

 MTBM = 1000 hours

 into equation 4:

 Maintainability = 1000 / (10 + 1000) * 100% = 99.0099%

 And, plug the following values:

 MTTR = 1 hour

 MTBF = 5000 hours

 into equation 1:

 Inherent Availability = 5000 / (1 + 5000) * 100% = 99.9800%

 In this fourth example, plug the following values:

 MTTM = 10 hours

 MTBM = 5000 hours

 into equation 4:

 Maintainability = 5000 / (10 + 5000) * 100% = 99.8004%

 And, plug the following values:

 MTTR = 1 hour

 MTBF = 5000 hours

 into equation 1:

 Inherent Availability = 5000 / (1 + 5000) * 100% = 99.9800%

 Reliability
 Basically, reliability of the system, component, or whatever the item is means it does not
fail. To be more explicit, for hardware, reliability is the probability a component fails,
whereas for software, reliability is the probability software will produce an incorrect
output or not provide a result at all.

 For the purposes here, you will only define reliability for the entire system and major
functional areas (services and/or subsystems). For a system’s requirements, breaking
down the hardware or functionality further is beyond the scope of this text and should be
done more by a reliability engineer in conjunction with a requirements engineer.

 The reliability, R, function over time, t, is defined in the following equation where the
value lambda, λ, is the failure rate, which is defined as 1/MTBF:

 R (t) = e – λt EQUATION 5

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

127

 When you have two items in series (say the computer and the operating system), the
reliability for both is as follows:

 R (system) = R (computer) * R (OS) EQUATION 6

 Then this series continues for the application on the top so it would be as follows:

 R (system) = R (computer) * R (OS) * R (app) EQUATION 7

 If you have both R(computer) and R(OS) = 0.90, substituting these values into
equation 6, you get .9 * 0.9 or 0.81. If R(App) = 0.90, with R(computer) and R(OS) = 0.90,
and you substitute that into equation 7, you have 0.9 * 0.9 * 0.9 = 0.729.

 If you had ten services in one suite of services, it would be as follows:

 R (total) = R1 * R2 * R3 * R4 * R5 * R6 * R7 * R8 * R9 * R10 EQUATION 8

 If R1 through R10 all equaled 0.9, then substituting that into equation 8 would yield
0.348678. This would not be a very reliable system.

 However, when things run in parallel, how does the formula work?

 R
total

 (t) = 1 – [1 – R
1
 (t)] [1 – R

2
 (t)]

 = R
1
 (t) + R

2
 (t) - R

1
 (t) R

2
 (t) EQUATION 9

 So if you have both R1 and R2 = 0.90, substituting these values into equation 9, you
get the following:

 R
total

 = 0.90 + 0.90 - 0.81 = 0.99

 Now you see the benefit of putting items in parallel.
 And if a third one with R = 0.9 is added to equation 9, you get the following:

 R
total

 = 0.990 + 0.900 - 0.891 = 0.999

 This clearly demonstrates why items, whether they are hardware or software, should
work in parallel whenever practical.

 This is as much as you will see here about reliability. Usually, you will define
availability and maintainability for systems. Only if you get very specific hardware would
you get into very sophisticated reliability calculations.

 At most, for your purposes here, you would write the following:

 5-53 The BOSS shall have an overall reliability of 0.999.

 This would allow the designers to identify the proper configuration to meet that. If
you need more detail, you now have the tools to do some breakdown for subsystems and
services.

 Failure Definition

 The requirements must provide a clear definition of a project failure. At a minimum, if the
hardware that software resides on fails, that is a system failure.

 Therefore, a requirement would look like this:

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

128

 5-54 The BOSS system shall be available 99.99% of the time.

 5-55 A failure of the BOSS system shall occur when any of the
following critical functions are not working:

• Security access to the system

• Searching the mission database

• Adding records to the mission database

• Updating records within the mission database

• Deleting records from the mission database

 Notice that this did not list reporting or auditing. Remember there can be more
functions depending on your system. In addition, stakeholders, not designers, define
these critical functions. Also, special users like administrators do need representation in
this special case but have only limited items that they can demand be included.

 What is crucial to this requirement is that the unavailability is independent of the
cause. Users are not properly reflected in availability. Please keep this approach included
in all projects you work on. Do not let developers and designers whine that it is too hard.
In addition, some say that you cannot define availability on software.

 ■ Real-World Note I did bring an innovation, even early in my career. Up to that point
in time for this organization, computer system operational availability was defined only by
determining whether the mainframe was up. This type of definition may have had a much
broader definition, but I did not research it at that time. If other hardware or even software
would not operate, that was not considered. Therefore, if the mainframe was operating,
but your terminal, the operating system, the line connecting you to the mainframe, or the
application was not working, that made no difference. The system was still considered
“operationally available.” From a user standpoint, clearly it is not. I defined operational
availability by users being able to perform mission-critical functions. If any of the mission-
critical functions could not be accomplished for any reason, hardware, software, operating
system, etc., the system was not available. Not only have I brought that definition to
every project I have worked on, but also, when I returned 25 years later to that original
organization, they were still using that definition. As for defining availability for software, I
could define it and I did. Believe me, it was embraced by the stakeholders, which was why
25 years later, it is still being used.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

129

 ■ Tip The study of RAM is the topic of many books, and you could spend entire courses
in this effort. In fact, the U.S. Army course was 120 hours long. There are very detailed
and very complex theories presented at symposia. What is interesting is that the value of
these very sophisticated approaches compared to more simple theories (e.g., the normal
distribution of failure, where electronic failures are random) may be very insignificant. In
fact, rarely do you see validation of the initial assumptions to justify why the new theory
is significantly better. This is not to say they are not better, but someone needs to validate
why the more complex theory is better than tried-and-true, more simple approaches. If the
difference is only 1 or 2 percent, go with the simple theory.

 Security
 One of Merriam-Webster’s Collegiate Dictionary definitions for sec urity is

 measures taken to guard against espionage or sabotage,
crime, attack, or escape 4

 Wait a minute, you say, “Why do I need security since this will be a stand-alone
system? I will not connect it to the Internet or any other servers.” First, you still will need
to control who can access the system. Will you allow the office cleaners to access your
billing system that specifies what you charge people? Will every employee have access to
all functions in the payroll system (e.g., allow them to see everyone’s salary)? No. Second,
you will need to decide whether data will be imported to this stand-alone system. If so,
then you will need additional requirements to ensure security is maintained. Third, if
you project will be connected to other systems, then further protections are needed,
especially if it will connect outside the organization to include the Internet.

 Realize in your work as an RE, you will generally be collecting the requirements as
specified by the stakeholders. That said, there is some value added that you can provide
to these same stakeholders. Every person will not know everything that is needed to
collect the requirements for the entire system. You will work with as broad a spectrum
of stakeholders as you can to ensure everything is covered. In Chapter 10 , you will learn
about doing gap analysis to find those areas that may not have been covered at all or
covered sufficiently. By having a list of candidate topics like these, you may help ensure
that the stakeholders do cover all their requirements.

 4 By permission. From Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by
Merriam-Webster, Inc. (www.merriam-webster.com/)

http://dx.doi.org/10.1007/978-1-4842-2099-3_10
http://www.merriam-webster.com/

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

130

 These three aspects will be examined in the following sections. In addition, I had
added a fourth section in security called reuse . Why reusing requirements is not the sole
area where you will likely reuse requirements, in my experience, it is the one area where
previous security requirements can be reused the most. So, it is introduced here. Just
realize that any requirement or groups of requirements can be reused.

 Access Control
 Here you specify how people get access to the system. Usually you have some sort of
unique user identification (e.g., user ID) and password. If there is more than one area
within the system, or system of systems, where there are different groups within system,
you may need to select from those areas.

 You should consider some requirements like these:

 5-56 The BOSS system shall maintain unique user
identification for every person who will use the system.

 5-57 The BOSS system shall maintain a password for every
unique user identification on the system.

 ■ Note You will need to decide whether the users themselves create their own password,
whether the system creates them, or whether a system administrator creates them. Usually,
this is defined by the organizational policy.

 You will need more:

 5-58 The BOSS system shall allow a user three attempts to
enter their user ID and password (and select the domain,
where appropriate) before that session is ended.

 You will need to know what your organization’s policy is regarding how a failed login
attempt is handled.

 5-59 When the user has failed to enter their user ID and
password correctly, the BOSS system shall allow the user three
attempts to log in after one hour.

 Or it might be as follows:

 5-60 When the user has failed to enter their user ID and
password correctly, the BOSS system shall only allow the user
three attempts to log in again after a system administrator has
authorized it.

 Once a person has access to the system, you will need to define the roles and
responsibilities that various users can have on your system. Some of what is discussed here
will be standards, but there will be additional roles depending on the nature of the system.
For example, an HR system will have significantly different roles than will a hospital system
or an online auction system. Nevertheless, you should consider some of these:

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

131

 5-61 The BOSS system shall allow roles that allow people to
read the database.

 5-62 The BOSS system shall allow roles that allow people to
add to the database.

 5-63 The BOSS system shall allow roles that allow people to
change the database.

 5-64 The BOSS system shall allow roles that allow people to
delete from the database.

 5-65 The BOSS system shall allow for system administrator
roles.

 Keep in mind, that one user can have multiple roles.

 5-66 The BOSS system shall allow users to have multiple roles.

 5-67 The BOSS system shall allow for system administrator
roles.

 5-68 The BOSS system shall allow for system monitoring roles.

 5-69 The BOSS system shall allow for system auditing roles.

 ■ Note You will need to define what functions are associated with system administrator,
auditor, and monitoring roles.

 This clearly is not a comprehensive list, but it will get you started.

 Import From and Export to Outside the System
 As mentioned earlier, you have to protect information coming to your application. You
will address the formatting of the data in the interface in Chapter 8 .

 5-70 The BOSS shall ensure all data to be imported into the
system has no viruses.

 Will users of other system that exchange data with your system be able to access your
data? In most cases, you would think not, but if you don’t specify so, you run the risk of
someone controlling your data without you controlling what they can access.

 5-71 The BOSS shall ensure all users external to the system do
not have access to the BOSS data.

 Clearly, there are more aspects to consider, but they depend significantly on whether
you have systems connected to your system. Now what about exporting data? You will
specify what applications you will export to and what formats are supported.

http://dx.doi.org/10.1007/978-1-4842-2099-3_8

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

132

 5-72 The BOSS shall provide users with the capability to
export data to Microsoft Excel in .xlsx format.

 5-73 The BOSS shall provide users with the capability to
export data to Microsoft Excel in .csv format.

 5-74 The BOSS shall provide users with the capability to
export data to Microsoft Word in .csv format.

 5-75 The BOSS shall provide users with the capability to
export data to Microsoft Word in .docx format.

 When defining formats, you need to decide whether you will provide backward
compatibility, like .xls for Excel and .doc for Word, as well as other typical formats for
these types of applications.

 You must address if there is data within your system that cannot be exported or if it
must be controlled in some manner. Why would you need to do that? There are various
reasons, such as was mentioned, say payroll information or even proprietary information.
Therefore, you might have requirements such as these:

 5-76 The BOSS shall prohibit payroll data from being exported
from the System.

 5-77 The BOSS shall prohibit company proprietary
information from being exported from the System.

 Naturally, you will need to have identified what constitutes this kind of information,
with requirement like the following somewhere in your list:

 5-78 The BOSS shall identify all payroll data within the
System.

 5-79 The BOSS shall identify all company proprietary
information within the System.

 You may have a restriction that no data may be exported, so you have the following:

 5-80 The BOSS shall prohibit any data from being exported
from the System.

 Once you understand the flow of data to and from your system and any associated
restrictions, you will be able to apply import and export security requirements.

 Connections to Outside the System
 You will learn about interfaces with other systems elsewhere. This subsection addresses
protection of the data. First, you must address the authorization of users to move data to
and from your systems, as in these examples, including the appropriate data format:

 5-81 The BOSS shall provide users with the capability to
export data to ANY System in .csv format.

 5-82 The BOSS shall provide users with the capability to
import data from ANY System in .csv format.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

133

 Next, you should address the authorization system to move data automatically to
and from your systems, as in these examples:

 5-83 The BOSS shall provide ANY System to import data in
.csv format.

 5-84 The BOSS shall provide ANY System to export data in .csv
format.

 If you have specified a format different from any industry-standard formats, you
will need to use that either in addition to the industry-standard formats or in lieu of
those formats.

 5-85 The BOSS shall provide ANY System to import data in the
format specified in ANY System Interface Format.

 5-86 The BOSS shall provide ANY System to export data in the
format specified in ANY System Interface Format.

 This brings up another point that people say is a limitation of good requirements
engineering—requirements referencing other requirements or other documents. Purists
say that you should never reference requirements or other documents. Our approach
is this rule is like the Pirate’s Code mentioned previously. By that, you will run into
situations where following rules so absolutely makes it such that you have to work
inordinately hard to work around them. Otherwise, you might have to duplicate the
interface specification again, and that adds nothing to the requirements.

 There is another rule that requirement purists insist on—you should never write a
requirement with a negative in it. For example, consider the following requirement:

 5-87 The BOSS shall prohibit payroll data from being exported
from the System.

 That was instead of writing it as follows:

 5-88 The BOSS shall not allow payroll data from being
exported from the System.

 Clearly, the first way is better. That said, there might be instances where it is nearly
impossible to write any other way. For example, if you had a system that needed to have a
specific query like this:

 5-89 The system shall query for books about Vikings but not
the Minnesota Vikings football team.

 Chances are you would not write something that specific. This was an example of a
“negative” in a requirement statement.

 If you are going to connect to the Internet, you are going to need additional
protection, such as firewalls. Here you will need to talk with an engineer who specializes
in this. Here is a start:

 5-90 The BOSS shall have a firewall to protect itself from
Internet intrusion.

 5-91 The BOSS shall have virus protection.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

134

 5-92 The BOSS shall prevent keystroke capture.

 5-93 The BOSS shall protect against denial of service (DOS).

 Reuse
 Once you have defined certain security requirements, particularly access control, you
should be able to reuse them throughout your career. Perform requirements reuse
whenever you can.

 ■ Real-World Note One day, I associated almost 700 requirements to one project. That
sounds quite impressive, until you realize that I was reusing 700 requirements I had written
before. It still is not as easy as just copying 700 statements. I had to search more than 1,000
statements and decide for each one if it belonged to the new project. I did reject more than
300 statements and had to modify dozens to make it appropriate to the new project.

 This reuse is an exercise to consider for every project. People have been doing code
reuse for decades. However, my experience in some federal government organization
shows not enough have been doing it for requirements; although this could be happening
anywhere in the industry, I cannot speak to it first-hand.

 Reuse can come in two variants: completely copying existing requirements and
copying some existing requirements but modifying the statements to reflect the new
system.

 Here is an example of copying.
 The previous system is called PSS.

 5-94 The PSS system shall require a customer to enter his
name as a first name and last name.

 5-95 The PSS system shall require a customer to enter an
email address.

 For our reuse, we will use our system BOSS.

 5-96 The BOSS system shall require a customer to enter his
name as a first name and last name.

 5-97 The BOSS system shall require a customer to enter an
email address.

 Notice that only the names of the system changed, nothing else. The PSS could be a
current system or even a predecessor to BOSS. If the requirement has not changed, there
is no reason to modify the text.

 Now, examine an example where the text of the requirement will be modified
somewhat. This could be caused by changes to the environment or the requirement does
not fit the original exactly.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

135

 Again, the previous system is called PSS.

 5-98 The PSS system shall require a customer’s company
name.

 5-99 The PSS system shall require a customer’s company
address.

 For our reuse, the new system is BOSS. The difference for this new system is that the
companies in question are online, so some modification to the requirements is in order.

 5-100 The PSS system shall require a customer’s company
 online name (e.g., OnLineCompany.com) .

 5-101 The PSS system shall require a customer’s company
 URL (e.g., http://onlinecompany.com/sites) .

 These are just simple examples; you will likely have many more that you would
reuse, as in the previous Real-World Note, where 700 were reused.

 ■ Real-World Note Part of the challenge I have encountered results from working in
a classified environment. For reasons of security, people did not talk between different
projects. One example of this problem was discovered in the first Gulf War, where people
within the government were not sharing information that should have been shared, because
security did not allow them to share within the U.S. government. Because people were
accustomed to working in what was unaffectionately called a stove-piped environment,
people did not share code and certainly not requirements, and in some cases the data itself.
This was a tough culture to change as it had gone on for many decades. However, you
should see less resistance to it now as you move into the workforce.

 Cybersecurity is a growing field. Unless you have a degree in this or extensive
experience in that field, you will need to work with an expert to get this defined properly.

 ■ Tip There are very consistent areas that you should consider for reuse. The hardware
configuration probably will not change much in your organization, along with related
functional areas such as systems administration, auditing, printing, and monitoring.
Of course, searching, system access and related roles and responsibilities, and report
generation will have many of the same requirements for every application. What will
be different is the data that is accessed. There will be others, but the number of reused
requirements will be less and subject to your organizational needs.

http://onlinecompany.com/sites

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

136

 Scalability
 This “ility” refers to a system’s ability to scale up (or down) either to additional
capabilities or to allow for growth. Some organizations may call it extensibility , but it is
essentially the same thing. For this text, we will use scalability .

 ■ Tip As you learned in Chapter 3 , however, different organizations may use them slightly
differently, and this will not be elucidated here. You must read the concepts in this and the
next section and use them as you need in accordance with your organizational direction.

 Now, examine some of these capabilities you want to address here.
 You want to be able to scale up the system as more data is added. Say you anticipate

your healthcare benefit application will grow 20 percent a year. You need to capture that
growth once you have estimated the size of the original database.

 For example, the requirements could be as follows:

 5-102 The BOSS system shall be able to store 6 terabytes of
data when deployed.

 5-103 The BOSS system data shall be able to grow by 24% per
year.

 In addition, as new features are added to a system of services, you need to add a
feature/function/service without having to completely redo the entire suite of services or
a significant portion of them. Of course, this is supposed to be the benefit of SOA, but that
does not mean you have a true SOA implementation, if at all.

 Refer to a statement like the following:

 5-104 DRAFT The BOSS system shall be extensible/scalable.

 The previous statement is not a good one, based on what you learned in Chapter 2 .
So, how should you do it?

 5-105 The BOSS system data shall be able to add five
services per year without impacting the system performance
requirements.

 As you can see, this statement captures a quantifiable value for the number of
services added while ensuring that performance. That may require the designers to add
hardware to support the new capabilities, but they know what the need is.

 You might need to address throughput scalability. Do a little research on the
Affordable Care Act standup of their web site in 2013. It had real throughput scalability
issue, which created quite a brouhaha. It causes one to wonder just what requirements
they had for the Alternative Care Act (ACA), aka the Obamacare system. That is another
area you might want to consider writing requirements for if you will have significant
throughput fluctuations in your system. Look at an actual example when the U.S.
government stood up their ACA. They had determined an average number of enrollees
per unit of time.

http://dx.doi.org/10.1007/978-1-4842-2099-3_3
http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

137

 How do you address that?

 5-106 The BOSS system data shall permit 30,000 people to
enroll onto the system per day.

 However, what is likely to happen both early when the system goes operational and
near the end of the enrollment period? That is when a significant number of people are
likely to use the system. As history showed, there were significant issues with the system
being unable to handle the demands. Therefore, the normal value shown previously
would be insufficient to address the needs.

 How would be fix it? You should add a requirement like the following:

 5-107 The BOSS system data shall permit a peak of 300,000
people to enroll onto the system per day.

 This is an important aspect to any performance requirement. Not only should you
address normal activities, but also you need to address peak loads, especially in the
extensible/scalable aspect.

 Some sources say you might examine platform considerations, contractual
considerations, software, and response time. The first one will examined last. You
saw response time in detail in the “Performance” section of Chapter 4 . Scalability
requirements are a natural extension of those requirements, like when you look
at performance for simple queries versus performance at peak times. Contractual
considerations are something that clearly are not part of the requirement phase, more the
design and development phase, and sometimes the operations and maintenance phase.
This brings you to the platform and software considerations. Again, they belong in the
design phase, rather than the requirements phase. In the traditional waterfall method,
these factors were captured in the design specifications presented at the end of the design
phase. The main reason for not specifying the topics in requirements is because these
topics are implementation, which you know requirements engineers are not supposed to
define.

 You could consider the following scalability topics:

• How to accommodate increasing numbers of users.

• The number of SQL statements that can run and provide results
simultaneously (assuming SQL will be the query statement of
choice in your database—a big “if”).

• How to accommodate increasing numbers of transactions per
second.

• Not only should you address the total number of users, but also
you need to address total number of concurrent users.

 Think back to the peak user requirement you saw:

 5-108 The BOSS system data shall permit a peak of 300,000
people to enroll onto the system per day.

http://dx.doi.org/10.1007/978-1-4842-2099-3_4

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

138

 That works out to an average usage of 2,083 people per minute. Think about it, if this
was enrollment for the ACA website, would everyone take a turn throughout the day?
With Americans only having four different time zones in the continental United States,
that is highly unlikely. You are more likely to see it in an eight-hour time period, spread
over the four time zones. So, how can you accommodate that? Consider something like
the following requirements:

 5-109 The BOSS system data shall permit a peak of 30,000
people to enroll onto the system in one hour.

 That works out to 8.33 people per second—on average. Again, you have to consider
peak numbers and figure people will be on the system for say 5, 10, or even 20 minutes
per person. You must write a requirement that takes into account that the peak time on
for people is roughly 10 minutes. That drives up to a number of concurrent users like this:

 5-110 The BOSS system data shall permit 10,000 concurrent
people to enroll onto the system in one hour.

 ■ Note Concurrent users are people on the system at the same time.

 There are some things many people have not always thought about when scaling
their systems—pull-down or pop-up menus. Assume you are writing an airline system
and you want to add or delete specific flight numbers. You want this to be done quickly
and with the least effort.

 Traditionally, software had that information hard-coded into the system. That
meant that to get the change, the code needed to be rewritten, tested, and then deployed.
That process could take up to six months, depending on how quickly the turnaround
time was. For this type of system, that is totally unacceptable. How do you fix it? Make
it so the items on such lists are in files that can be easily rewritten and then just called
by the application, without putting the list internal to the code. The update to the list is
made and then sent to every customer location for replacement and can be available
immediately.

 Are you affecting the implementation? You could argue yes, but think of it more
of an architectural constraint because of responsiveness to the customers’ needs. The
requirements to consider are as follows (notice the “negative” statement):

 5-111 The BOSS system lists shall entered in files external to
the code so updates do not require a recompilation of the
code.

 You may need more requirements than this, but you will know your environment
better than most.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

139

 ■ Real-World Note You need to learn about the system as much as you can. With that
information, you will prevent potential misunderstanding about the system. I had a situation
similar to creating lists where the discussion dealt with modification to a pull-down list. I
had visited a stakeholder and they complained about old values in the list no longer being
valid, and they wanted them removed from the list. I explained this to the developer, and he
went ballistic on me, saying that doing that would screw up the referential integrity of the
database and he would not do it. I calmly pointed out that I said that the customer did not
want to see the values. I had said nothing about deleting the values from the database. To
which the developer said, “Oh.”

 So, you need to learn enough about the system (at least once it is deployed) so you can look
out for the customer and work with the developers, designer, architects, testers, and even
those who deploy it so you can aid the customers.

 To generate growth over time whether for extensibility, scalability, or even just
performance, some knowledge about the past is useful. If you have an older system
that is fairly stable, you can get some good projections, with one proviso. If you are just
improving on an old system but adding significantly new capabilities or new data sources,
this projection may not be so stable.

 Assume you were digitizing all your old hard-copy records; you probably have a good
idea how much you have to digitize and how much that is likely to grow. For example, the
federal government when they were given an Executive Order that says all digital records
must be included by 2019. That means all existing digital records need to be included.
You may not have a grasp of how much your organization has in e-mail, hard drive files,
and databases. There could be significant growth there. Factors like this will significantly
affect your growth that would not be represented by adding, say, 50 percent to existing
hard-copy records. It could be a factor of three, four, or even ten times more.

 In addition, newer systems may not have good historical information to help with
estimating growth. Here, being conservative to keep costs down will have severe adverse
impacts very quickly. It is better to estimate higher numbers rather than be too low. A
word to the wise: This also explains the push by organizations to embrace the cloud
architecture to help mitigate scalability. However, that discussion is beyond this text.
Besides, it is implementation (unless mandated by architecture).

 Usability
 As defined by Merriam-Webster’s Collegiate Dictionary, usability is

 convenient and practicable for use 5

 5 By permission. From Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by
Merriam-Webster, Inc. (www.merriam-webster.com/)

http://www.merriam-webster.com/

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

140

 Usability is how effectively users can learn and use a system. While many people
think this applies only to computer software, think of your phone. That is a complete
system with both hardware and software. Alternatively, think of your car. That needs to be
easy to use.

 ■ Note If you have ever test-driven many different makes of cars, say, at CarMax,
or traveled often where you have lots of rental cars, you will understand that while the
operation of the vehicle is consistent, the user interface, where everything in the interior is
and how it works, varies drastically, which reinforces the point for standardization. That is
another topic to discuss elsewhere.

 How do you define user interface requirements for software and hardware? In part,
a user interface is an implementation. Remember, what is good is clearly subjective, and
requirements cannot capture subjectivity.

 Then how can you capture user interface needs? One approach, and many projects
take this, is to define user interface standards. This approach can take the subjectivity out
of the requirements.

 Another approach that is used extensively is prototyping. Again, you will learn more
about this approach in Chapter 9 . Basically, developers try approaches, run them by
stakeholders, get feedback, and keep cycling through this process to get a valid approach
that is acceptable to users.

 Because of the importance of usability, you will spend a good deal of time on it. Thus,
this topic will be captured in the Chapter 10 on user interfaces, given its importance.

 Accessibility
 Accessibility is the degree to which a product, device, service, or environment is available
to as many people as possible. This usually focuses on people with disabilities or special
needs and their right of access, enabling the use of assistive technology.

 Do not confuse accessibility with usability, which is the extent to which a product or
service achieves specified effectiveness, efficiency, and satisfaction goals. A significant
source of accessibility comes from the U.S. government in the form of Section 508 of the
U.S. Rehabilitation Act, which U.S. federal agencies must comply with in order to make
their web sites accessible to the general public as well as government workers. Check out
the U.S. General Services Administration web site, which has online training courses for
free to learn about these rules.

 What requirements should you capture for this subject? Obviously, you could say the
following:

 5-112 DRAFT—PARENT The BOSS shall be fully compliant
with Section 508 of the US Rehabilitation Act.

 As you have seen before, this does not address every aspect of it. You should go
through Section 508 to address children requirements that are needed to be addressed for
your situation.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9
http://dx.doi.org/10.1007/978-1-4842-2099-3_10

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

141

 ■ Note There are exemptions to 508 compliancy, such a military intelligence gathering
systems in a combat zone and other special cases. Read about these and see if your
situation applies. Look at www.section508.gov/ .

 What are some candidate children requirements?

 5-113 CHILD The BOSS shall provide a text equivalent for
every non-text element (e.g., icon selection).

 5-114 CHILD The BOSS shall provide a text equivalent for
image linkages.

 5-115 CHILD When electronic forms are designed to be
completed online, the BOSS form shall allow people using
assistive technology to access the information, field elements,
and functionality required for completion and submission of
the form, including all directions and cues.

 Clearly, this list is not complete; just a few examples were illustrated. However, you
get the idea.

 Interoperability
 Merriam-Webster’s Collegiate Dictionary defines interoperability as the

 ability of a system (as a weapons system) to work with or use the parts or
equipment of another system 6

 For software, interoperability describes the ability of different programs to exchange
data via a common set of exchange formats so that they can read and write to the
same file formats. The lack of interoperability can happen when people do not follow
standards.

 In software without standard data exchange formats, even within one application,
the interface between modules of code becomes very complex. You can see how the
need to have an interface with every other module grows quickly to be unmanageable.
Hence, the industry developed SOA where there was an enterprise service bus (ESB),
the foundation/framework that all services (think a phone app) interact with, where
the ESB provides the communications among the services. Then the services have
one standard interface that they all must use. This is not intended to be a tutorial on
SOA but introduces the concept so that you understand the concept and how you
can write requirements should you need to define SOA and help craft interoperability
requirements.

 6 By permission. From Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by
Merriam-Webster, Inc. (www.merriam-webster.com/)

http://www.section508.gov/
http://www.merriam-webster.com/

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

142

 How do you write requirements for this? You might try something like this initially:

 5-116 DRAFT—The BOSS shall be interoperable.

 However, when you think back to the attributes of a good requirement, more than
one attribute is not met. It clearly is not atomic, written to its lowest level. Additionally,
this is subjective. Is it verifiable? Clearly, you need to be more specific. How about the
following?

 5-117 DRAFT—The BOSS shall follow the service-oriented
architecture.

 That is better, but again this clearly is not decomposed to the lowest level. What
should you be defining? In this case, look at a write-up on SOA to see what capabilities it
needs and capture those. For example, you could write the following:

 5-118 The BOSS shall have a communications layer with only
one interface for all services must follow.

 5-119 The BOSS shall require all services to communicate
only to the communications layer, not with other services.

 Notice that this statement did not specify an ESB, JBoss, JEMS, and so on, but
only using generic terms like services to keep from forcing an implementation onto the
designers. That said, if your management or office architect has mandated that SOA will
be followed, you can start with the SOA requirement written as draft earlier. That would
be the parent requirement, say requirement 1.1, with all the SOA detailed requirements
written as children to that 1.1 (e.g., 1.1.1, 1.1.2, … 1.1.N, where N is some number). That
way, the testing would be done at the 1.1.N level, not at the 1.1 level, so you still have good
requirement attributes.

 Portability
 Portability is the ability to run on numerous different computing platforms. You should
address the following questions, at a minimum:

• Can you application run on different operating systems?

• Can you migrate the data to other systems?

• Will your web applications work on different browsers?

• Can the application run on different platforms without significant
rework?

 Look at requirements to consider as a start for the first three at least.
 Different Operating Systems

 5-120 The BOSS shall work on Windows 8.

 5-121 The BOSS shall work on Mac OS X.

 5-122 The BOSS shall work on Unix version 7.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

143

 5-123 The BOSS shall work on Linux version 3.13.

 5-124 The BOSS shall work on Android OS 4.4.

 5-125 The BOSS shall work on Unix.

 Different Systems

 5-126 The BOSS shall work on personal computers.

 5-127 The BOSS shall work on Android phones.

 5-128 The BOSS shall work on Xbox 360.

 Different Browsers

 5-129 The BOSS shall work on Internet Explorer 11.

 5-130 The BOSS shall work on Firefox 29.

 Remember to specify what, not how—that’s what the developers get paid the big
bucks for. (Of course, given the RE’s significant value to the project, —REs should get
bigger bucks. First, REs impact more defect reduction, and there are fewer REs than
coders.)

 Stability
 In the medical field, this would relate to how long a drug would maintain its effectiveness.
This would apply to any substance whose properties change with time. Clearly, the
medical field is the primary area where this occurs.

 5-131 The BOSS high blood pressure drug shall retain its
potency of 95% for 12 months.

 Does this apply to hardware components? That depends on if there are elements
within the system that change with time. If, say, a battery is included, you might need to
specify the life of the battery as it ages.

 5-132 The BOSS Unit Radiation Dosimeter battery shall
provide 5 volts DC for three years without replacement.

 What about software? Can you think of any component of a software system that
is volatile with time? None come to mind. (If you can, write to me.) The only stability
relationship to software deals with how stable requirements in total are with respect to
the original system. This would deal more with how well you maintain the requirements
scope creep of a project, to help ensure its success, and not specific to particular group of
requirements. In addition, the same would apply to any system, hardware and software.
You have heard of cost overruns of military systems. That usually is significant changes in
requirements with time.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

144

 Supportability
 Supportability refers to “the inherent characteristics of design and installation that enable
the effective and efficient maintenance and support of the system throughout the life
cycle,” from class lecture at San Jose State University.

 These are the requirements to make the deployment and maintenance as efficient as
practical. For example, consider the following for the hardware project:

 5-133 The BOSS Unit Radiation Dosimeter shall require no
maintenance by the individual who wears its.

 For software, it could involve requirements like the following:

 5-134 The BOSS services shall be replaceable individual units
that can be plugged into the infrastructure with requiring no
affect to other services in the system.

 There are more opportunities for additional supportability requirements, of course,
so it may take some digging on your part to find them. You will see more about this
subject in Chapter 8 .

 Testability
 Initially, you might think that this is not something you would specify in the
requirements, that this is captured in either contract documentation or test planning
documentation. What about having certain testability built in to the hardware and
software?

 In the hardware example, look at the testability requirement:

 5-135 The BOSS Unit Radiation Dosimeter shall require
quarterly comparison of individual dosimeters against the
BOSS Radiation Calibration Source.

 There can be more examples of diagnostics in hardware systems. Think of a military
aircraft that needs diagnostics run against various systems without requiring the aircraft
to be taken down for maintenance.

 In, the software example, think of diagnostic requirements:

 5-136 The FBI BOSS Records Management Scanning function
shall contain sample records to be used for scanning
calibration.

 As always, there are many more examples that you will want to consider for these
types of requirements. A significant driver is the likelihood of change over time or the
difficulty of making updates to the system. Think of software controlling a nuclear power
plant or hardware on a deep-space probe. Testability is how easily something can be
tested.

http://dx.doi.org/10.1007/978-1-4842-2099-3_8

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

145

 Recoverability
 This means the ability to recover from some event, say, the crash of a system. How quickly
do you return to full operations? Here’s an example:

 5-137 In the event that the FBI BOSS Records Management
system crashes, the system shall be returned to full operations
in 48 hours from the beginning of the crash.

 Of course, there can be varying grades of recovery. Here’s an example:

 5-138 In the event that the FBI BOSS Records Management
system crashes, the six critical functions shall be returned to
operations in 4 hours from the beginning of the crash.

 You will need to define what your critical functions are. Naturally, six may not be
your number. This was just for the example. Notice that the requirement specified when
the clock started—from the beginning of the crash. You could use start with the time
the crash was detected or when the crash completed. Remember, some crashes may be
gradual. This is why you should use the start of the crash.

 The criticality of the system will drive how quickly you will want the system restored.
In some extreme cases, you want it within, say, five seconds, in life-critical systems. This
will drive design decisions such as the backup capability of the system and where all
backups are stored with respect to the operational system. You may have an immediate
backup co-located for quick switchover and maybe a second backup at another facility
in the event of a natural disaster that destroys or eliminates the operational location for
some significant time.

 Would you use this requirement for hardware? Of course, not only do applications
crash, but so do computer systems. If a lightning strike fries your server’s hard drive, you
need a way to recover. In fact, look at the two requirements in this section. Nowhere does
it say hardware or software. Therefore, these requirements apply to both.

 Serviceability
 Serviceability means how easy it is to perform service when it is required. Here’s an
example:

 5-139 The BOSS Unit Radiation Dosimeter battery shall be
replaced with removal of the battery storage cover in five
second and the battery replacement in three second.

 For software, it could be the following:

 5-140 The BOSS pick list values shall be replaced by copying
a new XML file to the deployed software system without
requiring recompiling any code.

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

146

 Manageability
 Manageability is defined as the ability to manage the system to ensure the continued
health of a system.

 The distinction between manageability and maintainability may not seem like much,
but the nuance is important. Earlier in this chapter, you saw very detailed maintainability
requirements, but here are some additional examples of maintainability requirements:

 5-141 The BOSS Unit Radiation Reader shall have hardware
functions as standalone cards that can be removed and
reinstalled as plug and play components.

 5-142 The BOSS Unit Radiation Reader shall have software
functions as standalone services that can be removed and
reinstalled as plug and play software components without
affecting the rest of the software.

 Now, look at some manageability requirements.

 5-143 The BOSS Unit Radiation Reader shall have the ability
to expand Random Access Memory chips on the standalone
memory cards that can be removed and reinstalled as plug
and play components.

 5-144 The BOSS Unit Radiation Reader shall have software
pick lists stored as files in order to add, change, or delete
values without having to recompile the code and instead just
replace the file.

 The best distinction is to equate maintainability with the current system and to
equate manageability with the future system. In addition, future does not mean years
or decades from now; it could be weeks or days. Nevertheless, it helps to deal with the
timing of changes. Having looked at other definitions, the boundary between the two is
blurry. Regardless, this distinction you may or may not need to make. Nevertheless, if you
combine the two, consider both the current and future aspects and you will not go wrong.

 Summary
 This chapter covered the more numerous nonfunctional requirements. Because of
the more specialized nature of them, you will find that most stakeholders will be less
knowledgeable about these types of requirements than the functional ones discussed in
Chapter 4 . In Chapter 9 you will learn some techniques for how to collect nonfunctional
requirements. This chapter gets you started by identifying the types of requirements you
will need to define.

http://dx.doi.org/10.1007/978-1-4842-2099-3_4
http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

147

 References
 “What is functional and non-functional requirement.” Stack Overflow . Feb. 2015. http://
stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-
requirement

 United States Government. Resources for understanding and implementing Section
508 . Feb. 2015, www.section508.gov/

 Zargar, Ali. “Supportability.” Tech 101 class lecture from Department of Aviation and
technology at San Jose State University. Feb. 2015. www.engr.sjsu.edu/azargar/Tech-
101/TECH%20101-Supportability.ppt

 “ Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by Merriam-Webster,
Inc. (www.merriam-webster.com/)

 Office of the Under Secretary of Defense (Acquisition, Technology, and Logistics).
 DoD 4120.24-M Defense Standardization Program (DSP) Policies and Procedures . March
2000.

 “How to write Performance Requirements with Example.” 2012.
1202PERFORMANCE, Performance by Design, Feb. 2015. www.1202performance.com/
atricles/how-to-write-performance-requirements-with-example/

 Exercises
 Exercise 1
 Define survivability with respect to the Hubble replacement. Determine whether this is
functional or nonfunctional. Explain why.

 Exercise 2
 Define survivability with respect to the M-1 main battle tank replacement. Determine
whether this is functional or nonfunctional. Explain why.

 Exercise 3
 Define cybersecurity for the Department of Defense’s Internet. Determine whether this is
functional or nonfunctional. Explain why.

 Exercise 4
 At the Three Mile Island Nuclear Power Plant, their control room had alarms and flashing
lights to alert operators of emergency situations. One factor that inhibited responses
was the constant sounding of the alarms and the flashing of the lights. Should sounding
alarms and flashing lights be used in the future? If so, why and how? If not, why not?

http://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement
http://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement
http://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement
http://www.section508.gov/
http://www.engr.sjsu.edu/azargar/Tech-101/TECH 101-Supportability.ppt
http://www.engr.sjsu.edu/azargar/Tech-101/TECH 101-Supportability.ppt
http://www.merriam-webster.com/
http://www.1202performance.com/atricles/how-to-write-performance-requirements-with-example/
http://www.1202performance.com/atricles/how-to-write-performance-requirements-with-example/

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

148

 Exercise 5
 Define the requirements for a phone to only call and receive phone calls, with no other
features.

 Exercise 6
 Define the requirements for deep-space probe in the “Capacity” section in this chapter
and show that the numbers work for transmission rate and capacity.

 Exercise 7
 In the “Quality” section, you examined the following scan scenario.

 5-140 (5-20) The FBI BOSS Records Management scanning
shall capture 75% of the characters per page to be considered
a quality scan.

 Now the default scan will be 300 DPI. If the scan does not meet the 75 percent, the
process will be repeated at the 600 DPI, 1200 DPI, and finally 2400 DPI. If the 75 percent
cannot be achieved at 2400 DPI, the quality achieved there will be the default.

 Write the remaining requirements to address the last three sentences.

 Exercise 8
 This is a RAM exercise.

 R1 to R6 all have reliabilities of 0.9. For the following configuration, what is the reliability
for the following combination?

CHAPTER 5 ■ NONFUNCTIONAL REQUIREMENTS

149

 Exercise 9
 Write the access requirements for the BOSS system that is stand-alone but with import of
data.

 Exercise 10
 What areas on your cell phone’s specific phone services would need scalability?

 Exercise 11
 Write sample requirements to address portability so that the application can run on
different platforms without significant rework.

151© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_6

 CHAPTER 6

 Lists of Items and the Order
of Steps and Data Elements

 Chapter 2 stated you define your requirement down to the atomic level. So, does that
mean you have only one value in each shall statement? The answer is no. As with
most things in life, and requirements definition, it depends. Examining the following
examples will help you determine when a list within a requirement will work, versus
just a list of requirements. Experience working requirements will help you judge as you
see what works one way versus the other. Another situation where lists of items occur
is in the specifications of messages, which you will examine here. Then we look at lists
of requirements that have a sequence or order associated with them. Finally, you will
examine the order of data elements.

 Now, let’s explore these various types of lists in this chapter.

 Lists of Items in Requirements
 The point of this section is to distinguish when to use lists of items and when to separate
things into different requirements. If you remember in the discussion on the atomic
attribute for a requirement, one rule said that you need to have only one statement
per shall statement. “Have only one value” was never explicitly stated. Now, examine
an example where you want to collect information on a person where the data you are
interested in is as follows:

• First name

• Middle name

• Last name

• Street address with apartment number

• City

• State

• Home phone

• Cell phone

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

152

 You want requirements to capture these values for the Person Collection Function .
You could write each as a separate requirement, where you will have the following:

 6-1 DRAFT The BOSS Person Collection Function shall collect
First Name.

 6-2 DRAFT The BOSS Person Collection Function shall collect
Middle Name.

 6-3 DRAFT The BOSS Person Collection Function shall collect
Last Name.

 6-4 DRAFT The BOSS Person Collection Function shall collect
Street Address with apartment number.

 6-5 DRAFT The BOSS Person Collection Function shall collect
City.

 6-6 DRAFT The BOSS Person Collection Function shall collect
State.

 6-7 DRAFT The BOSS Person Collection Function shall collect
Home phone.

 6-8 DRAFT The BOSS Person Collection Function shall collect
Cell phone.

 There is one drawback to this approach. Given that all these values should be
collected at the same time, with them listed separately, you could lose this connection.
Therefore, you should consider the following approach:

 6-9 The BOSS Person Collection Function shall collect the
following data:

 a. First Name

 b. Middle Name

 c. Last Name

 d. Street Address with apartment number

 e. City

 f. State

 g. Home phone

 h. Cell Phone

 Does this fly in the face of the edict to identify requirements as atomic? Yes…maybe.
Remember the reasons to capture requirements at the atomic level? First, capture the
requirements down to the lowest possible level. What is the lowest level here? Is it the
data value level, or is it the collection of data level—the data values grouped together? It
is at the collection of data level. If you still are uncertain, then look at the other area you
should consider. Would these values be worked on by different people, for coding and/or
testing? Given that someone would probably code these on one screen or tab, they would
be worked as a unit. In addition, a tester would test all the data as one test.

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

153

 However, you argue, if the phone number fields do not work, then you have the
quandary of only part of the screen/tab and the associated requirement does not work.
You are absolutely correct. Phone numbers would likely be coded and tested by the same
person. Therefore, these values need to be worked on together. That need overrides the
atomic principle for requirements. If one of two phone numbers works, it is only partially
satisfied. Thus, you do not follow the atomic principle in this case.

 Is there ever a case where you should separate the requirement? Well, in Chapter 2
you saw the example of the “print and display” type of requirements. In that case, initially
all the requirements were written as “The system shall print and display….” You need to
separate all the requirements into one statement for “print” and another requirement
for “display.” That still holds true. Therefore, what you have now are two ends of the
spectrum. You definitely separate functions that are different, whereas you keep them
together when they are small groups of data values that belong together. So, somewhere
in between those two endpoints, you have to make a judgment call.

 What factors should you look for that will help discriminate when to do one
approach versus the other? This is a judgment call based on what we have discussed.

 Now, look at another situation. The system needs to allow all users various accesses
to the data within the system. Users will be able to read the data, add data, change
existing data, and delete the data. Which of the two approaches make sense here?

 Here is option 1:

 6-10 DRAFT The BOSS Access Control Function shall allow a
user to have an access to the data consisting of the following:

• Read

• Add

• Edit

• Delete

 Here is option 2:

 6-11 DRAFT The BOSS Access Control Function shall allow a
user to have read data access.

 6-12 DRAFT The BOSS Access Control Function shall allow a
user to add data access.

 6-13 DRAFT The BOSS Access Control Function shall allow a
user to have edit data access.

 6-14 DRAFT The BOSS Access Control Function shall allow a
user to have delete data access.

 One additional point is important here: a user could be assigned more than one
access function. This points to a distinction: of the options are not mutually exclusive,
that is another reason to combine them. For example, users who have access to add, edit,
or delete data also should have access to read the data. So, someone may have read and
add access; or read, add, and edit access; or access to all four functions. Thus, in this case,
option 1 is the correct answer.

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

154

 Consider also that there could be a variation on the add access function. Some users
in the organization can suggest that a new person be added to the picklist, and one or
more other users are able to approve the addition. So, when someone joins the team, a
person who has Suggest rights can propose the addition of the person. The “suggester”
proposes the name in a blank field at the bottom of the picklist. The name does not show
up for everyone on the picklist until an “approver” accepts the name. If the “approver”
rejects it (say because the person is only an intern who will go away in two months), then
the name is not added to the list. In this example, you would add the two options, Suggest
and Approve, to the requirement as such:

 6-15 DRAFT The BOSS Picklist Control Function shall allow a
user to have an access to the data consisting of the following:

• Read

• Add

• Edit

• Delete

• Suggest

• Approve

 In this situation, you might need additional requirements to explain what role the
Suggest and Approve actions would be.

 Back to the earlier discussion of when do you use a list of requirements versus one
requirement. What happens if the number of data values grows significantly? Ask yourself
if it is likely they would be done on one screen or tab; then that may help to write one
requirement. However, what you learned earlier said that you are supposed to write the
requirements in a manner that does not limit the design. You are absolutely correct. Then
the answer becomes a judgment call. Would 12 values on one presentation (screen/tab/
etc.) be OK? Probably. Again, it gets to the stakeholder needs. Do the values need to stay
together? If so, then the answer probably is yes, do one requirement.

 What if the number of data values is 25 or 67? Now you see it gets much harder.
Twenty-five maybe, again, if they are significantly related to each other. However, you
really need to analyze whether they cannot be grouped in some way. Think of a medical
history form where it asks if you have had any of several dozen conditions or diseases. If
there are two groupings of data values, then you should have two requirements. As for the
67 data values, you really need to analyze it carefully. If you were adding a new person to
your engineering company, in your HR department you would have a Personnel Branch,
Payroll Branch, Retirement Branch, and Disciplinary Action Branch. In the Engineering
department you have Software Maintenance Branch, Software Maintenance Branch,
Branch, Hardware Maintenance Branch, Software Development Branch, and Integration
Branch. Even though there are nine branches, you still would likely break them apart by
departments, with one requirement for each department, and then list the branches as
elements within the department.

 There may be situations where it is difficult to break a significant list of values into
groups. Look at that situation in the next section.

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

155

 Lists of Data Elements
 You will look at a series of data elements in a message. Messages are a technique used
between systems. In the particular example, these messages are between a mission-
control system and a space probe. Messages are either commands to the spacecraft or
data messages back from the probe portion of the spacecraft. This is actually a simple
example because only image data is collected. In the real world, messages can be much
more complicated with very intricate values passed between systems. What will be used
for this example will be long but the same kind of data repeated. Real-world examples
could have variable records that are dependent on the data collected. This example will
have image data and its location, with many repeated pairs of this data. Messages that are
thousands of bits of data are not unusual.

 Now, consider a message you want to send to and receive from a deep-space probe
being planned to explore the trans-Saturnian planets. You have to specify the message
format you are going to use to transmit commands and receive their data. The message
for the probe’s collected data is going to be more than 2,000 characters long, with very
specific formats and possibly many parts to it. No, this is not a real project, just one that
was fabricated as an example. However, I have used very complex, long messages just
like this. The reason for the length of a message is to capture a picture that has to specify
either color or significant shades of gray and the location of each pixel.

 Maybe before you examine the specifics of the topic of data elements, you need to
have some background so you understand some of the points the stakeholders need to
consider. In this case, the stakeholders are NASA. The first item to consider is how far
away the probe will likely be.

 Uranus (the closest approach the body will have to us) is 2.6 trillion kilometers.
 Pluto (the farthest approach the body will have to us) is 4.2 trillion kilometers.
 Given that the speed of light is 300,000 kilometers per second, it will take about 2.4

hours to send a message to Uranus at its closest and about 3.9 hours to send a message
to Pluto at its farthest. Yes, that is hours, not seconds. Even going to the earth’s moon has
about a 1.3-second delay. Therefore, a major factor is not waiting for a response before
continuing a message. Thus, the message has to be complete, with a significant ability to
check that the values are sent and received.

 This example will not consist of the entire system here but will show some
representative examples of messages. For this example, the system will send two types
of messages to the probe, when in reality, there could be dozens or even hundreds of
messages. The mission-control system will send a request for system diagnostics. In
the other pair of messages, the system will send a request for the spacecraft to send an
individual image captured from the imaging system on board. Yes, also, there could be
other detectors from parts of the electromagnetic spectrum, not to mention telling what
the probe should be sensing. This gives you the magnitude of what space probes may
consist of, yet you will examine only two aspects to keep the example relatively simple.

 You are going to consider the data element technique for requirements, where you
create one requirement for each data element. You must capture the following attributes
for each data element (as is appropriate, as you may not use all):

 a. Requirement number

 b. Field number/designator

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

156

 c. Field name

 d. Description of the field

 e. Length of the field

 f. Format of the field

 g. Units of the field

 h. Any special Information related to the field (ranges, selectable
items, etc.)

 ■ Note You may think of more for your unique situation, but you have a good foundation
here.

 What is a most important distinction from how you defined requirements for data
elements before is the use of a requirement number for each one. The reason you do this
is what was discussed at the end of the previous section; when you will have many values,
you want each one tracked, especially given all the attributes you need to define for each
data element. When the message is built and verified, each data element must be verified
against each attribute of that data element. The discussion in the list of data elements was
not that specific.

 Now, examine the four messages.

 Diagnostics Request
 This will be a simple message. However, it introduces the format that you will see through
the rest of this section because of the nature of the messages sent. Remember, everything
will be eventually reduced to zeroes and ones, so most messages are numerical, as
they are for this example in general. You will also examine how you can use this same
approach for more sophisticated messaging techniques when you consider interfaces in
a later chapter. Each field is a fixed length, whereas some messages are variable in length,
just not for this example.

 This message sends a diagnostic request to the spacecraft. Here is the requirement
and the associated message:

 6-16 The BOSS Probe Request Message shall contain the
following:

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

157

 7. Probe Diagnostics Request Message

 Req. No. Number Name Description Length Format Units Special Info

 7.1 1 Activate Command
activation
of the probe
controller

 3 NNN N/A 007

 7.2 2 CallDiag Call
diagnostics
of specified
subsystems

 4 NNNN N/A 0001 to 2401;
0001 is all
subsystems

 7.3 3 Sleep Return
command
activation
subsystem
to sleep
mode

 3 NNN N/A 999

 Notice that Units does not apply here. In reality, the message would not repeat a
blank field. This is just here to be illustrative. Field 1 will always be 007 since this tells
the spacecraft this is a diagnostic message. Field 2 will specify which subsystem should
be diagnosed, ranging from 1 to 2401. If 0001 is used, it requests diagnostics for all the
subsystems on the spacecraft. Field 3, 999, means the message is done.

 There may be some requirements that must be accomplished before messages
can be passed that are unique to each system, applications, service, or device . You will
capture them in the header section of the interface requirements and/or in the system’s
requirements, such as whether data is over synchronous or asynchronous transfer. Are
the transfers at specified times? On the other hand, are they called on command? Are
they two-way or just one-way? There are more possible considerations that will not be
elaborated on here because the diverse nature of what you will encounter.

 Diagnostics Response
 This message captures the results of the diagnosis performed based on the diagnostic
request message.

 6-17 The BOSS Probe Response Message shall contain the
following:

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

158

 201. Probe Diagnostics Response Message (for only one specified subsystem)

 Req. No. Num-ber Name Description Length Format Units Special Info

 201.1 1 Message
type

 Diagnostics
response

 4 NNNN N/A 0070

 201.2 2 DiagTyp Is it all
subsystems
or just one
specified
(2 for this
message)

 1 N N/A 1 = all,
2 = one
subsystems

 201.3 3 Diag-
Status

 Return
code of the
status of the
subsystem

 3 NNN N/A 999

 201.4 4 Called-
Diag

 Specified
subsystem

 4 NNNN N/A 9999

 201.5 5 Done End of
message

 2 NN N/A 99

 Field 1 will always be 0070 since this tells the spacecraft this is a diagnostic response
message. Field 2 will specify whether this is just one subsystem (value = 2) or all
subsystems (value = 1). Field 3 will specify the subsystem diagnostic status. Field 4 will
specify which subsystem should be diagnosed, ranging from 1 to 2401. If 0001 is used,
it requests diagnostics for all the subsystems on the spacecraft. Field 5, 99, means the
message is done.

 This example did not show all the subsystems being diagnosed here. Fields 3 and
4 would be repeated as many times as there are subsystems (assume 1138); you would
have fields 3 through 2278, with 2279 for the last value in the message. You can see why it
would be too long for this text.

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

159

 Image Request Message
 This message sends an image request to the spacecraft. Here is the requirement and the
associated message:

 6-18 The BOSS Probe Image Request Message shall contain
the following:

 8. Probe Image Request Message

 Req. No. Number Name Description Length Format Units Special Info

 8.1 1 Activate Command
activation
of the
probe
controller
calling for
image

 3 NNN N/A 008

 8.2 2 CallImage Call the
specified
image

 8 NNNNNNNN N/A

 8.3 3 Sleep Return
Command
activation
subsystem
to sleep
mode

 3 NNN 999

 Image Response Message
 This message sends an image response to the spacecraft. Here is the requirement and the
associated message:

 6-18 The BOSS Probe Image Response Message shall contain
the following:

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

160

 202. Probe Image Response Message

 Req. No. Num-ber Name Description Length Format Units Special Info

 202.1 1 Activate Command
activation
of the probe
controller

 4 NNNN N/A 0080

 202.2 2 Image-
Sent

 Specified
image being
sent

 8 NNNNNNNN N/A 0001 to
9999

 202.3 3 Line 1
block 1

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.4 4 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.5 5 Line 1
block 2

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.6 6 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.7 7 Line 1
block 3

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.8 8 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.9 9 Line 1
block 4

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

(continued)

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

161

 Req. No. Num-ber Name Description Length Format Units Special Info

 202.10 10 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.11 11 Line 2
block 1

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.12 12 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.13 13 Line 2
block 2

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.14 14 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.15 15 Line 2
block 3

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.16 16 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.17 17 Line 2
block 4

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.18 18 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

(continued)

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

162

 Req. No. Num-ber Name Description Length Format Units Special Info

 202.19 19 Line 3
block 1

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.20 20 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.21 21 Line 3
block 2

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.22 22 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.23 23 Line 3
block 3

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.24 24 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.25 25 Line 3
block 4

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.26 26 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.27 27 Line 4
block 1

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

(continued)

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

163

 Req. No. Num-ber Name Description Length Format Units Special Info

 202.28 28 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.29 29 Line 4
block 2

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.30 30 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.31 31 Line 4
block 3

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.32 32 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.33 33 Line 4
block 4

 Defines the
line number
of image
and block
number

 4 NNNN N/A 0101

 202.34 34 Image-
Value

 Compressed
value of
specified
block

 8 NNNNNNNN N/A

 202.35 35 Sleep Return
command
activation
subsystem
to sleep
mode

 3 NNN N/A 999

 Field 1 will always be 0080 since this tells the spacecraft this is an image message.
Field 2 will specify which image this is, ranging from 1 to 999. The odd field numbers
from 3 to 33 give the location of this particular pixel. The even field numbers from 4
to 34 give the color of this particular pixel. Field 35, 999, means the message is done.

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

164

Count the number of pixels, and you have only a 4-by-4 image. If you multiply that by
the 999 different images, you have a bigger picture that is 15,984 pixels. Compare that to
the megapixels that your phone has and you will see that is not very big. It may be the
eight-character value has some compression. For messages of this kind, this would be
implemented, but we will not go into that here.

 What you have seen is what looks like a long message, yet the amount of data is not
very big. Messages would likely be broken into smaller packets (aka messages) to ensure
they are being transmitted correctly.

 You might want to consider one additional field for the data element table—a
Required field. By this, you should indicate whether a field must be provided or the record
is not complete. Thus, the field value will be Y or N only—well, it may be conditional.
Conditional means when you fill in one particular value, which means there are one or
more additional fields to complete.

 In an example of conditional entry is where a person is registering for something
that requires an e-mail address. On the user screen you (as this person registering) see a
field that captures how many e-mail addresses you want to be notified of blog updates.
The acceptable values are 0 to 6. If you have a number other than 0, you have to be able to
enter e-mail addresses. The “how many e-mail addresses” field is required, whereas the
“e-mail addresses” field is conditional.

 This example is of user interaction with an application. You will learn about this user
interaction more in Chapter 10 .

 Order of Steps in Requirements
 What is the difference between order of steps and lists of items? You saw the list of
items in the previous section. However, order was not important to those items. Those
requirements were just related to each other. You will encounter situations where certain
steps must be accomplished in a specific order. The sequencing of requirements is
addressed in this section.

 The section titles were chosen carefully. For some lists, like those discussed in the
preceding section, sequence is unimportant. However, for a list of steps, the sequence or
order matters. That means you have particular actions that need to be ordered in a specific
way. Order was not necessary in what you learned earlier in this chapter. Here they are.

 Think of what you do when you sit down at your computer in the morning, with it turned
off. There are certain steps you take. First, you turn it on. Wait, maybe you plug it in (you did
not want it left on because the glow of indicator lights keep you awake at night). Then you turn
it on. Wait for the desktop to come up. Call up your applications you want open.

 What you do may be different, but you get the idea. If you had to capture
requirements for this, you need to break it down initially like this.

 ■ Note We will spend some more time talking about this approach of specifying order
when you get to use cases in a later chapter.

http://dx.doi.org/10.1007/978-1-4842-2099-3_10

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

165

 Now, consider a more realistic example. Here is the order that must be followed for
an employee using a healthcare benefits system:

 a. Add employee to benefits system

 b. Employee enrolls into benefits system

 c. Employee pays employee portion of benefits system

 d. Enter employee transactions into benefits system

 e. Benefits system pays employee for appropriate amount

 f. Reports generated benefits system

 You could draft the requirements as follows:

 6-19 DRAFT The BOSS healthcare function shall allow an
employee to be added to the benefits system.

 6-20 DRAFT The BOSS healthcare function shall allow
employees to enroll in the benefits system.

 6-21 DRAFT The BOSS healthcare function shall allow
employee to pay for the benefits.

 6-22 DRAFT The BOSS healthcare function shall allow
employee transactions to be entered into the benefits system.

 6-23 DRAFT The BOSS healthcare function shall allow the
benefits system to pay employees for the appropriate amount.

 6-24 DRAFT The BOSS healthcare function shall allow reports
to be generated from the benefits system

 What is lost is that each requirement 6-19 through 6-24 must have the requirement
previous to it done before it can be accomplished. You cannot enroll in benefits packages
if you do not have access to the system.

 How do you handle this in a requirement? You follow the process similar to in
Chapter 4 where you write one requirement.

 6-25 The BOSS healthcare function shall be executed in the
following order:

 a. Add employee to benefits system

 b. Employee enrolls into benefits system

 c. Employee pays employee portion of benefits system

 d. Enter employee transactions into benefits system

 e. Benefits system pays employee for appropriate amount

 f. Reports generated from the benefits system

 Notice that the requirement specifically states in the shall statement “executed in the
following order” to indicate that order is important.

http://dx.doi.org/10.1007/978-1-4842-2099-3_4

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

166

 Please notice that this requirement is at a high level, and given the need for atomic
requirements, this may not be at the correct level. That said, this requirement might still
be necessary for a particular application to capture the order. There would be subsequent
requirements for each of the six numbered items in requirement 6-25. It is likely, in fact,
that each one of those six could have ordered steps within them. This means that there
would be parent-child relationships between these requirements.

 For example, let’s take item 2 and decompose it further.

 6-26 The BOSS Enroll Employee to Healthcare Benefits
function shall be executed in the following order:

 1. Select a Medical Plan

 2. Select a Dental Plan

 3. Select a Vision Plan

 4. Select a Life Insurance Plan

 5. Select a Short-Term Disability Plan

 6. Select a Long-Term Disability Plan

 You may ask why this is a required order? We needed an example, and in this case,
the insurance provider required it this way.

 ■ Note Sometimes there are business processes or policies that mandate certain things
that logically may not seem necessary. Given what is stated by managers well above your
ability to change, you will need to follow those specific decisions.

 Order of Data Elements in Requirements
 Earlier in this chapter, we talked about the listing of data elements . Do you need to order
data elements, just like you did when listing? Good question. The answer is no. Some
people might argue that. For example, do you enter addresses like this?

• Apartment number

• Zip code

• Street number

• City

• Street number

• State

 Of course not. Then, you, gentle reader, say that you should specify an order. However,
theory says it is not required to be in a specific order. Of course, you should present the
data to the user in the order of terms users are accustomed to seeing them. Then, the
answer is that the order is specified in the user interface. That is for a later chapter.

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

167

 Of course, it makes sense to define the fields in the database schema in that same
order. Requirements theorists agree with that. So, then why not say the order of the fields
should be specified in requirements? If you remember from requirements definition
rules, you do not specify implementation. Specifying the order of data fields in a table or
database is just that—design how, not what.

 The key element that you need to answer is the question, “Is there something in the
order of the fields that is absolutely important to what the user must do?”

 ■ Tip In my experience, I really cannot think of an example of order in data fields. Wait.
What about that example from earlier in this chapter where you asked for how many e-mail
addresses the user has? If you specified a number other than 0, a field must be populated.
That is order. Good point. However, I would point out that by identifying the “e-mail
addresses” field as conditional, you have already specified the order. Stating this conditional
relationship of data fields, and then defining a specific order is redundant. If I uncover an
example of the need for ordering data elements, I will put it in a revised version of this book.
So, if you find such an example, please share it will me, and I may be able to give you your
15 minutes of fame by including you and your example in that revision.

 Exercises

 Exercise 1
 Reorder the following steps in an appropriate order for building a two-story house with a
full basement:

• Put on the roof.

• Lay the wires, plugs, etc., for the electric system.

• Add the ceiling for the first floor.

• Place the flooring for the first floor.

• Place the walls for the second floor.

• Place the walls for the basement.

• Paint all basement interior wood.

• Add the ceiling for the second floor.

• Place the walls for the first floor.

• Dig out the basement.

• Add the insulation to the attic.

• Add all the appliances.

CHAPTER 6 ■ LISTS OF ITEMS AND THE ORDER OF STEPS AND DATA ELEMENTS

168

• Place the dirt and fill around the basement foundation.

• Add the plumbing.

• Paint all second-floor interior wood.

• Place the concrete walls for the basement.

• Add the exterior walls for the first floor.

• Add the insulation to the second floor.

• Add the exterior walls for the second floor.

• Add the insulation to the first floor.

• Place the interior walls for the basement.

• Paint all exposed exterior wood.

• Paint all first-floor interior wood.

• Add doors and windows.

 Exercise 2
 Write the following as requirements:

 Think of what you do when you sit down at your computer
for the time in the morning, with it turned off. For example,
in my case, I…turn it on. Wait, maybe I plug it in (when I am
traveling). Then I turn it on and wait for the desktop to come
up. I call up my applications I want open. I do my e-mail app
first to check e-mail and have available for research. Then I
open the word processor so I can write my books. I call up the
file manager so I can open various files that may not be in my
recent list in the word processor.

169© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_7

 CHAPTER 7

 Data Interfaces and
Documents

 In this chapter, you are going to learn about data elements in the various systems you
will explore in this chapter. In the first section, you will examine data elements within a
requirement associated with an example system. This section will also introduce how
these data elements can become part of what is called a database , basically defining
all the different types of data that reside in the database that the developers will create.
Second, you will consider the data elements to share between two systems, called an
 interface , usually specified in an interface control document (ICD). Then, you will learn
about input and output data elements. Finally, you will study document formats for
ICDs that were just introduced. While we are on the subject of interface documents, you
will see that the documents include general requirements documents, which will be
introduced. There are many different ways of putting them together, should you need to
do so. Some organizations like the DoD and IEEE have specified some. Others exist, and
you will see them so you can pick which to use, when you are required to do so.

 Defining Requirement Data Elements
 Now you will examine in detail how to define data you need to capture in the systems you
are developing requirements for, as will be demonstrated in the following examples. In
the first subsection, you will consider defining the elements within shall statements only.
In the second subsection, you will discover some situations that need you to not only
define the data elements but specify details about the data elements.

 Defining Data Elements Within a Requirement
 In this first example, you are going to define the Person record for the BOSS HR System.
Assume that you are in the United States.

 For the example, you should start with the following data:

• First name

• Middle name

• Last name

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

170

• Street number

• Street name

• Apartment number

• City

• State

• ZIP code

• Home phone

• Cell phone

• Office phone

• Office extension

• Home e-mail address

• Office e-mail address

 One approach is to define each data element as one requirement like this:

 7-1 The FBI BOSS HR Person record shall contain the Last
Name of the person.

 7-2 The FBI BOSS HR Person record shall contain the Street
Number of the person.

 7-3 The FBI BOSS HR Person record shall contain the Street
Name of the person.

 And so on through all the fields.
 You also need the format for each field, so maybe you add the following

requirements:

 7-4 The FBI BOSS HR Person record Last Name field shall be
alpha characters.

 7-5 The FBI BOSS HR Person record Street Number field shall
be numeric characters.

 7-6 The FBI BOSS HR Person record Street Name field shall be
alphanumeric characters.

 Then complete this for all the fields. Wait, you ask, could we combine the two, such
as the following?

 7-7 The FBI BOSS HR Person record shall contain the Last
Name of the person, in an alpha character format.

 7-8 The FBI BOSS HR Person record shall contain the Street
Number of the person, in a numeric character format.

 7-9 The FBI BOSS HR Person record shall contain the Street
Name of the person, in an alphanumeric character format.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

171

 Of course, we now seem to be combining two separate requirements into one.
However, consider that this work will be done together. One developer would not put the
name of the field in, with another person doing the format. So no, this is not violating
requirement engineering principles .

 In fact, there is more you need to define for your record. How big should each field
be? You need to add that as well. Therefore, you should consider the following:

 7-10 The FBI BOSS HR Person record shall contain the Last
Name of the person, in an alpha character format, with the
field size of 25 characters.

 7-11 The FBI BOSS HR Person record shall contain the Street
Number of the person, in a numeric character format, with
the field size of 12 characters.

 7-12 The FBI BOSS HR Person record shall contain the Street
Name of the person, in an alphanumeric character format,
with the

 This captures the requirement but is getting a little cumbersome. Is there a better way to
capture the data? Maybe an easier representation? Of course. That leads into the next section.

 Defining Data Elements Within a Database
 Before you learn how to capture elements within a database, you might need to know
what a database is.

 A database is nothing more than a collection of data elements. Depending on how
a database is designed, it can consist of one or more tables. I am not going to give you a
complete dissertation on database design, just enough to consider in your definition of
the elements that you need to define as part of your requirements work.

 Think of a table as a file but a bit more structured. The easiest representation is a
spreadsheet, with columns and row. Each column is a different data element, and a row
is a collection of all those different elements to create one record. You can think of a
requirement with all its different data elements making up one table. The complete table
can consist of one or more records. Do not worry about how many tables are in a database,
as that is for the database design, which you know is the purview of the developers,

 So, begin the requirement’s data element definition . You can accomplish it in a table,
where you specify the field name, the format, and then the field size.

 ■ Note In some documents you may even see the database field name that may be
different from the field name that the user is familiar with (e.g., Last Name is LastName or
last_name). In this situation, you should not care, as that is implementation.

 Here is a proposed table for this project:

 7-13 The FBI BOSS HR Person record shall contain the
following data:

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

172

 Field Name Format Size

 First Name Alpha 30

 Middle Name Alpha 30

 Last Name Alpha 30

 Sex Alpha (M/F/T) 1

 Street Number Numeric 15

 Street Name Alphanumeric 30

 Apartment Number Alphanumeric (e.g., 3B) 6

 City Alpha 30

 State Alpha 2

 Zip Code Numeric 10

 Home Phone Numeric 12

 Cell Phone Numeric 12

 Office Phone Numeric 12

 Office Extension Numeric 5

 Home Email Address Alphanumeric 45

 Office Email Address Alphanumeric 45

 You may want to add a Comments field for information like in the Apartment Number
format where you should explain why alphanumeric was important. Maybe you want
special formats also, say for the phone where you list it with no dashes like 8005550000, or
maybe you include it as 800-555-0000. Since space is not a premium, use what the users
understand, with spaces or hyphens. Alternatively, do you want to break it into three
separate parts of the field? This isn’t recommended, as that is specifying implementation.
Let the developers do their job, unless there is some business need that drives it.

 Another candidate for a Comments field in this table would be a range of values. If
ZIP codes do not use all hundred thousand values, you may want to highlight that here.

 ■ Note The following is not true, but just to show an example, if the ZIP code had started
with 10000, the range might be 10000 to 99999.

 You could enter that example of a clarification in a Comments field. If you have
a data requirements table with many data ranges, add a separate column in the table.
Besides having the record table make the requirements much easier to read, you can
add columns (and rows if need be) much easier. You need to consider one point for
traceability: maybe you need to number or identify each row of your table. When testing
happens, if e-mail addresses fail because the “at” symbol (@) was not allowed, then you
need the spell out the affected fields. If the rows were identified, you could just say that
requirement 3.4.2.1 o) and p) failed. Therefore, that is one recommended change.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

173

 Another field to consider in the data table is a description. If you have values where
the title or name of the field may not satisfactorily describe the field, then add a description
field, also to give some explanatory text to provide more detail. For other tables, you may
have default values, like for an office phone, where the main office has one phone number
that everyone has, with just a different extension. The main office number is the default.
Of course, you could have fields that are true/false, yes/no, and so on. There are other data
types to consider, like the Boolean true/false, yes/no, memo fields that are long text strings,
or BLOBs (Binary Large Objects—for graphics or mixture of text and graphics).

 The following are some other topics to consider when writing requirements related
to data. Keep in mind that these are all optional, depending on your situation:

• Data retention : Is there some reason to keep data for a
certain period of time? Clearly, this has merit for the records
management project. Earlier, you learned that permanent
records must be retained for the life of the Republic. What about
temporary records? The federal government has to follow the
dictates of the National Archives and Records Administration
(NARA), which spells out the rules for how long temporary
records are maintained.

• Data volumes : This is something you can define in capacity, but it
is provided here as a reminder.

• Data currency : How current does the date need to be? For
example, do you need to keep expense reports available for
employees to examine for 20 or 30 years? Probably not. Maybe
one year or three or five at the most is sufficient to keep them
online. They may be needed for historical or archival reasons, so
they can be moved to a different system.

• Data security : Is there data that needs to be handled with a higher
security level than everyone having access to it? For example,
think back to an earlier chapter where you learned medical
information has to follow HIPAA protection. For the HR project,
you will need to add a privacy indicator to the field for HR
personnel files, especially if the SSN is used. Payroll records will
need some extra protection as well.

• Data relationships : Is there more than one value associated
with another? In the previous example, you did that for phone
numbers, but you identified them with different names. Think
of awards received by an individual; they could be zero, one, or
several. There is no consistent number. Maybe you should define
one field that would hold all awards with the Person record
having a field of up to 2,000 characters to describe them all.

 When you have addressed all these items, you have done a good job of describing
data in a computer database.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

174

 What about hardware, say, for the Dosimetry project you have been examining? Do
you need data definition? Would you have data here? Absolutely. You might consider
something like the following:

 7-14 The BOSS Unit Radiation Dosimeter system shall contain
the following data:

 Field No. Field Name Format Size

 1. First Name Alpha 30

 2. Middle Name Alpha 30

 3. Last Name Alpha 30

 4. Sex Alpha (M/F/T) 1

 5. Soldier ID (SSN) NNN-NN-NNNN 11

 6. Soldier’s Unit Alphanumeric 100

 7. Start And Stop Date MM/DD/YYYY to MM/DD/YYYY 24

 8. Exposure in REM Numeric NNNN.N 6

 9. Comments Alpha 100

 10. Cumulative Exposure in REM Numeric NNNNN.N 7

 11. Date Issue to Soldier MM/DD/YYYY 10

 Notice there is an added field number so that you have traceability like the one
discussed earlier; this way you achieve uniqueness for each field.

 If you add a Comment field to this table, you might put the following in for the Unit field:

 Complete unit description from highest level e.g., CENTCOM
(Central Command), to lowest unit level, platoon or
detachment. May do a hierarchy but not all have the same
number of levels, so just one string of characters.

 There are some other considerations you might need to capture in these radiation
requirements that are not addressed here. What happens when the soldier is transferred to
another unit? The answer is beyond this chapter, but the radiation exposure reading should
be taken for the individual soldier and a new record initiated when the soldier transfers to
the new unit. In addition, what happens if the dosimeter is lost or broken? How will the data
be reconstructed? These are other considerations that will not be explored here, but policies
and procedures in the U.S. Army will help to define those candidate needs.

 Interface Control Documents
 As was said in the introduction to this chapter, now you will learn how to share data elements
between two systems, in other words, how the two (or more) systems interface. The first step
is to analyze the data itself that you need to capture for your requirement. Then, you will
need to capture these data element requirements into documents, usually the ICD.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

175

 The “Connections to Outside the System” section in Chapter 5 introduced the
following requirement:

 7-15/5-85 The BOSS shall provide ANY System to import data
in the format specified in ANY System Interface Format.

 Now you will learn how to specify this system interface. You did part of this in the
previous section of this chapter when you defined the data elements. However, you will have
to expand it a bit more. Why? Well, you will have two systems that need to be connected. Not
only will you have the data elements, but also both systems need to agree on all the values,
their formats, their sizes, and any other restrictions on the data. You will find when you learn
about elicitation that this is one of the most challenging efforts in requirements definition.
Remember that argument about the definition talked about in Chapter 3 ? It was in this
interface definition phase that this took place. This biggest issue deals not with agreeing on
what the values should be but when someone has to spend money to change their data to
meet a standard they do not follow, that’s when they object most vehemently.

 So, what kind of data should you capture when defining an interface? Start with the
data elements described in the requirement in the previous section, though note that not
all of the fields will apply to every interface.

• Field Name (user understanding of the name)

• Interface Field Name (what is the field name used by the two
systems?)

• Field Description (detailed description of what goes into the field)

• Field Type

• Field Format

• Field Size

• Field Defaults

• Field Range

• Field Units

• Field Precision (what accuracy of the unit $0.01 for currency, for
example)

• Priority

• Timing

• Frequency

• Volume

• Sequencing (is order of the transmission important?)

• Other Constraints (e.g., whether the data element may be updated
and whether business rules apply)

• Security

http://dx.doi.org/10.1007/978-1-4842-2099-3_5
http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

176

• Control Factor (privacy, or another protection level that is not
security)

• Source (some values go from one to the other, but not in both
directions)

• Comments

 Some of the fields are not part of every record, but may be associated with a
collection of records. For example, security might be the same for a group of records sent.
That would be part of the header element of the file transmission. You have to identify
these types of fields and when they are used.

 Is there a validation that the message was sent? Is the message sent in bulk (say once
a day) or when a transaction happens?

 Now, look at the HR Person record. You need some of the data to be transmitted to
the HR payroll system. You might have something like the following:

 7-16 The BOSS Payroll Function shall receive the following
data from the BOSS Payroll Function:

 Field Name Format Size Description Comments

 First Name Alpha 30 Employee’s first
name

 Middle Name Alpha 30 Employee’s middle
name

 Last Name Alpha 30 Employee’s last
name

 Sex Alpha (M/F/T) 1 Sex of person T = Transgender

 Person Identifier Numeric 15 BOSS employee
number

 System generated
when employee starts
with company

 This is a simple interface, but it is a good starting point. In addition, the potential
elements provided will help you start defining your projects.

 Naturally, the same approach occurs for hardware. In the dosimetry program, there will
be an interface between the individual and unit dosimeters. It could be defined as follows:

 7-17 The BOSS Unit Radiation Dosimeter system shall contain
the following data:

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

177

 Field Name Type Format Size

 First Name Alpha Text string 30

 Middle Name Alpha Text string 30

 Last Name Alpha Text string 30

 Sex Alpha Choice (M/F/T) 1

 Soldier ID (SSN) Numeric NNN-NN-NNNN 11

 Soldier’s Unit Alphanumeric Alphanumeric string 100

 Start And Stop Date Date MM/DD/YYYY to
MM/DD/YYYY

 24

 Exposure in REM Numeric NNNN.N 6

 Comments Alpha Text string 100

 Cumulative Exposure
in REM

 Numeric NNNNN.N 7

 Date Issued to Soldier Date MM/DD/YYYY 10

 Notice that you need to capture the precision in the Exposure in REM field. Since
this is the only one such value in the entire list, you do not add a Precision column for
every value. Instead, just capture a separate requirement. If you have multiple values in
your situations, then you might want to add a Precision column. An additional change
takes place after the transfer from the individual dosimeter to the unit dosimeter. The
Exposure in REM field value is added to the Cumulative Exposure in REM field, and then
the Exposure in REM field value becomes zero.

 If your project will use something other than a standard interface (e.g., USB, Blu-ray),
then you need to specify every element and whether there is a specific set of pins to
connect the two devices. Shortly, you will see how to combine everything in an ICD.

 Input/Outputs
 Now you will learn about what things to consider for inputs into the system in question.
Next you will examine what outputs the system will generate (e.g., provide data to users of
the system).

 Outputs
 Why do you need to define this when you have already defined all the functional and
nonfunctional requirements? Just like the ICDs and other kinds of requirements, there
are special items to consider.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

178

 Think of this guideline: define what results you need from the system . Otherwise, why
are you developing, building, or procuring the project in the first place? The results could be
data, like the exposures a soldier receives in a nuclear battlefield (the Radiation Dosimetry
System). The results could be capturing all the permanent records from the FBI (the FBI
Records Management System) to comply with all the federal records policies and laws.

 Naturally, this specification of output data is a bit more complicated than just
this major objective. What UI is necessary (an output, and for accepting inputs from
users)? What reports are needed? You learned about this in the “Searching & Reporting
Requirements” section in Chapter 4 . If you haven’t defined data to report to users, whether
in formatted reports or just displayed in certain screen shots, do so now. Here’s an example:

 7-18 The BOSS Unit Radiation Dosimeter system shall provide
the following data when requested for an individual soldier:

• First Name

• Middle Name

• Last Name

• Sex

• Soldier ID

• Soldier’s Unit

• Start And Stop Date

• Exposure in REM

• Comments

• Cumulative Exposure in REM

• Date Issue to Soldier

 For the HR project, you might have the following outputs:

 7-19 The BOSS HR Personal Function shall provide an
Organizational Person report for each person in a designated
organization:

• First Name

• Middle Name

• Last Name

• Sex

• Street Number

• Street Name

• Apartment Number

• City

http://dx.doi.org/10.1007/978-1-4842-2099-3_4

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

179

• State

• Zip Code

• Home Phone

• Cell Phone

• Office Phone

• Office Extension

• Home Email Address

• Office Email Address

 Obviously, this is just one of a multitude of reports. Of course, as mentioned in
Chapter 4 , how many reports will the development team prepare that need to be defined
as requirements? The rest will be developed by users, where they do their own defining of
requirements that do not need to be shared.

 Inputs
 Given that you have the needed outputs, you can define what information to enter or
input, by whatever means necessary, to support that output.

 For the dosimetry project, you should consider the following:

 7-20 The BOSS Unit Radiation Dosimeter system shall receive
the following data:

• First Name

• Middle Name

• Last Name

• Sex

• Soldier ID

• Soldier’s Unit

• Start And Stop Date

• Exposure in REM

• Comments

• Cumulative Exposure in REM

• Date Issue to Soldier

 For the HR Personnel project:

 7-21 The BOSS HR Personnel Function shall require the user
to enter the following data elements:

http://dx.doi.org/10.1007/978-1-4842-2099-3_4

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

180

• First Name

• Middle Name

• Last Name

• Sex

• Street Number

• Street Name

• Apartment Number

• City

• State

• Zip Code

• Home Phone

• Cell Phone

• Office Phone

• Office Extension

• Home Email Address

• Office Email Address

 Transformations
 Naturally, you need any transformations from the inputs to the outputs. Ideally you
have captured that already, but this is a sanity check. For example, you might have a
report of an entire unit’s radiation exposure between given start and end dates, maybe
with average, mean, mode, maximum, and minimum values. What data is transformed
(changed) in the process? Certainly, you should not have the maximum and minimum
values transformed. The biggest transform is the average, where the system needs to
look at the historical data stored in the Unit system and calculate the exposure for every
soldier in the unit during the time period in question. Then the total is determined and
divided by the number of soldiers. The mean is determining the value where 50 percent
of the values are below and 50 percent of the values are above.

 Those are simple transformations. In some cases, the input value is changed to
create an output value.

 Consider that you have a report that is needed to identify the risk of cancer long-term
based on exposure.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

181

 REM Cancer Odds

 < 0.05 0

 0.05 to 0.5 1:4000

 0.5 to 5 1:400

 5 to 10 1:200

 10 to 25 1:80

 25 to 70 1:30

 Now the system will need to transform the soldier’s total exposure to a cancer odds
value in the report.

 For the HR personnel paycheck project , the system needs to calculate a paycheck.
The salary/hourly rate is defined in the database. In addition, the database has the
elections for benefits for that person. The system needs to determine the bi-weekly pay,
minus all the deductions including benefits, payroll taxes, Social Security, Medicaid, and
any other deductions from the pay to determine the paycheck (the output).

 Interface Control Document Formats
 Chapter 4 mentioned how to organize documents. In Chapter 11 , you will consider how
to organize the requirements in the requirements database. If you are going to put all
the project’s requirements into a requirements tool, why should you capture interface
requirements into an ICD? Unlike project requirements, when two different systems
connect to each other, the requirements must be agreed upon by both parties. Thus, an
ICD is a document mechanism to represent the requirements that both have accepted.
While you may put your interface requirements into your tool for you to manage them,
they must be segregated in a way that reflects this shared ownership of the requirements.
Now back to how you will organize interface requirements. Although using the structure
talked about in Chapter 3 is one approach, there is no one correct way to organize it. It is
whatever works for you and your organization.

 Now move onto formats for document templates for ICDs. Why are you considering
formats for ICDs? First, you need to see the various ways you can put these documents
together, depending on the kind of interface you are defining. Some hardware interfaces
are very specific and need a special way to represent them. Second, by seeing the different
sections of the various documents, you may get some ideas of requirements you may
need to collect for your specific interface. No book can prepare you for every contingency,
but by exposing you to various approaches, it may spark ideas for you to consider.

 It is helpful to look at some actual templates that show standards that organizations
use. In this section, let’s look at several from the federal government. Remember, this is
to show examples of how you might organize data and what to capture. None of these
approaches is specifically recommended, but they serve as useful references. All the
material in the specific government document subsections is taken from the government
sources (see the “References” section for complete citations) except for some explanatory
or introductory text that I distinguish from the quoted material by setting it in italic type.

http://dx.doi.org/10.1007/978-1-4842-2099-3_4
http://dx.doi.org/10.1007/978-1-4842-2099-3_11
http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

182

 HUD Guidelines for the Data Requirements Document
Checklist
 This checklist is provided as part of the evaluation process for the Data Requirements
Document. The checklist assists designated reviewers in determining whether
specifications meet criteria established in HUD’s System Development Methodology
(SDM). The objective of the evaluation is to determine whether the document complies
with HUD development methodology requirements.

 Attached to this document is the DOCUMENT REVIEW CHECKLIST. Its purpose is
to assure that documents achieve the highest standards relative to format, consistency,
completeness, quality, and presentation.

 Submissions must include the following three documents, and must be presented in
the following order: (First) Document Review Checklist, (Second) the Data Requirements
Document Checklist, and (Third) the Data Requirements Document.

 Document authors are required to complete the two columns indicated as “AUTHOR
X-REFERENCE Page #/Section #” and “AUTHOR COMMENTS” before the submission.
Do NOT complete the last two columns marked as “COMPLY” and “REVIEWER
COMMENTS” since these are for the designated reviewers.

 Here is the requirement section and what goes into it. Besides addressing the
requirement, they require author reference and author comments and Reviewer section
with whether the requirement is complied with or not, and any reviewer comments.

 REQUIREMENT

 1.0 GENERAL INFORMATION

 1.1 Purpose: Describe the purpose of the Data Requirements Document.

 1.2 Scope: Describe the scope of the Data Requirements Document as it relates to
the project.

 1.3 System Overview: Provide a brief system overview description as a point of
reference for the remainder of the document, including responsible organization,
system name or title, system code, system category, operational status, and
system environment or special conditions.

 1.4 Project References: Provide a list of the references that were used in preparation
of this document.

 1.5 Acronyms and Abbreviations: Provide a list of the acronyms and abbreviations
used in this document and the meaning of each.

 1.6 Points of Contact:

 1.6.1 Information: Provide a list of the points of organizational contact that
may be needed by the document user for informational and troubleshooting
purposes.

 1.6.2 Coordination: Provide a list of organizations that require coordination
between the project and its specific support function (e.g., installation
coordination, security, etc.). Include a schedule for coordination activities.

(continued)

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

183

 REQUIREMENT

 2.0 DATA DESCRIPTION

 2.1 Logical Database Design: Describe and depict in a graphic representation the
logical organization of the data and defined relationships, including business
rules relevant to the data model or to specific data items.

 2.2 Data Characteristics and Categorization: Discuss the data elements to be used
by the system.

 2.2.1 Static Data: List the static data elements used for either control or reference
purposes, including data element name; synonymous name; type; definition;
format; range of values or discrete values; unit of measurement; precision; data
item names, abbreviations, and codes; and characteristics, such as accuracy,
validity, timing, and capacity.

 2.2.2 Dynamic Input Data: Include the following for each data element: data
element name; synonymous name; type; definition; format; range of values or
discrete values; unit of measurement; precision; data item names, abbreviations,
and codes; and characteristics, such as accuracy, validity, timing, and capacity.

 2.2.3 Dynamic Output Data: Include the following for each data element: data
element name; synonymous name; type; definition; format; range of values
or discrete values; calculation or algorithm used to derive data value; unit
of measurement; precision; data item names, abbreviations, and codes; and
characteristics, such as accuracy, validity, timing, and capacity.

 2.2.4 Internally Generated Data: Include the following for each data element:
data element name; synonymous name; type; definition; format; range of values
or discrete values; calculation of algorithm used to derive data value; unit of
measurement; precision; data item names, abbreviations, and codes; and
characteristics, such as accuracy, validity, timing, and capacity.

 2.3 Data Constraints: State the constraints on the data, indicating the limits of the
data requirements with regard to further expansion or use, such as the maximum
size and number of files, records, and data elements.

 2.4 Data Retention: Describe the data retention requirements as follows: historic
retention to include the collection of data to be retained and its format, storage
medium, and time parameters; periodic report data (retention period after
generation of reports and retention period of periodic reports after summary reports
are generated); and Summary Reports data (retention period after generation).

 2.5 Impacts: Describe the impact, if applicable, of the data requirements on
equipment, software, user, and developer organizations.

 2.5.1 Equipment: Describe the impact of the data requirements on equipment.

 2.5.2 Software: Describe the impact of the data requirements on software.

 2.5.3 Organization: Describe the impact of the data requirements on the user
and developer organization.

 2.6 Data Storage: Estimate the data storage and processing requirements in terms of
size and number of records.

(continued)

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

184

 REQUIREMENT

 2.7 Scales of Measurement: Specify for numeric scales, units of measurements,
increments, scale, zero-point, and range of values.

 2.8 Measurement Conversion Factors: Specify the conversion factors of measured
quantities that must go through analog or digital conversion processes.

 2.9 Frequency of Update and Processing: State the expected frequency of data
element change and the expected frequency of processing input data elements.

 3.0 DATA HANDLING

 3.1 Source of Input: Create a table identifying the source from which data elements
will be entered, such as an organizational unit or operator.

 3.3 Medium and Device:

 3.2.1 Input Medium and Device: Describe, in detail, the format of data to be
input to the proposed system.

 3.2.2 Output Medium and Device: Identify the medium and hardware device
intended for presenting output data to the recipient.

 3.3 Recipients: Name the organization or system that will be receiving output data.

 3.4 Data Collection Procedures: Describe procedures that will be used to collect
data, including a detailed format for the input data.

 3.5 User Access: Describe or depict the user or user types and their associated
create, read, update, and delete permission.

 3.6 Error Handling: Identify the process for handling inaccurate or incomplete data.

 3.7 Data Responsibilities: Determine and describe the organization that will be
responsible for managing the data.

 3.8 Security: Describe the security classification for the data and the degree of
security of the algorithms.

 You can see from the emphasis on the information to be provided that this is focused
more on software than hardware. Yes, hardware is addressed, but more elements focus on data
specification. The next example will have a stronger hardware focus, as you would expect.

 DoD
 Next, you will consider what the Department of Defense requires for their documents.
Notice that most of what you see in this section is hardware related.

 The DoD uses the following document formats as a standards.

 MIL-STD 962D (Military Standard)
 These are extracts related to DoD interfaces. Notice how much more emphasis they have on
hardware. Given that they develop weapons, aircraft, battleships, and submarines, to name
a few, they need hardware focus. Yes, software elements are addressed also. Another alert

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

185

is that the DoD is much more structured in their approach, as indicated by their reference
to other documentation. While all this might make it more challenging to read, remember
your focus is to see what data they want collected. What you read now is from their web
site. The first three paragraphs are extracted from the foreword to the document. The DI-
SDMP-81470 is their precise presentation of what you would read.

 Foreword

 5c. DoD interface standards should be developed to specify the physical, functional,
or military operational environment interface characteristics of systems, subsystems,
equipment, assemblies, components, items, or parts to permit interchangeability,
interconnection, interoperability, compatibility, or communications. Non-Government
standards should be used to the extent possible to specify interface requirements. DoD
interface standards should only be developed to specify military-unique interface
requirements. DoD interface standards may be cited as solicitation requirements without
need for a waiver by the Milestone Decision Authority.

 3.13 Interface standard. A standard that specifies the physical, functional, or military
operational environment interface characteristics of systems, subsystems, equipment,
assemblies, components, items, or parts to permit interchangeability, interconnection,
interoperability, compatibility, or communications.

 5.2.1 Interface standards. Interface standards shall specify the physical, functional,
or military operational environment interface characteristics of systems, subsystems,
equipment, assemblies, components, items, or parts to permit interchangeability,
interconnection, interoperability, compatibility, or communications.

 As you can see, these three paragraphs give the high-level scope of what should be
included in the following document. The elements described are what you need to keep in
mind for your use.

 8.4.2.2 DI-SDMP-81470 Department of Defense (DoD) Interface
Standard Documents
 “Data Item Description” is a standard name used for these types of documents, and
everything after it reinforces it. Keep in mind as you read it to concern yourself more about
the items within the document, not so much the exact format (unless you are working on a
DoD project, which will be discussed at the end).

 DATA ITEM DESCRIPTION
 Title: DEPARTMENT OF DEFENSE (DoD) INTERFACE STANDARD
 DOCUMENTS
 Number: DI-SDMP-81470A Approval Date: 1 August 2003
 AMSC Number: D7505 Limitation: N/A
 DTIC Applicable: No GIDEP Applicable: No
 Office of Primary Responsibility: OSD-SO
 Applicable Forms: N/A

 Use, Relationships: A DoD interface standard will be used to specify the
physical or functional interface characteristics of systems, subsystems, equipment,
assemblies, components, items or parts to permit interchangeability, interconnection,
interoperability, compatibility, or communications.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

186

 This Data Item Description contains the content and format preparation instructions
for DoD interface standards and their associated documents that are described in the
following paragraphs of MIL-STD-962D. Only those documents listed below will be
required when specified individually on contract.

 a. DoD Interface Standard – Paragraphs 4.1 through 5.15.

 b. DoD Interface Standard Revision – Paragraph 5.17.

 c. DoD Interface Standard Change – Paragraphs 5.18 through 5.18.7.

 d. DoD Interface Standard Inactive for New Design Notice –
Paragraph 5.19.2.

 e. DoD Interface Standard Cancellation Notice – Paragraph 5.19.3.

 f. DoD Interface Standard Reinstatement Notice – Paragraph 5.19.4.

 g. DoD Interface Standard Reactivation Notice – Paragraph 5.19.5.

 h. DoD Interface Standard Administrative Notice – Paragraph 5.19.6.

 This DID supersedes DI-SDMP-81470.
 Requirements:

 1. Reference documents. The applicable issue of the documents
cited herein, including their approval dates and dates of any
applicable notices and revisions, shall be as specified in the
contract.

 2. Format and content. Format and content for DoD Interface
Standards shall be as follows:

 a. DoD Interface Standard. Format and content of DoD
Interface Standards shall be in accordance with
MIL-STD-962, paragraphs 4.1 through 5.15.

 b. DoD Interface Standard Revision. Format and content of
DoD Interface Standard Revisions shall be in accordance
with MIL-STD-962, paragraph 5.17.

 c. DoD Interface Standard Changes. Format and content of
DoD Interface Standard Changes shall be in accordance
with MIL-STD-962, paragraphs 5.18 through 5.18.7.

 d. DoD Interface Standard Inactive for New Design Notices.
Format and content of DoD Interface Standard Inactive
for New Design Notices shall be in accordance with
MIL-STD-962, paragraph 5.19.2.

 e. DoD Interface Standard Cancellation Notices. Format and
content of DoD Interface Standard Cancellation Notices
shall be in accordance with MIL-STD-962, paragraph 5.19.3.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

187

 f. DoD Interface Standard Reinstatement Notices. Format and
content of DoD Interface Standard Reinstatement Notices
shall be in accordance with MIL-STD-962, paragraph 5.19.4.

 g. DoD Interface Standard Reactivation Notices. Format and
content of DoD Interface Standard Reactivation Notices
shall be in accordance with MIL-STD-962, paragraph 5.19.5.

 h. DoD Interface Standard Administrative Notices. Format and
content of DoD Interface Standard Administrative Notices
shall be in accordance with MIL-STD-962, paragraph 5.19.6.

 3. END OF DI-SDMP-81470A.

 The exact format may not help as much as the data elements that the DoD needs. If you
work in this DoD environment, your best bet is to find an example of one such document, and
then it might become a bit more understandable. Remember, from any of these examples, take
what you need and use them. Again, the point was the focus on hardware here.

 NASA Training Manual for Elements of Interface
Definition and Control
 This NASA example also has a strong hardware focus, and the text is more readable than
the DoD example because there are not so many references to other documents. This
document is more self-contained. Keep in mind that NASA has a strong space orientation,
so some of their needs may not match your needs. Again, take what you need, but the
explanations here are very good.

 2.1 Purpose of Interface Control

 An interface is that design feature of a piece of equipment that affects the design
feature of another piece of equipment.The purpose of interface control is to define
interface requirements so as to ensure compatibility between interrelated pieces of
equipment and to provide an authoritative means of controlling the design of interfaces.
Interface design is controlled by an

 Interface Control Document (ICD).
 These documents

 1. Control the interface design of the equipment to prevent any
changes to characteristics that would affect compatibility with
other equipment

 2. Define and illustrate physical and functional characteristics of a
piece of equipment in sufficient detail to ensure compatibility of
the interface, so that this compatibility can be determined from
the information in the ICD alone

 3. Identify missing interface data and control the submission of these data

 4. Communicate coordinated design decisions and design changes
to program participants

 5. Identify the source of the interface component

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

188

 ICDs by nature are requirements documents: they define design requirements
and allow integration. They can cause designs to be the way they are. They record the
agreed-to design solution to interface requirements and provide a control mechanism to
ensure that the agreed-to designs are not changed by one participant without negotiated
agreement of the other participant.

 To be effective, ICDs should track a schedule path compatible with design
maturation of a project (i.e., initial ICDs should be at the 80% level of detail at preliminary
design review, should mature as the design matures, and should reach the 99% mark near
the critical design review).

 2.3.1 Electrical/Functional

 Electrical/functional interfaces are used to define and control the interdependence
of two or more pieces of equipment when the interdependence arises from the
transmission of an electrical signal from one piece of equipment to another. All electrical
and functional characteristics, parameters, and tolerances of one equipment design
that affect another design are controlled by the electrical/functional ICD. The functional
mechanizations of the source and receiver of the interface electrical signal are defined, as
well as the transmission medium.

 The interface definition includes the data and/or control functions and the way in
which these functions are represented by electrical signals. Specific types of data to be
defined are listed here:

 1. Function name and symbol

 2. Impedance characteristics

 3. Shielding and grounding

 4. Signal characteristics

 5. Cable characteristics

 6. Data definition

 7. Data transmission format, coding, timing, and updating

 8. Transfer characteristics

 9. Circuit logic characteristics

 10. Electromagnetic interference requirements

 11. Data transmission losses

 12. Circuit protective devices

 Other data types may be needed. For example, an analog signal interface document
would contain function name and symbol, cable characteristics, transfer characteristics,
circuit protective devices, shielding, and grounding; whereas a digital data interface
would contain function name and symbol, data format, coding, timing and updating, and
data definition. Additional data types under the electrical/functional heading are:

 1. Transmission and receipt of an electrical/electromagnetic signal

 2. Use of an electrically conductive or electromagnetic medium

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

189

 Appendix A shows recommended formats for electrical and functional interface
control drawings.

 2.3.2 Mechanical/Physical

 Mechanical/physical interfaces are used to define and control the mechanical
features, characteristics, dimensions, and tolerances of one equipment design that affect
the design of another subsystem. They also define force transmission requirements where
a static or dynamic force exists. The features of the equipment that influence or control
force transmission are also defined in this ICD. Mechanical interfaces include those
material properties of the equipment that can affect the functioning of mating equipment,
such as thermal and galvanic characteristics. Specific types of data defined are:

 1. Optical characteristics

 2. Parallelism and straightness

 3. Orientation requirements

 4. Space or provisions required to obtain access for performing
maintenance and removing or replacing items, including
space for the person performing the function

 5. Size, shape, mass, mass distribution, and center of gravity

 6. Service ports

 7. Indexing provisions

 8. Concentricity

 9. Surface finish

 10. Hard points for handling

 11. Sealing, pressurization, attachment, and locking provisions

 12. Location and alignment requirements with respect to other equipment

 13. Thermal conductivity and expansion characteristics

 14. Mechanical characteristics (spring rate, elastic properties,
creep, set, etc.)

 15. Load-carrying capability

 16. Galvanic and corrosive properties of interfacing materials

 Other data types may be needed. For example, an ICD controlling a form-and-fit
interface would generally contain such characteristics as size and shape of the item,
location of attachment features, location of indexing provisions, and weight and center
of gravity of the item. However, an ICD controlling a structural load interface would
contain weight and center of gravity, load-carrying capability, and elastic properties
of the material if applicable to the loading conditions. Not all ICDs controlling a form-
and-fit interface would have to contain all types of data given in this example, but some
form-and-fit interface definitions contain more than the 16 types of data listed. Indexing
definitions may require angularity, waviness, and contour definitions and tolerances.

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

190

 Additional data types under the mechanical/physical heading would be:

 1. Dimensional relationships between mating equipment

 2. Force transmission across an interface

 3. Use of mechanically conductive media

 4. Placing, retaining, positioning, or physically transporting a
component by another component

 5. Shock mitigation to protect another component

 Appendix B (from ref. 5) shows a mechanical/physical drawing.
 This extensive variety of possibilities and combinations prevents assigning a standard

set of data types or level of detail to a form-and-fit interface. Each interface must be analyzed
and the necessary controlling data identified before the proper level of interface definition
and control can be achieved. This holds true for all examples given in this chapter.

 2.3.3 Software

 A software interface defines the actions required when interfacing components
that result from an interchange of information. A software interface may exist where
there is no direct electrical interface or mechanical interface between two elements.
For example, whereas an electrical ICD might define the characteristics of a digital
data bus and the protocols used to transmit data, a software interface would define
the actions taken to process the data and return the results of the process. Software
interfaces include operational sequences that involve multiple components, such as data-
processing interactions between components, timing, priority interrupts, and watchdog
timers. Controversy generally arises in determining whether these relationships are
best documented in an electrical/functional ICD, a software ICD, or a performance
requirements document. Generally, software interface definitions include:

 1. Interface communication protocol

 2. Digital signal characteristics

 3. Data transmission format, coding, timing, and updating
requirements

 4. Data and data element definition

 5. Message structure and flow

 6. Operational sequence of events

 7. Error detection and recovery procedures

 Other data types may be needed.

 2.3.4 Supplied Services

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

191

 Supplied services are those support requirements that a piece of equipment needs
to function. Supplied services are provided by an external separate source. This category
of interface can be subdivided further into electrical power, communication, fluid, and
environmental requirements. The types of data defined for these subcategories are:

 1. Electrical power interface :

 a. Phase

 b. Frequency

 c. Voltage

 d. Continuity

 e. Interrupt time

 f. Load current

 g. Demand factors for significant variations during operations

 h. Power factor

 i. Regulation

 j. Ripple

 k. Harmonics

 l. Spikes or transients

 m. Ground isolation

 n. Switching, standby, and casualty provisions

 2. Communication interface :

 a. Types of communication required between equipment

 b. Number of communication stations per communication
circuit

 c. Location of communication stations

 3. Fluid interface :

 a. Type of fluid required

 i. Gaseous

 ii. Liquid

 b. Fluid properties

 i. Pressure

 ii. Temperature

 iii. Flow rate

 iv. Purity

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

192

 v. Duty cycle

 vi. Thermal control required (e.g., fluid heat lost or gained)

 4. Environmental characteristic interface :

 a. Ambient temperature

 b. Atmospheric pressure

 c. Humidity

 d. Gaseous composition required

 e. Allowable foreign particle contents

 Other data types may be needed. Appendix D shows an example of a supplied
services interface for air-conditioning and cooling water.

 There is a lot more information in this manual, but this is just a representative example
of items to consider in an ICD, if appropriate for your project. As was said earlier, NASA has
a strong space focus and your project may not, so those elements do not apply. However, the
good descriptions of what they want should help you better understand what is needed.

 Centers for Medicare & Medicaid Services CMS eXpedited
Life Cycle (XLC)
 This document template is much more succinct than previous formats. It is presented to
show the Open System Interconnection (OSI) application layer. When your project uses this,
you might want to include this in your ICD specification.

 1.1 PURPOSE OF INTERFACE CONTROL

 Provide the purpose of the Interface Control document. For example: This Interface
Control Document (ICD) documents and tracks the necessary information required
to effectively define the <Project Name> system’s interface as well as any rules for
communicating with them in order to give the development team guidance on architecture
of the system to be developed. The purpose of this ICD is to clearly communicate all possible
inputs and outputs from the system for all potential actions whether they are internal to the
system or transparent to system users. This Interface Control is created during the Planning
and Design Phases of the project. Its intended audience is the project manager, project team,
development team, and stakeholders interested in interfacing with the system. This ICD
helps ensure compatibility between system segments and components.

 This template requires the following information:

• Interface Type

• Interface From

• Interface To

• Description of Interface

• Other Information

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

193

 For the following:

• OSI (Open System Interconnection) Application Layer

• OSI Presentation Layer

• OSI Session Layer

• OSI Transport Layer

• OSI Network Layer

• OSI Data Layer

• OSI Physical Layer

 REQUIREMENTS DOCUMENTS

 Since you are learning about interface control document formats, it is worthwhile to
introduce the concept of requirements document formats. Requirements documents,
referred to as system requirements documents , system requirements specifications ,
 functional requirements documents , project requirements documents , software
requirements documents , and many other variations on that theme, are also varied just
like the ICDs. You will not see them defined in a chapter but in Appendix B. There are
several reasons for this. One, those documents could use up an entire book with all the
templates that exist. If some people think reading about requirements is dry, imagine
how dry that book would be. Instead, you are rescued from that exposure, unless you
really need it. The most compelling reason for putting the formats in Appendix B is
that you may never write a complete requirements document. With the advent of so
many projects developed using the agile methodology, you would not present all the
requirements at once. You would just provide the ones needed for a particular sprint.
Therefore, you would not need a complete requirements document. For that major
reason, it is included only for reference when you need it. You may get some ideas for
areas of requirements to ask about, but ideally that has covered it so far.

 References
 Housing and Urban Development (HUD) System Development Methodology (SDM) .
January 2009. Release 6.06, U.S. Department of Housing and Urban Development.
Feb. 2015, http://portal.hud.gov/hudportal/documents/huddoc?id=sdm.pdf

 DoD MIL-STD 962D. 1 August 2003. Department of Defense Standard Practice:
Defense Standards Format and Content . Feb 2015, http://everyspec.com/MIL-STD/MIL-
STD-0900-1099/MIL_STD_962D_1179/

 Department of Defense. DI-SDMP-81470 Department of Defense (DoD) Interface
Standard Documents . Data Item Description, 1 August 2003, p1 to 2.

http://portal.hud.gov/hudportal/documents/huddoc?id=sdm.pdf
http://everyspec.com/MIL-STD/MIL-STD-0900-1099/MIL_STD_962D_1179/
http://everyspec.com/MIL-STD/MIL-STD-0900-1099/MIL_STD_962D_1179/

CHAPTER 7 ■ DATA INTERFACES AND DOCUMENTS

194

 Lalli, Vincent R., Kastner, Robert E. and Hartt, Henry N. Training Manual for
Elements of Interface Definition and Control, NASA Reference Publication 1370 . January
1997, p 3 to 6.

 Centers for Medicare & Medicaid Services CMS eXpedited Life Cycle (XLC) Interface
Control Document Template . Feb. 2015, www.cms.gov/Research-Statistics-Data-and-
Systems/CMS-Information-Technology/XLC/Artifacts.html

 Exercises
 Exercise 1
 If the HR record was for an international company, what variations in the names and
addresses would you need to address? You might need to conduct research on the Web to
find out. Are three names enough? Do all country use States and ZIP codes?

 Exercise 2
 In the HR record, are all the specifications discussed in the fields correct? For example,
could the street address be numbers only? Check rural addresses in Wisconsin. Are there
any other changes you should make in the data fields?

http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Artifacts.html
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Artifacts.html

195© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_8

 CHAPTER 8

 Physical Requirements

 If you are working on software, you might think that you do not need to worry about
physical requirements. Nothing could be further from the truth. On many application
projects, you will need to specify specific physical characteristics that the hardware
will need to have. In addition, there are applications that are turnkey systems . A turnkey
system is a complete system that provides not only software but also the hardware and
everything in between. It could be a stand-alone system, a LAN, or even a WAN (a group
of LANs connected together). When you have a turnkey system, you will need to define
characteristics for the hardware.

 What characteristics do you need to address? You will see that you have examined
some aspects already, but you have never completely addressed all the elements.

 You will learn about characteristics of the hardware itself and special characteristics
that computer systems need specified. Keep in mind, in some instances, you must
specify minimum values (e.g., microprocessor), maximum values (e.g., weigh no more
than 10 pounds), or a range of values (e.g., 20 to 120 degrees Centigrade). You will need
to determine which case applies to your situation, as there are no specific rules, except
use common sense. Of course, your subject-matter experts will help you, if you need it.
Naturally, if you decide to do one characteristic over the other and people disagree, they
will comment. Thus, there are checks and balances to help you.

 Physical Hardware Characteristics
 What physical characteristics should you consider for every piece of hardware? The
following list is not exhaustive, but it includes some common candidate items:

• Overall weight

• Size

• Geometric shape

• Volume

• Density

• Center of gravity

• Human portable

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

196

• Safety features

• Physical storage

• Packaging and integration constraints

• Power consumption

• Physical robustness

• Material

• Surface coefficient of friction

• Reliability

• Throughput

 Again, this list is not exhaustive. These are the most likely characteristics you
should consider, but there is no way to anticipate every unique aspect of every piece of
equipment or physical item you will work on during your career. Here you will learn how
to get to the 90 percent solution, and this should give you a foundation. Now examine
each one in more detail. Some requirements that relate to these characteristics you may
see elsewhere in this book. It demonstrates just how interrelated the characteristics of a
system are.

 Overall Weight
 Think about a radiation sensor you want to install on a manned mission to Mars. The
launch function must not only boost every gram of weight into orbit but also send it on its
way to another planet. Weight is absolutely critical in these situations. You will encounter
other situations as well elsewhere, such as one that you have already considered. Think
of the individual dosimeter. You want it worn by individual soldiers, so it should be
comparable to the weight of a wristwatch, something you are already accustomed to
doing now. So, remember this requirement:

 8-1 (5-8) The BOSS Individual Radiation Dosimeter shall
weigh no more than 4 ounces.

 Size
 You need to address the height, width, and thickness of the devices, or the radius if
spherical or cylindrical, elliptical, or any other geometric shape that is required. For
example, if you have a unit dosimeter, it may need to be installed in several different
vehicles, like an MRAP (Mine-Resistant Ambush Protected—don’t you just love the
convoluted way the military names things?) vehicle, M-1 tank, deuce-and-a-half truck,

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

197

and AH-1 helicopters (AH = Attack Helicopter), for example. Naturally, you would need to
list all the vehicles that need to house these unit radiation dose rate meters. Here we will
talk about the dimension requirements:

 8-2 The BOSS Unit Radiation Dose Rate meter shall be 10
inches high.

 8-3 The BOSS Unit Radiation Dose Rate meter shall be 4
inches wide.

 8-4 The BOSS Unit Radiation Dose Rate meter shall be 6
inches thick.

 Other elements inside the device may drive the size of the device. Back in the old
days, before light-emitting diode (LED) and liquid crystal display (LCD) monitors, tubes
were necessary for TV and computer monitors and that constrained their minimum
thickness. Radiation sensors have some similar restrictions in their minimum size.

 Geometric Shape
 What if the device will not be a standard box shape (i.e., nonrectangular)? Then you need
to specify what shape it should be. It may even be nonplanar, spherical or cylindrical,
elliptical, or any other geometric shape that is required. Think a jet’s wing. How would
you specify that? (Yes, very carefully.) You might need some graphics to represent it,
as words may be insufficient. You will get to that a bit more when you are exposed to
modeling and graphical representations later in the book.

 For now, consider the radiation sensor on the manned mission to Mars. You have
learned that all you are allowed is a particular spot on a spherical surface area, with the
sensor allowed to be no more than 2 inches thick. You should consider something like the
following:

 8-5 The BOSS Mars Radiation Dose Rate meter shall project a
square with an inner radius of 10 inches and an outer radius
of 12 inches onto the spherical surface with an angle of 30
degrees on the x- and y-axes.

 Granted, that is a little involved, but a picture will help to represent it (see Figure 8-1).

30o Projected onto the surface of the planet
6 in

5 in

 Figure 8-1. Sensing area on the surface of Mars

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

198

 Volume
 You may have situations where the three dimensions may not be as important as the total
volume. In that case, you might have something like the following:

 8-6 The BOSS Unit Radiation Dose Rate meter shall be no
larger than 30 cubic inches.

 The various constraints placed on your particular piece of hardware drive the
volume requirement.

 Density
 Do you notice how these several values, dimensions, weight, volume, density, and center
of gravity are related? Of course, they are interdependent. Thus, you will need to consider
all of them, potentially.

 In certain cases, the density affects things like ability to float in a liquid. Think of
getting a rock to float. Yes, they exist (e.g., pumice). In this case, the density needs to be
less than 1 gram per cubic centimeter.

 Assume you have a requirement for the individual dosimeter to float if it is separated
from the soldier.

 8-7 The BOSS Individual Radiation Dosimeter shall have a
density of less than 0.95 g/cm 3 .

 Center of Gravity
 For those of you who do not remember, or know, what the center of gravity is, this is
the point of the object where the weight can be concentrated for representing it in
calculations. You might think it is in the center point of all the dimensions. That may be
true if the density of the object is constant. What if it is not? Think of a rod. Assume the
density of this rod is 2 Kg/M 3 on the left half and 4 Kg/M 3 on the right half. If you spun it
around the middle point, it would wobble oddly because it is not spinning around the
center of gravity. Take two eggs. Hard boil one and let it cool. Now spin each one. Do
they spin the same? No. One has the yolk move to from one spot to another so it wobbles,
while the hard-boiled one spins more evenly. Why? The hard-boiled one has a pretty
uniform density, whereas the raw egg does not.

 How does density affect the device? That depends on if it has to move in certain
ways. Think of the jet mentioned earlier. Would you want the center of gravity on one of
the wings? No, this would cause disastrous effects on the aircraft. Therefore, you should
have something like this:

 8-8 The XF-36 jet fighter shall have its center of gravity along
the centerline of the fuselage.

 This will not be the only requirement related to this, but this is just to illustrate one
example here.

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

199

 Human Portable
 Is this device something that a person will need to carry? If so, that limits the size and
weight of a device.

 ■ Real-World Note I worked with someone who was more than 250 pounds and 6 foot 4
inches tall. He developed a prototype of what he thought was man-portable. His device was
70 pounds. He neglected to take into account that some of the people who may carry this
device themselves might be barely over 100 pounds. His prototype was impractical.

 Guidance for carrying equipment for extended periods of time (like backpacking)
is to have no more than a third of your weight. Therefore, if you weigh 150 pounds, you
should carry only 50 pounds total. The military does not always follow that guidance,
sometimes because of mission necessity.

 Assume the following:

 8-9 DRAFT The BOSS Unit Radiation Dosimeter shall weigh
no more than forty pounds.

 This is much higher than it should be, but it means that an individual of 120 pounds
could carry it. It also assumes that they would carry nothing else. If however, their
mission profile required them to carry 20 pounds of personal gear, food, and water, then
the requirement will be as follows:

 8-10 The BOSS Unit Radiation Dosimeter shall weigh no more
than 20 pounds.

 This device is still too large, coupled with the need for the military to carry more than
20 pounds of gear routinely. The weight they must carry now includes the armor they
wear to protect against both firepower and explosives.

 Safety Features
 What particular items should you consider? Maybe you do not want any sharp edges that
could hurt someone or could catch on items in its environment.

 ■ Real-World Note I remember when I was a teenager, a group of us went on canoe
trips. One trip, I carried a cast iron Dutch oven packed incorrectly. I had the legs of the oven
pressed against my back, causing some discomfort until I repacked it. Had I fallen on it,
those legs would have certainly injured me—bruising me at a minimum or even puncturing
me; it might even have broken my bones. I should have unpacked and repacked it so I was
not exposed to potential injury, or I should have added significant padding to significantly
reduce the risk of injury.

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

200

 You must consider any aspect that poses a risk to safety, such as bruising, puncture, bone
breakage, electrical discharge, blinding, deafening, or any other damage to life, limb, or even
property. Think of mounting a machine gun on the fuselage of a biplane that shot through
the propeller. If the gun fired at the wrong time, it would damage the propeller. What about
radiation in space such that the satellite in orbit around Earth that must be exposed to that
radiation? Also, what about the heat and cold extremes that same satellite would experience
traveling in sunlight or during darkness. What particular items should you consider? All
factors that could damage anything need to be considered.

 Here is the safety features example:

 8-11 The BOSS Unit Radiation Dosimeter shall not cause any
electrical discharge to the outside of the device to prevent
someone holding the device from being shocked.

 Storage
 Does your device need any special storage when waiting for shipment? An article was
written about the new main battle tanks developed during the 1970s that were left out in the
elements of Detroit with no protection from the northern winters. Some of the pieces may
not have survived as well as originally anticipated, based on local news media reports.

 8-12 The BOSS Unit Radiation Dosimeter shall be stored
inside a warehouse so that it is not exposed to inclement
weather.

 Inclement weather may be imprecise. For this exercise, you should assume that a
definition was provided earlier in the set of requirements or a glossary that defined what
this is. Ideally, it is not raining or snowing inside. As an aside, the building that housed
the space shuttle before launch actually had clouds form inside of it.

 Packaging, Cooling, Heating, and Integration Constraints
 Think of what you might have to do for digital, analog, and power circuits. Think of a
satellite, how it is heated when exposed to the sun, and how it is cooled to near absolute
zero when in the dark. What kind of insulation is required? How is it heated in the dark
and cooled in the sunlight?

 These are very specialized requirements, so here you see a modified a statement
found in the NASA-GSFC Nano-Satellite Technology Development, SSC98-VI-5, document:

 8-13 Since the top and bottom of the BOSS spacecraft are
insulated, the inside of the cylindrical solar array shall not be
insulated allowing internal heat transfer between the internal
equipment and the solar array.

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

201

 Again, this is an example of a specialized situation. While you may not be fully
experienced in this technology, as you will be in some cases, you get the gist of the
process. (GSFC means Goddard Space Flight Center.) However, if you are developing
equipment that operates wherever the U.S. Army might operate from the heat of the
desert to the colds of Alaska, hot and cold are environments that must be considered.
Thus, while the satellite requirement is more severe, it is really only a wider range, so the
requirement may not be so specialized after all.

 Power Consumption
 What is the power consumption for your hardware? Think of a trip to the Kuiper belt,
about 2.8 to 5.1 billion miles away. Even assuming near escape velocity from the solar
system, a spacecraft would travel for four to seven years at almost 94,000 miles an hour.
Think of the power consumption you must have for that long of a trip (assuming the
system achieves the necessary velocity). You need to have the ability to send messages
on a periodic basis. What power do you need to transmit from there? That will drive how
much power consumption you must have.

 Next, consider simpler systems. You might have several subsystems within your
entire system, you will need to consider the power consumption of each, and you will
need to consider whether they work in different modes, where they may consume
different amounts for the various modes. You will need a good mission profile to estimate
the frequency of each mode.

 For this example, consider one system only.

 8-14 The BOSS Individual Radiation Dosimeter shall consume
0.01 watts per exposure.

 The reason for this type of requirement might be driven by the small battery that
might have to last 60 days without recharging or replacement, or some other constraint
that the mission places on this. This also indicates that requirements can have some
interdependency—in this case, power consumption versus the life of the energy source.

 Material
 Your environment may put certain constraints on the materials. You might need to
specify whether it is plastic, metal, ceramic, or some special material depending on your
situation. What if it needs to operate in the containment dome of a nuclear power plant?
What kinds of material would you need for nuclear hardening? Think of a satellite in orbit
that is exposed to significant changes in temperatures, micro-meteors, and solar flares, to
name a few. There are only certain materials built to survive that.

 For this example, you should consider something a little less severe.

 8-15 The BOSS Individual Radiation Dosimeter material shall
cause no reaction when exposed to human skin.

 If, however, the specific compound causes most soldiers to break out in a rash, the
soldiers would be inclined not to wear it and possibly forget it or lose it, defeating the
purpose of having it .

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

202

 Surface Coefficient of Friction
 If you are going to have something in motion, you will want to define what the friction is
to minimize the impact to the speed, unless you are in outer space, where there is no air
to worry about. (Of course, you have other problems, like micro-meteors.)

 Of course, there are some instances where you want surface friction. What if your
tires have the tread worn off and you are driving in a heavy rainstorm? You will have a
hard time gripping the road. Therefore, the amount of surface coefficient of friction is
important.

 8-16 The XF-36 jet fighter tires on its landing gear shall have
surface coefficient of friction of 0.7 on dry pavement.

 Of course, you would have to define the other coefficients for other conditions, such
as wet, rainy, snow, and ice.

 Physical Robustness
 Physical robustness includes the steps taken to protect your system. Think of the plastic
protector you place over the screen of your phone so it doesn’t get scratched. If you wear
eyeglasses, do you put a coating on it to protect it from scratching, or even to protect
against intense light? Is the watch you wear needed for diving? Then you need it to be
waterproof. Or depending on the depth you will dive, you may need it strengthened
against certain pressure. What kinds of things must you protect it against? Then identify
those elements and write requirements to address them.

 If you do need them, find the resident expert to help you craft good requirements as
the requirements are very environment dependent.

 Reliability
 This was talked about in Chapter 5 , so we will not discuss it here. You learned about
what makes a system reliable, hardware and software, and the learning measurements
of reliability. This will not be repeated here; just remember that it does relate to physical
characteristics.

 Throughput
 You will see this in the “ Throughput Characteristics ” section in this chapter, not here. The
reason for this is because of the importance of throughput.

 Do these physical characteristics apply to computer systems? If you are talking about
the “box” that contains the computer components, then yes. However, software and
operating systems have additional characteristics that you need to consider. This will be
presented next.

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

203

 Physical Computer Characteristics
 Remember when every time you picked up a box that contained a software program,
you saw somewhere on the box a list of minimum requirements describing what your
computer needed to have in order to run the application? Here is a list of physical
characteristics that you may need to specify. You should consider some or all of the
following characteristics:

• On what microprocessor or microprocessors can the software run?

• How much physical memory (RAM—in this case, random access
memory) must you have at a minimum for it to work?

• How much disk storage capacity must you have at a minimum for
it to work?

• What devices can it run on? Laptops, desktops, phones, tablets?

• Is it designed to run on a stand-alone machine, or must it work
attached to a server or even connected to the Internet (think of
World of Warcraft)?

• Must this run on a network ? If yes, then:

• What kinds are supported?

• LAN?

• WAN?

• Storage area network (SAN)?

• Metropolitan area network (MAN)?

• Wireless or wired?

• If this is client-server, what is on the client versus what is on the
server?

 For a commercial application you could find on your desk, you might find something
like this requirement for the sample application:

 8-17 The BOSS Application shall require the following
parameters to run on a system:

• 500 MHz or faster processer

• 256 MB of RAM, with 512 MB recommended

• 3.0 GB available disk space

• 1024 by 576 resolution monitor or higher

• Window 7 or Windows Server 2008 or higher

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

204

 Of course, your requirements will vary, but you get the idea. Plus this gets very dated
quickly, as it is just an example for a snapshot in time. Do not criticize how antiquated it
may be. The original requirement could be written some years before. However, it does
say higher, so it allows for updated requirements.

 Throughput Characteristics
 In this section, we’ll look at the concepts of throughput and latency .

 Throughput
 Margaret Rouse, in her “throughput” definition on Tech Target’s Search Networking,
defines throughput as the amount of work that a computer can do in a given time
period, in computer technology. In data transmission, throughput is the amount of data
moved successfully from one place to another in a given time period. When discussing
throughput, delays in the passing of such information are important and need to be
addressed. This is called latency and is present as a subsection.

 The Open Process Framework (OPF) web site’s “Throughput Requirements” article
gives some of the following examples of throughput requirements:

• “The application shall be able to successfully process a minimum
of 150,000 customer orders per day including credit card
authorizations under average loads.”

• “The missile avionics system shall update the position of the
ailerons 20 times a second.”

• “At least 98% of the time, the application shall be able to
successfully display the results of a keyword search in no more
than 4 seconds.”

 Remember the discussion of performance in Chapter 4 ; you saw some examples,
like this:

 8-18 (4-32) The FBI BOSS Records Management Search
Function shall return the results within 4 seconds, 80% of
the time.

 8-19 (4-41) The FBI BOSS Records Management Search
Function shall return the results within 10 seconds, 80% of the
time when there are 100 searches initiated within 10 minutes.

 These examples show how a given computer can perform; the latter talks about
specific transactions. Also, notice that you were provided these examples in different
functional areas or topics elsewhere in your requirements areas. This demonstrates
that the distinction between boundaries is blurry. It also helps to reiterate that there
is no one way to organize the data. Do whatever way works best for you, unless
your organization has a specific structure or has it mandated to you by a governing
organization like the DoD.

http://dx.doi.org/10.1007/978-1-4842-2099-3_4

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

205

 Back to throughput: you will have more requirements besides the areas talked about
previously. You will need to address data transmission. This has been done as well with
the following example from earlier:

 8-20 (5-50) The BOSS Unit Radiation Dosimeter shall have
the ability to download up to 1000 transactions to the BOSS
Dosimetry Archive Laptop in 5 minutes.

 IBM, on its Transaction Processing Facility (TPF) Product Information Center web
site, has an article, “System throughput (messages per second),” that defines the number
of messages processed over a given interval of time as system throughput. It goes on
to say that a business enterprise must identify its projected peak message rate in order
to assess whether the system is an appropriate solution. This definition matches the
definition in this text and is an important approach to take when defining throughput.

 You need to emphasize system throughput for networks. This is an important aspect
of WAN and LAN needs. Think of a regional company that does many transactions on a
daily basis. Now look at a tool reseller. The corporate headquarters (HQ) buys the tools
wholesale from the manufacturers, and each remote location sells the tools to their local
customers.

 You need to know the size of each record that is affected with each transaction.
Assume that 1,000 bytes are captured with each buy and sell. It is possible that large
wholesale record sizes are different from selling one tool or a small purchase. You will
have to determine that for your situation. However, for simplicity of the example, you will
use 1,000 for each.

 In this tool example, assume you have 2,400 different tools in stock. On a daily basis,
your company restocks 20 tools. Each of 50 sites averages 250 sales a day.

 That works out that each LAN at the regional office has 250 sales by 1,000 bytes per
sale, or 250,000 bytes sent in.

 To get frequency, you need the time aspect also. If each transaction is when the
sale is made, then, through the course of nine hours, that is 9 hours by 60 minutes by 60
seconds, or 32,400 seconds. Divide that into 250,000 bytes. That works out to 7.72 bytes
per second. Not a very strenuous need.

 Now you need to see how much is coming to the BOSS headquarters, the central
point of the WAN; 50 times that 7.72 bytes per second is 385.80 bytes per second.

 However, what if all the work is sent at 4 p.m. over the course of one hour? The same
calculation gives 69.44 bytes per second per office and 3,472.22 bytes per second at HQ.
Still that is not a significant value.

 What if they were all sent within one minute at 4 p.m.? That gives 4,166.67 bytes
per second for each office and 208,333.33 bytes per second. Now you are getting some
throughput. What if this was in Southern Africa and you had only 64 Kbps lines? Would
that be practical? You say yes, because each line going from the office is less than 64 Kbps.
That is true, but you have only one 64 Kbps line coming into the central server. Therefore,
it does not work. Now you see where the issue might come in.

 This also indicates that you need to see what peak throughput needs are. If HQ
mandates the 4 p.m. load, then you must consider that approach. Alternatively, think of
an eBay or Amazon amount of throughput. Then you have to figure out what times are
peak times. Are they weekday normal working hours? Are they after work? How much
does the average transactions go up?

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

206

 So, what do you write for the requirements ? For your situation, you should consider
the following:

 8-21 The BOSS Tools Transaction Function at each regional
office shall transmit 250 sales by 1,000 bytes per transaction
daily throughout the day when the transaction occurs.

 8-22 The BOSS Tools Transaction Function at the central
office shall receive all regional office sales throughout the day
when the transaction are transmitted.

 You could have instead presented this as the actual transmission rates. However,
if the sales force doubles or triples the number of tools or through changes in the sales
workforce quadruples the number of sales per day by each regional office, it is much
easier to update your values rather than recalculating the transmission rates each time.
In addition, the values are not necessarily clear to everyone reviewing it to determine
whether it is correct just by looking at the following requirement:

 8-23 DRAFT The BOSS Tools Transaction Function at each
regional office shall transmit 69.44 bytes per second per office
per day.

 While the information may be correct, how would a person know that by looking at
it? This reiterates the artistry of requirements definition. There are multiple ways to craft a
statement, but not all of them are the best way. Judgment comes into play.

 To emphasize how important throughput is, we expanded on the topic here because of its
importance. One lesson to remember is that one of the most challenging areas in development
of systems is the connection between systems. The throughput necessary to support those
connections is instrumental in the successfully communications between them.

 Latency
 As was introduced in this throughput section, you need to address the delays inherent
in the movement of this data. It is important to define whether there are stakeholder
restrictions to latency.

 Andrew Heim defines latency as the amount of time it takes to complete an
operation, according to his white paper “Make it Faster: More Throughput or Less
Latency?” You must decide what units of measure time are most useful: milliseconds,
microseconds, or nanoseconds.

 You saw earlier when you examined search results, where latency was addressed,
even though it was not represented in requirements there. Here you should have
something like the following:

 8-18 The FBI BOSS Records Management Search Function
shall return the results within 4 seconds, 80% of the time.

 8-19 The FBI BOSS Records Management Search Function
shall return the results within 10 seconds, 80% of the time
when there are 100 searches initiated within 10 minutes.

CHAPTER 8 ■ PHYSICAL REQUIREMENTS

207

 Latency may not be an issue for most cases. Experience on a particular system
where, because of the data modeling of the system and an extra commercial off-the-
shelf (COTS) package that added a layer between the user interface and the database,
the system’s query results could take up to 15 minutes to be returned. If this was a rare
occasion, once a month for one or two users, that might be acceptable. However, it
happened almost daily for the majority of the users. That latency was unacceptable.
Therefore, latency was important in the design of the next system.

 Also, think about a nuclear power plant. If an error condition occurred, would you
want the response to the operator delayed by seconds or even minutes? No, you want the
latency to be almost nonexistent in the situation.

 Therefore, determine the latency drivers in your system. The web site article
referenced for the previous definition spends some time discussing the comparison and
contrast between throughput and latency. If you are going to work on measurement and
control systems, you might want to read it.

 References
 Panneta, Peter V. “NASA-GSFC Nano-Satellite Technology Development, SSC98-VI-5.”

 12 th Annual AIAA/USU Conference on Small Satellites . Feb 2015, http://
digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2235&context=smallsat

 Rouse, Margaret. “throughput” (definition). Tech Target: Search Networking . Feb.
2015, http://searchnetworking.techtarget.com/definition/throughput

 “Throughput Requirements.” 27 June 2005. Open Process Framework (OPF) www.
opfro.org/index.html?Components/WorkProducts/RequirementsSet/Requirements/
ThroughputRequirements.html~Contents

 “System throughput (messages per second).” IBM TPF Product Information Center.
Feb. 2015, www-01.ibm.com/support/knowledgecenter/SSB23S_1.1.0.9/com.ibm.ztpf-
ztpfdf.doc_put.09/gtpc3/c3thru.html?cp=SSB23S_1.1.0.9%2F0-1-0-0-6-2

 Heim, Andrew. “Make it Faster: More Throughput or Less Latency?” Feb 25, 2014.
National Instruments. Feb. 2015, www.ni.com/white-paper/14990/en/

 Exercises
 Exercise 1
 Drawing on the “Physical Hardware Characteristics” section of this chapter, write a good
mission profile to describe a medic assigned to a unit during a field exercise who needs to
carry the BOSS Unit Radiation Dosimeter.

 Exercise 2
 Look at the performance requirements 4-119 through 4-139 in Chapter 4 . How many of
those 21 meet the definitions in A) and B) here?

 A. Throughput is the amount of work that a computer can do in a
given time period, in computer technology.

 B. In data transmission, throughput is the amount of data moved
successfully from one place to another in a given time period.

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2235&context=smallsat
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2235&context=smallsat
http://searchnetworking.techtarget.com/definition/throughput
http://www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/Requirements/ThroughputRequirements.html~Contents
http://www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/Requirements/ThroughputRequirements.html~Contents
http://www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/Requirements/ThroughputRequirements.html~Contents
http://www.ni.com/white-paper/14990/en/
http://dx.doi.org/10.1007/978-1-4842-2099-3_4

 PART III

 Cradle to Grave
Requirements

211© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_9

 CHAPTER 9

 How to Collect Requirements

 The last eight chapters have spent extensive time defining what requirements to collect.
In this chapter, you will learn how to collect them. The amount of time devoted to this
approach does not diminish the importance of collecting all the requirements for a
system. This chapter will spend a good deal on how best to do this. The simple answer says
perform whatever works. Ah, there’s the rub—finding out what way works. Dissertations
have been written on this. At its foundation, you have to ask the stakeholders.

 How you do this is affected by your organizational structure. Is it a larger
organization that has a process established and you are one of several requirements
engineers? If so, you are lucky. Not only do you not need to help define good processes,
but also you are fortunate that you will have experienced REs to help you.

 Alternatively, are you in a small team where you are the only RE and you do not
have defined processes? This is the other end of the spectrum. You will be challenged to
not only help set up the requirements team but run it as well. This book may not provide
everything you need, but it should be a good start.

 You are likely to be somewhere between the two ends of the spectrum.
 More importantly is where you are in the requirements process. Are you at the very

beginning of the project, where you are just beginning the requirements process? If so,
you will be picking up someone else’s work. In that case, you will not be able to influence
or improve the process much as they are likely established and sometimes difficult to
change—people can resist change at many levels. On the other hand, coming into a project
that is underway, you do not have to try to set requirements processes in place, so that
actually can make your job easier. You just need to follow what they currently perform.

 ■ Note Usually, in my career, I have come in during the definition process, and sometimes
even in the operations and maintenance phase. It is likely you will experience similar
exposure during your career.

 I will introduce the concept of eliciting or collecting requirements. Specifically, I will
talk about techniques to collect these requirements from questionnaires, group meetings,
interviewing, following people, doing document analysis, prototyping, use cases, doing
the work yourself, and reverse engineering. Finally, I will talk about analyzing the
problems with elicitation.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

212

 Elicitation
 What does elicitation / collecting mean in the requirements context?

 Merriam-Webster’s Collegiate Dictionary defines elicit as follows (for requirements
engineering particular purposes): “to call forth or draw out (as information or a
response).” 1 Elicitation is the noun of the verb elicit ; it is the act of eliciting, or drawing
forth the information from your stakeholders.

 Merriam-Webster defines collect as follows: “to get (things) from different places and
bring them together.”

 There is some discussion in the requirements engineering industry regarding the use of
the word collection versus elicitation . Some say that you cannot collect requirements like you
can collect seashells on the beach, just by wandering around and picking them up when you
see them. They will go on about how much harder requirements are than seashells to find.
They may have a point, emphasizing the drawing forth of the requirements.

 ■ Note In most of my career, however, I have heard (and used) the word collect rather
than elicit .

 Purists would insist on using elicitation over collection . The word choice is left to
you; just know that you may have to be flexible should your audience (management,
stakeholders, or users) prefer one definition over the other. Just a minor point, but it
reinforces use of jargon discussed earlier.

 Some sources recommend you use the term gathering instead of either of the other
two. Merriam-Webster’s Collegiate Dictionary defines gather as follows: “to choose and
collect (things)” and “to get or take (things) from different people or places and bring
them together.” 2

 This last one seems to be closer to the collecting definition, but it is another one you can
use. The objection by certain purists is that the collect and gather definitions do not transform
the user statements into true requirements, which a good RE must do. The reality of this is that
in most cases, you are not massaging the statements into requirements in the initial meeting
but just gathering or collecting the users’ statements. You perform the analysis later. After
that transformation, then you get back with the users to validate what they said is captured
correctly. The use of gather or collect is valid in the initial meeting phase.

 What is key here is the communications of the process to the stakeholders. If they
understand gathering or collecting better than eliciting, then use their word. Whatever
terminology you employ, you should avoid giving the impression that the stakeholders
are reluctant to give it to you. The truth is, it may be hard to get it from them, but you
don’t tell them that. You are trying to gain their trust and respect. Hinting at difficulty
from them does not ingratiate you with them. Keep that in mind in the next section

 1 By permission. From Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by
Merriam-Webster, Inc. (www.merriam-webster.com/)
 2 By permission. From Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by
Merriam-Webster, Inc. (www.merriam-webster.com/)

http://www.merriam-webster.com/
http://www.merriam-webster.com/

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

213

when you learn ways to extract requirements from the various sources. (REs do not
define extract as have other people, as that hints at something like pulling teeth without
painkillers—an analogy you do not want to make.)

 The next section of this chapter will spend a significant amount of time addressing
the various techniques to collect/elicit/gather requirements.

 Techniques of Elicitation
 Which one is the best? The best way to answer that is— it depends . On what? It depends
on your situation, your environment, your experience, your stakeholders’ experience,
your judgment, your management commitment, and your timeline to capture all the
requirements. The correct answer is whatever techniques allow you to capture of
them—vis-à-vis a combination of the techniques. It will likely change with time, different
projects, different organization, and everyone’s needs. It is difficult to answer because you
must apply judgment to each project. The net result will likely be that you may not collect
them all, with only a few techniques, hence the combination.

 Elicitation Basics
 Knowing you may be likely to miss some requirements, through no fault of you or the
stakeholders, recall from Chapters 4 and 5 that the function and nonfunctional lists give
you clues to topics you should ask about and investigate. When a user or stakeholder says
that they do not need a particular aspect that is useful information too, as you have now
bounded the problem. Remember, the boundary of a project is important so you know
what to include and what to exclude.

 Before you look at specific techniques, you need to consider a good categorization of
the requirement sources.

 Requirements Sources
 Before you look at the techniques in the upcoming table, you need to consider a good
categorization. You should do so with the following requirement sources. Think of them
as people, paper, and projects (as a simple way to remember them); documents may be
soft copy, so to keep the alliteration alive, use pixels then.

• Stakeholders

• Documents

• System in operation

 These three sources come from the book Requirements Engineering Fundamentals
(Rocky Nook Computing 2011), by Klaus Pohl and Chris Rupp.

http://dx.doi.org/10.1007/978-1-4842-2099-3_4
http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

214

 Stakeholders
 These are the people and organizations that directly or indirectly affect the system
requirements. You will spend the most time collecting requirements with them. In some
cases, you may collect more candidate requirements in documents, but that will take less
time to do so. That will become clear when you examine each technique.

 ■ Note Just because one or more techniques takes more time does not diminish the
importance or goodness of these requirements. Some techniques take longer by their nature.

 Documents
 These documents contain information important to the system that can contain
requirements. Legacy system requirements documents, concepts of operations, policy
documents, architecture documents, or anything that influences the system in question
are important.

 System in Operation
 This could be the legacy systems (not always fully automated), predecessor system, or
even competing systems; these all could influence what requirements apply to the system
in question.

 Next, we will introduce the technique overview mentioned earlier.

 An Overview of Elicitation Techniques
 During my career, I have used a wide range of techniques. Table 9-1 lists the types of
techniques for elicitation I have used. Different REs and organizations approach this
differently. To illustrate the different approaches, I have aggregated the recommended
techniques from several reputable resources in Table 9-1 : articles by Tom Mochal, Tyner
Blain, and from the Eclipse Process Framework (EPF) requirements guidelines. All three
of these resources provide reinforcement to my list. The indented techniques are the
specific values specified in four sources, grouped in the numbered technique, to show the
commonality. For example, under group meetings, the six different approaches qualify
for this technique, but each is a variant that will be discussed. (See the “References”
section later in the chapter for the complete citations.)

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

215

 Table 9-1. Elicitation Techniques by Requirement Sources

 Requirement Sources and
Elicitation techniques

 Mochal Blain EPF

 Stakeholders

 1. Questionnaires/surveys Yes Yes Yes

 2. Group meetings

 Facilitated sessions Yes

 Conduct workshops Yes

 Focus group Yes

 Brainstorming Yes Yes Yes

 Requirements workshop Yes

 Joint application development (JAD) Yes

 3. Interviewing

 Interviewing Yes

 Interview users Yes

 Group interviews Yes

 One-on-one interviews Yes

 Study improvements made by users Yes

 Look at unintended uses Yes

 Talk to support teams Yes

 4. Following people around/observation Yes Yes

 5. Models

 Modeling

 Modeling in the agile methodology

 Storyboards

 State transition diagrams

 6. Use cases/scenarios/user stories Yes

 Documents

 7. Document analysis

 Document analysis Yes

 Interface analysis Yes

 Study analogous systems Yes

 Examine suggestions, RFCs, and problem reports Yes

 8. RFPs Yes

 System in Operation/Miscellaneous

(continued)

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

216

 Now that we have introduced the elicitation techniques in Table 9-1 , you will learn
about each technique. While this chapter tries to be exhaustive, some of the techniques you
are likely to experience may be more eclectic and targeted to specific organizations. When
such more narrowly focused techniques are presented, that will be highlighted to you.

 Now we’ll examine each of the 12 techniques, and I will include advantages and
disadvantages where appropriate.

 Questionnaires/Surveys
 Questionnaires and surveys are designed for large user populations ranging from dozens
to thousands, where meeting with all of them or interviewing them would be difficult
to impossible. You can use these two basic formats. With a series of questions that have
true/false or multiple-choice questions, you will get only the information you ask for.
As part of the multiple-choice questions, they could include ratings such as “strongly
agree,” “somewhat agree,” “neither agree nor disagree,” “somewhat disagree,” or “strongly
disagree.” You should ask how often certain tasks occur and provide selections to choose.
This will help you decide which tasks are higher priority based on usage. You will also
need to find out what drives the need. Ask if it is legal or policy driven, or the only way to
gather the information the user needs.

 This means you will get no deviation from the question, where other requirements
may be lurking. Without the ability to probe for more information, you may miss some
requirements. In addition, you must garner a significant amount of information about the
system in question already before you can develop the questions.

 Clearly, this option is necessary for the larger end of the spectrum of total users and/
or with users in remote locations. If instead you opt for the open-ended question, where
you get more information, you ideally capture those outlying requirements you might
otherwise miss. However, if you have only open-ended questions like the following, you
will not be able to categorize and group answers easily:

 What works well with the current Search function?

 What does not work well with the current Search function?

 If you have hundreds or thousands of users, how long would it take to analyze these
results, especially if you have dozens to hundreds question? It would probably take a very
prohibitively large amount of time.

Table 9-1. (continued)

 Requirement Sources and
Elicitation techniques

 Mochal Blain EPF

 9. Prototyping Yes Yes Yes

 10. Work in the target environment Yes

 11. Reverse engineering Yes

 12. Tools

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

217

 In many cases, you may combine the two techniques, where most questions would
be true or false and multiple choices, with a small (manageable) number of open-ended
questions to increase the chances of catching those outlying requirements. Also, perhaps
the preliminary information gathering can help you focus some open-ended questions
such that they are very specific and thus not unmanageably open. The larger the
population, the fewer open-ended questions.

 One aspect you could ask at the end is if the user would be willing to answer a few
additional questions one on one (face to face, e-mail, phone) to refine some answers.
This is more likely with the open-ended requirements.

 This works well for large populations of users spread over a large geographic
region, and the system is quite consistent. It will not work if the system has a broad set of
functionality that is not consistent everywhere.

 Given the preparation time for this technique, you should probably use it in
conjunction with other elicitation prior to the preparation of the questionnaire/survey.

 Group Meetings
 The meetings discussed in this section are different from interviews, which will be
discussed in more detail in the next section. Group meetings have a slightly different
structure than the open-ended questions of an interview. They are as follows:

• Facilitated sessions

• Workshops

• Focus groups

• Brainstorming sessions

• Requirements workshops

• Joint application development (JAD)

 Who is invited to group meetings? Database administrators (DBAs) are different
from normal users and different from report specialists, research specialists, system
managers, access control, HR, payroll, and so on. Since you may be working with a variety
of different people and roles, you may not include everyone in every meeting and have
some meetings that are more specific to particular groups. This way you get requirements
that affect specific users that do not affect others significantly. Part of the reason for this
is because most people who are not part of a particular group will not participate in the
discussion of those specific roles, and they usually wind up sitting there doing nothing. By
having specialized meetings, you optimize everyone’s time.

 Group sessions work well when you need to address more people, and having
multiple people helps encourage discussions and clarifications.

 Facilitated Session
 TechRepublic defines a facilitated session as a group (five or more) for a common
purpose. This approach is faster than if you were to interview each user separately. By
this definition, it could belong in the interview section. It is presented here because of the
source’s definition.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

218

 Focus Group
 A Guide to the Business Analysis Book of Knowledge (Third Edition, IIBA 2015), also called
the BABOK Guide, defines a focus group as a gathering of people who are representative
of the users or customers of a product to get feedback. You can gather feedback about
needs, opportunities, and problems to identify requirements, or you can gather feedback
to validate and refine already elicited requirements. This type of meeting happens quite
often especially if you cannot easily call together a larger group of users given the size or
amount of time that can be devoted to the effort.

 Joint Application Development /Requirements Workshop
 A JAD, sometime called a requirements workshop , is a meeting to collect business
requirements many times associated with a prototyping development methodology. JADs
usually meet until the session objectives are completed, sometimes taking two to five
days. For a requirements JAD session, the participants stay in session until you document
a complete set of requirements and the stakeholders agree. Sometimes, you may create
domain-model artifacts (like static diagrams and activity diagrams) to facilitate this
process. You will examine these models in Chapter 12 , not here .

 For some meetings, you may want someone who runs the meeting and another
who captures the data provided (aka scribe). The reason for this is that the facilitator can
concentrate on running the meeting and keeping it under control. You will find that it is
difficult to both run the meeting and capture all the notes from the discussion.

 The biggest challenge, even though JADs/workshops can be very effective, is getting
people to commit to this approach. Asking many people to stop doing their day-to-day
job for days is asking a great deal. It may be one of the fewest used elicitation techniques
because of this. It is strongly recommend that you do this away from the normal office
and do not allow outside phones to interrupt the workshop. Some crisis may arise that
may cause someone to stop participating. However, if people cannot get onto the network
or check their voice mail at every break, you can have breaks end on time. Some people
recommend that you have a workshop at an offsite location where people do not go home
at night in order to encourage additional discussion among the group and so people are
less likely to get distracted. This happens even less often than the workshops themselves,
again from both a cost and time investment. This is something you need to consider.

 For any type of elicitation meeting, not just JADs, you need to keep people on task,
especially if the schedule is tight. Some groups may wander a bit on the topic and that
may be OK, but it is a judgment call as to how long and how often it happens. However,
maintaining focus is critical to accomplishing the goals and not losing participant focus.
It is frustrating to devote time to this sort of effort and watch the conversation wander all
over the place.

 Support Teams
 EPF recommends talking to support teams. This is not a new kind of meeting, but you
want to meet with these types of people to talk separately from your general system users.
You will have to decide whether this meeting is just an interview session (which will be
presented shortly) or whether it is one of the other meetings that have been discussed in

http://dx.doi.org/10.1007/978-1-4842-2099-3_12

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

219

this section. The help desk, the system monitoring, system auditors, trainers, and even
DBAs and those who deploy the system can be candidates for these meetings. Remember
when these types were talked about at the beginning of this section?

 One reason to meet with these people separately is that the other users may not care
about one group’s needs. For example, someone who audits the system for security reasons
does not care about what the help desk needs, and people monitoring the system will not
have the same needs as those who deploy the system. In fact, if some of these groups meet
together, they may argue that other people’s needs are wrong because they are not theirs.
Hypothetically, auditors say that people monitoring the system for availability takes away
from the audit function that collects data on who accesses the system and therefore system
monitoring should be eliminated. You want to avoid such discussions. While they may not
always happen, they can occur, and you want to mitigate the likelihood of them.

 While the types of people and their associated needs may be unique to their
responsibilities, the approaches to gather them are virtually identical to any user, such
as interviewing them for their needs. Many times, their needs have been consistent over
time, and they make an excellent start point by describing them. Additionally, look for the
things they would like to have but do not. The next section discusses a good technique to
support these user types.

 Brainstorming
 Last among the group meeting types is brainstorming . This is one of the more free-form
and, frankly, fun approaches for eliciting requirements—well, at least for the ideas. The
requirements come later.

 The purpose of the session is to come up with areas that people may not have
considered-. Here are steps to consider for the brainstorming session:

 1. For each session, define the particular topic to explore.

 2. Let the people identify as many ideas as possible.

 3. Do not be limited by known technology, budget constraints,
security restrictions, policies, and so on.

 4. Do not criticize the goodness of ideas or debate whether they
are practical.

 5. Once all the ideas are captured, then refine and combine
them (that’s your job) to get joint agreement.

 ■ Real-World Note During a machine learning session, I also did a gap analysis where
I researched topics on the Internet and came up with additional ideas that the users did
not consider. I presented my suggestions (which we reviewed jointly), refined them, and
included them with a final set of requirements.

 This brainstorming process can be a precursor to prototyping . Prototyping is
trying various approaches, especially dealing with how something may look on the
screen for software. This way, you can experiment with some of the ideas generated

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

220

from brainstorming. You may want to prioritize the ideas collected, so you may better
understand which may be the most important to consider. If the users say that something
really works badly, that is something to look at first potentially.

 Even though brainstorming is designed to stretch thinking outside normal silos or
constraints, sometimes it doesn’t capture everything. This reinforces that you should do
the preliminary research as described previously. Also, to help fill any gaps, you might
want to consider other techniques to find all their needs, as in this next section.

 Interviewing
 This is the most important and most common method for eliciting requirements. It is the
most important because you are getting the information directly from those who use the
system on a regular basis. They will know it better than almost everyone else will. Besides
being the most employed technique because of its importance, it is also the most time
intensive. You will get some of the best information as you hear the needs directly from
the users, and you have the best opportunity for delving into details as needed. It can also
take more time, so depending on your timeline, you may have to target which users need
interviewing.

 The following are things to consider for running an interview:

• The number of people to interview

• The format of the interview (in-person, telephone,
videoconference, or online)

• Segregating by user role

• Conducting the interview

• Items that enhance the interview

 Size of Interviews Vary
 You can interview users either one on one or in small groups. Several factors drive you to
one or the other. The number of users may be very small, so only one may be available (e.g.,
a database administrator). If there are only two or three, you may get the chance to talk
with only one of them. Alternatively, management may give up only one person from an
organization to talk with you because the manager cannot afford to give up more time. Other
times, you have the ability to talk with more than one person in a particular part of an office.

 What is the ideal number for a group interview? Two to four is very good because
you do not have too many people talking at once, and the people probably have similar
responsibilities. However, as mentioned, you rarely have the choice. If you have five or six,
that is workable. As you get larger, people can sometimes feel like they are wasting time.
Why? With only one person talking at a time, that means everyone else is sitting there
essentially doing nothing. If you have 12 people, up to 10 people may not be engaged.
Also, in larger groups, some folks will tend to be reticent and contributions can be lost.
Therefore, the number of people is a balancing act. Of course, you have this issue with
any meeting (as mentioned in the previous section). If a chief of an organization wants an
entire team there, you can offer two sessions, but if the chief insists, it is their call to make.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

221

 In-Person, Telephone, Videoconference, and Online Interviews
 Here are the typical formats for performing interviews:

• In-person

• Telephone

• Videoconference

• Online

 Many interviews performed face to face also called in-person . This works when you
are more geographically localized so that you can meet with the people. This has the
distinct advantage of seeing the people more directly, so you can pick up on nonverbal
clues easier. Also, you may have a bit more flexibility to run over if need be, which
telephone and videoconference may not have.

 There is also the phone, but it happens without the benefit of nonverbal cues. These
cues can help to reinforce points, like how unsatisfied someone is, or when someone
has a confused look on their face, you may need to either rephrase your question or ask
some probing questions to see why they don’t like something. Phone interviews are more
difficult but may be necessary when users are remote.

 If you have the ability to video teleconference, you essentially come back to having a
meeting but with the added need to watch the screen for nonvisual clues. Having more than
one site on a screen may preclude you from getting good nonverbal clues, so pay attention.
Depending on the reliability and throughput availability, you may have some limitations
on resolution. However, as technology and bandwidth improves, these impacts continue to
lessen. The size of the room and how good the sound capture is can impact how well you
hear, so be aware of that. With an in-person interview with a larger group, more than one
conversation may be a minor irritant, but with videoconferencing it is even more important
to maintain good speaking discipline or you may miss important information.

 Doing an online interview is more like a questionnaire than an interview, and you
learned about that earlier. Also, you could have a much smaller group of people and send
more open-ended questions.

 Segregate by User Roles
 When you do have groups, it is highly recommended that people with common needs be
together. By that, if you have organizations with different focuses for the system, they may
say that each other is wrong about the needs, when in fact their missions are different and
hence have separate needs. Database administrators focus on maintaining the database,
whereas the HR representatives are querying the personnel data regularly. Each type
of person has different tasks, and you should talk to them separately. In addition, the
DBA will likely be bored when HR is talking about their issues, since the DBAs are much
more technical than the HR user. In addition, the HR users will likely be confused by the
technical aspects that the DBAs discuss.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

222

 Running an Interview
 How do you run an interview? Whether it is one or a few more people, there is not a
significant difference. You basically ask questions about what the user does. In this respect,
it is like the open-ended questionnaire. Ask them questions that will give them freedom
to discuss a topic. What questions should you ask? As you would expect, the answer is
that it depends. What kind of system is it? Is it a software application like the FBI Record
Management System or a collection system like the BOSS Radiation Dosimeter System?

 Ask what they do and then why they do what they have said, not how they do it, but
why, so you understand if it is still necessary. A different design might obviate some of
the steps user do. For example, having a concept search that can take name variations
like Bob instead of Robert or accounting for different spellings of Mohammed will mean
that users do not have to spend hours designing the right Boolean search to capture the
information they need.

 Ask the user how often they perform an operation. Get ideas for how long certain
operations take (say, research results within the database.) What works well, what does
not, and why? Have them give examples of their typical operations, explaining deviations
and why. Ask questions as you go along. If you need them to slow down so you can
write down everything, do so. At the end of the interview, ask if it is OK to ask follow-up
questions. These follow-ups do not have to be in person. It could be on the phone or in
e-mail. It is recommend you use e-mail because then you have their description in writing,
you can save time capturing the requirements, and you are less likely to hear it incorrectly.

 When you have a lot of ground to cover on a system, sometimes it is useful to break
the discussions into topic areas so that you do not try to cover everything in one sitting. It
is easier to do four two-hour interviews than an eight-hour day continuously. It is hard for
you to concentrate for that long, and it is even harder to get users to give up an entire day.
Spread over several days, or once a month if you are doing different functional areas, this
works out better.

 As was mentioned, interviews work better when everyone present is at the same level
or has the same role. This is part of your preparation to ensure whenever practical that
this is the case. If the people are managers and their subordinates, the subordinates are
less likely to disagree with the manager who may speak the company line or talk about
the ideal system when they do not have to use it every day. That can be as important as
preparing your list of questions you want to ask.

 ■ Warning You may get people who disagree and say the other person is wrong. You have
to listen and determine whether that is the case or the person has different needs. Generally,
it is the case that different parts of the organization have different emphasis. For example,
the person who is responsible for maintaining the security of a system is more inclined to
want to lock data down, whereas the HR person may want to have access to more data.
Neither is wrong; it is just that they may have different and potentially conflicting needs. You
job is to capture both and allow for a balancing act.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

223

 Remember when Chapter 1 talked about the attributes of a good requirements
engineering being communications, including listening with emphasis on active
listening? It is during interviews (and any meeting for that matter) when you need to
do that. Listen with your eyes and ears. Look for the nonverbal clues that give away
some emotion. Do you see people reacting negatively to statements? Follow up on that.
Honestly, that is where you can find some of the most critical aspects, because that
alluded to the items that most bothered the users .

 Your level of formality may even vary with the users. For example, if you are talking
with managers, especially high-level managers, you may be more formal than you might
with users who do not interact with these people as much. Sometimes you may have
a more structured set of questions because the topic is broader than others are. For
example, with searching, it might be more free-form, whereas when asking about all the
known reports, you will have one or more questions for each of several dozen reports.

 When you have looked at employee suggestions (later in the “Document Analysis”
section of this chapter), which reinforces the interconnectedness of these topics, now is
your opportunity to ask why they were added. This shows that you cannot go into these
interviews cold. In other words, you cannot do this on your first day. You need to know
something about the current system, the terminology, the user employee, and what
their general goals are. One of the best sources for this foundation is discussed in the
“Document Analysis” section coming shortly.

 People often use things for purposes for which they were not designed. You can learn
a lot from this.

 ■ Real-World Note Earlier in my career, I was using Microsoft Project. Microsoft originally
designed as an application for, say, defining all the steps for building a house. I was tasked
with preparing a schedule that rolled up all the development projects with the office’s several
dozen automation group applications. In later versions, it became better at scheduling.

 Because many people in many different organizations in the United States, and probably
the world, did this, Microsoft worked the application to support this kind of effort. You may
be able to find such “workarounds” that people have done. They have the gem of an idea,
because something doesn’t work the way they want, or they have an idea no one else
thought of. Ask if they have any suggestions like this.

 Things That Enhance the Interview
 Chapter 1 emphasized the importance of good communications. Interviewing is probably
the biggest manifestation of that skill. Remember, no matter how long you have worked
on a project, there are people who know more about the project, at least some aspect of
it. Therefore, a know-it-all trying to get information from a user will fail—miserably. You
need to establish trust and a rapport with the users. If a user says the radiation dosimeter
takes too long, don’t tell them they are wrong. Ask them why it takes too long. It may be
that the performance requirement before said that the result should return in 10 seconds.
To most users that is way too long. Maybe you are unaware of that requirement, or it

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

224

may be that the device they have is not even meeting that requirement. Maybe when the
battery gets low, it takes a minute to get the result. Never reject a person’s statement. If
it does not make sense, ask more questions to understand. Usually, you should go back
to the people responsible for the system and find out what is happening. Occasionally,
developers were unaware of issues you discover. In many cases, you can find out there
was something wrong, and you can get it fixed.

 Go in with an open mind. Think of the users as the teachers and you as the student.
There is a reason why they have information you need, so try to learn from them. Be a
human being; admit that you do not know everything and that the users can teach you. After
all, your reason for collecting their needs is to help the users get a better system in the future.

 Listening

 In real estate, the cliché is location, location, location. For requirements engineering,
it is listen, listen, listen. This is the most important aspect of communication. You may
have been in meetings with one person who was not talking but just waiting for another
opportunity to talk, but not listening. That is not communication. In my case, this was a
rather high-ranking HR person. So, do not be like that. Look for the signs that someone is
not listening well or is dominating the conversation as this can inhibit the interview process.

 Things Change Over Time

 As was stated earlier, requirements can change 1 to 4 percent per month. You have to
deal with that. People resist change, and REs are no exception to that. How you will elicit
requirements when they can change during a project? Be prepared for that. The same
thing can happen to the users. Alternatively, the users have worked with change, and the
new person or people may not agree with previous work. This especially happens when
you have multiple meetings with the same group, especially as not everyone will make all
the meetings. You will have to adapt.

 Glossaries

 Having your glossary of terms is useful when you are having these meetings. If terms are
used that you do not understand (maybe you have not learned all of them yet), check
your list. If it does not exist, get the term defined and then add it to your list.

 Note Taking

 This becomes as important as listening. If you hear something but do not write it down,
it can be lost. In some cases, you may have recording equipment and can use that to
supplement your notes but not completely replace it. Some people are hard to hear
and may not pick up well on the recorder. Taking notes is an important skill that comes
with practice, just like note taking in college. When practical, if you miss something, ask
for clarifications or for someone to repeat something you may have missed. Believe it
or not, this usually is well received by users as this tells them that what they are saying
is important to you as you want to capture it—which you do! While taking notes, you
also can jot down questions to follow up on, note discrepancies with other accounts, or
anything else that may help with your requirements collection.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

225

 Follow-Up Questions

 You should always use follow-up questions when you need them. From listening carefully,
you will notice potential requirements that other people in the room may gloss over. There
usually are nuggets there. This is a standard interviewing technique, as are most of the
points here. As an example, say there’s a user who monitors the system maintainability
and needs to know the entire time it takes from the time the system breaks until it is fixed.
You ask the question if he also needs to know when someone actually started working on
the fix. The user asks why he would want that. You explain, as you learned in Chapter 5 in
the maintainability section, that you need a value so he or she can determine the wait time
associated with the fix, as the wait time may be the major issue, not the actual repair time.
You will have demonstrated how to provide better information for the users.

 Remember, Chapter 1 talked about the challenge of understanding users who are not
sure what they need. When your users/stakeholders do not know what they need, that is
going to put you at risk. In some cases, you may not be talking with the right people, so
the correct fix is to find the right stakeholders. That may not always be easy, but make a
point of determining whether there are others who can provide the information you need.

 Failing that, you need to help the users find out what they need. Chapter 1 talked
about how you need to be a translator from what they say they need to what they really
need. You also sometimes need to guide them to help them to find what they need. This is
where you careful questions and follow-up questions can make a difference.

 ■ Real-World Note When I was a graduate student, running labs to supplement the lectures,
the students would come to me asking questions about how to find an answer. Rather than just
give them the answer, I generally asked a series of guided questions that led them to find the
answer themselves, so they would understand how to find answers in the future. This kind of
careful questioning also works well when helping users to identify and clarify their needs.

 If you said, “You understand their process is X, Y, and Z. Is that right?” They would
have an answer. Maybe yes, maybe no, but it would not be enlightening for them and
provide little value added to you. Instead, follow the approach presented here and guide
them with questions that start at the general level and work down to more detailed
questions, engaging them in the process. For example, you ask a user, “You understand
how the system uses patronymic Russian names?” They answer with a yes. That doesn’t
tell you anything, as you expected them to explain it to you. Thus, you need to follow up
with, “Could you please explain it to me, as this is a new concept to me?” This should get
the conversation started.

 Missing Knowledge

 This is always information that people may not know. The challenge is that they may not
know that they don’t. This is why follow-up questions can be important to uncover some
of this. You have to listen to what the user says that may hint at missing knowledge.

 When you discover missing pieces, it can have a secondary relationship benefit.
Nothing establishes trust more than an interviewer who offers an immediate solution to a
user problem.

http://dx.doi.org/10.1007/978-1-4842-2099-3_5
http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

226

 ■ Real-World Note For example, during a query function interview, some users did not
understand that there was a NEAR function when two terms might be more than one word
apart. Say you are looking for the person named George Koelsch. However, references to the
person could include his middle name, and a Boolean search of George Koelsch might not
pick up George Anthony Koelsch or George A. Koelsch because the middle term separates
the two parts of the name. By using the NEAR function, you can search for (George, Koelsch)
NEAR 2 , which means George should be within two words of Koelsch. It would even pick up
Koelsch, George, which searching for George, Koelsch would not do.

 Cultural/Language Differences

 You may have to collect requirements either overseas or with foreign visitors visiting you.
While culture and language influences can hinder the collection process, there actually
is one serendipitous benefit to doing this. You will have translators. When the translators
are talking, you will have the opportunity to catch up on your note taking and formulate
your next questions.

 Of course, the culture and languages difference do offer challenges. Just as organizations
can have different cultures, different countries have them as well. How you treat people or
say things may not translate very well. What might be humorous in the United States may not
be in Mexico or Asia. So, you will need to research the culture or talk to people who know so
you can avoid words or phrases that might have the wrong meaning there. Also, when people
have a different language, not every word, especially in specialized fields, may translate well.
Pay attention to the body language to see whether your counterparts look confused or may
be reacting negatively to something. Try rewording to see whether that helps. If you have an
interpreter, ideally they can help. Fortunately, in my overseas work, I have never really had an
issue, but preparing may have helped mitigate issues.

 Following People Around/ Observation
 As an industrial engineer, you can spend many a day doing this to learn what people do.
First, it is very labor intensive, and depending on what the person is doing, you may not
see everything. Think of someone watching you work on a spreadsheet. The observer
would probably need to stop you and ask many questions. Second, many jobs are very
repetitive, so you would see the same operations time after time. Third, how long can
you observe someone—an hour, a full day, a couple of days? What happens if there are
tasks that happen once a week, once a month, or once a year? Odds are you will not see
all of those. Again, you cannot do this in isolation or you will miss requirements. Some
advantages to this technique are that you can identify work or process flows, identify what
things bother the user, notice any awkward steps they encounter, and identify any room
for improvement. You can observe by watching only or by watching and asking questions.
It depends on the nature of the work and how much information you need to collect. If a
person must concentrate, say, performing detailed work, asking questions is impractical.
However, if you cannot see all the steps or they happen too quickly, you may need to ask

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

227

question. There may be utility if certain operations are repeated many times and saving
even one or two steps could make a significant amount of time. Think of an assembly
line where a task is done 1,000 times in eight hours. If you trimmed one second from that
time, you would gain 36 more items per shift, or a 3.6 percent improvement. It will be up
to the environment, the user, and you as to when you can safely ask questions.

 Models
 Models and modeling are techniques for representing requirements in a more precise
manner than just straight text, which we recognize has the potential for imprecision.
As a result, Chapter 12 will be devoted to various modeling techniques and has a brief
examination of their advantages and disadvantages.

 Document Analysis
 In this approach, you read through existing project documentation to glean requirements
for the future system. Document analysis does not require interaction with users. You can
do it on your own. That said, users and stakeholders could provide some of these project
documents, so do not rule them out. When you first start on a project, this is also an
excellent way to rise up the steep learning curve.

 What are documents that can help you understand your project? Here is a good
starting point. Your project may have others or may have name variations from these.
Nevertheless, this is a list to get you started.

• Business process description

• Concept of operations

• Existing requirements documents

• Existing interface documents

• Design documents

• User manuals

• Operations manuals

• Training manuals

• User suggestions

• RFCs

• Discrepancy and problem reports

• Competing or analogous systems

 Document analysis is a start to eliciting requirements as part of gaining domain
knowledge only. It does not end there. It only identifies what the system does not. It
does not address what the system should do except maybe for what was implemented. It
does not address the shortcomings of the system. Nor does it address what things it does
incorrectly. Keep that in mind.

 Now, look at each document type and examine how it can help you.

http://dx.doi.org/10.1007/978-1-4842-2099-3_12

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

228

 Business Process
 If you have one or more business process analysts on your project, then you have
someone who has or is doing a business process analysis of the system or area for which
you are going to capture the requirements. This is excellent. If you do not, you should
definitely consider creating one.

 Why do you need this business process description? First, you need it so you
understand what your current system is trying to do. As mentioned earlier, if you are new
to the system, then this is an excellent method to learn about the system. Certainly, it
will not give you everything, but it is a significant start. In addition, when you look at the
existing requirements, you need to find where things have changed and learn what the
gaps are. Sometimes, all that exists are diagrams that describe the system at a high level or
PowerPoint slides that talk briefly about the current system. Remember, no information is
bad if it provides a starting point.

 As was said, you can even use the business process description document to
generate the user stories for a system. More information will be presented about user
stories in Chapter 13 .

 A business process description document can also be called a concept of operations .
Many times a CONOPS, as it is shortened to, is written before the requirements phase begins.
If so, that is good as you have the start of your work. In addition, the advantage will be that
the CONOPS is written for the future system, whereas many business process descriptions
may focus on the current system. A word of caution: while most CONOPS are written near
the beginning of the lifecycle development phase, some are written near the end. Is this
because the project is behind in doing their documentation? That’s possible, but more than
likely there is another cause. In most instances, the project is doing the CONOPS with the
emphasis on the concept. By that, they are looking at the functions the system should do and
be talked about at a higher level. In the later phase of the lifecycle, you may see where the
emphasis in the CONOPS is on the operations. What you have here is an operations manual.
While this is a useful tool, that is not the focus of this paragraph’s discussion.

 Notice that some elements of the CONOPS may have proposed implementation that
you should discount. In addition, it will not be detailed enough to fully capture requirements,
so you will have considerably more information to complete your requirements.

 Existing Requirements
 First, look for requirements for the existing system. This will likely provide a significant
amount of information about what you should consider. Remember, however, they were
crafted in a different time, with different technology, and, most importantly, with different
expectations. You do not have any context with these requirements unless there is significant
textual information added to the shall statements. You do not get a significant sense of how
the requirements must fit together, or flow . You will need to gather that elsewhere.

 Most importantly, you will need to ensure that all the requirements are still valid.
Given the scope or size of the project, that may prove to be daunting. Nevertheless, it
needs to be done. For those items you have changed, modify the requirement set. Modify
the existing statements for those that have changed somewhat. For those no longer done,
delete them (but confirm with stakeholders that it is true), and add what is new.

http://dx.doi.org/10.1007/978-1-4842-2099-3_13

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

229

 Existing Interface Documents
 This is essentially the same kind of documents as the requirements documents, just
between two systems. There is one important aspect to consider with interfaces—the
boundaries may change with the new system. By that, some items that exist in other
systems may come under your system’s umbrella, and vice versa. So, do not take
everything as gospel without the same validation as was talked about in the previous
subsection. Make certain the boundary of your new system is well defined.

 Design Documents
 Design documents, when they exist, do not provide nearly the same information as
a requirements document, in part because they focus on the implementation, which
requirements engineers are not supposed to capture. That said, there still is useful
information embedded in them. For example, you might learn what data elements are
being stored and manipulated, what data is audited, and so on, basically topics that may
not be defined or only partially defined elsewhere, like the existing requirements. There is
a lot of chaff to weed through to get the wheat but that is still worth examining.

 Manuals: User, Operations, Training, and Help
 These manuals can prove to be very useful, with qualifiers. They are designed to describe
how the system should be used, and they are very detailed. When gap analysis is talked
about later, these documents may suggest areas that have not been fully explored.

 The qualifiers deal with the following:

• These are details about the exact steps to take when using the
system. However, it may not explain why you would do these
steps.

• These are the current implementation and may not be
appropriate for the future.

• In addition, they are implementation, so again you need to
determine what functions should be retained.

 Identified Problems and Changes
 Another source for requirements for the system can come from user suggestions, RFCs,
 change requests (CRs) , discrepancy reports (DRs), and problem reports (PRs) . These
documents (whether hard-copy documents or online) are likely the items that have
changed since the original system was implemented. Many if not most may be specific
changes to the implementation rather than just user needs, so examine them carefully.
For example, someone who asks for the status of a current operation moved from the
bottom of the screen to the top is not a need but more a user preference. However, it may
indicate that the users need the capabilities to customize the user interface, or at the very
least allow them to specify some preferences.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

230

 Sources may come from the configuration management process your organization
has implemented, called the following:

• Request for changes

• Change requests

• Discrepancy reports

• Problem reports

 DRs and PRs may be the same thing, just defined differently for various projects
or organizations. In addition, RFCs and CRs may be the same thing just using the
terminology of the office.

 ■ Warning Some organizations may use one term for both an RFC and DR. Just be aware
of that.

 Most people define an RFC or CR to be the documentation of changing a
requirement, adding or deleting a requirement, or modifying an existing requirement.
A DR or PR is when an existing requirement is not working correctly.

 Also, check the Help documentation or service desk. Even if the item never causes
something in the application to change, it may indicate items that seem to cause problems
for the users, showing you places to improve in the future. This can also be a source of user
suggestions that has not yet made it to the configuration management system.

 Competing or Analogous Systems
 If your project is to create the best report generator ever, wouldn’t it be prudent to see what
other report generators have done and done well to ensure you capture those capabilities
at a minimum? It’s not likely you will work on something that has been worked on for
many years, but you get the idea. Look at other systems and determine what capabilities
you might consider. They could be competitors or systems similar to yours.

 ■ Real-World Note Many times, I have looked on the Internet for capabilities that I need
to capture in requirements. Of course, if it was something like a report generator, I had to
do it only once and then reuse the requirements, but we’ve talked reuse before. This brings
out another source of documents, those found on the Internet. When I was doing research
on machine learning and its capabilities, I found a wealth of information on the Internet, so
exploit that whenever practical.

 You do not need to “reinvent the wheel” for each project. Do it once, by researching
what is available, and then reuse. However, I emphasize that the Internet is an excellent
source of capabilities.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

231

 Prototyping
 Prototyping is a method of gathering requirements. In this case, you can gather
preliminary requirements for an initial version of the solution, called a prototype .
You show this to the users and stakeholders, and they can give you feedback, ideally
generating more requirements.

 ■ Warning This approach tends to get into implementation, so be careful. Clearly, very
detailed statements would be design specifications, so ensure you give implementation
independent requirements, being more general in your statements. Otherwise, you will be
doing the designers’ work.

 This can be useful in ensuring you are capturing the data elements the users need
and how you need to group them. Those are valid requirements. You may need to
iterate several times to get the information correct, so do not be surprised. In addition,
you should not have to expect to do the prototype unless you have coding skills. Use
developers for the prototype.

 This technique has the advantage of helping with people who may not know exactly
what they need, as was talked about in the “Missing Knowledge” section of this chapter.
Prototypes do not need to be done on a computer. They could be drawn on paper as a
sketch, PowerPoint slide or slides, even animation (think of a game), or a storyboard.
The advantage to the users is that they get to see what could be presented. In addition,
because you have engaged the users and stakeholders in the process, they feel much
more engaged, and this helps tremendously with the successful introduction of the
product. In fact, one of the hallmarks of the agile sprints is a demo at the end, with the
associated advantages that have just been mentioned.

 Remember, if you develop this on the computer, there is no code behind the options
presented. This is just to get the look and feel, but most importantly the users’ impressions
to include confirmation of the data and how it is represented. One reason this technique
can work is that people have difficulty trying to describe what they want on a blank page or
screen. However, if you have something, even if it is not close to what the users need, they
will be more than willing to comment on something. This helps to get the users started.

 Prototyping can be built around use cases or scenarios if you have them.
Alternatively, if not, the prototyping of various screen shots can help derive use cases and
scenarios, not to mention user stories and requirements.

 Use Cases/Scenarios/User Stories
 Use cases are an important aspect that you need to understand; they’re so important that
an entire chapter will be devoted to uses cases and one chapter for user stories, Chapters
 13 and 14 , respectively. Know that it is an important aspect of requirements elicitation,
one that has increased in importance with development methodologies other than the
waterfall approach. The same applies to user stories as they have a vital importance with
the agile development methodologies.

http://dx.doi.org/10.1007/978-1-4842-2099-3_13
http://dx.doi.org/10.1007/978-1-4842-2099-3_14

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

232

 Working in the Target Environment
 Another aspect of this technique is to do some of the work yourself. Whereas a seasoned
user will go through the tasks possibly faster than you can observe, if you do it, you
will need to do every step slowly to do it correctly. This way you are less likely to miss
something. The biggest disadvantage to this is the time it takes to get proficient enough
to experience. Clearly, doing this for something that has a steep learning curve makes
this technique impractical. Think of learning a station at a nuclear power plant. It’s not
something you can learn quickly.

 There are advantages. For starters, just working as the users do helps to build a
rapport. In addition, you will have a better understanding of some of the problems that
have pestered them. When you experience one of those challenges, they will go, “See,
that’s what happens to me ten times a day.” You will gain a better understanding of the
challenge and associated frustration.

 When possible, take training that is offered for the current system. Not only does this
give you a sense of how the system should operate, you will have the trainers as resources.
They usually know some of workarounds to issues as well as the issues and challenges to
the users. In addition, it gives you more experience on the system that you may not get
just trying to do it yourself.

 Request for Proposals
 Governments and companies request potential vendors to submit a proposal. The
submitted proposals are analysed, and then a vendor or contractor is chosen and
awarded a contract to provide whatever service is requested. The RFP is the specification
by the requestor defining they what. As a vender or contractor, the RFP you receive may
dictate some requirements that you must meet. Also, as a contractor works for a customer
organization (e.g., for federal or state government), you may have requirements levied on
you. You analyze the RFP needs and respond with a proposal back with what you will do,
stated in your requirements.

 Usually the needs are too high a level to affect the requirements directly, more like
goals than requirements. For example, if the RFP is a paragraph long and only says your
organization needs to provide bicycles for employees to use to ride among the buildings
on the campus, there is not much specificity there. However, if NASA has an RFP about
a probe to go to Neptune and they list ten pages of needs related to the environments,
speed of the craft, types of data that needs to be collected, and data transmission rates,
then you have candidate requirements. Nevertheless, you must read this document to
determine what affects your system and its associated requirements. Given the 30 years I
spent as a contractor to the federal government, I used this occasionally.

 Reverse Engineering
 Reverse engineering is figuring out what the system does by taking it apart, if it is a piece
of hardware, or deconstructing the code to figure out how it works. This is different
from seeing what the system does; it’s seeing how it does it. I used to work for a tire
manufacturer. We had heard that a competitor would come out with almost an identical
new tire some weeks after we did. The consensus was that the competitor bought the

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

233

tires, deconstructed them, figured out our manufacturing process, and then duplicated
it. This prevented them from having to spend all the time researching new tires. This is an
example of reverse engineering.

 I have never used this technique personally. That said, does that invalidate it as a
source? Of course not. You will all experience limited exposure to situations and tools sets
that you may use. This technique can be used when migrating from an existing system to
a new system when insufficient documentation exists.

 ■ Note Reverse engineering can be abbreviated as RE. However, RE had been used to
mean requirements engineering and requirements engineer. On a project, if this technique
was used, you might end up with three versions of RE. Now you can see how jargon becomes
important and how confusion can occur—not intentionally but with acronym creep.

 Reverse engineering can help identify what the current system does. Think of an old
mechanical watch that consisted of a wind-up spring and gears to move the hands of this
analog watch. By opening up the case and examining the watch, you can deduce how it
works. You can count the number of teeth on the gears to figure out how the movement of
the gears work. This is a simple example of how reverse engineering can occur.

 Reverse engineering neither identifies what the system should do nor identifies what
the system does wrong. In the watch example, it only shows you what it does. You and
your resident experts must figure out what the system should do and identify what the
system does wrong.

 ■ Real-World Note I may have misrepresented this. I have done something closely akin
to reverse engineering. When capturing requirements for a report generator, I found a manual
that talked about all the capabilities that a particular application provided for report generating
capabilities. I cherry-picked the functions that our particular project should have and wrote the
 shall statements for my report generator. In a sense, this is reverse engineering.

 Tools
 The TechTarget website lists some tools that might help with requirements gathering
that will be presented later, such as the agile methodology (Chapter 13), requirements
management (Chapter 11), and Unified Modeling Language (UML) (Chapter 12). In
addition, TechTarget recommends some other useful resources such as books, articles,
web sites, courses, and blogs for you to consider. There are many more if you want to
research them. These are just a small sampling. You should not try to capture everything
on the TechTarget web site or the hundreds of other sources. Just know they are there
when you need them. Research them when the time is right.

http://dx.doi.org/10.1007/978-1-4842-2099-3_13
http://dx.doi.org/10.1007/978-1-4842-2099-3_11
http://dx.doi.org/10.1007/978-1-4842-2099-3_12

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

234

 Purpose of Elicitation
 What is the purpose of requirements elicitation? You are going to collect/gather/elicit all
the requirements for the program/project/system/system of systems in question. The
steps you need to perform are the following:

 1. Define the scope of the system.

 2. Gain domain knowledge.

 3. Decide on the elicitation techniques to use.

 4. Elicit the requirements.

 5. Perform gap analysis.

 6. Complete the requirements.

 Defining the Scope of the System
 First, you must define the scope of the system . You need to know precisely where the
system responsibility begins and ends. Ideally, you receive this at the start. Alas, the
reality of it is that this does not always happen. So, you will need to help define these
boundaries. Will they remain fixed? Not always. For example, if the new system will be
follow an SOA, some small systems/applications that were stand-alone systems before
may be services as part of your new system. In this case, the boundary of the new system
has expanded beyond what may have initially been proposed. In such instances, the
boundary definition may change because of what you uncover in your elicitation that
others had not considered. This gets to how requirements change. Analysis forces people
to make decisions they had not even known about initially. That is a good thing.

 ■ Real-World Note Back early in my career, one of my mentors told me that a good
systems integrator (engineer/requirements engineer) is paid to ask the questions that have
gone unasked. Take that to heart.

 Gaining Domain Knowledge
 Second, if you do not have full domain knowledge of the current and future systems, get
it. Yes, that is easier said than done, but go back to the “Document Analysis” section and
use that as a guide for starting that information gathering.

 If you do not have a good BPD, then create one yourself. By virtue of you doing
this, you will learn it better, and it can have additional benefits later in the requirement
analysis process, as you will see.

 What you will have when you are finished is basically a concept of operations but
clearly focused from an implementation-independent view. Even if the users have some
of the BPDs, you will need to go back and ask questions to fill in the gaps of knowledge.
Odds are that if you do not understand the BPD, there is a gap in knowledge, or the
business process has been changed and not properly documented.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

235

 Deciding On the Elicitation Techniques to Use
 Once you have gained sufficient knowledge, you can begin. The reality of this is that,
in many cases, management will determine when to start, and you try to gain as much
knowledge as you can before the step starts.

 An earlier subsection talked about using document analysis to start eliciting
requirements as part of gaining domain knowledge, but it does not end with that, as was
talked about before. Which technique do you use? The correct answer is more than one.
Each has its advantages and disadvantages. To mitigate the disadvantages, you want to
use as many as practical.

 What factors should you consider in determining the techniques?

• Who are the stakeholders/users? (For example, if this is a
commercial game, who represents the consumer, and how?)

• What is requirements engineering team domain knowledge?

• What is the availability of stakeholders/users?

• What is the location of stakeholders/users?

• What is the development team’s domain knowledge?

• What is the stakeholders/users domain knowledge?

• What is management’s commitment to eliciting the
requirements?

• What is the schedule for eliciting the requirements?

• How big is the requirements engineering team?

 Then you, and your team if you are part of or lead a team, must decide which
techniques to use. Consider document analysis, interviews, and some group meetings.
Use the others that have been discussed as you and your management team see fit. Trust
me, management commitment here is absolutely essential or you will not have access
to the people you need. If you have to get it, start with your management chain. If they
cannot get agreement with your approach, you will have a hard road ahead of you, with
less likelihood of success—to be quite honest.

 Eliciting the Requirements
 Now comes the challenging part, eliciting the requirements. Before you actually start, a
bit more planning is in order. If you are likely to have more than 100 or 200 requirements,
one session is unlikely to capture all the requirements. Your best bet is to take this larger
program/system and break it into manageable chunks. You may need to apply most of the
techniques to each functional area that you choose, or maybe by the team/organization
that is affected by it. For example, the auditing team will work only on the audit function.

 One additional suggestion is related to the functional area elicitation. The document
analysis mentioned earlier can help establish many or most of these functional areas.

 You will need to massage the information you collect. Remember, users do not speak
requirementese. You do. You need to translate their input into good requirements, as has
been discussed in all the previous chapters.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

236

 To define all the requirements, you need to understand what the users do right now.
This is an important point to remember: it’s not how they do it, just as good requirements
do not define the how and only the what. Get them to tell you what they do.

 You have to listen intently. However, know that they will skip over points. This is not
intentional, but they know all what they do, and they do not include every little nuance. It is
human nature. Part of that happens because they assume you know everything they do. Part
of it is that they summarize. They are not accustomed to providing every step they do. Think
of a user manual that describes how to do a new feature where the document describes
every step, every keystroke, every click that the user must do. Most users do not think quite
like that when they are talking. In fact, it is difficult for most people to do. If someone asked
you to describe how you drive to work or school every day, would you give every street
name, the distance, and the time associated with each step? More than likely you will say,
“From my house I go two blocks north and turn left at the elementary school, through three
traffic lights and turn right….” Many details are missing that MapQuest would provide. It is
your job to learn the MapQuest “route” from the users rudimentary “directions.”

 If going from step 1 to step 2 does not make sense to you, chances are they have
omitted something. Sometimes it is language or jargon that you do not know, and the
missing information may be embedded in those words.

 Think about signing into an application on a network. Someone is describing what they
do when they first start their machine and get to this application. They say the following:

 First, I turn my machine on.

 I hit Ctrl-Alt-Del to log in.

 Then, I select the BOSS application.

 Finally, I run my audit report from the log of updates since
yesterday.

 That initially sounds like it is sufficient. However, the user did not give specific details
about how they logged in. This is a system administrator, who has multiple networks to
monitor. When they log in, they have to enter their user ID, password, and what domain
they are examining. Because they did not give these specifics, you might miss that the
login process requires the domain value. You need to ask them what they mean by
logging in. Then ask what the domains are that they access. Can domains be added and
deleted, or will they remain fixed? You get the idea.

 Remember, Chapter 1 talked about the two different definitions of recall . The
development group used the word to mean removing a bad record from the database.
However, the people who would use the new system used the word to mean calling for a
group of hard-copy documents from the archive. Think of what happens in a meeting the
first time this comes up, and one group uses the recall with their meaning, but the other
group of people hear that the use of it and cannot understand what was said because the
meaning was “wrong” in their mind. This is going to happen. How do you know? This
is where you have to observe. Sometimes people may challenge, but more often or not,
people will just look confused. Not only do you have to listen, but also you have to watch,
especially body language, facial expressions, and so on. Use anything that will give you an
indication. In poker, this is called a tell —an indication that what the people are trying to
indicate is not quite correct.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

237

 Reading requirements does not address how they flow or how they interact. The
business process description shows that. If you understand that process better, you will
have a better foundation for defining the requirements.

 Then you need to show what you have captured with the users/stakeholders to
confirm you translated it correctly. You will receive some pushback because they want
their words exactly used sometimes. You have to explain the rationale for why you do it
the way you do.

 It may take more than one review to get concurrence. Remember this is a
negotiation. You are not a dictator. Sometimes, managers will overrule some decisions,
and you will have to live with some of those decisions if you cannot get your own
management to stand up for it.

 Performing a Gap Analysis
 You are not done yet with collecting requirements. You have a challenging step to do. You
have to find what everyone, including you, has missed. You might say, “If you have not
captured it yet, how do you expect me to do it now?”

 It is called gap analysis . There are some steps to take. Go back to the previous
requirements document, or similar documents, like user manuals and so on, and then
describe what people are doing. Find out the functions that are talked about that have not
yet been documented in your requirements.

 For example, you find that they have not done auditing of the changes to the
database. Find out specifically what they need tracked. Is it every data element within
the database or just key values? Do they need all adds, changes, deletes to user accounts
(probably in almost all cases)? What about tracking all failed attempts to access an
account? It could be just someone messing up his or her password or user ID once and
then getting it right. What about trying six or seven times? Is someone trying to hack it?

 Remember when we talked about all the different functional and nonfunctional
requirements? One of the reasons these chapters discussed more topics than most sources
examined was to give you suggested areas to consider for gap analysis. Go back, and look
at each type to see whether it sparks any subject areas that you need to fill in some gaps.

 Talk to experts on the system and ask what topics they think were missed. These are
probably people on the development team, especially the operations and maintenance
(O&M) team that has been dealing with the current system probably for years.

 Once you have identified the areas, craft the requirements. You may need to interact
with selected users/stakeholders to help them validate these new requirements.

 Completing the Requirements
 What constitutes being done with the elicitation phase? If you have done all the steps up
to this point, are you finished? Chances are no, you are not. First, ensure that you have
done all the steps to include actually writing proper requirements, vetting them with
the affected stakeholders, and finalizing them so they are ready to be maintained. Has
your management identified that you are not complete until you have a database fully
populated with approved requirements? Or must you have a reviewed and approved
requirements document? Or both?

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

238

 The key here is the approval process. You will likely have to vet the complete set
(in parts or as an entire whole) through one final review with senior stakeholders and/
or management. Your organization mandates this. If you must capture a requirements
document, look in the appendix for a format, if your organization has not directed a
particular template. Likely, some part of it may require some business descriptions. If so,
the BPD talked about earlier will serve you well.

 There is one last aspect, albeit important, to keep in mind. Remember when earlier
chapters mentioned the likely growth/change to requirements of 1 to 4 percent per
month? You need to consider that. You must have a method to update your requirements
to account for this change. Ideally your organization will have a change management, aka
configuration management, process in place. If not, you need to establish one for your
requirements. This is necessary to control and communicate changes to all affected parts.

 ■ Note The communications is as important, if not more important, than the control
aspect—a problem that is missed far too often.

 Problems with Elicitation
 This chapter has alluded to some of the problems about to be discussed. First, you need
to list what they are. A.J. McDermid gives the following three categories of these problems
and ten specific problems:

 1. Problems of scope

• The boundary of the system is ill-defined.

• Unnecessary design information may be given.

 2. Problems of understanding

• Users have incomplete understanding of their needs.

• Users have a poor understanding of computer capabilities
and limitations.

• Analysts have poor knowledge of problem domain.

• User and analyst speak different languages.

• It’s easy to omit “obvious” information.

• Different users have different views.

• Requirements are often vague and untestable, e.g., “user
friendly” and “robust.”

 3. Problems of volatility

• Requirements evolve over time.

 Now, examine each problem and see how to address it.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

239

 Problems of Scope
 Problems of scope deal with defining the boundary of the system broadly enough, but it
should still ensure they are requirements and not design.

 The Boundary of the System Is Ill- Defined
 Not only was this talked about this earlier in this book, but also it was stated in the
previous section that you must know the boundary of the system. This needs to be
defined at the start of the project, and the major stakeholders must agree on the
boundaries of where the system begins and ends. Not only will this include the major
users, but people like the DBAs, architects, and other technical people should be
included in this decision.

 As was stated in the previous section, during elicitation you may find that the
boundary may need to change. In this situation, get back to the same stakeholders who
agreed upon the boundaries to begin with, and vet this proposed change with them. Once
you have presented the suggested modification, then abide by their decision. You may
have additional requirements to collect as a result of this change. If it includes adding
significant new functionality, this may translate to extensive additional work.

 Unnecessary Design Information May Be Given
 It was reiterated from Chapter 1 and many times throughout the book that you must write
your requirements independent of implementation. That said, there are some situations
where architectural constraints will modify that edict. Thus, your only challenge will be
in deciding when something is implementation or is a constraint. A clue is if a developer
says, “How about if we try…”; then you know that is probably implementation. However,
if the project architect says, “Our systems must all follow the SOA,” then you have a
constraint.

 Problems of Understanding
 Problems of understanding deal with poor communications between the users and the RE.

 Users Have an Incomplete Understanding of Their Needs
 Of course, users don’t understand all their needs. Part of that is because they only see a
portion of the system, that which they use. You can compensate by talking to a diverse
set of users to ensure you get a broader perspective. In addition, there are certain key
stakeholders/users that you must talk with to ensure you get complete coverage, such as
the DBAs and system monitors.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

240

 Users Have Poor Understanding of Computer Capabilities and
Limitations
 It probably is not a great revelation that users may not know computer capabilities and
limitations, nor should they. That is the job of the designers and developers to exploit. It is
also your job to help clarify points to them when you can. For example, if a particular type
of search causes the system to take considerable longer, if they know that, they may not
default to that type of search. You can point that out when you are talking with them.

 In addition, when the users are not familiar with newer technologies, like say
machine learning, you can offer requirements that address more capabilities because of
your gap analysis, with the requirements vetted through the users.

 Analysts Have Poor Knowledge of Problem Domain
 You were just transferred to a new program that you know nothing about, other than you
initially hearing about it. Of course, you will not be an expert on the project’s domain.
There are techniques for gathering that knowledge, like doing documentation analysis,
especially the business process description. If one does not exist or it is not a good
one, write one yourself. Do whatever you can to get yourself up on the learning curve.
Sometimes it takes months, and not just one or two, before you become knowledgeable
enough to understand much of what people are saying. Ask many questions.

 ■ Real-World Note As the adage goes, the only stupid question is the one that goes
unasked. I have promoted this idea since graduate school, and it has served me well
throughout my career. Mostly that has been borne out.

 User and Analyst Speak Different Languages
 Most users are not computer programmers. They were not hired for that skill set. Therefore,
you have to be aware of biases that some people have. Certain computer engineers and
developers think all users must be very literate in computers, when they are not. There still
are people who are almost functionally computer illiterates. They can do some things but
get out of their comfort zone quickly and are extremely uneasy. Be aware of that.

 ■ Real-World Note I remember working with some network engineers who crafted a fix
to a particular user problem. I pointed out that some of the steps were incomplete. The head
engineer said that the users should know that stuff. He had the misconception that everyone
thought as he did, when they do not.

 The “Purpose of Elicitation” section in this chapter mentioned the recall example
as one where the analysts and users had a different meaning for the same word. This
happens all the time. That is why there is a chapter on jargon and language to help

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

241

overcome this challenge. The best advice is to be cognizant of it and observe people when
you are talking. Look for those clues when someone is confused, and follow up on it to
see whether there is a language barrier.

 Ease of Omitting “Obvious” Information
 This is the trap that people assume a certain amount of information that everyone knows.
That is one advantage to starting out as not being a full domain expert, as you will notice
missing information and ask questions when you are confused.

 Conflicting Views of Different Users
 The previous section talked about this. Many times, this is because of different
responsibilities, and you need to capture multiple points of view. In a few cases, you get
wrong information from people. This is a bit more problematic. Here you have to find out
which source is incorrect and eliminate it. It may be because the person does not know
any better. You will have to decide whether you need to correct the person. The best way
may be to involve the help desk to guide the person to the proper approach.

 Requirements Are Often Vague and Untestable
 Most everything focused on in this book has worked to eliminate the vague words
from your requirements vocabulary. Trust me, when you get to a review of your
requirements, someone will point out when you slip up. Just be vigilant when you craft
your requirements, and after a break in time, review everything you have written and do a
sanity check all of the good attributes against the requirements.

 Problems of Volatility: Requirements Evolve
 Problems of volatility deal with change. Chapter 2 and the previous section discussed this
requirements growth of 1 to 4 percent a month. If you know this is going to happen (and it
will), you can prepare for it.

 Requirements Evolve Over Time
 Having a change management process helps because it gives a process for vetting those
potential changes and how they might affect what you have already. Also, soon you will
learn about the agile approach for requirements definition, which helps to mitigate the
growth issue by capturing requirements close to when the development will occur so that
the growth is then taken into consideration at that time.

 Process Improvement
 As mentioned before, many times, you do not come into a project at the beginning. You
may be partway into requirements collection or partway into the development, or you the
system may be deployed and your project is in the O&M phase.

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

242

 Sometimes the processes are not well defined or even well understood. You can
help bring process improvement. You will have more success after you have experienced
this more. Alas, you may not always have that option, so research more about your
organization and what processes are in place to see how you can augment them. Only in
rare cases should you throw out what processes are in place and start over.

 ■ Real-World Note I have seen a new program manager do this, with only a little
knowledge. He did not rely on current expertise and made changes that were not for the
better, just adding chaos and not mitigating it. (Think of Dilbert’s pointy-hair boss.)

 Ideally, you will find yourself somewhere in between the two ends of the
spectrum (neither total chaos nor processes that are so rigid that you cannot make any
improvements) that you can see what works and then decide what areas can be improved.
You will also need to see who in management will sponsor your improvements. Without
support or a champion who will help, you will not be able to succeed, no matter how
good your proposed improvements. Keep in mind, this champion may not be one person,
and it does not have to be a high-up person. It could be your team lead, your program
manager, or even a more important stakeholder. If you find that person or people,
establish a rapport with them, they you have started on the correct path.

 Don’t abuse that champion, as they have full-time jobs too. Use them at the critical
points and sparingly. That will take some judgment on your part. However, you are smart,
and you are trying to do the correct thing. Remember, you will not always succeed. That
is not a reflection on you, and it doesn’t necessarily indicate others are bad or made an
incorrect decision. They may be aware of other factors that may preclude your approach
ever or for a period of time.

 Sometimes the ideas for process improvement can come from the stakeholders
themselves. This can be seen in the following real-world experience.

 ■ Real-World Note A few years back, when I began introducing the process for eliciting
requirements for a replacement system, one of the senior stakeholders asked if we were going
to review all the requirements at once. The requester objected to sitting in the same room for two
weeks straight when reviewing requirements for the current system. I had proposed breaking
the tasks into function areas so we could accomplish the review in a few hours at a time spread
with intervening breaks of days or weeks, which was much more manageable for everyone,
especially from a resource commitment time. The stakeholders found this much more acceptable.

 The point to be gained from the real-world note is that improvements can come from
various sources, not always you.

 Throughout, this book has preached that thinking is your most important skill.
In this case, where you want to improve the requirements process, you need to not
only convince yourself of all the alternatives and their associated advantages and
disadvantages but also convince your champion and then ultimately your entire
organization. So, spend some time on that. Do it correctly.

CHAPTER 9 ■ HOW TO COLLECT REQUIREMENTS

243

 References
 Mochal, Tom. “10 techniques for gathering requirements.” January 2, 2008. TechRepublic
U.S. Feb. 2015, www.techrepublic.com/blog/10-things/10-techniques-for-
gathering-requirements/

 Blain, Tyner “Ten Requirements Gathering Techniques.” November 21, 2006 Tyner
Blain blog Feb. 2015, http://tynerblain.com/blog/2006/11/21/ten-requirements-
gathering-techniques/

 “Guideline: Requirements Gathering Techniques” Eclipse Process Framework (EPF) .
Feb. 2015, http://epf.eclipse.org/wikis/openup/core.tech.common.extend_supp/
guidances/guidelines/req_gathering_techniques_8CB8E44C.html

 Pohl, Klaus and Rupp, Chris. Requirements Engineering Fundamentals . Rocky Nook
Publishing, April 21, 2011, p3-1 to 3-2.

 A Guide to the Business Analysis Body of Knowledge, 3rd Edition (IIBA 2015)
 McDermid, J. A. Requirements Analysis: Problems and the STARTS Approach. In IEE

Colloquium on ‘Requirements Capture and Specification for Critical Systems’ (Digest No.
138), 4/1-4/4. Institution of Electrical Engineers, November 1989 http://ieeexplore.
ieee.org/xpl/login.jsp?tp=&arnumber=199038&url=http%3A%2F%2Fieeexplore.ieee.
org%2Fiel3%2F1950%2F5163%2F00199038.pdf%3Farnumber%3D199038 >

 Merriam-Webster’s Collegiate® Dictionary , 11th Edition ©2016 by Merriam-Webster,
Inc. (www.merriam-webster.com/)

 Exercises
 Exercise 1
 You have a small HR application for tracking the job positions used within the company
of 369 people who manufacture smartphone cases. Describe what elicitation techniques
you would use for collecting the requirements for this system and why.

 Exercise 2
 You have a larger help desk system for your nationwide corporation that is networked
together with 1,138 users. Describe what elicitation techniques you would use for
collecting the requirements for this system and why.

http://www.techrepublic.com/blog/10-things/10-techniques-for-gathering-requirements/
http://www.techrepublic.com/blog/10-things/10-techniques-for-gathering-requirements/
http://tynerblain.com/blog/2006/11/21/ten-requirements-gathering-techniques/
http://tynerblain.com/blog/2006/11/21/ten-requirements-gathering-techniques/
http://epf.eclipse.org/wikis/openup/core.tech.common.extend_supp/guidances/guidelines/req_gathering_techniques_8CB8E44C.html
http://epf.eclipse.org/wikis/openup/core.tech.common.extend_supp/guidances/guidelines/req_gathering_techniques_8CB8E44C.html
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=199038&url=http://ieeexplore.ieee.org/iel3/1950/5163/00199038.pdf?arnumber=199038
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=199038&url=http://ieeexplore.ieee.org/iel3/1950/5163/00199038.pdf?arnumber=199038
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=199038&url=http://ieeexplore.ieee.org/iel3/1950/5163/00199038.pdf?arnumber=199038
http://www.merriam-webster.com/

245© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_10

 CHAPTER 10

 User Interface Requirements

 With the explosion of so much software that people use in their daily personal and
professional lives, the user interface (UI) is absolutely critical to the successful use of that
software. However, I must point out that it is also one of the more challenging areas to
define requirements. You will see approaches to help overcome this. I will examine what
areas to consider as part of UI requirements, consider using existing standards (which
we will talk about more in this chapter), and look at how you need to address people with
disabilities. First, let us examine what UI requirements are.

 Introducing UI Requirements
 On one project, the first exposure to helping define UI requirements started with a
stakeholder saying the following statement :

 10-1 DRAFT The system shall be user-friendly.

 Is this a good requirement, based on what you have learned so far?
 Absolutely not! In fact, how many of the attributes does this violate? Frankly, many

if not most of them. Yet, you will run into users and stakeholders who will give you needs
like this. Your job requires you to be a translator. You have to translate what a user says
they need into what they really need.

 A bit of philosophy here: people will tell you that SE and specifically requirements
engineering (RE) is a science. Yes, requirements engineers apply many scientific
principles to SE and RE. However, take the previous example. What scientific principles
would you apply to convert that statement into real requirements? You cannot think of
any? Absolutely correct.

 This translation is an art form. If it were truly scientific, people would teach those
principles and it would be much easier to accomplish. That is why translating the user
statements into what they realistically need is harder than it looks (hence the title of this
book is Writing Requirements for System Engineering). Yes, many needs are relatively easy
to capture once you understand the principles that have been discussed. However, the
reality of it is that it gets more difficult when you move beyond those easy aspects.

 Nowhere is that more manifested than in the definition of user interface
requirements. In part, a user interface is an implementation. Of course, what is good is
clearly subjective, and requirements cannot capture subjectivity.

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

246

 How can you capture user interface needs? One approach, and many projects take
this, is to define user interface standards.

 ■ Real-World Note I worked with one recent application where one organization we
worked with had defined a document with dozens of specifications of how a UI should work.
What this did is save me from having to capture a potentially long list of requirements by
referencing these standards.

 If such a standard exists, write a requirement as follows:

 10-2 All applications generated in (Our Office) shall follow the
(Specific Project or Organization) User Interface Standard.

 Here’s an example:

 10-3 All applications generated in BOSS shall follow the BOSS
User Interface Standard.

 There may be some UI standards on the Internet that you can use and reference. You,
or someone, can define UI standards for your organization, and then you can reference
that standard in the previous requirement. One example that we will mention again later
is the U.S. Navy’s Human Factors Analysis and Classification System (HFACS) .

 One caution about UI requirements: you need to worry about specifying
implementation. For example, a standard might be the following:

 The dialog must be outlined in medium gray with rounded
corners and have a background of color of blue gray.

 That is a reasonable standard statement . However, if you specified that as a
requirement, clearly you have moved into implementation. Why does this work as a
standard? By itself, it does not, but an organization, in its development of the UI standard,
had done research into color schemes and crafted a series of related standard statements
that had chosen a particular color scheme and used it consistently in throughout
the standard. By referencing the standard, you avoid that potential trap of defining
implementation.

 Another approach that is used extensively is prototyping . This is highly
recommended. Here a candidate UI is built, with no real code behind it, to show
the users how it looks, and users and stakeholders can view the various screenshots
(maybe nothing more than print screens) and decide what they like and what needs
improvement. Also important is to demonstrate the navigation paths. In other words, how
does the user flow from one element to another? Then, when the UI is agreed upon, it is
captured as a design specification.

 Many times during agile sprints, user stories (more on these later in the book) can
have small aspects of the UI shown as part of the demo at the completion of the sprint.

 Failing that, what do you do? You will have to define some UI requirements yourself.
That leads to the next section. It should be pointed out that these UI needs affect both
the computer systems (for example, the FBI Records Management System) and the
hardware systems (again, like the BOSS Radiation Dosimetry system). A device that

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

247

reads information it has collected needs to present the data in a readable format just like
a software application must do. It is just that not all software UI aspects may apply to a
hardware device.

 Improving the User Interface
 The UI describes how the user interacts with the system. That sounds easy. However, it is
not as you have already seen. This will continue to be examined throughout this chapter.

 The user interface is the implementation of usability. Chapter 5 stated that usability
is how effectively users can learn and use a system. This section will cover important
topics to consider when you define requirements related to the UI, look at how to ensure
error message provide useful information, examine how the sciences of human factors
can improve the UI, and even look at an excellent resource the U.S. government provides
to optimize the UI, which is next.

 Government UI Improvements
 The article “Improving the User Experience,” from the Usability.gov web site, is captured
in the following “Interface Guidelines from Usability.gov” sidebar. These guidelines
provide a good list of items to consider when documenting UI requirements or UI
standards.

 INTERFACE GUIDELINES FROM USABILITY.GOV

 This sidebar is an extract from the Usability.gov web site and is an excellent starting
point for items that should be considered for UI requirements.

 Choosing Interface Elements

 Users have become familiar with interface elements acting in a certain way, so try
to be consistent and predictable in your choices and their layout. Doing so will help
with task completion, efficiency, and satisfaction.

 Interface elements include but are not limited to the following:

• Input Controls : Buttons, text fields, check boxes, radio buttons,
drop-down lists, list boxes, toggles, date field

• Navigational Components : Breadcrumb, slider, search field,
pagination, slider, tags, icons

• Informational Components : Tooltips, icons, progress bar,
notifications, message boxes, modal windows

• Containers : Accordion

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

248

 There are times when multiple elements might be appropriate for displaying
content. When this happens, it’s important to consider the trade-offs. For example,
sometimes elements that can help save you space put more of a burden on the
user by mentally by forcing them to guess what is within the drop-down or what the
element might be.

 Best Practices for Designing an Interface

 Everything stems from knowing your users, including understanding their goals,
skills, preferences, and tendencies. Once you know about your user, make sure to
consider the following when designing your interface:

• Keep the interface simple : The best interfaces are almost invisible
to the user. They avoid unnecessary elements and are clear in the
language they use on labels and in messaging.

• Create consistency and use common UI elements : By using
common elements in your UI, users feel more comfortable and are
able to get things done more quickly. It is also important to create
patterns in language, layout, and design throughout the site to help
facilitate efficiency. Once a user learns how to do something, they
should be able to transfer that skill to other parts of the site.

• Be purposeful in page layout : Consider the spatial relationships
between items on the page and structure the page based on
importance. Careful placement of items can help draw attention to
the most important pieces of information and can aid scanning and
readability.

• Strategically use color and texture : You can direct attention toward
or redirect attention away from items using color, light, contrast,
and texture to your advantage.

• Use typography to create hierarchy and clarity : Carefully consider
how you use typeface. Different sizes, fonts, and arrangement of the
text to help increase scanability, legibility and readability.

• Make sure that the system communicates what’s happening :
Always inform your users of location, actions, changes in state, or
errors. The use of various UI elements to communicate status and, if
necessary, next steps can reduce frustration for your user.

• Think about the defaults : By carefully thinking about and anticipating
the goals people bring to your site, you can create defaults that
reduce the burden on the user. This becomes particularly important
when it comes to form design where you might have an opportunity
to have some fields pre-chosen or filled out.

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

249

 Candidate UI Topics for Requirements
 The “Standards” section in Chapter 5 talked about UI standards. To refresh your memory,
standards are rules put in place within an organization or across organizations so
operations work consistently. For this section, they are rules or directions for how to
handle the user experience. Think of the menus within Microsoft Office and how the
same commands are in the same place and the same steps activate it and shortcut
keys. These are excellent examples of UI standards. You should consider the following
requirement:

 10-4 (5-30) The BOSS shall follow this company’s
Organizational User Interface Standard.

 While a UI standard is not presented in this book, here is a list of topics for that could
be used as a foundation a standard. Or if you cannot establish as standard, these are
topics for you to use to craft UI requirements:

• System feedback : XXX?

 Drag and drop : How does the system indicate what you are
dragging and where you put it?

 Response time : How does the system tell you it is working or
when it is done?

 System message : What kind of information does the user
receive when a message is provided? Does it tell them what to
do, instead of just saying something cryptic like 404 error?

• Desktop : How is the screen presented to the user?

 Icons : What kinds of icons are used, and are they consistent
throughout an application and across applications?

 Task bars : How do task bars work?

 Pop-up windows : How do they open and close, and what can
they perform?

• Navigation : How can the user move around the screen?

 Toolbar : How is the main menu presented?

 Drop-down menus : How are drop-down menus presented and
used?

 Trees : How does the user move around the application from
screens and tabs?

 Tabs : How does a user move from one field to another?

 Grids : How is data laid out on the screen?

 Keyboard shortcuts : What are the keystrokes that are used in
the system, like Ctrl+C for Cut, for all the operations of the
applications?

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

250

• Forms : How data is entered to the system?

 Data entry fields : How are fields presented to the user ?

 Push buttons : How are buttons represented, 3D vs. 2D?

• Color scheme : What colors are used on the screen?

• Fonts : What fonts are used, and what sizes are allowed?

• Help : What help is provided to the user?

 Online help : How do people get help about the functions and
operations within an application? Think of the ? in the upper-
right corner of Microsoft Office applications.

 Context-sensitive help : How can some get information about
items in the application?

• Training : How do people get guidance for training on an
application?

• Demos : Is there guidance for users to see guided tours of the
application, so they understand how to use it?

 Notice that the previous list works well for a software program. Does this same list of
topics apply to a hardware example, say the Radiation Dosimetry system? Oh, there are
some aspects that do apply (such as data entry), but many, if not most, may not apply to a
hardware project. However, for each system you must look at it and decide for each case,
as there are no specific generalities that apply.

 Obviously, the UI standard would be much more specific than the UI requirements
would be. For example, you might have the following requirements for help:

 10-5 The BOSS shall provide online help for all users describe
all functions within the system.

 10-6 The BOSS shall provide context sensitive help for all data
entry values, screens, and forms within the system.

 While it may not have many more requirements, the User Interface Standard could
have more specific statements.

 Error Conditions
 Remember, Chapter 1 talked about translating what users say they need into what they
really need. Here is an extract of that:

 A stakeholder says, “When this specific error happens <insert
their error here>, I need a red flashing button up in the
upper-right corner of the screen.” They are telling you how
to implement it. What they really mean is, “When an error
condition happens, I need a message of what is wrong and
how to proceed.” For example, if you have operating system
(OS) errors, you might need a different requirement.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

251

 As was said before, “But more on that later.” Well, it is later now. Remember earlier in
the “Candidate UI Topics for Requirements” section, you saw that a 404 error is not good.
You want messages to provide information that is useful to the user, telling them how to
continue past the error message, what steps they should take to fix the error, or whatever
other rectification steps they should consider. You need to write requirements for error
conditions like the following example:

 10-7 For the BOSS Date Entry function generates an error
condition, it shall present a message of what went wrong and
how the user is to proceed.

 OS errors were mentioned earlier. How should you handle these? As was said, these
error messages can be very cryptic. Then you might need something like the following:

 10-8 When the BOSS Date Entry function spawns an
Operating System error condition, the system shall intercept
the OS condition, translating the condition into a message of
what went wrong and how the user is to proceed.

 The goal would be a message designed and implemented like the following:

Your file cannot be printed at this time. Check
to see if the printer is turned on, or connected
to your device. If that does not work, check
with your network engineer for assistance

Click OK to continue.

OK

 Human Factors
 There is one area that significantly affects user interfaces, and that is human factors.
Ergonomics is also a synonym for human factors. The International Ergonomics
Association explains them this way:

 Ergonomics (or human factors) is the scientific discipline concerned with
the understanding of interactions among humans and other elements of
a system, and the profession that applies theory, principles, data and
methods to design in order to optimize human well-being and overall
system performance.

 You can see from this definition just how much human factors (HF) can affect UI. You
may even hear expressions like HCI, which means human computer interface. HF helps
to influence and/or direct HCI. Alternatively, you may hear about HFE, human factors
engineering. They are all related. What are some of the topics that could be included in HF?

• Aesthetics

• Consistency in the user interface

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

252

• Online and context-sensitive help

• Wizards and agents

• User documentation

• Training materials

 As you have read this chapter, you have seen some of these topics before. You will
now see some additional items that show other elements, both from a positive and a
negative perspective. So, look at the following sidebar.

 ERGONOMICS EXPERIENCE: A BAD ONE

 Some years ago, I worked for a government agency that had done some HF
examination of their computer workstations. They had placed the keyboard for the
desktops below the standard desk level, which was good. However, they did not
have the mouse adjacent to the keyboard. No, they did not have it on the desktop
either. They had a special mouse pad holder that was raised a few inches above
the desktop. I was moving about 5 inches up and to the right to the mouse probably
hundreds of times a day, rather than just moving my hand to the right (yes, I am
right-handed). By the end of the day, my wrist hurt. That was a good example of bad
ergonomics.

 You need to ensure violations such as those in the sidebar do not happen on your
project, through either good UI standards or requirements that prevent such an abuse.

 Next, you can see some small refinements to the user experience, but they can
have an important impact because they can ensure that the application does not either
adversely affect the user’s use of the system or dramatically irritate a user who has to wait
too long before doing the next step.

 As was presented in Chapter 8 on physical requirements, throughput requirements
deal with how much data passes through a system or a portion of the system. An article
called “Throughput Requirements” on the Open Process Framework (OPF) web site
(www.opfro.org) points out that “Some throughput requirements are based on human
 psychological limits ” and includes the following list:

• The average typist can type continuously if movements between
fields are less than 0.2 seconds.

• The average typist takes approximately 1.35 seconds to switch
gears mentally when moving from one set of typing to another
(which usually occurs when data entry clerks move from one
screen to the next).

• The average person will wait for no more than 20 seconds before
looking for something else to do (and less, if you consider an
Internet shopper).

http://dx.doi.org/10.1007/978-1-4842-2099-3_8
http://www.opfro.org/

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

253

 What does this mean to you? Somehow either the UI standards help to prevent
 violations of these guidelines or you need to consider requirements that help to follow
such guidelines. Here are some examples:

 10-9 The BOSS data entry function shall allow the movement
from one field to another to take no more than 0.2 seconds.

 10-10 The BOSS data entry function shall allow the movement
from one screen to another to take no more than 1 second.

 These human factors influence what UI requirements you craft, or given
specifications for the UI standard. However, it should not completely drive what you
build, but like everything else, influence the design.

 User interface topics can fill a book on their own (as many topics in this book),
and that is outside the scope of this book. Fortunately, there are many great resources
available when you work that particular area. Here are a few (complete references are in
the “References” section):

 “Use Cases” from Usability.gov

 “Throughput Requirements” from the Open Process
Framework (OPF)

 “Human Factors Analysis and Classification System (HFACS)”
from the United States Navy

 That said, there is one more important topic to discuss, Section 508 Compliance.

 Section 508 Compliance
 The federal government has mandated one aspect of usability to be implemented for
most applications used by the U.S. government, especially those that the public accesses,
to allow people with various diversity challenges to be able to use those applications and
web pages. By “various diversity challenges,” the government means people with some
visual impairment to include color blindness, hearing impairment, or physical disabilities
that restrict how someone could use a computer or any electronic service that the
government provides.

 The following excerpt from “Resources for understanding and implementing Section
508” on the government’s www.section508.gov site indicates when it applies:

 In 1998, Congress amended the Rehabilitation Act of 1973 to require
Federal agencies to make their electronic and information technology
(EIT) accessible to people with disabilities. Inaccessible technology
interferes with an ability to obtain and use information quickly and easily.
Section 508 was enacted to eliminate barriers in information technology,
open new opportunities for people with disabilities, and encourage
development of technologies that will help achieve these goals. The law
applies to all Federal agencies when they develop, procure, maintain,

http://www.section508.gov/

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

254

or use electronic and information technology. Under Section 508 (29
U.S.C. ‘794 d), agencies must give disabled employees and members of
the public access to information that is comparable to access available to
others. It is recommended that you review the laws and regulations listed
below to further your understanding about Section 508 and how you can
support implementation.

 Here are the instances where Section 508 does not apply:

• In the event that a Federal department or agency determines that
compliance with the standards issued by the Access Board relating
to procurement imposes an undue burden, the documentation
by the department or agency supporting the procurement shall
explain why compliance creates an undue burden.

• This section shall not apply to national security systems, as that
term is defined in section 5142 of the Clinger-Cohen Act of 1996.

 What does this mean to you? Obviously, if you fall under a federal agency, you must
address 508 compliance. It is required. Do you need to identify each statement as a separate
requirement? No. Point to those areas that apply to your project. For example, if there is no
web site, that section of compliance does not need to be included as a requirement.

 What if your organization does not fall under the jurisdiction of Section 508? Then,
you are not required to address it. However, if your management has interest in including
some aspects, maybe because of the size of the company or the need to support a
diverse workforce, then you may include some aspects. Pick and choice was sections are
appropriate based on your stakeholder input. There is no set prescription for what parts
of 508 compliance should apply.

 The official federal web site on Section 508 compliance is an excellent resource if
you need to implement support for those who have disabilities to determine whether
you should add requirements to support them. Even if it is not critical or required, it is
useful to read about Section 508 requirements because they give some insights on how to
support a very diverse user population. Relevant portions from Section 508 are included
in Appendix C of this book.

 References
 International Ergonomics Association. “Definition and Domains of Ergonomics.” http://
www.iea.cc/whats/

 U.S. government. “Use Cases.” usability.gov . Feb. 2015, www.usability.gov/how-to-
and-tools/methods/use-cases.html

 “Throughput Requirements.” 27 June 2005. Open Process Framework (OPF) Feb.
2015, www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/
Requirements/ThroughputRequirements.html~Contents

 United States Government. Resources for understanding and implementing Section
508 . Feb. 2015, www.section508.gov/

 US Navy, “Human Factors Analysis and Classification System (HFACS)” Naval
Safety Center web site, http://www.public.navy.mil/navsafecen/Pages/aviation/
aeromedical/HumanFactorsHFACS.aspx

http://www.iea.cc/whats/
http://www.iea.cc/whats/
http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/Requirements/ThroughputRequirements.html~Contents
http://www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/Requirements/ThroughputRequirements.html~Contents
http://www.section508.gov/
http://www.public.navy.mil/navsafecen/Pages/aviation/aeromedical/HumanFactorsHFACS.aspx
http://www.public.navy.mil/navsafecen/Pages/aviation/aeromedical/HumanFactorsHFACS.aspx

CHAPTER 10 ■ USER INTERFACE REQUIREMENTS

255

 Exercises
 Exercise 1
 How many attributes of a good requirement in Chapter 2 does this following requirement
violate? Which ones?

 10-1 DRAFT The system shall be user friendly.

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

257© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_11

 CHAPTER 11

 Managing Requirements

 In this chapter, you will learn why you need to manage your requirements, learn how
requirements have been managed over time, learn what types of tools you can consider to
control your requirements, and finally discover what data elements associated with your
requirements you will need to capture with your shall statements.

 Why Should You Manage Requirements ?
 Once you have begun collecting requirements, it is important to manage them, meaning
the following:

• You need a way to track what happens to them.

• You must understand how they have changed over time.

• You have to allocate them to user stories and/or use cases.

• You have to assign requirements to various sprints within an agile
release.

• You must identify which developers and test worked on the
requirements.

• In addition, you will find with time and different projects many
other questions that will come up during the project’s life.

• If your project uses some configuration management or change
management (CM) process (if it is run well, it should), you
will also need a technique to integrate CM and requirements
management (RM).

 As you can see, you capture not only the requirement statement, and its unique
identifier, but also what else in the project this specific requirement is linked with, such as
the design specifications derived from the requirement and all the testing elements linked
with the requirements. This will allow the project team to manage the requirements and
everything they touch.

 Next, you will get a sense of how RM has evolved over the years.

CHAPTER 11 ■ MANAGING REQUIREMENTS

258

 A Bit of a History Lesson
 Now, look at what has happened in the past several decades. The typical process for
capturing requirements involved recording them in a document of some kind. Decades
ago, REs captured them on paper and wrote them up on typewriters. As technology
evolved, the typewriter was replaced by computers and word processing software, which
made the process more efficient. With the computer, everything was recorded digitally and
managed as a unit. During this process, REs were required to make changes by updating
individual pages, usually with a change request documented by the configuration
manager. In addition, documents had a change page that listed all the changes to help
manage them. For larger systems, the change pages started getting really numerous with
all the changes and affected requirements and even maybe what the change was. Think
how involved it would become when there might be thousands of requirements. Yes, this
kind of management was done and, in some cases, still is. Looking back on it now, it was
the best that was available at the time but seems so rudimentary by today’s standards.
Because some organizations are slow to change, you may see evidence of this method of
managing requirements (probably in archives but I hope not still employed). I was doing it
as late as 2011. You will see why this became cumbersome shortly.

 This way of documenting requirements was a long involved process, and significant
changes could take months to keep current. REs did not think this was a major problem,
having a slow and methodical approach, when systems development took years to
accomplish. However, as time when on, newer and more dynamic development
methodologies were implemented, like RAD, XP, and agile. Requirements managers
(RMs) needed to adapt as well. (Notice that RM can have two different meanings? Ah, this
should be not shock to you after reading Chapter 3 on specialized language.) By this time,
REs exploited the newer techniques available to us, recognizing a word processer was
not as sophisticated at finding information. Yes, there is the Find function, but you had to
search for them one at a time.

 ■ Note Once newer word processing versions came out that listed all the search hits in a
column at the left, that was a significant improvement in finding all occurrences of a word or
phrase, but by then, most REs had moved onto more robust approaches, as you will see next.

 As things like spreadsheets came out, REs used spreadsheet like a database for
tracking requirements. Spreadsheets appeared in the late 70s and moved into significant
business use in the 80s. While some nongovernment organizations may have started
using spreadsheets for RM, some of the limited capabilities of the spreadsheets, with
limited numbers of records and not yet robust database functionality, did not help
engineers with requirements. By the time the third millennium started, the right
functionality appeared, however, and REs migrated to spreadsheets. The Microsoft Excel
Find All function allows you to use that search on just one spreadsheet or on the entire
workbook. That speeds the process significantly. Granted, spreadsheets may not be as
robust as certain database implementations, but a spreadsheet is usually available in the
office without any additional cost.

http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 11 ■ MANAGING REQUIREMENTS

259

 There are now are more robust or specialized tools requirement management tools,
and we’ll see how the reliable standby spreadsheet compares with them in the next section.

 While the move to spreadsheets was ongoing, some enterprising engineers used
database programs that existed in-house and used them to track requirements. Eventually,
software applications dedicated specifically to requirements management came to the
market as requirements engineers, system engineers, and project managers saw the benefit
of such applications. Applications like Requisite Pro and DOORS are currently available.

 ■ Tip Using the Find All feature in an entire workbook, you can count all the requirements
by searching all shall statements—a nice little trick.

 WORD PROCESSING LIMITATIONS

 Before analyzing various tools for requirements management, look at why the word
processing approach significantly limits our ability to maintain our requirements.
Consider a project I worked on. I had developed more than 4,000 requirements to
capture the requirements. Remember, having more than 1,000 requirements for
a sophisticated project is not uncommon. Believe me, the days of dozens or a just
more than 100 requirements are gone. I have worked on systems that had more than
several hundred user stories to more than 1,000 user stories. However, I digress.

 I want you back on those 4,000 requirements. If I created a requirements document,
I averaged about 10 requirements a page. That works out to a 400-page document.
However, I had another quandary on this particular project. It turns out there were
11 variations on the application that were very similar but not identical. I needed to
allocate each requirement to the appropriate variation. Assume it averages out to
seven applications mapped to each requirement. That leaves 2,800 requirements
for each tool. If a requirements document was generated, that would be 280 pages
for each project. Thus, that would be 11 documents that size, which translates to at
least 3,080 pages to try to manage. You have generated a small encyclopedia set
just of your requirements. Clearly, this is cumbersome. In addition, when I changed
one of the requirements, I have to do it on average in seven different places. Trying
to duplicate them accurately is hard and subject to errors. Clearly, this approach is
impractical. I know. I found it so.

 What Types of Tools Should You Consider?
 As a teaching tool , this entire section will use an example analysis for comparing the
requirements management tools by examining tools I have used during my career.
This is not exhaustive, and it is not intended for you to think so. I am showing what was

CHAPTER 11 ■ MANAGING REQUIREMENTS

260

important, and analysis expresses only a relative comparison. You can do something like
this to map to your specific needs and help determine what works for you. Thus, this is a
starting point for you, as your needs will vary for your organization, and each project may
have different needs. So, keep in mind that this analysis is specific to my experiences as
an example for you.

 Before the analysis of the effectiveness of each tool, you need to know some
attributes that a good requirements management tool should have.

 ■ Note For your use, your mileage may vary. You may not have all the same needs I have
had, so modify this list as you see fit. Regardless, you will at least have a foundation.

 Attributes of Effective Requirement Management Tools
 Here are the attributes considered in the analysis:

• Ability to capture all the requirements needed for the project.

• Update baseline requirements quickly when changes affecting the
requirements are approved.

• Capture additional data besides requirements and numbers, like
 Requirements Verification Traceability Matrix (RVTM) methods ,
test procedures, dependencies to other requirements, standards,
and so on.

• Visually represent all the information on an as-needed basis.

• Support various development methodologies: waterfall, spiral,
RAD, XP, agile.

• Easily search various fields (such as finding a specified set of
requirements and displaying all of them at once).

• Generate a hard copy of all or a subset of requirements.

• Ability to capture all the requirements that span multiple projects
(variations of applications that are related).

• Tool is not too complex to use easily.

• Not limit the requirement engineer in his/her work.

• Good documentation.

• Flexible (most tools use Microsoft Excel to import and export;
some use Microsoft Word but only for documentation generation,
not requirements management).

• Ease of installation.

• Good online help.

CHAPTER 11 ■ MANAGING REQUIREMENTS

261

 The Tools
 I have used the following candidate tools in my career:

• Typewriter (yes, I am that old)

• Word processing

• Spreadsheets

• Borland CaliberRM

• IBM Rational RequisitePro

• Smartbear ALMComplete

• IBM DOORS

 There are many more tools than these, so this is not a comprehensive list—nor is
it intended to be. This will show the relative comparison to each other, not perform an
absolute quantitative analysis, in part since no absolute analysis can exist as your needs
vary. The important point is to outline the key attributes, how I evaluate tools, and get
you started with some that I find useful. Furthermore, technology changes all the time, so
understanding how to evaluate tools is more important than a list of recommendations.

 ■ Note For more information about the full range of available tools, see the following articles:

 “Requirements_Management_Tools,” 6/12/2013. Ludwig Consulting Services, LLC
 www.jiludwig.com/Requirements_Management_Tools.html

 “List of Requirements Management Tools,” Software.Process.Management 2016,
- http://makingofsoftware.com/resources/list-of-rm-tools

 The evaluation also includes an estimate for cost impact. The typewriter includes a
cost for the machine just for relative values but not for the time for data entry (nor with
any of the other such tools). For Microsoft Word (word processing) and Microsoft Excel
(spreadsheets), the analysis assumes $0 since everyone has access to this or a similar
package. If you do not have a suite of productivity software like Office, consider free open
source tools like OpenOffice or subscription suites such as Office 365 or Google Apps, which
are affordable, and you always have the most current version. The dedicated requirements
tools range from the high hundreds to thousands per seat, depending on licensing, and so
on. Therefore, I chose a median cost of $2,000 for these dedicated applications.

 Rating of the Tools
 Table 11-1 uses a scale from 10 (ideal) down to 1 (worst implementation). These are not
absolute values but how the tools compare with each other. Of course, I base this analysis
on my experience and what I know of other professionals’ preferences. Keep in mind, you
might not choose the same value for each cell. Not everyone will choose the same values,
but my analysis should be pretty close to that of most experienced REs.

http://www.jiludwig.com/Requirements_Management_Tools.html
http://makingofsoftware.com/resources/list-of-rm-toolsProduction:Please set these as an unnumbered list within the note. Thanks!

CHAPTER 11 ■ MANAGING REQUIREMENTS

262

 Ta
bl

e
11

-1
.

 R
at

in
g

R
eq

u
ir

em
en

t M
an

ag
em

en
t T

oo
ls

 C
ap

ab
ili

ty

 Ty
pe

w
rit

er

 W
or

d
 Ex

ce
l

 C
al

ib
er

R
M

 R

eq
Pr

o
 A

LM
C

om
pl

et
e

 D
O

O
R

S

 C
ap

tu
re

 a
ll

th
e

re
q

u
ir

em
en

ts

 10

 10

 10

 10

 10

 10

 10

 U
p

d
at

e
th

e
b

as
el

in
e

q
u

ic
kl

y
 1

 6
 10

 9

 9
 9

 9

 C
ap

tu
re

 a
d

d
it

io
n

al

d
at

a
 1

 4
 8

 9
 9

 9
 10

 V
is

u
al

ly
 r

ep
re

se
n

t
al

l i
n

fo
rm

at
io

n

 1
 5

 9
 8

 9
 6

 10

 Su
p

p
or

t
d

ev
el

op
m

en
t

m
et

h
od

ol
og

ie
s

 1
 2

 4
 8

 8
 9

 10

 E
as

ily
 s

ea
rc

h

va
ri

ou
s

fi
el

d
s

 1
 4

 8
 8

 10

 9
 10

 G
en

er
at

e
a

h
ar

d

co
py

 1

 5
 9

 9
 10

 9

 9

 Sp
an

 m
u

lt
ip

le

p
ro

je
ct

s
 1

 2
 7

 8
 8

 8
 8

 N
ot

 to
o

co
m

p
le

x
 3

 5
 8

 8
 9

 8
 8

 N
ot

 li
m

it
 th

e
en

gi
n

ee
r

 1
 4

 9
 8

 8
 6

 10

 G
oo

d

d
oc

u
m

en
ta

ti
on

 1

 3
 9

 7
 9

 3
 9

(c
on

ti
n

u
ed

)

CHAPTER 11 ■ MANAGING REQUIREMENTS

263

Ta
bl

e
11

-1
.

(c
on

ti
n

u
ed

)

 C
ap

ab
ili

ty

 Ty
pe

w
rit

er

 W
or

d
 Ex

ce
l

 C
al

ib
er

R
M

 R

eq
Pr

o
 A

LM
C

om
pl

et
e

 D
O

O
R

S

 Fl
ex

ib
le

 1

 4
 8

 6
 8

 5
 10

 E
as

e
of

 in
st

al
la

ti
on

 1

 10

 10

 7
 7

 4
 6

 G
oo

d
 o

n
lin

e
h

el
p

 1

 10

 10

 8
 8

 1
 10

 C
os

t
 7

 10

 10

 3
 2

 2
 1

 To
ta

l
 32

 84

 12

9
 11

6
 12

4
 98

 13

0

 To
ta

l w
it

h
ou

t c
os

t
 25

 74

 11

9
 11

3
 12

2
 96

 12

9

CHAPTER 11 ■ MANAGING REQUIREMENTS

264

 What does this chart tell us? With cost included, Excel is second only to the top
application in the industry, DOORS, by a slight margin. If you remove cost, Excel is still
second to DOOR but very comparable to all four of the dedicated requirements tools
examined in this chapter. Yes, these are my estimates based on experience working
requirements in my career. This gives you a first-blush comparison.

 ■ Note Each attribute was weighted equally. Depending on how you will use a tool, this
might not be valid for you. This will be revisited this in the exercises at the end of this chapter.

 Regardless, while Excel is not a dedicated requirements tool, it provides most
functionality that a good requirements engineer demands without extra cost and other
overhead that can be associated with a COTS purchase. Excel certainly does not provide
every bell and whistle, yet it is still is very good tool to use for requirement engineering, at
least as a starting point.

 If you have the ability to consider a dedicated tool, do a great deal of research to find
what capabilities it has above the ones discussed in this chapter. You will understand your
needs better than anyone else. Vendors may specialize in support for agile development,
RAD, waterfall methodology, or some specific focus. Find the ones that fit your situation.
You know your computer environment, so take that into consideration. Find which tools
support the appropriate configuration. Do you use client-server, stand-alone network,
separate test environments that do not connect to the operational environment, web-
based, or can you connect to the Internet? Find the candidate tools that fit your situation.
Of course, try to find out the limitations of the application. Whenever possible, get a demo
package and spend as much time examining it to see whether you can work with it.

 Importing
 If you have started out with a smaller project and it has grown or you just started out
using Excel and the requirements management tool you ordered has arrived, there is one
additional function you need to consider—import. You have several dozen or hundreds of
requirements already collected, and you want to get them into the new database without
having to either rekey everything (God forbid) or copy and paste every individual shall
statement into one record at a time. You need a good import capability that captures the
entire spreadsheet into the database.

 ■ Real-World Note I had a project that saddled me with significant policy updates
planned every year. As a result, I needed to add dozens of requirements at a time, including
sometimes eight to ten pages or more of requirements. Even after the initial standup of the
database from my spreadsheet, I still used that importing capability. This is important.

CHAPTER 11 ■ MANAGING REQUIREMENTS

265

 ■ Tip Find out if the import works for changes to existing requirements. This is not
a showstopper. Nevertheless, it is important to know as not all of them do. The reason I
mention this is my successors on a project ran afoul of this, saying the program’s import did
not work, even though I had thoroughly documented the process. It turns out, I was correct
in my steps, when applied to new imports. It did not work for replacements. Therefore, for
those they needed to go back to the traditional “cut and paste” approach.

 What Requirement Values Should You Manage?
 Requirement values are those data elements associated with a requirement to fully describe
what it is, such as the shall statement, the number associated with it, and so on. We will
examine this is detail shortly. Realistically, there is no one answer to what values should you
manage. It depends. This is not a cop-out, but the reality is that every project, or every office,
may have different needs or different ways of managing projects. Some want requirements
integrated with testing. Some want requirements integrated with the agile management
approach. Some may want both, or some may want requirements as a stand-alone approach.

 First, you will consider general values for just the requirements stand-alone
approach. Why? That is the foundation that the others will work from. Once you have that,
then you can move on from there. Tables 11-2 through 11-4 will also explain the rationale
for each field. Besides having a good background, you get the benefit of knowing the
importance of each and when you can include them or when they are not as important.
This gets back to the goal of teaching you to think, and customizing or tailoring your
requirements management to your specific program.

 Requirements Fields
 As previously mentioned, the requirements fields are identified, and then the purposes of
the fields and any format constraints are provided. The order is not set. That depends on how
best you want to organize it. Some tools may dictate that for you, whereas others may allow
you to move them around, within limits. This is also something for you to consider in your
decision from the previous discussion. Now, examine Table 11-2 , the requirements fields.

CHAPTER 11 ■ MANAGING REQUIREMENTS

266

 Table 11-2. Requirements Fields

 Field Purpose

 Unique Identifier This is a required field. This must be unique throughout the project.
You will search on this. Notice this does not say number here, as
you have flexibility for how you want to do this. You could just
have a one-up number for every requirement you add. Remember,
depending on how you group requirements or where you insert it,
it may not always be sequential. Or you could do it by sections, say
1.2.4.5 and 3.5.99 as you go down in levels, yet not everyone has
to be at the same level. You could do both. Or you could have an
alphanumeric field like RPT-262 and SEC-359. Do what works for
you. In addition, if you are using a dedicated application, you have
to consider what your dedicated tool will allow. Ask about this. If you
are not using a dedicated requirements management tool, you need
a unique identifier for searching.

 Date Created This is so you know when the requirement/user story was created
in your repository. This helps when you need to look at how
requirements change with time, or count metrics, and other forms of
analyzing requirements growth. Any standard date format, say, mm/
dd/yyyy.

 Requirement/
User Story

 This required field is your shall statement. Other than the unique
ID, this is the most important field. This is where your write the shall
statement. Give yourself sufficient space here. 128 characters may
not be sufficient. That is about 21 words. Look at your requirements
and see how many times that would be not enough. 256 or even 512
characters might not be enough when you look at a list. There is a trap
also with making it too large, where you cannot even show a view that
has more than one requirement statement. One tool did not show
requirements in a list; you had to look at it one requirement at a time
or generate a report. Give yourself flexibility.

 Title This is not a required field. In some homegrown tools, you may
not use this. However, you can use it for sections or an alternate
numbering scheme. It depends how the tool uses it. Some RM tools
have made this mandatory, and it had to be unique. Then you need
to figure out how you want to populate it. Format, text field.

 Version This can be the version when the requirement was added to the
project, or it can be the current version to help ensure everything is
up to date. Format, text field.

(continued)

CHAPTER 11 ■ MANAGING REQUIREMENTS

267

Table 11-2. (continued)

 Field Purpose

 Author Who wrote the requirement? You may not always stay on a project
from cradle to grave (in fact, most times this may happen), so it is
good to know who wrote it. This might help if you need to research
something and you need to know who to talk with. On the other
hand, you may notice trends of certain people don’t have the benefit
of this same training you get, and you might need to revisit some
work. Format, text field.

 Priority Usually these are just categories like High, Medium, or Low. Maybe
Critical is added. This gives an initial importance of the requirement.
For example, transitioning the data from the old project to the new
project is critical since it is needed before any work like searching
can be performed. Format, text field, or a fixed picklist.

 Rank This is an optional field. This helps to identify within a priority the
order that requirements/user stories should be completed. This
is particularly important when dependencies are necessary. For
example, you need to transform the metadata from the old structure
to the new structure before ingesting data. Format, text field.

 Status This field is driven by what your project needs. Usually when you first
create the requirement, this is New. Then you can have whatever you
need here: accepted, deleted, deferred, completed, withdrawn, rejected,
verified, implemented, approved. Format, text field, or a picklist, either
fixed in some RM tools, or editable by an admin (preferable).

 Source (Optional) What drove the requirement/user story to be written?
It could an HR policy, security needs, stakeholder mandates, and
architecture constraints. Format, text field.

 Risk (Optional) Complexity, difficulty, technological challenge that could
affect the completion of this requirement. If you need a particular
concept search that your organization has not yet acquired, this
could restrict the ability to implement this need.

 Assigned to (Optional) Which designer or implementer has the assignment to
work? Format, text field.

 Rationale (Optional) Reason the requirement/user story was included or
rejected. Format, text field.

 Comments (Optional) Additional information that might help to understand the
requirement/user story or more information about other values in a
particular field. Format, clearly a free text field.

(continued)

CHAPTER 11 ■ MANAGING REQUIREMENTS

268

Table 11-2. (continued)

 Field Purpose

 Verification
Method

 (Optional) This is a prelude to the verification work to be associated
with a requirement/user story and a review of what was talked about
regarding the verifiable attribute of good requirements. Methods
are usually selected from the following values (you are not going to
define how it’s verified; just choose a method):

 • Test: A measurement to prove or show, usually with precision
measurements or instrumentation, that the project/product
complies with requirements.

 • Analysis: A quantitative evaluation of a complete system and/or
subsystems by review/analysis of collected data.

 • Demonstration: To prove or show, usually without measurement
or instrumentation, that the project/product complies with
requirements by observation of results.

 • Inspection: To examine visually or use simple physical measure-
ment techniques to verify conformance to specified requirements.

 • Simulation: Executing a model over time to simulate a portion of
the system.

 Format, text field, or a picklist.

 Stability (Optional) Indicate whether the requirement is not fully defined.
Some use TBD (To Be Determined) if no known value is captured
or the value is uncertain. TBR (To Be Reviewed) is used if the value
captured is closed but not exact. Format, text field.

 Due Date (Optional) The date the requirement/user story is (or should be)
delivered. Date format says mm/dd/yyyy.

 Product (Optional) If the overall set of requirements applies to variations
of a project and each requirement needs to be allocated to one,
several, or all of the products. Think of a sophisticated macro applied
to Microsoft Office applications used in your IT department of the
company. Format, text field.

 Subsystem (Optional) If the project is large enough to have subsystems,
this allocates the requirements to the appropriate subsystem or
subsystems. Yes, some can apply to multiples. Think of the reliability
requirement that is allocated with the same value to each subsystem.
Format, text field.

 Type (Optional) This is the type of requirement that you may want to
group requirements: functional, nonfunctional, architectural,
structural, behavioral, performance, design, derived, allocated.
You may use some, all, or none of these. Format, text field, or a
combination box where you can choose one or more.

(continued)

CHAPTER 11 ■ MANAGING REQUIREMENTS

269

 There may be more that you will think of or encounter in your career. Add, change, or
delete from this list as you see fit. You will not use all of the fields on every project.

 ■ Note In some dedicated requirements management tools, the application generates
a unique identifier for you. This is driven by how they implement your program. Given
that you cannot change the value, as it may be just a one-up number based on when you
enter the requirement, it may not suit all of your needs. You may still need to create your
own unique identifier, based on section, functional area, or any other reason for grouping
your requirements. Here, the RM application may drive your business process, rather than
follow yours. You need to control your requirements the way you need to, not solely driven
by someone else’s application. Using a field like the Title field mentioned earlier might
substitute for your unique identifier.

Table 11-2. (continued)

 Field Purpose

 Latest Update
Date

 (Optional) This helps with version of requirements. This is also
useful when you want to look at the history of changes. Within some
RM tools (except possibly spreadsheets), you may be able to see a
given requirements history and see how it has changed over time.
Date format say mm/dd/yyyy.

 Parent/child (Optional) This is useful when one higher- level requirement spawns
subordinates that are related to but decomposed from the origin. You
can show the linkage with this identification. Format, text field.

 Dependencies (Optional) If requirements need to be accomplished in a specific
order, they should be indicated here. For example, a replaced value
needs to be retained when the value is updated, before a history of
changes can be generated. Format, text field.

 User Story
Identifier

 (Optional) If you are using both user stories and requirements, you
will map one or more requirements to a user story. Format, text field.

 Use Case
Identifier

 (Optional) If you are using both use cases and requirements, you will
map one or more requirements to a use case. Format, text field.

 Model Identifier (Optional) If you are using both a model and requirements (or user
stories/use cases), you will map one or more to a portion of a model.
(This will make more sense when approaches are presented in a later
chapter.) Format, text field.

 Attachments (Optional) If documents need to be linked to this requirement/
user story to help reinforce the reason for it, include the linkage
here. Maybe if a policy document is associated with a group of
requirements, you could provide it here (usually for just one in the
group of requirements). Linkage.

CHAPTER 11 ■ MANAGING REQUIREMENTS

270

 Requirements Associated with Testing Fields
 Table 11-3 contains candidate fields that can be associated with testing.

 Requirements Associated with Agile Fields
 Table 11-4 includes candidate fields that can be associated with the agile methodology.

 Table 11-3. Addition Requirements Fields Associated with Testing

 Field Purpose

 Unique Identifier This is required only if a separate table from the requirements is
used. If the following data is in the previous requirements table,
this field is not required again. Format, alphanumeric.

 Test Creation Date Date the test was created. Date format, say, mm/dd/yyyy.

 Test Case Identifier The test case that the requirement was allocated to. Format, text
field.

 Requirement verified This is not the status of the entire test case, but the verification
of the requirement/user story/use case. Usually, the response
is Yes or No. Sometimes, if there are multiple parts, not all are
passed, just some. In that case, it is a partial. This gets to the
need for atomic requirements. However, in the case of specific
order, this cannot always be achieved. In the case of partial,
the counting of successful requirements verification gets
complicated. Format, text field.

 Comments Add any additional information that came out of testing this
requirement, (e.g., maybe problems with testing, or deferring for
some reason). You should relate these comments to the testing
phase, not the requirements definition or management phase.
Format, text field.

 NOTE: Not all test fields are duplicated here. This just tried to capture
additional information that is specific to requirements and user
stories.

CHAPTER 11 ■ MANAGING REQUIREMENTS

271

 You may have more values for additional aspects of your project. You will have to
decide which if any not included here need apply. No one can anticipate every variation
within the world or how every unique project is managed.

 References
 “Requirements_Management_Tools,” 6/12/2013. Ludwig Consulting Services, LLC
< www.jiludwig.com/Requirements_Management_Tools.html

 “List of Requirements Management Tools,” Software.Process.Management 2016,
 http://makingofsoftware.com/resources/list-of-rm-tools

 Table 11-4. Addition Requirements Fields Associated with Agile

 Field Purpose

 Unique Identifier This is required only if a separate table from the
requirements is used. If the following data is in the
previous requirements table, this field is not required
again.

 Sprint Identify what sprint or sprints this requirement/user story
is allocated to. Format, text field or a picklist.

 Planned Release Identify what release this requirement/user story is
allocated to. Format, text field or a picklist.

 Time to Accomplish The time it will take to implement the requirement/user
story. Text field using hours, days, weeks, whatever your
project uses.

 Actual Time to Accomplish The time it took to implement the requirement/user story.
Format, text field.

 Comments Add any additional information that came out of
implementing this requirement/user story (e.g., maybe
problems with designing, deferring for some reason, or
possibly additional work was required to get the work to
be accomplished due to unforeseen circumstances). These
comments should be related to the implementing phase,
not the requirements definition or management phase.
Format, text field.

http://www.jiludwig.com/Requirements_Management_Tools.html
http://makingofsoftware.com/resources/list-of-rm-tools

CHAPTER 11 ■ MANAGING REQUIREMENTS

272

 Exercises
 Exercise 1
 The requirements management tool comparison table did not include weighting of factors.
Determine what the total will be with the following weights: cost 3.0, help 2.5, flexible 2.0,
multiple project 2.0, additional data 3.0. What does this new total value mean?

 Exercise 2
 Assume all fields have 18 characters allocated to them, except the requirement/user story
field and the comments fields, which have 500 characters. Also, assume you use only one
database table, but all the fields are listed in the tables. Determine how much storage is
needed if all the space is fixed for 100, 1000, and 10,000 requirements.

 Exercise 3
 For the individual dosimeter project talked about throughout this book, please identify
what fields you think in the three tables in this chapter you should apply to this project
and why.

 PART IV

 Alternatives to Shall
Requirements

275© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_12

 CHAPTER 12

 Supplementing or Replacing
Standard Requirements

 The entire book up until this point was spent talking about requirements as purely
 shall statements. This concept of requirements was the foundation of the waterfall
development methodology, starting with hardware and then translated to software.
However, other types of requirements are referred to such as user stories , use cases , and
 modeling . Now you will be exposed to these types of requirements and how you can use
them to supplement or replace shall statements. This and the next two chapters will
discuss each topic so that you will be able to create them as needed, and why.

 One of the significant drawbacks of the waterfall method for software development
is that once you capture requirements, you freeze that baseline at that point. Given that,
on average, requirements for a project change from 1 to 4 percent per month, the scope
of the project may change significantly by the time it is delivered. The waterfall method
is not agile enough in many cases. Thus, newer approaches were needed. With rapid
application development (RAD), use cases came into being. With the advent of extreme
programming and other agile methodologies, user stories came into being.

 In addition, modeling techniques become important for programs to represent
information to aid in the development of the hardware and software. This chapter will
briefly introduce each subject and then examine the advantages and disadvantages of each.

 One additional point to make about a collection of shall statement: it is not the
easiest document for users and stakeholders to understand and then review and
comment on. As a stakeholder whose primary purpose is to use a particular system to
do their job, they are not necessarily well versed in requirements. If they are exposed
to hundreds or even thousands of shall statement in a long list, with little paragraph
descriptions to give context to them, they may not be able to get a comprehensive picture
of the system. Thus, having another way to either replace shall statements or supplement
them will obviously help these stakeholders comprehend the proposed system.

 This chapter covers a variety of approaches and tools that can supplement or replace
the traditional requirements techniques discussed thus far.

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

276

• User stories and use cases are exceptional cases because they are
uniquely valuable for capturing certain kinds of requirements
that traditional shall statements do not handle as well. They also
are general approaches that are often especially useful with agile
development. Therefore, they are introduced in this chapter but
discussed in more depth in two dedicated chapters that follow
this one.

• Modeling provides tools that are particularly useful for
supplementing technical requirements, but only some modeling
techniques work for ordinary user and stakeholder requirements.
In this chapter, I will focus on a couple of techniques that are
more generally useful for users and stakeholders (such as swim
lanes) and then introduce techniques that have more specialized
application for technical users. There are additional resources
you will find useful if you have a need to write more specialized
requirements, and I’ll note those resources and include them in
the “References” section.

• There are some additional tools that can serve as useful
supplements in the requirements gathering process, and I will
cover those briefly in the final section.

 User Stories and Use Cases
 If there are alternatives to writing shall statements, why was so much time spent focusing
on them? Excellent question. First, as you will see in the “Supplement to Requirements”
section in this chapter, shall statements are not going away. Second, understanding all the
aspects of requirements is an excellent foundation to have to write user stories and use
cases. Without that foundation, it would take you considerably longer to craft user stories
and use cases, as you will see in the next two chapters, in which we look at these topics in
more depth. In addition, when you see the advantages and disadvantages of the various
alternatives, you will have a better basis for comparison.

 User Stories
 A user story follows this type of template:

 12-1 “As a <role>, I want <function/feature> so that <benefit>.”

 Where the role is the type of user, the function or feature is what the user does or
uses, and the benefit is why the user would want to use this function or feature. For
example, a user story could be as follows:

 12-2 As a cell phone user, I want to retain a list of selective
phone numbers that I have received so that I can choose
which numbers I want to reuse later.

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

277

 Notice how easy it is to read? That is a significant benefit for users and stakeholders
to understand them. This is a big advantage in that users can understand these even
better than shall statements.

 User stories work well with the agile methodology. The user story and subordinate
acceptance criteria (which will be talked about in the next chapter) can be refined as the
user story approaches the sprint in which the development team plans to work on it. This
helps to negate the effect of requirements scope creep, unlike in the waterfall approach
where you must create all the requirements up front.

 Does this mean that user stories are the pinnacle of requirements technology? While
it goes a long way to fix requirements problems, it still has some limitations. Because the
development team intends to accomplish each user story in an individual sprint, some
areas that you need to define do not fit well. Nonfunctional requirements, especially
performance, are much harder to capture as a user story. Remember, in the “Availability”
section in Chapter 5 , you saw the following requirement:

 12-3/5-54 The BOSS system shall be available 99.99% of the time.

 How would it look as a user story?

 12-4 DRAFT As a BOSS user, I want the system to be available
99.99% of the time so that the system provides the availability
I need since it is a mission-critical function.

 That sounds like a reasonable user story, and on the surface, it is. However, can the
development team accomplish that in one sprint? Assume the development team has six
user stories it is responsible for developing in a given sprint. Does availability apply to
each user story? Technically, yes. Then, how do they verify that it is accomplished? What
about all the work accomplished before the sprint in question. Does the availability user
story apply to them? Yes. Now you start to see the conundrum—one availability user story
may not address how it should be applied to an application development. In the next
chapter, you will see this discussed a bit more to suggest how you might consider it.

 Use Cases
 Usability.gov provides some good information on use cases (as do other sources). They
say that a use case is a written description of how users will perform tasks on your system.

 What elements should be included in a use case? Depending on how in depth and
complex you want or need to get, use cases describe a combination of the following elements:

• Title : This is an identifier or name of the use case.

• Description : This is a brief description of the purpose of the use case.

• Actor : This is anyone or anything (another system) that performs a
behavior—who is using the system. This is not limited to one actor.

• Preconditions : This is what must be true or happen before the use
case runs.

• Postconditions : This is what must be true or happen after the use
case runs.

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

278

• Triggers : This is the event that causes the use case to be initiated.

• Main success scenarios (aka basic flow) : This is a use case in which
nothing goes wrong.

• Alternative paths (aka alternative flow) : These paths are a
variation on the main theme. These exceptions are what
happen when things go wrong at the system level or an alternate
condition causes a change to the basic flow.

 Table 12-1 is an example of a use case (12-5).

 ■ Note Dialing a wrong number or needing to redial the number if the phone was not
answered would not be part of this use case as the goal is to dial a number. A different use
case could cover the option for handling the answering of a call.

 You can see that this is much more detailed than a user story and provides more data
than shall statements. One significant advantage use cases have over shall statements is
that the sequence of steps is addressed well.

 Naturally, there are some challenges with this approach.
 Use cases are not so good for system centric functions such as batch processing, data

warehouses, and very computationally intensive functions. How would you represent a
complex algorithm? Think of the software to control an interplanetary spacecraft, with
significant mathematical calculations.

 In addition, nonfunctional requirements, especially performance, are harder to
capture and craft. They have no actors, and they do not have alternate flow readily
apparent. Additionally, many users are not comfortable trying to understand this structure.

 Table 12-1. A Use Case with Basic and Alternative Flows

 Title Dial a Phone Number

 Description Use your cell phone to enter a phone number.

 Actor Phone users.

 Preconditions Actor has a cell phone.

 Postconditions The phone connects to the number called.

 Triggers A need to call someone.

 Basic Flow 1. Turn on the cell phone.
 2. Select the dial option/app.
 3. Key in the number.
 4. The phone rings.

 Alternative Flow 1. Select from a list.
 2. Select the dial option/app.
 3. Choose the number from the list provided.
 4. Tap the number desired.
 5. The phone rings.

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

279

 ■ Real-World Note I have primarily used use cases when the “customers” were
developers, not real users or stakeholders. This is because developers are generally more
technically inclined than the general-population stakeholders. They can follow the structured
format and sequence of steps.

 Use cases may work better for the waterfall approach, as they are prepared up front,
not necessarily as just-in-time development. Of course, you can create use cases this
way, but there is potential for impact to other use cases—usually referred to as the ripple
effect where a change ripples through other areas. For example, if you have four use cases
dealing with using people’s roles and responsibilities to determine what functions they
can access, and if you change one use case, you will need to verify that one change does
not affect any other use case.

 You have learned to perform gap analysis during the shall statement analysis. That
approach also applies here. How easy is it to ensure all aspects of every use case are
captured? With shall statements, you have very detailed statements that address each
point. There is much more detail in a use case, and with the overlap potential between
use cases, there is the possibility of small gaps appearing adjacent to these use cases. You
may be missing some alternative flows that are not obvious to you. Alternatively, they are
just very miniscule use cases that are not obvious. This does not mean that you cannot
find them, but it may be challenging. More time will be spent analyzing this in Chapter 14 .

 Supplementing Your Requirements
 Supplementing requirements means that you can use user stories, use cases, or
combinations of them, in conjunction with shall statements.

 Because of the flow of steps in use cases, there is a benefit of preparing them. It
may be you do not need to do it for everything within your system. However, it provides
additional detail that a list of hundreds, or thousands, of shall statements does not provide.

 User stories have the benefit of being much more understandable to users. On
one project, the collection of shall statements was taking much longer than initially
anticipated. The RE working with management decided to craft user stories with the users
and stakeholders but add the shall statements for the development team. This worked out
well, as both the stakeholders and developers received the level of detail that they needed
respectively.

 Replacements for Requirements
 This section will address the possibility that user stories or use cases can work as
a replacement for requirements. Each one of these approaches will be looked at
individually. User stories are intended to act as stand-alone requirements. Seeing the
success of methodologies that use them demonstrates that they do work as replacements.
It is safe to conclude that user stories without shall statements can work.

http://dx.doi.org/10.1007/978-1-4842-2099-3_14

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

280

 ■ Real-World Note The most recent example I have worked with where this occurred
was a small development team of three people. The team lead had worked on this project
for years and had an extensive understanding of the project. The requirements were
documented only with user stories, without any shall statements. The team stated that they
did not require the level of detail provided by shall statements, as the user stories provided
what they needed. Not only did this team perform the coding but also the testing. I have
observed other teams where there were separate coders and testers, and in most of these
cases, the shall statements helped support the user stories. Nevertheless, there are cases
where users stories can completely replace shall statements.

 Use cases also are intended to act as stand-alone requirements. Seeing the success of
methodologies that use them demonstrates that they do work as replacements. Thus, it is
safe to conclude that use cases without shall statements can work.

 ■ Real-World Note I worked on a recent project that used the rapid application
development methodology. Again, it worked because the development team had used use case
definition without shall statements for years. I was the requirements team lead, and all of my
team members had been coders before, so they knew the precise level of detail the developers
needed, and they provided it. The structured use cases were provided to developers who
understood what the users needed. Thus, use cases can be used instead of shall statements.

 The gist of performing use cases and user stories with or without shall statements
comes down to “It depends on the situation.” What is the situation, and how will you use the
information? The stakeholders and their level of understand and technical sophistication
will drive much of the focus, as well as what your organization is comfortable with doing.
As a junior requirements engineer, you may not have a lot of say on this. In addition, seeing
different approaches over your career can help lend credence to your recommendations.

 Now, onto our next topic.

 Modeling
 Chapter 9 talked about how good requirements gathering techniques may not
successfully capture all requirements. Some things don’t lend themselves to
representation in natural language text, so we can look to examples of pictures that can
capture things more effectively than words and mathematical precision that doesn’t
translate well into words. Modeling and other graphical representation techniques are
attempts to provide that precision and leverage the strengths of visual imagery .

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

281

 Modeling is an approach to represent a need in a more precise manner than can
be achieved by just text only. Modeling uses more structured approaches to represent
information that can be a varied combination of text and graphics. Modeling can vary
from relatively simple graphical representations to very complex approaches that include
multiple techniques.

 Why is modeling useful for requirements? The natural language used to write text is not
always as precise as REs would like it. Mathematics is precise, yet humans have not found a
way to translate all words into equations. Modeling is an attempt to provide that precision.

 That is not to say you should not use modeling techniques or graphics. If you do,
make certain what you use is appropriate for your audience. Take into consideration
the level of technical expertise of your users and stakeholders. Remember, the goal is to
communicate effectively with them.

 Back in the ancient history of chisels and stone programming days called Hollerith
cards, programmers were supposed to write flow charts to plan out programs to prevent
writing bugs into the code. Being undergraduates, programmers looked for shortcuts
to get the programs written quickly and easily, so they ignored that advice, to their
detriment. As programs grew more sophisticated, techniques improved beyond those
rudimentary flow charts they should have used.

 General Modeling
 You will examine approaches that might use a graphic representation that might help
enhance the message of the text you have written so that users can better understand, like
swim lanes.

 When you do use modeling and other graphical techniques, make certain
what you use is appropriate for your audience. You will examine the technical level
associated with each technique in its respective section. Take into consideration the
level of technical expertise of your users and stakeholders. Remember, the goal is to
communicate effectively with your target audience—stakeholders who will help you
gather requirements.

 In some cases, if your organization uses no modeling or graphic representation
techniques, you may want to consider one or more to enhance communications. The
more likely situation is that your organization already uses one or more models, so you
need to be aware of them so you can then learn the technique.

 There is one significant drawback to modeling—users/stakeholders may be model-
illiterate. By that, they do not have the technology background to understand various
models. You will be exposed to the use of swim lanes as one approach that might use a
graphic representation that might help enhance the message of the text you have written
so that users can better understand.

 However, the more technical in nature of the model, the less likely a typical
nontechnical user will glean information from it. Consider those when you evaluate ways
to represent requirements.

 If models do not effectively support the users, why would REs employ them? The
primary purpose is to enhance the understanding of the requirements for the designers
and developers and even requirements engineers. There are two subsections in the
modeling section specifically targeted for user/stakeholders, “Models for Ordinary
Requirements” and “Tools That Can Aid Requirements Gathering.” Does that mean

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

282

they can be used only for that audience? Of course not. It just means that these tools are
much better when your audience is not so technically focused. The specialized modeling
techniques work much better for technical audiences.

 Models for Ordinary Requirements
 Here I will present modeling techniques for capturing requirements in a graphic or model
representation. Before looking at the swim lane or data flow diagram and trying to draw
any conclusions on these techniques, here is some real-world experience that should
prove enlightening.

 I worked on two projects where a modeling technique was used in place of shall
statements. The first project had DFDs created, and the other project just business rules
created. For these two projects, because the developers had received the same training
in the use of the modeling technique, they were able to understand the data. However,
because stakeholders were accustomed to seeing shall statements, these people could not
follow either approach well and still wanted shall statements.

 The conclusion could be summarized as follows. When the users of modeling-
related requirements understand the model, models can be used effectively. Experience
shows that just a graphic or model representation will not always work well with
stakeholders who do not have experience with said models.

 Swim Lanes
 Swim lanes are an easy method to depict what functions are performed, grouped by the
different portions of an organization, and showing the sequencing of those functions. We
are going to break them into either all the rows or all the columns (it makes no difference
which way you break it) to represent the different organizations, teams, or processes—who is
responsible for specific tasks. Using columns is preferred if you have a much smaller number
of organizations than the various steps. Otherwise, you can use them organized by rows.

 Lines show where that particular person or group of people (or maybe even a
particular process) is affected or takes some action. Having lines on both sides justifies
the name swim lanes , just like in a race in a swimming pool.

 Then, the arrows show the sequence of events. You may have labels for the task
sequence, if it makes sense.

 Figure 12-1 is a swim lane example that presents how to access a BOSS system.

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

283

 This a simple example, but it illustrates how the different groups of users in this
example have the information flows through the system, simple though it is. It starts with
a potential user requesting access. Once the manager approves the request and assigns
the roles, then the sequence goes through the various tasks to the natural end of the user
accessing the system. Notice this example did not provide labels to the tasks as there was
not a natural grouping of tasks .

 This example has not shown what happens if the user forgets their password. That
would be another swim lane chart.

 You might ask why the manager would disapprove a request. It is possible the
individual is not in the proper department to have access. Other things may happen
outside this if the potential user needs to appeal the request. Alternatively, that could be
some enhancements you might make to this chart.

 What this technique may help with is inefficiencies. Are too many actions happening
in one swim lane that is slowing down the process? This technique does not show how
long it takes, but you can do some analysis. In this example, once the decision is made,
there are only two steps to get the access to the user. However, what if after giving the
access, the sys admin had to go back to the manager, or a supervisor to the user, and get
the information and then get approval from HR? You see how additional steps cause the
sequence to balloon out of control. It is the analysis of the swim lanes where its benefit
arises, in addition to the graphical representation to help understand the process.

Potential Request Access
BOSS User Access BOSS
________________________ N ____________________________

Y
BOSS Sys Approved? Give Assign
Admin Userid Roles

Password
______________________ _______________________________

Manager Approve
Access
And Role

 Figure 12-1. Swim lanes

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

284

 ■ Warning This applies not only to this technique but also to virtually all graphical
representations. Do not try to represent every task in a system on one swim lane diagram. This
would be massive and hard to follow. Like you do in the agile methodology, break them into
manageable chunks to aid readability and map more to smaller functions within a project.

 You might hear swim lane flowcharts called Rummler-Brache diagrams. Most people
take the simpler route and just call them swim lanes.

 Since this technique was proposed in 1990, it has become one of the more popular
techniques used to supplement requirements, including business analysts using them to
depict business process even before requirements definition may begin.

 Data Flow Diagrams (DFDs)
 In the 1970s, the computer industry embraced Edward Yourdon’s structured analysis.
One significant technique to perform this approach to analysis was data flow diagrams .
Data flow diagrams show the flow of data within a system in a graphical manner.

 Understand that DFDs do not show timing of the flow, or any workflow information
such as the sequence as performed in series or parallel.

 DFDs start with what is called a level 0 DFD, called a context diagram . This defines
the system and its interactions with the external entities, where these entities receive data
from the system or send data to them. The only flows depicted on the context diagram are
data flows.

 Now look at an example of the BOSS Radiation Dosimetry System as was discussed
in this book, as shown in Figure 12-2 .

Soldier
Exposure data

Commanders

Readiness

Group exposures

Medical
Staff

Dosimetry
system

 Figure 12-2. Context diagram

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

285

 To understand the processes within the system, you must expand the system into
multiple processes in level 1 (see Figure 12-3).

 You can see how the system is subdivided into processes (the circles), where each
process addresses one or more data flows to or from external entities. It also has been
identified any internal data stores for the system to perform its functions. Also, any data
flows are shown between the internal processes .

Check calibration

Soldier

radiation data stores

requested exposures

multiple exposures

exposure

soldier or unit
medical impacts

soldier or unit
readiness

Commanders
Medical

Staff

1.0 Collect
exposures

2.0
Calibrate
collectors

3.0
Generate
Reports

 Figure 12-3. Level 1 DFD

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

286

 First, you need to understand the notation used in the diagram. Accept that you are being
exposed to one particular notation, whereas as you research this, if you will use it, there are
many tools that use different variations in notations. The notations used here are as follows:

• Circles are processes.

• Curved lines are data flows.

• Rectangles are external entities.

• Parallel lines contain the internal data stores.

 On the Agile Modeling web page, the “Data Flow Diagram (DFD)s: An Agile
Introduction” article gives some excellent common modeling rules for creating DFDs that
are highly recommended. These are those rules as presented in the article :

 1. All processes must have at least one data flow in and one
data flow out.

 2. All processes should modify the incoming data,
producing new forms of outgoing data.

 3. Each data store must be involved with at least one data flow.

 4. Each external entity must be involved with at least one
data flow.

 5. A data flow must be attached to at least one process.

 Remember, the purpose of the sections in this chapter is to provide supplements
to textual requirements that have been discussed up until this point in the book. While
there may be some advocates who stipulate some of these techniques may replace textual
requirements, this text is not advocating that.

 ■ Real-World Note I used DFDs in my career, in conjunction with a computer-aided
system engineering (CASE) tool . (CASE tools are applications designed to help system
engineers perform their functions, as you can see from what CASE stands for.) The team
spent time creating DFDs after capturing a complete set of shall statements. When we
completed this effort, the DFDs were provided to the development team, not to stakeholders.

 How low a level you should decompose your DFDs to has not been addressed.
The logical answer is as low as you need to go. That said, guidance in the industry is
about the third or fourth level. Clearly, if you are down to eight or ten levels, you might
want to rethink what you are doing. You are not trying to design a system, just provide
information to assist in the development.

 Does it seem like this is a good complement to textual requirements? It depends.
If you will have significant data stores and manipulation of them, you might want to
consider DFDs as a complement to your requirements. Notice that the diagrams are fairly
bare of details. DFDs are very useful to depict how data flows within a system, particularly
if the project has large, complex data flows. Clearly, a designer might use them, but you
will have to decide whether the stakeholders will benefit by them .

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

287

 Specialized Modeling
 Some organizations apply specialized modeling techniques . In that case, you will likely be
involved with using them. In some cases, you will prepare the results of your requirement
work for the technical consumers using these techniques. Other times, you may be
the reviewer of someone else who does the conversion of your requirements to ensure
requirements are captured correctly. Or you may just be someone who reads the results of
these techniques for informational purposes. In any of those cases, you will need to learn
and understand the technique in question.

 Also, remember in Chapter 9 , we talked about some of the smaller groups within
stakeholders such as database administrators, network engineers, system operators, and
so on, who are technically savvy? If needed, some of these tools may be useful for them.

 This text is only to make you aware of these specialized modeling techniques. There
are extensive resources that exist that can aid you in learning about them. The following
is a small list of some of the more popular techniques. This is not an endorsement of any
of them, as each has their purposes. There are many more that provide the technical data
in various formats, both text and graphic representations, to varying degrees of structure.
The key takeaway is that some time is needed to use the techniques and understand the
data resulting from its analysis.

 This section introduces the techniques when you need to write more specialized
requirements for the technical audiences:

 Unified Modeling Language™ (UML) : UML is a modeling
language that is intended to analyze requirements to
formulate a design, which is managed by Object Management
Group (OMG), and now is an ISO standard.

 Extensible Markup Language (XML) : XML is a markup language
to define a file format that is human-readable as well as
machine-readable. The document or file does not do anything;
it is just a method for representing the file or document.

 Rational Unified Process (RUP) : RUP is process that added a
section specifically for requirements, which is UML based.

 State transition diagrams : State transition diagrams show
the actions that occur based on specific events, eventually
showing all the states of that object. They work well for single
objects but are not as effective as many objects are added to a
system being analyzed.

 System Modeling Language (SySML) : SySML is a modeling
language for system engineering designed to support all
phases of the development lifecycle, including requirement
specification. It too is a variation of UML.

 This list is certainly not exhaustive but, again, it provides some representative tools
that you might use. If they do not serve the needs of situations you encounter, there are
other available tools and techniques you can research and employ.

 See the reference section for sources that can provide additional information on
these subjects .

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

288

 Tools That Can Aid Requirements Gathering
 Affinity diagrams and storyboarding are good tools to use with stakeholders when you
are in the process of collecting requirements. In contrast, swim lanes and data flow
diagrams are representation methods to use to document requirements after they have
been collected to help with the precision of what you have captured. The following two
techniques help to drive out the ideas and needs for the system the REs and stakeholders
are discussing.

 Affinity Diagrams
 An affinity diagram is a sophisticated idea for organizing information. You solicit ideas on
a particular subject area, whatever it is. You let the people write these ideas, all of them,
no matter how outlandish or pie-in-the-sky they may sound. Once you have finished
with the idea capture, you now want to bring some structure to them by providing some
grouping. It could be one level of grouping or two—whatever works for the group. As a
requirements engineer, you may come up with additional refinements to this as your
experience tells you, but you should still vet it with the stakeholders.

 Therefore, you start with something like Figure 12-4 , which shows the results of the
brainstorming by the stakeholders dealing with search ideas.

 You can see there is no order. After applying some structure, you might have
something like Figure 12-5 .

Find docs
that match
my needs

Find name
variations

Check for
syntax
errors

Ensure all possible
documents are found

Suggest terms
that might
match my terms

Look for
keying
errors

Consider
Arabic name
variations

 Figure 12-4. Affinity diagram 1

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

289

 ■ Real-World Note This is an excellent technique to use in conjunction with
brainstorming as I have done on one of my projects. We used the sticky notes people filled
out as the foundation for user stories for specific functional areas. We reviewed the results
twice after the initial brainstorming to ensure we captured everything correctly.

 Just so you know, if you run across the following names, an affinity diagram can also
be called an affinity chart or K–J method variation .

 Thus, affinity diagrams are an excellent technique to use in requirement elicitation.

 Storyboarding
 Storyboards are illustrations or images displayed in sequence so you can visualize a
motion picture, animation, motion graphic, or interactive sequence. This can include
how a human interacts with a computer. Believe it or not, but storyboarding was
developed at Walt Disney Productions during the early 1930s. If it works for something
as successful as full-length movies or The Three Little Pigs short by Disney, think of the
benefit it can bring to system engineering. How can you use it to define requirements?

 Before you get to the particular use, make certain you understand what it is.
 One aspect of the word storyboard you want to consider is the word story . Just as you

captured requirements in user stories, storyboards depict some aspect of the system by
showing what some interaction is as a graphic. It could start out as what the user interface
looks like, the menu options, whether on the top or bottom of the screen; it may be a
snapshot or just hand-drawn on a piece of paper or white board. You can write on, erase,
cross out, throw away, or whatever you need to do.

Consider
Arabic name
variations

Execute
Boolean Search

Perform
Concept Search

Check for
Errors

Find docs
that match
my needs

Find
name
variations

Check for
syntax
errors

Look for
keying
errors

Suggest terms
that might
match my terms

Ensure all possible
documents are found

 Figure 12-5. Affinity diagram 2

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

290

 The point is that storyboarding is interactive between the engineers and
stakeholders. This type of exchange is informal so that the small group of people feels
comfortable enough to provide input. Having been involved with such exchanges, they
can be fun. The point is to get the ideas flowing. This is a visual way of brainstorming.

 Watch that some people do not dominate the conversation thereby inhibiting others
from contributing. It may not be important to drill down all the details for a particular
function but to get the general process. You can define the detail later. What is important,
say, in a workflow aspect that you saw in a use case, is to show how it flows. It is one thing
to read pages of description of what should be done. It is another to see even a crude,
hand-drawn representation of it—like how or when the branching of alternatives or
exceptions occurs.

 You can achieve a consensus from the stakeholders even before a sprint or iteration
demo occurs, thereby steering the developers to a more successful sprint. There will be
creative and innovative ideas provided that no one may have considered without this
specialized brainstorming. Let the ideas flow because you will not know what may come
out. The nicest thing to hear is, “How about if we do…?” since this means that people
are engaged. That is what you want. After all, your stakeholders will be representative of
different types of users, who do not need all the same things or think the same way. You
want to have those difference brought out to enhance the storyboards.

 Here is a sample storyboard for a piece of software I have worked on. It is not
important what this is, other than to see items on the screen.

 Figure 12-6 is the first screen, with the main menu, and the crude avatar that will be
the user’s guide through the application.

 Next, each of the four pull-down menus are portrayed as separate storyboards as if
someone was sequencing through each of these menus. Figure 12-7 shows the Lists pull-
down menu.

Lists Movement Ads/Notices Help

 Figure 12-6. Sample main menu screen

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

291

 Figure 12-8 shows the Movement pull-down menu.

 Figure 12-9 shows the Ads/Notices pull-down menu .

Lists Movement Ads/Notices Help
Own
Want
Price
Circulation
Metal Prices

 Figure 12-7. Lists pull-down menu screen

Lists Movement Ads/Notices Help
Change user ids
Level up
Join a Coin Show
Join a Flea Market

 Figure 12-8. Movement pull-down menu screen

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

292

 Figure 12-10 shows the Help pull-down menu.

 What would happen is each of the storyboards is shown in the sequence, and the
 people evaluating them would look at each and discuss each one. They would agree on
the sequence of the action, which is an important aspect of storyboarding—showing
how the “story” evolves. These same people would then look at each screen and discuss
everything that is presented and decide whether everything is in the correct place.
Consider whether something needs to be deleted or added.

 Once this is done, people could storyboard what happens for each item on these
pull-down menus.

Lists Movement Ads/Notices Help
Read Ads
Buy an Ad
Print Ads

 Figure 12-9. Ads/Notices pull-down menu screen

Lists Movement Ads/Notices Help
User Manual
Index
Search

 Figure 12-10. Help pull-down menu screen

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

293

 This is just one screenshot for the app. The figure in the screenshot is the avatar who
guides the user through the application. The words on the top line are the titles of the
pull-down menu. The words below are the pull-down menus themselves. Naturally, you
cannot pull down all menu options at the same time. It is presented to demonstrate all the
anticipated options. You might notice that typical items such as File, with Save, Save As,
New, and Print, are not listed. That might be in the future, or it may not apply to this app.

 Is this approach something that can aid requirements definition ? At first blush, you
could argue that this is for defining the design implementation. In addition, at the surface,
yes, that is definitely a significant benefit of storyboarding. Nevertheless, you will learn
things that people do not like or things that work well that do contribute to requirements.
For example, if someone is talking about how hard the screen looks for doing a search,
you realize that the challenge for the user is that the complexity of trying to find “squishy”
subjects can be difficult with complex Boolean searches; you realize that concept searches
might help. Alternatively, when they are talking that how hard it is to figure out all the
nicknames based on proper names like Richard or James or to figure out all the spellings of
Mohammed, again a different tool or series of tools besides Boolean may be in order.

 Therefore, the answer is that, yes, storyboarding is useful for requirements definition.
This is a very useful graphic representation to use. Also, it is fast. You can invest an hour
or so but come up with a lot of useful information. It may be useful to have multiple
sessions to let people come up with ideas a second or even a third time. When they have a
chance to sleep on it, you will be surprised by what happens.

 ■ Real-World Note I write science fiction, and believe me, this storyboarding/brainstorming
technique I have used extensively. Having a group of writers brainstorming gets lots of crazy
ideas flowing. Most are not applicable, but there are gems that come from it. I have let the
ideas, whether just verbally or graphically as in a storyboard, allow me to ferment my ideas to
come up with even better ideas. Use the same techniques for software development.

 ■ Note Whereas storyboarding is the beginning of defining some subjects like the user
interface, it evolves into prototyping, which was discussed in Chapter 9 .

 Where does storyboarding end and prototyping begin? Actually, that boundary is
blurred. Once someone does some actual coding, even if there is no functionality behind
it other than stubs, then you have gotten to the prototyping phase. In addition, prototypes
actually can be working flows from one step to another by selecting items. Storyboards do
not have that interactive nature. After all, they are just a few related pictures.

 Then where does brainstorming end and storyboarding begin? Good question, and
about the only distinction that can be made is that if you are gathering ideas with visuals
rather than text, you are doing storyboarding.

 In summary, yes, storyboarding is a useful tool for requirements definition.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

294

 ■ Note Ambrose Little wrote an interesting article titled “Storyboarding in the Software
Design Process” for UX Magazine that you may want to read to get more information about
this subject. See the “References” section.

 Other Supplements to Requirements Process
 The topics in this section don’t directly supplement requirements themselves but provide
additional insights into your requirements process. As with the modeling techniques
talked about earlier, the intention is not to completely educate you on this topic, but
introduce it, in the event that your organization exposes you to it and at least be aware of
how it might affect your requirements collection and management.

 The topics to be discussed are the following:

• Commercial off-the-shelf (COTS)/government off-the-shelf
(GOTS)

• IEEE standards

• ISO 9001

• Capability Maturity Model (CMM)/Capability Maturity Model
Integration (CMMI) levels of maturity

• International Council on Systems Engineering (INCOSE)

 Off-the-Shelf Solutions
 Off-the-shelf solutions do not directly affect how you create your requirements, but
these packages affect how you track your requirements against their implementation.
Commercial off-the- shelf software and hardware is just that—something you can run
down to your local store or vendor and buy. The simplest example of COTS is Microsoft
Office or any of the individual packages such as Microsoft Word. It can be installed on
your system, and you can start using it. What does this mean to you as an RE? Now if you
were considering installing Microsoft Office or Microsoft Project onto your computer
or network, you might not need to specify requirements. However, if you were going to
consider procuring a more specialized application for your organization, should you craft
requirements for your use? Consider getting a benefits package for your HR department.
Absolutely, you should define what your organization needs. Remember, you write
requirements to be implementation independent. COTS could be one way to answer the
requirements. What you do then is look at COTS packages to see how they compare to
your requirements. There are even open source packages that may be zero cost.

 Government off-the-shelf packages are produced by a government. Essentially it
is a COTS but produced by a government. This means that if you support a government
organization (i.e., the federal government, state governments, and even local
governments) and if that government produces an application that has utility to other
organizations, they have shared it with other government organizations. You would

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

295

handle any requirements just as you would for a COTS package, craft the requirements,
and then look to see whether a GOTS package exists that can be used. This difference may
be that you may not need to pay for it.

 ■ Real-World Note For example, I supported an application that provided the ability
to apply security classification to documents. This application was shared among more
than two dozen portions of the federal government organizations but was developed only
once and used by all the organizations. The application started out as a development
effort for one agency but was recognized as the best implementation and then was shared
with other organizations. Naturally, the requirements were captured once, and then the
other organizations received the benefits of them without having to capture their own set,
eliminating duplication of effort. I also used some GOTS packages. Again, requirements
and development were done once and shared by many. This shows the advantage that
requirements can be done once, central and shared with many organizations, and thus the
development is also done centrally and implemented consistently.

 Once a solution is developed in-house, by a company or governmental entity, other
parts of the company or government shouldn’t devote resources for creating something
analogous. Additional, the federal government has broadened the use of GOTS for certain
related fields. Once the government has paid for a system, other government organizations
that perform a common function should not need to pay for the system again. This
reduces cost for requirements definition and development, as well as providing consistent
implementation, which for certain functions can be very important. This broader use of
GOTS shows that governments can perform some things correctly by being innovative.

 If you go about your requirements collection properly, when you are done, you can
now use your list of requirements to compare various COTS programs to see which ones
meet your requirements. Of course, it is likely that not each requirement will be met. You
should consider how many are not met and decide what to do with your requirements.
Can you live without the remainder? If not, do you want to see whether the vendor will add
what you want, especially if you can justify that others might benefit from it? If you cannot
live without some of the requirements, as dictated by your stakeholders, then you have to
see about getting someone in-house to add it. Thus, you will need to ensure the program
has the ability to add features easily, usually called hooks . If not, you might need to
consider a different package that does have hooks but a few less of your required features.

 Consider an example where you have 100 requirements for a particular application.
You find only one COTS package that comes close to your needs. Eight-two requirements
are met. What do you do with the remaining requirements? For this example, 16
requirements are specific report requirements that are needed. The application does not
provide those reports. However, by examining the reports capability, the COTS package
will work with your in-house reporting tool. By having the development team set up
reports using the COTS package data, those 16 reports will be provided. That leaves two
requirements that are not met. You and your stakeholders will need to decide whether
you can live without those capabilities. If so, you are done. If you cannot, then some
additional way needs to be found to have the two requirements met. You could ask the

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

296

vendor to do it, if it is something the vendor believes other customers will use. Or you
might have to pay the vendor to do it for you. If that is too costly, you will have to find
some way to have them implemented in- house .

 A CAUTION ABOUT COTS

 The COTS package usually does not document all the inner workings to you,
mostly for proprietary reasons. Some of your management team or stakeholders
may not understand that. Here is a caution related to an incident that occurred
to me some years ago. It deals with a mixture of modeling and COTS. A COTS
package was selected to capture and manage employee benefits. It was part of a
larger development effort to modernize the HR processes for the organization. We
were partway through our customization, test, and transition into the production
environment when a request came from one of the people working at the central
office who managed the entire HR program.

 The request was for our COTS team to provide DFDs for our application. I pointed out
that as a COTS package we had no insight into the inner workings of the vendor’s
application, so generating DFDs was virtually impossible for us to create as the
vendor would not supply the proprietary information that it would take to generate
the DFDs. This did not seem to placate the requester.

 Before I went any further, I asked why they wanted the information. The response
was that they wanted to use our COTS package for the foundation of the entire
umbrella project. To which I responded with the following analysis: “So, checking for
understanding here, you want to base the entire HR umbrella program on one small
COTS package that has maintenance releases every six months, and every 18 to 24
months they release a complete new release, which means every other application
(more than a dozen) will need to rework their applications based on that schedule. Is
that what you are asking for?”

 There was a pause on the other end of the phone before the requester said that
they would get back to me. I never did get a follow-up from that person. I thought
that was the end of it. Wrong, six months later, a different requester asked the same
question! I gave the same answer and got essentially the same response.

 The caution is that COTS does not give you the insight into the inner workings of the
application. This may not be obvious to everyone, so you may need to educate those
people.

 IEEE Standards
 Remember, Chapter 2 referred to IEEE standard 830-1998. IEEE is the Institute of
Electrical and Electronics Engineers, a professional organization of more than 400,000
technical professionals. If your organization follows their standards, then it behooves you

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

297

to become knowledgeable about these standards and determine how that will affect your
efforts. Alternatively, if your organization does not have any standards that it follows, the
IEEE may be a source of standards that help improve your organizational processes.

 ISO 9001: 2008
 ISO is the abbreviation used for the International Organization for Standardization. (To
have an abbreviation that was consistent for all languages, the organization chose ISO from
the Greek isos , which means “equal.”) The point is that ISO is an international organization
for standardization, and ISO 9001:2008, “Quality Management Systems - Requirements
certificates,” is the standard they have for requirements. If your company uses this as
standard, again it behooves you to become knowledgeable of their standards and determine
how that will affect your efforts. If your organization does not have a standard, this could
be one to consider, especially if you have international dealings. That said, there are some
companies that feel the ISO 9001 standard is cumbersome, so be careful. That is not to
say do not use it, but look at it carefully. This will fit better with a more traditional waterfall
development methodology. With agile, it might inhibit the agile nature of that methodology.

 ■ Note The ISO document does not have a requirements definition and maintenance
section; they embedded the requirements discussion throughout the document. Thus, it will
take more effort for you as an RE to ensure you are following their guidance for creating and
maintaining your requirements.

 CMM/CMMI Levels of Maturity
 The capability maturity model (CMM) was developed to assess government contractors’
processes to perform on a contracted software project. While it was intended for software
development, it can be used for general business process like it has in many government
and commercial industries worldwide.

 The maturity model is a set of structured levels that describe how well the behaviors,
practices, and processes of an organization can reliably and sustainably produce required
outcomes.

 The CMM model’s application proved to be a challenge. Applying multiple models
that are not integrated across the organization can be costly in training, appraisals, and
improvement activities. 1 The Capability Maturity Model Integration (CMMI) project 2 fixed
this problem so that the CMMI model has superseded the CMM model.

 The model examines five aspects of your business.

• Maturity levels

• Key process areas

 1 “Capability Maturity Model,” Wikipedia (see the "Reference" section)
 2 “Capability Maturity Model Integration,” Wikipedia (see the "Reference" section)

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

298

• Goals

• Common features

• Key practices

 The maturity model is a set of five structured levels that describe how well the behaviors,
practices, and processes of an organization can reliably and sustainably produce required
outcomes. The Wikipedia article “Capability Maturity Model” describes them like this:

 1. Initial (chaotic, ad hoc, individual heroics): The starting
point for use of a new or undocumented repeat process. If
this is what you have, you do not want to stay here—this is
problematic.

 2. Repeatable : The process is documented sufficiently so that
repeating the same steps may be attempted.

 3. Defined : The process is defined/confirmed as a standard
business process.

 4. Managed : The process is quantitatively managed in
accordance with agreed-upon metrics.

 5. Optimizing : Process management includes deliberate process
optimization/improvement.

 What you will need to know if your organization, or someone you are interviewing
with, is CMM level 3 is that means they follow the capability maturity model and you will
need to follow it. Do understand that regardless of what level an organization is, it means
that the processes work well. The higher the level, the greater chance that the processes
do work well, but there is no guarantee. It is not a statement categorically that the product
is excellent. It may increase the chances of a better product, but again, it is no guarantee.

 The CMMI Institute states that there are three CMMI models. Part of each model
shares practices with the other models since these practices apply to any business.
Naturally, each model has practices that are unique because each model has a different
focus. The three models are

• CMMI for Acquisition

• CMMI for Development

• CMMI for Services

 The one most of interest here is the CMMI for Development model, since they
designed it for businesses that focus on developing products and services. The process
areas that comprise CMMI for Development are Product Integration, Requirements
Development, Technical Solution, Validation, and Verification. So, naturally, REs are
interest in the Requirements Development process, which will delve into detail about
converting customer requirements into requirements used by developers. Thus, if your
organization uses CMMI, you will need to follow their processes, so research it well.

 Understand that this model fits the waterfall methodology better than the agile
 methodologies .

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

299

 INCOSE
 INCOSE is the International Council on Systems Engineering, which is not a standards
organization but an organization that can be helpful for you in your career and one you
should consider joining not only as an excellent resource but also as a good networking
source.

 On their website, they state, “The International Council on Systems Engineering
(INCOSE) is a not-for-profit membership organization founded in 1990. Our mission is to
share, promote and advance the best of systems engineering from across the globe for the
benefit of humanity and the planet.”

 Their vision is to be the world’s authority on systems engineering, and their goals are
the following:

• To provide a focal point for dissemination of systems engineering
knowledge

• To promote international collaboration in systems engineering
practice, education, and research

• To assure the establishment of competitive, scalable professional
standards in the practice of systems engineering

• To improve the professional status of all persons engaged in the
practice of systems engineering

• To encourage governmental and industrial support for research
and educational programs that will improve the systems
engineering process and its practice

 They also have student memberships. Here is what it takes to qualify for student
membership.

 Members qualify for a Student category if they are an undergraduate or master’s
or graduate student and if their course load is at least three-fourths of full-time in an
engineering or related field. (For example, if the full-time student course load is four per
semester, then the student must be enrolled in three or more courses in order to qualify
for the student membership rate.)

 You may want to consider joining .

 References
 US Government. “Use Cases”. usability.gov . Feb. 2015, www.usability.gov/how-to-and-
tools/methods/use-cases.html

 IEEE-SA Standards Board. IEEE Std 830-1998, IEEE Recommended Practice for
Software Requirements Specifications. Sponsor: Software Engineering Standards
Committee of the IEEE Computer Society, Approved 25 June 1998.

 International Organization for Standardization (ISO). ISO 9001:2008 - Quality
Management Systems—Requirements . 2008

 Phillips, Mike and Shrum, Sandy. “Which CMMI Model Is for You”. August 2011. The
CMMI Institute . Feb 2015, http://whatis.cmmiinstitute.com/sites/default/files/
documents/Which_CMMI_Model_Is_for_You_2014.pdf

http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://whatis.cmmiinstitute.com/sites/default/files/documents/Which_CMMI_Model_Is_for_You_2014.pdf
http://whatis.cmmiinstitute.com/sites/default/files/documents/Which_CMMI_Model_Is_for_You_2014.pdf

CHAPTER 12 ■ SUPPLEMENTING OR REPLACING STANDARD REQUIREMENTS

300

 Wikipedia. Capability Maturity Model . Feb. 2015. http://en.wikipedia.org/wiki/
 Capability_Maturity_Model

 INCOSE . Feb 2015, www.incose.org/
 Following are sources to consider for additional information on modeling

techniques.
 “Data Flow Diagram (DFD)s: An Agile Introduction”. Agile Modeling webpage. Feb.

2015, http://agilemodeling.com/artifacts/dataFlowDiagram.htm
 “Swim Lane Diagrams, Mapping and Improving the Processes in Your Organization”.

 Mind Tools . Feb. 2015, www.mindtools.com/pages/article/newTMC_89.htm
 “Introduction to OMG's Specifications: UML”. Object Management Group (OMG).

Feb. 2015, www.omg.org/gettingstarted/specintro.htm#UML
 “Introduction To OMG's Unified Modeling Language™ (UML®)”. Object Management

Group (OMG). Feb. 2015, www.omg.org/gettingstarted/what_is_uml.htm
 Beal, Vangie. “XML, a tweet”. Webopedia . Feb. 2015, www.webopedia.com/TERM/X/

XML.html
 Mullaney, Jennette. “Modeling selection”. SearchSoftwareQuality TechTarget .

Feb. 2015, http://searchsoftwarequality.techtarget.com/tutorial/Software-
requirements-gathering-techniques

 Mullaney, Jennette. “Modeling in the agile methodology”. SearchSoftwareQuality
TechTarget. Feb. 2015, http://searchsoftwarequality.techtarget.com/tutorial/
Software-requirements-gathering-techniques

 Microsoft Development Network webpage, Modeling User Requirements, Visual
Studio 2013 Feb. 2015,, http://msdn.microsoft.com/en-us/library/dd409376.aspx

 Little, Ambrose. “Storyboarding in the software design process”. UX Magazine . Feb.
2015, http://uxmag.com/articles/storyboarding-in-the-software-design-process

 Kruchten, Philippe. “What Is the Rational Unified Process?”. 2001. IBM . Feb. 2015,
 www.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/
WhatIstheRationalUnifiedProcessJan01.pdf

 “RUP Fundamentals Presentation”, electronic Research Association (eRA) National
Institute of Health . Feb. 2015, http://era.nih.gov/docs/rup_fundamentals.htm

 Bell, Donald. “UML basics Part II: The activity diagram”, Sep. 2003. IBM Global
Services . Feb. 2015, www.therationaledge.com/content/sep_03/f_umlbasics_db.jsp

 “SysML Open Source Specification Project”. Systems Modeling Language (SysML) .
Feb. 2015, http://sysml.org/

 “What is a SysML Requirement diagram and how is it used?”. SysML Forum . Feb.
2015, www.sysmlforum.com/sysml-faq/

http://en.wikipedia.org/wiki/
http://www.incose.org/
http://agilemodeling.com/artifacts/dataFlowDiagram.htm
http://www.mindtools.com/pages/article/newTMC_89.htm
http://www.omg.org/gettingstarted/specintro.htm#UML
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.webopedia.com/TERM/X/XML.html
http://www.webopedia.com/TERM/X/XML.html
http://searchsoftwarequality.techtarget.com/tutorial/Software-requirements-gathering-techniques
http://searchsoftwarequality.techtarget.com/tutorial/Software-requirements-gathering-techniques
http://searchsoftwarequality.techtarget.com/tutorial/Software-requirements-gathering-techniques
http://searchsoftwarequality.techtarget.com/tutorial/Software-requirements-gathering-techniques
http://msdn.microsoft.com/en-us/library/dd409376.aspx
http://uxmag.com/articles/storyboarding-in-the-software-design-process
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/WhatIstheRationalUnifiedProcessJan01.pdf
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/WhatIstheRationalUnifiedProcessJan01.pdf
http://era.nih.gov/docs/rup_fundamentals.htm
http://www.therationaledge.com/content/sep_03/f_umlbasics_db.jsp
http://sysml.org/
http://www.sysmlforum.com/sysml-faq/

301© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_13

 CHAPTER 13

 User Stories

 Why do REs write user stories? That is an excellent question. The answer is that in some
circumstances the scope of requirement elicitation is greater than the benefit of collecting
and writing shall statement requirements, or a process can be captured in ways more
accessible to the users who need to validate the requirements.

 For example, I have seen cases in which a simple function was used by many
users across many groups in an organization. Rather than spending countless hours
interviewing different user types from various groups, it proved more effective and
efficient to write stories about how the stakeholders used the function.

 In such cases, we are able to craft statements that users would understand better and
also employ a more flexible approach that fit better with an agile development methodology.
User stories provide a more streamlined and flexible approach to requirements that enable
teams to manage the development effort in a much more dynamic environment.

 In this chapter, you will learn more about what user stories are, their benefits, and
how you can use them to supplement or replace traditional requirements.

 Anatomy of a User Story
 First, you will examine the parts of a good user story. Then, you will learn the six
attributes of a good user story and look at each of the attributes in detail.

 Parts of a User Story
 What does a user story consist of? The previous chapter presented that a user story
follows this type of template :

 “As a <role> , I want <function/feature> so that <benefit> .”

 Or this type:

 “As a <who>, I want <what> so that <why> .”

 Simple, right? Well yes, and no. In theory, it sounds simple like most theories do. Of
course, it is. In fact, that is the whole point of a good user story is to be simple. Naturally,
the challenge occurs when you write them. Now, examine what the three parts of the
story are.

CHAPTER 13 ■ USER STORIES

302

 The <role> is the person, the people, or even a system, application, or service that is
doing or affected by this, also known as <who> . For example, “As a taxpayer submitting
my taxes, ….”

 Here are some examples:

 As a search user, …

 As a system administrator, …

 As an HR user, …

 As a payroll user, …

 As a report reader, … (you do not need to say user every time,
as in the earlier system administrator case)

 As a workstation user, …

 As a radiation dosimetry user, …

 You want to be as specific as is practical. Break down the user to the particular role
that they are doing. Do not just say, “As a user, …” as that is not specific at all.

 The <function/feature> is the action the <role/who> needs. Clearly, this is the most
important aspect of the story of the three. This describes <what> is wanted. For example,
“As a taxpayer submitting my taxes, I want the 1040 form instructions written to a fifth-
grade reading level …”

 Here are some examples:

 … I want to query records…

 … I want to display query results…

 … I want to sort query results…

 … I want to filter query results…

 … I want to print query results…

 … I want to capture radiation exposure readings…

 … I want to read radiation exposure readings…

 Again, you want to define this down to the lowest level of the function as possible.
You will see more about this shortly.

 The <benefit > is the benefit the user will achieve with this <function/feature> . You
want to know <why> the user wants this user story.

 Here are some examples:

 … so that I can access data.

 … so that I can display data.

 … so that I can print data.

 … so that I can generate reports in the format I want.

 … so that I gather the radiation exposure data of soldiers in
the nuclear battlefield.

CHAPTER 13 ■ USER STORIES

303

 You can see this is one aspect that the shall statement did not provide, the reason
why this user story should be done. This goes a long way in helping the users and
stakeholders to understand the benefits of the current or new system.

 Then, put all three parts together and you get this example:

 13-1 As a taxpayer submitting my taxes, I want the form
instructions written to a fifth-grade reading level so that 99%
of the taxpayers will understand what they are filling out on
the form.

 While this type of user story is unlikely to happen soon (think of the run-up to April 15
every year), this is just an example. Think about this user story, whether it meets the criteria
of a good user story, and you can examine it at the end of the chapter. Here is another one:

 13-2 As a cell phone user, I want to retain a list of phone
numbers selectively that I have received so that I can choose
which numbers I want to reuse later.

 Notice how easy it is to read? That is a significant benefit for users and stakeholders
to understand them. This is an advantage to the user who can understand user stories
even better than shall statements. User stories work well with the agile methodology.
The user story and subordinate acceptance criteria can be refined as the user story
approaches the sprint where the story will be implemented. This approach of writing user
stories near the time they are implemented helps to negate the effect of requirements
scope creep, unlike in the waterfall approach where you must create all the requirements
(whether shall statements or user stories) up front.

 Here are a few more examples to consider:

 13-3 As a person logging onto BOSS, I want to have three tries
to get my login ID and password correct before the system
rejects my login attempts so that one or two mistakes do not
punish me.

 13-4 As a bike rider, I want the push on the hand brake so that
when I need to stop, the bike will respond.

 As you can see, you can write user stories for both hardware (bikes) and software (logins).

 Attributes of a User Story
 Just as there was a section defining what made a good requirement, there are attributes
of a good user story. Bill Wake coined the acronym INVEST to describe those attributes.
Here is what INVEST stands for:

• Independent

• Negotiable

• Valuable

• Estimable

• Small

• Testable

CHAPTER 13 ■ USER STORIES

304

 Now, consider each one of these attributes of a good user stories.

 Independent
 Independent means that a story can be developed, tested, and even delivered on its own.
You want to write a story so that it can stand on its own. Here are some examples:

 13-5 As s soldier in a nuclear battlefield, I want a way to collect
radiation exposure levels so that my unit and I will know
my exposure in order to manage my exposure levels both
militarily and medically.

 13-6 As an FBI Records Manager, I want to be able to view any
record so that when I need to examine it, I can.

 You might wonder whether each of these stands by themselves, making them truly
independent. In these cases, and for many of the user stories you write, they may not be
purely independent. So, what is a requirements engineer to do?

 Not to worry. Almost every story you write should be able to have some
independence. Think of the viewing the record story shown user story 13-6. You cannot
view a record if it does not yet exist in some repository, and then if you query it, you need
to be able to do so. You probably won’t get just one record, but a listing of them. You may
have many other functions such as printing, sorting, filtering, exporting, and so on, that
you might want to do. That does not mean you cannot write it the way it was presented
earlier. You just need to write each of those other functions as separate user stories.
Therefore, you could have the following:

 13-7 As an FBI Records Manager, I want to be able to view a
listing of records I requested so that when I need to examine
them, I can.

 13-8 As an FBI Records Manager, I want to be able to print a
listing of records I requested so that when I need to examine
them, I can.

 13-9 As an FBI Records Manager, I want to be able to sort a
listing of records I requested so that I can organize them the
way I want them.

 13-10 As an FBI Records Manager, I want to be able to filter a
listing of records I requested so that I can organize them the
way I want them.

 13-11 As an FBI Records Manager, I want to be able to export
a listing of records I requested so that I use them outside the
application.

 You may need to have more functions, but you get the idea. Granted, you would not
see all the search-related function at once. However, each user story here should allow
the developers to produce something that they could demonstrate at the end of the
sprint, which is the goal of the user story and the associated user stories for that sprint.

CHAPTER 13 ■ USER STORIES

305

 You need to consider the same process for the radiation dosimetry project where you
might have the following:

 13-12 As a soldier in a nuclear battlefield, I want a way to
determine how much radiation exposure I have received so
that my unit and I will capture my exposure.

 You may think of more user stories also, like reporting of the entire unit, and so on.
 One advantage to having the user stories independent of each other is that you can move

them around, execute them in different sprints, or keep some on the backlog for a while. That
flexibility is the primary purpose of user stories, and independence allows that to occur.

 If two user stories seem very tightly coupled, that means they probably depend on
each other and probably belong in one user story. Of course, you still need the story to be
small, which will be talked about later in the chapter.

 Remember in Chapter 2 , the I meant implementation independent. Does it still
mean that here too? Absolutely. Many sources may not say that, but it is still true here.
Granted, it is a goal, but follow it just like you do in shall statements for the same reason,
so you do not restrict the developers, allowing them to do what they are best at—develop.

 Negotiable
 Unlike in requirements development in the waterfall methodology, as you have seen
earlier in the book, that remain fixed once they are captured, a group of user stories is
not a contract etched in stone. You can discuss, develop, refine, update, and even reject a
story as time passes. You negotiate a user story with stakeholders until all parties affected,
including the development team, are satisfied with the definition.

 Once a story goes on the backlog, this negotiation process can occur at any time while it
resides there. This is because as the user story gets closer to being designed and developed,
all parties have the ability to learn more about the story and define the needed details.

 This provides one of the best advantages of the user stories—flexibility. Remember
how the waterfall requirements collection “froze” the requirements until delivery?
Remember how the biggest drawback of that is the one or more percent requirements
changes per month? By negotiating the user stories as they become close to being
developed, you help to eliminate that scope creep because you reevaluate each user story
and update it as appropriate with what you know at that time, rather than waiting months
or even years as in the waterfall method. Think of this as just-in-time requirements
definition. By crafting user stories (or reviewing and revising previously written ones), you
capture the need precisely when you need it, and your understanding of the requirements
is current. That 1 to 4 percent requirements change per month is eliminated. This is a
major success for this agile approach.

 Thus, the negotiation can come at multiple times until just before the story is worked
on during a sprint. For example, early on a user story may look like this initially as a
placeholder:

 13-13 As an FBI Records Manager, I want to be able to delete a
temporary record from the repository so that records I am no
longer required to retain can be deleted.

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 13 ■ USER STORIES

306

 Six months later, the stakeholders and you revisit this story the month before the
developers will work on the story during the upcoming sprint. You meet with the users
and stakeholders (or use a technique or techniques discussed in Chapter 9), and after you
presented the story and asked if this is still correct, the record manager stakeholders have
clarified it as follows:

 13-14 As an FBI Records Manager, I want to be able to delete
a temporary record from the repository in accordance with
the records retention schedule prescribed by National
Archives and Records Administration (NARA) so that
records I am no longer required to retain can be deleted.

 ■ Note The bold text is what was added. This points out the use of techniques to
highlight changes. Microsoft Word has the Track Changes capability that can be useful. It is
good to show what is added, deleted, and changed. If that is not practical, maybe you should
show the before and after story. Sometimes if there are adds, deletes, and changes inside
one story, with Track Changes turned on, it is difficult to read, so showing the before and
after stories works better. That is a judgment call by you.

 Also, consider that Microsoft Excel also provides Track Changes. You may not be aware of
this as it is not in the same place on the menu as in Microsoft Word. Track Changes is useful
when you are drafting statements. Once you finish them and want to maintain them in the
future, you should consider versioning, which will be discussed at the end of this section.

 You need to consider the same process for the radiation dosimetry project where you
might have the following :

 13-15 DRAFT As a soldier in a nuclear battlefield, I want a way
to determine the radiation exposure so that I can see how it is
affecting my ability to perform my military mission.

 This user story may be as written because that was what someone initially asked for.
However, the military leaders determined this not a valid factor to be considered by the
individual soldier, so they revised the story as follows:

 13-16 DRAFT As a commander in a nuclear battlefield , I
want a way to determine the radiation exposure so that I can
see how it is affecting my unit’s ability to perform its military
mission at the squad, platoon, and company levels .

 Then, the medical staff renegotiated it as follows to be within their policy:

 13-17 As a commander in a nuclear battlefield, I want a way
to determine the radiation exposure in accordance with the
Radiation Exposure Medical Policy so that I can see how it
is affecting my unit’s ability to perform my military mission, at
the squad, platoon, and company levels.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 13 ■ USER STORIES

307

 Again, the bold is the text that was added to the previous version of the user story.
FYI, the title Radiation Exposure Medical Policy was just fabricated to illustrate what
someone may identify.

 There is no limit to the number of times that you may renegotiate a user story. You
may get it correct the first time. Alternatively, you may refine it just before the sprint, or
any number of times in between the first time you crafted it and the developers worked
on it in the sprint. There is no right or wrong number of times. The correct number is
whatever number of times is necessary to get it correct.

 The main point here is to get everyone to understand what the user story means. Once
the stakeholders are satisfied with the text (with your help, of course), then the developers
will examine it and may ask for some additional information or clarification. If you as the RE
cannot provide the information, you will need to take the story back to the stakeholders.

 One additional aspect you may want to consider is that you may need to track the
changes from the first version to the final version. (This is where a good database tool
helps with this.) The reason may be that the original stakeholder who asked for user
story 13-15 sees the final user story (13-17) and says that his user story was deleted. With
the tracked history, you can point out the evolution of the user story into the final one.
If the stakeholder says they want 13-15 added back in, you can point out the decision
that turned their version into 13-16 overrode their initial request. Now you see what the
negotiation is. This reinforces the point made earlier in this book: requirements definition
is an art form, and this negotiation process is a primary reason for it. Note, having a good
comments field helps to explain why revisions were made and to clarify decisions that
affected the wording of the version.

 Another form to track history is in documents that track different versions.
Microsoft SharePoint allows you to track different versions of documents. Some
dedicated requirements tools provide versioning of requirements in whatever form you
capture them (e.g., shall statements, user stories, use cases). There are also dedicated
configuration control/management packages that may allow versioning at the element
level (e.g., shall statements, user stories, use cases) rather than at the document level. You
want the version down to that element level .

 Valuable
 The user story must provide value to the end user. While this seems obvious, it is not
always clear to all parties. Here’s an example:

 13-18 As a machine learning user, I want the function to
present the mathematical representation to me so that I
understand why some entities are chosen over others.

 A developer might think a particular function is fun and needed, whereas the real
users think it is of no use to them. In fact, how many of the stakeholders would even
understand what this would mean? Yet, if the application was a tool for machine learning
developers, this may be a valuable tool. On the other hand, if this user story was asked for
when there is no such need, it may be a user story you can eliminate.

 Bear in mind that not all end users see the value of everything. Here’s an example:

 13-19 As a system administrator, I want the ability to add,
change, or delete any record in the repository so that I can fix
any errors made by other users of the system.

CHAPTER 13 ■ USER STORIES

308

 Administrators who know the need to audit database transaction to protect the
integrity of the data know its value. On the other hand, a person who just queries the
same database might not see the value of auditing for their use, although many if not
most people would recognize its value to the technical people. In those instances, you
need to ensure that the technical need is captured. Therefore, it is important to consider
that value is relative. This is why it is important to have representative stakeholders to
ensure all aspects are affected, not just people who query the data or update it, but system
monitors, system admins, and people who perform access control, to name a few.

 Of course, the resources necessary to achieve the value comes into play in
determining if it truly is valuable. For example, everyone could see many and varied
needs and uses for the transporter of Star Trek . However, not only is the physics not well
understood for it, but also the engineering necessary to achieve it certainly is nowhere
near the capabilities of today. Much more importantly, the cost to achieve it is, well,
unknown. For all intents and purposes, since you do not know how to accomplish it,
effectively the cost is infinite.

 As an aside, supposedly, there was a call (allegedly by Congress, in its infinite
wisdom) to produce antigravity back in the 1940s and 1950s, in spite of the fact that
general relativity said it was not possible. Well, there is no evidence of this antigravity unit
to date. Therefore, it is of no value as a user story at this point.

 So, you understand the point—when determining the value of a user story, it is
important to include the practicality of achieving it, besides determining the desire by
the end users. That is also one of the reasons you identify what role finds this function
or feature useful and why, so that the user story supports that user. That should help you
identify the appropriate user or stakeholder to talk to about this. By saying, “As a system
administrators, …” you know this functions supports them, and they would be able to
provide the business reason why this function is important.

 ■ Note Do not try to figure these business reasons out by yourself. Whenever you can,
get the stakeholder to do that for you. In many cases, you will know the reason why, and
you should capture it, if the stakeholders have not provided it. Then, when you vet the user
stories with the stakeholders, make certain you ask if the reason is correct. Otherwise, ask
during the elicitation process what the reason is.

 For the radiation dosimetry project, you might have the following:

 13-20 As a tank commander in a nuclear battlefield, I want a
way to determine the radiation exposure inside the tank so
that I can determine what my team’s exposure is and hence
their fighting capability.

 Estimable
 A story to be of value must be estimable. By that, someone, maybe not who crafts the
story, needs to be able to make an estimate of the complexity of the story and thereby
determine the time it will take to develop and test it. Odds are, if someone cannot

CHAPTER 13 ■ USER STORIES

309

estimate it, then it is too complex and needs to be broken into simpler or smaller stories
that can be estimable. You will learn about smaller in the next subsection.

 As you get closer to the sprint where specific user stories will be considered for
movement from the backlog to be worked in a sprint, the people who will estimate how
long a story will take must examine the story to ensure they can estimate it. This is first
a sanity check that the story is defined as well as it can be (see the “Negotiable” section
earlier in this chapter). If there are any assumptions or clarifications the developers need,
this will be the time to help drive those points out. Sometimes the first indication you have
that a story is too big is when the developer or tester says that it is too big—that they cannot
do it in one sprint. Then, as the RE, it is your job to break it down into multiple parts.

 For example, you may have the following:

 13-21 DRAFT As someone who searches my permanent
records database, I want a concept search capability so that I
will not miss important records that are related to what I want
the search to find.

 When the developers examine this user story, they say it is too large. So they suggest
breaking it into the following:

 13-22 As some who searches my permanent records database,
I want a function that decides what terms are similar to the
user-specified search terms so that the user will find search
terms that capture the true intent of the search.

 13-23 As someone who searches my permanent records
database, I want a function that executes the concept term
search so that I can retrieve the search terms.

 13-24 As someone who searches my permanent records
database, I want a function that displays the results of the
concept term search so that the user can determine what
terms best meet their needs.

 It is possible that there are more user stories than this, but this illustrates breaking
the stories into lower levels that are more manageable for developers. Also, this is a
reflection of something you will learn about in the “Small” section in this chapter about
themes, epics, and stories.

 For the radiation dosimetry project, you might have the following:

 13-25 DRAFT As a commander in a nuclear battlefield, I want
a way to determine the radiation dose rate that my vehicles
are exposed to so that I can collect raw radiation data for the
battlefield.

 In this case, what vehicles must have this? So, start with the following:

 13-26 As a commander in a nuclear battlefield, I want a way
to determine the radiation dose rate that my M-1 tanks are
exposed to so that I can collect raw radiation data for the
battlefield.

CHAPTER 13 ■ USER STORIES

310

 13-27 As a commander in a nuclear battlefield, I want a way to
determine the radiation dose rate that my deuce-and-a-half
trucks are exposed to so that I can collect raw radiation data
for the battlefield.

 13-28 As a commander in a nuclear battlefield, I want a way to
determine the radiation dose rate that my attack helicopters
are exposed to so that I can collect raw radiation data for the
battlefield.

 There would be a much longer list of vehicles than this, but you understand the idea.
 The key point here is that the developers and testers will be doing the estimates, so it

is their judgment that determines whether the story meets this attribute.

 Small
 A story needs to small enough so that it can be developed in hours or days or one or
more weeks, depending on the size of your sprints. They should be small enough to be
accomplished during just one sprint. As you have now seen, you now know how these
attributes can be interrelated. If it is small enough, odds are it is estimable, and there’s a
greater chance that the story will have value to the users.

 What criteria should you use to determine whether the story is small enough? If the
story is vague, it may be because you have too much in it. Remove the vagueness by giving
more detail to the story. If the developers and testers cannot estimate the story, chances are
that the story is too big. Again, provide more detail and see whether you can break it down.
In addition, if there are conjunctions in the story, it may be too large. Here’s an example:

 13-29 DRAFT As an FBI records manager, I want to add,
change, and delete records from my repository so that I can
manipulate the records as necessary.

 It would be better to break this user story into three as follows:

 13-30 As an FBI records manager, I want to add records
from my repository so that I can manipulate the records as
 nec essary.

 13-31 As an FBI records manager, I want to change records
from my repository so that I can manipulate the records as
necessary.

 13-32 As an FBI records manager, I want to delete records
from my repository so that I can manipulate the records as
necessary.

 There is a general “stories” hierarchy in which one level is called stories . This
hierarchy is called TES, which comes from theme, epics, and stories. The theme is the
largest of the three, which is a collection of epics or many stories. It usually relates to a
major function within a system. Here’s an example:

 13-33 The system will provide controlled access to the BOSS.

CHAPTER 13 ■ USER STORIES

311

 Clearly this does not follow the full user story format, and it is way too big to estimate
and could not be done in one sprint/iteration.

 The next level down is the epic, which is one large user story that needs to be broken
down or already a group of related user stories. In the access function mentioned in the
previous theme, consider the following:

 13-34 As a BOSS system administrator, I want to add to person
to the BOSS system so that I control who gets authorization to
use the system.

 13-35 As a BOSS system administrator, I want to define all
BOSS system roles and responsibilities so that I control what
functions specific groups of people can perform.

 Roles and responsibilities refer to the different accesses a user could have such as a user
who reads data, adds data, updates data, deletes data, or any combination of these roles. Of
course, there may be more specialized roles like an administrator who also needs access.

 13-36 As a BOSS system administrator, I want to assign BOSS
system roles and responsibilities to a person so that I control
what functions specific groups of people can perform.

 13-37 As a BOSS system user, I want to log in to the BOSS
system so that I am allowed to access the BOSS functions I
need to perform my job.

 13-38 As a BOSS system administrator, I want to audit all
access so that I know who has performed all access adds,
changes, and deletes. (This could be an admin, a manager, an
auditor, and so on, depending on your project.)

 Epics are useful early in the definition phase when you may not have a lot of
information about the needs of the system. This allows you more time to focus on the
high priorities on the backlog.

 Finally, back to the user story level that was being developed, here is one example for
the login epic:

 13-39 As a BOSS system administrator, I want the login to
the BOSS system to require a user ID and password so that
unauthorized users cannot easily break into the system.

 13-40 As a BOSS system administrator, I want no more than
three login tries of password and user ID combination errors
before the user ID is locked out of BOSS so that unauthorized
users cannot easily break into the system.

 How does the user ID get unlocked? Excellent question. The answer is that it
depends. It could be one of the three following user stories (or some variation of it) based
on what your management and senior stakeholders want:

CHAPTER 13 ■ USER STORIES

312

 13-41 As a BOSS system administrator, I want the lockout of
a user ID to be unlocked after 30 minutes so that the user can
try again without requiring the sys admin to unlock it.

 ■ Note User story 13-41 may make it easier for hackers, just FYI.

 13-42 As a BOSS system administrator, I want the lockout of a
user ID to be unlocked after 24 hours so that the user can try
again without requiring the sys admin to unlock it .

 13-43 As a BOSS system administrator, I want the system
admin to unlock the lockout of a user ID so that I control who
can access the system.

 Consider either one of the first two, but always allow the third user story to be
available also, especially if the user must wait 24 hours for it to reset; you might not want
people waiting a day to retry, without being able to do their job.

 Notice there is a relationship between the estimate and small attributes. If a user
story is small enough, chances are good developers can estimate the time necessary to
implement the story.

 Now, examine the radiation dosimetry example from the “Estimable” section in this
chapter:

 13-44 DRAFT As a commander in a nuclear battlefield, I want
a way to determine the radiation dose rate that my MRAPs
are exposed to so that I can collect raw radiation data for the
battlefield.

 On further examination, a stakeholder states that all vehicles must use the same dose
rate meter. That means you have to break user story 13-44 into the following:

 13-45 As a commander in a nuclear battlefield, I want my
MRAPs to use the standard dose rate meter so that I do not
need to develop a meter unique to every vehicle.

 13-46 As a commander in a nuclear battlefield, I want the
standard dose rate meter to have an MRAP-specific mounting
bracket so that I do not need to have a universal mounting
bracket for every vehicle.

 13-47 As a commander in a nuclear battlefield, I want the
standard dose rate meter mounted on the outside of the
MRAP so that it collects the raw data not influenced by the
shielding offered by the MRAP.

 It is ironic that this subsection called “Small” is the longest of the six sections on the
attributes of a good user story. This is in no small way (pun fully intended) because of the
difficulty in getting the user story to the correct level. You will need to work at it.

CHAPTER 13 ■ USER STORIES

313

 Testable
 Lastly, the story must be verifiable (as you learned with requirements) but is called
testable to allow the acronym INVEST to work (INVESV does not seem to cut it). A story is
not completed until is it is successfully tested. If it does not pass testing, it is not complete.
Thus, in the estimate process, people need not only to include time to code and test
the code but also include time to rework errors and then retest. Just as one attribute of
a good requirement is that it can be verified, the same is true for all user stories. Some
demonstrations of a user story show that values in XML have changed, rather than
showing changes in a user interface. The purpose is to demonstrate the user story works,
not have a UI for every story.

 On some projects, to ensure that the application worked properly, the entire last
sprint in a release was dedicated to regression testing. The teams wanted to ensure
that no story adversely affected anything in this application (i.e., the ripple effect) that
supported hundreds of thousands of users. While most projects do not follow this
approach, the number of issues caused once this application was deployed was very, very
small. That is the ultimate goal.

 Some reasons for untestable stories are the wording. Here’s an example:

 13-48 DRAFT As a user, I want an easy-to-use user interface so
that I do not have difficulty learning and using the system.

 This makes sense to a user or stakeholder, but how would you test or verify “easy”?
Any such vague words need to be modified as follows (just as you learned when crafting
 shall statements):

 13-49 As a user, I want the user interface to follow the BOSS
User Interface Standard so that I do not have difficulty
learning and using the system.

 This is something that is testable or verifiable. Granted, if the UI standard is more
than a few statements, this user story may not be small enough, but at least from a test
standpoint you are moving in the correct direction.

 Thus, just like with shall statements, you need to eliminate the vague words. That
may be an issue when dealing with the users and stakeholders, but just as you were
trained for those shall statements, you will be able to do it here.

 Look at examples for the radiation project.

 13-50 As a commander in a nuclear battlefield, I want the
standard dose rate meter to be installed on the MRAP within
15 minutes by a soldier who requires no special training or
tools so that the dose rate meter can be installed quickly and
easily by any soldier.

 13-51 As a commander in a nuclear battlefield, I want the
MRAP-specific mounting bracket for the standard dose rate
meter to be installed within one by the lowest ordinance unit
that requires no special training or tools so that MRAP-specific
mounting bracket can be installed quickly and easily by any
soldier.

CHAPTER 13 ■ USER STORIES

314

 One other important aspect associated with testing is acceptance criteria . Given its
importance to support the testable attribute, you will spend the next section learning
about it.

 Acceptance Criteria
 Acceptance criteria , also known as completion criteria , is to help define when a user story
is done (or complete—hence, you say the story is complete). At the end of the sprint, the
demonstration is to show that the criteria are complete.

 What makes good acceptance criteria? Walter Jackson said the following in his online
article “What Characteristics Make Good Agile Acceptance Criteria?”:

• There should be a clear pass/fail result (no partial results).

• They can be both functional and nonfunctional requirements.

• They can define boundaries of a user story.

• They can define parameters of a user story.

• They must be clear and without ambiguity.

• They should be implementation independent.

 Do you notice how many of these criteria are the same as those related to shall
requirements as you have seen in this book? That is in part that many of existing requirements
can help to define acceptance criteria. In addition, data elements were not talked about before
with respect to user stories. That is because the theory states you should not provide them in
the story. So, where else should you place them but in the acceptance criteria?

 Now, look at some examples. For instance, here is user story 13-27 with acceptance
criteria added:

 13-52 (13-27) As a BOSS system administrator, I want the login
to the BOSS system to require a user ID and password so that
unauthorized users cannot easily break into the system.

 Acceptance criteria :

 1. The user ID will be unique within the system with a minimum
of six alphanumeric characters.

 2. The password will be a minimum of eight alphanumeric
characters, with a mix of uppercase and lowercase characters,
one or more numeric characters, and one special character
from !@#$%^&*().

 Now reconsider user story 13-40 with acceptance criteria:

 13-53 (13-40) As a BOSS system administrator, I want no more
than three login tries with password and user ID combination
errors before the user ID is locked out of BOSS so that
unauthorized users cannot easily break into the system.

CHAPTER 13 ■ USER STORIES

315

 Acceptance criteria :

 1. The error can be an incorrect user ID but a correct password.

 2. The error can be a correct user ID but an incorrect password.

 3. The error can be an incorrect user ID and an incorrect
password.

 Now you should also reconsider 13-39:

 13-54 (13-39) As a BOSS HR administrator, I want to be able
to add a new employee to the HR system so that we track all of
our active employees.

 Acceptance criteria :

 1. I want a User record to contain: a. Name, b. Work e-mail
address, c. Work phone number d. Home mailing address, e.
Home e-mail address, f. Home phone number, g. Cell phone
number.

 Keep in mind that acceptance criteria are useful as a foundation for the testers to
craft their tests for a user story. Do realize that acceptance criteria are not required for a
user story. Provide them when they help. This may seem counterintuitive. If you want to
know when the user story is complete, then you need acceptance criteria. As an exercise,
go back and look at all the user stories from the beginning of this chapter. Is there
anywhere you do not feel acceptance criteria are needed? Is it only one or two? A dozen?
More than half? Most of them? Chances are more than half do not need them. With
experience, you will learn. During the discussion with the stakeholders, there statements
associated with a user story will help to indicate if completion criteria are need.

 Consider the following for the radiation dosimetry project:

 13-55 As a commander in a nuclear battlefield, I want the
standard dose rate meter to display the exposure rate by the
soldier activating the meter so that soldier can capture the
reading at the location allowing a radiation overlay to the
map.

 Acceptance criteria :

 1. I want radiation exposure, date, time, and location
information.

 2. I want the ability to refine the scale, such that the detail can be
tenths of Rads, single-digit Rads, tens of Rads, hundreds of Rads.

 ■ Note You have to be careful. Acceptance criteria #2 assumes a certain implementation.
In this case, it assumes an analog display, whereas the development may be digital,
allowing all the data to be display on one screen. The criteria in question were provided just
to illustrate the types of information you might capture in an acceptance criteria.

CHAPTER 13 ■ USER STORIES

316

 From Anantha Narayanan’s online article “User Story Acceptance Criteria : The Art
of Satisficing and Bounded Rationality,” we can consider certain aspects of acceptance
criteria. First, acceptance criteria do not need to be an exhaustive list, just something that
keeps communications moving forward. Just like the user story, the acceptance criteria
can change with time. They can even be refined during the sprint .

 Size of stories
 Just as the concept of user stories came from XP, XP introduced the concept of what they
call a spike .

 ■ Note Not everyone even uses this term. I was introduced to it while researching this
book even though I had used it. We just called the first user story the research user story
and the second story the implementation user story. The titles are different, but the concepts
are the same.

 There are some instances where the definition of the user story is insufficient—not
that the story is wrong or not small enough, just that the developers do not have sufficient
understanding to correctly estimate what it will take to fully implement it.

 Experience shows that the first user story can be done in one sprint and then the
second in a later sprint. It was not always immediately after the first sprint, as the team
may need specific tools that they did not have and needed to acquire them, which took
additional time.

 It could be the team does not understand all the technical challenges associated
with a story, so they need to do some research or maybe some exploration. They may
need to prototype multiple options and see which the stakeholders like at the demo at the
end of the sprint. Believe it or not, this type of refinement goes a long way in keeping the
stakeholders invested in the system by them helping with such decision making. What if
it is to see whether a new technology brings benefit? It could be a particular programming
technique or an automated test tool. Determinations of this type usually occur when the
development team, including the testers, examines the user stories. They will determine
whether a particular user story is a spike.

 Assume they get to the following user story:

 13-56 As a soldier on the nuclear battlefield, I need a device to
capture gamma ray exposure between 200KeV and 1.00 MeV
radiation exposures so that I know what I have been exposed to.

 In this case, the developers do not know the precision of four candidate detection
mechanism, so they want to test what they get.

 Therefore, they might craft a new user story to test the exposure collection spectrum
of each against their known radiation source. Once they complete it, they will determine
which one meets their needs and then write an implementation user story against the
decided device.

CHAPTER 13 ■ USER STORIES

317

 The two stories could look like this:

 13-57 As the radiation dosimeter developer, I will test Devices
A, B, C, and D against gamma ray exposure between 200KeV
and 1.00 MeV energies against our simulated tactical nuclear
radiation device so that I can determine the accuracy of each
device. (Reference user story 13-56.)

 13-58 As the radiation dosimeter developer, I will integrate the
chosen device (from story 13-57) into the BOSS Unit Radiation
Dosimeter device so that I implement the optimum collection
device. (Reference user story 13-56.)

 It is always useful to reference to the original user story and the two spike users
stories to keep traceability.

 You could have the following for the FBI Records Management project :

 13-59 As an FBI records manager, I want the BOSS Records
Management System to suggest record categories consistent
with the NARA General Records Schedule so that I can save
time by accepting good suggestions.

 When the developers first examine this user story, they need time to investigate the
best approach . They may suggest the following two stories:

 13-60 As an FBI records manager developer, I want to examine
the three candidate machine learning approaches to suggest
record categories consistent with the NARA General Records
Schedule of the BOSS Records Management System so that I
can choose the best approach. (Reference user story 13-59.)

 13-61 As the FBI records manager developer, I will implement
the chosen approach (from story 13-60) into the BOSS
Records Management System so that I implement the
optimum machine learning approach to suggest record
categories consistent with the NARA General Records
Schedule. (Reference user story 13-59.)

 Another reason to consider a spike is that the story may be too big to be estimated
appropriately. The developers may use the spike to analyze the behavior in order to split
the story into estimable pieces.

 In addition, this spike approach should be used sparingly. If it seems to be
happening a lot, it would indicate other potential problems, like under-trained
developers, the user stories are not well-defined, or stakeholders are not providing good
insights into their needs. Monitor it, and if they happen 1 or 2 percent of the time, you are
OK, but if it is 10 or more percent, you are in the problem area.

CHAPTER 13 ■ USER STORIES

318

 Complement vs. Supplement to Requirements
 In this and the next section, you are going to learn about whether you need to write shall
statement requirements with user stories or not. This section will talk about how shall
statements can complement user stories, so in this section, the answer is yes to shall
statement with user stories.

 Complement to Requirements
 Actually, this discussion of whether or not to capture shall statements reverberates in the
industry. The position here is that generally shall statements provide added value when
used in concert with user stories. The “Acceptance Criteria” section talked about using
requirements as candidate acceptance criteria. Obviously, that is one candidate area to
exploit requirements within a project.

 ■ Real-World Note Go back to the discussion about my troubled requirements collection
for that one project where we collected user stories with the stakeholders instead. You may
not remember it as it was way back in Chapter 1 , so here it is again:

 On a recent project, I had begun capturing the requirements
the traditional way. In six to eight months, I had managed to
capture the requirements for only the search function of the
system. We had about a dozen major functional areas like this.
The program manager was extremely frustrated by the lack
of cooperation from the stakeholders, which was epitomized
when she said, “It’s going to take us five years at this rate!”
Thus, a new approach was needed.

 ■ That new approach taken was to capture user stories, and it worked well. It took a year
and a half to capture all the user stories for this large and complex system. Did the project
use or write requirements? Of course. The project needed those detailed requirements
to pass to the designers, developers, and testers. They did not need to be vetted with the
stakeholders. Well, that was not entirely true; the project had special stakeholders involved
like DBAs, system admins, and even developers and testers to ensure they were represented
well, and the project allowed everyone to comment on and improve the shall statements.

 You have heard all the reasons for writing the acceptance criteria. They are valid. The
requirements that are allocated to a story are the respective acceptance criteria for the
user story. No doubt this position on user stories will spawn discussion or even argument
on the Web. Remember, purists are doing it to substantiate their theories. The reality of it
is—if it works, do it.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 13 ■ USER STORIES

319

 ■ Note For the successful agile developments I have worked, we did use both user
stories and shall statement, and not always because of me. As for theory versus reality,
see my discussion on availability calculations in the “What Can Go Wrong with Writing User
Stories?” section of this chapter.

 Replacement for Requirements
 The previous section said shall statements complement user stories. This section will
talk about how user stories replace shall statements. There are experts who advocate
that well-crafted user stories do not require shall statements because if the stories are
captured correctly, you do not need to capture shall statements.

 I have given my preference in the previous section. It is my philosophy that more
detail is better. Given the level of detail provided by user stories, they give a significant
amount of detail. One big improvement of user stories, as stated earlier in this chapter,
is that user stories explain why the need is important, which shall statements do not. If
acceptance criteria are provided with the user story, much of the lower level of detail a
 shall statement would provide can be addressed by these criteria. Thus, user stories can
and do replace shall statements.

 That said, I have worked with user stories without shall statements because if the
stories are captured correctly, you do not need to capture shall as well.

 On one of the smaller systems, a development team of only three people, the team
did not use shall statements. In this particular case, I was not actually responsible for
crafting user stories, but I just provided oversight and suggestions, as another branch was
responsible for the user stories. The approach worked because the development team
knew the system very well and did all the testing, and adding shall statements would not
have provided a significant value-added. More importantly, the system was not nearly as
complex as most other applications that it interacted with. Therefore, a point to consider
is the size of the development team, their knowledge base of the system, and the size and
complexity of the system.

 Which way you go for your organization is your call—unless your organization has
made the call for you. That said, if there are issues with the requirements process, you
might want to consider a change that would improve it.

 In the case that user stories have been used in place of requirements, you need to
provide more detail in the acceptance criteria, which you know from the previous section
that this is essentially shall statement requirements, even if they do not have the word
 shall in them.

 User Stories Traceability
 In situations where you have shall statements with user stories, there is one important
function you should always do. After you have all the user stories and requirements done,
map every requirement to a user story. Sometimes it may be two or more user stories
to a requirement. Purists might insist that it should be one user story to one or more
requirements. While that is an admirable goal, it is not an absolute. Otherwise, for some
unique situation, you might not be able to make it work.

CHAPTER 13 ■ USER STORIES

320

 For example, you have the following requirement :

 13-1(RQMT) The system shall allow a locked user ID to be
unlocked.

 Looking back to the previous user stories, here’s another example:

 13-62 (13-41) As a BOSS system administrator, I want the
lockout of a user ID to be unlocked after 30 minutes so that the
user can try again without requiring sys admin to unlock it.

 ■ Note Requirement 13-62 (13-41) may make it easier for hackers, just FYI.

 13-63 (13-42) As a BOSS system administrator, I want the
lockout of a user ID to be unlocked after 24 hours so that the
user can try again without requiring the sys admin to unlock it.

 13-64 (13-43) As a BOSS system administrator, I want the
system admin to unlock the lockout of a user ID so that I
control who can access the system.

 You should trace the requirement to all three user stories.
 Experience shows that you should not be constrained to map one requirement to

only one user story. It is a goal, but not a hard-and-fast rule based on experience. Just
make certain the requirements are atomic as was taught to you in Chapter 2 ; then you will
probably not go wrong.

 For the radiation dosimeter project , you have the following requirement:

 13-2(RQMT) The BOSS radiation system shall be painted with
standard U.S. Army camouflage paint to match the soldier’s
uniform.

 You might have the following user stories:

 13-65 As a soldier operating in the desert, I need a radiation
dosimeter that will blend with the desert environment so that
the dosimeter does not stand out and give away my position.

 13-66 As a soldier operating in the woodlands, I need a
radiation dosimeter that will blend with the woodlands
environment so that the dosimeter does not stand out and
give away my position.

 13-67 As a soldier operating in the arctic, I need a radiation
dosimeter that will blend with the arctic environment so that
the dosimeter does not stand out and give away my position.

http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 13 ■ USER STORIES

321

 At first blush, as in the previous “locked user ID” example, you might think you
could just map requirement 13-2 to user stories 13-65, 13-66, and 13-67. However, that is
incorrect. Requirement 13-2 clearly is not atomic. It should be rewritten as follows:

 13-3(RQMT) The BOSS radiation system shall be painted with
standard U.S. Army desert camouflage paint to match the
soldier’s uniform.

 13-4(RQMT) The BOSS radiation system shall be painted with
standard U.S. Army woodlands camouflage paint to match the
soldier’s uniform.

 13-5(RQMT) The BOSS radiation system shall be painted
with standard U.S. Army arctic camouflage paint to match the
soldier’s uniform.

 You have used the user stories as a sanity check for the correctness of the
requirements. This is something you need to examine during your mapping between
requirements and user stories.

 Once you have mapped everything, you might find some requirements that do not
have user stories. Sometimes these processes do not fit within user stories. This is getting
to some of the limitations of user stories. How do you write a user story for reliability for
a system or query performance? This gets harder. However, more on that shortly. Then
look for all the user stories that do not have any requirements associated with them. That
means you are missing some requirements. Write them.

 What you are doing is the gap analysis for both the user stories and the requirements.
This is an excellent time to check your user stories and requirements against the checklist
of functional and nonfunctional requirements to ensure that you cover everything, even if
the users and stakeholders do not think of it.

 ■ Real-World Note A good way to compare and contrast user stories and requirements
is to perform the following steps. First, I load all the user stories into Microsoft Word
or Microsoft Excel. Second, I load all requirements in a spreadsheet. Third, I map all
requirements to user stories. Fourth, I map all user stories to requirements. Finally, I look for
that cells in the table that are empty, and these are the areas where there are gaps. New
requirements and new user stories are required.

 Even if you do user stories first and then the requirements, you should still do this
step as a quality check on your work. You may be surprised how much you still missed.
First, you need to find out whether there are requirements that have no user stories. If
so, write the appropriate user stories. Of course, if there are user stories that have no
requirements, add the requirements. This is a good check and balance.

CHAPTER 13 ■ USER STORIES

322

 There is one other source to help with gap analysis . You can use the Business Process
Description to craft the user stories. This is usually an excellent way to do it. It also
provides sources that you may have forgotten in the user stories and/or requirements.
All the information is in one spot, and it is relatively easy to do them. Granted, for a large
system, it could be hundreds of user stories. Even for smaller systems, several dozen user
stories are needed to cover a small application to include the hardware on which it will
reside. Do not ever forget that.

 Maintain User Stories
 One other aspect regarding the previous system was the work initially was in the
 operations and maintenance phase . Some new development was added, but that is not
the point here. This is an important facet of this phase that you need to be aware of. When
maintaining an existing system, user requests will come in that are specific to the user
interface. For example, you might get something like the following:

 13-68 As an FBI BOSS Audit Screen, I want the person who
performed the action listed on one line and what action they
took displayed on the line below so that I see the information
without having to scan around the screen.

 Immediately, your “implementation-specific” alarms should be going off (if you
have learned well). You are not supposed do this kind of user story, just like you are not
supposed to do implementation in shall statements. Some renegotiation is needed for
user story 13-68 to get it closer to what the users want and the developers and testers
need.

 Here’s another example that you may see:

 13-69 As a Form Requester user, I need the form selection tab
to include a list of the HR forms in one column, the Payroll
forms in the second column, and the Procurement forms in a
third column so that I can find the forms more quickly.

 If you follow the INVEST approach, this story might need to be rewritten. However,
would you want to? The user is asking for a specific change to the user interface that
needs to be improved. These are not bad stories, as the users need improvements to the
existing implementation. This is not the same situation when there is no design, where
you do not want to constrain the designers. Here, the user is asking for a specific change.
Rather than set up an entirely different process, go ahead and keep the paradigm of user
stories if that suits your projects.

 Another request may come in for the radiation dosimeter project where someone
says the following:

 13-70 As a soldier operating in the multiple areas of the world,
I need the ability to repaint the radiation dosimeter from
either desert, arctic, or woodland camouflage color to one of
the other environments so that I do not need three or more
different dosimeters.

CHAPTER 13 ■ USER STORIES

323

 Clearly this is a valid need, and it is implementation specific. Should you leave
this one this way? Possibly not. What if the developers can create a technique for
automatically changing the color without repainting it? Maybe it is like the original Kindle
that had a black side and a white side to each minute ball that created each pixel, where
they have three (or more) “faces” for the pixels on the outside of the dosimeter. Therefore,
you might want to change it to read as follows:

 13-71 As a soldier operating in the multiple areas of the world,
I need a the ability to change the radiation dosimeter from
either desert, arctic, or woodland camouflage color to one of
the other environments so that I do not need three or more
different dosimeters.

 Notice that only one word changed from user story 13-70 to user story 13-71. Yes,
sometimes it is as simple as modifying only one word. Clearly, user story 13-71 is better
than 13-70, as you have learned.

 In addition, you are going to find many, if not most, maintenance-type user stories
might be written like user stories 13-68 and 13-69.

 This is not a bad thing.

 Why? The major reason is that when you capture user stories for a development
effort, you are supposed to give the developers free reign since there is no existing
system that they are basing the effort on (even if there is a legacy system, that does
not have bearing). Therefore, people will want tweaks and adjustments to the current
implementation. Unlike shall statements where there is the potential of design
specifications created by the developers, user stories do not necessarily have the
equivalent. Thus, user stories are the only venue for communicating this information.
Therefore, during O&M, it is acceptable to create implementation user stories. Again,
certain theorists may argue this point. Remember the philosophy—if it works, do it.

 What Can Go Wrong with Writing User Stories?
 Remember how Chapter 1 talked about how agile and waterfall compared ? Here it is
again to refresh your memory.

 Agile 42% successful, 49% challenged, 9% failure

 Waterfall 14% successful, 57% challenged, 29% failure

 As before, this is a significant improvement over the waterfall approach. Again, one
of the significant factors is that the work is subdivided down to a very manageable level.

 That said, agile had a 9 percent failure rate. Is the agile methodology responsible for
that? Experience shows that the answer is no because there are so many other factors
that were talked that could cause any approach to fail such as bad management, lack of
resources, too short of schedule, and so on. Ideally, what you have learned has mitigated
the requirements/user story definition phase issues.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 13 ■ USER STORIES

324

 Does this mean that user stories are the pinnacle of requirements technology? While
they go a long way to fix requirements problems, they still have some limitations. Because
each user story is intended to be accomplished in an individual sprint, some areas that
you need to define do not fit well. Nonfunctional requirements, especially performance,
are much harder to capture as a user story. Remember, the “Administrative Functions”
section in Chapter 5 stated the following requirement:

 5-54 (RQMT) The BOSS system shall be available 99.99% of
the time.

 How would it look as a user story?

 13-72 As a BOSS user, I want the system to be available 99.9%
of the time so that the system provides the availability I need
since it is a mission-critical function.

 That sounds like a reasonable user story, and on the surface, it is. However, can
that be accomplished in one sprint? Assume the development team has six user stories
it is responsible for developing in a given sprint. Does this apply to each user story?
Technically, yes. So, how does the tester verify that it is accomplished? What about all the
work that has been accomplished before the sprint in question? Does the availability user
story apply to them? Yes. Now you start to see the conundrum.

 Clearly, that user story is not something that can be done in one sprint. In fact, every
service in the system, and even every functional area, must contribute to that. How do
you overcome this?

 For this example, assume you have ten functions within BOSS for this example.
Then, write a user story for each function like the following:

 13-73 As a BOSS user, I need the BOSS Function1 availability
to be 99.99% so that I can perform my work on that function.

 Notice, the focus has been on the function level, where a given function can be
worked at the sprint level. Also, notice that the availability changed from 99.9% for the
system to 99.99% to accommodate that you have ten pieces.

 In this example, the original BOSS availability is a theme rather than an individual user
story, and the ten functional availabilities are the user stories you will allocate to sprints.

 Then there is the issue of how to verify this user story. That is something you should
always consider when writing a user story. It can be done, albeit it is a challenge. Defining
“how” is for the testers to accomplish, and that is why they get paid the big bucks. At least
you should be able to conceive of a reasonable test. If you can, you have done your due
diligence. The key word was “reasonable.” If the verification required places a device on
the dark side of the moon, that probably is not reasonable.

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

CHAPTER 13 ■ USER STORIES

325

 The Rally Help web page article titled “Write a Great User Story” talks about the top
mistakes that people make. The potential areas are as follows:

• Too formal or too much detail : Stakeholders and users may
write extremely detailed user stories. One fix to this is to include
that information in the acceptance criteria. That way the good
information is not lost, but it does not complicate the user story.
Otherwise, if developers and testers see a very detailed story
during the sprint planning, they might see all the details are
present and may skip the detailed conversation. Communication
is the central point of the user story, so do not do anything that
will limit or restrict it.

• Technical tasks masquerading as stories : The success of agile
largely comes from having a working piece of software at the
end of a sprint. If some stories are just technical tasks, you may
not end up with working code at the end of the sprint. This may
be fixed by making it a spike as was talked about in the “Size of
Stories” section in this chapter.

• Skipping the conversation : Stories may be vague before iteration
planning. If you skip the acceptance criteria conversation,
you can move in the wrong direction, miss boundary cases,
overlook customer needs, and. most importantly, miss important
communications—the hallmark of the agile process.

 Summary
 User stories with acceptance criteria are some of the best techniques you have as a
requirements engineer. Take advantage of them. You have seen advantages, of which
there are many, and disadvantages, which usually you can overcome. The point is to
decide what approach you will use and stick with it. User stories are a sound approach
to use. Decide whether you will include shall statements, but do what is necessary to
capture the stakeholders’ needs.

 References
 Wake, Bill. “Invest in Good Stories and Smart Tasks.” August 17, 2003. xp123 Exploring
Extreme Programming . Feb. 2015, http://xp123.com/articles/invest-in-good-
stories-and-smart-tasks/

 “What Characteristics Make Good Agile Acceptance Criteria?” March 25, 2013. Segue
Technologies Inc. www.seguetech.com/blog/2013/03/25/characteristics-good-
agile-acceptance-criteria

 Narayanan, Anantha. “User Story Acceptance Criteria: The Art of Satisficing and
Bounded Rationality,” 20 January 2012, Scrum Alliance . Feb. 2015, https://www.
scrumalliance.org/community/articles/2012/january/user-story-acceptance-
criteria-the-art-of-satisfic

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://www.seguetech.com/blog/2013/03/25/characteristics-good-agile-acceptance-criteria
http://www.seguetech.com/blog/2013/03/25/characteristics-good-agile-acceptance-criteria
https://www.scrumalliance.org/community/articles/2012/january/user-story-acceptance-criteria-the-art-of-satisfic
https://www.scrumalliance.org/community/articles/2012/january/user-story-acceptance-criteria-the-art-of-satisfic
https://www.scrumalliance.org/community/articles/2012/january/user-story-acceptance-criteria-the-art-of-satisfic

CHAPTER 13 ■ USER STORIES

326

 Roth, Ronica. “Write a Great User Story.” Rally Help . Feb. 2015, https://help.
rallydev.com/writing-great-user-story

 Exercises
 Exercise 1
 Look at this user story from the beginning of the chapter:

 13-1 As a taxpayer submitting my taxes, I want the form
instructions written to a fifth-grade reading level so that 99%
of the taxpayers will understand what they are filling out on
the form.

 Does this user story meet the criteria discussed in this chapter? Why or why not?

 Exercise 2
 Write a user story (or stories) where the user needs to enter a user ID, password, and
domain name. A domain name means that there is more than one particular location that
a person could access the system. It is not important what these are, just that a person
needs to enter a valid one. Include any appropriate acceptance criteria.

 Exercise 3
 In the individual dosimeter project you have been examining throughout this
book, please identify user stories for this project. Rather than use an interview with
stakeholders, use the requirements you have collected during the course of this book.
(Yes, this isn’t the ideal way to do it. The world is not always ideal, so this helps train you
to use whatever you may have on hand.) Then, map all those requirements to the user
stories. Have you found any gaps? Are they gaps in the user stories or requirements?

 Exercise 4
 Write user stories for your cell phone—not all the apps, just the basic needs of the phone
portion.

 Exercise 5
 Will ten functions with an availability of 99.99 percent combine to be 99.9 percent for the
entire system? Why or why not?

 Exercise 6
 Write some user stories to describe what the Radiation Dose Rate Mapping Laptop should
do based on the description of this segment of the system described in the “Radiation
Dosimetry Project” section in Chapter 1 .

https://help.rallydev.com/writing-great-user-story
https://help.rallydev.com/writing-great-user-story
http://dx.doi.org/10.1007/978-1-4842-2099-3_1

327© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_14

 CHAPTER 14

 Use Cases

 Remember, Chapter 12 talked about how Usability.gov provides some good information
on use cases. They say that a use case is “a written description of how users will perform
tasks on your” system. You are going to spend some more time examining use cases so
you can become familiar with them and learn when it is a good time to use them.

 Part of the reason for use cases is that usually people do not capture these types of
ordered requirements when writing shall statements. Use cases help to fix this.

 Also, as you have seen in Chapter 12 , use cases are written in plain English, albeit
they are more structured than user stories, so it may take users and stakeholders a bit
more time to understand them than user stories, but certainly they are much easier to
comprehend than, say, 1,000 shall statements.

 ■ Note The goal is not to make you an expert in use cases. That said, you will receive
sufficient information to be able to begin crafting use cases when you have the opportunity.
However, most importantly, you should be able to read use cases and understand their
benefits and disadvantages.

 Writing Use Cases
 In this section, you will learn the elements that make up a use case and the details that go
into those elements and why you do it. Remember, use cases are excellent at capturing
the sequencing of steps, which shall statements and user stories are not as good at. Use
cases show all the branches, like a scenario, which has excellent use for testing as well as
for understanding all the aspects of a particular need.

 Use Case Sequence
 Chapter 6 introduced ordering steps with the following sequence:

http://dx.doi.org/10.1007/978-1-4842-2099-3_12
http://dx.doi.org/10.1007/978-1-4842-2099-3_12
http://dx.doi.org/10.1007/978-1-4842-2099-3_6

CHAPTER 14 ■ USE CASES

328

 Think of what you do when you sit down at your computer
for the time in the morning, with it turned off. For example,
in my case, I…turn it on. Wait, maybe I plug it in (when I am
traveling). Then I turn it on and wait for the desktop to come
up. I call up my applications I want open. I do my e-mail app
first to check e-mail and have available for research. Then I
open the word processor so I can write my books. I call up the
file manager so I can open various files that may not be in my
recent list in the word processor. (I break books into chapters
for drafting them, but that is my peculiarity.) What you do may
be different, but you get the idea.

 Now you will learn how to capture what is described in free text in a more structure
approach. Chapter 12 introduced the elements you should include in a use case, based on
what Usability.gov provided for us.

• Unique Identifier : Any identifying system, alpha and/or numeric.

• Title : An identifier or name of the use case. It’s highly
recommended that it consists of a verb and noun at the very
minimum.

• Description : A brief description of the purpose of the use case.

• Actor : Anyone or anything (another system, such as an
application or device) that performs a behavior: basically who or
what is using the system. This is not limited to one actor.

• Preconditions : What must be true or happen before the use case
runs.

• Postconditions : What must be true or happen after the use case
runs.

• Triggers : This is the event that causes the use case to be initiated.

• Main success scenarios (aka basic flow) : Use case in which nothing
goes wrong. (This is also known as Normal Flow/Scenario,
Primary Flow/Scenario.)

• Alternative paths (aka alternative flow) : These paths are a
variation on the main theme. These exceptions are what
happen when things go wrong at the system level or an alternate
condition causes a change to the basic flow. (This is also known
as extensions .)

 There are optional fields you might consider:

• Exception flows : Error conditions that happen. This will be
discussed more shortly as a variation of alternative flows. Not all
use cases may have this.

• Business rules : Rules that influence or affect the use case. Not
all use cases may have this (specific examples of these won’t be
provided because they do not always happen).

http://dx.doi.org/10.1007/978-1-4842-2099-3_12

CHAPTER 14 ■ USE CASES

329

• Special requirements and assumptions : Additional factors that
affect the use case. Not all use cases may have this (specific
examples of these won’t be provided because they do not always
happen).

 Here is that earlier example of a use case:

 Unique Identifier 14-1.

 Title Dial a phone number.

 Description Use your cell phone to enter a phone number.

 Actor Phone users.

 Preconditions Actor has a cell phone.

 Postconditions The phone connects to the number called.

 Triggers A need to call someone.

 Basic Flow 1. Turn on the cell phone.
 2. Select the dial option/app.
 3. Key in the number.
 4. The phone rings.

 Alternative Flow 2. Select from a list.
 3. Select the dial option/app.
 4. Choose the number from the list provide.
 5. Tap the number desired.
 6. The phone rings.

 This use case fills in all the data elements of a use case. Additionally, you see the how
low level a use case should be. Nothing should be skipped. A developer and a tester would
be able to work from this. More importantly, a user and a stakeholder should be able to
understand it and either agree with it or correct it. Now you will look at another use case.

 Login Use Case
 However, look at some other examples. Remember when Chapter 13 , in the “ Attributes of a
User Story” section, talked about the access control? The following is a use case for logging
onto the system. You may want to look back at the user stories to see what they cover.

 Unique Identifier 14-2.

 Title Log in to the BOSS System.

 Description Gain entry into the BOSS System.

 Actor BOSS system users.

 Preconditions Actor has been enrolled in the BOSS system.

http://dx.doi.org/10.1007/978-1-4842-2099-3_13

CHAPTER 14 ■ USE CASES

330

 Post conditions The actor gains access to the BOSS system.

 Triggers A need to use the BOSS system.

 Basic Flow 1. Activate the BOSS system.
 2. Move into user ID designated area.
 3. Enter your user ID.
 4. Move into password-designated area.
 5. Enter your password.
 6. Activate the user ID/password validation.

 Alternative Flow

 The alternative flow was left blank since what alternate flows exist yet have not been
examined. First, consider a “cancel” option because you might inadvertently activate the
wrong option.

 ■ Note It happens. As experienced as I am, I am not perfect. Just ask my wife.

 You will write “cancel” as an alternate flow for the 14-2 use case by writing the
specific steps associated with this alternate flow. Choose the “cancel” option first before
entering the user ID as an alternative flow. Remember, you may allow cancelation at any
point before step 6 in the basic flow, but that also is left to you as an exercise. Therefore,
you want to quit the login process, so you have the following alternative flow:

 Unique Identifier 14-2a.

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option

 ■ Note The unique identifier here is to show the variation of the original use case without
repeating all the data that does not change. Follow this approach in this subsection and
the next. What this will show is information added to use case 14-2, so think of this as a
progression as you write the complete use case.

 What about having the option to select a previous value user ID entered so you do
not have to enter the value every time?

 ■ Note Of course, the same approach of a pull-down menu could be done for the
password, but that is a question you need to validate with your system administrators or
security personnel to determine whether they want to allow you to do this.

CHAPTER 14 ■ USE CASES

331

 Unique Identifier 14-2b.

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select the
one you want.

 What about when someone enters an incorrect user ID or password into the login
process? Say you enter the wrong user ID and/or password, such as transposing two
letters. You can handle these situations in one of two ways. The first method is to present
them as just alternative flows. Alternatively, some sources recommend a separate box
titled “Exception Flow.” Now, look at both methods of presenting them.

 Unique Identifier 14-2c1.

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select the
one you want.

 Alternate added after step 6.

 User access is denied since user ID or password does not match
what is in the system.

 Repeat steps 2 through 6.

 Unique Identifier 14-2c2.

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select the
one you want.

 Exception Flow Added after step 6.

 7. User access is denied since user ID or password does not
match what is in the system.

 8. Repeat steps 2 through 6.

 Now you have one failure to enter a proper user ID-password combination. You need
to see how it looks for a second failure .

CHAPTER 14 ■ USE CASES

332

 Unique Identifier 14-2d1.

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select the
one you want

 Alternate added after step 6.

 7. User access is denied since user ID or password does not
match what is in the system.

 8. Repeat steps 2 through 6.
 9. User access is denied since user ID or password does not

match what is in the system.
 10. Repeat steps 2 through 6.

 Unique Identifier 14-2cd2.

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select the
one you want.

 Exception Flow Added after step 6.

 7. User access is denied since user ID or password does not
match what is in the system.

 8. Repeat steps 2 through 6.
 9. User access is denied since user ID or password does not

match what is in the system.
 10. Repeat steps 2 through 6.

 Now you have two failures to enter a proper user ID-password combination. You
need to examine how it looks for the third and final failure.

CHAPTER 14 ■ USE CASES

333

 Unique Identifier 14-2e1.

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select the
one you want.

 Alternate added after step 6.

 7. User access is denied since user ID or password does not match
what is in the system.

 8. Repeat steps 2 through 6.
 9. User access is denied since user ID or password does not match

what is in the system.
 10. Repeat steps 2 through 6.
 11. User access is denied since user ID or password does not match

what is in the system.
 12. Repeat steps 2 through 6.
 13. User access is denied since user ID or password does not match

what is in the system and the login process is stopped and the
user ID is locked.

 Unique Identifier 14-2e2.

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select the
one you want.

 Exception Flow Added after step 6.

 7. User access is denied since user ID or password does not match
what is in the system.

 8. Repeat steps 2 through 6.
 9. User access is denied since user ID or password does not match

what is in the system.
 10. Repeat steps 2 through 6.
 11. User access is denied since user ID or password does not match

what is in the system.
 12. Repeat steps 2 through 6.
 13. User access is denied since user ID or password does not match

what is in the system and the login process is stopped and the
user ID is locked.

CHAPTER 14 ■ USE CASES

334

 Back to alternative path versus exception path: some sources will say that this is an
exception path and requires a separate box from alternates. This is not required. That
is for you and your organization to decide if you want to include them together or have
them separate. Flow will be used in this text for consistency; just know that path will work
also. It is a preference only.

 ■ Real-World Note One source I read stated that access control is not a valid use case
since this process does not provide value added to the user. I would disagree that giving
someone access to a system provides a tool to the user. In addition, knowing that only
authorized users access the system provides control to stakeholders of the system. I also
believe that this particular use case provides an excellent example of the various aspects
that comprise a use case.

 Next, put the complete use case together after you have completed writing it.

 Unique Identifier 14-2 (finished).

 Title Log in to the BOSS system.

 Description Gain entry into the BOSS system.

 Actor BOSS system users.

 Preconditions Actor has been enrolled in the BOSS system.

 Post conditions The actor gains access to the BOSS system.

 Triggers A need to use the BOSS system.

 Basic Flow Activate the BOSS system.
 Move into user ID designated area.
 Enter your user ID.
 Move into password-designated area.
 Enter your password.
 Activate the user ID/password validation.

CHAPTER 14 ■ USE CASES

335

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select
the one you want.

 Alternate added after step 6.

 7. User access is denied since user ID or password does not
match what is in the system.

 8. Repeat steps 2 through 6.
 9. User access is denied since user ID or password does not

match what is in the system.
 10. Repeat steps 2 through 6.
 11. User access is denied since user ID or password does not

match what is in the system.
 12. Repeat steps 2 through 6.
 13. User access is denied since user ID or password does not

match what is in the system and the login process is stopped
and the user ID is locked.

 Next is the complete use case with all alternate flows and exception flows.

 Unique Identifier 14-2 (finished).

 Title Log in to the BOSS system.

 Description Gain entry into the BOSS system.

 Actor BOSS system users.

 Preconditions Actor has been enrolled in the BOSS system.

 Post conditions The actor gains access to the BOSS system.

 Triggers A need to use the BOSS system.

 Basic Flow Activate the BOSS system.
 Move into user ID designated area.
 Enter your user ID.
 Move into password-designated area.
 Enter your password.
 Activate the user ID/password validation.

CHAPTER 14 ■ USE CASES

336

 Alternative Flow Alternate to step 2.

 2. Activate the Cancel option.

 Alternate to step 2.

 2. When a drop-down appears with previous user IDs, select
the o ne you want.

 Exception Flow Added after step 6.

 7. User access is denied since user ID or password does not
match what is in the system.

 8. Repeat steps 2 through 6.
 9. User access is denied since user ID or password does not

match what is in the system.
 10. Repeat steps 2 through 6.
 11. User access is denied since user ID or password does not

match what is in the system.
 12. Repeat steps 2 through 6.
 13. User access is denied since user ID or password does

not match what is in the system and the login process is
stopped and the user ID is locked.

 As with user stories and shall statements, clarity is important. The structure of a use
case does not mean that it instantaneously becomes clear and understandable. You, as
the RE, must provide that clarity. Certainly, the structure helps by providing a template,
but it still ultimately falls to you.

 As a final point, look at that box that has the Basic Flow, Alternate Flow, and
Exception Flow fields. That is very good information for helping with the development
of test cases and procedures. Look specifically at Exception Flow, specifically the three
strikes rule for accessing the system. Where does it indicate what can be wrong? It says
a user ID-password combination that is wrong. A tester would need to test all possible
combinations. They would need to try three wrong user IDs, three wrong passwords,
two wrong user IDs and one wrong password, and one wrong user ID and two wrong
passwords. Thus, a use case does not provide every single detail of both the developer
and tester needs, but it is better than a user story .

 Unit Dosimetry Report Use Case
 Now, look at another use case. In this case, go back to the radiation dosimetry example
project, for the Dosimeter Archive Laptop introduced in Chapter 1 and discussed
Chapters 2 , 4 , 5 , and 8 . Specific requirements related to the project include

• Chapter 2 : Requirements 2-21 to 2-32

• Chapter 4 : Requirements 4-38, 4-71, 4-72, and 4-74

• Chapter 5 : Requirements 5-5, 5-8, 5-13, 5-14, 5-23, and 5-42

• Chapter 8 : Requirements 8-9, 8-14, and 8-15

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_2
http://dx.doi.org/10.1007/978-1-4842-2099-3_4
http://dx.doi.org/10.1007/978-1-4842-2099-3_5
http://dx.doi.org/10.1007/978-1-4842-2099-3_8
http://dx.doi.org/10.1007/978-1-4842-2099-3_2
http://dx.doi.org/10.1007/978-1-4842-2099-3_4
http://dx.doi.org/10.1007/978-1-4842-2099-3_5
http://dx.doi.org/10.1007/978-1-4842-2099-3_8

CHAPTER 14 ■ USE CASES

337

 In this case, after data has been collected from a unit after leaving a nuclear fallout
area, the medical officer needs a report on the medical readiness of the unit. Therefore,
you might have the following use case:

 Unique Identifier 14-3.

 Title Run the BOSS Unit Dosimetry Report.

 Description Call up the BOSS Unit Dosimetry canned report.

 Actor Users of the Unit Dosimetry Report: Medical officer, unit
commander.

 Preconditions The unit has been exposed to nuclear radiation, the soldiers
wear individual radiation detectors, and the user has access to
the BOSS dosimetry system.

 Post conditions The report is provided either in hard copy or soft copy.

 Triggers A user has a need for the Unit Dosimetry Report.

 Basic Flow 1. Activate the BOSS Dosimetry reporting capability.
 2. Select the Unit Dosimetry Report.
 3. Select the unit that has been affected.
 4. Identify the start date that indicates when the first

exposures should be considered.
 5. Identify the end date that indicates when the first

exposures should be considered.
 6. Indicate if the report will be hard copy or soft copy.
 7. Activate the report execution.

 Alternative Flow Alternate to step 2.

 2. Enter in a new unit designation since it is not on the list.

 Insert a new step 7.

 7. Turn on printer.
 8. Activate the report execution.

 It is possible that additional alternative flows exist depending on if this report
defaults to just a listing of each soldier and the exposure each has. For example, there
may be options in the report for some summary values such as average exposure (totals
mean nothing), people who exceed specific levels, highest exposure, x number of highest
exposures, which the user may have available to them, and so on. In that case, you might
expand the alternate flows as follows:

CHAPTER 14 ■ USE CASES

338

 Unique Identifier 14-3a.

 Alternative Flow Alternate to step 2.

 2. Enter a new unit designation since it is not on the list.

 Insert a new step 7.

 7. Turn on printer .
 8. Activate the report execution.

 Insert a new step 7.

 7. Select average exposure.
 8. Activate the report execution.

 Insert a new step 7.

 7. Select display of the highest exposure.
 8. Activate the report execution.

 Insert a new step 7.

 7. Select display of the highest n-values exposures, where the n
value is entered in.

 8. Activate the report execution.

 Look at those last three alternatives. What happens if the user wants more than one
or any combination of the three? Can you rewrite it to be more flexible? Of course. See the
following alternative flows.

 Unique Identifier 14-3b.

 Alternative Flows Alternate to step 2.

 2. Enter in a new unit designation since it is not on the list.

 Insert a new step 7.

 7. Turn o n printer.
 8. Activate the report execution.

 Insert a new step 7.

 7. Select average exposure or not.
 8. Select display of the highest exposure or not.
 9. Select display of the highest n-values exposures, where the n

value is entered in or not.
 10. Activate the report execution.

 As before, now look at the complete use case for this radiation dosimetry project.

 Unique Identifier 14-3.

 Title Run the BOSS Unit Dosimetry Report.

 Description Call up the BOSS Unit Dosimetry canned report.

 Actor Users of the Unit Dosimetry Report: Medical officer, unit
commander.

CHAPTER 14 ■ USE CASES

339

 Preconditions The unit has been exposed to nuclear radiation, the soldiers wear
individual radiation detectors, and the user has access to the
BOSS dosimetry system.

 Post conditions The report is provided either in hard copy or soft copy.

 Triggers A user has a need for the Unit Dosimetry Report.

 Basic Flow 1. Activate the BOSS Dosimetry reporting capability.
 2. Select the Unit Dosimetry Report.
 3. Select the unit that has been affected.
 4. Identify the start date that indicates when the first exposures

should be considered.
 5. Identify the end date that indicates when the first exposures

should be considered.
 6. Indicate if the report will be hard copy or soft copy.
 7. Activate the report execution.

 Alternative Flows Alternate to step 2.

 2. Enter in a new unit designation since it is not on the list.

 Insert a new step 7.

 7. Turn on printer.
 8. Activate the report execution.

 Insert a new step 7.

 7. Select average exposure or not.
 8. Select display of the highest exposure or not.
 9. Select display of the highest n-values exposures, where the n

value is entered in or not.
 10. Activate the report execution.

 You can see that a use case is much more detailed than a user story and provides
more data than shall statements. One significant advantage use cases have over shall
statements is that sequence of steps is addressed well.

 In an agile environment, you could do roughed-out use cases and spend more effort
completing the detail as the use cases are coming up on the backlog for implementation.
Thus, you can use cases with agile.

 While you have seen a template to invoke when crafting use cases, there is no
industry standard. Therefore, this may be organizationally specific. Do not be surprised
in your career that you find them implemented somewhat differently in various
organizations. Keep in mind that even within the same company, you might find different
implementations. Experience shows that groups, divisions, and offices have different
cultures, which can influence how they apply processes, so do not be alarmed about
differences. Learn what they do, and if you can learn why they do it, you will understand,
and you may be able to influence refinements that might improve processes in the future.

CHAPTER 14 ■ USE CASES

340

 Gap Analysis
 How will you know when you have all the use cases you need? That is the same challenge
you had with shall statements and user stories. Apply the same techniques. Remember in
Chapter 9 when you learned about writing a Business Process Description (BPD) document?
Now is one of those times when a BPD will become useful. In fact, if you wrote the BPD
document properly, it should go a long way to defining use cases, in that you should write in
a logical, process flow manner, just like the users of the system would experience.

 In the shall statement analysis, you had to perform gap analysis. That also applies
here. How easy is it to ensure that all aspects of every use case are captured? With shall
statements, you have detailed statements that address each point. With use cases, there
is much more detail, and with the overlap potential between use cases, there is the
possibility of small gaps appearing adjacent to these use cases. It may be that you are
missing some alternative flows that are not obvious to you. Alternatively, they are just
miniscule but separate use cases that are not obvious. It does not mean that you cannot
find them, but it may be challenging.

 When you are planning to craft your use cases, it is advisable to make a list of all
your actors for your system. For example, for your BOSS HR system , you might have the
following:

• HR personnel user : Someone who handles all the information
about a person in your organization

• HR payroll user : Someone who handles all the payroll information
about a person in your organization

• HR retirement user : Someone who handles all the retirement
information about a person in your organization

• Employee : Someone who accesses the BOSS HR system to view
the information about them

• HR system administrator : Someone who handles all the
maintenance of the BOSS HR system

 There may be more, but that is dependent on what is included in the system. Also,
examine the actors for the BOSS dosimetry system , where you might have the following:

• Soldier : Soldier in the nuclear battlefield who wears a radiation
detector

• Radiation data collector : Person who reads the individual
radiation detectors

• Medical officer : User who needs to know the immediate and long-
term implications of radiation exposure

• Commanders : Unit commander or higher who needs to know the
status of his or her soldiers

• Dosimetry equipment maintainer : User who must maintain all the
hardware and software for the entire system

http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 14 ■ USE CASES

341

 You may notice overlap where two apparent different actors perform the same use
case or use cases. In this case, you may want to redefine the actors such that the overlap
is a new type of actor. The medical officer and commanders both have a need to know the
immediate status of soldiers. Only the medical officers need the long-term effect—long-
term means years out—say for Veterans Administration purposes, after the soldier leaves
service. Therefore, maybe you consider the following redefinement to these two actors:

 1. People who need immediate status : Commanders and medical
officers who need to know the immediate status of the soldiers

 2. People who need long-term status : Medical officers who need
to know the long-term effects to the soldiers

 Once you have listed each actor, list the potential use cases for each actor, as in
Table 14-1 for the HR system and Table 14-2 for the radiation dosimetry system. These
tables include likely use cases but may not be exhaustive. Of course, the use cases for your
organization will likely be different.

 Table 14-1. BOSS HR System Actors and Use Cases

 Actor Use Case Name

 HR Personnel user • Add new employee
 • Update employee information
 • Terminate employee

 HR Payroll user • Add new payroll information
 • Update payroll information

 HR Retirement user • Add retirement information

 Employee • View employee information
 • Update employee information

(not everything)
 • Request change to employee

information

 HR System Administrator • Monitor system
 • Give access to system
 • Update access to system
 • Correct corrupted data
 • Generate new reports
 • Update reports
 • Delete outdated reports
 • Perform maintenance on system

CHAPTER 14 ■ USE CASES

342

 The next step would be to craft the use cases listed. This would follow the normal
elicitation techniques you have already learned. It is just that you organize the data
somewhat differently from user stories and shall statements. Remember, the biggest
benefit to use cases is the stepwise sequencing of steps that shall statements are not as
good at capturing. Also, you capture the alternate and exception flows. All this together
provides complete interaction that shall statements do not by themselves without
significant textual description associated with them.

 One other aspect to consider for gap analysis, similar to what you do for user stories,
is that you should map existing shall statements to use cases. Not only will this indicate
potential shall statements you may have missed, but also, just like in user stories, you may
find orphaned requirements that may need use cases.

 Next, you will examine the advantages and disadvantages of use cases.

 Advantages and Disadvantages of Use Cases
 Just as you examined user stories for advantages and disadvantages, you will not look at
each for use cases.

 Table 14-2. BOSS Radiation Dosimetry System

 Actor Use Case Name

 Soldier • Receive individual dosimeter
 • Submit individual dosimeter for reading
 • Submit individual dosimeter for calibration
 • Turn in individual dosimeter when leaving the

unit

 Radiation Data Collector • Collect data from individual dosimeter

 Medical Officer • Determine the immediate military operational
status of a soldier from a medical perspective

 • Determine the immediate military operational
status of a unit from a medical perspective

 • Determine the long-term medical impacts of
a soldier

 Commanders • Determine the immediate military operational
status of a soldier from a military perspective

 • Determine the immediate military operational
status of a unit from a military perspective

 Dosimetry Equipme nt Maintainer • Calibrate individual dosimeters
 • Maintain calibration source
 • Maintain individual dosimeter reader
 • Maintain computer that receives data from

readers
 • Maintain computer software

CHAPTER 14 ■ USE CASES

343

 Advantages
 A collection of easy-to-read use cases can be much easier to work with than, say, a list
of 1,000 shall statements. They also capture the flow that shall statements generally do
not. Chapter 6 made a serious attempt to capture this for shall statements. That said,
it does not capture the same level of detail as a use case, especially when you consider
alternative flows and exceptions that are difficult to capture. Even user stories do not
capture these as well.

 The use case approach does provide a benefit that user story definition also provides.
Not only is it more readable than the shall statements, but it creates and maintains
engagement of the users and stakeholders. This is because they have a say in what gets built
as well as having a presentation of the requirements in a more understandable format.

 The article “Use Cases” on Usability.gov says that this about the benefits of use cases:

 Use cases add value because they help explain how the system should
behave and in the process, they also help brainstorm what could go
wrong. They provide a list of goals and you can use this list to establish
the cost and complexity of the system. Project teams can then negotiate
which functions become requirements and are built.

 Clearly understanding how a system should work is absolutely important.
Additionally, knowing what aspects might deviate from the norm or go awry is nearly as
important. Actually, the alternate flows and exceptions/error conditions are aspects that
are not captured well by shall statements and certainly not by user stories. Alternate flows
and exceptions are not always well understood when capturing requirements. In fact,
it could be alternate flow and exception conditions needs are not traditionally explored
well in business process analysis, requirements definition, and even design. People may
spend time considering “what-if” during analysis (something science-fiction writers have
been doing for more than 100 years). However, “what-if… else…” has not always been
examined. These use cases give the ability to examine every aspect of a potential system,
thereby helping in the gap analysis. This use case approach provides more context to the
requirements than do user stories and shall statements.

 The last two sentences in the Usability.gov benefits statement are not unique to
use cases, as they are similar to user stories. If you understand that the “list of goals”
is essentially the titles of each use case, you see that it is the same as the names of all
the user stories. Alas, shall statements do not have the same type of “goal.” Yes, shall
statements can have section headings, but that does not necessarily have the same
granularity and scope as either a use case or a user story.

 Use cases have a good structure, shown in the “Writing Use Cases” section in this
chapter in great detail. This will help not only you to craft a good use case, but also assist
the stakeholders in reading and comprehending the use case. Use it and be consistent with
it. Don’t change the structure around within a project. Define your structure and stick with
it. Of course, if it becomes apparent in a project that changes need to be made, then do it to
all use cases for consistency. Otherwise, you will confuse the pe ople who read it.

http://dx.doi.org/10.1007/978-1-4842-2099-3_6

CHAPTER 14 ■ USE CASES

344

 ■ Real-World Note For the several different projects that used the agile methodology during
my career, I have written use cases only once. It should be interesting to note that on that
project the use cases were not presented to users and stakeholders—only internally to the
development team. Does this mean you should not present them to stakeholders? No, that is not
the intent at all. This was a management decision made before I came to the project. During my
tenure on the project, there was no need to change that. In fact, with only a little guidance from
you, you can present use cases to stakeholders. I just had not experienced it myself.

 The “Gap Analysis” subsection discussed how the use case approach assists
significantly in identifying gaps as you craft use cases. Not only does the listing of actors
and their associated use case titles help with this, but also the alternate and exceptions
flows help to mitigate many if not most of the potential gaps in the requirements analysis.

 The “Login Use Case” subsection talked about the significant advantage the detail
provided in the use case gives the testers. While user stories have acceptance criteria, use
cases have much more detail to help in crafting test cases and test procedures. It provides
more detail, just not all the detail, as you will see in the next subsection.

 Another advantage use cases have over user stories and shall statements is that use
cases provide more information that can be used for documentation, such as user manuals
and design documents. Just as with the test documentation, use cases provide a foundation
upon which to build from, just not all the detail that is needed for these documents .

 Disadvantages
 As was said before, use cases often are not quite as well understood by users and
stakeholders as user stories. You have to decide if educating your user base on the
exploitation of use cases is worth the investment in time. Given the advantages discussed,
it might be. That said, there are some challenges with using them.

 Use cases are not so good for system-centric functions like batch processing, data
warehouses, and computationally intensive functions. How would you represent a
complex algorithm? Think of the software to control an interplanetary spacecraft, with
significant mathematical calculations. Who are the actors—gravity that affects every
object in space? The spacecraft itself? Or the controllers back at NASA? What about the
equations that represent celestial mechanics or orbital mechanics? They are complex
when you talk about sending a spacecraft from the Earth to, say, Mars. How do you show
every step of an equation?

 In addition, nonfunctional requirements, especially performance, are harder to
capture. They have no actors, and they do not have alternate flow readily apparent.
Additionally, many users are not comfortable trying to understand this structure.

 Wikipedia’s “Use Case” article states that “there is a misconception that a use case
is not agile.” That is true if all use cases must be completely written at one time. This use
case approach may work better for the waterfall approach, as the use cases are prepared
up front, not necessarily just-in-time development. Of course, use cases can be created
this way, but there is potential for impact to other use cases. For example, if you have
four use cases dealing with using people’s roles and responsibilities to determine what

CHAPTER 14 ■ USE CASES

345

functions they can access and you change one use case, you will need to verify that each
use case is not affected by that one change. Again, you have encountered the ripple effect,
where one change could ripple through other potentially unsuspecting areas. Thus, the
Wikipedia article is correct—use cases are agile.

 You should be aware, because of the size of many use cases; they may not be
small enough to work in an agile environment. If you need to craft use cases for agile
developments, consider breaking the use cases into smaller, more manageable chunks so
that they can be accomplished in two- to six-week sprints (organizationally dependent).

 Again, the Wikipedia “Use Case” article says, “Use case developers often find it
difficult to determine the level of UI dependency to incorporate in a use case.” This is
not a statement everyone necessarily agrees with. The statement is that the difficulty of
determining the UI dependency is hard. That can be true. From what you have learned, you
not should try to capture the UI in the use case. Remember, the tenant of “implementation
independence” was emphasized for both shall statements and user stories. Well, it applies
to requirement use cases as well. Thus, this challenge goes away for you as an RE. However,
that is not to stop developers from writing “design use cases” in which case they may have
this challenge of UI dependency. However, this limitation was avoided for you.

 The next section will examine using use cases with or without shall statements.
Especially in the “without” situation it will be addressed that over-reliance on use cases.
You have seen where some aspects of requirements are not captured well by use cases.
Keep that in mind.

 While use cases provide excellent information for crafting test cases and test
procedures, as was talked about in the three strikes rule in the login use case, the use
case does not provide all the detail needed for testing, so do not rely on it for that. It is an
excellent start point—but it’s the foundation, not everything that is needed.

 Earlier we talked about complexity such as algorithms, but there is another aspect
to consider—data elements, especially if there are a lot of them. How do you handle,
say, several dozen elements? Are you going to write one use case for a form that has
all of them? While that might sound good at first blush, consider alternate flows and
exceptions. Many items such as country may spawn different fields for Canada versus
the Unites States. In the United States, we use states versus provinces and territories in
Canada. Do that for two dozen elements and you will have a very large and difficult-to-
read use case. It is recommended that you break the data elements into categories with
manageable numbers of data elements to make the use case readable and less complex.
What is manageable? That is difficult to determine without looking at the elements and
the alternate and exception flows.

 Time-driven events are not handled well by use cases. Who is the actor here? The
passage of time? That does not work well. You might argue that the system itself is the
trigger, but it is a combination of the system driven by the passage of time. This gets to the
aspect mentioned earlier about forcing everything into a use case, when the methodology
does not support it well.

 Real-time systems are also not handled well. Think of a nuclear power plant. You
have the humans running software that controls the reaction, but you have the nuclear
pile itself doing its radioactive decay and nuclear interactions following the laws of
quantum mechanics. How would you capture all the parts of this in use cases? If you want
a lesson when these things broke down, read up on the meltdown in Three Mile Island
in the 1970s. Alarms were blaring and lights were flashing that made it difficult for the
operators who were trying to figure out what was going on, yet the operators could not
shut off the alarms and lights so they could think.

CHAPTER 14 ■ USE CASES

346

 While it will be mentioned again in the “Replacement for Requirements” section, it
is stated here—use cases cannot capture every aspect of a system. This should be evident
from the disadvantages in this subsection. To reiterate this, Karl Wiegers said the following
in his book More About Software Requirements: Thorny Issues and Practical Advice :

 Unfortunately, despite thousands of students I’ve taught in requirements
seminars over the years, I have yet to meet a single person who has found
this pure use case approach to work!

 This could not have been said any better, and this adds a wealth of additional
experiences to reinforce the point. So, keep this in mind—use cases cannot satisfactorily
address every aspect of a system.

 In the next section, you will look at use cases complementing and replacing
 shall statements and then finish by looking at using use cases, user stories, and shall
statements together.

 Complement vs. Replacement to Requirements
 Just as was done with user stories, in this section you are going to learn the following:

• Whether you need to write use cases with shall statements

• Whether you need to write use cases instead of shall statements

• Whether you can use cases, user stories, and shall statements as a
complete set

 Complement to Requirements
 In this section, you will see how shall statements can complement use cases, so in this
section, the answer is yes to shall statement with use cases.

 Absolutely. The previous subsection discussed some of the disadvantages of use
cases, such as the inability to capture nonfunctional requirements effectively, similar
to the challenge that user stories have. Well, having use cases complementing shall
statements will mitigate that problem. In addition, shall statements are not effective for
capturing the full gamut of a set of ordered steps with branches, whereas use cases do this
effectively and in fact much better than user stories.

 The flip side is that use cases do not capture nonfunctional statements, algorithms,
complex manipulations, batch processing, and other topics discussed in the
“Disadvantages” section in this chapter, whereas the shall statements do. For example,
how would you capture that a system should be available 99 percent of the time as a use
case. It would not work as a step, nor any of the other attributes.

 Thus, you should capture it as follows:

 14-1 (4-6) (RQMT) The BOSS system shall be available 99.99%
of the time.

CHAPTER 14 ■ USE CASES

347

 You could then have a use case that determines what the value is for a system as follows:

 Unique Identifier 14-4.

 Title Calculate system availability.

 Description Determines the system availability report.

 Actor User who requests the availability report.

 Preconditions The system has been running for a period and collecting
operating parameters.

 Postconditions None.

 Triggers User who requests the availability report.

 Basic Flow 1. Determine the total time since the last report.
 2. Determine the total time the system was operating since the

last report.
 3. Divide the value in step 1 by the value in step 2 and multiply

by 100%.
 4. Provide the result to the requestor.

 You could add a step that compares the value in step 4 to the value identified in
requirement 14-1. Wait, you say, could you not specify the value of 99% in the step? Yes,
you could. However, that step does not specify the force that the requirement has as a
minimum acceptable value of 99%.

 Thus, these two complement each other well.

 Replacement for Requirements
 Just as was said in the previous section that shall statements complement use cases, this
section will talk about how use cases replace shall statements. There are experts who
advocate that well-crafted use cases do not require shall statements, because if the stories
are captured correctly, you do not need to capture shall statements.

 Use cases are written with the user in mind (called user facing by some), which is
true that use cases do capture well what the user may need. That said, use cases may
never completely replace shall statements. Just as was discussed in the “Advantages and
Disadvantages of Use Cases” section in this chapter, use cases do not capture items such
as nonfunctional statements, algorithms, and batch processing. Being forced to capture
these kinds of requirements purely as use cases will make the complex and difficult to
read at best and totally incomprehensible at worst.

 Look at the following shall statement:
 14-2 (RQMT) The BOSS system shall use the following equation to represent gravity

generated on an object by the earth:

 g = GM/R 2

 where g is gravity, G is the gravitational constant, M is the mass of the earth, and R is
the distance between the object and the center of the earth.

CHAPTER 14 ■ USE CASES

348

 Capturing that equation and the associated value in a use case would be difficult.
For example, what is the actor? Defining the steps is difficult as gravity works all the time.
Thus, you cannot easily write a use case for this type of need.

 Therefore, it is not recommend that you capture requirements only with use cases.

 All Three Together
 Can shall statements, user stories, and use cases work together? Unquestionably. This
way you take advantage of the benefits of each and help to diminish the disadvantages of
them as well. Will you always get the opportunity to do all three? Unlikely. We have seen
where use cases are excellent at providing a sequence of steps. If you have situations in
your project where you have such sequences, use cases are your best bet. User stories are
excellent at providing detail and, most importantly, descriptions of why a certain need
is important—none of the others do that. Finally, they can cover what user stories and
use cases cannot. For example, nonfunctional requirements do not work well with user
stories and use cases, whereas shall statements capture these needs very well.

 ■ Note Combining methods is sometimes not well-received, especially from a junior RE.

 References
 U.S. government. “Use Cases.” usability.gov . Feb. 2015, http://www.usability.gov/how-
to-and-tools/methods/use-cases.html

 Wikipedia. Use case . Feb. 2015, http://en.wikipedia.org/wiki/Use_case
 Karl Wiegers, More About Software Requirements: Thorny Issues and Practical Advice,

Microsoft Press, 2010, p11-4.

 Exercises
 Exercise 1
 Write all the possible alternate flows for canceling the login process for all possible spots
in the basic flow.

 Exercise 2
 Write an example of a use case for signing in with a user ID, password, and domain name.
Three strikes and you’re out.

http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://en.wikipedia.org/wiki/Use_case

349© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_15

 CHAPTER 15

 Revisiting Requirement
Problems and Their
Solutions

 Remember, Chapter 1 talked about problems caused by requirements. Now, you will
examine what things were taught to you that can eliminate, or at least significantly
mitigate, these problems from happening.

 Here is that previous list:

 1. Insufficient requirements

 2. Requirements creep

 3. Volatility

 4. Stove-piped requirements

 5. Scope—boundaries can be ill-defined

 6. Understanding users are not sure what they need

 7. May not satisfy user needs

 8. Misinterpretation—cause disagreements

 9. Cannot verify the requirements

 10. Wasted time and resources building the wrong functions

 Now you will consider each point and analyze what you can do.

 Insufficient Requirements
 Reiterating the point, Chapter 1 stated that insufficient requirements means there are
gaps in the full description of the system.

 Now, look at what was discussed in this book to counter insufficiency.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 15 ■ REVISITING REQUIREMENT PROBLEMS AND THEIR SOLUTIONS

350

 Techniques were presented in Chapter 9 for how to collect all the possible requirements.
It is strongly recommend that you use more than one technique to elicit requirements. Each
has its benefits and costs in resources to achieve a good set of requirements.

 Chapters 4 and 5 on functional and nonfunctional requirements listed dozens of
topics for you to consider as part of a checklist for you to examine as candidate areas.

 Multiple representations of requirement statements were presented: shall
statements, user stories, and use cases to ensure the best representation of requirements.

 Chapter 12 ’s graphic representations and possible modeling were recommended to
examine all aspects of requirements.

 Do not rule out reviews of requirements by stakeholders, other people on the
development team, and subject-matter experts in requirements engineering to help
capture all requirements.

 Time was spent in the book suggesting how to perform gap analysis to help find
those missing requirements, such as reading system documentation and even creating
business process descriptions to assist in finding those gaps.

 Remember, the later in the development lifecycle that you take to find requirements,
the more costly it is to implement them. Find them as early as you can.

 Resist the urge of people to shortcut the proper capture of requirements. This is the
most important aspect of developing the system. Do it right the first time.

 Requirements Creep
 Requirements change anywhere from 1 to 4 percent per month. Thus, to prevent the
system from getting out of date, continue to capture them during the development phase.
Agile-type methodologies where you refine requirements (whether shall statements, user
stories, and/or use cases) as you get close to the sprint or iteration where the work will be
performed significantly mitigates the scope creep .

 Do not define all the requirements up front and freeze them for the entire
development process. That begs for requirements scope creep. Note that in Chapter 13 ,
we talked about writing user stories for agile developments but also discussed how shall
statements and user stories can complement each other, especially since users stories are
not as good at capturing nonfunctional needs.

 Volatility
 Chapter 1 defined volatility as a different kind of scope creep, which adds requirements.
Volatility means that already existing requirements change. Basically, the same cure for
requirements creep fixes volatility—define requirements as close to the implementation
of the system, and you can avoid or mitigate volatility significantly. Again, in Chapter 13 ,
where user stories are examined especially with the agile methodology where work is
done in sprints with regular releases, even for projects that last for years. Doing more just-
in-time requirements definitions (whether user stories, shall statements, or use cases),
can help to overcome the volatility problem.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9
http://dx.doi.org/10.1007/978-1-4842-2099-3_4
http://dx.doi.org/10.1007/978-1-4842-2099-3_5
http://dx.doi.org/10.1007/978-1-4842-2099-3_12
http://dx.doi.org/10.1007/978-1-4842-2099-3_13
http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_13

CHAPTER 15 ■ REVISITING REQUIREMENT PROBLEMS AND THEIR SOLUTIONS

351

 Stove-Piped Requirements
 Actually, the text did an excellent job of explaining how to avoid this problem in Chapter 1 , by
not having your organization do it in the first place. If you have one part of your company or
organization that does all the development, then the odds of this happening are significantly
reduced. That is because you do all the work in your office. It should not be difficult to work
with other teams and REs who are doing work. You should be able to share information and
not “reinvent the wheel” each time.

 If you have multiple development shops that are not resident in the same part of the
company, then you might have more of a challenge, if there is not good communications
or any communications among these shops. The onus will be on you to reach out to see
what requirements others have done to see what you can reuse.

 Honestly, this will be harder in the early part of your career to affect what could be a
culture change. You should not try this in a vacuum but try to find an advocate who will
champion your cause.

 ■ Real-World Note The times I have successfully accomplished culture change, I had
such a champion. In one case, I was the one who documented common requirements, as
they did not yet exist. This champion shared my requirements with others.

 Do not ever underestimate the power of a champion.

 The biggest area where you are likely to succeed is for the common functions such as
a report generator, printing, access control, or searching capabilities.

 You might want to set up working groups for REs to share work, seminars, or informal
lunches to exchange information. Not only will this help to break down barriers within
an organization, but also this helps to develop and grow your network. Not only may they
help you when you have questions or challenges, but also they may be sources of career
enhancements like better positions in the future.

 Scope : Boundaries Can Be Ill-Defined
 Chapter 1 said that ill-defined boundaries can be one of the main problems contributing
to requirements gathering in general.

 At the beginning of a project, get the major players together and get them to agree
on what the scope of the project is, including very distinctly, where it ends and other
systems/applications begin. Not only is this necessary to define the boundary of the new
development but also to define what interfaces you need to capture.

 Will it end there? Absolutely not. As you go through the elicitation phase, you
may think that the boundary is moving. Then repeat the validation of that boundary.
Determine what has changed; either you will have more or less functionality than was
originally defined, maybe you have to redefine what is passing across the interfaces, or
possibly both have occurred.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 15 ■ REVISITING REQUIREMENT PROBLEMS AND THEIR SOLUTIONS

352

 Just as requirements can change with time (in this chapter’s reference to scope
creep), the boundaries can too with time. So be on the alert for it. When you suspect it,
ask. It is always easier to get an answer that says there is no change than to not ask and
have significant ramifications further down the development process. Remember, those
later changes are more costly, so identify them early and often.

 You might ask if requirements can change without affecting boundaries. Yes,
requirements can change without affecting boundaries, as we have mentioned with scope
creep, but the knowledge of a particular function could become more detailed without
affecting boundaries. Thus, the short answer to the question is requirements changes
could affect the boundary, or it might not, depending on the breadth and depth of change.

 Chapter 1 said that you can have challenges when you have to work across groups.
This could be different departments within your company, or it could be across different
companies, as I have experienced, when I have had to work across multiple organizations
within the federal government. These different groups may have competing needs, and
the boundaries may be interesting to define. One example, sometimes the management
chain may need to be involved as other parts of the company become involved, or maybe
different organizations altogether. A subset of this challenge is to be wary of people’s egos
getting in the way. Tread lightly until you are comfortable dealing with such situations.
In fact, experience may not always prepare you for this regardless of your years or even
decades of proficiency.

 Understanding Users Are Not Sure What
They Need
 Chapter 9 was devoted to how to collect requirements. All of those techniques assist with
overcoming this potential problem. Sometimes it is just a matter of having questions to
ask to get them started talking.

 Ask questions. That is the biggest tool in your tool chest. Of course, the key is
knowing what questions to ask. Significant time was spent in Chapter 9 on this. Review
it. Maybe it is something as simple as, “So, that means you think the system (insert your
project name in here) is perfect.” If that does not get them to disagree, then there is no
hope. You want to get them talking. Once they start, listen to what they say, and start
probing on the points they start to raise.

 This does not mean most people will fall into this category of being reluctant with
information. Take guidance in looking for the minority of people. You never know what
gems they may have. In addition, if you get them engaged, they may be some of the best
advocates for the new system when it comes along, because you were so helpful to them
by wanting their input.

 Experience shows that, in work sessions, when people start having fun, then the
ideas and comments start flowing better. Does this work for everyone? No, of course
not. Again, this demonstrates why this is an art, not science—people cannot be fully
categorized and manipulated.

 If people reluctant to participate, sometimes the best avenue is to focus on those
who are more cooperative. On the other hand, maybe it is best to contact the reluctant
person for a one-on-one discussion or via phone or e-mail because they may be
reluctant to talk with other people around. For example, some introverts do not handle

http://dx.doi.org/10.1007/978-1-4842-2099-3_1
http://dx.doi.org/10.1007/978-1-4842-2099-3_9
http://dx.doi.org/10.1007/978-1-4842-2099-3_9

CHAPTER 15 ■ REVISITING REQUIREMENT PROBLEMS AND THEIR SOLUTIONS

353

group environments as well as others, and providing them a better venue for their ideas
may allow them to contribute. As was talked about in Chapter 9 using techniques of
leading questions, such as “What is wrong with the current system?” or “If you could
have anything you wanted for the system, what would you want?” can help start the
conversation. Examining the various elicitation techniques in Chapter 9 may also help
spark ideas to overcome reluctant people.

 There is one small category that can be the most challenging to handle. If the users
are openly hostile, it is best not to use them at all, as they will only disrupt the process.
Of course, if they are the only one with particular knowledge, then you have to work with
your management and possibly the management of the person in question. Do not go it
alone. Ask for help and/or advice.

 May Not Satisfy User Needs
 With the listing of the types of functional and nonfunctional requirement types along
with the elicitation techniques you have been taught, you should not miss groups of
requirements that can be potentially missed (maybe not all types of requirements
apply to every project, but it is a good start point). If you get to deployment and certain
functions do not meet the users’ needs, then there is some requirements that are missing.
Also, if some requirements are not accurate, then it is possible that some needs may be
missed. Vetting requirements with stakeholders can help to mitigate inaccuracies .

 One additional way to prevent this is with the agile development. Because you get
demonstrations at the end of each sprint/iteration, you get feedback from the stakeholders.
You will learn quickly if something does not meet their needs before it goes too far.
Corrections can be made quickly and deliver functions that are responsive to the needs.

 In addition, because agile requires review of requirements just before the beginning
of a sprint/iteration, you will get insights that alert you to gaps. Remember, just-in-time
requirements keep the requirements current and focused on the topics of interest, and
stakeholders will ensure proper requirements for that timeframe as well.

 By vetting requirements through stakeholders, you establish the rapport that will
help capture the right requirements. Because you listen to them, they will want to work
with you and ensure they receive the right system.

 Misinterpretation : Cause Disagreements
 If the language used in the requirements is incorrect or not understood by everyone, then
someone may not interpret it (and design it) such that it is not what the stakeholders and
ultimately the users may want. Chapter 3 talked how you need to understand each word
as well.

 You worked through many example requirements to help you understand how
to write precisely. Looking at the project’s existing requirements can help. With the
techniques presented throughout this book, you learned what is precisely written and
what is not precise. In addition, you may start to see where other REs may not have
followed the principles you now know. Learn from that.

http://dx.doi.org/10.1007/978-1-4842-2099-3_9
http://dx.doi.org/10.1007/978-1-4842-2099-3_9
http://dx.doi.org/10.1007/978-1-4842-2099-3_3

CHAPTER 15 ■ REVISITING REQUIREMENT PROBLEMS AND THEIR SOLUTIONS

354

 ■ Note Writers have used a technique called workshopping a story. By that, they submit
stories to a group of writers who read it and critique it. Not only can they receive very
valuable criticism but also by examining other peoples’ works, they learn how to critique
their own. Use the same technique for requirements.

 Clarity is important. Precision deals more with the specific details being correct.
Clarity has to do with the message you are trying to convey being clear to the reader.
You have been provided three techniques within writing text to provide clarity: shall
statements, user stories, and use cases. You were shown how each technique provides
for enhancing the limitations of free text. Unfortunately, the burden still falls to you
as the requirements engineer to write as clearly as possible. You have been provided
tools, but ultimately it is your responsibility. Someone cannot write them for you; only
you can write. Take advantage of others to review your work, especially as you start out
your career. Experience helps. That said, even more than 30 years’ experience does not
guarantee that you will achieve perfection every time. Practice helps considerably, as well
as insights from others, such as requirements engineers, stakeholders, and others on the
development team. Each project is a team effort. Be open to their input and accept them
willingly. Arrogance, at any point in your career, will not be an asset but a liability.

 In addition, you have been provided with an overview of graphical techniques and
modeling to assist in providing additional clarity. Keep in mind who your audience is
and use these techniques and modeling with them in mind. Other than swim-lane-type
graphics, most models will overwhelm most stakeholders. Some may be just whelmed.
Keep that in mind.

 Cannot Verify the Requirements
 Obviously, verifying requirements is one of the attributes of a good requirement. If you
can conceive of a method to verify a requirement, the testers charged with crafting and
executing tests will be able to do so.

 One technique to ensure you have achieved this is to have testers review the
requirements. If they like the statement, then you have fixed this problem.

 In addition, the other attributes of a good requirement support requirements that are
testable. If it is atomic, you have decomposed it down to a reasonable level. For example,
if the requirements are too high a level, then you probably cannot think of a good
technique to verify it. You would probably need to come up with multiple tests, which
would indicate the requirement needs to be decomposed. There may be other reasons for
why a particular requirement might not be verifiable, as was discussed in Chapter 2 . Your
take-away is if you cannot verify a statement, it is not a good requirement.

 Chapter 2 will not be repeated here. If you succeed in writing a good requirement,
it will be verifiable. The final check for you is when you as an RE identify which of the
five verification methodologies for each requirement will be used. If you can identify a
reasonable method to verify the requirement, that statement should be verifiable.

http://dx.doi.org/10.1007/978-1-4842-2099-3_2
http://dx.doi.org/10.1007/978-1-4842-2099-3_2

CHAPTER 15 ■ REVISITING REQUIREMENT PROBLEMS AND THEIR SOLUTIONS

355

 Wasted Time and Resources Building the Wrong
Functions
 One of the traps of capturing requirements it that without priorities, every requirement
takes on the same level of importance. That is not the case. A group of requirements
that are performed dozens of times a day usually will have more importance than one
that is performed once a year. One important element may overshadow this: if a legal or
policy requires something, then frequency may not be a driver (but these legal/policy
requirements are special cases).

 Thus, assigning priorities based on frequency can help. Of course, there are policies
and legal reasons that may dictate some requirements have higher priority than their
frequency of occurrence may indicate.

 In addition, with the agile methodology, with the stakeholders defining which
requirements to work on, this will go a long way to eliminate functions that are not of
interest to the users.

 Chapter 1 mentioned a problem that can arise when the developers’ interpretation
of what is important can deviate from the needs, users, or priorities of the organization.
Well, again, with agile if they try this, they will not get very far (a few weeks’ worth of work
at the most) before the stakeholders say they are going in the wrong direction. This will
help to mitigate this problem significantly.

 By fixing some of the other requirement problems discussed in this chapter, you may
also help avoid this problem from occurring. For example, if you had the wrong boundary
definition, you might waste time redoing what another system already accomplishes. So,
by fixing the boundary definition (the scope—boundaries can be the ill-defined section in
this chapter), you help to prevent the occurrence of wasted development time .

 By proper requirements elicitation, you will help to prevent this also, as was
reiterated earlier. Standards will help focus development in the proper implementation.

 Summary
 In summary, you learned information that has gone a long way to eliminating or
mitigating these problems with requirements. Does that mean there are not other
problems to address? You will no doubt encounter others, but these are the most often
common and frequently cited problems. If you follow the processes and approaches
herein outlined, you should do a good job of crafting and maintaining requirements
throughout the lifecycle development.

 Will you make mistakes? Absolutely. Everyone does. If it were easy, they would not
need you to do it. The problem is that not everyone can do it. If you strive for perfection,
while you will not achieve it, you will achieve excellence in the process. Achieve that
excellence, and you will have a good career.

 Remember, while you have learned many techniques, requirements engineering still
is an art form. Be proud of your art. Translating what people think they need into what
they really do need is not easy and certainly is not for the faint of heart. Embrace this and
build from it—I am not talking about actually building the system here, but build your
experience and confidence. You are going to experience some interesting projects that you
might never have anticipated working on. Let this be a group of tools to help you do that.

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

CHAPTER 15 ■ REVISITING REQUIREMENT PROBLEMS AND THEIR SOLUTIONS

356

 Even if you do not write requirements, you know what to expect from people who do.
Use this book and the enlightenment within as a guide to know what people who work for
you need to do, even if you never have to do it yourself. Clarity has been brought to the
process and helps software and hardware developments now and in the future.

 Requirements engineering was not stagnant in the past, nor will it remain stagnant
in the future. It will change. Embrace that evolution as it occurs. Ideally, you have gained
insight to analyze these new methodologies and see what works best and what still needs
improvement. Indications are provided where existing requirement techniques still
need improvements. Use that as start point to see whether they have addressed those
deficiencies. You have a leg up because you know what to look for, what to analyze, and
what to critique. Knowledge is the commodity of the future, and this text should have
helped you gain some. Use it, and have fun doing it.

 Exercises
 In chapter 1 , you did two exercises. Now that you have completed the book, redo exercises
1 and 2 without looking at your original answers. Then, in exercise 3, you will come you
new answers with those from chapter 1, and see how things have changed. Does it give
you an idea how your perceptions have changed based on your new knowledge?

 Exercise 1:
 Examine the problems that can happen as described in the ‘Challenges for Writing
Effective Requirements ’ section in this chapter and rank which ones you think are the
most critical to fix and why.

 Exercise 2:
 Examine the problems that can happen as described in the ‘Challenges for Writing
Effective Requirements’ section in this chapter and rank which ones you think occur most
frequently and why.

 Exercise 3:
 Compare the results from exercise one and two from this chapter, and compare them to
what you had written in chapter one. How has your assessment changed?

http://dx.doi.org/10.1007/978-1-4842-2099-3_1

 PART V

 Appendixes

359© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_16

 APPENDIX A

 Acronyms and Abbreviations

 This appendix lists the acronyms and abbreviations used in the book, for handy
reference. Remember when Chapter 5 talked about including this reference? Well, this
appendix follows the directives presented in that chapter. Remember, an acronym is
defined as a word formed from the initials or other parts of several words, such as NATO,
from the initial letters of North Atlantic Treaty Organization. An abbreviation is defined as
a shortened or contracted form of a word or phrase used in place of the whole. FYI, many
people use the term acronym for both.

 Acronym/Abbreviation Meaning

 AH Attack Helicopter

 AKA Also Known As

 ARS Audit Reporting Service

 ASAP As Soon As Possible

 BLOB Binary Large Object

 BOSS Big Organization’s Suite of Services

 BPD Business Process Description

 BPDD Business Process Description Document

 CASE Computer-Aided System Engineering

 CCNA Cisco Certified Network Associate

 CENTCOM Central Command (DoD; includes Iraq and Afghanistan)

 CM Change Management

 CM Change Manager

 CM Configuration Management

 CM Configuration Manager

 CMM Capability Maturity Model

 CMMI Capability Maturity Model Integration

 CONOPS Concept of Operations

(continued)

http://dx.doi.org/10.1007/978-1-4842-2099-3_5

APPENDIX A ■ ACRONYMS AND ABBREVIATIONS

360

 Acronym/Abbreviation Meaning

 COPE Common Operating Platform Environment

 COTS Commercial Off the Shelf

 CR Change Request

 CRUD Change, Read, Update, Delete

 DBA Database Administrator

 DFD Data Flow Diagram

 DoD Department of Defense

 DOS Denial of Service

 DPI Dots Per Inch

 DR Discrepancy Report

 DSP Defense Standardization Program

 DTV Digital Television

 DVD Digital Video Disc or Digital Versatile Disc

 EIT Electronic and Information Technology

 EMP Electromagnetic Pulse

 EPF Eclipse Process Framework

 ERD Entity Relationship Diagram

 ESB Enterprise Service Bus

 FBI Federal Bureau of Investigation

 FRD Functional Requirements Document

 FYI For Your Information

 GOTS Government Off the Shelf

 GSFC Goddard Space Flight Center

 HCI Human Computer Interface

 HF Human Factors

 HFE Human Factors Engineering

 HIPAA Health Insurance Portability and Accountability Act

 HQ Headquarters

 HR Human Resources

 HTML HyperText Markup Language

 HUD Housing and Urban Development

 ICD Interface Control Document

 IED Improvised Explosive Device

(continued)

APPENDIX A ■ ACRONYMS AND ABBREVIATIONS

361

 Acronym/Abbreviation Meaning

 IEEE Institute of Electrical and Electronics Engineers

 INCOSE International Council on Systems Engineering

 INVEST Independent, Negotiable, Valuable, Estimable, Small,
Testable

 IRS Internal Revenue System

 ISO International Organization for Standardization

 IT Information Technology

 JAD Joint Application Development

 KeV Kilo-electron Volts

 KISS Keep It Simple, Stupid

 LAN Local Area Network

 LCD Liquid Crystal Display

 LED Light Emitting Diode

 LSI Latent Semantic Indexing

 MAN Metropolitan Area Network

 MeV Mega-electron Volts

 MIL-STD Military Standard

 MRAP Mine-Resistant Ambush Protected

 MS Microsoft

 MTBF Mean Time Between Failures

 MTBM Mean Time Between Maintenance

 MTTM Mean Time to Maintain

 MTTR Mean Time to Repair

 NARA National Archives and Records Administration

 NASA National Aeronautics and Space Administration

 NBC Nuclear, Biological, Chemical

 NIH National Institute of Health

 NLP Natural Language Processing

 O&M Operations and Maintenance

 OMG Object Management Group (not Oh My God)

 OOP Object-Oriented Programming

 OPF Open Process Framework

 OS Operating System

(continued)

APPENDIX A ■ ACRONYMS AND ABBREVIATIONS

362

 Acronym/Abbreviation Meaning

 OSI Open System Interconnection

 PR Problem Report

 RAD Rapid Application Development

 RAM Random Access Memory

 RAM Reliability, Availability, Maintainability

 RE Requirements Engineering

 RE Reverse Engineering

 REM Roentgen Equivalent in Man

 REST Representational State Transfer

 RFC Requests for Change

 RFP Request for Proposals

 RM Requirements Management

 RM Requirements Manager

 RMA Records Management Application

 RMA Reliability, Maintainability, Availability

 RUP Rational Unified Process

 RVTM Requirements Verification Traceability Matrix

 SA System Administrator

 SAN Storage Area Network

 SDM System Development Methodology

 SE Systems Engineer

 SE Systems Engineering

 SME Subject-Matter Expert

 SO Security Officer

 SOA Service Oriented Architecture

 SQL Structured Query Language

 SRD Software Requirements Document

 SRD System Requirements Document

 SRS System Requirements Specifications

 SSN Social Security Number

 SysML Systems Modeling Language

 TBD To Be Determined

 TBR To Be Reviewed

(continued)

APPENDIX A ■ ACRONYMS AND ABBREVIATIONS

363

 Acronym/Abbreviation Meaning

 TES Theme, Epics, Stories

 TPF Transaction Processing Facility

 TTY Teletypewriter

 UI User Interface

 UML® Unified Modeling Language™

 USB Universal Serial Bus

 User ID User Identification

 User ID User Identifier

 WAN Wide Area Network

 XLC eXpedited Life Cycle

 XML Extensible Markup Language

 XP eXtreme Programming

365© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_17

 APPENDIX B

 Requirements Documents

 These are potential requirement document formats you might consider if you need to
generate a document. Obviously, if your organization requires one, they may have a
template already defined. If so, use it. If you need to craft one but do not have a format,
consider the following templates. Some work better for hardware-focused systems, and
others are more for software systems. Choose the one that best fits your needs. One will
not be recommended here.

 A good starting point is the IEEE formats, as many other organizations start with one
or more of these templates.

 This appendix will not invest much detail in each format; it will just give the
headings so you can research what might work best for you. As was stated earlier in the
book, with requirements databases, you may not need to craft one of these documents, so
we will not invest much of your time in reading these, other than to point to candidates
that are mostly not much more than a table of contents.

 DoD FRD Template
 This is one example of what is called a functional requirements document template.
Given the size of the Department of Defense, this is established as a standard template
that should be used by anyone within the DoD to follow. Even if you are not supporting
the DoD, it might have merit if you need a requirements document format. What you see
for the title is the actual document as specified in the following source:

 Source: Johnson, James A. Functional Requirements Document (FRD) for
 Department of Defense (DoD) <Project Name> Activity Address Directory/File
(DODAAD/DODAAF) Reengineering Effort Requirements Statement. Defense Logistics
Management Standards Office, October 2003.

APPENDIX B ■ REQUIREMENTS DOCUMENTS

366

 FUNCTIONAL REQUIREMENTS DOCUMENT (FRD)
FOR DEPARTMENT OF DEFENSE (DOD) <PROJECT
NAME>
 Table of Contents

 1. General Description of Operational Capability

 a. Summary of Mission Needs

 b. Overall Mission Area

 c. Proposed IT Capability

 d. System Mission

 e. Operation and Support Concept

 2. Threat

 3. Shortcomings of Existing Services

 4. Capabilities Required for Reengineering the DODAAD/
DODAAF

 a. Solution Performance

 b. Information Exchange Support Requirements

 c. Logistics and Readiness

 d. Other Systems Solution Characteristics

 5. Functional Requirements

 a. System Access Requirements

 b. Database Design Requirements

 c. Database Update Requirements

 d. Data Requirements

 e. Database Inquiry and Download Requirements

 f. Application Inquiry Requirements

 6. Program Support

 a. Maintenance Planning

 b. Support Equipment

 c. D4I/Standardization, Interoperability, and Commonality

 d. Computer Resources

 e. Human Systems Integration (HIS)

APPENDIX B ■ REQUIREMENTS DOCUMENTS

367

 f. Other Logistics and Facilities Considerations

 g. Transportation and Basing

 h. Geospatial Information and Services

 i. Natural Environmental Support

 7. Force Structure

 8. Schedule

 Appendix A: Schedule

 Appendix B: New or Expanded Data Element Requirements

 Appendix C: Abbreviations and Acronyms

 Appendix D: Drop Down Menu Choices for Data Entry

 Comments on This DoD FRD
 This is a more fixed format used by the Department of Defense. Clearly, with sections
like “Threat” and “Geospatial Information,” these are areas you may not be familiar with
unless you work in this organization.

 IEEE Document Formats
 In the IEEE documentation, IEEE provides very useful document formats. IEEE is an
excellent resource to use as you build your documents. Included here are four different
documents:

• Software Requirements Specification

• Functional Requirements Document

• Data Requirements Document

• Requirements Definitions

 Final Comments on Requirements Document
Formats
 If you look at all of these candidate formats, you will notice that many of the section and
subsection names repeat. Frankly, that is not surprising as they are trying to address
system requirements. The point is to consider which organization you want or to make
your own hybrid. Like much of what was have discussed, there is no right or wrong way to
do it. Whatever works best for you and your organization is right. Again, this emphasizes
the art form that you now know as requirements analysis.

APPENDIX B ■ REQUIREMENTS DOCUMENTS

368

 References
 IEEE-SA Standards Board. IEEE Std 830-1998, IEEE Recommended Practice for Software
Requirements Specifications . Sponsor: Software Engineering Standards Committee of the
IEEE Computer Society, Approved 25 June 1998, p21 to 27.

 Johnson, James A. Functional Requirements Document (FRD) for Department of
Defense (DoD) <Project Name> Activity Address Directory/File (DODAAD/DODAAF)
Reengineering Effort Requirements Statement . Defense Logistics Management Standards
Office, October 2003.

369© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_18

 APPENDIX C

 Section 508 Compliance

 Section 508 of the Rehabilitation Act of 1973 was introduced in Chapter 10 . This
appendix reproduces some key excerpts from Section 508 that provide background for
the requirements, define when you must comply with Section 508 of the Rehabilitation
Act of 1973, and provide general guidance on Section 508. The source for the
information in this appendix comes from “Guidelines and Standards” on the United
States Access Board web site:

 www.access-board.gov/guidelines-and-standards

 The excerpts in this appendix are exactly as they appear on the web site, as of August
2016, including section heading and subsection heading numbers. Not every portion of
the web site is duplicated here, just select information that I deemed especially pertinent.

 The Background for Section 508
 This first section provides an excerpt about the background for the Section 508
Accessibility Program:

 https://www.access-board.gov/guidelines-and-standards/communications-and-
it/about-the-section-508-standards/background

 Background
 Section 508 Law and Related Laws and Policies

 In 1998, Congress amended the Rehabilitation Act and strengthened provisions
covering access to information in the federal sector. As amended, section 508 of the
Rehabilitation Act requires access to the federal government’s electronic and information
technology. It applies to all federal agencies when they develop, procure, maintain, or
use such technology. Federal agencies must ensure that this technology is accessible
to employees and the public to the extent it does not pose an “undue burden.” The law
directs the Access Board to develop access standards for this technology for incorporation
into federal procurement regulations…

http://dx.doi.org/10.1007/978-1-4842-2099-3_10
http://www.access-board.gov/guidelines-and-standards
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/background
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/background

APPENDIX C ■ SECTION 508 COMPLIANCE

370

 Exemptions to Section 508
 This section is an excerpt about instances in which Section 508 does not apply:

 https://www.access-board.gov/guidelines-and-standards/communications-and-it/
about-the-section-508-standards/section-508-standards/preamble

 Section 1194.3 General Exceptions
 This section provides general exceptions from the standards. Paragraph (a) provides an
exception for telecommunications or information systems operated by agencies, the
function, operation, or use of which involves intelligence activities, cryptologic activities
related to national security, command and control of military forces, equipment that is
an integral part of a weapon or weapons system, or systems which are critical to the direct
fulfillment of military or intelligence missions. This exception is statutory under section 508
and is consistent with a similar exception in section 5142 of the Clinger-Cohen Act of 1996…

 Section 508 Technical Standards
 This section is an excerpt from Section 508 Subpart B regarding technical standards:

 https://www.access-board.gov/guidelines-and-standards/communications-and-it/
about-the-section-508-standards/section-508-standards#subpart_b

 Subpart B – Technical Standards
 § 1194.21 Software Applications and Operating Systems
 (a) When software is designed to run on a system that has a

keyboard, product functions shall be executable from a
keyboard where the function itself or the result of performing
a function can be discerned textually.

 (b) Applications shall not disrupt or disable activated features
of other products that are identified as accessibility features,
where those features are developed and documented
according to industry standards. Applications also shall
not disrupt or disable activated features of any operating
system that are identified as accessibility features where the
application programming interface for those accessibility
features has been documented by the manufacturer of the
operating system and is available to the product developer.

 (c) A well-defined on-screen indication of the current focus
shall be provided that moves among interactive interface
elements as the input focus changes. The focus shall be
programmatically exposed so that assistive technology can
track focus and focus changes.

https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards/preamble
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards/preamble
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards#subpart_b
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards#subpart_b

APPENDIX C ■ SECTION 508 COMPLIANCE

371

 (d) Sufficient information about a user interface element
including the identity, operation and state of the element
shall be available to assistive technology. When an image
represents a program element, the information conveyed by
the image must also be available in text.

 (e) When bitmap images are used to identify controls, status
indicators, or other programmatic elements, the meaning
assigned to those images shall be consistent throughout an
application’s performance.

 (f) Textual information shall be provided through operating
system functions for displaying text. The minimum
information that shall be made available is text content, text
input caret location, and text attributes.

 (g) Applications shall not override user selected contrast and
color selections and other individual display attributes.

 (h) When animation is displayed, the information shall be
displayable in at least one non-animated presentation mode
at the option of the user.

 (i) Color coding shall not be used as the only means of conveying
information, indicating an action, prompting a response, or
distinguishing a visual element.

 (j) When a product permits a user to adjust color and contrast
settings, a variety of color selections capable of producing a
range of contrast levels shall be provided.

 (k) Software shall not use flashing or blinking text, objects, or
other elements having a flash or blink frequency greater than
2 Hz and lower than 55 Hz.

 (l) When electronic forms are used, the form shall allow people
using assistive technology to access the information, field
elements, and functionality required for completion and
submission of the form, including all directions and cues.

 § 1194.22 Web-based Intranet and Internet Information and
A pplications
 (a) A text equivalent for every non-text element shall be provided

(e.g., via “alt”, “longdesc”, or in element content).

 (b) Equivalent alternatives for any multimedia presentation shall
be synchronized with the presentation.

 (c) Web pages shall be designed so that all information conveyed
with color is also available without color, for example from
context or markup.

APPENDIX C ■ SECTION 508 COMPLIANCE

372

 (d) Documents shall be organized so they are readable without
requiring an associated style sheet.

 (e) Redundant text links shall be provided for each active region
of a server-side image map.

 (f) Client-side image maps shall be provided instead of server-
side image maps except where the regions cannot be defined
with an available geometric shape.

 (g) Row and column headers shall be identified for data tables.

 (h) Markup shall be used to associate data cells and header cells
for data tables that have two or more logical levels of row or
column headers.

 (i) Frames shall be titled with text that facilitates frame
identification and navigation.

 (j) Pages shall be designed to avoid causing the screen to flicker
with a frequency greater than 2 Hz and lower than 55 Hz.

 (k) A text-only page, with equivalent information or
functionality, shall be provided to make a web site comply
with the provisions of this part, when compliance cannot
be accomplished in any other way. The content of the
text-only page shall be updated whenever the primary page
changes.

 (l) When pages utilize scripting languages to display content, or
to create interface elements, the information provided by the
script shall be identified with functional text that can be read
by assistive technology.

 (m) When a web page requires that an applet, plug-in or other
application be present on the client system to interpret page
content, the page must provide a link to a plug-in or applet
that complies with §1194.21(a) through (l).

 (n) When electronic forms are designed to be completed on-
line, the form shall allow people using assistive technology
to access the information, field elements, and functionality
required for completion and submission of the form,
including all directions and cues.

 (o) A method shall be provided that permits users to skip
repetitive navigation links.

 (p) When a timed response is required, the user shall be
alerted and given sufficient time to indicate more time
is required.

APPENDIX C ■ SECTION 508 COMPLIANCE

373

 § 1194.23 Telecommunications Products
 (a) Telecommunications products or systems which provide

a function allowing voice communication and which
do not themselves provide a TTY functionality shall
provide a standard non-acoustic connection point for
TTYs. Microphones shall be capable of being turned on
and off to allow the user to intermix speech with
TTY use.

 (b) Telecommunications products which include voice
communication functionality shall support all commonly
used cross-manufacturer non-proprietary standard TTY
signal protocols.

 (c) Voice mail, auto-attendant, and interactive voice response
telecommunications systems shall be usable by TTY users
with their TTYs.

 (d) Voice mail, messaging, auto-attendant, and interactive
voice response telecommunications systems that require a
response from a user within a time interval, shall give an
alert when the time interval is about to run out, and shall
provide sufficient time for the user to indicate more time
is required.

 (e) Where provided, caller identification and similar
telecommunications functions shall also be available for users
of TTYs, and for users who cannot see displays.

 (f) For transmitted voice signals, telecommunications products
shall provide a gain adjustable up to a minimum of 20 dB. For
incremental volume control, at least one intermediate step of
12 dB of gain shall be provided.

 (g) If the telecommunications product allows a user to adjust the
receive volume, a function shall be provided to automatically
reset the volume to the default level after every use.

 (h) Where a telecommunications product delivers output by
an audio transducer which is normally held up to the ear, a
means for effective magnetic wireless coupling to hearing
technologies shall be provided.

 (i) Interference to hearing technologies (including hearing
aids, cochlear implants, and assistive listening devices) shall
be reduced to the lowest possible level that allows a user
of hearing technologies to utilize the telecommunications
product.

APPENDIX C ■ SECTION 508 COMPLIANCE

374

 (j) Products that transmit or conduct information or
communication, shall pass through cross-manufacturer,
non-proprietary, industry-standard codes, translation
protocols, formats or other information necessary to provide
the information or communication in a usable format.
Technologies which use encoding, signal compression,
format transformation, or similar techniques shall not
remove information needed for access or shall restore it upon
delivery.

 (k) Products which have mechanically operated controls or keys,
shall comply with the following:

 (1) Controls and keys shall be tactilely discernible without
activating the controls or keys.

 (2) Controls and keys shall be operable with one hand and
shall not require tight grasping, pinching, or twisting
of the wrist. The force required to activate controls and
keys shall be 5 lbs. (22.2 N) maximum.

 (3) If key repeat is supported, the delay before repeat shall
be adjustable to at least 2 seconds. Key repeat rate shall
be adjustable to 2 seconds per character.

 (4) The status of all locking or toggle controls or keys shall
be visually discernible, and discernible either through
touch or sound.

 § 1194.24 Video and Multimedia Products
 (a) All analog television displays 13 inches and larger, and

computer equipment that includes analog television receiver
or display circuitry, shall be equipped with caption decoder
circuitry which appropriately receives, decodes, and displays
closed captions from broadcast, cable, videotape, and DVD
(Digital Video Disc or Digital Versatile Disc) signals. As soon
as practicable, but not later than July 1, 2002, widescreen
 digital television (DTV) displays measuring at least 7.8 inches
vertically, DTV sets with conventional displays measuring
at least 13 inches vertically, and stand-alone DTV tuners,
whether or not they are marketed with display screens, and
computer equipment that includes DTV receiver or display
circuitry, shall be equipped with caption decoder circuitry
which appropriately receives, decodes, and displays closed
captions from broadcast, cable, videotape, and DVD signals.

 (b) Television tuners, including tuner cards for use in computers,
shall be equipped with secondary audio program playback
circuitry.

APPENDIX C ■ SECTION 508 COMPLIANCE

375

 (c) All training and informational video and multimedia
productions which support the agency's mission, regardless
of format, that contain speech or other audio information
necessary for the comprehension of the content, shall be open
or closed captioned.

 (d) All training and informational video and multimedia
productions which support the agency's mission, regardless
of format, that contain visual information necessary for the
comprehension of the content, shall be audio described.

 (e) Display or presentation of alternate text presentation or audio
descriptions shall be user-selectable unless permanent.

 § 1194.25 Self-contained, Closed Products
 (a) Self-contained products shall be usable by people with

disabilities without requiring an end-user to attach assistive
technology to the product. Personal headsets for private
listening are not assistive technology.

 (b) When a timed response is required, the user shall be alerted
and given sufficient time to indicate more time is required.

 (c) Where a product utilizes touch screens or contact-sensitive
controls , an input method shall be provided that complies
with §1194.23 (k) (1) through (4).

 (d) When biometric forms of user identification or control are
used, an alternative form of identification or activation, which
does not require the user to possess particular biological
characteristics, shall also be provided.

 (e) When products provide auditory output, the audio signal shall
be provided at a standard signal level through an industry
standard connector that will allow for private listening. The
product must provide the ability to interrupt, pause, and
restart the audio at any time.

 (f) When products deliver voice output in a public area,
incremental volume control shall be provided with output
amplification up to a level of at least 65 dB. Where the ambient
noise level of the environment is above 45 dB, a volume
gain of at least 20 dB above the ambient level shall be user
selectable. A function shall be provided to reset the volume
automatically to the default level after every use.

 (g) Color coding shall not be used as the only means of conveying
information, indicating an action, prompting a response, or
distinguishing a visual element.

APPENDIX C ■ SECTION 508 COMPLIANCE

376

 (h) When a product permits a user to adjust color and contrast
settings, a range of color selections capable of producing a
variety of contrast levels shall be provided.

 (i) Products shall be designed to avoid causing the screen to flicker
with a frequency greater than 2 Hz and lower than 55 Hz.

 (j) Products which are freestanding, non-portable, and intended
to be used in one location and which have operable controls
shall comply with the following:

 (1) The position of any operable control shall be determined
with respect to a vertical plane, which is 48 inches in
length, centered on the operable control, and at the
maximum protrusion of the product within the 48 inch
length (see Figure 1 of this part – not provided in this
text, check on the website).

 (2) Where any operable control is 10 inches or less behind
the reference plane, the height shall be 54 inches
maximum and 15 inches minimum above the floor.

 (3) Where any operable control is more than 10 inches and
not more than 24 inches behind the reference plane,
the height shall be 46 inches maximum and 15 inches
minimum above the floor.

 (4) Operable controls shall not be more than 24 inches
behind the reference plane (see Figure 2 of this part – not
provided in this text, check on the website).

 § 1194.26 Desktop and Portable Computers
 (a) All mechanically operated controls and keys shall comply with

§1194.23 (k) (1) through (4).

 (b) If a product utilizes touch screens or touch-operated controls,
an input method shall be provided that complies with
§1194.23 (k) (1) through (4).

 (c) When biometric forms of user identification or control are
used, an alternative form of identification or activation, which
does not require the user to possess particular biological
characteristics, shall also be provided.

 (d) Where provided, at least one of each type of expansion slots,
ports and connectors shall comply with publicly available
industry standards.

APPENDIX C ■ SECTION 508 COMPLIANCE

377

 Section 508 Functional Performance Criteria
 This section is an excerpt from Section 508 Subpart C regarding functional performance
criteria:

 https://www.access-board.gov/guidelines-and-standards/communications-and-it/
about-the-section-508-standards/section-508-standards#subpart_c

 Subpart C – Functional Performance Criteria
 § 1194.31 F unctional Performance Criteria
 (a) At least one mode of operation and information retrieval that

does not require user vision shall be provided, or support for
assistive technology used by people who are blind or visually
impaired shall be provided.

 (b) At least one mode of operation and information retrieval
that does not require visual acuity greater than 20/70 shall be
provided in audio and enlarged print output working together
or independently, or support for assistive technology used by
people who are visually impaired shall be provided.

 (c) At least one mode of operation and information retrieval that
does not require user hearing shall be provided, or support for
assistive technology used by people who are deaf or hard of
hearing shall be provided.

 (d) Where audio information is important for the use of a product,
at least one mode of operation and information retrieval shall
be provided in an enhanced auditory fashion, or support for
assistive hearing devices shall be provided.

 (e) At least one mode of operation and information retrieval that does
not require user speech shall be provided, or support for assistive
technology used by people with disabilities shall be provided.

 (f) At least one mode of operation and information retrieval that
does not require fine motor control or simultaneous actions and
that is operable with limited reach and strength shall be provided.

 Section 508 Information, Documentation, and
Support
 This section is an excerpt from Section 508 Subpart D regarding information,
documentation, and support:

 https://www.access-board.gov/guidelines-and-standards/communications-and-it/
about-the-section-508-standards/section-508-standards#subpart_d

https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards#subpart_c
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards#subpart_c
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards#subpart_d
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards#subpart_d

APPENDIX C ■ SECTION 508 COMPLIANCE

378

 Subpart D – Information, Documentation, and Support
 § 1194.41 Information, Documentation, and Support
 (a) Product support documentation provided to end-users shall

be made available in alternate formats upon request, at no
additional charge.

 (b) End-users shall have access to a description of the
accessibility and compatibility features of products in
alternate formats or alternate methods upon request, at no
additional charge.

 (c) Support services for products shall accommodate the
communication needs of end-users with disabilities.

379© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_19

 Glossary

 These are terms that are introduced in this book for your handy reference. Again, this
is something worthwhile to include with your documents, and even in requirements
databases.

 Acceptance Criteria or Completion Criteria
 Define when a user story is done or complete. (See also User Story .)
 Access Control
 Specify how users can access the system.
 Accessibility
 The degree to which a product, device, service, or environment is available to as

many people as possible.
 Accurate Requirement or Correct Requirement
 A precise statement of the system’s capability, its inputs, its outputs, its interfaces,

and how it interacts with its environment.
 Actor
 Anyone or anything (another system, such as an application or device) that performs

a behavior. This is not limited to one actor. (See also Use Case .)
 Administrative Function
 Maintain the system as a whole, usually by a systems administrator.
 Affinity Diagram
 An approach for organizing information. Ideas are solicited in a particular subject

area. Then, bring some structure to them by providing some grouping.
 Algorithm
 Formulas or specific manipulations of data elements that need to occur.
 Alternate Path or Alternate Flow
 Paths that are a variation on the main or basic path theme. These exceptions are

what happen when things go wrong at the system level, or an alternate condition causes a
change to the basic flow. This is also known as extensions. (See also Use Case .)

 Analysis
 A quantitative evaluation of a complete system and/or subsystems by review/

analysis of collected data. This is one of the verification methods.
 Application
 A program (e.g., a word processor or a spreadsheet) that performs one of the major

tasks for which a computer is used.

 ■ GLOSSARY

380

 Architectural Requirements
 Standards based on architecture your organization mandates that your system in

question must follow.
 Archiving Requirements
 When data within the system grows beyond the storage capacity, data must be

moved to an archive, usually separate from the original data storage.
 Atomic
 Define each requirement to its lowest practical level.
 Audit
 Track data and what happens to it (e.g., added, deleted, changed, archived,

deactivated, changed roles that can perform CRUD).
 Authentication
 A mechanism to validate that the person or system is authorized to interact with the

system.
 Authorization
 This defines the varying access of data, who (or what system) may change, read,

update or delete, deactivate, or reactivate the data.
 Availability
 How much of the time the system is operational.
 Backup
 A partial/increment and/or full copy of data, and possibly software, to prevent loss of

information should a system crash occur. A complement to recovery.
 Basic Flow, Basic Path, Main Flow, or Main Path
 The main success scenarios (basic flow) use case in which nothing goes wrong. This

is also known as normal flow/scenario, primary flow/scenario.) (See also Use Case .)
 Business Process Description
 A documentation of what the stakeholders describe they need to do, from daily

repetitive tasks to daily, weekly, monthly, or any periodicity. This is a description of what
they do, not how. This is not specific to a particular system or application but the steps
they need to take and why.

 Business Rule
 Statements that define what the system needs to do or what features it needs. These

are also used to define statements for use cases.
 Capability
 The phrase “the capability to” means the user has the option to invoke this function

or not.
 Capacity
 The storage needed for the system.
 Certification
 The certifications that the organization or government requires for work done on

your system.
 Completeness of an Individual Requirement
 When all the information necessary to define the function, the verb that describes

what action the system should do, and the result of that action completes the description
of the need.

 Completeness of a Group of Requirements
 When everything within the boundary is completely defined.
 Completion Criteria or Acceptance Criteria
 Define when a user story is done or complete. (See also User Story .)

 ■ GLOSSARY

381

 Compliance
 Whatever legal, regulatory, or policy need affecting the organization or type of

project will have to follow whatever compliance is required of the system.
 Concise
 Requirements that are short and to the point.
 Concurrency
 The level of use on the system, e.g., how many users on the system and other

capacity values. This is also called workload.
 Connect to Other Systems
 This not the interface specification. This addresses protection of the data that moves

data to and from the systems.
 CONOPS
 A Concept of Operations, which can be a Business Process Description document or

a shorter document emphasizing concepts, without some of the details a BPD provides.
 Consistent
 Requirements should not conflict with each other, should have consistent usage, and

should use consistent terms.
 Constraints
 These statements are restrictions or limitations to what the system can do.
 Correct
 A precise statement of the system’s capability, its inputs, its outputs, its interfaces,

and how it interacts with its environment. (See also Accurate Requirement .)
 Data Flow Diagram
 A structured analysis technique that is a graphical representation of the “flow” of

data through an information system.
 Data Integrity
 Maintains and assures the accuracy and consistency of data over its entire lifecycle.
 Database
 Define what data elements and formats to be used in the data that must be stored for

the system.
 Demonstration
 To prove or show, usually without measurement or instrumentation, that the

project/product complies with requirements by observing results. This is one of the
verification methods.

 Effectiveness
 The ability to produce a result that is wanted or having an intended effect.
 Efficiency
 The ability to do something or produce something without wasting materials, time,

or energy.
 Elicitation
 Drawing forth the information from your stakeholders.
 Environmental
 The external environments the system will need to operate in (e.g., temperature

ranges, rain, wind, snow, humidity, dropped, jostled).
 Epic
 One large user story that needs to be broken down, or already a group of related user

stories.

 ■ GLOSSARY

382

 Estimable
 Someone, maybe not who crafts the story, needs to be able to make an estimate of

the complexity of the story and thereby determine the time it will take to develop and test
it. (See also User Story .)

 Exception Flow or Exception Path
 An error condition that happens; a variation of alternative flows. (See also Use Case .)
 Export
 Moving data from the existing system to another destination.
 Extensibility
 Capable of being extended beyond the original.
 Extensible Markup Language (XML)
 XML is a markup language to define a file format that is human-readable as well

as machine-readable. The document or file does not do anything; it is just a method for
representing the file or document.

 External Interfaces
 A system, program, or application that is not part of the system, program, or

application you are defining.
 Facilitated Session
 A group of people brought together for a common purpose, in this case to elicit/

collect/gather requirements.
 Fault Tolerance
 Ability to operate in a degraded mode, where one or more components are not

operating or only partially operating.
 Focus Group
 A gathering of people who represent the users or customers of a product to get

information, in this case about needs/opportunities/problems to identify requirements,
or you can gather it to validate and refine already elicited requirements.

 Functional Requirement
 Describes what functions a system should perform.
 Gap Analysis
 A technique to find those gaps in the requirement set that do not completely address

all the needs.
 Historical Data
 In the case of requirements, this addresses the storage and growth of data, by

examining legacy data, but also looking at changes from the legacy data to the new
system data and projected growth.

 Import
 Moving data into the existing system from another destination.
 Independent
 The requirement attribute of being able to stand on its own and not require other

requirements to define it.
 Implementation Independent
 A requirement should not contain any unnecessary design and implementation

information.
 Infrastructure
 The kind of support services or items the system will need that will not be considered

part of the system itself.

 ■ GLOSSARY

383

 Inspection
 To examine visually or use simple physical measurement techniques to verify

conformance to specified requirements. This is one of the verification methods.
 Interfaces
 A system, program, or application that is not part of the system, program, or

application you are defining.
 Interoperability
 The ability of a system (as a weapons system) to work with or use the parts or

equipment of another system.
 Interview
 The most important and common method for eliciting requirements, by getting the

information directly from those who use the system on a regular basis either one-on-one
or in small groups by asking a series of preplanned and ad hoc questions that the users
answer.

 Joint Application Development
 A JAD, aka a requirements workshop, usually meets until the session objectives are

completed. For a requirements JAD session, the participants stay in session until you
document a complete set of requirements and the stakeholders agree.

 Jargon
 The technical terminology or characteristic idiom of a special activity or group.
 Maintainability
 The measure of the ease and rapidity with which a system or equipment can be

restored to operational status following a failure.
 Manageability
 The ability to manage the system to ensure the continued health of a system.
 Mean Time Between Failures (MTBF)
 This is the average operational time between failures.
 Mean Time Between Maintenance (MTBM)
 This is the average operational time between maintenance.
 Mean Time to Maintain (MTTM)
 This describes the average time the system is down for maintenance.
 Mean Time to Repair (MTTR)
 Describes the average time to repair a failure.
 Modifiable
 A document or a group of requirements can be modifiable by organization, such

as by breaking groups of requirements that have functional similarity or by providing a
document’s table of contents or index, referencing other documents.

 Model/Modeling
 Models and modeling are techniques for representing requirements besides trying to

use imprecise language, such as graphic representations.
 Nonfunctional Requirement
 Describes how the system should behave and defines what constraints are placed

upon the system’s behavior.
 Performance
 Metrics that define how much work a system performs, whether it is hardware or

software.

 ■ GLOSSARY

384

 Performance Profiles
 Different performance needs based on variations of configurations driven by

business needs, such as different sizes of offices and the associate numbers of people or
significantly different performance attributes like throughput.

 Physical Characteristics
 Different hardware characteristics requirements, such as weight, dimension, shape,

volume, density, center of gravity, storage, packaging, power, and material.
 Platform
 Where a piece of software is resident such as on computers, printers, scanner, servers,

type of network, operating system, and any other peripherals for a computer system.
 Postcondition
 What must be true or happen after the use case runs. (See also Use Case .)
 Power
 Power the system needs, such as AC or DC; voltage like 5, 10, 12, 110, 120 volts; what

cycles per second like 50 or 60.
 Precondition
 What must be true or happen before the use case runs. (See also Use Case .)
 Prioritized
 The priority that requirements need to be provided (i.e., critical, high, medium, low).
 Privacy
 The identity of a person or system or certain aspects of that system or person that

needs to be protect, such as medical information, SSN, etc.
 Process Improvement
 When requirements process are not optimum, these are steps taken to mitigate

requirements problems from surfacing that will adversely affect the development and
ultimate implementation of the new system.

 Rational Unified Process (RUP)
 A development process that includes a process for requirements.
 Recoverability
 The ability to recover from some event, say the crash of a system. How quickly do you

return to full operations?
 Recovery
 The complement to backup where when a system crash has occurred, this provides

the information that was stored during the backup operation and restores it to the
operational system so operations can begin again.

 Regulatory
 Whatever regulatory need affecting the organization or type of project will have to

follow whatever compliance is required of the system.
 Reliability
 The quality or state of being reliable; it does not fail.
 Requirement
 Define a need, desire, or want to be satisfied by a product or service.
 Requirements Engineer
 Someone who collects, coordinates, advocates, and manages requirements.
 Requirements Document
 A document that captures all the requirements associated with a system, which can

include additional boilerplate information about the system such as a business process
description or concept of operation.

 ■ GLOSSARY

385

 Resiliency
 Defines what must be preserved when an outage of the system occurs.
 Response Time
 How quickly the system provides requested information.
 Reuse
 Using information multiple times, in this case, requirements, so that information is

not created from scratch multiple times.
 Reverse Engineer
 A process of gleaning information from something made and/or programmed to

understand what is does or how it does it.
 Robustness
 The system does not crash easily and is able to withstand changes that might

weaken it.
 Scalability
 Capability of being easily expanded or upgraded on demand.
 Security
 Measures taken to guard against espionage or sabotage, crime, attack, or escape.
 Simulation
 Executing a model over time to simulate a portion of the system. This one of the

verification methods.
 Small
 A user story that can be developed in hours or days or one or more weeks during just

one sprint. (See also User Story .)
 Spike
 The definition of the user story is insufficient. (See also User Story .)
 Stability
 How long something would maintain its effectiveness.
 Stakeholder
 Someone who has a stake in an enterprise.
 Standards
 Rules that are levied on the project from legal, policy, or organizational sources.
 State Transition Diagram
 Show the actions that occur based on specific events, eventually showing all the

states of that object. They work well for single objects but are not as effective as many
objects are added to a system being analyzed.

 Storyboards
 Illustrations or images displayed in sequence to visualize a motion picture,

animation, motion graphic, or interactive sequence, to include how a human interacts
with a computer.

 Structural Requirements
 This refers to the structure of hardware systems and addresses how hardy the

piece needs to be such as wind shear, any force applied to the system, or what it is
exposed to such as lightening, rain, snow, hail, salt, seawater, freezing, heat, and
oxidation.

 Supportability
 The inherent characteristics of design and installation that enable the effective and

efficient maintenance and support of the system throughout the life cycle.

http://www.merriam-webster.com/dictionary/stake

 ■ GLOSSARY

386

 Swim Lanes
 To quickly and easily plot and trace processes and, in particular, the interconnections

between processes, departments, and teams, where they are broken into either into
all the rows or columns to represent the different organizations, teams, or processes
responsible for specific tasks.

 Systems Modeling Language (SysML)
 A modeling language for system engineering designed to support all phases of the

development lifecycle, including requirement specification. It’s a variation of UML.
 System
 A group of related parts that move or work together.
 Test
 A measurement to prove or show, usually with precision measurements or

instrumentation, that the project/product complies with requirements. This is one of the
verification methods.

 Testability
 How easily can something be tested.
 Theme
 A collection of epics or very large collection of user stories.
 Throughput
 How much of a given resource can move through a given point in a system, such as

how much data goes through a line between systems.
 Traceable
 Traceability to an origin and to future development or enhancement documentation.
 Transaction
 Transactions, which include corrections, adjustments, and cancellations, address

changing, deleting, deactivating/canceling, and error checking and handling records of
data.

 Trigger
 The event that causes the use case to be initiated. (See also Use Case .)
 Turnkey system
 A complete system that provides not only software but also the hardware and

everything in between (e.g., operating system, connectivity).
 Unified Modeling Language (UML)
 A modeling language that is intended to analyze requirements to formulate a design,

which is managed by Object Management Group (OMG) and now is an ISO standard.
 Unambiguous
 A knowledgeable person interprets each requirement statement only one way.
 Understandable
 A reasonable user or stakeholder must be able to interpret that statement so that it

matches their perception of the subject.
 Unique
 A requirement is different from all other requirements associated with a system
 Usability
 To be convenient and practicable for use; usability is how effectively users can learn

and use a system.
 Use Case
 A written description of how users will perform tasks on your system, especially in a

sequence of steps.

 ■ GLOSSARY

387

 User Interface
 Describes how the user interacts with the system.
 User Story
 A statement that defines a need a defined person has and a reason why they have the

need.
 Verifiable
 A type of demonstration that a requirement performs what it is asked to accomplish.
 Verifiability
 How easily something can be verified.
 Verification Method
 This is type of verification to be associated with a requirement/user story.
 Volatility
 Already existing requirements change with time.
 Wait Time
 The time from the onset of the failure until the work begins on the failure.
 Workload
 The level of use on the system (e.g., how many users on the system, and other

capacity values). This is also called concurrency.
 eXtensible Markup Language (XML)
 A markup language to define a file format that is human-readable as well as

machine-readable. The document or file does not do anything; it is just a method for
representing the file or document.

389© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3_20

 Bibliography

 12th Annual AIAA/USU Conference on Small Satellites. Feb 2015, http://
digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2235&context=smallsat

 Beal, Vangie. “XML, a tweet.” Webopedia. Feb. 2015, www.webopedia.com/TERM/X/
XML.html

 Bell, Donald. “UML basics Part II: The activity diagram,” Sep. 2003. IBM Global
Services. Feb. 2015, www.therationaledge.com/content/sep_03/f_umlbasics_db.jsp

 Blain, Tyner “Ten Requirements Gathering Techniques.” November 21, 2006 Tyner
Blain blog Feb. 2015, http://tynerblain.com/blog/2006/11/21/ten-requirements-
gathering-techniques/

 Boehm, B.W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall,
1981.

 Centers for Medicare & Medicaid Services CMS eXpedited Life Cycle (XLC) Interface
Control Document Template. Feb. 2015, www.cms.gov/Research-Statistics-Data-and-
Systems/CMS-Information-Technology/XLC/Artifacts.html

 “Data Flow Diagram (DFD)s: An Agile Introduction.” Agile Modeling webpage. Feb.
2015, http://agilemodeling.com/artifacts/dataFlowDiagram.htm

 Davis, Alan M. Software requirements: Objects, Functions, and States. Prentice-Hall,
Inc. Upper Saddle River, NJ, 1993

 Department of Defense. DI-SDMP-81470 Department of Defense (DoD) Interface
Standard Documents. Data Item Description, 1 August 2003

 DoD MIL-STD 962D. 1 August 2003. Department of Defense Standard Practice:
Defense Standards Format and Content. Feb 2015, http://everyspec.com/MIL-STD/MIL-
STD-0900-1099/MIL_STD_962D_1179/

 “Guideline: Requirements Gathering Techniques” Eclipse Process Framework (EPF).
Feb. 2015, http://epf.eclipse.org/wikis/openup/core.tech.common.extend_supp/
guidances/guidelines/req_gathering_techniques_8CB8E44C.html

 Heim, Andrew. “Make it Faster: More Throughput or Less Latency?.” Feb 25, 2014.
National Instruments. Feb. 2015, www.ni.com/white-paper/14990/en/

 Housing and Urban Development (HUD) System Development Methodology (SDM).
January 2009. Release 6.06, U.S. Department of Housing and Urban Development. Feb.
2015, http://portal.hud.gov/hudportal/documents/huddoc?id=sdm.pdf

http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2235&context=smallsat
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2235&context=smallsat
http://www.webopedia.com/TERM/X/XML.html
http://www.webopedia.com/TERM/X/XML.html
http://www.therationaledge.com/content/sep_03/f_umlbasics_db.jsp
http://tynerblain.com/blog/2006/11/21/ten-requirements-gathering-techniques/
http://tynerblain.com/blog/2006/11/21/ten-requirements-gathering-techniques/
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Artifacts.html
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Artifacts.html
http://agilemodeling.com/artifacts/dataFlowDiagram.htm
http://everyspec.com/MIL-STD/MIL-STD-0900-1099/MIL_STD_962D_1179/
http://everyspec.com/MIL-STD/MIL-STD-0900-1099/MIL_STD_962D_1179/
http://epf.eclipse.org/wikis/openup/core.tech.common.extend_supp/guidances/guidelines/req_gathering_techniques_8CB8E44C.html
http://epf.eclipse.org/wikis/openup/core.tech.common.extend_supp/guidances/guidelines/req_gathering_techniques_8CB8E44C.html
http://www.ni.com/white-paper/14990/en/
http://portal.hud.gov/hudportal/documents/huddoc?id=sdm.pdf

 ■ BIBLIOGRAPHY

390

 IEEE-SA Standards Board. IEEE Std 830-1998, IEEE Recommended Practice for
Software Requirements Specifications. Sponsor: Software Engineering Standards
Committee of the IEEE Computer Society, Approved 25 June 1998.

 INCOSE. Feb 2015, www.incose.org/
 International Organization for Standardization (ISO). ISO 9001:2008 - Quality

Management Systems – Requirements. 2008
 “Introduction to OMG’s Specifications: UML.” Object Management Group (OMG).

Feb. 2015, www.omg.org/gettingstarted/specintro.htm#UML
 “Introduction to OMG’s Unified Modeling Language™ (UML®).” Object Management

Group (OMG). Feb. 2015, www.omg.org/gettingstarted/what_is_uml.htm
 “What Characteristics Make Good Agile Acceptance Criteria?.” March 25, 2013.

Segue Technologies Inc. www.seguetech.com/blog/2013/03/25/characteristics-good-
agile-acceptance-criteria

 Johnson, James A. Functional Requirements Document (FRD) for Department of
Defense (DoD) <Project Name Activity Address Directory/File (DODAAD/DODAAF)
Reengineering Effort Requirements Statement. Defense Logistics Management Standards
Office, October 2003.

 Jones, Capers. “Chronic requirements problems.” November 26, 2012. The World
of Software Development. Dr Dobb’s. Feb. 2015, www.drdobbs.com/architecture-and-
design/chronic-requirements-problems/240012797

 Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Addison-
Wesley Professional, 2000

 Karl Wiegers, More About Software Requirements: Thorny Issues and Practical
Advice, Microsoft Press, 2010.

 Kruchten, Philippe. “What Is the Rational Unified Process?.” 2001. IBM. Feb. 2015,
 www.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/
WhatIstheRationalUnifiedProcessJan01.pdf

 Lalli, Vincent R., Kastner, Robert E. and Hartt, Henry N. Training Manual for
Elements of Interface Definition and Control, NASA Reference Publication 1370.
January 1997.

 Little, Ambrose. “Storyboarding in the software design process.” UX Magazine. Feb.
2015, http://uxmag.com/articles/storyboarding-in-the-software-design-process

 Lou Wheatcraft. October 9, 2012. “Using the correct terms – Shall Will Should.”
Requirement Experts. Feb. 2015, www.reqexperts.com/blog/2012/10/using-the-
correct-terms-shall-will-should/

 McDermid, J. A. Requirements Analysis: Problems and the STARTS Approach. In IEE
Colloquium on ‘Requirements Capture and Specification for Critical Systems’ (Digest No.
138), 4/1-4/4. Institution of Electrical Engineers, November 1989

 Meriam –Webster Online. An Encyclopedia Britannica Company. Feb. 2015.
 www.merriam-webster.com/

 Microsoft Development Network webpage, Modeling User Requirements, Visual
Studio 2013 Feb. 2015, http://msdn.microsoft.com/en-us/library/dd409376.aspx

 Mochal, Tom. “10 techniques for gathering requirements.” January 2, 2008.
TechRepublic U.S. Feb. 2015, www.techrepublic.com/blog/10-things/10-techniques-
for-gathering-requirements/

 Mullaney, Jennette. “Modeling in the agile methodology.” SearchSoftwareQuality
TechTarget. Feb. 2015, http://searchsoftwarequality.techtarget.com/tutorial/
Software-requirements-gathering-techniques

http://www.incose.org/
http://www.omg.org/gettingstarted/specintro.htm#UML
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.seguetech.com/blog/2013/03/25/characteristics-good-agile-acceptance-criteria
http://www.seguetech.com/blog/2013/03/25/characteristics-good-agile-acceptance-criteria
http://www.drdobbs.com/architecture-and-design/chronic-requirements-problems/240012797
http://www.drdobbs.com/architecture-and-design/chronic-requirements-problems/240012797
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/WhatIstheRationalUnifiedProcessJan01.pdf
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jan01/WhatIstheRationalUnifiedProcessJan01.pdf
http://uxmag.com/articles/storyboarding-in-the-software-design-process
http://www.reqexperts.com/blog/2012/10/using-the-correct-terms-shall-will-should/
http://www.reqexperts.com/blog/2012/10/using-the-correct-terms-shall-will-should/
http://www.merriam-webster.com/
http://msdn.microsoft.com/en-us/library/dd409376.aspx
http://www.techrepublic.com/blog/10-things/10-techniques-for-gathering-requirements/
http://www.techrepublic.com/blog/10-things/10-techniques-for-gathering-requirements/
http://searchsoftwarequality.techtarget.com/tutorial/Software-requirements-gathering-techniques
http://searchsoftwarequality.techtarget.com/tutorial/Software-requirements-gathering-techniques

 ■ BIBLIOGRAPHY

391

 Mullaney, Jennette. “Modeling selection.” SearchSoftwareQuality TechTarget.
Feb. 2015, http://searchsoftwarequality.techtarget.com/tutorial/Software-
requirements-gathering-techniques

 Narayanan, Anantha. “User Story Acceptance Criteria: The Art of Satisficing and
Bounded Rationality,” 20 January 2012, Scrum Alliance. Feb. 2015, https://www.
scrumalliance.org/community/articles/2012/january/user-story-acceptance-
criteria-the-art-of-satisfic

 Office of the Under Secretary of Defense (Acquisition, Technology, and Logistics).
DoD 4120.24-M Defense Standardization Program (DSP) Policies and Procedures. March
2000.

 Panneta, Peter V. “NASA-GSFC Nano-Satellite Technology Development,
SSC98-VI-5.”

 Phillips, Mike and Shrum, Sandy. “Which CMMI Model Is for You.” August 2011.The
CMMI Institute. Feb 2015, http://whatis.cmmiinstitute.com/sites/default/files/
documents/Which_CMMI_Model_Is_for_You_2014.pdf

 Pohl, Klaus and Rupp, Chris. Requirements Engineering Fundamentals. Rocky Nook
Publishing, April 21, 2011

 Roth, Ronica. “Write a Great User Story.” Rally Help. Feb. 2015, https://help.
rallydev.com/writing-great-user-story

 Rouse, Margaret. “throughput definition.” Tech Target: Search Networking. Feb. 2015,
 http://searchnetworking.techtarget.com/definition/throughput

 “RUP Fundamentals Presentation,” electronic Research Association (eRA) National
Institute of Health. Feb. 2015, http://era.nih.gov/docs/rup_fundamentals.htm

 “Swim Lane Diagrams, Mapping and Improving the Processes in Your Organization.”
Mind Tools. Feb. 2015, www.mindtools.com/pages/article/newTMC_89.htm

 “SysML Open Source Specification Project.” Systems Modeling Language (SysML).
Feb. 2015, http://sysml.org/

 “System throughput (messages per second).” IBM TPF Product Information Center.
Feb. 2015, www-01.ibm.com/support/knowledgecenter/SSB23S_1.1.0.9/com.ibm.ztpf-
ztpfdf.doc_put.09/gtpc3/c3thru.html?cp=SSB23S_1.1.0.9%2F0-1-0-0-6-2

 “Throughput Requirements.” 27 June 2005. Open Process Framework (OPF). Feb.
2015, www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/
Requirements/ThroughputRequirements.html~Contents

 United States Government. Resources for understanding and implementing Section
508. Feb. 2015, www.section508.gov/

 US Government. “Use Cases.” usability.gov. Feb. 2015, www.usability.gov/how-to-
and-tools/methods/use-cases.html

 Wake, Bill. “Invest in Good Stories and Smart Tasks.” August 17, 2003. xp123
Exploring Extreme Programming. Feb. 2015, http://xp123.com/articles/invest-in-
good-stories-and-smart-tasks/

 Wiegers, Karl, and Joy Beatty. Software Requirements, Third Edition, Microsoft
Press, 2013.

 “What is a SysML Requirement diagram and how is it used?.” SysML Forum. Feb.
2015, www.sysmlforum.com/sysml-faq/

 “What is functional and non-functional requirement.” Stack Overflow. Feb. 2015.
 http://stackoverflow.com/questions/16475979/what-is-functional-and-non-
functional-requirement

http://searchsoftwarequality.techtarget.com/tutorial/Software-requirements-gathering-techniques
http://searchsoftwarequality.techtarget.com/tutorial/Software-requirements-gathering-techniques
https://www.scrumalliance.org/community/articles/2012/january/user-story-acceptance-criteria-the-art-of-satisfic
https://www.scrumalliance.org/community/articles/2012/january/user-story-acceptance-criteria-the-art-of-satisfic
https://www.scrumalliance.org/community/articles/2012/january/user-story-acceptance-criteria-the-art-of-satisfic
http://whatis.cmmiinstitute.com/sites/default/files/documents/Which_CMMI_Model_Is_for_You_2014.pdf
http://whatis.cmmiinstitute.com/sites/default/files/documents/Which_CMMI_Model_Is_for_You_2014.pdf
https://help.rallydev.com/writing-great-user-story
https://help.rallydev.com/writing-great-user-story
http://searchnetworking.techtarget.com/definition/throughput
http://era.nih.gov/docs/rup_fundamentals.htm
http://www.mindtools.com/pages/article/newTMC_89.htm
http://sysml.org/
http://www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/Requirements/ThroughputRequirements.html~Contents
http://www.opfro.org/index.html?Components/WorkProducts/RequirementsSet/Requirements/ThroughputRequirements.html~Contents
http://www.section508.gov/
http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://www.sysmlforum.com/sysml-faq/
http://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement
http://stackoverflow.com/questions/16475979/what-is-functional-and-non-functional-requirement

 ■ BIBLIOGRAPHY

392

 Wikipedia. Capability Maturity Model. Feb. 2015. http://en.wikipedia.org/wiki/
Capability_Maturity_Model

 Wikipedia. Characteristics of good requirements section. Feb. 2015. http://
en.wikipedia.org/wiki/Requirement

 Wikipedia. Use case. Feb. 2015, http://en.wikipedia.org/wiki/Use_case
 Zargar, Ali. “Supportability.” Tech 101 class lecture from Department of Aviation and

technology at San Jose State University. Feb. 2015. < www.engr.sjsu.edu/azargar/Tech-
101/TECH%20101-Supportability.ppt

http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Use_case
http://www.engr.sjsu.edu/azargar/Tech-101/TECH 101-Supportability.ppt
http://www.engr.sjsu.edu/azargar/Tech-101/TECH 101-Supportability.ppt

393© George Koelsch 2016
G. Koelsch, Requirements Writing for System Engineering,
DOI 10.1007/978-1-4842-2099-3

 A
 Acceptance criteria , 314, 316
 Accessibility , 140
 Accurate requirement , 36
 Affi nity diagram , 288
 Alternative Care Act (ACA) , 136
 Audit reporting service (ARS) , 79
 Audit tracking

 statement , 91
 steps of , 91
 Unit Radiation Dosimeter , 7, 92

 B
 Big organization’s suite of services

(BOSS) , 5
 enroll employee , 166
 healthcare function , 165
 HR personnel function , 179
 network printer , 119
 payroll function , 176
 picklist control function , 154
 Unit Radiation Dosimeter system ,

174, 176, 178
 Brainstorming process , 219
 Business Process Description (BPD) ,

12, 340
 Business rule requirements , 85

 C
 Capability maturity model (CMM) ,

297–298
 Capability Maturity Model Integration

(CMMI) project , 297–298
 Collection requirements

 defi nition , 211–212
 gathering , 212

 Collectionrequirements . See Elicitation
 Commercial off -the-shelf

(COST) , 207, 294–296
 Common Operating Platform

Environments (COPEs) , 109
 Communication interface , 191
 Complement

 vs. replacement
 combination , 348
 complement , 346–347
 replacement , 347

 vs. supplement
 complement , 318–319
 replacement , 319

 Completioncriteria . See Acceptance
criteria

 Computer-aided system engineering
(CASE) tool , 286

 Creep requirement , 350
 Cybersecurity , 135, 147

 D
 Database administrators

(DBAs) , 217
 Data currency , 173
 Data fl ow diagrams (DFDs) , 284

 context diagram , 284
 data element defi nition , 171
 elements , 155, 166
 multiple processes , 285
 notations , 286
 rules , 286
 textual requirements , 286

 Data integrity , 115

 Index

■ INDEX

394

 Data interfaces and documents
 DoD and IEEE , 169
 electrical/functional data , 188
 elements , 169
 engineering principles , 171
 NASA Training Manual , 187
 transformations , 180

 Data item description , 186
 Data relationships , 173
 Data retention , 173
 Data volumes , 173
 Defense Standardization Program

(DSP) , 116
 Department of Defense (DoD) , 184, 365
 Diagnostics request message , 156
 Diagnostics response message , 157
 Digital television (DTV) , 374
 DI-SDMP-81470 Department of Defense

(DoD) , 185
 Document formats

 comments , 367
 DoD FRD template , 365

 comments , 367
 DODAAD/DODAAF , 366
 existing services , 366
 force structure , 367
 functional requirements , 366
 operational capability , 366
 program support , 366
 schedule , 367
 threat , 366

 IEEE , 367
 DoD interface , 185
 Dosimeter archive laptop , 7

 E
 Eclipse Process Framework (EPF) , 214
 Electrical/functional interfaces , 188
 Electrical power interface , 191
 Electromagnetic pulse (EMP) , 42
 Elicitation

 defi nition , 212
 document analysis , 227

 business process , 228
 change requests (CRs) , 229
 competing/analogous

systems , 230
 design documents , 229
 discrepancy reports (DRs) , 229

 existing requirements , 228
 interface documents , 229
 manuals , 229
 problem reports (PRs) , 229
 request for changes (RFCs) , 230
 user, operations, training and

help , 229
 gathering , 212
 group meeting , 217

 brainstorming , 219
 facilitated session , 217
 focus group , 218
 joint application

development , 218
 support teams , 218

 interview , 220
 cases/scenarios/user stories , 231
 cultural/language diff erences , 226
 document analysis , 227
 enhancement , 223
 follow-up questions , 225
 glossaries , 224
 in-person , 221
 listening , 224
 missing knowledge , 225
 models , 227
 NEAR function , 226
 note taking , 224
 observation/following people

around , 226
 online , 221
 prototyping , 231
 request for proposals (RFPs) , 232
 reverse engineering , 232
 run , 222–223
 size of , 220
 target environment , 232
 telephone , 221
 things change over time , 224
 tools , 233
 user roles , 221
 videoconference , 221

 problems of
 scope , 238
 understanding , 238
 volatility , 238

 process improvement , 241–242
 purpose of

 domain knowledge gaining , 234
 elicitation , 235–236

■ INDEX

395

 gap analysis , 237
 requirement completed , 237
 scope of the system defi nition , 234
 steps , 234
 use , 235

 requirements sources
 documents , 214
 stakeholders , 214
 system operation , 214

 scope of problems
 design information , 239
 system is ill-defi nition , 239

 techniques of , 213
 basics , 213
 overview , 214–216
 questionnaires and surveys ,

216–217
 requirements sources , 213

 understanding problems
 computer capabilities and

limitations , 240
 confl icting view , 241
 diff erent languages , 240
 domain analysts , 240
 obvious information , 241
 user needs , 239
 vague and untestable

requirement , 241
 volatility requirement , 241

 Enterprise service bus (ESB) , 141
 Environmental characteristic

interface , 192
 Ergonomics , 251–252
 Extensible Markup Language

(XML) , 64, 287
 eXtreme Programming (XP) , 4

 F, G
 Federal Bureau of Investigation (FBI)

 BOSS records management system ,
109, 112, 115

 records management project , 7
 Fields requirement

 assignment , 267
 author , 267
 date creation , 266
 priority , 267
 rank , 267
 rationale and comments , 267

 requirement/user story , 266
 risk , 267
 source , 267
 status , 267
 title , 266
 unique identifi er , 266
 verifi cation method , 268
 version , 266

 Fluid interface , 191
 Functional requirements

 administrative function , 88
 algorithms , 101
 archiving , 99–100
 audit tracking

 statement , 91
 steps of , 91
 Unit Radiation Dosimeter , 92

 authentication , 89
 authorization levels , 90–91
 backup and recovery , 104
 business rule , 85
 certifi cation requirements , 93–94
 compliance, laws and

regulations , 97–98
 database , 101–102
 defi nition , 83
 deletion and deactivate , 89
 external interfaces , 92–93
 historical data , 98
 infrastructure , 103
 network , 103
 power , 102–103
 searching and reporting

 Boolean operators , 94
 boundaries , 95
 constraints , 97
 format section , 96
 form section , 96
 machine learning , 95
 search requirements , 95
 user defi nition , 95

 structural requirement , 100
 survivability , 84
 transactions

 entries , 86
 errors , 87
 update/change , 87

 types of , 83–84
 Functional Requirements Document

(FRD) , 365

■ INDEX

396

 H
 Health Insurance Portability and

Accountability Act
(HIPAA) , 98, 113

 HR personnel paycheck project , 181
 HUD Guidelines for the Data

Requirements Document
Checklist , 182

 Human Factors Analysis and Classifi cation
System (HFACS) , 246

 I
 Image Request Message , 159
 Image Response Message , 159
 Improvised Explosive Device (IED) , 94
 Individual radiation dosimeter , 7
 Institute of Electrical and Electronics

Engineers (IEEE) , 34
 standards , 296

 Insuffi cient requirements , 19–21, 349
 Interface Control Document (ICD) ,

169, 181, 187
 Internal Revenue Service (IRS) , 91
 International Council on Systems

Engineering (INCOSE) , 299
 International Standard Book Number

(ISBN) , 20
 Interoperability , 141

 J
 Joint Application Development (JAD) , 218

 K
 KISS principle , 107
 K–J methodvariation . See Affi nity

diagrams

 L
 Language

 abbreviations and acronyms , 78–80
 DoD organization , 79
 LASER , 80
 specialized terms defi nition , 77
 use of , 75, 77

 Light Amplifi cation by Stimulated Emission
of Radiation (LASER) , 80

 M
 Manageability , 124, 146
 Management tools

 attributes , 260
 evaluation , 261
 history of , 258
 imports , 264
 meaning , 257
 rating requirement , 262, 264
 teaching tool , 259
 tools , 261
 values , 265

 agile fi elds , 270–271
 requirements fi elds , 265
 testing fi elds , 270

 word processing
limitation , 259

 Manage requirements , 257
 Mean Time Between Failures

(MTBF) , 122
 Mean Time Between Maintenance

(MTBM) , 124
 Mean Time to Maintain (MTTM) , 124
 Mean Time to Repair

(MTTR) , 122
 Mechanical/physical interfaces , 189
 Merriam-Webster’s Collegiate

Dictionary , 129
 online defi nition , 8

 MIL-STD 962D , 184
 Misinterpretation , 353
 Misplaced requirements , 73
 Modeling techniques

 affi nity diagrams , 288–289
 approach , 280
 DFDs start , 284–286
 drawback , 281
 graphic representation , 281
 models , 282
 specialized techniques , 287
 storyboards

 defi nition , 289
 help menu , 292
 lists , 291
 menu screen , 290
 movement , 291
 pull-down menu , 291
 requirements defi nition , 293

 swim lanes , 282–283
 tools , 288

■ INDEX

397

 N
 NASA training manual , 187
 National Archives and Records

Administration (NARA) , 306
 Natural Language Processing (NLP) , 95
 Nonfunctionalrequirements . See also

 Functional requirements
 access control , 130
 authorization system , 133
 availability , 122, 124
 capacity , 109
 constraints , 110
 cybersecurity , 107
 data integrity , 115
 documentation , 111
 DoD , 115
 eff ectiveness , 112
 effi ciency , 111
 environments , 115
 fault tolerance , 112
 maintainability , 124
 MTBF , 122
 MTTR , 122
 performance profi les , 116, 119
 platform performance , 119
 privacy issues , 113
 quality , 113
 RAM , 121
 reliability , 126
 resilience , 114
 robustness , 114
 securibility , 107
 security , 129
 standards , 115
 throughput , 120
 wait time , 122
 workload performance , 118

 Nuclear, Chemical and Biological (NBC)
Offi cer , 90

 O
 Open Process Framework (OPF) , 204, 252
 Open System Interconnection (OSI) ,

192, 193

 P, Q
 Parent-child requirements , 37–38
 Physical requirements

 hardware characteristics , 195
 BOSS application , 203
 center of gravity , 198
 computer , 203
 density , 198
 geometric shape , 197
 human portable , 199
 materials , 201
 network , 203
 overall weight , 196
 packaging, cooling, heating and

integration constraints , 200
 physical robustness , 202
 power consumption , 201
 reliability , 202
 safety features , 199
 size , 196
 storage , 200
 surface coeffi cient , 202
 throughput characteristics , 202
 volume , 198

 latency , 204, 206–207
 throughput

 defi nition , 204
 OPF , 204
 performance of , 204
 requirements , 206
 system throughput , 205
 TPF , 205
 WAN and LAN , 205

 turnkey system , 195
 Pirate’s Code , 133
 Portability , 142
 PSS system , 135

 R
 Radiation dose rate mapping laptop , 8
 Radiation dose rate meter , 7
 Radiation dosimetry project , 7, 205
 Rapid Application Development (RAD) , 4
 Rational Unifi ed Process (RUP) , 287
 Records management project , 111, 117
 Recoverability , 145
 Reliability, Availability, and

Maintainability (RAM) , 121
 Replacements . See also Supplement/

replace requirements
 vs. complement , 346–348

 Representational State Transfer (REST) , 109
 Requests for change (RFCs) , 50

■ INDEX

398

 Requirement engineering (RE)
 accurate , 36
 atomic level

 atomic level , 36–37
 parent-child , 37–38

 attributes , 34
 capabilities , 71
 communication skills

 key points , 17
 moderator , 18
 persuasiveness , 19
 responsiveness , 17
 translator , 18

 completeness
 group of , 40–43
 hardened laptops , 42
 individual requirement , 38–40

 concise attribute , 43–44
 consistent requirements , 44–46
 conventions , 5
 defi nition , 31
 defi nitions

 application , 8
 requirements , 8
 requirements engineer (RE) , 9
 stakeholder , 8–9
 system , 8

 development methodologies , 3–4
 DRAFT , 5
 duplicate requirements , 47–48
 eff ectiveness

 insuffi cient requirements , 19–21
 requirements creep , 22
 scope , 21–22
 stove-piped requirements , 23
 volatility , 22

 errors types
 dangerous/toxic requirements , 71
 extra and superfl uous

requirements , 72
 incomplete , 72
 misplaced requirement , 73

 FBI record management project , 7
 form of

 elements , 32
 qualifi ers , 32
 shall approach , 32
 singular statement , 31

 important , 9
 independent of

 implementation , 49–51
 stand on its own , 48–49

 mnemonic format , 35
 modifi cation , 70
 negatives , 33–34
 parent requirement , 6
 personality traits

 clarity of thought , 12–13
 confi dence fl ows , 15–16
 extrovertism , 14–15
 fl exibility , 14
 negative traits , 16
 patience , 11–12
 real-world note , 12

 personal traits , 19
 priorities

 critical functions , 51
 decision making , 51
 distinction , 51
 essentials , 53
 group of , 51
 IEEE , 52
 mission-essential functions , 51
 statement of , 52

 project types of , 10
 radiation dosimetry project , 7
 realistic requirement , 53–55
 reliability requirement

 case of , 47
 pair of , 47
 subsystems , 46

 reliability requirements , 46
 shall statement , 5
 stakeholders , 64–65
 traceable attribute , 55

 BOSS system , 55–56
 source , 56–57

 unambiguous
 ambiguity , 58–60
 passive voice , 63–64
 subjective terminology , 60–61
 troublesome parts , 61–62

 unique , 66
 users needs

 multiple interpretation , 26
 not satisfi ed , 25
 not sure what they need , 24
 verifi cation methods , 26
 wrong functions , 27–28

 verifi cation
 analysis , 69
 defi nition , 67
 demonstration , 68
 inspection , 68

■ INDEX

399

 simulation , 69
 testable , 66
 Testing , 67
 wrap-up , 70

 vs. common requirements , 24
 Requirements Verifi cation Traceability

Matrix (RVTM) methods , 260
 Revisit requirement

 creep , 350
 ill-defi ned boundaries , 351
 insuffi cient , 349
 misinterpretation , 353
 scope , 351–352
 stove-piped , 351
 user needs , 352–353
 verifi cation , 354
 volatility , 350
 wasted time and resources , 355

 S
 Scalability , 136
 Scope creep , 22
 Section 508 compliance

 background , 369
 exemptions , 370
 functional performance criteria , 377
 information, documentation, and

support , 378
 technical standards

 desktop and portable
computers , 376

 self-contained products , 375
 software applications and

operating systems , 370
 telecommunications , 373
 video and multimedia

products , 374
 web-based intranet , 371

 Self-contained products , 375
 Serviceability , 145
 Service Oriented Architecture (SOA) ,

8, 23, 108
 Social Security numbers (SSNs) , 63
 Software applications and operating

systems , 370
 software interface , 190
 Specialized modeling techniques , 287
 Stability , 143
 State transition diagrams , 287
 Storyboards

 defi nition , 289
 help menu , 292
 lists , 291
 menu screen , 290
 pull-down menu , 291
 requirements defi nition , 293

 Stove-piped requirements , 23, 351
 Subject-matter experts (SMEs) , 59
 Supplement/replace requirements

 approaches and tools , 275
 cases , 277–279
 CMM/CMMI levels , 297–298
 IEEE standards , 296
 INCOSE , 299
 ISO 9001

 2008 , 297
 meaning , 279
 modeling

 affi nity diagrams , 288–289
 approach , 280
 data fl ow diagrams (DFDs) ,

284–286
 drawback , 281
 graphic representation , 281
 models , 282
 specialized techniques , 287
 storyboards , 289–293
 swim lanes , 282–284

 off -the-shelf solutions , 294–296
 process , 294
 user stories , 276
 vs. complement , 318

 Supplied services , 191
 Supportability , 144
 survivability , 147
 Swim lanes , 282–283
 System Development Methodology

(SDM) , 182
 System Modeling Language (SySML) , 287
 System Requirements Document

(SRD) , 77
 System Requirements Specifi cations

(SRS) , 77
 Systems engineering (SE) , 3, 4

 T
 TechTarget website , 233
 Telecommunications , 373
 Testability , 144
 Turnkey system , 195

■ INDEX

400

 To Be Determined (TBD) , 40
 To Be Reviewed (TBR) , 40
 Touch screens or contact-sensitive

controls , 375
 Transaction Processing Facility (TPF) , 205
 Typewriter , 113

 U
 Unifi ed Modeling Language™ (UML) ,

64, 233, 287
 Unit radiation dosimeter , 7
 Usability , 139, 140
 Use cases

 advantages , 343–344
 disadvantages , 344–346
 elements , 328
 gap analysis

 BPD , 340
 dosimetry system , 340
 HR system , 340–341
 radiation dosimetry system , 342
 redefi nement , 341

 login page
 alternative fl ow , 330–331
 attributes , 329
 completion , 334–336
 errors , 332–333
 exception fl ow , 331

 optional fi elds , 328–329
 replacement vs. complement , 346–348
 sequence , 327
 unit dosimetry report , 336–340

 User interface (UI) , 245
 color, fonts and help options , 250
 defi nition , 245
 demos , 250
 designing interface , 248
 desktop , 249
 elements , 247
 error conditions , 250–251
 forms , 250
 Government UI improvements , 247
 HFACS , 246
 human factors (HF)/ergonomics

 defi nition , 251
 psychological limits , 252
 references section , 253
 throughput requirements , 252
 violations , 253

 navigation , 249

 prototyping , 246
 reasonable standard statement , 246
 requirements , 250
 section 508 compliance , 253–254
 standards section , 249
 statement requirement , 245
 system feedback , 249
 training , 250

 User stories
 agile and waterfall comparison ,

323–325
 anatomy of , 301
 attributes , 303
 complement vs. supplement

 complement , 318–319
 replacement , 319

 completion criteria , 314–316
 INVEST , 303

 estimable , 308–310
 independent , 304
 negotiable , 305–307
 small , 310–312
 testable , 313
 valuable , 307–308

 operations and maintenance phase ,
322–323

 size of , 316
 approach , 317
 concept of , 316
 determinations , 316
 FBI Records Management

project , 317
 implementation , 316

 templates , 301–303
 traceability , 319

 gap analysis , 322
 radiation dosimeter project , 320
 requirement , 320–321

 V
 Video and multimedia products , 374
 Volatility , 350

 W, X, Y, Z
 Wait time , 122
 Web-based intranet and information and

applications , 371
 wide area network (WAN) , 9
 Wrong functions , 355

	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Part I: The Foundation of Requirements
	Chapter 1: The Importance of Requirements
	Requirements Conventions Used in the Book
	Projects Used in This Book
	FBI Record Management Project
	Radiation Dosimetry Project

	Basic Definitions
	Definitions of Requirements-Related Terms
	How Long Does It Take Requirements Engineers to…

	What Makes a Good RE?
	Personality Traits
	Patience
	Clarity of Thought
	Flexibility
	Extrovertism
	Confidence
	Negative Traits

	Good Communications Skills
	Responsiveness
	Translator
	Moderator
	Persuasiveness

	Summary
	Challenges for Writing Effective Requirements
	Insufficient Requirements
	Scope
	Requirements Creep
	Volatility
	Stove-Piped Requirements
	Users Are Not Sure What They Need
	User Needs Not Satisfied
	Multiple Interpretations Cause Disagreements
	Are the Requirements Verifiable?
	Wasted Time and Resources Building the Wrong Functions

	Summary
	References
	Exercises
	Exercise 1
	Exercise 2

	Chapter 2: What Makes a Good Requirement?
	Understanding Requirements
	The Form of a Requirement
	Dealing with Negatives in Requirements

	Attributes of a Good Requirement
	Accurate
	Atomic
	Parent-Child Requirements

	Complete
	Completeness of an Individual Requirement
	Completeness of a Group of Requirements

	Concise
	Consistent
	Does Not Conflict with Other Requirements
	Does Not Duplicate Other Requirements
	Independent
	Stand on Its Own
	Implementation Independent

	Prioritized
	Realistic
	Traceable
	Traceability
	Traced to a Source

	Unambiguous
	Ambiguity in General
	Subjective Terminology
	Troublesome Parts of Speech
	Passive Voice

	Understandable by Stakeholders
	Unique
	Verifiable
	Testing
	Inspection
	Demonstration
	Simulation
	Analysis
	Wrap-Up of Verifiable

	One More Attribute: Modifiable

	Capability Within a Requirement
	Types of Errors That Can Occur with Requirements
	Dangerous or Toxic Requirements
	Extra, Superfluous Requirements
	Incomplete Requirements
	Others

	References
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 3: Specialized Language
	The Use of Language
	Defining Specialized Terms
	Acronyms and Abbreviations
	Summary
	Exercises
	Exercise 1
	Exercise 2

	Part II: Types of Requirements
	Chapter 4: Functional Requirements
	Understanding Types of Requirements
	Types of Functional Requirements
	Business Rules
	Transactions
	Transaction Entry
	Transaction Change
	Transaction Errors

	Administrative Functions
	Authentication
	Authorization Levels
	Audit Tracking
	External Interfaces
	Certification Requirements
	Searching and Reporting Requirements
	Compliance, Legal, or Regulatory Requirements
	Historical Data
	Archiving
	Structural
	Algorithms
	Database
	Power
	Network
	Infrastructure
	Backup and Recovery

	Summary
	Exercises
	Exercise 1
	Exercise 2

	Chapter 5: Nonfunctional Requirements
	The Types of Nonfunctional Requirements
	Architectural
	Capacity
	Constraints
	Documentation
	Efficiency
	Effectiveness
	Fault Tolerance
	Privacy
	Quality
	Resilience
	Robustness
	Environmental
	Data Integrity
	Standards
	Performance
	Performance Response Time
	Workload Performance
	Platform Performance
	Performance Profiles
	Throughput

	Reliability, Availability, and Maintainability (RAM)
	Definitions
	Mean Time to Repair (MTTR)
	Wait Time
	Mean Time Between Failures (MTBF)

	Availability
	Maintainability
	Mean Time to Maintain (MTTM)
	Mean Time Between Maintenance (MTBM)

	Reliability
	Failure Definition

	Security
	Access Control
	Import From and Export to Outside the System
	Connections to Outside the System
	Reuse

	Scalability
	Usability
	Accessibility
	Interoperability
	Portability
	Stability
	Supportability
	Testability
	Recoverability
	Serviceability
	Manageability

	Summary
	References
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10
	Exercise 11

	Chapter 6: Lists of Items and the Order of Steps and Data Elements
	Lists of Items in Requirements
	Lists of Data Elements
	Diagnostics Request
	Diagnostics Response
	Image Request Message
	Image Response Message

	Order of Steps in Requirements
	Order of Data Elements in Requirements
	Exercises
	Exercise 1
	Exercise 2

	Chapter 7: Data Interfaces and Documents
	Defining Requirement Data Elements
	Defining Data Elements Within a Requirement
	Defining Data Elements Within a Database

	Interface Control Documents
	Input/Outputs
	Outputs
	Inputs
	Transformations

	Interface Control Document Formats
	HUD Guidelines for the Data Requirements Document Checklist
	DoD
	MIL-STD 962D (Military Standard)
	Foreword

	8.4.2.2 DI-SDMP-81470 Department of Defense (DoD) Interface Standard Documents

	NASA Training Manual for Elements of Interface Definition and Control
	Centers for Medicare & Medicaid Services CMS eXpedited Life Cycle (XLC)

	References
	Exercises
	Exercise 1
	Exercise 2

	Chapter 8: Physical Requirements
	Physical Hardware Characteristics
	Overall Weight
	Size
	Geometric Shape
	Volume
	Density
	Center of Gravity
	Human Portable
	Safety Features
	Storage
	Packaging, Cooling, Heating, and Integration Constraints
	Power Consumption
	Material
	Surface Coefficient of Friction
	Physical Robustness
	Reliability
	Throughput
	Physical Computer Characteristics

	Throughput Characteristics
	Throughput
	Latency

	References
	Exercises
	Exercise 1
	Exercise 2

	Part III: Cradle to Grave Requirements
	Chapter 9: How to Collect Requirements
	Elicitation
	Techniques of Elicitation
	Elicitation Basics
	Requirements Sources
	Stakeholders
	Documents
	System in Operation

	An Overview of Elicitation Techniques
	Questionnaires/Surveys
	Group Meetings
	Facilitated Session
	Focus Group
	Joint Application Development/Requirements Workshop
	Support Teams
	Brainstorming

	Interviewing
	Size of Interviews Vary
	In-Person, Telephone, Videoconference, and Online Interviews
	Segregate by User Roles
	Running an Interview
	Things That Enhance the Interview
	Listening
	Things Change Over Time
	Glossaries
	Note Taking
	Follow-Up Questions
	Missing Knowledge
	Cultural/Language Differences

	Following People Around/Observation
	Models
	Document Analysis
	Business Process
	Existing Requirements
	Existing Interface Documents
	Design Documents
	Manuals: User, Operations, Training, and Help
	Identified Problems and Changes
	Competing or Analogous Systems

	Prototyping
	Use Cases/Scenarios/User Stories
	Working in the Target Environment
	Request for Proposals
	Reverse Engineering
	Tools
	Purpose of Elicitation
	Defining the Scope of the System
	Gaining Domain Knowledge
	Deciding On the Elicitation Techniques to Use
	Eliciting the Requirements
	Performing a Gap Analysis
	Completing the Requirements

	Problems with Elicitation
	Problems of Scope
	The Boundary of the System Is Ill-Defined
	Unnecessary Design Information May Be Given

	Problems of Understanding
	Users Have an Incomplete Understanding of Their Needs
	Users Have Poor Understanding of Computer Capabilities and Limitations
	Analysts Have Poor Knowledge of Problem Domain
	User and Analyst Speak Different Languages
	Ease of Omitting “Obvious” Information
	Conflicting Views of Different Users
	Requirements Are Often Vague and Untestable

	Problems of Volatility: Requirements Evolve
	Requirements Evolve Over Time

	Process Improvement
	References
	Exercises
	Exercise 1
	Exercise 2

	Chapter 10: User Interface Requirements
	Introducing UI Requirements
	Improving the User Interface
	Government UI Improvements
	Candidate UI Topics for Requirements
	Error Conditions
	Human Factors

	Section 508 Compliance
	References
	Exercises
	Exercise 1

	Chapter 11: Managing Requirements
	Why Should You Manage Requirements?
	A Bit of a History Lesson
	What Types of Tools Should You Consider?
	Attributes of Effective Requirement Management Tools
	The Tools
	Rating of the Tools
	Importing

	What Requirement Values Should You Manage?
	Requirements Fields
	Requirements Associated with Testing Fields
	Requirements Associated with Agile Fields

	References
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3

	Part IV: Alternatives to Shall Requirements
	Chapter 12: Supplementing or Replacing Standard Requirements
	User Stories and Use Cases
	User Stories
	Use Cases
	Supplementing Your Requirements
	Replacements for Requirements

	Modeling
	General Modeling
	Models for Ordinary Requirements
	Swim Lanes
	Data Flow Diagrams (DFDs)

	Specialized Modeling
	Tools That Can Aid Requirements Gathering
	Affinity Diagrams
	Storyboarding

	Other Supplements to Requirements Process
	Off-the-Shelf Solutions
	IEEE Standards
	ISO 9001:2008
	CMM/CMMI Levels of Maturity
	INCOSE

	References

	Chapter 13: User Stories
	Anatomy of a User Story
	Parts of a User Story
	Attributes of a User Story
	Independent
	Negotiable
	Valuable
	Estimable
	Small
	Testable

	Acceptance Criteria
	Size of stories
	Complement vs. Supplement to Requirements
	Complement to Requirements
	Replacement for Requirements

	User Stories Traceability
	Maintain User Stories
	What Can Go Wrong with Writing User Stories?
	Summary
	References
	Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

	Chapter 14: Use Cases
	Writing Use Cases
	Use Case Sequence
	Login Use Case
	Unit Dosimetry Report Use Case
	Gap Analysis

	Advantages and Disadvantages of Use Cases
	Advantages
	Disadvantages

	Complement vs. Replacement to Requirements
	Complement to Requirements
	Replacement for Requirements
	All Three Together

	References
	Exercises
	Exercise 1
	Exercise 2

	Chapter 15: Revisiting Requirement Problems and Their Solutions
	Insufficient Requirements
	Requirements Creep
	Volatility
	Stove-Piped Requirements
	Scope: Boundaries Can Be Ill-Defined
	Understanding Users Are Not Sure What They Need
	May Not Satisfy User Needs
	Misinterpretation: Cause Disagreements
	Cannot Verify the Requirements
	Wasted Time and Resources Building the Wrong Functions
	Summary
	Exercises
	Exercise 1:
	Exercise 2:
	Exercise 3:

	Part V: Appendixes
	Appendix A: Acronyms and Abbreviations
	Appendix B: Requirements Documents
	DoD FRD Template
	FUNCTIONAL REQUIREMENTS DOCUMENT (FRD) FOR DEPARTMENT OF DEFENSE (DOD) <PROJECT NAME>
	Comments on This DoD FRD

	IEEE Document Formats
	Final Comments on Requirements Document Formats
	References

	Appendix C: Section 508 Compliance
	The Background for Section 508
	Background

	Exemptions to Section 508
	Section 1194.3 General Exceptions

	Section 508 Technical Standards
	Subpart B – Technical Standards
	§ 1194.21 Software Applications and Operating Systems
	§ 1194.22 Web-based Intranet and Internet Information and Applications
	§ 1194.23 Telecommunications Products
	§ 1194.24 Video and Multimedia Products
	§ 1194.25 Self-contained, Closed Products
	§ 1194.26 Desktop and Portable Computers

	Section 508 Functional Performance Criteria
	Subpart C – Functional Performance Criteria
	§ 1194.31 Functional Performance Criteria

	Section 508 Information, Documentation, and Support
	Subpart D – Information, Documentation, and Support
	§ 1194.41 Information, Documentation, and Support

	Glossary
	Bibliography

	Index

