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Preface

This book aims to understand psychological (cognitive) mechanisms, 
processes, and functionalities through a comprehensive computational 
theory of the human mind, namely, a computational “cognitive architec-
ture,” or more specifically, the Clarion cognitive architecture. The goal of 
this work is to develop a unified framework for understanding the human 
mind, and within the unified framework to develop process-based, mech-
anistic explanations of a substantial variety of psychological phenomena.

The book describes the essential Clarion framework, its cognitive-  
psychological justifications, its computational instantiations, and its 
applications to capturing, simulating, and explaining various psycholog-
ical phenomena and empirical data. The book shows how the models 
and simulations shed light on psychological mechanisms and processes, 
through the lens of a unified framework (namely, Clarion).

While a forthcoming companion volume to this book will fully 
describe the technical details of Clarion (along with hands-on examples), 
the present book concentrates more on a conceptual-level exposition and 
explanation, but also describes, in a more accessible way, essential techni-
cal details of Clarion. It covers those technical details that are necessary 
for explaining the psychological phenomena discussed in this book.

The following may be considered the features of the present book:

•	 A scope broader than any other cognitive architecture, pointing 
to new possibilities for developing comprehensive computa-
tional cognitive architectures.
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•	 Integration of multiple approaches and perspectives within this 
broad scope.

•	 Exploration of empirical data and phenomena through com-
putational models and simulations, examining a variety of data 
from a variety of empirical fields.

•	 Balance of formal modeling and readability (i.e., accessibility to 
a multidisciplinary readership).

These features were designed with potential readers of the book in 
mind, who may include (in no particular order):  (1)  cognitive scien-
tists (especially cognitive modeling researchers, or “computational psy-
chologists” as one might call them) who might be interested in a new 
theoretical framework, a new generic computational model, as well as 
new interpretations of data through computational modeling; (2) exper-
imental psychologists who might be interested in new possibilities of 
interpreting empirical data within a unified framework, new conceptual 
interpretations (or existing interpretations for that matter) being sub-
stantiated through computational modeling, and also new possibilities 
for further empirical explorations; (3)  researchers from adjacent fields 
who might be interested in work on computational psychology (cog-
nitive modeling) and how such research may shed light on the mind; 
(4)  interested lay readers who might want to explore computational 
psychology and its implications for understanding the human mind … 
and so on. To put it simply, this book is for those who are interested in 
exploring and understanding the human mind through computational 
models that capture and explain empirical data and phenomena in a 
unified framework.

In fields ranging from cognitive science (especially cognitive mod-
eling), to psychology, to artificial intelligence, and even to philosophy, 
academic researchers, graduate and undergraduate students, and practi-
tioners of various kinds may have interest in topics covered by this book. 
The book may be suitable for graduate-level seminars or courses on cog-
nitive architectures or cognitive modeling, but might also be suitable for 
the advanced undergraduate level.

A little history is in order here. The general ideas of a pair of books 
(this one and a companion technical book) on Clarion were drawn up 
in February 2009 after much rumination. I worked more on the ideas 
for the two books in May of that year. In November, between two trips, 
I wrote two book proposals. They were submitted to Oxford University 
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Press in January 2010. After a round of very thorough reviews of the book 
proposals by the publisher, the contracts for the two books were signed 
in May 2010. The writing of this book was sporadic and largely put off 
until the summer of 2011. Since that time, efforts were made to finish 
the book. The manuscript was sent to the publisher at the end of 2013.

The history of the Clarion cognitive architecture started, of course, 
much earlier than that. Back in the summer of 1994, the ONR cognitive 
science basic research program issued a call for proposals, which prompted 
me to put together a set of ideas that had been brewing in my head. That 
was the beginning of Clarion. The grant from the ONR program enabled 
the development and the validation of the initial version of Clarion. 
During the 1998–1999 academic year, I had my sabbatical leave at the 
NEC Research Institute. A theoretically oriented book on Clarion took 
shape during that period, which was subsequently published. Starting 
in 2000, research grants from ARI enabled the further development of a 
number of subsystems within Clarion. Then, from 2008 on, new grants 
from ONR enabled the extension of the work to social simulation and 
other related topics.

I would like to thank Frank Ritter for his solicitation of thorough 
reviews of the two book proposals and for his suggestions regarding 
the organizations of the books. Thanks also go to the eight reviewers 
of the book proposals for their helpful suggestions. Later I received 
detailed critiques of the entire book manuscript from Frank Ritter and 
two anonymous reviewers, whom I gratefully acknowledge as well. I 
would also like to acknowledge useful discussions that I have had with 
many colleagues, including Paul Bello, Michael Zenzen, Larry Reid, Jeff 
White, Jun Zhang, and Deliang Wang, regarding motivation, emotion, 
personality, ethics, learning, modeling, and so on. I am also indebted 
to my many collaborators, past and present, including Sebastien Helie, 
Bob Mathews, Sean Lane, Selmer Bringsjord, Michael Lynch, and their 
students. I also want to acknowledge my past and current graduate 
students: Jason Xi Zhang, Isaac Naveh, Nick Wilson, Pierson Fleischer, 
and others. Some other students contributed to the work on Clarion as 
well. The work described in this book is theirs as well as mine.

Clarion has been implemented as Java and C# libraries, available at 
(courtesy of Nick Wilson and Michael Lynch):

http://www.clarioncognitivearchitecture.com

http://clarioncognitivearchitecture.com
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part, by ONR grants N00014-95-1-0440, N00014‐08‐1‐0068, and 
N00014-13-1-0342, as well as ARI grants DASW01-00-K-0012 and 
W74V8H-05-K-0002. Without these forms of support, this work could 
not have come into being.

Ron Sun
Troy, New York



Anatomy of the Mind
 





1

1

What Is A Cognitive Architecture?

In this chapter, as an introduction to what is to be detailed in this book, 
I will attempt to justify the endeavor of developing a generic computa-
tional model (theory) of the mind (i.e., a computational cognitive archi-
tecture), through addressing a series of questions. Then I will discuss a 
few issues fundamental to such an endeavor.

1.1.  A Theory of the Mind and Beyond

Before embarking on this journey, it might help to make clear at the 
outset that what is to be described and discussed in the present book, 
including concepts, theories, models, and simulations, is centered on a 
particular theoretical framework—namely, the Clarion framework. It is 
worth noting that Clarion, in its full-fledged form, is a generic and rela-
tively comprehensive theory of the human mind,1 along with a computa-
tional implementation of the theory. It is thus a computational “cognitive 

1. “Mind” is a complex notion. Rather than engaging in a philosophical discourse on 
the notion, the focus here is instead on mechanisms and processes of the mind. In turn, 
“mechanism” here refers to physical entities and structures and their properties that give 
rise to certain characteristics of the mind. Although living things often appear to have 
certain characteristics that have no counterpart in the physical universe, one may aim to 
go beyond these appearances (Thagard, 1996).

 

 

 



2 Chapter 1

architecture” as is commonly referred to in cognitive science, cognitive 
psychology, or more generally in the “cognitive sciences”.2 In general, a 
cognitive architecture is a broad domain-generic cognitive-psychological 
model implemented computationally.

Clarion has been in continuous development for a long time, at least 
since 1994 (although its predecessors have had a longer history). It has 
been aimed to capture, explain, and simulate a wide variety of cogni-
tive-psychological phenomena within its unified framework, thus leading 
(hopefully and ultimately) to unified explanations of psychological (and 
even other related) phenomena (as advocated by, e.g., Newell, 1990). 
The exact extent of cognitive-psychological phenomena that have been 
captured and explained within its framework will be discussed in detail in 
subsequent chapters. It is not unreasonable to say that Clarion constitutes 
a (relatively) comprehensive theory of the mind (or at least an initial ver-
sion of such a theory).

In fact, Clarion, within itself, contains several different kinds of theo-
ries. First, it contains a core theory of the mind at a conceptual level. It 
posits essential theoretical distinctions such as implicit versus explicit pro-
cesses, action-centered versus non-action-centered processes, and so on, 
as well as their relationships (Sun, 2002, 2012). With these distinctions 
and other high-level constructs, it specifies a core theory of the essential 
structures, mechanisms, and processes of the mind, at an abstract, concep-
tual level (Sun, Coward, and Zenzen, 2005).

Second, it also contains a more detailed (but still generic) compu-
tational model implementing the abstract theory. This implementation 
constitutes what is usually referred to as a computational cognitive archi-
tecture: that is, a generic computational cognitive (i.e., psychological) 
model describing the architecture of the mind, which by itself also con-
stitutes a theory of the mind, albeit at a more detailed and computational 
level (as will be argued later; see also Sun, 2009b).

2. In the narrow sense, “cognition” refers to memory, learning, concepts, decision 
making, and so on—those aspects of the individual mind that are not directly related to 
motivation, emotion, and the like. In the broadest sense, it may refer to all aspects of the 
individual mind, especially when methods and perspectives from contemporary cogni-
tive science are used in studying these aspects. In the latter case, I often use a hyphen-
ated form, “cognition-psychology”, to make it clear. However, the plural form, “cognitive 
sciences,” is often used to refer to all fields of cognitive, behavioral, and psychological 
sciences, applying the broadest sense of the term. Similarly, in the term “cognitive archi-
tecture,” the word “cognitive” should be interpreted in the broadest sense.
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Third, with the generic computational cognitive architecture, one may 
construct specific models and simulations of specific psychological phe-
nomena or processes. That is, one may “derive” specific computational 
models (namely, specific computational theories) for specific psycho-
logical phenomena or processes, from the generic computational model 
(theory). So, the generic theory leads to specific theories.

Clarion encompasses all of the above simultaneously. Thus, it syn-
thesizes different types of theories at different levels of theoretical 
abstraction (Sun, 2009b). Below I will refer, alternately, to Clarion in 
these different senses, at different levels of abstraction, as appropriate.

1.2. Why Computational Models/Theories?

Why would one want computational models for the sake of under-
standing the human mind? Why are computational models useful 
exactly?

Generally speaking, models of various forms and complexities 
may be roughly categorized into computational, mathematical, and 
verbal-conceptual varieties (Sun, 2008). Computational models present 
algorithmic descriptions of phenomena, often in terms of mechanistic and 
process details. Mathematical models present (often abstract) relation-
ships between variables using mathematical equations. Verbal-conceptual 
models describe entities, relations, or processes in informal natural lan-
guages (such as English). A model, regardless of its genre, might often be 
viewed as a theory of whatever phenomena that it purports to capture. 
This point has been argued extensively before (by, e.g., Newell, 1990 and 
Sun, 2009b).

Although each of these types of models has its role to play, I am mainly 
interested in computational modeling. The reason for this preference is 
that, at least at present, computational modeling appears more promising 
in many respects. It offers the expressive power that no other approach 
can match, because it provides a wider variety of modeling techniques 
and methodologies. In this regard, note that mathematical models may 
be viewed as a subset of computational models, because normally they 
can lead readily to computational implementations (even though some 
of them may be sketchy, not covering sufficient mechanistic or process 
details). Computational modeling also supports practical applications 
(see, e.g., Pew and Mavor, 1998; Sun, 2008).
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Computational models are mostly mechanistic and process oriented. 
That is, they are mostly aimed at answering the questions of how human 
performance comes about, by what psychological structures, mechanisms, 
and processes, and in what ways.3 The key to understanding cognitive-
psychological phenomena is often in fine details, which computational 
modeling can describe and illuminate (Newell, 1990; Sun, 2009b). 
Computational models provide algorithmic specificity: detailed, exactly 
specified, and carefully worked-out steps, arranged in precise and yet flex-
ible sequences. Thus, they provide clarity and precision (see, e.g., Sun, 
2008).

Computational modeling enables and, in fact, often forces one to think 
in terms of mechanistic and process details. Instead of verbal-conceptual 
theories, which may often be vague, one has to think clearly, algorith-
mically, and in detail when dealing with computational models/theo-
ries. Computational models are therefore useful tools. With such tools, 
researchers must specify a psychological mechanism or process in suffi-
cient detail to allow the resulting models to be implemented on comput-
ers and run as simulations. This requires that all elements of a model (e.g., 
all its entities, relationships, and so on) be specified exactly. Thus it leads 
to clearer, more consistent, more mechanistic, more process-oriented the-
ories. Richard Feynman once put it this way: “What I cannot create, I do 
not understand.” This applies to the study of human cognition-psychol-
ogy. To understand is to create, in this case on a computer at least.

Computational models may be necessary for understanding a system 
as complex and as internally diverse as the human mind. Pure mathemat-
ics, developed mainly for describing the physical universe, may not be 
sufficient for understanding a system as different as the human mind. 
Compared with theories developed in other disciplines (such as phys-
ics), computational modeling of the mind may be mathematically less 
“elegant”, but the human mind itself may be inherently less mathemati-
cally elegant when compared with the physical universe (as argued by, 
e.g., Minsky, 1985). Therefore, an alternative form of theorizing may 
be necessary—a form that is more complex, more diverse, and more 
algorithmic in nature. Computational modeling provides a viable way 

3. It is also possible to formulate so called “product theories”, which provide a func-
tional account of phenomena but do not commit to a particular psychological mechanism 
or process. Thus, product theories can be evaluated mainly by product measures. One 
may also term product theories black-box theories or input-output theories.
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of specifying complex and detailed theories of cognition-psychology. 
Therefore, they may be able to provide unique explanations and insights 
that other experimental or theoretical approaches cannot easily provide.

A description or an explanation in terms of computation that is per-
formed in the mind/brain can serve either as a fine-grained specification 
of cognitive-psychological processes underlying behavior (roughly, the 
mind), or as an abstraction of neurobiological and neurophysiological 
data and discoveries (roughly, the brain), among other possibilities that 
may also exist. In general, it is not difficult to appreciate the usefulness of 
a computational model in this regard, in either sense, especially one that 
summarizes a body of data, which has been much needed in psychology 
and in neuroscience given the rapid growth of empirical data.

In particular, understanding the mind (at the psychological level) 
through computational modeling may be very important. One would 
naturally like to know more about both the mind and the brain. So far at 
least, we still know little about the biology and physiology of the brain, 
relatively speaking. So for this reason (and others), we need a higher level 
of abstraction; that is, we need to study the mind at the psychological 
level in order to make progress toward the ultimate goal of fully under-
standing the mind and the brain.

Trying to fully understand the human mind purely from observations 
of human behavior (e.g., strictly through behavioral experiments) is likely 
untenable (except perhaps for small, limited task domains). The rise and 
fall of behaviorism is a case in point. This point may also be argued on the 
basis of analogy with the physical sciences (as was done in Sun, Coward, 
and Zenzen, 2005). The processes and mechanisms of the mind cannot 
be understood purely on the basis of behavioral experiments, which often 
amount to tests that probe relatively superficial features of human behav-
ior, further obscured by individual and cultural differences and other con-
textual factors. It would be extremely hard to understand the human 
mind in this way, just like it would be extremely hard to understand a 
complex computer system purely on the basis of testing its behavior, if 
one does not have any prior ideas about the inner workings and theoreti-
cal underpinnings of that system (Sun, 2007, 2008, 2009b).

Experimental neuroscience alone may not be sufficient either, at least 
for the time being. Although much data has been gathered from empirical 
work in neuroscience, there is still a long way to go before all the details 
of the brain are identified, let alone the psychological functioning on that 
basis. Therefore, as argued earlier, at least at present, it is important to 
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understand the mind/brain at a higher level of abstraction. Moreover, 
even when we finally get to know all the minute details of the brain, we 
would still need a higher-level, yet precise, mechanistic, process-based 
understanding of its functioning. Therefore, we still need a higher level 
of theorizing. In an analogous way, the advent of quantum mechanics did 
not eliminate the need for classical mechanics. The progress of chemistry 
was helped by the discoveries in physics, but chemistry was not replaced 
by physics. It is imperative that we also investigate the mind at a higher 
level of abstraction, beyond neuroscience. Computational modeling has 
its unique, indispensable, and long-term role to play, especially for gaining 
conceptually clear, detailed, and principled understanding of the mind/
brain.

It might be worth mentioning that there have been various view-
points concerning the theoretical status of computational modeling. For 
example, many believed that a computational model (and computational 
simulation on its basis) may serve as a generator of phenomena and data. 
That is, they are useful media for hypothesis generation. In particular, 
one may use simulation to explore process details of a psychological phe-
nomenon. Thus, a model is useful for developing theories, constituting a 
theory-building tool. A related view is that computational modeling and 
simulation are suitable for facilitating a precise instantiation of a preex-
isting verbal-conceptual theory (e.g., through exploring possible details 
for instantiating the theory) and consequently detailed evaluations of the 
theory against data. These views, however, are not incompatible with a 
more radical position (e.g., Newell 1990; Sun 2009b) that a computa-
tional model may constitute a theory by itself. It is not the case that a 
model is limited to being built on top of an existing theory, being applied 
for the sake of generating data, being applied for the sake of validating 
an existing theory, or being used for the sake of building a future theory. 
According to this more radical view, a model may be viewed as a theory 
by itself. In turn, algorithmic descriptions of computational models may 
be considered just another language for specifying theories (Sun, 2009b; 
Sun, 2008).4 The reader is referred to Sun (2009b) for a more in-depth 
discussion of this position.

4. Constructive empiricism (van Fraasen, 1980) may serve as a philosophical founda-
tion for computational cognitive modeling, compatible with the view of computational 
models as theories (Sun 2009b).
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In summary, computational models (theories) can be highly useful to 
psychology and cognitive science, when viewed in the light above (and 
when the issues discussed below are properly addressed).

1.3.  Questions about Computational Models/Theories

There are, of course, many questions that one can, and should, ask about 
any computational model before “adopting” it in any way.

One important question about any particular computational model 
is this: how much light can it really shed on the phenomena being mod-
eled? There are a number of aspects to this question, for instance:

•	 Do the explanations provided by the computational model 
capture accurately human “performance” (in a Chomskian 
sense; Chomsky, 1980)? That is, does it capture and explain 
sufficiently the subtleties exhibited in the empirical data? If an 
explanation is devoid of “performance” details as observed in 
empirical data, it will be hard to justify the appropriateness of 
such an explanation, especially when there are other possible 
ways of describing the data.5

•	 Does the model take into consideration higher-level or 
lower-level constraints (above or below the level of the model 
in question)? There are usually many possible models/theories 
regarding some limited data. Higher-level or lower-level consid-
erations, among other things, may be used to narrow down the 
choices.

•	 Does the model capture in a detailed way psychological 
mechanisms and processes underlying the data? If a model 
lacks mechanistic, process-oriented details, it may be less likely 
to bring new insights into explaining the dynamics underlying 
the data.

•	 Do the primitives (entities, structures, and operations) used in 
the model provide some descriptive power and other advan-
tages over and above other possible ways of describing human 
behavior and performance (but without being overly generic)?

5. This is not the case for Noam Chomsky’s theory of language, which thus serves as 
an exception.
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•	 Does the model provide a basis for tackling a wide set of 
cognitive-psychological tasks and data? If a model is insufficient 
in terms of breadth of coverage, it cannot claim to be a “general” 
theory.

It should be noted that, in relation to the issue of generality, one should 
be aware of the danger of over-generality. That is, a model might be so 
under-constrained that it may match practically any possible data, real-
istic or unrealistic. To address this problem, many simulations in a wide 
range of domains are needed, in order to narrow down choices and to 
constrain parameter spaces (more on this in Chapter 8).

From the point of view of the traditional cognitive science, a model/
theory at the computational or knowledge level (in Marr’s [1982] or 
Newell’s [1990] sense) can provide a formal language for describing a 
range of cognitive-psychological tasks. Indeed, in the history of cogni-
tive science, some high-level formal theories were highly relevant (e.g., 
Chomsky’s theory of syntactic structures of language). So, a further 
question is:

•	 How appropriate is the model/theory in terms of providing a 
“formal language” for a broad class of tasks or data? Does it have 
realistic expressiveness (sufficient for the target tasks or data, 
but not much more or less) and realistic constraints (of various 
types, at various levels)?

Furthermore, what is more important than a formal (e.g., mathemati-
cal or computational) language for describing cognition-psychology is the 
understanding of the “architecture” of the mind, especially in a mecha-
nistic (computational) sense. That is, one needs to address the following 
question:

•	 How do different components of the mind interact and how 
do they fit together? Correspondingly, how do different com-
ponents of a computational model/theory interact and how do 
these different components fit together, instead of just a mere 
collection of limited models?

Studying architectural issues may help us to gain new insight, narrow 
down possibilities, and constrain the components involved.

Moreover, different components and different functionalities of 
the mind, for example, perception, categorization, concepts, memory, 
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decision making, reasoning, problem solving, planning, communication, 
action, learning, metacognition, and motivation, all interact with and 
depend on each other. Their patterns of interaction change with chang-
ing task demands, growing personal experiences, varying sociocultural 
contexts and milieus, and so on. Some argue that cognition-psychology 
represents a context-sensitive, dynamic, statistical structure that, on the 
surface at least, changes constantly—a structure in perpetual motion. 
However, complex dynamic systems may be attributed to its constituting 
elements. Thus, one may strive for a model that captures the dynamics 
of cognition-psychology through capturing its constituting elements and 
their interaction and dependency. So, an important question is:

•	 How does a model/theory account for the dynamic nature of 
cognition-psychology?

Finally, one has to consider the cost and benefit of computational 
modeling:

•	 Is the complexity of a model/theory justified by its explanatory 
utility (considering all the questions above)?

These questions cannot be addressed in abstraction. My specific 
answers to them, in the context of Clarion, will emerge in subsequent 
chapters, as details of Clarion emerge in these chapters.

1.4. Why a Computational Cognitive Architecture?

Among different types of computational cognitive-psychological models/
theories, computational cognitive architectures stand out. A computa-
tional cognitive architecture, as commonly termed in cognitive science, is 
a broadly scoped, domain-generic cognitive-psychological model, imple-
mented computationally, capturing the essential structures, mechanisms, 
and processes of the mind, to be used for broad, multiple-level, multi-
ple-domain analysis of behavior (e.g., through its instantiation into more 
detailed computational models or as a general framework; Newell, 1990; 
Sun, 2007).

Let us explore this notion of cognitive architecture with a comparison. 
The architecture for a building consists of its overall structural design and 
major constituting structural elements such as external walls, floors, roofs, 
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stairwells, elevator shafts, and so on. Furniture can be easily rearranged 
or replaced and therefore may not be part of the architecture. By the 
same token, a cognitive architecture includes overall structures, essential 
divisions of modules (e.g., subsystems), essential relations between mod-
ules, basic representations and algorithms within modules, and a variety 
of other major aspects (Sun, 2007; Langley, Laird & Rogers, 2009). In 
general, a cognitive architecture includes those aspects that are relatively 
invariant across time, domains, and individuals. It deals with them in a 
structurally and mechanistically well-defined way.

A cognitive architecture can be important to understanding the human 
mind. It provides concrete computational scaffolding for more detailed 
modeling and exploration of cognitive-psychological phenomena and 
data, through specifying essential computational structures, mechanisms, 
and processes. That is, it facilitates more detailed modeling and explora-
tion of the mind. As discussed earlier, computational cognitive modeling 
explores cognition-psychology through specifying computational mod-
els of cognitive-psychological mechanisms and processes. It embodies 
descriptions of cognition-psychology in computer algorithms and pro-
gram codes, thereby producing runnable models. Detailed simulations 
can then be conducted. In this undertaking, a cognitive architecture can 
be used as the unifying basis for a wide range of modeling and simulation. 
Note that here I am mainly referring to psychologically oriented cogni-
tive architectures (as opposed to software engineering oriented cognitive 
architectures, which are quite different in terms of purpose).

A cognitive architecture serves as an initial set of (relatively) generic 
assumptions that may be applied in further modeling and simulation. 
These assumptions, in reality, may be based on empirical data, philosoph-
ical arguments, or computational considerations. A cognitive architecture 
is useful and important because it provides a (relatively) comprehensive 
yet precise foundation that facilitates further modeling in a wide variety 
of domains (Cooper, 2007).

In exploring cognitive-psychological phenomena, the use of cog-
nitive architectures forces one to think in terms of mechanistic and 
process-oriented details. Instead of using often vague and underspecified 
verbal-conceptual theories, cognitive architectures force one to think 
more clearly. Anyone who uses cognitive architectures must specify 
a cognitive-psychological mechanism or process in sufficient detail to 
allow the resulting models to run as simulations. This approach encour-
ages more detailed and clearer theories. It is true that more specialized, 
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narrowly scoped computational models may also serve this purpose, but 
they are not as generic and as comprehensive. Consequently, they are not 
as generally useful. Cognitive architectures are thus crucial tools (Pew 
and Mavor, 1998; Sun, 2007).

A cognitive architecture may also provide a deeper level of explana-
tion (Sun, 2007). Instead of a model specifically designed for a specific 
task (which is often ad hoc), a cognitive architecture naturally encourages 
one to think in terms of the mechanisms and processes available within 
a generic model that are not specifically designed for a particular task, 
and thereby to generate explanations of the task that are not centered 
on superficial, high-level features of the task (as often happens with spe-
cialized, narrowly scoped models)—that is, to generate explanations of 
a deeper kind. To describe a task in terms of available mechanisms and 
processes of a cognitive architecture is to generate explanations based on 
primitives of cognition-psychology envisioned in the cognitive architec-
ture, thereby leading to deeper explanations.

Because of the nature of such deeper explanations, this approach is 
also more likely to lead to unified explanations for a wide variety of data 
and phenomena, because potentially a wide variety of tasks, data, and 
phenomena can be explained on the basis of the same set of primitives 
provided by the same cognitive architecture (Sun, 2007). Therefore, a 
cognitive architecture is more likely to lead to a unified, comprehensive 
theory of the mind, unlike using more specialized, narrowly scoped mod-
els (Newell, 1990).

Although the importance of being able to reproduce the nuances of 
empirical data is evident, broad functionalities in cognitive architectures 
are even more important (Newell, 1990). The human mind needs to 
deal with all of the necessary functionalities: perception, categorization, 
memory, decision making, reasoning, planning, problem solving, commu-
nication, action, learning, metacognition, motivation, and so on. The need 
to emphasize generic models capable of broad functionalities arises also 
because of the need to avoid the myopia often resulting from narrowly 
scoped research.

For all of these reasons above, developing cognitive architectures is 
an important endeavor in cognitive science. It is of essential importance 
in advancing the understanding of the human mind (Sun, 2002, 2004, 
2007). Existing cognitive architectures that have served this purpose 
include ACT-R, Soar, Clarion, and a number of others (see, e.g., Taatgen 
and Anderson, 2008 for a review).
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In addition, cognitive architectures also, in a way, support the goal of 
general AI, that is, building artificial systems that are as capable as human 
beings. In relation to building intelligent systems, a cognitive architecture 
may provide the underlying infrastructure, because it may include a vari-
ety of capabilities, modules, and subsystems that an intelligent system 
needs. On that basis, application systems may be more readily developed. 
A cognitive architecture carries with it theories of cognition-psychology 
and understanding of intelligence gained from studying the human mind. 
In a way, cognitive architectures reverse engineer the only truly intel-
ligent system around—the human mind. Therefore, the development of 
intelligent systems on that basis may be more cognitively-psychologically 
grounded, which may be advantageous in some circumstances. The use 
of cognitive architectures in building intelligent systems may also facili-
tate the interaction between humans and artificially intelligent systems 
because of the relative similarity between humans and cognitively-psy-
chologically based intelligent systems. It was predicted a long time ago 
that “in not too many years, human brains and computing machines will 
be coupled together very tightly and the resulting partnership will think 
as no human brain has ever thought …” (Licklider, 1960). Before that hap-
pens, a better understanding of the human mind is needed, especially a 
better understanding in a computational form.

There are, of course, questions that one should ask about cognitive 
architectures, in addition to or instantiating questions about computa-
tional modeling in general as discussed earlier. For instance, a cognitive 
architecture is supposed to include all essential psychological capabili-
ties and functionalities. As mentioned before, those functionalities may 
include perception, categorization, memory, decision making, reasoning, 
problem solving, communication, action, and learning. They may involve 
all kinds of representation (in a broad sense). There are also motivational 
and metacognitive processes. However, currently, most cognitive archi-
tectures do not yet support all of these functionalities, at least not fully. 
So, what is minimally necessary? How should these functionalities inter-
act? To what extent are they separate? And so on. There are no simple 
answers to these questions, but they will be addressed along the way in 
this book.

In this regard, a question concerning any capability in a cognitive 
architecture is whether the cognitive architecture includes that capabil-
ity as an integral part or whether it includes sufficient basic functional-
ities that allow the capability to emerge or to be implemented later on. 
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This may be determined by what one views as an integral part of a cogni-
tive architecture and what one views as a secondary or derived capabil-
ity. Sun (2004) provides a discussion of the relation between a cognitive 
architecture and the innate structures in the human mind and the notion 
of minimality in a cognitive architecture. These ideas may help to sort 
out what should or needs to be included in a cognitive architecture (Sun, 
2004). The outcomes of the deliberation on this and other questions will 
be presented in the subsequent chapters.

1.5. Why Clarion?

Among existing cognitive architectures, why should one choose Clarion? 
In a nutshell, one might prefer Clarion, for (the totality of) the following 
reasons:

•	 Clarion is a cognitive architecture that is more comprehensive 
in scope than most other cognitive architectures in existence 
today (as will become clear later).

•	 Clarion is psychologically realistic to the extent that it has been 
validated through simulating and explaining a wide variety 
of psychological tasks, data, and phenomena (as detailed in 
chapters 5, 6, and 7).

•	 Its basic principles and assumptions have been extensively 
argued for and justified, in relation to a variety of different 
types of evidence (as detailed in chapters 2, 3, and 4).

•	 It has major theoretical implications, as well as some practical 
relevance. It has provided useful explanations for a variety of 
empirical data, leading to a number of significant new theories 
regarding psychological phenomena (e.g., Sun, Slusarz, & Terry, 
2005; Helie & Sun, 2010).

•	 In addition to addressing problems at the psychological level, it 
has also taken into account higher levels, for example, regarding 
social processes and phenomena, as well as lower levels (Sun, 
Coward, & Zenzen, 2005).

More specifically, Clarion has been successful in computationally mod-
eling, simulating, accounting for, and explaining a wide variety of psy-
chological data and phenomena. For instance, a number of well-known 

 



14 Chapter 1

skill-learning tasks have been simulated using Clarion that span the entire 
spectrum ranging from simple reactive skills to complex cognitive skills. 
The simulated tasks, for example, include serial reaction time tasks, arti-
ficial grammar learning tasks, dynamic process control tasks, alphabetical 
arithmetic tasks, and Tower of Hanoi (e.g., Sun, Slusarz, & Terry, 2005; 
Sun, 2002). In addition, extensive work has been done in modeling com-
plex and realistic skill-learning tasks that involve complex sequential deci-
sion making (Sun et al., 2001). Furthermore, many other kinds of tasks 
not usually dealt with by cognitive architectures—reasoning tasks, social 
simulation tasks, as well as metacognitive and motivational tasks—have 
been tackled by Clarion. While accounting for various psychological tasks, 
data, and phenomena, Clarion provides explanations that shed new light 
on underlying cognitive-psychological processes. See, for example, Sun 
et al. (2001), Sun, Slusarz, and Terry (2005), Sun, Zhang, and Mathews 
(2006), and Helie and Sun (2010) for various examples of such simula-
tions and explanations.

These simulations, more importantly, provided insight that led to some 
major new theories concerning a number of important psychological 
functionalities. Some new theories resulting from Clarion include:

•	 The theory of bottom-up learning (from implicit to explicit 
learning), as developed in Sun et al. (2001).

•	 The theory of the implicit-explicit interaction and their syner-
gistic effects on skill learning, as developed in Sun, Slusarz, and 
Terry (2005).

•	 The theory of creative problem solving, as described in Helie 
and Sun (2010).

•	 The theory of human motivation and its interaction with cogni-
tion, as described in Sun (2009), as well as in related simulation 
papers (e.g., Wilson, Sun, & Mathews, 2009; Sun & Wilson, 
2011; Sun & Wilson, 2014)

•	 The theory of human reasoning (based on implicit and explicit 
representation and their interaction), as developed in Sun 
(1994, 1995) and Sun and Zhang (2006).

These theories are standalone, conceptual-level theories of psychological 
phenomena. However, these theories are also an integral part of Clarion. 
They have been computationally instantiated. They have led not only to 
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numerical (quantitative) simulations but also to major qualitative (theo-
retical) predictions.

I should mention here that two meta-principles have guided the devel-
opment of this cognitive architecture:  (a)  completeness of functional-
ities (to include as many functionalities as possible), but (b) parsimony 
of mechanisms (to reduce the number of distinct mechanisms and their 
complexity as much as possible). Or to put it another way, the goal for 
Clarion has been: maximum scope and minimum mechanism. That goal 
and the associated meta-principles have led to the aforementioned theo-
ries and explanations by Clarion.

Given all of the above, Clarion is worthy of further exploration and 
examination. In particular, its comprehensive scope should be examined 
in more detail. Thus a book-length treatment is required.

1.6. Why This Book?

Although a substantial number of articles, including journal and confer-
ence papers, have been published on Clarion and its modeling of psycho-
logical data of various kinds, there is currently no one single volume that 
contains all of the information, especially not in a unified and accessible 
form. Therefore, it seems a good idea to put together a single volume 
for the purpose of cataloguing and explaining in a unified and accessible 
way what has been done with regard to Clarion and why it might be of 
interest.

Furthermore, a book may contain much more material than a typical 
journal or conference paper. It may describe not only details of Clarion 
but also many detailed models of psychological phenomena based on 
Clarion. It may summarize materials published previously, in addition to 
new materials. A book may also provide theoretical and meta-theoretical 
discussions of issues involved. Above all, a book may provide a gentler 
introduction to Clarion and its exploration of psychological mechanisms 
and processes, which may be of use to some readers.

The present book will present a unified (albeit preliminary and 
still incomplete) view of the human mind, and interpret and explain 
empirical data on the basis of that view. The focus will be on broad 
interpretations of empirical data and phenomena, emphasizing unified 
explanations of a wide variety of psychological tasks and data. Thus 
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exact parameter values and other minute technical details will be 
minimized.

For the sake of clarity, I will proceed in a hierarchical fashion. In other 
words, there will be a series of progressively more detailed descrip-
tions. First, a high-level conceptual sketch will be given; then a more 
detailed description will be provided. After that, there will be an even 
more detailed, more technical description. (However, the most techni-
cally exact and complete description, with a code library, can be found 
in a forthcoming companion technical book on Clarion.) In this way, 
the reader may stop at any time, up to the level where he or she feels 
comfortable.

I will start with the overall Clarion framework and then move on 
to individual components or aspects. To achieve clarity, I will limit the 
amount of details discussed to only those that are minimally necessary. 
(Fortunately, the technical book will provide full technical specifica-
tions.) With regard to technical details, especially in relation to simu-
lations, I will have to strike a balance between conceptual clarity and 
technical specificity. Of course, both are important. To achieve concep-
tual clarity, a high-level conceptual explanation will be provided. To 
achieve some technical specificity, a more technical (computational) 
description or explanation will also be provided, corresponding to the 
high-level conceptual explanation.

1.7.  A Few Fundamental Issues

To start, I will quickly sketch a few foundational issues. My stands on 
these issues form the meta-theoretical basis of Clarion. (Details of the 
cognitive architecture will be explained in subsequent chapters.)

1.7.1.  Ecological-Functional Perspective

The development of a cognitive architecture needs to take into con-
sideration of what I  have called the ecological-functional perspective. 
As discussed in Sun (2012) and Sun (2002), the ecological-functional 
perspective includes a number of important considerations on human 
cognition-psychology, especially in relation to ecological realism of 
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cognitive-psychological theories or models. They may be expressed as 
dictums such as:

•	 taking into account ecological niches (evolutionarily or at the 
present), and focusing attention on characteristics of everyday 
activities that are most representative of the ecological niches 
(Sun, 2002; more later);

•	 taking into account the role of function, because 
cognitive-psychological characteristics are often, if not always, 
functional, useful in some way for everyday activities within an 
ecological niche;

•	 taking into account cost-benefit trade-offs of 
cognitive-psychological characteristics (such as implicit versus 
explicit processes)6, as psychological characteristics are often 
selected based on cost-benefit considerations (evolutionarily or 
at the present).

In particular, these dictums imply that human cognition-psychology 
is mostly activity-based, action-oriented, and embedded in the world. 
They also seem to point toward implicit (subconscious or unconscious) 
psychological processes, as opposed to focusing exclusively on explicit 
processes. Humans often interact with the world in a rather direct and 
unmediated way (Heidegger, 1927; Dreyfus, 1992; Sun, 2002).

These dictums, serving as meta-heuristics for developing cognitive 
architectures, will become clearer in the next chapter, when the justifica-
tions for the essential framework of Clarion are discussed.

1.7.2.  Modularity

Fodor (1983) argued that the brain/mind was modular and its modules 
worked largely independently and communicated only in a limited way. 
However, evidence to the contrary has accumulated that modules and 
subsystems in the brain/mind may instead be more richly interconnected, 
anatomically and functionally (Damasio, 1994; Bechtel, 2003).

Nevertheless, starting off with a modular organization might make the 
task of understanding the architecture of the human mind more tractable. 

6. For instance, compared with implicit processes, explicit processes may be more 
precise but may be more effortful. See more discussions in Chapter 3.
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Connections, communications, and interactions, if necessary, may be 
added subsequently. At a minimum, some cognitive-psychological func-
tionalities do appear to be specialized and somewhat separate from others 
(in a sense). They may be so either because they are functionally encapsu-
lated (their knowledge, mechanisms, and processes do not transfer easily 
into other domains) or because they are physically (neurophysiologi-
cally) encapsulated. Modularity can be useful functionally, for example, 
to guarantee efficiency or accuracy of important or critical behaviors and 
routines (whether they are a priori or learned), or to facilitate parallel 
operations of multiple processes (Sun, 2004). Hence we start with a (cir-
cumscribed) modular view.

1.7.3.  Multiplicity of Representation

With modularity (i.e., with the co-existence of multiple modules), mul-
tiple different representations (either in terms of form or in terms of 
content) may co-exist.

Here I  use the term “representation” to denote any form of internal  
encoding, either explicitly and individually encoded or embodied/
enmeshed within a complex mechanism or process. Thus this notion of 
“representation” is not limited to explicit, individuated symbolic entities 
and their structures (as often meant by “representationalism”). Because it 
is not limited to symbolic forms, it includes, for example, connectionist 
encoding, dynamic system content, and so on. So the term should be inter-
preted broadly here.

In terms of representational form, there are, for example, symbolic-  
localist representation and distributed connectionist representation. 
Symbolic-localist representation implies representing each unique con-
cept by a unique basic representational entity (such as a node in a net-
work). Distributed representation involves representing each concept by 
an activation pattern over a shared set of nodes in a network (Rumelhart 
et al., 1986). Different forms of representations have different computa-
tional characteristics: for example, crisp versus graded, rule-based versus 
similarity-based, one-shot learning versus incremental learning, and so on, 
as will be discussed in more detail later.

In terms of representational content, there may be the following 
types: procedural representation, declarative representation, metacognitive 
representation, motivational representation, and so on. Each of these types 
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is necessary for a full account of the human mind. In subsequent chapters 
when I discuss each of these types in turn, I will present arguments why 
each of them is needed. Each type may in turn involve multiple represen-
tational forms within.

On the other hand, one may question why an individual needs multiple 
representational forms after all. There are a number of potential advan-
tages that may be gained by involving multiple representational forms. For 
example, in incorporating both symbolic-localist and distributed represen-
tation (for capturing explicit and implicit knowledge, respectively, as will 
be detailed later), one may gain

•	 synergy in skill learning from dual procedural representation
•	 synergy in skill performance from dual procedural 

representation
•	 synergy in reasoning from dual declarative representation

and so on. These advantages have been demonstrated before in previous 
publications; I will elaborate on these advantages in later chapters when 
I revisit these points.

1.7.4.  Dynamic Interaction

In a cognitive architecture, various modules (in the previously dis-
cussed sense) have to work with each other to accomplish psychologi-
cal functioning. Modules of different kinds and sizes (e.g., subsystems 
and components within each subsystem) interact with each other 
dynamically.

At the highest level, the interaction among subsystems may include 
metacognitive monitoring and regulation of other processes (i.e., the 
interaction between the metacognitive subsystem and the other subsys-
tems). The interaction among subsystems may also involve motivated 
action decision making (i.e., the interaction between the motivational 
subsystem and the action-centered subsystem). Within each subsystem, 
many component modules exist and they also interact with each other, 
necessary for accomplishing cognitive-psychological functioning.

Note that these characteristics may not have been sufficiently 
captured by most existing cognitive-psychological models (includ-
ing cognitive architectures). Compared with these other models, 
Clarion is unique in terms of containing (well-developed, built-in) 
motivational constructs and (well-developed, built-in) metacognitive  
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constructs. These are not commonly found in existing cognitive archi-
tectures. Nevertheless, I believe that these features are crucial to a cog-
nitive architecture because they capture important or indispensable 
elements of the human mind, necessary in the interaction between an 
individual and his or her physical and social world (Sun, 2009). Details 
will be presented in subsequent chapters.

1.8.  Concluding Remarks

So far I have covered only some preliminary ideas, which are necessary 
background regarding cognitive architectures. The questions that have 
been addressed include: Why should one use computational modeling 
for studying cognition-psychology? Why should one use cognitive archi-
tectures among other computational models? Why should one use the 
Clarion cognitive architecture, among other possible cognitive architec-
tures? And other questions and issues.

More importantly, the basic “philosophy” in regard to a number of fun-
damental issues has been outlined. In particular, the principles of modu-
larity, multiplicity of representation, and dynamic interaction (include 
that among motivation, cognition, and metacognition) are of fundamen-
tal importance to Clarion.

The rest of the book is divided into eight chapters. They include three 
chapters for presenting various theoretical, conceptual, and technical 
aspects of Clarion, three chapters on various simulations using Clarion, 
and additional materials in the remaining two chapters.

Finally, a note for the interested reader: for general surveys, discussions, 
and comparisons of computational cognitive architectures in the context 
of cognitive-psychological modeling, covering other well-known cogni-
tive architectures (such as ACT-R and Soar), see Pew and Mavor (1998), 
Ritter et  al. (2003), Sun (2006), Chong, Tan, and Ng (2007), Taatgen 
and Anderson (2008), Langley et  al. (2009), Thórisson and Helgasson 
(2012), Helie and Sun (2014b), among other existing publications (see 
also Chapter 9).
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2

Essential Structures of the Mind

In this chapter, I  introduce the basic framework (i.e., the relatively 
abstract conceptual-level theory) of Clarion, and discuss the justifications 
for this framework.

In a way, this chapter presents a worldview—an essential, overarching 
framework for understanding the mind. One should view it as the more 
abstract general theory of Clarion, as opposed to the more detailed com-
putational theory of Clarion, which will be presented in chapters 3 and 
4, or as opposed to the specific computational simulation models derived 
from Clarion, which will be presented in chapters 5, 6, and 7.

Below I will first review and justify the essential desiderata that have 
been driving the development of Clarion. Then, on that basis, the overall 
structure of Clarion will be sketched.

2.1.  Essential Desiderata

As has been characterized earlier, Clarion is a computational cog-
nitive architecture:  it is a generic and comprehensive model of 
cognitive-psychological structures, mechanisms, processes, functionalities, 
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and so on, specified and implemented computationally. As such, it needs 
substantial justifications.

Clarion has indeed been justified extensively on the basis of empirical 
data (see, e.g., Sun, 2002, 2003; see also Sun, Merrill, & Peterson, 2001; 
Sun, Slusarz, & Terry, 2005; Helie & Sun, 2010), as well as theoretical 
(fundamental, philosophical) considerations. In particular, a number of 
essential (philosophical and psychological) desiderata have been central 
to the conception of the framework. These essential desiderata include 
those described below (along with others described elsewhere, e.g., in 
Sun, 2002, 2004, 2012). Together, they present a situated/embodied 
view of the mind in a generalized sense (Sun, 2013b), consistent with the 
ecological-functional perspective discussed in Chapter 1, in addition to 
the other considerations outlined there (e.g., representational multiplic-
ity, modularity, and dynamic interaction).

Sequentiality. Everyday activities are sequential: they are often car-
ried out one step at a time. Temporal structures are essential to such 
activities and form the basis of behaviors in different circumstances 
(Sun, 2002).

Routineness. Everyday activities are largely made up of reactive 
routines (skills), or habitual sequences of behavioral responses (on a 
moment-to-moment basis mostly). They are, generally speaking, gradu-
ally formed and subject to continuous modification (with the possible 
exception of some innate routines or instincts). Therefore, human every-
day activities may be viewed as comprised of forming, adapting, and fol-
lowing routines (or skills; Sun, 2002; Tinbergen, 1951; Timberlake and 
Lucas, 1989).

Trial-and-error adaptation. Learning of reactive routines (and other 
behaviors) is often a trial-and-error process. Such learning has been vari-
ously studied under the rubric of law of effect, classical conditioning, 
instrumental conditioning, probability learning, and implicit learning 
(Reber, 1989). Such learning is essential to human everyday activities 
(Sun, 2002).

Implicit versus explicit processes. Reactive routines are mostly implicit. 
Implicit processes are (relatively) inaccessible and “holistic,” while explicit 
processes are more accessible and more precise (e.g., Reber, 1989). These 
two types interact with each other. This dichotomy is related to some 
other well-known dichotomies: the conscious versus the unconscious, the 
conceptual versus the subconceptual, and so on (Evans & Frankish, 2009; 
Sun, 2002).
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Synergistic interaction. It was hypothesized that one reason for having 
these two types of processes, implicit and explicit, was that these pro-
cesses worked together synergistically, supplementing and complement-
ing each other in a variety of ways (Sun, Slusarz, & Terry, 2005). These 
two types have qualitatively different characteristics, thus often generat-
ing better overall results when they interact (Sun, 2002).

Bottom-up and top-down learning. The interaction between implicit 
and explicit processes allows for a gradual transfer of knowledge (mem-
ory) from one type to the other (besides separate, standalone learning 
within each type). Learning resulting from the implicit-explicit interac-
tion includes top-down learning (explicit learning first and implicit learn-
ing on that basis) and bottom-up learning (implicit learning first and 
explicit learning on that basis; Sun, 2002).

Procedural versus declarative processes. Procedural processes are spe-
cifically concerned with actions in various circumstances (i.e., how to do 
things). Declarative processes are not specifically concerned with actions 
but are more about objects, persons, events, and so on, in generic terms. 
This distinction has provided useful insight in interpreting a wide range of 
psychological data in the past (Proctor & Dutta, 1995). Furthermore, the 
procedural-declarative distinction is orthogonal to the implicit-explicit 
distinction (based on empirical evidence as summarized in Sun, 2012).

Motivational control. A  full account of behavior must address why 
one does what one does.1 Hence motivational processes need to be under-
stood (Sun, 2009). An individual’s essential motivations (needs) arise 
prior to deliberative cognition (Sun, 2009) and are the foundation of cog-
nition and action. In a way, cognition has evolved to serve the essential 
needs (motives) of an individual, and bridges the needs (motives) of an 
individual and his or her environments.

Metacognitive control. Metacognition regulates cognition. For need 
fulfillment, metacognitive monitoring and regulation are necessary. They 
help to set goals, to assess progresses, and to adopt or change various 
parameters and strategies (large or small) for goal achievement. The 
importance of metacognition has been well established (see, e.g., Reder, 
1996, and Sun & Mathews, 2012).

1. Simply saying that one chooses actions to maximize rewards or reinforcement is not 
sufficient. It leaves open the question of what determines them.
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For justifying these desiderata (see tables 2.1 and 2.2), more support-
ing arguments and evidence are needed. But before that, an example that 
illustrates how these desiderata might be tied together is in order. The 
example, in a way, also justifies the desiderata above.

2.2.  An Illustration of the Desiderata

According to the framework of Clarion, when an individual is born into 
the world, that is, when an agent is instantiated into the system, little 
information, skill, or knowledge is readily available. For instance, the indi-
vidual comes with no explicit knowledge, either about the self or about 
the world. But the individual does come with evolutionarily hard-wired 
instincts (e.g., reflexes). Moreover, the individual has needs, such as hunger 
and thirst, which constitute innate motives driving actions and reactions. 
The individual certainly has no explicit knowledge of how to meet these 
needs but does have hard-wired instinctual responses, including primitive 
behavioral routines, which may be applied in attempts to satisfy the needs.

The individual is endowed with sensory inputs regarding environmen-
tal states and internal states. Whenever there is a growing physiological 
deficit, an internal change may lead to heightened activation of a motive 
(need). It may therefore lead to a goal to address the need (i.e., to reduce 

Table 2.1. � Fundamental issues relevant to Clarion 
(see Chapter 1 for details).

Ecological-functional perspective
Modularity
Multiplicity of representation
Dynamic interaction

Table 2.2. � Some essential desiderata for Clarion 
(see text for details).

Sequentiality
Routineness
Trial-and-error adaptation
Implicit versus explicit processes
Synergistic interaction
Bottom-up and top-down learning
Procedural versus declarative processes
Motivational and metacognitive control
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the deficit), which may then lead to corresponding actions (based on 
innate behaviors initially). In the process, even the perception of the indi-
vidual might be modulated somewhat so that, for example, it focuses 
more on the perceptual features that are relevant to the pressing needs.

Similar processes happen when there is a growing “deficit” in terms 
of a socially oriented need, such as the need for interaction with others 
(the need for affiliation and belongingness). In such a case, the individual 
may similarly generate a corresponding goal, which in turn leads to cor-
responding actions (initially based on whatever primitive behavioral rep-
ertoire that is available, for example, by crying).

Gradually, with trial and error, the individual learns more and more 
how to meet various needs, in part based on successes or failures in attend-
ing to these needs. The individual learns what actions to perform in what 
situations, in order to fulfill an outstanding need. When an outstanding 
need is fulfilled to some extent, pleasure is felt—a positive reinforcement. 
Based on such reinforcement, the individual learns to associate needs 
with concrete goals and in turn also learns to associate goals with actions 
that best accomplish the goals. Through the trial-and-error process, the 
individual increases competence (developing more effective and more 
complex routines or skills), which helps to deal with similar or more dif-
ficult situations in the future.

In this process, the individual may experience a variety of affect states, 
which facilitate learning and performance of actions: elation when goals 
are accomplished (needs are met and positive reinforcement is received), 
frustration when unable to accomplish goals despite efforts, and anxiety 
when negative consequences (thus negative reinforcement) are expected, 
and so on.

Moreover, gradually, the individual starts to develop explicit (sym-
bolic) knowledge regarding actions (i.e., explicit procedural knowledge), 
beyond implicit associations acquired through trial and error (that is, 
implicit procedural knowledge discussed above). Explicit procedural 
knowledge may be extracted on the basis of already acquired implicit 
procedural knowledge (through “bottom-up learning”). Explicit knowl-
edge in turn enables the individual to reflect on the knowledge and the 
situations, to plan ahead, to communicate the knowledge to others, and so 
on. Thus, implicit and explicit procedural knowledge together may lead 
to more effective coping with the world (i.e., a synergy effect).

Furthermore, even general knowledge that is not directly tied to 
actions (namely, declarative knowledge) may be generated over time. It 
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may be generated on the basis of acquired procedural knowledge (which 
may involve bottom-up learning) or from information provided by oth-
ers (which may involve top-down learning). Such declarative knowledge 
adds more capabilities to the individual.

So, drawing lessons from this scenario, according to the Clarion 
framework, an individual starts small:  there are only minimum initial 
structures. Some of these initial structures have to do with behavioral 
predispositions (e.g., evolutionarily pre-wired instincts and reflexes); 
some others have to do with learning capabilities; yet some others have 
to do with motivation. Together they constitute the genetic and biologi-
cal pre-endowment.

Most of the mental contents within an individual have to be “con-
structed” (learned) during the course of individual ontogenesis. 
Development occurs through interacting with the world (physical and 
sociocultural). It leads to the formation of various implicit, reactive 
behavioral routines (skills), which in turn lead to explicit (symbolic) rep-
resentation. The generation of explicit representation is, to a significant 
extent, determined by implicit mental contents within an individual. Of 
course, there is also another source: sociocultural influence, including 
through symbols employed in a culture.

Overall, the mind of an individual is mostly activity-based, 
action-oriented, and embedded in the world. An individual often inter-
acts with the world in a rather direct and immediate way (Heidegger, 
1927; Dreyfus, 1992), although more explicit, more contemplative, less 
direct ways may develop within the individual.

In Chapter 3, another example will pick up from here, continuing the 
learning processes discussed thus far, adding more details. But now, I will 
explore further the desiderata that were identified and illustrated above 
by examining the relevant empirical literature.

2.3.  Justifying the Desiderata

Here I will not attempt to address all of the desiderata enumer-
ated earlier, but instead will focus on some more controversial ones. 
Some points such as sequentiality, routineness, and trial-and-error 
adaptation have been thoroughly discussed in Sun (2002), and they 
seem almost self-evident by now. These will not be discussed again 
here.
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2.3.1.  Implicit-Explicit Distinction and Synergistic Interaction

To justify the Clarion worldview, I will start by examining in detail the 
distinction between implicit and explicit processes, which is the foun-
dation of the Clarion framework. The theoretical distinction between 
implicit and explicit processes, as well as its ecological-functional signifi-
cance, has been argued in the past in many psychological theories. See, for 
example, Reber (1989), Seger (1994), and Sun (1994, 2002).

First, the distinction of implicit and explicit processes has been empiri-
cally demonstrated in the implicit memory literature (e.g., Roediger, 1990; 
Schacter, 1987). The early work on amnesic patients showed that these 
patients might have intact implicit memory while their explicit memory 
was severely impaired. Warrington and Weiskrantz (1970), for example, 
demonstrated that when using “implicit measures,” amnesic patients’ 
memory was as good as normal subjects; but when using “explicit mea-
sures,” their memory was far worse than normal subjects. The explicit 
measure used included free recall and recognition, while the implicit 
measures used included word-fragment naming and word completion. 
It has been argued that the implicit measures reflected unconscious 
(implicit) processes because amnesic patients were usually unaware that 
they knew the materials (Warrington & Weiskrantz, 1970). Such results 
demonstrating dissociations between implicit and explicit measures have 
been replicated in a variety of circumstances.

Second, Jacoby (e.g., Jacoby, 1983)  demonstrated that implicit and 
explicit measures might be dissociated among normal subjects as well. 
Three study conditions were used: generation of a word from a context, 
reading aloud a word in a meaningful context, and reading aloud a word 
out of context. The explicit measure used was recognition (from a list of 
words), while the implicit measure was perceptual identification (from 
fast presentations of words). The results showed that, using the explicit 
measure, generated words were remembered the best and words read 
out of context were remembered the least. However, using the implicit 
measure, the exact opposite pattern was found. Other dissociations were 
also found from other manipulations (see, e.g., Roediger, 1990; Schacter, 
1987). Toth, Reingold, and Jacoby (1994) devised an inclusion-exclusion 
procedure for assessing implicit and explicit contributions, which also 
provided strong indications of dissociation.

Third, the distinction of implicit and explicit processes has also been 
empirically demonstrated in the implicit learning literature (Reber, 1989; 
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Seger, 1994; Cleeremans et al., 1998). For example, serial reaction time 
tasks involve learning of a repeating sequence, and it was found that there 
was a significant reduction in response time to repeating sequences (com-
pared to random sequences). However, subjects were often unaware that 
a repeating sequence was involved (e.g., Lewicki, Czyzewska, & Hoffman, 
1987). Similarly, dynamic process control tasks involve learning of a rela-
tion between the input and the output variables of a controllable system, 
through interacting with the system. Although subjects often did not rec-
ognize the underlying relations explicitly, they nevertheless reached a cer-
tain level of performance in these tasks (e.g., Berry & Broadbent, 1988). 
In artificial grammar learning tasks, subjects were presented with strings 
of letters that were generated in accordance with a finite state grammar. 
After memorization, subjects recognized new strings that conformed to 
the artificial grammar, although subjects might not be explicitly aware of 
the underlying grammar (except for some fragmentary knowledge; Reber, 
1989). In all, these tasks shared the characteristic of implicit learning 
processes being involved to a significant extent.

Generally speaking, explicit processing may be described mechanisti-
cally as being based on rules in some way, while implicit processing is 
more associative (Sun, 2002). Explicit processing may involve the manip-
ulation of symbols, while implicit processing involves more instantiated 
knowledge that is more holistically associated (Sun, 1994, 2002; Reber, 
1989). While explicit processes require attention, implicit processes 
often do not (Reber, 1989). Explicit processes may compete more for 
resources than implicit processes. Empirical evidence in support of these 
differences can be found in, for example, Reber (1989), Seger (1994), 
and Sun (2002).

Similar distinctions have been proposed by other researchers, based 
on similar or different empirical or theoretical considerations (Grossberg, 
1982; Milner & Goodale, 1995; McClelland, McNaughton, & O’Reilly, 
1995; Erickson & Kruschke, 1998). There have also been many other 
tasks that may be used for demonstrating implicit processes, such as vari-
ous concept learning, reasoning, automatization, and instrumental condi-
tioning tasks (for a review, see Sun, 2002). In particular, it is worth noting 
that in social psychology, there have been a number of dual-process 
models that are roughly based on the coexistence of implicit and explicit 
processes (see, e.g., Chaiken & Trope, 1999). Evans and Frankish (2009) 
included a collection of theories and models based on this kind of dis-
tinction. Taken together, the distinction between explicit and implicit 
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processes may be supported in many ways, although details of some of 
these proposals might be different (or even contradictory to each other 
in some way). Although some researchers disputed the existence of 
implicit processes based on the imperfection and incompleteness of tests 
for explicit knowledge (e.g., Shanks & St. John, 1994), there is an over-
whelming amount of evidence in support of the distinction (see Sun, 
2002 for further arguments).

Now the question is whether these different types of processes 
reside in separate memory stores (memory modules or systems) or 
not. There have been debates in this regard, and differing views exist 
(Roediger, 1990). Squire (1987) proposed that memory be divided 
into declarative and procedural memory, with the former further 
divided into episodic and semantic memory and the latter into 
skills, priming, classical conditioning, and so on. According to Squire 
(1987), declarative memory was explicit while procedural memory 
was implicit. Tulving and Schacter (1990) incorporated some features 
of the one-system view on memory while preserving the separation 
of explicit and implicit memory. They proposed that there should be 
multiple priming systems in the implicit memory so that dissociations 
among different implicit measures could be accounted for. This pro-
posal addressed some objections raised by the proponents of the one-
system view. Sun, Slusarz, and Terry (2005) provided a theoretical 
interpretation of a variety of learning data (related to process control, 
serial reaction time, and other tasks, as mentioned earlier), based on 
the multiple memory stores view.

Work in neuroscience shows some evidence for the existence of distinct 
brain circuits for implicit and explicit processes (i.e., separate memory 
stores). For instance, the work of Schacter (1990), Buckner et al. (1995), 
Posner, DiGirolamo, and Fernandez-Duque (1997), Goel, Bruchel, Frith, 
and Dolan (2000), Lieberman (2009), and so on provided some such 
indications. There have also been arguments that implicit memory repre-
sents a phylogenetically older system. This system may be more primitive 
but yet powerful on behavior.

However, as pointed out by Hintzman (1990), “once the model has 
been spelled out, it makes little difference whether its components are 
called systems, modules, processes, or something else; the explanatory 
burden is carried by the nature of the proposed mechanisms and their 
interactions, not by what they are called” (p.121). The debates regarding 
whether dissociations and distinctions of various kinds mentioned above 
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point to different processes or difference systems should be seen in this 
light. Sun (2012) provided further arguments in this regard.

In relation to the ecological-functional perspective articulated 
before, it should be noted that there have been some indications that 
explicit processes are evolutionarily newer than implicit processes 
(Reber, 1989). But the juxtaposition of the two is functional. It is func-
tional and thus evolutionarily advantageous, especially because the 
interaction between the two types of processes may lead to synergy 
in the form of better, more accurate, and/or faster performance in a 
variety of circumstances (as I have extensively argued in prior work). 
Further discussions of synergy from the interaction, both in an empiri-
cal sense and in a computational sense, can be found in Section 2.5, as 
well as in Sun (2002), Sun, Slusarz, and Terry (2005), Helie and Sun 
(2010), and so on. Synergy, although not universal (i.e., not present 
in all circumstances), has been amply demonstrated in a wide variety 
of situations. Therefore, the division of implicit and explicit processes 
may conceivably be favored by natural selection. In addition, the sepa-
ration of the two types of information, knowledge, mechanisms, and 
processes enables the adoption of each type as appropriate for differ-
ent types of situations. For example, highly complex situations may be 
better handled by implicit processes, while explicit processes operating 
in a more precise way may be better for more clear-cut situations (Sun, 
2002; Sun & Mathews, 2005; Lane, Mathews, Sallas, Prattini, & Sun, 
2008). Furthermore, the division also enables parallel applications of 
the two types for different purposes simultaneously. So, putting every-
thing together, the separation and the interaction of these two types of 
processes are psychologically advantageous.

2.3.2.  Separation of the Implicit-Explicit and  
the Procedural-Declarative Distinction

I now turn to the distinction between procedural and declarative pro-
cesses (i.e., action-centered and non-action-centered processes in the 
action-centered and the non-action-centered subsystem, respectively, as 
will be explained later) and its orthogonality with the implicit-explicit 
distinction (which might be a more controversial point).

The distinction between procedural and declarative processes has 
been advocated by Anderson (1983), Squire (1987), and many oth-
ers (although some details vary across different proposals). Procedural 
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processes involve knowledge that is specifically concerned with actions 
(and action sequences) in various circumstances, that is, how to do things. 
Declarative processes involve knowledge that is not specifically con-
cerned with actions but more about objects, persons, events, and so on, 
in more generic terms (i.e., the “what”, not the “how”). The major factor 
that distinguishes procedural and declarative processes seems to be the 
action-centeredness or the lack thereof—in other words, the procedural 
versus nonprocedural nature.

Evidence in support of this distinction includes many studies of skill 
acquisition in both high- and low-level skill domains (e.g., Kanfer & 
Ackerman, 1989; Anderson & Lebiere, 1998; see also Proctor & Dutta, 
1995). These studies included both experimental work on human sub-
jects, as well as modeling/simulation and other work aimed at theoretical 
interpretations. They showed that this distinction provides useful insight 
in interpreting a range of data and phenomena. For instance, Anderson 
(1983) used this distinction to account for changes in performance result-
ing from extensive practice, based on data from a variety of skill-learning 
studies. According to Anderson, the initial stage of skill development is 
characterized by the acquisition of declarative knowledge. During this 
stage, the learner must explicitly attend to this knowledge in order to per-
form a task. Through practice, procedures develop that may accomplish 
the task without declarative knowledge.

Let us examine the relation between the procedural-declarative 
distinction and the implicit-explicit distinction. In Anderson (1983), 
declarative knowledge was assumed to be consciously accessible (i.e., 
explicit):  subjects could report on and manipulate such knowledge. 
Procedural knowledge was assumed not:  it led to actions without 
explicit accessibility. Thus, in Anderson (1983), the two dichotomies 
were merged into one.

On the other hand, in ACT-R as described by Anderson and Lebiere 
(1998), each individual piece of knowledge, be it procedural or declara-
tive, involved both subsymbolic and symbolic representation. Symbolic 
representation was used for denoting semantic labels and structural com-
ponents of each concept, while subsymbolic representation was used for 
expressing its activation and other numerical factors. One interpretation 
was that the symbolic representation was explicit while the subsymbolic 
representation was implicit (either for declarative knowledge, or for both 
declarative and procedural knowledge). This view constituted another 
take on the relationship between the two dichotomies.
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According to the first view above, the difference in action-centered-
ness (i.e., the procedural versus nonprocedural nature) seems the main 
factor in distinguishing the two types of knowledge, while accessibility 
(i.e., implicitness versus explicitness) is a secondary factor. I believe that 
this view unnecessarily confounds two aspects: action-centeredness and 
accessibility, and can be made clearer by separating the two dimensions. 
Action-centeredness does not necessarily go with implicitness (inacces-
sibility), as shown by, for example, the experiments of Stanley, Mathews, 
Buss, and Kotler-Cope (1989), Willingham, Nissen, and Bullemer (1989), 
or Sun et al. (2001). Likewise, non-action-centeredness does not neces-
sarily go with explicitness (accessibility) either, as shown by conceptual 
priming and other implicit memory experiments (e.g., Schacter, 1987; 
Moscovitch & Umilta, 1991) or by experiments demonstrating implicit 
information (e.g., Hasher & Zacks, 1979; Nisbett & Wilson, 1977). Some 
might choose to group all implicit memory (including semantic, associa-
tive, and conceptual priming) under procedural memory, but such views 
confound the notion of “procedural” and thus are not adopted here. In 
light of the above, these two dimensions need to be separated.

The alternative view that each individual piece of knowledge (either 
procedural or declarative, or both) involves both implicit and explicit 
parts is also problematic. Such a view entails a close coupling between 
implicit and explicit processes, which is highly questionable. The under-
lying assumption that every piece of knowledge (either declarative or 
procedural, or both) has an explicit part contradicts the fact that some 
knowledge may be completely implicit (e.g., Lewicki et  al., 1987; 
Cleeremans, Destrebecqz, & Boyer 1998). This raises the question of 
whether such a tight coupling or a more separate organization, for exam-
ple, having these two types of knowledge in separate memory stores, 
makes better sense.

Squire (1987) proposed that memory should be divided into declara-
tive and procedural memory, with the former further divided into episodic 
(working) and semantic (reference) memory and the latter into skills, 
priming, classical conditioning, and other memory stores; declarative 
memory was explicit while procedural memory was implicit. However, 
this view would have trouble accounting for implicit declarative mem-
ory (which was clearly not procedural; e.g., conceptually driven priming; 
Roediger, 1990). Explicit procedural memory was also not accounted for 
in this view (Sun, Slusarz, & Terry, 2005). This view unnecessarily con-
founded the notions of “procedural” and “declarative.”
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As a more natural, more intuitively appealing alternative to those views 
above, I proposed the separation of the two dichotomies—treating them 
as logically separate from (i.e., orthogonal to) each other (Sun, Zhang, 
& Mathews, 2009; Sun, 2012). Arguments in favor of this view can be 
found in the literature. For example, Willingham (1998) argued based on 
empirical data that motor skills (a type of procedural process) consisted 
of both implicit and explicit processes. Rosenbaum et al. (2001) argued 
based on empirical data that intellectual skills and perceptual-motor skills 
alike were made up of implicit and explicit knowledge. In other words, 
procedural (action-centered) processes, ranging from high-level intellec-
tual skills to perceptual-motor skills, may be divided into implicit and 
explicit processes.

Similarly, declarative (non-action-centered) processes may also be 
divided (Tulving & Schacter, 1990). There is no reason to believe that all 
implicit knowledge is procedural (as implied by some of the aforemen-
tioned views). Some implicit knowledge may be declarative (i.e., non-
action-centered). In terms of functional consideration, having separate 
implicit and explicit declarative memory stores may allow different tasks 
to be tackled simultaneously in these separate memory stores (e.g., while 
thinking explicitly about one task, letting intuition work on another). Sun 
(1994) and Sun and Zhang (2006) showed that through dividing declar-
ative memory into explicit and implicit modules, some reasoning data 
could be naturally accounted for. Furthermore, Helie and Sun (2010) 
showed that this division accounted well for creative problem solving 
(which otherwise would be difficult to account for).

On this view, procedural and declarative knowledge reside separately 
in procedural and declarative memory stores respectively, which are 
representationally different (Sun et al., 2009; Sun, 2012). Procedural 
knowledge (e.g., in procedural memory located in the action-centered 
subsystem as will be detailed later) may be represented by either action 
rules (explicit) or action neural networks (implicit), both of which are 
centered on situation-action mappings. Declarative knowledge (e.g., in 
declarative memory located in the non-action-centered subsystem as will 
be detailed later), on the other hand, is represented by either associative 
rules (explicit) or associative neural networks (implicit), in both of which 
knowledge is represented in a non-action-centered way.

As mentioned before, in a similar fashion but orthogonally, implicit-
ness/explicitness is also distinguished by representation. Implicit knowl-
edge may be represented using connectionist distributed representation 
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(such as in a hidden layer of a Backpropagation network), which is 
less accessible to an individual possessing it, relatively speaking (Sun, 
1999, 2002), while explicit knowledge may be represented using sym-
bolic-localist representation, which is relatively more accessible (Kirsh, 
1990). Implicit and explicit knowledge thus reside in different mem-
ory modules with different representations. Moreover, in this way, the 
two dichotomies are separate from each other: that is, there are both 
implicit and explicit procedural (action-centered) memory stores, and 
both implicit and explicit declarative (non-action-centered) memory 
stores.

This four-way division is functional according to the ecological-
functional perspective, because of (1) the division of labor between 
explicit and implicit memory (one for storing explicit knowledge 
that is more crisp and the other for storing implicit knowledge that 
is more complex), and (2) the division of labor between declarative 
and procedural memory (one for storing general knowledge and the 
other for storing knowledge oriented specifically toward action deci-
sion making). The divisions of labor led to both the separation and 
the interaction of these different types of knowledge. The separation 
ensures that different types of knowledge may be found separately 
and thus relatively easily, while the interaction helps to bring together 
different types of knowledge when needed (Klein, Cosmides, Tooby, 
& Chance, 2002; Sun & Zhang, 2006; Sun et al., 2007, 2009), to 
ensure performance and synergy as mentioned before and as will be 
discussed later (Sun, Slusarz, & Terry, 2005). Furthermore, the sepa-
ration allows different processes to work on different tasks possibly 
simultaneously and thus enhances the overall functionality. Thus, 
the four-way division is in keeping with the ecological-functional 
considerations.

The orthogonality of the procedural-declarative distinction and the 
implicit-explicit distinction will be further argued for later in Chapter 3 
when addressing the issue of semantic versus episodic memory.

2.3.3.  Bottom-Up and Top-Down Learning

The interaction between implicit and explicit processes during learning 
includes top-down learning (explicit learning first and implicit later), 
bottom-up learning (implicit learning first and explicit later), and parallel 
learning (simultaneous implicit and explicit learning).
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However, bottom-up learning may be more essential to everyday 
activities (Sun et  al., 2001). There are various indications and argu-
ments for bottom-up learning, including (1) philosophical arguments, 
such as Heidegger (1927) and Dewey (1958), in which the primacy of 
direct interaction with the world (in a mostly implicit way) is empha-
sized, and (2) psychological evidence of the acquisition and the delayed 
explication of implicit knowledge. Let us look into some psychological 
findings below.

It has been found empirically that in skill learning, subjects’ ability to 
verbalize is often independent of their performance (Berry & Broadbent, 
1988). Furthermore, performance typically improves earlier than explicit 
knowledge that can be verbalized by subjects (Stanley et al., 1989). For 
instance, in a process control task, although the performance of sub-
jects quickly rose to a high level, their verbal knowledge improved more 
slowly: subjects could not provide usable verbal knowledge until near 
the end of their training (Stanley et al., 1989). This phenomenon has 
also been demonstrated by Reber and Lewis (1977) in artificial grammar 
learning. A study of bottom-up learning was carried out by Sun et al. 
(2001) using a complex minefield navigation task. In all of these tasks, 
it appears easier to acquire implicit skills than explicit knowledge and 
hence the delay in the development of explicit knowledge. The delay 
indicates that explicit learning may be triggered by implicit learning. 
Explicit knowledge may be in a way “extracted” from implicit skills. 
(However, in some other tasks, explicit and implicit knowledge appear 
to be more closely associated.)

In the context of discovery tasks, Bowers, Regehr, Balthazard, and 
Parker (1990) showed evidence of the explication of implicit knowledge. 
When subjects were given patterns to complete, they showed implicit 
recognition of what a proper completion might be, although they did not 
have explicit recognition of a correct completion. The implicit recognition 
improved over time until an explicit recognition was achieved. Siegler 
and Stern (1998) also showed in an arithmetic problem that children’s 
strategy changes often occurred several trials earlier than their explicit 
recognition of strategy changes. Stanley et  al. (1989), Seger (1994), 
and Sun et al. (2001) suggested that because explicit knowledge lagged 
behind but improved along with implicit knowledge, explicit knowledge 
could be viewed as obtained from implicit knowledge.

Several developmental theorists considered a similar delayed expli-
cation process. Karmiloff-Smith (1986) suggested that developmental 
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changes involved “representational redescription.” In children, first 
low-level implicit representations of stimuli were formed. Then when 
more knowledge was accumulated and stable behavior patterns devel-
oped, it was through a redescription process that more abstract represen-
tations were formed that transformed low-level representations and made 
them more explicit. This redescription process was repeated a number 
of times, and a verbal form of representation emerged. Mandler (1992) 
proposed another kind of redescription. From perceptual stimuli, rela-
tively abstract “image-schemas” were extracted that coded several basic 
types of movements. Then, on top of such image-schemas, concepts were 
formed using information therein. In a similar vein, Keil (1989) viewed 
conceptual representations as composed of an associative component and 
a theory component. Developmentally, there was a shift from associative 
to theory-based representations. These ideas and the empirical data on 
which they were based testify to the ubiquity of the implicit-to-explicit 
transition.

In the other direction, top-down learning usually occurs when explicit 
knowledge is available from external sources, or when it is relatively easy 
to learn such knowledge (compared with learning corresponding implicit 
knowledge). Explicit knowledge, directly received from external sources 
or otherwise learned, is then assimilated into an implicit form. For exam-
ple, learning to play chess would be a good illustration. One often first 
learns the basic rules of chess and some essential guidelines as to what to 
do in prototypical situations. One may then develop more complex and 
more nuanced knowledge that may be largely implicit. See, for example, 
detailed discussions in Dreyfus and Dreyfus (1987) on such a process.

2.3.4.  Motivational and Metacognitive Control

Motivational and metacognitive control captures important elements in 
the interaction between an individual and his or her physical and social 
worlds. Motivation and metacognition interact closely with cognition (in 
its narrow sense; Simon, 1967). For instance, when interacting with the 
world, an individual must attend to his or her own basic needs (such as 
hunger and thirst) and must also know to avoid danger and so on (Toates, 
1986). Actions are chosen in accordance with the individual’s needs for 
survival and functioning in the world. In other words, innate motives 
must be there (Reiss, 2004). On that basis, specific goals may be chosen. 
The individual must be able to focus activities with respect to specific 
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goals. However, the individual needs to be able to give up some goals 
when necessary (Toates, 1986). In order to address these considerations, 
motivational and metacognitive processes are necessary.

Without motivational mechanisms and processes, an individual would 
be literally aimless. One would have to rely solely on external “feed-
back” (reinforcement, reward, punishment, and so on) in order to learn. 
But such external feedback begs the question of how it may be obtained 
in the real world in general (aside from a few simple cases). With a more 
sophisticated motivational mechanism incorporating innate motives, 
feedback may be generated internally in response to the condition of 
the world. An individual may be able to learn on that basis. A sophis-
ticated motivational mechanism is also important for facilitating social 
interaction (with innate, socially oriented motives; Sun, 2006).

Similarly, without metacognitive monitoring and regulation, an indi-
vidual might be blindly single minded. One might not be able to flex-
ibly adjust behavior. The ability to reflect on and to modify dynamically 
one’s own behaviors is important to function effectively in complex 
environments (Reder, 1996; Mazzoni & Nelson, 1998; Sun & Mathews, 
2012). Social interaction is made possible by the (at least partially innate) 
ability of individuals to reflect on and to modify their own behaviors. 
Metacognition enables individuals to interact with each other more 
effectively, for example, by avoiding social impasses—impasses that are 
created because of the radically incompatible behaviors of different indi-
viduals (Sun, 2006).

The duality of representation is present in the motivational and 
metacognitive processes, as in other processes. But, the questions of 
exactly how internal needs and motives are represented, how they 
affect performance, and how one exerts control over one’s own cogni-
tive processes will be addressed in subsequent chapters.

2.4.  Four Subsystems of Clarion

2.4.1.  Overview of the Subsystems

Based on the desiderata (and their justifications) discussed above, Clarion 
was conceived as a comprehensive cognitive architecture consisting of a 
number of distinct but interacting subsystems. These subsystems capture 
distinct types of representational contents discussed in these desiderata 
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above, in a functionally somewhat separate but mutually dependent and 
dynamically interacting fashion. These subsystems include

•	 the action-centered subsystem (the ACS)
•	 the non-action-centered subsystem (the NACS)
•	 the motivational subsystem (the MS)
•	 the metacognitive subsystem (the MCS)

See Figure 2.1 for a sketch of these four subsystems. Clearly, these sub-
systems correspond to the types of representational contents enumerated 
in Chapter 1 and further discussed above.

The respective roles of these subsystems may be briefly summed up 
as follows:

•	 The role of the ACS is to control actions with procedural 
knowledge, regardless of whether the actions are for external 
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Figure 2.1.  The subsystems of the Clarion cognitive architecture. The major 
information flows are shown with arrows. ACS stands for the action-centered 
subsystem. NACS stands for the non-action-centered subsystem. MS stands 
for the motivational subsystem. MCS stands for the metacognitive subsystem. 
See the text for more explanations. See chapters 3 and 4 for technical details 
of the subsystems.
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physical movements or internal mental operations (e.g., “execu-
tive control”).

•	 The role of the NACS is to maintain general (i.e., declarative) 
knowledge for retrieval of appropriate information in different 
circumstances and to perform inferences on that basis (ulti-
mately in the service of action decision making by the ACS).

•	 The role of the MS is to provide underlying motivations for 
perception, action, and cognition.

•	 The role of the MCS is to monitor and regulate the operations 
of the other subsystems on the fly.

Each of the subsystems serves a unique function, and together they form 
a functioning cognitive architecture.

Each of these subsystems consists of two “levels” of representation—
that is, a dual-representational structure as discussed earlier (and exten-
sively argued for in Sun, 2002, and Sun, Slusarz, & Terry, 2005). Generally 
speaking, in each subsystem, the top “level” encodes explicit knowledge, 
using symbolic-localist representations, and the bottom “level” encodes 
implicit knowledge, using connectionist distributed representations 
(more on this in Chapter 3; Sun, 1994).

The relatively inaccessible nature of implicit knowledge at the bot-
tom level (i.e., in implicit memory) may be captured computationally 
by subsymbolic, distributed representation. This is because distributed 
representational units (e.g., in a hidden layer of a Backpropagation net-
work) are capable of accomplishing computations but are subsymbolic 
and generally not individually meaningful (Rumelhart et al., 1986; Sun, 
1994). This characteristic of distributed representation, which renders the 
representational form less accessible computationally, accords well with 
the relative inaccessibility of implicit knowledge in a phenomenological 
sense (Reber, 1989; Seger, 1994). Note that phenomenological accessi-
bility refers to the direct and immediate availability of mental content 
for the major operations that are responsible for, or concomitant with, 
consciousness, such as introspection, higher-order thoughts, and verbal 
reporting (Sun, 1999).

In contrast, explicit knowledge at the top level (in explicit memory) 
may be captured in computational modeling by symbolic or localist repre-
sentation, in which each unit is more easily interpretable and has a clearer 
conceptual meaning. This computational characteristic of symbolic or 
localist representation captures the phenomenological characteristic 
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of explicit knowledge being more accessible and more manipulatable 
(Sun, 1994).

The dichotomous difference in the representations of the two dif-
ferent types of knowledge leads naturally to a two-level structuring 
whereby each level uses one kind of representation and captures one 
corresponding kind of knowledge, memory, and process (implicit or 
explicit).

The two levels interact, for example, by cooperating in action decision 
making, through an integration of the action recommendations from the 
two levels respectively, as well as by cooperating in learning through a 
bottom-up and a top-down learning process (more in Chapter 3).

Below, I will briefly sketch the working of these subsystems, to give a 
general idea about each subsystem, without elaboration and without fur-
ther justifications. Details, including technical specifics and justifications, 
will follow in the next two chapters.

2.4.2.  The Action-Centered Subsystem

The action-centered subsystem (the ACS) is the most important part of 
Clarion. The ACS controls actions with procedural knowledge. That is, 
the ACS embodies procedural processes.

Within the ACS, the process for action decision making is essentially 
as follows (Sun, 2002):

Observing the current state of the world (the observable input 
state), the two levels of processes within the ACS (implicit and 
explicit) make their decisions in accordance with their respective 
knowledge, and their outcomes are integrated. Thus, a final selection 
of an action is made and the action is then performed. The action 
changes the world in some way. Comparing the changed input 
state with the previous input state, learning occurs. The cycle then 
repeats itself.

In the bottom level of the ACS, implicit reactive routines are formed. 
An action has a value that is an evaluation of the overall “quality” of the 
action in a given state. This value may be the cumulative reinforcement 
that can be received (see Chapter 3). The state may include the chosen 
goal. In any state, an action may be selected based on the values of all 
possible actions, for example, by choosing the action with the highest 
value.
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To acquire the values, various learning algorithms may be used (when 
the values are not innate), especially reinforcement learning algorithms 
implemented in neural networks with subsymbolic representation (Sun & 
Peterson, 1998). A reinforcement learning algorithm (such as Q-learning) 
may compare the values of successive actions and adjusts a value func-
tion on that basis (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). 
Through gradual learning, the bottom level of the ACS develops implicit 
reactive routines (implicit sequential reactive skills). (Details will be dis-
cussed in Chapter 3.)

The bottom level of the ACS is modular; that is, a number of rela-
tively small neural networks (e.g., Backpropagation networks; Rumelhart 
et  al., 1986)  coexist, each of which is adapted to specific modalities, 
tasks, or groups of input stimuli. While some of these may be innate, oth-
ers learn through interaction with the world. This is consistent with the 
modularity hypothesis that much processing is done by specialized and 
(to some extent) encapsulated processors (e.g., Fodor, 1983, as discussed 
in Chapter 1).

In the top level of the ACS, explicit knowledge is captured in the 
form of individual nodes (representing concepts) and links connecting 
them (representing rules). In Clarion, concepts are generally “redun-
dantly” represented:  denoted by a unitary (localist) representation at 
the top level as well as specified through multiple (micro)features at 
the bottom level (i.e., through distributed representation). At the top 
level, a single node is set up to represent a concept, known as a chunk 
node, which is specifically for representing that concept. The chunk 
node connects to its corresponding multiple (micro)feature nodes (in 
a distributed representation) at the bottom level. Together they consti-
tute a chunk: that is, the representation of a concept. At the top level of 
the ACS, action rules are represented by directed links from one chunk 
node (the condition chunk node) to another (the conclusion or action 
chunk node).

There are many ways in which explicit knowledge at the top level 
may be learned, including independent hypothesis-testing learning and 
bottom-up learning (as touched upon before). Explicit representation at 
the top level can also be assimilated into implicit reactive routines at the 
bottom level through top-down learning. Details of learning will be dis-
cussed in Chapter 3.

Note that the term “rule” has a very specific meaning here. It denotes 
explicit encoding of knowledge, in the form of explicit association from 
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one explicit concept to another, where “explicit” refers to direct com-
putational accessibility. As outlined before, in my theoretical interpre-
tation, explicit representation amounts to symbolic-localist encoding 
(Sun, 1994, 2002). This notion of “rule” is not necessarily relevant to 
the philosophical discourses on rule following and related issues.

Note also that the term “(micro)feature” is used to indicate that, 
in a distributed representation, basic elements of the representation 
may or may not be interpretable; that is, they may or may not have 
clear conceptual meanings. Generally, in the connectionist literature, 
the term “microfeature” is used to denote features that are not indi-
vidually meaningful but together capture contents of concepts. Here 
the parenthesis is added to suggest that it may or may not have this 
characteristic.

2.4.3.  The Non-Action-Centered Subsystem

The non-action-centered subsystem (the NACS) is for representing 
declarative knowledge and for performing declarative memory retrievals 
and inferences of various kinds.

At the bottom level of the NACS, implicit non-action-centered knowl-
edge is encoded by “associative memory” networks with distributed rep-
resentation. An association is formed by mapping an input to an output. 
For instance, Backpropagation networks or Hopfield networks may be 
used to establish associations (Rumelhard et al., 1986).

On the other hand, at the top level of the NACS, explicit 
non-action-centered knowledge is encoded. A  single node is set up in 
the top level to represent a concept, known as a chunk node (a local-
ist representation). The chunk node at the top level connects to its cor-
responding (micro)feature nodes (i.e., distributed representation) in the 
bottom level. Additionally, at the top level of the NACS, links between 
chunk nodes encode explicit associations between concepts, known as 
associative rules.

In addition to applying associative rules, similarity-based reason-
ing may be automatically carried out within the NACS through the 
interaction of the two levels (i.e., through cross-level links and the 
resulting top-down and bottom-up activation flows; more on this in 
Chapter 3).

Within the NACS, there exists the distinction between semantic mem-
ory and episodic memory. This distinction has been fairly well established 
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(see, e.g., Tulving, 1985). Semantic knowledge (in the semantic memory 
of the NACS) is not tied to specific experiences, although it might be a 
result of past experiences (see Chapter 3). In contrast, episodic knowl-
edge (in the episodic memory of the NACS) is directly tied to specific 
past experiences, with specific episodic information included as part of 
the encoding.

As in the ACS, top-down or bottom-up learning may take place in the 
NACS as well, either to extract explicit knowledge at the top level from 
implicit knowledge in the bottom level or to assimilate explicit knowl-
edge of the top level into implicit knowledge at the bottom level.

The NACS is normally under the control of the ACS, through its 
actions. Clarion embodies the belief that cognition-psychology is activ-
ity-based, action-oriented, and embedded in the world (as indicated by 
the desiderata earlier). Therefore, one overarching principle in Clarion is: 
action first and reasoning in the service of action. Furthermore, executive 
function is embodied in part by the ACS, which is thus responsible for 
controlling both internal actions and external actions (at a high level at 
least). Thus, in Clarion, the ACS directs the NACS, in addition to decid-
ing on external actions.2

2.4.4.  The Motivational Subsystem

An individual’s behavior is normally far from being random. It may 
be traced to deep-rooted needs (motives), either innate or acquired 
(Tolman, 1932; Murray, 1938; Maslow, 1943; Toates, 1986; Weiner, 1992; 
Masmoudi, Dai, & Naceur, 2012). The motivational subsystem (the MS) 
is thus a necessary part of a psychologically realistic cognitive architec-
ture, necessary for proper psychological functioning of an individual.

The MS of Clarion is centered on basic human motives, termed drives, 
and their interactions and competitions (Sun, 2009), which lead to spe-
cific goals and in turn to actions that accomplish goals. So the MS is con-
cerned with why an individual does what he or she does. Simply saying 
that one chooses actions to maximize gains, rewards, or payoffs leaves open 

2. Note that the ACS often makes fairly “high-level” external action decisions, which 
do not involve details of motor control; for example, “I should move to the right side to 
avoid the speeding car.” Internal actions may be decided similarly; for example, “I don’t 
know which action to take, so let me think about it” (i.e., applying the NACS). Therefore, 
at a “high level,” internal and external action decisions are similarly made. Both are con-
trolled by the ACS.
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the question of what determines these things. Through the MS, Clarion 
addresses the essential human motives (drives), formed by a long evolu-
tionary history, especially in relation to survival and continuation, as well as 
functioning in the social and physical world. These basic motives (drives) 
have been explored in social psychology and psychology of motivation 
(e.g., Murray, 1938; Maslow, 1943; Weiner, 1992).

Among these drives, low-level drives are concerned mostly with physi-
ological needs, such as hunger, thirst, physical danger, and so on. High-
level drives are more socially oriented. Some of these drives are primary, 
in the sense of being evolutionarily “hard-wired.” Low-level primary 
drives include hunger, thirst, and so on. High-level primary drives include, 
for example, seeking social status, following social code, maintaining fair-
ness, and so on (see Chapter 4). Although such primary drives are rela-
tively unalterable, there are also “derived” drives, which are secondary, 
more changeable, and acquired mostly in the process of satisfying primary 
drives (Sun, 2009).

Like dual representations in the other subsystems, dual motivational 
representation is in place in the MS (Tolman, 1932; Murray, 1938; Deci, 
1980; Sun, 2009). Beyond drives, explicit goals are also important, for 
instance, to the working of the ACS. Explicit goals (e.g., find food) may 
be generated based on internal drive activation (e.g., a high activation of 
the hunger drive).

2.4.5.  The Metacognitive Subsystem

The existence of a variety of drives and goals that they give rise to leads 
to the need for metacognitive regulation and control. The metacogni-
tive subsystem (the MCS) of Clarion is closely tied to the MS. The MCS 
monitors and regulates cognitive processes based on information from 
the MS as well as from other sources.

In the MCS, regulation and control may be in the forms of setting 
goals (for the ACS) based on drive activation, choosing explicit or implicit 
processes or their combination thereof (for the ACS), filtering input and 
output information (for the ACS or the NACS), choosing learning or 
reasoning methods, interrupting and changing ongoing processes, setting 
essential parameters, and so on. Regulation and control can also be carried 
out through providing reinforcement for reinforcement learning within 
the ACS. All of the functions above may be performed on the basis of 
the MS.
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As argued by, for example, Reder (1996) and Sun and Mathews 
(2012), metacognition includes both implicit and explicit processes. The 
MCS thus also includes two levels: the top level and the bottom level. 
The bottom level is implicit while the top level is explicit, consistent with 
the overall structure of Clarion (Sun & Mathews, 2012).

2.4.6.  Parameters of the Subsystems

The stable structures of these subsystems and their stable interactions 
(as identified above), as well as the relatively stable parameters of these 
subsystems (to be identified later in subsequent chapters), make the sys-
tem behave in a relatively stable and predictable way. They help to cap-
ture the (relatively) stable characteristics of an individual (including, e.g., 
“personality”).

With adjustable parameters (as will be identified later), different char-
acteristics of different individuals (i.e., individual differences) may also be 
captured. Generally speaking, individual differences as captured by dif-
ferent parameters in the subsystems might be attributed to two sources. 
They may be attributed, in part, to innate (in-born, hardwired) differ-
ences (due to biological, including genetic, factors) but also partly to dif-
ferent individual experiences (including different individual experiences 
of sociocultural influences). Thus, some parameters tend to be fixed, 
while others are subject to “tuning” to various extents through experi-
ences (especially during ontogenesis).

Note that for fixed parameters within these subsystems, their (default) 
values are discussed in the companion technical book (see also various 
technical papers on Clarion). For adjustable parameters, it is important to 
consider them in broader contexts. These broader contexts, including the 
important aspect of learning, will be addressed in chapters 3 and 4 and 
examples shown in chapters 5, 6, and 7.

2.5.  Accounting for Synergy within the Subsystems of Clarion

Two important predictions from the Clarion framework outlined 
above were the synergy effects between implicit and explicit proce-
dural (action-centered) processes within the ACS, and the synergy 
effects between implicit and explicit declarative (non-action-centered) 
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processes within the NACS. These two predictions have been validated 
through examining empirical literature and through simulation studies 
(Sun, Slusarz, & Terry, 2005; Sun & Zhang, 2006; Helie & Sun, 2010). I 
briefly examine these two points below.

2.5.1.  Accounting for Synergy within the ACS

The Clarion framework predicted that there should be synergy between 
implicit and explicit procedural (action-centered) processes, resulting 
from their interaction in learning and in action decision making (Sun, 
Slusarz, & Terry, 2005). From the ecological-functional perspective, there 
should be no surprise that the interaction of these two types of processes 
may be synergistic. One naturally expects that this division should be 
functional and thus expect some benefit. Judging from the empirical liter-
ature, such a synergy may show up, under right circumstances, by speed-
ing up skill learning, improving skill performance, and facilitating transfer 
of learned skills (Sun, Slusarz, & Terry, 2005; Sun, 2012).

There is some empirical evidence that can be interpreted in support of 
this prediction. In terms of speeding up learning, Willingham et al. (1989) 
found that those subjects in serial reaction time tasks who acquired more 
explicit knowledge appeared to learn faster. This suggested that their 
explicit procedural processes supplemented their implicit procedural 
processes. Stanley et al. (1989) reported that in a process control task, 
subjects’ learning improved if they were asked to generate verbal instruc-
tions for others during learning. That is, an individual was able to speed 
up his or her own learning through an explication process that generated 
explicit knowledge (in addition to implicit knowledge). Sun et al. (2001) 
showed a similar effect of verbalization in a minefield navigation task and 
Reber and Allen (1978) in an artificial grammar learning task. Mathews et 
al. (1989) showed that a better result could be attained if a proper mix of 
implicit and explicit learning was used (in their case, first implicit learn-
ing and later explicit learning were encouraged).

Furthermore, in terms of skill performance, Stanley et al. (1989) 
found that subjects who verbalized while performing process con-
trol tasks were able to attain a higher level of performance than 
those who did not verbalize, likely because the requirement that 
they verbalized prompted the formation and utilization of explicit 
knowledge, which supplemented their implicit knowledge. Sun et 
al. (2001) also showed that verbalizing subjects were able to attain a  

 



Essential Structures of the Mind 47

higher level of performance in a minefield navigation task. Squire and 
Frambach (1990) reported that initially amnesic and normal subjects 
performed comparably in a process control task and equally lacked 
explicit knowledge. However, with more training, normal subjects 
achieved better performance than amnesic subjects and also better 
scores on explicit knowledge measures, which pointed to the possibility 
that it was because normal subjects were able to learn better explicit 
knowledge that they achieved better performance. Consistent with 
this interpretation, Estes (1986) suggested that implicit learning alone 
could not attain optimal levels of performance. Even in high-level skill 
acquisition domains, similar effects were observed. Gick and Holyoak 
(1980) found that good problem solvers could better state explicit rules 
that described their actions in problem solving. Bower and King (1967) 
showed that verbalization improved performance in classification rule 
learning. Gagne and Smith (1962) showed the same effect of verbaliza-
tion in learning to solve Tower of Hanoi.

In terms of facilitating transfer of learned skills, Willingham et  al. 
(1989) provided some suggestive evidence that explicit knowledge facili-
tated transfer. They reported that (1)  subjects who acquired explicit 
knowledge in a training task tended to have faster response times in a 
transfer task; (2) these subjects were also more likely to acquire explicit 
knowledge in the transfer task; and (3)  subjects who acquired explicit 
knowledge responded more slowly when the transfer task was unrelated 
to the training task (suggesting that the explicit knowledge of the previ-
ous task might have interfered with the performance of the transfer task). 
Sun et  al. (2001) showed some similar effects. In high-level domains, 
Ahlum-Heath and DiVesta (1986) found that the subjects who were 
required to verbalize while solving Tower of Hanoi performed better on a 
transfer task after training than those who were not required to verbalize.

Of course, synergy effects depend on contexts; they are not universal 
(Sun, 2002). Under some circumstances, explicit processes might even 
hurt learning and performance (Sun et al., 2001). Even so, it should be 
recognized that explicit processes serve important cognitive functions as 
discussed above. Explicit processes also serve additional functions, such as 
facilitating verbal communication, or acting as gatekeepers (e.g., enabling 
conscious veto, as suggested by Libet, 1985).

It has been demonstrated through simulation (e.g., by Sun, Slusarz, & 
Terry, 2005; Sun et al., 2007) that Clarion can computationally account 
for the synergy effects as described above, with the interaction between 
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implicit and explicit procedural processes within the ACS. The synergy 
effects may be discerned, in various tasks, through comparing different 
conditions, such as comparing the verbalization condition and the non-
verbalization condition (whereby the verbalization condition encour-
ages explicit processes), or comparing the dual-task condition and the 
single-task condition (whereby the dual-task condition discourages 
explicit processes). Simulations will be presented in chapters 5, 6, and 7 
(see also Sun, Slusarz, & Terry, 2005).

2.5.2.  Accounting for Synergy within the NACS

Just like the synergy effects between implicit and explicit procedural pro-
cesses, the Clarion framework predicted that there should also be synergy 
effects between implicit and explicit declarative (non-action-centered) 
processes, resulting from their interaction (Sun and Zhang, 2006). Such 
synergy effects are expected from the ecological-functional perspec-
tive: Like other divisions of processes, knowledge, and memory, this divi-
sion should be functional also (e.g., as argued in Sun, 2012).

Let us examine some implicit learning experiments (Reber, 1989). 
Recall that in process control experiments, synergistic results were found 
between implicit and explicit procedural processes (see the previous 
subsection). Domangue, Mathews, Sun, Roussel, and Guidry (2004) 
investigated the effects of similar training variables in artificial gram-
mar learning, examining these effects in situations involving implicit and 
explicit declarative (as opposed to procedural) processes. The experi-
ments in Domangue et  al. (2004) tested implicit training with exem-
plars (encouraging implicit processes), explicit training with the grammar 
(encouraging explicit processes), and integrated training providing simul-
taneous experience with exemplars (encouraging implicit processes) and 
the grammar (encouraging explicit processes).

The results showed that encouraging explicit processing generally 
led to slower but more accurate responding on the cued-generate test. 
Encouraging implicit processing led to faster responding but with lower 
accuracy. In contrast, the integrated training achieved a balance, having 
higher accuracy than implicit training, and higher speed than explicit 
training.

One reasonable interpretation within the Clarion framework is that 
explicit training (in this particular context) led to the encoding of more 
grammatical knowledge in the form of explicit rules, while implicit 
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training led to the encoding of more implicit associative mappings. Neither 
implicit nor explicit knowledge in this task was action-centered—they 
likely resided in declarative memory (within the NACS). Often, both 
kinds of learning occurred, and the differences among different training 
conditions lay in the proportions of, and the interactions between, the 
two types of knowledge.

The experimental results above were simulated using Clarion, based on 
the interpretation above. The simulation correspondingly demonstrated 
the synergy effect of the integrated training, which achieved higher accu-
racy than implicit training and higher speed than explicit training. See 
Sun and Mathews (2005) for details.

There is also other corroborating evidence pointing to synergy between 
implicit and explicit declarative processes. For example, Berry (1983) 
showed that in a reasoning task, verbalization during learning improved 
transfer performance. The result appeared to indicate synergy between 
implicit and explicit declarative processes. Nokes and Ohlsson (2001) 
showed related results as well. This phenomenon may also be related, to 
some extent, to the self-explanation effect reported in the literature (e.g., 
Chi, Bassok, Lewis, Reimann, & Glaser, 1989):  subjects who explained 
examples in physics textbooks more completely did better in solving new 
problems. There were also indications of synergy effects in alphabetic 
arithmetic tasks, categorical inference tasks, and so on. In all these cases, it 
could be the use of explicit declarative knowledge—in addition to the use 
of implicit declarative knowledge—that helped the performance. Clarion 
was used to computationally simulate data and phenomena in some of 
these tasks (see, e.g., Sun & Mathews, 2005; Sun & Zhang, 2006; Helie & 
Sun, 2010).

Table 2.3.   Some basic constituting ideas of Clarion (see text for details).

•	 A distinction exists between implicit and explicit processes (though they tend to 
interact), with different forms of representation and learning.

•	 Knowledge is often redundantly represented in both explicit and implicit forms. 
Implicit and explicit processes are often simultaneously involved in a task. Results of 
explicit and implicit processing are often integrated (leading to synergy possibly).

•	 A distinction exists between procedural and declarative processes, in terms of their 
contents and forms (including learning), orthogonal to the distinction between 
implicit and explicit processes.

•	 These processes are motivationally driven and modulated. Motivations consist of 
drives and goals, with goals determined mostly based on drives.

•	 Metacognition regulates these processes in a number of specific ways based (in part) 
on motivations.
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In addition, similarity-based reasoning can be naturally carried out 
through the interaction of implicit and explicit declarative processes. The 
interaction of the two types within the NACS of Clarion can account for 
important kinds of similarity-based processes in human everyday reason-
ing (see Sun, 1994, 2003, for details). Furthermore, the combination of 
similarity-based reasoning and rule-based reasoning (carried out within 
explicit declarative processes in Clarion) may capture and explain a wide 
range of common human everyday reasoning patterns (as shown by Sun, 
1994, and Sun & Zhang, 2006). Thus, the separation and the interaction 
of these two types of processes are highly functional in the ecological-
functional sense, and Clarion was able to capture and explain their effects.

2.6.  Concluding Remarks

This chapter has presented some essential desiderata that have motivated 
the development of the Clarion framework and some arguments and evi-
dence in support of these desiderata. Based on these desiderata, the basic 
framework of Clarion has been sketched, including its four major subsys-
tems, before delving into more details in the next two chapters. Table 2.3 
contains a summary of some basic constituting ideas of Clarion.

In the next two chapters, I  will turn to more detailed descriptions 
and discussions of the four major subsystems. Chapter 3 will cover the 
action-centered and the non-action-centered subsystem—their major 
mechanisms and processes. Chapter 4 will cover the motivational and the 
metacognitive subsystem. After the detailed exposition of the subsystems 
of Clarion, chapters 5 and 6 will demonstrate how these subsystems work 
together to account for a variety of psychological data and phenomena.
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The Action-Centered and 
Non-Action-Centered Subsystems

The preceding chapters point to, among other things, the need for the 
action-centered and non-action-centered subsystems within the Clarion 
framework, which I now explore in this chapter. (The preceding chapters 
also point to the need for other subsystems, which will be addressed in 
the next chapter.)

To account for action decision making as well as for some “executive 
control” functions, either implicit or explicit, there should be a subsys-
tem for action-centered processes. This subsystem—the action-centered 
subsystem (the ACS)—stores procedural knowledge (in the procedural 
memory within the subsystem) for the sake of action decision making.

Separately, to account for reasoning of various sorts, explicit or 
implicit, there is the need for another subsystem. This subsystem—
the non-action-centered subsystem (the NACS)—should account for 
a variety of reasoning phenomena. Thus this subsystem stores declara-
tive knowledge (both semantic and episodic, in the declarative memory 
within the subsystem).

In this chapter, first the ACS is described (in Section 3.1). Then, a 
description of the NACS follows (in Section 3.2). In Section 3.3, learning 
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that goes across levels or subsystems is discussed, focusing especially on 
extracting explicit knowledge from implicit knowledge. Note that, as 
mentioned before, a forthcoming companion technical book will present 
full technical details (along with hands-on examples). Therefore, in this 
chapter and the next, I present only technical details essential to the ACS 
and the NACS, in what I hope is an easily understandable way, avoiding 
unnecessary or overcomplicated details.

3.1.  The Action-Centered Subsystem

3.1.1.  Background

The Action-Centered Subsystem (the ACS) captures procedural (i.e., 
action-centered) processes, knowledge, and memory. It is necessary, for 
example, for action decision making by an individual, either for everyday 
routine situations or for novel or difficult circumstances. It also includes 
some “executive control” functions. Because of the pervasiveness and the 
importance of these functions, a distinct subsystem (i.e., a somewhat 
standalone set of modules) is needed for carrying out the functions in an 
effective manner (recall the ecological-functional perspective referred to 
in Chapter 1). Hence the ACS exists within Clarion.

This subsystem is predicated on the distinction between, and the 
separation of, procedural and declarative processes (i.e., action-centered 
and non-action-centered processes), and consequently the distinction 
between the ACS and the NACS. The distinction between procedural 
and declarative processes has been discussed in Chapter 2, as well as in 
the literatures on human skill acquisition and on human memory. The 
arguments will not be repeated here; the reader should refer to Chapter 
2 for more details (see also Sun, 2012).

The ACS is arguably the most important subsystem in Clarion. The 
ACS receives inputs from the external and internal environment and 
generates action decisions or commands. It thereby involves procedural 
knowledge from procedural memory. In addition to capturing procedural 
processes, the ACS captures some executive functions based on the same 
mechanisms and processes. For instance, it directs processes within the 
NACS.

As discussed earlier, each subsystem of Clarion, including the ACS, 
consists of two “levels” of representation (i.e., two sets of modules with 
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different representational forms). Generally, in each subsystem, the top 
level encodes explicit knowledge (explicit memory) and the bottom 
level encodes implicit knowledge (implicit memory). Together they 
constitute a dual representational structure. The distinction between 
implicit and explicit processes has been made in Chapter 2, based on 
voluminous data from empirical work on memory, learning, and a vari-
ety of other psychological functionalities (Reber, 1989; Seger, 1994; Sun, 
2002; Evans and Frankish, 2009). The arguments will not be repeated 
here (however, in Chapter 5, I will further justify it based on simula-
tions of empirical data). Within this framework, the top level of the 
ACS captures explicit action-centered (procedural) processes, while the 
bottom level of the ACS captures implicit action-centered (procedural) 
processes.

As discussed in Chapter 2, different representational forms (distrib-
uted versus symbolic-localist) are used in representing these two types 
of knowledge (implicit and explicit), in order to capture intrinsically the 
essential differences between these two types of knowledge through dif-
ferent representational forms. As I  have argued before, the interaction 
between the two levels may lead to synergy in a variety of circumstances 
(Sun, Slusarz, & Terry, 2005). Therefore, such a division between the two 
levels is cognitively-psychologically advantageous.

In the bottom level of the ACS, implicit reactive routines reside, as 
mentioned in Chapter 2 (Tinbergen, 1951; Timberlake & Lucas, 1989). 
They are either innate or learned. In the top level of the ACS, explicit 
procedural knowledge exists. Such knowledge may be learned from infor-
mation in the bottom level, information from external sources, and so on. 
Together, the two levels capture the interaction and the synergy between 
the two types of processes, as will be detailed later.

Figure 3.1 shows the division between the explicit and implicit pro-
cesses within the ACS, as well as a similar division within the NACS (as a 
comparison). A technical description of the core processes of the ACS is 
provided below (Sun, 2002, 2003).

I should note here again the distinction between the conceptual-level 
Clarion theory and its current computational instantiations, as alluded 
to in Chapter 1. The conceptual-level theory enables multiple possible 
computational instantiations in many respects. For the sake of readabil-
ity, I will not exhaustively cover all computational possibilities, although 
in some cases I  will point out multiple possibilities when these possi-
bilities are important. The reader should keep in mind that the current 
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computational implementations constitute only existence proofs of the 
conceptual-level theory and that other possibilities do exist.

3.1.2.  Representation

3.1.2.1.  Representation in the Top Level

In general, a basic unit for encoding knowledge is a “chunk,” which cor-
responds to a concept (an object, a person, an event, and so on). A chunk 
is represented using both levels. At the top level, a chunk is represented 
by a unitary (localist) chunk node. At the bottom level, a chunk is repre-
sented by a distributed representation, which contains features or micro-
features (i.e., values for different dimensions of a concept; Rumelhart et 
al., 1986; Tsunoda et al., 2001). The distributed and localist represen-
tations together (along with their interaction) constitute a chunk (see 
Figure 3.2).1

Explicit Procedural Memory
(ACS top level)

Explicit
Declarative

Memory
(NACS top

level)
[semantic]

Explicit
Declarative

Memory
(NACS top

level)
[episodic]

Implicit Procedural Memory
(ACS bottom level)

Implicit
Declarative

Memory
(NACS bottom

level)
[semantic]

Implicit
Declarative

Memory
(NACS bottom

level)
[episodic]

Figure 3.1.  The essential memory modules. The leftmost lines show the input 
information to and output actions from the ACS. The lines between the 
modules show the information flows. (The working memory, goal structure, 
and sensory information store are used to facilitate the flows but are omitted 
above.)

1. The notion of “chunk” may be traced back to Miller (1956) and Miller et al. (1967). 
It was also used by Rosenbloom, Laird, and Newell (1993) and Anderson and Lebiere 
(1998). In general, a chunk is an aggregate of information. Each chunk may contain a 
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In the top level of the ACS, a chunk node represents either the condi-
tion or the action of a rule. Condition chunk nodes are activated by the 
environment (e.g., sensory inputs from the sensory information store) or 
other Clarion components (e.g., working memory that stores temporary 
information). Action chunk nodes represent external actions (e.g., motor 
programs) or internal actions (e.g., queries or commands to other Clarion 
components). Each chunk node is individually represented at the top 
level, has clear conceptual meaning, and constitutes a symbolic-localist 
representation.

Chunk nodes at the top level of the ACS can be linked to form action 
rules of the form:  “condition-chunk-node → action-chunk-node” (see 
Figure 3.3).2 Such a rule, in the simplest case, is captured by a weight 
(e.g., 1) on the link from a condition chunk node to an action chunk 
node. (Thus, action rules together constitute a linear, localist connec-
tionist network; Sun, 1994, 2002.) For example, an action rule could be 
the following: “If there is a large obstacle in front, then turn left.”

More specifically, assume that for the ACS the input (denoted as x) 
is made up of a number of dimensions (denoted as x1, x2, . . . ., xn). Each 
dimension (xi) can have a number of possible values, that is, features 

“header” that indicates some key identifying information as well as a variable data sec-
tion that contains “features”. The notion of chuck as used here is different in a number 
of ways from that of Miller (1956), Rosenbloom, Laird, and Newell (1993), or Anderson 
and Lebiere (1998).

2. Alternatively, rules can be in the forms of “condition → action new-state” or “condition 
action → new-state”. The encoding of the alternative forms of rules is similar to what is 
described here.

Chunk node

(micro)feature nodes

Figure 3.2.  A chunk is represented by a chunk node (at the top level) 
connecting to a set of (micro)feature nodes (at the bottom level).
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or microfeatures (denoted as: vi1, vi2, . . . ., vim). 3 Due to the fact that a 
chunk node at the top level is connected to, and specified by, a set of  
(micro)features at the bottom level (i.e., dimensional values, represented 
as separate nodes at the bottom level), one should interpret an action 
rule specified at the top level as follows: the left-hand side of the rule, the 
condition chunk node, actually indicates a set of (micro)features; these  
(micro)features together constitute the condition for activating the rule. 
When they are satisfied by the input (in some way), the rule may be 
applied.4 The right-hand side of the rule is an action chunk node (repre-
senting an action recommendation), which is likewise connected to the 
(micro)features at the bottom level.

So, the condition at the left-hand side of a rule is indicated by a chunk 
node at the top level (while each of its dimensional values is represented 
by a separate node at the bottom level). Similarly, the action at the 
right-hand side of a rule is also represented by a chunk node at the top 
level (while each of its dimensional values is represented by a separate 
node at the bottom level). The dimensional values at the bottom level 

Figure 3.3.  An action rule is formed, at the top level of the ACS, by 
connecting a condition chunk node to an action chunk node. These chunk 
nodes at the top level are also connected to their corresponding  
(micro)feature nodes at the bottom level.

3. Each dimension is either ordinal (discrete or continuous) or nominal.
4. Through its connections to (micro)feature nodes at the bottom level, each condi-

tion chunk node specifies a conjunction (∧) of elements (each of which refers to one 
dimension). Each element within the conjunction specifies an allowable value range for 
a dimension (xi) of the input (x), that is, xi ∈ (vi1, vi2, . . . ., vik). Each element can thus be 
expressed as a disjunction: (xi vi1) ∨ (xi vi2) ∨ . . . . ∨ (xi vik). Each dimensional value (xi vij) 
within the disjunction is represented as a (micro)feature node at the bottom level, which 
is connected to the chunk node at the top level.
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serve as (micro)features of a chunk, and the chunk node at the top level 
serves to identify and label this set of dimensional values (features or 
microfeatures) as a whole.5 The representations at the two levels together 
constitute a chunk.

3.1.2.2.  Representation in the Bottom Level

The bottom level of the ACS captures implicit procedural knowledge. It 
uses distributed representation, with (micro)features. These (micro)fea-
tures are connected by neural networks (Rumelhart et al., 1986).

The (micro)feature nodes (at the bottom level) and the chunk node 
(at the top level) can be activated together because they can be connected 
to each other. Joint activation can be accomplished through button-up 
activation flows (when the nodes at the bottom level are activated first, 
e.g., by sensory inputs) or top-down activation flows (when the chunk 
nodes at the top level are activated first). Therefore, as stated before, a 
chunk is represented at the two levels together—a localist chunk node at 
the top level and a distributed representation at the bottom level, both 
of which are part of a chunk. Moreover, the distributed and the localist 
representation are tied together by their close interaction.

For making action decisions implicitly, within the bottom level, 
(micro)features of conditions are mapped to (micro)features of actions 
based on several types of connectionist networks (feedforward or recur-
rent). In particular, a multilayer Perceptron network (an MLP network, 
also known as a Backpropagation network; Rumelhart et al., 1986) can be 
used, which decides on an action based on an input state.

The bottom level of the ACS is modular. There can be multiple action 
decision networks at the bottom level. Each network can be thought of as a 
behavioral routine or skill (innate or learned) that can be used to accomplish 
a particular type of task (Tinbergen, 1951; Timberlake and Lucas, 1989).

3.1.2.3.  Action Decision Making

In the ACS, as touched upon before, action decision making is essentially 
as follows: Observing the current input state, the two levels of processes 

5. In a chunk, when there are multiple allowable values in a dimension, the relation 
among them is logical OR (i.e., disjunction, denoted as ∨), because only one value needs to 
be present. The relation across dimensions is logical AND (i.e., conjunction, denoted as ∧),  
because all of them should be present (at least ideally).
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within the ACS (implicit and explicit) make their separate decisions in 
accordance with their respective knowledge (implicit or explicit) and 
their outcomes are integrated. Thus, a final selection of an action is made 
and the selected action is then performed. The action changes the world 
in some way. Comparing the changed input state with the previous input 
state, learning occurs. The cycle then repeats itself.

Thus, the overall algorithm for action decision making during an indi-
vidual’s interaction with the world is essentially as follows, assuming that 
inputs come in the form of (micro)features (dimensional values), which 
also go up to activate corresponding chunk nodes:

1.	 Observe the current input state x (including the current goal).
2.	 Compute in the bottom level the “value” of each of the possible 

actions (ai’s) within state x: Q(x, a1), Q(x, a2), . . . ., Q(x, an  ). 
Choose one action according to these values (when necessary; 
to be detailed later).

3.	 Find out all the possible actions (b1, b2, . . . ., bm) at the top level, 
based on the condition chunk nodes activated by the current 
input state (which comes up from the bottom level; more 
later) and the existing rules in place at the top level. Choose 
one action (when necessary).

4.	 Choose an action by selecting the action choice of either the 
top level or the bottom level, or by combining the values of 
actions from the two levels respectively and then selecting one 
action on that basis (to be detailed later).

5.	 Perform the action, and observe the next input state y and pos-
sibly the immediate reinforcement r.

6.	 Update knowledge at the bottom level in accordance with an 
appropriate learning algorithm (e.g., Q-learning, to be detailed 
later).

7.	 Update the top level using an appropriate learning algorithm 
(e.g., the RER algorithm, for extracting, refining, and deleting 
rules, to be detailed later).

8.	 Go back to Step 2.

Below, let us look into the details of these steps.
As mentioned before, in this subsystem, the bottom level consists of 

a number of modular neural networks involving distributed representa-
tion, and the top level contains explicit action rules with symbolic-localist 
representation (see Figure 3.1).
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At the bottom level of the ACS, the input state (x) consists of three 
sets of information: the sensory inputs, the current goal (from the goal 
structure), and the working memory. The output of the bottom level is 
an action choice. The input and the output are represented as a set of 
(micro)features (dimensional values) at the bottom level. (Note that in 
general goals are important for action decision making.)

At the bottom level of the ACS, actions are selected based on their Q 
values. A Q value is an evaluation of the “quality” of an action in a given 
input state: Q(x, a) indicates how desirable action a is in state x (which 
includes the current sensory input, the current goal, and the working 
memory). Given the current input state, an action is chosen based on Q 
values of actions (Luce, 1959).

Specifically, at each step, given input state x, the Q values of all the 
actions are computed: Q(x, a) for all a’s. To do so, for instance, an MLP 
(Backpropagation) network can be used (Rumelhart et al., 1986). In such 
a network, nodes are divided into multiple layers:  the input layer, the 
hidden layer(s), and the output layer, with feedforward connections from 
one layer to the next. Each node, in whatever layer, computes its output 
(activation) with a sigmoidal function:
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where zi is the value of the ith input to the node (z0 = 1), wi is the weight 
of the ith input and n is the number of inputs to the node. This function is 
close to a threshold function (useful for binary decision making), but con-
tinuous and thus differentiable (useful for deriving learning algorithms; 
see the appendix). The nodes on the output layer generate Q values for 
actions.

Then, the Q values computed by the output layer of the network are 
used to decide stochastically on an action to be selected, through turning 
Q values into a probability distribution—a Boltzmann distribution of Q 
values:
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where p(a|x) is the probability of selecting action a given input state x, 
τ controls the “temperature” of the action decision making (degree of 
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randomness or stochasticity), and i ranges over all possible actions. An 
action is selected in accordance with the probabilities (i.e., p(a|x) for 
all a’s).6

At the top level of the ACS, action decision making is based on action 
rules in place there. As in the case of the input to the bottom level, the 
input to the top level consists of three groups of information: the sensory 
inputs, the current goal, and the working memory. The (micro)feature 
inputs to the bottom level activate, via the bottom-up activation flow, 
relevant condition chunk nodes at the top level, which in turn transmit 
activations to corresponding action chunk nodes via action rules, thus 
leading to action recommendations from the top level. In a given input 
state, one action can be chosen at the top level by choosing an applicable 
rule. All applicable rules compete to be used in action decision making.

A number of numerical measures are associated with each rule or each 
chunk node at the top level. First, the activation (i.e., strength) of a condi-
tion chunk node is determined from bottom-up activation, that is, from 
the activations of its constituting (micro)features (dimensional values) at 
the bottom level:
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where Sc
c
k

is the strength (activation) of chunk ck (where superscript  
c indicates that the measure is related to chunks), Ai

ck is the activation 
of the ith dimension of chunk ck (which is the maximum of the activa-
tions within the dimension7), and Wi

ck  is the weight of the ith dimen-
sion of chunk ck (1/n by default, where n is the number of dimensions of 
chunk ck). The weights should sum to 1 or less. This weighted sum computa-
tion, roughly speaking, allows one to weigh different pieces of evidence in 

6. This method turns a set of values into a probability distribution, with an added 
parameter (“temperature”) that controls the degree of randomness of the distribution. 
When the temperature is low, the degree of randomness is low and the highest value 
tends to be selected. When the temperature becomes higher, the distribution becomes 
more random. This method is also known as Luce’s choice axiom (Luce, 1959; Watkins 
1989) and has been psychologically justified.

7. Bottom-up activation needs to take into consideration multiple allowable values 
in any dimension of a chunk. So, first, the activations of the multiple allowed values of a 
dimension are combined by taking the maximum (i.e., by using the function max), and 
then, across dimensions, the weighted sum specified above is applied to generate the 
activation of the chunk node.
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determining the strength of a “conclusion,” with a simple, linear combina-
tion of evidence.8

Then, from the strength of a condition chunk node, rule support is com-
puted as follows:
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where sk
r is the support for rule k (where k indicates a rule at the top level), 

sc
c

k
 is the strength of condition chunk ck (representing the condition of  

rule k), and wk
r is the weight of rule k (where the default is 1). Superscript  

r indicates that the corresponding measures are related to rules.
To stochastically select an action rule to apply (in order to generate an 

action recommendation at the top level), a Boltzmann distribution is con-
structed from the rule support values for all rules (similar to the stochastic 
selection at the bottom level):
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where p(j | x) is the probability of selecting rule j given input state x, si
r 

is the rule support for rule i, τ is the “temperature”, and i ranges over all 
applicable rules.

Another numerical measure associated with action rules is rule util-
ity, which measures the effectiveness of a rule, in terms of cost and ben-
efit. Utility may be determined on the fly. The utility for rule j may be 
determined by:

U benefit v tj
r

j j= − × cos 	

where υ is a scaling factor balancing measurements of benefit and cost.9

At the top level, to stochastically select an action rule to apply, a 
Boltzmann distribution is constructed either from the rule support values 

8. The weighted sum computation has had a long history in cognitive model-
ing. For example, early neural network models of the 1950s used it. Sun (1994) 
explored its logical and other interpretations and implications, which led directly to 
its present use.

9. Within this formula, one may define:
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(as discussed before) or from the rule utility values. In the latter case, 
we have:
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where p(j|x) is the probability of selecting rule j given input state x, 
Ui is the utility for rule i, τ is the “temperature,” and i ranges over all 
applicable rules.

Yet another numerical measure is base-level activation (BLA; Anderson, 
1993), for capturing certain priming effects (Tulving, 1985). For example, 
for an action rule, its BLA is determined by:
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where bj
r  is the base-level activation of rule j, ibj

r  is the initial base-level 
activation of rule j (by default, ibj

r  = 0), c is the amplitude (by default, 
c = 2), d is the decay rate (by default, d = 0.5), and tl is the time (e.g., in 
ms) since the lth use (or creation) of the rule. Superscript r above indi-
cates that the measures are related to rules.

This measure has an exponential decay and corresponds to the odds 
of needing rule j based on past experiences (Anderson, 1993). When the 
base-level activation of a rule falls below a “density” parameter (dr), the 
rule is no longer available for use, thus capturing forgetting. Likewise, 
each chunk node has a similar base-level activation (bj

c, defined by a simi-
lar equation) and a corresponding “density” parameter (dc).

Finally, analogous to the strength (activation) of a condition chunk 
node, each conclusion (action) chunk node has its strength (activation) 
too. The strength of an action chunk node is determined from taking the 
maximum of multiple measures of rule support pointing to the same 

where j indicates a particular rule, PM(j)  =  number of positive matches for j, 
NM(j) = number of negative matches for j, both defined in Section 3, and by default 
c7 = 1, c8 = 2;

cost execution time of rule j
average execution time of ruj = _ _ _ _

_ _ _ _ lles	

where the two execution times need to be specified (either as fixed constants or as func-
tions that are computed on the fly).
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action chunk node (i.e., using the function max), if there are multiple 
action rules reaching the same conclusion.10

In addition to external actions (e.g., actions for physical movements), 
there are also internal actions available to the ACS, which may be used, 
for example, for setting or resetting goals, for managing working memory 
(storing or removing contents), for directing the operation of the NACS, 
and so on. In particular, actions from the ACS can query or command the 
NACS (Section 3.2). In this case, the NACS returns, via working memory, 
one or more chunks resulting from reasoning within the NACS, which 
are then used by the ACS in determining action recommendations.

3.1.3.  Learning

3.1.3.1.  Learning in the Bottom Level

First, there is the learning of implicit action-centered knowledge at the 
bottom level of the ACS, that is, the learning of implicit reactive routines. 
Such learning may be accomplished through trial-and-error interaction 
with the world, in keeping with the ecological-functional considerations 
and the desiderata. Cleeremans (1997) argued that implicit learning 
could not be captured by symbolic models but neural networks. Sun 
(1999) made arguments regarding distributed representation and incre-
mental nature of implicit learning.

As mentioned before, one way of implementing a mapping going from 
input states to action choices in order to capture implicit action-centered 
knowledge is to use a multilayer neural network (e.g., a Backpropagation 
or MLP network). To improve the mapping, that is, to learn implicit 
action-centered knowledge, adjustment of parameters (e.g., weights) may 
be carried out incrementally, in ways consistent with the nature of dis-
tributed representation.

Reinforcement learning algorithms, as developed by machine learn-
ing and operations research (e.g., Bertsekas & Tsitsiklis, 1996; Sutton & 
Barto, 1998), are suitable for tuning neural networks, that is, for enabling 
learning of implicit action-centered knowledge. With reinforcement 
learning algorithms, learning at the bottom level is incremental, gradual, 

10. Strengths of action chunks are needed, if a weighted sum is used for cross-level 
integration, in which case values of actions from the two levels are combined (see the 
subsection on level integration for more details).
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and iterative. The sequential nature of implicit reactive routines is cap-
tured through reinforcement learning algorithms with temporal credit 
assignment mechanisms (such as the Q-learning algorithm; Watkins, 
1989). Sequential behavior may be accomplished on the basis of action 
decision making using moment-to-moment information. Implicit reac-
tive routines therefore exhibit sequential behavior without explicit plan-
ning (Sun 2002). Such a learning approach has been justified from the 
ecological-functional perspective in Chapter 2.

As described before, in the bottom level of the ACS, a Q value is an 
evaluation of an action in a given state. To acquire the Q values, the 
Q-learning algorithm, for example, may be applied. Within this algo-
rithm, Q(x, a) estimates the maximum (discounted) cumulative rein-
forcement that one can receive from the current state x onward after 
action a is performed. The updating of Q(x, a) is based on the tempo-
ral difference in evaluating the state and the action, which enables the 
learning of Q values that approximate the (discounted) cumulative rein-
forcement (Bertsekas and Tsitsiklis, 1996). Through successive updates 
of the Q values, one can learn to take into account future steps in lon-
ger and longer sequences (using only moment-to-moment information; 
Watkins, 1989).

The basic form of Q-learning is as follows:

∆Q Q( , ) ( ( ) ( , ))x a r e y x a= + −α γ 	

where ∆Q( , )x a  is the adjustment to Q x a( , ), x is the current state, a is the 
current action, α is the learning rate, r is the immediate reinforcement 
received right after action a in state x, e(y) is the maximum Q value in the 
next state y, γ is a discount factor, and r + γe(y) estimates the (discounted) 
total reinforcement that can be received from the current state and action 
onward. That is, the adjustment to Q values is based on the difference 
between two successive estimates of Q values (before and after an action 
is performed).

Note that reinforcement (feedback) received by the ACS (e.g., 
r above) may be determined physically, biologically, and/or socio-
culturally in terms of what constitutes reinforcement and when it is 
received (through the MS and the MCS, to be discussed in Chapter 4). 
Therefore, implicit reactive routines acquired through reinforcement 
learning may be sociocultural to some extent, in addition to being ori-
ented towards the physical world. Details of reinforcement will be dis-
cussed in Chapter 4.
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To implement Q-learning, a four-layered Backpropagation (MLP) net-
work may be used. The network is internally subsymbolic with distrib-
uted representation in the hidden layer. The outputs of the third layer 
indicate the Q values of all actions (with each action represented by an 
individual node), and the node in the fourth layer determines the action 
to be performed based on a distribution of Q values (e.g., a Boltzmann 
distribution).

The error measure on which learning in the Backpropagation (MLP) 
network is based is:
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where erri is the error of node i on the third layer, ai is the action corre-
sponding to node i, and a is the action just performed. In order to gradu-
ally minimize errors, weight updating in this network is done iteratively 
using the Backpropagation learning algorithm based on the error measure 
above (see the appendix for more details; see also Rumelhart et al., 1986; 
Levine, 2000).

Supervised learning using the Backpropagation learning algorithm only 
(that is, with an error measure that is the difference between the actual 
output and the target output, without using an error measure derived 
from reinforcement learning algorithms such as the one above) is also 
possible when appropriate. For example, supervised learning is appropri-
ate when there is a direct indication of the correct output (target), in 
which case an error is calculated directly as the difference between the 
actual output and the target. This may capture instructed learning, in 
which case learning is directly sociocultural in nature (Sun, 2001). In a 
similar way, in the error measure implementing Q-learning above, γe(y) 
might be omitted (when future Q values are irrelevant), which leads to 
what was termed “simplified Q-learning” (Sun, 2003), basically the same 
as supervised learning.

3.1.3.2.  Learning in the Top Level

At the top level of the ACS, explicit knowledge is captured in the form 
of action rules, coded with condition and action chunk nodes. Explicit 
knowledge at the top level can be learned in a variety of ways, in accor-
dance with symbolic-localist representation used there. Because of its rep-
resentational and other characteristics, one-shot learning is appropriate. 
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With such learning, one dynamically acquires rules and modifies them 
as needed, in keeping with the ecological-functional perspective (Sun, 
2002).

As mentioned before, implicit knowledge existing at the bottom 
level can be utilized in learning explicit knowledge at the top level, 
through bottom-up learning (e.g., the Rule Extraction and Refinement 
or RER algorithm; Sun et al., 2001). That is, implicit knowledge accu-
mulated in neural networks can be used for establishing and then refin-
ing explicit rules. This is a kind of “rational reconstruction” of implicit 
knowledge.

Other forms of learning explicit knowledge are also possible. For 
example, explicit knowledge may be established using explicit hypothe-
sis testing without the help of the bottom level initially. However, subse-
quently, explicit hypotheses may be tested with the help of information 
from the bottom level. In that case, learning is also bottom-up to a cer-
tain extent (e.g., the Independent Rule Learning or IRL algorithm; Sun 
et al., 2005).

Furthermore, explicit knowledge can be established at the top level 
of the ACS, for example, through externally provided information. 
Knowledge acquired from external sources may be coded at the top level 
using chunk nodes and action rules. It may also be coded using more com-
plex “fixed rules” (FRs), when more complex forms are required (Sun, 
2003). Such learning may be sociocultural in nature.

Once explicit knowledge is established at the top level (e.g., through 
externally provided information), it can be assimilated into the bottom 
level. This often occurs during the novice-to-expert transition in instructed 
learning settings (Dreyfus & Dreyfus, 1987; Anderson & Lebiere, 1998). 
The assimilation process, termed top-down learning (as opposed to bot-
tom-up learning), can be carried out using the same implicit learning 
mechanisms sketched earlier.

So, there are a variety of ways in which explicit action-centered knowl-
edge is learned in Clarion, as in humans. Explicit action rules, and the 
chunk nodes involved in encoding these rules, can be learned in the 
following ways:

1.	 in a bottom-up way (using the Rule Extraction and Refinement 
algorithm, or RER, to be detailed in Section 3.3)
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2.	 by hypothesis testing more independently (using the 
Independent Rule Learning algorithm, or IRL, to be detailed in 
Section 3.3), or

3.	 from external sources (which might lead to “fixed rules” or FRs, 
as mentioned before; Sun, 2003)

In all these cases, rules and chunk nodes are learned in a “one-shot” fash-
ion, even though information (e.g., statistical information) used in learn-
ing may accumulate gradually. I will defer the full discussion of these 
learning methods to Section 3.3, where various forms of knowledge 
extraction, assimilation, and transfer will be discussed together.

Learning serves the needs of an individual in interacting with the 
world, and particularly when coping with everyday activities. Learning 
within the ACS tunes the decision-making mechanisms for better action 
decision making in such activities to better meet the needs of an indi-
vidual. Learning as described above should be seen in this light, in accor-
dance with the ecological-functional perspective (Sun, 2002).

3.1.4.  Level Integration

For level integration, that is, for integrating the action recommendations 
from the two levels of the ACS, several methods exist, including stochastic 
selection and combination.

First, look into the method of stochastic selection. Suppose that there 
are the following components within the ACS: the RER rule set, the IRL 
rule set, the FR rule set, and the networks at the bottom level (assum-
ing they all finished processing within a time limit if a time limit exists; 
see Appendix A.1). Using this method, at each step, the probability of 
using any given rule set is determined: PRER (probability of using the RER 
rule set), PIRL (probability of using the IRL rule set), or PFR (probability 
of using the FR rule set). The probability of using the bottom level is 
P P P PBL RER IRL FR= − − −1    . These selection probabilities can be either 
fixed (pre-set by the metacognitive subsystem) or variable (calculated on 
the fly by the metacognitive subsystem). Then, it is just a matter of select-
ing a component stochastically using the probabilities above. Note that 
deterministic selection of the bottom level (or any other component) is a 
special case of stochastic selection (where probabilities are 1 or 0).
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Variable selection probabilities are calculated using the notion of 
“probability matching” (e.g., Lopez and Shanks, 2008), as follows:
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where sr stands for success rate (roughly percentage of positive matches, 
where a positive match for a component occurs if the state and the actual 
action performed match the decision by the component and the result  
is positive, as discussed in Section 3.3), β is a weighting parameter, and  
Φ = βBL × srBL+ βRER × srRER + βIRL × srIRL + βFR × srFR. That is, the probabil-
ity of selecting a component is determined based on the relative success 
rate of that component (calculated by the metacognitive subsystem; see 
Chapter 4).

Second, turn to the method of combination. With this method, 
bottom-up verification can be done whereby outcomes from the bottom 
level are sent to the top level, which then rectifies the outcomes using its 
explicit knowledge. This is likely to happen in reasoned action decision 
making where final outcomes are explicit. Alternatively, top-down guid-
ance can occur whereby outcomes of the top level (from rule sets) are 
sent down to the bottom level, which then takes them into consideration 
along with its own implicit knowledge in making action decisions. This is 
likely to happen in fluid skill performance.

In both cases, the simplest implementation is a weighted sum of the 
corresponding values for actions across the two levels (assuming both 
levels finish processing within a time limit if a time limit exists; see  
Appendix A.1) and then stochastic selection based on a Boltzmann distri-
bution of the combined values (using the same equation as before). The 
weights of different components must be specified, which can also be 
either fixed or variable (same as discussed earlier).

3.1.5.  An Example

Below is a simple example that briefly illustrates the working of 
the ACS.
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A serial reaction time (SRT) task is used as an example here (Curran 
& Keele, 1993). In this task, subjects were presented a repeating sequence 
of X marks, each in one of four possible positions. The subjects were 
asked to press, as quickly as possible, the button that corresponded to the 
position in which an X mark appeared as soon as an X mark appeared. 
Subjects might learn to predict new positions on the basis of preceding 
positions, although usually not consciously. That is, they might learn the 
sequential dependency relations embedded in the sequence, which might 
lead to faster responding.

Let us see how this might work in Clarion. Learning at the bottom 
level of the ACS proceeds as described before: it amounts to iterative 
weight updating of a neural network in the bottom level. Such learn-
ing promotes implicit knowledge formation, which is embedded in the 
weights of the neural network. The resulting weights in fact specify a 
function relating previous positions (the input) to the prediction of 
the current position (the output). The prediction can then be used to 
preposition the hand for pressing a button. If the prediction is correct, 
it leads to faster responses. Over time, responses become faster as a 
result.

Implicit knowledge acquired at the bottom level of the ACS can also 
lead to the extraction of explicit knowledge at the top level of the ACS. 
As will be detailed in Section 3.3, an initial extraction step may create 
an explicit rule that corresponds to the input and the output determined 
by the bottom level. The rule may be used to direct actions (in conjunc-
tion with the bottom level, through level integration as described ear-
lier). Later on, generalization may make the rule more generic, having 
more chances of matching inputs, while specialization may make the rule 
narrower in scope. As will be detailed in Section 3.3, these operations 
on explicit rules are guided by statistical information from the bottom 
level (following the idea of bottom-up learning). Other ways of learning 
explicit knowledge are also possible.

3.2.  The Non-Action-Centered Subsystem

3.2.1.  Background

The Non-Action-Centered Subsystem (the NACS) captures declara-
tive processes, involving declarative knowledge in declarative memory 
(in semantic or episodic memory). The NACS captures various forms of 
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reasoning (e.g., Helie & Sun, 2010; Sun & Zhang, 2006). The inputs and 
outputs of this subsystem usually come from or go to other subsystems, 
in particular, the ACS.

To justify the existence of this subsystem, recall that that the distinc-
tion between procedural and declarative processes and its orthogonality 
with the implicit-explicit distinction have been argued for in Chapter 2 
(Sun, 2012). It is therefore reasonable to posit the separate existence of 
the NACS, for the sake of capturing declarative processes, separate from 
procedural processes. It is also reasonable to posit the division between 
the implicit and the explicit level within the NACS, for the sake of cap-
turing implicit and explicit declarative processes, respectively.

To justify the NACS, we also need to address the distinction between 
episodic and semantic memory within declarative processes, that is, 
within the NACS, as well as its orthogonality with the implicit-explicit 
distinction.

First, look into the distinction between episodic and semantic memory. 
Quillian (1968) originally proposed the idea of semantic memory for the 
sake of organizing information for semantic processing. However, this 
notion has been generalized to include all general knowledge that is not 
directly related to specific past experiences (i.e., not episodic in nature) 
and not action-centered (i.e., not procedural). Tulving (1972, 1983), for 
example, expounded on the difference between semantic and episodic 
memory. Roger (2008) and Norman et  al. (2008) discussed computa-
tional models of semantic and episodic memory respectively.

In line with the ecological-functional perspective, Klein et al. (2002) 
pointed out that episodic and semantic memory evolved to solve differ-
ent problems. However, while some tasks may require information from 
episodic or semantic memory alone, other tasks may require information 
from both. Dissociations may not be absolute; one may find indepen-
dence for some tasks and dependence for others. The extent of functional 
independence may reflect the informational requirements of an individ-
ual (Klein et al., 2002). The division of episodic and semantic memory 
should thus be functional.

Next, toward establishing the orthogonality of the implicit-explicit 
distinction and the semantic-episodic distinction, look into the distinc-
tion between implicit and explicit semantic memory. On the one hand, 
explicit semantic memory is well established. Ever since Quillian (1968), 
semantic memory has been largely portrayed as explicit and conceptual, 
consisting of nodes representing explicit concepts and links representing 
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explicit conceptual relations among them. Collins and Loftus (1975), for 
instance, advocated such a view. On the other hand, what distinguishes 
implicit semantic memory from explicit semantic memory is that the 
former involves implicit connections among memory contents whereby 
these connections are outside of conscious awareness.

One notion important for implicit semantic memory is priming. Here 
we consider priming in the form of a mechanism that facilitates the iden-
tification of the same (or related) objects seen before on a later occasion, 
in the sense that the identification requires less information or occurs 
more quickly (Tulving, 1985; Nelson et al., 1998). Such priming often 
occurs in the absence of conscious awareness, as shown by empirical data 
from implicit memory research (see, e.g., Toth et al., 1994; Roediger, 
1990). Moreover, Tulving and Schacter (1990) suggested that conceptual 
priming (including conceptual priming without conscious awareness) 
involved semantic memory. Implicit semantic memory is thus justified.

It is reasonable to hypothesize that implicit semantic memory is sep-
arate in some way from its explicit counterpart, on the basis of many 
kinds of dissociations, which suggested the possibility of separate memory 
stores (Dunn and Kirsner, 1988). Other arguments presented in Chapter 
2 for the separation of implicit and explicit memory are also applica-
ble here; the reader is referred to them as well. Moreover, in Schacter’s 
(1987) memory model, there were separate implicit memory stores, 
some of which were semantic. As added support for this view, Sun and 
Zhang (2006) showed how the division of implicit and explicit seman-
tic memory accounted for categorical inferences where similarity-based 
processes played a significant role; Helie and Sun (2010) showed how 
the division of implicit and explicit semantic memory also accounted for 
creative problem solving.

To establish the orthogonality of the explicit-implicit distinction and 
the episodic-semantic distinction, the distinction between implicit and 
explicit episodic memory also needs to be addressed. Explicit episodic 
memory is well established (Tulving, 1983). It stores information con-
cerning actual prior experiences in an explicit and individuated form, 
including spatial and temporal information about events and activities. 
It constitutes an explicit personal memory (“self-referential memory”; 
Tulving, 1983). On the other hand, implicit episodic memory is a 
derived memory in the sense defined by Klein et  al. (2002), which is 
formed through transforming available information in a way that enables 
speedy supply of information by reducing further processing, so that 
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prompt actions can be taken in relevant circumstances. It keeps track of 
statistics abstracted from actual experiences stored in explicit episodic 
memory (Hasher & Zacks, 1979).11 Some may argue that implicit epi-
sodic memory should be categorized as a semantic memory, but such 
a debate would not be very useful because it would merely be about a 
label. For example, what was termed “semantic trait memory” by Klein 
et  al. (2002) is an implicit episodic memory according to the Clarion 
framework. In general, implicit episodic memory can be understood in 
this light.12

Therefore, the overall structure of the NACS is as depicted in Figure 3.1.

3.2.2.  Representation

The NACS captures declarative memory (both semantic and episodic). 
On that basis, the NACS also captures various forms of reasoning. Below, 
a brief description of the essential mechanisms and processes of the 
NACS is given (see also Sun, 2002, 2003).

3.2.2.1.  Overall Algorithm

Look into semantic memory of the NACS. Assume inputs in the form 
of chunk nodes at the top level of the NACS being activated.13 First, 
top-down activation occurs to activate corresponding (micro)feature 
nodes at the bottom level of the NACS. Then, within-level processing 
occurs in accordance with the structure and content of each level. Finally, 
bottom-up activation leads to integrating the outcomes of the two levels. 
That is, the NACS performs the following steps:

1.	 Observe the input information (from outside sources or from 
the previous iteration).

11. It includes what I called “abstract episodic memory,” which stores frequencies of 
transitions, for example, from any state and action to any new state. Abstract episodic 
memory is implicit (Hasher & Zacks, 1979) and thus resides in the bottom level.

12. In line with the ecological-functional perspective, according to Klein et al (2002), 
derived memory is formed on the basis of predictability, importance, urgency, and econ-
omy. Precomputed summaries in implicit episodic memory reduce online computation 
and speed up retrieval, but they require additional representation. Human memory may 
have evolved to address such trade-offs. The division of implicit and explicit episodic 
memory is functional in this sense.

13. Alternatively, inputs may be transformed into such a form.
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2.	 Perform top-down activation: activated chunk nodes at the top 
level activate their corresponding (micro)feature nodes at the 
bottom level.

3.	 Simultaneously process the information at both levels.
4.	 Perform bottom-up activation, and calculate the integrated 

activations of chunk nodes.
5.	 Stochastically choose a response chunk node (from a 

Boltzmann distribution of the integrated activations). If its 
internal confidence level (ICL)14 is higher than a preset thresh-
old (ψ), then output the response. Otherwise, treat the current 
integrated activations as the new input and go back to step 2.15 
(Alternatively, all activated chunk nodes are output as long as 
their ICLs are above a threshold.)

3.2.2.2.  Representation in the Top Level

In the top level of the NACS, explicit knowledge is represented by chunk 
nodes, same as in the top level of the ACS. However, unlike in the ACS, 
chunk nodes in the NACS are not divided into condition and action 
chunk nodes. Each chunk node represents a concept that can be used 
either as a condition or a conclusion in an associative rule.

Chunk nodes in the NACS are linked to form associative rules. Unlike 
action rules in the ACS, the condition of an associative rule can contain 
multiple chunk nodes. See Figure 3.4. In the simplest case, represent-
ing associative rules using connection weights, a weighted sum is used to 
calculate the activation (strength) of a conclusion chunk node from rule 
application:

s s wj
r

i
i

n

ij
r= ×

=
∑

1

	

where sj
r is the activation (strength) of conclusion chunk node j from the 

application of an associative rule, si  is the activation of condition chunk 
node i, i ranges from 1 to n (where n is the number of chunk nodes in the 

condition of the associative rule), and wij
r is the weight from condition chunk 

14. The ICL may be the integrated activation of the chosen chunk node or a normal-
ized version based on a Boltzmann distribution.

15. This happens only when there is time remaining (which is determined by compar-
ing a time limit and the response time computed on the fly; see Appendix A.1),
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node i to conclusion chunk node j (by default, wij
r = 1/n; these weights should 

sum to 1 or less). Superscript r above indicates that these measures are 
related to rules.16 The application of this equation is referred to as rule-based 
reasoning within the NACS. The top level of the NACS thus amounts to a 
linear connectionist network (Sun, 1994).17

Chunks in the NACS are related by similarity. The activation of a chunk 
node caused by the similarity of other chunks to this chunk (represented 
by the chunk node) is termed similarity-based reasoning (SBR). Specifically,

s s sj
s

c c ii j
= ×~ 	

where sj
s is the activation (strength) of chunk node j due to similarity 

(where superscript s indicates that the measure is similarity-related), sc ci j~  
is the similarity from chunk i to chunk j, and si  is the activation of chunk 
node i.18

In the equation above, as the default, sc ci j~  is calculated simply as fol-
lows (cf. Tversky, 1977; Sun, 1994, 1995):

16. All rules fire in parallel in the NACS. As such, a chunk node can receive activa-
tions from more than one associative rule. In that case, the maximum of these rule-based 
activations is used (by default).

17. The weighted sum has been used in neural network models since their earliest 
days. Sun (1994) investigated symbolic processing in neural networks and provided a 
logical interpretation of this computation. Its use here is thereby justified.

18. A chunk node can simultaneously receive activations from more than one similar-
ity matching. The maximum of them is used (by default).

Figure 3.4.  An associative rule is formed, at the top level of the NACS, by 
connecting the condition chunk nodes to the conclusion chunk node. These 
chunk nodes at the top level are also connected to their corresponding  
(micro)feature nodes at the bottom level.
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where, by default, nc ci j∩  is the number of overlapping (micro)features 
between chunk i and chunk j, ncj  is the number of (micro)features that 
chunk j has, and f x x( ) = 1 1.  (to make it superlinear; Sun, 1994). It is essen-
tially the percentage of overlapping (micro)features with respect to the 
target concept.

More generally, however, we may define them as follows:
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Therefore, sc ci j~  becomes the following:
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where vk
cj  is the intensity of connection of chunk j to (micro)feature k 

(i.e., top-down weights; by default, vk
cj = 1 for all k’s), hk(ci, cj) = 1 if chunk 

i and chunk j share (micro)feature k and hk(ci, cj) = 0 otherwise. The func-
tion f is a slightly superlinear, positive, monotonically increasing function 
(Sun, 1994, 2003).

In the general definition above, with the default weights (i.e., 1), nc ci j∩  
counts the number of (micro)features shared by chunks i and j, and ncj

 
counts the number of (micro)features in chunk j. The similarity measure 
basically amounts to the percentage of overlapping (micro)features with 
respect to the target concept, as in the simpler version. However, more 
generally, weights can vary from their default values to account for prior 
knowledge or the context.

Similarity-based reasoning and similarity measure sc ci j~  are accom-
plished through the interaction of the two levels of the NACS, involving 
both top-down and bottom-up activation flows, without any additional 
mechanisms (as will be detailed later).
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A chunk node in the NACS may also be activated by a command or 
query from the ACS. When a chunk node in the NACS is activated by the 
ACS, its activation is set to full activation (by default): that is, sj

ACS =  1, 
where j indicates a chunk node in the NACS. However, the other two 
sources of activation can have smaller positive values.

Therefore, summarizing the discussion thus far, a chunk node at the 
top level of the NACS can be activated by

•	 its association with another chunk node via an associative rule
•	 its similarity relation with another chunk via similarity-based 

reasoning
•	 an ACS query/command

Overall, the activation (strength) of a chunk node in the top level of the 
NACS is equal to the maximum activation that it receives from the three 
aforementioned sources, modulated by their respective weights:

s s s sj j
A S

j
r

j
s= × × ×max C( , , )β β β0 1 2  	

where sj is the overall activation (strength) of chunk node j, and β0, β1, and 
β2 are scaling (balancing) parameters. (By default, β0 = β1 = β2 = 1, although 
in this way rule-based reasoning may overwhelm similarity-based reason-
ing because SBR usually results in lower activation.)

Chunks that are inferred (activated) in the NACS can be sent to the 
ACS for its consideration in its action decision making (via chunk nodes 
through working memory). If only one chunk is to be returned to the 
ACS, a chunk is selected and returned. A chunk may be selected stochas-
tically by transforming chunk node activations into chunk retrieval prob-
abilities through a Boltzmann distribution:
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where P(j) is the probability that chunk j is chosen to be returned to the 
ACS, si is the activation (strength) of chunk node i, and τ is the tempera-
ture (degree of randomness). The chunk that is sent back to the ACS is 
accompanied by an internal confidence level (ICL), which may be the 
activation of the chunk node or its normalized activation (the Boltzmann 
probability described above). If all activated chunks are to be returned to 
the ACS, no stochastic selection is necessary, but the internal confidence 
level is calculated the same way as above.
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In addition to the aforementioned activation (strength) of a chunk 
node, each chunk node has a base-level activation (Anderson, 1993), for 
capturing certain priming effects (the same as in the ACS):
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=
∑
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where bj
c is the base-level activation of chunk node j, ibj

c  is the initial 
base-level activation of chunk node j (by default, ibj

c  = 0), c is the ampli-
tude (by default, c = 2), d is the decay rate (by default, d = 0.5), and tl is 
the time since the lth use (or creation) of the chunk node. Superscript 
c above indicates that the measures are related to chunks. When the 
base-level activation of a chunk node falls below a “density” parameter 
(dc), the chunk is no longer available for retrieval or for use in reason-
ing (rule-based or similarity-based), capturing forgetting. Each associative 
rule in the NACS has a similar base-level activation (bj

r) and a corre-
sponding density parameter (dr).

3.2.2.3.  Representation in the Bottom Level

The bottom level of the NACS involves distributed representation with 
(micro)features that encode chunks (which are also encoded by chunk 
nodes at the top level; Sun, 2003), the same as in the bottom level of 
the ACS. All the (micro)feature nodes of a chunk at the bottom level 
are connected to the corresponding chunk node at the top level so that, 
when a chunk node is activated, its corresponding (micro)feature nodes 
are also activated, and vice versa. Here I will focus on the bottom level of 
semantic memory within the NACS.

The top-down activation works this way: An activated chunk node at 
the top level of the NACS activates all its (micro)feature nodes at the 
bottom level. By default, top-down weights from the chunk node to its 
(micro)feature nodes are 1. So those (micro)feature nodes are activated to 
the same extent as the chunk node (with the same strength level). More 
generally, however, top-down weights can vary (e.g., between 0 and 1)  
to put different emphase on different (micro)features. It is denoted  
as vk

cj—the top-down weight from chunk j to its (micro)feature k.19

19. Multiple allowable values in a dimension need to be addressed. Top-down activation 
within the NACS first determines the activation for each dimension of the chunk at the 
bottom level (using top-down weights mentioned above) and then, within each dimension, 
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On the other hand, the bottom-up activation uses the following 
equation:

S
v

f v
Aj

s k
c

l
c

l

c

k

j

j
k

j=






×

∑
∑ 	

where Sj
s is the activation of chunk node j resulting from the bottom-up 

activation by its (micro)features (i.e., from similarity-based reasoning 

as mentioned before; hence superscript s), Ak

jc
 is the activation of its kth 

(micro)feature node, vk
cj is the top-down weight from chunk node j to 

its (micro)feature node k, and v
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 is the bottom-up weight from 

(micro)feature node k to chunk node j. The bottom-up weights are thus 
essentially a normalized version of the corresponding top-down weights, 
for the sake of accomplishing similarity computation defined earlier.20

Activation flows between chunk nodes and their corresponding 
(micro)feature nodes allow for a natural computation of similarity. The 
similarity measure defined previously is naturally accomplished using 
top-down and bottom-up activation flows, without a need for any dedi-
cated similarity-based reasoning mechanism. Similarity-based reasoning 
is accomplished using

1.	 top-down activation by chunk nodes of their corresponding 
(micro)feature nodes

2.	 (micro)feature overlapping between any two chunks
3.	 bottom-up activation of all related chunk nodes

One can easily verify that a top-down and bottom-up activation cycle 
with the equations above can implement exactly the similarity measure 
defined previously.

the activation of the dimension is equally divided among all the values of the dimension 
that are allowable within the chunk. So in effect, the top-down weight for a dimension is 
divided equally among all the allowable values.

20. Bottom-up activation also needs to take into consideration multiple allowable values 
in a dimension of a chunk. First, the activations of the multiple values within a dimension 
that are allowed within the chunk are combined by taking the maximum (i.e., by using the 
function max); then, across dimensions, the weighted sum specified above is applied.
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In addition to enabling similarity-based reasoning through cross-level 
interaction, the bottom level of the NACS also captures implicit 
non-action-centered processes within itself. Implicit processing within 
the bottom level of the NACS is accomplished using a number of differ-
ent types of neural networks connecting distributed (micro)feature nodes 
in various ways (Sun, 2003).

Some networks at the bottom level of the NACS are hetero-associa-
tive, such as Backpropagation (MLP) networks (see, e.g., Sun, Zhang, 
& Mathews, 2009). As discussed before, in such a network, input-to-
output mappings are established through learning so that, given a situ-
ation, proper inferences can be made. See the description in Section 3.1 
(because the ACS uses the same type of network).

Another form of hetero-associative network is DFT (i.e., decision 
field theory; see Busemeyer & Johnson, 2008). DFT is more complex 
but can account for many psychological phenomena of decision mak-
ing. See Sun and Helie (2013) for details (see also Chapter 5 for some 
discussion).

Some other networks in the bottom level of the NACS are auto-
associative, in which, once trained, a pattern tends to correct or com-
plete itself from an incomplete or “faulty” version. This allows the 
retrieval of learned chunks using partial match of (micro)features. 
Auto-associative mapping may be accomplished simply by using a feed-
forward Backpropagation (MLP) network in which each input pattern 
is mapped to itself (i.e., inputs and outputs are always the same). Auto-
associative networks also include Hopfield networks (Hopfield, 1982; 
Grossberg, 1988), in which nodes are fully connected to each other 
(i.e., each node in a network is connected to all the other nodes of the 
network).

A more complex Hopfield-type (fully connected) network has 
been used in the bottom level of the NACS (e.g., Helie & Sun, 2010). 
This network, known as NDRAM (Chartier & Proulx, 2005), allows 
the learning of continuous-valued patterns as attractors. The activa-
tion within the network is determined as follows (in a synchronous 
fashion):
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where xi t +[ ]1  is the activation of node i in the network at time t + 1, wij is 
the weight from node j to node i, N is the total number of nodes in the 
network, and

g x x x x( ) =
+ >

+ − − ≤ ≤
−

1
1 1

1
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where δ > 0 is a parameter representing the slope of the transmission 
function (by default, δ = 0.4). See Figure 3.5 for a graphic representation 
of this function.

A rough explanation of the network above, without going into 
technical details, is as follows. A network like this may be viewed as a 
dynamic system. The activation patterns of the network may be viewed 
as a phase space in a dynamic system. Within the dynamic system, 
learned patterns are captured by attractors within the phase space, and 
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Figure 3.5.  The activation function g(x) (with the default parameter value). 
The horizontal axis indicates x, while the vertical axis indicates g(x).



The Action-Centered and Non-Action-Centered Subsystems 81

trajectories within the phase space from input patterns often converge 
to attractors. The phase space in the dynamic system (resulting from the 
network) actually represents a psychological space: concepts/categories 
in a psychological space are captured by attractors in the phase space; 
new concepts/categories can be learned and added to the psychological 
space through creating new attractors in the phase space; existing con-
cepts/categories can be retrieved from the psychological space through 
trajectories converging to existing attractors in the phase space (Helie &  
Sun, 2010).

3.2.2.4.  Representation of Conceptual Hierarchies

Continuing the discussion of representation, a pertinent issue is the rep-
resentation of conceptual hierarchies, which are important to human 
reasoning. In Clarion, conceptual hierarchies can be captured using 
similarity-based reasoning within the NACS, through the interaction of 
the two levels, without explicit representation of hierarchies. Hierarchical 
relations may be viewed as special cases of similarity, and therefore 
similarity-based reasoning can carry out reasoning based on hierarchies. 
However, in Clarion, alternatively or simultaneously, conceptual hierar-
chies can also be explicitly represented at the top level of the NACS. 
Details of the representation will not be covered here, because they are 
not essential for subsequent discussions; but they are explained more in 
the appendix at the end of the chapter for any reader interested in the 
issue (see also Sun, 2003).

3.2.3.  Learning

3.2.3.1.  Learning in the Bottom Level

Within the semantic memory of the NACS, for implicit learning at the 
bottom level, many hetero-associative or auto-associative learning algo-
rithms can be applied to hetero-associative or auto-associative networks 
there respectively.

For hetero-associative learning using the Backpropagation learning 
algorithm in an MLP (Backpropagation) network, inputs are mapped to 
outputs through adjusting weights associated with each layer of nodes 
within the network (Rumelhart et al., 1986; Levine, 2000). Weight 
adjustment is usually based on gradually minimizing an error function 
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that measures deviation from the desired input-output mappings, which 
leads to approaching the desired mappings through many iterations of 
weight adjustment. With this learning algorithm, learning may be online 
(e.g., learning occurs each time a stimulus is presented) or in a batch 
mode. Parameters for such a network include: number of layers (if not 
the default number of three layers), number of nodes in each layer, 
weights and thresholds associated with each node (which can be learned 
or externally set), learning rate, momentum, and so on. Because these 
details are standard and not unique to Clarion, I will not get into them 
here. They are sketched in the appendix.

For auto-associative learning in a Hopfield-type (fully connected) net-
work, a Hebbian learning algorithm may be applied. In such a learning 
algorithm, weight updating is based on co-activations of nodes (instead 
of minimizing an error function as in the case of MLP networks): If 
two nodes are activated at the same time, the weight between them is 
strengthened (so that they are more likely to be activated together in the 
future). This can lead to creating an attractor in the network for remem-
bering coactivation patterns. For instance, a learning algorithm used in 
the NACS is the NDRAM learning algorithm (Chartier & Proulx, 2005). 
With this algorithm, learning is online (i.e., learning occurs each time a 
stimulus is presented). Parameters for this network include: number of 
nodes, learning rate, memory efficiency, vigilance, and so on. The algo-
rithm is not specific to Clarion; therefore, details are only sketched in the 
appendix.

3.2.3.2.  Learning in the Top Level

At the top level of the semantic memory of the NACS, like at the top 
level of the ACS, chunk nodes and rules can be learned. There are a num-
ber of possibilities in this regard.

First, chunk nodes and associative rules in the top level of the NACS 
can be learned by being given from an external source, or from another 
component of Clarion. The given information can then be encoded in the 
forms of chunk nodes or associative rules, as appropriate. (Or the infor-
mation may be coded by using more complex “fixed rules” as mentioned 
before; see Sun, 2003.)

Second, chunk nodes and associative rules in the top level can also be 
learned by acquiring explicit knowledge from the bottom levels of the 
NACS or even the bottom level of the ACS. This aspect will be covered in 
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Section 3.3; all issues related to knowledge extraction, assimilation, and 
transfer will be covered there.

In addition, at every step, each item experienced has a certain prob-
ability of being encoded in the NACS as a chunk (an episodic and/or a 
semantic chunk) with a chunk node at the top level. This aspect will also 
be covered in Section 3.3.

The NACS serves the need of an individual to cope with the world, 
and in particular to deal with everyday activities, just as the ACS. Like the 
ACS, the NACS actively “participates” in the activities of an individual 
through meeting the individual’s informational needs in such activities. 
Learning serves to improve the capability of the NACS. Different pos-
sibilities of learning as sketched above should be viewed in this light, in 
accordance with the ecological-functional perspective (Sun, 2002, 2012; 
Section 3.3).

3.2.4.  Memory Retrieval

It might be useful to see how memory retrieval is accomplished in the 
NACS. Let us look into some typical forms of memory retrieval as often 
tested in psychological experiments, such as free recall, cued recall, 
recognition, and so on. They may be accomplished differently in the 
NACS. (I will focus on semantic memory; see, for example, Helie and 
Sun, 2014b.)

According to Clarion, cued recall consists of presenting a cue to the 
NACS (by the ACS) and then performing reasoning within the NACS 
based on the cues. There are a number of possibilities:

•	 When there are explicit rules at the top level of the NACS con-
cerning the given cue, these rules may lead to the activation of 
some chunk nodes representing items to be recalled. Thus these 
items are recalled (as directed by the ACS).

•	 Recall may also be done through the interaction between the top 
and the bottom level of the NACS (as determined by the ACS). 
It may be accomplished as a special case of similarity-based 
reasoning (discussed earlier); that is, recall may be done based 
on similarity of the cue to various existing chunks in the NACS. 
Some chunk nodes at the top level may be activated in the end 
through such similarity-based reasoning (via top-down and 
bottom-up activation flows that calculate similarity). Chunk 
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nodes (representing chunks that are sufficiently similar to the 
cue) are thus recalled (as determined by the ACS).21

•	 Going further, associative memory networks at the bottom level 
(not just microfeature representation) may also be involved in 
cued recall (as determined by the ACS). In such a case, an associa-
tive memory network maps the given cue to another pattern (e.g., 
through a Hopfield-type attractor network or a Backpropagation 
network). Corresponding chunk nodes at the top level, if exist, 
are activated by bottom-up flows from that pattern. Such chunk 
nodes are thus recalled (as directed by the ACS).

For free recall, retrieval may be initiated (by the ACS) with a random 
activation pattern in the bottom level of the NACS in an auto-associative 
network (a Hopfield-type network in particular; Helie & Sun, 2010), 
which then leads to a stable activation pattern (which may in turn acti-
vate corresponding chunk nodes at the top level, if exist, through bottom-
up activation flows).22 In the case of a Hopfield-type attractor network, 
settling may take multiple cycles. Attractors with larger attractor fields 
are more likely to be settled into (thus corresponding chunk nodes at the 
top level, if exist, are more likely to be activated through bottom-up acti-
vation flows). The activated chunk nodes are thus recalled (as directed by 
the ACS). Alternatively, if there are relevant explicit rules at the top level 
of the NACS, they can be used also.

In either of these two cases above, if one item (one chunk) needs to 
be selected and returned to the ACS (as determined by the ACS), all 
activated chunk nodes at the top level compete through a Boltzmann dis-
tribution of activations. The winner is sent back to the ACS (along with 
its internal confidence level as described before).

According to Clarion, recognition may be accomplished through pre-
senting an item to be recognized to the NACS (by the ACS). It may then 
proceed in a number of ways:

•	 If there are explicit rules at the top level indicating whether 
the item should be recognized or not, then the rules may be 
applied (as determined by the ACS).

21. Each of these chunks may represent an individual item. But it may also be a 
“prototypical” representation of a group of such items (more later). The same goes for 
attractors in an attractor network.

22. However, even “free recall” may not be completely free.
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•	 Alternatively, the interaction between the two levels of the 
NACS may be involved. Some items may be coded as chunks 
(with chunk nodes at the top level and microfeature nodes at 
the bottom level). The similarity between the item to be recog-
nized and the chunk nodes is computed through top-down and 
bottom-up activation flows. Judgment is rendered on the basis 
of similarity (as directed by the ACS).

•	 Alternatively, an auto-associative network (a Hopfield-type 
attractor network in particular) at the bottom level of the 
NACS determines whether an item should be recognized or 
not (as directed by the ACS), based on the activation pattern 
resulting from the auto-associative mapping—whether it is suf-
ficiently similar to the original item.

In each of these types of memory retrieval, if relevant implicit and 
explicit knowledge both exist, either or both may be used, as determined 
by the ACS (and/or the MCS). Exactly which possibility or which com-
bination of possibilities materializes in a given situation depends on a 
number of factors such as how much knowledge that one has, what kind 
of knowledge that one has, nature of the instructions that one receives, 
individual cognitive style, prior experience, and so on.

Clearly, during memory retrieval, various forms of reasoning happen 
within the NACS. For example, rule application (at the top level), simi-
larity matching (involving both levels), settling within an attractor net-
work (at the bottom level), and so on are all forms of reasoning within the 
NACS. Human memory is rarely a literal process; it is often a constructive 
process involving reasoning of various kinds. In human memory, there is 
often more than just a single location where an item is found. Even at 
the time of memory encoding, errors, distortions, or omissions may occur. 
Human memory may also decay. Reasoning and other processes may be 
necessary to recover needed information. In Clarion, by utilizing these 
mechanisms discussed above, information may be reinterpreted, recon-
structed, and combined.

3.2.5.  An Example

Below, an example about representation, learning, and memory retrieval 
within the NACS is explained. (For detailed simulations, see chapters 5, 
6, and 7.)

 



86 Chapter 3

In an experiment on artificial grammar learning, there is a training 
phase first, followed by a test phase. During the training phase, subjects 
are asked to memorize a set of strings (which, unbeknownst to the 
subjects, was generated according to a finite-state grammar). After the 
training phase, a test phase ensues, during which subjects are asked, 
among other things, to recall or recognize strings, or to complete partial 
strings.

According to Clarion, strings are memorized within the NACS in vari-
ous ways; each time a string is presented, memory is strengthened. I focus 
only on semantic memory here.

At the bottom level of the NACS, implicit memory is kept. When a 
Hopfield-type attractor network is used, attractors are gradually created 
and strengthened within the network as a result of seeing these strings 
(see learning details in the appendix). After sufficient experiences, those 
attractors representing given strings are established.

At the top level, specific chunk nodes for representing these strings 
may be established, with each chunk node indicating a particular string. 
But they are subject to forgetting, failure to encode, and so on (see the 
relevant parameters discussed earlier). Associative rules for representing 
strings may also be established (see rule learning in Section 3.3). They are 
also subject to forgetting, failure to encode, and so on.

During the test phase of the experiment, subjects may be asked to 
recall, recognize, or complete strings. For instance, at the test phase, 
strings are presented one at a time and the subjects are asked to judge 
whether these strings have been seen before or not (i.e., undergo recogni-
tion tests). The NACS may respond using a number of mechanisms. For 
instance, some of the seen strings may have been coded as chunks (with 
chunk nodes at the top level). In that case, similarity-based reasoning may 
be invoked comparing the chunks with a given string through top-down 
and bottom-up activation flows. Recognition happens when there is suf-
ficient similarity. For another instance, a Hopfield-type attractor network 
at the bottom level may be used, in which settling into an attractor that 
closely resembles the given string (or failure to do so) may be used as the 
basis for making the judgment.

During the test phase, subjects may also be asked to recall as many 
strings as possible. In that case, retrieval occurs mainly in the bottom level 
of the NACS (because likely they have learned few explicit rules at the 
top level). For example, within a Hopfield-type attractor network in the 
bottom level of the NACS, a random initial activation pattern leads to a 
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settling process, which may lead to settling into one of the attractors of 
the network, and thus a string corresponding to the attractor is retrieved. 
This process may be repeated multiple times to retrieve multiple strings.

Furthermore, during the test phase, partial strings may be presented 
to the subjects and they are asked to complete these strings. In this case, 
completion occurs mainly in the bottom level of the NACS (because 
likely there are few explicit rules at the top level). One possibility is that 
a partial string is presented to a Hopfield-type attractor network at the 
bottom level of the NACS, and then the settling process may lead to 
an attractor that represents a possible completion of the partial string. 
Another possibility is to use a Backpropagation (MLP) network at the 
bottom level of the NACS to complete these strings (mapping partial 
strings to full strings).

3.3.  Knowledge Extraction, Assimilation, and Transfer

3.3.1.  Background

In this section, I describe learning methods that transfer knowledge from 
one component (module, level, or subsystem) of Clarion to another, 
which lead to more complex or more effective knowledge representation 
in many circumstances (e.g., synergy as mentioned before).

As discussed before, implicit knowledge can be acquired through trial 
and error, and on top of that explicit knowledge can be acquired through 
the mediation of implicit knowledge:  hence the notion of bottom-up 
learning. The basic process of bottom-up learning of procedural knowl-
edge in Clarion (i.e., the RER algorithm as mentioned before) is as fol-
lows (Sun et  al., 2011):  if an action implicitly decided by the bottom 
level is successful, then one extracts an explicit rule that corresponds to 
the action selected by the bottom level and adds the rule to the top level. 
Then, in subsequent interaction with the world, one verifies the extracted 
rule by considering the outcome of applying the rule: if the outcome is 
not successful, then the rule should be revised and made more specific; if 
the outcome is successful, the rule may be generalized to make it more 
universally applicable. Details of bottom-up learning will be addressed in 
this section.

However, although one can learn without externally provided knowl-
edge, one can make use of such knowledge when it is available (Dreyfus 
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and Dreyfus, 1987; Anderson and Lebiere, 1998). In Clarion, to deal with 
such learning, externally provided knowledge, in the form of explicit 
symbolic conceptual representation can (1) be combined with existing 
explicit representation at the top level (i.e., internalization), and (2) be 
assimilated into implicit processes at the bottom level (i.e., assimilation). 
This process is known as top-down learning, which is more naturally 
accomplished in Clarion than in other models. Top-down learning will 
also be discussed in this section.

In addition, as yet another way of converting knowledge forms to facil-
itate its use (as people often do; Klein et al., 2002), in Clarion, knowledge 
acquired in one subsystem may be transferred to another subsystem. In 
particular, knowledge acquired within the ACS in interacting with the 
world (through action decision making) may be transferred to the NACS 
for purposes of reasoning. Such transfer will also be described in this 
section.

As a result of these learning processes, explicit, symbolic represen-
tation is grounded in lower-level processes from which it obtains its 
meaning and for which it often provides focus and clarity (Sun, 2012). 
This groundedness is guaranteed by the way in which higher-level rep-
resentation is produced—it is, in the main, extracted out of lower-level 
processes and contents (in particular, implicit reactive routines). Even 
external, culturally transmitted symbols and other explicit represen-
tations have to be linked up, within the mind of an individual, with 
lower-level processes in order to be effective. Clarion captures such 
groundedness.

It is worth noting that culture also structures (constrains) the interac-
tion of an individual with the world through mediating tools, signs, and 
other cultural artifacts. Thus culture affects lower-level processes too (in 
particular, implicit reactive routines and their learning and explication), 
although maybe to a lesser extent.

3.3.2.  Bottom-Up Learning in the ACS

3.3.2.1.  Rule Extraction and Refinement

In the ACS, while implicit reactive routines are being learned at the bot-
tom level, explicit rules at the top level can also be learned using infor-
mation already acquired at the bottom level, that is, bottom-up learning. 
Bottom-up learning has been implemented in the Rule Extraction and 
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Refinement (RER) algorithm (Sun et al., 2001). The basic idea of the 
RER algorithm has been explained above. This process can, in a sense, be 
viewed as the autonomous generation of symbolic representation from 
subsymbolic representation (Sun, 2013b).

For example, an initial rule resulting from RER may be: “If the size of 

an object is large and its speed is fast, then stay away.” Or to put it in another 
way: “If the value of input dimension 1 is 3 and the value of input dimension 3 

is 5, then do action 2.” Generalization may lead to adding one more allow-
able value in one of the input dimensions. For example, generalization of 
the rule above may lead to: “If the size of an object is medium or large and 

its speed is fast, then stay away.” Specialization may lead to removing one 
allowable value in one of the input dimensions.

To carry out RER, the following is done within each action cycle in 
the ACS:

1.	 Update rule statistics used for rule extraction, generalization, 
and specialization.

2.	 Check the current criterion for rule extraction, generalization, 
and specialization:

2.1.	 If the result is successful according to the current rule 
extraction criterion, and there is no rule matching the 
current state and action, then extract a new rule. Add the 
extracted rule to the top level of the ACS.

2.2.	 If the result is unsuccessful according to the current spe-
cialization criterion, then revise all the rules matching the 
current state and action through specialization:
2.2.1.	 Remove these rules from the top level.
2.2.2.	 Add the specialized versions of these rules to the 

top level.
2.3.	 If the result is successful according to the current generaliza-

tion criterion, then generalize the rules matching the current 
state and action:
2.3.1.	 Remove these rules from the top level.
2.3.2.	 Add the generalized versions of these rules to the 

top level.

One can find psychological arguments in favor of this kind of algorithm 
in, for example, Bruner, Goodnow, and Austin (1956), Dominowski 
(1972), Sun et al. (2001), and Sun (2013b).
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Let us examine the operations within the algorithm above. At each 
action step, the following information is examined: (x, y, r, a), where x 
is the state before action a is performed, y is the new state after action a 
is performed, and r is the immediate reinforcement received right after 
action a. Based on the information, the positive and negative match 
counts, PMa(C) and NMa(C), are updated (in step 1 of the algorithm), for 
the condition of each matching rule and each of its minor variations (e.g., 
the rule condition plus or minus one possible value in one of the input 
dimensions), in relation to the action just performed. The Positive Match 
count, PMa(C), equals the number of times that an input state matches 
condition C, action a is performed, and the result is positive; the Negative 
Match count, NMa(C), equals the number of times that an input state 
matches condition C, action a is performed, and the result is negative.23

Positivity (or its opposite, negativity) is determined based on a positiv-
ity criterion, which depends on task circumstances. It may be based on 
information from the bottom level or based on other information (e.g., 
immediate reinforcement).24

Based on PMs and NMs, an information gain measure, IG(A, B), is 
calculated. Essentially, the measure compares the percentages of positive 
matches (i.e., the success rates) under two different rule conditions A and 
B. If A can improve the percentage (the success rate) to a certain degree 
over B, then A is considered better than B. This has been justified compu-
tationally (see, e.g., Lavrac & Dzeroski, 1994). That is,
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23. At each step, all relevant PMs are incremented when the positivity criterion is met; 
all relevant NMs are incremented when the positivity criterion is not met. At the end of 
each “episode” (a sequence of steps that together constitute an isolatable event, defined 
in a domain-specific way), all NMs and PMs are discounted by a multiplicative factor no 
greater than 1 (the default is 0.90). The results are time-weighted statistics (useful in 
non-stationary situations).

24. For example, when immediate feedback is given, positivity may be determined by:

r thresholdRER  >

Another example used in Sun et al. (2001) is:

max y b r x a thresholdb RERQ Q, ,      ( ) + − ( ) > 	

which indicates whether or not action a is reasonably good (Sun and Peterson, 1998).
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where A and B are two alternative rule conditions that lead to action a, 
and c1 and c2 are two constants representing the prior (the default values 
are c1 = 1 and c2 = 2).25

In the algorithm above, whether or not to extract a rule is decided 
based on the positivity criterion, which measures whether the cur-
rent step is successful or not (as determined by the current step:  
(x, y, r, a)):

•	 Extraction: If the current step is positive according to the cur-
rent positivity criterion and if there is no rule that matches 
this step at the top level (matching both the state and the 
action), then set up a rule corresponding to the current step, 
that is, “if C, then a”, where C is a chunk node that specifies 
the values of all the dimensions exactly as in the current 
input state x26 and a denotes the action performed at the cur-
rent step.27

In the algorithm, whether generalization and specialization should be 
performed is decided based on the information gain measure. If, in terms 
of the IG measure, a rule is better (to some extent) than its corresponding 
“match-all rule” (i.e., the rule with the same action but with a condition 
that matches all possible input states), then the rule is considered suc-
cessful and eligible for generalization. Otherwise, specialization should 
be considered.

As the example earlier illustrated, generalization amounts to adding an 
additional value (disjunctively) to one input dimension in the condition 
of a rule, so that the rule will have more opportunities of matching inputs, 
and specialization amounts to removing one value from one input dimen-
sion in the condition of a rule, so that it will have fewer opportunities of 
matching inputs. That is,

25. This measure compares the percentages of positive matches under different condi-
tions A and B, with the Laplace estimator.

26. One may use some form of attention to focus on fewer input dimensions or values. 
See the description of the MCS in Chapter 4 for details.

27. The issue of the proliferation of rules needs to be addressed. A probability param-
eter (pre) determines how likely a rule will be extracted, given that the criterion for rule 
extraction is met. Similar probabilities determine how likely a rule will be generalized or 
specialized. The default values for these probabilities are 1. Also, as mentioned before, a 
density parameter (dr) determines the minimum frequency of matching inputs in order 
not to forget an action rule.
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•	 Generalization: If the current rule is successful and there is a 
slightly generalized condition that is potentially better, then use 
a slightly generalized condition for the rule.28

Technical Description of Generalization: Technically, If 
IG(C, all) > threshold1 and maxC’ IG (C’, C) ≥ 0, where C is 
the current condition of a rule matching the current state and 
action, all refers to the corresponding match-all rule (with the 
same action as specified by the original rule but with a condition 
that matches any input state), and C’ is a modified condition 
such that C’ = C plus one value (i.e., C’ has one more value in 
one of the input dimensions), then set argmaxc’ IG(C’, C) as the 
new (generalized) condition of the rule.

•	 Specialization: If the current rule is unsuccessful, but there is a 
slightly specialized condition that is better, then use a slightly 
specialized condition for the rule.
Technical Description of Specialization: Technically, If IG(C, all) 
< threshold2 and maxC’ IG(C’, C) > 0, where C is the current 
condition of a rule matching the current state and action, all 
refers to the corresponding match-all rule (with the same action 
as specified by the original rule but with a condition that matches 
any input state), and C’ is a modified condition such that C’ = C 
minus one value (i.e., C’ has one fewer value in one of the input 
dimensions), then set argmaxC’ IG(C’, C) as the new (special-
ized) condition of the rule.29

•	 Deletion: In the operation of specialization described above, 
removing the last value from any dimension of a rule, if per-
formed, makes it impossible for the rule to match any input 
state. So in that case the rule is deleted.

RER may generate explicit knowledge that supplements implicit 
knowledge at the bottom level, and together they may lead to better 
overall performance. Although explicit rules were extracted from the 
bottom level in the first place, the resulting explicit representation, differ-
ent from that of the bottom level in characteristics, makes these rules use-
ful. Sun et al. (1998) identified the following factors that contributed to 

28. For example, Dominowski (1972) showed that even when their hypotheses were 
correct, human subjects tended to shift their hypotheses anyway.

29. Clearly one should have: threshold2 ≤ threshold1, to avoid oscillation.
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the synergy between the top and the bottom level: (1) the complemen-
tary representational forms of the two levels (discrete versus continuous); 
(2)  the complementary learning processes of the two levels (one-shot 
rule learning versus gradual weight tuning); and (3) the bottom-up rule 
learning criterion as described above.30

3.3.2.2.  Independent Rule Learning

The Independent Rule Learning (IRL) algorithm does not involve the 
initial extraction step used by the RER algorithm. That is, it does not use 
the information from the bottom level for the initial extraction of a rule; 
hence the term “Independent Rule Learning.” But IRL may be considered 
a kind of bottom-up learning also, because in the other steps of the algo-
rithm, information from the bottom level is used for refining rules. IRL is 
somewhat similar to but less bottom-up than RER.

An IRL rule specifies some constraints on inputs as its condition 
and some constraints on outputs as its action, thus different from RER 
rules. For example, a IRL rule, different from RER rules, may be: “if the 

value of input dimension 1 is greater than the value of input dimension 2 and 

the value of input dimension 3 is 15, then output the value of input dimen-

sion 4.” So the condition of an IRL rule may be a “chunk template” 
rather than a chunk. As a result, IRL rules may be more complex than 
RER rules.

With IRL, rules of various forms are generated at the top level. Then, 
these rules are tested through experience using IG measures. In general, 
multiple sets of rules are generated in a domain-specific order (or ran-
domly), one set at a time, and rules within the current set are tested 
through experience.

In IRL, the positivity criterion in calculating IG may be based on infor-
mation from the bottom level or based on other information, the same 
as discussed before with regard to RER. Based on a defined positivity cri-
terion, an application of the IG measure (as defined before) to IRL rules 
concerns rule deletion:

If IG(C, random) < threshold3, delete the rule C.

30. A more technical explanation can also be provided, for example, based on consid-
erations of function approximation. See Sun and Peterson (1998) for details.
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where random refers to completely random actions. The match-all rule 
used in RER is not used here, because IRL rules are more complex—an 
IRL rule may recommend different actions in different input states, based 
on the constraints specified within the rule. Thus the match-all rule turns 
into random actions in the formula above. If the IG measure of a rule falls 
below a threshold, then the rule is deleted (cf. Dienes and Fahey, 1995).

Within the condition of an IRL rule, beside prespecified constraints, 
there may be a second part, which specifies allowable values in vari-
ous input dimensions as in RER rules.31 Subsequently, generalization and 
specialization can be performed on this second part in the same way as 
in RER. Generalization and specialization can be performed based on 
the IG measure as defined earlier for RER (because this part resembles 
RER).32

3.3.2.3.  Implications of Bottom-Up Learning

First, in bottom-up learning in the ACS, although the accumulation of 
statistics is gradual at the bottom level, the acquisition and refinement of 
rules at the top level are one-shot and all-or-nothing. Therefore, bottom-
up learning is different from gradual weight tuning at the bottom level 
(e.g., by using reinforcement learning in neural networks).

Second, in the ACS, an explicit concept is learned and an explicit rep-
resentation of the concept is established as a result of extracting an action 
rule, in the process of, and for the sake of, accomplishing a particular task 
at hand. Specifically, when the condition of an action rule is established, 
a localist encoding of the condition is also established at the top level and 
a new symbol is thus formed (in the form of a chunk node), if it was not 
there already.

More specifically, when a rule is extracted, a unitary entity (a chunk 
node) is set up in the top level of the ACS to represent the condition 
of the rule as a whole, which connects to the (micro)feature nodes 

31. If an initial rule does not specify any allowable values of any input dimensions in 
its condition (besides some constraints about inputs and outputs), the second part of the 
rule condition is considered as consisting of all the values in all the input dimensions ini-
tially. Of course, no generalization can be performed on such a rule initially. If allowable 
values of only some input dimensions are specified initially, then other, unspecified input 
dimensions are considered to allow all possible values initially.

32. Probability, density, and other parameters similar to those used for RER are also 
present for IRL.
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(values of various dimensions) represented in the bottom level of the 
ACS. Together they form a chunk. The chunk is subsequently refined in 
the process of refining the rule. For example, a rule may be extracted in 
the top level of the ACS as follows: “if (temp, warm) (rainfall, heavy), then 

(action, stay-inside-building)”. A chunk node is set up in the top level of the 
ACS to represent the following chunk: “((temp, warm) (rainfall, heavy))”. 
The chunk node is linked to the (micro)feature nodes representing (temp, 
warm) and (rainfall, heavy) respectively at the bottom level. This chunk 
(with its chunk node at the top level) is acquired through extracting 
the action rule, which happens in the process of accomplishing some 
particular task.

Third, as a result of bottom-up learning, explicit (symbolic) knowledge 
acquired is concerned with existentially significant aspects of the world 
in relation to the individual involved, and in particular to the individual’s 
needs and goals (Sun, 2012). In other words, explicit concepts and rules 
learned (at the top level of the ACS) are concerned with those aspects 
of the world that have significant bearings on an individual’s survival and 
functioning in the world. They are not strictly “objective” classifications 
of objects, persons, and events in the world, but the direct result of the 
interaction of the individual with the world, manifesting the regularities 
encountered in such interactions (Merleau-Ponty, 1963) and reflecting the 
intrinsic needs and the goals of the individual (on the basis of the moti-
vational and metacognitive subsystems, discussed in Chapter 4). In addi-
tion, they are also action-oriented, concerned specifically with helping to 
decide on what to do in frequently encountered situations. Thus, explicit 
knowledge in the ACS is not strictly objective, but action-oriented, goal/
need-oriented, and oriented towards the activities of an individual inter-
acting with the world (Heidegger, 1927; Merleau-Ponty, 1963).

In this way, an individual projects his or her own perspectives and 
needs onto the world and brings forth the meanings of situations encoun-
tered and the meanings of symbolic representation acquired (Johnson, 
1987). Thus, explicit symbolic representation acquired is grounded in 
implicit, subsymbolic representation and in interaction between the indi-
vidual and the world (Sun, 2013b).

Sun (2002) provided some computational analyses of explicit con-
cepts formed within Clarion in the context of specific tasks. It was found 
that the concepts formed were indeed concerned with those aspects of 
the environment that were important to the tasks at hand, serving the 
purpose of facilitating action decision making in accomplishing the tasks. 
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Specifically, in the contexts that were analyzed, those concepts formed 
help to identify certain combinations of environmental features (dimen-
sional values represented at the bottom level) that are significant for action 
decision making, thus helping to make proper action decisions, thereby 
facilitating the accomplishment of the goals with regard to the tasks.

3.3.3.  Top-Down Learning in the ACS

As defined before, top-down learning is the process by which explicit 
knowledge (often externally given and sociocultural in nature) is assimi-
lated into implicit representation. In the ACS, first, externally given 
explicit action-centered knowledge is expressed as chunk nodes and 
action rules at the top level of the ACS (in formats as discussed before). 
Assimilation into the bottom level of the ACS is then accomplished, 
either by using supervised learning in which the top level serves as the 
“teacher” (e.g., using the Backpropagation learning algorithm at the bot-
tom level), or through gradual practice guided by explicit knowledge 
(e.g., using the Q-learning algorithm at the bottom level).

Among these two methods, assimilation through gradual practice 
guided by the explicit knowledge is always performed in the ACS. That 
is, with explicit knowledge (in the form of action rules) in place at the top 
level, the bottom level learns under the “guidance” of the rules automati-
cally when explicit knowledge is used in deciding on an action.

Given explicit rules at the top level, initially, one may rely mostly 
on them for action decision making. Meanwhile one learns implicit 
knowledge at the bottom level through “observing” the actions directed 
(mostly) by the action rules at the top level, using the same reinforce-
ment learning algorithm at the bottom level as described before. After 
each action is selected and performed, reinforcement learning occurs at 
the bottom level. Such reinforcement learning is always carried out at the 
bottom level, regardless of whether actions are decided by the top level 
or the bottom level. Gradually, when more and more implicit knowledge 
is acquired by the bottom level in this way, one relies more and more on 
the bottom level (when the level integration mechanism, as mentioned 
before, is adaptable). Hence, top-down learning takes place (Sun, 2002, 
2003).

Supervised learning can also be performed for assimilation of explicit 
knowledge into implicit knowledge, in which the top level serves as the 
“teacher” for the bottom level. At each step, an explicit rule is selected 
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from the top level (as the input and the target output) and used to 
train the bottom level using a supervised learning algorithm (e.g., the 
Backpropagation learning algorithm).33

Through top-down learning, explicit procedural knowledge becomes 
implicit, embodied skills in the ACS and thus becomes more efficient 
(Dreyfus & Dreyfus, 1987). This process is another possibility for the 
grounding of (previously generated, externally given, possibly socio-
cultural) explicit symbolic representation. In this way, externally given 
explicit representation is grounded in low-level implicit representa-
tion and in activities interacting with the world. That is, it is assimilated 
into, as well as linked up to, low-level implicit representation, and it 
becomes enmeshed in the ongoing interaction between the individual 
and the world, which is the context within which assimilation takes place. 
Therefore, such knowledge can be used in ways that enhance the func-
tioning of the individual in the world.

Note that externally given explicit knowledge, if not useful in enhanc-
ing the functioning of the individual in the world, may simply be forgot-
ten and removed (e.g., as dictated by the “density” parameters described 
earlier).

3.3.4.  Transfer of Knowledge from the ACS to the NACS

Within the NACS, chunk nodes at the top level (for representing explicit 
knowledge) are acquired in a variety of ways from a variety of sources. 
These sources include the ACS: each input state experienced by the ACS 
as a whole is coded by a chunk node in the NACS; so is each action cho-
sen by the ACS. Even each perception-action step experienced by the 
ACS as a whole (which includes the input state, the action in that state, 
the next input state following the action, and the immediate reinforce-
ment following the action) can be coded by a chunk node.34

Within the NACS, these aforementioned types of chunks (with their 
chunk nodes at the top level) are part of semantic memory. They are 
experience based, because they are created due to experiences and they 

33. A  frequency parameter indicates the relative frequency of supervised learning, 
relative to regular action steps (e.g., performing m steps of supervised learning for every 
n steps of action decision making).

34. If a chunk (with a chunk node) is transferred to the NACS, a threshold determines 
the minimum activation of a dimensional value to be included in the chunk.
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reflect such experiences (although they are different from episodic mem-
ory; more below). These chunks in the NACS are created as they are 
experienced by the ACS. So, in a sense, they are transferred from the 
ACS to the NACS; in other words, they are transferred from procedural 
memory to declarative (semantic) memory. As a result of such transfer, 
they are task oriented and concerned with the person-world interaction.

In semantic memory of the NACS, chunks (with chunk nodes at the 
top level) are also formed when they are created within the ACS as a 
result of rule learning. As mentioned before, in the ACS, a condition 
chunk is created as a result of learning an action rule. When the condition 
of an action rule is established, a localist encoding of that condition (a 
chunk node) is established at the top level of the ACS, which connects to 
its (micro)features (dimensional values) represented at the bottom level 
of the ACS. At the same time as the rule learning occurring in the ACS, 
a corresponding chunk is set up in semantic memory of the NACS and 
its chunk node at the top level is linked to (micro)features (dimensional 
values) at the bottom level of the NACS.35 This is another instance of 
transfer of procedural knowledge to declarative (semantic) knowledge 
(from the ACS to the NACS).

Although semantic knowledge can be generated as a result of specific 
past experiences (as these types of chunks above demonstrate), semantic 
knowledge is not tied to specific past experiences. In contrast, episodic 
knowledge in episodic memory is directly tied to specific past experi-
ences (with specific time and other episodic information included as part 
of the encoding). As discussed before, the distinction between semantic 
and episodic knowledge has been well argued for.

In Clarion, for instance, each action cycle as a whole is coded as 
an episodic chunk (with a chunk node), within episodic memory 
of the NACS. In addition, the following types of items can also be 
created within episodic memory of the NACS: each input state as 
observed by the ACS, each action chosen by the ACS, and so on.  

35. To avoid proliferation, explicit knowledge in the NACS is subject to some parame-
ters, similar to the ACS. An encoding probability parameter (pc) determines how likely an 
encoding of a chunk node will be successful. Likewise, an encoding probability parameter 
(pa) determines how likely an encoding of an associative rule will be successful. A density 
parameter (da) determines the minimum frequency of invocation (encoding, reencoding, 
extraction, reextraction, or application) of an associative rule in order to keep it. Similarly, 
a density parameter (dc) determines the minimum frequency of invocation (encoding, 
reencoding, extraction, reextraction, or activation) of a chunk node in order to keep it.
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Furthermore, other types of entities within the ACS and the NACS 
(e.g., each action rule in the ACS, each chunk in the ACS, each asso-
ciative rule in the NACS, each chunk in the NACS, each associa-
tion inferred from the bottom level of the NACS, and so on), once 
invoked, can spawn a corresponding item within episodic memory of 
the NACS. Evidently, many of the aforementioned episodic items may 
be considered transferred from the ACS to the NACS. Moreover, epi-
sodic knowledge is also task oriented, resulting from the person-world 
interaction.

Another way to learn declarative knowledge is taking externally given 
knowledge and encoding it in the NACS. Explicit declarative knowledge 
can be given from external sources, received as inputs by the ACS.36 
Then, directed by the ACS, it can be encoded in semantic memory of the 
NACS, using associative rules and chunk nodes (which are created if not 
previously existing).

Note that symbols (in the form of chunk nodes) that have been formed, 
despite the fact that they reside in the NACS, are task oriented and con-
text dependent because they are formed in relation to the tasks and goals 
at hand and for the purpose of exploiting environmental regularities. For 
instance, a symbol (a concept) is formed as part of an action rule in the 
ACS, which is learned to accomplish a goal within a task to fulfill a need 
in a particular environment. Such contexts help to determine which set of 
(micro)features in the environment needs to be attended to together. As 
a result, acquired symbols (concepts) are functional, even when they are 
transferred to the NACS. Knowledge acquired in this way is concerned 
with existentially and ecologically significant aspects of the world: that is, 
concerned with those aspects of the world that have significant bearings 
on an individual in interaction with the world and ultimately in survival 
in the world. They are not strictly “objective” classifications of the world 
but rather the result of the interaction with the world and the projec-
tion of one’s needs and goals (Sun, 2013b). Thus, even in the NACS, 
Clarion emphasizes the functional role of symbols/concepts and the 
importance of function, need, and goal in forming symbols/concepts.

Note also that in semantic memory, the two-level representation 
with both chunk nodes and (micro)feature nodes constitutes, to some 

36. Externally given knowledge may be presented in forms that can be transformed 
into rules and chunks (details of the transformation are not dealt with here).
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extent, a “prototype” model of concepts (e.g., Smith and Medin, 1981). 
A localist chunk node at the top level serves as the identification of a set 
of correlated (micro)features at the bottom level, when activated in a 
bottom-up direction. A chunk node at the top level also serves to trigger 
(micro)features at the bottom level, in a top-down direction, once the 
corresponding concept is brought into attention (i.e., activated).

3.3.5.  Bottom-Up and Top-Down Learning in the NACS

In semantic memory of the NACS, chunk nodes at the top level, 
acquired from external sources, through action rule extraction in the 
ACS, or through other means, are used to encode explicit knowledge 
extracted from the bottom level of the NACS, in the form of explicit 
associative rules between these chunk nodes.

Specifically, in semantic memory of the NACS, an explicit associa-
tive rule is extracted at the top level, when an implicit associative map-
ping is performed in the bottom level. Associative rules are established 
at the top level of the NACS between the chunk node(s) denoting the 
cue for the mapping and each of the chunk nodes denoting outcomes 
from the mapping.

More specifically, a set of (micro)features is activated as the cue 
for performing an implicit associative mapping, in which case a chunk 
node is set up in the top level to represent the cue (if there is no chunk 
node already there linked to the same set of nodes at the bottom level). 
Alternatively, a number of existing chunk nodes at the top level are 
activated as the cue, in which case their corresponding (micro)features 
are then activated at the bottom level to perform an implicit associa-
tive mapping. Corresponding to the associative mapping at the bottom 
level, explicit associative rules are set up at the top level (if not there 
already). That is, an associative rule is established that connects the 
chunk node(s) representing the cue with each chunk node “compat-
ible” with the result of the associative mapping at the bottom level. 
Among “compatible” chunk nodes are those existing ones sufficiently acti-
vated by bottom-up activation from the result of the associative mapping at 
the bottom level. Another “compatible” chunk node, which is set up if not 
already there, corresponds to the result from the bottom level as a whole.37

37. The extraction threshold for chunks (thresholdce) specifies the minimum activation 
level of the resulting chunk node for chunk extraction to be considered. The probability 
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Similar to explicit representation in the ACS discussed before, explicit 
chunk nodes and explicit associative rules formed in ways specified above 
in the NACS are also task oriented to some extent, because they are 
formed in relation to specific tasks at hand when the NACS reasoning 
capacities are invoked by the ACS for dealing with the tasks.

In a different direction, explicit associative rules at the top level of 
the NACS can be used to train the bottom level of the NACS, similar to 
top-down learning within the ACS described earlier.

3.3.6.  Transfer of Knowledge from the NACS to the ACS

Transfer of knowledge in the other direction, from the NACS to the ACS, 
is also possible. For instance, results of reasoning from the NACS can be 
sent to the ACS through working memory, which can then be used for 
action decision making within the ACS as well as for other purposes.

More interestingly, information stored within the NACS can also be 
used for off-line learning within the ACS. For instance, items in episodic 
memory can be used to train the ACS, as if they were real experiences, 
which amounts to memory consolidation (from a more individuated 
form to a more aggregate form, helping to distill statistical regularities; 
cf. McClelland et al., 1995).38 Such transfer can be expected to enhance 
learning within the ACS and to reduce the need for larger amounts of 
actual experiences.

3.3.7.  An Example

Below, I describe an example involving these forms of learning. In par-
ticular, it involves the interaction of these different forms of learning in an 
individual’s interaction with the world (sociocultural or physical).

parameter (pce) determines how likely the extraction of a chunk will be successful (pro-
vided that thresholdce is reached). If a chunk is extracted, another threshold determines 
the minimum activation of a dimensional value to be included in the chunk. Likewise, the 
extraction threshold for associative rules (thresholdae) specifies the minimum activation 
level for associative rule extraction to be considered (where the minimum activation level 
concerns a conclusion chunk node resulting from associative mapping). The probability 
parameter (pae) determines how likely the extraction of an associative rule will be suc-
cessful (provided that thresholdae is reached). As before, density parameters determine the 
minimum frequencies of invocation not to forget an associative rule or a chunk.

38. Episodic memory can also be consolidated into “abstract episodic memory,” which 
can then be used to train the ACS (Sun, 2003).
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3.3.7.1.  Learning about “Knife”

Imagine the case of a child learning the concept of “knife” (and its related 
knowledge). Unaware of the danger of a knife, a child approaches the 
sharp edge of a knife in a way that causes pain. Recoiling from the object, 
the child quickly registers a rule: This thing is to be avoided. Soon enough, 
he forgets that rule (having so many other things to learn and remember). 
So the experience re-occurs under similar or different circumstances. The 
experiences lead the child to develop a reactive routine: stay away from 
sharp edges.

On the other hand, parental inputs provide the child with a verbal 
label for the object: “knife” (while pointing to the object). The label ini-
tially is closely associated with the visual image of a particular knife and 
the pain that it once caused. But gradually, it is generalized in accordance 
with experiences: “knife” could be in various shapes (although always hav-
ing a sharp edge), could be in various sizes, has a handle, and so on (i.e., it 
becomes associated with various visual, tactile, proprioceptive, and other 
information). In the meantime, the implicit reactive routines associated 
with knifes lead to more solid establishment, through bottom-up explica-
tion, of explicit concepts and explicit rules concerning what a “knife” is 
and how one should act in relation to it.

The establishment of the explicit concept of “knife” leads to the possi-
bilities of various further knowledge, beliefs, and memory associated with 
it, and consequently various kinds of reasoning that can be performed in 
relation to the concept. For instance, the child may associate the concept 
“knife” with previous experiences related to knifes (i.e., with episodic 
memory), or with tales that others told him about knifes.

Furthermore, based on the knowledge already acquired, it may occur 
to the child that if he needs to slice a tomato, knives may be useful. Going 
further, it may occur to him that if he needs to kill an animal, knives may 
also be used. From that point on, the child may find many uses for knives 
and develop much knowledge about them.

A similar description of gradual learning can be applied to a wide range 
of other circumstances. For example, it may be applied to the learning 
of concepts of stone tools (such as handaxes) in the prehistoric ages. At 
the other end of the spectrum, a similar description may also apply to 
the learning of complex modern technical concepts, such as automobiles, 
airplanes, computers, and so on. For example, with regard to moving cars, 
there can be similar descriptions of the instinctual act of getting out of its 
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way, the verbal label denoting cars, the refinement of the concept behind 
the label (e.g., with regard to number of wheels, movement, shape, size, 
color, and so on), episodic memory associated with the concept, further 
knowledge, further inferences, and so on.

3.3.7.2.  Learning about “Knife” within Clarion

I now sketch the details within Clarion that carry out the previously 
described learning. (For other developmental models, see, e.g., Shultz & 
Sirois, 2008.)

Extraction within the ACS 
First of all, as described before, in the ACS, implicit reactive routines are 
developed in the bottom level through reinforcement learning from trial-
and-error experiences, which form the basis for future action decisions, 
for example, in the presence of knifes (“stay away from sharp edges”).

Based on such implicit reactive routines, explicit concepts and explicit 
action rules arise within the ACS, for example, through the RER algo-
rithm as described before, namely, through extracting and refining explicit 
action rules at the top level of the ACS from the information at the bot-
tom level of the ACS.

Using the RER algorithm, an explicit action rule may be created: “if 
sharp edge, shining metal surface, handle, then do not touch”. Clearly, such a 
rule is concerned with existentially significant aspects of the world. It is 
extracted through various operations involving extraction, generalization, 
and specialization (as part of the RER algorithm described before). For 
example, initially, the following rule was extracted:  “if long sharp edge, 

shining metal surface, wooden handle, then do not touch.” Then, through gen-
eralization, it became: “if long sharp edge, shining metal surface, handle, then 

do not touch.” Further generalization and specialization led to: “if sharp 

edge, shining metal surface, handle, then do not touch.”

As a result of rule extraction and refinement, concepts (with symbols 
in the form of chunk nodes) were formed (created and refined); for exam-
ple, the concept of “knife” captures features such as sharp edge, shining 
metal surface, and handle. As discussed before, such symbols (concepts) 
are meaningful, because (1)  they are linked to implicit representation 
at the bottom level and (2) they were created in the process of accom-
plishing an existentially relevant task and therefore they are existentially 
relevant to an individual.
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In addition, within the ACS, verbal labels may be received from exter-
nal sources, and used to denote some concepts learned in a bottom-up 
way or given externally.

Transfer into the NACS 
Those concepts with symbolic representation (i.e., chunk nodes) extracted 
within the ACS are useful outside of the ACS. For one thing, they enable 
an individual to reason within the NACS about relevant situations. Due 
to the existential relevance and groundedness of these representations 
within the context of the ACS, their presence within the NACS provides 
same relevance to reasoning and other functionalities performed within 
the NACS. Therefore, the NACS is also grounded in implicit processes 
and the person-world interaction (as the ACS).

For example, a concept (a chunk with its chunk node) transferred from 
the ACS represents “knife.” It is then used in the NACS for construct-
ing declarative knowledge (e.g., associative rules). For instance, an asso-
ciative rule within the NACS may be as follows: “if knife, hostile person, 

then potentially violent situation,” or “if knife, hostile person, then dangerous 

situation” (provided that the other chunks involved, such as “hostile per-
son,” “potentially violent situation,” and “dangerous situation,” have been 
established within the NACS). Such rules and concepts facilitate reason-
ing about a task or a situation (in particular in an explicit, deliberative 
manner at the top level of the NACS, along with reasoning in an implicit 
and intuitive manner at the bottom level of the NACS). For instance, 
the associative rules above may be used, along with other possible rules 
and chunks (concepts), for explicit reasoning about various options in a 
dangerous standoff.

Extraction within the NACS 
Concepts (chunks with chunk nodes) can be extracted within the NACS 
itself. For instance, in the previously described domain, a concept may be 
formed as a result of implicit associative mapping performed at the bot-
tom level of the NACS, capturing the outcome of the mapping: “poten-
tially violent situation”, which connects to (micro)features at the bottom 
level. At the same time, associative rules, for example, “if knife, hostile per-

son, then potentially violent situation,” may also be extracted from implicit 
associative mapping at the bottom level of the NACS.

Concepts (symbols) extracted from the bottom level of the NACS may 
interact with externally provided concepts (symbols), just as concepts 
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(symbols) extracted and transferred from the bottom level of the ACS 
may interact with externally provided concepts (symbols). Below is the 
discussion of this aspect within Clarion.

Interaction of External and Internal Concepts 
Externally provided information enables top-down learning (as opposed 
to bottom-up learning) in the ACS. For example, a parent may instruct 
the child: “If you see a knife lying around, tell an adult immediately.” This 
instruction is thus set up at the top level of the ACS as an action rule, with 
its condition and action set up as two separate chunks (with two corre-
sponding chunk nodes at the top level). The chunk nodes at the top level 
are linked up with the (micro)features at the bottom level. Furthermore, 
the action rule may be assimilated into the bottom level of the ACS (into 
its implicit reactive routines). This is a common, ever-present part of learn-
ing for humans in a sociocultural environment, and it is often intertwined 
with autonomous learning.

Assimilation of externally provided explicit knowledge also occurs 
within the NACS. For instance, externally provided information (e.g., from 
a parent) may be: “knives are made of metal.” This information is then set 
up at the top level of the NACS as an associative rule: “if knife, then metal-

object.” Two chunks involved, one representing the condition and the other 
the conclusion, are also established and connected to (micro)features at the 
bottom level of the NACS (which give the concepts/symbols their mean-
ings). In this case, while the chunk for “knife” may have already been estab-
lished in the ACS and thereafter transferred into the NACS, the concept 
for “metal-object” may be new and therefore established in the form of a 
chunk (with a chunk node at the top level). The associative rule may then 
be used to train the bottom level for top-down learning.

In the process, externally provided symbols, extracted symbols (from 
the bottom level of the NACS), and transferred symbols (from the ACS) 
interact within the NACS. For instance, external symbols may be sub-
sumed by extracted symbols, or vice versa, and thereby the two kinds of 
symbols are related to each other and as a result enhance each other. As 
an example, an externally provided symbol may denote a concept “gang 
rivalry,” and this concept (symbol) may be subsumed by (i.e., considered 
a subcategory of) the internally extracted concept (symbol) “potentially 
violent situation”.

For another example, imagine that the child was told that knives were 
made of metal, while he previously extracted the explicit associative rule 

 



106 Chapter 3

within the NACS that knives were hard objects. So he infers that metal 
objects are hard objects (or vice versa) within the NACS. 

For yet another example, suppose an externally provided symbol and a 
transferred symbol overlap to some extent but are not identical (hence a 
conflict) within the NACS. It is wise to reconcile the difference in some way, 
for example, by creating a new symbol (concept) that subsumes both, or by 
modifying one of the two to make the two symbols more different from 
each other (or more similar). There are many other possibilities as well.

As a result of such interactions, the conceptual system of the individ-
ual (with symbolic and subsymbolic representation, in the ACS and the 
NACS) becomes richer and more complex. There is a chance that some 
of the enriched representation may spread culturally and thereby enrich 
culture-wide representation and conceptual systems.

The upshot is that not all concepts and symbolic representations that 
one has are acquired externally (culturally). Likewise, not all concepts and 
symbolic representations that one has are acquired individually (autono-
mously). What is learned individually (autonomously) interacts with cultur-
ally prevalent symbols, concepts, and representations, as well as being closely 
related to social interaction. The danger of downplaying the role of autono-
mous learning and autonomous generation of symbolic representations is 
that one may end up mistakenly viewing individuals as robots being pro-
grammed entirely by the culture in which they found themselves, neglect-
ing other possibilities. The danger of downplaying the role of sociocultural 
processes in the generation and adoption of symbols and representations 
is that one may miss an extremely potent force that shapes the individual 
mind (D’Andrade & Strauss, 1992; Zerubavel, 1997).

3.3.7.3.  Learning More Complex Concepts within Clarion 

Clearly, the mechanisms and processes of Clarion described above can 
be applied to the learning of many other types of concepts. Primitive 
technical concepts, for example, stone tools in the prehistoric ages (e.g., 
handaxes), can be learned in this way (Sun, 2012).

But what about more complex or more technically sophisticated con-
cepts? I believe that a similar learning process applies also. For example, 
the Clarion mechanisms and processes may apply to the learning of com-
plex modern technical concepts, including those involved in car driving, 
airplane piloting, computer programming, emergency response manage-
ment, and so on.

 



The Action-Centered and Non-Action-Centered Subsystems 107

For instance, with regard to the concept of cars, there can be similar 
descriptions based on the Clarion mechanisms and processes: embod-
ied implicit reactive routines within the ACS leading to the instinctual 
action of getting out of the way of a moving car, learning the verbal label 
denoting cars, refinement of the concept behind the label (e.g., with 
regard to its features including number of wheels, shape, size, color, and 
so on, using generalization and specialization), receiving basic driving 
instructions from external sources, practicing to drive a car through 
trial and error within the ACS, extraction of explicit knowledge at the 
top level from implicit knowledge at the bottom level of the ACS, as 
well as declarative representations including semantic knowledge con-
cerning cars, episodic memory associated with cars, further inferences 
made, and so on.

However, what about truly abstract concepts? For instance, how can 
one come up with a concept like “all” (the abstract notion as in math-
ematical logic) in Clarion? It is a concept that is context-dependent and 
therefore highly variable in its denotation. It is seemingly difficult to 
ground out such a concept in simple person-world interaction.

Indeed, there is no easy story to tell about such a concept. In fact, the 
same goes for many other mathematical-logical notions and other types 
of abstract concepts, for example, “logical derivation,” “syntactic proof,” or 
“topological transformation,” among many others. Such a concept would 
have to piggyback on many layers of abstraction and grounding as a result 
of long learning processes. For example, a child may first learn the con-
cept of all the people in a room, all the animals in a yard, and so on. 
Eventually, one extracts the concept of the abstract “all” or is taught by 
others the concept, which is nevertheless grounded in these more con-
crete “all” concepts, which in turn are grounded in low-level (micro)fea-
tures, eventually all the way down to perceptual characteristics. Thus, 
many layers of abstraction and grounding may be involved in intuitively 
grasping and interpreting abstract concepts. This is one reason why math-
ematical logic (and other abstract topics) is normally taught in colleges, 
not in kindergartens.

Note that a complex or an abstract concept may be grounded in 
low-level, even perceptual, (micro)features, but by no means is it always 
defined entirely by these. Its precise definition may have to be explic-
itly specified through complex symbolic structures at the top level, 
independent of or in conjunction with implicit representation at the 
bottom level.
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3.4.  General Discussion

To recapitulate and to expand on the discussions thus far, below I further 
address the issues of the two levels and the two learning directions. In 
addition, I also address a few theoretical controversies related to implicit 
versus explicit processes.

3.4.1.  More on the Two Levels

Why are there two “levels” in Clarion? First, to summarize our discussions 
earlier, we need the top level in Clarion—psychologically speaking, we 
need to capture explicit knowledge that humans exhibit (e.g., what they 
express when they verbalize). The existence of such knowledge is beyond 
doubt, and the distinction between implicit and explicit knowledge has 
been amply demonstrated empirically (see, e.g., Reber, 1989; Stadler & 
Frensch,1998; Seger, 1994; Sun, 2002). Therefore it needs to be captured 
in some form. Hence there is the top level in Clarion.

The existence of the top level, besides the bottom level, also leads to 
“synergy” (Sun, Slusarz, & Terry, 2005): that is, better performance under 
various circumstances due to the interaction of the two levels.

Likewise, we need the bottom level in Clarion. The evidence for 
the existence of implicit knowledge, as distinct from explicit knowl-
edge that can be easily expressed verbally, is mounting. Although the 
issue is not uncontroversial, there are nevertheless sufficient reasons 
to believe in the existence and the significance of implicit knowledge 
in many cognitive-psychological processes (as variously argued by 
Reber, 1989; Seger, 1994; Stadler & Frensch, 1998; Sun, 2002; Evans 
& Frankish, 2009). I  argued that implicit knowledge was best cap-
tured by neural networks with distributed representation (Sun, 2002; 
Cleeremans, 1997). Hence there is the bottom level in Clarion. In 
addition, the bottom level is also important for capturing bottom-up 
learning.

Furthermore, there are several different kinds of significant differences 
between the two levels:

•	 Phenomenological difference: the distinction between the con-
scious and the unconscious in a phenomenological (first-person, 
subjective) sense.
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•	 Psychological difference: the distinction between the implicit 
and the explicit as revealed by experimental work in psychol-
ogy (e.g., implicit versus explicit learning, implicit versus 
explicit memory, unconscious versus conscious perception, and 
so on).

•	 Implementation difference: for example, the representational 
difference (symbolic-localist versus distributed representation) 
between the two levels of Clarion.

In Clarion, the implementation difference leads to accounting for the 
phenomenological and the psychological difference. So, in this sense, the 
implementation difference is fundamental to the cognitive architecture 
in its ability to explain various differences between the two levels.

The idea that both implicit and explicit processes contribute to the 
mind, as embodied by Clarion, is not a new idea. There have been a few 
(but rather lonely) voices arguing that point early on. Reber (1989), 
Mathews et  al. (1989), and so on were cited regarding their idea that 
both implicit and explicit processes contribute to learning and perfor-
mance. However, the novelty of Clarion in this regard is also evident. 
The main novel point of Clarion is its focus on the interaction of implicit 
and explicit processes. The interaction was highlighted in Clarion, (1) in 
terms of adjustable amounts of contributions from these two types of 
processes, (2) in terms of their synergy effects (depending on contextual 
factors), and (3) in terms of their mutual influences during learning (i.e., 
bottom-up and top-down learning).

Clarion provides some evidence that the interaction between the two 
types of processes is important. It accounts for a wide variety of empiri-
cal data in a coherent, unified way, both quantitatively and qualitatively, 
based on the interaction between the two types, as will be discussed in 
subsequent chapters (see also Sun et al., 2001; Sun, Slusarz, & Terry, 2005; 
Helie & Sun, 2010). In this way, Clarion succeeded in interpreting many 
empirical findings that had not been adequately explained before and/or 
captured in computational models before (such as bottom-up learning 
and synergy effects), and pointed to a way of incorporating such findings 
into a coherent, unified model (both conceptually and computationally).

Another novel point of Clarion concerns computational modeling of 
learning: While most models involving implicit/explicit processes did not 
have detailed (implemented, demonstrated) computational processes 
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capturing learning of both types, Clarion has, and learning processes 
within Clarion account for relevant human data.

3.4.2.  More on the Two Learning Directions

Let us look into the two directions of learning emphasized in Clarion.
Bottom-up learning is useful. The main advantage of bottom-up learn-

ing is that it enables learning in complex domains where there is little 
or no a priori explicit domain-specific knowledge to begin with. This is 
because implicit learning is capable of dealing with more complex situa-
tions and does not compete much for limited attentional resources. The 
bottom-up approach makes learning explicit knowledge easier by learn-
ing implicit knowledge first, which does not require much attentional 
resources, and then learning explicit knowledge by utilizing implicit 
information available to guide (i.e., to narrow down) the search.

Furthermore, there have been human data in the literature that indi-
cate that humans do engage in bottom-up learning (e.g., Stanley et al., 
1989; Karmiloff-Smith, 1986; Sun et al., 2001; Sun, 2002; see also Helie 
et al., 2010). So, bottom-up learning is considered cognitively-psycholog-
ically realistic.

Of course, an individual can learn explicit knowledge directly. One does 
so on many occasions. But there are certain advantages that come with 
bottom-up learning as opposed to directly learning explicit knowledge. 
For one thing, as mentioned above, employing this two-step approach 
may be a more efficient way of learning explicit knowledge, because 
implicit learning is more suitable for dealing with complex situations and 
then, guided by implicit knowledge, the search space for explicit knowl-
edge may be narrowed down. This might be one reason why evolution 
has led to this approach.

But is top-down learning more useful? Practically speaking, maybe this 
is the case, given culturally created systems of schooling, apprenticeship, 
and other forms of guided (instructed) learning. Top-down learning is 
quite prevalent in contemporary society. However, I argue that bottom-up 
learning is more fundamental. It is more fundamental in two senses: the 
ontological sense and the ontogenetic sense.39

39. In addition, exploration of bottom-up learning may lead to advances relevant to 
artificial intelligence.
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Ontologically, explicit knowledge needs to be obtained by someone 
in the first place before it can be imparted to others to enable top-down 
learning. Therefore, bottom-up learning, which creates new explicit 
knowledge, is more fundamental. Only after bottom-up learning (or 
other types of learning) has created explicit knowledge, can top-down 
learning be possible.

Ontogenetically, there seem to be some indications that children learn 
sensory-motor skills (as well as some other types of knowledge, such 
as certain types of concepts) implicitly first, and then acquire explicit 
knowledge on that basis. See, for example, Karmiloff-Smith (1986), 
Mandler (1992), Keil (1989), and so on for relevant discussions. Therefore, 
bottom-up learning is also important ontogenetically (developmentally) 
in many ways.

Given its fundamental nature, bottom-up learning has been empha-
sized in Clarion (see, e.g., Sun, 2002). An additional reason that bottom-up 
learning has been emphasized in Clarion is because it was not empha-
sized sufficiently in the literature (if not neglected altogether). Recently, 
however, there have been some emerging models of bottom-up learning, 
besides Clarion, such as Helie et al. (2011).

Top-down learning, on the other hand, has been extensively 
explored, both empirically and theoretically. For instance, Dreyfus and 
Dreyfus (1987) explored and analyzed this type of learning in complex 
skill-learning situations (e.g., in learning to play chess). Relatedly, the 
ACT-R cognitive architecture has focused mostly on this form of learn-
ing (Anderson & Lebiere, 1998). Consequently in empirical work related 
to ACT-R, top-down learning has been emphasized, and elaborate com-
putational models of top-down learning have been developed.

Top-down learning in Clarion is accomplished naturally, quite differ-
ent from other computational models of top-down learning. In symbolic 
cognitive architectures and other symbolic cognitive models, complex 
symbol manipulations are needed to accomplish top-down learning. In 
contrast, top-down learning in Clarion is accomplished using the same 
learning mechanisms as used for implicit learning at the bottom level 
(without addition or modification). Therefore top-down learning in 
Clarion is simple and straightforward, without being bogged down by 
cumbersome mechanisms. It corresponds well to theoretical analysis of 
such learning (such as Dreyfus and Dreyfus, 1987), and accounts for 
relevant psychological data (as will be discussed in Chapter 5).
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3.4.3.  Controversies

Implicit learning and implicit memory are somewhat controversial top-
ics. To base a theoretical framework on implicit learning and memory, it 
appears that some justifications are needed.

Although implicit learning and memory are somewhat controversial, 
the existence of implicit processes is generally not in question—what 
is in question is their extent and importance (Seger, 1994; Stadler & 
Frensch, 1998; Cleeremans et al., 1998; Sun, 2002; Evans & Frankish, 
2009). Clarion allows for the possibility that both types of processes 
and both types of knowledge coexist and interact with each other to 
shape learning and performance, so it goes beyond the controversies 
that focused mostly on details of implicit learning and memory.

For example, some criticisms of implicit learning focused on the alleged 
inability to isolate implicit processes experimentally. Such methodological 
problems are not relevant to Clarion, because in Clarion, it is well recog-
nized that both implicit and explicit processes are present in the majority 
of situations and that they are likely to influence each other in a variety 
of ways.

Another strand of criticism centered on the fact that implicit 
learning was not completely autonomous and was susceptible to the 
influence of explicit cues, attention, and intention. These findings 
are in fact consistent with the Clarion framework of two interacting 
levels.

Yet another strand of criticism was about the supposed continuum 
from the completely explicit to the completely implicit. Judging from 
empirical data concerning implicit learning and implicit memory, there 
appears, on the surface at least, indeed a continuum from the completely 
explicit to the completely implicit, with many shades of gray in between. 
However, the framework of Clarion, despite its two-level dichotomy, can 
account for such a continuum.

For example, to account for completely inaccessible (i.e., completely 
implicit) processes (such as visceral processes), a module within the ACS 
may be posited that has a bottom level but no corresponding top level. 
This module may have well-developed implicit processes, but it will 
never have any corresponding explicit processes.

For another example, at the other end of the spectrum, to account 
for completely explicit processes, a module may be posited in which 
there is a top level but no corresponding bottom level. Thus, the mod-
ule will have explicit processes, but not implicit processes.
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In between the two extreme cases, there are modules with both a top 
level and a bottom level, thus involving both explicit and implicit pro-
cesses. Some such modules may have a better-developed top level (with 
rich representational structures and contents) and thus are more explicit, 
while some other modules may have fewer structures and contents avail-
able within their top level and thus are less explicit.

Different degrees of explicitness among different modules may also 
be determined in part by availability and applicability of algorithms for 
acquiring (learning) explicit knowledge (such as the RER algorithm) 
and for applying explicit knowledge. When such algorithms are more 
available or more applicable, a module may become more explicit.

In addition, the level integration parameters (that regulate the inte-
gration of outcomes from the two levels) can be adjusted (e.g., by the 
metacognitive subsystem) to involve different proportions of explicit and 
implicit processes during any specific task, which change on the fly the 
explicitness of a module during task performance.

Generally speaking, controversies surrounding implicit and explicit 
processes are not as relevant to Clarion as one might believe.

3.4.4.  Summary

In summary, the structuring of the ACS and the NACS, each involving 
both implicit and explicit processes, is cognitively-psychologically justified. 
Different representations are involved in these processes (implicit versus 
explicit, and procedural versus declarative). Different types of learning 
(implicit or explicit) occur. Moreover, bottom-up learning and top-down 
learning allow implicit and explicit processes to influence each other in 
learning. Furthermore, learning within the ACS and within the NACS also 
interact, for example, in the form of transferring knowledge from one sub-
system to the other. Clarion captures all of these mechanisms and processes 
and their interactions.

Appendix: Additional Details of the ACS and the NACS

A.1.  Response Time

A.1.1.  Response Time of the ACS

The response time (RT) of the ACS is a function of the respec-
tive response times of the bottom level and the top level. That is, 
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RT  =  f(RTBL, RTTL). When stochastic selection of levels is used for 
determining the final output, RT is determined by the level used to 
generate the final output.

The response time of the bottom level is determined 
by: RTBL =  fBL(PTBL, DTBL, ATBL), where PTBL is the bottom-level per-
ceptual time, DTBL is the bottom-level decision time, and ATBL is the 
bottom-level actuation (action) time. A simple instance of this function 
is: RTBL = PTBL + DTBL + ATBL.

The response time of the top level is determined by: RTTL = fTL(PTTL, 
DTTL, ATTL), where PTTL is the top-level perceptual time, DTTL is the 
top-level decision time, and ATTL is the top-level actuation (action) time. 
For example, RTTL = PTTL + DTTL + ATTL.

Often, the response time of the bottom level is faster than that of the 
top level: specifically, PTTL ≥ PTBL; DTTL ≥ DTBL, and ATTL ≥ ATBL.

For values of these parameters, the following is assumed. First, by 
default, PTBL = 200 ms, and PTTL = PTBL + 100ms.40 Second, by default, 
DTBL = 350ms.41 Third, taking into consideration priming of both action 
rules and action chunks, DTTL = operation-time + t1/rule-BLA + t2 /
chunk-BLA, where rule-BLA and chunk-BLA are base-level activations 
discussed before (for the action rule involved and for the action chunk 
involved, respectively), and operation-time, t1, and t2 are determined 
by the mental operation carried out by an action rule (e.g., number of 
counting steps).42 Fourth, ATTL and ATBL are variables depending on a 
host of factors (e.g., response modality and speed). For example, for a 
verbal response or a mouse click, we may have: ATTL = ATBL = 500ms 
(Anderson & Lebiere, 1998).

Note that within the ACS, the bottom level is in general faster 
than the top level. Empirical evidence indicates that implicit proce-
dural processes are often faster (e.g., unconscious perception, reflex 

40. Before conscious awareness of perceptual information, a great deal of unconscious 
preprocessing goes on (Marcel, 1983; Merikle & Daneman, 1998). Therefore, it takes 
more time to consciously access perceptual information. Relatedly, it was found that for 
an unconscious idea to become conscious, it takes several hundred ms (Libet, 1985). 
Therefore the default values were set as above.

41. This kind of unconscious decision making is rather direct (from states to actions 
directly) and therefore fast. This value is roughly based on the data from Libet (1985).

42. This formula includes two kinds of priming: priming of the action rule applied, 
and priming of the action chunk selected. It is assumed that the response time involving 
an action rule or an action chunk is proportional to the odds of that rule or chunk being 
needed based on past uses (Anderson, 1993). Therefore the BLAs are used.



The Action-Centered and Non-Action-Centered Subsystems 115

response, and so on; Sun, 2002). But this may not be true for declara-
tive processes.43

A.1.2.  Response Time of the NACS

At the top level of the NACS, all the applicable associative rules are 
applied in parallel. So the total associative rule application time is a func-
tion of application times of individual associative rules. Application of 
associative rules may involve the retrieval of result chunks. Therefore, 
chunk retrieval time may need to be added to associative rule retrieval 
time. The total time for associative rule application is equal to associa-
tive rule retrieval time plus result chunk retrieval time:

t t tTL a c= +  h ( ) 	

where h ranges over all applicable rules, and ta and tc are the associative 
rule retrieval time and the chunk retrieval time, respectively, both result-
ing from the same rule.

Chunk retrieval time is inversely proportional to the base-level activa-
tion of the chunk node in question. That is,

t t t chunk BLAc = +3 4 / - 	

where tc is the chunk retrieval time, and t3 and t4 are two constants.
Associative rule retrieval time is inversely proportional to the base-level 

activation of the associative rule in question. That is,

t t t associative rule BLAa = +5 6 / - - 	

where ta is the associative rule retrieval time, and t5 and t6 are two 
constants.

At the bottom level, the time spent on one iteration of associative 
mapping is a constant, because implicit processes are viewed as direct 
mappings. We denote that constant as tBL, the default value of which is 
350ms (as previously discussed).

So, if both levels of the NACS are involved, the total time is:

43. The response time difference between the two levels is not intrinsic to their imple-
mentation in simulation. Both levels are simulated in Java or C#, and as a result there is 
no inherent speed difference. For simulation, an internal clock is used, and relevant timing 
parameters as discussed above can be specified.
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t max t t nNA S TL BLC = ×   ( , )	

where n is the number of iterations performed by the bottom level of 
the NACS.

So, if the ACS initiates chunk retrieval, then the time spent by the 
NACS is determined by tc. If the ACS initiates associative rules at the 
top level, the time spent by the NACS is determined by tTL. If the 
ACS initiates both levels of the NACS, then the time is determined by 
t max t t nNACS TL BL= ×   ( , ).

When the ACS initiates chunk retrieval or associative rule application 
within the NACS, chunk retrieval or associative rule application is part of 
the execution of a relevant ACS action. Therefore, in such cases, the time 
spent by the NACS may be counted as part of the actuation time of the 
ACS, that is, considered as part of ATTL or ATBL.

A.2.  Learning in MLP (Backpropagation) Networks

Learning in MLP (Backpropagation) networks is as usual (see, e.g., 
Rumelhart et al., 1986 or Levine, 2000). Regardless of whether super-
vised learning or Q-learning is used, there is always an error measure, 
although it may be calculated differently. Based on the error measure, 
assuming a three-layer network is used (consisting of the input, hid-
den, and output layers), the usual Backpropagation learning rules are as 
follows.

For adjusting output weights (weights from hidden nodes to output 
nodes):

∆ =w xji ji jα δ 	

where wji is the weight associated with output node j from hidden node 
i, xji is the input to output node j from hidden node i, α is the learning 
rate, and

δ j j j jerr o o= −( )1 	

where errj is the error measure for output node j, and oj is the output from 
output node j (e.g, oj = Q (x, aj), in case Q-learning is involved).

For adjusting hidden weights (weights from input nodes to hidden 
nodes):

 



The Action-Centered and Non-Action-Centered Subsystems 117

∆ =w xji j jiαδ 	

where wji is the weight associated with hidden node j from input node 
i, xji is the input to hidden node j from input node i, α is the learning 
rate, and

δ δj j j k kj
k

o o w= − ∑( )1 	

where oj is the output from hidden node j, k denotes the nodes down-
stream in the output layer, wkj is the weight associated with output node 
k from hidden node j, and δk = errk ok (1 − ok).

For further technical details, see the companion technical book. See 
also Rumelhart et al. (1986) or Levine (2000).

A.3.  Learning in Auto-Associative Networks

In the Hopfield-type auto-associative attractor network specified earlier 
(NDRAM; Chartier & Proulx, 2005), upon the presentation of an activa-
tion pattern and after p iterations of settling within the network, weights 
are adjusted as follows:

w w x x x xij k ij k i j i p j p+[ ] [ ] [ ] [ ]= + −( )1 ζ η 	

where wij[k] is the weight between nodes i and j at time k (wij[0]‌ = 0), xi[p] is 
the activation of node i after p iterations (by default, p = 1), η is the learn-
ing rate (by default, η = 0.001), and ζ is a memory efficiency parameter 
(by default, ζ = 0.9999).

In the equation above, xi is the output of the vigilance module:
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where xi[0] is the initial activation of node i (before the p iterations), μ 
is a free parameter that quantifies the effect of the initial activation (by 
default, μ = 0.01), and z is defined by:
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where 0 ≤ ρ ≤ 1 is the vigilance parameter (Grossberg, 1976). In words, 
z = 1 if the correlation between the initial activation and the final activa-
tion is higher than ρ and zero otherwise.

Thus, (1) the initial activation is learned, if the correlation between the 
initial and the final activation is low (which suggests a new and different 
activation pattern), and (2)  a weighed average between the initial and 
the final activation is learned, if the correlation is high (which suggests a 
variation of an already learned activation pattern).

Note that the learning algorithm above is online: that is, learning occurs 
each time a stimulus is presented to the model. See also Rumelhart et al. 
(1986) and Grossberg (1988).

A.4.  Representation of Conceptual Hierarchies

Here is a quick discussion of representation of conceptual hierarchies 
within the NACS. First, conceptual hierarchies can be captured through 
similarity-based reasoning within the NACS, as explained earlier. 
According to the reverse containment principle (Sun, 1994), in the ideal 
case, if chunk i represents a category that is a superset of the category 
represented by chunk j, all the (micro)features of chunk i are included 
in the (micro)features of chunk j. For example, chunk i represents the 
category “bird” while chunk j represents the category “sparrow.” The 
feature-based description of “sparrow” would naturally include the 
feature-based description of “bird,” plus additional features unique to 
sparrows.

This kind of “flattened” representation can fully capture conceptual 
hierarchies; in other words, it can accomplish whatever explicit hierarchi-
cal representation can accomplish. For example, flattened representation 
can capture so-called inheritance hierarchies and inheritance-based rea-
soning (Sun, 1993, 1994; Sun & Helie, 2013). In fact, the reverse con-
tainment principle allows for a natural explanation of inheritance-based 
inferences. For example, once the chunk node representing “sparrow” is 
activated at the top level, due to similarity (through top-down and bot-
tom activation flows), the chunk node representing “bird” will also be 
activated at the top level. Then from explicit rule-based reasoning, the 
chunk nodes at the top level representing the characteristics of birds will 
be activated, indicating that they are applicable to “sparrow”. In this way, 
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“sparrow” inherits the properties of “bird.” Cancellation of inheritance is 
also possible (for details, see Sun, 1993, 1994; Sun & Helie, 2013; Helie 
& Sun, 2014b).

However, in addition to, or instead of, flattened representation based on 
the reverse containment principle as sketched above, explicit hierarchies, 
when necessary, may be represented as well (Licato et al., 2014b). Two 
basic elements are needed for this representation: abstract relations and 
instantiated relations. For example, abstract relations may be: ISA(x, y); 
instantiated relations may be: ISA(sparrow, bird). Each is represented by 
a chunk node at the top level, and by a set of (micro)feature nodes at the 
bottom level. The (micro)feature set of ISA(sparrow, bird) includes the 
(micro)feature set of ISA(x, y), based on the reverse containment princi-
ple. In addition, the (micro)feature set of ISA(sparrow, bird) includes the 
(micro)feature sets of sparrow and bird, plus some other (micro)features 
(e.g., those that help to indicate the ordering of sparrow and bird in this 
relation).

So, with such explicit representation using chunk nodes, there can 
be explicit associative rules connecting related chunk nodes at the top 
level: for example, “if sparrow ISA(x, y), then bird”, “if robin ISA(x, y), then 

bird”, “if sparrow bird, then ISA(sparrow, bird)”, “if bird REVERSE ISA(x, y), 

then robin”, “if bird REVERSE ISA(x, y), then sparrow”, “if ISA(sparrow, bird) 

SECOND, then bird”, and so on. Such rules together constitute explicit 
conceptual hierarchies. Inheritance reasoning, for example, may be car-
ried out using these rules.

The two kinds of conceptual representations above, flattened 
(implicit) and explicit, can work with each other. For instance, when 
the two chunk nodes for ISA(x, y) and for sparrow are both activated, 
their (micro)feature nodes are activated at the bottom level. These acti-
vated (micro)features nodes will in turn, via the bottom-up activation 
flow, activate related chunk nodes (applying similarity-based reason-
ing as a result of feature overlapping). In particular, ISA(sparrow, bird), 
ISA(sparrow, animal), and the like are activated strongly (but not fully), 
more strongly than, say, ISA(robin, bird), ISA(bird, animal), ISA(table, 
furniture), and so on.

Many kinds of inferences can be carried out on the basis of such rep-
resentation (with chunk nodes, rules, and microfeatures). Exact logical 
reasoning can be carried out, including propositional logics and many 
forms of first-order logics (Sun, 1994). Inexact reasoning can also be 
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performed, which includes:  reasoning based on surface similarity (as 
discussed earlier; Sun & Zhang, 2006), reasoning based on structural 
similarity (i.e., analogy; Licato et al., 2014), metaphor (Sun, 1995b), 
inheritance reasoning (Sun, 1993), fuzzy rule-based reasoning (Sun, 
1994), and so on. I will not get into further details of these here; the 
interested reader should refer to these publications cited above for fur-
ther details.
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4

The Motivational  
and Metacognitive Subsystems

4.1.  Introduction

There may arguably be two kinds of control present within the mind: the 
primary control of actions, and the secondary control of the action deci-
sion making per se. To accomplish the latter, motivational and metacogni-
tive mechanisms and processes, among others, are needed (Sun, 2007b; 
Simon, 1967; Wright & Sloman, 1997).

To counteract the tendency of overspecialization and fragmentation of 
fields, important elements of the mind such as motivations and metacog-
nition should be incorporated into cognitive science, rather than being 
excluded. Translating into architectural and mechanistic terms theoretical 
hypotheses regarding the relationships among cognitive, metacognitive, 
motivational, and other aspects of the mind can be useful. In so doing, a 
more complete picture of the mind may emerge.

For an individual, to survive and to function well in the world, behav-
ior must have certain necessary characteristics (Sun, 2003; Sun, 2007b). 
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For example, among others, the following considerations need to be 
addressed:

•	 Sustainability: One must attend to essential needs, such as 
hunger and thirst, and also know to avoid dangers and other 
negative situations (Murray, 1938).

•	 Purposefulness: One must be able to choose actions to enhance 
sustainability (instead of, e.g., randomly; Tolman, 1932; Hull, 
1951; Toates, 1986).

•	 Focus: One must be able to focus activities with respect to spe-
cific purposes. That is, actions need to be somehow consistent, 
persistent, and contiguous, with respect to purposes (Toates, 
1986; Tyrell, 1993). However, one also needs to be able to give 
up some activities when necessary (temporally or permanently, 
e.g., when a much more urgent need arises; Simon, 1967).

•	 Adaptivity: One must be able to adapt (i.e., to learn) for the 
sake of ensuring and improving sustainability, purposefulness, 
and focus (Hull, 1951; Timberlake & Lucas, 1989).

To address these considerations, motivational and metacognitive mech-
anisms and processes are needed. For instance, motivational mechanisms 
are needed to address sustainability and purpose. Motivational dynam-
ics is essential for human (or animal) behavior, and it is ever-present—
“Man is a perceptually wanting animal”, as Maslow (1943) put it. Maslow 
(1943) also argues that “the situation or the field in which the organism 
reacts must be taken into account but the field alone can rarely serve 
an exclusive explanation for behavior. … Field theory cannot be a substi-
tute for motivation theory.” Motivation, as has been conceived thus far 
(by Maslow and others), needs to be operationalized—to be expressed in 
mechanistic and process terms.

On the other hand, metacognition refers to “one’s knowledge concern-
ing one’s own cognitive processes and products, or anything related to 
them” (Flavell, 1976). Metacognition also includes “the active monitoring 
and consequent regulation and orchestration of these processes in relation 
to the cognitive objects or data on which they bear, usually in the service 
of some concrete goal or objective.” Metacognition is needed for the sake 
of focus and adaptivity as mentioned above (and ultimately for the sake of 
sustainability and purpose). The notion also needs to be operationalized.

In the remainder of this chapter, the motivational and the metacognitive 
subsystem of Clarion are presented. Section 4.2 addresses the motivational 
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subsystem. In Section 4.2, the essential considerations for motivational rep-
resentations, mechanisms, and processes are discussed first; then, details 
of motivational representations, mechanisms, and processes are described, 
followed by a description of the structure of the motivational subsystem. 
Section 4.3 addresses the metacognitive subsystem. Some essential consid-
erations in this regard are discussed, followed by details of various metacog-
nitive mechanisms and processes. The appendix at the end of this chapter 
contains some further technical details (including learning and adaptation).

4.2.  The Motivational Subsystem

4.2.1.  Essential Considerations

The motivational subsystem (the MS) is concerned with why an individ-
ual does what he or she does in any situation at any point in time. Simply 
saying that an individual chooses actions (within the ACS) to maximize 
reinforcement or rewards leaves open the question of what determines 
reinforcement or rewards. The MS provides the context in which the goal 
and the reinforcement (of the ACS) are determined. The relevance of the 
MS to the main part of the cognitive architecture, the ACS, lies exactly in 
the fact that it provides that necessary context. It thereby influences the 
working of the ACS (and by extension, the working of the NACS).

A bipartite motivational representation is in place in the MS, similar to 
dual-representational structures found elsewhere in Clarion. The explicit 
goals, such as “find food” (which is essential to the working of the ACS as 
explained before), may be generated based on the internal activations of 
drives such as “hunger.” The explicit representation of goals derives from, 
and hinges upon, implicitly generated drive activations. See Figure 4.1 for 
a sketch of the MS.

The issue of explicit versus implicit motivational representations needs 
some examination. On the one hand, empirical and theoretical arguments 
point to the relevance of explicit representation of goals (see, e.g., Kanfer 
& Ackerman, 1989; Newell, 1990; Anderson & Lebiere, 1998). On the 
other hand, the internal processes of drives, needs, or desires are often not 
explicit and not readily accessible consciously (Hull, 1943; Murray; 1938; 
Maslow, 1943). It seems reasonable to assume that (1) the idea of dual 
representation is applicable here (Sun, 2002) and (2) relatedly, implicit 
motivational processes are more essential than explicit ones (Sun, 2009). 
Let us look into some details.
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Explicit goals provide specific, definite motivations for actions. While 
implicit motivational states may change from moment to moment, 
explicit goals are more persistent and longer lasting. In many circum-
stances, persistence is needed (discussed later). Furthermore, it is some-
times necessary to compute a match of a state of the world to a goal, so 
as to discern the progress in achieving the goal and to generate reinforce-
ment signals accordingly. This match is facilitated by using an explicit 
representation of goals. In addition, explicit goals facilitate explicit cogni-
tive processes to work on these goals and their attainment (in addition to 
involving implicit processes). Explicit goals allow more behavioral flex-
ibility and formation of expectancies (Epstein, 1982).

However, the more fundamental part of motivation is implicit, con-
sisting of basic drives, basic needs, basic desires, intrinsic motives, and 
so on (Hull, 1951; Murray, 1938; Maslow, 1943). Human motivational 
processes cannot be captured by explicit goal representation alone (cf. 
Anderson & Lebiere, 1998 or Rosenbloom, Laird, & Newell 1993), 
because, for one thing, they are known to be highly complex and var-
ied (see, e.g., Weiner, 1992). For instance, the interactions of motives, 
especially their combinations, often require a more complex representa-
tion (McFarland, 1989; Tyrell, 1993). Their changes over time, which 
are often gradual and dynamic, also require a more quantitative, graded 
representation. Moreover, Maslow (1943) and Murray (1938) specifi-
cally discussed the unconscious characteristics of “needs”. Given all of 

Sensory input Drive strengths

Goal action Goal

Low-level Drives

High-level Drives

Goals

Figure 4.1.  The basic structure of the motivational subsystem.



The Motivational and Metacognitive Subsystems 125

the above, it is natural to hypothesize that implicit motivational pro-
cesses are necessary.

Furthermore, implicit motivational processes are also fundamental 
(Sun, 2009). Only on the basis of implicit motivational processes, explicit 
goal representations arise, which clarify implicit motivational dynamics. 
Castelfranchi (2001), for example, discussed such implicit-to-explicit 
motivational “emergence,” in ways analogous to general implicit-to-
explicit cognitive “emergence” (as more broadly discussed in preceding 
chapters; see Sun et al., 2001). Maslow (1943), Tolman (1932), and Deci 
(1980) also emphasized the fundamental role of implicit motives.

Empirical evidence from social psychology also points to the duality 
of human motivation. For example, Wood and Quinn (2005) explored 
the relationship between implicit and explicit motivation, in ways analo-
gous to the analysis of implicit and explicit cognitive processes in Sun 
et  al. (2005). Strack and Deutsch (2005) expressed similar views and 
described what I  have termed top-down and bottom-up influences 
(implicit motivation affecting explicit motivation and vise versa). Woike 
(1995) showed how implicit and explicit motives might have different 
effects.

Implicit motives have been variously referred to as basic drives, basic 
needs, basic desires, intrinsic motives, and so on. I have been referring to 
them all as “drives” (Sun, 2003, 2009). In the past, Hull (1951) developed 
the most detailed conception of “drives”—an implicit, preconceptual rep-
resentation of motives. In his view, drives arose from need states, behaviors 
were driven so as to eliminate need states, and drive reduction was the 
basis of reinforcement. Although Hull’s conception of drive had signifi-
cant explanatory merits, his theory failed to capture many motivational 
phenomena—the variety of different motivations proved too difficult to 
be encompassed by his theory. A more general notion is therefore needed.

Here I adopt a generalized notion of “drive,” different from the stricter 
interpretations (e.g., as physiological deficits that require to be reduced 
by corresponding behaviors). With this notion, drives denote internally 
felt needs of all kinds that likely lead to corresponding behaviors, regard-
less of whether the needs are physiological or not, whether the needs are 
reduced by corresponding behaviors or not, or whether the needs are 
for end states or for processes. Therefore, it is a generalized notion that 
transcends controversies surrounding the stricter notions of drive. This 
notion is adopted to account for implicit, context-dependent, and com-
plex drivers of behavior, as well as other properties mentioned early on.
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For even more theoretical or empirical background, see Sun (2009). 
For related views and models, see Hull (1943, 1951), Murray (1938), 
Maslow (1943), Wright and Sloman (1997), Doerner (2003), Reiss 
(2004), and Bach (2009).

4.2.2.  Drives

Based on these considerations, a set of essential drives is posited within 
Clarion, termed “primary drives”, which includes both low-level and 
high-level ones, to be detailed below.

4.2.2.1.  Primary Drives

Primary drives are those drives that are essential to an individual and 
are most likely evolutionarily acquired (genetically hard-wired) to a sig-
nificant extent to begin with (Murray, 1938; Reiss, 2004; Ryan and Deci, 
2000; Sheldon, 2011).

Low-level primary drives include

•	 food
•	 water
•	 reproduction
•	 sleep
•	 avoiding danger
•	 avoiding unpleasant stimuli

and so on. (For more on these, see Murray, 1938; McDougall, 1936; and 
so on.)1

Beyond such low-level primary drives, concerning mostly physi-
ological needs, there are also high-level primary drives, which are more 
socially oriented, concerned mostly with social interaction.2 Based on the 
literature on human motivation (e.g., James, 1890; McDougall, 1936; 

1. Some of these drives (e.g., “food”) may have intrinsic positive rewards associated 
with them, and thus they are mostly aimed at obtaining positive rewards. Some other 
drives (such as “avoiding danger”) are mostly aimed at avoiding negative rewards or pun-
ishments. See the discussion of approach-oriented versus avoidance-oriented drives.

2. Note again that a generalized notion of “drive” is adopted, different from the stricter 
interpretations of drives (e.g., as physiological deficits that require to be reduced by cor-
responding behaviors).
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Murray, 1938; Maslow, 1987; Reiss, 2004, 2008; Sun, 2009), the follow-
ing high-level primary drives are posited:

•	 Affiliation and Belongingness. According to Murray (1938), it 
denotes the need to “form friendships and associations. To greet, 
join, and live with others. To co-operate and converse sociably 
with others. … To join groups.” It is essentially the same as the 
need for social contact as termed by Reiss (2004). It is also 
similar to the notion of belongingness as proposed by Maslow 
(1987). As Maslow (1943) put it, it denotes “our deep animal 
tendencies to herd, to flock, to join, to belong”. This drive 
apparently varies across species—not all species have an equally 
strong need for social belongingness. See also Ryan and Deci 
(2000).

•	 Recognition and Achievement. It is the need to “excite praise and 
commendation. To demand respect. To boast and exhibit one’s 
accomplishments. To seek distinction, social prestige, honours or 
high office”, and to “overcome obstacles, … to strive to do some-
thing difficult as well and as quickly as possible” (Murray, 1938). 
Murray referred to these tendencies as the need for superiority. 
Maslow (1943) claimed that “all people … have a need or desire 
for a stable, firmly based, usually high evaluation of themselves, 
for self respect or self esteem, and for the esteem of others”. It is 
the desire for competence, adequacy, and being recognized for 
such. See also Ryan and Deci (2000).

•	 Dominance and Power. According to Murray (1938), it denotes 
the need to “influence or control others. To persuade, pro-
hibit, dictate. To lead and direct. To restrain. To organize the 
behaviour of a group.” It encompasses the notion of dominance 
proposed by Murray (1938), as well as the notion of power pro-
posed by Reiss (2004).

•	 Deference. “To admire and willingly follow a superior. … To 
co-operate with a leader. To serve gladly” (Murray, 1938).

•	 Autonomy. According to Murray (1938), it is the need to “resist 
influence or coercion. To defy an authority or seek freedom in a 
new place. To strive for independence.” It was also emphasized 
by Ryan and Deci (2000). Like many other drives, it varies 
across species and individuals—not everyone has an equally 
strong need for autonomy (or deference).
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•	 Similance. “To empathize. To imitate or emulate. To identify 
oneself with others. To agree and believe” (Murray, 1938).

•	 Fairness. One seeks fairness in social interaction, for example, 
as documented by evolutionary psychologists (Barkow et al., 
1992). The notions of reciprocal fairness and inequity aversion 
have been explored (e.g., Fehr and Gintis, 2007). Fairness is also 
related to the notion of vengeance by Reiss (2004). Vengeance, 
and some other related tendencies (such as gratitude), may be 
derived from the drive for fairness.3

•	 Honor. It denotes the desire to obey a moral or cultural code 
(Reiss, 2004). See also the need for blame-avoidance in Murray 
(1938).

•	 Nurturance. It is the need to “mother” a child as well as the 
need to help the helpless (Murray, 1938). It is related to the 
“need for family” proposed by Reiss (2004).

•	 Conservation. “To arrange, organize, put away objects. To be tidy 
and clean,” and to “collect, repair, clean and preserve things” 
(Murray, 1938). It is related to the notion of order and the 
notion of saving in Reiss (2004).

•	 Curiosity. It is the need to “explore. … To ask questions. To satisfy 
curiosity. To look, listen, inspect” (Murray, 1938). It is the desire 
for knowledge (Reiss, 2004).

On the basis of these ideas from Murray, Maslow, Reiss, and others, the 
primary drives in the motivational subsystem of Clarion, both low-level 
and high-level, are summarized in Table 4.1.

This set of primary drives has been explored in a series of prior writings 
(e.g., Sun, 2003, 2009), and justified based on existing work in social psy-
chology as well as in ethology.4 For further details, see Sun (2009), as well as 

3. The fairness drive is often for getting intrinsic positive rewards (e.g., feeling good), 
instead of for avoiding punishments by others (e.g., when the lack of fairness is noticed). 
Likewise, vengeance (as part of the fairness drive) is also often for getting intrinsic posi-
tive rewards (e.g., feeling good), not necessarily directly for preventing future unfairness 
by others. For example, it was found that the reward system was activated if one was given 
the opportunity to punish those who cheated (de Quervain et al., 2004).

4. Briefly, this set of primary drives is highly similar to Murray’s (1938), with only a 
few differences (e.g., the drive for conservation covers both the need for “conservance” 
and the need for order proposed by Murray). Likewise, compared with Reiss (2004), one 
can see that they are similar but with some differences. In addition, Schwartz’s (1994)  
10 universal values bear some resemblance to these drives; each of his values may be 
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Murray (1938), Maslow (1987), and Reiss (2004). Research has shown their 
relevance in many domains. For example, Sun and Wilson (2014b) showed 
their relevance to personality and personality disorders. Sun (2013) showed 
their relevance to moral judgment. See also Reiss (2008).

4.2.2.2.  Secondary Drives

While primary drives are more or less evolutionarily hard-wired (i.e., 
innate) and relatively unalterable, there may also be “derived” drives. 

Table 4.1.   A list of primary drives and their brief specifications.

Drives Specifications

•	 Food The drive to consume nourishment.
•	 Water The drive to consume liquid.
•	 Sleep The drive to rest.
•	 Reproduction The drive to mate.
•	 Avoiding danger The drive to avoid situations that have the potential 

to be harmful.
•	 Avoiding unpleasant stimuli The drive to avoid situations that are physically 

(or emotionally) uncomfortable or negative in 
nature.

•	 Affiliation and belongingness The drive to associate with other individuals and to 
be part of social groups.

•	 Dominance and power The drive to have power over other individuals.
•	 Recognition and achievement The drive to excel and be viewed as competent.
•	 Autonomy The drive to resist control or influence by others.
•	 Deference The drive to willingly follow or serve a person of a 

higher status.
•	 Similance The drive to identify with other individuals, to 

imitate others, and to go along with their actions.
•	 Fairness The drive to ensure that one treats others fairly and 

is treated fairly by others.
•	 Honor The drive to follow social norms and codes and to 

avoid blames.
•	 Nurturance The drive to care for, or attend to the needs of, 

others who are in need.
•	 Conservation The drive to conserve, to preserve, to organize, or to 

structure (e.g., one’s environment).
•	 Curiosity The drive to explore, to discover, and to gain new 

knowledge.

derived from some primary drives. So, prior work for justifying these frameworks may be 
applied, to a significant extent, to justifying this set of drives (McDougall, 1936; Murray, 
1938; Maslow, 1987; Reiss, 2004; Sun, 2009).
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They are secondary, more changeable, and acquired mostly in the process 
of pursuing the satisfaction of primary drives.

Derived drives include:  (1) gradually acquired drives, through some 
kind of “conditioning” (Hull, 1951), or (2) externally set drives, through 
externally provided instructions or reinforcement (from individuals or 
institutions). For example, due to the transfer of the desire to please a 
superior into a specific desire to conform to his or her instructions, fol-
lowing a certain instruction may become a derived drive. Ryan and Deci 
(2000) and Weinstein, Przybylski, and Ryan (2013), for example, investi-
gated the internalization of motives.

4.2.2.3.  Approach Versus Avoidance Drives

Drives are also roughly divided up into approach-oriented drives and 
avoidance-oriented drives, as indicated in Table 4.2.

Some researchers (e.g., Gray, 1987) have argued that underlying extro-
version is a behavioral approach system (BAS) and underlying neuroticism 
is a behavioral inhibition system (BIS). Others have similarly argued for 
approach and avoidance systems (e.g., Clark & Watson, 1999; Cacioppo, 
Gardner, & Berntson, 1999; Smillie, Pickering, & Jackson, 2006). The BAS 
is sensitive to cues signaling rewards, and results in active approach. The 
BIS is sensitive to cues of punishment, and results in avoidance, charac-
terized by anxiety or fear. The division between approach-oriented and 
avoidance-oriented drives provides an underlying structure for the divi-
sion between the BAS and the BIS. The reader is referred to the appendix 
for more detailed justifications for the division between approach-ori-
ented and avoidance-oriented drives.

Table 4.2.   Approach-oriented versus avoidance-oriented drives.

Approach Drives Avoidance Drives Both

Food Sleep Affiliation and  
belongingness

Water Avoiding danger Similance
Reproduction Avoiding unpleasant  

stimuli
Deference

Nurturance Honor Autonomy
Curiosity Conservation Fairness
Dominance and power
Recognition and  

achievement
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4.2.2.4.  Drive Strengths

The activation of drives, as well as the resulting drive strengths, needs to 
be examined. Drive activation should be orchestrated to ensure the sur-
vival and functioning of an individual in a complex world, by meeting a 
variety of crucial needs of the individual. For one thing, it should reflect 
internal as well as external conditions that an individual faces.

A set of essential considerations concerning drive strengths has been 
identified (Tyrell, 1993; Sun, 2003, 2009):

•	 Proportional activation. The activation (i.e., the strength) of a 
drive should be proportional to the corresponding perceived 
deficit in the aspect relevant to the drive (such as “food” or 
“water”).

•	 Opportunism. Opportunities need to be taken into consider-
ation. For example, the availability of water may lead to prefer-
ring drinking water over eating food (provided that the food 
deficit is not too much greater than the water deficit).

•	 Contiguity of actions. There should be a tendency to continue 
the current action sequence, rather than switching to a differ-
ent one (e.g., to avoid the overhead of switching). In particu-
lar, actions to satisfy a drive should persist beyond minimum 
satisfaction (i.e., beyond a level of satisfaction barely enough 
to reduce the strength of the most urgent drive to be slightly 
below those of the other drives). For example, one should not 
run to a water source and drink only a minimum amount, and 
then run to a food source and eat a minimum amount, going 
back and forth.

•	 Interruption when necessary. However, when a much more 
urgent drive arises (such as “avoiding danger”), actions for a 
lower-priority drive (such as “sleep”) can be interrupted.

•	 Combination of preferences. The preferences resulting from 
different drives should be combined to generate an overall 
preference for a certain course of action (i.e., a certain action 
goal). In this way, a compromise candidate might be gener-
ated that is not the best for any single drive but the best in 
terms of the combined preference.

Let us see how these considerations can be fulfilled. The first two con-
siderations together point to the use of products, such as “FoodDeficit × 
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FoodStimulus”, in determining the strengths of drives, which take into 
consideration both deficit and availability (Tyrell, 1993).

The third consideration necessitates a persistent goal structure, as has 
been argued earlier, which can be set and then persist unless interrupted 
by a much more urgent drive (such as “avoiding danger” when a severe 
danger is close by). In this way, we may avoid “thrashing”: switching back 
and forth among two or more alternative tasks that are demanded by 
drives with roughly comparable strengths, while preserving the possibility 
of interruption when a much more urgent need arises, as dictated by the 
forth consideration.

Combination of preferences, when deciding on a goal, is an issue 
that deserves some thoughts. It is believed that combination should be 
carried out by the resemblance of a multivote system whereby a goal 
emerges from tallying the votes by different drives (Tyrell, 1993). The 
problem with the single-vote approach is that only the top-priority 
goal of each drive is taken into consideration, but lesser goals may be 
ignored, which may nevertheless make excellent compromise candi-
dates (Sun, 2009).

4.2.3.  Goals

On the basis of drives, a goal may be set, which is more explicit and more 
specific when compared with drives. Drive activations provide the con-
text within which explicit goals are created, set, and carried out. Goals 
can be set by the metacognitive subsystem (the MCS) based on drive 
activations (Simon, 1967).

Briefly, a goal structure resides at the top level of the MS, which con-
sists of a number of goal slots, each of which can hold a goal along with 
its parameters. These goals compete to be the current (active) goal (e.g., 
based on a Boltzmann distribution of the BLAs of the goals; Sun, 2003). 
The current goal chosen from those is then considered in action decision 
making by the ACS.

Some goals may be exactly focused while others may be broader (rela-
tively speaking). In fact, there can be hierarchies of goals in terms of their 
specificity (Carver & Scheier, 1998). Goals can also be categorized in vari-
ous other ways. For example, some goals may be approach-oriented while 
others avoidance-oriented (as discussed earlier; see also Sun & Wilson, 
2014b). Goals may also be inward, outward, or a combination thereof. 
And so on.
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Although the most essential way of goal setting is accomplished by 
the MCS based on drive activations, goals, especially those highly specific 
action goals, may also be created and set on the fly by the ACS during its 
action decision making (especially for dealing with sequential actions). 
For example, goals may be set to emulate a stack-like recursive action 
structure: last in first out (i.e., the last goal set is addressed first, and the 
rest of the goals are dealt with in a similar fashion, recursively). Internal 
actions are available in the ACS for setting and removing goals for such 
purposes.

Goals are different from drives in many respects. For instance, there 
may be multiple drives being activated at the same time (e.g., being hun-
gry and being thirsty at the same time). However, there is usually only 
one goal being pursued at a time (Newell & Simon, 1972; Rosenbloom 
et al., 1993), although a goal can include multiple parameter dimensions 
(Sun, 2003). Drives are often more diffused in terms of focus, while goals 
are often more specific (McFarland, 1989). Drives are more implicit, 
while goals are more explicit (Murray, 1938; Maslow, 1943; Hull, 1951). 
Drives are often hard-wired, while goals are often more flexibly created, 
set, and carried out (Hull, 1951; Sun, 2009).

4.2.4.  Modules and Their Functions

Internal processing of drives within the MS involves the following closely 
interacting modules.

4.2.4.1.  Initialization Module

The initialization module carries out the following two mappings:

(a)	 type of a person → deficitd (for each d)

that is, the mapping from a person type (a description of personal char-
acteristics, e.g., personality traits; Sun and Wilson, 2014b) to the initial 
deficit of each drive. Drive deficits determine the inclination of activating 
corresponding drives. (The initial deficits as determined above can later 
be changed.)

(b)	 type of a person → baselined (for each d)

that is, the mapping from a person type to the baseline strength of 
each drive.
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For obvious reasons, these two mappings are usually performed 
only once for an entire simulation. More details of these two mappings 
can be found in Sun and Wilson (2011), Sun, Wilson, and Mathews 
(2011), and Sun and Wilson (2014, 2014b), in relation to capturing and 
explaining human personality types. See Chapter 6 regarding personal-
ity modeling.

4.2.4.2.  Preprocessing Module

For each drive d, there is a “preprocessor” that picks out relevant informa-
tion for determining the drive-specific stimulus level, which is an evalu-
ation of the current situation with regard to a particular drive (to be 
used in calculating the drive strength). That is, this module performs the 
following mapping:

state x → stimulusd (for each d).

This mapping represents a kind of built-in detector for relevant informa-
tion in relation to a particular drive.5

4.2.4.3.  Drive Core Module

This module generates drive strengths (drive activations) based on the 
following (Sun, 2009):

ds gain stimulus deficit baselined d d d d= × × + 	

where dsd is the strength of drive d, gaind is the gain parameter for 
drive d,6 stimulusd is a value representing the relevance of the current 
situation to drive d, deficitd indicates the perceived deficit in relation 
to drive d (which represents an individual’s inclination toward activat-
ing drive d), and baselined is the baseline strength of drive d. So, the 

5. This mapping may include generalizations from some familiar scenarios to other sce-
narios, accomplished, for example, by using neural networks or similarity-based reasoning.

6. The term “gain” is borrowed from electrical engineering where it indicates the fac-
tor by which voltage may be increased in an amplifier or other devices. Note that gaind 
can be decomposed (Read et al., 2010): gaind = gd × gs × gu, where gd is the individual gain 
for drive d, gu is the universal gain affecting all the drives, gs is the gain affecting all the 
drives of one type (e.g., approach-oriented or avoidance-oriented). Averaging of the two 
gs parameters can be used to handle those drives that are both approach and avoidance 
oriented.
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drive strength is determined jointly by situational factors and internal 
inclinations.7

The justifications for the mappings performed within the prepro-
cessing module and the core module may be found in a variety of lit-
eratures, ranging from ethological research and modeling (Toates 1986; 
McFarland, 1989; Tyrell, 1993)  to cognitive-psychological research and 
modeling (e.g., Sun, 2009). In particular, the multiplicative combination 
of stimulusd and deficitd has been discussed earlier (see also Sun, 2003, 
2009; Tyrell, 1993).8

4.2.4.4.  Deficit Change Module

This module determines how deficitd changes, in relation to input states 
encountered (including goals adopted), actions performed, and so on. 
That is, it performs the following mapping:

state x, action a → change of deficitd (for each d)

See the appendix for further discussions of this mapping.
Each of these four modules above is implemented as a neural network, 

for example, a Backpropagation network (or simply implemented as a 
lookup table; Sun, 2003).

4.3.  The Metacognitive Subsystem

The existence of a variety of drives and many possible goals resulting 
from them leads to the need for metacognitive control and regulation. 
Metacognition refers to one’s knowledge (implicit or explicit) concern-
ing one’s own cognitive processes and their outcomes, and monitoring 
and regulation of these processes (through goal setting and other means; 
Flavell, 1976). It has been studied extensively in cognitive psychology (e.g., 
Mazzoni & Nelson, 1998; Reder, 1996) as well as in some other fields.

7. Note that drive strengths could be a function of the equation above. In the simplest 
case, an identity function is assumed, as shown above.

8. Note that gaind, deficitd, and baselined are treated as inputs to the core module 
because they may be set and tuned by processes outside the core module. In this regard, 
stimulusd may also be tunable (i.e., learnable). Learning is dealt with in the appendix.
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In Clarion, the metacognitive subsystem (the MCS) is closely tied 
to the motivational subsystem (the MS). The MCS monitors, controls, 
and regulates for the sake of goal setting and goal achievement (Simon, 
1967; Wright & Sloman, 1997). Control and regulation include setting 
goals (which are then used by the ACS) on the basis of drives, setting 
essential parameters of the ACS and the NACS (on the basis of drives 
and goals), interrupting and changing ongoing processes in the ACS 
and the NACS, and so on. Control and regulation are also carried out 
through determining reinforcement for the ACS (on the basis of drives 
and goals).

4.3.1.  Essential Considerations

Some essential characteristics of the MCS should be discussed first. In 
the literature, metacognition has often been conceived as separate, spe-
cialized mechanisms for the sole purpose of monitoring, regulating, and 
controlling regular cognition. Moreover, metacognition has often been 
portrayed as explicit processes that involve (exclusively or mostly) delib-
erative reasoning.

However, metacognition may not be entirely explicit. Reder (1996) 
argued that it was often implicit, for avoiding using up limited cognitive 
resources (such as attention) and interfering with regular processes. But 
is metacognition separate and standalone? Although some of the meta-
cognitive functions can conceivably be separate and standalone, it may 
not be necessary to posit a strict separation with regard to all of the meta-
cognitive functions (including monitoring, controlling, verbal reporting, 
and goal setting). Occam’s razor seems to be pointing in the opposite 
direction: Metacognition may not be completely separate and may share 
resources with regular processes (Sun & Mathews, 2012).

There is indeed some evidence that supports this conception. For 
example, Reder and Schunn (1996) interpreted their experimental 
results as indicating that feeling-of-knowing (FOK) judgments were 
implicit, because both experimental and simulation results indicated 
that FOK was an error-prone associative process, which did not involve 
detailed analysis of terms involved. Likewise, Metcalfe (1986) discovered 
the failure of the “warmth” judgment (feeling of closeness to solutions) in 
predicting how close a subject was to solving a problem. In a related vein, 
Glenberg, Wilkinson, and Epstein (1982) argued against the view that 
subjects were engaged in explicit monitoring of their own performance. 
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It might be hypothesized that it was difficult to get an accurate meta-
cognitive assessment because metacognition was largely implicit (Sun & 
Mathews, 2012).

In terms of the relationship between metacognitive and regular pro-
cesses, data from Glenberg et al. (1982) argued against completely sepa-
rate metacognitive processes. Rather, metacognitive judgments often 
fell out as a result of processing stimuli. There was also evidence sug-
gesting that there were different types of metacognitive functionalities 
and they might be intertwined with regular processes in different ways 
(Sun, 2003).

Thus, it may be hypothesized that metacognitive processes are neither 
necessarily explicit, nor necessarily implicit. They may be a combination 
of both, the same as regular processes. Furthermore, (explicit or implicit) 
metacognitive processes may not be completely separate from regular 
processes (either explicit or implicit).

4.3.2.  Modules and Their Functions

Structurally, the metacognitive subsystem is divided into a number of 
relatively independent functional modules. These modules include

•	 the goal module
•	 the reinforcement module
•	 the processing mode module
•	 the learning selection module
•	 the reasoning selection module
•	 the input filtering module
•	 the output filtering module
•	 the parameter setting modules

and so on. See Figure 4.2 for a sketch. Below, I will look into a few key 
functional modules of the MCS.

4.3.2.1.  Goal Module

Goal selection (on the basis of drives) is accomplished by this module. 
The module determines the new goal based on the strengths of the drives, 
along with the current input state and other information. The new goal 
is then placed in the goal structure (see Chapter 3). The bottom level 
of this module may rely more on implicit information (e.g., information 
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about drives) in recommending goals, while the top level may rely more 
on explicit information.

The notion of goal setting on the basis of implicit motives (i.e., drives 
in Clarion) is supported by the arguments from, for example, Tolman 
(1932) and Deci (1980). There are also related empirical findings such as 
Over and Carpenter (2009) and Elliot and Thrash (2002).

Note that two possible ways in which goal selection might be carried 
out (Tyrell 1993; Sun, 2003) are:

•	 Balance-of-interests: Each drive votes for multiple goals, with 
different numerical values (representing different degrees of 
preference). The votes from different drives are tallied, and 
the goal that receives the highest total votes becomes the 
new goal.

•	 Winner-take-all: In this case, drives compete and one drive 
wins the competition. The new goal is chosen for the sole 

Goal module

Reinforcement module

Processing mode module

Input/output 	ltering modules

Reasoning/learning selection
modules

Parameter setting modules

Monitoring bu�er

Figure 4.2.  The major modules within the metacognitive subsystem.
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purpose of addressing the winning drive (representing only its 
preference).

Among the two, the multivote approach is preferred, because it allows 
multiple preferences and different degrees of desirability to be taken into 
consideration. The approach satisfies the consideration regarding “combi-
nation of preferences” as discussed earlier.

For instance, for selecting a new goal, the goal module first determines 
goal strengths for some or all of the goals, based on information from the 
MS (the drive strengths and the current goal) as well as the current sen-
sory inputs. The following calculation is performed:

gs relevance dsg s d g d
d

n

= ×→
=

∑ , ,
1

	

where gsg is the strength (activation) of goal g, relevances,d→g is a mea-
sure of how relevant drive d is to goal g, which represents the support 
that drive d provides to goal g (possibly taking into account the cur-
rent input state s), and dsd is the strength of drive d as determined 
by the MS. Once calculated, the goal strengths are turned into a 
Boltzmann distribution and the new goal is chosen stochastically from 
that distribution.

An issue here is when to select a new goal. A number of possibilities 
exist, taking into consideration the requirements of persistence and con-
tiguity and of prompt interruption when necessary (as discussed in 4.2). 
For instance, as the default, a persistence factor is used:

gs t gs t gs tg g g
all all( ) ( ) ( )    = × − + −( ) ×ρ ρ1 1 	

where gsall
g (t) is the overall strength of goal g (which encourages persis-

tence by favoring the current goal) to be used for selecting the new goal, 
gsg(t) is the current one-step goal strength calculated from the formula 
specified earlier, gsall

g (t −1) is set to 1 (if goal g was chosen at time t −1) 
or 0 (if goal g was not chosen at time t −1), and ρ is the persistence fac-
tor (between 0 and 1). The overall goal strength takes into account not 
only the currently calculated strength but also the previous goal choice. It 
satisfies (to some extent) the requirements of persistence, contiguity, and 
prompt interruption when necessary.

In Clarion, the role of goal setting is not limited to the MCS. Goals can 
also be set by the ACS for the sake of coordinating its actions (see Chapter 3).
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4.3.2.2.  Reinforcement Module

The reinforcement module produces an evaluation (feedback). For 
instance, it produces an evaluation of the current input state (and/or the 
current action) in relation to the current goal and the current activations 
of drives—whether the result satisfies the goal and the activated drives 
(a binary output), or alternatively, how much it satisfies the goal and the 
activated drives (a graded output). The (environmental and internal) sen-
sory information, the activated drives, the goal, and so on are inputs to the 
module. This module maps them to a value that is used as reinforcement 
(e.g., used in the ACS for reinforcement learning; see Chapter 3).9

Within Clarion, reinforcement is determined from measuring the 
degree of satisfaction of the activated drives and the current goal, with 
regard to input state information (and/or actions). That is, reinforce-
ment is an evaluation of the input state (and/or the action), in terms of 
whether the result helps to address the currently activated drives or not, 
and whether it satisfies the currently active goal or not (either a binary 
or a graded output). One possibility is as follows (Sun & Fleischer, 2012):

r = DOS s a ds DOS (s, a) g d
d

d( , ) + ×∑ 	

where DOSg(s,a) measures the degree of satisfaction of the current goal 
g by the result of input state s and action a (performed within the input 
state), dsd is the strength (activation) of drive d, DOSd(s, a) measures the 
degree of satisfaction of drive d, and d ranges over all drives.10

Approach-oriented drives may contribute to positive rewards; avoid-
ance-oriented drives may contribute to punishments (Higgins, 1997). 
Therefore, DOS for an approach-oriented drive may produce a non-neg-
ative value (i.e., ≥ 0), while DOS for an avoidance-oriented drive may 
produce a non-positive value (≤ 0).

9. One problem facing machine learning is coming up with an appropriate reinforce-
ment signal. In general, the world in which an individual lives does not readily provide a 
simple, scalar reinforcement signal, as often assumed in the literature on machine learning 
(Sutton and Barto, 1998). Instead, it simply “changes” into a new “state,” after an action is 
performed, which may or may not be fully observable to the individual. Thus an appro-
priate reinforcement signal has to be determined internally, through synthesizing various 
sources of information, as sketched above.

10. The result from the equation may need to be scaled to a proper range when neural 
networks are involved (because outputs from neural networks may be limited to, e.g., 
[0, 1]). Moreover, DOSg and DOSd may need to be scaled separately so as to balance the 
two measurements.
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It is not necessary for the reinforcement module to produce an evalu-
ation for every step. It is only necessary to produce an evaluation for an 
input state (and/or action) that satisfies (fully or partially) the current 
goal and/or the currently activated drives in some way. This is because 
many learning mechanisms (such as Q-learning used in the ACS) can 
deal with temporal credit assignment. Of course, intermediate evalua-
tions, when available, can be beneficial and help to speed up learning. 
Intermediate reinforcement may be based on the progress toward an end 
(Sun, 2002).

The reinforcement module can be implemented either implicitly 
(at the bottom level of the module) or explicitly (at the top level), or 
both implicitly and explicitly (at both the top and the bottom level), 
the same as other modules of the MCS. It is likely that the bottom level 
relies more on implicit information (e.g., information about drives) in 
deciding on reinforcement, while the top level may rely more on explicit 
information.

In biological organisms, there can conceivably be hard-wired “auto-
matic” evaluations and resulting “automatic” reinforcement, such as those 
concerning satisfying hunger and thirst. On the other hand, for humans 
and other sufficiently complex organisms, reinforcement signals may (in 
part) be learned as well, on the basis of interacting with the world (includ-
ing sociocultural aspects). For example, for humans, complex high-level 
reinforcement may be learned from sociocultural sources, for the sake of 
evaluating complex sociocultural situations. One may even learn to adjust 
(to some extent) the evaluation of simple, direct, bodily states.11

4.3.2.3.  Processing Mode Module

The processing mode module determines how much each level of the 
ACS should be used for action decision making: that is, how explicit (or 
implicit) the ACS processing should be, or what the level of “cognitive 
control” (as termed by some) should be.

For instance, this module may directly specify the weights or the prob-
abilities to be used within the ACS for cross-level integration. For another 
instance, probability matching, which was discussed in Chapter 3, is also 

11. In Clarion, pretraining or online learning of reinforcement is possible. See the 
appendix. Imitative learning may also be relevant in this regard (Sun, 2003). 
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carried out by this module (see Section 3.1.4 for details). Beyond these, 
there are also a number of other mechanisms within this module related 
to determining processing modes. I will describe that of the inverted U 
curve below.

Explicitness of processing within the ACS (degree of “cognitive con-
trol”) can be determined by avoidance-oriented drives (Wilson, Sun, and 
Mathews, 2009, 2010). As discussed in Wilson et al. (2009, 2010), avoid-
ance-oriented drive strengths, which capture anxiety levels in a sense, 
are used to determine the likelihood of performing a task in a more 
explicit or a more implicit way in the ACS. The hypothesis in this regard 
is that when anxiety is at an elevated but relatively low level, it helps to 
increase explicitness in action decision making (which is more effortful 
but more accurate, and thus appropriate for this situation). However, 
when anxiety reaches an even higher level, it begins to impair explicit 
processing. In the latter situation, there is an evolutionary advantage in 
favoring faster and more automatic (more implicit) processes (e.g., to 
facilitate a quick escape). To represent this phenomenon, an inverted 
U curve is used (cf. Yerkes & Dodson, 1908; Hardy & Parfitt, 1991). 
Therefore, to determine the proportion of explicit versus implicit pro-
cessing in the ACS, this module maps avoidance-oriented drive strengths 
to degree of explicitness of processing (e.g., the probability that the top 
level of the ACS will be used when performing a task), based on an 
inverted U curve.12

For instance, the following parabolic equation leads to an inverted  
U curve: y = −0.38x2 + 0.20x + 0.58, where x is the maximum  
avoidance-oriented drive strength (the maximum of all avoidance-  
oriented drive strengths) and y is the degree of explicit processing of the 
ACS (Wilson et al., 2009). Figure 4.3 shows this equation graphically. 
With this equation, the curve begins at x=0 below the peak point of 
the curve, which represents the degree of explicitness when the maxi-
mum avoidance-oriented drive strength is very low. As the drive strength 
increases (i.e., as anxiety increases), the degree of explicitness goes up 
but then goes down, following roughly an inverted U curve.13

The results from the inverted U curve alter the parameters used by 
the cross-level integration method of the ACS (as discussed in Chapter 3, 

12. Note that in terms of the relationship between anxiety and avoidance motivation, 
this approach disagrees with, for example, Humphreys and Revelle (1984).

13. This equation serves as an example only. The curve may vary in accordance with 
situational or individual differences.
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decided by other mechanisms within this module, e.g., by probability 
matching). For instance, integration parameters used within the ACS (be 
it the probability or the weight of the top level) may be modulated mul-
tiplicatively by the output from this curve.14 (Alternatively, the output 
from the curve may override the values of these parameters.)

Note that this module may designate the top level or the bottom level 
of the ACS to be used (e.g., by specifying its probability to be 1). For 
instance, in a routine (highly automatized) situation, one relies almost 
completely on the bottom level of the ACS.

4.3.2.4.  Input/Output Filtering Modules

Attention focusing, either on inputs or on outputs, is carried out by the 
input/output filtering modules of the MCS. It is accomplished through 
removing either some specific input/output dimensions or some specific 
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Figure 4.3.  The x-axis represents the maximum avoidance-oriented drive 
strength from the MS (0 ≤ x ≤ 1), while the y-axis represents the degree of 
explicit processing determined for the ACS (0 ≤ y ≤ 1).

14. Modulation of integration probabilities of the ACS is accomplished as follows: first, 
multiply the probability of each explicit component by the value determined from the 
inverted U curve; then re-normalize all the probabilities (in order for them to sum to 1) 
by dividing each probability (modified or not) by the sum of all.
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values within some input/output dimensions (i.e., regulation of either 
dimensions or values), with metacognitive actions.

The input-filtering module performs input focusing. Such a metacog-
nitive function is empirically justified. For example, Maner et al. (2005) 
showed that motives could bias a person’s perception.15 Montgomery et al. 
(2009) and Epstein (1982) also provided relevant data and arguments. See 
also the discussion of reconfiguration by Huang and Bargh (2014).

The output-filtering module, as its name suggests, performs output 
focusing. Mirroring input filtering, this module can likewise be justified.

The information based on which attention is focused lies mainly in the 
activated drives, the current goal, the current sensory inputs, the working 
memory, and the ongoing performance of the ACS and the NACS (e.g., 
as registered in the monitoring buffer of the MCS). External instructions 
or hints can also impact attention focusing, which are captured through 
goals or working memory. Based on these sources of information, cer-
tain dimensions or certain values are suppressed (accomplished through 
a zero-activation signal that prohibits the transmission of information 
through multiplicative connections).

Attention focusing may be carried out differently for different subsys-
tems and/or for different components within a subsystem.

4.3.2.5.  Reasoning/Learning Selection Modules

Selection of reasoning methods within the NACS or the ACS is done 
by the corresponding modules of the MCS, with metacognitive actions 
that enable certain methods and disable others. The basis for this type of 
decision, again, lies in the activated drives, the current goal, the sensory 
information, the working memory, and the ongoing performance of the 
ACS or the NACS. The selection may be made separately for different 
components of the ACS and the NACS.

Likewise, selection of learning methods within the ACS or the NACS is 
carried out by the corresponding modules of the MCS, which enable cer-
tain methods and disable others. The basis for the decision consists of the 
sensory input information, the activated drives, the current goal, the work-
ing memory, the monitoring of ongoing performance (e.g., performance 
improvement or the lack of it, as registered in the monitoring buffer of the 

15. For example, activating a self-protection motive led to perceiving more anger in 
the faces of other people. Activating a mate-search motive led to perception of more 
sexual arousal in opposite-sex targets (Maner et al., 2005).
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MCS), and so on. Selection can be made separately for different compo-
nents of the ACS and the NACS. For example, possible learning methods 
for a module in the bottom level of the ACS include: Q-learning, simpli-
fied Q-learning, supervised learning, and so on (see Chapter 3).

As in the other modules of the MCS, in these selection modules, it is 
likely that the bottom level relies mainly on implicit information (e.g., 
information about drives), while the top level relies more on explicit 
information (such as goals).

4.3.2.6.  Monitoring Buffer

The monitoring buffer is responsible for keeping track of the operations 
of different components (e.g., different subsystems, and levels and mod-
ules within them). It is subdivided into sections: the ACS performance 
section, the NACS performance section, the ACS learning section, the 
NACS learning section, and other sections. Each section contains infor-
mation about both the bottom level and the top level. See, for example, 
Carver and Sheier (1990) regarding separate monitoring.

For instance, in an ACS or NACS performance section, the informa-
tion about each component includes the relative strength of the top few 
conclusions, which indicates how distinguished or certain the top con-
clusions are in relation to other competing ones. The relative strength is 
defined as follows:
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where the size of the set top is determined by a parameter for each com-
ponent (that is, the number of top conclusions tracked is determined by 
a parameter for each component), and j ranges over all conclusions from 
that component.

4.3.2.7.  Other MCS Modules

Setting of other major parameters involved in the ACS and the NACS 
can also be carried out by modules within the MCS. These parameters 
include, for example, learning rates in the bottom level of the ACS or 
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the NACS, temperatures in stochastic selection, rule learning thresholds 
for RER or for IRL, and others. They are set based on the same kinds of 
factors as enumerated earlier. They may be set separately for different 
modules within the ACS or the NACS. Different modules within the 
MCS are responsible for setting different parameters.

4.4.  General Discussion

Below, I discuss a number of issues concerning the MS and the MCS. These 
issues include: reconciling reactive and motivational perspectives (without 
versus with the MS), scope of the MCS, need for the MCS, and so on.

4.4.1.  Reactivity versus Motivational Control

On the one hand, there are reactive accounts of behavior (e.g., Brooks, 
1991), which I have been addressing, especially in chapters 1 and 2 (Sun, 
2002). On the other hand, there are also motivational accounts of behav-
ior (Toates, 1986; Weiner, 1992; Sun, 2009), which have been covered in 
this chapter and also need to be taken into account. However, these two 
perspectives seem polar opposites to each other. Can they be reconciled?

Clarion synthesizes reactive and motivational accounts of behavior. At 
its core, Clarion is reactive, without the necessity of relying on motiva-
tional and metacognitive mechanisms, as argued early on in Chapter 2 
(see also Sun, 2002). Reactivity in Clarion is enacted through the ACS, 
which can run reactively by itself (assuming that inputs from the MS and 
the MCS are constant, not available, or not used). But, on the other hand, 
Clarion can also fully incorporate motivational and metacognitive mech-
anisms and processes, including a bipartite representation of goals and 
drives as their basis, through the inclusion of the MS and the MCS. Thus, 
Clarion synthesizes the two worldviews. According to Clarion, which of 
these two modes, reactive or motivational, dominates is determined by 
contextual factors in specific circumstances.

4.4.2.  Scope of the MCS

One might naturally assume that the metacognitive subsystem, given 
its name, covers all metacognitive functionalities. In actuality, the MCS 
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covers only some most essential metacognitive processes. Other “meta-
cognitive” functions (as termed in the literature) may be carried out by 
other subsystems (such as the ACS). The general use of the term “meta-
cognition” is broader than what is intended here.

For instance, not all selections of methods, strategies, and parameters 
are carried out by the MCS. Some selections may be carried out by 
processes within the ACS. For example, when faced with a numerical 
problem, the decision of “retrieve versus compute” (Reder and Schunn, 
1996) may be carried out by a module in the ACS (either explicitly or 
implicitly), before computation or retrieval is carried out by modules 
in the NACS. As explained before, the ACS is divided into multiple 
modules. Some of these modules may be responsible for selecting strat-
egies. There may even be a progressive organization of modules that 
facilitate increasingly detailed decisions. It may be hypothesized that 
only selection and regulation at the highest level must be carried out 
by the MCS. That is, the MCS may be at the top of hierarchical deci-
sion making.

In the same vein, some metacognitive information invoked in meta-
cognitive experiments, such as the “feeling of knowing” judgment 
(e.g., Reder & Schunn, 1996), can conceivably be found in the ACS 
or the NACS. For example, the feeling of knowing may be assessed 
in the NACS through similarity-based processes (see Chapter 3). 
Some other types of metacognitive information, such as the “warmth” 
judgment (regarding how close one is to a solution), may be reg-
istered in the monitoring buffer of the MCS (see Section 4.3.2.6). 
Metacognitive control and regulation, on the basis of such informa-
tion, can be carried out by the MCS, or by the ACS (when decisions 
to be made are at a relatively low level). See Chapter 6 for examples 
of such scenarios.

Furthermore, it has been claimed that some explicit metacognitive 
recognition of apparently conscious control (“free will”) might in fact 
be illusory, in that feeling of control might be merely the result of self-
interpretation of automatic or even external causes (e.g., Wegner & 
Wheatle, 1999). Experiments in social psychology have demonstrated 
that subjects are often not consciously aware of social sources of their 
own conformity (Nisbett & Wilson, 1977; Wegner & Bargh, 1998). 
Therefore, explicit metacognitive knowledge involved (if any) is often 
interpretative.
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4.4.3.  Need for the MCS

Given the above, one might wonder whether there is a need for a separate 
metacognitive subsystem. Some might observe that the MCS is similar, 
mechanism-wise, to the ACS. Since they are similar, can the MCS be con-
sidered a part of the ACS, as opposed to a separate subsystem?

At an abstract level, operations of the two subsystems are indeed simi-
lar: both involve making action decisions (internal or external) based on 
input information. However, content-wise, they are different: the MCS 
is solely concerned with a limited range of metacognitive actions (as 
described before), while the ACS is concerned with a broader range of 
actions (see Chapter 3).

If one ignores that content difference, then indeed the MCS may be 
considered modules of the ACS. However, for the sake of conceptual clar-
ity, it is better to view it as a separate subsystem. Either way of seeing the 
MCS is fine and does not affect the essential framework of Clarion.

4.4.4.  Information Flows Involving the MS and the MCS

Let us take a schematic look at the flow of information among the dif-
ferent subsystems. First, a direct (“reactive”) loop is that input state 
information, including sensory inputs (external or internal), along with 
the current goal possibly, goes to the ACS as the basis for action decision 
making; decision making leads to actions, which in turn change the state 
of the world and thus the inputs. However, a second (“motivational”) 
loop also exists: the input state information also goes to the MS where 
it triggers drive activations, which in turn trigger the processes of goal 
setting, reinforcement, and so on within the MCS. The goal, generated 
by the MCS on the basis of drives (and other information), goes to the 
MS, and then to the ACS for action decision making (along with other 
input information). The reinforcement, generated by the MCS on the 
basis of drives, goals, sensory inputs, actions, and so on, goes to the ACS 
for adjusting its action decision-making process (and possibly also to 
other subsystems, e.g., for adjusting goal setting within the MCS).

In addition, the ACS and the NACS interact with each other. Operations 
in the NACS are directed by the ACS, and results from the NACS are sent 
to the ACS. The MCS receives information from other subsystems and 
intervenes in other subsystems, including the ACS and the NACS.
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4.4.5.  Concluding Remarks

The objective of this chapter (as well as the previous chapter) is the 
construction of representations, mechanisms, and processes for the sake 
of explaining a wide variety of cognitive-psychological data in a unified 
and comprehensive way, even though this chapter (as well as the previ-
ous chapter) contained some computational and theoretical speculations.

This chapter addresses motivational and metacognitive representa-
tions, mechanisms, and processes, necessary for a comprehensive cogni-
tive architecture. The need for implicit drive representation, as well as 
explicit goal representation, has been argued. The motivational mecha-
nisms and their resulting dynamics help to make a cognitive architec-
ture more complete and functioning in a more realistic way. On top 
of that, metacognitive functionalities have also been developed. These 
developments constitute a requisite step forward in making a cognitive 
architecture a more realistic model of the human mind taking into fuller 
considerations its complexity and intricacy.

As a result of these developments, Clarion has the potential to eventu-
ally provide a coherent account of a wide range of phenomena in moti-
vation, emotion, metacognition, and personality, as well as many other 
cognitive-psychological aspects. More explorations of these aspects will 
follow in Chapter 6.

In addition, Clarion also helps to clarify mechanistically the notions 
of anxiety (linking it to avoidance-oriented drive activations), cogni-
tive control (linking it to amount of explicit processing), effort (linking 
it to amount of explicit processing but also to goals), and so on (cf. 
Humphreys & Revelle, 1984). It also addresses resource allocation and 
resource availability. Details can be found in simulations in subsequent 
chapters.

Appendix: Additional Details of the MS and the MCS

A.1.  Change of Drive Deficits

A mechanism is needed for adjusting (decreasing or increasing) the deficit 
of a drive that is affected by the current action, the current state, or the 
current goal. The change of deficits is not detailed in the description of the 
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MS earlier, because its causes are widely varied: it may be mainly physi-
ologically determined (e.g., for the food deficit) but may also be psycho-
logically and socially determined in a complex way (e.g., for the dominance 
and power deficit). A deficit change module may need to be specified for 
a simulation.

In a simulation, for the sake of simplicity, one often assumes that only 
one “winning” drive that gets to set the “winning” goal is impacted by 
subsequent actions: it is gradually reduced by the actions guided by the 
winning goal. This simplification may work in some circumstances. But in 
general, multiple drives may contribute to setting the winning goal (see 
the description of goal setting in Section 4.3.2.1), and many of them may 
be impacted, if the actions performed address these drives (reducing or 
increasing their deficits). Even other drives that did not contribute to set-
ting the winning goal can also be impacted sometimes in some fashion.

A.2.  Determining Avoidance Versus Approach Drives, Goals, and Behaviors

To decide whether a drive in the MS is approach oriented or avoidance 
oriented, the following principles are adopted:

•	 The division should be based on seeking positive rewards versus 
avoiding punishments (or negative rewards; Gray, 1987).

•	 It does not rely on complex reasoning, mental simulation, or 
other complex mediating processes, because drive activation is 
reflexive and immediate (Brooks, 1991; Dreyfus, 1992).

•	 Some drives may come with intrinsic positive rewards (e.g., 
food, reproduction, recognition and achievement, and so on—
essentially all the approach-oriented drives). Others may not 
have intrinsic positive rewards (e.g., avoiding danger), and are 
mostly for avoiding negative rewards or punishments. This dis-
tinction has been argued before (Gray, 1987; Clark & Watson, 
1999; Cacioppo, Gardner, & Berntson, 1999).16

16. For example, the sleep drive is mostly for avoiding negative signals, and mostly 
not in anticipation of positive rewards afterward. In contrast, the food drive is mostly for 
getting immediate positive rewards. In addition, some drives, such as fairness, have both 
orientations.
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Based on the above, it can be justified one by one why each drive should 
be approach oriented, avoidance oriented, or both (Sun, Wilson, & 
Mathews, 2011). Table 4.2 contains the resulting division.

Based on this division of drives, goals and actions (behaviors) can also 
be classified as either approach oriented or avoidance oriented. Because 
goals and actions (behaviors) are task-specific, this classification may need 
to be performed for each simulation. To determine whether a goal is 
approach oriented or avoidance oriented, its associations to approach or 
avoidance drives are considered. That is, if a goal is more associated with 
approach drives as opposed to avoidance drives, it is an approach goal. 
Specifically, this can be accomplished through summing the strengths of 
a goal (as determined by the goal strength equation) over all of the sce-
narios under consideration (for a particular simulation), for approach and 
avoidance drives respectively (the activations of which are determined 
by a scenario under consideration). If the sum of strengths for a goal is 
higher when coupled with approach drives than with avoidance drives, 
then it is an approach goal. Otherwise, it is an avoidance goal. A goal can 
be both if the two sums are close (Sun & Wilson, 2014b; Wilson & Sun, 
in preparation).

Behaviors (actions from the ACS) can also be classified as being either 
approach oriented or avoidance oriented, based on associations with 
approach or avoidance goals. This can be accomplished by summing the 
values of each behavior (as determined by a trained network at the bot-
tom level of the ACS), taken over all of the scenarios under consideration 
for a particular simulation, and over all approach and all avoidance goals 
respectively. If the sum of values for a given behavior is higher when cou-
pled with approach goals than with avoidance goals, then the behavior is an 
approach behavior. Otherwise, the behavior is an avoidance behavior.

A.3.  Learning in the MS

When the ACS receives reinforcement (feedback) for selecting and 
performing actions (in other words, for the mapping:  state → action), 
learning occurs within the ACS to adjust action selection based on the 
feedback (as discussed in Chapter  3). Similar learning, with the same 
reinforcement, tunes drive activation within the MS (i.e., tuning the 
mapping: state → drive strength).
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Specifically, to tune drive activation, the MS adjusts the drive gain 
parameter: gaind (for any drive d).17 It uses the same reinforcement sig-
nals as used by the ACS. For instance, the following adjustment can be 
performed:

∆ = × ( ) ×gain sgn r dsd dα   	

where α is the amount of change, dsd is the strength (activation) of drive d, 
and sgn(r) is the sign of reinforcement r. That is, gaind is increased if posi-
tive reinforcement is received when drive d is activated; it is decreased if 
negative reinforcement is received.

Such tuning, as one might expect, is limited to relatively minor 
changes:  it involves a small learning rate; the value of gaind is limited 
by tight upper/lower bounds. Different learning rates may be used in 
tuning, for example, depending on whether a positive or a negative rein-
forcement signal is received (i.e., depending on sgn(r)). Different learn-
ing rates may reflect differential sensitivities to reward and punishment. 
Alternatively, in case of Q-learning being used in the ACS, r may be 
replaced by ∆Q(s, a) in the equation above (where s and a are the state 
and the action performed). Note that the reinforcement signals received 
may be socioculturally determined or influenced (Sun, 2001). Therefore, 
this learning is sociocultural to some extent.18

Additionally, tuning of drive deficits (deficitd) within the MS is also 
possible (e.g., with a very small learning rate, and within tight upper/
lower bounds). Because deficits may capture person types (as mentioned 
earlier; see Sun & Wilson, 2010, 2014), the following mapping has been 
specified earlier:  type of a person → deficitd. Thus, tuning of deficitd 
addresses the formation and adaptation of personality type. The tuning 
equation for this parameter is similar to the one used earlier.

Tuning of drive stimuli (stimulusd) within the MS is also possible (e.g., 
with a very small learning rate, and within tight upper/lower bounds). 
This tuning addresses changing sensitivities of different drives to dif-
ferent situations. According to Clarion, for primary drives, stimulusd is 

17. Here gaind refers mainly to gd. See the definitions earlier.
18. In case a neural network is used (pre-trained) for implementing the mapping 

above, the tuning may adjust an input to the network, gaind (or alternatively, it may adjust 
the network weights instead).
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the result of (mostly pre-formed) detectors for spotting drive-relevant 
situations (e.g., a detector for potential dangers or for potential mates). 
Therefore, the mapping, state → stimulusd, can be embodied in a 
(pre-trained) Backpropagation neural network, and the network can be 
tuned as usual using the Backpropagation learning algorithm with the 
output changes determined by a tuning equation, which is similar to the 
one used earlier.

A.4.  Learning in the MCS

A.4.1.  Learning Drive-Goal Connections

At the same time as learning occurs in the ACS, tuning may be done 
in the MCS to strengthen or weaken strengths of particular goals (i.e., 
the mapping for goal setting: drives, state → new goal). The tuning can 
be accomplished using the same reinforcement signals as received by 
the ACS.

For example, in the simplest case, we have

gs relevance dsg s d g d
d

n

= ×→
=

∑ , ,
1

	

where gsg is the strength (activation) of goal g, relevances,d→g is a measure of 
how relevant drive d is to goal g in the context of s, and dsd is the strength 
of drive d as determined by the MS. Then stochastic selection of a goal 
may be carried out based on gsg.

In this case, tuning may be carried out on relevances,d→g when goal g is 
selected: 

∆ = ∗ ( ) ×→relevance sgn r dss d g d, α    	

where α is the amount of adjustment, and sgn(r) is the sign of reinforce-
ment r. That is, relevanced,s→g is increased if positive reinforcement is 
received when drive d is activated and goal g is selected; it is decreased if 
negative reinforcement is received.

As before, different learning rates may be used, for example, depend-
ing on the sign of the reinforcement. Note that the reinforcement signals 
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received may be socioculturally determined or influenced. Therefore, 
this learning is also sociocultural to some extent.19

A.4.2.  Learning New Goals

Beside strengthening or weakening the mapping from drives to existing 
goals, one may also need to learn new goals that did not exist before. 
New goals are created under two types of circumstances: when a goal has 
intrinsic connections to certain sequences of actions and when a goal has 
no such a priori connections. Because this aspect is not involved in any 
simulation discussed in this volume, I will not get into details here (but 
see Sun, 2003).

19. In case a neural network is used for implementing the mapping, the learning above 
can adjust the input to the network, relevances,d→g (or alternatively, adjust the weights con-
necting drives, as well as other inputs when present, to goals).
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5

Simulating Procedural  
and Declarative Processes

In the next three chapters, I will discuss how Clarion may capture, and 
thereby provide useful interpretations and explanations of, psychologi-
cal tasks, data, and phenomena, through computational simulation of 
these tasks, data, and phenomena. Among these three chapters, the pres-
ent chapter focuses on simulating and explaining psychological processes 
that may be characterized as (mainly) procedural and/or declarative. The 
subsequent two chapters will address other types of processes: motiva-
tional, metacognitive, social, and so on.

As discussed before, the advantages of detailed computational 
simulation include the fact that it leads to more substantiated theo-
ries and explanations, bringing out detailed psychological processes 
involved. Computational simulation often requires detailed, mechanis-
tic, and process-based descriptions that may replace (sometimes vague) 
verbal-conceptual theories with theories of more clarity and precision. 
Due to the specificity of computational models, a more complete, more 
precise, and more consistent explanation may be produced that reduces 
or eliminates inconsistency and ambiguity. Moreover, different expla-
nations embodied by different models may be examined in detail and 
compared precisely. Therefore, a better understanding of psychological 
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phenomena may be achieved as a result (Sun, 2007, 2009b; Fum, Del 
Missier, & Stocco, 2007).

Below, four specific psychological tasks are examined (in sec-
tions 5.1–5.4), in addition to examining some general phenomena (in  
Section 5.5). Note that these specific tasks tend to be small laboratory 
tasks, chosen for the sake of illustrating the essential mechanisms and 
processes of Clarion. I deliberately avoided focusing on major theories 
that resulted from Clarion (such as the theory of synergistic interaction 
in skill learning or the theory of creative problem solving). For these 
major theories, the reader is referred to prior publications such as Sun, 
Slusarz, and Terry (2005), Helie and Sun (2010), as well as Sun (2002). 
For general psychological phenomena, see Section 5.5 for examples 
(especially in relation to reasoning).

As mentioned in Chapter 1, when discussing simulations, a balance 
needs to be struck between conceptual clarity and technical specificity. 
For the sake of conceptual clarity, a high-level conceptual explanation 
needs to be provided; for the sake of technical specificity, a computational 
description also needs to be provided (up to a certain point), correspond-
ing to the high-level conceptual explanation.

However, the descriptions below omit minute technical details (e.g., 
parameter values), because (1) I intend to focus on broad interpretations 
of psychological data and phenomena, and thus minute technical details 
get in the way; (2) even within individual simulation studies, I want to 
focus on conceptual issues, such as why Clarion provides the right frame-
work for explaining relevant psychological phenomena; minute techni-
cal details are not particularly relevant in this regard; (3) computational 
models are not pure mathematical models, and thus they are harder to 
describe completely; as a result, minute computational details are often 
naturally omitted; (4) exact parameter values may change as a result of 
even minor algorithmic changes, which, however, usually do not change 
essential conceptual issues.1

1. Note that details of statistical analysis are omitted below for essentially the same 
reasons. Note also that the figures included in the next three chapters are from old 
sources. As such, their formats are not uniform, their image qualities are often less than 
ideal, and extraneous information is sometimes included in them. However, they repre-
sent historical records in a sense.
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5.1.  Modeling the Dynamic Process Control Task

Below I will first look into a task that involves implicit procedural learn-
ing, as well as bottom-up learning (going from implicit to explicit proce-
dural knowledge). I will examine the impact of the interaction between 
implicit and explicit processes.

5.1.1.  Background

The role of implicit learning in skill acquisition has been gaining rec-
ognition in recent decades (Reber, 1989; Proctor & Dutta, 1995; Sun, 
2002). Although both implicit and explicit learning have been investi-
gated empirically, the interaction between implicit and explicit learning 
and the importance of this interaction were not widely recognized. The 
interaction has traditionally been downplayed in empirical research (but 
with a few exceptions). Research has been focused on showing the lack 
of explicit learning in various settings and on the controversies stemming 
from such claims. Similar oversight was also evident in computational 
models of implicit learning (but with a few exceptions).

Despite the relative scarcity of studies of the implicit-explicit inter-
action in skill acquisition, it has become evident that it is difficult to 
find a situation in which only one type of learning is engaged. Various 
indications of the implicit-explicit interaction can be found scattered in 
the literature. For instance, Stanley et al. (1989) found that under some 
circumstances, verbalization (generating explicit knowledge) could help 
to improve skill performance. Ahlum-Heath and DiVesta (1986) also 
found that verbalization led to better performance. However, as Sun 
et  al. (2001) showed, verbalization might also hamper implicit learn-
ing, especially when too much verbalization induced an overly explicit 
learning mode.

Similarly, as shown by Berry and Broadbent (1988), Stanley et  al. 
(1989), and Reber et al. (1980), verbal instructions given prior to skill 
learning could facilitate or hamper task performance. One type of instruc-
tion was to encourage subjects to perform explicit search for regularities 
that might aid in performance. Reber et al. (1980) found that, depending 
on the ways in which stimuli were presented, explicit search might help 
or hamper performance. Another type of instruction was explicit how-to 
instruction that told subjects specifically how a task should be performed, 
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including providing information concerning regularities. Stanley et  al 
(1989) found that such instructions helped to improve performance 
significantly.

In a way, as discussed before, such empirical results indicated the pos-
sibility of synergy between implicit and explicit procedural processes, in 
the sense that under proper circumstances, the interaction of implicit and 
explicit procedural processes led to better overall performance.

Turning to the relationship between implicit and explicit learning, 
there was some empirical evidence that implicit and explicit knowl-
edge might develop independently under some circumstances. However, 
there were also cases where a subject’s performance improved earlier 
than explicit knowledge. For instance, as shown by Stanley et al. (1989), 
while the performance of subjects might quickly rise to a high level, 
their verbal knowledge might improve more slowly. Bowers et al. (1990) 
also showed delayed learning of explicit knowledge. In these cases, due 
to the fact that explicit knowledge lagged behind but improved along 
with implicit knowledge, explicit knowledge was in a way “extracted” 
from implicit knowledge. Learning of explicit knowledge might occur 
through the explication of implicit knowledge, that is, through bottom-
up learning as discussed in Chapter 3 (Sun et al., 2001; Sun, Slusarz, & 
Terry, 2005).

In the remainder of this section, I will quickly present some data from 
experiments with process control tasks (Berry and Broadbent, 1984; 
Osman, 2010). I  will then discuss the simulation of the data set and 
the analysis of the results. The discussions will be drawn from Sun et al. 
(2007).

5.1.2.  Task and Data

The human data from the process control tasks of Stanley et al. (1989) 
were used. The data were typical of human performance in process con-
trol tasks and demonstrated the interaction between explicit and implicit 
processes in skill learning.

The task setting was as follows:  human subjects were instructed to 
control the outputs of a simulated system by choosing their inputs into 
the system (from a set of available inputs). The outputs of the system 
were determined from the inputs provided by the subjects, through a 
certain relationship. However, this relationship was not known to the sub-
jects. Subjects gradually learned how to control the outputs of the system 
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through trial and error. Many of them also developed some explicit knowl-
edge of the relationship. Various experimental manipulations of learning 
settings placed differential emphases on explicit and implicit learning.

The data resulting from the task demonstrated a number of inter-
esting effects of the implicit-explicit interaction, as touched upon ear-
lier: (1) the verbalization effect (i.e., verbalization sometimes led to better 
performance), (2)  the explicit how-to instruction effect (i.e., receiving 
how-to instructions led to better performance), and (3) the synergy effect 
(i.e., the enhanced role of explicit processes in the verbalization and the 
explicit instruction condition led to better performance; Sun, Slusarz, & 
Terry, 2005; Sun et al., 2007).

Specifically, in Stanley et  al. (1989), two versions of process control 
tasks were used. In the person version, each subject interacted with a 
computer simulated “person” whose behavior ranged from “very rude” to 
“loving” (over a total of 12 levels), and the task was to maintain the behav-
ior of the simulated “person” at “very friendly” by controlling his/her own 
behavior (which could also range over the 12 levels, from “very rude” to 
“loving”). In the sugar production factory version, each subject interacted 
with a simulated factory to maintain a particular production level (out of 
a total of 12 possible levels), through adjusting the size of the workforce 
(which also had 12 levels). In either case, the behavior of the simulated 
system was determined by P = 2 * W − P1 + N, where P was the current 
system output, P1 was the previous system output, W was the input from 
subjects to the system, and N was noise. Noise (N) was added to the out-
put of the system, so that there was a chance of being up or down one 
level (a 33% chance respectively).

There were four groups of subjects. The control group was not given 
any instruction to help performance and not asked to verbalize. The “orig-
inal” group was asked to verbalize after each block of 10 trials. Other 
groups of subjects were given explicit instructions in various forms. To 
the “memory training” group, a series of 12 correct input/output pairs 
was presented. To the “simple rule” group, a simple rule (“always select 
the response level half way between the current production level and 
the target level”) was given. All the subjects were trained for 200 trials  
(20 blocks of 10 trials).

Statistical analysis was done based on “score,” defined as the average 
number of on-target responses per trial block (where the exact target 
value plus/minus one level was considered on target). It showed that 
the score of the original group was significantly higher than that of the 
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control group. Statistical analysis also showed that the scores of the 
memory training group and the simple rule group were also significantly 
higher than that of the control group. See Table 5.1.2

Explanation is in order in regard to what the result suggested. First, the 
performance in this task involved mostly procedural (action-centered) pro-
cesses, and moreover, mostly implicit procedural processes, judging from 
many experiments in the past (e.g., Berry and Broadbent, 1988; Mathews 
et al., 1989; Mathews et al., 2011). Second, the memory training and 
the simple rule condition led to more involvement of explicit processes, 
because of the emphasis placed on explicit knowledge in these condi-
tions. Third, verbalization also increased the involvement of explicit pro-
cesses, because verbalization necessarily placed more emphasis on explicit 
(verbalizable) knowledge. Thus these three conditions demonstrated the 
synergy effect (along with the verbalization and the explicit instruction 
effect). More detailed analysis may be found in Sun et al. (2007).

5.1.3.  Simulation Setup

The simulation of this task demonstrated computationally the synergy 
between implicit and explicit procedural processes, resulting from the 
interaction of these processes, which led to better overall performance.

In accordance with the analysis earlier, the following was posited: the 
action-centered subsystem (the ACS) was mainly involved in this 
task, because this task relied on procedural knowledge (skills). In the 

2. Note that subjects performed somewhat better in the person task compared with 
the sugar factory task. Subjects might have brought in their prior knowledge of interact-
ing with other people in the real world into their performance of the person task.

Table 5.1.   �The human data from Stanley et al. 
(1989). Each cell indicates the average 
number of on-target responses per trial 
block. The exact target value plus/minus 
one level was considered on target.

Sugar Task Person Task

control 1.97 2.85
original 2.57 3.75
memory training 4.63 5.33
simple rule 4.00 5.91
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bottom level of the ACS, a neural network implemented Q-learning with 
Backpropagation. Reinforcement was determined by the outcome from 
the to-be-controlled system, based on the distance between the target 
value and the actual outcome.3

The inputs to the simulated subject included: the target value for the 
system to be controlled, the action at step t − 1, the output from the sys-
tem to be controlled at step t − 1, the action at step t − 2, and the output 
from the system to be controlled at step t − 2. The output of the simu-
lated subject consisted of one output dimension of 12 possible actions.4

At the top level, two types of rule learning, RER and IRL, were 
involved. Four sets of IRL rules were involved in the hypothesis test-
ing process (without generalization and specialization), as indicated in 
Table 5.2. (Note that, if needed, other rule forms could be added eas-
ily. Adding more rules would not drastically change the working of the 
model.) Positivity was measured by whether or not the system outcome 
was on target—the exact target value plus/minus one (in accordance with 
the human experiments). It was used for calculating PMs and NMs for 
both RER and IRL rules, and also for extracting initial rules in RER. Based 

3. For instance, one reward function was: 0.2 * (1 − |actual − target|). A few different 
reward schemes were tested, and essentially the same results were obtained.

4. The encoding at the bottom level was such that each value in each input dimension 
was represented by an individual node in the input layer of the neural network. The out-
put encoding at the bottom level used a set of nodes, one for each possible action. Thus, 
60 input units, 40 hidden units, and 12 output units were involved.

Table 5.2. � The order of IRL rules to be tested. a =1, 
2, b = −1, −2, 0, 1, 2, c = −1, −2, 1, 2, P is 
the desired system output level (the exact 
target), W is the current input to the system 
(to be determined), W1 is the previous input 
to the system, P1 is the previous system output 
level (under W1), and P2 is the system output 
level at the time step right before P1.

1 P aW b= +

2 P aW cP b= + +1

3 P aW b= +1

4 P aW cP b= + +1 2
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on that, the IG measures for RER and IRL, respectively, were calculated 
(as detailed in Chapter 3).

For capturing each of the experimental conditions, few parameter values 
were adjusted. To model the effect of verbalization (in the “original” group), 
rule learning thresholds were adjusted so as to increase rule learning activi-
ties at the top level (i.e., the IRL rule deletion threshold was raised, and 
the RER thresholds were lowered). The hypothesis was that verbalization 
tended to increase explicit activities, especially rule learning activities.5

To capture explicit instructions, given knowledge was wired up at the 
top level. In the “memory training” condition, each of the 12 explicit 
examples was wired up at the top level (in the form of “P1 → W”). In the 
“simple rule” condition, the explicit rule (as described earlier) was wired 
up at the top level (as a “fixed rule” or FR; see Sun, 2003).

For each group, a total of 100 simulation runs were conducted, repre-
senting 100 simulated “subjects”. Each run lasted 20 blocks, for a total of 
200 trials, exactly the same as in the human experiments.6

5.1.4.  Simulation Results

The simulation setup as described above captured all the observed effects 
in the human data (Sun et al., 2007). First, the simulation captured the 
verbalization effect in the human data, as shown by Table 5.3. Statistical 
tests compared the simulated “original” group with the simulated control 
group, which showed a significant performance improvement due to ver-
balization, analogous to the human data.

The simulation also captured the explicit instruction effect (also 
shown in Table 5.3). Statistical tests compared the simulated “memory 
training” and the simulated “simple rule” group with the simulated con-
trol group, which showed significant improvements of these two groups 
over the simulated control group, analogous to the human data.

Together, they captured the synergy effect posited earlier. That is, more 
involvement of explicit procedural processes, on top of implicit proce-
dural processes, led to better procedural performance.

5. Different from RER, a higher threshold in IRL leads to more rule learning activities.
6. To capture the fact that subjects performed better in the person task compared 

with the sugar factory task (presumably due to the fact that subjects brought their prior 
knowledge of interacting with other people in the real world into their performance of 
this task), some pre-training was conducted prior to performing the person task.
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To better understand contributing factors in the model performance, 
a componential analysis was performed to tease out the contributions of 
various constituting components of the model. “Lesion” studies of the full 
model and tests of partial models were carried out to discover the respec-
tive effects of the top level versus the bottom level and RER versus IRL.

A “lesion” study of the full model was performed as follows. After opti-
mizing the parameters of the full model (by trial and error), IRL or RER 
was removed respectively to form two partial models. With the same 
setting of parameters (optimized with regard to the full model), the two 
partial models were applied to the learning of this task.

See Table 5.4 for the “lesion” data. Removing IRL led to far worse 
performance than removing RER, in terms of the mean squared devia-
tion from the human data. That was probably an indication that IRL con-
tributed more significantly to the performance of the original full model 
than RER.

Was this effect an artifact of the parameter setting that was optimized 
with regard to the full model? To answer this question, partial models 
were also individually optimized and tested through optimizing only 
those parameters that were applicable to a partial model (in terms of 
maximizing the match between a partial model and the human data).

With the same training of 20 blocks of 10 trials each, the performance 
of the resulting optimized partial models was compared with that of the 

Table 5.3. � The simulation of Stanley et al. (1989). 
Each cell indicates the number of on-target 
responses per trial block.

Human Data

Sugar Task Person Task

control 1.97 2.85
original 2.57 3.75
memory training 4.63 5.33
simple rule 4.00 5.91

Model Data

Sugar Task Person Task

control 1.92 2.62
original 2.77 4.01
memory training 4.45 5.45
simple rule 4.80 5.65
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full model. As shown by Table 5.5, (1) the partial model with the bottom 
level and IRL performed much better than the partial model with the bot-
tom level and RER, but (2) neither performed as well as the full model. 
This result showed that IRL was more important than RER in matching 
the human data, but all of the three components were useful in match-
ing the human data—all were necessary in order to maximize the match 
between human and model performance. See Table 5.5 for the data.

Furthermore, based on each of the two partial models, a complete 
model was built. For each partial model, all the parameters applicable 
to the partial model, which were optimized with respect to the par-
tial model, were frozen, and then the missing component was added to 
complete the partial model, optimizing only those parameters that were 
applicable to the newly added component. The reason for doing so was 
to further identify the significance of each component through freezing 
other components.

Table 5.4.   �The simulation of Stanley et al. (1989) 
with “lesioned” models. Each cell indicates 
the number of on-target responses per trial block. 
“BL” denotes the bottom level of the ACS.

Human Data

Sugar Task Person Task

control 1.97 2.85
original 2.57 3.75
memory training 4.63 5.33
simple rule 4.00 5.91

Model Data (BL+RER)

Sugar Task Person Task

control 1.55 1.89
original 1.60 1.95
memory training 3.77 4.15
simple rule 4.08 4.45

Model Data (BL+IRL)

Sugar Task Person Task

control 2.10 2.65
original 3.45 4.68
memory training 4.71 5.80
simple rule 5.06 6.29
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The resulting “partial-full” models were compared with each other and 
with the original full model. Adding IRL to the partial model with RER 
and the bottom level led to more improvements than adding RER to the 
partial model with IRL and the bottom level, which again showed the 
importance of IRL in this task. See Table 5.6 for the data. As before, this 
test showed that all the components above were useful in terms of pro-
ducing a better fit with the human data.

Because there was no human learning curve available, there could not be 
a comparison between human and model learning curves. Learning curves 
are therefore not addressed here, but they will be discussed later with 
regard to other tasks where human learning curves are indeed available.

Variations of the model were also tested, for example, with different 
input/output encoding, with different implicit learning algorithms, with 
different rule learning algorithms, and so on. The results were comparable 

Table 5.5. � The simulation of Stanley et al. (1989) 
with optimized partial models. Each cell 
indicates the number of on-target responses 
per trial block. “BL” denotes the bottom level 
of the ACS.

Human Data

Sugar Task Person Task

control 1.97 2.85
original 2.57 3.75
memory training 4.63 5.33
simple rule 4.00 5.91

Model Data (BL+RER)

Sugar Task Person Task

control 1.68 1.81
original 1.64 1.96
memory training 4.23 4.46
simple rule 4.72 4.87

Model Data (BL+IRL)

Sugar Task Person Task

control 2.23 2.76
original 3.43 4.55
memory training 4.55 5.63
simple rule 4.86 5.63
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to the full model discussed above, also capturing the essential characteris-
tics of the human data (for more details, see Sun et al., 2007).

5.1.5.  Discussion

In all, the human data and the simulation of them both confirmed the 
verbalization effect and the explicit instruction effect. Thus they demon-
strated the synergy between implicit and explicit procedural processes. 
The match between the simulation and the human data was analyzed, 
and thus the validity of the model was also demonstrated to some extent.

To account for these effects mentioned above, implicit learning, 
implicit-to-explicit extraction, and explicit hypothesis testing learning 
were all needed. The model was able to capture these effects because it 
used explicit rule learning along with implicit learning at the bottom level. 
Regardless of whether RER or IRL was involved, explicit rule learning 
led to explicit knowledge, which helped to enhance overall performance. 

Table 5.6. � The simulation of Stanley et al. (1989) with partial-full 
models. Each cell indicates the number of on-target 
responses per trial block. “BL” denotes the bottom level 
of the ACS.

Human Data

Sugar Task Person Task

control 1.97 2.85
original 2.57 3.75
memory training 4.63 5.33
simple rule 4.00 5.91

Model Data (BL+RER → IRL)

Sugar Task Person Task

control 2.03 2.68
original 2.71 3.92
memory training 4.77 5.45
simple rule 5.32 5.55

Model Data (BL+IRL → RER)

Sugar Task Person Task

control 2.02 2.27
original 2.89 3.90
memory training 4.51 5.43
simple rule 5.05 5.37
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This simulation demonstrated the usefulness of explicit learning (Sun 
et al., 2007).

It was also apparent from the simulation that IRL contributed con-
siderably more to the capturing and explanation of the human data than 
RER. So, the simulation suggested, correspondingly, that it was possible 
that in human learning of this task, explicit hypothesis testing learning (as 
captured by IRL) was more important than implicit-to-explicit extrac-
tion (as in RER).

However, there was a trade-off to be considered when dealing with 
the question of which version of the model should be preferred. The full 
model certainly produced the best fit compared with the partial models, 
but it was also more complex than the other models. Comparing the full 
model with the partial models, the question is whether the increased 
complexity of the full model was worth the increase in accuracy. What is 
needed here is a measure of complexity-accuracy trade-offs and a crite-
rion for deciding when increased complexity is worth it. Because there is 
no consensus on a practical formal measure of the complexity-accuracy 
trade-off, the answer to this question remains a matter of judgment.

There was also the question of why RER helped to improve learning 
and performance, given that RER rules were extracted from the bot-
tom level in the first place. This question was discussed in detail in Sun 
and Peterson (1998). The conclusion, based on a systematic analysis, was 
that the explanation of the synergy between the two levels was based 
on the following factors: the complementary representations of the two 
levels, the complementary learning processes, and the bottom-up rule 
learning criterion used. In other words, although rules were extracted 
from the bottom level, the very process of extraction and the resulting 
explicit representation make rules different and useful. Usefulness of 
rules learned from IRL may also be attributed, at least in part, to these 
factors, besides the fact that IRL rules often represent different knowl-
edge to begin with.

The Clarion model of process control tasks appears to be more com-
prehensive than other models of process control tasks. It includes all 
of the following:  implicit learning, explicit hypothesis-testing learning, 
and implicit-to-explicit extraction. It also includes both instance-based 
learning and rule-based learning in a unified manner. In this regard, note 
that the RER learning algorithm starts with extracting concrete instances 
(from the bottom level) and can be either instance based or rule based, 
depending on learning parameters within RER. The rule refinement 
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(generalization and specialization) parameters within RER can either 
discourage or encourage generalizing concrete instances (extracted from 
the bottom level) into more abstract rules. Moreover, the model includes 
both bottom-up and top-down learning. The model can also easily incor-
porate heuristics hypothesized in some other theories (e.g., Dienes & 
Fahey, 1995; Fum & Stocco, 2003).

In addition, Dienes and Fahey (1995) showed that either an instance-based 
or a rule-based model might be appropriate for explaining human perfor-
mance in this task, depending on task settings. The key was the salience 
of task stimuli. Instead of having two separate models, the Clarion model 
encompassed both instance-based and rule-based processes. Therefore, it 
included the two models of Dienes and Fahey (1995) as two special cases. 
Taatgen and Wallach (2002) implemented a model in ACT-R using essen-
tially the idea of instance-based learning from Dienes and Fahey (1995). 
Therefore, the comparison above applied to their model as well.

Of course, only suggestive evidence for the Clarion model has been pro-
vided from the work described in this section, not a definitive proof. This 
work is but one test of Clarion, as part of a much larger project—much 
more work has been (or is being) conducted.

Follow-up work, in the forms of both human experiments and com-
putational simulations, is needed. Human experiments may attempt 
to verify

•	 the relative contributions of different learning processes as 
revealed by the simulation, and

•	 the various effects that have been captured in the simulation.

In terms of verifying the various effects of the implicit-explicit interac-
tion, there have been many corroborating results as briefly reviewed ear-
lier (see also Sun, Slusarz, & Terry, 2005). However, further exploration 
of this aspect may still be worthwhile.

5.2.  Modeling the Alphabetic Arithmetic Task

5.2.1.  Background

On the basis of the previous section, this section further explores 
both bottom-up and top-down learning. As originally defined in  
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Sun et al. (2001), top-down learning goes from explicit to implicit 
knowledge, while bottom-up learning goes from implicit to explicit 
knowledge (see Chapter 3). Instead of studying each type of learn-
ing (implicit or explicit) in isolation, their interaction in the forms of 
these two learning directions is explored. This section addresses how 
one type gives rise to the other and the effects of such interactions on 
learning, through modeling empirical data.

Furthermore, this section involves both action-centered and non-
action-centered subsystems. In a way, this section explores the interaction 
between procedural and declarative processes, as well as its effects on learn-
ing. Therefore, this section presents a simulation that takes into account 
both implicit and explicit processes, both action-centered and non-action-  
centered knowledge, and both top-down and bottom-up learning.

Human data in the alphabetic arithmetic (i.e., letter counting) task 
will be tackled. This section shows how the data may be captured 
through comparing a variety of approaches. It shows that the quantita-
tive data in the task may be captured more accurately using top-down 
learning, which constitutes a more apt explanation of the data. This work 
also shows, in a way, the benefit of including both action-centered and 
non-action-centered processes in simulating this task. Thus, synergy from 
the interaction between action-centered and non-action-centered pro-
cesses can be argued for. These results provide a more integrated per-
spective on skill learning, incorporating the four-way division of implicit 
versus explicit and procedural versus declarative processes.

It has been argued that in cognitive science, detailed comparisons 
of different modeling approaches and choices are needed but lacking 
(see, e.g., Massaro, 1988; Pew & Mavor, 1998; Roberts & Pashler, 2000). 
Detailed comparisons may reveal new or better possibilities in terms of 
theoretical assumptions, modeling frameworks, and algorithmic/compu-
tational processes. Therefore, comparisons of models are performed in 
this section.

Below, I first discuss some human data and then the simulation of the 
data. The discussion relies on results from Sun, Zhang, and Mathews 
(2009).

5.2.2.  Task and Data

The task of alphabetic arithmetic (letter counting) of Rabinowitz 
and Goldberg (1995) involved two sets of issues that were of 
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interest:  action-centeredness versus accessibility (explicitness) and 
top-down versus bottom-up learning. In addition, there had been existing 
simulations that could be compared to the Clarion simulation. In view of 
the above, it was an attractive test domain.

The setting of the task was as follows (Rabinowitz and Goldberg, 
1995; Johnson, 1998): Subjects (children) were asked to solve alphabetic 
arithmetic problems of the following forms: letter1 + number = letter2, or 
letter1 − number = letter2, where letter2 was number positions up or down 
from letter1, depending on whether + or − was used. Subjects were given 
letter1 and number, and asked to produce letter2.

In experiment 1 of Rabinowitz and Goldberg (1995), during the train-
ing phase, one group of subjects, the consistent group, received 36 blocks 
of training, in which each block consisted of the same 12 addition prob-
lems. Another group, the varied group, received 6 blocks of training, in 
which each block consisted of the same 72 addition problems. While 
both groups received 432 trials, the consistent group practiced on each 
problem 36 times but the varied group only 6 times. The addends ranged 
from 1 to 6.

In the transfer phase of this experiment, each group received 12 new 
addition problems (not practiced before), repeated 3 times. The findings 
were that, at the end of training, the consistent group performed far bet-
ter than the varied group. However, during the transfer phase, the con-
sistent group performed worse than the varied group. The varied group 
showed almost perfect transfer, while the consistent group showed con-
siderable slowdown. See Figure 5.1.7

In experiment 2, the training phase was identical to that of experi-
ment 1. However, during the transfer phase, both groups received 12 sub-
traction (not addition) problems, which were the reverse of the original 
addition problems used for training (for both groups), repeated 3 times. 
The findings were that, in contrast to experiment 1, during transfer, the 
consistent group actually performed better than the varied group. Both 
groups performed worse than their corresponding performance at the 
end of training, but the varied group showed worse performance than the 
consistent group. See Figure 5.2.

To investigate possible mechanistic (computational) explanations 
of the data pattern as well as the issues raised earlier, simulations were 

7. Note that only correct responses were used in the analysis.
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carried out based on a cross-product design: learning method (top-down 
versus bottom-up versus both) × action-centeredness (the ACS only 
versus both the ACS and the NACS), for the sake of comparing these 
alternatives.

5.2.3.  Top-Down Simulation

5.2.3.1.  Simulation Setup

One simulation was based on top-down learning: that is, a priori action 
rules (“fixed rules” or FRs; Sun, 2003) were coded at the top level of the 
ACS to begin with, for capturing prior knowledge concerning counting 
letters. Then, on the basis of these rules, performance was carried out 
and implicit learning at the bottom level of the ACS took place.

The set of action rules used included straight counting rules:

If goal=addition-counting, start-letter=x, number=n, then starting with x, 

repeat n times: count-up

If goal=subtraction-counting, start-letter=x, number=n, then starting with x, 

repeat n times: count-down

End of  training

TASK

0

500

1000R
es

po
ns

e 
tim

e 
(m

se
c)

1500

2000

2500

3000

3500
LC experiment 1 (human data)

Transfer

Consistent
Varied

Figure 5.1.  The results of experiment 1 of Rabinowitz and Goldberg (1995).
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The action rule set also included instance-retrieving rules that generated 
solutions by using memorized instances (stored in the NACS in the form 
of chunks):

If goal=addition-counting, start-letter=x, number=n, then retrieve chunks 

with (dim1 = x, dim
2
 = +, dim

3
 = n, dim

4
 =?) and report dim4.

If goal=subtraction-counting, start-letter=x, number=n, then retrieve 

chunks with (dim1 = x, dim2 = −, dim3 = n, dim4 =?) and report dim4.

In these rules, “?” represented “don’t care” conditions. These rules above 
were fairly straightforward.

However, it was also possible to perform “reversed retrieval” to address 
subtraction problems using addition instances, or vice versa, with the fol-
lowing action rules:

If goal=addition-counting, start-letter=x, number=n, then retrieve chunks 

with (dim1 =?, dim2 = −, dim3 = n, dim4 = x) and report dim1.

If goal=subtraction-counting, start-letter=x, number=n, then retrieve chunks 

with (dim1 =?, dim2 = +, dim3 = n, dim4 = x) and report dim1.
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Figure 5.2.  The results of experiment 2 of Rabinowitz and Goldberg (1995).
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The NACS was used for storing experienced instances. In the NACS, 
each question and answer pair encountered was encoded as a chunk (with 
a chunk node at the top level and feature nodes at the bottom level). 
A retrieval rule from the ACS triggered all the chunks that overlapped 
in terms of features with the retrieval cue (indicated by the retrieval 
rule). Actual retrieval was limited to one chunk at each step. All triggered 
chunks (all those overlapping with the retrieval cue) competed to be 
the one retrieved, through a stochastic selection process (as discussed in 
Chapter 3).

All these action rules in the ACS competed based on their utility. In 
calculating the utility (based on the cost and the benefit of each rule as 
defined in Chapter 3), the benefit was set equal to the positive match rate 
of a rule. The rule condition must match the current state to count as a 
“match.” A “positive match” was further determined by the outcome of 
the matching rule being correct. The cost was set based on the estimated 
average execution time of a rule.

A goal structure with one goal slot was used. There were two pos-
sible goals, addition-counting or subtraction-counting (as used in the rules 
above). A goal was set when instructions to count up or count down were 
given by experimenters.

Three inputs were provided: a starting letter, an arithmetic operator, 
and a number. In addition, the goal was also input. There were 26 pos-
sible outputs, each of which represented a letter. At the bottom level 
of the ACS, there was one network. Its output indicated the (guessed) 
target letter.

The response time when a counting rule was applied (without chunk 
retrieval within the NACS) was in part determined by the BLA of the 
rule applied (see Chapter 3). The total response time of the top level was 
the sum of the perceptual time, the decision time of the rule (which was 
in part determined by the BLA of the rule), the counting time, and the 
verbal answer time (as described in Chapter 3). The response time of the 
bottom level may be viewed as a constant (as estimated in Chapter 3).

The response time when a chunk retrieval rule was applied was deter-
mined in part by the BLA of the chunk retrieved from the NACS and the 
BLA of the retrieval rule applied (in the ACS), as described in Chapter 3. 
The total response time of the top level with chunk retrieval was the 
sum of the perceptual time, the decision time of the retrieval rule (in 
part determined by the BLA of the rule), the retrieval time in the NACS 
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(in part determined by the BLA of the chunk retrieved), and the verbal 
answer time.8

5.2.3.2.  Simulation Results

Examine simulation results. First, at the end of the training phase of 
experiment 1, the simulation matched the response time difference 
between the consistent and the varied group. The difference was statisti-
cally significant in the simulation results, as in the human data. See the 
simulation data in Figure 5.3, which should be compared with Figure 5.1.

The Clarion simulation provided a plausible explanation of the human 
data. The simulated consistent group had a lower response time because 
it had more practice on a smaller number of instances, which led to the 
better-performing bottom level in the ACS, as well as better-performing 
instance retrieval from the NACS. The bottom level of the ACS of the 
simulated consistent group performed more accurately because of more 
focused practice on a smaller number of instances by the simulated con-
sistent group (compared with the varied group). The NACS of the simu-
lated consistent group was more accurate for the same reason. Thus the 
bottom level of the ACS and the chunks of the NACS were more likely 
to be used in determining the overall outcome of the simulated consistent 
group, due to the competition among different components.9 Because 
these two components had faster response times (they were either inher-
ently so, as in the case of the bottom level of the ACS, or due to more fre-
quent use and thus higher BLAs, as in the case of the NACS), a faster overall 
response time resulted for the simulated consistent group.

Clarion also matched the transfer performance difference between the 
two groups in experiment 1, as shown in Figure 5.3. During the trans-
fer phase of experiment 1, the performance of the simulated consistent 
group got worse, compared with its performance at the end of training. 
The transfer performance of the simulated consistent group was in fact 

8. The values of most parameters were set based on estimates from prior simulations 
(Sun, 2002), except learning rate, temperature, and rule learning thresholds, which were 
domain-specific and were set to produce the best fit with the human data.

9. The simulation data indeed showed that there were a lot more retrievals from the 
NACS in the simulated consistent group than in the simulated varied group. The data also 
showed a higher selection probability for the bottom level of the ACS in the simulated 
consistent group.
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worse than that of the simulated varied group. The differences were sta-
tistically significant. These facts were consistent with the human data.

The Clarion simulation provided a plausible explanation of this aspect 
of the human data as well. The simulated consistent group relied more 
on the bottom level of the ACS and on the NACS during training and 
therefore the BLAs of its counting rules were lower. As a result, it took 
more time to apply the counting rules during transfer, which it had to 
apply due to the fact that it had to deal with a different set of problems 
during transfer.10 The performance of the simulated varied group hardly 
changed, compared with its performance at the end of training. This was 
because it relied mostly on the counting rules at the top level during train-
ing, which was equally applicable to training and transfer problems. As a 
result, its counting rules had higher BLAs, and therefore it performed better 
than the simulated consistent group during transfer.

End of  training

TASK

0

500

1000R
es

po
ns

e 
tim

e 
(m

se
c)

1500

2000

2500

3000

3500
LC experiment 1 (model data)

Transfer

Consistent
Varied

Figure 5.3.  The Clarion simulation of experiment 1.

10. Even though instance retrieval from the NACS and decision making by the bot-
tom level of the ACS might not be appropriate during transfer (because a different set of 
problems was used), the simulated consistent group was more likely to use them, due to 
probabilities resulting from probability matching during training (which led to a higher 
probability for the bottom level of the ACS) and the rule utility measures acquired dur-
ing training (which led to favoring instance retrieval rules). These two tendencies were, of 
course, corrected later on through adaptation of these two aspects.
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The ACT-R simulation (Johnson, 1998) did not explain the human 
data fully. For instance, it did not capture the fact that the transfer per-
formance of the consistent group was worse than that of the varied 
group, which was explained in the Clarion simulation by the fact that 
the varied group had more practice of the relevant rules during training 
(hence higher BLAs). See Figure 5.4 as a comparison. The separation of 
implicit and explicit processes in Clarion was also important. If there 
was no separation of the top and the bottom level in Clarion, even with 
all the other characteristics of Clarion (such as rule BLAs), there would 
be no performance difference between the two simulated groups.

Furthermore, this Clarion simulation also captured accurately the 
human data of experiment 2.  The simulation results were as shown 
by Figure 5.5, which were similar to the corresponding human data in 
Figure 5.2.

Clarion provided the following explanation in this regard. During 
transfer in experiment 2, due to the change in the task setting (count-
ing down as opposed to counting up), the practiced rule for counting 
up was no longer useful. Therefore, both simulated groups had to use a 
new counting rule for counting down, which had only the initial BLA for 
both groups. Similarly, both simulated groups might use a new instance 
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Figure 5.4.  The ACT-R simulation of experiment 1 (Johnson, 1998).
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retrieval rule (for reversed retrieval), which also had only the initial BLA. 
Both simulated groups performed worse than at the end of training for 
that reason.

This explanation was not offered by the ACT-R simulation (Johnson, 
1998). In the ACT-R simulation (see Figure 5.6), the transfer perfor-
mance of the consistent group hardly changed compared with its train-
ing performance. This aspect of the ACT-R simulation was not consistent 
with the human data.

Moreover, the Clarion simulation captured the fact that the var-
ied group performed worse than the consistent group during transfer 
(Figure 5.5). In the Clarion simulation, this difference was explained by 
the fact that the simulated consistent group had more BLAs associated 
with chunks encoding instances in the NACS than the simulated varied 
group, because the simulated consistent group had more experiences 
with these chunks. These chunks were used in reversed retrieval during 
the transfer phase of experiment 2, because of the reverse relationship 
between the training and the transfer problems used in this experiment. 
Therefore, the simulated consistent group performed better than the 
simulated varied group during the transfer phase.
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Figure 5.5.  The Clarion simulation of experiment 2.
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The learning curves during the training phase of the Clarion simu-
lation were as shown in Figure 5.7. The human learning curves were 
also included there for comparison. The match of the simulated and the 
human learning curves was much better than that from the ACT-R simu-
lation (Johnson, 1998).

5.2.4.  Alternative Simulations

A number of alternative simulations were also explored with Clarion. In 
one such alternative simulation, the role of the NACS was removed. This 
simulation (with the ACS of Clarion alone) produced a reasonably good 
match with the human data. See Figure 5.8 and Figure 5.9 for the results.

However, comparing this alternative simulation with the previous one 
involving both the ACS and the NACS, although the ACS alone could 
capture the human data of this task to a large extent, the use of both 
the ACS and the NACS led to the better capturing of the human data. 
Thus, this comparison suggested that both the ACS and the NACS were 
needed, although the higher degree of freedom of the original model 
should also be kept in mind.
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Figure 5.6.  The ACT-R simulation of experiment 2.
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However, this alternative simulation still produced a better match than 
the ACT-R simulation, which suggested that the separation of implicit and 
explicit processes in Clarion (in particular, the separation of the bottom 
and the top level within the ACS) and other characteristics of Clarion 
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Figure 5.7.  The learning curves from the human data and the Clarion 
simulation. Here “block” was defined as a set of 12 trials.
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Figure 5.8.  The Clarion simulation of experiment 1 without the NACS.
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(e.g., including rule BLAs and chunk BLAs) had some advantages.11 The 
framework of Clarion, and the separation of the top and the bottom level 
therein, contributed to the better capturing of human performance in 
this task.

In another alternative simulation, bottom-up learning (RER) was 
added. In this alternative simulation, top-down learning, which was still 
essential, and bottom-up learning, which was supplementary, were both 
involved. This alternative simulation captured the human data approxi-
mately equally well compared to the original simulation.

From the original simulation, it was evident that top-down learning 
could account for the human performance in this task, and therefore 
human learning in this task was likely top-down learning. This simulation 
added the possibility that bottom-up learning might also be involved in 
the human performance of this task, by virtue of the fact that the model 
with both top-down and bottom-up learning captured the human data 
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Figure 5.9.  The Clarion simulation of experiment 2 without the NACS.

11. As pointed out before, if there was no separation of the top and the bottom level in 
Clarion, even with all the other characteristics of Clarion, there would be no performance 
difference between the two simulated groups, for example, in simulating the training 
phase of experiment 1.
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approximately equally well, although strictly speaking bottom-up learn-
ing was not necessary in this case.

In yet another alternative simulation, there was no a priori “fixed rule” 
(FR) as used in the original simulation; only rules learned from RER were 
involved at the top level. This simulation was clearly a failure. This simu-
lation could not capture most of the differences between the two groups.

Separately, simulation using the bottom level alone was also tested, to 
see if implicit learning alone was sufficient. Such a simulation could not 
capture the differences between the two groups. Moreover, the learning 
curves (in terms of response time) were flat for both groups.

So it was clear that the bottom level alone or bottom-up learning 
alone were inadequate for capturing human performance in this task. It 
appeared that a priori explicit knowledge and top-down learning were 
necessary for capturing human performance in this task, although bot-
tom-up learning might be involved as well.

5.2.5.  Discussion

This work shows that it is possible to separate the two dichotomies: 
implicit versus explicit and procedural versus declarative (action-  
centered versus non-action-centered). This separation leads to new pos-
sibilities of interpreting empirical data and new ways of understanding 
cognitive skill acquisition. The separation of the two dichotomies may 
lead to better, more psychologically realistic models, which is therefore 
worthy of further exploration.

The Clarion simulation provided some interesting interpretations 
of the human data. For example, it attributed the performance dif-
ference at the end of training between the consistent and the varied 
group to the difference between relying on implicit knowledge and 
relying on explicit rules. In so doing, Clarion went beyond existing 
simulations in providing interpretations that other models did not 
provide. Moreover, the Clarion simulation was more accurate than 
other simulations. The fact suggested, to some extent, the advantage 
of Clarion—synergy between action-centered and non-action-centered 
processes and between implicit and explicit processes. Note that simi-
lar comparisons were done in other tasks, such as Tower of Hanoi, arti-
ficial grammar learning tasks, and serial reaction time tasks (see, e.g., 
Sun & Zhang, 2004).
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It is worth noting that this match between the simulation and the human 
data was obtained under the same set of parameters for all the groups (varied 
and consistent) and all the conditions (training, transfer 1, and transfer 2).  
Thus, this simulation was different from some other simulations using 
Clarion, such as the simulation of process control tasks discussed earlier. In 
these other tasks, experimental conditions varied across groups that required 
corresponding changes in model parameters. In this task, the only difference 
across groups was that of stimuli, which did not require any change of model 
parameters for simulating different groups. That is, there was no parameter 
estimation on a per group basis, which would have made the match easier 
to obtain but would have rendered the simulation less interesting. Because 
there were a total of three different conditions (training, transfer 1, and 
transfer 2), with two groups in each, it was not a trivial matter to obtain a 
good match using only one set of parameters. The match indicated, to some 
extent, the validity of the Clarion framework.

The comparison of the different Clarion simulations indicated that 
the best model, the model that most closely captured the characteristics 
of human performance in this task, was the one with both the ACS and 
the NACS and both implicit and explicit knowledge. Through these vari-
ous simulations, the advantages of having separate action-centered and 
non-action-centered knowledge and the advantages of having separate 
implicit and explicit knowledge became evident (Sun et al., 2009).

The best model of this task generally followed a top-down direction: First, 
explicit knowledge (at the top level) was used to direct actions; gradually, 
implicit knowledge (at the bottom level) was learned from the guidance 
provided by the explicit knowledge; eventually (as in the case of the con-
sistent group), implicit processes (at the bottom level) became competent. 
The simulation of this task showed that Clarion, despite its original focus 
on bottom-up learning, could fully accommodate this alternative direction 
of learning.

In this task, top-down learning was apparently more important than 
bottom-up learning. While combining top-down and bottom-up learning 
produced good results, top-down learning alone was successful in capturing 
the human data in this task. But bottom-up learning alone was insufficient. 
Implicit learning alone was also inadequate. Note, however, that different 
tasks and task settings may lead to different proportions of explicit and 
implicit learning, and different proportions of top-down and bottom-up 
learning (Sun, 2002).
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So, Clarion captures a number of important psychological distinc-
tions without confounding them. The simulations so far have shown that 
the separation of implicit and explicit processes and the separation of 
action-centered and non-action-centered processes are both important. 
Quantitatively, Clarion captured the human data in this task better than 
any existing model. Thus the simulations support this way of structuring the 
cognitive architecture. However, it should be pointed out that only sugges-
tive evidence has been provided so far from the work described here. More 
work is needed, in terms of both human experiments and computational 
simulations.

5.3.  Modeling the Categorical Inference Task

I now turn to declarative (non-action-centered) processes within Clarion 
and show how they account for various relevant empirical data. I will 
examine some specific data sets concerning human reasoning. (General 
empirical phenomena concerning human reasoning will be addressed 
later in Section 5.5.) Reasoning is an important cognitive faculty, which 
allows the generation of new ideas from existing ones. New ideas may 
be generated, for example, by the application of rules to particular cases 
but maybe also by the application of other mental structures (such as 
similarity).

Besides accounting for reasoning, declarative processes within Clarion 
are also relevant to accounting for human memory phenomena, concept 
and categorization phenomena, decision-making phenomena, and so on. 
The reader may refer to existing publications regarding these aspects, for 
example, Sun and Helie (2012), Sun and Helie (2013), and Helie and 
Sun (2014).

5.3.1.  Background

Some interesting questions concerning declarative processes include: 
What is human everyday reasoning made up of? Is it fully captured 
by formal symbolic models (e.g., as proposed by logicians), or is it 
sufficiently different? Is it fully explicit or is it mixed involving both 
explicit and implicit processes? Computationally speaking, how does 
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one account for such reasoning within the NACS (as detailed in 
Chapter 3)?

A little background is in order here. Sun (1991) proposed a theory 
of human everyday reasoning,12 which was further elaborated in Sun 
(1994, 1995). The basic tenet of this theory was that, to a significant 
extent, human everyday reasoning consisted of rule-based and similarity-
based reasoning; much of human everyday reasoning was reducible to 
a combination of these two types of processes. Mixing rule-based and 
similarity-based reasoning could lead to complex patterns of inferences 
(as observed in human reasoning). Both of these two types of processes 
could be captured within a unified model.

The theory was backed up by empirical evidence in the form of ver-
bal protocols from Collins (1978) and Collins and Michalski (1989). 
These protocols were analyzed in Sun (1994), which showed that the 
vast majority of the protocol data might be captured by intermixing rules 
and similarity. A model was developed that accounted for these protocols 
(Sun, 1991, 1995). Relevant to this theory, Sloman (1993) published a 
set of experiments showing that similarity played a significant role and 
that similarity might be characterized by feature overlapping (as hypoth-
esized in Sun, 1991). Later, Sloman (1998) described further experimen-
tal results concerning category inclusion relations that supported the 
theory as well. The theory of Sun (1991) evolved into Clarion, which 
included not only reasoning but also skill acquisition, motivation, meta-
cognition, and many other psychological aspects.

In the remainder of this section, data of human everyday reasoning 
are analyzed, and then the analysis is instantiated into a computational 
model in Clarion. Simulation based on the model is then described. In 
short, the simulation accurately captured human data, which illustrated 
the respective roles in human everyday reasoning played by rule-based 
and similarity-based processes, as well as the respective roles played by 
implicit and explicit processes. Furthermore, it demonstrated how such 
reasoning naturally fell out of Clarion. The simulation provided a detailed 
and plausible explanation of the human data. The discussion draws upon 
Sun (1991, 1994) and Sun and Zhang (2006).

12. Human everyday reasoning has also been termed “mundane” reasoning or “com-
monsense” reasoning (Sun, 1994).
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Note that, in a way, the work described here in this section illus-
trates synergy between implicit and explicit declarative (non-action-  
centered) processes, which results from the interaction of these two 
types of processes and their associated knowledge, similar to and 
corresponding with the synergy resulting from implicit and explicit 
procedural (action-centered) processes described in the preceding sec-
tions of this chapter.

5.3.2.  Task and Data

Below some data that illustrate the interplay of similarity-based and 
rule-based reasoning (SBR and RBR, respectively) in human reasoning 
are examined: the data from experiments 1, 2, 4, and 5 of Sloman (1998), 
which are most relevant to this issue.

In experiment 1 of Sloman (1998), subjects were given pairs of argu-
ments, each consisting of a premise statement and a conclusion state-
ment. Some of these pairs of arguments were in the form of “premise 
specificity” (with premises of different degrees of specificity leading to 
the same conclusion):

a.	 All flowers are susceptible to thrips. ⇒ All roses are susceptible  
to thrips.

b.	 All plants are susceptible to thrips. ⇒ All roses are susceptible 
to thrips.

Some other pairs of arguments were in the form of “inclusion similarity” 
(the same premise leading to conclusions of different degrees of similarity 
to the premise):

a.	 All plants contain bryophytes. ⇒ All flowers contain bryophytes.
b.	 All plants contain bryophytes. ⇒ All mosses contain bryophytes.

Subjects were asked to pick the stronger of the two arguments from each 
pair. Each subject was given 18 pairs of arguments (among other things 
not relevant here).

The results showed that the more similar argument from each pair of 
arguments was chosen 82% of the time for inclusion similarity and 91% 
of the time for premise specificity. Tests showed that these percentages 
were statistically significantly above chance, either by subjects or by argu-
ment pairs.
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These arguments might be viewed as enthymematic (Sun & Zhang, 
2006). But they were more than just enthymemes, due to the involve-
ment of SBR (similarity-based reasoning). It should be apparent that if 
only RBR (rule-based reasoning, e.g., based on some deductive logic) 
had been used, similarity would not have made any difference, because 
the conclusion category was contained in the premise category and thus 
both arguments in each pair should have been equally strong. Therefore, 
the data suggested that SBR (as distinct from RBR that captures cat-
egory inclusion relations) was involved to a significant extent.

In experiment 2 of Sloman (1998), subjects were instead asked to rate 
the likelihood (“conditional probability”) of each argument. Ratings could 
range from 0 to 1. The results were as follows. The mean rating was 0.89 
for inclusion similarity and 0.86 for premise specificity. Statistical tests 
showed that both were significantly below 1, by subjects and by argu-
ments. Again, it would have been the case that the outcome was uniformly 
1 if only RBR had been used, because the conclusion category was con-
tained in the premise category. Thus SBR was significantly present here 
too. Indeed, statistical tests showed that across subjects there was a signifi-
cant effect of similarity (low versus high). So was the case across argument 
pairs.

In experiment 4, subjects were asked to rate the likelihood of each 
argument. Ratings could range from 0 to 1. However, in this case, a cat-
egory inclusion relation was specifically presented as part of each and 
every argument. For example,

All plants contain bryophytes. All mosses are plants. ⇒ All mosses 
contain bryophytes.

The results showed that the mean judgment was 0.99. Most subjects 
gave all 1s. Most arguments received judgments of all 1s (excluding one 
individual who gave 0.99 throughout). In other words, SBR phenomena 
almost disappeared. Instead, it appeared that an RBR mode, based on 
category inclusion relations, was used.

Experiment 5 was similar to experiment 2, in that ratings were 
obtained. However, before any rating was done, subjects were asked to 
make category inclusion judgments. Thus, in this case, ahead of all the 
ratings, subjects were reminded of RBR involving category inclusion 
relations. Therefore, they were more likely to use RBR, although prob-
ably not as much as in experiment 4, due to the separation of category 
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inclusion judgments and argument likelihood ratings in the experimental 
procedure (unlike that of experiment 4).

The results showed that none of the subjects gave a judgment of 1 for 
every argument, indicating that SBR might be at work. Compared with 
experiment 2, having subjects make category inclusion judgments increased 
the likelihood rating. The mean judgment for experiment 5 was 0.92 (0.93 
for inclusion similarity and 0.91 for premise specificity), as opposed to 
0.87 for experiment 2 (0.89 for inclusion similarity and 0.86 for premise 
specificity). This increase arguably reflected the increased involvement of 
RBR. Nevertheless, statistical tests showed a significant effect of similarity 
(low versus high) across subjects and across argument pairs.

Based on the analysis above, RBR and SBR were both involved in these 
experiments, with varying proportions. Among them, experiment 1 and 
experiment 2 both involved SBR to a very significant extent. Experiment 4  
involved explicit use of categorical relations, and thus mainly RBR. 
Experiment 5 involved more SBR, compared with experiment 4, along 
with RBR.

It is important to note that, given the co-existence of RBR and SBR, 
formal logics (or their psychological variants; e.g., Rips, 1994)  may 
be suitable for capturing the RBR aspect of the human data, but not 
the SBR aspect. This is because they would not be suitable for dis-
tinguishing between the two arguments within each pair in terms of 
similarity. Although one may argue that logics could encode what-
ever similarity relationships that humans employed, such a “solution” 
would not be satisfactory for many reasons, including its ad hoc nature 
and its high representational cost (resulting from pair-wise similarity 
representations).

5.3.3.  Simulation Setup

This task was simulated to validate the conceptual analysis above. The 
simulation demonstrated the significance of similarity-based reasoning 
(SBR). The significant role of SBR distinguished this type of reasoning 
from the kinds of reasoning naturally captured by logics, production sys-
tems, or probabilistic/Bayesian frameworks (see more discussions of this 
point in Sun, 1994, and Sun & Zhang, 2006). Furthermore, the simula-
tion showed computationally the interaction and the synergy between 
rule-based and similarity-based reasoning, as well as those between 
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implicit and explicit processes (because reasoning was computationally 
carried out through the interaction of implicit and explicit processes 
within the NACS of Clarion).

In accordance with the conceptual analysis earlier, the following pro-
cess was posited (Sun & Zhang, 2006): first, a premise statement was 
presented to a subject. The premise statement (e.g., “all flowers are sus-
ceptible to thrips”) was then coded as a rule at the top level. The two 
concepts involved were coded as chunks, both implicitly (in distributed 
representation at the bottom level) and explicitly (in localist representa-
tion at the top level, in the form of chunk nodes). Inclusion relations, 
such as “roses are flowers,” were already existent as rules at the top level, 
due to prior knowledge, coded using corresponding chunk nodes. When 
it came to dealing with the conclusion statement (e.g., “all roses are sus-
ceptible to thrips”), the first concept of the conclusion statement (e.g., 
“rose”) was presented; that is, the corresponding chunk node was acti-
vated. Due to the similarity between the first concept of the conclusion 
statement and the first concept of the premise statement, the rule rep-
resenting the premise statement was activated to a degree correspond-
ing to the similarity between the two concepts. As a result, the target 
concept (i.e., the second concept of the premise statement, e.g., “thrips”) 
was partially activated due to the application of the rule encoding the 
premise statement; the extent of its activation was determined by the 
aforementioned similarity.

When there was a pair of such arguments, this process was repeated. 
The two partial activations of the target concept were temporally stored. 
Then the two partial activations were compared. In case of forced choice, 
one of them was selected using a Boltzmann distribution of activations. 
The selection favored the more strongly activated one (although the 
selection was stochastic). Of course, the process was directed by the ACS, 
performing its executive control functions.

For simulating the different experimental settings of this task, the fol-
lowing manipulations were used: for simulating settings where SBR was 
dominant, RBR was de-emphasized by using lower weights for RBR. For 
simulating settings where RBR was dominant, RBR was not deempha-
sized. The relative emphasis of the two methods (RBR versus SBR) was 
accomplished through the scaling (balancing) parameters discussed in 
Chapter 3. The parameters were set at β1= 0.50 and β2= 1.00 for experi-
ments 1 and 2, because of the heavy reliance on SBR (as opposed to RBR) 
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as suggested by the experimental settings and the analysis of the human 
data earlier. For simulating experiment 4, they were set at β1= 1.00 and 
β2= 1.00, because this setting prompted much more reliance on RBR as 
indicated by the human data. For simulating experiment 5, they were set 
at β1= 0.88 and β2= 1.00, because this experiment involved an intermedi-
ate level of reliance on RBR as indicated by the human data. In all, these 
values were set in accordance with the earlier interpretations of what 
happened under the different experimental conditions respectively.

Before simulating the experiments of Sloman (1998), pre-training 
of the model captured prior experiences that subjects had. Pre-training 
included presenting categorical features along with category labels to 
the NACS. Chunks were used to represent categories such as “flow-
ers” and “plants.” The dimensional values of these categories were rep-
resented in the bottom level, and the chunk nodes representing these 
concepts at the top level were linked to the dimensional values at the 
bottom level. Pre-training also included presenting relevant category 
inclusion relations, such as “flowers are plants” or “mosses are plants,” 
and as a result they were coded as associative rules at the top level of 
the NACS.

In the bottom level of the NACS, although associative memory net-
works were present, they were not relevant to the performance of this 
task. This was due to the fact that subjects likely had no prior experiences 
with concepts such as “thrips,” since this task used many little-known 
concepts presented only once. Corresponding to that, before simulation, 
there was no pre-training of the associative memory networks with any 
data related to these concepts.

During the simulation, when a category name was given, the cor-
responding chunk node was activated to the full extent (i.e., 1). Then, 
through associative rules and similarity-based processes (with top-down 
and bottom-up activation flows), conclusion chunk nodes were also 
activated, combining SBR and RBR according to the scaling (balancing) 
parameters. Conclusion chunks were retrieved along with their confi-
dence levels. For simulating rating of conclusions (as in experiments 2, 4, 
and 5), the confidence levels of conclusion chunks were used. However, 
for simulating forced choices (as in experiment 1), a stochastic selec-
tion (based on a Boltzmann distribution of confidence levels) was used to 
choose between two outcomes.
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The following action rules, among many other action rules, were 
implemented in the ACS for directing the performance of the NACS 
in this task:

If goal = forced-choice-task and no source category has been presented, 

then present the first source category, obtain the rating of the target 

category, and store it in the working memory.

If goal = forced-choice-task and one source category has been presented, 

then present the second source category, obtain the rating of the target 

category, and store it in the working memory.

If goal = forced-choice-task and both source categories have been 
presented, then conduct a stochastic selection from the two ratings 
stored in the working memory, and report the result.

If goal = rating-task and no source category has been presented, 
then present the first source category, obtain the rating of the target 
category, and store it in the working memory.

If goal = rating-task and one source category has been presented, then 
present the second source category, obtain the rating of the target 
category, and store it in the working memory.

If goal = rating-task and both source categories have been presented, then 

report the two ratings from the working memory.

These “fixed rules” (Sun, 2003) were presumably derived from a priori 
knowledge and task instructions (given to subjects prior to experiments). 
The goals involved in these rules were set in the goal structure when the 
task instructions were given.

5.3.4.  Simulation Results

The experiments 1, 2, 4, and 5 of Sloman (1998) were simulated as 
described above. The results were as follows (Sun & Zhang, 2006).

Recall that in experiment 1, subjects were asked to pick the stronger of 
the two arguments from each pair. The simulation of experiment 1 showed, 
the same as the human data, that the more similar argument from each pair 
of arguments was chosen more often: 82% of the time for inclusion simi-
larity and 83% of the time for premise specificity. These percentages were 
significantly above chance, either by simulated “subjects” or by argument 
pairs, the same as in the human data.
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In the simulation setup of this experiment, there was a significant 
involvement of SBR. If only RBR had been used, then similarity could 
not have made a difference and thus both arguments in a pair would have 
been equally strong. This simulation demonstrated that the hypothesized 
role of SBR in the human data was a reasonable interpretation of this 
experiment, given the close match with the human data.

In experiment 2, subjects were instead asked to rate the likelihood 
of each argument. In the simulation of experiment 2, the mean rating 
obtained was 0.86 for inclusion similarity and 0.87 for premise specific-
ity. Both were significantly below 1, both by “subjects” and by arguments, 
different from what would have been predicted if only RBR had been 
involved, the same as in the human data. Furthermore, across “subjects” 
and across argument pairs, there was a significant effect of similarity (low 
versus high).

With the same simulation setup as the previous experiment, this simu-
lation again demonstrated the same pattern of significant involvement of 
SBR, as in the human data. This pattern could not be captured naturally 
by usual RBR.

Now move on to the simulation of experiment 4. Recall that in exper-
iment 4, subjects were asked to rate the likelihood of each argument, 
which included the corresponding category inclusion relation. The simu-
lation of experiment 4 produced the mean judgment 0.99, the same as 
the human data.

Compared with the simulation of experiment 2 earlier, RBR at the 
top level based on category inclusion was much more prominent in the 
simulation of this experiment, as appropriate from the analysis of the 
human data, and as specified in the simulation setup. This setup captured 
the human data accurately.

Now turn to the simulation of experiment 5. Recall that in experi-
ment 5, subjects were asked to make category inclusion judgments 
before ratings were obtained from the subjects. In this case, subjects 
were reminded of RBR involving category inclusion relations and there-
fore they were more likely to use RBR compared with experiment 2, 
although not as much as in experiment 4 due to the temporal separation 
of category inclusion judgments and ratings. In this simulation, the mean 
judgment for experiment 5 was 0.91 for both inclusion similarity and 
premise specificity, as opposed to 0.86 and 0.87 for the two cases in the 
simulation of experiment 2. Furthermore, in the simulation data, there 
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was a significant effect of similarity (low versus high), across simulated 
“subjects” and across argument pairs.

This simulation replicated the human data well. This result showed 
that the interpretation embodied in the simulation setup, that is, less 
involvement of RBR compared with experiment 4 but more compared 
with experiment 2, was a reasonable one.

In all, the simulation of this task substantiated and validated the earlier 
analysis of human performance of this task. In particular, computational 
processes were formulated and carried out, which replicated accurately 
the human data. As a result of the match with the human data, the com-
putational specification constitutes a detailed, plausible, mechanistic, and 
process-based explanation of corresponding human reasoning.

5.3.5.  Discussion

The simulation of these experiments of Sloman (1998), with both 
rule-based and similarity-based reasoning, captured the human data well, 
and thereby demonstrated in a way the importance of similarity-based 
reasoning in human everyday reasoning, involving both implicit and 
explicit processes (Sun, 1994). The similarity-based approach is distinct 
from probabilistic reasoning and other methods implemented in other 
cognitive architectures. Let us compare some of these approaches.

ACT-R, for one thing, tries to capture all inferences in a probabilistic 
framework (Anderson and Lebiere, 1998). In doing so, it tends to lump 
together all forms of weak inferences. This approach has shortcomings. 
With this approach, similarity relations between any two objects must 
be explicitly represented with all the associated parameters, which would 
be unnecessary in Clarion. Thus in ACT-R, the representational cost for 
similarity-based reasoning may be high. Although partial match may be 
used in ACT-R to handle some limited forms of similarity-based reason-
ing, partial match alone is not sufficient to handle the full extent of sim-
ilarity-based reasoning (Sun, 1994). In addition, with this approach, it is 
difficult to take context into consideration in similarity-based reasoning.

In general, the limitations of probabilistic reasoning include its neglect 
of many human heuristics, simplifications, and rules of thumb (Tversky 
and Kahneman, 1983; Sun, 1994; Gigerenzer et  al., 1999), useful for 
reducing computational costs of formal mathematical models. As a 
result, this approach suffers from higher computational complexity. This 
approach is not directly adopted in Clarion (but see Section 5.5).
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One may also look into the logic-based framework of Collins 
and Michalski (1989), which incorporated similarity-based reason-
ing through representing similarity in a complex logical formalism. 
Similarity was represented as a logical operator. So for almost any 
pair of objects, there would be a logical relation explicitly represented 
regarding their similarity. Inferences could be performed on the basis of 
these similarity operators using a search process. The cost of this process 
would be high.

Generally speaking, for capturing human reasoning (of which 
similarity-based processes are part), although logic-based models are use-
ful, they suffer from a number of well-known shortcomings, including 
their restrictiveness and their inadequacy in dealing with various forms of 
inexactness found in the real world (Sun, 1994). They are generally also 
computationally costly.

In a different vein, psychological work on reasoning is relevant here. 
Work on deductive reasoning includes mental logic (Rips 1994; Braine 
and O’Brien 1998) and mental models (Johnson-Laird and Yang, 2008). 
Neither of the two approaches dealt with similarity-based reasoning as 
captured in Clarion. On the other hand, in research on inductive reason-
ing (see, e.g., Heit, 2008), many competing approaches exist, but they 
are not well integrated with deductive reasoning (and many other psy-
chological functions). See Section 5.5 for more discussions of inductive 
reasoning.

The present model, combining similarity-based and rule-based reason-
ing, offers a plausible way of capturing some essential patterns of human 
everyday reasoning (although maybe not all patterns of human reason-
ing). It provides a unified explanation of a variety of reasoning patterns 
(Sun, 1994). It complements probabilistic/Bayesian or logic-based mod-
els, which are centered on strict mathematical formalisms and thus also 
limited by such formalisms.

The simulation validated, to some extent, some general postulates of 
Clarion concerning human reasoning. It is useful to posit the existence 
of two separate levels: explicit versus implicit. The interaction between 
implicit and explicit levels is also useful to posit. In addition, the Clarion 
approach may capture similarity-based, metaphoric, and analogical rea-
soning, as well as case-based reasoning in AI (see, e.g., Sun, 1995b).

However, this work is just one step toward fully accounting for human 
reasoning in a comprehensive, unified way. The simulation so far has 
shown the promise of this approach, as well as its distinction from other 
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approaches. Section 5.5 provides more discussions of accounting for gen-
eral human reasoning patterns (see also Sun, 1994, 1995). The next sec-
tion addresses another aspect—intuition and insight.

5.4.  Modeling Intuition in the Discovery Task

I now turn to capturing and explaining human intuition and insight, 
based on the interaction of implicit and explicit processes within Clarion.

5.4.1.  Background

Clarion captures human everyday reasoning of a variety of forms. While 
rule-based and similarity-based reasoning were explored earlier, here I 
explore yet another aspect—intuition and insight. It should be noted that 
Clarion includes all of the following: rule-based reasoning, similarity-
based reasoning, and associative memory networks (at the bottom level 
of the NACS), and therefore their interplay can be explored for captur-
ing intuition and insight beyond what was discussed in the previous sec-
tion. In so doing, we can incorporate both explicit and implicit forms of 
human reasoning in one unified framework, rather than separating them 
following conventional wisdom.

Specifically, in this section, a “discovery” task is addressed, where 
insights often emerge from accumulating intuition (Sun & Zhang, 2006; 
Helie & Sun, 2010). Such a task is useful for understanding finer details of 
human reasoning, especially implicit processes underlying it. An analysis 
of the task was implemented in Clarion for describing the empirical data 
in a precise, specific way (as opposed to informal theories about intuition 
and insight). This work points to the significant role played by implicit 
associative memory networks in generating intuition and in leading to 
insight.

A clarification is probably needed here. Although intuition has often been 
defined as “the immediate apprehension of an object by the mind without 
the intervention of any reasoning process” (Oxford English Dictionary), I 
instead view intuition as a type of reasoning (on the basis of sensory infor-
mation, motivation, and so on). Reasoning encompasses explicit processes 
(especially explicit rules and logics) on the one hand, and implicit processes 
(including intuition) on the other (Sun, 1994). In fact, intuition and insight 
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are arguably important components of human reasoning. They supplement 
and guide explicit reasoning.

Whereas explicit reasoning processes have been amply explored in 
cognitive science and in AI (e.g., Collins and Michalski, 1989; Johnson-
Laird and Yang, 2008), implicit reasoning processes have not yet been 
extensively explored. Explicit reasoning is often ineffective when the 
problem is complex, ill-understood, or ambiguous. In such a case, an 
alternative approach relying more on intuition and insight might be 
more appropriate. Thus, studies of reasoning involving intuition and 
insight are needed.

In this regard, Helie and Sun (2010) proposed a Clarion theory of 
creative problem solving that centers on the interaction of implicit and 
explicit processes, relying heavily on intuition and insight. A computa-
tional model implemented the theory. The theory since then has been 
used to account for many observed phenomena and prior theories, while 
the corresponding computational model has been used to simulate a 
variety of empirical data. According to the theory, intuition and insight 
are the key to creative problem solving, which have been tested through 
computational simulation. The reader is referred to Helie and Sun (2010) 
for further details on this theory.

Below, I examine the “discovery” task (Bowers et al., 1990) and some 
data from this task. The task and the data can be simulated in a number 
of ways in Clarion, for example, with either auto-associative or hetero-
associative memory networks (AAM or HAM). The following discus-
sion draws upon Sun and Zhang (2006) and Helie and Sun (2010b).

5.4.2.  Task and Data

First, some human data are examined that illustrate intuition and insight 
in human reasoning, from the discovery task of Bowers et al. (1990), 
which shows that a gradual “warming up” process may underlie intuition 
and sudden insight.

In the task, Bowers et al. attempted to assess the continuous nature 
of implicit intuitive processes leading to sudden insight. To test their 
hypothesis, in their experiment 3A, fifteen clue words were presented 
sequentially, one word at a time, to the subjects, and the subjects’ task was 
to find a word (the target word) that was associated with them. Subjects 
were required to generate a target word with which each of the clue 
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words presented thus far was associated after the presentation of each 
clue word.

Specifically, first, a clue word was displayed, and the subjects had 15 
seconds to generate a word associated with the clue word. Following this 
15-second period, a second clue word was added, and the subjects had 14 
seconds to generate a word associated with these two clue words. Each 
time a new clue word was added, all the previous clue words remained 
on the screen, and the time allowed to generate an answer was shortened 
by one second until it reached the sixth clue word. From that point on, 
the subjects had 10 seconds to generate an answer after every additional 
clue word (up to the 15th).

At any step, if subjects viewed a generated word as a potential solu-
tion, they were to checkmark it (indicating a “hunch”). When they were 
convinced that the word was a solution, they were to mark it with an X 
(indicating a “conviction”).

Each subject solved 16 different problems. The dependent variables 
were the number of clue words needed to reach a hunch and the number 
of additional clue words needed to turn a hunch into a conviction.

Each clue word was a response to a stimulus word in the Kent-Rosanoff 
word association test (Kent and Rosanoff, 1910). The first 12 clue words 
occurred five or less times out of 1,000 as a response to the stimulus 
word, and they were randomly assigned to position 1–12. The last three 
clue words occurred more than five times and were randomly assigned 
to position 13–15. The clue words 13–15 were on average 13 times 
more frequently associated to the target word than the other clue words 
according to the Kent-Rosanoff word association test.

As reported in Bowers et al. (1990), subjects arrived at a hunch 
on average with 10.12 clue words. The average number of clue words 
needed to go from a hunch to a conviction was 1.79. The result might be 
interpreted as showing that continuous processes were involved in the 
task, and that the suddenness of insight simply reflected the reach of a 
“conscious” threshold.

As suggested by Bowers et al. (1990), subjects could respond discrim-
inatingly to coherence that they could not explicitly identify, and this 
implicit recognition of coherence guided subjects gradually toward an 
explicit representation. Subjects “warmed up” to the solution in a gradual 
manner. That is, underlying implicit processes were rather continuous. An 
implicit representation might gradually gain strength; when the level of 
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activation reached a certain degree, the implicit representation triggered 
an explicit one. On the other hand, an explicit representation might also 
be activated as a result of relevant explicit knowledge (e.g., explicit rules) 
early on. However, there were often few such explicit rules and therefore 
they were often irrelevant, as indicated by the initial implicitness of rec-
ognition and by the gradual explication shown by human subjects in this 
task (Bower et al., 1990).

A “hunch” was indicated, presumably as a result of an activated explicit 
representation. Even after that point, its activation might continue to 
grow, and thus, eventually, subjects might indicate a “conviction”—pre-
sumably an even stronger explicit representation. Bowers et al. further 
speculated that hunches were often implicitly generated and explicitly 
tested; that is, they often resulted from implicit processing, while convic-
tions were often more explicitly reached.

Mechanistically, one can easily imagine that people are frequently 
“trained,” incidentally or deliberately, with word associations in every-
day life (e.g., desk-chair, pen-paper, and so on). Such experiences help 
to form associations of various strengths, based in part on frequencies of 
co-occurrences in everyday life. Association formation happens mainly 
in implicit memory, because of the (mostly) incidental nature of asso-
ciation formation; furthermore, it happens mainly in implicit declara-
tive memory, because it is not concerned with procedural processes.

During the experiment, clue words were presented one at a time. 
At the presentation of each clue word, all associated words were acti-
vated in implicit declarative memory. With each new clue word, more 
activations were accrued to some associated words. Gradually, activa-
tions of some words became stronger and stronger. As a result of this (as 
well as explicit rules possibly), explicit representations of some words 
were activated in explicit declarative memory. Eventually, a threshold 
(the threshold for “hunches”) was crossed, and thus a hunch was found. 
Furthermore, when more clue words were presented, more activations 
were accrued to the explicit representations of some words. A second 
threshold (the threshold for “convictions”) was crossed, and thus a con-
viction was declared.

Below this conceptual analysis of the processes underlying this task is 
implemented in two computational models within Clarion, which serve 
to substantiate and validate the analysis.
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5.4.3.  Simulation Setup

This task is simulated within the NACS of Clarion (because it is concerned 
mostly with declarative processes, not procedural processes). Within the 
NACS, it may be simulated with either a hetero-associative memory net-
work (HAM) or an auto-associative memory network (AAM) at the bot-
tom level. Thus two plausible explanations were produced, which were 
conceptually similar but technically different.

For simulating this task, models must be pre-trained. Training was 
needed to capture gradually formed implicit word associations that 
human subjects possessed through their prior experiences. The NACS 
was under the control of executive functions embodied by the ACS.

In the case of simulation involving a hetero-associative memory net-
work (i.e., a Backpropagation network; see Sun & Zhang, 2006), during 
training, pairs of words were presented to the NACS. The input to the 
network at the bottom level included the current clue word and the pre-
vious clue words. The input nodes of the network corresponded to the 
microfeature (dimensional value) representations of the clue words. The 
output nodes of the network corresponded to the microfeature (dimen-
sional value) representations of potential target words.13 The bottom level 
involved distributed representation.

Each of the first 12 words on a list in the stimulus material, paired 
with the target word, was used for training for about 4% of the train-
ing time. Thus these words took up about 48% of the training time. 
These associations were under-trained, and thus the network did not 
perform well at the end of the training, capturing weak implicit associa-
tions between these pairs of words (as in the human experiment). This 
process was in fact the reverse of the word association test in Kent and 
Rosanoff (1910).

Each of the last three words on a list in the stimulus material was also 
used for training, paired with the target word. Each of these words was 
used for training for 17% of the time, for a total of 51% of the training 
time, reflecting the stronger associations as indicated by the word associa-
tion test. A total of 10 lists of words were used.

13. The inputs and outputs should be phonological and morphological features of 
words. However, for the sake of simplicity, artificially constructed microfeatures were 
used in simulation. This simplification did not affect the outcome of the simulation.
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As a result of the presentation of these words during training, each of 
these words was coded as a chunk node in the top level. The microfea-
tures (dimensional values) of these chunks were represented at the bot-
tom level (with distributed representation), and chunk nodes at the top 
level were linked to the microfeature nodes at the bottom level.

At the top level of the NACS, explicit associative rules were learned, 
which captured explicit associations between words. However, due to 
the relatively infrequent presentation of association pairs, there were 
few explicit associative rules established in the top level. The frequency 
of invocation of these explicit associative rules would likely be below 
the minimum necessary to keep them (as discussed in Chapter 3), and 
thus they would be deleted. Similarity-based reasoning through the 
interaction between the two levels as discussed in the context of the 
categorical decision task in the previous section was not significant in 
this task.

During the test, clue words were presented one at a time. At the pre-
sentation of each clue word, the partial sequence of words seen thus 
far was presented to the NACS. Thus, the activation of the target word 
became stronger and stronger in activation as a result of the accumulating 
inputs to the NACS.

The integration of the two levels of the NACS was as explained 
before: to combine the bottom-up activation of a chunk node (due to the 
bottom level) with the activation of a chunk node from sources at the top 
level, a max function was applied. The integrated activations were then 
transformed into a Boltzmann distribution. An answer was selected from 
the Boltzmann distribution.

Due to accumulating evidence within the NACS, a tentative answer 
(a hunch) first emerged, and then a final answer (a conviction) was 
generated. If the confidence level (the integrated activation of the 
output) was higher than a low threshold, the output was marked as 
a hunch. If a hunch had already been identified and the confidence 
level was higher than a high threshold, the output was identified as a 
conviction.

During the test, the action rules in the ACS (acquired from a combina-
tion of a priori knowledge and task instructions given to subjects prior to 
the experiment) were used to control the NACS. The goal for the ACS 
was set in the goal structure when task instructions were given before the 
test began. The time limits imposed on subjects during the human exper-
iment were not relevant to this simulation, because in this simulation 
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setup, at both levels, only one pass from inputs to outputs was involved. 
Therefore the response time was relatively fixed (which, notably, would 
not be the case for an alternative simulation to be detailed below).

Turn now to an alternative simulation involving an auto-associative 
memory network (an AAM; Helie and Sun, 2010b) at the bottom level. 
In this simulation, at the bottom level, each clue word was represented 
by a set of nodes (a distributed representation); each target word was also 
represented with a distributed representation at the bottom level. In the 
top level, as before, the condition of a rule contained clue words while the 
conclusion contained a target.

The stronger associations of clue words 13–15 with their target 
words were captured through training. Clue words 13–15 were pre-
sented more often than other clue words (on average 13 times more 
often, as consistent with the human data). Thus, at the end of training, 
associations between clue words 13–15 and their target words were 
stronger.

To simulate the test, a stimulus (clue words) activated both the top 
level and the bottom level. Both explicit and implicit processing took 
place. Because each iteration in the bottom level was assumed to take 
350 milliseconds of psychological time (Chapter 3), 43 iterations were 
allowed for the first clue word (amounting to 15 seconds, as in the human 
experiment), and there was a decrement of 3 iterations for each sub-
sequent clue word (a decrement of 1 second) until the fifth. From the 
sixth to the fifteenth, 28 iterations were allowed (10 seconds). Once the 
processing in the bottom level was completed, activations of the bot-
tom level were sent to the top level and integrated with the activations 
at the top level. The integrated activations were then transformed into 
a Boltzmann distribution and an output was selected. If the confidence 
level (the integrated activation) was higher than a low threshold, the out-
put was marked as a hunch. If a hunch had already been identified and 
the confidence level was higher than a high threshold, the output was 
identified as a conviction. Because of the accumulation of clue words in 
the inputs to the NACS, activation of the target word gradually increased 
in the bottom level.

5.4.4.  Simulation Results

First look into the results of the simulation using the hetero-associative 
memory network in the bottom level of the NACS. Recall that the human 
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data of this task indicated that (1) the average number of clue words at 
which a hunch was arrived at was 10.12, and (2) the average number of 
clue words needed to go from a hunch to a conviction was 1.79. Matching 
the human data closely, the result from this simulation indicated that 
(1) the average number of clue words at which a hunch was arrived at 
was 10.23, and (2) the average number of clue words to go from a hunch 
to a conviction was 1.72. The simulation results were well inside the con-
fidence intervals of the human data. Clearly, the match was excellent.

To better understand this simulation and the interpretation of the 
data embodied in this simulation, let us examine some details. From 
Figure 5.10, it was clear that there was a gradual accumulation of activa-
tion on the target word over time, due to successive additions of clue 
words. This accumulation was the result of both the bottom level as well 
as the top level of the NACS. For example, the contribution of the top 
level was shown in Figure 5.11, in terms of number of matching associa-
tive rules. There was an increase in number of matching rules toward the 
end of the list.

Implicit associations at the bottom level developed gradually dur-
ing training. Figure 5.12 showed the gradual development of implicit 
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words presented. The y-axis represents the activation of the target word.
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Figure 5.11.  The number of matching rules for each clue word. The x-axis 
represents the number of words presented. The y-axis represents the number 
of matching rules.
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Figure 5.12.  The learning curve of the bottom level. The x-axis represents the 
number of training trials. The y-axis represents the average activation of the 
target word.
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associations over time during the course of training. During training, 
explicit associative rules were also formed occasionally at the top level. 
There were more rules for words toward the end of the list than toward 
the beginning (Figure 5.11), because the words toward the end were used 
more frequently during training and thus were more likely to form asso-
ciative rules (besides developing stronger implicit associations in the bot-
tom level).

To further validate the model, the bottom level alone (with the hetero-  
associative memory network) was tested for simulating this task; that is, 
the top level and rule learning were in effect removed through setting 
the scaling parameter for the top level to zero. The fit was significantly 
worse, despite repeated adjustments of parameters. Comparing the bot-
tom level alone simulation with the full simulation indicated the neces-
sity of including both types of processes (implicit and explicit).

The alternative simulation—the one with an auto-associative memory 
network (AAM) in the bottom level—produced similar results (Helie 
and Sun, 2010b). The average number of clue words needed to reach 
a hunch was 9.8, and 2.0 additional clue words were needed to reach a 
conviction, which were well inside the confidence intervals of the human 
data. Figure 5.13 showed the activations in the top level (the full line) 
and in the bottom level (the dashed line).

Because max was used for integrating the results from the two levels 
after the presentation of each clue word, hunches were on average gener-
ated by implicit processing (the dashed line was above the full line before 
9.8 clue words), while convictions were more likely the results of explicit 
processing (the full line was above the dashed line after 11.8 clue words). 
All these results were in line with the human data and the analysis.

5.4.5.  Discussion

Clarion captured well the human data of the discovery task. Clarion cap-
tured intuition and insight in this data set. Although not a typical topic 
in cognitive science, intuition and insight have been documented experi-
mentally, and some data have been accumulated (e.g., Bowers et al., 1990; 
Schooler et al., 1993; Helie & Sun, 2010; and so on). The explanation of 
this phenomenon, however, is not as clear as one would like it to be, and 
thus computational modeling and simulation are useful in developing a 
better theory.
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The simulation demonstrated the capability of Clarion in capturing 
and explaining this type of phenomenon. The simulation falls out of 
the overall framework and the existing mechanisms of Clarion, which 
include both implicit and explicit processes. In this regard, the simulation 
has shown that it is useful to posit the existence of these two types of pro-
cesses. Whereas explicit processes tend to be all or nothing, implicit pro-
cesses allow more gradual accumulation of information. Furthermore, the 
simulation has shown that the interaction between implicit and explicit 
processes, in the sense that implicit intuition gives rise to explicit aware-
ness and vice versa, is important to human everyday reasoning.

In addition to what has been described here, a comprehensive theory 
of creative problem solving, involving intuition and insight, has been pro-
posed in Helie and Sun (2010), based on Clarion. The theory is simple 
and yet powerful enough to capture a variety of psychological data related 
to incubation and insight generation. Corresponding simulations again 
suggested that human performance in a variety of tasks was affected by 
implicit processing even when no attention was being paid to it and that 
insight might be the result of a continuous implicit process that emerged 
into consciousness. Future work should be devoted to the simulation of 
many more such tasks, as well as the simulation of regular problem solving 
to further substantiate the theory (and Clarion as its basis).
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Figure 5.13.  The average activation in the top and the bottom level after the 
presentation of each clue word. The dashed line represents the activation of 
the bottom level, while the full line represents the activation of the top level.
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Overall, the simulation and explanation of the two tasks above—  
categorical inference and insight from intuition—were based on the 
Clarion framework of mixed rule-based reasoning, similarity-based rea-
soning, and implicit associative memory. The simulations have validated, 
to some extent, the overall framework, the theoretical postulates, and 
the mechanisms and processes of Clarion concerning human reasoning 
(see also Sun, 1994). A coherent set of mechanisms was posited. It pro-
vides explanations of many different types of reasoning patterns within a 
unified architecture. The simulation of the two tasks provides a glimpse 
into human reasoning in a way that is different from existing work. As 
mentioned before, it is a step toward accounting for human reasoning in 
a comprehensive and unified manner.

5.5.  Capturing Psychological “Laws”

I will now address the capturing of some general psychological regulari-
ties, that is, some presumed psychological “laws” (as termed by Sun & 
Helie, 2013), as opposed to simulating individual empirical data sets from 
specific psychological experiments. The following discussion is largely 
drawn from Sun and Helie (2012, 2013) and Helie and Sun (2014).

Clarion captures many psychological “laws” of categorization, con-
cept learning, induction, uncertain reasoning, decision making, and so on, 
beyond what many other models have been shown capable of. In each 
subsection below, several “laws” within a particular domain are discussed. 
For many additional psychological “laws” captured by Clarion but not 
explained here, see Helie and Sun (2010, 2014) and Sun and Helie (2012, 
2013).

It should be emphasized again that the goal of this section is not to 
simulate specific psychological data sets, but to show, at a high level, that 
the Clarion framework can account intrinsically for many psychological 
“laws.” Therefore, most of the following explanations are parameter free.

5.5.1.  Uncertain Deductive Reasoning

As discussed earlier, reasoning is an important cognitive faculty that gen-
erates new ideas from existing ones. New ideas may be generated by the 
application of general rules to particular cases, which has traditionally 
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been termed deduction. Or they may result from generalization based on 
observations of instances, which has traditionally been termed induction.

Past research has shown that human reasoning, including deduction 
and induction, is often a mixture of rule-based and similarity-based pro-
cesses, as discussed earlier. Under many circumstances, human reasoning 
is uncertain (i.e., not guaranteed to be correct). A number of prototypical 
cases of human reasoning were identified in Sun (1994). They can be 
captured within the NACS of Clarion.

A conceptual description of the cases and their explanations in Clarion 
are presented below (but more details may be found in Helie and Sun, 
2014). The explanations below are parameter free.

5.5.1.1.  Uncertain Information

It has been observed that, for human subjects, when information regarding 
the premise of a rule is not known with certainty, a conclusion may still 
be reached albeit with a corresponding amount of uncertainty (Collins & 
Michalski, 1989; Sun, 1994).

Clarion captures this phenomenon computationally. In Clarion, this 
phenomenon can be accounted for by rule-based reasoning (RBR) within 
the NACS (see Chapter 3). Uncertainty of information is captured by 
partial activation (< 1; as opposed to full activation 1). If a premise chunk 
node of a rule is partially activated, the corresponding conclusion chunk 
node is also partially activated, proportional to the activation of the 
premise chunk node, as indicated by the equations governing RBR in the 
NACS (Chapter 3).

5.5.1.2.  Incomplete Information

When a rule has more than one premise, a conclusion can be reached 
(with uncertainty) even if only some of the premises are known (Sun, 
1994). For example, one could have a rule: “If A and B, then C.” If it is 
known that A is true while B is unknown, the conclusion C can still be 
reached although with some uncertainty.

Clarion captures this phenomenon computationally. In Clarion, this 
phenomenon is accounted for by RBR in the NACS. Within the NACS, 
each premise in a rule (represented by a chunk node) has a weight, and 
the weights of the premises add to one (or less). Thus, according the 
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RBR equations, when not all the premise chunk nodes are activated, 
the conclusion chunk node is partially activated, proportional to the 
number of activated premise chunk nodes. Therefore, a partially certain 
conclusion is reached within the NACS of Clarion.

5.5.1.3.  Similarity

When no known information exists that answers a question directly, one 
can make an inference based on similarity to other known information 
(Sun, 1994). For example, when asked, “Is the Chaco a cattle country?” 
one answered “It is like western Texas, so in some sense I guess it’s a cattle 
country” (Collins & Michalski, 1989; Sun, 1994). That is, an answer may 
be based on similarity matching.

This phenomenon is captured computationally by similarity-based 
reasoning (SBR) within the NACS of Clarion, through the interaction 
of the two levels (as explained in Chapter 3). When two chunk nodes 
share (micro)features, the activation of one chunk node is partially and 
automatically transmitted to the other through top-down and bottom-up 
activation flows via shared (micro)features (which fulfill similarity cal-
culation; see Chapter 3). Specifically, the activation of the chunk node 
representing “Chaco” activates partially the chunk node representing 
“western Texas” (through top-down and bottom-up activation flows), 
which in turn (partially) activates all the rules associated with western 
Texas (e.g., “western Texas is a cattle country”). Thus, activating the chunk 
node representing “Chaco” leads to activating (partially) the chunk node 
representing “cattle country,” proportional to the similarity involved.

One may view this case (and some other cases above and below) as a 
weak form of deduction. According to Clarion, similarity-based reasoning 
may approach full activation but never reach it, unlike rule-based reason-
ing, which may lead to full activation.

5.5.1.4.  Inheritance

In inheritance reasoning, one uses information regarding a superclass to 
answer a question about a subclass (Collins & Quillian, 1969; Sun, 1994). 
For example, when asked if sparrows fly, one may respond “yes” because 
a prototypical bird flies.
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In Clarion, inheritance reasoning is captured as a special case of 
similarity-based reasoning. In Clarion, chunk nodes along with their  
(micro)features, through cross-level interaction, can capture a categorical 
hierarchy without constructing a hierarchy explicitly (see Chapter 3; see 
also Sun, 1993, 1994, 2003). Chunk nodes representing subclasses (e.g., 
“sparrow”) usually have all the (micro)features of the chunk node repre-
senting their superclass (e.g., “bird”), plus additional (micro)features that 
make them unique (the reverse containment principle; see Chapter 3). 
Thus, superclass-to-subclass inheritance is naturally captured and 
explained in Clarion by SBR applied to superclass-subclass relationships.

5.5.1.5.  Cancellation of Inheritance

Superclass-to-subclass inheritance may be cancelled, if specific informa-
tion exists that contradicts what may be inferred through inheritance. For 
instance, from superclass-to-subclass inheritance, one infers that, because 
prototypical birds do fly, ostriches fly too. However, specific information 
exists that ostriches, although they are birds, do not fly. In such a case, 
inherited information is cancelled.

According to Clarion, superclass-to-subclass inheritance is a special 
case of SBR. In fact, it is the most reliable form of SBR. But still it is 
not as reliable as rule-based reasoning (i.e., its resulting activation is 
always less than the full activation 1). Therefore rule-based reasoning 
at the top level can be used to cancel such inheritance, thus capturing 
exceptions.

More specifically, in Clarion, similarity matching alone cannot fully 
activate a chunk node, because the denominator of the similarity measure 
(as embedded in the bottom-up weights) is superlinear (as explained in 
Chapter 3). In contrast, rule-based reasoning can fully activate a chunk 
node. Therefore rules can be used in a way that rejects conclusions 
reached by similarity-based reasoning, thus canceling inheritance.

The reverse “inheritance” (from a subclass to a superclass), as well as 
its possible cancellation, can be explained in a similar fashion (for details, 
see Helie & Sun, 2014; Sun, 1993, 1994).

5.5.1.6.  Mixed Rules and Similarities

In human everyday reasoning, rule-based and similarity-based reasoning 
(RBR and SBR) may be mixed in many different ways, and possibly in long 
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chains going from an initial piece of information (activation of a chunk 
node) to final conclusions (activation of other chunk nodes). Different 
mixtures of RBR and SBR, including possibly long chains of them, have 
been explored in Sun (1994, 2003) and Helie and Sun (2014).

In the NACS of Clarion, RBR and SBR can be chained in many dif-
ferent ways. For instance, as explained before, a chunk node can acti-
vate another chunk node by similarity matching, and the newly inferred 
chunk node (resulting from SBR) can then fire a rule (initiating RBR). 
The opposite can also happen: a chunk node activates another by apply-
ing a rule (RBR) and then another chunk node is activated by similarity to 
the rule-inferred chunk node (SBR). With multiple iterative cycles within 
the NACS, a long chain extending these instances is possible. For instance, 
different cases can be generated just by chaining the two cases above in 
different ways.

5.5.2.  Reasoning with Heuristics

Heuristics are prevalent in human everyday reasoning (Tversky & 
Kahneman, 1974; Gigerenzer et al., 1999). People are often unsure about 
the validity of their conclusions. Still, conclusions are drawn when they 
are plausible based on heuristics.

Three important heuristics and their associated phenomena, along 
with the explanations of them by Clarion, are discussed below. One 
parameter is varied (i.e., vk

cj, the weight of feature k in chunk j).

5.5.2.1.  Representativeness Heuristic

In empirical research, human subjects have been shown to have the ten-
dency of using the representativeness heuristic (Tversky & Kahneman, 
1974). That is, the estimated probability of a situation by subjects is often 
positively related to how well the situation represents prototypical situa-
tions, or to put it another way, how much the situation is similar to stored 
prototypes.

Clarion provides a computational account of this phenomenon (Helie 
and Sun, 2014). In the NACS, each prototypical situation is represented 
as a chunk node due to prior experiences. Each chunk node representing 
a prototypical situation is linked to a set of (micro)features in the bot-
tom level that describe the situation. When a new situation is encoun-
tered, a chunk representing this new situation may not be present in the  
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NACS and therefore a corresponding chunk node may not be present 
at the top level of the NACS, but the corresponding (micro)features at 
the bottom level are activated by the stimulus from the situation. These 
(micro)features activate, in a bottom-up fashion, existing chunk nodes 
at the top level representing prototypical situations that are similar to 
the new situation (through similarity-based reasoning). The activated 
chunks may then be sent back to the ACS, along with their confidence 
levels (chunk node activations), which are then used for probability 
estimation. Chunk node activations, as we know, are proportional to 
the similarity between the new situation and the stored prototypical 
situations. Thus, subjects’ probability estimates are based on the similar-
ity between the new situation and the stored prototypical situations. 
Similarity-based reasoning within the NACS is responsible for the repre-
sentativeness heuristic, because it leads to similar prototypical instances.

The representativeness heuristic has been used to account for several 
known biases in human reasoning (see Tversky & Kahneman, 1974, for a 
review). Some of the most well-known biases are described below.

Base-Rate Neglect 
In a normative sense as prescribed by Bayes’s theorem from probability 
theory, when estimating the probability that a particular person, Steve, is 
a librarian or a farmer, the total numbers of librarians and farmers should 
be considered. However, in many cases, human subjects do not consider 
this base-rate information but rely on the representativeness heuristic 
(Tversky & Kahneman, 1974); that is, they focus on whether the descrip-
tion of Steve is more representative of librarians or farmers. If Steve is 
more representative of librarians, the estimated probability that Steve is 
a librarian is higher than the estimated probability that Steve is a farmer 
(notwithstanding the actual probabilities).

In Clarion, what accounts for the representativeness heuristic also 
accounts for base-rate neglect. In the example above, chunks representing 
“farmer” and “librarian” (with their corresponding chunk nodes) exist in 
the NACS. However, “Steve” might not be represented by a chunk node 
in the NACS (because he was presumably mentioned for the first time), 
but the description of him activates a set of (micro)feature nodes in the 
bottom level. The (micro)feature overlaps (similarity) between Steve’s 
description and the existing chunks representing “farmer” and “librarian” 
activate the two corresponding chunk nodes, through bottom-up activa-
tion flows:
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where sf is the activation of the “farmer” chunk node, sl is the activation 
of the “librarian” chunk node, ss represents the activation of all relevant 
features of “Steve,” sc cs f~  

represents the similarity between “Steve” and 
“farmer”, and sc cs l~  

represents the similarity between “Steve” and “librar-
ian.” The probability judgments made by the ACS are based on the confi-
dence levels returned from the NACS, which result from the two chunk 
node activations above from similarity-based reasoning. Thus base rates 
are not considered.

Note that the activations of (micro)features in the bottom level, in 
this case, are the direct result of stimuli, which are not processed by an 
associative memory network (e.g., an attractor neural network). Clarion 
naturally displays base-rate neglect when no elaborate implicit processing 
(using, e.g., an attractor neural network) is performed.

Conjunction Fallacy 
In human experiments, subjects may be asked to estimate the prob-
ability that Linda is a bank teller, and the probability that she is a femi-
nist bank teller (Tversky & Kahneman, 1983). The results showed that 
subjects often estimated the former to be less probable than the later, 
even though the first category (i.e., “bank teller”) includes the second 
(i.e., “feminist bank teller”)—a clear violation of probability theory. 
According to Tversky and Kahneman (1983), this anomaly resulted 
from the application of the representativeness heuristic, because 
Linda’s description was more similar to (more representative of) a 
prototypical feminist bank teller than an average bank teller.

In Clarion, the explanation of this phenomenon is similar to that 
for base rate neglect. Although Linda may not be represented by a 
chunk node in the top level of the NACS (because she was presum-
ably mentioned for the first time), chunk nodes exist at the top level 
of the NACS representing the categories “bank teller,” “feminist,” “femi-
nist bank teller,” and so on (due to prior experiences). The description 
of Linda activates a set of (micro)feature nodes at the bottom level 
of the NACS, which activate existing chunk nodes through bottom-up 
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activation flows (computing the similarity between Linda and existing 
categories):
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where st is the activation of the chunk node “bank teller,” sft is the activa-
tion of the chunk node “feminist bank teller,” sl represents the activation 
of all relevant features of “Linda,” sc cl t~  is the similarity between “Linda” 
and “bank teller,” and sc cl ft~  is the similarity between “Linda” and “feminist 
bank teller.” The activated chunks of the NACS are sent back to the ACS 
along with confidence levels. If Linda is more similar to “feminist bank 
teller” than “bank teller,” the chunk node for “feminist bank teller” should 
have a higher activation, thus yielding a higher confidence level and a 
higher probability estimate. This process naturally explains the conjunc-
tion fallacy.

5.5.2.2.  Availability Heuristic

In many psychological experiments, subjects often estimate the prob-
ability of an event based on the ease with which similar events can be 
retrieved from memory (Tversky & Kahneman, 1974).

Clarion provides a plausible computational account of this phenome-
non (Helie and Sun, 2014). Assuming there is no relevant explicit knowl-
edge, this may be a case of similarity-based reasoning (SBR). As explained 
earlier with regard to the representativeness heuristic, in the NACS, stim-
uli that are more similar to existing chunks yield higher activations of 
their chunk nodes. A higher activation of a chunk node makes the corre-
sponding chunk easier to retrieve because it increases the probability that 
the chunk is chosen in stochastic selection. One of the activated chunks 
is stochastically chosen based on a Boltzmann distribution and sent back 
to the ACS (i.e., retrieved from declarative memory). This process may 
be repeated a number of times, and subjective probabilities may be esti-
mated by the ACS based on the frequency of retrieval of similar items.

Of course, similarity is not the only factor affecting retrieval. Other 
factors, such as salience of (micro)features, strength of long-term 
memory (e.g., size of attractors), short-term priming (e.g., residual 
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activations), and so on, can also make retrieval easier or more difficult. 
For instance, in situations where free recall is involved, similar explana-
tions involving attractors may apply (more below). Regardless of fac-
tors, the key in accounting for the availability heuristic lies in degree of 
retrievability.

The availability heuristic has been used in the literature to account for 
several known biases in human reasoning (Tversky & Kahneman, 1974). 
Two cases are discussed below.

Effectiveness of Search Set 
Cues help memory search, and some cues are better than others. According 
to Tversky and Kahneman (1974), subjects tended to estimate relative 
probabilities of categories by trying to recall as many examples as possible 
from each category and assign a higher probability to the one that led to 
more recalls. For instance, the first letter of a word is a much better cue to 
recall the word than its third letter. When trying to decide whether more 
words start with the letter “r” or have “r” in the third position, subjects 
recall words with “r” in the first and the third position, and tend to respond 
(incorrectly) that there are more words with “r” in the first position because 
they can retrieve more such words (Tversky & Kahneman, 1974).

In Clarion, cued recall works by reasoning from the cues (Chapter 3). 
When there is no explicit rule available concerning the given cue, it is a 
case of similarity-based reasoning. Items in the NACS (e.g., stored words) 
are represented by chunk nodes at the top level and (micro)features at 
the bottom level. The bottom-up activation of a chunk node may be pro-
portional to the number of its (micro)features that are activated at the 
bottom level. However, some (micro)features are more closely associated 
with the chunk node; that is, they have higher cross-level weights (because 
they constitute more salient features, as discussed in Chapter 3), and thus 
they are better cues for recall. When (micro)features with higher weights 
to a chunk node are activated by the cue, the activation of the correspond-
ing chunk node is higher. Chunks that are more highly activated are more 
likely to be selected (based on a Boltzmann distribution) and sent back to 
the ACS (as the recalled item). Therefore, some cues are better than oth-
ers. Subjects choose the response that corresponds to the better cue.

Retrievability of Instances 
In a psychological experiment, subjects were read a list of man and 
woman names, and asked to judge if there were more man names or 
more woman names on the list (Tversky & Kahneman, 1974). The results 
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showed that when famous man names were included in the list, subjects 
estimated that there were more man names on the list (notwithstanding 
the actual number).

In accordance with the availability heuristic, subjects tried to recall 
names from the list and made an estimate on that basis. If they could 
remember more man names, they assumed that there were more man 
names on the list. Famous names were easier to retrieve from memory 
and therefore led to overestimation.

Clarion naturally accounts for this phenomenon. In Clarion, every 
time a name is seen or used, it is learned or relearned by the attractor neu-
ral network at the bottom level of the NACS. Famous names are learned 
more often (because they are seen more often, e.g., from media sources). 
The attractor neural network is affected by training frequency:  each 
time a name is encountered, the corresponding attractor is strengthened 
(Chapter 3). Therefore, attractors representing famous names have larger 
attractor fields.

In Clarion, for free recall, memory search is initiated by random acti-
vations in the bottom level (Chapter 3). Attractors with larger attractor 
fields are more likely to be settled into and thus retrieved and sent back 
to the ACS (after bottom-up activation and stochastic selection described 
before). Therefore, famous names (with larger attractor fields) are more 
likely to be retrieved, and thus the corresponding category (e.g., “man 
names”) yields a higher estimate.

5.5.2.3.  Probability Matching

In psychological experiments, subjects’ response frequencies tend to 
match the frequencies of their prior exposure to the stimuli associ-
ated with these responses, known as “probability matching” (see, e.g., 
Garnham & Oakhill, 1994). For instance, if subjects are asked which 
of two lights is going to be turned on next, the probability of choosing 
the first light corresponds to the relative prior frequency of this light 
being turned on.

Clarion accounts for this computationally. In the bottom level of the 
NACS, the attractor neural network implicitly encodes (summarizes) 
past experiences with the lights, with each light represented by a differ-
ent attractor. Previous work has shown that this network accurately esti-
mates the underlying probability distribution of the environment (Helie 
et al., 2006).
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In the absence of cues (i.e., in free recall), memory search in the bot-
tom level is initiated from random activations of the (micro)feature 
nodes (as mentioned before; see Chapter 3). The probability of the net-
work settling into each attractor is determined by prior training: the more 
frequent an item has been seen, the larger the corresponding attractor is, 
and consequently the more likely it is settled into, matching roughly the 
prior frequency (Helie et al., 2006). Then, the bottom-up activation flows 
activate chunk nodes at the top level, which lead to stochastic selection of 
a response as described before. This computational mechanism provides 
an account of the human tendency to behave as probability matchers.

5.5.3.  Inductive Reasoning

Inductive reasoning generates generalized conclusions from observation 
of instances (Heit, 2008). While this form of reasoning may be error 
prone, it is essential: it allows one to function in an environment by mak-
ing plausible predictions and choosing actions accordingly.

According to Clarion, inductive reasoning relies on retrieval from 
the NACS (i.e., from declarative memory), and the retrieval is very 
much similarity-based (i.e., utilizing SBR). Below, a few well-identified 
phenomena are examined, along with their explanations based on the 
NACS of Clarion. In this subsection, only one parameter is varied to 
account for these phenomena (i.e., vk

cj—the relative weight of feature k 
in chunk j).

Note that a variety of relevant simulations of inductive reason-
ing have been carried out before within Clarion, although they are not 
described here.

5.5.3.1.  Similarity between the Premise and the Conclusion

It has been observed that human inductive reasoning is affected by the 
similarity between the premise and the conclusion, not just based on 
logic that involves categorical relations and other relationships (Osherson 
et al., 1990; Rips, 1975; Sloman, 1993; Sun, 1994). For instance, subjects 
make stronger inference from rabbits to dogs than from rabbits to bears 
(Heit, 2008).

Clarion accounts for this phenomenon with its similarity-based rea-
soning. Clarion was successful in capturing and simulating human data 
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concerning SBR. One case was discussed earlier in Section 5.3. In Clarion, 
the similarity between chunks i and j is a function of the number of over-
lapping (micro)features. Specifically,
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where sj
s is the strength (activation) of chunk node j from similarity-

based reasoning, si is the strength (activation) of chunk node i, nc ci j∩  
is the number of (micro)feature overlap between chunks i and j (by 
default), ncj

is the number of (micro)features in chunk j (by default), and 
f is the superlinear function (defined in Chapter 3). Assuming that the 
strength (activation) of the premise chunk node si is fixed, the strength 
of the conclusion chunk node is a function of the relative number of 
overlapping (micro)features between the premise and the conclusion 
chunk, or in other words, a function of the similarity between the two 
chunks. Clarion thereby captures the similarity effect in inductive 
reasoning.

5.5.3.2.  Multiple Premises

In human experiments on induction, it has been observed that the num-
ber of premises affects the strength of the conclusion (Nisbett et  al., 
1983; Osherson et al., 1990). For example, the argument:

Hawks have sesamoid bones.
Sparrows have sesamoid bones.
Eagles have sesamoid bones.
⇒
All birds have sesamoid bones.

is stronger than the argument:

Sparrows have sesamoid bones.
Eagles have sesamoid bones.
⇒
All birds have sesamoid bones.

Clarion provides a computational account of this phenomenon. In the 
NACS, due to the use of max in calculating the overall activation, the 
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strength (activation) of a chunk node is monotonic and nondecreasing. 
The result of the max operation cannot be decreased by adding more 
arguments.

That is, the strength of conclusion chunk j resulting from similarity 
from a set of premise chunks {i1, i2, …, in} is (as described in Chapter 3):

s Max s sj
s

k c c iik j k
= ×



~
	

where sj
s is the strength of conclusion chunk node j, sik

 is the strength 
of premise chunk node ik, and sc cik j~  is the similarity between ik and j.  
Therefore, adding premises maintains or increases the strength of the 
conclusion, as shown in human data.

5.5.3.3.  Functional Attributes

Although inductive strength is correlated with similarity (as has been 
discussed thus far), it is not always that clearcut. Compare the following 
two arguments:

Chickens have a liver with two chambers.
⇒
Hawks have a liver with two chambers.

and

Tigers have a liver with two chambers.
⇒
Hawks have a liver with two chambers.

The first argument is stronger than the second. This is because chickens 
and hawks are more similar to each other than tigers and hawks, as was 
described earlier. However, consider the following two arguments:

Chickens prefer to feed at night.
⇒
Hawks prefer to feed at night.

and

Tigers prefer to feed at night.
⇒
Hawks prefer to feed at night.
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In this case, the second argument is often judged to be stronger by human 
subjects in experiments, although tigers and hawks are less similar to each 
other than chickens and hawks. This result may be explained by feed-
ing habits being more similar between hawks and tigers, because they 
are both predators, than between hawks and chickens. This phenomenon 
has been referred to as “exception to similarity due to functional role” 
(Heit, 2008).

Functional attributes, such as feeding habits, are treated as  
(micro)features in Clarion. They can be readily incorporated into what 
has been described earlier regarding (micro)features in Clarion. These 
functional (micro)features may be given larger weights when they are 
emphasized by the context (e.g., through metacognitive modulation as 
described in Chapter 4). In turn, in Clarion, functional attributes are part 
of the similarity calculation and affect the strength of the conclusion 
being reached (especially when they are given large weights), without 
any additional assumptions or mechanisms. The phenomenon concerning 
the second pair of arguments above is thus explained. Even though the 
literature on categorization suggests that it is unclear what constitutes a 
feature, the interpretation above seems a reasonable one.

5.5.4.  Other Psychological “Laws”

The NACS of Clarion is also capable of accounting for a large number 
of other psychological “laws” in other psychological domains and func-
tionalities. To avoid the tedium of technical details, I will not get into the 
explanations of how Clarion accounts for these. The interested reader is 
referred to Helie and Sun (2014) and Sun and Helie (2012, 2013).

Clarion accounts for many phenomena of human memory (Helie &  
Sun, 2014). For example:

1.	 Frequency effect: In free recall tests, higher frequency words are 
better recalled.

2.	 Positive priming: In lexical decision tasks, subjects are usually 
faster at identifying the second word if it is related to the first 
word (e.g., the word “butter” when it follows the word “bread”).

3.	 Negative priming: In lexical decision tasks, longer reaction times 
are expected when the second word is unrelated to the first.

4.	 Cue effects: In cued recall, efficiency of recall increases with the 
number of cues.
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5.	 List length effect: When a list to be memorized grows longer, 
there is a decline in performance, in both recognition and free 
recall tests.

6.	 Serial position effects: In free recall, items at the beginning of the 
list are more likely to be recalled (the primacy effect). Items 
at the end of the list are also more likely to be recalled (the 
recency effect).

Clarion also accounts for many psychological phenomena of  
categorization (Sun and Helie, 2012). For instance:

1.	 Features in similarity: Judgment of similarity is affected by the 
number of matching features, as well as by the number of non-
matching features.

2.	 Asymmetry of similarity: Judgment of similarity is not always 
symmetric, and in fact it is often asymmetric.

3.	 Reliability of categorization: Stimuli that are more frequent are 
easier to categorize correctly.

4.	 Fan effect: Features that are consistently associated with a cat-
egory facilitate categorical decisions.

5.	 Base rate effect: Subjects are more likely to assign a new stimu-
lus to larger existing categories.

6.	 Variability effect: Subjects are more likely to categorize a new 
stimulus in a category with higher variance among its existing 
members.

Clarion can also account for salient characteristics of human decision 
making (Sun & Helie, 2012). Human decision making is concerned with 
preferences and choices, as studied in psychology, economics, and busi-
ness administration. Among psychological models of decision making, 
decision field theory (DFT) can account for many psychological phenom-
ena (Busemeyer & Johnson, 2008).

Clarion embodies DFT in its NACS. As explained before, the bot-
tom level of the NACS consists of multiple neural networks that 
can be either auto-associative or hetero-associative (Chapter  3). It 
includes a hetero-associative neural network implementing DFT, 
devoted to decision making. As a result of implementing DFT in the 
bottom level of the NACS, Clarion accounts for many psychological 
phenomena of decision making that DFT accounts for (Busemeyer &  
Johnson, 2008).
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Besides implementing DFT, Clarion also enhances DFT in terms of the 
range of phenomena that DFT can account for. By capturing the duality 
and the interaction of explicit and implicit processes, Clarion adds new 
dimensions to DFT. For example, it enables rule-based reasoning and sim-
ilarity-based reasoning to be carried out, which could not be carried out 
within DFT alone. Rules at the top level can also be used to validate the 
decisions chosen by the DFT network. So Clarion accounts for additional 
phenomena in these regards. In addition, implementing DFT in Clarion 
also eliminates all the free parameters in DFT. See Sun and Helie (2013) 
for details.

For many more psychological “laws” accounted for by Clarion, not only 
in the NACS but also in the other subsystems, see Helie and Sun (2014) 
and Sun and Helie (2013). Some related simulations of these “laws” can 
be found in Sun (1994), Sun (1995), Sun and Zhang (2006), Sun, Slusarz, 
and Terry (2005), Helie and Sun (2010), and so on.

5.5.5.  Discussion of Psychological “Laws”

One possible objection to accounting for psychological “laws” as done 
above would be that a cognitive architecture necessarily involves rather 
complex interactions among components and therefore properties of 
one component (such as being able to account for a psychological “law” 
within the NACS) may not hold after the interactions are taken into 
consideration.

To address this objection, one should take note of the fact that psy-
chological phenomena are known to vary with contextual factors—prior 
experiences, individual circumstances, environmental conditions, instruc-
tions, task demands, presence of other individuals, and so on. Although 
some psychological phenomena are relatively more stable than others, 
all are subject to influences of contexts. One can only identify regulari-
ties within certain contexts (generic or specific), and hope to account for 
them within the same contexts.

From this perspective, Clarion is indeed capable of accounting for 
these “laws” despite the interactions among components. Given the 
context for any one of these “laws,” the interactions within Clarion 
would be limited and identifiable, and therefore can be taken into 
consideration.

Cognitive architectures are meant to be the antithesis of specialized 
“expert systems”: Instead of focusing on capturing performance in only 
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one task domain, they are aimed at providing a broad coverage of a wide 
range of domains. Therefore, for a cognitive architecture, it is important to 
be able to account for many phenomena simultaneously, not simply serv-
ing as a platform for building many separate “expert systems.” Accounting 
for psychological “laws” accentuates this point.

Furthermore, work on cognitive architectures is not about throwing 
together a set of small models so that the resulting system can do all of 
whatever each of these small models is capable of. On the contrary, a 
major focus of Clarion has been about selectively including a minimum 
set of mechanisms, structured in a parsimonious but effective way, to 
account for a maximum set of psychological data and phenomena. That 
is, the focus lies in: (1) minimal mechanism, (2) maximal scope, and (3) 
effective integration that leads to synergy of various types. Many past 
simulations and computational analyses demonstrated this point (e.g., 
Sun, Slusarz, & Terry, 2005; Helie & Sun, 2010).

5.6.  General Discussion

In this chapter, I have explored the procedural and declarative processes, 
both of which are essential to the human mind, through modeling and 
simulating a range of psychological experiments and through accounting 
for some generic psychological “laws.” The chapter highlights the impor-
tance of the interaction between implicit and explicit processes, in human 
skill learning/performance and in human reasoning (i.e., in both proce-
dural and declarative processes). It demonstrates this point through the 
cognitive architecture that captures these processes and their interaction. 
This chapter points to the usefulness of incorporating both explicit and 
implicit processes in theorizing about cognition-psychology in general.

Clarion serves as a unifying model of a variety of psychological tasks 
and data. In developing Clarion, a variety of data were examined, com-
pared, and captured within the Clarion framework. In turn, the simula-
tions based on Clarion revealed something further in these tasks and data. 
With detailed comparisons between human data and simulation results, 
these simulations shed light on plausible mechanisms and processes 
underlying human data.

The contribution of Clarion lies not only in capturing a range of 
human data through the interaction of implicit and explicit processes, 
but also in demonstrating the computational feasibility and psychological 
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plausibility of bottom-up learning, which complements the abundant 
treatment of top-down learning in the existing literature and fills a signifi-
cant gap. Furthermore, the possibility of synergy (as well as detrimental 
effects possibly) that may result from the interaction has also been shown 
through examining human data and through simulation studies.

Some comparisons of models can be summarized here. In relation to 
modeling implicit learning (of either procedural or declarative knowl-
edge), which is important to this cognitive architecture, there have been, 
in general, two types of computational models. The first type is neural 
network models (such as Cleeremans and McClelland, 1991), and the 
second type is stored data models, which can be instance-based, rule-
based, fragment-based, or a combination thereof. Although these models 
are different from each other, they share some common characteristics: 
(1) learning is incremental, (2) learning is autonomous (in the sense 
that it is mostly not controlled by other processes) and generally “self-
organizing,” and (3) learning is sensitive to statistical structures in stimuli 
(Cleeremans et al., 1998). It is justified in adopting neural network mod-
els that have these features to capture implicit learning in Clarion, while 
adopting radically different mechanisms for capturing explicit learning. 
Alternative models are certainly conceivable, provided that the difference 
in accessibility between implicit and explicit knowledge (as argued in 
chapters 2 and 3) can be accounted for computationally.

Accounts of reasoning by Clarion and other models have been com-
pared. To re-capitulate the main points, the Clarion framework of mixed 
rule-based reasoning, similarity-based reasoning, and intuition (through 
implicit associative memory) has demonstrated some cognitive-psycho-
logical plausibility, through the simulations described in this chapter, 
along with other studies published elsewhere (e.g., Sun 1995, 1995b; Sun 
and Zhang 2006; Helie and Sun, 2010). Compared with other existing 
models, Clarion embodies some different assumptions, most notably the 
separation of the two dichotomies (action-centered versus non-action-
centered and implicit versus explicit). These alternative assumptions 
enable Clarion to capture a variety of reasoning data that could not be 
easily captured otherwise. Clarion points to new avenues of understand-
ing human everyday reasoning, beyond the current psychology of reason-
ing, and capturing some essential patterns of such reasoning.

Intuition and insight are not a typical topic in cognitive science 
(although they have been investigated experimentally). Their prior expla-
nation was not as clear as one would hope. Clarion is capable of capturing 
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and explaining this type of situation. In this regard, it is useful to posit the 
coexistence of two separate types of processes. Furthermore, the interac-
tion between implicit and explicit processes, in the sense that intuition 
gives rise to explicit awareness and vice versa, is important (Helie & Sun, 
2010).

Besides this two-level framework, can a one-level model capture all 
the data simulated here? It is conceivable that a one-level model may be 
designed so as to capture some data. Human data do not unambiguously 
point to the Clarion simulations described here. One may argue that if 
a one-level model can account for some data, then there is no need for 
two levels. However, it is seldom, if ever, the case that human data can be 
used to demonstrate the unique validity of a cognitive architecture. One 
needs to rely on converging evidence from a variety of sources to justify a 
model. By such a standard, Clarion fares well.

Alternatives notwithstanding, Clarion provides a consistent, theoreti-
cally motivated, and principled framework. It succeeded in interpret-
ing many findings in skill learning/performance and reasoning that had 
not been adequately captured and explained before (such as bottom-up 
learning and synergy effects) and incorporated these phenomena into a 
unified model. This is where the potential significance of Clarion may lie.

Finally, I should note that many other tasks involve the interaction of 
implicit and explicit processes in either the ACS or the NACS. Some of 
these tasks have been accounted for by Clarion. With the use of the ACS, 
a number of serial reaction time tasks were tackled, as well as more com-
plex tasks such as Minefield Navigation and Tower of Hanoi (e.g., Sun, 
2002). With the use of the NACS of Clarion, artificial grammar learning 
tasks, incubation tasks, insight tasks, and so on were tackled (e.g., Helie & 
Sun, 2010). Tasks involving multiple individuals may also be accounted 
by the use of the ACS and NACS, as will be discussed in Chapter 7 
(which focuses on social interaction).

In the next chapter, I will turn to describe simulations that heavily 
involve motivational and metacognitive processes (i.e., the MS and the 
MCS of Clarion).
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6

Simulating Motivational  
and Metacognitive Processes

In this chapter, I  will address the modeling and simulation of moti-
vational and metacognitive processes, going beyond procedural and 
declarative processes as discussed in the previous chapter, thereby also 
capturing emotion, personality, and other aspects of human psychology 
that are believed to be rooted in the motivational underpinning of the 
human mind.

The next two sections (6.1 and 6.2) address metacognitive processes. 
Section 6.3 then deals with motivational processes. The subsequent three 
sections (6.4-6.6) discuss personality, moral judgment, and emotion, 
respectively, on the basis of the motivational and metacognitive mecha-
nisms and processes.

6.1.  Modeling Metacognitive Judgment

6.1.1.  Background

As discussed before in Chapter 4, metacognition refers to processes 
concerning one’s own cognitive processes, and includes monitoring and  
regulation, usually in the service of some objective (Flavell, 1976).
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For a comprehensive cognitive architecture, well-developed metacog-
nitive mechanisms are important, because they are an essential part of 
the human mind—without them the human mind may not function as 
well. I contended that metacognitive mechanisms should be an integral 
part of a cognitive architecture, despite the fact that most existing com-
putational cognitive architectures lacked sufficiently complex, built-in 
metacognitive mechanisms (Sun, 2007b).

I will look into two metacognition-related human experiments from 
the literature. The first experiment, described in this section, taps into 
metacognitive monitoring, while the second, described in the next 
section, taps into both metacognitive monitoring and metacognitive 
intervention (control and regulation) on the basis of metacognitive 
monitoring.

6.1.2.  Task and Data

In a task used by Metcalfe (1986), subjects were given a sheet of paper 
that described a story. They were asked to solve the puzzle in the story. 
They were told to write down a number between 0 and 10, where 0 
meant that they were “cold” about the solution (i.e., having no idea at all 
about the solution) and 10 meant that they were certain that they had 
the right solution. They were to do so every 10s at the sound of a click. 
When the subjects had arrived at a solution, they were to write it down 
on a piece of paper.

The findings were that, in general, subjects who came up with 
correct solutions gave lower warmth ratings than did subjects with 
incorrect solutions. In terms of the last two warmth ratings before 
reaching a solution, this effect was statistically significant. In terms of 
the last warmth rating before reaching a solution, this effect was also 
significant.

Warmth ratings evidently reflected metacognitive monitoring—keeping 
an eye on one’s own cognitive processes. However, the difference in 
warmth rating was counterintuitive—one would normally expect that 
subjects who came up with the correct solutions gave higher warmth rat-
ings than did subjects with the incorrect solutions, but the result was the 
exact opposite. The question was how this result should be explained, in 
particular, how this result should be explained mechanistically, within the 
general framework of a cognitive architecture.
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6.1.3.  Simulation Setup

The simulation of this experiment, originally described in Sun et  al. 
(2006), captured metacognitive monitoring and provided a detailed and 
plausible computational explanation of the counterintuitive experimen-
tal results of Metcalfe (1986).

The conceptual explanation of this experiment on which the simu-
lation was based was that when a subject came up with multiple poten-
tial explanations and had to evaluate their relative merits, his or her 
subjective certainty (a metacognitive judgment) would be relatively 
low due to the coexistence of multiple potential explanations. Hence, 
a lower warmth rating was produced. But, in this way, the subject was 
more likely to come up with the correct (the most plausible) explana-
tion eventually.

On the other hand, when a subject came up with only one plausible 
explanation, there was no need to evaluate multiple possibilities, and thus 
his or her subjective certainty would be higher. But that sole explanation 
was more likely to be wrong, because of the ambiguity of the situation 
and the lack of careful evaluation of all possibilities on the part of the 
subject (Metcalfe, 1986).

Within Clarion, the action-centered subsystem, the non-action-  
centered subsystem, and the metacognitive subsystem were involved in 
this task. The NACS performed inferences under the direction of the 
ACS. Through the monitoring buffer, the MCS kept track of the progress 
of inferences in the NACS (which might also perform metacognitive con-
trol when needed, although not in this particular task).

Specifically, first, the goal of performing the inference (regular infer-
ence) was set up by the MCS. The MCS then selected relevant input 
dimensions to be used for reasoning within the NACS (which excluded 
information not relevant to the task at hand). The MCS also selected the 
reasoning method to be used in the NACS: in this case, forward chaining 
with SBR.

The monitoring buffer in the MCS kept track of how certain the con-
clusions reached by the NACS were (among other things). The NACS 
section of the buffer recorded the relative strengths of n most highly 
activated conclusions (see Chapter  4). When the buffer reported that 
there was one conclusion that stood out with a high relative strength, 
the conclusion was considered certain and its “warmth” level was high. 
Otherwise, the conclusions were less certain, and the “warmth” levels 
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were lower. Hence, “warmth” was captured in this simulation by the rela-
tive strengths (RSs) in the monitoring buffer.

The ACS directed the reasoning of the NACS. The following rules 
existed at the top level of the ACS:

If goal = regular-inference, then perform one step of inference in the 

NACS (using the method selected by the MCS and the information 

filtered by the MCS).

If goal = regular-inference, and chunk i is a conclusion chunk with  

Sc
i
 > thresholdS and ∀j Sc

i
 > Sc

j
, then retrieve chunk i.

If goal = warmth-reporting, then report the warmth (i.e., the RS) of the 

chosen chunk from the monitoring buffer in the MCS.

where S stood for chunk strength, and RS for relative strength. The 
threshold for strengths was set at thresholdS = 0.1. Although the bottom 
level of the ACS was present, it had little effect, because of the stochastic 
selection of levels in favor of the top level (which was the result of the 
task instructions).

At the top level of the NACS, knowledge was encoded as associative 
rules and chunk nodes. Some subjects (those who turned out to have 
higher warmth ratings) had few of these rules, while other subjects (those 
who turned out to have lower warmth ratings) had more of these rules. 
For simulating this experiment, associative rules were of the following 
form:  if event A happens, then B might be the answer. At the bottom 
level of the NACS, an associative memory network (a hetero-associative 
network) was present. The network was trained with the same knowledge 
as expressed by the associative rules in the top level of the NACS.

6.1.4.  Simulation Results

In this simulation, as in the human data, on average, those simulated 
“subjects” that generated correct solutions gave lower warmth ratings 
than those that generated incorrect solutions. Thus, the simulation, 
within the framework of Clarion, accounted computationally for the 
counterintuitive findings in the experimental data of Metcalfe (1986).

Specifically, in the simulation results, there were statistically significant 
differences between the two groups of simulated subjects. The average of 
the last rating of the simulated subjects with correct solutions was 3.3, 
while that of the simulated subjects with incorrect solutions was 5.2. The 
average of the penultimate rating of the simulated subjects with correct 

 



Simulating Motivational and Metacognitive Processes 229

solutions was 3.3, while that of the simulated subjects with incorrect 
solutions was 5.1. Statistical analysis of the last rating showed that there 
was a significant difference between correct versus incorrect. Similarly, 
analysis of the penultimate rating showed that there was also a significant 
difference between correct versus incorrect.

6.1.5.  Discussion

The conceptual explanation of the data of this experiment was confirmed 
by the simulation. That is, when a subject initially came up with multiple 
potential explanations (when multiple relevant rules were available in the 
NACS), the subjective certainty was lower (due to the coexistence of mul-
tiple potential explanations). Thus, a lower warmth rating was produced. 
However, the subject in this case was more likely to come up with a correct 
explanation, based on evaluations of the relative merits of different poten-
tial explanations. On the other hand, if a subject initially came up with only 
one plausible explanation (e.g., when only one relevant rule was available in 
the NACS), there was no need to evaluate multiple possibilities, and thus 
the subjective certainty was higher, which led to a higher warmth rating. 
But that sole explanation was more likely to be wrong because of the ambi-
guity of the situation and the lack of evaluation of multiple possibilities.

6.2.  Modeling Metacognitive Inference

6.2.1.  Task and Data

In this case, instead of dealing with numerical data, protocols that indi-
cated metacognitive reasoning were examined. An example from Gentner 
and Collins (1981) was as follows:

Q: � Have you ever shaken hands with Richard Nixon?
A: � No. . . .How do I know? It’s not something that one would forget. 

I don’t think I’ve ever seen him live, in person. I’m sure I haven’t. 
(He went on describing meetings with some other presidents.)

Another essentially similar example was from Collins (1978):

Q:  Is the Nile longer than the Mekong river?
A: � I think so. . . .Because in junior high, I read a book on rivers. . .the 

Amazon was in there and the Nile was in there, and they were 
big, and long, and important. The Mekong wasn’t in there.
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In these examples, inferences were made based on (1) the lack of knowl-
edge about something, and (2) the importance of that knowledge. In each 
of these cases, because of the combined reason of the lack of knowledge 
of a particular proposition on the one hand and the general availability of 
related knowledge on the other, an inference was made that the proposi-
tion was not true (cf. Gigerenzer, Todd, & the ABC Group, 1999).

To make such inferences, first, metacognitive monitoring of one’s own 
reasoning processes is necessary, the same as in the previous task. However, 
beyond metacognitive monitoring, active metacognitive intervention is also 
necessary. Based on information gained from monitoring one’s own reason-
ing (such as the lack of an important piece of information), a metacognitive 
process intervenes and redirects the reasoning, leading to a conclusion.

Beside the protocol data, Gentner and Collins (1981) also presented 
data of metacognitive reasoning from a third-person view. Assuming that 
a protagonist in a story forgot about an event, they asked subjects to rate 
the likelihood of the event, which was either of low or high importance. 
This scenario was essentially identical to the protocol segments above, 
except that there was an additional projection of one’s own metacogni-
tive processes onto others. In this experiment, the likelihood ratings were 
found to be inversely correlated with the importance of events, reflecting 
metacognitive monitoring and intervention.

6.2.2.  Simulation Setup

The simulation of the protocol data aimed to capture metacognitive rea-
soning from the lack of information (Sun et al., 2006); that is, it aimed 
to capture both metacognitive monitoring and metacognitive intervention 
(control/regulation).

It was reasonable to hypothesize that a negative conclusion was drawn 
only if subjects thought that they knew enough about a domain and yet 
they did not know about a particular proposition in that domain. If they 
did not know enough about a domain when they did not know about a 
particular proposition in that domain, a negative conclusion was not likely 
to be drawn.

Within Clarion, the ACS, the NACS, and the MCS were involved in 
this simulation. The NACS performed inferences under the direction of 
the ACS. The MCS selected relevant information and reasoning methods 
to be applied within the NACS. The MCS also monitored the progress 
of inferences in the NACS and performed metacognitive intervention 
accordingly, including starting “lack-of-knowledge” inferences.
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Specifically, the goal of regular inference was first set up by the MCS. 
It then selected relevant input information to be used (excluding infor-
mation not relevant to the task at hand). Then the MCS selected the 
reasoning method to be used in the NACS, forward chaining with SBR. As 
always, the ACS directed the reasoning of the NACS (using the selected 
reasoning method). When the lack-of-knowledge condition was detected 
(as indicated by uniformly low activation in the NACS performance sec-
tion of the monitoring buffer of the MCS), the MCS initiated lack-of-
knowledge inferences by setting up the goal of LOK inference. The LOK 
inferences were then carried out by the NACS (under the direction of 
the ACS).

At the top level of the ACS, the following rules were used for directing 
reasoning of the NACS:

If goal = regular-inference, then perform one step of inference in the 

NACS (using the method selected by the MCS and the information 

filtered by the MCS).

If goal = regular-inference and chunk i is a conclusion chunk with  

Sc
i
 > thresholdS and ∀j Sc

i
 > Sc

j
, then retrieve chunk i.

If goal = LOK-inference, there is no conclusion chunk with  

Sci
 > thresholdS but there are many associative rules pointing to the 

conclusion chunks, then indicate that the conclusion is negative.

If goal = LOK-inference, there is no conclusion chunk with Sci
 > thresholdS 

and there are not many associative rules pointing to the conclusion chunks, 

then indicate that the conclusion is indeterminate.

where S represented chunk strength. The threshold for S was set at thresh-
oldS  = 0.1. Another threshold determined how many rules constituted 
“many” (which was domain specific). In this simulation, a value of 2 was 
used. In the ACS, although the bottom level was present, it had little 
effect, because stochastic selection in favor of the top level was used.

At the top level of the NACS, relevant knowledge was coded as asso-
ciative rules and chunks. The associative rules relevant to this task were 
generally of the following form:

River A → long-river

River B → long-river

River C → long-river

along with other rules that were not relevant to this task.
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At the bottom level of the NACS, one hetero-associative memory net-
work was present. The network was trained with the same knowledge as 
the associative rules in the top level.

6.2.3.  Simulation Results

The simulation successfully captured the lack-of-knowledge inference as 
shown by the human subjects in the protocols described earlier.

As predicted, when a simulated subject had a relatively large amount 
of knowledge about a domain but could not reach a conclusion in a par-
ticular instance, then the lack-of-knowledge inference was initiated, and 
a negative answer was produced. On the other hand, when a simulated 
subject had a small amount of knowledge about a domain and could 
not reach a conclusion in a particular instance, then no conclusion was 
drawn. A large number of simulation runs testified to this outcome. In 
all of these cases, metacognitive monitoring led to metacognitive inter-
vention, which led to lack-of-knowledge inferences. This simulation 
demonstrated not only metacognitive monitoring but also metacognitive 
intervention (control and regulation).

6.2.4.  Discussion

Clarion includes specifically metacognitive mechanisms for monitoring, 
controlling, and regulating cognitive processes. The metacognitive subsys-
tem may select information, adjust cognitive parameters, and intervene in 
regular cognitive processes.

As indicated by the simulation results above, Clarion succeeded in 
accounting for, computationally in a detailed way, the counterintuitive 
results in the experimental data of Metcalfe (1986) as well as the data 
of Gentner and Collins (1981). These metacognitive simulations, as 
described in this and the previous section, captured rather accurately the 
existing experimental data.

To some extent, the two simulations above validated metacognition as 
embodied in Clarion. The cognitive architecture contains detailed built-
in metacognitive mechanisms on which the simulations were based. The 
explanation of Metcalfe (1986), based on amount of relevant knowledge, 
naturally fell out of Clarion. Similarly, the lack-of-knowledge inferences 
in Gentner and Collins (1981) were also naturally captured by Clarion. 
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So, metacognitive processes were, more or less, architecturally specified 
in Clarion.

The simulations not only help to better understand issues of meta-
cognition, but also have implications for further development of cogni-
tive architectures. Notably, most existing cognitive architectures do not 
include a sufficiently complex metacognitive component. In contrast to 
most existing cognitive architectures, in Clarion, metacognitive processes 
are architecturally specified to a large extent. They are architecturally 
specified to the extent that I believe is appropriate: that is, they are suf-
ficiently detailed but yet flexible. Work in this area is not only useful but 
very much needed. The metacognitive subsystem developed in Clarion 
might be applied to other cognitive architectures (there has indeed been 
some work in that direction). As understanding of metacognitive pro-
cesses grows, the metacognitive mechanisms in Clarion may be further 
refined to capture the exact range and scope of human metacognitive 
processes.

One specific point that can be derived from Clarion and the simula-
tions based on Clarion is that metacognitive processes are intermeshed 
with regular processes. They interact with each other on a constant basis. 
Thus, they may be viewed either as separate or as integrated—both views 
are partially descriptive of the Clarion perspective on metacognition. In 
general, in Clarion, the relationship among different types of processes 
is highly interactive. Given this highly interactive relationship, one may 
view metacognitive processes as one with regular processes, because they 
are tied intimately together.

Norman and Shallice’s (1986) view on metacognition may be related 
to the Clarion view. They posited the coexistence of two kinds of meta-
cognitive processes: (1) fast, automatic processes, which are triggered by 
stimuli and are inflexible; and (2) slow, conscious processes, which are 
independent of stimuli and are flexible. The former is used in skill perfor-
mance, while the latter deals mostly with novel situations. Although the 
explicit-implicit dichotomy in Clarion (which applies to the metacogni-
tive subsystem as well as other subsystems) is similar to Norman and 
Shallice’s (1986) view, Clarion further addressed more complex forms 
of implicit and explicit metacognitive mechanisms and processes, and 
advocated intermeshed metacognitive and regular cognitive processes, 
which differed somewhat from their view (Sun and Mathews, 2012; Sun 
et al., 2006).
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One argument might be that, although many cognitive architectures 
do not have built-in metacognitive mechanisms, some of them allow 
metacognition to occur on the basis of regular cognitive mechanisms, 
and such simpler cognitive architectures provide “deeper” explanations. 
However, there are severe limitations in those cognitive architectures in 
terms of the range of metacognitive phenomena that they can capture. 
Therefore, being simpler is not necessarily better.

6.3.  Modeling Motivation-Cognition Interaction

6.3.1.  Background

Motivation and cognition interact with each other (e.g., Simon, 1967; 
Ryan and Deci, 2000; Locke and Latham, 2002; Markman & Maddox, 
2005). Effects of motivation on cognitive performance have been 
observed empirically. For instance, performance motivation, such as a 
difficult performance target, affects actual performance (Kanfer and 
Ackerman, 1989; Locke and Latham, 2002). Relatedly, anxiety affects 
performance as well, often negatively (Lambert et  al., 2003; Wilson 
et al., 2010).

An individual’s confidence in meeting a performance target (i.e., 
“self-efficacy”) is believed to be important (Bandura, 1997). In cases that 
the individual has low self-efficacy (i.e., the individual has low confidence 
in his or her ability of meeting the target), anxiety may develop and per-
formance may be affected (Brooks et  al., 2012). It has been suggested 
that in case a difficult performance target is present and self-efficacy is 
high, attention will be allocated to the achievement of the target and 
performance improves. However, when self-efficacy is low, a difficult per-
formance target may negatively affect performance. In the latter case, the 
negative effects may (at least in part) be attributed to anxiety (Brooks 
et al., 2012).

In this regard, empirical studies have suggested two possible outcomes 
as a result of elevated anxiety levels. The first possibility is that, in situ-
ations where anxiety levels are elevated (but not extremely high), indi-
viduals may move toward more explicit (more “controlled”) processing 
(i.e., “explicit monitoring theory”; e.g., Baumeister, 1984; Beilock & Carr, 
2001). This increase in explicitness has been shown to have two possible 
effects. In situations where tasks are naturally more explicit, performance 
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may not be hurt (or may even be improved). However, in situations 
where tasks are either very well learned or naturally tend to be more 
implicit, focusing additional explicit attention may have a negative effect 
on performance (Beilock & Carr, 2001).

The second possible outcome of elevated anxiety levels is that, 
especially in situations where anxiety levels are very high, cogni-
tive resources may be allocated away, for example, to attend to the 
anxiety (i.e., “distraction theory”; e.g., Wine, 1971; Lambert et  al., 
2003). Accordingly, task-related decisions must be made using more 
implicit (more “automated”) processes (referred to as “losing control” 
by Lambert et  al., 2003). As a result, task performance is typically 
hindered (Lambert et  al., 2003; Beilock et  al., 2004; Wilson et  al., 
2009, 2010). However, for well-practiced or naturally implicit tasks, 
performance may be unchanged (Beilock et al., 2004). Some claimed 
that anxious individuals might perform equivalently on some tasks by 
exerting more explicit cognitive control in order to compensate for the 
distraction.

Another suggestion was that individuals might be distracted not by 
anxiety per se but by worrying about the situation and possible conse-
quences (Wine, 1971). A related suggestion was that individuals might 
be distracted by additional metacognitive observation and evaluation 
(Kanfer & Ackerman, 1989). Distraction may also lead to different out-
comes in different situations (e.g., Lewis & Linder, 1997).

While these theories seem contradictory, Wilson et al. (2009, 2010) 
has argued that they can actually be unified with an inverted U curve. 
The idea of an inverted U curve is that a slightly higher arousal (due to 
a certain degree of anxiety) may often lead to more explicit processing. 
But much higher arousal may often lead to the opposite results—more 
implicit processing (Wilson et al., 2009, 2010; Brooks et al., 2012). 
This phenomenon is related to what was addressed in such early work 
as Yerkes and Dodson (1908) as well as their more recent variations.

In Clarion, the fundamental hypothesis, discussed in Chapter 4 and 
consistent with the inverted U curve, is that when anxiety increases, it 
leads an individual to become more explicit (more “controlled”) when 
making action decisions, relying more on explicit processes at the top 
level of Clarion. However, when anxiety reaches a certain higher level, it 
can begin reducing “control” and the individual reverts to more implicit 
(“automated”) processes, relying more on the bottom level of Clarion. 
Depending on the level of anxiety and the specific characteristics and 
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dynamics of a task, the effect of anxiety can either enhance or degrade 
performance.

Specifically, according to Clarion, when anxiety levels are elevated, 
it forces individuals to first shift their action decision making toward 
more explicit processing; however, if anxiety levels are further height-
ened, individuals can instead become more implicit. This increase or 
decrease in explicit (“controlled”) processing has the effect of enhanc-
ing explicit or implicit processes and hindering their opposites, thus 
affecting performance, positively or negatively, depending on tasks 
involved and other circumstances. As discussed earlier, when a task is 
naturally more implicit, increase in explicit processing (e.g., as a result 
of slightly elevated anxiety levels) may have a negative effect. When 
a task is naturally more explicit, increase in explicit processing may 
have a positive effect. Decrease in explicit processing (e.g., as a result 
of extremely high anxiety levels) can have similarly opposite effects on 
tasks that are either naturally more implicit or naturally more explicit. 
Furthermore, Clarion assumes that for those individuals with high self-
efficacy, anxiety should generally be lower than for individuals with low 
self-efficacy (Brooks et al., 2012).

Within the Clarion framework, the strength of avoidance-oriented 
drives (see Chapter  4) is hypothesized to capture the level of anxiety 
(Wilson et  al., 2009). As discussed, for instance, by Carver and Sheier 
(1998), it is more difficult to avoid things; hence, given high strengths 
of avoidance-oriented drives, stress, anxiety, and so on arise. This link 
between avoidance-oriented drives and anxiety (and possibly other nega-
tive feelings) may be forged by evolution (Smillie et al., 2006). It is thus 
hypothesized that the strength of avoidance-oriented drives determines 
the probability of selecting explicit processes at the top level of Clarion 
(i.e., amount of explicit processing, or degree of cognitive “control”), 
through an inverted U curve (as discussed earlier; Wilson et  al., 2009, 
2010; Brooks et al., 2012).

As hypothesized in Brooks et al. (2012), the gain parameters within 
the drive strength equation (Chapter 4) are relevant. The gain param-
eters for avoidance-oriented drives (e.g., gs where s = avoidance) are nega-
tively correlated with the theoretical notion of self-efficacy, while the 
gain parameters for approach-oriented drives (e.g., gs where s = approach) 
are positively correlated with self-efficacy. Therefore, according to the 
hypothesis, when self-efficacy is high, approach-oriented drives are more 
likely to be highly activated; when self-efficacy is low, avoidance-oriented 
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drives are more likely to be highly activated and thus the anxiety level is 
more likely to be high.

Self-efficacy as embodied by the gain parameters can be determined 
on the fly during task performance, based on the internal state of the MS 
and the MCS, the processes of the ACS (e.g., number of relevant explicit 
rules, randomness of action selection, and so on), and the processes of the 
NACS, in relation to a performance target.

The stimulus parameter in the drive strength equation (for both 
approach- and avoidance-oriented drives) represents the external condi-
tions relevant to drive activation, including possibly a performance target 
(e.g., as externally assigned and provided to individuals). For example, 
a low stimulus value may result from a no pre-set performance target 
condition and a high stimulus value from a high pre-set target condition. 
Given a high stimulus value, it is likely that some drives, of either an 
approach or an avoidance type, will be highly activated, depending on 
self-efficacy (i.e., the corresponding gain parameters). In contrast, given a 
low stimulus value, drives of both types are less activated.

Individual differences also result from the drive deficit parameters 
within the drive strength equation. For example, Kanfer and Ackerman 
(1989) suggested that high-ability (and thus very likely high self-efficacy) 
individuals were more likely to set difficult goals for themselves without 
an externally imposed performance target. Thus, they might have higher 
deficit values for (some of) their approach-oriented drives. Note that the 
drive deficit parameters are determined internally regardless of drive stim-
ulus (e.g., resulting from externally assigned targets). Higher deficit values 
lead to corresponding drives being more highly activated.

In addition, individual ability differences are captured within Clarion 
by differences in terms of the neural network learning rates, the rule 
learning thresholds, the probability of rule encoding, the temperature in a 
Boltzmann distribution, the level integration parameters, and so on.

Below I will present one detailed example of cognition-motivation 
interaction, in the form of elevated anxiety levels affecting sensory-
motor performance, which draws upon Wilson et al. (2009). Then, 
some other tasks will be briefly sketched as well. Clarion is capable 
of providing a mechanistic and process-based explanation of motiva-
tion-cognition interaction. For instance, the implicit-explicit distinction 
has been referred to in different ways by different researchers (often 
with somewhat different meanings). The Clarion framework provides 
some clarification to these terms in a more exact, mechanistic way.  
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Beyond terminological issues, Clarion also provides a detailed computa-
tional account that helps to shed new light on underlying motivational 
and cognitive processes as well as their interaction.

6.3.2.  Task and Data

Look into the golf-putting task of Beilock and Carr (2001). In their 
experiment 3, subjects were instructed to hit a golf ball at a target 
from different positions. Then, following training, they were presented 
with a high-pressure scenario (aimed at causing elevated levels of anxi-
ety presumably). The results indicated that subjects who were trained 
in a single-task condition experienced performance degradation in a 
high-pressure post-test, while those who were trained in a “self-conscious” 
condition did not suffer performance degradation.

Specifically, subjects initially had little or no golfing experience. They 
were randomly assigned to the single-task condition, the self-conscious 
condition, or the dual-task condition. Here only the single-task and the 
self-conscious condition are considered. The objective was to putt a golf 
ball as accurately as possible from nine locations on a carpeted indoor 
putting green. The locations were 1.2, 1.4, or 1.5 meters from the target. 
All subjects putted from the nine locations in the same randomly deter-
mined order. The target was a red square, on which the ball was supposed 
to stop.

Each subjects completed 270 training putts, which were divided into 
three blocks of 90 putts each. The mean distances of the first 18 and last 
18 training putts, respectively, were recorded. The training was followed 
by an 18-putt low-pressure (presumably low-anxiety) post-test and then 
an 18-putt high-pressure (presumably high-anxiety) post-test.

During the training phase, subjects in the self-conscious group were 
informed that they would be filmed by a video camera and the result-
ing videotapes would be reviewed later to gain an understanding of how 
individuals learned to putt. The camera was set up on a tripod that stood 
directly in front of the subjects. The camera was turned on and pointed at 
them during the training phase. After the training phase, the camera was 
turned off and pointed away.

The low-pressure post-test was the same for all groups. To subjects 
in the single-task condition, the 18 low-pressure putts following the 
training seemed just another set of putts. Subjects in the self-conscious 
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condition were made aware that the camera had been turned off and 
pointed away.

The high-pressure post-test was also identical for all groups. Subjects 
were informed of their mean putting performance for the last 18 putts 
during the training phase and were then provided with a scenario 
designed to create high pressure. Specifically, they were told that if they 
could improve accuracy by 20% in the next set of putts, they would 
receive $5. However, each subject was told that he/she had been ran-
domly paired with another subject. In order to win the money, both had 
to improve by 20%. Each subject was told that the other had already 
improved by the required 20%. Each subject then took an 18-putt 
post-test.

The results from this experiment were as shown in Figure 6.1 
(Beilock & Carr, 2001). Subjects’ performance worsened during the 
high-pressure (high-anxiety) post-test for the single-task group but not 
the self-conscious group. Detailed statistical analysis confirmed the results 
(Beilock & Carr, 2001).

At first glance, Beilock and Carr’s results might be explained by explicit 
monitoring theory. That is, it might be postulated that performance 
degradation resulted from increased explicitness. Performance pressure 
might elicit step-by-step explicit monitoring and control over complex, 
well rehearsed, implicit procedures that would be more automatic if such 
efforts had not intervened (Beilock & Carr, 2001).
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Figure 6.1.  The human data from Beilock and Carr (2001).
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According to this theory, when a task that is “automated” (i.e., 
implicit and procedural) is affected by certain situations (e.g., situa-
tions involving high pressure and thus high anxiety), execution of the 
task becomes more explicit. This “over-thinking” phenomenon may 
hamper performance. In Beilock and Carr’s opinion, this happened 
when performance degradation under pressure occurred in the putting 
task. Practice under the self-conscious condition served to mitigate this 
tendency.

On the other hand, distraction theory assumes that involving a cer-
tain level of explicit processing is likely to be better. Explicit processes, 
when combined with implicit processes, often lead to better results (i.e., 
the idea of synergy; Sun, Slusarz, & Terry, 2005). In contrast, implicit 
processes are often faster but more susceptible to inaccuracies and mis-
takes (Reber, 1989). They are also more reactive in nature. It is reasonable 
to suggest that in usual circumstances, people tend to prefer acting in a 
somewhat more precise (i.e., somewhat more explicit) fashion than in 
a purely reactive and uncontrolled (i.e., purely implicit) manner (Sun, 
2002). However, distracting contexts (e.g., anxiety) may hamper explicit 
processes (for a variety of possible reasons as discussed earlier), leading 
to more implicit processing, which may often hurt performance (e.g., 
Lambert et al., 2003).

The latter theory (distraction theory) can be derived directly from 
the basic postulates of Clarion. The former theory (explicit monitor-
ing theory) can be implemented within Clarion (Wilson et al., 2009, 
2010).

Within the Clarion framework, it is natural to hypothesize that sub-
jects’ performance worsened when faced with distracting contexts (e.g., 
anxiety), because they were prevented from using a sufficient amount 
of explicit processing. In this regard, it can be reasonably assumed that 
performance in the golf-putting task by those aforementioned subjects 
under the aforementioned experimental conditions was not completely 
implicit. While putting might (or might not) be an implicit task for 
beginning novices, it becomes somewhat more explicit with practice (as 
explicit rules for performing the task were extracted, or received from 
external sources). The notion of bottom-up rule extraction (see Chapter 
3) has been explored within the Clarion framework and is pertinent here 
(Sun et al., 2001).

Specifically, in the putting task, a novice does not have much infor-
mation on how to effectively putt. However, through trial and error, 
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the individual begins to learn implicit skills, and acquires explicit rules 
to help to increase accuracy as training continues. The improvement in 
performance during practice is, in part, the result of explicit rules being 
established (in addition to implicit skill learning; Sun et  al., 2001). As 
the number of rules increases and they become more refined, accuracy 
improves. Experienced golfers may have a large set of explicitly acces-
sible rules that can be recalled relatively easily. (However, there might be 
an inverted U curve here also: a gradual increase of explicit knowledge 
as experiences accumulate and then some decrease when one becomes 
a true expert. See, for example, the relevant arguments from Dreyfus & 
Dreyfus, 1987.)

Of course there is no guarantee that explicit knowledge that one 
possesses is actually used in action decision making, as opposed to 
post hoc rationalization. Judging from prior work, there are reasons 
to believe that at least some of that explicit knowledge is indeed used 
for actual action decision making (Mathews et al., 1989; Willingham, 
Nissen, & Bullemer, 1989; Sun et al., 2001). In general, people prefer 
to perform tasks in a somewhat explicit fashion (mixing implicit and 
explicit processes to a certain degree). Within the Clarion framework, 
the notion of synergy has been advanced in this regard as a possible 
explanation: mixing implicit and explicit processes leads to better per-
formance than using either alone (though explicit processes are more 
effortful; Sun, Slusarz, & Terry, 2005). This synergy may be a reason 
to use both implicit and explicit processes in most skill domains (Sun, 
2002).

6.3.3.  Simulation Setup

Now look into how Clarion was applied to the simulation of the 
golf-putting task (Wilson et  al., 2009). In the MS, one primary drive 
might be particularly relevant: “honor,” which was roughly the need to 
avoid blame in this case (see Chapter 4). The drive strength was obtained 
using a (pre-trained) Backpropagation network. The inputs to the net-
work specified the experimental conditions (i.e., the stimulus parameter) 
and the individual difference variable that indicated an individual’s pre-
disposition toward becoming anxious (i.e., the deficit parameter, captur-
ing “trait anxiety” in this case).

For the single-task group, during the training phase, the drive strength 
was determined by: tanh(.1x) (where x is the individual difference 
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variable; 0 ≤ x ≤ 5)1. This function was also used for the low-pressure 
post-test of both the single-task and the self-conscious group (because 
these situations were essentially the same). During the training phase 
of the self-conscious group, the drive strength was determined by: 
tanh(.15x), because of the (presumably) higher anxiety levels due to the 
self-conscious training condition.

During the high-pressure (high-anxiety) post-test, for those trained in the 
self-conscious condition, the function changed to: tanh(.17x), in response to 
the anxiety-inducing cues. For those trained in the single-task condition, 
during the high-pressure (high-anxiety) post-test, the function changed 
to: tanh(.5x), in response to the anxiety-inducing cues. The assumption was 
that the drive strength of the self-conscious group during the high-pressure 
post-test increased to be only slightly higher than that used during the train-
ing phase, because the simulated subjects trained in the self-conscious con-
dition were exposed to an anxiety-inducing situation during training for an 
extended period of time, and therefore the effect that the high-pressure 
post-test had was mitigated to a large extent.2 These subjects were affected, 
but the effect was not as strong as for those trained in the single-task con-
dition where no mitigating factor was present during training. A graphical 
representation of the drive strengths was as shown in Figure 6.2.

The MCS determined the “proportion” of explicit versus implicit 
processing in the ACS. The MCS mapped the maximum avoidance-ori-
ented drive strength, using an inverted U curve (as discussed before), 
to explicitness of processing, that is, the probability that the simulated 
subject would use the top level of the ACS when performing the task. 
The output was produced by a (pre-trained) Backpropagation network, 
with the input to the network being the maximum avoidance-oriented 
drive strength from the MS. Figure 6.3 shows a graphical representation 
of this, where the MCS selects probabilities between 0 and 1 based on: 
−0.4x2 + 0.2x + 0.6 (where x is the maximum avoidance-oriented drive 
strength).

The ACS was set up the same way for all simulated subjects. The bot-
tom level of the ACS included a Backpropagation network with input 

1. The drive strength so determined corresponded to a drive strength equation 
(Chapter 4) with its deficit, stimulus, and other parameters that might vary from indi-
vidual to individual.

2. This might be explained by the depletion of the deficit of the drive, as a result 
of prolonged exposure to an anxiety-inducing situation, which partially mitigated the 
increase of the stimulus of the drive (as a result of the high-pressure post-test).
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nodes representing information concerning the putting positions and 
their distances to the target. The three output nodes represented putting 
actions: swing easy, swing medium, and swing hard. The network started 
with no a priori knowledge, and learned through performing the task 
(using simplified Q-learning as explained earlier). Eventually, implicit 
knowledge of putting was captured by the network.

At the top level of the ACS, no explicit rules existed at the beginning 
of the task, because the subjects in this experiment had little or no prior 
golfing experience or knowledge. Rules were extracted from the bottom 
level of the ACS during the course of training (a rule was extracted when 
an action caused a putt to land within five centimeters of the target; see 
RER in Chapter 3). The ACS attempted to generalize the rules after they 
were extracted (with the RER algorithm).

The accuracy (i.e., the distance of the ball from the target) was 
calculated based on a prespecified function. The MCS sent reinforce-
ment signals determined on that basis to the ACS for reinforcement 
learning.

6.3.4.  Simulation Results

In this simulation, as in the original human experiment, the accuracy of 
the first 18 and the last 18 putts of the training phase was recorded, along 
with the 18 putts for each of the two post-tests (Wilson et al., 2009).

The simulated subjects of both the single-task and the self-conscious 
condition improved with practice; statistical analysis showed a significant 
effect of practice and no training condition/practice interaction, which 
was consistent with Beilock and Carr’s (2001) human data.

In the simulation, accuracy in the low-pressure post-test was essen-
tially the same between the simulated single-task and the simulated self-
conscious group, the same as in the human data. In the high-pressure 
post-test, a statistically significant difference existed between the two 
simulated groups, the same as in the human data. In addition, there was a 
statistically significant interaction of training condition and post-test. This 
finding also matched that found by Beilock and Carr (2001).

Direct analysis of putting performance within each simulated group 
showed that the accuracy of the simulated single-task group significantly 
declined from the low-pressure to the high-pressure post-test, as in the 
human data. The accuracy of the simulated self-conscious group did not 
change significantly between the two post-tests, although the direction 
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of the change suggested a slight improvement, as consistent with Beilock 
and Carr (2001).

The simulation results were as shown in Figure 6.4. Looking at 
the figure, it is evident that the results from the simulation match the 
human data very closely. This suggests that the detailed, mechanistic, and 
process-based interpretation based on Clarion of the human results may 
have merit.

While explicit monitoring theory described earlier may seem an intui-
tively appealing explanation for performance degradation in low-level 
tasks like putting, this simulation points to the fact that explicit monitor-
ing may not be the only viable explanation. Explicit processing requires 
more effort and control than implicit processing. When an individual is 
anxious or distracted, the amount of control or the level of effort that 
he or she has available might be negatively impacted. This might reduce 
the individual’s ability to utilize explicit processes. Explicit monitoring 
theory points to “over-thinking” as the culprit of performance degradation 
under pressure. However, what occurred might not be “over-thinking” but 
might be an inability to engage explicit processes to a sufficient extent, as 
suggested by the simulation.

As has been pointed out earlier, there may be a difference between 
relative novices (using a mixture of implicit and explicit processes) and 
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Figure 6.4.  The simulation of Beilock and Carr (2001).
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true experts (being equally proficient in either a somewhat explicit or a 
completely implicit mode, or even performing the best when completely 
implicit). In this regard, in the literature, highly practiced and thus auto-
mated expert skills show negative effects of explicit monitoring under 
some circumstances, while less well-developed skills may show effects 
of distraction in the sense of distraction theory. There is no sufficient 
evidence to conclude that those human subjects in this experiment had 
reached the true expert level; for example, what appeared to be asymp-
totic performance might turn out to be a temporary performance pla-
teau that, with further training, might lead to still better performance. 
Therefore there is no conclusive evidence that “over-thinking’’ hurts their 
performance.

These simulation results above suggest that Clarion might be used 
to interpret at least some performance degradation phenomena seen in 
experiments involving sensorimotor tasks, as well as in many other types 
of tasks (especially higher-level tasks; Wilson et al., 2009, 2010).

6.3.5.  Discussion

Clarion provides a computational account of the phenomenon of perfor-
mance degradation under pressure on the basis of motivation. While the 
suggestion that motivation (e.g., drives) affects performance is not novel, 
the work described here has taken a step toward explaining exactly how 
and in what way performance is affected by motivational and environ-
mental contexts. Within the Clarion framework, anxiety, as a function of 
the task context, affects implicit and explicit processes. The simulation 
provides a glimpse into how motivation acts upon cognitive processes, 
and it does so in a quantitative, process-based, and mechanistic way.

Clarion addresses the interaction between motivation and cognition, 
and in this way, it explains or substantiates some previous theories natu-
rally. Moreover, Clarion may eventually provide a more general and yet 
detailed picture of self-regulation and control, in a generalized sense, in a 
mechanistic, process-based way.

It should be mentioned that a number of other tasks were also simu-
lated and explained in a similar or related fashion. For example, Wilson et 
al. (in preparation) explored similar effects with regard to mathematical 
problem solving (namely, a modular arithmetic problem). Performance 
degradation under pressure in that domain was also captured and  
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simulated by elevated anxiety levels (as a result of avoidance-oriented 
drive activations). Anxiety led to reduction in explicitness of process-
ing following the inverted U curve, thus affecting performance, con-
sistent with distraction theory. For another example, Wilson et al. 
(2010) explored the stereotyping task of Lambert et al. (2003), with 
the inverted U curve resulting from anxiety. The simulation of this task 
explained, in a mechanistic, process-based sense, increased stereotyp-
ing biases under pressure as resulting from reduced explicitness of pro-
cessing in response to anxiety (avoidance-oriented drive activations). 
For yet another example, Brooks et al. (2012) explored the effects of 
assigned performance targets in the Kanfer-Ackerman air traffic control 
task. The effects were explained using the inverted U curve, along with 
the interpretation of the notion of self-efficacy as outlined earlier. The 
explanations offered by these simulations contributed to the under-
standing of motivation-cognition interaction (but note that they did 
not rule out other possible motivation-cognition interactions in these 
or other circumstances).

6.4.  Modeling Human Personality

6.4.1.  Background

A generic and comprehensive cognitive architecture should be able to 
computationally capture and explain human personality as studied in 
social-personality psychology. This is because personality, as has been 
argued by many (Caprara & Cervone, 2000), involves many aspects of the 
mind and likely emerges from the interaction of many mechanisms and 
processes of the mind, all of which should have been included in a truly 
generic and comprehensive cognitive architecture. Therefore, a generic 
and comprehensive cognitive architecture should be well equipped to 
account for human personality, without much elaboration or any signifi-
cant addition.

With Clarion, personality is captured based on an adequate represen-
tation of basic human motivation, and related motivational, metacog-
nitive, action selection, and other processes. Such representations and 
processes capture the interaction of internally felt needs and external 
environmental factors in determining goals and actions by individuals, 
which are arguably the key to personality.
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A model of personality within Clarion, based on the architectural fea-
tures of Clarion, can be briefly summarized as follows: various subsys-
tems (and various components within) interact continuously within an 
individual (including the ACS, the NACS, the MS, and the MCS). Within 
the MS, a set of basic drives are more or less universal across individuals, 
but individual differences are explained, in a large part, by the differ-
ences in drive activations (strengths) in different situations by different 
individuals. Different arrays of drive strengths (activations) lead to setting 
of different goals as well as setting of different major cognitive param-
eters by the MCS. Individual differences in terms of drive activations are 
consequently reflected in the resulting goals as well as major cognitive 
parameters. On the basis of the goals set and the major cognitive param-
eters chosen, an individual makes action decisions, within the ACS. Thus 
their actions reflect their fundamental individual differences (as well as 
situational factors) as a result. Their actions in turn affect the world in 
which they act.

The relative invariance of personality has been argued for in 
social-personality psychology (e.g., Caprara & Cervone, 2000; Epstein, 
1982; Murray, 1938). Clarion can capture the relative invariance within 
an individual in terms of behavioral propensities and inclinations at dif-
ferent times and with regard to different situations (social or physical), 
through the relatively stable mechanisms and processes of motivational 
and other subsystems (including their relatively stable parameters), in 
addition to capturing behavioral variability.

Conversely, I would also argue that an adequate model of personal-
ity must be a comprehensive cognitive architecture. As has been argued 
by many (Cervone, 2004; Shoda & Mischel, 1998; Caprara & Cervone, 
2000), personality is not a standalone “mechanism” or a separate “pro-
cess.” It is likely emergent from a complex system involving many psy-
chological mechanisms and processes (Sun and Wilson, 2011; Sun and 
Wilson, 2014). In order to adequately account for human personality, a 
comprehensive cognitive architecture that captures most, if not all, psy-
chological functionalities would be required (at a minimum). To put it 
another way, a model of personality must be a comprehensive model of 
human psychology.

Past work on personality measures (e.g., John & Srivastava, 1999) pro-
vides some evidence for a set of essential personality dimensions, known 
as the Big Five (the Five-Factor Model):  Extroversion, Neuroticism, 
Agreeableness, Conscientiousness, and Openness to Experience. Despite 
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controversies, it is thus far the best-established line of work on this issue. 
So the Big Five can be used as a starting point for developing a model of 
personality.

However, the Big Five does not provide a model of the underlying 
mechanisms, nor the processes emerging from them, that generate this 
structure. Work on the structure of personality and work on the processes 
and mechanisms of the mind have developed largely separately. However, 
it is important to explain how psychological processes/mechanisms and 
personality structures relate to one another (Shoda & Mischel, 1998; 
Read et al., 2010).

There were a few process models of personality. Among them, 
Shoda and Mischel (1998) developed a recurrent neural network 
model of personality that captures personality in terms of “cognitive 
affective units” (such as goals, plans, and behaviors), and used the neu-
ral network to explore the underlying dynamic processes of personality. 
Read et al. (2010) presented a model involving a more complex neural 
network model to address some of the personality structures of the 
Five-Factor Model.

One general weakness of most existing personality models was that the 
motivational representations and processes specified in these models were 
often ad hoc. These models usually did not incorporate well-developed 
theories of motivation (e.g., Murray, 1938; Reiss, 2004). There was often 
no detailed account of how motives were triggered or how they inter-
acted dynamically once triggered. Although biologically inspired neural 
network models were used, existing work was mostly not based on any 
comprehensive cognitive architecture (without any significant addition 
or modification).

Another general weakness of many existing personality models and 
theories was their conflation of reflexive and deliberative processes (i.e., 
implicit and explicit processes). Hence there was the “perplexing com-
plexity” of empirical findings with respect to these models and theories 
(Smillie et al., 2006).

Yet another weakness was that these existing models often did not 
attempt to quantitatively capture real empirical data. Thus it was often 
unclear whether they could match any human data.

The aim of the Clarion personality model is to capture major aspects 
of the personality structure within a generic cognitive architecture. The 
rationales for developing the Clarion personality model follow from the 
brief review above:
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•	 A personality model should be situated within a comprehensive 
framework of the mind (i.e., a cognitive architecture, without 
any significant addition or modification).

•	 A personality model should have well-developed, precisely 
specified mechanistic and process details (Sun, 2009b).

•	 A personality model should be based on a well-developed 
model of essential human motivation (Sun, 2009).

•	 A personality model should make contact with actual empirical 
data and capture and explain such data.

6.4.2.  Principles of Personality Within Clarion

6.4.2.1.  Principles and Justifications

Within the Clarion framework, a number of basic principles of human per-
sonality were identified (which together constituted the drive-goal-action 
theory of personality, described in Sun & Wilson, 2011; Sun & Wilson, 
2014, 2014b). Below I  describe these principles and present some brief 
justifications.

Principle 1 
Human personality should emerge from the interaction among various 
components of the mind. That is, computationally, it should emerge from 
the interactions among various subsystems and modules of a cognitive 
architecture. The cognitive architecture should allow the emergence of 
different personality types, as well as the adaptation of personality (at 
least to some extent) through experience.

Principle 2 
Among various processes of the mind, personality is especially rooted in 
the motivational processes. Among them, it is rooted in implicit drives, 
but also in explicit goals resulting from drives (possibly stochastically).

Principle 3 
Action decision making (i.e., procedural processes, in both implicit and 
explicit forms), on the basis of the goal chosen and the situational inputs 
(possibly stochastically), is also important to personality. It is an integral 
part of personality, even though it is subject to learning and adaptation.

Principle 4 
Declarative knowledge and reasoning (in both implicit and explicit 
forms) affect personality through affecting actions, although their effects 
are less direct.
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Below, I present some justifications of these principles. Because these 
principles are derived from the Clarion framework, the justifications are 
relatively brief.

Justification for Principle 1 
As touched upon earlier, it seems obvious that personality, a theoretical 
construct, should be the result of the existing psychological mechanisms 
and processes, and nothing else (Cervone, 2004). A cognitive architec-
ture, by definition, should include all essential psychological components, 
mechanisms, and processes of the human mind. Within the cognitive 
architecture, the interactions among different subsystems and various 
modules within should be able to generate psychological phenomena of 
all kinds, which include personality-related phenomena (Sun & Wilson, 
2014b). Thus, personality, if it is a valid psychological construct, should 
be accounted for by the cognitive architecture.

Similarly, Cervone (2004) argues that personality results from a com-
plex system with dynamic interactions among interconnected processes. 
Personality should be understood by reference to basic cognitive processes 
that give rise to overt patterns of behavior. Mayer (2005) made similar 
points.

In addition, a model of personality should capture details of psycho-
logical processes (e.g., more than previous work on personality). Thus, it 
is necessary to go beyond abstract (somewhat ungrounded) notions of 
goals, plans, resources, beliefs, or cognitive affective units. It is one thing 
to argue abstractly that personality traits consist of configurations of goals, 
plans, resources, beliefs, or cognitive affective units, it is quite another to 
map personality traits to concrete, detailed, and grounded psychological 
processes and mechanisms. It is therefore useful to ground personality in 
a cognitive architecture so they are explained in a deeper and more uni-
fied way, along with many other psychological phenomena, based on the 
same primitives within a generic cognitive architecture.

Also, coupled with the account of learning in a cognitive architec-
ture, a model of personality can potentially account for the emergence, 
shaping, and tuning of personality. Such explanations can be deeper than 
previous work, and more unified with models of other psychological 
functionalities.

Justification for Principle 2 
Fundamental behavioral traits (i.e., personality) may map onto essential 
motivations, that is, onto drives in Clarion, because drives are the most 
fundamental (Chapter 4). Other processes may be more transient, due 
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to environmental factors, learning, and adaptation. Although drives are 
“tunable” also, they are, relatively speaking, more fundamental and more 
stable than other processes. Therefore, it is reasonable to ground person-
ality, first and foremost, in drives, and then also in goals and actions on 
their basis.

Relying heavily on motivational representations to account for human 
personality has been justified from a variety of perspectives: philoso-
phy, psychology, and computational modeling (Sun & Wilson, 2014b). 
For example, Schopenhauer (1819) contends that the ultimate princi-
ple is “Will”—the mindless, nonrational urge at the foundation of being. 
Schopenhauer asserts that one’s body is given in two different ways—as 
representation (objectively, externally) and as Will (subjectively, inter-
nally). The action of the body is nothing but the act of Will objectified. 
Existence is, in essence, endless striving with blind impulses, which has 
precedence over reason and rationality. Such blind impulses (i.e., implicit 
drives) define the essential human condition.

Similarly, according to Buddhism, desire (similar to Schopenhauer’s 
Will) lies at the root of human existence (as well as human suffering). 
According to Buddhism, life is a never-ending flow of desire, which one 
cannot stop (at least not easily). Therefore, everyday life is a transient, 
impermanent sequence of circumstances driven by various changing 
desires. These two schools of thoughts above, viewed at an abstract level, 
are similar to the Clarion view of the fundamental role of motivation.

To further justify this approach, the psychology literature on per-
sonality and motivation can also be examined. Existing work shows 
how personality traits can be closely related to human motivation. Deci 
(1980) made an elaborate case for this point, comprehensively review-
ing the literature on motivation and personality and arguing for their 
close relationship. Reiss (2010) argued that “everybody is motivated by 
the … basic desires, but people prioritize them differently. Every per-
son has his or her own hierarchy, which is highly correlated to normal 
personality traits … A powerful predictor of behavior in natural envi-
ronments is how a person prioritizes the … basic desires.” Shoda and 
Mischel (1998) also argued that personality could be understood in 
terms of cognitive-affective units, for example, goals, plans, expectan-
cies, and so on. Some computational details were worked out, showing 
how individual differences in personality might emerge on the basis of 
cognitive-affective units (although no exact structural mapping was 
produced).
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It should be emphasized that a broader perspective is also needed, 
besides the role that motivation plays in personality. Personality 
involves a variety of psychological mechanisms and processes beyond 
motivation (although they may be less important). Therefore, personal-
ity types, besides being mapped onto motivational structures, represen-
tations, and processes, are also mapped (to a lesser extent) onto other 
mechanisms and processes. The determination of personality types 
involves various motivational, cognitive, metacognitive, and other 
parameters.

Justification for Principle 3 
Here the notion of action is defined in a broad sense, including, for 
instance, both physical actions and mental actions. Actions (behaviors) 
are the ultimate measure of personality. Without it, there would be no 
objective way of observing and classifying personality types. Therefore, 
action selection on the basis of goals is important to measuring person-
ality. Moreover, it is also an important part of personality, because given 
the drives and goals, different actions may be used to address them.

For example, consistent with Principle 1, the personality trait of being 
dominating is captured by a drive state where dominating others is 
emphasized (Principle 2), a specific goal being chosen, actions for achiev-
ing that goal being carried out, and reasoning related to that goal applied 
(Principle 4 later). In terms of actions (behaviors), a dominating person, 
when in relevant situations and reacting to relevant cues, exhibits domi-
nating behaviors at a higher frequency and/or intensity than an average 
person. On the basis of such behaviors (actions), that person is viewed as 
a dominating person.

However, a necessary condition is the learning by an individual of the 
connection between a goal and proper actions to achieve the goal within 
a given sociocultural and physical environment. Action selections (proce-
dural processes) are learnable, as almost universally accepted (Sun, 2002), 
and they are subject to sociocultural influences.

Justification for Principle 4 
Cervone (2004) argued for the importance of belief, schema, appraisal, 
reasoning, and so on, that is, declarative processes involving declara-
tive knowledge, as determinants of personality.

As an example, the personality trait of being dominating is captured by 
a drive state where dominating others is emphasized, a goal of dominat-
ing others being chosen, actions for achieving that goal being carried out, 
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and so on. But beyond that, reasoning regarding the goal and the actions 
can also be carried out, for example, regarding whether one’s actions 
would actually achieve the goal. Such reasoning, as well as the declara-
tive knowledge on which the reasoning is based, is relevant to behavior 
choices and therefore to personality.

However, declarative processes (with declarative knowledge) can 
impact personality only on the basis of drives and goals, and affect pro-
cedural processes (action decision making) only indirectly. Declarative 
knowledge and processes are learnable and flexible, and subject to socio-
cultural influences.

6.4.2.2.  Explaining Personality

Based on these principles outlined above, Clarion provides explanations 
of issues and phenomena of personality. For Clarion to serve as a model of 
personality, it must be capable of explaining many issues and phenomena, 
especially the structures of personality.

Within Clarion, action decisions are made by the ACS, but the action 
decisions are based on the current goal, which is (mostly) set by the MCS 
based on the drives in the MS. Therefore, drives in the MS are the founda-
tion of behavior, according to Clarion. The actions are ultimately directed 
by the flow of “desires” (drives), that is, various impulses on a moment-to-
moment basis. Therefore, it is natural to ground the notion of personality 
primarily within the MS of Clarion. This is consistent with the earlier 
argument that personality traits are largely motivationally based, so that 
personality reflects largely the dynamics of the underlying motivational 
processes (Sun, 2009).

Accounting for Trait Stability 
In Clarion, as external situations change, behaviors (actions) can vary 
across situations, because the inner working within the MS, the ACS, and 
so on changes with the external situations. However, that does not mean 
that there cannot be stable personality traits. According to Clarion, the 
relatively stable structures and contents of the motivational and other sub-
systems capture relatively stable individual differences in behavioral incli-
nations and propensities (i.e., relatively stable personality traits), through 
differences in parameters (based on principles 2, 3, and 4). Therefore, 
Clarion, with its four subsystems, is capable of providing an account of 
stable personality traits (as well as an account of the behavioral variability 
across situations, as further explored below).
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Accounting for Person-Situation Interaction 

Past debates highlighted the importance of person-situation interaction 
in personality (Caprara & Cervone, 2000). Maslow (1943) argued that 
“the situation or the field in which the organism reacts must be taken into 
account but the field alone can rarely serve as an exclusive explanation 
for behavior…. Field theory cannot be a substitute for motivation theory.” 
According to Clarion, person-situation interactions can occur through 
the interactions between the relatively stable characteristics of the moti-
vational and other subsystems of an individual and the influence of situa-
tions (which are more transient).

In Clarion, activations of drives are the results of relatively stable 
structures and parameters of the MS (capturing some relatively stable 
personality traits), as well as stimuli received from situations that are 
transiently present on a moment-to-moment basis. This is important 
according to Principle 2. Which goals are activated at any given moment 
is a (possibly stochastic) result of the competitive interaction among 
drives (resulting in part from situational inputs) and which goal “wins” 
that competition (Principle 2). Behaviors are then determined (possibly 
stochastically) based on both the goal and the situational inputs through 
the competition of different possible actions (Principle 3). Furthermore, 
in Clarion, reciprocal interaction needs to be noted: individuals develop 
in interaction with the world that is partly shaped by their own actions 
(Bandura, 1997). Therefore, personality traits and situations do interact 
in Clarion.

Accounting for Individual Behavioral Variability 
Clarion also provides for the possibility of within-person variability. As has 
been argued by some, within-person variability over time may be as high 
as between-person variability (Caprara & Cervone, 2000). Such variabil-
ity is consistent with Clarion. In Clarion, the process of person-situation 
interaction and the concomitant competitions (e.g., the drive competi-
tion or the action competition, which may be stochastic and are impor-
tant according to principles 2 and 3)  result in varying behaviors both 
across situations and over time (in a stochastic way).

Accounting for Personality Structures and Types 
Structural personality models focus on various relatively stable personality 
types and dimensions such as the Big Five (Digman, 1990; John & Srivastava, 
1999; McCrae & Costa, 2010). Within Clarion, as discussed earlier, the struc-
tures and the contents of the motivational and other subsystems capture 
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stable individual differences in behavioral inclinations and tendencies—that 
is, personality traits (principles 2, 3, and 4). Clarion provides both an account 
of stable traits, as well as an account of behavioral variability across situations 
and over time.

In Clarion, personality structures and types are, first and foremost, the 
result of interaction and competition among drives activated by situa-
tional factors. However, there may not necessarily be a direct relationship 
between the characteristics of a single drive and a hypothesized person-
ality dimension or trait (e.g., as is consistent with the view of Smillie, 
Pickering, & Jackson, 2006). Personality structures and types are also, 
among other things, the result of individually different processes of goal 
setting on the basis of drives, and the result of individually different pro-
cesses of action selection on the basis of goals and situations.

Based on the ideas above, the major dimensions of personality (e.g., 
the Big Five) can be captured in Clarion. Clarion posits that individual 
differences in drive activation, goal setting, action selection, and so on 
can translate into behaviors indicative of different personality types. For 
simulations that computationally demonstrate this point, see the subse-
quent subsections (see also Sun & Wilson, 2011; Sun & Wilson, 2014; 
Sun & Wilson, 2014b).

Accounting for Sociocultural Influence on Personality 
Personality is in part the result of sociocultural factors (D’Andrade & 
Strauss, 1992; Dweck, 2008). Clarion allows for sociocultural influ-
ences to take place. In Clarion, drive activation (based on situational 
inputs), goal setting (based on drive competition), action selection 
(based on the goal chosen and situational inputs), and so on can be 
adapted, tuned, or learned to various extents, as discussed in chapters 3 
and 4. Such adaptation, tuning, or learning allow sociocultural factors 
to enter into personality.

One possibility of sociocultural influences is through reinforcement 
signals that underlie reinforcement learning (Montague, 1999; Sun et al., 
2001), which may be socioculturally generated. For example, being hum-
ble is highly regarded by some societies and therefore receives positive 
reinforcement, while in some other societies it is negatively reinforced. 
Furthermore, situational changes (as a result of actions performed) may 
also be socioculturally determined or influenced. For example, being angry 
may bring about quite different results in different cultures. Adaptation, 
tuning, or learning taking place on the basis of such socioculturally specific 

 



Simulating Motivational and Metacognitive Processes 257

feedback lead to sociocultural influences on personality. (See details of 
learning and adaptation in chapters 3 and 4.)

Accounting for Approach Versus Avoidance Behavior 
It has been argued that the approach and avoidance systems are sepa-
rate and operate differently, and they are important for the extroversion 
and the neuroticism dimension of the Big Five, respectively (Gray and 
McNaughton, 2000). Clarion can account for the approach and avoid-
ance distinction in personality.

First, it is necessary to be able to increase or decrease avoidance behav-
ior, or to increase or decrease approach behavior. Within Clarion, such 
manipulations are possible, because there are two corresponding sets of 
drives in the MS, approach-oriented versus avoidance-oriented, and thus 
their parameters can be adjusted independently (see Chapter 4).

Second, according to Cacioppo, Gardner, and Berntson (1999), in the 
absence of situational cues, there is a tendency toward approach behavior. 
However, as situational cues become stronger, the avoidance system responds 
more strongly toward negative cues than the approach system does toward 
positive cues. Within Clarion, with the drive strength equation (Chapter 4), 
when situational cues are absent, the baseline parameters play a big (or sole) 
role in drive activations. However, when situational cues become stronger, 
the baseline parameters become less important, and situational cues play a 
bigger role in determining drive activations (especially when the drive gain 
parameters are large). Therefore, the drive baseline parameters may be such 
that approach drives have higher baselines than avoidance drives. Likewise, 
the drive gain parameters for avoidance drives may be higher than those 
for approach drives. The two sets of parameters together thus capture the 
observed phenomena (Sun & Wilson, 2014b; Read et al., 2010).

Accounting for Psychopathology 
Clarion is able to account for some mental disorders, including per-
sonality disorders (such as the obsessive-compulsive personality disor-
der, the narcissistic personality disorder, and so on; Samuel & Widiger, 
2008).3 According to Clarion, these disorders may be largely attributed 
to the motivational subsystem (Principle 2; see also Reiss, 2008), but 

3. The interested reader is referred to “Diagnostic and Statistical Manual of Mental 
Disorders, Fourth Edition, Text Revision” (DSM-IV-TR) published by American 
Psychiatric Association in 2000, or its recently updated version DSM-5 (which came out 
after this work had been completed).
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not exclusively so, because other subsystems can play some roles and 
different disorders may differ with regard to their loci.

For example, to account for the obsessive-compulsive personality dis-
order, high activations of certain avoidance-oriented drives were posited 
(such as conservation, avoiding danger, and so on). The high activations 
of these drives lead to corresponding goals, which in turn lead to cor-
responding actions, that is, symptomatic obsessive-compulsive behaviors 
(Sun & Wilson, 2014b).

Such explanations seem simplistic without delving into details. 
However, detailed models and simulations have indeed been devel-
oped that substantiate such explanations; see, for example, Sun, 
Wilson, and Mathews (2011) and Sun and Wilson (2014b). So far, 
of course, Clarion does not yet provide definitive explanations for 
these disorders. Much more work would be needed. However, the 
work so far suggests that Clarion is relevant to understanding these 
disorders.

6.4.3.  Simulations of Personality

To test these ideas, a detailed personality simulation model was imple-
mented in Clarion. The Clarion personality model was mostly based on 
drive deficit parameters (Chapter 4), because given the current inputs 
(hence the drive-specific stimulus levels), the drive strengths were pri-
marily determined by drive deficit parameters (along with gain and base-
line). On that basis, goal setting and action selection took place. Thus, 
within Clarion, personality involved a variety of parameters within the 
various subsystems, with the MS being the most important part. Some 
key details are described below for each simulation test.

6.4.3.1.  Simulation 1

Simulation Setup 
This simulation test was designed to show that the Clarion personality 
model could respond reasonably with appropriate behaviors to differ-
ent situations, and at the same time show sufficient behavioral variability 
(Sun, Wilson, & Mathews, 2011; Sun & Wilson, 2014b).

Within the MS, a (pre-trained) neural network generated drive 
strengths based on the drive strength equation (Chapter  4), within 
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which initially deficitd was set as shown in Table 6.1 for the generic type,4  
baselined was set to be proportional to the corresponding initial deficit  
(i.e., baseline deficitd d= ∗0 1. ), and stimulusd was determined from the sce-
narios (Sun & Wilson, 2014b).

The drive strengths from the MS were sent to the MCS. A (pre-trained) 
neural network in the MCS generated goal strengths according to the 
goal strength equation (Chapter 4). The goal strengths were then turned 
into a Boltzmann distribution and the new goal was chosen stochastically 
from the distribution. The goals used in the simulations were as shown 
in Table 6.2.

The chosen goal was input to the ACS. The ACS also received sensory 
inputs indicating the current situation. The bottom level of the ACS was 
trained to determine Q values of actions. At the top level, Rule Extraction 
and Refinement (RER) was involved. The outputs by the ACS were turned 

4. The deficit of a drive was “decayed” at each step using a multiplicative factor 
(decayd = 10%), when the drive was addressed (i.e., when the goal corresponded to the 
drive). This was a simplification for the sake of this simulation. See Chapter 4 for more 
details.

Table 6.1.  Drive deficits corresponding to seven personality types.

Drives Sociable Shy Confident Anxious Responsible Lazy Generic

Food 0 0 0 0 0 0 0.1
Water 0 0 0 0 0 0 0.1
Sleep 0 0 0 0 0 0.5 0.05
Avoiding Danger 0 0.2 0 0.6 0 0.3 0.2
Reproduction 0.2 0 0.3 0 0 0 0.1
Avoiding the 

Unpleasant
0 0.6 0 0.7 0 0.7 0.2

Affiliation and 
Belongingness

0.9 0.2 0.3 0.6 0.2 0 0.6

Recognition and 
Achievement

0.5 0 0.8 0 0.8 0 0.2

Dominance  
and Power

0 0 0.7 0 0.2 0 0.2

Autonomy 0 0.3 0.6 0 0.7 0.2 0.5
Deference 0 0.7 0 0.8 0 0.3 0.3
Similance 0.5 0.8 0 0.8 0.1 0.8 0.7
Fairness 0.2 0 0 0.3 0.5 0 0.1
Honor 0.5 0 0.3 0.2 0.8 0 0.5
Nurturance 0.6 0 0 0 0.3 0 0.4
Conservation 0 0.4 0 0.6 0.7 0.1 0.3
Curiosity 0.6 0 0.5 0 0 0 0.4
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into a Boltzmann distribution and one behavior (action) was stochasti-
cally chosen from that distribution (see Table 6.3 for behaviors).

Fifteen scenarios, as shown in Table 6.4 (adapted from Read et  al., 
2010), were used to test the model. These scenarios were represented 
using a set of situational features (as shown in Table 6.4).

Each scenario was presented to the model for 100 time steps and the 
chosen behavior by the model at each step was recorded. The process was 
repeated 100 times, representing 100 different simulated “subjects” (each 
time with different random initial weights in neural networks).

Simulation Results 
The percentage of appropriate behaviors for each of these scenarios was 
recorded, for the one most frequently chosen behavior and for the top three 
most frequently chosen behaviors, respectively. A behavior was considered 
appropriate if its Q value as output by the ACS was above a threshold (.5) 
given the current scenario and the most plausible goal for that scenario.

The most plausible goal was calculated based on the generic person-
ality (see Table 6.1) to determine which goal was the most likely to be 
chosen given the scenario. This allowed the determination of the appro-
priateness of behaviors without having any access to the actual goals 
being chosen internally by the simulated “subject.”

The results, averaged over all 100 simulated “subjects,” were as shown in 
Table 6.5. As shown, according to both measures (top 1 and top 3), behav-
ior choices were substantially more appropriate than chance (≈ 20%).  
The results provided some evidence for the appropriateness of the model, 
in terms of both accuracy and variability.

It was useful to see how sensitive the model was to noise in the repre-
sentation (features) of the scenarios. So the 15 scenarios were again tested 
over 100 steps and for 100 runs. However, noise was added to the sce-
narios by flipping the values of two of the input feature nodes (randomly 
chosen) in the ACS for each scenario. The chosen behavior at each step 
was recorded and the appropriateness measures were calculated.

Table 6.2.  The goals determined by the MCS.

Eat Be self
Drink Follow
Rest Mimic
Flee Be fair
Pursue sex Follow code
Avoid Be caring
Fit in Organize
Stand out Explore
Lead
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The results were as shown in Table 6.6. The appropriateness of behav-
ior choices (averaged over the 100 runs) was well above chance for both 
measures. The results showed the robustness of the model.

It had been argued that within-person variability over time was as 
high as between-person variability (e.g., Caprara & Cervone, 2000). 
Such variability was demonstrated above by the model. As explained 
earlier, in the model, the activations of drives and the selection of goals 
and actions were dependent on input stimuli from situations. As differ-
ent situations were encountered, different drives were activated, and the 

Table 6.3.  List of behaviors (each with a letter code and a numerical index).

Eat/drink

E/D (0)

Stay at periphery

SP (11)

Help others  
with work

HOW (22)

Ensure work 
distributed fairly

EDF (33)

Drink alcohol

DA (1)

Self-disclose

SD (12)

Order others 
what to do

OO (23)

Wear something 
distinctive

WSD (34)

Relax

R (2)

Ask others  
about self

AO (13)

Dance

D (24)

Steal

S (35)

Play practical joke

PPJ (3)

Talk politics

TP (14)

Ask other  
to dance

AOD (25)

Kiss up

KU (36)

Tease/make fun of

T/M (4)

Gossip/talk 
about others

G/T (15)

Ask for date

AD (26)

Be cheap

BC (37)

Try new dance  
steps

TND (5)

Talk about work  
(job related)

TAW (16)

Kiss

K (27)

Mediate

M (38)

Intro self to others
ISO (6)

Tell jokes
TJ (17)

Do job
DJ (28)

Give in
GI (39)

Surf web

SW (7)

Compliment  
others

CO (18)

Extra effort job

EEJ (29)

Procrastinate

P (40)

Explore  
environment

EE (8)

Ignore others

IO (19)

Find new way 
to do job

FNJ (30)

Pretend to work

PW (41)

Leave

L (9)

Insult others

InO (20)

Improve skills

IS (31)

Stay with 
comfortable others

SCO (42)

Be silent

BS (10)

Clean up

CU (21)

Confront other  
about slacking

COS (32)



Table 6.4.  The fifteen scenarios with their respective features.

Individual assignment:
at work; in office; w/ no others; work to do; urgent

Working with one other:
at work; in office; work to do; urgent; w/ one other

Working together on urgent project:
at work; conference room; in office; conflict situation; work to do; urgent; w/ two or 

more others; w/ subordinates; w/ disliked acquaintance

At a group meeting:
at work; in office; conference room; conflict situation; work to do; w/ two or more 

others; w/ friends; w/ boss; w/ disliked acquaintance

Review with boss:
at work; w/ boss; in office; conflict situation; urgent

Taking a break with coworkers:
in break room; at work; TV; work to do; w/ two or more others; w/ friends

Taking a break by yourself:
in break room; at work; in office; work to do; w/ no others

Party at work:
party; conference room; at work; alcohol; work to do; w/ two or more others; w/

friends; w/boss; w/subordinates; age difference > 7 years

Social engagement at boss’s house:
w/ boss; w/ strangers; w/ disliked acquaintance; w/ friends; w/ two or more others; 

conflict situation; w/ subordinates; w/romantic partner

Dance:
dancing; w/ friends; w/ potential date; w/ strangers; w/ two or more others; alcohol

Trying to get a date:
party; restaurant; alcohol; w/ one other; w/ potential date

On a date:
restaurant; alcohol; w/ one other; w/ date

Family birthday party:
home; party; w/ two or more others; w/ romantic partner; w/ relatives; w/ kids; age 

differences > 7

Wedding party at a fancy restaurant:
party; wedding/formal party; restaurant; dancing; alcohol; w/ two or more others; w/

friends; w/romantic partner; w/ kids; age differences > 7

Party in a restaurant that has a bar:
party; bar; restaurant; dancing; alcohol; w/ two others; w/ friends; w/ strangers; w/ 

potential date

Table 6.5. � Behavior choice appropriateness 
for simulation test 1.

Clarion

Top 1 89.8%
Top 3 78.2%
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activated drives competed with each other for the control of behaviors 
through setting goals. Depending on what drives were simultaneously 
activated that competed with each other, a goal was stochastically deter-
mined. Furthermore, once the goal was set, different behaviors (actions) 
competed with each other to be chosen through stochastic selection, on 
the basis of situational inputs. The process of multiple stochastic compe-
titions resulted in varying behaviors.

6.4.3.2.  Simulation 2

Simulation Setup 
Once the initial validity of Clarion as a personality model was estab-
lished, the possibility of different personality types within the model was 
explored (Sun and Wilson 2014b). The person-situation interaction was 
also explored, because many past debates highlighted the importance of 
person-situation interaction (Caprara & Cervone, 2000). With the model, 
one could vary either personality or situation (or both) in testing such 
interaction. For example, one could keep a particular personality constant 
and examine how it responded differently to different situations. Likewise, 
one could keep a particular situation constant and see how different per-
sonalities responded differently to the same situation (Read et al., 2010).

For this simulation test, six different personalities were set up as 
shown in Table 6.1 (adapted from Read et  al., 2010). These person-
alities were designed to form three complimentary pairs: sociable-shy, 
confident-anxious, and responsible-lazy.5 Each of these pairs was 
intended to correspond to the far ends of one of the dimensions of the 
Big Five (Digman, 1990; John & Srivastava, 1999). One pair consists 
of the shy and the sociable, at the two ends of the extroversion dimen-
sion. Another pair consists of the anxious and the confident, at the 
two ends of the neuroticism dimension. The third pair consists of the 
lazy and the conscientious, at the two ends of the conscientiousness 

Table 6.6. � Behavior choice appropriateness 
when noise was involved.

Clarion

Top 1 86.1%
Top 3 78.1%

5. These terms are not precisely descriptive. They are used here nevertheless, to follow 
the usage in Read et al. (2010).
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dimension. Their corresponding drive deficit levels, which determined 
these different personality types to a significant extent, were as shown 
in Table 6.1.

This simulation test used the same parameter settings as the previous 
one. The model for each of the six personality types was run on the set 
of 15 scenarios. Each scenario was tested for 100 steps and the chosen 
behaviors were recorded. The process was repeated for 100 different runs 
representing 100 different simulated “subjects.”

Simulation Results 
Figures 6.5–6.7 show the results of the simulation, using the three pairs 
of personality types where each pair consisted of two personality types at 
the opposite ends of one of the personality dimensions. These figures are 
separated by personality type, with the 15 scenarios on the x-axis and the 
index of the most frequently chosen behavior plotted on the y-axis (see 
Table 6.3 for the indices of behaviors). As shown by Figures 6.5–6.7, the 
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Figure 6.5.  The most frequent behaviors of the sociable and the shy 
personality across the 15 scenarios. The y-axis shows the behavior indices  
(as specified in Table 6.3).
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Figure 6.6.  The most frequent behaviors of the confident and the anxious 
personality across the 15 scenarios. The y-axis shows the behavior indices 
(Table 6.3).
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two personality types in each pair behave differently across the set of 15 
scenarios.

We drilled down to see how individuals of different personalities 
behaved in a given situation. As an example, Figure 6.8 showed the com-
parison between the sociable and the shy in the “urgent project” scenario. 
As shown, the sociable was more likely to talk about work and help oth-
ers but was less likely to stay at the periphery; the sociable and the shy 
were almost equally likely to put in extra effort (because this was an 
urgent project scenario); and so on.

As shown by these figures above, the Clarion model demonstrated 
appropriate behaviors of the different personality types. An individual of 
a particular personality type acting appropriately within a given situation 
was the result of the interaction between the (relatively stable) charac-
teristics of the motivational and other subsystems and the influence of 
the situations (which was more transient). For instance, in the model, the 
activations of different drives (within the MS) were the results of stable 
internal parameters (such as the gain and deficit values of different drives), 
as well as stimuli received from situations that were transiently present. 
Furthermore, which goal was activated at any given moment was par-
tially a result of the competitive interaction among drives and which goal 
“won” that competition (within the MCS). Behaviors were then deter-
mined (stochastically) based on both the goal and the current situation 
(within the ACS).

In general, while structural models of personality focus on stable indi-
vidual differences as captured by major personality dimensions that tend 
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Figure 6.7.  The most frequent behaviors of the responsible and the lazy 
personality across the 15 scenarios. The y-axis shows the behavior indices 
(Table 6.3).
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to be relatively stable across situations and over time, mechanistic, pro-
cess-based models involve more detailed constructs (i.e., mechanisms and 
processes), such as individual differences in drives, goals, knowledge and 
skills, and show, through the interaction of these constructs, how behavior 
persists or changes across situations and over time.

The Clarion model captures personality through underlying mechanisms 
and processes, so that as the external situation and the internal motivational 
state change over time, it generates behaviors that vary across situations and 
over time. At the same time, the structures and contents of the subsystems 
capture relative stable individual differences in behavioral inclinations and 
propensities, that is, personality traits. The model provides both an account 
of stable traits, as well as an account of behavioral variability across situa-
tions and over time—that is, the person-situation interaction.

Note that, as in other domains, individual differences, expressed as 
the different parameters in the Clarion model, might be attributed both 
to initial (in-born) biological differences (including genetic factors), as 
well as to different individual experiences, including different individual 
sociocultural experiences, that affect and adjust parameters of the cogni-
tive architecture.

6.4.3.3.  Simulation 3

It is important to validate the Clarion personality model with respect 
to actual human data. Below some empirical data are used for this pur-
pose (Sun & Wilson, 2014b). First, data from Moskowitz et al. (1994) 
and Suh et  al. (2004) are examined. Then, simulations are presented 
and compared to the prior (much simplified) simulations by Quek and 
Moskowitz (2007).

Human Data 
Human data from Moskowitz et al. (1994).  Moskowitz et al. (1994) inves-
tigated the influence of situational variables on interpersonal behavior. 
They showed that social role had an effect on an individual’s behav-
ior:  Subjects behaved more submissively when interacting with bosses 
versus coworkers or subordinates. They were also more dominant with 
subordinates or coworkers than with bosses.

In their experiments, subjects were asked to monitor their social inter-
actions for 20 days, using event contingent recording. Each subject com-
pleted a form for each significant social interaction (lasting at least five 
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minutes). Each subject was asked to indicate on the form the gender, 
working relationship, and personal relationship of each person involved. 
The form contained 46 behaviors that had been shown to be good indica-
tors of dominance, submissiveness, agreeableness, and quarrelsomeness; 
subjects were asked to indicate which of the behaviors from the form 
they had engaged in.

Different numbers of dominant and submissive behaviors were 
observed in relation to social roles. In analyzing dominance, a statistically 
significant effect was found for social role: subjects reported more domi-
nance toward subordinates or coworkers than toward bosses. In analyzing 
submissiveness, there was also a statistically significant effect for social 
role: subjects reported more submissiveness toward bosses than toward 
coworkers or subordinates.

Human Data from Suh et al. (2004).  The experiment of Suh et al. (2004) 
was similar to that of Moskowitz et al. (1994). Subjects were asked to 
make event contingent recordings about non-work-related social interac-
tions. Subjects were asked to provide information on a form about each 
such interaction: they were asked to indicate the gender and relationship 
of the person involved as well as to specify what behaviors took place.

Results concerning agreeable and quarrelsome behaviors were ana-
lyzed. For agreeable behaviors, a significant interaction between gender 
and relationship was found:  agreeable behaviors with same-sex friends 
were significantly higher among women than men. Agreeable behav-
iors with romantic partners were significantly higher among men than 
women. For quarrelsome behaviors, a significant effect for relationship 
was found, as well as a significant interaction between gender and rela-
tionship. Quarrelsome behaviors with romantic partners were signifi-
cantly higher among women than men.

Simulation of Human Data 
Simulations of the human data described above were previously conducted 
by Quek & Moskowitz (2007). Their model was simple. A Backpropagation 
network was used. There were only three highly stereotyped scenarios. 
Also, instead of specific behaviors, Quek and Moskowitz’s model simply 
chose between two outcomes (dominance versus submissiveness for one 
simulation, and agreeableness versus quarrelsomeness for the other).

The Clarion-based simulation added some necessary complexity and 
sophistication. The model for simulating the human data was set up 
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almost identically to the Clarion personality simulations described earlier. 
Behaviors (a subset of the previous set) were classified as belonging to some 
of the four categories: dominance versus submissiveness, and agreeableness 
versus quarrelsomeness, as shown in Table 6.7.6 A few behaviors that did 
not fit into the classifications were also included (as in the real world).

Simulation of Moskowitz et al. (1994).  The simulation of Moskowitz et 
al. was similar to the previously described personality simulations, except 
that it involved slightly modified scenarios with social roles added (neces-
sary for this simulation). Whereas the prior simulation of the same data 
by Quek and Moskowitz (2007) only specified three highly stereotyped 
scenarios, the present simulation, in order to utilize the previous Clarion-
based simulations, used two earlier scenarios (i.e., urgent project and work 
with one other). This leads to a total of six variations (i.e., urgent project 
with the “subject” as a boss, work with one other with the “subject” as a 

6. The behaviors were categorized using the study by Moskowitz that constructed an 
item pool for assessing behaviors in which items were divided into experience-sampling 
scales for dominance, submissiveness, agreeableness, and quarrelsomeness.

Table 6.7.  Two classifications of behaviors.

Classification 1 Classification 2

Dominance Submissiveness Neither Agreeableness Quarrelsomeness Neither

Order others 
what to do 
(OO)

Be silent (BS) Do job  
(DJ)

Tell jokes (TJ) Insult others  
(InO)

Talk 
politics 
(TP)

Confront  
others about 
slacking 
(COS)

Stay at  
Periphery  
(SP)

Find New 
Ways to 
do job 
(FNJ)

Compliment 
others  
(CO)

Order others  
what to do  
(OO)

Talk 
about 
work 
(TAW)

Ensure work 
distributed 
fairly (EDF)

Kiss up (KU) Kiss (K) Confront others 
about slacking 
(COS)

Insult others 
(InO)

Give in (GI) Give in (GI) Play practical  
joke (PPJ)

Help others  
with work 
(HOW)

Leave (L) Ask others 
about self 
(AS)

Tease/make fun  
of (T/M)

Gossip/talk 
about others 
(G/T)

Ignore others (IO)
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boss, urgent project with the “subject” as a coworker, work with one other 
with the “subject” as a coworker, urgent project with the “subject” as a 
subordinate, and work with one other with the “subject” as a subordinate). 
These scenarios were coded using the same features as used previously 
but with the addition of roles (see Table 6.8).

The MS, the MCS, and the ACS of Clarion were set up in the same 
way as in the earlier simulations, using the generic personality and a 
subset of the behaviors from the earlier simulations (as specified in Table 
6.7). No additional parameters were changed. Each scenario was tested 
for 100 steps, and the chosen behaviors were recorded. The process was 
repeated for 100 runs representing 100 simulated “subjects.”

The findings from this simulation were consistent with the human 
data of Moskowitz et al. (1994). As mentioned before, Moskowitz et al. 
found that subjects behaved more submissively when interacting with 
bosses versus coworkers or subordinates, and they behaved more domi-
nantly with subordinates or coworkers than with bosses. The same results 
were obtained from this simulation (Sun & Wilson, 2014b). The results 
were also consistent with those from the simplified simulation by Quek 
and Moskowitz (2006).

Simulation of Suh et al. (2004).  The simulation setup of Suh et al. (2004) 
was the same as the previous simulation setup except that it involved 
non-work-related scenarios. Four scenarios were created for this simu-
lation, as shown in Table 6.9. The same features were used for coding 
the scenarios as used in the previous simulations, except that gender was 
added. This alteration did not affect the overall design, nor did any other 
parameters have to be changed.

Table 6.8.  Scenarios for simulating Moskowitz et al. (1994).

Urgent project as boss:
urgent; w/ subordinates; w/ two or more others; at work; work to do

Work with one other as boss:
w/ subordinates; w/ one other; at work; work to do

Urgent project as coworker:
urgent; w/ friends; w/ two or more others; at work; work to do

Work with one other as coworker:
w/ friends; w/ one other; at work; work to do

Urgent project as subordinate:
urgent; w/ boss; w/ two or more others; at work; work to do

Work with one other as subordinate:
w/ boss; w/ one other; at work; work to do
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Like the previous simulation, this simulation used a subset of the 
behaviors from the earlier simulations (Table 6.7). Each scenario was 
tested for 100 steps, using the generic personality, and the chosen behav-
iors were recorded. The process was repeated for 100 runs (representing 
100 simulated “subjects”).

The findings from this simulation were consistent with the human data 
from Suh et al. (2004). According to Suh et al., when interacting with 
same-sex friends, women exhibited significantly more agreeable behav-
iors than men. When interacting with romantic partners, men exhibited 
more agreeable behaviors and less quarrelsome behaviors than women. 
The Clarion simulation captured these findings (Sun & Wilson, 2014b). 
The simulation results were also consistent with the simplified simulation 
by Quek and Moskowitz (2007).

In a preliminary way, the two simulations of actual human data sug-
gested some psychological validity of the Clarion personality model. 
Furthermore, they suggested some plausible explanations for the data 
patterns observed in empirical studies. For example, different behaviors 
when assuming different roles were attributed to roles as inputs from 
situations, rather than to personality changes.

Because of the involvement of detailed representations, mechanisms, 
and processes (including drives, goals, actions, and beyond), the simula-
tions above provided deeper looks into the psychological underpinning 
of the human data than the previous simulations, and through the deeper 
looks, suggested some detailed plausible explanations.

6.4.4.  Discussion

This detailed computational personality model derived from Clarion has 
been tested through a variety of simulations, including those reviewed 

Table 6.9.  Scenarios for simulating Suh et al. (2004).

Male with same-sex friend:
w/ same-sex friends; w/ one other; male
Female with same-sex friend:
w/ same-sex friends; w/ one other; female
Male with romantic partner:
w/ one other; w/ romantic partner; male

Female with romantic partner:
w/ one other; w/ romantic partner; female
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above and beyond. See, for example, Sun and Wilson (2011), Sun, Wilson, 
and Mathews (2011), Sun and Wilson (2014), and Sun and Wilson (2014b). 
These tests were useful. They led to a more comprehensive, mechanistic, 
process-based theory of personality. They also helped to clarify issues of 
personality in a mechanistic, process-based way. Practically speaking, the 
model can be applied in a number of practically relevant ways. In particu-
lar, a detailed model of personality is an indispensable part of simulating 
many social phenomena. For instance, it can be applied to cognitive social 
simulation (Sun, 2006), which will be addressed in Chapter 7.

One shortcoming of the simulations sketched above was the “tweak-
ing” of parameters to get the desired outcomes. Because the parameters 
were set based on the consensus of the authors (the same as previous 
work on personality), some might regard them as being somewhat arbi-
trary. To remedy this problem, in Sun and Wilson (2014b), it was shown 
that personality models could be generated in a systematic way based on 
empirical data and could avoid parameters tweaking.

Note that previous computational models and simulations of personal-
ity have been compared to the Clarion model of personality. Some very 
brief comparisons were provided at the beginning of this section. For 
further comparisons, the reader is referred to Sun and Wilson (2011), Sun 
and Wilson (2014), and Sun and Wilson (2014b).

Overall, I should emphasize that personality, as well as emotion, moral 
judgment, and so on (as will be addressed in the next two sections), are all 
results of complex interactions among a large set of mental entities, mech-
anisms, and processes. Computational modeling and simulations enable 
one to see how exactly these entities, mechanisms, and process interact 
with each other in ways that are precise and detailed, which may not be 
possible with more traditional methods (as argued in Sun 2009b).

6.5.  Accounting for Human Moral Judgment

In this section, I provide a computational account of moral judgment 
from the viewpoint of Clarion (Sun, 2013).

6.5.1.  Background

Making moral judgment is an important capacity of the human mind 
(Thomson, 1985; Mikhail, 2007). It is also essential to the functioning of 

 

 

 



Simulating Motivational and Metacognitive Processes 273

human society in relation to order, cohesion, and cooperation. It is related 
to the philosophical and folk-psychological notion of “conscience,” which 
has played a significant role in certain discourses (e.g., White, 2010).

A class of scenarios that have been used often in studying ethics is the 
trolley car problem (Foot, 1967; Thomson, 1985). In this class of scenar-
ios, the key question in relation to understanding human moral judgment 
has been: how can different kinds of actions leading to more or less the 
same outcome differ in their moral acceptability?

For example, consider the following two scenarios:

A runaway trolley is about to run over and kill five people, but a 
bystander can throw a switch that will turn the trolley onto a side 
track, where it will kill only one person. Is it permissible to throw the 
switch? (Foot, 1967).

A runaway trolley is about to run over and kill five people, but a 
bystander is standing on a footbridge next to a large stranger. The 
bystander’s body would be too light to stop the train, but he can 
push the large stranger off the footbridge onto the tracks, killing him 
but saving the five people. Is it permissible to push the large man? 
(Thomson, 1985).

In psychological experiments, subjects often judged that throwing the 
switch was permissible but objected to pushing the man off the foot-
bridge. Thus, these two cases created a philosophical puzzle: what made 
it okay to sacrifice one person to save five others in the switch case but 
not in the footbridge case? There was also a related psychological puz-
zle: how did people come to the judgment that it was okay to switch the 
trolley but not okay to push the man off the footbridge?

If only the consequences mattered (five versus one), then both sce-
narios (throwing the switch and pushing the person, respectively) would 
be considered identical, but human subjects were evidently sensitive to 
additional factors. A few differing explanations were offered in the past 
(see, e.g., Greene et al., 2008, 2009; Mikhail, 2007; Sun, 2013).

Despite differences in opinions, there has been some agreement that 
(1) people do not simply maximize benefits relative to costs (such as five 
versus one), (2) aversion to killing people is an important factor, and (3) 
more proximal, intentional, or direct killing is more aversive.

Of particular interest is the notion of moral instinct. It has been 
argued that morality results not so much from conscious choice but 
more from instincts, habits, and predispositions (e.g., Monroe, 2012; 



274 Chapter 6

Sun, 2013). It is rooted in genetic factors, cultural norms, social roles, 
and so on. One may not be consciously aware of reasons because the 
fundamental part of morality is instinctual (Monroe, 2012). In contrast, 
moral reasoning may be more explicit and more culture-specific. For 
example, a meta-analysis of data from many countries (Henrich et al., 
2010) found consistent evidence for postconventional moral reason-
ing in Western societies, but found no evidence in small-scale societ-
ies; even some highly educated non-Western populations did not show 
much evidence.

Such thinking led to dual-process (two-system) theories (Sun, 1994, 
2002; Evans and Frankish, 2009)—responses to these two scenarios may 
reflect the working of two different “systems.” According to Greene et al. 
(2009), on the one hand, there is a system that is more explicit, more 
“controlled”, and relatively unemotional. It tends to think in a reasoned 
manner, for example, in utilitarian terms:  better to save as many lives 
as possible. On the other hand, there is another, instinctual system that 
responds instinctively and emotionally to the action in the footbridge 
dilemma, but not so much to the action in the switch dilemma, which 
may explain why people tend to make utilitarian judgments in response 
to the switch dilemma but not in response to the footbridge dilemma 
(Greene et  al., 2009). However, if the explicitly reasoned response is 
attractive and the instinctual, emotional response is also strong, a compe-
tition between them takes place (Greene et al., 2009; Sun, 2013).

Even though there have been a great deal of empirical data and 
a number of conceptual-level theories, one would like to know, in a 
more exact way, the mechanics of moral judgment: What psychological 
mechanisms and processes are involved in moral judgment? Are they 
exclusively used for moral judgment or are they shared among many 
psychological tasks? What different representations, mechanisms, and 
processes are involved? How different representations, mechanisms, and 
processes (including various modules or subsystems) interact in reach-
ing moral judgment?

Clarion has the potential of providing needed mechanistic interpre-
tations and process details to dual-process theories of moral dilemmas. 
Computational modeling and simulation in this domain can substanti-
ate relatively vague conceptual-level theories and help to develop better 
theories.
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6.5.2.  Human Data

6.5.2.1.  Effects of Personal Physical Force

Let us examine one experiment by Greene et al. (2009). In this experi-
ment, subjects responded to one of the four versions of the footbridge 
dilemma, indicating the extent to which the proposed action was morally 
acceptable (on a nine-point scale).

In the standard footbridge dilemma, a person (“Joe”) might save 
the five by pushing the large man off the footbridge using his hands. 
This action involved spatial proximity, physical contact, and personal 
physical force.

In the remote footbridge dilemma, Joe might drop the man onto the 
tracks using a trap door and a remote switch. This action involved none 
of the aforementioned factors.

The footbridge pole dilemma was identical to the standard footbridge 
dilemma except that Joe used a pole rather than his hands to push the 
large man. This dilemma involved spatial proximity and personal physical 
force without physical contact.

The footbridge switch dilemma was identical to the remote footbridge 
dilemma except that Joe and the switch were adjacent to the large man. 
This dilemma involved spatial proximity without physical contact or per-
sonal physical force.

Comparing the remote footbridge to the footbridge switch dilemma 
presumably isolated the effect of spatial proximity. Comparing the 
standard footbridge to the footbridge pole dilemma presumably iso-
lated the effect of physical contact. Comparing the footbridge switch 
to the footbridge pole dilemma presumably isolated the effect of 
personal force.

Statistical tests of the human data showed that ratings of moral 
acceptability of sacrificing one life to save five differed significantly across 
the four versions. Pairwise comparisons revealed no significant effect of 
spatial proximity (remote footbridge versus footbridge switch), no sig-
nificant effect of physical contact (standard footbridge versus footbridge 
pole), but a significant effect of personal force (footbridge switch versus 
footbridge pole). These results suggested that actions involving personal 
force were judged to be less morally acceptable. Spatial proximity and 
physical contact had no effect.
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6.5.2.2.  Effects of Intention

In another experiment by Green et al. (2009), effects of intention were 
examined. Each human subject in the experiment responded to one of 
four dilemmas (different from the previous four).

In the loop dilemma, Joe might save the five people by turning the 
trolley onto a looped side track that reconnected with the main track at 
a point before the five. There was a man on the side track who would 
be killed if the trolley was turned but would prevent the trolley from 
looping back and killing the five. The victim was killed intentionally, but 
without the use of personal force.

The loop weight dilemma was identical to the loop dilemma except 
that a heavy weight positioned behind the man on the side track stopped 
the trolley (not the man himself). The victim was killed as a side effect 
without intention and without personal force.

In the obstacle collide dilemma, a man was positioned on a narrow 
footbridge in between Joe and a switch that must be hit in order to turn 
the trolley and save the five. To reach the switch in time, Joe would have 
to run across the footbridge and would collide with the man, knocking 
him off the footbridge to his death. This involved personal force but not 
intention.

The obstacle push dilemma was identical to the obstacle collide 
dilemma except that Joe would have to push the man out of the way 
in order to get to the switch. This involved personal force and intention.

Statistical tests of the human data showed that there was a signifi-
cant effect of intention (loop and obstacle push versus loop weight and 
obstacle collide) and no effect of personal force (loop dilemmas versus 
obstacle dilemmas). However, a significant interaction between intention 
and personal force was observed. The result suggested that the combi-
nation of the two factors, intention and personal force, might have the 
strongest negative effect on moral acceptability.

6.5.2.3.  Effects of Cognitive Load

In the experiment of Greene et  al. (2008), subjects were presented 
with moral dilemmas similar to the footbridge story in which one could 
kill one person to save several others. Subjects responded either under 
cognitive load (involving a concurrent digit-search task) or in a control 
condition.
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Statistical analysis showed that there was no significant effect of load, 
but there was a marginally significant effect of type of judgment, with 
longer RT (response time) for utilitarian judgment than for nonutilitarian 
judgment. However, there was a significant interaction between load and 
judgment: RT for utilitarian judgment increased significantly as a result of 
load. Also, under load, utilitarian judgment was significantly slower than 
nonutilitarian judgment, but there was no such effect in the absence of 
load. This result suggested that utilitarian judgment might result from 
explicit processes, because explicit processes were more likely to be ham-
pered by cognitive load (Sun, Slusarz, & Terry, 2005).

6.5.3.  Two Contrasting Views

To justify modeling moral judgment with a cognitive architecture, 
one may look into possible alternatives, for example, simply using a 
Backpropagation neural network. Such a network could capture almost 
perfectly the various effects as summarized above. However, such a black-
box-style simulation does not provide any deep account of the underlying 
psychological mechanisms and processes contributing to the outcome, 
and consequently it sheds little new light. It is therefore necessary to 
undertake more detailed modeling based on a more psychologically real-
istic model of the human mind.

With psychological realism in mind, there are two possible models 
that can capture the empirical data sketched above. Among them, one 
model is simple and straightforward. It corresponds to a reactive, situated 
view of the mind (e.g., Brooks, 1991; Sun, 2002). In contrast, the other 
model is more complex and more reflective of the motivational views 
of the mind (Murray, 1938; Maslow, 1943; Sun, 2009). Therefore, one 
pertinent question here is: should one use a “reactive” model or a more 
complex (e.g., motivation-based) model of the mind for this domain?

In general, Clarion can capture well this distinction and embrace both 
views. That is, it captures these different possibilities in different situa-
tions (chapters 3 and 4). In this domain, one can compare and contrast 
these two alternatives to hopefully shed new light on psychological pro-
cesses of moral judgment.

To address this distinction, two Clarion models were developed. 
Model 1 was reactive: the decision making happened in the ACS, with 
the MS only expressing a generic desire to save life (without considering 
the complexity of the matter, e.g., having to kill one in order to save five). 
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Based on the generic goal from the MS, the ACS undertook the actual 
decision making considering the complexity of the matter (e.g., having 
to kill one in order to save five and the means necessary to do so). The 
implicit processes at the bottom level of the ACS made decisions based 
on its instinctual reactive routines (either biologically or socially formed, 
which favored not killing anyone, not intending to kill anyone, not using 
personal force, and so on; Greene et al., 2008, 2009), while the explicit 
processes at the top level of the ACS performed explicit decision mak-
ing (e.g., based on explicit utilitarian calculation). This way of capturing 
moral judgment was justified (see, e.g., Brooks, 1991; see also Sun, 2002).

On the other hand, for model 2, which was motivational and more 
complex, the MS had to focus on a specific goal (not just a vague desire). 
The MS and the MCS together had to undergo a detailed process in order 
to come up with a specific goal, by taking into account the complexity 
of having to kill one in order to save five and the means to do so. After a 
specific goal was generated (e.g., to kill one in order to save more, or to 
do nothing), the ACS took that specific goal and other information into 
consideration when generating action outputs.

The explicit processes of the ACS, in this case, often made decisions in 
a deliberative way (e.g., by using the NACS to perform detailed utilitar-
ian calculation). The implicit processes at the bottom level of the ACS 
might simply generate action recommendations in accordance with the 
goal dictated by the MS. This was because in this model, unlike in the 
previous one, the moral instincts necessary for moral judgment had been 
captured by the MS and the MCS in their selection of a specific goal.7

6.5.3.1.  Details of Model 1

In this model, the MS and the MCS determined drive activations and 
goals, respectively. The MS included, among other things, the primary 
drive nurturance (i.e., helping others in need; see Chapter  4) and the 
generic goal “save life whenever possible” (as a result of drive activations). 
As noted earlier, the MS in this model only expressed a generic and vague 
goal to save life, without considering the complexity of the matter. On the 
basis of drive activations, the generic goal (“save life whenever possible”) 

7. Note that according to Clarion, implicit processes are not necessarily emotional 
(Monroe, 2012). Conversely, emotion involves not just implicit processes (as discussed 
in the next section).
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was chosen. Based on the goal, the ACS made actual action decisions tak-
ing into consideration of the complexity of the matter.

The ACS made action decisions based on the current goal and the 
current inputs denoting the situation; that is, the ACS decided on what 
to do (producing a rating of actions in this case) based on the situa-
tion and the goal, so the ACS had to deal with the dilemma of having 
to kill someone in order to save five people. The bottom level of the 
ACS made decisions implicitly (utilizing its instinctual reactive rou-
tines). The bottom level of the ACS used a Backpropagation network 
to generate action recommendations. The pre-training for the bottom 
level of the ACS was such that there was a bias favoring natural human 
instincts: for example, the tendencies (1) not to kill, either directly or 
indirectly, (2) to avoid personal force, (3) not to intend to kill, and (4) 
to save life whenever one can. After pre-training, the bottom level of 
the ACS so behaved. Given situational inputs, different instincts could 
be triggered, and they might contradict each other and thus compete. 
Different situations (with their different characteristics) might trig-
ger these instincts to different extents and therefore generate different 
outcomes.

The top level of the ACS performed explicit action decision making 
based on knowledge embodied in explicit rules, for capturing explicit 
utilitarian calculation mostly but also explicit moral imperatives. The 
action recommendations of the two levels of the ACS were then inte-
grated. If both levels had completed processing (within a possible time 
limit), a stochastic selection might be made between the two levels. 
Heavy cognitive load had the effect of slowing down explicit processes at 
the top level (Sun, Slusarz, & Terry, 2005), leading to slowdown of mostly 
utilitarian judgment.

6.5.3.2.  Details of Model 2

This model was more complex and involved all the subsystems of 
Clarion. It followed a motivational view of human behavior, as briefly 
discussed earlier (cf. Maslow, 1943; Weiner, 1992; Sun, 2009; Wilson et 
al., 2009).

In this model, the MCS first decided on a specific goal based on activa-
tions of drives embodying moral instincts (which were triggered within 
the MS by situational inputs), taking into consideration the paradoxical 
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situation of having to kill one in order to save five. The MCS in this case 
came up with a specific goal for the MS (i.e., either to kill one in order to 
save five, or to do nothing), not just a vague desire to save life. Then, the 
ACS took the goal into consideration, possibly requesting inputs from the 
NACS, and made the final action decision taking into consideration all 
available information. The NACS, when invoked, might make recommen-
dations in a more deliberative way (e.g., performing utilitarian calculation 
or other forms of reasoning) based on its declarative knowledge (from 
semantic and possibly episodic memory). So, in effect, the moral judg-
ment was made twice in a row (though based on different knowledge).

Complex information flows occurred among these subsystems. The 
MS activated drives from situational inputs and then received the goal 
set by the MCS, which was based on drive activations within the MS. 
The NACS might be requested by the ACS to perform moral reasoning 
according to its declarative knowledge and thereby generate recommen-
dations to the ACS. The ACS made the final action decision according to 
the current goal from the MS, the current sensory inputs, and the recom-
mendations from the NACS, based on its own procedural knowledge. 
For similar complex motivation-cognition interaction, see, for example, 
Wilson, Sun, and Mathews (2009) and Sun and Wilson (2011).

In the bottom level of the MS, there might be the following “derived 
drives” (Chapter 4): no killing, no battering (i.e., no personal force), no 
intending to kill, and saving life. Given situational inputs, different drives 
might be activated and compete with each other. Different situations, due 
to their different characteristics, might activate each drive to different 
extents, and therefore each situation might lead to a different drive win-
ning the competition and a different goal being chosen. In the top level 
of the MS, the selected goal was stored: “act to save life” or “do not act to 
save life”. The goal was accessible to the ACS, and thereby regulated its 
operation.

The ACS then determined actions. Its top level used explicit rules 
for deciding on an action (e.g., initiating reasoning within the NACS, 
generating an output based on the NACS result, and so on), while 
its bottom level used a Backpropagation neural network to decide 
on an action implicitly. For utilizing the NACS (e.g., for utilitarian 
calculation), first, the ACS generated an action to initiate reasoning 
within the NACS; then, after getting results from the NACS, the ACS 
decided on an action. The bottom level of the ACS in this case tended 
to follow the goal from the MS, which in turn captured the moral  
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instincts. The top level, however, was more flexible: it might follow 
the recommendation from the NACS that might be contradictory to 
the goal from the MS. The final output was determined by stochastic 
selection of the two levels of the ACS (if both levels had completed 
processing within a time limit, if any).

6.5.4.  Discussion

Computational modeling helps to disentangle the complexity of moral 
judgment. Computational modeling provides a detailed and precise 
picture of what is going on in the human mind, in a mechanistic and 
process-based way, at a level that no other methodology can replace.

The two models based on Clarion were able (1) to capture the effects 
of different factors found to affect moral judgment, for example, cogni-
tive load, personal force, and intention (as reviewed earlier); and (2) to 
explore a number of dimensions of moral judgment, such as (2.1) to com-
pare between explicit and implicit processing, (2.2) to compare between 
utilitarian calculation and moral instinct, and (2.3) to compare between 
a reactive and a motivational account (Sun, 2013).

In particular, one of the objectives was to compare and contrast two 
different ways of understanding moral judgment, through comparing the 
two models. In this regard, both captured the human data described ear-
lier. However, the second model provided a more interesting look into the 
mind making moral judgment. It was more detailed, and its details were 
justifiable psychologically. For example, voluminous data point to the 
distinction between implicit and explicit processes (Reber, 1989; Seger, 
1994; Sun, 2002), and similarly strong were the distinction between 
drives and goals and the dynamics within the motivational subsystem 
(Murray, 1938; Reiss, 2004; Sun, 2009).

In relation to the second model, it was hypothesized that moral 
judgment might have a lot to do with human motivation. Essential 
human motives might provide the basis for moral judgment. This 
motivational view of moral judgment was a hypothesis from Clarion, 
which was shown to be plausible, psychologically and computationally 
(Sun, 2013).

Moral judgment, however, is often more than just motivation, 
instinctual responses, and utilitarian calculation. It sometimes involves 
other, more complex forms of reasoning. A whole range of other mecha-
nisms can be identified. These other mechanisms (as identified by, e.g., 
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Bennis, Medin, & Bartels, 2010) include calculation-based decision mak-
ing (decomposition of choice alternatives, and evaluation of outcome 
components and their integration), imitation-based decision making, 
advice-based decision making, case-based reasoning and decision mak-
ing, identity-based reasoning and decision making (evaluating implica-
tions of decisions in relation to one’s self concept), and so on. There are 
clearly a multitude of mechanisms in moral judgment. These different 
mechanisms may cooperate and compete with each other, as appropri-
ate based on contexts, and their results are integrated. Therefore, what 
is needed for a better understanding of moral judgment is a generic 
and comprehensive cognitive architecture that is sufficient to account 
for many of these mechanisms and their interaction and competition 
(Sun, 2013).

In relation to various forms of decision making and reasoning, 
I  should point out that in empirical work, it was found that people 
sometimes made judgment based on questionable criteria but then 
masked biased judgment by recruiting apparently justifiable reasons 
(e.g., Norton, Vandello, & Darley, 2004). Such findings can be captured 
and explained using Clarion (with its drive activation, goal setting, and 
metacognitive regulation). This could be important in understanding 
moral judgment.

It was also found in empirical work that the goal of getting at the 
truth and the goal of getting along with others led to different styles of 
cognitive processing (e.g., Chen et al., 1996): with the goal of getting at 
the truth, systematic processing often took place, while with the goal 
of getting along, shallower processing often happened leading to simply 
agreeing with others’ opinions. This phenomenon can be captured and 
explained using Clarion with its motivational and metacognitive mecha-
nisms. This could be another important aspect in understanding moral 
judgment.

The relation of moral judgment to the notion of conscience (e.g., 
White, 2010) is also of interest. Comparing the two notions, the relation 
might be that “conscience” represents the totality of moral judgments of 
an individual; or in other words, the essence behind one’s moral judg-
ments is one’s “conscience.” Thus, the notion of conscience should also 
be linked to, or be based upon, essential human motivation. The mecha-
nisms and processes within Clarion serve as a plausible instantiation of 
the notion of “conscience.”
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Summarizing the discussions thus far, here are some of the prin-
ciples concerning moral judgment according to Clarion (Sun, 2013), 
analogous to the principles of personality discussed in the previous 
section:

•	 There is no dedicated psychological module for moral 
judgment.

•	 Essential human motivations are the basis of moral judgment.
•	 There is a multitude of processes and mechanisms in moral 

judgment.
•	 Results of different processes are integrated, with variable con-

tributions from each as determined by contexts and individual 
differences.

6.6.  Accounting for Human Emotion

6.6.1.  Issues of Emotion

The term “emotion” has come to denote a variety of phenomena. It is not 
entirely clear how one can identify some phenomenon as an emotion. 
Work in the fields of psychology and neuroscience has contributed to a 
better understanding of emotion, but many fundamental issues are yet 
to be understood. Computational models have also been developed, but 
they tend to be isolated models, not fully integrated into an overall cogni-
tive architecture.

There are many open questions concerning emotion. Human emotion 
manifests itself as a complex of experiential, behavioral, psychological, 
and physiological characteristics with many underlying processes. How 
do these processes take place exactly? For example, one would want to 
know the following:

•	 What role does motivation play in emotion (in detailed, mecha-
nistic terms)?

•	 What role does emotion play in behavior (in detailed, mecha-
nistic terms)?

•	 What roles do explicit and implicit processes play in emotion 
respectively?

•	 How do implicit and explicit processes interact in emotion 
processing?
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•	 How can emotion be controlled or regulated through 
metacognitive means?

and so on.8

There are reasons to believe that, psychologically, emotion is the col-
lective outcome of operations throughout a cognitive system (similar in a 
way to personality). It should not be viewed as a unitary thing (although in 
engineering intelligent systems, a separate “emotion system” is often pos-
ited). That is, it is emergent. Its emergence may involve physiological reac-
tions, action readiness, physical (external) actions, motivational processes, 
appraisal/evaluation processes, metacognitive processes, as well as decision 
making and reasoning of various forms. Emotion is the sum total of all of the 
above in particular circumstances (Sun & Mathews, 2012). Thus, in Clarion, 
emotion involves, for example, the ACS for actions, the NACS for evalua-
tions, the MS for motivation, and the MCS for metacognitive regulation.

6.6.2.  Emotion and Motivation

First, look into the motivational underpinning of emotion. One natu-
ral hypothesis within the Clarion framework is that emotion is deeply 
rooted in basic human motives (drives) and their possible fulfillment 
(Sun & Mathews, 2012). In this regard, I should mention that some other 
researchers, for example, Smillie et al. (2006), Carver and Scheier (1998), 
and Ortony et al. (1988), also stressed the importance of motivation and 
expectation in emotion. Within the Clarion framework, many kinds of 
emotion can be analyzed in terms of their motivational underpinnings.

For example, it has been hypothesized within Clarion (Sun & Mathews, 
2012) that the emotion of elation is related to positive reward (including 
unexpected positive reward) and also, to a lesser extent, “expectation” 
of positive reward. Computationally, the intensity of elation may be (in 
part) a function of strengths of approach-oriented drives within the MS 
(Higgins, 1997).

On the other hand, the emotion of anxiety can be related to “expectation” 
of negative reward or punishment. The intensity of anxiety may be (in part) 
a function of strengths of some avoidance-oriented drives within the MS. 
Smillie et al. (2006) specifically identified the link between the avoidance 

8. There are also questions concerning qualia of emotion: What constitutes an emo-
tional experience? How is it different from other experiences in terms of controlling 
behavior? For a general treatment of these questions, see Sun (2002).
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system and anxiety. Carver and Sheier (1998) also made related points. A 
related Clarion hypothesis was that the activations of avoidance-oriented 
drives often determined the proportion of implicit versus explicit processing 
within the ACS, as discussed earlier.

Furthermore, the emotion of fear may be due to “expectation” of more 
intense negative reward or punishment. Computationally, the intensity of 
fear can be determined in a similar way as anxiety—(in part) as a function 
of some avoidance-oriented drive strengths. Generally speaking, there has 
been a lack of clear distinction between anxiety and fear in clinical psy-
chology and psychophysiology research (Smillie et al., 2006). Some dem-
onstrated that what was constructed to represent “pure fear” was also a 
predictor of trait anxiety.

For another example, the emotion anger can be attributed to a mis-
match between the “expectation” of a behavior from others and the 
actual behavior, when the actual behavior leads to more negative results 
compared with the expectation. Computationally, the difference leads to 
high drive strengths for some avoidance-oriented and approach-oriented 
drives (e.g., the fairness drive).

Such descriptions can be applied to other basic emotions as identified 
by various researchers (e.g., Ekman, 1999). Note that there may be some 
differences between some colloquial usages of emotion terms (and the 
folk psychology behind them), which are often loaded, and the usage here. 
Reinterpretation and clarification are necessary.

6.6.3.  Emotion and the Implicit-Explicit Distinction

Psychological and neuroscience research suggested that emotional pro-
cesses represented a more primitive information-processing and action 
decision-making mechanism (e.g., LeDoux, 1996). Experimental work 
indicated that emotional processing tended to quickly identify stimuli 
that were highly dangerous or beneficial (e.g., to an individual’s sur-
vival). Emotions were often associated with hard-wired and specific 
responses (Ekman, 1999; Zajonc, 1980). Emotion might also induce 
processing states that biased toward specific types of behavior over a 
period of time.

Psychological research on implicit memory and implicit learning indi-
cated the existence of distinct systems with distinct characteristics (as 
discussed in chapters 2 and 3), some of which were analogous to the char-
acteristics of emotion-processing mechanisms. It was commonly believed 
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that the emotion-related system was often faster and less differentiated, 
while the other system was slower and more deliberative (Damasio, 1994; 
Zajonc, 1980). This distinction was similar to what was described as the 
distinction between explicit and implicit processes (Reber, 1989; Evans 
and Frankish, 2009).

However, the separation of the emotional and nonemotional systems 
is limited. For instance, researchers have described a variety of appraisal 
processes (which rely, to some extent, on explicit processes) that are 
involved in inducing an emotional state in reaction to a particular state of 
the world as perceived by an individual (Frijda, 1986; Smith and Lazarus, 
1990). This situation is somewhat analogous to similarly complex inter-
action between explicit and implicit processes.

Such separation and interaction are clearly consistent with the Clarion 
framework. Therefore, the mechanisms and processes specified in Clarion 
can help to address questions regarding emotion. In Clarion, emotion 
involves various subsystems. Emotional processing mainly occurs in the 
bottom levels of these subsystems (Sun and Mathews, 2012). That is, 
emotional processing is mostly implicit (although not all implicit pro-
cesses are emotional; LeDoux, 1996; Damasio, 1994; Zajonc, 1980). 
However, explicit processes (within the ACS and the NACS) have a role 
in emotion too, for example, through performing “cognitive appraisal” 
(Frijda, 1986; Smith and Lazarus, 1990), or through affecting implicit 
processes in other ways. However, they are not the main locus of the 
experience of emotion.

6.6.4.  Effects of Emotion

It has been observed that various emotions involve or have effects on 
perception, action, and cognition.

First, emotion is closely tied to action. On the basis of motivation, 
emotion usually leads to action. In fact, emotion manifests, to a signifi-
cant extent, through actions. Therefore, within Clarion, emotion leads to 
actions by the ACS, involving both implicit and explicit processes of the 
ACS, with implicit processes being more fundamental (as discussed ear-
lier; Sun & Mathews, 2012). Frijda (1986), among others, indicated the 
importance of “action readiness” in emotional experience.

Emotions have various effects on perception. This phenomenon has 
been observed experimentally. For example, when in a state of anxiety, 
attention is heightened with regard to threatening stimuli. When in a 
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state of positive affect, stimuli are more elaborately processed (see Bower 
1981; Mineka & Sutton 1992).

Research has also shown effects that emotion has on cognition (Simon, 
1967). Emotion makes behavior more adaptive. Through incorporating 
emotion, one has both simple reflexive responses and complex cognitive 
processing at one’s disposal, as well as their combination and interaction. 
Research has suggested that emotion involves and affects all functions 
studied in relation to cognition, namely, attention, learning, reasoning, 
memory, and so on. This means that, within Clarion, emotion involves 
and affects the ACS, the NACS, and the MCS, in addition to the MS 
as discussed earlier, including both implicit and explicit processes, with 
implicit processes being more fundamental.

The question is through exactly what mechanisms and processes emo-
tion involves and affects these different functions. Relevant to address-
ing this question, a variety of computational models were proposed in 
the past, ranging from earlier ones such as Leven and Levine (1996) and 
Wright and Sloman (1997), to more recent ones such as Gratch and 
Marsella (2004, 2009). However, most of these computational models 
espoused rather explicit processing. As such, they dealt with only a lim-
ited kind of emotion, which was not necessarily the most fundamental 
kind. These models were also often standalone models (to a very sig-
nificant extent at least). As such, they were not fully integrated into the 
overall cognitive architecture. Thus Clarion can provide a more compre-
hensive account through its mechanisms and processes resulting from 
modeling a large variety of cognitive-psychological functionalities. (Sun 
& Mathews, 2012; Wilson, 2012).

6.6.5.  Emotion Generation and Regulation

Turn now to emotion generation and regulation. Emotion generation is 
accomplished through motivation, appraisal, and action (Wilson, 2012). 
Among these processes, motivation and action were addressed earlier, so 
I now look into appraisal.

In emotion generation, besides motivation and action, appraisal appears 
to be important. A principle tenet of appraisal theory was that emotion 
was a result of “cognitive appraisal” (Frijda, 1986). The model of Marsella 
and Gratch (2009), for instance, implemented a form of appraisal the-
ory. It suggested that to adequately capture emotion, appraisal processes 
needed to rely on declarative knowledge and reasoning. Another model 
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by Reisenzein (2009), however, assumed that emotion arose when dis-
crepancies were detected by continuously running, rapid, and automatic 
appraisal processes.

Within Clarion, two appraisal processes can be hypothesized. The 
automatic appraisal process (gut reactions) is usually fast, mainly involv-
ing implicit processes (within the ACS, the MS, and the MCS). The delib-
erative appraisal process is more explicit and usually slower, carried out 
mainly within the NACS (but involving other subsystems also). Thus, 
within Clarion, appraisal is carried out by a combination of the ACS, the 
NACS, the MCS, and the MS. Among these subsystems of Clarion, the 
NACS is mainly responsible for reasoning (implicit or explicit) needed 
for deliberative appraisal. The ACS, the MS, and the MCS, especially 
their implicit processes, are mainly responsible for automatic appraisal. 
However, the MCS (or the ACS) may trigger deliberative appraisal.9

With the generation of emotion, there is the need for action or cop-
ing. Coping of emotion, as identified by, for example, Lazarus & Folkman 
(1984), may be carried out in Clarion through the ACS and the NACS. 
Among them, coping by the ACS is obviously action oriented, but the 
actions may be either internally or externally oriented, while coping by 
the NACS may be centered on reasoning (implicit or explicit).

Now turn to emotion regulation of more complex forms (see, e.g., 
Gross, 2007). In general, control and regulation of emotion can be accom-
plished in a number of ways at different phases of processing: for example, 
(1) at the perceptual phase (e.g., by preventing the perception of threat-
ening stimuli), (2) at the motivational phase (e.g., by changing priorities), 
(3) at the appraisal phase (e.g., by re-directing appraisal), or (4) at the 
action phase (e.g., by suppressing or enabling certain types of actions). 
Emotion regulation can be carried out through suppression, enabling, re-
appraisal, or other relevant means. It can be done either implicitly or 
explicitly (or in both ways; Gyurak, Gross, & Etkin, 2011).

Within Clarion, emotion regulation of these forms is accomplished mainly 
through the MS and the MCS. Emotion regulation often amounts to regu-
lation by the MCS in the form of input filtering, goal setting, action output 
filtering, and so on (see Chapter 4 for details), in response to motivational 
states and sensory inputs, corresponding to these phases identified above.  

9. Note that the outline above may be related to the model of moral judgment (dis-
cussed in the preceding section), in the sense that the distinction between the two types 
of appraisal maps roughly onto the second model of moral judgment.
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Emotion regulation may thus affect action and reasoning within the ACS 
and the NACS. At a deeper level, drive activations within the MS may 
also be adjusted (see Chapter 4) as a form of emotion regulation, through 
the MCS, and thus action and reasoning (within the ACS and the NACS) 
change as a result. In this regard, a clear distinction between emotion gen-
eration (e.g., through motivation, appraisal, and action) and emotion regu-
lation (e.g., of inputs, of action outputs, and of motivation) is unnecessary 
(cf. Kennedy & Bugajska, 2010).

For a comprehensive account of these facets of emotion, see, for exam-
ple, Wilson (2012), which includes a detailed discussion of how exactly 
emotion processing takes place in Clarion. A number of related simulations 
can be found in Wilson et al. (2009), Wilson and Sun (2014), and so on.

6.6.6.  Discussion

To summarize the discussion of this section, in Clarion, emotion involves 
various subsystems: the ACS (for action), the NACS (for appraisal), the 
MS (for motivational processes), and the MCS (for metacognitive regula-
tion). Complex interactions occur among these different subsystems and 
among many components within. However, it is a complex dynamic sys-
tem with clearly structured components (each with specific knowledge, 
mechanisms, and processes) interacting with each other.

Although still preliminary, Clarion has thus far shown potential for 
answering many questions regarding emotion. Addressing emotion 
within a comprehensive cognitive architecture enables its modeling to 
make contact with detailed, established psychological mechanisms and 
processes. As a result, the study of emotion is linked to other psycho-
logical functionalities such as memory, decision making, reasoning, meta-
cognitive regulation, and so on, defined within a cognitive architecture 
(Wilson, 2012).

However, it would be a stretch to claim that Clarion can by now cap-
ture every aspect of something as complex as emotion. There is a lot more 
that needs to be done in this regard.

6.7.  General Discussion

The work described in this chapter provides a glimpse into how moti-
vation underlies cognition and how metacognition regulates cognition. 
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Clarion provides computational accounts and explanations of various 
motivational and metacognitive phenomena that have so far not been 
tackled within cognitive architectures. These include the phenomenon of 
metacognitive monitoring, the phenomenon of metacognitive interven-
tion, the phenomenon of performance degradation under pressure, the 
phenomenon of human personality across a variety of circumstances, and 
the phenomenon of situational factors in moral judgment.

While the suggestion that motivation and metacognition affect cog-
nition is not novel, Clarion integrates motivation and metacognition 
into a unified cognitive architecture. This work has also taken a step 
toward explaining exactly how and in what way cognitive performance 
is affected by motivational, metacognitive, and other factors. Clarion, in 
this regard, addresses the interaction among motivation, metacognition, 
and cognition, beyond what other computational cognitive architectures 
have done. Clarion does so in a detailed, process-based, and mechanistic 
way. Therefore, it provides detailed, mechanistic, process-based explana-
tions (Sun, 2009b). In this way, it leads to some new theories and new 
explanations, but also embodies and substantiates some previous theories 
and explanations.

The Clarion cognitive architecture contains rather detailed motiva-
tional and metacognitive mechanisms. That is, many motivational and 
metacognitive processes are architecturally specified in Clarion. This 
approach makes simulations of motivational and metacognitive phenom-
ena easier to construct, less ad hoc, and more uniform. This approach has 
been shown to be viable.

Beyond those discussed above, there are many other tasks and data 
sets that may be, or have been already, accounted for by Clarion, involv-
ing the MS and/or the MCS. In particular, a number of tasks were tack-
led in a fashion similar to those described in detail earlier. For instance, 
Wilson et al. (2010) provided a computational explanation of stereo-
typing under pressure, using metacognitive regulation resulting from 
drive activations, based on the experimental work of Lambert et al. 
(2003). For another instance, Brooks et al. (2012) explored the effects 
of assigned performance targets on performance, and performance dif-
ferences were explained by differences in explicit and implicit process-
ing as a result of metacognitive regulation based on external target 
assignment and consequent drive activations. For yet another instance, 
Chen et al. (1996) showed that with the goal of getting at the truth, 
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systematic processing often took place, while with the goal of getting 
along, shallower processing often occurred. This was explained using 
Clarion whereby different motivations led to different metacogni-
tive regulation of cognitive processing. Similarly, Norton, Vandello, 
and Darley (2004) showed that people sometimes made judgments 
based on questionable criteria, but then masked biased decision mak-
ing by recruiting apparently justifiable reasons. Such findings were also 
explained by Clarion, whereby different drives and goals were empha-
sized during judgment and during justification and thus resulted in dif-
ferent processing.

Various other examples have also been addressed and some of their 
descriptions can be found in prior publications (e.g., Sun, 2009). With the 
work ongoing along this direction, Clarion may eventually provide a com-
prehensive, yet detailed picture of motivation, emotion, self-monitoring, 
self-regulation, and other forms of motivation-cognition-metacognition 
interactions (Carver & Scheier, 1998; Weiner, 1992; Caprara & Cervone, 
2000).
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Cognitive Social Simulation

7.1.  Introduction and Background

It has been pointed out that one (unfortunate) reality of the social and 
behavioral sciences is the relative lack of integration and communication 
between the cognitive and the social disciplines (Sun, 2006, 2012). Each 
discipline tends to consider a particular aspect and to ignore (more or 
less) the rest. Consequently, they often talk past each other instead of to 
each other.

However, in both the social sciences and cognitive science, the notion of 
agent has played a significant role in research, especially in recent decades. 
In particular, agent-based social simulation is becoming an increasingly 
important research methodology in the social sciences. It has been used 
to test theoretical models or to investigate their properties. A simulation 
may even serve as a theory or an explanation of a social phenomenon 
by itself. Issues addressed thus far by agent-based social simulation have 
been diverse. They include, for example, social norms, language evolution, 
social cooperation, culture formation, group interaction, opinion dynam-
ics, stock market dynamics, tribal institutions, traffic patterns, collective 
decision making, organization design, and many others.

At the same time, computational models of agents have also been 
developed in cognitive science, often in the form of computational 
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cognitive architectures. However, despite that development, most of the 
work in agent-based social simulation still assumes rudimentary agents. 
Agent models in social simulation have often been custom-tailored to 
the task at hand. Often, they are not even remotely comparable to cog-
nitive architectures in terms of complexity and sophistication. Although 
the approach may be adequate for achieving limited objectives of some 
social simulations, it is overall unsatisfactory intellectually and practi-
cally. For instance, it limits the realism and hence the applicability of 
social simulation. More importantly, it also limits the possibility of tack-
ling the theoretical issue of the micro-macro link (Alexander et al., 1987; 
Sun, 2012b).

Detailed computational cognitive models, especially cognitive architec-
tures, may provide a foundation for understanding social processes, issues, 
and phenomena. Incorporating realistic psychological constraints, capabili-
ties, and tendencies of individuals in their interaction with their environ-
ments (both physical and social), these models take cognition-psychology 
of individuals into serious consideration. When trying to understand social 
processes, issues, and phenomena, it is desirable to do so, given that detailed 
computational models of individuals that incorporate a wide range of psy-
chological functionalities have been developed.

There are possibly significant advantages in using cognitively-psycho-
logically realistic models in agent-based social simulation. For instance, 
if a model is reflective of human cognitive-psychological processes, the 
explanations and predictions that it provides may be more detailed and 
more nuanced. The explanations and predictions that refer to human 
cognition-psychology may be more illuminating than those that refer to 
ad hoc parameters of a simplified model or to external measures only. For 
another instance, through psychologically realistic models of individuals, 
one may investigate the interactions among cognition, motivation, social 
institutions, physical environments, and so on. Some significant relation-
ships among cognitive, motivational, social, and environmental factors 
may thus be revealed. Among many other relationships, there may be 
cognitive-environmental dependency, cognitive-motivational depen-
dency, and motivational-environmental dependency (Sun & Naveh, 2007; 
Sun & Fleischer, 2012; more details to follow).

Max Weber pointed out that unlike the physical sciences, the social 
sciences need to gain an “empathetic understanding” of the “inner states” 
of social actors and thus gain an understanding at both the level of cau-
sation and the level of “meaning” (i.e., cognition and motivation; Weber, 
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1991). Alfred Schutz attempted to understand the construction of social 
reality from the point of view of an individual, in terms of meaningful 
actions, motivations, and a variety of social relationships (e.g., Schutz, 
1967). Giddens’s (1984) discussions regarding the relation between 
structure and agency are also relevant in this regard.

Similar points have also been made in various technical domains, for 
example, in the context of cognitive realism of game theory, or in the 
context of deeper models for human-computer interaction. In Axelrod’s 
simulation work (1984), it was shown that even adding a cognitive factor 
as simple as memory of past several events into a model could completely 
alter the dynamics of social interaction.

The discussion above (as well as the work detailed in the remainder of 
this chapter) points to a more psychologically realistic approach towards 
social simulation, namely, Cognitive Social Simulation (Sun, 2006), as well 
as an area of research—exploring psychological-social-environmental 
interaction through cognitive social simulation.

Below, I describe a number of cognitive social simulations in different 
domains addressing different issues.

7.2.  Cognition and Survival

In Sun and Naveh (2007), a tribal society was simulated in which the 
interaction between individual cognition and social (and environmental) 
factors was explored. With Clarion-based agent models, the results of the 
cognitive social simulation shed light on the role of cognition (in the nar-
row sense) in social processes. Below we look into some details of this 
simulation.

7.2.1.  Tribal Society Survival Task

To understand the rationale behind this simulation, we may first look 
into a prior simulation by Cecconi and Parisi (1998). In their simu-
lation, Cecconi and Parisi created simulated social groups (tribes). In 
these groups, to survive and reproduce, an individual must possess 
certain resources. A group in which each individual used only its own 
resources was said to adopt an individual survival strategy. However, in 
some other groups, resources might be transferred. Such a group was 
said to adopt a social survival strategy. For instance, in their simulated 
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world, the “central store” (CS) was a mechanism to which all individuals 
in a group transferred part of their resources. The resources collected by 
the CS could be redistributed in some way to the members of the group.

Cecconi and Parisi (1998) conducted simulations comparing groups 
adopting different strategies. They used neural networks to model indi-
viduals and a genetic algorithm to model evolution. Neural networks 
(representing individuals) survived and reproduced differentially based 
on the quantity of food that they were able to find and consume. Cecconi 
and Parisi explored what conditions determined group survival or extinc-
tion. This work was interesting, because it provided a fertile ground for 
exploring a range of issues, from individual behavior to social institution, 
from individual learning to evolution, and many others.

However, in this early work, there was very little in the way of human 
cognition-psychology. Investigation, modeling, and simulation of social 
phenomena need cognitive science, because such endeavors need a better 
understanding, and better models, of individual cognition-psychology, on 
the basis of which better models of aggregate processes can be devel-
oped. Cognitive modeling may provide better grounding for understand-
ing social phenomena, by incorporating realistic constraints, capabilities, 
and tendencies of individuals in terms of their cognitive-psychological 
processes. Arguments along this line can be found in, for example, Sun 
(2001, 2006, 2012b).

Therefore, to redress the neglect of human cognition-psychology in 
agent-based social simulation, more detailed and more realistic models 
of cognitive-psychological mechanisms and processes need to be incor-
porated. Clarion has been successful in simulating a variety of psycho-
logical tasks. Therefore, it may be extended to the capturing of social 
phenomena.

In the work described below, the simple simulation of Cecconi and 
Parisi (1998) was revamped (Sun & Naveh, 2007). The general setup, 
however, remains essentially the same. The world was made up of a two-
dimensional grid. Food items and agents were randomly distributed among 
the locations of the grid. The food crops grew by seasons, so food was 
replenished periodically. There were the harsh, medium, and benign con-
ditions that were distinguished by the availability of food. Agents were of 
a limited life span, which varied from individual to individual depending 
on the energy consumption and the maximum lifespan. Agents looked for 
and consumed food in an effort to prolong their life spans.
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There was a “central store” in some cases as in Cecconi and Parisi 
(1998). Agents might be required to contribute to the central store in 
these cases. However, different from Cecconi and Parisi (1998), some 
further social institutions were introduced. For instance, in case of man-
datory contribution to the central store, a penalty was introduced for not 
contributing to the store.

Most notably, in this work, agents were more cognitively realistic 
than those of Cecconi and Parisi (1998). Therefore, these new simu-
lations shed more light on the role of cognition in determining sur-
vival strategies and its interaction with social institutions. To investigate 
the interaction between social processes and individual cognition (i.e., 
the micro-macro link) and other issues, detailed statistical analysis was 
applied to different settings so that a more precise understanding could 
be achieved.

7.2.2.  Simulation Setup

Specifically, in this simulation, agents were constructed based on the 
ACS. Each agent faced a certain direction (north, south, east, or west). 
Each agent received inputs regarding the location of the nearest food, 
relative to the current position of the agent and its current direction. 
Its perception was divided into four pie-slice-shaped quadrants. Each 
agent could generate an action output: either (1) turn 90 degrees right, 
(2) turn 90 degrees left, (3) move forward, (4) pick up food and con-
tribute a portion, (5) pick up food and keep all of it. Action decision 
making was accomplished using both the neural network at the bottom 
level (trained with Q learning), and the rules at the top level (learned 
using RER).

Each agent lived for a maximum of 350 cycles, but it might die early 
due to lack of food. There were initially 30 agents to begin with, and the 
number of agents fluctuated due to birth and death, within the bound of 
a maximum of 30 agents.

The same as in Cecconi and Parisi’s simulation, procreation was asex-
ual (i.e., only one parent was required). Procreation occurred if: (1) an 
agent had reached 120 energy units or more, and (2) there were fewer 
than the maximum number of agents in the world. The newborn was 
placed in a random location. The parent handed out 60 energy units to 
the child upon birth. The child inherited its parent’s internal makeup 
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(including the neural network and the rule set), but there was a 10% 
chance of minor mutation when a child was spawned.1

The world was made up of a 100 × 100 grid. Each of the locations at 
most contained one food item (50 energy units). At the beginning and 
every 40 cycles, the 100 × 100 grid was replenished: randomly selected 
locations were restocked with food items until the grid had 600 food 
items in all. Also tested was a more benign condition, in which 900 loca-
tions contained one food item each, as well as a harsher condition in 
which 300 locations contained one food item each.

Some of the simulations involved the institution of a “central store.” 
In these cases, an agent was required to contribute 20 energy units to the 
central store when it picked up a food item (50 energy units). When a cen-
tral store was used, at each cycle, 10% of the agent population (randomly 
selected) received 5 energy units each from the central store. A variation 
of this was that only agents with 10 or less energy units received distribu-
tions from the central store.

Each agent began with 60 units of energy and consumed one unit of 
energy per cycle to stay alive. For each agent, capturing and consuming a 
food item increased its energy by 50 units.

Each agent, when picking up a piece of food, decided whether to con-
tribute to the central store or not. Enforcement mechanisms were intro-
duced in this simulation, different from Cecconi and Parisi (1998). When 
an agent picked up a food item, if it decided to contribute, it contributed 
20 energy units to the central store. If the agent decided not to contribute, 
there was a 30% chance of being caught if an enforcement mechanism 
was in place. If caught, the agent was fined 40 energy units (which were 
transferred to the central store). Otherwise, the agent kept all the energy 
units acquired.

There were four variations in this regard: no central store, central store 
but no individual choice (equivalent to extremely strict enforcement), 
central store with individual choice and enforcement, and central store 
with individual choice and no enforcement.

The reinforcement that an agent received was as follows: if the agent cap-
tured one food item and contributed to the CS, the reinforcement was 0.6. 
If the agent captured one food item and contributed nothing without being 
caught, the reinforcement was 1.0. If the agent captured one food item,  

1. If mutation occurred, each of the weights in the neural network at the bottom level 
had a 20% chance of being randomly decreased or increased by 0.1.
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cheated, and was caught, the reinforcement was 0.2. This reinforcement 
was proportional to what an agent had to keep in each scenario (based on 
30/50, 50/50, or 10/50 energy units being kept, respectively).2

Because of the computational cost, this simulation had to focus on a 
small set of cognitive, social, and environmental parameters, and a small set 
of values for each of these parameters (usually two to three). See Table 7.1 
for details of these parameters. Dependent variables (performance mea-
sures) were also limited to the following: (1) average individual energy 
acquisition per agent per cycle, (2) average population size (average num-
ber of agents in a population), as well as (3) average lifespan.

All combinations of these parameters were tested by a factorial 
design. There were a total of 96 combinations. Each simulation ran for a 

2. More generally, the penalty for violating the norm can be from multiple 
sources: (1) social sources, such as an enforcement mechanism that extracts penalty from 
violators; and (2) internal sources, for example, from an internal feeling of guilt.

Table 7.1. � A list of cognitive, social, and 
environmental parameters 
and their values used in the 
simulation.

Probbl (probability of using the bottom level):

#1 0.25

#2 0.75

Learn (learning rate):

#1 0.25

#2 0.75

Gen (generalization threshold):

#1 1.0

#2 3.0

Food (food availability):

#1 300

#2 600

#3 900

Strat (survival strategy; cs = central store):

#1 cs/enforcement/choice

#2 cs/no enforcement/choice

#3 cs/no enforcement/no choice

#4 no cs
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maximum of 2,000 cycles. Sampling was done 10 times per simulation. 
Thus 960 observations were gathered in total.

7.2.3.  Simulation Results

Let us consider performance measures used in the simulation. A reason-
able measure of average individual success seems to be the energy acquisi-
tion per capita per cycle. However, sometimes, as population sizes decrease, 
the performance of survivors actually increases due to less competition for 
food. For this reason, population size should be simultaneously examined 
as a complementary measure; the two measures should be cross-referenced. 
Another, more individual measure, average life span, measures how much 
(on average) each individual benefits from food (or suffers from the lack 
of food), different from the more global measures. With these measures in 
mind, let us look into some results from the simulations.

7.2.3.1.  Effects of Social and Environmental Factors

One important finding was that in terms of average energy acquisition per 
capita per cycle, strategy mattered significantly (in a statistical sense). See 
Figure 7.1 for the result.

As indicated in the figure, the worst strategy for this performance mea-
sure was that of a central store with no free choice. This was probably 
because individuals in this case had no leeway whatsoever in contribut-
ing to and drawing from the central store, which led to less evolutionary 
pressure on individuals. Performance suffered in the long run as a result. 
Also as expected, the strategy of a central store with free choice and some 
enforcement was significantly better. The central store with free choice 
but no enforcement was in turn better than the central store with free 
choice and enforcement (the difference was small, however). The most 
interesting finding here was that the best strategy was that of no central 
store. This was probably because more evolutionary pressure led to better 
individual performance and the no-central-store strategy exerted most 
evolutionary pressure on individuals. As a result, individuals surviving in 
this environment fared better in general. The strategy of a central store 
with free choice but no enforcement was the closest to it. As has been 
shown before by Cecconi and Parisi (1998), the strategy of a central store 
with free choice but no enforcement often turned into the strategy of no 
central store at all.
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In addition, in a separate simulation involving the use of the central 
store, it was found that distribution from the central store only to the 
needy was slightly better than random distribution. But their differences 
were not statistically significant.

In terms of population size, the two factors, strategy and environment 
(i.e., food availability), together had a significant effect (consistent with 
the findings of Cecconi & Parisi, 1998). Statistical analysis showed an 
interaction between strategy and food availability, and that strategy had 
an effect on population size only under some environmental conditions 
(when food was less than abundantly available).

In terms of average lifespan of individuals, there was a statistically sig-
nificant effect of strategy. The strategy of the central store with no choice 
performed well, which showed that the mandatory social welfare system 
did help the survival of individuals. The strategy of the central store with 
free choice and enforcement was comparable. These two strategies were 
the best among the four strategies. However, the strategy of no central 
store was the worst, for the lack of a social cushion against adverse cir-
cumstances that an individual might encounter. See Figure 7.2.

This ordering was the opposite of that resulting from the measure of 
energy acquisition rate. This was because lifespan was arguably a mea-
sure that was more sensitive to individual performance, as it captured 
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choice, 3 = cs/no enforcement/no choice, 4 = no cs.
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how an individual benefited from the availability of food or suffered from 
the lack of it (on average). Therefore, some contrasting effects might be 
observed: whereas some individuals might die of starvation, the average 
rate of energy acquisition might be high nevertheless. Conversely, the 
starvation of some individuals might be prevented, but the welfare of the 
population as a whole might suffer. That is, some strategies might lead to 
benefiting the overall population while at the same time hurting some 
individuals within that population, and vice versa.

Separately, distribution from the central store to the needy only, as 
opposed to random distribution, improved average lifespan significantly, 
in contrast to the result from using energy acquisition as the performance 
measure. So there was another contrasting effect.

Overall, the results indicated that strategies did matter for individuals 
surviving in a particular physical and social environment (with energy 
acquisition rate or lifespan as dependent measures). There were some 
noteworthy contrasting effects using energy acquisition rate and lifespan 
as dependent measures.

7.2.3.2.  Effects of Cognitive Factors

There is more to cognitive social simulation than generating performance 
measures. Because Clarion captures a variety of cognitive factors, one can 
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vary parameters that correspond to specific cognitive factors and observe 
their effects on performance.

This approach has an important advantage. With Clarion, the param-
eters being altered are presumably important aspects of cognition, and 
thus observed differences in performance are likely to stem from real 
differences in individual cognition. Thus, in the following simulations, a 
number of cognitive parameters were varied within the ACS, and their 
effects on performance were observed. In particular, the interaction 
between cognition and social institution and that between cognition and 
physical environment were of interest: that is, what cognitive parameter 
settings were suitable for what kind of social institution and physical 
environment (a central store or not, enforcement or not, under the condi-
tion of abundant food versus scarce food, and so on).

Let us first look into an analysis using average energy acquisition per 
capita per cycle as the dependent variable. There were some expected, 
not-so-surprising effects of cognitive parameters, including probability 
of using the bottom level, learning rate, and so on. For instance, a sig-
nificant effect of probability of using the bottom level was found. Using 
explicit processes (explicit rules) more at the top level was beneficial 
(up to a certain extent, of course). This was because, as demonstrated 
before (Sun, Slusarz, & Terry, 2005), explicit processing at the top level 
helped implicit learning at the bottom level and thus the overall per-
formance. Hence there was the performance difference as shown in 
Figure 7.3.

There was also a significant effect of learning rate. Higher learning 
rates were beneficial (up to a certain extent). This was because higher 
learning rates (up to a certain extent) helped individuals to quickly adapt 
to situations and exploit their physical and social environments to ensure 
their survival. See Figure 7.4.

Some interesting two-way interactions were also found. There was an 
interaction of learning rate and food availability. Under low food availabil-
ity, a higher learning rate was better; under medium or high food avail-
ability, it did not matter. This finding might be explained this way: under 
low food availability (i.e., under a harsh environmental condition), it was 
more important to exploit the environment and the social institution in 
order to survive, while in less harsh conditions, slacking off was less of a 
problem. See Figure 7.5.

Interestingly, there was the interaction between probability of using 
the bottom level and strategy. As indicated by Figure 7.6, the strategy 
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of no central store was the best strategy when explicit processes were 
not used much (i.e., when the probability of using the bottom level was 
high), while it was merely average when explicit processes were heavily 
used (i.e., when the probability of using the bottom level was low). One 
explanation was that when cognition was highly explicit (when explicit 
rules were heavily used), individuals were more likely to learn better and 
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explore given situations better (Sun, Slusarz, & Terry, 2005). Situations 
created by the strategy with a central store, choice, and enforcement 
were more complex than others and therefore required better learning 
abilities. However, given a better learning ability, individuals might per-
form better in these more complex situations by exploiting them effec-
tively. Therefore, individuals with more explicit processing performed 
better in these complex situations. In contrast, when explicit processes 
were used less, individuals did not learn as well. Therefore, in this case, 
the no-central-store strategy—the simplest strategy—turned out to be 
the best. In general, the differences among strategies were greater when 
explicit processes (explicit rules) were used less, because individuals 
with poorer learning abilities did not learn to handle more complex situ-
ations as well.

There were also some interactions between cognitive parameters. For 
instance, there was the interaction of probability of using the bottom 
level and generalization threshold. I will not get into these here (see Sun 
and Naveh, 2007 for details).

Now I  turn to the analysis using population size as the dependent 
variable (which was a more global measure of performance). Generally 
speaking, similar statistically significant effects were found, as in the case 
of using energy acquisition rate as the dependent variable.

For instance, a statistically significant effect of probability of using the 
bottom level was found: that is, using more explicit processing (explicit 
rules) was beneficial (up to a certain extent). This was the same as the 
previous analysis using energy acquisition rate as the dependent variable, 
for the same reason. A significant effect of learning rate was also found: a 
higher learning rate was better (up to a certain extent). This was also the 
same as the previous analysis using energy acquisition rate, for the same 
reason.

However, unlike the previous analysis using energy acquisition rate, in 
this case, a significant effect of generalization threshold was found: using 
a higher generalization threshold was worse, presumably because it led 
to too few explicit general rules (see Sun et al., 2001 for an analogous 
situation).

In terms of two-way interactions, as before with regard to energy 
acquisition rate, here an interaction between probability of using the bot-
tom level and strategy was also found. As before, no central store was 
the best strategy with less explicit processing but became worse off with 
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more explicit processing, which might be attributed to the same reason 
as speculated before.

The analysis using lifespan as the dependent variable led to essentially 
the same conclusions, and thus details are omitted here.

7.2.4.  Discussion

In previous social simulations, often rather arbitrary assumptions were 
made, simply because they were needed for producing simulations that 
matched observed data. Here assumptions were instead made at a lower 
level, in a more cognitively realistic way. By using cognitively realistic 
models of individuals in a social simulation, one may generate explana-
tions of social phenomena based on individual cognitive processes (among 
other possibilities). This allows one to do away with many assumptions 
that are not cognitively grounded.

In this simulation, interactions occurred (1) between cognitive param-
eters and physical environmental variables (such as food availability) and 
(2) between cognitive parameters and social variables (such as survival 
strategy). Let us look into such interactions.

For one thing, the relation between various cognitive parameters and phys-
ical environmental variables may be such that certain cognitive attributes are 
universally good or bad (e.g., a lower probability of using the bottom level, 
up to a certain point, is always better for performance), while the effects of 
some other cognitive attributes (such as learning rate) are more dependent 
on environmental conditions (such as food availability, as shown by the anal-
yses earlier). Existent cognitive attributes may have been selected (through 
evolution) to work within certain physical environments, which may be 
termed cognitive-environmental dependency (Cosmides & Tooby, 1994).

Similarly, some cognitive attributes have universal effects for all pos-
sible values of a social variable, while other attributes (such as probability 
of using the bottom level) have less universal effects and depend more on 
specific values of a social variable (such as survival strategy). Consequently, 
the relation between various cognitive parameters and social variables 
indicates that what social attributes, for example, institutions or norms, 
are adopted may have something to do with cognitive abilities and cogni-
tive tendencies of individuals involved (Tetlock & Lebow, 2001; Boyer & 
Ramble, 2001; Atran & Norenzayan, 2004; Kluver et al., 2005). This rela-
tion may be termed social-cognitive dependency. This point has significant 

 



308 Chapter 7

ramifications:  there may be some social institutions that are suitable for 
certain cognitive characteristics while unsuitable for certain others. They 
may not be universally better or worse than others. It may in fact depend 
on a host of other factors, in particular cognitive factors. Sun (2006) and 
Sun (2012b) provided substantial discussions of the close relationship 
between cognitive and social processes, and advocated the exploration 
of cognitive principles of sociocultural processes (Boyer & Ramble, 2001; 
Lustick, 2000).

The same point can be made of the dependency of social institutions 
on characteristics of physical environments (e.g., based on the interac-
tion between strategy and food availability). This relation may be termed 
social-environmental dependency (Doran et  al., 1994; Reynolds, 1994). 
Recent evidence (e.g., discussed by van de Vliert, 2013) has borne out 
such predictions.

Finally, in the reverse direction of social-cognitive dependency, cog-
nitive attributes may have been selected (through evolution) to work 
with certain social and cultural environments (Zerubavel, 1997; Kluver 
et al., 2005), which may be termed cognitive-social dependency. One may 
explore sociocultural principles of cognition, the opposite of cognitive 
principles of sociocultural processes mentioned earlier (Durkheim, 1962; 
Bourdieu and Wacquant, 1992).

Together, these types of dependencies form a complex system of inter-
woven relationships. In such a system, it is important to understand not 
just direct effects of dependencies but also indirect effects that are not 
obviously related to their causes but are often crucial for discerning the 
functional relationships and structures of the system.

In summary, it has been shown to some extent that, in the context 
of different social survival strategies and different physical environ-
ments, cognition matters. It determines, for instance, which strategy 
and other social variables are appropriate under what cognitive con-
ditions. Phenomena at the social level may be related to, or affected 
by, cognitive processes at the individual level. That is, they point 
to the micro-macro link between the social and the psychological 
(Alexander et al., 1987; Sawyer, 2003; Sun, 2001). Several hypotheses 
in this regard were generated through the simulation. Even though 
only very simple sociocultural processes were involved in this work, 
with the cognitive architecture used, some important interactions were 
nevertheless found.
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7.3.  Motivation and Survival

To further explore the effects of other psychological factors in addition 
to cognitive factors (in the narrow sense, as explored above), another 
set of simulations was conducted. This set of simulations, while explor-
ing a different set of issues, was essentially based on the same task as 
described above. This set of simulations was originally described in Sun 
and Fleischer (2012).

7.3.1.  Simulation Setup

In this set of simulations, the world was made up of a 200 × 200 grid, as 
opposed to the 100 × 100 grid in the previous simulation. Each of these 
40,000 locations might contain (at most) one food item. At the beginning 
and every 40 cycles, the grid was replenished: randomly selected locations 
were restocked with food items, until the grid had 2,400 food items. A 
more benign condition, in which 3,600 locations contained one food item 
each, and a harsher condition, in which 1,200 locations contained one 
food item each, were also tested.

As in the previous simulation, a food item contained 50 energy units. 
Each agent began with 60 units of energy, and consumed one unit of 
energy per cycle. There were initially 120 agents to begin with, and the 
number of agents fluctuated due to birth and death, within the bound of 
a maximum of 120 agents.

As in the previous simulation, at each moment, each agent was located 
in a square on the grid. It faced a certain direction (north, south, east, or 
west). Each agent received inputs regarding the location of the nearest 
food, relative to its current position and its current direction. Its percep-
tion was divided into four pie-slice-shaped quadrants. Each agent could 
generate an action output: either (1) turn 90 degrees right, (2) turn 90 
degrees left, (3) move forward, (4) pick up food and contribute a portion, 
(5) pick up food and keep all of it, or (6) reproduce (which is different 
from the previous simulation). Each agent lived for a maximum of 350 
cycles, but might die early due to lack of food.

As in the previous simulation, procreation was asexual. Procreation 
occurred if an agent had reached 120 energy units or more, and there 
were fewer than the maximum number of agents in the world. The new 
agent was placed in a random location. The parent handed out 60 energy 

 

 

 



310 Chapter 7

units to the child upon birth. The child inherited its parent’s internal 
makeup, although there was a 10% chance of mutation, as in the previous 
simulation.

In case that a central store was involved, an agent was required to con-
tribute 20 energy units to the central store when it picked up a food item 
(50 energy units). At each cycle, agents with 10 or less energy units might 
receive 5 energy units each from the central store. Up to a maximum of 
10% of the agent population might get energy from the central store at 
each cycle.

Each individual, when picking up a piece of food, decided whether 
to contribute to the central store or not. There were three variations on 
cheater detection and punishment. In the first variation, individuals might 
freely choose to contribute or not with no chance of being caught or pun-
ished. The second variation was the default setting used for most simula-
tion runs, in which there was a 30% chance of a cheater being caught and 
fined 40 units of energy (with the fine being added to the central store). 
The third variation entailed a 100% chance of catching cheaters and the 
fine was all 50 units of energy provided by the food item found.

Agents were based on Clarion, involving the ACS, the MS, and the MCS 
(Sun and Fleischer, 2012). Within the MS, as befitting the nature of this 
task, considerations might be limited to three drives: Food, Reproduction, 
and Honor (see Chapter 4). Let us look into relevant parameters for these 
drives (as required by the drive equations).

The deficit parameter of the food drive was inversely propor-
tional to the amount of energy that an individual currently had: 

deficit
energy

food
a= − 





1
500

, where energya was the amount of energy the 

agent had. The deficit of the reproduction drive was proportional to the 

amount of energy the agent had: deficit
energy

reproduction
a= 



200
. The deficit 

of the honor drive was kept constant at 1.0. The baseline parameters of  
these drives were set at 0.

On the other hand, the stimulus parameters for the food and repro-
duction drives were kept constant at 1.0 (because, e.g., food was almost 
always in sight), while the stimulus for honor was based on what others 
were doing, equal to the total number of times any individual had con-
tributed to the central store divided by the total number of times anyone 
had picked up a piece of food (whether or not it then contributed to the 
central store): stimulushonor s tf f= / , where fs was the total number of times 
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anyone had contributed to the central store, and ft was the total number 
of times anyone had acquired a food item.3

An individual could have one of the three goals: hoardfood, sharefood, 
and reproduce. Hoardfood was highly associated with the food drive (rele-
vance = 1.0; see the goal strength equations in Chapter 4). Sharefood was 
moderately associated with the food drive (relevance = 0.5) and highly 
associated with the honor drive (relevance = 1.0). Reproduce was highly 
associated with the reproduction drive (relevance = 1.0).

The reinforcement needed for reinforcement learning in the 
ACS was generated by the MCS. The feedback for the reproduction 
action was:4

feedback
energy
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




+0 8
200

. 	
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otherwise
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0 2

0 0

. ,

. ,

     ’ “ ”

Note that in the equation above, a feedback “bonus” c was provided when 
one achieved the current goal. (This bonus might result from, for exam-
ple, the positive sense of accomplishing a goal.)

The feedback for picking up a food item and keeping all of it (without 
being caught) was:
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where ef was the amount of energy in a food item (i.e., 50 in this case), 
ep was set to 0 in this case, deficitfood was the deficit of the food drive, es was 
the amount of energy that one was supposed to contribute to the central 
store (i.e., 20 in this case), and fs and ft were defined before. In the equa-

tion, e
e

f
f

s

f

s

t

*








  represented the internal feeling of guilt resulting from not 

conforming to the social norm, and it was proportional to the general 
ratio of contribution to the central store (by all individuals).

3. If any of these equations produced a number less than 0 or greater than 1, it was 
set to 0 or 1.

4. If an individual did not have enough energy (i.e., had less than 120 energy units), 
no child was produced, and a feedback of 0.0 was given.



312 Chapter 7

If an individual attempted to hoard food and was caught and penalized 
(fined), the feedback became:
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where ep was the amount of energy taken as penalty, and c was equal 
to 0. The “bonus” c was absent in this case because, even if the goal was 
hoardfood, it had not succeeded and therefore could not get the positive 
feedback associated with goal accomplishment.

If an individual chose to contribute to the central store, the 
feedback was:
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Clearly, feedback as determined above can also be mathematically 
expressed in terms of the drive strengths of relevant drives. In other 
words, one may view feedback as determined (in part) by drive strengths 
(in addition to goals and other factors).

Internal parameters within Clarion were adjusted. A genetic algorithm 
was used to determine the default values for these parameters, which 
roughly corresponded to the prior evolutionary history. That is, a GA was 
used as a rough approximation of a long evolutionary history that shaped 
the parameters of individual psychological processes (see Sun & Fleischer, 
2012 for details; cf. Cosmides & Tooby, 1994; Wynn, 2002).

Based on the results of the GA, some parameters were fixed at the 
values found by the GA throughout the simulations in order to simplify 
the simulations to make them manageable. The other parameters were 
varied around the default values found by the GA (see below for details) 
to represent individual differences.

Those parameters that were varied to ascertain their effects included: 
(1) the learning rate of the neural network at the bottom level of the 
ACS (α), (2) the probability of using the bottom level as opposed to the 
top level (probBL), (3) the generalization threshold (thresholdgen), and (4) 
the drive gain parameters (gainfood, gainreproduction, and gainhonor). Also varied 
were (5) survival strategy and (6) food availability, as mentioned earlier. 
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Considering the complexity and the computational cost, it was necessary 
to focus on a small set of values for each of the parameters (usually 2-4). 
See tables 7.2 and 7.3.

In this simulation, similar to the previous simulation, a small set of 
important metrics was used: average energy acquisition per agent per 
cycle, average population size (average number of agents in a population), 
and average lifespan (average age at death).

In the previous simulation, parameters were varied simultaneously in 
a factorial design. Here, parameters were varied relative to a single base-
line condition. Each condition was identical to the baseline condition, 
except for one or two parameters that were assigned different values. 

Table 7.2. � Tested values of cognitive, social, 
and environmental variables. 
Asterisks indicate default values.

Probability of using the bottom level:

#1 0.1 *

#2 0.5

#3 0.8

Learning rate:

#1 0.01

#2 0.10

#3 0.50

#4 2.00 *

Generalization threshold:

#1 2.0

#2 4.0 *

#3 8.0

Food availability:

#1 1200 (poor)

#2 2400 (average) *

#3 3600 (abundant)

Survival strategy (where cs = central store):

#1 cs/strong enforcement

#2 cs/weak enforcement *

#3 cs/no enforcement

#4 no cs
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No more than two parameters were varied from their default values in 
any given run.5 There were a total of 159 combinations. Each unique 
combination of parameter values was run 20 times, and each run lasted 
for a maximum of 2000 cycles.

7.3.2.  Simulation Results

7.3.2.1.  Effects of Social and Environmental Factors

Let us look into the social and environmental variables to see how they 
affected the overall performance of the tribal society.

Statistical analysis showed that the survival strategy had a significant  
effect on lifespan. See Figure 7.7. Generally speaking, CS with strong enforce-
ment was better than CS with weak enforcement; CS with weak enforce-
ment was better than CS without enforcement; CS without enforcement 
was better than no CS. These were expected, and were consistent with the 
findings from the previous simulation (as described in the previous section).

Statistical analysis also showed that the survival strategy had a sig-
nificant effect on population size. However, average population size was 
incidentally calculated based only on those periods when the population 
was not extinct. This calculation tended to cause the average population 
size in the conditions where extinction often occurred to be misleadingly 
large. In hindsight, the population size should have been averaged over 
all the cycles rather than only the ones where there were agents alive. 

5. Such an approach did sacrifice some rigor, but allowed a greater range of parameters 
to be tested, avoiding the exponentially increasing time cost of a factorial design.

Table 7.3. � Tested values of the motivational 
variables. Asterisks indicate default 
values.

Gainfood:

#1 1.0*

#2 0.5

Gainreproduction:

#1 1.0*

#2 0.5

Gainhonor:

#1 1.0*

#2 0.5
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Therefore, the results concerning population size should be looked at 
with this caveat in mind (Figure 7.8).

In terms of energy acquisition, the results were mixed: while in some 
analysis the difference was not statistically significant,6 in some other 
analysis there was a significant difference as in the previous simulation. 
See Figure 7.9. The pattern in the results was generally consistent with 
the previous simulation.

7.3.2.2.  Effects of Cognitive Factors

Turn now to cognitive factors within the ACS (such as learning rate 
and probability of using the bottom level), to see how they affected 
performance.

6. This was probably because in this case the existence of the central store did not 
make people significantly lazier or less competent; there were still sufficient incentives to 
obtain as much energy as possible (e.g., for the sake of reproduction).
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Figure 7.7.  The effect of survival strategy on lifespan. The y-axis represents 
lifespan. The x-axis represents strategy.

 



No CS

40.00

45.00

50.00

55.00

60.00

65.00

No
enforcement

Weak
enforcement

Strategy

M
ea

n 
of

 a
ve

. p
op

ul
at

io
n

Strong
enforcement

Figure 7.8.  The effect of survival strategy on population size. The y-axis 
represents population size. The x-axis represents strategy.

Abundant

Average
Poor

No CS No
enforcement

0.000

0.100

0.200

0.300

0.400

0.500

0.600

Weak
enforcement

Strong
enforcement

Strategy

Estimated marginal means of energy
collected per agent cycle

Es
tim

at
ed

 m
ar

gi
na

l m
ea

ns

Figure 7.9.  The effect of survival strategy on energy acquisition. The y-axis 
represents energy acquisition rate. The x-axis represents strategy. The different 
lines indicate different food availability.



Cognitive Social Simulation 317

Some analyses indicated that there were statistically significant effects 
of learning rate on energy acquisition and population size, while some 
other analyses failed to reach statistical significance. Generally speaking, 
higher learning rates worked better (for energy acquisition; while popula-
tion size was not a reliable measure as indicated earlier), probably because 
they led to more learning and therefore better knowledge and skills, con-
sistent with the findings from the previous simulations. See Figure 7.10.

Likewise, some analysis indicated that there were statistically signifi-
cant effects of probability of using the bottom level on energy acquisi-
tion, population size, and lifespan, while some other analyses failed to 
reach statistical significance. Generally speaking, lower probabilities of 
the bottom level worked better (for energy acquisition and for lifespan; 
while population size was not a reliable measure as indicated earlier), 
probably because they led to more reliance on explicit processes, which 
were more precise, consistent with the result of the previous simulation. 
See Figure 7.11 and Figure 7.12.

Statistical analysis also showed that there was a significant interaction 
between probability of using the bottom level and environment (food 
availability) on population size. While, as indicated before, population 
size in this simulation could not be used as a measure indicative of actual 
performance, statistical differences with regard to this measure might still 
be pertinent. This result indicated that some environmental conditions 
required more reliance on explicit processes than others.
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Figure 7.10.  The effect of learning rate on energy acquisition. The y-axis 
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7.3.2.3.  Effects of Motivational Factors

Now I turn to effects of motivational factors, which was not investigated 
in the previous simulation. As predicted, motivational factors had a sig-
nificant effect on outcomes.
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In this regard, “gains” was a variable created for the sole purpose of 
analysis. It consolidated the three drive gain parameters into one. There 
were eight values, ranging from “All 0.5” to “All 1.0”, with “All 1.0” being 
the default. See Figure 7.13 for the complete list, where, for example, 
“Honor 0.5” meant that the gain parameter of the honor drive was 0.5 and 
all the other drive gains were 1.0.

There was a statistically significant effect of “gains” on lifespan from 
some analyses. Generally speaking, more emphasis on food (a higher drive 
gain for food) led to better performance (e.g., “Food 1.0” or “Reproduction 
0.5”). Reduced emphasis on food generally led to worse performance (e.g. 
“Food 0.5” or “Honor 1.0”). This was no surprise. See Figure 7.13.

There was a significant interaction between “gains” and environment 
on lifespan. An interpretation of this result was as follows:  in a more 
benign environment, less focus on honor (e.g., “Honor 0.5”) helped sur-
vival, but in a harsh environment, drive focuses did not make much dif-
ference because one had to focus only on food in order to survive. See 
Figure 7.14 for the data.

There was a significant interaction between “gains” and generalization 
threshold for population size. When the gain parameter of the honor drive 
was low (0.5), a higher generalization threshold was better; when it was 
high (1.0), a lower generalization threshold was better. This was probably 
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because of the need to deal with the additional complexity of deciding 
whether to contribute to the central store or not: when the gain param-
eter of the honor drive was high (i.e., when one was more inclined to 
contribute), a more aggressive learning process (with a lower generaliza-
tion threshold) might be better. Also, when the gain of the reproduction 
drive was low (0.5), a lower generalization threshold was better, probably 
because this drive setting led to a relatively high gain of the honor drive 
and therefore the interpretation above applied.

7.3.3.  Discussion

The results of this set of simulations showed evidence for the interactions 
among cognitive, motivational, environmental, and social factors.

First, as discussed in the previous section, cognitive-environmental depen-
dency suggests that what cognitive characteristics are the best for (and thus 
likely selected within) a certain population may be determined in part by 
its external, physical environmental conditions, as shown by, for example, 
the interaction between probability of using the bottom level and environ-
ment discussed earlier. Existent cognitive characteristics may have been 
selected (through evolution) to work within given physical environments 
(or, likewise, social conditions, motivational characteristics, and so on).
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Second, cognitive-motivational dependency suggests that what cognitive 
characteristics are the best for (and thus likely selected within) a certain 
population may be determined in part by motivational characteristics, as 
shown by, for example, the interaction between generalization threshold 
and “gains” discussed earlier. Evolutionary explanations may apply to this 
case also.

Third, motivational-environmental dependency suggests that what moti-
vational characteristics are the best for (and thus likely selected within) a 
certain population may be determined in part by physical environmental 
conditions, as shown by, for example, the interaction between “gains” and 
environment.

There are also many other types of dependency (e.g., as discussed in the 
previous section; see also Sun & Naveh, 2007 and Sun & Fleischer, 2012). 
Results as described above are generally consistent with the psychological 
and sociological literatures (such as the cognitive-motivational interac-
tion, as in e.g. Markman & Maddox, 2005, or the social-environmental 
interaction, as in e.g. Doran et al., 1994).

One can compare the present simulations with that of Cecconi and 
Parisi (1998). The similarity is obvious (see the description earlier). 
However, significant differences exist. First, their model of individual 
agents was simple. Second, their model did not embody sufficiently real-
istic cognitive processes. Third, motivational processes were not present 
in their work. As a result of these three differences, the present work 
was able to explore significant effects of cognitive and motivational fac-
tors, while their model could not. Fourth, although they introduced social 
norms (such as contributing to central stores), different probabilities and 
rates of penalty for violating social norms were investigated in the pres-
ent work. Fifth, detailed statistical analysis was conducted in the present 
work, which revealed some interesting points.

The work by Doran and associates (e.g., Doran et  al., 1994)  is also 
relevant here. In their model, each agent was a production system, made 
up of three parts. It had a working memory, in which “facts” were stored. 
Each agent also had a set of rules, based on which it made decisions. There 
was a mechanism that matched rules against the situation represented 
by the working memory. Agents could also send each other messages. 
Even though agents did not have any preconceived notion of groups, 
Doran et al. (1994) found that they formed groups that collectively car-
ried out actions to obtain food. The simulation was used to explain the 
emergence of social complexity among prehistoric hunter-gatherers in 
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southwest France during the Upper Paleolithic period. The changes (e.g., 
larger bands with a clearly identified leader, status differences, rituals, and 
so on) emerged from local interactions among agents, given the deteriora-
tion of resource availability. The differences between their simulation and 
the present work include the fact that the Clarion-based model was more 
psychologically realistic, although their work involved more interagent 
relations, including communications.

NewTies (e.g., Gilbert et al., 2006) was a simulation project that 
investigated the emergence of social behavior to address environmen-
tal challenges analogous to those that human societies had been able to 
overcome. The simulation project could serve as a test bed for examin-
ing a wide range of social theories. Whereas one could not experiment 
on human societies, one could on such artificial societies. The goal of 
that project was consistent with the present work, although they did not 
address the cognitive and motivational issues addressed here.

The present simulations can be further enhanced. For instance, one 
could explore more realistic models of evolution. Not only psychologi-
cal parameters, but also social institutions and culture can be modeled 
in detail and evolved. For another instance, asexual reproduction can be 
changed to a more realistic setting (which has already been explored in 
follow-up work). Finally, findings from the simulations should be more 
rigorously validated empirically. Other aspects of the simulations can also 
be enhanced.

7.4.  Organizational Decision Making

Now I turn to organizational structures and cognition and examine how 
they affect collective decision making. The discussion below draws from 
Sun and Naveh (2004).

7.4.1.  Organizational Decision Task

Classification is a typical task faced by organizations. In a classification 
task, individuals may gather information about problems, classify them, 
and then make further decisions based on the classification. For instance, 
a bank may classify a household as financially promising or unpromising, 
and on that basis decide to approve or reject a loan.
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Within organizational research, Carley, Prietula, and Lin (1998) 
introduced a classification task involving different types of organiza-
tional structures and agents. By varying agent type and organizational 
structure, they studied how these factors interact with each other. Sun 
and Naveh (2004) built on that research to explore the interaction 
of cognition and organizational design, with a psychologically realistic 
agent model.

In the classification task, in each case, there is a single object in the 
airspace. The object has nine different attributes, each of which can 
take on one of three possible values (e.g., its speed can be low, medium, 
or high). An organization must determine the status of the observed 
object: whether it is friendly, neutral, or hostile. Hence, this is a ternary 
choice task. There are a total of 19,683 possible objects, and 100 prob-
lems are chosen randomly (without replacement) from this set.

In this task, the true status of an object can be determinable by adding 
up all nine attribute values. If the sum is less than 17, then it is friendly; if 
the sum is greater than 19, it is hostile; otherwise, it is neutral.

However, no one single agent has access to all the information nec-
essary to make a decision. Collective decisions are made by integrating 
separate decisions made by different agents, each of which is based on a 
subset of information, through a specific organizational structure.

There are two types of organizational structures: (1) teams, in which 
agents make their individual decisions and the organizational decision is 
determined by the majority; and (2) hierarchies, in which decision rec-
ommendations are passed from subordinates to superiors, and the deci-
sion of a superior is solely based on the recommendations of his or her 
subordinates. In this task, a two-level hierarchy with nine subordinates 
and one superior is considered.

Organizations are also distinguished by information accessible to 
agents. There are two varieties: (1) distributed access, in which each agent 
sees a different subset of three attributes and no two agents see the same 
subset of three attributes, and (2) blocked access, in which three agents 
see exactly the same subset of attributes. In both cases, each attribute is 
accessible to three agents.

Carley et al. (1998) considered several agent models. Among them, 
CORP-ELM produced the most probable classification based on an 
agent’s experience, CORP-P-ELM produced a classification stochastically 
in accordance with the estimate of the probability of each classification 
based on an agent’s experience, CORP-SOP followed the organizationally 
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prescribed standard operating procedure (which involved summing up 
the values of the attributes available to an agent), and Radar-Soar was 
a model built in Soar based on explicit search through problem spaces 
(Rosenbloom et al., 1993).

In Carley et  al. (1998), human experiments were done in a 2 × 2 
fashion (organizational structure × information access). In addition, the 
human data were compared to the simulation results from the aforemen-
tioned four models. Their data appeared to show that agent model type 
interacted with organizational design (team versus hierarchy and blocked 
versus distributed information access). The human data and the simula-
tion results were as shown in Table 7.4.

Their human data showed that, generally speaking, humans performed 
better in team situations. Moreover, distributed information access was 
generally better than blocked information access. The worst performance 
occurred when hierarchical organizational structure and blocked infor-
mation access were used in conjunction.

Their human and simulation data also suggested that which organi-
zational design (team versus hierarchy and blocked versus distributed 
information access) exhibited the highest performance depended on 
the type of agent. For example, human subjects performed best as a 
team with distributed information access, while Radar-Soar, CORP-
ELM, and CORP-P-ELM performed best in a team with blocked infor-
mation access. Relatedly, the adaptivity of agents tended to hinder the 
performance of hierarchal organization; with a nonadaptive agent such 
as CORP-SOP, there was no difference between the two organizational 
structures.

The results above brought up the issue of the interaction between 
organizational design and agent type (i.e., agent intelligence level). 
However, the agent models that were used there were simple. Therefore, 

Table 7.4. � Human and simulation data for the organization task from Carley 
et al. (1998). D indicates distributed information access; B indicates 
blocked information access. All numbers are percent correct.

Team(B) Team(D) Hierarchy(B) Hierarchy(D)

Human 50.0 56.7 46.7 55.0
Radar-Soar 73.3 63.3 63.3 53.3
CORP-P-ELM 78.3 71.7 40.0 36.7
CORP-ELM 88.3 85.0 45.0 50.0
CORP-SOP 81.7 85.0 81.7 85.0
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the intelligence level in these models was generally low (including, to 
a large extent, the Soar model, which essentially encoded a set of sim-
ple rules). Learning in these models was also rudimentary: there was no 
sophisticated learning as one might observe in humans.

These shortcomings suggested that it was worthwhile to undertake 
a simulation that involved a more psychologically realistic agent model. 
Moreover, with the use of a more psychologically realistic model, the 
roles of different cognitive capacities, parameters, and other details in 
affecting organizational performance might be investigated.

7.4.2.  Simulations and Results

Below, four simulations are described. In the first simulation, the afore-
mentioned task was tackled with Clarion-based agents. The second simu-
lation extended the duration of agent training. In the third simulation, a 
range of cognitive parameters of the agent model was varied in a facto-
rial design. The point was to explore the interaction of cognitive fac-
tors with organizational design. In the fourth simulation, instead of using 
exactly the same agent model, organizations with different agents were 
investigated.

7.4.2.1.  Simulation I: Matching Human Data

This simulation used the same setup as the original study described above 
(Carley et al., 1998), but substituted Clarion-based agents for the simpler 
agents used previously. The goal was to study the effects of organizational 
structure and information access on performance, as in the original study 
but in the context of the more psychologically realistic agent model.

The ACS of Clarion was used for capturing individual decision making. 
At the top level of the ACS, RER was used to extract rules. At the bottom 
level, there was a neural network. The network received feedback of 0 or 
1 after each step, depending on whether the target was correctly classi-
fied. Due to the immediate feedback, simplified Q-learning was used. All 
agents ran under a single, uniform set of cognitive parameters (although 
these parameters were varied later).

The results of the simulation were as shown in Table 7.5. 4,000 train-
ing cycles (each corresponding to a single case with a decision by the 
organization) were used for each group. The results closely accorded with 
the patterns of the human data, with teams outperforming hierarchies, 
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and distributed access outperforming blocked access. Also, as in humans, 
performance was not grossly skewed but was roughly comparable across 
all conditions, unlike some of the simulations from Carley et al. (1998). 
The match with the human data was better than the simulations in the 
original study as described earlier.

Note that under the hierarchal conditions, performance was worse. 
In these conditions, two layers of agents were being trained, with the 
output of the upper layer depending on those of the lower layer. In addi-
tion, the higher input dimensionality of the supervisor (nine inputs as 
opposed to three inputs for a subordinate) increased the complexity, 
leading to slower learning. This was analogous to human learning, where 
input dimensionality was known to be one of the chief determinants of 
performance. Note also that in this simulation, distributed information 
access led to better performance than blocked access, probably because 
distributed access provided more diversified information sources.

7.4.2.2.  Simulation II: Extending Simulation Temporally

Thus far agents trained for 4,000 cycles were considered, and the results 
were analogous to those of humans. However, it would be interesting to 
see what would happen if the length of training was extended. In particu-
lar, it would be interesting to see if the patterns observed above would be 
preserved in the long run.

As Figures 7.15–7.18 showed, learning could occur over 20,000 
cycles (rather than 4,000 cycles). Previously, the best performing con-
dition was team with distributed information access. This condition 
continued to improve slowly after the first 4,000 cycles, but was over-
taken by team with blocked access. Thus, it seemed that while teams 
benefited from diversified information in the early phases of learning, 
a well-trained team with redundant information (i.e., blocked access) 

Table 7.5. � Simulation data for agents running for 4,000 cycles. Performance 
for Clarion is computed as percent correct over the last 1,000 
cycles. The human data from Carley et al. (1998) are included  
for comparison.

. Team(B) Team(D) Hierarchy(B) Hierarchy(D)

Human 50.0 56.7 46.7 55.0
Clarion 53.2 59.3 45.0 49.4
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performed better in the long run due to redundancy and thus less 
fluctuation.

Similarly, in hierarchal organizations, there was either a reversal or dis-
appearance of the initial trends. Hierarchies with distributed information 
access produced the best and also the most stable performance. Likewise, 
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Figure 7.15.  Training curve (team organization, distributed access).
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Figure 7.16.  Training curve (team organization, blocked access).
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Figure 7.17.  Training curve (hierarchical organization, distributed access).
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Figure 7.18.  Training curve (hierarchical organization, blocked access).

a hierarchy with blocked access, although previously performed poorly, 
showed significant improvements. Whereas hierarchies took longer to 
train, their performance was superior in the long run. In a hierarchy, a 
well-trained supervisor was able to synthesize many data points in a more 
sophisticated way than a simple voting process. Likewise, the reduced 
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individual variation in blocked access led to less fluctuation in perfor-
mance in the long run.

There is a lesson here: limited data can only allow one to draw limited 
conclusions—only with regard to the specific condition under which the 
data were obtained. Researchers may overgeneralize their conclusions, 
which can only be remedied by more extensive investigations. Given the 
high cost of human experiments, simulation, especially social simulation 
with a cognitive architecture, has a significant role to play in exploring 
alternatives and discovering possibilities (Sun & Naveh, 2004, 2007).

7.4.2.3.  Simulation III: Varying Cognitive Parameters

Clarion includes a wide range of cognitive-psychological mechanisms 
and processes, and its parameters are generic, not task-specific. Thus, one 
can study specific issues, such as organizational design, in the context 
of a general theory of cognition-psychology. In this simulation, cognitive 
parameters were varied within the ACS to examine their effects on col-
lective performance. Analogous to varying training length earlier, varying 
cognitive parameters also allowed one to see the variability of results and 
thus avoid overgeneralization.

Parameters were varied in a factorial design, in order to examine both 
the effects of individual parameters and their interactions with each 
other. Two sets of parameters were separately varied to avoid the pro-
hibitively high computational cost of varying all parameters simultane-
ously. The first set of parameters consisted of fundamental parameters of 
the ACS, including: (1) probability of using the bottom level, (2) learn-
ing rate of the neural network at the bottom level, (3)  temperature 
(degree of randomness in action selection). The second set consisted of 
parameters related to rule extraction at the top level, including: (1) RER 
positivity threshold, (2) RER generalization threshold, and (3) RER rule 
density (which determined how often a rule must be invoked in order 
to be retained). (See Chapter 3 regarding details of these parameters.)

Each of the two sets, along with information access and organizational 
structure, was varied in a factorial design, so that all combinations of all 
values of the parameters in a set were considered. For each parameter, 
two or three different values were tested.

Performance was examined at two points of the learning curve—after 
some initial training, because results at that point corresponded closely 
to the human data described earlier, and after more extensive training. 
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Therefore, performance was measured after 4,000 cycles and after 20,000 
cycles.

Statistical analysis of the results confirmed the effects of organizational 
structure and information access to be significant. Moreover, the interac-
tions of these two factors with length of training were significant. These 
interactions, as seen in Figures 7.19–7.20, reflected the trends discussed 
earlier: the superiority of teams and distributed information access at the 
early stage of the learning process, and either the disappearance or the 
reversal of these trends toward the end. This analysis showed that these 
trends persisted across a variety of settings of cognitive parameters and 
did not depend on any one setting.

The effect of probability of using the bottom level was likewise signifi-
cant. More interestingly, its interaction with length of training was signifi-
cant as well. As shown in Figure 7.21, explicit rule usage was very useful 
at the early stages of learning, when increased reliance on rules tended 
to boost performance. However, by the 20,000th cycle, this effect disap-
peared. This was because rules were crisp guidelines that provided a useful 
anchor at the uncertain early stages of learning. However, by the end of the 
learning process, they became too coarse grained to cover all possible con-
tingencies and no more reliable than highly trained neural networks. This 
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Figure 7.19.  The effect of organization on performance over time. The x-axis 
represents training cycle. The y-axis represents performance in terms of 
percent correct. The two lines represent team and hierarchy respectively.
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seemed to correspond to similar phenomena in human learning whereby 
explicit rule learning was widely used in the early stages of learning but 
was later replaced by implicit skills (Dreyfus & Dreyfus, 1987).

Predictably, the effect of learning rate was significant. However, there 
was no significant interaction between learning rate and organizational 
structure or information access, which suggested that the learning capa-
bility did not differentially benefit a hierarchy versus a team, or blocked 
versus distributed information access.

Now turn to the parameters related to rule extraction. As confirmed 
by statistical analysis, it was better to have a higher rule generalization 
threshold (up to a point). That is, if one restricted the generalization of 
rules to more successful ones, the result was a better rule set, which led 
to better performance.

Relatedly, whereas the effect of rule density was insignificant, the 
interaction between density and generalization threshold was significant. 
When rules were of relatively high quality (i.e., under a higher generaliza-
tion threshold), it was better to have more of them available by lowering 
the density parameter. By contrast, when the quality of rules was lower 
(i.e., under a lower generalization threshold), it was advantageous to have 
a quicker forgetting process, as captured by a higher density parameter.

This simulation confirmed that which organizational structure (team 
versus hierarchy) or information access scheme (distributed versus 
blocked) was superior depended on the length of training. It also showed 
that some cognitive parameters (e.g., learning rate) had a monolithic 
effect, whereas in other cases, complex interactions of factors were at 
work. This illustrated, once again, the importance of limiting one’s con-
clusions to the specific context in which data were obtained.

7.4.2.4.  Simulation IV: Introducing Individual Differences

Thus far, only organizations with identical agents were considered. In the 
real world, however, organizations often consisted of individuals with 
widely varying cognitive capabilities. It would be interesting to further 
extend the simulation to capture this variability. One could observe how 
organizations varied in response to individual cognitive differences and 
determine whether certain organizations were better at dealing with such 
variations.

For instance, the case of a single slow learner was examined. Agents 
were organized in a hierarchy, and distributed information access was 

 



Cognitive Social Simulation 333

used. All agents were identical, except for one agent who was a much 
slower learner than the others. At the end of the task, the supervi-
sor’s network (at the bottom level of its ACS) was analyzed by sum-
ming up the absolute values of the weights corresponding to the 
inputs from each subordinate agent, which allowed one to compare 
the relative influences of different agents on the supervisor’s deci-
sion. The summed weights for the slow-learning agent were shown 
to be much lower than the other sums (by a factor of at least 2).  
In other words, a supervisor learned to pay less attention to the recom-
mendations of the slow learner. Additionally, overall performance of the 
hierarchy dropped by only 3% to 4%. Thus, hierarchies were robust 
enough to deal with a single weak performer, showing only a slight deg-
radation in performance.

For another instance, a situation with variable learning rates was exam-
ined. In this simulation, each agent had a different learning rate (instead 
of having just one agent that differed from the rest). The results of the 
simulation followed the same trends as reported earlier, with hierarchies 
outperforming teams (after 20,000 training cycles). However, here the 
margin by which teams were outperformed was significantly greater than 
when all agents were identical. This was because the decision-making 
process of a team—the majority vote—was less capable of taking indi-
vidual differences into account. By contrast, a supervisor could rely more 
on one subordinate than on another, based on the past successes of their 
recommendations. A more extensive discussion of the impact of weak 
learners in an organization can be found elsewhere (e.g., Carley, Prietula, 
& Lin 1998; Sun & Naveh, 2004).

7.4.3.  Discussion

In this task, a cognitively more realistic simulation with Clarion cap-
tured human data in organizational decision making. The Clarion-based 
model performed well across a variety of conditions, consistent with 
the human data. After a certain amount of training, the trends observed 
closely matched the human data. Thus, cognitive realism in social simula-
tion could closely capture human results, even though social simulations 
tended to be at a higher level.

Moreover, by using Clarion, deeper explanations were formulated. For 
instance, the poorer performance of hierarchies early on might be attrib-
uted, at least in part, to the longer training time needed to deal with  
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higher dimensionality of information by the supervisor. Such explanations 
were only possible when the model was cognitively-psychologically realistic.

In addition to offering deeper explanations, cognitive-psychological real-
ism can lead to greater predictive power for social simulation. In Clarion, 
one can vary cognitive parameters and test their effects on performance. In 
this way, Clarion may be used to predict organizational performance, and 
furthermore to help performance by prescribing optimal or near-optimal 
cognitive abilities for specific tasks and organizational structures.

Some prescriptions generated by Clarion may help to assign agents 
to organizational roles based on their cognitive capabilities. For instance, 
a hierarchy’s performance hinges crucially on having a quick-learning 
supervisor. Furthermore, some other results generated by Clarion may 
help to formulate organizational policies. For instance, the importance of 
rule learning at the beginning of the learning process was observed. Based 
on this, an organization may emphasize rules (e.g., standard procedures) 
when training new personnel, but emphasize case studies when training 
experienced employees. Such prescriptions result from the cognitive-psy-
chological realism of the model employed.

With greater cognitive-psychological realism, social simulation may be 
able to generate findings more meaningful for organizational design. It 
may happen that seemingly minor differences in cognition-psychology 
may make significant differences in terms of organizational performance. 
Conversely, seemingly significant differences in cognition-psychology may 
turn out to have little impact on collective performance. In many cases, 
there is no a priori way of predicting the effects of individual cognitive 
parameters, and therefore simulation may be useful. By varying cognitive 
(and other) parameters in this study, meaningful results were found. This 
was only possible with sufficient cognitive-psychological realism.

7.5.  Academic Publishing

I now turn to examine the simulation of the development of academic 
science. The discussion draws from Naveh and Sun (2006).

7.5.1.  Academic Science

Science may develop in a certain way following a certain pattern. In par-
ticular, it has been observed that the number of authors contributing a 
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certain number of articles to a scientific journal follows a highly skewed 
distribution (an inverse power curve). This distribution, known as a Zipf 
distribution, is common to a number of other phenomena in information 
science, such as the frequency of spoken words or of links on the World 
Wide Web. In the case of scientific publication, the tendency of author-
ship to follow a Zipf distribution was observed by Lotka (1926) and has 
been known as Lotka’s law.

Simon (1957) proposed a simple stochastic process for capturing 
Lotka’s law. One of his assumptions was that the probability that a paper 
was published by an author who had published i articles before was equal 
to a/ik, where a was a constant of proportionality.

Gilbert (1997) modeled this phenomenon through social simula-
tion. His simulation was based on the assumption that the system ran-
domly selected a focal paper first, which was represented as a point in a 
two-dimensional space of ideas, and then it randomly selected a number 
of other papers, each of which occupied a different point and pulled the 
original point in its direction. The resulting paper would be located on 
that two-dimensional space based on the factors above. Papers were ran-
domly assigned authors based on a stochastic process. To capture the con-
straint that academic papers must be original, a newly published paper 
must be at least m units away from any other existing paper (where m is a 
constant). Another assumption was that the number of papers produced 
in a given time period was determined by the number of papers in exis-
tence during the previous time period, by specifying a small probability 
of each existing paper acting as the seed for a new paper. Thus, papers 
spawned more papers, with authors serving only an ancillary role.

This model led to an idea space divided into clusters, which were 
assumed to correspond to different scientific areas. Each cluster origi-
nated in a few seminal papers and accumulated additional papers at an 
increasing rate over time. This model yielded publication trends consis-
tent with human data, including Lotka’s law described earlier. Although 
Gilbert’s model captured to some extent the growth of academic science, 
it was not cognitively-psychologically realistic. It did not include many 
processes that were known to be important for scientific inquiry (e.g., 
learning, creativity, and so on).

However, by using a more cognitively realistic model, one could 
avoid many artificial assumptions (such as the assumption that papers 
automatically spawned more papers, or that researchers were randomly 
assigned authorship of specific papers). In this way, there would be more 
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distances between assumptions and outcomes, thereby generating deeper 
explanations.

7.5.2.  Simulation Setup

In this alternative simulation, authors were not mere placeholders, but 
Clarion-based agents whose success or failure depended on their cog-
nitive abilities. Successful authors would go on to publish many more 
papers, whereas unsuccessful authors would be removed from the system.

As in Gilbert’s simulation, the scientific world consisted of papers, 
each of which proposed an idea, and of authors, who generated new 
papers through combining previous ideas (papers). In the present simula-
tion, to publish a paper, an agent adopted a focal idea (represented by an 
existing paper), in accordance with some cognitive processes, implicit or 
explicit. The agent then used other ideas (other published papers), which 
pulled the original idea in different directions. In addition, the agent also 
performed local search to “optimize” the resulting idea. This reflected 
the fact that authors did not merely cobble together ideas from existing 
sources, but they also tried to refine the final product.

Possibility of failure to publish existed in this simulation, just as human 
authors could produce papers that were not publishable. This was in con-
trast to Gilbert’s simulation, in which ideas were largely undifferentiated 
in terms of quality. Instead, in the present simulation, each agent had a 
set of evaluation functions that determined the quality of ideas. These 
functions corresponded to the important considerations in evaluating a 
scientific idea (e.g., clarity, insightfulness, empirical evidence, theoretical 
results, and application potential). However, just as researchers in the 
real world could not predict precisely when the results of their research 
would meet with approval and interest, agents’ individual valuations of 
these functions might differ from the community valuation.

An agent, made up of the ACS, selected a focal idea and then a number 
of pull ideas. It learned through reinforcement learning (at the bottom 
level of the ACS). It naturally captured sequences of actions (i.e., select-
ing the focal idea, then the first pull idea, and so on). The feedback to 
agents was based on paper acceptance or failure (0 or 1). In addition, 
agents were provided with partial feedback at each major step of the 
paper generation process, equal to a fraction (one-third) of the unfin-
ished paper’s evaluation (as determined by an agent’s own evaluation 
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function). This reflected the fact that agents were guided to a certain 
extent by their own experience.

At the same time, an agent might use RER to extract rules at the top 
level that determined how to choose focal ideas and how to choose pull 
ideas. These rules were used in conjunction with other rules concerning 
local search, which represented a priori knowledge (FRs).

In the simulation, an “episode” corresponded to a single attempt by 
an agent to publish a paper, whether successfully or not. There was a 
maximum of 10 agents in the system at any given time. Agents were 
pre-trained (for 10 episodes) before entering the system. Reflecting a 
“publish or perish” academic environment, agents were evaluated peri-
odically (every five episodes) based on their publication record (i.e., 
success rate). If an agent fell below a minimum expected standard (40% 
success), the agent was removed from the academic world. If the agent 
passed all the evaluations, it retired upon reaching the maximum allow-
able age (60 episodes). Whenever an agent retired or was removed, a 
new agent took its place. This was somewhat analogous to the real-life 
academic world.

Below, I sketch some technical details to substantiate some ideas out-
lined above (which, however, may be skipped by any reader uninterested 
in technical details). In the simulation, a paper was a multidimensional 
vector. Without loss of generality, the vector had 12 dimensions, with 
each dimension having a value that was a real number between 0 and 16.

“Pulling” was accomplished by moving the original point in the idea 
space toward the second point (the “pull” point), by a certain fraction of 
the distance between them. Gilbert’s formula was adopted:

d d d d mi i i i: ’ /= + −( ) −( )1 2 	

where i ranged over all dimensions, di was the value of dimension i of the 
original focal point, d’i was the value of the same dimension of the “pull” 
point, and m ∊ [0, 1] was a constant that was incremented by 0.1 after 
each “pull” (to gradually reduce the amount of pulling).

Agents were restricted to two “pull” ideas per focal idea. After idea 
selection and “pulling,” an agent performed limited local search. The 
search was done within a radius of two from the modified idea, using 
the hill-climbing algorithm (which had been shown to capture human 
reasoning in some cases).
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To represent communal evaluation functions, five polynomial func-
tions (randomly generated) were used (with a maximum degree of three). 
Each agent had its own weights (randomly generated) for these functions 
that they used to compute a weighted average of the five functions. While 
agents knew the functions, they did not know the “true” weights (i.e., the 
weights used by a journal in determining acceptance or rejection of an 
article) and therefore their learning consisted, in part, of overcoming their 
initial bias in this respect.

Paper acceptance was determined by (1) being above a threshold 
of 0.5 when evaluated using the five evaluation functions with prede-
termined weights, and (2) having a minimum distance of 1 between 
the new paper and any existing papers. The former requirement pro-
vided a minimum standard for paper quality, forcing the agents to learn 
and adapt. The latter requirement represented a criterion for paper 
originality.

7.5.3.  Simulation Results

The results of the simulation were as shown in Tables 7.6–7.7. They were 
compared with the actual data from Chemical Abstracts and Econometrica, 
and the results obtained from previous simulations by Simon (1957) and 
Gilbert (1997). The Clarion results were the averages of 300 runs, ensur-
ing the representativeness of the results.

Table 7.6. � Number of authors contributing to Chemical 
Abstracts. The figures in the table indicate number 
of authors contributing to the journal, by number of 
papers each author has published.

# of Papers Actual Simon’s Gilbert’s Clarion

1 3,991 4,050 4,066 3,803
2 1,059 1,160 1,175 1,228
3 493 522 526 637
4 287 288 302 436
5 184 179 176 245
6 131 120 122 200
7 113 86 93 154
8 85 64 63 163
9 64 49 50 55
10 65 38 45 18
>11 419 335 273 145
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First, note that the Clarion simulation results for the two journals were 
fit to the power curve f(i) = a/ik, resulting in an excellent match, similar 
to the prior simulations.

However, in the present simulation, the number of papers published 
by an author reflected the cognitive ability of the author, as opposed to 
being based on auxiliary assumptions (such as those made by Gilbert, 
1997). This explains, in part, the slightly greater divergence of the pres-
ent results from the human data: whereas Gilbert’s simulation consisted 
of equations selected to match the human data, the Clarion approach 
relied on more detailed, lower-level mechanisms—namely, a cognitive 
architecture that was generic rather than task-specific. The result of the 
Clarion-based simulation was therefore emergent, not a result of specific 
and direct attempts to match the human data. This simulation put more 
distance between mechanisms and outcomes, which made it harder to 
obtain a match with the human data. Thus, the fact that a good match 
with the human data was found showed the potential of the Clarion-
based approach.

As in the case of organizational decision making discussed earlier, 
there is more to cognitive social simulation than merely replicating 
and validating previous results. With Clarion, one can vary parameters 
that correspond to specific cognitive factors, and observe the effects on 
performance.

A number of cognitive parameters were varied. In the previous 
simulation of organizational performance, parameters were varied in 

Table 7.7. � Number of authors contributing to Econometrica. The figures 
in the table indicate number of authors contributing to the 
journal, by number of papers each author has published.

# of Papers Actual Simon’s Gilbert’s Clarion

1 436 453 458 418
2 107 119 120 135
3 61 51 51 70
4 40 27 27 48
5 14 16 17 27
6 23 11 9 22
7 6 7 7 17
8 11 5 6 18
9 1 4 4 6
10 0 3 2 2
>11 22 25 18 16
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a factorial design, and this yielded a complex pattern of interactions 
among different variables. Here, due to the greater complexity of the 
task, each parameter was varied relative to a single baseline condi-
tion, rather than being compared to all combinations of all values of 
all parameters. A baseline condition was used, which consisted of the 
parameter values used in the simulation above. Each of the other condi-
tions was identical to the baseline condition except for one parameter 
that was assigned a different value.

The results were as follows. As one would expect, cognitive parameters 
of individual agents were important in determining the rate of scientific 
progress. By varying these parameters, one could come up with scientific 
communities that produced different numbers of papers.

Apart from this aggregate measure of scientific productivity, it 
would also be interesting to see if the patterns of individual contri-
bution observed earlier would be preserved under different cognitive 
parameter settings. In particular, it would be interesting to see if the 
power curve was obtained under different cognitive parameter settings. 
As seen in Figures 7.22–7.23, different settings of density and general-
ization threshold led to larger or smaller numbers of papers in aggre-
gate, but they did not fundamentally change the curve, which followed 
an inverse power distribution. Similar results were obtained for other 
(though not all) ranges of cognitive parameters.
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This result, which I termed “cognitive-social invariance,” was impor-
tant. It showed that some regularities that characterized societies were 
to some extent invariant with respect to individual cognition (within a 
reasonable range, of course). This reduced the likelihood that the patterns 
observed were a by-product of a particular set of cognitive parameters. As 
a comparison, in the simulation of organizational decision making earlier, 
it was shown that some patterns were indeed directly related to the set-
tings of cognitive parameters.

In addition, effects of individual cognitive parameters on collective 
performance were observed, similar to what was discussed in the organi-
zational or the tribal simulations earlier. I will not repeat such an analysis 
here; the interested reader should see Naveh and Sun (2006).

However, for an instance of a new finding, look into the “temperature” 
(degree of randomness) of an agent’s decision making, which modulated 
an agent’s exploration of the idea space (see Chapter 3). As shown in 
Figure 7.24, agents were at their most prolific under a moderately high 
temperature setting—that is, when they showed a willingness to experi-
ment (to pursue new leads) while still being mostly guided by their 
experiences. This observation is consistent with the notion of serendip-
ity in scientific discovery. Many major scientific discoveries have been 
serendipitous in that they have been the result of seemingly unrelated 
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investigations. Although such discoveries were often attributed to good 
fortune, some argue that serendipity is partly a cognitive faculty that can 
be nurtured and developed. The simulation captured this notion of seren-
dipity through a modest degree of randomness in decision making.

7.5.4.  Discussion

This study provided a corroboration of the earlier simulations of the same 
phenomenon, by showing some of their results to be independent of cog-
nitive processes to some extent. Therefore, while sometimes cognitive 
details clearly cannot be abstracted away, other times they can. Along the 
way, we may discover important cognitive-social invariance.

Apart from corroboration and validation, cognitive-psychological 
realism in social simulation may lead to better representations of target 
phenomena. For instance, a possible way of capturing the role of seren-
dipity in science was identified, as a researcher’s willingness to explore 
apparently less than optimal ways. The ability to represent such aspects 
in terms integral to the cognitive architecture, rather than through aux-
iliary assumptions (e.g., by adding a “randomizing” function to the idea 
selection process in Gilbert’s simulation), is an advantage of cognitively-
psychologically realistic simulation.

Another advantage of cognitively-psychologically realistic simula-
tion lies in the exploration of the relative roles that individual cogni-
tive parameters play in the emergence of large-scale social phenomena. 
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Parameters of Clarion that corresponded to aspects of cognition were 
varied and their effects on outcomes were tested. As mentioned before, 
with Clarion, parameters being altered were presumably fundamental 
aspects of cognition, and thus observed differences in performance were 
more likely to stem from real differences in individual cognition.

Cognitively-psychologically realistic simulation can help to estab-
lish the constancy of some observed phenomena. For instance, the same 
power curve was observed under different cognitive parameter settings, 
even when overall scientific productivity varied. Such results lent sup-
port to theories of cognitive-social invariance. Alternatively, they might 
also suggest boundary conditions under which such phenomena began 
to break down. As demonstrated in the previous simulations of organiza-
tions and tribes, patterns of collective performance might change as a 
consequence of changes of individual cognitive processes.

7.6.  General Discussion

Beyond what has been described so far, there have been various 
other efforts at exploring the grounding of social phenomena in 
cognitive-psychological mechanisms and processes. Some of the efforts 
were computationally motivated as has been discussed above (see also 
Sun, 2006). Some other efforts were more empirical or theoretical in 
nature (see Sun, 2012b).

For instance, war and revenge in tribal society have been simulated on 
the basis of Clarion, in which more realistic modeling of both social and 
cognitive-psychological processes is involved. Emergence of norms and 
moral codes has also been tackled. Various other projects are also under 
way.

7.6.1.  Theoretical Issues in Cognitive Social Simulation

The integration of the social sciences and cognitive science may 
provide the social sciences with new approaches and novel frame-
works, besides providing cognitive science with new data and new 
problems to address (Sun, 2006, 2012b). Understanding theoretical 
issues involved in the interaction of cognition-psychology and social-
ity requires, at least in part, computational modeling and simulation,  
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because of the complexity of such an undertaking, and also because of the 
expressive power of computational models. Unlike mathematical mod-
eling, computational modeling is not limited by traditional mathemat-
ics. Hence it enjoys greater expressive power. Yet, compared with verbal 
theories, it is more precise. See Sun (2006, 2009b) for more discussions 
of this point.

In general, a mechanistic (e.g., computational) explanation of a phe-
nomenon means specifying a mechanism that is capable of producing the 
phenomenon. It consists of describing the structures and processes related 
to a mechanism and showing how the mechanism leads to the phenom-
enon (Sun, 2009b). It is a description often in terms of lower-level enti-
ties and processes. In this regard, a cognitive architecture may lead to 
explanations of social phenomena based largely on underlying psycho-
logical factors, relying on entities and processes at a lower level (i.e., the 
psychological, as opposed to the sociological, level).

Although some have argued that lower-level explanations are unin-
formative and provide unnecessary details, lower-level mechanisms 
and processes are often an important part of the constitution of social 
processes. By using cognitively-psychologically realistic agents in social 
simulation, one might be able to provide explanations of (at least some) 
observed social phenomena based on individual psychological processes. 
This often allows one to do away with some assumptions that are not 
cognitively-psychologically grounded. Often, in social simulation, ad hoc 
assumptions were made because they were needed for generating simu-
lation results that matched observed data. Assumptions should instead 
be made at a lower level. This approach puts more distance between 
assumptions and outcomes, and thereby provides deeper explanations (as 
argued more extensively in Sun, 2006).

Although nearly any higher-level process may be described in terms 
of lower-level entities, the actual higher-level processes that occur 
may depend on a particular combination of conditions. There is often 
no a priori way of determining, based solely on lower-level entities, 
which of the higher-level processes will actually occur. Thus, social 
processes may in this sense be “emergent.” Based on that, one might 
argue that the approach described in this chapter is needlessly reduc-
tionist: causal relationships at the higher level may be a product of 
causal relationships at the lower level; nevertheless, it is possible to 
describe causal relationships at the higher level without referring to 
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relationships at the lower level. Why, then, is cognitive-psychological 
realism in social simulation needed? One answer is that a deep and 
convincing theory must be capable, in principle at least, of mapping a 
higher-level theory to lower-level theories. In this case, it means pos-
sibly mapping sociocultural phenomena to cognitive-psychological 
processes. The ability to accurately model higher-level phenomena 
through a higher-level description is a necessary, but not sufficient, 
condition for a deep theory. It is preferable to bridge higher and lower 
levels in theorizing. Besides, there are also a number of other (more 
practical) advantages as touched upon earlier (e.g., testing the effects 
of individual cognitive parameters, discovering cognitive-social inter-
actions or invariance, and so on).

Such work may not only shed new theoretical light on social 
processes and phenomena, but may also connect individual-level 
cognitive-psychological analysis and collective-level social analysis (Sun, 
Coward, & Zenzen, 2005; Sawyer, 2003; Alexander et  al., 1987)  and 
thus build deeper theories linking the macro with the micro. In so 
doing, it also allows greater distance between assumptions and out-
comes and therefore deeper explanations (as argued earlier). In addition, 
cognitive-psychological realism might also lead to theories of greater 
explanatory accuracy and greater predictive power (as shown earlier).

However, there are several considerations that may limit the applica-
bility of a cognitive-psychological approach to social simulation. One is 
the consideration of complexity, which, for one thing, can make it dif-
ficult to interpret results in terms of their precise contributing factors. 
It is never an easy task to distinguish between simulation results that 
genuinely shed light on an issue and ones that are mere artifacts. More 
complex models may exacerbate this problem. One must be aware of 
“Bonini’s Paradox” (Fum et al., 2007). That is, as models become more and 
more realistic, they may become more and more complex, and eventually 
they may be so complex that they are as difficult to understand, explain, 
and communicate as the system being modeled and simulated. This point 
seems to argue against cognitively-psychologically realistic social simula-
tion. Furthermore, complexity also leads to high computational costs and 
hence raises the issue of scalability. In addition, there is the issue of proper 
choice of a theoretical framework in relation to cognition-psychology, 
which may hinge on particular conceptions or interpretations of social as 
well as psychological phenomena.
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7.6.2.  Challenges

The fundamental challenge in further developing (psychologically real-
istic) cognitive social simulation as described in this chapter is how to 
seamlessly integrate a detailed social simulation with a detailed cognitive 
architecture (serving as building blocks). One specific challenge in this 
regard is how to possibly enhance cognitive architectures for the purpose 
of accounting for sociality in individuals. For example, what are essential 
psychological features that should be taken into consideration in models 
of multi-agent interaction? In particular, what is needed in relation to 
social cognitive capabilities in individuals? What sociocultural represen-
tations are likely to reside in the individual mind (e.g., “norms,” “obliga-
tions,” “rights,” etc.)? In what forms? And so on.

Consider the incorporation of various social cognitive mechanisms 
and processes. For one thing, the distinction of implicit versus explicit 
social cognition is important for explaining a variety of social psycho-
logical data, for example, Lambert et al. (2003), Norton, Vandello, and 
Darley (2004), Chen et al. (1996), Wegener and Petty (2001), and so 
on. There are also a variety of other social cognitive (social psycho-
logical) mechanisms: for example, moral judgment, person perception 
(impression formation), social categorization, and so on. With these 
social cognitive mechanisms, one may investigate the effects of these 
mechanisms on social processes (e.g., the effects of social cognitive 
attributes on organizational performance). Conversely, one may also 
pursue explanations of social phenomena from the underlying social 
cognitive-psychological mechanisms (and other cognitive-psychologi-
cal mechanisms), for example, explaining Schelling’s (1971) segrega-
tion model by grounding it in real human motives and psychologically 
realistic models of human social perception and social identity.

To meet these challenges above and to more fully reap the benefits of 
cognitive social simulation, a number of directions need to be explored 
and a number of different methods need to be utilized in synchrony, 
including all of the following:

•	 Incorporating in models of individuals learning, reasoning, 
decision making, problem solving, metacognition, motivation, 
emotion, personality, morality, and so on (i.e., going beyond the 
narrow definition of cognition).
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•	 Developing social process models, especially large-scale ones, on 
top of detailed cognitive-psychological models of individuals

•	 Exploring empirical work (both laboratory experiments and 
field studies), for the sake of detailed cognitive-psychological 
modeling and large-scale social modeling and simulation on the 
basis of detailed cognitive-psychological models

•	 Exploring the relationship of social and individual processes, on 
a large scale possibly, on the basis of the synthesis of the models 
mentioned above

•	 Addressing a wide variety of issues based on the aforemen-
tioned explorations, for example, cultures, institutions, moral 
codes and beliefs, normative standards of reasoning, and so on.

7.6.3.  Concluding Remarks

This chapter addresses cognitive social simulation (Sun, 2006), at the 
intersection of cognitive science (cognitive modeling in particular) and 
the social sciences (social simulation in particular). By combining cog-
nitive models and social simulation models, cognitive social simulation 
is poised to address the interaction of the cognitive-psychological and 
the social, in addition to understanding cognitive-psychological and social 
phenomena separately. Cognitive social simulation may even find practi-
cal applications (e.g., as documented in Sun, 2006).

In particular, this chapter explored the integration of two modeling 
approaches, with the use of a cognitive architecture that includes cog-
nitive, motivational, and other psychological processes. Such integration 
could lead to greater explanatory depth, through exploring the role of 
individual psychological processes in collective social phenomena. For 
instance, interactions among cognitive, motivational, environmental, and 
social factors have been shown. These interactions support the claim 
that social processes and phenomena may be related to individual cog-
nitive, motivational, and other psychological processes—a form of the 
micro-macro link.

The results from the Clarion-based cognitive social simulation have 
been encouraging. They yielded findings consistent with the psycho-
logical and sociological literatures. Moreover, they also led to some 
novel insights into sociocultural processes, cognitive-psychological pro-
cesses, and their interactions. Thus, the Clarion cognitive architecture 
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has shown some promise of serving as a foundation for cognitive social 
simulation.

Note that this is not to say that social processes are fully determined 
by individual cognition-psychology, but rather that they are (at least) 
manifested through individual cognition-psychology and thus there is a 
great deal to be gained from studying the social and the cognitive-psycho-
logical together and from exploring social processes and phenomena from 
a cognitive-psychological viewpoint (Sun, 2006; Sun, 2012b). Although 
some cognitive-psychological details may ultimately prove to be irrel-
evant, they often cannot be determined a priori. Thus, cognitive social 
simulation may be useful.
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8

Some Important Questions  
and Their Short Answers

This chapter will be devoted to addressing a number of commonly raised 
or otherwise particularly pertinent questions about Clarion. These ques-
tions are roughly divided into the following generic categories: theoreti-
cal issues, computational issues, and biological connections.

8.1.  Theoretical Questions

Overall, what is Clarion about? Is the goal of Clarion to draw inspiration  
from natural systems in order to build artificial systems or is it to  
explain natural phenomena?

There are significant differences between drawing inspiration from natu-
ral systems (for the sake of building comparable artificial systems) versus 
explaining and understanding natural phenomena (including mechanis-
tic, process-based explanations of psychological phenomena with com-
putational modeling). Clarion clearly belongs to the latter category. The 
former is engineering (or reverse engineering of nature), while the lat-
ter is not (for the most part at least). The goal of Clarion includes pro-
viding mechanistic, process-based explanations of psychological (and 
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maybe other) phenomena—that is, computational psychology (e.g., Sun, 
2008)  and beyond, as has been emphasized thus far in the preceding 
chapters.

Then, does this cognitive architecture constitute a cognitive-psychological  
theory?

A computational cognitive-psychological model is a formal description 
of some cognitive-psychological phenomena. The language of a compu-
tational model is, by itself, a distinct symbol system for formulating and 
expressing a formal description. Therefore, a computational model can 
constitute a theory by itself. There has long been a view that (almost) 
every computational model provides a theory of the phenomena that it 
models (e.g., Newell, 1990; Sun, 2009b). This position has been advo-
cated or taken for granted by many in the cognitive science community.

This may be due to the fact that no verbal-conceptual theory com-
pletely specifies details of mechanisms involved in a phenomenon, 
let  alone dynamic processes that may emerge from the mechanisms. 
Thus, computational models are necessary to describe these complex 
aspects, for example, in order to produce a runnable simulation, which 
at the same time also provides a more precise and more detailed theory 
than corresponding verbal-conceptual theories. The language of compu-
tational modeling is, in essence, just another language for presenting a 
theory, albeit at a more detailed (and somewhat less intelligible) level.

Equation-based mathematical theories are indeed often rigorous. 
However, their expressive power is often more limited. Computational 
models can more readily express contents that equations cannot express 
easily. Equations can usually be incorporated into computational models, 
while the reverse may not be true. Besides, equations may not clearly 
express dynamic processes that emerge from entities and their relations, 
even when equations can specify these entities and relations rigorously.

Like verbal-conceptual theories or mathematical theories, computa-
tional models can be used to generate predictions. In fact, they often can 
generate more detailed and more precise predictions that can potentially 
be more precisely tested.

But how does one justify or validate all these algorithmic details inevi-
tably present in a computational model? It is worth noting that there 
is a well-argued position in philosophy of science, constructive empiri-
cism (e.g., van Fraassen, 1980), which argues (roughly) that not all details  
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of a scientific theory need to be strictly derived from empirical data, which 
is impossible anyway. Only the empirically observable parts of the theory 
need to be mapped to empirical data. Some of the algorithmic details 
in a computational model are not empirically observable, and therefore 
validation of these details is not possible and not necessary, according to 
constructive empiricism.

Constructive empiricism may make a more sensible philosophical 
foundation for computational psychology—that is, computational cogni-
tive modeling—than naive empiricist positions. See van Fraassen (1980) 
for a detailed account of this position. See also Sun (2009b) for its rel-
evance to computational cognitive modeling.

In that case, how do computational theories, such as Clarion, relate to 
mathematical theories on the one hand and verbal-conceptual theories 
on the other?

The difference between a computational theory and a mathematical 
theory or between a computational theory and a verbal-conceptual the-
ory is often a matter of descriptive medium, descriptive complexity, and 
descriptive style.

Mathematical equations and computational models are both instances 
of formal models. In this sense, they are not fundamentally different. For 
example, issues of validation, matching, and prediction are common to all 
formal models, whether mathematical or computational.

But they are different in some other ways. One difference is that of 
the languages on which they are based: mathematical equations versus 
computational algorithms (note that algorithms and program code may 
be viewed as being equivalent here). Another difference is that, due to 
the difference in language, mathematical models are often simpler to 
specify (in terms of length of description), while computational models 
often require longer descriptions to express. Yet another difference is that 
mathematical models are often in a closed form (i.e., with the relation-
ship between input and output variables apparent), while computational 
models are often in an open form.

The notion of descriptive complexity may be used for comparing various 
types of theories. Depending on domains, theories vary in terms of explana-
tory succinctness. In some cases, a small and rigorous set of equations is 
able to express the regularity of a domain to a sufficient extent, approxi-
mating it with an acceptable level of accuracy. For example, in physics,  
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Newtonian classical mechanics is such a theory. However, in some other 
domains, no succinct set of equations is found that can express domain 
regularities to a satisfactory extent. In such cases, a more complex form of 
theory is necessary. Computational models are a possible type of complex 
theory for these domains. Understanding the human mind is one domain in 
which no simpler form of theory is viable, at least up to this point.1

In constructing a comprehensive computational model such as a cognitive 
architecture, one may sometimes take specific contents of verbal-conceptual 
theories and formalize them into algorithms. Or one may take equa-
tions from mathematical theories and fit them into the model. Moreover, 
a computational model may combine various theories, or various aspects 
of different theories, regardless of whether they are verbal-conceptual, 
mathematical, or computational. It therefore integrates different elements 
as “subsystems,” “modules,” “components,” or “mechanisms” (Sun, 2009b). 
Thus, fragments of theories may cooperate and compete with each other 
in a more comprehensive theory/model, and they may also cooperate and 
compete with each other in explaining simulation results. One can clearly 
see this aspect at work in the descriptions of Clarion up to this point.

Finally, different types of theories may have different roles to play. 
Computational theories often focus more on questions of “how,” while other 
types often focus more on “what” or “why.” That is, computational theories 
are often more process-based and more mechanistic than other types. From 
all of the above, different types of theories can be complementary to each 
other (Sun, 2009b; see also the answer to the previous question).

Explaining natural phenomena is difficult because these phenomena may be 
ambiguous, there may be many ways of explaining  
them, and so on. So how can one possibly tackle them  
with computational modeling?

A field often progresses through looking for many possible ways to shed 
light on relevant phenomena and issues and then hopefully converging on 

1. Kolmogorov complexity measures the minimum length of the description of an algo-
rithm (Li and Vitanyi, 1997). It may be a foundation upon which one may compare dif-
ferent theories. A key difference between different types of theories (verbal-conceptual, 
mathematical, or computational) may be captured in terms of the description length 
(Kolmogorov complexity) of a theory and, by implication and extension, the numbers 
of entities and relationships required by the theory (Sun, Coward, & Zenzen, 2005; Sun, 
2009b).

 



Some Important Questions and Their Short Answers 353

the best theory. A field is often focused on disambiguating ambiguous or 
otherwise difficult and complex phenomena. In this effort, computational 
modeling is but one possible approach—a highly pertinent approach, but 
it needs to be supplemented by other approaches, especially empirical 
work in various ways.

Scientific work often consists of a continuous search for explanations of 
phenomena and improvements of adequacy and quality of existing expla-
nations (e.g., in terms of empirical coverage, explanatory succinctness, and 
so on). Computational models may serve as candidate theories (albeit in a 
computational form) in this search as previously argued (see Sun, 2009 b).  
Often, definitive “proof” cannot be found (at least not easily), for compu-
tational theories or theories of other forms alike. But gradually, evidence 
accumulates and hopefully converges, and eventually one may arrive at a 
reasonably solid theory of a set of related phenomena. But one is always 
ready to probe deeper or more widely, and in the process, ready to improve 
or revise existing theories, computational or otherwise (Kuhn, 1970).

Therefore, there is really no significant difference between computa-
tional theories and other forms of theories in this regard. They all have 
to deal with ambiguity and other difficulties inevitably encountered. The 
answer to the earlier question regarding computational models constitut-
ing theories (Sun, 2009b) is pertinent here also.

As a theory, can Clarion be disproved?

I like Kuhn’s (1970) and Lakatos’ (1970) ideas regarding scientific work. 
Consequently, I do not believe in the simplistic notion of proving or dis-
proving (“falsification”) broad theories.

According to Kuhn (1970), on the assumption that a current theory 
is correct, observations are collected and fitted within the current theory. 
In the process, unexpected phenomena may be uncovered and may lead 
to refinement or revision of the theory. Specifically, in cognitive mod-
eling with cognitive architectures, architectural assumptions and other 
commitments constitute an initial theory, which undergoes testing and 
validation through matching and explaining data. Revision and refine-
ment are carried out when inconsistencies and incorrect predictions 
are discovered or when the model is incapable of predicting something 
important. However, when given a sufficiently high degree of mismatch 
between the data and the current model (i.e., when revision and refine-
ment are no longer able to accommodate problems that arise), a crisis  
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may develop, which leads to a new “paradigm”: that is, a new cognitive 
architecture or even a new approach to building cognitive architectures.

According to Lakatos (1970), scientific growth should be assessed in 
terms of progressive or degenerating research programs. What is impor-
tant is coming up with conjectures that have more empirical content than 
their predecessors. A research program is degenerating only if it does not 
generate new hypotheses that have more empirical content. So as long as 
a research program (such as a cognitive architecture) is making progress 
toward more and more empirical coverage, it is likely to be on the right 
track (Cooper, 2007).

Can a computational-mathematical model be replaced by its  
corresponding verbal explanations, which inevitably accompany a model?

It is true that a computational-mathematical model is often accompa-
nied by verbal explanations (such as in this work), and one may often 
pay more attention to the verbal explanations rather than the model 
itself.

However, translating a computational-mathematical model into a 
verbal-conceptual theory precisely and completely is often difficult, if 
not impossible. The definitions, assumptions, mechanisms, processes, and 
parameters of a computational-mathematical model have to be explained 
using natural language. Due to reliance on natural language, this version 
may be less precise, and also open potentially to contradictory interpreta-
tions due to ambiguity or imprecision of natural language (in contrast to 
the precision of computational-mathematical models). Computational-
mathematical models have to be defined with rigor and cannot include 
any mathematical or computational ambiguity, although they may often 
need to be interpreted at a higher level of abstraction. Any high-level 
conclusion drawn from modeling and simulation studies will have to be 
treated with such caveats in mind (Sun, 2009b).

Considering the reasons above, it is not likely that computational-  
mathematical models can be replaced by verbal explanations (or 
verbal-conceptual theories).

How does Clarion account for individual differences?

As discussed before (e.g., Section 6.4), various forms of individual differ-
ences may be translated into different parameters within Clarion.
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In general, individual differences may result from many different 
aspects of an organism, psychological, biological, social, and so on. Within 
the Clarion framework, the following factors, among others, may be 
hypothesized:

•	 differences in drive activation
•	 differences in goal setting
•	 differences in action decision making
•	 differences in the capacity for implicit learning (at the 

bottom level)
•	 differences in the capacity for explicit learning (at the top level, 

including bottom-up learning)
•	 differences in the capability of, and the inclination for, 

explicit reasoning (including working memory capacities, 
logical reasoning capabilities, and so on; e.g., at the top level 
of the NACS)

•	 differences in the capability of, and the inclination for, intui-
tive thinking (e.g., at the bottom level of the NACS)

•	 differences in sensory-motor processes

and so on.
In Section 6.4, I discussed in detail how some fundamental individual 

differences (e.g., personality traits) might be accounted for (in part) by 
drive-related parameters. Specifically, within the drive strength equa-
tion, deficit, gain, stimulus, and other parameters may be used (in part) 
to account for various effects of the motivation-cognition interaction and 
some personality traits.

Note that individual differences are not necessarily unalterable in 
many of the aforementioned aspects. Of course, some aspects are more 
entrenched than others (e.g., primary drives may be the most stable and 
the least transient).

What distinguishes humans from other primates according to the  
Clarion framework?

The difference should be more quantitative than qualitative. The scale 
of “intelligence” should be (more or less) continuous. For this reason, 
there should not be radical differences in accounts of psychological 
processes of animals and humans. They should form a sort of con-
tinuum, going from simple physical reactions all the way to complex 
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psychological dynamics. At each stop, a few more capabilities are 
added (Braitenberg, 1984). Eventually, very sophisticated psychologi-
cal beings arise as a result.

Of course, I  am not implying that there is a strict hierarchy in this 
regard. Nor do I believe that there is no discontinuity of any kind. There 
have been arguments that cognitive discontinuity exists between humans 
and their close relatives in terms of enhanced hand-eye coordination, 
causal reasoning, executive control, social learning, social intelligence, and 
language use (e.g., Vaesen, 2012). However, such differences are relatively 
minor and quantitative when viewed in the bigger scheme of things.

From this perspective, a number of distinguishing psychological fea-
tures between humans and other animals may be hypothesized within 
the Clarion framework: (1) in humans, compared with other primates, 
there are more extensive explicit representations in various subsystems; 
(2) in humans, there are more extensive explicit reasoning capabilities, 
especially in the non-action-centered subsystem; (3)  in humans, there 
are better developed metacognitive capabilities (especially in the meta-
cognitive subsystem); (4) in humans, there may be more complex and 
more sophisticated motivational processes (in the motivational subsys-
tem), taking into consideration more complex and less rigid social situ-
ations that humans are likely to encounter. However, do note that these 
differences, as indicated earlier, are generally more quantitative than 
qualitative.

Why does Clarion not adopt the framework of BDI?

The BDI framework (e.g., Rao & Georgeff, 1991) may be useful for those 
working in AI; that is, it may be a useful tool for building intelligent sys-
tems for practical applications. But there is no demonstrated psychologi-
cal validity at a detailed level. Nor does it shed any significant new light 
on human cognition-psychology. The BDI framework is, more or less, folk 
psychology.

For one thing, the BDI framework typically does not capture fine-  
grained details (mechanisms and processes) of human cognition, motiva-
tion, and their relations to action. Perhaps as a result of that, it has had no 
significant impact on cognitive science or psychology. There has been a 
long history of psychology of motivation, which provides in-depth explo-
rations and theories of human motivation and its relation to cognition and 
action (Weiner, 1992).

 



Some Important Questions and Their Short Answers 357

However, the following rough correspondences may be identified 
between the BDI framework and the Clarion framework (which is, of 
course, more detailed and more psychologically oriented):

1.	 desires ≈ drives
2.	 intentions ≈ goals
3.	 beliefs ≈ knowledge in the ACS and the NACS (both implicit 

and explicit knowledge in the two subsystems).

That is, in Clarion, drives lead to goals, which in turn lead to actions on 
the basis of existing knowledge, in rough correspondence with BDI.

How does Clarion relate to other dual-process theories (two-system 
views)?

There have been a number of dual-process theories or two-system views. 
The distinction between System 1 and System 2 (or between “intuitive” 
and “reflective” thinking) has been one of the most important distinctions 
to emerge recently in cognitive science. It seems to have captured the 
current popular imagination.

However, although the distinction itself is evidently important, these 
terms used to describe it in the literature have been somewhat ambigu-
ous. Not much finer-grained analysis has been carried out, especially not 
in a precise, mechanistic, process-based way. In Clarion, I  adopted the 
terms of implicit and explicit processes and presented a more nuanced 
view. The use of the Clarion cognitive architecture led to formulating a 
more fine-grained interpretation.

In order to see this, some historical background should be briefly 
reviewed here. There have been some early ideas concerning duality of 
the mind that dated back before the inception of cognitive science. For 
instance, Martin Heidegger’s distinction—the preontological versus the 
ontological—is an abstract version of such a duality (Heidegger, 1927). 
His view was roughly that because the essential way of being is existence 
in the world, an individual always embodies an understanding of its being 
through such existence. This embodied understanding consists of skills, 
reactions, and know-hows, without an explicit “ontology”, and is thus 
preontological (implicit). On that basis, an individual may also achieve 
an explicit (ontological) understanding, especially through making the 
implicit understanding explicit, that is, through turning preontological 
understanding into ontological understanding (Heidegger, 1927; Dreyfus, 
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1992). This progression from the concrete to the abstract is a fundamen-
tal part of Clarion.

I should also mention William James’s distinction between “empiri-
cal thinking” and “true reasoning.” According to James (1890), empirical 
thinking is associative, made up of sequences of “images” that are sug-
gested by one another. It is “reproductive” because it replicates past expe-
rience in some way instead of producing new ideas. Empirical thinking 
relies on overall comparisons and similarity among various concrete situ-
ations, and therefore may lose sight of critical information. On the other 
hand, “true reasoning” is achieved by abstracting attributes. It is “produc-
tive” because it is capable of producing novel ideas through abstraction. 
“True reasoning” breaks up the direct link between thought and action, 
and provides means for reasoning about consequences of an action with-
out actually performing it. Some of these characteristics (such as overall 
similarity versus abstraction) are evident in Clarion.

There are a few theories or arguments for dual processes (two systems) 
from within cognitive science. In particular, Sun (1994, 1995), Sloman 
(1996), Kahneman (2003), and Evans (2003) are relevant here. One view 
was described in Sun (1994), in which the two systems were character-
ized as follows:

It is assumed in this work that cognitive processes are carried out in 
two distinct “levels” with qualitatively different mechanisms. Each 
level encodes a fairly complete set of knowledge for its processing, 
and the coverage of the two sets of knowledge encoded by the two 
levels overlaps substantially (Sun, 1994).

That is, the two “levels” (i.e., two systems, two modules, or two compo-
nents) encode somewhat similar or overlapping content. But they encode 
their content in different ways: symbolic versus subsymbolic representa-
tion were used, respectively. Therefore, different processes and mecha-
nisms are involved at these two levels. As a result, one level contains 
explicit processes and the other implicit processes. It was hypothesized in 
Sun (1994) that these two different levels can potentially work together 
synergistically, complementing and supplementing each other, which is, 
at least in part, the reason why there are these two levels (evolutionarily 
speaking).

A more recent dual-process theory was proposed by Kahneman 
(2003). The gist of his ideas was as follows: “intuition” (or System 1) is 
typically based on associative reasoning, fast and automatic, involving 
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strong emotional bonds, based on formed habits, not conscious, and 
difficult to change or manipulate. “Reasoning” (or System 2)  is slower, 
effortful, and subject to conscious judgment and control. Evans (2003) 
espoused a similar view. According to him, System 1 is “rapid, parallel and 
automatic in nature: only their final product is posted in consciousness,” 
and its learning is “domain-specific.” System 2 is “slow and sequential in 
nature and makes use of the central working memory system,” and it “per-
mits abstract hypothetical thinking that cannot be achieved by System 1.”  
Moreover, in terms of the relationship between the two systems, he 
argued for a “default-interventionist” view. According to him, System 1 is 
the default system that operates all the time, while System 2 may inter-
vene occasionally when feasible and called for.

According to Clarion, however, some such claims may be painting a 
picture in overly broad strokes, when examined against the empirical lit-
erature. For one thing, intuition can be very slow (e.g., as demonstrated by 
Helie & Sun, 2010; Bowers et al., 1990). For another, implicit processes 
can be subject to conscious control and manipulation; that is, it may not be 
entirely “automatic” (Berry, 1991; Curran & Keele, 1993; Stadler, 1995). 
Furthermore, implicit decisions can be subject to conscious “judgment” 
(Libet, 1985; Gathercole, 2003). In terms of the relationship between the 
two systems, implicit and explicit processes may be parallel and mutu-
ally interactive in more complex ways than what was described by the 
default-interventionist view (Sun, 2002). There are many such detailed 
issues and questions that one may need to explore with regard to the 
characteristics of the two systems, which Clarion can help to clarify (see, 
e.g., Sun, 2014).

How does Clarion relate, in particular, to the division of fast and slow  
processes, which is a crucial feature in some dual-process theories?

Instead of simply claiming, as in some existing dual-process theories, 
that implicit processes are fast and explicit processes are slow, one needs 
to take a more detailed look. To come up with more nuanced character-
ization, it is important to ask some pertinent questions first. Specifically, 
in relation to the relative speeds of implicit and explicit processes, the 
following questions should be asked with regard to each type of process:

•	 How deep is the processing (in terms of precision, certainty, 
and so on)?
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•	 How broad is the processing (e.g., how much information is 
involved)?

•	 How incomplete, inconsistent, or uncertain is the information 
available?

•	 How many processing cycles are needed considering the 
factors above?

The twin dichotomies in Clarion, procedural versus declarative and 
implicit versus explicit, have implications for identifying slow versus fast 
processes. In accordance with the Clarion framework, instead of simply 
assuming the seemingly obvious, one may question conventional wisdom 
on a number of fronts in this regard:

•	 In terms of the division between procedural and declarative 
processes, can fast procedural versus slow declarative processes 
be posited?

•	 In terms of the division between implicit and explicit  
procedural processes, can fast implicit versus slow explicit 
processes be posited?

•	 In terms of the division between implicit and explicit  
declarative processes, can fast implicit versus slow explicit 
processes be likewise posited?

•	 What about relative speeds if we consider the four-way division 
together?

And so on.
The conjectures implied by the questions above may be true to some 

extent but not exactly accurate (Sun, 2014). In this regard, one may view 
existing models and simulations of these types of processes as a form 
of theoretical interpretation concerning their time courses. In that case, 
there are the following potential answers to these questions according to 
Clarion:

•	 Fast procedural versus slow declarative processes: This  
hypothesized speed difference is generally true if we exam-
ine many existing models and simulations (e.g., Sun, Zhang, 
& Mathews, 2009; Sun & Zhang, 2006; see also Anderson & 
Lebiere, 1998).

•	 Fast implicit versus slow explicit procedural processes: This 
hypothesized speed difference is, again, generally true, 
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using theoretical interpretations from simulations (e.g., Sun 
et al., 2005).

•	 Fast implicit versus slow explicit declarative processes: This, 
however, is generally not true. Implicit declarative processes 
(intuition) often take a long time, compared with explicit 
declarative processes. See, for example, Helie and Sun (2010) 
and Bowers et al. (1990).

Within the Clarion framework, many empirical and simulation studies 
have been conducted that shed light on these issues and substantiate the 
points made above. See, for example, Sun et al. (2009), Sun and Zhang 
(2006), Helie and Sun (2010), Sun and Mathews (2005), Sun (2012), 
and so on. The whole picture may not be as simple as conventional wis-
dom assumes. One needs to be careful in making sweeping generaliza-
tions—different types of processes need to be characterized in a more 
fine-grained fashion. Characteristics of different processes may also vary 
in relation to contextual factors, such as task demands.

Given the above, how does Clarion characterize implicit and explicit 
processes?

Based on empirical data and computational modeling, I can enumerate 
some main characteristics associated with the two “levels” of Clarion as 
in Table 8.1.

As mentioned earlier in Chapter 3, there are different types of dif-
ferences between the two levels in Clarion (some of which have been 
listed in Table 8.1): (1) phenomenological differences (i.e., the distinc-
tions between the conscious and the unconscious in a subjective sense); 
(2) psychological differences (the distinction as revealed by psychologi-
cal experiments, including, for example, implicit versus explicit learn-
ing, implicit versus explicit memory, and other related psychological 
constructs and generalizations, as indicated in the table); (3) implemen-
tation-related differences. Among them, the implementation-related dif-
ferences (in particular, the representational difference—symbolic-localist 
versus distributed representation) account for the phenomenological and 
the psychological differences (Sun, 1999; Sun, 2002; Sun, 2012). So in 
this sense, the implementation-related differences constitute the basis for 
accounting for dual processes (two “levels” or two “systems”).
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Note that Clarion is unique in its utilization of the representational 
difference (i.e., symbolic-localist versus distributed representation) as the 
main computational substrate to account for the psychological and the 
phenomenological differences between implicit and explicit processes. 
Clarion thereby provides a framework to account for all forms of implicit 
and explicit processes. Of course, much more work is needed in pursuing 
this possibility.

When are implicit processes used, and when are explicit processes used?

The question is what determines the explicitness/implicitness of process-
ing when a particular task is being dealt with—how a task is “assigned” 
to one level or the other (or both). I touched upon this issue before, 
appealing to a generic notion of complexity (Sun, 2002). I will further 
explicate this notion and draw a more detailed picture of the division of 
labor between the two levels.

It may be speculated that the following factors, among others, may 
determine complexity in this regard:

•	 Amount of information to be considered (e.g., numbers of 
inputs/outputs). The higher the amount is, the more likely that 
implicit processes are prominent.

Table 8.1.  Comparisons of the two levels of Clarion.

Bottom level Top level

Phenomenological 
differences

Unconscious conscious
potentially conscious

Psychological 
phenomena

implicit learning
implicit memory
implicit knowledge
automatic processing
intuition

explicit learning
explicit memory
explicit knowledge
controlled processing
explicit reasoning

Sources of knowledge trial and error
assimilation of explicit knowledge

external sources
extraction from implicit 

knowledge
Operations similarity based

constraint based
symbol 

manipulation based
rule based

Characteristics more context sensitive
fuzzier
less selective
more complex

more crisp
more precise
more selective
simpler

Representations distributed (micro)features symbolic-localist 
conceptual units

 



Some Important Questions and Their Short Answers 363

•	 Stochasticity. The more stochastic a task is, the more likely that 
implicit processes are prominent.

•	 Sequentiality (e.g., how distant temporal dependency relations 
are). The more sequential a task is, the more likely that implicit 
processes are prominent.

•	 Instructions (given prior to or during task performance). 
Generally speaking, the more explicitly focused the instructions 
are, the more prominent explicit processes will be.

•	 Multiplicity of tasks. Generally speaking, under dual-task condi-
tions, implicit processes become more prominent, compared 
with single-task conditions.

When dealing with learning, if the task to be learned is complex, 
explicit learning mechanisms may not work well, and therefore implicit 
learning becomes prominent. In contrast, when the task is simple, explicit 
learning mechanisms may work well, and therefore explicit learning 
becomes more noticeable. Empirical findings and simulation work with 
Clarion were consistent with these speculations.

Formally, complexity may be measured by, for example, (1) the mini-
mum encoding length of knowledge necessary for performing a task, and 
(2)  the learnability of such knowledge. Both are formal mathematical 
measures. The latter measures the complexity of learning and the former 
the complexity of the outcome of learning. For example, complexity may 
be determined by the size of a minimum rule set needed to perform a 
task and the difficulty of learning it.

When does bottom-up learning or top-down learning occur,  
respectively?

Bottom-up learning generally happens when a situation is such that it 
is easier to learn implicit knowledge than explicit knowledge (see the 
earlier discussion of factors determining this), and it is possible to learn 
explicit knowledge on the basis of implicit knowledge.

For example, in a complex (non-salient) process control task (see 
Chapter 5), one often develops implicit knowledge first, given that the 
situation makes directly learning explicit knowledge difficult. However, 
after a substantial amount of implicit knowledge accumulates, explicit 
knowledge often emerges on that basis (Stanley et  al., 1989; Sun 
et al., 2001).
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Top-down learning usually occurs when explicit knowledge is avail-
able from external sources, or when it is relatively easy to learn such 
knowledge (compared with learning corresponding implicit knowledge). 
Such knowledge, learned or directly received, may then be assimilated 
into an implicit form.

For example, in learning to play chess, one often first learns the basic 
rules of chess, and some essential guidelines as to what to do in prototypi-
cal situations. One may then develop more complex and more nuanced 
knowledge that is largely implicit (Dreyfus & Dreyfus, 1987).

Of course, preferences of learning directions may vary from individual 
to individual. Also, real-life learning scenarios may be more complex than 
the examples above and thus may lead to multiple directions of learning 
in an intermixed way.

Many of the tasks that were dealt with by Clarion are high-level cognitive  
tasks. Is there any evidence that such high-level cognitive  
tasks involve implicit processes at all?

In general, even high-level cognitive tasks may involve implicit processes. 
There have been indications that high-level cognitive tasks such as Tower 
of Hanoi, category learning, reasoning, and so on indeed involve implicit 
processes. For example, Gagne and Smith (1962) showed specifically 
that verbalization improved subjects’ performance in learning Tower of 
Hanoi. Bower and King (1967) showed the same effect of verbalization 
in classification rule learning. Gick and Holyoak (1980) found that good 
problem solvers in high-level problem solving domains could better state 
rules that described their actions in problem solving. In all of these cases, 
it could be the explication of implicit knowledge that helped the perfor-
mance (Sun, 2002).

Some more direct arguments may be found in Dreyfus and Dreyfus 
(1987). Based on detailed analysis, they argued that learning to play chess 
involved turning analytic (explicit) thinking into intuitive (implicit) 
thinking through extensive practice. Evans (2003) presented evidence 
and arguments that even deductive reasoning might be partially implicit.

For instance, mathematical theorem proving involves intuitive 
(implicit) thinking to a significant extent. In theorem proving, it is impor-
tant to develop good intuition. The search space of different possibilities 
of constructing a proof is huge, and the cost of explicit exploration of the 
space is prohibitive. Therefore, intuition is crucial in guiding the search. 
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Such intuition is (usually) implicit, as shown experimentally by Lewicki 
(1986), Hasher and Zacks (1979), and so on. In a sense, good (implicit) 
intuition is what separates a good mathematician from a poor one.

It would be unwise to add lengthy discussions of these points, which 
would be needed if full justification of the implicit nature of these tasks 
was attempted.

How does Clarion relate to folk psychological notions such as “instinct,” 
“intuition,” and “creativity”?

Based on the Clarion framework, one may reinterpret many folk psycho-
logical (and other) notions, to give them more precision.

For instance, the notion of instinct may be made more precise in this 
way. Instinct involves mostly implicit processes and is mostly concerned 
with action. Within Clarion, instinct may be roughly equated with the 
following chain of activation: stimuli → drives → goals → actions. This 
chain goes from stimuli received to the MS, the MCS, and eventually 
the ACS. That is, stimuli activate drives (especially innate motives), drive 
activations lead to goal setting in a mostly implicit way (with mostly 
implicit or even innate processes), and based on the goal set, actions are 
selected in a mostly implicit way to achieve the goal. Instinct is mostly 
implicit, but it may become more explicit, especially with regard to the 
part of “goals → actions” (Sun et al., 2001).

For another instance, the notion of intuition can also be made more 
precise. Intuition, according to Clarion, is roughly the following chain: 
stimuli → drives → goals → implicit reasoning. This chain goes from stimuli 
received to the MS, the MCS, the ACS, and the NACS. As such, intuition 
involves mostly implicit declarative processes within the NACS, includ-
ing the functionalities of associative memory retrieval, soft constraint 
satisfaction, and partial pattern completion (see Chapter 5 for details). 
Intuitive processes are often complementary to explicit reasoning, and 
the two are often used in conjunction (Sun & Zhang, 2006).

The notion of creativity can also be explained within the Clarion 
framework (Helie & Sun, 2010). According to Clarion, creativity may 
be achieved mainly through complex, multiphased interaction between 
implicit and explicit processes within the NACS; that is, through the 
interplay between intuition and explicit reasoning (the two types of 
declarative processes), on the basis of the motivational and metacogni-
tive underpinnings. This interpretation has been developed into the EII 
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theory of creative problem solving—a theory derived from Clarion (Helie 
& Sun, 2010). It involves multiple phases, which include (1) the explicit 
phase:  processing given information using mostly explicit declarative 
knowledge; (2)  the implicit phase:  developing intuition using mostly 
implicit declarative knowledge; finally the intuition emerges into explicit 
processes and therefore (3)  the explicit phase: verifying and validating 
the result using mostly explicit declarative knowledge. See Helie and Sun 
(2010) for further details. This theory has been successful in accounting 
for a variety of empirical data.

Some other folk psychological notions may be reinterpreted and made 
more precise in a similar manner. For example, relevant notions of the 
BDI framework have been reinterpreted based on Clarion, as discussed 
earlier. Similarly, a possible reinterpretation of serendipity was discussed 
in Chapter 7. Explanations of anxiety and a variety of other emotions 
were discussed in Chapter 6. In addition, the important notion of con-
sciousness has been reinterpreted based on the Clarion framework, as 
detailed in Sun (1999).

Why are primary drives (especially high-level primary drives) innate?

The main point is that the human mind is likely innately equipped 
for dealing with these aspects represented by these drives. The innate 
mechanisms for dealing with these aspects, to the extent they exist, 
result from the human evolutionary history. (For instance, evolution-
ary psychology argued for the innateness of some of these high-level 
primary drives, often in specific settings.) However, these drives, along 
with many other mechanisms and processes, may be fine tuned, to vari-
ous extents, through experiences. Therefore they are not necessarily 
completely fixed.

Based on the relevant literatures, two points may be argued: (1) there 
is strong evidence that people do normally develop these drives and 
have these needs (McDougall, 1936; Murray, 1938; Maslow, 1943; Reiss, 
2004), and (2) there is some evidence that these drives may be relatively 
invariant across cultures (although there may be some quantitative varia-
tions; Chirkov, Ryan, & Willness, 2005; McRae, 2002). On the basis of 
these points, it is reasonable, and indeed beneficial, to posit the innate 
existence of these drives.
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8.2.  Computational Questions

Computationally, Clarion seems a random collection of computational (AI)  
techniques. Is Clarion just a random collection of computational techniques?

Without delving into psychological details described by Clarion, one 
might wrongly conclude that Clarion is just an ad hoc collection of com-
putational techniques and algorithms. Therefore, I should point out again 
that the present work is not about computational techniques or algo-
rithms, but about cognitive-psychological mechanisms and processes. 
The computational techniques employed in Clarion were not randomly 
selected but carefully put together to account for a wide range of psycho-
logical data and phenomena. That is, they were selected for the sake of 
developing a comprehensive theory of the mind, not for AI applications.

The meta-principle guiding the development of Clarion as a psy-
chological theory is (as noted in Chapter 1): minimum mechanism, 
maximum coverage, and optimal integration. So in a way, the develop-
ment of Clarion was based on cost-benefit considerations whereby the 
cost being the complexity of the model and the benefit being the scope 
of data and phenomena that it is capable of capturing and explaining.

Even given the above, is Clarion just a collection of old computational (AI) 
techniques? That is, is there anything new there?

One may argue that Clarion is just a set of old or even outdated AI tech-
niques, and as such there may not be anything new. To address this issue, 
I should note that the novelty of computational techniques (or the lack 
thereof) is not even a relevant issue here. Clarion, at the conceptual level, 
is certainly not about developing computational techniques, but about 
exploring and understanding cognitive-psychological processes. Even the 
Clarion computational cognitive architecture itself is, primarily, not about 
computational techniques (although there have been technical innova-
tions), but about a proof-of-concept demonstration of the feasibility of 
describing cognition-psychology broadly in a computational form. One 
should not confuse the theory (and the resulting cognitive architecture) 
with the tools that it employs in expressing itself.

As stated before, Clarion is about selectively including a minimum 
set of mechanisms, structured in a parsimonious but effective way, to 
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account for and explain a maximum set of psychological data and phe-
nomena. Furthermore, what is emphasized in the present work is the 
conceptual framework of Clarion and what it can account for psycho-
logically, not computational techniques employed in doing so. There are 
ample reasons to believe that the framework of Clarion is generally valid, 
regardless of computational details used in implementation. Currently 
employed computational details constitute an existence proof of what 
one can accomplish with this framework, in a somewhat crude manner. 
More recent computational techniques, if proven significantly better 
performance-wise or in some other way, can be relatively easily inserted 
into the computational cognitive architecture to replace old techniques, 
without significant changes to the overall framework.2

Solely from cognitive modeling and simulation perspectives, why are there 
two “levels”?

Simply put, the presence of the two levels in Clarion provides a uni-
fied, succinct account of a variety of psychological data and phenomena, 
ranging from serial reaction time tasks to Tower of Hanoi. In particular, 
various synergy effects have been simulated and accounted for by Clarion 
computationally through the interaction of the two levels, which include, 
for example, improved performance through explicit search or verbaliza-
tion (e.g., Sun, Slusarz, & Terry, 2005).

In addition, the computational differences (including the repre-
sentational difference) between the two levels account for a variety of 
empirically derived psychological constructs concerning differences and 
dissociations exhibited in the empirical data (such as implicit versus 
explicit learning, implicit versus explicit memory, unconscious versus 
conscious perception, intuitive versus analytical reasoning, and so on), 
which has been mentioned in the answers to the earlier questions, and 
extensively discussed elsewhere (see, e.g., Sun, 2002).

2. Computational techniques used in Clarion were often not very recent. Some of 
the computational techniques used there were published by my collaborators and me in 
the 1990s and the 2000s in AI and other computational journals, ranging from the 1995 
article in the journal Artificial Intelligence to the 2000 article in the journal Adaptive 
Behavior. However, some computational techniques used in Clarion were developed 
more recently.
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Where does Clarion stand on the debate of connectionist versus symbolic 
models?

Let us examine briefly the debate of connectionist models versus sym-
bolic models. First, there was the question of which paradigm should 
be adopted as a general framework for cognitive modeling. This was an 
issue of great controversy among theoretically minded cognitive scien-
tists. Many claims and counterclaims were made. Clarion sidesteps this 
stalemate through incorporating both paradigms, in a principled way, into 
its framework. I have shown that the two can be combined to generate 
synergy of various kinds (e.g., Sun, Slusarz, & Terry, 2005; Helie & Sun, 
2010). Clarion is one of many so-called hybrid models that started in 
the 1990s (Sun, 1994; Sun & Bookman, 1994) and have been receiving 
increasing attention since then.

In relation to this issue, there was also the more specific issue of the 
ability (or the inability) of one type or the other in accounting for implicit 
processes. It has been claimed, on the connectionist side, that a vast 
majority of human activities, including “perception, motor behavior, flu-
ent linguistic behavior, intuition in problem solving and game playing—in 
short, practically all skilled performance” (Smolensky, 1988, p. 5), should 
be modeled by subsymbolic computation with connectionist models, and 
symbolic models can give only an imprecise and approximate explana-
tion of these processes. On the other hand, it has been claimed on the 
symbolicist side that symbolic models can be responsible for conscious 
and unconscious processes alike, or even that implicit processes are better 
modeled by symbolic models.

In terms of matching data of any specific task, any Turing-equivalent 
computational model should be able to do so. Thus, the matching of some 
empirical data by itself does not prove whether a particular model is a 
suitable one. Other considerations need to be brought in. I suggest that 
one such consideration is phenomenological and computational accessi-
bility discussed earlier. While symbolic models of implicit processes lead 
to symbolic representation of implicit knowledge that is supposedly inac-
cessible phenomenologically but evidently easily accessible computa-
tionally (without any add-on assumptions regarding the representation), 
connectionist models lead to subsymbolic representation of implicit 
knowledge that is inherently less accessible computationally (such as in 
the bottom level of Clarion) in closer accordance with its phenomeno-
logical characteristics. Thus, connectionist models have a clear advantage  
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here: being able to match human data (at least) as well as symbolic models, 
they also account computationally for the phenomenological inaccessibil-
ity of implicit processes. In this sense, they are better models.

However, symbolic-localist models have their roles to play as well. 
They are better at capturing explicit processes. The phenomenological 
characteristics of explicit processes are closely matched by the computa-
tional characteristics of symbolic-localist models.

This contrast between connectionist and symbolic models lends sup-
port to the belief that because connectionist models are good for implicit 
processes and symbolic models for explicit processes, the combination or 
integration of the two types of models should be emphasized in modeling 
human cognition-psychology (Sun, 1994, 2002).

In the bottom level of Clarion, where is subsymbolic (distributed) representation 
exactly? Is it just an implementation of symbolic processes?

Subsymbolic representation in the bottom level of Clarion refers mainly 
to internal distributed representation, not necessarily inputs or outputs, of 
the bottom level (because inputs/outputs might be localist in a particular 
simulation). In general, localist representation is just a special case of dis-
tributed (subsymbolic) representation. There is no way that Clarion itself 
can put any enforceable restriction on inputs/outputs, especially because 
inputs and outputs of a model have to be tailored to the task to be sim-
ulated. Inputs/outputs are ultimately decided by the modeler who con-
structs a particular simulation model and its input/output representation 
within Clarion.

On the other hand, in the hidden layer(s) of a Backpropagation (MLP) 
network (Rumelhart et al., 1986), the representation is indeed generally 
distributed (subsymbolic), as a result of Backpropagation learning hap-
pening in the network. Such representation involves distributed activa-
tion patterns that are sensitive to regularities embodied by training data. 
They are not mere implementations of symbolic representation (see, e.g., 
Rumelhart et al., 1986; Miikkulainen, 1993).

How does distributed representation emerge in the bottom level  
of Clarion?

There are a number of different ways in which distributed representation 
may emerge. For instance,
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•	 It may emerge through supervised learning using, for example, 
the Backpropagation (MLP) algorithm (when relevant training 
data are available). Given proper training data, distributed repre-
sentation emerges in the hidden layer(s) of a multilayer network 
as a result of iterative weight adjustments as dictated by the 
Backpropagation algorithm. Miikkulainen (1993), for example, 
showed that such learning could form meaningful distributed pat-
terns sensitive to regularities underlying training data (thus having 
corresponding semantics). Work on deep learning is also consistent 
with this notion (Schmidhuber, 2014).

•	 It may also emerge through reinforcement learning (in a 
simulated environment or in the real world). In this case, 
learning may be carried out by, for example, Backpropagation 
based on the error signals generated by a reinforcement learn-
ing algorithm. Backpropagation learning can form distributed 
representation in the hidden layer(s) of a multilayer network as 
indicated above (Sun, 2002).

•	 Distributed representation may be randomly generated (in the 
form of random activation vectors), as an approximation of 
some natural process, when the semantics of the representation 
is not an issue (e.g., Helie & Sun, 2010). For instance, this may 
serve as an approximation of distributed representation formed 
by these two methods above, or as an approximation of possibly 
innate (or a priori) distributed representation.

•	 It may result from gleaning representational information from 
other sources, for example, from statistical correlations found 
within large datasets, or from representations acquired or 
learned in other models (see, e.g., Miikkulainen, 1993; Sun, 
1994).

How can symbolic-localist representation (used in the top level of Clarion) 
be justified? Has localist representation been discredited?

In the connectionist literature, localist representation (roughly, repre-
senting any conceptual entity with a dedicated unit) is not “discredited” 
in any sense, although controversies do exist (as mentioned earlier). 
Symbolic-localist representation, as employed in the top level of Clarion, 
can be fully justified.
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Computationally, symbolic-localist representation is justifiable, because 
of the useful characteristics of symbolic-localist representation. As dis-
cussed before, in computational modeling, explicit knowledge may be 
better captured by symbolic-localist representation, in which each node 
is more easily interpretable and has a clearer conceptual meaning when 
compared with distributed representation. That is, symbolic-localist rep-
resentation is more accessible computationally. This computational char-
acteristic of symbolic-localist representation captures the corresponding 
characteristic of explicit knowledge being more accessible in a subjective, 
phenomenological sense (Sun, 2002).

In addition, symbolic-localist representation is often more efficient. For 
instance, it minimizes the effort required to interpret activation patterns. 
The read-out of symbolic-localist representation is made easier by the 
outputs of dedicated, individually meaningful nodes (Sun, 1992, 2002).

Neurobiologically, localist representation may be justified as well. Koch 
(2011) argued that some neurons selectively responded to very specific 
persons or objects. This leads to “concept neurons,” which may specifi-
cally encode family members, friends, coworkers, one’s car, one’s laptop, 
and so on. Every time one encounters a particular person or object, while 
a pattern of activation of neurons is generated in higher-order cortical 
regions, the networks in the medial temporal lobe may dedicate specific 
neurons to them. See also Bowers (2009).

However, note that even when localist representation is in place, a single 
node may not be responsible for all the knowledge related to a concept. 
Other nodes may be activated to various extents, bringing in related knowl-
edge and participating in deciding on final outcomes. Another possibility 
is that localist representation may be replicated; that is, multiple localist 
nodes may be used to redundantly indicate one conceptual entity (for fault 
tolerance or for other purposes). In fact, a whole spectrum of represen-
tational possibilities exists, ranging from fully distributed to fully localist 
(Sun, 1992). They vary in terms of specificity, redundancy, and amount of 
activation overlap. Each form may have some distinct computational prop-
erties and thus may be useful in some circumstances.

But does a more uniform and more constrained model provide deeper  
explanations than those with a pool of highly specialized mechanisms?

It is true that in many cases, a more uniform and/or more succinct (i.e., 
more “constrained”) model provides deeper explanations than those with 
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a large pool of highly specialized mechanisms, given that the empirical 
coverage (as well as other relevant aspects) of the models is roughly com-
parable. However, in the case of some existing cognitive architectures, 
one has to take account of the fact that there are more severe limitations 
in those that are more uniform and more “constrained” in terms of the 
range of cognitive-psychological phenomena that they can capture.

If a model fails to capture the breadth of cognitive-psychological phe-
nomena, then there is very little to be gained in being “uniform” or “con-
strained” because “deep” explanations are not likely to come out of it 
when it fails to explain many relevant phenomena. The mind/brain is 
inherently heterogeneous; uniformity cannot be forced upon it beyond a 
certain natural limit (see also Minsky, 1985).

Even if the above is true, why was a unified implementation (e.g., a purely 
connectionist implementation or a purely symbolic implementation)  
not attempted?

It is certainly desirable to have a unified implementation of a theory, a 
model, or a cognitive architecture, even a very complex one. But the key 
question here is whether connectionism is the best approach for compu-
tational modeling of all parts of the mind, rather than just some parts, or 
whether symbolicism is the best approach for computational modeling of 
all parts of the mind.

Naturally, one may expect to be able to implement virtually all 
symbolic processes in connectionist models, and vice versa. A  uni-
fied implementation of Clarion was indeed produced (Sun, 2002). But 
what does this kind of “implementationalism” buy us? Why not just 
include both types of processes and save all the unnecessary trouble of 
“implementation”?

One would naturally prefer to use the most suitable tool for each com-
ponent of a job, not just one tool for all. Likewise, I would prefer to use 
the best medium for implementing each component of my model, not 
one medium (connectionist or symbolic) for all.

At first glance, it may not seem “elegant” to use hybrid models involv-
ing both symbolic and connectionist processes. However, looking through 
the literature on this, most connectionist implementations of sufficiently 
complex symbolic processes are not “elegant” in any sense, and vice 
versa. Therefore, the use of hybrid models did not actually introduce 
any additional “inelegance” but only what is necessary for capturing the 
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complexity of the human mind (which is known to be highly complex, 
and includes both symbolic and subsymbolic processes).

Are there too many free parameters in Clarion?

At first glance, the Clarion computational cognitive architecture may 
seem to have too many parameters. However, upon closer examination, 
one may quickly realize that the number of its free parameters in any 
subsystem is not significantly higher than usual computational models 
such as Backpropagation (MLP) networks.

Let us look specifically into the action-centered subsystem as an exam-
ple, which has been important in simulating a wide variety of tasks. In 
addition to parameters of Backpropagation (MLP) networks (as in the 
bottom level of the ACS), at the top level of the ACS, there are only three 
important parameters concerning rule extraction and revision when using 
RER. That is to say that the ACS of Clarion is approximately comparable 
to Backpropagation networks in terms of complexity.

Furthermore, although values of all parameters affect performance, 
most of them were not changed throughout the simulation of various 
conditions of a particular task (e.g., the process control task; see Sun et 
al., 2007), and thus they should be treated as the fixed part of model 
specification (for the model created to simulate the task). In this sense, 
they are not free parameters: that is, they do not contribute to the degree 
of freedom that one has to match the change of human performance 
across different conditions in a particular task (such as what one sees in 
the process control task; Sun et al., 2007).

There are in fact three different types of parameters in Clarion: (1) 
domain-independent parameters (e.g., the drive deficit parameters for 
primary drives, the momentum parameter in Backpropagation net-
works, and so on), (2)  domain-specific parameters (e.g., the number 
of input units or the number of output units), and (3) free parameters. 
While the first two types may be viewed as part of the fixed model 
specification for a particular task, free parameters are those that are 
changed for capturing different conditions of a task (such as those dif-
ferent experimental conditions in the process control task as described 
in Sun et  al., 2007). In many past simulations involving Clarion, the 
actual number of free parameters was usually only one or two (e.g., a 
rule learning threshold at the top level). See, for example, Sun, Slusarz, 
and Terry (2005).
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Why were there often components removed from Clarion in simulations? 
How do you justify such seemingly arbitrary removal of components  
(e.g., subsystems, levels, modules, or mechanisms)?

There are a number of different aspects to this question. First, sometimes, 
in a simulation only the ACS is used but not the other subsystems. This 
may occur under some circumstances. For example, when motivational 
inputs are constant or insignificant to action decision making in a situa-
tion, the MS is not needed for the simulation. In that case, the MS may 
be removed from the simulation for the sake of simplicity. The same may 
be said about the MCS or the NACS.

Second, in terms of the two levels (within any subsystem), Clarion 
assumes that their relative contributions can be adjusted (e.g., by the 
MCS), depending on many contextual factors. For instance, in incuba-
tion, processing is mostly done implicitly. For another instance, in verbal 
reasoning, processing can be very explicit. Therefore, it is justifiable to 
use different configuations of the two levels, including disregarding the 
contribution of one of the two levels (effectively removing it).

Third, within a level of a subsystem, sometimes some of the available 
mechanisms are disengaged during a simulation. For example, RER or 
IRL may be included or excluded from a simulation. The exclusion of a 
mechanism may be justifiable if in a particular domain the mechanism 
has a negligible effect and thus does not contribute much to the outcome 
of the simualtion.

Why were recurrent neural networks not used in the ACS?

Indeed, recurrent neural networks, such as various types of recurrent 
Backpropagation networks, may be used in the bottom level of the ACS, 
as well as a number of other places. This point has been mentioned in 
Chapter 3. However, feedforward networks are generally preferred, espe-
cially for the ACS.

There are a number of reasons for this (slight) preference. First, theo-
retically speaking, Clarion embodies the belief in, and therefore it focuses 
on, direct situation-to-action mappings, that is, situated action in a general 
sense (as argued in Chapter 2; see also Sun, 2002). In particular, the bot-
tom level of the ACS relies on rather direct situation-to-action mappings 
to capture rapid, reactive action decision making and learning during 
interaction with the world. Second, recurrent neural networks may not 
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be needed for reactive action decision making and related trial-and-error 
learning. In particular, the temporal credit assignment mechanisms 
embodied in many reinforcement learning algorithms that may be used in 
the ACS (e.g., Q-learning) can deal with temporal dependencies. They do 
so through value “backup” (updating the value of the current state from 
values of future states; see Sun & Peterson, 1998; Bertsekas & Tsitsiklis, 
1996; Sutton & Barto, 1998).

However, if recurrent networks are needed for any reason in any par-
ticular context, they can be easily used in place of feedforward networks.

Can communication be included in Clarion?

From the perspective of Clarion, communication is a type of “external” 
action. Therefore, Clarion should be able to include it, in particular, 
through the use of the action-centered subsystem (along with the non-
action-centered subsystem). 

However, currently, there is no fully developed model in Clarion for 
addressing language-specific issues such as syntactic parsing. Although 
they are not currently specifically included, natural language comprehen-
sion and production can certainly be carried out within Clarion.

Can sensory-motor processes be included in Clarion?

Currently, detailed sensory-motor processes are not included in Clarion. 
However, they can certainly be added into the cognitive architecture, at 
some level of abstraction. In fact, there has been in the past some imple-
mentation of sensory-motor processes in Clarion based on EPIC (Meyer 
and Kieras, 1997), although they are not currently included.

What real-world tasks can Clarion tackle computationally?

Clarion, including both the theoretical framework and the computational 
cognitive architecture, has been developed for the purpose of compu-
tational psychology—developing computational models of psychological 
processes underlying human performance and therefore detailed (mecha-
nistic, process-based) explanations of psychological phenomena and data. 
I do not know if this fits in with anyone’s personal definition of “real-
world” tasks. But from my perspective, such tasks are indeed real, intel-
lectually interesting, and useful to explore.
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Besides, Clarion has found some (preliminary) applications recently 
in social simulation, organizational research, anthropological modeling, 
interactive story telling, music agents, and so on.

If one is more interested in engineering applications, robotics, data 
mining, or the like, there is not much that is directly relevant here. But 
engineering applications and the like are not the only “real-world” tasks.

Does Clarion produce anything like human-level general intelligence?

There have been many simulations based on Clarion, but many of them 
deal with small laboratory tasks. So, naturally, one may ask whether or 
not Clarion can address tasks that are generally considered difficult for 
humans. Indeed, Clarion has not been applied to the modeling of some 
tasks that have been tackled by some other cognitive architectures, such 
as learning algebra or flying UAVs. However, Clarion has been addressing 
other, probably equally difficult tasks. As pointed out before, such tasks 
include minefield navigation, analogical reasoning, metaphor, moral rea-
soning, social simulation, anthropological modeling, game playing, inter-
active story telling, and so on. The focus of Clarion is somewhat different 
from some other cognitive architectures, and thus the tasks addressed are 
also different as a result.

Clarion has the necessary ingredients for producing general human-
level intelligence beyond these tasks tackled so far. As discussed earlier, 
Clarion takes into account necessary desiderata concerning human cog-
nition-psychology. On that basis, an essential theoretical framework was 
developed, which led to computational implementations. Even though 
the computational details may change somehow over time, the essential 
framework may prove to be of fundamental importance in capturing gen-
eral human-level intelligence.

Why has social simulation been emphasized in work on Clarion?

Social simulation has been an important development in the social sci-
ences. It has been heralded as the new approach to the social sciences, 
offering a number of significant advantages over the other approaches 
(some of which have been discussed earlier).

Besides its relevance to the social sciences, social simulation is also rel-
evant to cognitive science. Instead of simulating psychological function-
ing of an isolated individual alone, social simulation allows the inclusion 

 

 



378 Chapter 8

of social processes as well. In so doing, one may use cognitive architec-
tures as building blocks. This approach puts an individual in a social 
context, which results in more complete models of individuals—hence 
its significance to cognitive science and to cognitive architectures.

Why has tribal simulation been emphasized in social simulation 
with Clarion?

One has to start from somewhere. It is natural to start from the simplest. 
Simple tribal society has been simulated by a number of other research-
ers; it is thus a good domain to begin with.

This approach tends to address the most basic forms of social processes 
(because of the focus on simple societies), and thus likely fundamental 
principles of social processes. In a way, it may be viewed as pursuing cog-
nitive social sciences from the ground up (Sun, 2012b).

From there, we may move on to increasingly complex forms of societ-
ies and explore increasingly complex social processes. The current tribal 
simulation is just a step in this progression from the simplest to the most 
complex.

8.3.  Biological Connections

Is it true that Clarion has no clear biological connections?

This work on Clarion is at the psychological level, as is common for most 
work in cognitive science, not the neurobiological level (as in cognitive 
neuroscience). Therefore, it does not deal much with neurobiological 
details directly. In other words, it tends to be at a higher level of abstrac-
tion (at least currently).

Level of abstraction is a crucial and proven notion. For example, we 
need thermal dynamics, classical mechanics, as well as quantum mechan-
ics. We do not abandon all higher-level theories in favor of quantum phys-
ics. Likewise, we need sociological-anthropological theories, psychological 
theories, as well as biological theories. We do not abandon all higher-level 
theories in favor of biology. This is because each different level of abstrac-
tion may shed some unique light.

It is possible and indeed preferable to develop psychology (includ-
ing computational psychology) in a way that is more abstract than 
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neuroscience. Given the current state of neuroscience and psychology, 
this type of work is needed: it sheds different light and provides different 
insights on issues of brain, mind, and behavior, and possibly on the social 
sciences as well (see, e.g., Sun, 2009b and Sun 2012b).

Are biological models better models of the mind?

The answer is: not necessarily. One pertinent question in this regard is the 
following: what principled understanding of the human mind does a par-
ticular biological model provide? Sometimes (but certainly not always), 
biological models (or biologically motivated models) of the mind do not 
add much beyond psychological theories or models; sometimes they may 
offer less than psychological theories or models. But they carry with them 
the added burden of justifying and validating (often minute) biological 
details.

By presenting a biological (or biologically motivated) model, the bur-
den of validation is multiplied as a result of making biological claims, 
because

•	 in biological models, each element within a model is a biologi-
cal claim that needs to be validated in a biological way, which is 
sometimes difficult or impossible

•	 in biological models, internal structures connecting various 
elements need to be detailed in a biological way and validated, 
which is often a rather difficult or impossible task, and is often 
not needed for a principled understanding.

Given the difficulties above, some (but not all) biological models 
are highly speculative and would be better off if their overly specula-
tive biological claims were dropped. What is left is often basically a 
cognitive-psychological model, which might sometimes be more illumi-
nating and more justifiable.

Will all psychological models eventually be replaced by biological models?

As argued above, psychological models, in general, are useful in their own 
right. They are often complementary, or even sometimes superior, to neu-
robiological models, and thus not easily replaceable. For instance, they 
offer the following advantages:
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•	 In case not enough is known about the biological substrate of a 
particular psychological function or phenomenon, psychological  
models (especially computational psychological models) are 
what one may propose to explore the function or phenomenon.

•	 Psychological models often entail fewer claims (especially fewer 
claims pertaining to biological substrates) and therefore require 
less tedious validation (especially biological validation), while 
still providing a principled understanding.

•	 Psychological models often enjoy the benefit of simplicity 
and compactness, compared with biological models, and thus 
Occam’s razor would lead to preferring such models under some 
circumstances (e.g., when biological details are not needed).

•	 Psychological models may lead to new hypotheses regarding  
biological substrates; that is, psychological models may lead to 
(e.g., inspire) biological models and/or related empirical work 
(i.e. going from higher levels to lower levels in an abstraction 
hierarchy).

Can Clarion embody biological constraints?

Clarion can certainly incorporate biological/physiological constraints in 
many ways. For instance, it may incorporate such constraints by provid-
ing only biologically realistic sensory information to a simulated organ-
ism (i.e., embodying perceptual constraints). For another example, it may 
incorporate biological/physiological constraints by allowing only a bio-
logically realistic range of physical action choices in models (embodying 
physical action constraints). Clarion can also embody what is biologically 
possible in terms of cognitive capabilities. Clarion can also incorporate 
time constraints of biological organisms, in relation to perception time, 
memory retrieval time, reasoning time, physical action time, and so on. 
In addition, Clarion can embody realistic motivations of biological organ-
isms (to the extent that they are understood).
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9

General Discussions and Conclusions

At this point, two major questions concerning the work described thus 
far come to mind: Where are we now? Where should we go from here? 
The first question will be dealt with (partially) in sections 1 and 2 
below. Sections 3, 4, and 5 further link Clarion to some existing ideas, 
approaches, and models, thus also addressing the first question above. The 
second question will be addressed in the last section of this chapter.

9.1.  A Summary of the Cognitive Architecture

Clarion is distinguished by the combination of a number of characteris-
tics. Those characteristics, as discussed before, include the following:

•	 Clarion is more comprehensive in terms of functionalities 
than most existing cognitive architectures, while capturing 
fine-grained mechanistic and process details.

•	 It centers on a dual-process, dual-representation framework 
that is theoretically well justified.

•	 It is hierarchically structured and modular, but highly interac-
tive (both internally and externally). It addresses the question 
of how pieces fit together in the overall architecture.
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•	 Its basic principles, assumptions, and desiderata have been well 
justified in relation to a variety of different types of evidence 
(empirical and theoretical).

•	 It has been validated through simulating and explaining a wide 
variety of psychological tasks, data, and phenomena, capturing 
their subtleties to a significant extent.

•	 It has led to a number of new theories in different domains.
•	 It has also taken into account higher levels, for example, con-

cerning social processes and phenomena, as well as lower levels.

Take a look at one of these characteristics above in particular. Clarion 
embraces modularity and incorporates various relatively independent 
components. For instance, at the highest level, it is divided into four 
major subsystems: the action-centered subsystem, the non-action-cen-
tered subsystem, the motivational subsystem, and the metacognitive 
subsystem, each responsible for a relatively isolatable functionality. For 
another instance, there are a variety of memory stores in Clarion: seman-
tic memory in both implicit and explicit forms (in the NACS), proce-
dural memory in both implicit and explicit forms (in the ACS), episodic 
memory (in the NACS), working memory (in the ACS), goal structures 
(in the ACS), and so on, with a relatively clear division of labor among 
them.

While being modular, Clarion does not follow a strictly modu-
lar approach. It accentuates complex dynamic interactions of various 
processes within or across various modules in a context-sensitive way. 
Interactions may include those among various psychological function-
alities: perception, categorization, memory, decision making, reasoning, 
action, learning, motivation, metacognition, and so on. Interactions may 
also include those between the psychological functionalities and the 
external or internal world, geared toward surviving and functioning in 
the world.

One possible argument against Clarion is that simpler models (e.g., 
with fewer modules) may provide better explanations, which may be true 
in general. However, as argued before, there are severe limitations in sim-
pler models in terms of the range of phenomena that they can account 
for. Without capturing a broad range of psychological phenomena, there 
is little to be gained in being simple. It is unlikely that deep explanations 
come out of a model when it cannot capture many relevant psychologi-
cal phenomena. As mentioned before, cognitive architectures need to 
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incorporate all functionalities, including perception, categorization and 
concepts, memory, reasoning, decision making, planning, problem solv-
ing, action control, learning, motivation, emotion, metacognition, and 
others (while recognizing that certain other functionalities, such as natu-
ral language processing or sensory-motor processing, may be somewhat 
separate). This point has been raised early on in the history of cognitive 
science (e.g., Newell, 1990) but is still a major issue.

Complex models, however, have always invoked suspicion in psychol-
ogy. Miller et  al. (1960) cited an argument against generic models:  “A 
good scientist can draw an elephant with three parameters, and with four 
he can tie a knot in its tail. There must be hundred of parameters floating 
around in this kind of theory and nobody will ever be able to untangle 
them.” Counter-arguments to such objections have been advanced on the 
basis of the necessity of having complex models in understanding the 
mind, due to the inherent complexity of the human mind, for example, 
as argued by Miller et  al. (1960), Minsky (1985), Newell (1990), Sun 
(2002), and so on. Nevertheless, it has been clearly recognized in the 
work on Clarion that over-generality, beyond what is minimally necessary, 
is always a danger and thus should be strenuously avoided.

In all, Clarion is grounded in empirical research, is reasonably compact 
(given its broad scope), and accounts for a wide range of empirical data 
(as has been discussed thus far and beyond).

9.2.  A Discussion of the Methodologies

This work on Clarion takes an integrative approach. So far, a preliminary 
version of a comprehensive and integrative cognitive architecture has 
been described. This cognitive architecture, aimed to be comprehensive 
and integrative, encompasses different representations, mechanisms, and 
processes, different cognitive-psychological functionalities, and many dif-
ferent tasks. I have been trying to achieve full functionalities as much as 
possible (while recognizing that certain functionalities may be somewhat 
separate and that more work needs to be done).

The work around Clarion combines strands of cognitive modeling 
(computational psychology), cognitive psychology, personality psychol-
ogy, social psychology, psychology of motivation, moral psychology, as 
well as sociological, anthropological, and political sciences, among others. 
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Indeed, advancing the research on cognitive architectures beyond the 
narrowly defined notion of “cognition” has been a focal point of the work. 
Progress has been made in this regard. It is achieved through incorporat-
ing motivation, metacognition, emotion, personality, creativity, and many 
other aspects into a cognitive architecture, notably not as an add-on or 
an auxiliary, but as an integral part. Given the breadth of this work, there 
are many possibilities for extension, and a great deal of work remains to 
be done.

To constrain the cognitive architecture, two meta-  
principles have been adopted, as discussed earlier: (a) completeness of 
functionalities, but also (b) parsimony of mechanisms. As discussed ear-
lier, the ultimate goal is to come up with a cognitive architecture with 
as few mechanisms and parameters as possible, while accounting for as 
wide a range of empirical phenomena as possible, in as wide a variety of 
domains as possible.

Coming up with a well-constrained cognitive architecture with few 
mechanisms and parameters while accounting for a great deal of empiri-
cal data, as has been attempted in the work on Clarion, is clearly diffi-
cult. The difficulty has been addressed to some extent, through adopting 
a broad perspective (philosophical, psychological, biological, as well as 
computational), and through adopting a multilevel framework (involving 
biological, componential, psychological, and sociological levels, as argued 
in detail in Sun, Coward, & Zenzen, 2005b).

However, some have argued that one cannot understand cognition 
based on cognitive architectures—this approach is wrongheaded because 
of the variability of empirical data and phenomena. For instance, as some 
have claimed, the distinction between implicit versus explicit processes, 
which Clarion emphasizes, has a “questionable” empirical pedigree and 
cannot be relied upon: such dichotomies often generate interest initially, 
but after a while they are no longer “trusted” because of the complexity 
of empirical findings.

Contrary to what these critics claimed, this phenomenon illustrates 
exactly why cognitive architectures are needed in cognitive science and 
psychology. The need for them arises because of the complexity and 
variability of experimental results in experimental psychology and the 
difficulty with their interpretations. There are too many contextual fac-
tors and too many minute variations in experimental settings, for exam-
ple. Therefore, it might be futile to try to understand the mind purely 
through behavioral experiments (e.g., see Sun, Coward, & Zenzen, 2005b 
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and Sun, 2009b for discussions of this point; see also Hintzman, 1990). 
To address this problem, cognitive architectures may be used to provide a 
framework in which empirical phenomena and their variations are coher-
ently interpreted.

For instance, regarding the implicit-explicit distinction specifically, 
Clarion has indeed provided some clarity. Sun, Slusarz, and Terry (2005) 
presented detailed discussions of how experimental subtleties and vari-
abilities, and even apparently contradictory empirical findings, were 
accounted for within Clarion. Sun (2002) also provided extensive discus-
sions in clarifying this distinction and its subtleties based on Clarion. See 
also the relevant discussion in Chapter 3 regarding the whole spectrum of 
conscious and unconscious phenomena between the two ends: the purely 
implicit and the purely explicit.

As pointed out before, despite some successes so far, many kinds of 
additions to and a great deal of refinements of the Clarion cognitive archi-
tecture are still very much needed. These additions and refinements, fol-
lowing the methodologies outlined above, need to be accomplished in 
future work, as will be discussed later in Section 6.

9.3.  Relations to Some Important Notions

I will now discuss a number of important or otherwise popular theoreti-
cal notions and their relationships to the Clarion framework.

First, the implicit-explicit distinction, which is central to Clarion, 
closely relates to the notion of consciousness because this distinction 
involves, in its core, the issue of awareness (or conscious “access” in a 
phenomenological sense), which is the key to the notion of conscious-
ness. The exploration of the implicit-explicit distinction as carried out 
within the Clarion framework (see Sun, 2002) may help to understand 
issues concerning consciousness by identifying computational mecha-
nisms and processes underlying consciousness. That is, Clarion may help 
with identifying computational correlates or substrates of consciousness 
(Sun, 1997; Sun, 1999).

Clarion may shed some light on the question of what constitutes 
consciousness. My central conjecture in this regard has been that direct 
computational accessibility resulting from explicit (symbolic-local-
ist) representation, along with direct access or manipulation on such 
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representation, leads to awareness and thus constitutes the essence of 
consciousness (Sun 1997, 1999). Clarion naturally captures the dif-
ference between phenomenological accessibility and inaccessibility 
through explicit and implicit computational processes, with the use 
of symbolic-localist and distributed representation respectively, which 
provide a plausible grounding for the notion of phenomenological 
accessibility and hence the phenomenological notions of awareness and 
consciousness.

Thus, in Clarion, being “conscious” implies direct accessibility and 
direct access computationally (e.g., activation and use of explicit repre-
sentation), while being “unconscious” implies inaccessibility (or indirect 
accessibility). That is, explicit representations in Clarion are either con-
scious or potentially conscious, depending on computationally whether 
they are being activated and used or not; implicit representations are not 
conscious at all (but they may pass information to explicit processes and 
thereby become conscious in an indirect way).

Although there are a variety of views concerning consciousness, each 
based on a different physical substrate, Sun (1999) argued that the dis-
tinction between symbolic-localist and distributed representation pro-
vided a better alternative. There are of course also dualistic views that 
rely on the assumption of existence of nonphysical entities or properties, 
which I did not deal with. All things considered, Clarion has significant 
bearings on theorizing on consciousness. The reader is referred to Sun 
(1999) for details.

Second, Clarion has something to say about the notion of automaticity 
in psychology. In the past, the notion of automaticity has been variously 
associated with the following phenomena:

•	 the absence of competition for limited resources (attention) 
and thus the lack of performance degradation in multitask 
settings

•	 the absence of conscious control/intervention/intention in 
performing a task

•	 the general inaccessibility of processes
•	 the general speedup of skill performance

Clarion is consistent with these characteristics of automaticity. The 
top level (e.g., of the ACS) accounts for controlled processes (with the 
opposites of these characteristics identified above), and the bottom level  



General Discussions and Conclusions 387

(e.g., of the ACS) has the potential of accounting for all the aforemen-
tioned characteristics of automatic processes, as has been shown in vari-
ous task settings.

In various previous simulations, these characteristics have been cov-
ered separately: the speedup of skill performance, the direct inaccessibil-
ity of knowledge and processes at the bottom level (including running 
without conscious intervention), and the lack of resource competition 
(due to the coexistence of multiple modules that run in parallel at the 
bottom level). For details, see Sun (2002). Thus, in Clarion, automaticity 
serves as an umbrella term that describes a set of characteristics of the 
implicit processes in the bottom level.

On a related note, what is commonly referred to as automatic process-
ing in the literature is often the result of top-down learning (implicitation 
or automatization), while within the Clarion framework implicit pro-
cesses may sometimes (though not always) be the beginning of bottom-up 
learning (explicitation; Sun, 2002). So, in this sense (and in some other 
senses), the Clarion notion of implicit process is broader than the notion 
of automatic process.

Third, attention is an important notion in psychology. How does 
Clarion account for attention as a psychological construct? The computa-
tional correlate of attention in Clarion includes the following:

•	 the activation of a particular representation
•	 the use of that representation (e.g., in reasoning or in speech 

production)

Thus, computationally, attention is (in part) based on activation of 
representation. But, is it at the explicit (top) level of Clarion only, or 
can it be at either level? Or must it be at both levels? The answer 
depends on the very definition of attention—whether consciousness is 
assumed in attention. If consciousness is not required, then the com-
putational correlate of attention specified above may suffice. If it is 
required, explicitness of representation (direct computational acces-
sibility) needs to be added as a third condition. This stricter notion 
of attention covers a smaller set of phenomena in Clarion, compared 
with the looser notion. (In the literature, I have seen both types of 
“attention.”)

Fourth, executive control has been an important notion in psychology, 
and thus it needs to be addressed here. Evidently, this notion is loaded 
(as is the case with many notions in psychology). Its theoretical status 
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is less than completely clear. Having said that, there is indeed some 
“executive control” in Clarion. However, this notion is somewhat general-
ized in Clarion, linked up with some other control functions and more 
distributed.

For example, what the ACS of Clarion controls includes not only 
actions that affect the external world but also actions that affect some 
other subsystems (e.g., the NACS). That is, in Clarion, the control of 
internal processes (namely, “executive control”) and the control of exter-
nal processes may be similarly done; they may both result from the deci-
sions of the ACS. 

When the ACS directs reasoning occurring in the NACS, the decision 
process may be highly similar to the decision process for external action. 
For instance, the cognitive processes behind “Should I terminate the pur-
suit?” and behind “Should I  think about this [using the NACS] before 
terminating the pursuit?” should be similar and carried out by the same 
mechanism, even though one is concerned only with external action and 
the other is also concerned with internal action. Instead of relying on 
something else for controlling reasoning within the NACS, the ACS may 
be used. Including internal action selection within the ACS, in addition to 
external action selection, is also beneficial to the coordination of internal 
and external action (as shown by the example above).

On top of that, there is metacognitive monitoring and regulation/
control, in the MCS of Clarion. The MCS may alter the functioning of 
other subsystems. Some may regard some of the functions performed 
by the MCS as also belonging to “executive control.” In that sense, 
executive control is distributed between the ACS and the MCS in 
Clarion.

The justification for this approach lies in the two meta-principles 
discussed earlier:  completeness of functionalities and parsimony of 
mechanisms. Completeness of functionalities requires the inclusion of 
metacognitive mechanisms, the functional distinctiveness of which leads 
to a separate MCS; parsimony requires that the ACS be used for the 
control of internal as well as external action, when the control processes 
are similar. So the upshot is that executive control in Clarion is layered, 
distributed, and generalized. Note that as a result there is no homunculus 
in Clarion.

I should also explore the notion of working memory within Clarion. 
The specific component named “working memory” in Clarion is nar-
rower in scope than more general notions of working memory as has 
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been variously used in the psychological literature. Because in the litera-
ture the notion of working memory has been used to denote a number of 
different phenomena and has often been vague, a re-definition is neces-
sary for precisely specifying a cognitive architecture.

Despite this narrower definition, Clarion, as a whole, can account 
for many “working memory” phenomena, either through the work-
ing memory as defined in Clarion or through other components pres-
ent in Clarion. For example, Clarion accounts for the limited working 
memory capacity, the need for refreshing working memory, the lim-
ited number of explicit hypotheses that can be entertained at the same 
time (during procedural or declarative learning or during reasoning), 
the limited ability to deal explicitly with long-range temporal depen-
dencies, and so on, through various mechanisms and processes within 
Clarion.

Then why does Clarion have a component called working memory 
after all? Rather than the vague notion in the literature, in Clarion, work-
ing memory is used specifically for the following:

•	 to facilitate action decision making in the ACS by storing rel-
evant information useful for action decision making

•	 to facilitate communication between the ACS and the NACS
•	 to account for empirical data related to the two functions 

above (i.e., it accounts for some “working memory” data, while 
other components within Clarion account for other “working 
memory” data)

Note also that the working memory in Clarion is neither solely implicit 
nor solely explicit. It includes both at the same time.

I will now turn to address instance-based theories. Logan (1988) 
showed that skill learning (automatization) could be captured by the 
acquisition of a domain-specific knowledge base that was composed of 
experienced instances represented in individuated forms. Shanks and St. 
John (1994) developed a theoretical perspective in which implicit learn-
ing was viewed as nothing more than learning instances (which, however, 
has been criticized for various failings).

At first glance, these theories may seem at odds with Clarion. However, 
upon a closer examination, it is clear that the networks used in the bot-
tom level of Clarion can be either mostly exemplar-based (essentially 
storing instances) or mostly prototype-based (summarizing instances), 
often depending on the parameters and structures of the networks. 



390 Chapter 9

Similarity-based processes necessary for instance-based theories can be 
embodied in connectionist networks, which are known to excel in such 
processes (Sun 1994, 1995). Instance-based theories, however, generally 
do not account for the learning of generic, explicit knowledge, nor for 
bottom-up learning.

In addition, episodic memory in Clarion may carry out instance-
based processes (for reasoning, learning, and so on). For instance, 
appraisal of current situations, in the process of action decision making 
or in emotion processing, may be accomplished through comparisons 
with past experiences (in the form of instances) stored in the episodic 
memory.

Finally, there is the question of how Clarion can account for many 
different kinds of priming found in the empirical literature. There have 
been discussions of various types of priming scattered in the literature, 
including lexical, semantic, associative, and other priming. Some of these 
types of priming are perceptual, and some others are conceptual. Their 
effects may be discerned through the speed, likelihood, or accuracy of 
occurrence of a certain type of action or reaction. These different types 
of priming are, of course, accounted for in different ways within Clarion. 
For instance, motivational priming is accounted for by Clarion through 
persistence of drive and goal activations within the motivational sub-
system, as touched upon in Chapter 4 (see also Sun & Wilson, 2014b). 
Action priming is accounted for through action persistence as well as 
base-level activations within the action-centered subsystem of Clarion, as 
discussed in Chapter 3 (see also Sun & Wilson, 2014b). Semantic prim-
ing occurs through (micro)feature representations at the bottom level 
and similarity-based processes (as well as base-level activations), within 
the action-centered and the non-action-centered subsystem, as discussed 
in Chapter 3. Associative priming, on the other hand, may also involve 
associative rules and chunks (and their base-level activations) within the 
non-action-centered subsystem.

9.4.  Relations to Some Existing Approaches

Clarion is related to the approach of situated/embodied cognition. 
Various situated/embodied cognition views claim that cognition (or psy-
chological functioning in general) is closely coupled to the world and 
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reacts to the world as experienced (Clancey, 1997; Sun, 2002). The mind 
does not rely on a single general-purpose symbol processor, with overly 
complex symbolic representation. Instead, it contains a large number 
of specialized systems that work together to achieve various types of 
functionalities, which are functionally equivalent to a general-purpose 
symbol processor but closely coupled to and acting in response to situa-
tions as experienced.

Such an approach is in fact fully compatible with Clarion. It is actually 
the meta-theoretical foundation of Clarion, as has been argued before. 
It was implied by the framework of the ecological-functional approach 
alluded to in Chapter  1. Moreover, my earlier work on Clarion (Sun, 
2002) provided detailed arguments in this regard.

Briefly put, Clarion does contain a set of specialized modules (e.g., 
subsystems, components within subsystems, and so on) interacting with 
each other. There is no central symbol processor in the traditional sense 
(as advocated by, e.g., Newell & Simon, 1976). The processing within 
Clarion is the result of the interaction of various components, which 
together give rise to cognitive-psychological phenomena. Clarion is 
closely coupled to (and acts in response to) situations as perceived, 
especially within the ACS. It avoids unnecessarily complex symbolic 
representation. Moreover, in Clarion, even perception is shaped by its 
interaction with the world, that is, by its actions and reactions in the 
world (see the discussion regarding concept learning in Chapter 3). 
Cognitive-psychological processes within Clarion are in general shaped 
by its interaction with the world.

However, Clarion goes beyond narrower conceptions of situated/
embodied cognition. It does so in the following ways: (1) although 
no general-purpose, centralized symbol processor is posited, Clarion 
addresses the existence of symbolic processes in human cognition-psy-
chology; (2) Clarion also addresses the emergence of symbolic processes 
from ongoing subsymbolic processes in interacting with the world (i.e., 
bottom-up learning); (3) Clarion, furthermore, addresses the ground-
ing of symbolic representations in subsymbolic processes and in ongo-
ing interactions with the world. In so doing, Clarion demonstrates the 
relevance of symbolic processes even in situated cognition, as discussed 
at length in Sun (2002).

Related to situated cognition, there is also the enactive AI approach. 
Clarion agrees with, and embodies to various extents, the following 
tenets of the enactive AI approach: (1) An individual situates in the 
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world, interacting with the world in a direct way, which is the basis of 
the individual’s cognition-psychology (as discussed in chapters 1 and 2); 
(2) the individual learns and adapts in the process of interacting with 
the world (see Chapter 3); (3) the individual is embodied physically, and  
this physical embodiment has ramifications for cognition-psychology;1 
(4) the individual is self-sustained and self-reproduced (“autopioe-
sis”); (5) the individual and the world are codetermined by each other 
(because the world is, in some sense, the projection of the individual, 
and the individual consists largely of the patterns of interactions with the 
world); (6) the behavior of the individual necessarily reflects an intrinsic 
teleology forged by a long evolutionary history (e.g., primary drives; see 
Chapter 4).

However, Clarion goes beyond those points identified above, and it also 
argues for the following points: (1) the (innate) distinction of implicit and 
explicit processes, (2) the dual-representation approach toward capturing 
this distinction, (3) the importance of symbolic processes in the resulting 
system, (4) the importance of bottom-up learning in the resulting system 
(i.e., the emergence of symbolic representation from subsymbolic repre-
sentation in interaction with the world). See the earlier chapters (as well 
as Sun, 2002) for discussions regarding these points.

Finally, I will relate Clarion to the dynamic systems approach. Some 
have claimed that cognitive-psychological phenomena cannot be divided 
neatly among mental functions, processes, or representations. They can 
only be captured through interactions, among histories, stimuli, cognitive 
factors, task demands, culture, language, and so on. It has been claimed 
that the essence of cognition-psychology is such context sensitivity, and 
it is incompatible with the idea of developing cognitive architectures. In 
response, I would argue that Clarion does account for context-sensitive, 
interactive dynamics. It accounts for complex, context-sensitive, and 
sometimes seemingly contradictory empirical findings from the interac-
tion of various mechanisms, processes, and representations—that is, from 
internal and external dynamics. The discussions in the present volume 
so far should be sufficient in terms of demonstrating this point (see also 
Sun, 2002).

1. Note, however, that points 3 and 4 are beyond the scope of the current work, in that 
they involve a lot of biological processes.
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To enthusiasts of the dynamic systems approach, Clarion is indeed a 
dynamic system, with many interacting components. Perception, catego-
rization, memory, decision making, reasoning, planning, problem solving, 
metacognition, communication, action, motivation, and so on all inter-
act with each other, through various representations (in a broad sense) 
and learning of all sorts. Furthermore, patterns of interaction change with 
changing task demands, physical environments, cultural milieus, and other 
contextual factors. In Clarion, effects of all cognitive-psychological fac-
tors are in flux, so to speak, with respect to each other and with respect 
to the contexts in which they are embedded.

One may take this vast catalog of interactions at face value and 
make the claim that there is no “fixed frame of reference” (such as a 
cognitive architecture), and cognitive science should give up the mis-
leading pursuit of a “fixed frame of reference.” One may claim that 
one should instead pursue context-sensitive structures to avoid the 
“reductive logic” of a “fixed frame of reference.” I disagree with such 
defeatist claims. A dynamic system may be attributed to its constitut-
ing elements—otherwise, the field of dynamic systems does not need 
to exist. Cognitive architectures do not have to (though they may at 
times) represent a “reductive logic” or a “fixed frame of reference,” any 
more than any other possible implementation of dynamic systems. For 
example, neural networks and other learning algorithms in Clarion cap-
ture “context-sensitive structures” well, in fact. The pursuit of cognitive 
architectures is by no means “misleading.” The exploration of cognitive 
architectures should be integrated with the dynamic systems approach, 
but not replaced by it.

9.5.  Comparisons with Other Cognitive Architectures

Now let us look into a number of other cognitive architectures and com-
pare them to Clarion.

First, one may explore how Clarion is different from ACT-R 
(Anderson & Lebiere, 1998; Anderson, 1983, 2007). There are a num-
ber of major differences between Clarion and ACT-R, due in no small 
part to the basic underlying philosophical differences between the two, 
and to the different eras in which they were first conceived. I will enu-
merate only a few major differences below.
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A very central difference between the two is in regard to a principled 
distinction and separation of implicit and explicit processes (memory, 
knowledge, and representation). In ACT-R, there is no such distinction; 
that is, there is no principled explanation of the difference between 
implicit and explicit cognitive-psychological processes (e.g., based on 
representational substrates as in Clarion), although there are differences 
between symbolic and numerical representations in ACT-R (Anderson, 
2007). Ad hoc assumptions have to be made in ACT-R regarding which 
component is explicit or implicit (as discussed in Chapter 2 earlier). As 
a result, ACT-R does not naturally capture the psychological processes of 
the implicit-explicit interaction (Sun, 2002). It provides no direct expla-
nation of the effects resulting from the interaction as observed in empiri-
cal data (e.g., the synergy effects; Sun, Slusarz, & Terry, 2005).

ACT-R does capture the distinction between procedural and declara-
tive knowledge, analogous to the differences between the ACS and the 
NACS in Clarion. It thus has two main memory modules:  procedural 
and declarative memory. Short-term memory is captured by activation 
traces, without a dedicated working memory component (Anderson & 
Lebiere, 1998).

Another major difference is that ACT-R, from the beginning, was not 
meant for autonomous learning without a great deal of a priori (pre-given, 
hand-coded) knowledge to begin with. Similarly, it does not directly cap-
ture the psychological process of bottom-up learning, due to the absence 
of the implicit-explicit distinction and consequently the dual representa-
tional structure. Its learning typically goes from declarative knowledge to 
procedural knowledge (Anderson, 1983).

Furthermore, Clarion, as a result of its dual representational structure, 
is capable of effortless “automatic” similarity-based reasoning, whereas 
ACT-R has to rely on computationally costly pairwise similarity relations 
to carry out similarity-based reasoning, which do not seem cognitively-psy-
chologically realistic (Sun, 1994).

In ACT-R, there is no sufficiently developed, psychologically realistic, 
built-in modeling and explanation of motivation beyond simple goals. As 
a result, in a sense, goals are externally imposed and hand coded. They do 
not adequately reflect the complexity, diversity, and flexibility of human 
motivation and behavior. Likewise, in ACT-R, traditionally, there was no 
sufficiently developed, psychologically realistic, built-in modeling and 
explanation of metacognition, although some metacognition has been 
added recently.
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Clarion, due to the involvement of distributed representation (e.g., 
in the hidden layers of the neural networks at the bottom level), has 
a general function approximation capability, as has been shown math-
ematically in the neural network literature. It is not clear how ACT-R can 
address this issue.

On the other hand, ACT-R has some detailed sensory-motor modules 
that Clarion currently does not include (in the current release of the code 
library at least, although such capabilities were implemented before in 
Clarion).

Finally, although there have been some overlaps, Clarion and ACT-R 
often account for different tasks. ACT-R has been used to model many 
different cognitive tasks by many different researchers. Its main strengths 
lie in modeling skill acquisition in a direction that goes from declarative 
to procedural knowledge (Anderson & Lebiere, 1998; Anderson, 1983, 
1993). It has been used to model human-machine interaction and to build 
tutoring systems. It has also been used to model natural language process-
ing, multitasking performance, and other tasks. It has been less successful 
at tackling human reasoning, motivation, and social interaction.

Some of the aforementioned differences may stem from the difference 
in emphasis, while others are more substantive, reflecting fundamental 
philosophical differences.2

Next, Clarion is also different from Soar (e.g., Rosenbloom et al., 1993; 
Laird, 2012). Soar is based on state spaces and operators for searching 
state spaces. In Soar, when there is a goal on a goal stack, different produc-
tion rules propose different operators. When a sequence of production 
rules leads to achieving a goal, “chunking” occurs, which creates a single 
production rule that summarizes the sequence. Different from Clarion 
(which is capable of autonomous and bottom-up learning), traditionally 
a large amount of initial (a priori) knowledge about states and operators 
is required by Soar and needs to be hand coded, although recently rein-
forcement learning and so on were added to alleviate this problem.

Soar is different from Clarion also because Soar makes no distinction 
between explicit and implicit processes. Although there are differences 
between symbolic and numerical representations, they do not sufficiently 
capture the psychological distinction between implicit and explicit 

2. Some ACT-R ideas, such as the distinction between procedural and declarative pro-
cesses, priming by base-level activation, and so on, have been incorporated into Clarion.
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processes (Sun, 2002). Therefore, in Soar, there are no (built-in) model-
ing and explanation of the interaction and the synergy between implicit 
and explicit processes. It does not distinguish between procedural and 
declarative processes either. Therefore it does not have the correspond-
ingly separate memory modules, although episodic memory has been 
added recently (Laird, 2012).

In Soar, there is no distinction between symbolic-localist and distrib-
uted representation. It does not naturally capture similarity-based rea-
soning (e.g., based on dual representation as in Clarion). Also, due to the 
absence of distributed representation, there is no demonstration of suf-
ficient function approximation capability.

As indicated above, learning in Soar is mostly based on symbolic rep-
resentation using specialization, that is, “chunking”—creating a single 
production rule that summarizes a sequence of steps, which is a form 
of explanation-based learning. Some recent additions to Soar include 
reinforcement learning and some other learning methods (Laird, 2012), 
which are similar to Clarion to some extent. There is no (built-in) model-
ing of bottom-up learning though.

In Soar, there is no sufficiently complex, psychologically realistic, built-in 
motivational process (beyond subgoaling). Nor is there sufficiently complex, 
psychologically realistic, built-in metacognitive process in Soar, although 
some mechanisms there might be loosely described as metacognitive.

Soar has been used to model and simulate some psychological tasks, 
including skill acquisition (e.g., power law of practice; Newell, 1990). 
In addition, some theories of human emotion were implemented in 
Soar, although they were not intrinsic to Soar (e.g., Marsella & Gratch, 
2009; Marinier et al., 2009). Soar is evidently capable of tackling deci-
sion making, reasoning, and problem solving tasks (e.g., Ritter & Bibby, 
2008), although it has not been used extensively to address psychologi-
cal data (perhaps because its focus has been elsewhere). However, Soar 
has been used in large-scale military simulations and in addressing social 
interaction.

Additionally, one may look into Psi (Bach, 2009).3 Psi addresses auton-
omous learning, as Clarion does, although its learning algorithms were 
less developed algorithmically. Psi does not include the implicit-explicit 

3. For a long time, there was no comprehensive description of Psi in English beyond 
brief mentions in review papers. Bach (2009) is, relatively speaking, the most comprehen-
sive source of information so far. This comparison is thus based on Bach (2009).
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distinction, although the reactive-planning distinction came close. Psi does 
not address bottom-up learning and top-down learning. Psi has a num-
ber of memory modules, including a working memory and a long-term 
memory store.

Like Clarion, Psi addresses the regulation of behaviors. In Psi, each 
goal-directed action has its source in a motive that connects a goal to an 
“urge,” which is related to a physiological, cognitive, or social “demand” 
(Bach, 2009). When a goal is reached, a demand may be (partially or com-
pletely) fulfilled, which creates a pleasure signal that is used for learning 
by strengthening the associations of the goal with the actions carried out 
and the situations that led to the fulfillment.

So Psi is driven by demands. Some demands are for external resources, 
whereas others are abstract cognitive demands (such as certainty and 
competence) and social demands. There is a threshold for each demand. 
A deviation from the threshold is signaled as an urge, which then gives 
rise to a motive (with a goal). There may be multiple motives at any given 
time but only one “ruling motive.” Actions are produced according to the 
ruling motive (with its associated goal).

In handling a motive, Psi goes through three stages. First, it tries to 
recall an automatic reaction. If no such reaction exists, it attempts to con-
struct a plan, utilizing existing knowledge. If both automatic and plan-
ning attempts fail, it resorts to exploration by trial and error. Whenever 
a demand is satisfied, links are strengthened so that relevant situations 
become associated to the demand and the sequence of events that lead to 
the satisfaction of the demand, which may be used for planning.

Although Psi is similar to Clarion, it does not have as much empirical 
grounding. It has not been used extensively for modeling psychological 
processes and phenomena in accordance with empirical data and thus has 
been less well-validated psychologically. So far it appears that Psi does not 
have the mathematical-computational sophistication that other cognitive 
architectures have. However, in terms of comprehensiveness, Psi appears 
the closest to Clarion among existing cognitive architectures.

There are also biologically inspired cognitive architectures, such as 
Grossberg (1982), O’Reilly and Munakata (2000), or Eliasmith (2013). 
These models attempt to develop cognitive-psychological functionalities 
from biological constructs. One may consider these approaches comple-
mentary to the present work. See Chapter 8 for a discussion regarding 
biological connections.
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Ideally, one would want to compare Clarion with these models above 
and other models quantitatively through simulation, although in reality it 
is difficult. The difficulty may stem from the following causes: (1) many 
models focused on different issues at different levels, not directly relevant 
to Clarion; (2) some models were highly specialized, dealing only with 
one task or even one data set, and therefore it is difficult or inappropriate 
to compare them with Clarion, which is a generic cognitive architec-
ture that is coarser by necessity (Anderson & Lebiere, 2003); (3) differ-
ent models often dealt with different tasks and therefore are not directly 
comparable to each other. Nevertheless, in the previous work on Clarion, 
detailed comparisons of Clarion simulations with simulations conducted 
using other models were often included, when there was indeed overlap-
ping coverage (see, e.g., Sun, 2002; Sun, Slusarz, & Terry, 2005; Sun et al., 
2007, 2009).

For more comparisons of cognitive architectures, see Pew and Mavor 
(1998), Ritter et al. (2003), Sun (2006), Chong et al. (2007), Taatgen and 
Anderson (2008), Langley et al. (2009), Thórisson and Helgasson (2012), 
and Helie and Sun (2014b).

Finally, I should mention that Allen Newell proposed in the 1980s a 
set of criteria for a humanlike cognitive model (e.g., as summarized in 
Newell, 1990). These criteria include: (1) behaving as an arbitrary func-
tion of the environment; (2) operating in real time; (3) exhibiting rational, 
effective adaptive behavior; (4) using vast amounts of knowledge about 
the environment; (5) behaving robustly in the face of error, the unex-
pected, and the unknown; (6)  integrating diverse knowledge; (7) using 
language; (8) exhibiting self-awareness and a sense of self; (9)  learning 
from its environment; (10) acquiring capabilities through development; 
(11) arising through evolution; and (12) being realizable within the brain. 
Newell proposed these criteria as part of an effort to justify his work at 
that time in developing cognitive architectures (and Soar in particular). 
After more than 30 years, however, this set of criteria may seem rough, 
unspecific, and outdated. Many currently existing cognitive architectures, 
including Clarion, could claim to satisfy these criteria (or at least most of 
them), and there is often no objective way of determining the truth or 
falsity of these claims. Therefore, at this point, I would avoid using these 
criteria in comparing cognitive architectures or other cognitive models.4

4. Note that a detailed critique of these criteria would be out of place in this book and 
thus will have to be deferred to other work.
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9.6.  Future Directions

Finally, it would be pertinent to see what issues are still open at this point, 
and which of these are particularly suitable for approaching from within 
Clarion. It would also be useful to know what difficulties and challenges 
are still ahead in this regard.

9.6.1.  Directions for Cognitive Social Simulation

I would like to address a number of specific directions with regard to 
cognitive social simulation. Among the specific topics tackled within the 
Clarion framework, cognitive social simulation is promising in terms of 
future development.

Cognitive social simulation, as discussed in Chapter 7, needs a great 
deal more work. It can be a precious source of new ideas and inspira-
tions for further developing cognitive architectures. It helps to highlight 
the social aspects of human cognition-psychology; thus it may lead to 
better incorporation of these aspects into models of individual cognition-
psychology and in particular into cognitive architectures. Traditional 
approaches to cognitive modeling have largely ignored the effects of 
social processes. By modeling individuals in a social context, one can 
learn more about the sociocultural processes that influence individual 
cognition-psychology (Zerubavel, 1997). Thus, integrating social simula-
tion and cognitive modeling may well lead to better understanding of 
individual cognition-psychology.

On the other hand, a more realistic model of individual minds, incor-
porating realistic tendencies, inclinations, and capabilities, can serve as a 
more realistic basis for understanding social processes, even though cur-
rently most agent models in social simulation have been extremely simple. 
As has been argued before (Sun, 2001; Sun & Naveh, 2004; Castelfranchi, 
2001), social processes ultimately rest on decisions and actions of individ-
uals, and thus understanding the mechanisms and processes of individual 
cognition-psychology can lead to better theories describing aggregates of 
individuals. Compared with more specialized or narrowly scoped cog-
nitive-psychological models, cognitive architectures certainly have some 
significant advantages in this regard due to their generality and compre-
hensiveness (Sun, 2006; Newell, 1990).

The most fundamental issue in this regard, as indicated before, is how 
to develop better ways of conducting detailed social simulation on the 
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basis of cognitive architectures as building blocks. This is not an easy task, 
although some initial work has been done (e.g., as discussed in Chapter 7; 
see also Sun, 2006). In this regard, one specific direction that has been 
mentioned before is enhancing cognitive architectures for the purpose 
of accounting for sociality in individuals. There are many questions to be 
asked in this regard: for example, what are the additional characteristics 
of a cognitive architecture for modeling the interaction of individuals 
(not just modeling individuals in isolation)? What additional represen-
tations, mechanisms, and processes within individuals are needed? Sun 
(2006) provided detailed discussions of these questions. Within the 
Clarion cognitive architecture, we need to further develop essential 
social-psychological capabilities necessary for cognitive social simulation, 
including motivation (especially socially oriented motivation), emotion 
(especially socially oriented emotion), personality (and its relation to 
social interaction), moral judgment (and its relation to social interaction), 
representation of self and others, social role, social identity, self categori-
zation, and so on, as touched upon in previous chapters.

With Clarion, various sociocultural factors and their interactions 
with the cognitive-psychological factors need to be further explored. 
For example, one may explore cultural aspects through cognitive social 
simulation: exploring culture formation, propagation, and transformation 
(convergence, divergence, shifting boundaries, and so on) on the basis of 
cognition-psychology. With Clarion, how cognitive-psychological factors, 
along with sociocultural factors, physical environmental factors, and so 
on, lead to various forms of social institutions (and vice versa) may also be 
further explored for a better understanding of the interaction of sociality 
and cognition-psychology.

The role of social networks in social processes needs to be explored and 
related to cognitive-psychological factors. For instance, one may explore 
the relationship of social networks to motivational dynamics, personality 
formation and adaptation, moral belief formation, creative problem solv-
ing, and so on. One may conduct human experiments exploring effects 
of social networks on these aspects. Experiments may also explore effects 
on social networks of different individual motivations, personalities, 
moral beliefs, self-identities, and so on. Then these effects may be cap-
tured in computational forms (e.g., through Clarion) in cognitive social 
simulation.

Results of these research directions may be applied to a wide vari-
ety of psychological and social phenomena deepening our understanding 
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of these phenomena: for example, addiction of various types and forms 
(Sun, Wilson, & Mathews, 2011), personality and personality disorders 
(Sun & Wilson, 2014; Sun & Wilson, 2014b), social anxiety (Wilson, Sun, 
& Mathews, 2009), social stereotyping (Wilson et al., 2010), and so on.

However, there are also the issues of computational complexity and 
thus scalability of simulation that need to be addressed. Social simula-
tion could involve a large number of individuals (often thousands of indi-
viduals). Computational complexity is thus already high, even without 
involving cognitive architectures as models of individuals. To incorporate 
cognitive architectures into social simulation, one has to deal with added 
complexity. Thus, scalability is a significant problem. Specialized, nar-
rowly scoped cognitive models might be better at avoiding this problem, 
but they lack the generality and comprehensiveness that are attractive for 
cognitive social simulation in general. More work is needed in this regard.

Yet another important direction with regard to cognitive social simu-
lation is exploring its theoretical potentials, for example, in terms of its 
role in coming up with cognitive-psychological explanations of social 
processes and phenomena and even the very notion of cognitive-psycho-
logical explanations of social processes and phenomena. In so doing, we 
need to address theoretical issues surrounding cognitive social simula-
tion. These issues have been initially addressed in Sun (2012b), but much 
more work is needed.

9.6.2.  Other Directions for Cognitive Architectures

I now turn to other directions of developing cognitive architectures. 
More comprehensive, more psychologically realistic, more algorithmi-
cally sophisticated cognitive architectures are to be developed, either 
through incremental improvements or through coming up with radical 
new ideas. Most likely, it will be an incremental, continuous process to 
improve upon the state of the art and to come up with cognitive archi-
tectures that better and better mirror the human mind and possibly serve 
a variety of application domains at the same time.

The understanding of the mind has always been driven by techno-
logical developments and in recent decades by the developments in 
computer science. To develop better cognitive architectures, better con-
stituting computational methods and algorithms are needed, especially 
if one wants to scale up modeling and simulation. Relevant computa-
tional methods and algorithms are found in various subfields of computer 

 



402 Chapter 9

science and engineering (e.g., machine learning). It is important that com-
putational researchers in these subfields come up with better methods 
and algorithms, for various functionalities such as perception, learning, 
memory, reasoning, decision making, problem solving, planning, language, 
and so on. On the basis of such developments, better cognitive architec-
tures can be developed correspondingly.

In particular, better natural language processing capabilities, more 
extensive sensory-motor capabilities, better perception, more powerful 
learning algorithms, more efficient planning algorithms, and the like are 
needed. Each of these types of algorithms could potentially significantly 
improve cognitive architectures in terms of their psychological realism or 
their application potentials.

Better computational methods and algorithms for putting the pieces 
together to form better overall architectures should also be emphasized. 
Various pieces have been developed (e.g., neural networks, reinforce-
ment learning, and so on) and are improving, so it is important to put 
them together to form a more coherent, better-integrated cognitive 
architecture that more accurately reflects human cognition-psychol-
ogy. Better algorithms and computational methods are needed for this 
purpose.

Another direction that should be continued in future work, based on 
what has been done thus far, is to develop a cognitive architecture with 
as few parameters as possible while accounting for as large a variety of 
empirical tasks, observations, phenomena, and constructs as possible. In 
so doing, one needs to address the cost-benefit trade-off between com-
plexity and capability. In the same vein, one should consider the issue 
that a model accounts for a large set of data, either because of its extreme 
generality or because it captures deep structures and regularities of the 
mind. Any cognitive model has to address these issues. More work is cer-
tainly needed in this regard.

Future work needs to address many more generic psychological “laws,” 
beyond those discussed in Chapter 5. This direction is highly relevant 
to developing well-constrained but generic models balancing complex-
ity and capability. Future work in accounting for psychological “laws” 
should expand the scope of the existing Clarion explanations of psycho-
logical “laws” to a larger set of psychological phenomena, although many 
phenomena have been accounted for (as sampled in Chapter 5, and as 
reported more extensively elsewhere, e.g., in Helie & Sun, 2014 and Sun & 
Helie, 2013). Deeper explorations of finer-grained details of psychological 



General Discussions and Conclusions 403

“laws” should also be attempted. Such work should also be compared to 
other existing theories and models for these phenomena.

A difficult issue has been the validation of details of a computa-
tional model against empirical (e.g., psychological) data, especially for 
cognitive architectures. Painstakingly detailed work needs to be car-
ried out before claims are made, especially generic claims about human 
cognition-psychology. The issue of validation poses a serious challenge for 
cognitive architectures, because of the myriad of mechanisms involved in 
a cognitive architecture and therefore the overall complexity. Detailed 
validation of cognitive architectures has been extremely difficult, 
much more so than the validation of simple, narrowly scoped models. 
Addressing this issue better is an important research direction, requiring 
much further work.

A related issue is the validation of cognitive social simulation. It has 
been pointed out that validation of complex social simulation models 
is extremely difficult (Sun, 2006). However, in this regard, adopting an 
existing cognitive architecture as part of a cognitive social simulation may 
be beneficial. If one adopts a well-established cognitive model, the prior 
validation of that cognitive model, to whatever extent it may exist, may 
be leveraged in validating the overall simulation.

9.6.3.  Final Words on Future Directions

Look at work on cognitive architectures more broadly. Some have 
claimed that grand scientific theorizing has become a thing of the past. 
What remains to be done is the filling-in of minute details and the refin-
ing of relatively minor points. Fortunately, many others have believed 
otherwise. Researchers are often pursuing integrative approaches that 
attempt to explain data in multiple domains and functionalities. In cogni-
tive science, as in many other scientific fields, significant advances may 
be made through hypothesizing, testing, and confirming deep-level prin-
ciples that unify superficial explanations across multiple domains, in a 
way somewhat analogous to Einstein’s theory that unified electromag-
netic and gravitational forces or String Theory that provides even further 
unifications. Such unifying theories concerning the human mind (human 
cognition-psychology), on the basis of cognitive architectures, are what 
should be more strongly emphasized.

Comprehensive, integrative models, such as cognitive architectures, 
serve as antidotes to the increasing specialization of scientific research. 
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Cognitive architectures that integrate a broad range of functionalities 
go against this trend of increasing specialization and help to fit pieces 
together again. The trend of over-specialization could be harmful and a 
reversal of this trend may be a necessary step toward further advances 
of cognitive science and psychology (Sun, Honavar, & Oden 1999). 
Developing integrative cognitive architectures is thus a major challenge 
and a major opportunity.

It is of vital importance to continue to work toward the ultimate goal 
of fully understanding, explaining, and capturing integrated and func-
tioning, biological, psychological, and social “personhood”, which results 
from the sum total of the biological, psychological, social, cultural, and 
other factors, through the relationship between the biological being and 
the physical and social worlds—their interaction and co-evolvement, 
as accentuated by the ecological-functional perspective articulated in 
Chapter 1 (Sun, 2002; Sun, 2012). Although important steps toward this 
ultimate goal have been taken, there is still a very long way to go in this 
regard.
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