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Chapter 1

Introduction

1.1 Concurrent Engineering Approach and Product
Development Flow

Industrial companies operating today persistently face strong competition and must

adapt to rapid technological progress and fast-changing customer needs. Under

these conditions, if companies want to gain a competitive advantage in global

markets, they must be able to successfully develop innovative products and effec-

tively manage the associated product development (PD) projects. To shorten time-

to-market and lower development/production costs, PD projects often undergo

concurrent engineering (CE). In their landmark report, Winner et al. (1988) define

CE as “a systematic approach to the integrated, concurrent design of products and

their related processes, including manufacture and support. This approach is

intended to cause the developers, from the outset, to consider all elements of the

product life cycle from conception through disposal, including quality, cost, sched-

ule, and user requirements.” A large-scale vehicle development project in the

automotive industry offers a good example. In the late development stage, such a

project involves hundreds of engineers collaborating in dozens of CE teams. The

CE teams are usually structured according to the subsystems of the product to be

developed (e.g. body-in-white, powertrain, interior systems, electronics etc.) and

are coordinated by systems integration and management teams of responsible

engineers who know the entire product (see e.g. Midler and Navarre 2007).

Under an integrated approach to concurrent design of products and processes,

multi-disciplinary teams are formed to develop recommendable configurations of

the intended subsystems. These configurations should satisfy all constraints and

incorporate the different types of technical expertise and methodological approaches

to problem-solving needed in order for a parallel execution of work processes to be

successful (Molina et al. 1995). The constraints and requirements imposed on the

design by the various engineering disciplines (engineering design, production

engineering, control engineering etc.) are discussed by the subject-matter experts
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in team meetings and are mapped onto specific design parameters in a process of

intensive collaboration. To avoid unnecessary system integration problems, in CE

the teamwork usually follows a continuous integration rhythm with regular team

meetings that are typically held at intervals of just a few weeks. Additional team

meetings, e.g. to solve time-critical or quality-critical problems and to find sound

compromises for conflicting constraints that have arisen during the design process,

are held as needed.

The subject-matter experts in the multi-disciplinary teams differ in terms of how

they use engineering methods to solve design problems and satisfy constraints, and

thus generate a variety of possible solutions from different technological perspec-

tives and by applying different fields of knowledge (Eversheim and Schuh 2005).

PD projects (and this is not limited to large-scale automotive innovation) thus

involve a considerable amount of creative work in the sense of Rohmert (1983)

and can display highly informative but also highly complex and difficult-to-manage

patterns of project dynamics. These patterns are partly the result of pure creative

thought concerning the relevant aspects of the product and its related processes

from a specific technological perspective, and partly the result of systematic

engineering design. The latter is inherently iterative because of the cyclic interde-

pendencies between facets of the design problem and because loops of analysis,

synthesis and evaluation are fundamental to the design process (Braha and Maimon

1997). Furthermore, the aim of the design process is to generate knowledge that

reduces uncertainty and increases design maturity by incrementally defining design

parameters and concretizing the product on both the functional and physical level

(Feldhusen et al. 2013). During the iteration process the functions of the product

and its constituent components are fully integrated into an overall systems archi-

tecture that involves numerous interfaces between mechanical, electrical and elec-

tronic modules. The product development flow (Reinertsen 2009) has frequent and

sometimes irregular iterations due to the availability of new or updated information

on generalized functions, physical functions, geometric/topological entities, etc. It

is also important for the developer’s workflows to be organized in such a way as to

ensure effective and flexible forms of cooperation. For our purposes, this means that

mutual agreements on design (sub)goals are developed within teams and that

mutually compatible action plans are derived on the basis of those goals and are

executed with a high level of agreement and without dividing the teams (Luczak

et al. 2003; Mühlfelder 2003). In this context, effective cooperation between

developers and production engineers is essential in order to satisfy all constraints

that are necessary to ensure an efficient and timely production ramp-up (sensu Stahl

et al. 2000; Mütze-Niew€ohner and Luczak 2003). Another important aspect of

collaboration within PD involves sharing knowledge resources within and between

teams, and creating additional resources through continuous interaction between

subject-matter experts (Durst and Kabel 2001; Luczak et al. 2000). Concurrent

development tasks are therefore both highly variable and strongly dependent on

each other and on elements of “surprise,” i.e. on seemingly erratic but profoundly

creative activities that are essential to design work. As Shalizi (2006) and Nicolis

and Nicolis (2007) point out, this coexistence of variability and dependency is
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typical of complex systems in a variety of domains. In this sense, PD projects

employing long-range, cross-functional coordination mechanisms can be regarded

as one of the most authentic prototypes of complex sociotechnical systems. They

provide inspiration for raising new issues and perspectives, and encourage further

research on the sources and mechanisms of complexity.

Clearly, the higher-level cognitive processes underlying human capacities for

reasoning, decision-making and problem-solving represent one of the most impor-

tant sources of complexity in PD projects. The complexity of accessing the knowl-

edge resources on the product and processes in question and the large number of

interlinked technical documents involved usually overwhelm the information-

processing capacity of any project manager, team leader or team member, and

require many assumptions to be made about design ranges, optimal operating points

and other important variables of the system under development (sensu Loch and

Terwiesch 2007). During the iteration process, some assumptions invariably turn

out to be wrong and must be reexamined, others turn out to be too vague and must

be refined, and a few might turn out to be too rigid and must be relaxed. Further-

more, design errors of various kinds are unavoidable in such a distributed and open

organizational system. Accordingly, detecting, identifying and correcting errors is

an essential part of cooperative work in PD. Although most errors are processed

fairly quickly and successfully in the form of ad-hoc design changes, there is an

inevitable disparity between analysis and synthesis efforts, which, from the per-

spective of the product development flow, can lead to significant performance

variability. Borrowing a statistical concept from physics, we can also speak of

unpredictable performance fluctuations. These fluctuations can be found at every

organizational level and are an irreducible feature of the participating organiza-

tional units’ knowledge-generating and knowledge-sharing efforts, which are

intended to reduce uncertainty. By definition, they are not random. Developers in

the current work context often believe them to be random because the intricate

mechanisms in which events unfold in time and manifest in teams are too complex

to be understood by individual reasoning and conjecture. In addition to representing

the negative side effects of the limited capacity for processing information, and

incorporating fundamental mechanisms of error correction in PD, unpredictable

performance fluctuations can be seen as essential components of creative thinking.

As such, they are basic ingredients of success that should not be limited in their

reach and capacity to benefit the product development flow. Nevertheless, due to

the high level of individualization they often make it hard to predict and control the

project as a whole, as a large body of individual knowledge concerning the

development history is required to develop effective managerial interventions,

and progress toward a stable design solution can differ significantly from the

expected (unimpaired) process (Huberman and Wilkinson 2005). Depending on

the kind and intensity of cooperative relationships, some of the development teams

can fall into “vicious cycles” of multiple revisions, which entail significant

unplanned and unwanted effort, as well as long delays (Huberman and Wilkinson

2005). Moreover, the revision cycles can be reinforced, and a fatal pattern of

organizational dynamics termed “design churns” (Yassine et al. 2003) or

1.1 Concurrent Engineering Approach and Product Development Flow 3



“problem-solving oscillations” (Terwiesch et al. 2002; Mihm et al. 2003; Mihm and

Loch 2006) can emerge. In this case, the progress of the project irregularly

oscillates between being on, ahead of, or behind schedule. Ultimately, the project

must be abandoned entirely to break the cycle. The design churn effect was

analyzed by Terwiesch et al. (2002) and Yassine et al. (2003) in PD projects in

the automotive industry. Aptly summarizing the problem, an anonymous product

development manager at an automobile manufacturer commented, “We just churn

and chase our tails until someone says they won’t be able to make the launch date”

(Yassine et al. 2003). According to the literature review by Mihm and Loch (2006),

design churns occur not only in the automotive industry but also in large develop-

ment projects across different domains.

Design churns are an intriguing example of emergent (or “self-generated”)

complexity in PD projects. They can produce disastrous results, painful financial

losses and a great deal of frustration for all stakeholders concerned. The emergence

is strong, in the sense that the only way to reliably anticipate critical patterns in the

product development flow is to analyze the distant past of each particular instance

of task processing and to have access to a large body of (mostly explanatory)

knowledge on the prior history of the interacting processes (Chalmers 2002). To

cope with this kind of emergent complexity, a deeper understanding of the interre-

lationships between unpredictable performance fluctuations and project dynamics

is needed, as are new methods for analyzing and evaluating quantitative

complexity.

1.2 Goals and Structure of this Book

This book continues the tradition of research works produced by RWTH Aachen

University’s Institute of Industrial Engineering and Ergonomics on the organiza-

tional and ergonomic analysis of work processes in concurrent product and process

development. To gain a detailed understanding of the interrelationships between

unpredictable performance fluctuations and the dynamics of concurrent develop-

ment in an open organizational system, the book’s first goal is to present different

mathematical models of cooperative work on the basis of the theory of stochastic

processes. To promote the development of new methods for analyzing and evalu-

ating quantitative complexity, its second goal is to introduce an information-

theoretical complexity measure that is underpinned by a convincing complexity

theory from the field of theoretical physics (Grassberger 1986; Bialek et al. 2001)

and therefore makes it possible to quantify strong emergence in terms of mutual

information between past and future histories of interacting processes. The com-

plexity measure is a key invariant of generalized stochastic processes; as such, its

formulation makes the same contribution to theory as the famous entropy rate,

which was discovered and popularized much earlier. To model cooperative work in

an open PD environment, we focus on the development tasks and their interactions

in the product development flow and assume that additional dependencies related to
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the design product and design problem domains (see Summers and Shah 2010)

were integrated into a joint model. This approach is supported by the practical

complexity definition put forward by Tatikonda and Rosenthal (2000), who define

project complexity as the nature, quantity and magnitude of organizational subtasks

and subtask interactions within a certain project. The challenge is that, even if the

breakdown and dependency structures of the development tasks, the rate of

processing, the variability in processing and the rules of interaction are given, it

is difficult to anticipate the performance of the project as a whole. Self-reinforcing

feedback processes can exacerbate performance fluctuations and generate effects

that cannot simply be reduced to properties of the constituent components of the

product development flow. Instead, these phenomena emerge from higher-order

interactions and can be considered properties of the organization as a whole

(Huberman and Wilkinson 2005). The combined approach of providing mathemat-

ical models of cooperative work in an open PD environment as well as information-

theoretic complexity measures builds on our previous work on project simulation

and the management of dynamic complexity (see e.g. Schlick et al. 2007, 2008,

2009, 2012, 2013a, b, 2014, 2015; Petz et al. 2015; Tackenberg et al. 2009, 2010).

However, it differs from said work in terms of how discrete-time, continuous-state

models with different internal configurations for gaining a complete description of

the work processes are formulated, and in that the parameterized models are

consistently validated in different validation studies. Furthermore, we present results

of mathematical analyses of emergent complexity and formulate closed-form solu-

tions of different strengths that can be used to identify the variables that are

fundamental in shaping complexity, making it possible to carry out a theory-driven

model selection and to optimize the organization design of the project at hand.

The structure of this book is derived from a theoretical framework on the

dynamic complexity analysis of the product development flow: Chapter 2 lays the

foundations for deterministic and stochastic modeling of cooperative work in PD

projects, and formulates the state equations that are needed to model the time

evolution of the amount of work done in the iteration process. We follow the

principle of successive refinement and begin by formulating a simple linear first-

order difference equation based on the seminal work that Smith and Eppinger

(1997) did on Work Transformation Matrices. These matrices can be regarded as

a task-oriented variant of the popular Design Structure Matrix (see, e.g. Steward

1981; Lindemann et al. 2009; and Eppinger and Browning 2012) and as such can be

easily interpreted in terms of structure and parameters. Following Huberman and

Wilkinson (2005), the deterministic model formulation is generalized towards the

theory of stochastic processes. This means performance variability in the iteration

process is represented by continuous-valued random variables and interpreted as

unpredictable performance fluctuations. Viewing organizational systems in this

way also allows us to apply powerful estimation methods to analyze, predict and

evaluate project dynamics. To model cooperative work in PD projects, we consider

two classes of models. The basic class comprises vector autoregression models of

finite order, which can capture the typical cooperative processing of the develop-

ment tasks with short iteration length. For a first-order model, a transformation into
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the spectral basis is performed in order to uncover the essential dynamic mecha-

nisms. An augmented state-space formulation also makes it possible to represent

more complex autoregressive processes with periodically correlated components.

These processes incorporate a hierarchical coordination structure and can therefore

also be used to simulate the long-term effects of intentionally withholding design

information to improve the implementation of the product architecture. In addition

to autoregression models, Chapter 2 considers the theoretically interesting class of

linear dynamical systems with additive Gaussian noise. With this class of models,

the state of the project is only partially observable. In other words, regular obser-

vations of the work processes required to complete a particular development

activity are correlated with the state of the project, but are insufficient to precisely

determine this state. In this sense, a kind of hidden-state process of cooperative

development is distinguished from the observation process in the product develop-

ment flow. As the term suggests, the state variables cannot be directly observed and

must be inferred through a causal model from other variables that are measured

directly. This fundamental uncertainty in the project state and its evolution can lead

to a non-negligible degree of long-term correlations between development activi-

ties and can therefore significantly increase emergent complexity. In addition to the

mathematical models, we also introduce least squares and maximum likelihood

estimation methods to show how the independent parameters can be efficiently

estimated from time series of task processing. These methods can be very useful for

applying the stochastic models in different project phases. The estimation methods

also help achieve a deeper understanding of the interrelationships between perfor-

mance variability and project dynamics. A case study was carried out in a German

industrial company to validate the models with field data. The validation results are

presented and discussed in detail in separate chapters. Chapter 3 provides a project

management-based review of various complexity frameworks, theories and mea-

sures that have been developed in organizational theory, systematic engineering

design and basic scientific research on complex systems. We analyze an

information-theoretic quantity—called the effective measure complexity—in detail

because of its outstanding construct validity and conceptual advantages for evalu-

ating emergent complexity in the field of application. As mentioned above, the

measure also stands out as a key invariant of stochastic processes. The stochastic

models developed in Chapter 2 also make it possible to calculate the effective

measure complexity and present closed-form solutions with different numbers of

independent parameters. These solutions are derived and discussed in Chapter 4.

The calculations are carried out in considerable detail for both model classes. We

use different coordinate systems to formulate solutions of different expressiveness

and with different structural richness. Simplified polynomial-based solutions for

first-order models representing the processing of two and three development tasks

in the spectral basis are presented to clarify the complicated interrelationships

between the individual parameters. We also put upper and lower bounds on the

effective measure complexity for first-order models, so as to support the interpre-

tation of emergent complexity in the sense of the measure. For the broader class of

linear dynamical systems, we calculate an explicit solution of the effective measure
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complexity as an original contribution to the theory of linear stochastic systems.

Because of the complicated internal structure of this solution, we also present

implicit formulations that are much easier to interpret and can be directly applied.

Following a comprehensive and unified treatment of emergent complexity in PD

projects based on mathematical models of cooperative work and application of

information-theoretic methods, Chapter 5 focuses on the validity of selected closed-

form complexity solutions that were obtained for vector autoregression models as

the basic model class. In terms of methodology, we follow classic validity theory

and evaluate the criterion-related validity. In the validation studies we investigate

project organization forms in which the developers directly cooperate and also

analyze work processes that have periodically correlated components due to a

hierarchical coordination structure. Furthermore, in the strict sense of the concept

of criterion-related validity we investigate whether it is possible to obtain a valid

formulation of a model selection criterion that is based on the effective measure

complexity and can be used to identify an optimal model order within the class of

vector autoregression models from data. By means of this additional theoretical

contribution our aim is to focus not exclusively on PD environments in the

validation studies but also to find a criterion with universal reach in model selection

tasks. This complexity-based criterion is the subject of the first validation study in

Section 5.1. To formulate the criterion, we follow the principles of model selection

developed by Li and Xie (1996) and generalize their solution to vector-valued

autoregressive processes. The corresponding validation studies are based on two

Monte Carlo experiments. These experiments have the same overall objective of

comparing the accuracy of the complexity-based criterion with standard model

selection criteria like the Akaike information criterion and the Schwarz-Bayes

criterion. It is hypothesized that model selection based on the effective measure

complexity makes it possible to select the true model order with a high degree of

accuracy and that the probabilities for the selected model orders are not signifi-

cantly different from the distribution obtained under the alternative criteria. The

parametric models evaluated in the Monte Carlo experiments are not only derived

from field data from the cited industrial company, but are also synthetically

generated in order to allow a systematic comparison of the different criteria.

Sections 5.2 and 5.3 provide a more practical explanation of the theoretical con-

siderations of emergent complexity by using applied examples of optimizing

project organization. To conduct these validation studies, we systematically manip-

ulate different independent variables related to project organization forms in addi-

tional Monte Carlo experiments to see how the levels of these variables affect

emergent complexity and whether it is possible to derive meaningful and useful

organizational design recommendations. The study in Chapter 5.2 has the objective

of designing cooperative work with minimal emergent complexity by selecting the

optimal staffing of three concurrent engineering teams using developers with

different levels of productivity in a simulated PD project. We hypothesize that for

large productivity differences, “productivity balancing” at the team level minimizes

emergent complexity. Productivity balancing is a self-developed concept for sys-

tematically designing interactions between humans, tasks and products that views

1.2 Goals and Structure of this Book 7

http://dx.doi.org/10.1007/978-3-319-21717-8_5
http://dx.doi.org/10.1007/978-3-319-21717-8_5
http://dx.doi.org/10.1007/978-3-319-21717-8_5
http://dx.doi.org/10.1007/978-3-319-21717-8_5
http://dx.doi.org/10.1007/978-3-319-21717-8_5


performance fluctuations as an opportunity to innovate and learn (Schlick

et al. 2009). The objective of the final study in Section 5.3 is to optimize the period

for minimal emergent complexity in which information on integration and tests of

components is deliberately withheld by subsystem-level teams and not directly

released to component-level teams. This kind of non-cooperative behavior in a

multi-level hierarchical coordination structure aims at improving solution maturity

and reducing coordination efforts. In both studies, we formulate and solve

constrained and unconstrained optimization problems. For constrained optimiza-

tion, we consider the total amount of work done in all tasks during the iteration

process as the major constraint. Chapter 6 draws the main conclusions and provides

a brief outlook for future research.

1.3 Notation

Throughout this book we will use the following mathematical notation: A:i denotes

the i-th column of the matrixA.AT is the transpose. We use the normal font style for

the superscript T in order to discriminate the transpose from the variable T

indicating the time instant T 2  in the work processes. A* denotes the conjugate

of A. The conjugate matrix is obtained by taking the complex conjugate of each

element ofA. The inverse ofA is denoted byA�1. The elements of a matrix are either

written as sub-scripted, non-bold lower-case letters, e.g. aij, or are indexed by i and
j as A〚i; j〛. The index form stems from the notation of the Mathematica® modeling

and simulation environment. Although quite unusual, additional operations on

matrices and vectors begin with the capital letter of the operation, and the argument

is written in square brackets, e.g. Arg[.], E[.], Cov[.], Corr[.], Det[.], Diag[.], Exp[.],
Eig[.], Erf[.], SVD[.], Tr[.], Total[.], Var[.], Vol[.]. This representation style is also

derived from the Mathematica® modeling and simulation environment. Similarly,

the linear algebraic product of matrices, vectors or vector/matrices is written

explicitly, for instance as A � A ¼ A2 for the product of two matrices, and af g � A
for the multiplication of a scalar a with a matrix A. This rule is only violated if the

terms grow too long and their meaning is clear from the context, e.g. in Sections 2.7,

2.9 and 4.2. An identity matrix of size n is denoted by the symbol In. A zero column

vector with n components is denoted by 0n. A continuous-type or discrete-type

random state variable is denoted by a Latin capital letter, e.g. X. An observed value
(realization) of a random state variable is indicated by a lower-case letter symbol,

e.g. x. A random variable that represents unpredictable fluctuations is denoted by a

lower-case Greek letter, e.g. ε: The symbol ~means that a random variable is

distributed according to a certain probability distribution, e.g. ε
e

N μ;Σð Þ. A

multivariate Gaussian distribution with location (mean) μ and covariance matrix

Σ is written as N μ;Σð Þ. The corresponding probability density function with

parameter vector θ ¼ μ;Σð Þ is denoted by f θ x½ � ¼ N x; μ;Σð Þ. Equations that use
or generate a time series include a time index for the state variables and the
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fluctuations, e.g. xt or εt. The complete stochastic state process is written as Xtf g.
Finite process fragments Xt1 ;Xt1þ1; . . . ;Xt2ð Þ from time step t1 2  to t2 2  are

written as Xt2
t1
. Similarly, the term xt2t1 ¼ xt1 ; xt1þ1; . . . ; xt2ð Þ denotes the sequence of

states that was observed across the same interval of time steps.
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Chapter 2

Mathematical Models of Cooperative Work

in Product Development Projects

The Merriam-Webster dictionary defines the word “project,” a fundamental term in

industrial engineering and engineering management, as “a planned piece of work

that has a specific purpose (such as to develop a new product or introduce a new

manufacturing technology) and that usually requires a lot of time.” The word stems

from the Middle English projecte, from the Medieval Latin projectum, and from the

Latin neuter form of projectus, past participle of proicere to ‘throw forward’, from
pro- + jacere ‘to throw’. Cambridge Dictionaries Online defines a project as a “piece

of planned work or an activity that is finished over a period of time and intended to

achieve a particular aim.” It defines project management as “the activity of orga-

nizing and controlling a project.”

Based on these definitions it is clear that project management originated when

people started to plan, organize and control pieces of work that had a specific

purpose and were intended to achieve a particular aim. Examples from ancient

history include the pyramids of Egypt, the Great Wall of China, the temple in

Jerusalem and the Angkor Wat complex of temples in Cambodia. Modern examples

include product development (PD) projects, construction projects, reorganization

projects, and many more. Although humans have been pursuing projects for

thousands of years, published literature on project management methodologies is

a comparatively new phenomenon. The early work of Henry Gantt, published in the

beginning of the twentieth century, dealt with the scheduling of activities in the job

shop. His Gantt chart was subsequently adopted for scheduling project activities. Its

simplicity and excellent visualization make it a popular tool even today, a century

after its invention.

Following the advent of tools and techniques for operations research in the mid

twentieth century, mathematical models were developed to support project man-

agement. Early tools like the Critical Path Method (CPM; see Kelley and Walker

1959) were based on purely deterministic techniques. By focusing on the longest

sequence of activities connecting the start of a project to its end, the CPM method

identifies the critical activities and the slack of non-critical activities. Each critical
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path problem can be converted into a linear programming problem and solved by

standard mathematical methods. This also permits the inclusion of time–cost

relationships (Salmon 1962). Stochastic tools like the Program Evaluation and

Review Technique (PERT; see Fazar 1959), also developed in the mid twentieth

century, were designed to deal with the uncertain nature of projects and the

associated risk. The development of powerful, inexpensive computers in the

1970s encouraged not only the development of CPM- and PERT-based software

but also the use of computers to allocate project work among participants by means

of the Work Breakdown Structure model (see e.g. Shtub et al. 2004) and the sharing

of project information between stakeholders with the help of distributed databases

and computer networks. Computer technology made it possible to collect, save,

retrieve and analyze large volumes of data and to support the management of the

project scope (the work that is to be done), the product scope (features, functions

and components of the product to be developed), the management of resources

needed for the project (availability of resources, resource required to perform the

work), and to provide cost information. Modern project management software

supports decision-making by offering scheduling algorithms, resource allocation

and resource-leveling algorithms, budgeting and cost-management algorithms, as

well as monitoring and control techniques. Computing power also made it possible

to analyze risk with Monte Carlo simulations. Early simulations focused on project

scheduling risks and sought to estimate the probability that a project activity would

be on the critical path and the probability that the project would be finished by a

given date. System dynamics models were used to simulate the behavior of projects

by modeling cause-effect relationships within feedback loops (see e.g. Sterman

2000). These continuous time, continuous state-space models supported the analy-

sis of different strategies and their impact on project duration, cost and perfor-

mances (see e.g. Williams 2002).

Published research (Cooper 2011) highlights the critical success drivers in PD

projects:

• A unique and superior product—a differentiated product that delivers unique

benefits and a compelling value proposition to the customer or user.

• Building in the voice of the customer—a market-driven and customer-focused

development process.

• Doing the homework and front-end loading the project.

• Getting product and project definitions early on—and avoiding scope creep and

unstable specs.

• Spiral development—build, test, obtain feedback, and revise—putting some-

thing in front of the customer early and often.

• The world product—a global product (global concept, locally tailored) targeted

at international markets.

• A well-conceived, properly executed launch with a solid marketing plan at the

heart of the launch.

• Speed counts—accelerate development projects, but not at the expense of

quality of execution.
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These eight critical success drivers are centered around one aspect—effective

cooperative work within and between the development teams. As already pointed

out in the introductory chapter, the challenge is that even when key aspects like the

work breakdown structure, task scheduling, integration rhythm, available resources

for processing the tasks and organizational structures are clearly defined, due to the

intrinsic performance variability it is usually very difficult to ensure a focused and

fast development process that leads to a high-quality product. Depending on the

structure and intensity of interactions in the development process, self-reinforcing

feedback processes can cause continual revisions and lead to significant additional

work and long delays (Huberman and Wilkinson 2005) or to the cited design churns

and problem-solving oscillations as fatal patterns of project dynamics (Yassine

et al. 2003; Mihm et al. 2003; Mihm and Loch 2006), in which the project

irregularly oscillates between being on, ahead of, or behind schedule. These

success-critical phenomena emerge from higher-order interactions and must be

addressed at the level of PD project organization as a whole (Huberman and

Wilkinson 2005).

The following chapters present different mathematical models of cooperative

work in an open PD environment. These models are based on structuring the PD

process into phases and integrating the (concurrent) design and engineering activities

into a coherent and comprehensive PD “funnel” with clearly defined process ele-

ments (subphases). A corresponding PD funnel model developed by Hauser (2008) at

the MIT Center for Innovation in Product Development (CIPD) illustrates the main

phases in Fig. 2.1. The funnel model adopts the stages of opportunity identification

and idea generation, concept development and selection, design and engineering,

testing and launch used by Urban and Hauser (1993) in their classic textbook. The

key management concepts are that it is much less expensive to screen products in the

early phases than in the later phases and that each phase can improve product

functionality, product quality and positioning in the market so that the likelihood of
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Fig. 2.1 Product development funnel model according to Hauser (2008)
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success increases (Urban and Hauser 1993). The funnel model in Fig. 2.1 also

illustrates the concept of pipeline management, in which multiple, parallel sets of

projects move through the company’s development funnel.

In Hauser’s product development funnel model and similar models (see

e.g. Wheelwright and Clark 1992; McGrath 1996; Katz 2011), a particular set of

components in the work breakdown structure of a single system has to be processed

entirely in parallel and, theoretically, no task is processed independently of the

others, since, to arrive at completion, all tasks regularly require information on the

state of system functions or components under development. In this sense, the tasks

are fully interdependent; for instance the tasks for the design of the main functions

and basic components of a new product in the design and engineering phase

(Fig. 2.1). Following Puranam et al. (2011), we say that two tasks are interdependent

when, within the project, the value generated by performing one of them differs

according to whether or not the other task is performed or not. Given the number,

strength and structure of the interdependencies, these phases are often critical to

project success.

2.1 Deterministic Formulation

To analyze the interrelationships between project dynamics and emergent com-

plexity explicitly and from a special complexity-theoretical perspective, a dynamic

model of cooperative work in an open product development environment has to be

formulated and the independent parameters have to be defined. We begin with the

deterministic formulation of a continuous-state, discrete time model based on the

seminal work of Smith and Eppinger (1997), according to which a distinct phase of

the PD project life cycle with p parallel and interacting development tasks can be

modeled by a linear first-order difference equation as

xt ¼ A0 � xt�1 t ¼ 1, . . . ,T : ð1Þ

In PD it is generally desirable to process tasks in parallel so as to reduce the overall

development time and to get the product to market earlier (Cooper 2011). The

above state equation is also termed a linear homogeneous recurrence relation. The

p-dimensional state vector xt 2 ℝ p represents the work remaining for all p tasks at

time step t. Smith and Eppinger (1997) simply speak of the “work vector” xt. It is
assumed that the work vector is observed (or estimated) by the project manager at

equally spaced time instants and therefore that time can be indexed by the discrete

variable t. The amount of work remaining in the phase can be measured by the time

left to finalize a specific design, by the definable labor units required to complete a

particular development activity or component of the work breakdown structure, by

the number of engineering drawings requiring completion before design release, by

the number of engineering design studies required before design release, or by the

number of issues that still need to be addressed/resolved before design release

(Yassine et al. 2003). The matrixA0 ¼ ai j
� �

is a dynamical operator for the iteration
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over all p tasks, also called the “work transformation matrix” (WTM). The WTM is

a square real matrix of dimension p� p, i.e. A0 2 ℝ p� p. The WTM can be

regarded as a task-oriented variant of the popular design structure matrix (Steward

1981), which is often used in industry and academia to analyze and optimize

complex products. It enables the project manager to model, visualize and evaluate

the dependencies between the development tasks and to derive suggestions for

improvement or reorganization. It is clear that not only the tasks to be processed but

also the structure of the product (in terms of an envisioned physical and functional

solution) and the formalized design problem are important in meeting the project

goals and satisfying the functional and nonfunctional requirements. However, for

the sake of simplicity, in the following we focus on the tasks and their interactions

and assume that additional dependencies from other domains were integrated into a

joint work transformation model. Given a distinct phase of a PD project, it is

assumed that the WTM does not vary with time, and that the state equation is

autonomous.

In this book, we use the improved WTM concept of Yassine et al. (2003) and

Huberman and Wilkinson (2005). Hence, the diagonal elements aii i ¼ 1 . . . pð Þ
account for developers’ different productivity levels when processing tasks. This

contrast with the original WTM model by Smith and Eppinger (1997), in which

tasks are processed at the same rate. The diagonal elements aii are defined as

autonomous task processing rates (Huberman and Wilkinson 2005, who also

speak of autonomous task completion rates). They indicate the ratio of work left

incomplete after and before an iteration over task i, under the assumption that the

tasks are processed independently of the others. Therefore, the autonomous task

processing rates must be nonnegative real numbers aii 2 ℝþð Þ. The off-diagonal

elements ai j 2 ℝ i 6¼ jð Þ, however, model the informational coupling between tasks

and indicate the intensity and nature of cooperative relationships between devel-

opers. Depending on their values, they have different meanings: (1) if ai j ¼ 0, work

carried out on task j has no direct effect on task i; (2) ifai j > 0, work on task j slows
down the processing of task i, and one unit of work on task j at time step t generates
aij units of extra work on task i at time step tþ 1; (3) if ai j < 0, work on task

j accelerates the processing of task i, and one unit of work on task j reduces the work
on task i by aij units at time step tþ 1. The only limitation on the use of negative

entries is that negative values of the work remaining in the state vector xt are not

permitted at any time instant. In practice, many off-diagonal elements must be

expected to be nonnegative, because PD projects usually require intensive cooper-

ation, leading to additional work. For instance, Klein et al. (2003) analyzed the

design of the Boeing 767 and found that half of the engineering labor budget was

spent on redoing work because the original work did not yield satisfactory results.

Roughly 25%–30% of the design decisions required reworking, and in some

instances up to 15 iterations had to be done to reach a stable design state.

Following Smith and Eppinger (1997), whose concept lies behind the formula-

tion of state Eq. 1, this book focuses on the design and engineering phase of

Hauser’s product development funnel model (see Fig. 2.1), where a particular set
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of components in the work breakdown structure related to detailed design and

engineering development of the new product, along with simple product tests and

the development of a production plan, have to be processed completely in parallel

and are fully interdependent.

In general, we do not recommend modeling cooperative work on the basis of

linear recurrence relations in the preliminary phases of opportunity identification,

idea generation, concept generation and concept evaluation. This is because the

work processes related to this “fuzzy front end,” to use Katz’s terminology (Katz

2011), are often weakly structured and highly nonlinear. However, this recommen-

dation does not affect the applicability of the model to concurrent product and

process design. In fact, it is sometimes also possible to build models with a similar

structure, estimate their parameters and use the parametric representations to

predict performance for earlier subphases of interest covering the conceptual

system design. This will be demonstrated in Section 2.5 for a PD project executed

at a small industrial company in Germany that develops mechanical and electronic

sensor components for the automotive industry (Schlick et al. 2008, 2012). Fur-

thermore, one can also build corresponding models for later subphases of interest,

e.g. when launching the product.

In our way of structuring time, the initial time step t ¼ 0 indicates the beginning

of the detailed design or engineering development phase with fully interdependent

tasks. For instance, if detailed design is modeled by state Eq. 1, the initial time step

usually denotes the start of the set of activities that are carried out concurrently to

describe a product through solid modeling and drawings so that the external

dimensions are specified and the materials, packaging, test and reliability require-

ments are met. The end of the project phase of interest is indicated by time instant

T 2 ℕ. Decomposing the whole process into distinct phases with fully

interdependent tasks may seem rather inconvenient, but does not limit the general-

ity of the approach. To model and analyze a generalized product development

process architecture in which the development tasks can have arbitrary serial and

parallel interconnections, we simply have to decompose the whole process into

serially concatenated subphases of fully interdependent parallel subtasks. This can

be done by splitting the overlapping tasks in such a way that the partial overlaps can

be assigned to the subphases in a one-to-one relation. For two overlapping tasks, for

instance, in which the first tasks leads to the second, three serially concatenated

subphases are required to model the process. In the first subphase only the

processing of the non-overlapping portion of the first task is modeled. In the second

subphase the simultaneous processing of the overlapping portions of both tasks is

represented, while the third subphase captures only the processing of the portion of

the second task that does not overlap with the first. The corresponding autonomous

task processing rates and the coupling strengths then have to be redistributed

(Murthy et al. 2012). The serially concatenated subphases can be modeled by

separate WTMs in conjunction with separate initial states that are executed

subphase-by-subphase (Smith and Eppinger 1998). Separate initial states unambig-

uously define the interfaces between phases because of the linear first-order recur-

rence relation. In the case of higher-order interrelations in task processing, the states
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have to be recoded in order to define the interfaces (see Section 2.4). As shown by

Murthy et al. (2012), Smith and Eppinger’s (1997) classic WTM model can be

extended towards this kind of generalized product development process architec-

ture. Their results can easily be applied to the improved WTM concept of Yassine

et al. (2003) and Huberman andWilkinson (2005) and the above model formulation

generalized to formulate extended work transformation matrices and initial work

vectors. For small PD projects, the time index T can also cover the total time spent

to complete the project (see validation studies in Sections 5.2 and 5.3). Moreover,

for PD projects that undergo major reorganization, separate initial states andWTMs

can be defined. The analysis would then apply separately to each reorganized phase

of the project (Huberman and Wilkinson 2005).

In the literature (see e.g. Smith and Eppinger 1997; Yassine et al. 2003;

Huberman and Wilkinson 2005; and Schlick et al. 2007) the initial state x0 is

often taken to be a vector of ones, i.e.

x0 ¼
1

⋮
1

0@ 1A; ð2Þ

which defines a relative scale that measures how much work still has to be done on

the development tasks. Using this scale, it is very easy to model overlapping tasks

by setting the work remaining for the corresponding vector components to values

less than one (see the parameter example in Eq. 73). Alternatively, the project

manager can define an absolute scale and assign other nonnegative values to vector

components of x0 to indicate the absolute number of work units needed to complete

the tasks. The scale that measures how much work is left then determines the

autonomous task processing rates and the off-diagonal elements of the WTM A0,

and can therefore have significant effects on performance evaluation. The transfor-

mation between relative and absolute scales can be carried out using the linear

transformation x0
t ¼ W � xt, where W ¼ wi j

� �
is a diagonal matrix of the absolute

work unitswii 2 ℝþ related to task i (cf. diagonal matrix of task times introduced by

Smith and Eppinger 1997, 1998). Depending on the intensity and nature of the

cooperative relationships between developers, the linear transformation can pro-

duce different values for the total time spent to complete the project phase (see

Eq. 5). It is therefore important to choose the scale carefully and to use it consis-

tently to calculate the dependent and independent parameters (cf. Section 2.4).

Owing to the fact that the cooperative task processing modeled by the WTM A0

in conjunction with state Eq. 1 is a linear iteration, the work remaining xt at time

step t can also be expressed as a multiple of the initial state x0:

xt ¼ At
0 � x0: ð3Þ

From the theory of linear dynamic systems we know that the rate and nature of

convergence of the task processing are determined by the eigenmodes of the
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dynamical operator A0. Following Smith and Eppinger (1997), we use the term

“design mode” ϕi ¼ λi A0ð Þ, ϑi A0ð Þð Þ to refer to an eigenvalue λi(A0) inherent to A0

associated to its eigenvector ϑi(A0) 1 � i � pð Þ. Strictly speaking, there are an

infinite number of eigenvectors associated to each eigenvalue of a dynamical

operator. Because any scalar multiple of an eigenvector is still an eigenvector, an

infinite family of eigenvectors exists for each eigenvalue. However, these vectors

are all proportional to each other. In this sense, each design mode ϕi has both

temporal (eigenvalue) and structure-organizational (scalar multiple of eigenvector)

characteristics. Every dynamical operator A0 has exactly p eigenvalues, which are

not necessarily distinct. Another term used for the eigenvalues is characteristic

values. Eigenvectors corresponding to distinct eigenvalues are linearly independent.

The characteristics of the design modes also determine the stability of the

process. Stability is an important property of dynamical systems in general, not

just PD projects. Stability is usually defined in terms of equilibrium points (see

e.g. Luenberger 1979 or Hinrichsen and Pritchard 2005). According to Luenberger

(1979), if all solutions of the linear system from Eq. 1 that start out near an

equilibrium state xe of work remaining stay near or converge to xe, the state is

called stable or asymptotically stable respectively. This is illustrated in Fig. 2.2 in

a one-dimensional state representation of a simple dynamical system. The illustra-

tion also clearly shows that the notion of asymptotic stability is stronger than

stability.

The origin x ¼ 0 is always a singular point of the vector field x ! A0 � x on ℝp

and therefore an equilibrium point of the linear homogenous recurrence relation

given by Eq. (1). A linear homogeneous recurrence relation is internally stable if its

dynamical operator is stable in the sense of Lyapunov (Hinrichsen and Pritchard

2005). A square real matrix is said to be asymptotically stable in the sense of

Lyapunov if and only if for an operator A0 and any positive semi-definite matrix

C there exists a positive-definite symmetric matrix Σ satisfying the following

Lyapunov equation (see e.g. Halanay and Rasvan 2000; Hinrichsen and Pritchard

2005 or Siddiqi 2010):

time time time

st
at

e

st
at

e

st
at

e

(a) (b) (c)

Fig. 2.2 Types of system equilibria. (a) Unstable equilibrium: the state vector rapidly moves

away from the equilibrium point when the system is perturbed. (b) Asymptotically stable equi-

librium: the state vector returns to the original equilibrium point when perturbed. (c) Stable

equilibrium: the perturbed state vector oscillates interminably around the equilibrium point (“no

resistance") (adopted from Boots 2009)
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Σ� A0 � Σ � AT
0 ¼ C: ð4Þ

For the first-order linear autoregressive model that will be introduced in the next

Section 2.2, A0 is the cited WTM, Σ is the steady-state state covariance matrix

(Eq. 245) and C is the covariance matrix of the unpredictable performance fluctu-

ations (Eq. 9). According to Siddiqi (2010), the Lyapunov equation can be

interpreted as satisfied for a linear autoregressive model if, for a given observation

covariance, there exists a legitimate belief distribution in which the predicted belief

over project state is equivalent to the previous belief over project state, that is, if

there exists an equilibrium point of the distribution.

In the following, we use the convention of listing the eigenvalues of the design

modes in order of decreasing magnitude λ1 A0ð Þj j � λ2 A0ð Þj j � . . .ð Þ. For the matrix

A0 with these eigenvalues, we define the spectral radius as the greatest-magnitude

eigenvalue and denote it by ρ A0ð Þ ¼ max λij j. An eigenvalue corresponding to

max |λi| (that is, λ1) is called the dominant eigenvalue (Gentle 2007).

The Lyapunov equation (Eq. 4) holds for the linear homogenous recurrence

relation given by Eq. (1) if and only if the spectral radius is less than or equal to one,

i.e. ρ A0ð Þ � 1 (Hinrichsen and Pritchard 2005). Recall that a matrix M is positive

semidefinite if and only if it holds that vT �M � v � 0 for all non-zero column vectors

v of m ¼ Dim M½ � real numbers. Let λ be a left eigenvalue of A0 and ϑl a

corresponding normalized eigenvector satisfying ϑT
l � A0 ¼ λf g � ϑT

l . Then the

Lyapunov equation can be written as

ϑT
l � C � ϑl ¼ ϑT

l � Σ� A0 � Σ � AT
0

� � � ϑl
¼ ϑT

l � Σ � ϑl � ϑT
l � λf g � Σ � λf g � ϑl

¼ ϑT
l � Σ � ϑl � 1� λ2

� �
:

Since the matrices Σ and C are positive-definite symmetric matrices, it holds that

ϑT
l � Σ � ϑl � 0 and ϑT

l � C � ϑl � 0. It follows that 1� λ2
� � � 0. Therefore, the

Lyapunov criterion from Eq. 4 is satisfied if the spectral radius is less than or equal

to one and it holds that λj j � 1 (Siddiqi 2010).

A modeled PD project phase is said to be asymptotically stable if and only if the

spectral radius is less than 1: that is, ρ A0ð Þ < 1. In this case, irrespective of the initial

state x0 the work remaining converges to the zero vector, meaning that all tasks are

fully completed. If it holds that ρ A0ð Þ ¼ 1, the project phase is stable but not

necessarily asymptotically stable. Asymptotic stability can be relevant for stochastic

model formulations in which unpredictable performance fluctuations are represented

by continuous-type random variables. The integration into the state equation can be

done either by means of additive (Schlick et al. 2007) or multiplicative fluctuations

(Huberman and Wilkinson 2005). We will return to this point in the next Section 2.2.

In the case of stochastic model formulations, for a stable project phase the work

remaining xt would eventually oscillate around x0 indefinitely. As already stated and
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illustrated in Fig. 2.2, the notion of asymptotic stability is stronger than stability. For

the first design mode ϕ1 with the dominant eigenvalue λ1 the equation λ1j j ¼ 1

determines the boundary between stable and asymptotically stable regimes. If the

project phase is neither stable nor asymptotically stable and λ1 A0ð Þj j > 1, it is said to

be unstable. If it is unstable, a redesign of tasks and their interactions is necessary,

because the work remaining then exceeds all given limits.

Unfortunately, even if the project phase modeled is asymptotically stable,

theoretically an infinite number of iterations are necessary to reach the final state

where zero work remains for all tasks. Therefore, project managers have to specify

an additional stopping criterion. In the following we use a simple one-dimensional

parametric criterion δ 2 ]0; 1[ indicating that the goal has been reached if the work

remaining is at most 100δ percent for all p tasks. According to Huberman and

Wilkinson (2005), the zero vector represents a theoretically optimal solution, and

the values of the state vector are an abstract measure of the amount of work left to

be done before a task’s solution is optimal. Formally speaking, with an initial state

x0, a WTM A0 and a stopping criterion δ, the total time Tδ spent to complete the

project phase can be determined by the equation (cf. Eq. 3):

Tδ ¼ mint maxi x
ið Þ
t � δ

n oTmax

t¼0

¼ mint maxi A t
0 � x0

� � ið Þ � δ
n oTmax

t¼0
: ð5Þ

x
ðiÞ
t denotes the i-th component of the work vector at time step t and At

0 � x0
� � ið Þ

the i-

th component of the product At
0 � x0. The time index is expressed explicitly in the

min{.} function for greater clarity. The maximum time step Tmax must be set to a

value that is sufficiently large to satisfy the specified stopping criterion. We can also

generalize the closed-form solutions derived in the seminal work of Smith and

Eppinger (1997, 1998) and express the total amount of work done in all p tasks

during the iteration process across the time interval Tδ as

XTδ

t¼0

xt ¼
XTδ

t¼0

At
0 � x0

� �
¼

XTδ

t¼0

At
0

 !
� x0

¼ I p � A0

� ��1 � I p � ATδþ1
0

� � � x0 : ð6Þ

The above solution is based on the Neumann series generated by A0 (Bronstein

et al. 2000); Ip denotes the p� p identity matrix. The total amount of work done

over all tasks, xtot, can easily be calculated as a scalar indicator of the total effort

involved in completing the deliverables in the modeled project phase by summing

over the components of the cumulated work vectors. We have
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xtot ¼ Total I p � A0

� ��1 � I p � ATδþ1
0

� � � x0h i
: ð7Þ

The function Total[. . .] computes the sum of the argument vector’s components.

The formulation of cooperative work processes as a linear recurrence relation

therefore makes it easy to take extra work into account and precisely determine

the total effort involved. The effort-centered approach can also cope with deliver-

ables that do not meet all the original requirements or that have a quality problem

and therefore need to be reworked (Smith and Eppinger 1997, 1998). This is not to

be confused with changes of scope, where separate state variables have to be

defined and a dedicated scope change management system should be used. In the

limit Tδ ! 1 for an asymptotically stable project phase, we have:

lim
Tδ!1

XTδ

t¼0

xt ¼ I p � A0

� ��1 � x0 :

2.2 Stochastic Formulation in Original State Space

In their seminal paper on performance variability and project dynamics, Huberman

and Wilkinson (2005) showed how to model cooperative work in PD projects based

on the theory of stochastic processes, and how to apply formal methods of statistics

to analyze, predict and evaluate the dynamics of open organizational systems. An

open organizational system is a sociotechnical system in which humans continu-

ously interact with each other and with their work environment. These interactions

usually take the form of goal-directed information exchange within and through the

system boundary and lead to a kind of self-organization, since patterns of coordi-

nation can emerge that convey new properties, such as oscillations or pace-setting.

Furthermore, there is a regular supply of energy and matter from the environment.

In the work presented here, we follow the basic ideas of Huberman and Wilkinson

and formulate a stochastic model of cooperative work based on the theory of

Gauss–Markov processes (Cover and Thomas 1991; Papoulis and Pillai 2002).

However, we do not incorporate “multiplicative noise” to represent performance

variability as Huberman and Wilkinson do, but rather assume that the effects of

performance fluctuations on work remaining are cumulative. Clearly, there are

subtle conceptual differences between the two approaches, but they are beyond

the scope of this book, which is in this context to carry out a first validation study of

the formulated stochastic model based on field data from an industrial PD project

(Section 2.5) and to analyze the interrelationships between projects dynamics and

emergent complexity explicitly in analytical and numerical studies (Chapters 3, 4

and 5).

Our model generalizes the first-order difference equation (Eq. 1) according to

Smith and Eppinger (1997) to a deterministic random process {Xt} (Puri 2010) with

state equation
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Xt ¼ A0 � Xt�1 þ εt t ¼ 1, . . . ,T : ð8Þ

In this first-order linear autoregressive model, the multivariate random variable Xt

represents the measured (or estimated) work remaining at time step t of the project

phase under consideration. A0 is the cited WTM. The random vector εt is used to

model unpredictable performance fluctuations. In terms of state estimation εt can also
be interpreted as an “error vector.” Each component in the error vector indicates a

specific “error bar” in the sense of a reduced mathematical representation of the

performance variability when processing the corresponding development task.

In PD projects there are many factors shaping performance variability. Although

we do not know their exact number or distribution, the central limit theorem tells us

that, to a large degree, the sum of independently and identically distributed factors

can be represented by a Gaussian distributionN x; μ;Cð Þwith location μ ¼ E εt½ � and
covarianceC ¼ E εt � μð Þ εt � μð ÞT

h i
. The location is often simply termed “mean.”

We assume that the performance fluctuations are independent of the work

remaining and therefore that the location and covariance do not depend on the

time index. Hence, we can also write ε in place of εt in the following definitions of

the entries of the covariance matrix.

The covariance matrix C is a square matrix of size p, whose entry C[[i,j]] in the,

(i, j)-th position is the covariance between the i-th element ε(i) and the j-th element

ε( j) of the random vector ε, i.e.

C i; j½ �½ � ¼ Cov ε ið Þ; ε jð Þ� �
¼ E ε ið Þ � μ ið Þ� �

ε jð Þ � μ jð Þ� �� �
: ð9Þ

C is symmetric by definition and also positive-semidefinite (Lancaster and

Tismenetsky 1985). We assume that C has full rank. The diagonal elements C[[i,i]]

represent the scalar-valued variances c2ii of vector components ε(i) (i.e. performance

fluctuations in work tasks i):

c2ii ¼ Var ε ið Þ� �
¼ E ε ið Þ � μ ið Þ� �2h i

: ð10Þ

The square root of the scalar-valued variance c2ii is the well-known standard

deviation cii. The off-diagonal elements C i; j½ �½ � i 6¼ jð Þ represent the scalar-valued

covariances and can be factorized as

ρi jciic j j ¼ ρi j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ε ið Þ½ �Var ε jð Þ½ �

p
i 6¼ jð Þ ; ð11Þ

where the first factor is Pearson’s famous product–moment coefficient
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ρi j :¼ Corr ε ið Þ; ε jð Þ
h i

¼ Cov ε ið Þ; ε jð Þ� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ε ið Þ½ �Var ε jð Þ½ �

p : ð12Þ

The Pearson correlation ρij isþ1 in the case of a perfect positive linear relationship

(correlation) and �1 in the case of a perfect negative linear relationship

(anticorrelation). It has values between �1 and 1 in all other cases, indicating the

degree of linear dependence between the variables.

In the developed autoregression model of cooperative work it is assumed that the

performance fluctuations have no systematic component and that

μ ¼ 0 p ¼ 0 0 . . . 0ð ÞT. We imposed no additional a priori constraints on the

covariance matrix C. Hence, the fluctuations

εteN 0 p;C
� �

in the state equation can be expressed explicitly by a Gaussian probability density

function f x½ � ¼ N x; 0 p;C
� �

(pdf, see e.g. Puri 2010) as

N x; 0 p;C
� � ¼ 1

2πð Þ p=2 Det C½ �ð Þ1=2
Exp �1

2
xT � C�1 � x

	 

: ð13Þ

The covariance matrix C can be written in vector form as

C ¼ Cov εt; εt½ � ¼ E εtε
T
t

� �
:

In terms of basic geometric concepts, the covariance matrix C can be visualized in

the prediction error space spanned by the components of Δx through the concen-

tration ellipsoid (see e.g. Bronstein et al. 2000)

ΔxT � C�1 � Δx ¼ κ:

The constant κ determines the size of the p-dimensional region enclosed by the

ellipsoid surface. By setting the value of κ we can define the probability that the

prediction error will fall inside the ellipsoid. Figure 2.3 shows an illustrative

example of the concentration ellipsis in the two dimensional case. The size and

orientation of the concentration ellipsoid depend on the eigenvalues λi(C) and

eigenvectors ki(C) of the covariance matrix C i ¼ 1, . . . , pð Þ. We can determine

the eigenvalues and eigenvectors by solving the well-known eigenvalue problem

C � ki Cð Þ ¼ λi Cð Þ � ki Cð Þ:

Because C is symmetric by definition, the eigenvectors are mutually orthogonal.

The mutually orthogonal eigenvectors point in the directions of the principal axis of

the concentration ellipsoid, and the eigenvalues determine the length of the

semiaxis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=λi Cð Þp

. The concentration ellipsoid containing 68.3%, 95.4% and
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99.73% (1σ-, 2σ- and 3σ-ellipse) of normally distributed prediction errors are

defined by constants κ1 ¼ 2:30, κ2 ¼ 6:17 and κ3 ¼ 11:80, respectively (Bronstein

et al. 2000).

In the following we assume that the performance fluctuations are uncorrelated

from time step to time step and that it holds for all time steps μ; vf g 2 ℤ that

E εμε
T
v

� � ¼ δμv
� � � C:

δμv is the Kronecker delta which is defined as

δμv ¼ 1 μ ¼ v
0 μ 6¼ v:

�
ð14Þ

If the covariance matrix is a nonzero scalar multiple of the identity matrix Ip, that is

C ¼ σ2
� � � I p, we speak of isotropic fluctuations, and the variance σ2 represents the

overall strength σ2 2 ℝþð Þ. In spite of the stochastic task processing, it is assumed

in the following that perfect initial conditions exist, and that the components of the

initial state vector according to state Eq. 8 are positive real numbers and not random

variables. This assumption is justified by the fact that in most projects the initial

state x0 represents the planned amount of work at the beginning of a given project

phase (cf. Eq. 2), which is predefined by the project manager. In this case a real

valued parameter vector θ ¼ x0 A0 C½ � is sufficient to parameterize the model.

Alternatively, the initial state vector X0 can be assumed to be a Gaussian random

vector with location μ0 and covariance C0. In Section 2.9 we will present a

stochastic model formulation with hidden state variables that can cover this case

under a more general theoretical framework. When this alternative formulation is

used, the parameter vector must be extended, and becomes θ ¼ μ0 C0 A0 C½ �:
A graphical representation of the first-order autoregression model is shown in

Fig. 2.4 in the form of a dynamic Bayesian network (see e.g. Gharahmani 2001).

In a dynamic Bayesian network the random state variables are related to each other

over adjacent time steps and are drawn as nodes of the graph. At any point in time t,
the value of a state variable can be calculated from the internal regressors and the

immediate prior value (time step t� 1). The directed arcs represent conditional

Fig. 2.3 Concentration

ellipse in the

two-dimensional prediction

error space spanned by the

components of Δx (adopted
from Oispuu 2014)
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dependencies between the variables. Exogenous inputs to the model are not con-

sidered in the following.

It is not difficult to see that the process {Xt} can be decomposed into a deter-

ministic and stochastic part as

Xt ¼ At
0 � x0 þ

Xt
v¼1

At�v
0 � εv t � 1ð Þ :

The deterministic part represents the mean vectors (Eq. 3)

E Xt½ � ¼ At
0 � x0

of work remaining, which evolve unperturbed. As shown in the previous Section 2.1,

for an arbitrary project phase with predefined initial state x0 and WTM A0, we can

derive the following closed-form solution to the expected total amount of work done

in all p tasks during the iteration process until the stopping criterion δ is satisfied:

E
XTδ

t¼0

Xt

" #
¼
XTδ

t¼0

E Xt½ �

¼
XTδ

t¼0

At
0 � x0

� �
¼

XTδ

t¼0

At
0

 !
� x0

¼ I p � A0

� ��1 � I p � ATδþ1
0

� � � x0 : ð15Þ

To obtain the above solution we have assumed that the decision on whether the

stopping criterion is satisfied (see Eq. 5) is based on the mean vectors E[Xt] of work

remaining at time step t and not on individual instances {xt} of the stochastic

process {Xt}. The duration Tδ of the project phase is then determined entirely by

the deterministic part of the process. The expected total amount of work xtot done
over all tasks until the stopping criterion is satisfied is estimated by:

X0 X1 ...

t = 0 t = 1 t -1

... Xt

t t +1

Xt-1 Xt+1

Fig. 2.4 Graphical representation of the first-order autoregression model in the form of a dynamic

Bayesian network. The nodes in the graph represent the random state variables of the stochastic

process. The directed arcs encode conditional dependencies between the variables
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xtot ¼ Total I p � A0

� ��1 � I p � ATδþ1
0

� � � x0h i
: ð16Þ

In the limit Tδ ! 1 for an asymptotically stable project phase, we have the

expected total amount of work done for all p tasks:

lim
Tδ!1

E
XTδ

t¼0

Xt

" #
¼ I p � A0

� ��1 � x0 : ð17Þ

In addition to the deterministic evolution of the mean work remaining the stochastic

part of the process {Xt} represents the accumulated unpredictable performance

fluctuations. The formulation of the linear model means that the variances and

covariances of the vector components of the fluctuations are independent of the

work remaining. In view of an information processing system, the process {Xt}

satisfies the Markov property. The Markov property describes a special kind of

“memorylessness” in the sense that conditional on the present state xt of the

modeled project, its future Xtþ1; . . .f g and past X1; . . . ;Xt�1f g are rendered

independent:

f θ xtþ1jx0, . . . , xt½ � ¼ f θ xtþ1jxt½ � 8t � 0 : ð18Þ

f θ xtþ1jx0, . . . , xt½ � denotes the conditional pdf of vector Xtþ1, given the sequence of

vectors X0, . . .,Xt (Papoulis and Pillai 2002).

From the decomposition of the process into a deterministic and a stochastic part

it is evident that the pdf of the current state Xt is Gaussian with location At
0x0 and

covariance Σ t
v¼1A

t�v
0 C AT

0

� �t�v
, that is

XteN At
0 � x0,

Xt
v¼1

At�v
0 � C � AT

0

� �t�v

 !
:

The density function fθ[xt] of Xt can be written explicitly as (Puri 2010)

f θ xt½ � ¼ 1

2πð Þ p=2 Det Σt½ �ð Þ1=2
Exp �1

2
xt � At

0 � x0
� �T � Σ�1

t � xt � At
0 � x0

� �	 

; ð19Þ

where

Σt ¼
Xt
v¼1

At�v
0 � C � AT

0

� �t�v ¼
Xt�1

v¼0

Av
0 � C � AT

0

� �v
:

The conditional density of state Xtþ1 given state Xt ¼ xt (Eq. 18) is
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f θ xtþ1jxt½ � ¼ 1

2πð Þ p=2 Det C½ �ð Þ1=2
Exp �1

2
xtþ1 � A0 � xtð ÞT � C�1 � xtþ1 � A0 � xtð Þ

	 

:

ð20Þ

Next, we turn our attention to the total time Tδ spent to complete the project phase

described by the stochastic formulation in state space. Owing to the fact that the

state vector is a random variable, the total time Tδ is not uniquely determined by

Eq. 5—we can only consider the probability that the project phase ends at a certain

time instant. As we will see below, it is possible to derive a recursive procedure for

calculating the time-dependent probabilities, but there seems to be no obvious way

to obtain a closed form solution. This motivates to use a model for the pdf of the
duration of the process. A reasonable approach is to model the duration by a

log-normal distribution because it possesses many advantageous properties (see

Baker and Trietsch 2009; Trietsch et al. 2012) and a high external validity in the

given application area. As the log-normal distribution shares many properties with

the generalized Rayleigh distribution its density function can also be used to

effectively model skewed execution times. We will return to this point in the

Monte Carlo studies of Sections 5.2 and 5.3. Without loss of generality let us

assume that xt ¼ maxi x
ið Þ
t is the distinct largest component of the previously

introduced state vector. The probability for the process to be finished at time instant

t ¼ 1, i.e. that the work remaining for all tasks is smaller than or equal to δ, can be

obtained as follows: Observing that X1 is a Gaussian random variable with distri-

bution N A0 � x0,Cð Þ the total probability that the distinct largest component x1 is
less than or equal to δ is given by

P1 ¼
Z δ

�1
N x1;A0 � x0,Cð Þdx1

¼ 1

2
1þ Erf

δ� A0 � x0ð Þffiffiffiffiffiffi
2C

p
� 	 
� 

:

The function Erf[. . .] denotes the Gauss error function (see e.g. Puri 2010). We used

a simplified notation to indicate that the error function only refers to the mean and

variance corresponding to the distinct largest component of the state vector X1. In

the field of detection theory, P1 is known as the probability of missed detection of a

signal X1 with mean A0 � x0 embedded in Gaussian noise with covariance C and a

detection threshold equal to δ.
On the other hand, the total probability that the stochastic process exceeds the

threshold δ for all tasks and propagates to the second time step is P1 ¼ 1� P1, see

Fig. 2.5. The pdf for the work remaining at the first time step and exceeding the

threshold is given by
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f θ x1½ � ¼
1

P1

1ffiffiffiffiffiffiffiffiffi
2πC

p e� x1� A0�x0ð Þð Þ2=2C x1 � δ

0 x1 < δ :

8<:
As we can see, f θ xt½ � is no longer Gaussian. The pdf for the propagated state at the

second time instant is not Gaussian either and can be computed as

f θ x2½ � ¼
Z δ

�1
f θ x2jx1½ � f θ x1½ �dx1

¼ 1

P1

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

0

q e� x2� A2
0�x0ð Þð Þ2=2 1þA2

0ð ÞC 1þ Er f
1þ A2

0

� �
δ� A0 x0 þ x2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ A2
0

� �
C

q
0B@

1CA
264

375
0B@

1CA:

Then, the total probability that the process terminates at the second time step is

given by the integral

P2 ¼ P1

Z δ

�1
f θ x2½ �dx2

¼ 1� P1ð Þ
Z δ

�1
f θ x2½ �dx2:

Fig. 2.5 Graphical illustration of the recursive procedure for calculating the probabilities that the

project phase ends at a certain time instant Tδ: the total probability that the process exceeds the

threshold determined by the stopping criterion δ at time instant t ¼ 1 is given byP1; this probability

is propagated to the second time step to calculate the total probability P2. The subsequent

probabilities Pt for the process to finish at time instant t can be computed iteratively based on

Eq. 21
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Unfortunately, this integral cannot be solved analytically, and we can only evaluate

the probability numerically. The subsequent probabilities Ptþ1 for the project to

finish at time instant tþ 1 are then computed iteratively as

Ptþ1 ¼ Pt

Z δ

�1

Z
f θ xtþ1jxt½ � f θ xt½ �dxtdxtþ1

¼ 1� Ptð Þ
Z δ

�1

Z
f θ xtþ1jxt½ � f θ xt½ �dxtdxtþ1: ð21Þ

Alternatively, we could simulate the stochastic task processing and compute the

probabilities in a Monte Carlo study.

At first glance, the chosen memoryless perturbation mechanism may appear to

over-simplify the problem. However, the correlations ρij between performance

fluctuations between tasks i and j can strongly influence the course of the project

not only at single time steps but also on long time scales and therefore lead to

unexpected stateful behavior. This is the case if the correlations are reinforced

through the informational coupling between the development tasks. To reinforce

the correlations, the covariance matrix Cmust have nonzero off-diagonal elements:

in other words, the fluctuations must be nonisotropic. Depending on the structure of

the dynamical operator A0, the correlations ρij can significantly excite the design

modes and lead to unexpected effects of emergent complexity, such as the cited

problem-solving oscillations in the preasymptotic range of development projects

(Mihm and Loch 2006; Schlick et al. 2008). We will return to the interesting

phenomenon of excitation of design modes in Section 4.1.2, where the interrelation-

ships between project dynamics and emergent complexity are analyzed in detail in

the spectral basis.

Following the theoretical considerations of system stability from Section 2.1, the

first-order linear autoregressive model defined in Eq. 8 is asymptotically stable in

the sense of Lyapunov (Eq. 4) if and only if the spectral radius of the dynamical

operator A0 is strictly less than one, i.e.ρ A0ð Þ < 1, and the matrix in Eq. 4 is positive

definite. In contrast to the deterministic model formulation, an autoregression

model with Gaussian performance fluctuations without drift and unit spectral radius

ρ A0ð Þ ¼ 1 would steadily move away from the equilibrium state xe and therefore

not be stable (Papoulis and Pillai 2002; Siddiqi 2010). If ρ A0ð Þ ¼ 1, the

autoregressive process is said to be marginally stable (Halanay and Rasvan 2000).

In extension of state Eq. 8, we can formulate a model of cooperative work on the

basis of a forcing matrix K in conjunction with a random variable ηt whose
covariance matrix does not indicate correlations between vector components

(i.e. work tasks) and is therefore diagonal. To do so, the covariance matrix C is

decomposed into eigenvectors and eigenvalues through an eigendecomposition:

C ¼ K � ΛK � K�1; ð22Þ

where
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K � KT ¼ I p and K�1 ¼ KT :

Because the covariance matrix C is symmetric by definition, the forcing matrix

K resulting from the eigendecomposition has mutually orthogonal column vectors

ki Cð Þ ¼ K:i and is therefore orthogonal. These vectors are the eigenvectors of C. ΛK

is simply a diagonal matrix with the eigenvalues λi(C) along the principal diagonal.
The associated state equation is

Xt ¼ A0 � Xt�1 þ K � ηt; ð23Þ

with

ηte N 0 p;ΛK

� � ð24Þ

and

ΛK ¼ Diag λi Cð Þ½ � 1 � i � p : ð25Þ

According to the above equation, the eigenvalues λi(C) of the decomposed covari-

ance matrix C can be interpreted as the variances of the performance fluctuations

along the rotated axes of the identified eigenvectors ki(C). Following our terminol-

ogy we will use the term “performance fluctuation mode,” Ψ i ¼ λi Cð Þ, ki Cð Þð Þ, to
refer to an eigenvalue λi(C) of C along with its eigenvector ki(C) 1 � i � pð Þ.

Finally, we analyze the properties of the generated stochastic process {Xt} in

steady state and derive a closed-form expression for its joint pdf. Under the

assumption of asymptotic stability ρ A0ð Þ < 1ð Þ, the pdf of the stochastic process

commutes in the long-term evolution t ! 1 in a distribution which is invariant

under a shift of the origin. It follows that the stationary behavior is characterized by

a stable distribution for state variable Xt with mean (also termed location)

μ t ! 1ð Þ ¼ 0 p ð26Þ

and covariance Σ that satisfies the Lyapunov criterion from Eq. 4 in the sense that

the famous Lypunov equation

Σ ¼ A0 � Σ � AT
0 þ C ð27Þ

for the steady-state covariance matrix Σ, the dynamical operator A0 and the

covariance matrix C of the performance fluctuations is fulfilled. The closed-form

solution of the steady-state covariance can be written as a simple matrix power

series (see Eq. 245), which we will introduce and dicuss in Section 4.1.1.

Given the Markov property the joint pdf of the process can be factorized as

follows:
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f θ xt1 ; . . . ; xt2½ � ¼ f θ xt1½ �
Yt2

t¼t1þ1

f θ xtjxt�1½ � : ð28Þ

If the initial state and transition probabilities are Gaussians,

f θ xt1½ � ¼ N xt1 ; 0 p;Σ
� � ð29Þ

f θ xtjxt�1½ � ¼ N xt;A0 � xt�1,Cð Þ; ð30Þ

then the joint pdf in steady state reads:

f θ xt1 ; . . . ; xt2½ � ¼ cxExp �1

2
xTt1 � Σ�1 � xt1�

1

2

Xt2
t¼t1þ1

xt � A0 � xt�1ð ÞT � C�1 � xt � A0 � xt�1ð Þ
" #

ð31Þ

with the normalization constant

cx ¼ 2πð Þ�Δtq
2 Det Σð Þ�1

2 Det Cð Þ�Δt�1
2 ð32Þ

andΔt ¼ t2 � t1 þ 1 the number of time steps. We can write the joint pdf in a more

compact form:

f θ xt1 ; . . . ; xt2½ � ¼ cxExp �1

2
xT � C2 � x

	 

;

where x is a large column vector containing all states from time step t1 to t2,

xT ¼ xTt1 � � �xTt2
� �

. The elements of the matrix C2 are:

C2 ¼

Σ�1 þ AT
0 � C�1 � A0 �AT

0 � C�1 0

�C�1 � A0 C�1 þ AT
0 � C�1 � A0 �AT

0 � C�1

⋱ ⋱ ⋱
�C�1 � A0 C�1 þ AT

0 � C�1 � A0 �AT
0 � C�1

0 �C�1 � A0 C�1

0BBBB@
1CCCCA: ð33Þ

For the inverse of C2, which is the covariance of the joint pdf, we find the following
closed form:

Cx ¼ C�1
2 ¼

Σ Σ � AT
0 Σ AT

0

� �2 � � � Σ AT
0

� �Δt�1

A0 � Σ Σ Σ � AT
0 ⋱ Σ AT

0

� �Δt�2

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ Σ Σ � AT

0

AΔt�1
0 � Σ � � � � � � A0 � Σ Σ

0BBBBB@

1CCCCCA: ð34Þ

2.2 Stochastic Formulation in Original State Space 33



The above form for the covariance can be easily verified by showing that the

proposed inverse leads to the desired result, i.e. that it holds that C2 � Cx ¼ I p and

CX � C2 ¼ I p. Because the matrices are symmetric, the second equation follows

from the first one. That means we only have to prove the first one:

Cx � C2 ¼ CT
x � CT

2

¼ C2 � Cxð ÞT
¼ I Tp ¼ I p:

For example, the (1, 1)-block of C2 � Cx is

Σ�1 þ AT
0 � C�1 � A0

� �
Σ� AT

0 � C�1 � A0 � Σ ¼ I p:

The (1, 2)-block is

Σ�1þAT
0 �C�1 �A0

� �
Σ �AT

0 �AT
0 �C�1 �Σ¼ AT

0 þAT
0 �C�1 �A0 �Σ �AT

0 �AT
0 �C�1 �Σ

¼ AT
0 þAT

0 �C�1 Σ�Cð Þ�AT
0 �C�1 �Σ

¼ AT
0 �C�1 �Σ�AT

0 �C�1 �Σ
¼ 0:

The other (1, j)-blocks have just an additonal factor AT
0

� � j�2
and thus also yield

zero. The (2,1)-block is easily computed as

�C�1 � A0 � Σþ C�1 þ AT
0 � C�1 � A0

� �
A0 � Σ� AT

0 � C�1 � A2
0 � Σ ¼ 0:

Then the second diagonal block is

�C�1A0 � Σ � AT
0 þ C�1 þ AT

0 � C�1 � A0

� �
Σ� AT

0 � C�1 � A0 � Σ
¼ �C�1 Σ� Cð Þ þ C�1 � Σ ¼ I p:

The other diagonal blocks (except for the last one) are computed in the same way.

For the last diagonal block we have

�C�1 � A0 � Σ � AT
0 þ C�1 � Σ ¼ �C�1 Σ� Cð Þ þ C�1 � Σ ¼ I p:

All other blocks can easily be computed in a similar way and will yield zero.

The introduced stochastic models of cooperative work in PD projects are quite

closely related to the dynamical model of product development on complex

directed networks that was introduced by Braha and Bar-Yam (2007). However,

there are some important differences: (1) the autoregression models are defined

over a continuous range of state values and can therefore represent different kinds

of cooperative relationships as well as precedence relations (e.g. overlapping);
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(2) each task is unequally influenced by other tasks; (3) correlations ρij between
performance fluctuations among tasks i and j can be captured.

2.3 Stochastic Formulation in Spectral Basis

In order to analyze explicitly the intricate interrelationships between project

dynamics and emergent complexity in later chapters (see Chapter 3 in conjunction

with Chapters 4 and 5), we use the spectral basis and spectral methods (Neumaier

and Schneider 2001). Spectral methods are based on the eigenvalues of matrix

representations of systems and can therefore capture global information on struc-

ture and dynamics. Where a system’s matrix representation is in the form of a static

design structure matrix of system components (see e.g., Eppinger and Browning

2012 and Section 3.3), a spectral analysis of these dependency structures related to

architectural elements and interfaces can be used to detect modules and assess

modularity (Sarkar et al. 2013, Sarkar and Dong 2014). Facets of structural com-

plexity can then be evaluated on a global level. We focus on persistent components

of task-based, dynamic complexity in the following and carry out a spectral analysis

of the WTM A0 as dynamical operator of state Eq. 8. To carry out the transforma-

tion of the state-space coordinates, A0 is diagonalized through an eigendecom-

position (cf. Eq. 22) as

A0 ¼ S � ΛS � S�1; ð35Þ

with

ΛS ¼ Diag λi A0ð Þ½ � 1 � i � p : ð36Þ

The eigenvectors ϑi A0ð Þ ¼ S:i of the design modes ϕi of A0 are the column vectors

of S resulting from the eigendecomposition i ¼ 1 . . . pð Þ. However, because A0

must not be symmetric, the eigenvectors are in general not mutually orthogonal,

and their elements can be complex numbers. The diagonal matrix Λs stores the

ordered eigenvalues λi(A0) along the principal diagonal. The dynamical operator A0

can always be diagonalized if it has p distinct eigenvalues and therefore also

p linearly independent eigenvectors. On the other hand, if the operator has eigen-

values of multiplicity greater than one a diagonalization can still be carried out if

p linearly independent eigenvectors can be found (Puri 2010). Otherwise, the above
linear transformation does not lead to the diagonal form but to the so-called Jordan

canonical form (see e.g. Puri 2010).

It is easy to analyze the stability of the modeled PD project in the spectral basis.

According to Section 2.1, the autoregressive model defined in Eq. 8 is asymptoti-

cally stable in the sense of Lyapunov (Eq. 4) if and only if it holds for the spectral

radius of the dynamical operator A0 that ρ A0ð Þ < 1. Based on Eq. 35 we can

conclude that the limit
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lim
k!1

Ak
0 ¼ lim

k!1
S � Λ k

S � S�1

¼ S � lim
k!1

Λ k
S

� 
� S�1

is a null matrix, since it is evident that the entries of Λk
S along the principal diagonal

are just the eigenvalues raised to power k, which converge to zero when ρ A0ð Þ < 1.

Hence, we have

lim
k!1

Λ k
S ¼

λ k1 0 . . .
0 λ k2 . . .
⋮ ⋮ ⋱

0@ 1A ¼ 0:

If ΛS ¼ I p, the project is said to be marginally stable but not asymptotically stable,

because the work remaining would steadily move away from the equilibrium state

xe.
In the spectral basis, the dynamic model from Eq. 8 can be represented by the

state vector Xt and the vector εt of unpredictable performance fluctuations as simple

linear combinations, as follows:

Xt ¼ S � X0
t

¼
Xp
i¼1

X0
t
ið Þ � ϑi A0ð Þ ð37Þ

and

εt ¼ S � ε0t
¼
Xp
i¼1

ε0t
ið Þ � ϑi A0ð Þ; ð38Þ

with coefficient vectors

X0
t ¼

X0
t
1ð Þ

⋮
X0
t
pð Þ

0@ 1A
and

ε0t ¼
ε0t

1ð Þ

⋮
ε0t

pð Þ

0@ 1A:

For the initial state, we have
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x0 ¼ S � x00:

We obtain the transformed stochastic process {X
0
t} that is generated by the coeffi-

cient vectors on the basis of the state equation

X0
t ¼ ΛS � X0

t�1 þ ε0t t ¼ 1, . . . , T ; ð39Þ

with

ε0teN 0 p;C
0

� �
ð40Þ

and

C
0 ¼ S�1 � C � ST

� �*� ��1

: ð41Þ

The transformed covariance matrix C
0 ¼ E ε0t ε0t

T
h i*	 


is also positive-semidefinite.

When we substitute the eigendecomposition of C according to Eq. 22 in Eq. 41

we have

C
0 ¼ S�1 � K � ΛK � K�1 � ST

� �*� ��1

¼ S�1 � K � ΛK � ST
� �* � K� ��1

¼ S�1 � KT
� �T � ΛK � ST

� �* � K� ��1

¼ S�1 � KT
� ��1 � ΛK � ST

� �* � K� ��1

¼ KT � S� ��1 � ΛK � ST
� �* � K� ��1

: ð42Þ

Let KT � S� ��1 ¼ di j
� �

and ST
� �* � K� ��1

¼ ei j
� �

, 1 � i, j � p . On the basis of

the matrix elements, we can derive simple formulas for the diagonal and

off-diagonal elements of C0, which are needed in Chapter 4 to calculate the EMC

in an expressive closed form (see Eq. 262 in conjunction with Eqs. 260 and 261).

The diagonal elements are

C0
i;i½ �½ � ¼

Xp
n¼1

dinλn Cð Þeni

and the off-diagonal elements are
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C0
i; j½ �½ � ¼

Xp
n¼1

dinλn Cð Þen j:

Hence, the correlations ρ
0
ij in the spectral basis are

ρ0i j :¼
C0

i; j½ �½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0

i;i½ �½ �C
0
j; j½ �½ �

q ¼ Σ p
n¼1dinλn Cð Þen jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σ p
n¼1dinλn Cð Þeni

� �
Σ p
n¼1d jnλn Cð Þen j

� �q : ð43Þ

Interestingly, the correlations ρ
0
ij can be interpreted in a geometrical framework

(de Cock 2002). Let E0ðiÞt be the row vector of the normalized (by 1=
ffiffi
t

p
) sequence of

samples that were drawn from the i-th vector component of the multivariate

distribution of the random variable ε
0
t representing the performance fluctuations in

the spectral basis, that is

E0t
ið Þ
:¼ 1ffiffi

t
p ε0 ið Þ0 , . . . , ε0 ið Þt�1

� �
:

The correlations ρ
0
ij between the i-th and j-th components of ε

0
t are defined as the

angle between the vectors E0ðiÞt and E0ðjÞt for t ! 1:

ρ0i j ¼ lim
t!1 cos E0t

ið Þ∠ E0t
jð Þ� �

: ð44Þ

In an analogous way, let x0ðiÞt be the row vector of the normalized sequence of

samples that were drawn from the i-th vector component of the multivariate

distribution of the transformed state variable X
0
t, that is

x0t
ið Þ
:¼ 1ffiffi

t
p x0 ið Þ0 , . . . , x

0 ið Þ
t�1

� �
:

The correlations between the i-th and j-th components of X
0
t in the steady state

t ! 1ð Þ of the stochastic process are the reinforced correlations ρ
0
ij between noise

components. The reinforcement factor is 1= 1� λi A0ð Þλ j A0ð Þ
� �

, and there holds

(Neumaier and Schneider 2001)

1

1� λi A0ð Þλ j A0ð Þ ρ0i j ¼ lim
t!1 cos x0t

ið Þ∠ x0t
jð Þ� �

: ð45Þ

38 2 Mathematical Models of Cooperative Work in Product Development Projects



In the above equation the terms λ j A0ð Þ denote the complex conjugates of the

eigenvalues. As mentioned earlier, this interesting reinforcement phenomenon

will be discussed again in Chapter 4.

If A0 is a symmetric matrix, we can also obtain expressive vector calculus forms

of both the diagonal (representing the variances along the rotated coordinate axes in

the spectral basis) and off-diagonal (representing the correlations ρ
0
ij between them)

elements of C0, as shown in the following steps. This is because the eigenvectors

ϑi(A0) are mutually orthogonal and have only real components. However, if A0 is

not symmetric, the eigenvectors are not orthogonal, and the following simplifica-

tions are impossible.

If A0 is symmetric, all p components of the eigenvectors are real, and Eq. 41 can

be rewritten as

C
0 ¼ S�1 � C � ST

� ��1
:

The eigenvectors ϑi A0ð Þ ¼ S:i are mutually orthogonal. The normalized eigenvec-

tors are denoted by ~ϑi
~ϑi

�� �� ¼ 1
� �

, the corresponding orthonormal matrix by S⊥, and

the mutually orthogonal (but not normalized) column vectors of the forcing matrix

K by ki ¼ K:i. We can write

C
0 ¼ S⊥ � Nð Þ�1 � C � S⊥ � Nð ÞT

� ��1

with

N ¼ Diag ϑi A0ð Þj jj j½ �, 1 � i � p :

Because N is diagonal, the transpose can be written as

C
0 ¼ S⊥ � Nð Þ�1 � C � N � ST

⊥

� ��1
;

and the inverse can be factorized:

C
0 ¼ N�1 � S�1

⊥ � C � ST
⊥

� ��1 � N�1:

For orthonormal matrices, S�1
⊥ ¼ ST

⊥, and we have

C
0 ¼ N�1 � ST

⊥ � C � S⊥ � N�1

¼ N�1 � ST
⊥ � K � ΛK � KT � S⊥ � N�1

¼ N�1 � ST
⊥ � K� � � ΛK � ST

⊥ � K� �T � N�1 ð46Þ

with
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ST
⊥ � K ¼

~ϑ1 � k1 ~ϑ1 � k2 . . .
~ϑ2 � k1 ~ϑ2 � k2 . . .
. . . . . . ⋱

0@ 1A
ST
⊥ � K� �T ¼

~ϑ1 � k1 ~ϑ2 � k1 . . .
~ϑ1 � k2 ~ϑ2 � k2 . . .
. . . . . . ⋱

0@ 1A
ST
⊥ � K� � � ΛK ¼

~ϑ1 � k1 λ1 Cð Þf g ~ϑ1 � k2 λ2 Cð Þf g . . .
~ϑ2 � k1 λ1 Cð Þf g ~ϑ2 � k2 λ2 Cð Þf g . . .

. . . . . . ⋱

0@ 1A:

Now we can formulate a simple geometric relationship for the diagonal elements

of C0

C0
i;i½ �½ � ¼

1

ϑik k2
Xp
n¼1

λn Cð Þ ~ϑi � kn
� �2

;

as well as for the off-diagonal elements

C0
i; j½ �½ � ¼

1

ϑik k ϑ j

�� ��Xp
n¼1

λn Cð Þ ~ϑi � kn
� �

~ϑ j � kn
� �

:

The closed-form solution for the correlations ρ
0
ij embedded in C0 is:

ρ0i j ¼
ϑik k ϑ j

�� ��
ϑik k ϑ j

�� �� � Σ p
n¼1λn Cð Þ ~ϑi � kn

� �
~ϑ j � kn
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σ p
n¼1λn Cð Þ ~ϑi � kn

� �2� �
Σ p
n¼1λn Cð Þ ~ϑ j � kn

� �2� �r

¼ Σ p
n¼1λn Cð Þ ~ϑi � kn

� �
~ϑ j � kn
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σ p
n¼1λn Cð Þ ~ϑi � kn

� �2� �
Σ p
n¼1λn Cð Þ ~ϑ j � kn

� �2� �r :

ð47Þ

When we analyze Eqs. 46 and 47, it is not difficult to see that the correlations ρ
0
ij in

the spectral basis are zero, in either of the following cases.

(i) The column vectors of the forcing matrix K and the column vectors of

the transformation matrix S are pairwise collinear, and S ¼ K � ΛSK

ΛSK ¼ Diag ci½ �, ci 2 ℝð Þ.
(ii) The forcing matrix K is equal to the identity matrix Ip, and the fluctuations are

isotropic with overall strength σ2 2 ℝþ, that is
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ΛK ¼ Diag λ Cð Þ½ � ¼ σ2
� � � I p:

In case (i) the off-diagonal elements C
0
½½i;j�� are zero, because ~ϑi � kn0 6¼ 0 for only

one column vector kn0 with index n0 that is aligned with ~ϑn0 , while for this index
~ϑi � kn0 ¼ 0 for all j 6¼ i, because the vectors are mutually orthogonal (keeping in

mind that A0 is supposed to be symmetric). Therefore,

Xp
n¼1

λn Cð Þ ~ϑi � kn
� �

~ϑ j � kn
� � ¼ 0;

from which C0
i; j½ �½ � ¼ 0 and ρ0i j ¼ 0 follow.

In case (ii) we can substitute K ¼ I p, as well as ΛK ¼ σ2
� � � I p in Eq. 46:

C
0 ¼ N�1 � ST

⊥ � I p
� � � σ2

� � � I p � ST
⊥ � I p

� �T � N�1

¼ σ2
� � � N�1 � ST

⊥ � S⊥ � N�1

¼ σ2
� � � N�1

� �2
:

Since N is a diagonal matrix, again C0
i; j½ �½ � ¼ 0 and ρ0i j ¼ 0 follow.

Interestingly, under the assumption of isotropic fluctuations, that is C ¼ σ2
� �

�I p orK ¼ I p andΛK ¼ σ2
� � � I p, only the dynamic part of the iteration process and

not the fluctuations are relevant for evaluating emergent complexity (see Eqs. 250

and 251). This also holds for a dynamical operator A0 that is not symmetric.

We can also write the state equation (39) in the spectral basis component-wise

(Neumaier and Schneider 2001). For each vector component the eigenvalue λi ¼ λi

A0ð Þ is the dynamical operator of the scalar state equation with coefficient X0ðiÞ
t :

X0
t
ið Þ ¼ λiX

0 ið Þ
t�1 þ ε0t

ið Þ t ¼ 1, . . . , T: ð48Þ

It is important to note that in the scalar state equations the fluctuations are correlated

and that for the expectations it holds for all time steps μ 2 ℤ that

E ε0μ
ið Þ ε0t

jð Þ
h i*	 


¼ δμtC
0
i; j½ �½ �

¼ δμtρ0i jC
0
i;i½ �½ �C

0
j; j½ �½ �; ð49Þ

where ρ0i j k, l ¼ 1, . . . , pð Þ is the correlation coefficient defined in Eq. 43 and δμt is

the Kronecker delta (Eq. 14). From Eq. 48 it follows that for Arg λi½ � 6¼ 0 the

expectations
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E X
0ðiÞ
t

h i
¼ λiE X

0 ið Þ
t�1

h i
describe spirals in the Gaussian plane represented by

E X
0 ið Þ
tþτ

h i
¼ λτi E X0

t
ið Þ

h i
¼ e

� τ
τi e Arg λi½ �ð ÞiτE X0

t
ið Þ

h i
ð50Þ

with damping time scales (Neumaier and Schneider 2001)

τi :¼ � 1

log λij j ð51Þ

and periods

Ti :¼ 2π

Arg λi½ �j j : ð52Þ

The function Arg[λi] denotes the argument of the possibly complex eigenvalue

λi ¼ ai þ ibi, which can be computed as

Arg λi½ � ¼ tan �1 ai
bi

� 
:

We use the convention that �π � Arg λi½ � � π to ensure that a pair of complex

conjugate eigenvalues of the dynamical operator is associated with a single period

of the described spiral. For a stable stochastic process {Xt} all eigenvalues must be

less than one in magnitude and therefore the damping time scale τi is positive and
bounded. If the eigenvalue λi of interest has a nonzero imaginary part or is real but

negative, the period Ti is also bounded. In this case we can consider the scalar

stochastic process {X0ðiÞ
t } as a stochastically driven damped oscillator (Neumaier

and Schneider 2001). The period of the damped oscillator is minimal if λi is real and
negative and we have Ti ¼ 2 (or Arg λi½ �j j ¼ π ). This period is equivalent to the

famous Nyquist frequency which plays an important role in Fourier analysis and

system theory (see e.g. Puri 2010). In contrast, if the eigenvalue λi is real and

positive, then the period Ti grows over all limits Ti ! 1ð Þ and the scalar-valued

system spirals indefinitely around the expectation value. In this case, the scalar

stochastic process {X0ðiÞ
t } can be regarded as a stochastically driven relaxator

(Neumaier and Schneider 2001). Therefore, the linear combinations according to

Eqs. 37 and 38 decompose the vector autoregression process {Xt} generated by

state Eq. 8 into linear combinations of damped oscillators and relaxators with

oscillation and relaxation modes ϑi(A0) that operate on damping time scales τi
and have periods Ti.
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Where a stochastic process is asymptotically stable in the meaning of Lyapunov

(Eq. 4), the time evolution of the scalar states {X0ðiÞ
t } of the damped oscillators and

relaxators combined in a linear way can be represented in the complex plane in the

form of three schematic diagrams. These schematic diagrams are shown in Fig. 2.6.

Since the work transformation matrix A0 is real, its eigenvalues and eigenvectors

can be written as complex conjugate pairs. Based on these pairs we can also

decompose the introduced linear autoregression model (Eq. 8) into real rather

than complex design modes (see e.g. Neumaier and Schneider 2001 or Hinrichsen

and Pritchard 2005). In fact, for any complex eigenvalue λi ¼ ai þ ibi the scalar

process {X0ðiÞ
t } defined by state Eq. 48 can be expressed as a real bivariate

autoregressive process of first order

Re X0
t
ið Þ

h i
Im X0

t
ið Þ

h i0@ 1A ¼ ai �bi
bi ai

� 
Re X

0 ið Þ
t�1

h i
Im X

0 ið Þ
t�1

h i0@ 1Aþ ε0t
ið Þ ð53Þ

with the bivariate random vectors

ε0t
ið Þ ¼

Re ε ið Þ
t

h i
Im ε ið Þ

t

h i0@ 1A ¼ 1

2

ε0t
ið Þ þ ε ið Þ

t

i ε0t
ið Þ � ε ið Þ

t

� � !
:

In the above equation the components indexed by i0 are conjugates of the compo-

nents indexed by i. From the definition of the correlated fluctuations in Eq. 49, the

covariance matrix can be written as (Neumaier and Schneider 2001):

E ε0μ
kð Þ ε0v

lð Þ
h ih i

¼ δμv
4

C0
k;l½ �½ � þ C0

k0;l0½ �½ � þ C0
k0;l½ �½ � þ C0

k;l0½ �½ � �i �C0
k;l½ �½ � þ C0

k0;l0½ �½ � � C0
k0;l½ �½ � þ C0

k;l0½ �½ �
� �

�i �C0
k;l½ �½ � þ C0

k0;l0½ �½ � � C0
k0;l½ �½ � þ C0

k;l0½ �½ �
� �

C0
k;l½ �½ � þ C0

k0;l0½ �½ � � C0
k0;l½ �½ � � C0

k;l0½ �½ �

0B@
1CA

¼ δμv
2

Re C0
k;l½ �½ �

h i
þ Re C0

k0;l½ �½ �
h i

Im C0
l;k½ �½ �

h i
þ Im C0

l;k0½ �½ �
h i

Im C0
k;l½ �½ �

h i
þ Im C0

k0;l½ �½ �
h i

Re C0
k;l½ �½ �

h i
� Re C0

k0;l½ �½ �
h i

0B@
1CA

¼ δμv
2

Re ρ0klC
0
k;k½ �½ �C

0
l;l½ �½ �

h i
þ Re ρ0

k0lC
0
k0;k0½ �½ �C

0
l;l½ �½ �

h i
Im ρ0lkC

0
l;l½ �½ �C

0
k;k½ �½ �

h i
þ Im ρ0

lk0C
0
l;l½ �½ �C

0
k0;k0½ �½ �

h i
Im ρ0klC

0
k;k½ �½ �C

0
l;l½ �½ �

h i
þ Im ρ0

k0lC
0
k0;k0½ �½ �C

0
l;l½ �½ �

h i
Re ρ0klC

0
k;k½ �½ �C

0
l;l½ �½ �

h i
� Re ρ0

k0lC
0
k0;k0½ �½ �C

0
l;l½ �½ �

h i
0B@

1CA:

The eigenmodes of the decomposed process are given by the real and imaginary

parts of the eigenvector ϑi A0ð Þ ¼ S:i.
For small PD projects with only p ¼ 2 tasks, we can obtain simple analytical

solutions for the eigenvalues, eigenvectors and correlation coefficient in the spec-

tral basis. To do so, we use the following parametric representation of theWTM and

the covariance matrix of the fluctuations in the original state space coordinates:
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…
Re

Im
(a)

…
Re

Im
(b)

…

Re

Im
(c)

Fig. 2.6 Schematic diagrams of the time evolution of the scalar states X0ðiÞ
t of relaxators and

damped oscillators in the complex plane. The superscript (i) was dropped for greater clarity. The

initial value is therefore represented by X
0
0. The thick arrows represent the scalar states. The thin

arrows indicate the transitions between states. (a) Relaxator: λi is real andλi > 0. (b) Stochastically

driven damped oscillator with minimum period Ti ¼ 2: λi is real and λi < 0. (c) Stochastically

driven damped oscillator with period Ti > 2: λi is complex (adopted from von Storch et al. 1995)
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A0 ¼ a11 a12
a21 a11 þ Δa

� 
ð54Þ

C ¼ σ211 ρσ11σ22
ρσ11σ22 σ222

� 
; ð55Þ

where a11; σ11; σ22f g 2 ℝþ, Δa; a12; a21f g 2 ℝ and ρ 2 �1; 1½ �. Note that the

parametric representation of the autonomous task processing rates a11 anda22 ¼ a11
þΔa through the rate difference Δa is slightly different than in the applied example

which will be presented Section 2.5. The rate difference is introduced in order to

obtain solutions that are easier to interpret.

The above parametric representation leads to the eigenvalues

λ1 ¼ 1

2
2a11 þ Δa� ffiffiffi

g
p� � ð56Þ

λ2 ¼ 1

2
2a11 þ Δaþ ffiffiffi

g
p� �

; ð57Þ

the infinite families c1; c2f g 2 ℝð Þ of eigenvectors

ϑ1 ¼ c1f g � �Δaþ ffiffiffi
g

p
2a21
1

0@ 1A
ϑ2 ¼ c2f g � �Δa� ffiffiffi

g
p

2a21
1

0@ 1A;

and therefore to the matrix

S ¼ �Δaþ ffiffiffi
g

p
2a21

�Δa� ffiffiffi
g

p
2a21

1 1

0@ 1A
for the basis transformation. In order to obtain an instance of an autoregressive

model that is asymptotically stable in the sense of Lyapunov (Eq. 4), the spectral

radius ρ(A0) must be less than one and therefore it must hold that

1=2 2a11 þ Δaþ ffiffiffi
g

p� �
< 1.
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In the spectral basis, the transformed variances σ0211 ¼ C0
1;1½ � and σ

02
22 ¼ C0

2;2½ � are
given by

σ0211 ¼
4a221σ

2
11þ4ρ Δa�Re

ffiffiffi
g

p� �
a12σ11σ22

� �þ Abs g½ �þΔa Δa�2Re
ffiffiffi
g

p� �� �� �
σ222

4Abs g½ �
σ0222 ¼

4a221σ
2
11þ4ρ ΔaþRe

ffiffiffi
g

p� �
a12σ11σ22

� �þAbs g½ �þΔa Δaþ2Re
ffiffiffi
g

p� �� �
σ222

4Abs g½ � :

The correlation coefficient ρ0 can be expressed in the spectral basis as

ρ0 ¼ �4a221σ
2
11 � 4ρa21 Δa� Re

ffiffiffi
g

p� �þ ffiffiffi
g

p� �� �
σ11σ22 þ Abs g½ � � Δa Δaþ 2iIm

ffiffiffi
g

p� �� �� �
σ222

σ011σ
0
22

:

In the equations above we have used the coupling constant g which is defined as

g :¼ Δa2 þ 4a12a21:

ffiffiffi
g

p
is the distance between the eigenvalues, see Eqs. 56 and 57. If all entries of the

WTM A0 are nonnegative, the correlation coefficient ρ0 can be further simplified

and we have

ρ0 ¼ σ22 a12σ22 � Δaρσ11ð Þ � a21σ
a221σ

4
11 þ 2Δaρa21σ311σ22 þ Δa2 þ 2 1� 2ρ2ð Þa12a21ð Þσ211σ222 � 2Δaρa12σ11σ322 þ a212a

4
22

� �q :

Furthermore, if not only all the entries of the WTM are nonnegative, but also the

correlation coefficient of the fluctuations in the original state space coordinates is

zero, i.e. ρ ¼ 0, we arrive at the most simple parametric form:

ρ0 ¼ a12σ222 � a21σ211ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21σ211
� �2 þ Δa2 þ 2a12a21ð Þσ211σ222 þ a12σ222

� �2q :

It is evident that the transformed correlation coefficient ρ0 is zero if the fluctuations

are isotropic and the WTM is symmetric.

2.4 Formulation of Higher-Order Models, Least Squares

Parameter Estimation and Model Selection

Neumaier and Schneider (2001) term the stochastic process that is generated by the

introduced linear autoregression models (Eqs. 8 and 39) a vector autoregressive

process of order 1, abbreviated as VAR(1) process, with zero mean. A VAR
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(1) process with zero mean is the least complex stochastic process in its class. In the

original state-space coordinates, a VAR(1) model can be easily generalized by

increasing the regression order and therefore the correlation length of the process.

When the regression order is increased not only the present state of the development

project is considered to make accurate predictions of its future course but also states

that lay in the finite past. The corresponding vector autoregression model of order n,
abbreviated as VAR(n) model, is defined by the extended state equation:

Xt ¼
Xn�1

i¼0

Ai � Xt�i�1 þ εt: ð58Þ

Similar to a VAR(1) model, {Xt} is a time series of p-dimensional state vectors

representing the work remaining observed at equal space time instants t. The
probability density function of the vector εt was already given in Eq. 13 and it

holds that εt eN 0 p;C
� �

. One could also include a p-dimensional parameter vector

ω of intercept terms to allow for a nonzero mean of the time series (see Neumaier

and Schneider 2001 or Lütkepohl 2005). From a theoretical point of view, this

systematic shift or drift of work remaining is not essential in the model formulation

and is consequently ignored in the following analysis. Like the first-order model

(see Fig. 2.4), Fig. 2.7 shows a graphical representation of the second-order

autoregression model in the form of a dynamic Bayesian network. By generalizing

the graphical model shown, it becomes clear that the VAR(n) model’s memory only

reaches back n time steps into the past because its state is the weighted value of the

last n observations (Rudary 2009).

The VAR(n) model is one of the most flexible models for the analysis of

multivariate time series. This model has proven especially useful for describing

the dynamic behavior of economic time series and for forecasting. Neumaier and

Schneider (2001), Franses and Paap (2004), Lütkepohl (2005) and others developed

efficient and robust methods to estimate the order of the model, the values of its

parameters, spectral information and confidence regions based on empirically

acquired time series. We will describe the parameter estimation methods for vector

autoregression models based on the material from Neumaier and Schneider (2001).

The description of the criteria for model selection is based on the textbooks by

Burnham and Anderson (2002) and Lütkepohl (2005). All methods are standard and

X0 X1 ...

t = 0 t = 1 t -1

... Xt

t t +1

Xt-1 Xt+1X2

Fig. 2.7 Graphical representation of the second-order autoregression model in the form of a

dynamic Bayesian network. The nodes in the graph represent the random state variables of the

stochastic process. The directed arcs represent conditional dependencies between the variables
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can, in part, be found in many other textbooks, e.g. Box and Jenkins (1976), Marple

(1987), Kay (1988), Soderstrom and Stoica (1989) and Stoica and Moses (1997).

An important result in the theory of stochastic dynamical systems is that

every linear autoregression model of finite order generating a process Xtf gT
1�n ¼

X1�n; . . . ;XTð Þ of p-dimensional state vectors can be rewritten as a first-order

model based on the state equation

~Xt ¼ ~A � ~Xt�1 þ ~εt t ¼ 1, . . . , T; ð59Þ

where ~Xt is the augmented state vector

~Xt ¼
Xt

Xt�1

⋮
Xt�nþ1

0BB@
1CCA 2 ℝn p; ð60Þ

~εt is the augmented noise vector

~εt ¼
εt
0

⋮
0

0BB@
1CCA ð61Þ

and ~A is the extended dynamical operator

~A ¼

A0 A1 � � � An�2 An�1

I p 0 � � � 0 0

0 I p � � � 0 0

0 0 ⋱ 0 0

0 0 . . . I p 0

0BBBBBB@

1CCCCCCA 2 ℝn p�n p: ð62Þ

This order reduction by state-space augmentation makes it possible to develop

relatively simple parameter estimation algorithms (see literature review in

Neumaier and Schneider 2001). However, the only problem with this approach is

that the augmented state vector ~Xt has vector components that are also included in

the previous state vector ~Xt�1 and therefore the past and future are not completely

shielded in information-theoretic terms, given the present state. To be able to apply

the complexity measures that will be presented in Sections 4.1.1, 4.1.2 and 4.1.3 in

different closed forms directly to the higher-order model in order to evaluate

emergent complexity in PD projects, one has to find a state representation

with disjoint vector components. This can be easily done as will be shown in

Section 4.1.6.
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If process order n is known in advance, various techniques exist to estimate

coefficient matricesA0, . . . ,An�1 in terms of multiple work transformation matrices

and the covariance matrix C from a time series of empirically acquired state vectors

xt (see Neumaier and Schneider 2001). The most prominent techniques are based on

the well-known Maximum Likelihood Estimation (MLE, see for instance

Brockwell and Davis 1991). For a fixed series of data and an underlying parame-

terized model, MLE picks the value of parameters that maximize the probability of

generating the observations or minimize the one-step prediction error. It is usually

assumed that the fluctuations are uncorrelated from time step to time step and that it

holds for all time steps μ; vf g 2 ℤ that E εμεTv
� � ¼ δμv

� � � C. Since the covariance
matrix C depends on the regression parameters, the likelihood must be maximized

in several iterations. The iterative estimates are not only asymptotically efficient as

the sample size grows to infinity, they also show good small-sample performance

(Brockwell and Davis 1991). An alternative iterative MLE technique with good

small-sample performance that can also deal with “hidden” (not directly observ-

able) state variables will be introduced in Section 2.10. Although efficiency and

robustness are advantageous properties for estimation techniques, the iterative

procedure is computationally quite demanding and slows the parameter estimation

for large projects significantly. A much simpler technique is based on the classic

least squares estimation (Neumaier and Schneider 2001). Our analyses have shown

that in the application area of project management least-square estimation is

comparatively accurate and robust. The least-square estimates can also be used as

a bootstrap for subsequent maximum likelihood iterations. Furthermore, least-

square estimation can be intuitively extended by information-theoretic or Bayesian

model selection techniques. This reveals interesting theoretical connections

between selecting a predictive model based on universal criteria and evaluating

its statistical or information-theoretical complexity. We will return to this important

point in Sections 3.2.2 and 3.2.4.

According to Neumaier and Schneider (2001) the least squares estimates for a

VAR(n) process are most conveniently derived when the process

Xtf gT
1�n ¼ X1�n; . . . ;XTð Þ generated by state Eq. 58 is cast in the classic linear

regression form

Xt ¼ A � Ut þ εt t ¼ 1, . . . , T ð63Þ
εteN 0 p;C

� �
;

with the coefficient matrix

A ¼ A0 � � � An�1ð Þ

and predictors
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Ut ¼
Xt�1

⋮
Xt�n

0@ 1A 2 ℝn p , n p ¼ pn:

The key insight in the derivation of the least squares estimates of the independent

parameters is to consider the casted regression model as a model with fixed pre-

dictors Ut. Clearly, this is only an approximation, because for the multivariate time

series the Ut are realizations of a random variable. However, the above definition of

the predictors implies that the assumption of fixed predictors leads to treating

U1 ¼
X0

⋮
X1�n

0@ 1A
as a vector of fixed initial states. Since the relative effect of the initial state vanishes

as the length T of the time series approaches infinity, using corresponding param-

eter estimates for the regression model in the autoregressive model formulation can

be expected to be asymptotically correct (Neumaier and Schneider 2001). In fact,

when using a linear regression model, the least squares principle leads to the best

unbiased parameter estimates. We define the following data-related matrices

obtained from the observations xt and ut of the random vectors Xt and Ut:

U ¼
XT
t¼1

utu
T
t

V ¼
XT
t¼1

xtx
T
t

W ¼
XT
t¼1

xtu
T
t :

The least square estimate for the coefficient matrix A can be written as the matrix

product

Â ¼ W � U�1: ð64Þ

The corresponding estimate for the covariance matrix is given by

Ĉ ¼ 1

T � n p

XT
t¼1

xt � Â � ut
� �

xt � Â � ut
� �T

: ð65Þ

The leading factor 1= T � n p

� �
is used to adjust the degrees of freedom of the

covariance matrix. In terms of a multivariate regression, the estimated covariance
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matrix can be interpreted as a point estimate of the inherent one-step prediction

error.

Alternatively, the estimate of the covariance matrix can be expressed as

Ĉ ¼ 1

T � n p
V �W � U�1 �WT
� �

:

This estimate is proportional to the Schur complement of the composed matrix

U WT

W V

� 
¼
XT
t¼1

ut
xt

� 
� ut

xt

� T
¼ KT � K;

where the aggregated data matrix K is defined as

K ¼
uT
1 xT1
⋮ ⋮
uT
T xTT

0@ 1A;

and therefore assured to be positive semidefinite. Neumaier and Schneider (2001)

have shown that a QR factorization of the data matrix K as

K ¼ Q � R

with an orthogonal matrix Q and an upper triangular matrix

R ¼ R11 R12

0 R22

� 
allows the development of an efficient procedure to compute the parameter esti-

mates numerically. Therefore, the above Schur complement is rewritten as

U WT

W V

� 
¼ RT � R ¼ RT

11 � R11 RT
11 � R12

RT
12 � R11 RT

12 � R12 þ RT
22 � R22

� 
:

Based on the rewritten Schur complement, the following least squares estimates are

obtained:

Â ¼ R�1
11 � R12

� �T
Ĉ ¼ 1

T � n p
RT
22 � R22

� �
:

The estimate for the initial state is simply

2.4 Formulation of Higher-Order Models, Least Squares Parameter Estimation and. . . 51



bU1 ¼
x0
⋮
x1�n

0@ 1A:

As an alternative to the QR factorization, the matrix R can be obtained from a

Cholesky decomposition. Furthermore, regularization schemes can be used to

reduce effects of noise. More details are available in Neumaier and

Schneider (2001).

If not only a single time series of empirically acquired state vectors xt is given
but multiple realizations of the stochastic process had been acquired in

N independent measurement trials, the additional time series are simply appended

as additionalN � 1blocks of rows in the regression Eq. 63. Similarly, the predictors

are extended by additional row blocks. The initial state is determined by averaging

over all initial data points.

If not only the coefficient matrices and the covariance matrix of the VAR(n)
process have to be estimated from data but also the model order, a good trade-off

between the predictive accuracy gained by increasing the number of independent

parameters and the danger of overfitting the model has to be found. Overfitting

means in our context of project management that the model is fitted to unpredictable

performance fluctuations instead of the implicit or explicit rules of cooperative

work that are necessary for the functioning of the project. In order to find an optimal

solution to the trade-off in terms of a universal principle, Rissanen’s (1989, 2007)
minimum description length principle aims at selecting the model with the briefest

recording of all attribute information–not only the likelihood of a fixed series of

data and an underlying parameterized model. This integrative view provides a

natural safeguard against overfitting as it defines a method to reduce the part of

the data that looks like noise by using a more elaborate—but in the sense of

Occam’s Razor not unnecessary complex—model. We will come back to this

important model selection principle in Section 3.2.2 when we discuss the stochastic

complexity of a generative model within a simple parametric model class compris-

ing of distributions indexed by a specific parameter set. In the following, we take a

more pragmatic view and select the order of an autoregression model on the basis of

the standard selection criteria of Akaike (Final Prediction Error Criterion as well as

Information Criterion, see Akaike 1971, 1973 and 1974) and Schwarz (Schwarz-

Bayes Criterion, see Schwarz 1978, also termed Bayesian information criterion).

These criteria had been validated in many scientific studies (see e.g. Lütkepohl

1985 and 2005) and can also be calculated easily. For regular parametric distribu-

tion families of dimension p, the simplified two-stage minimum description length

criterion takes the form of the Schwarz-Bayes Criterion (Eq. 71) and therefore

penalizes for stationary data model complexity with the same factor as the Schwarz

criterion (Hansen and Yu 2001). By the simplified two-stage minimum description

length criterion, we mean an encoding scheme in which the description length for

the best-fitting member of the model class is calculated in the first stage and then the

description length of data based on the parameterized probability distribution is
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determined (see Section 3.2.2). However, it is important to point out that Schwarz’s
Bayesian approximation only holds if the number of parameters is kept fixed and

the number of observations goes to infinity. If the number of parameters is either

infinite or grows with the number of observations, then model selection based on

minimum description length can lead to quite different results (see Grünwald 2007).

A detailed comparison of these (and other) criteria can be found in Section 4.3 of

Lütkepohl (2005) and Lütkepohl (1985).

Akaike’s (1971) Final Prediction Error (FPE) is one of the historically most

significant criteria and provides a generalized measure of model quality by simu-

lating the situation where a parameterized model is tested on a different dataset.

Clearly, the approximating model with smallest FPE is favored. The FPE is defined

for a VAR(n) model according to Eq. 58 as

FPE nð Þ ¼ ln
T þ n p

T � n p

�  p

Det bΣ nð Þ
h i� 

;

where

bΣ nð Þ :¼
Δ̂ nð Þ
T

ð66Þ

is a measure for the not biased corrected variance of the estimator. bΣ nð Þ can be

interpreted as the one-step prediction error of order n (Lütkepohl 2005). The

determinant Det bΣ nð Þ
h i

is a scalar measure for the not biased corrected variance.

Δ̂ nð Þ denotes the not biased corrected estimate of the accumulated variances and

covariances for the nth order model that was fitted to the time series of task

processing in the project and it holds that

Δ̂ nð Þ ¼ T � n p

� �
Ĉ

¼ RT
22 � R22:

In the chosen model formulation with Gaussian random variables, the weighted

least squares estimation is equivalent to the maximum likelihood estimation. Note

that the above definition of the FPE is only valid for an autoregression model

without a parameter vector of intercept terms. If intercept terms are included, the

model-related product np in the denominator and numerator of the first factor has to

be corrected by pnþ 1 (Lütkepohl 2005). It is evident that the FPE can also be

expressed as the sum

FPE nð Þ ¼ ln Det bΣ nð Þ
h i

þ p ln
T þ n p

T � n p
;
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which is the form of representation most frequently found in textbooks. In this form,

the second summand p ln T þ n p

� �
= T � n p

� �� �
can be interpreted as a penalty term

penalizing project models that are unnecessarily complex in the sense of Occam’s
Razor.

Based on the FPE, Akaike (1973, 1974) later developed an information-theoretic

criterion that the literature calls the Akaike Information Criterion (AIC). The AIC is

the most widely known and used criterion in statistical model selection among

scientists and practitioners. To develop the AIC, Akaike proposed an information-

theoretic framework wherein the estimation of the model parameters and model

selection could be simultaneously accomplished. In fact, the AIC is an asymptot-

ically unbiased estimator of the expected relative Kullback–Leibler distance, which

represents the amount of information lost when we use approximating models gi
within a family G to approximate another model f. The AIC chooses the model with

the smallest expected Kullback–Leibler distance. Model f may be the “true” model

or not. If f itself is only a poor approximation of the true generative mechanisms, the

AIC selects the relatively best among the poor models. Details about the Kullback–

Leibler divergence and its underlying information-theory principles can be found in

Cover and Thomas (1991). For a VAR(n) model, the AIC is defined as (Lütkepohl

2005):

AIC nð Þ ¼ ln Det bΣ nð Þ
h i

þ 2

T
k: ð67Þ

The variable k in the above definition of the criterion represents the effective

number of parameters of the approximating model. In many publications, not

only Lütkepohl’s (2005) standard textbook on multiple time series analysis, the

effective number of parameters is determined by counting the freely estimated

parameters in the coefficient matrices A0, . . . ,An�1 and can therefore, for practical

applications in project management, be expressed as

k ¼ np2:

The same expression is used in the popular ARfit toolbox. The ARfit toolbox was

published by Schneider and Neumaier (2001) in a paper accompanying their

theoretical considerations and later revised to include multiple time series of

empirically acquired state vectors xt. We will use this toolbox in the numerical

project modeling and simulation example in the following Section 2.5. The above

approximation works well in many areas of application and leads to highly accurate

results in model selection. However, it is important to note that the original criterion

developed by Akaike (1973) determines the number of effective parameters based

not only on the coefficient matrices A0, . . . ,An�1 but also on the covariance matrix

C of the inherent one-step prediction error. From a theoretical point of view

(Cavanaugh and Neath 1999), we have to count the number of functionally inde-

pendent parameters in the parameter vector θ which must be estimated. Hence, the

effective number of parameters of the approximating model must be
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k ¼ n p2 þ p pþ 1ð Þ
2

ð68Þ

in order to consider the functionally independent autonomous task processing rates

aii, the informational couplings between tasks ai j i 6¼ jð Þ, the scalar-valued vari-

ances c2ii of performance fluctuations in work tasks i (Eq. 11) and the correlations

ρi j i 6¼ jð Þ between performance fluctuations (Eq. 12). The increased number of

effective parameters can also be found in the paper by Hurvich and Tsai (1993) and

the textbook by Burnham and Anderson (2002). In the numerical example of

project modeling and simulation that will be presented in Section 2.5 we will use

both expressions to penalize models that are unnecessarily complex and to compare

the selected model orders. It turns out that both approaches lead to the same model

selection decisions. Additional Monte Carlo studies have shown that using the

smaller number of effective parameters does not significantly influence the model

selection accuracy in use cases of practical interest.

The heuristic to estimate the effective number of parameters by counting the

functionally independent parameters in the parameter vector θ which must be

estimated can easily be generalized to other model classes, such as linear dynamical

systems. This more complex class of models with latent state variables is intro-

duced and discussed in Section 2.9.

Following the previous interpretation of the penalty term 2k/T, AIC penalizes

model complexity with a factor that scales linearly in the number of effective

parameters and inversely in the number of observations in the joint ensemble.

When the effective number of parameters is expressed by np2, it holds that

(Lütkepohl 2005):

ln FPE nð Þ ¼ AIC nð Þ þ 2
p

T
þ o T�2
� �

:

The third term o T�2
� �

denotes an arbitrary sequence indexed by T that remains

bounded when multiplied by T�2. As the second term 2p/T does not depend on the

model order n, AIC(n) and AIC nð Þ þ 2p=T indicate their minimum for the same

value of n. Hence, lnFPE(n) and AIC(n) differ essentially by a term of order

o T�2
� �

. Due to this property the difference between lnFPE(n) and AIC(n) tends

rapidly towards zero for T ! 1 and FPE(n) and AIC(n) are asymptotically

equivalent.

If the sample size is small with respect to the number of estimated parameters,

Burnham and Anderson (2002) recommend a version of AIC, which was developed

by Hurvich and Tsai (1993) and is defined as follows:

AICc nð Þ ¼ ln Det bΣ nð Þ
h i

þ 2b

T
k; ð69Þ

where the scale factor b in the penalty term is given as
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b ¼ T

T � npþ pþ 1ð Þ:

A simulation study of Hurvich and Tsai (1993) shows that AICc has superior bias

properties and strongly outperforms AIC for vector autoregressive model selection

in small samples. Burnham and Anderson (2002) advocate the use of AICc when it

holds that

T

k
< 40: ð70Þ

To make a decision about using AICc instead of AIC, one must consider the value of

k for the highest-dimensional model in the set of candidate models (Burnham and

Anderson 2002). It is evident that if the ratio T/k is sufficiently large, AIC and AICc

are similar and will strongly tend to select the same model order. In a given

analysis, either AIC or AICc must be used consistently (Burnham and Anderson

2002).

Finally, the Schwarz-Bayes Criterion is introduced and evaluated. This criterion

is also one of the most widely known and used tools in statistical model selection.

Other terms for this used in the literature are the Bayesian information criterion and

the Schwarz information criterion. In view of the Bayesian methodology used to

derive the criterion it is abbreviated as BIC in the following (note that Sawa (1978)

developed a model selection criterion derived from a Bayesian modification of the

AIC criterion, which is also sometimes called the Bayesian information criterion in

the literature and some commercial software packages, see, e.g., Beal (2007), but

should not be confused with the Schwarz-Bayes criterion). Schwarz derived the

BIC to provide an asymptotic approximation to a transformation of the Bayesian

posterior probability of an approximating model. In settings with a large sample

size, the model favored by this criterion ideally corresponds to the approximating

model, which is most probable a posteriori and therefore rendered most plausible by

the observed data. This is indicated by minimum scores. The calculation of the BIC

is based on the empirical logarithmic likelihood function and does not require the

specification of prior distributions. To briefly explain Schwarz’s deductive

approach, we can refer to Bayes factors (Raftery 1996). They are the Bayesian

analogues of the famous likelihood ratio tests (see e.g. Honerkamp 2002). Under the

assumption that two approximating models g1 and g2 are regarded as equally

probable a priori, the Bayes factor l(g1, g2) represents the ratio of the posterior

probabilities of the models. Which model is most probable a posteriori is deter-

mined by whether the Bayes factor l(g1, g2) is greater or is less than one. Within a

specific class of nested models, model selection based on BIC under certain

conditions is very similar to model selection through Bayes factors as BIC provides

a close approximation to the Bayes factor when the prior over the parameters is the

unit information prior. The term unit information prior refers to a multivariate

normal prior with its mean at the maximum likelihood estimate and variance equal
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to the expected information matrix for one observation (Kass and Wasserman

1995). For a VAR(n) model the BIC is defined as

BIC nð Þ ¼ ln Det bΣ nð Þ
h i

þ ln T

T
k: ð71Þ

In a similar manner to the Akaike Information Criterion, the variable k represents

the effective number of parameters of the approximating model (Eq. 68).

Under all three selection criteria, the order nopt of the VAR(n) model is consid-

ered to be the optimal one if it is assigned minimum scores, that is

nopt ¼ arg minn

FPE nð Þ
AIC nð Þ
BIC nð Þ :

8<: ð72Þ

A substantial advantage in using information-theoretic or Bayesian criteria is that

they are also valid for nonnested models and can therefore also be used to evaluate

sinusoidal performance curves with given amplitudes. Traditional likelihood ratio

tests are defined only for nested models such as vector autoregression models of

finite order, and this represents another substantial limitation on the use of hypoth-

esis testing in model selection (sensu Burnham and Anderson 2002). Vector

autoregression models are nested in the sense that a VAR(n1) model can be

considered as a special case of a VAR(n2) model if it holds that n1 < n2. This is a
direct consequence of the formulation of the state equation (Eq. 58). It is important

to note that for FPE and AIC the estimate n̂ ¼ nopt is inconsistent under the

assumption that the maximum order is larger than the maximum evaluated order

nmax. Furthermore, it can be shown that, under quite general conditions, the limiting

probability for underestimating the model order is zero for both criteria and the

probability of overfitting Poverfit is a nonnegative constant.

Hence, for FPE and AIC it holds that

Poverfit!T!1 0 f or FPE
constant > 0 f or AIC

�
(Stoica and Selen 2004; Lütkepohl 2005). In other words, FPE and AIC tend to

overestimate the true autoregression order.

In contrast, Schwarz’s BIC(n) is strongly consistent for any dimension of the

state space. For this criterion it can be shown that, under the assumption that the

data-generating process belongs to the considered model class, the autoregression

order is consistently selected and the probability of correct selection

Pcorrectselection ! 1

as T ! 1 (Stoica and Selen 2004; Lütkepohl 2005).
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2.5 Product Development Project Example from Industry

and Model Validation

To demonstrate the state-space concept introduced and validate the developed

models of cooperative work in PD projects with field data, a detailed analysis of

the course of PD projects was carried out at a small industrial company in Germany

(Schlick et al. 2008, 2012). The company develops mechanical and electronic

sensor components for the automotive industry. We investigated task processing

by a team of three engineers in a multiproject setting comprising projects A, B and

C. Project A was the research focus, comprising 10 partially overlapping develop-

ment tasks covering all project phases—from conceptual design of the particular

sensor to product documentation for the customer. In addition, the workloads of two

concurrent smaller projects, B and C, were acquired. The acquired time data of all

three projects were very accurate, because the company used a barcode-based labor

time system: an engineer in this company who starts processing a development task

has to indicate this with a manual barcode scan on a predefined task identification

sheet. When the task was finished, the task identifier was scanned again. The

recorded “time-on-development-task” had a resolution of 1 min and was used as

an estimator for the values of the components of the introduced state variable Xt

representing the work remaining. Let y
ðiÞ
t be the recorded time-on-task for task i at

time step t. The estimated mean work remaining for the i-th component of the state

variable is x
ið Þ
t ¼ 1� y

ið Þ
t =y

ið Þ
tmax , where tmax represents the time step in which the

processing of task i was completed. The time scale is weeks.

Figure 2.8 shows the obtained time series for the initial five tasks of project A

and the first two tasks of project C. Figure 2.8 also shows the complete work

remaining in project B, a “fast-track project.” Its detailed work breakdown structure

was not considered and only the accumulated time data was analyzed (Schlick

et al. 2012).

The validation study included interviews and informal discussions with man-

agement and engineers to understand the development projects in detail. We found

that the development of sensor technologies is a good subject for PD project

modeling because tasks are largely processed in parallel and frequent iterations

occur.

For simplicity, we focus on the first two overlapping development tasks of

project A, “conceptual sensor design” (task 1) and “design of circuit diagrams”

(task 2), and model only their overlapping range (cf. Fig. 2.8). Concerning the left

bound of this range, the conceptual sensor design had reached a completion level of

39.84% when the design of the circuit diagram began. Therefore, the estimated

work remaining at the initial time step is:
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x̂ 0 ¼ x
1ð Þ
0 ¼ 0:6016

x
2ð Þ
0 ¼ 1:0000

 !
: ð73Þ

The least square method developed by Neumaier and Schneider (2001) was used to

estimate the additional parameters of the VAR(n) process (see Section 2.4). The

maximum model order to be considered in model selection was set to nmax ¼ 6. The

estimation algorithm and model selection procedures were implemented in

Mathematica® based on the Matlab® source code of the ARfit toolbox. The esti-

mation results were also verified through the ARfit toolbox in the original Matlab®

simulation environment. Note that the fast algorithm introduced by Neumaier and

Schneider (2001) in Section 4.2 of their paper was used to improve computational

efficiency. The fast algorithm does not require separate QR factorizations (see

Section 2.4) for each approximating autoregression model, but instead only one

factorization for the most complex model of order nmax ¼ 6. Due to this simplifi-

cation, the least square estimates are slightly less accurate and therefore only

approximate order selection criteria for lower order models can be obtained.

We start by presenting and discussing the parameter estimates for a vector

autoregression model of first order. This model with least independent parameters

was selected due to Schwarz’ Bayesian Criterion (Section 2.4). Afterwards, the
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Fig. 2.8 Time series of work remaining in three real product development projects. The data were

acquired in a small industrial company in Germany. Only the first five tasks of project A and the

first two tasks of project C are shown. Project B was a “fast-track project.” Its work breakdown

structure is not considered and only the complete work remaining is shown. The time scale is

weeks
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parameters of a second-order model that is favored by Akaike’s criteria will be

presented.

The model selection procedure showed that Schwarz’ criterion is minimal for a

VAR model of first order and we have BIC nopt ¼ 1
� � ¼ �15:74 for this model. If

the number of effective parameters is determined based not only on the coefficient

matrices A0, . . . ,An�1 but also on the covariance matrix C and we set

k ¼ np2 þ n nþ 1ð Þ=2, a first-order VAR model is also selected.

Due to the cited design of the selection algorithm for fast processing, the first

nmax � 1 data points of the mean work remaining are ignored in the implementation

of the ARfit toolbox. Although this approach does not affect the accuracy of results

asymptotically, for short time series such as in our industrial case study it can

constitute a significant loss of information. Therefore, the least square fitting was

repeated with nmax ¼ 1. The estimated WTM A0 for this model is given by

Â 0 ¼ a11 ¼ 0:9406 a12 ¼ �0:0017
a21 ¼ 0:0085 a22 ¼ 0:8720

� 
: ð74Þ

The estimated covariance matrix Ĉ of the normally distributed random variable εt is
given the representation (cf. Eq. 55)

εteN 0

0

� 
;

σ211 ¼ 0:0135ð Þ2 ρσ11σ22 ¼ �0:38 � 0:0135 � 0:0416
ρσ11σ22 σ222 ¼ 0:0416ð Þ2

� � 
: ð75Þ

In the above probability distribution, the variable ρE �1; 1½ � represents Pearson’s
correlation coefficient in the original state-space coordinates. We can also rewrite

the formulation of the covariance matrix and assume that the standard deviation

σii ¼ cii ¼
ffiffiffiffiffiffiffiffiffi
C i;i½ �

p
of the fluctuations is proportional with the proportionality

constant si to the autonomous task processing rate aii:

εteN 0

0

� 
;

s1a11ð Þ2 ¼ 0:0144 � 0:9406ð Þ2 ρ s1a11ð Þ s2a22ð Þ
ρ s1a11ð Þ s2a22ð Þ s2a22ð Þ2 ¼ 0:0477 � 0:8720ð Þ2

� � 
:

Figure 2.9 shows the list plots of work remaining in the overlapping range of tasks

1 and 2 over 50 weeks. The figure not only presents the empirical time series of task

processing which had been acquired in the industrial company but also the results of

a Monte Carlo simulation based on the parameterized model of the focused project

phase (see state Eq. 8 in conjunction with parameter estimates from Eqs. 73, 74 and

75). A total of 1,000 separate and independent simulation runs were performed.

Concerning the field data, the fact that the conceptual design of the sensor was

processed entirely in parallel with the design of the circuit diagram and continued

after the circuit diagram was finished is of particular interest (Fig. 2.8). More than

ten iterations are necessary to reach a stable conceptual design state after week 35.

In the list plot of Fig. 2.9, the simulated task processing is represented by the means

and 95% confidence intervals of work remaining. The estimated stopping criterion
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of δ ¼ 0:02 is plotted as a dashed line at the bottom of the chart. According to

Fig. 2.9, 49 out of 50 confidence intervals of the simulated work remaining of task

1 include the empirical data points from the real project before the stopping

criterion is met. Only the confidence interval computed for week 1 is a little too

small. Furthermore, the center of the confidence interval calculated for week 50 is

approximately 2% and therefore the simulated processing of task 1 will—in line

with the definition of the stopping criterion—be completed at week 50 on average.

The task completion is therefore accurately predicted. In contrast, when the

processing of task 2 is compared against the field data, the goodness-of-fit is

significantly lower, and only 28 out of the 31 confidence intervals cover the

empirical data points before the stopping criterion is met. Moreover, the quite

abrupt completion of task 2 in week 18 is poorly predicted by the smoothly

decaying means of the autoregression model of first order (Schlick et al. 2008,

2012). On average task 2 is predicted to complete in week 31, which is 13 weeks

later than the real time point. However, the predictive accuracy in singular cases can

be much better because of the large variance of the fluctuation variable εt in the

second dimension covering task 2.

0 10 20 30 40 50
time weeks0.0

0.2

0.4

0.6

0.8

1.0

work

task 2: real project

task 2: 95% CI simulated project

task 1: real project

task 1: 95% CI simulated project

2 percent stopping criterion

Fig. 2.9 List plot of work remaining in the real product development project. The data were

acquired in a small industrial company in Germany. Only the overlapping range of the first two

tasks, “conceptual sensor design” (task 1) and “design of circuit diagram” (task 2), is shown. The

plot also shows means of simulated time series of task processing as note points and 95%

confidence intervals as error bars. The Monte Carlo simulation was based on state Eq. 3 in

conjunction with the least square estimates of the independent parameters according to Eqs. 73, 74

and 75. A total of 1000 separate and independent runs were calculated. Note points have been

offset to distinguish the error bars. The stopping criterion of 2% is marked by a dashed line at the

bottom of the plot
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The root-mean-square deviation (RMSD) between the work remaining in task

1 predicted by the 1000 simulation runs and the empirical data is

RMSDtask1 ¼ 0:046. For task 2, the deviation is more than twice that value:

RMSDtask2 ¼ 0:107. Regarding the established scientific standards of organiza-

tional simulation (see Rouse and Boff 2005), the total deviation is low, and this

confirms the validity of the model.

In total, a parameter vector θ1 ¼ x
1ð Þ
0 x

2ð Þ
0 a11 a12 a21 a22 σ11 σ22 ρ δ

h i
with 10 components is necessary for modeling task 1 and 2 in this phase of the

project based on a VAR(1) model.

If the alternative formulation with a forcing matrix K in the original state-space

coordinates is used for project modeling (Eq. 23), we have in addition to the initial

state x0 (Eq. 73) and A0 (Eq. 74) the estimated independent parameters

bK ¼ �0:1355 0:9908
0:9908 0:1355

� 
and

ηteN 0

0

� 
;

λ1 Cð Þ ¼ 0:00176ð Þ2 0

0 λ2 Cð Þ ¼ 0:00015ð Þ2
� � 

:

The parameter vector is θ2¼ x
1ð Þ
0 x

2ð Þ
0 a11 a12 a21 a22 k11 k12 λ1 Cð Þ λ2 Cð Þ δ

h i
:

For the sake of completeness, the estimated independent parameters in the

spectral basis (Eqs. 39 and 40) are presented as well. The eigendecomposition of

the dynamical operator A0 according to Eq. 35 leads to the matrix of eigenvectors:

S ¼ 0:9924 0:0247
0:1228 0:9997

� 
:

The estimate of the initial state x̂ 0
0 ¼ S�1 � x̂ 0 is given by

x̂ 0
0 ¼

x0 1ð Þ
0 ¼ 0:5830

x0 2ð Þ
0 ¼ 0:9287

 !
;

the transformed dynamical operator is given by

Λ̂ S ¼ λ1 A0ð Þ ¼ 0:9404 0

0 λ2 A0ð Þ ¼ 0:8722

� 
;

and the estimated covariance Ĉ0 of the normally distributed performance fluctua-

tions is represented by
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ε0t eN 0

0

� 
;

σ0211 ¼ 0:0141ð Þ2 ρ0σ011σ
0
22 ¼ � 0:48 � 0:0141 � 0:0424

ρ
0
σ011σ

0
22 σ0222 ¼ 0:0424ð Þ2

� � 
:

Interestingly, the basis transformation slightly reinforces variances σ0211 ¼ C0
1;1½ � and

σ0222 ¼ C0
2;2½ � and correlation coefficient ρ0

22. The corresponding parameter vector is

θ3 ¼ x0 1ð Þ
0 x0 2ð Þ

0 λ1 A0ð Þ λ2 A0ð Þ σ011 σ022 ρ0 δ
0

h i
:

It is important to note that in contrast to Schwarz’ criterion, Akaike’s FPE and

AIC model selection criteria lead to a result, in which minimum scores were

assigned to a model of second-order, nopt ¼ 2, not to a first-order autoregression

model. In this case we have FPE nopt ¼ 2
� �¼�16:06 and AIC nopt ¼ 2

� �¼�12:45.

A second-order model is also selected under the FPE and AIC criteria, if the larger

number of effective parameters is considered and it holds that k¼ np2þn nþ1ð Þ=2.
As before, the model selection results are invariant in the heuristics to count the

effective number of parameters. As the AICc version of Akaike’s Information

Criterion has superior bias properties for small samples, it assigns minimum scores

to a model of second order under both counting heuristics. Hence, the model

selection results for these criteria are consistent and robust. In contrast to model

selection based on the BIC criterion the least square fitting was not repeated with a

maximum model order of nmax ¼ 2 to make use of more data points from the

beginning of the project phase, as it leads to inconsistent results. Under this

condition a first-order model is assigned minimum scores. However, the differ-

ence to the second-order model is very small. This inconsistency seems to be a

negative consequence of the preferred design of the selection algorithm for fast

processing.

For the second-order model the estimated work remaining at the initial two time

steps is:

x̂ 0 ¼ 0:6016
1:0000

� 
x̂ 1 ¼ 0:6016

0:7154

� 
: ð76Þ

The estimated WTMs Â0 and Â1 are given by

Â 0 ¼ 1:1884 � 0:1476
0:0470 1:1496

� 
ð77Þ

Â 1 ¼ �0:2418 0:1344
�0:0554 �0:2622

� 
: ð78Þ

The estimated covariance matrix Ĉ is given by the representation
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εteN 0

0

� 
;

0:0116ð Þ2 �0:013 � 0:0116 � 0:0257
�0:013 � 0:0116 � 0:0257 0:0257ð Þ2

� � 
: ð79Þ

Figure 2.10 shows the corresponding list plots of real and simulated work remaining

in the overlapping range of tasks 1 and 2 over 50 weeks.

The simulation model is based on state Eq. 58 in conjunction with parameter

estimates from Eqs. 73, 76, 77, 78 and 79. As before, 1,000 separate and indepen-

dent simulation runs were calculated. The RMSD between the work remaining in

task 1 predicted by the project simulations and the field data is RMSDtask1 ¼ 0:053.
For task 2, the deviation is almost twice that value: RMSDtask2 ¼ 0:103. For both
tasks the root-mean-square deviations for the second-order model are similar to the

first-order model. Although the deviations are similar, significant qualitative dif-

ferences between the two models exist and can be clearly seen in Fig. 2.10 between

the first and fourth week of task 1 and the fifth and eighth week of task 2, in which

the confidence intervals related to the second-order model do not include the data

points from the real project, and an “undershoot” effect can be observed for both

tasks. In particular the confidence intervals computed for weeks 1, 2, 4, 5, 6, 7,

8 and 9 of task 2 demonstrate low goodness-of-fit indices. In this context, it is
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task 2: real project

task 2: 95% CI simulated project

task 1: real project

task 1: 95% CI simulated project

2 percent stopping criterion

Fig. 2.10 List plot of work remaining in the real and simulated product development projects. As

in Fig. 2.9, only the overlapping range of the first two tasks is shown. The means of simulated time

series of task processing are shown as note points and 95% confidence intervals appear as error

bars. The Monte Carlo simulation was based on state Eq. 58. The selected order of the

autoregression model was nopt ¼ 2. The least square estimates of the independent parameters

are given in Eqs. 73, 76, 77, 78 and 79. A total of 1000 separate and independent runs were

calculated. Note points have been offset to distinguish the error bars. The stopping criterion of 2%

is marked by a dashed line at the bottom of the plot
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important to note that the center of the confidence interval that was calculated for

week 18 for task 2 is approximately 2%, which means that on average the simulated

processing of task 2 will be completed by this point in time. Hence, in contrast to

the first-order autoregression model, the rapidly decaying means accurately predict

the relatively abrupt completion of task 2. The goodness-of-fit for task 1 is compa-

rable to the first-order model, and 46 of the 50 confidence intervals cover the

empirical data points before the stopping criterion is satisfied. In spite of these

apparent similarities in terms of goodness-of-fit, the center of the confidence

interval calculated for week 47 is approximately 2% and therefore the simulated

processing of task 1 will, on average, be completed in the same week and not in

week 50 as it is in the real development project. In conclusion, we can say that the

parameterized first- and second-order VAR models lead to a similar overall pre-

dictive accuracy. The first-order model has the advantage that it is not only a

simpler representation but also predicts the completion of task 1 with high accu-

racy. Conversely, the second-order model can predict the completion week of task

2 with high accuracy, while the first-order model leads to an entirely unacceptable

prediction error of 13 weeks on average. However, attaining the high predictive

accuracy of the second-order model concerning the completion time comes at the

cost of having a significant deviation of the means at the beginning of the

processing of both tasks. Therefore, on a phenomenological level of project man-

agement and schedule control, it is impossible to find a low-order model with

optimal properties. In Section 2.9 we will introduce with linear dynamical system

models an advanced approach based on hidden state variables that makes it possible

to reach a higher predictive accuracy for both tasks without an unnecessarily

complex internal configuration.

2.6 Stochastic Formulation with Periodically Correlated

Processes

An extension of the introduced autoregressive approach to modeling cooperative

work in PD projects that is especially interesting from theoretical and practical

perspectives is to formulate a so-called “periodic vector autoregressive” (PVAR)

stochastic process (Franses and Paap 2004; Ursu and Duchesne 2009). In principle,

a PVAR model can capture the dynamic processing of the development tasks with

short iteration length, and the long-term effects of inadvertent information hiding

due to the asynchronous exchange of engineering design data. According to the

previous validation study, short iterations for a given amount of work are necessary

to process and disseminate component-level design information within CE teams

and to develop the corresponding system components. Short iterations are also

necessary if the scope of predictability for the development project is small and

only a few stable assumptions can be made about the design ranges or physical

functions of the product under development. A corresponding simulation study is
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presented in Section 5.1. However, designing complex products that include

mechanical, electrical and software components not only requires detailed design

and implementation of units, but also a definition of the product architecture.

According to Eppinger and Browning (2012), defining product architecture often

involves breaking the product down into smaller elements such as subsystems,

modules, components and parts, and then defining their interfaces. These elements

must be integrated at different levels of abstraction and aggregation so that they can

work together efficiently and thus perform the intended function of the system as a

whole and achieve the desired levels of performance, robustness and reliability. In

Fig. 2.11, the traditional V-model of the systems engineering process illustrates the

main activities involved in developing complex products. The downward-facing

side of the V represents design and decomposition activities, and the upward-facing

side shows the complementary component-level-to-system-level integration and

testing activities. The upward-facing side also includes model integration and data

aggregation activities. The basic activities involve developing the components to

perform the single or multiple physical functions that will ensure the product can

function as a whole. Following the same logic of decomposition, implementation,

and integration, it is also possible to design and develop an ultra-large-scale

“system of systems” (see, e.g. Maier 1998).

To meet their specification, projects that develop complex products therefore

need frequent iterations between teams doing detailed design and component

development work, and between teams at the system, subsystem, and module

levels. At every level of system design, the problem-solving processes are orga-

nized in such a way that, by definition, the tasks are cooperatively processed and

that information on functional, topological, and geometrical entities and the pro-

gress of the work is not hidden but freely accessible and widely disseminated. An
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Fig. 2.11 V-model of the systems engineering process (Eppinger and Browning 2012, adapted

from the U.S. Department of Transportation)
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additional long-term effect, however, can occur in large-scale projects with a

hierarchical coordination structure and globally distributed engineering service

providers. This is because teams working at the system, subsystem or module

level may withhold, for a limited period, certain pieces of information on the

design, integration and testing of these entities (Yassine et al. 2003). Between the

releases, new information is hidden (kept secret) and work in the subordinate teams

is based on the old knowledge. Such a hold-and-release policy is typical for PD

projects in the automotive and aerospace industries. This kind of uncooperative

behavior is justified by the desire to improve the implementation of the product

architecture through better system-level design and validation and thus release only

those designs that have a sufficient level of maturity. This can significantly reduce

the overall amount of coordination required by the teams in the development

project. A deterministic model capable of capturing both cooperative and nonco-

operative task processing was developed by Yassine et al. (2003). In their seminal

paper, a time-variant (nonautonomous) state equation was formulated and validated

based on simulation runs. We build directly upon their results in the following.

However, the PVAR approach we have developed can also account for

unpredictable performance fluctuations (Schlick et al. 2011, 2014) and provides a

firm basis for analytical and numerical complexity evaluations (see Section 5.3).

To develop a PVARmodel of cooperative work in PD projects with a multi-level

hierarchical coordination structure, we assume that a small amount of finished work

related to concept development and systems engineering accumulates over the short

iterations by the corresponding team, and that this work is released to the compo-

nent development level only at time steps ns n 2 ℕð Þ with fixed, predetermined

period s � 2. At all other time steps, nsþ v n ¼ 0, 1, . . . ; v ¼ 1, . . . , s� 1ð Þ, the
tasks are processed by short iterations, and the detailed design and development

information is freely accessible within teams and widely disseminated between

teams. As a consequence of the hold-and-release policy, certain components, their

constituent parts or interfaces regularly need to be reworked, which leads to

additional work in the component development teams. For the sake of simplicity,

we start by modeling a hierarchical coordination structure with two levels: System

Level 2, in line with Fig. 2.11, which represents system-level design and integration

activities; and System Level 5, which focuses on component development (and, to a

certain extent, integration testing) in the mathematical formulation of the basic

PVAR model. An additional subsystem level will be integrated into the model after

defining the state equation and the independent parameters.

Under the assumption of a hierarchical coordination structure with two levels,

the stochastic difference equation 8 can be generalized to a process Xnsþvf g with

periodically correlated components. The state equation is

Xnsþv ¼ Φ1 vð Þ � Xnsþv�1 þ εnsþv; ð80Þ

where the index n indicates the long time scale with period s, and v the short time

scale.Xt ¼ Xt 1ð Þ, . . . ,Xt dð Þð ÞT is a d � 1 single random vector encoding the state of
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the project at time step t ¼ nsþ v n ¼ 0, 1, . . . ; v ¼ 1, . . . , sð Þ. The leading com-

ponents of the state vector Xt represent the work remaining of the pC 2 ℕ
component-level and pS 2 ℕ system-level tasks that are processed on the short

time scale. As already mentioned in Section 2.1, the amount of work remaining can

be measured by the time left to finalize a specific design, by the definable labor units

required to complete a particular development activity or component of the work

breakdown structure, by the number of engineering drawings requiring completion

before design release, by the number of engineering design studies required before

design release or by the number of issues that still need to be addressed/resolved

before design release (Yassine et al. 2003). For the component-level and system-

level tasks that are processed on the short time scale, the work transformation can

be captured by a combined WTM A0 as

A0 ¼ AC
0 ASC

0

ACS
0 AS

0

� 
:

In the combined WTM A0, the submatrix AC
0 of size pC � pC is the dynamic

operator for the cooperative processing of component-level tasks. The pS � pS

submatrix AS
0 refers to system-level tasks in an analogous manner. The pC � pS

submatrix ASC
0 determines the fraction of work remaining created by system-level

tasks for the corresponding component-level tasks in each short iteration, whereas

the pS � pC submatrix ACS
0 determines the fraction of work remaining created by

component-level tasks for the system-level tasks. Moreover, the substates

Xt 1ð Þ, . . . ,Xt pC þ pSð Þð Þ have to be augmented by other pS substates to account

for the periodic hold-and-release policy of system-level design information. The

augmented pS substates do not represent the work remaining as the leading states

do, but represent the amount of finished work on the system level that has accu-

mulated over the short iterations. The finished work remains hidden for the

component-level teams until it is released at time step ns. Through the PVAR

model formulation, the finished work can be placed in a hold state. The associated

pS � pS submatrix ASH
0 covers the fraction of work that has been generated by the

system-level tasks in each iteration at time step v ¼ 1, . . . , s� 1 and has been

finished and put in a hold state to reduce the amount of coordination needed. After

release, additional work is generated for the component-level tasks. This work is

calculated based on the WTM AHC
0 . This WTM is of size pC � pS. There, d ¼ pCþ

2pS holds.

The periodically correlated work processes in the project are represented by the

time evolution of the state vector Xnsþv based on the autoregressive coefficients

Φ1(v). The two time scales correspond to indices n and v. The long time scale is

indexed by n. In seasonal macroeconomic models, for instance, n indicates the year
that the acquired samples of the time series refer to (e.g. income and consumption).

However, in large-scale projects the release period is much shorter and covers

typically intervals of four to eight weeks. On the other hand, the short time scale is

indexed by v. On this scale, the iterations usually occur on a daily or weekly basis
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(see Section 2.5). In the terminology of macroeconomic models, v indicates a

specific “season” of the “year.” Furthermore, the length s of the period between

releases of hidden information about system integration and testing (“number of

seasons within year”) has to be specified by the project manager. For a

predetermined period length s, the random vector Xnsþv contains the realization of

work remaining during the vth iteration over all component-level and system-level

tasks at the release period n and the amount of finished work on the system level that

is ready to be released to component-level tasks in period nþ 1. According to the

previous analysis the state vector can be separated into three substate vectors and

defined as

Xt ¼
XC
t

X S
t

XH
t

0@ 1A
with

XC
t ¼

Xt 1ð Þ
⋮

Xt pCð Þ

0@ 1A
X S
t ¼

Xt pC þ 1ð Þ
⋮

Xt pC þ pSð Þ

0@ 1A
XH
t ¼

Xt pC þ pS þ 1ð Þ
⋮

Xt pC þ 2pSð Þ

0@ 1A:

Furthermore, the task processing on the long and short time scales has to be

modeled, and for this aim, two independent dynamical operators are introduced

(Yassine et al. 2003). These operators correspond to the autoregressive coefficients

Φ1(v) in state equation 80. The release of hidden information over s time steps is

modeled by the first dynamical operator Φ1(s). It is assumed that the release occurs

at the end of the period, that is at relative time step v ¼ s. The operator Φ1(s) can be
composed of the previously defined submatrices as

Φ1 sð Þ ¼
AC0 ASC

0 AHC
0

ACS
0 AS

0 0

0 0 εf g � IpS

0@ 1A: ð81Þ

In the above equation the ε-symbol denotes an arbitrarily small positive quantity.

The definition of positive interactions between the augmented pS substates is

necessary for explicitly evaluating the emergent complexity of the periodically

correlated work processes on the basis of the chosen information-theoretic measure

EMC, which is presented and discussed in Sections 3.2.4 and Chapter 4. EMC

simply scales linearly with ε. For practical purposes, it is recommended to calculate
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with ε ¼ 10�4. By doing so, the finished work after release is set back to a nonzero

but negligible amount in terms of productivity.

The task processing in the v ¼ 1, . . . , s� 1 iterations before release is modeled

on the basis of a second dynamical operator Φ1(1). In contrast to macroeconomic

models, it is assumed that the cooperative processing of the development tasks

by short iterations without withholding information follows a regime in which

the kind and intensity of interactions does not change before the end of

period s and therefore the autoregressive coefficients are constant, that is

Φ1 1ð Þ ¼ . . . ¼ Φ1 s� 1ð Þ. No other dynamical operators are needed to capture

project dynamics within the period. Φ1(1) can be composed of the previously

defined submatrices in an analogous manner as

Φ1 1ð Þ ¼
AC
0 ASC

0 0

ACS
0 AS

0 0

0 ASH
0 1� εf g � IpS

0@ 1A: ð82Þ

By the same reasoning, it is assumed that the covariance of the noise vector εnsþv

representing unpredictable performance fluctuations when processing the develop-

ment tasks cooperatively by short iterations is constant for all v ¼ 1, . . . , s� 1

iterations before the end of period s and no other unpredictable effects influence the
cooperative work within the period.

The evolution of the process state Xt over t time steps can therefore be expressed

by two dynamical operators Φ1(1) and Φ1(s) in conjunction with two noise vectors

ε1 and εs in the form of a recurrence relation with switching regime as

Xt ¼ Φ1 1ð Þ � Xt�1 þ ε1 for t ¼ nsþ v
Φ1 sð Þ � Xt�1 þ εs for t ¼ nþ 1ð Þs

�
with n ¼ 0, 1, . . . and v ¼ 1, . . . , s� 1.

The noise vectors ε1 and εs correspond to zero-mean white noise and have zero

means and covariances C1 and Cs, respectively:

ε1eN 0d;C1ð Þ
εseN 0d;Csð Þ: ð83Þ

Hence, the combined error process εnsþvf g can also be expressed by a zero-mean

periodic white noise process. εnsþvf g is composed of d � 1 random vectors, such

that E εnsþv½ � ¼ 0d and E εnsþv εTnsþv

� � ¼ C1 for v ¼ 1, . . . , s� 1, and E εnsþv½ � ¼ 0d

andE εnsþv εTnsþv

� � ¼ Cs for v ¼ s. It is assumed that the covariance matrices C1 and

Cs are not singular.

If all parallel tasks are initially to be completed in full and no finished work

exists in hold state, the initial state is simply
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x0 ¼

1

⋮
1

0@ 1A
1

⋮
1

0@ 1A
0

⋮
0

0@ 1A

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;

where the first row vector of ones has size |AC
0 |, the second row vector of ones has

size |AS
0 | and the third vector of zeros has size |A

SH
0 |. The inner brackets of the vector

notation are there to clarify the structure of the substates and do not have any

mathematical relevance.

Following the modeling concept with distinct dynamical operators and com-

bined work transformation matrices, we can also easily model multi-level hierar-

chical coordination structures. Consider for instance a project in which the system-

level and component-level design teams do not cooperate directly and an interme-

diate organizational level exists where a highly specialized team of systems engi-

neers designs subsystems and carries out subsystem integration testing. The

subsystems integrate the components in the same manner as the whole system

integrates the subsystems, and therefore they improve modularity, adaptability and

testability of the product. This three-level decomposition means that the develop-

ment team responsible for subsystem design and integration hide a certain amount

of finished work, accumulate it and then later release it to the subordinate

component-level team. It also means that, at the system-design level a dedicated

organizational unit hides, accumulates and releases a certain amount of its finished

work to the subsystem level to improve the implementation of the product archi-

tecture as a whole. It is reasonable to assume that these high-level coordination

processes occur on a very large time scale. We represent this time scale by the

variable s0. To simplify the definition of the switching regime of the recurrence

relation (see below), we assume it holds that s0 ¼ 2s. The basic mechanisms of

inadvertent information hiding and releasing remain the same. To model this three-

level hierarchical coordination structure, the previous substates

Xt 1ð Þ, . . . ,Xt pC þ pS þ pSð Þð Þ have to be augmented by additional pSS þ pSS

substates to account for the extra periodic correlations that are generated by the

tasks at the subsystem level. Following hierarchical system decomposition, the

work remaining for subsystem tasks is stored in the components in the upper-

middle section of the state vector, i.e. between vector components related to the

component-level and system-level tasks. The amount of finished work for sub-

systems placed in a hold state is indicated by the lower-middle components of the

state vector. We have:
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Xt ¼

XC
t

XSS
t

X S
t

XSSH
t

XSH
t

0BBBB@
1CCCCA

with

XC
t ¼

Xt 1ð Þ
⋮

Xt pCð Þ

0@ 1A
XSS
t ¼

Xt pC þ 1ð Þ
⋮

Xt pC þ pSSð Þ

0@ 1A
X S
t ¼

Xt pC þ pSS þ 1ð Þ
⋮

Xt pC þ pSS þ pSð Þ

0@ 1A
XSSH
t ¼

Xt pC þ pSS þ pS þ 1ð Þ
⋮

Xt pC þ 2 pSS þ pSð Þ

0@ 1A
XSH
t ¼

Xt pC þ 2 pSS þ pS þ 1ð Þ
⋮

Xt pC þ 2 pSS þ 2 pSð Þ

0@ 1A:

The indices “C”, “SS” and “S” in the state variables above refer to component-

level, subsystem-level and system-level tasks, respectively. The three time scales of

information exchange mean that we also have to formulate three dynamical oper-

ators. We define them as follows:

Φ1 1ð Þ ¼

AC
0 ASSC

0 0 0 0

ACSS
0 ASS

0 ASSS
0 0 0

0 ASSS
0 AS

0 0 0

0 ASSH
0 0 1� εf g � IpSS 0

0 0 ASH
0 0 1� εf g � IpS

0BBBB@
1CCCCA

Φ1 sð Þ ¼

AC
0 ASSC

0 0 AHC
0 0

ACSS
0 ASS

0 ASSS0
0 0 0

0 ASSS
0 AS

0 0 0

0 0 0 εf g � IpSS 0

0 0 0 0 1� εf g � IpS

0BBBB@
1CCCCA

Φ1 s
0� � ¼

AC
0 ASSC

0 0 AHC
0 0

ACSS
0 ASS

0 ASSS0
0 0 AHSS

0

0 ASSS
0 AS

0 0 0

0 0 0 εf g � IpSS 0

0 0 0 0 εf g � IpS

0BBBB@
1CCCCA:
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In this representation with nine distinct work transformation matrices, the matrix

ASSH
0 determines the fraction of finished work that is generated by the subsystem-

level tasks in each short iteration and is accumulated through the associated sub-

states Xt pC þ pSS þ pS þ 1ð Þ, . . . ,Xt pC þ 2pSS þ pSð Þð Þ. The release of this

work is indicated by AHC
0 , as before. Similarly, the matrix ASH

0 is needed to compute

the fraction of finished work that was processed by the system-level team in

each short iteration. The accumulated work is stored in substates

Xt pC þ 2pSS þ pS þ 1ð Þ, . . . ,Xt pC þ 2pSS þ 2pSð Þð Þ. However, the release of

the accumulated finished work now occurs at time steps 2 nþ 1ð Þs, and not at

nþ 1ð Þs as was the case for the two-level hierarchical coordination structure that

we developed previously. This can also be seen in the above definition of the

dynamical operator Φ1(s
0). The variable AHSS

0 is related to the work that the

subsystem design and integration team has put in a hold state and is transferred to

the system-level at time steps nþ 1ð Þs. The matrices AC
0 , A

CSS
0 , ASSC

0 , ASS
0 , ASSS

0 ,

ASSS0
0 and AS

0 have the same meaning as before. They describe the short-cycle work

transformation processes on the three distinct levels, and the coupling between

levels. According to the above definitions of the dynamical operators, for a given

amount of work, the task processing at the system and component levels is

decoupled and only “mediated” through the design activities at the subsystem

level. It is also quite easy to develop additional operator representations of period-

ically correlated work processes that describe fully or partially synchronized release

processes at the system and subsystem levels. We will leave this as an exercise for

the interested reader.

The evolution of the process state Xt under the developed regime of the three-

level hierarchical coordination structure can obviously be expressed by three

dynamical operatorsΦ1(1),Φ1(s) andΦ1(s
0) in conjunction with three noise vectors

ε1, εs, and εs0 as

Xt ¼
Φ1 1ð Þ � Xt�1 þ ε1 for t ¼ nsþ v
Φ1 sð Þ � Xt�1 þ εs for t ¼ 2nþ 1ð Þs
Φ1 s

0� � � Xt�1 þ εs0 for t ¼ 2 nþ 1ð Þs

8<:
with n ¼ 0, 1, . . . and v ¼ 1, . . . , s� 1.

The noise vectors ε1, εs and εs0 correspond to zero-mean white noise as before:

ε1 eN 0d;C1ð Þ
εs eN 0d;Csð Þ
εs0 eN 0d;Cs0

� �
:

An important result from the theory of stochastic processes (Franses and Paap 2004;

Ursu and Duchesne 2009) is that the PVAR process with two time scales in Eq. 80

also offers a compact representation as a VAR(1) model:
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Φ*
0 � X*

n ¼ Φ*
1 � X*

n�1 þ ε*n; ð84Þ

where X*
n ¼ XT

nsþs;X
T
nsþs�1; . . . ;X

T
nsþ1

� �T
and ε*n ¼ εTnsþs; ε

T
nsþs�1; . . . ; ε

T
nsþ1

� �T
are

ds� 1 state and error vectors, respectively. The matrix Φ�
0 and the autoregressive

coefficient Φ�
1 are given by the nonsingular matrices

Φ*
0 ¼

Id �Φ1 sð Þ 0 � � � 0 0

0 Id �Φ1 s� 1ð Þ � � � 0 0

⋮ ⋱ ⋮
0 0 0 � � � Id �Φ1 2ð Þ
0 0 0 � � � 0 Id

0BBBB@
1CCCCA

¼

Id �Φ1 sð Þ 0 � � � 0 0

0 Id �Φ1 1ð Þ � � � 0 0

⋮ ⋱ ⋮
0 0 0 � � � Id �Φ1 1ð Þ
0 0 0 � � � 0 Id

0BBBB@
1CCCCA

ð85Þ

and

Φ*
1 ¼

0 0 � � � 0

0 0 0

⋮ ⋱ ⋮
Φ1 1ð Þ 0 � � � 0

0BB@
1CCA: ð86Þ

The matricesΦ�
0 andΦ�

1 are both of sizeds� ds. Similar representations can also be

developed for PVAR processes with multiple time scales.

The process {ε�n} corresponds to a zero-mean periodic white noise process as

before, with E ε*n
� � ¼ 0ds and E ε*n ε

*T
n

� � ¼ C*. The covariance matrix C* is not

singular. We assume that the vectors εTnsþs, ε
T
nsþs�1, . . . are temporally uncorrelated

and that C* can be expressed by

C* ¼
Cs 0 0 0

0 C1 0 0

0 0 ⋱ 0

0 0 0 C1

0BB@
1CCA: ð87Þ

If all parallel tasks are initially to be completed in full, the initial state in the VAR

(1) representation is
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x*0 ¼

x0
0

⋮
0

0@ 1A
⋮
0

⋮
0

0@ 1A

0BBBBBBBBB@

1CCCCCCCCCA
; ð88Þ

where the row vectors of zeros following the original initial state x0 have size |x0|. A
total of s� 1 row vectors of zeros must be appended to the original initial state for a

complete state representation.

It is clear that the VAR(1) model according to Eq. 84 can be rewritten as

X*
n ¼ Φ*

0

� ��1 �Φ*
1 � X*

n�1 þ Φ*
0

� ��1 � ε*n: ð89Þ

The matrix Φ�
0 can be easily inverted:

Φ*
0

� ��1

¼

Id Φ1 sð Þ Φ1 s� 1ð ÞΦ1 s� 2ð Þ . . . Φ1 s� 1ð ÞΦ1 s� 2ð Þ . . .Φ1 3ð Þ Φ1 sð ÞΦ1 s� 1ð Þ . . .Φ1 2ð Þ
0 Id Φ1 s� 1ð Þ . . . Φ1 s� 2ð Þ . . .Φ1 3ð Þ Φ1 s� 1ð Þ . . .Φ1 2ð Þ
⋮ ⋱ ⋮
0 0 0 . . . Id Φ1 2ð Þ
0 0 0 . . . 0 Id

0BBBB@
1CCCCA

¼

Id Φ1 sð Þ Φ1 1ð Þ2 � � � Φ1 1ð Þs�3 Φ1 sð ÞΦ1 1ð Þs�2

0 Id Φ1 1ð Þ � � � Φ1 1ð Þs�4 Φ1 1ð Þs�2

⋮ ⋱ ⋮
0 0 0 � � � Id Φ1 1ð Þ
0 0 0 � � � 0 Id

0BBBB@
1CCCCA:

ð90Þ

The most convenient VAR(1) representation is therefore

X*
n ¼ A*

0 � X*
n�1 þ ε⋆n ;

with the combined dynamical operator

A*
0 ¼ Φ*

0

� ��1 �Φ*
1 ¼

Φ1 sð Þ Φ1 1ð Þð Þs�1
0 0 � � � 0

Φ1 1ð Þð Þs�1
0 0 � � � 0

Φ1 1ð Þð Þs�2
0 0 � � � 0

⋮ ⋮ 0 ⋱ ⋮
Φ1 1ð Þ 0 0 � � � 0

0BBBB@
1CCCCA

and the transformed vector ε⋆n ¼ Φ*
0

� ��1 � ε*n with covariance
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C⋆ ¼ Φ*
0

� ��1 � C* � Φ*
0

� ��T
:

Analogous to Sections 2.1 and 2.2, a closed-form solution to the expected total

amount of work done during the iteration process until the stopping criterion δ is

satisfied can be calculated across Tδ ¼ nδs time steps for an arbitrary process with

predefined initial state x�0 and combined dynamical operator A�
0 as

E
Xnδ
i¼0

X*
i

" #
¼
Xnδ
i¼0

E X*
i

� �
¼
Xnδ
i¼0

A*
0

� �i � x*0� �
¼

Xnδ
i¼0

A*
0

� �i !
� x*0

¼ I p � A*
0

� ��1 � I p � A*
0

� �nδþ1
� �

� x*0:

The expected total amount of work xtot done over all tasks across Tδ ¼ nδs time

steps can be estimated by:

xtot ¼ Total I p � A*
0

� ��1 � I p � A*
0

� �nδþ1
� �

� x*0
h i

:

In the limit nδ ! 1, for an asymptotically stable project phase with periodically

correlated work processes the expected total amount of work done over all tasks we

have:

lim
nδ!1E

Xnδ
i¼0

X*
i

" #
¼ I p � A*

0

� ��1 � x*0: ð91Þ

To evaluate explicitly the intricate interrelationships between project dynamics and

emergent complexity, the stochastic process must satisfy the criterion of strict

stationarity. We will return to this point in Section 4.1. A strictly stationary process

has a joint probability density that is invariant with shifting the origin, and therefore

the locus and variance do not change over time. It is clear that the periodic

autoregression model in Eq. 80 is a non-stationary model as the variance and

autocovariances take different values in different time steps (“seasons”). In order

to facilitate the analysis of stationarity, the introduced time-invariant representa-

tions as VAR(1) models (cf. Eq. 84) have to be considered. Using general properties

of these models (see e.g. Brockwell and Davis 1991), it follows that the stochastic

process {X�
t } is stationary if
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Det Φ*
0 � Φ*

1z
� � 6¼ 0

for all z 2 ℂ satisfying the condition zj j � 1 (Ursu and Duchesne 2009). The

characteristic equation can be simplified to

Det Φ*
0 � Φ*

1z
� � ¼ Det Ids � Φ*

0

� ��1 �Φ*
1

� �
z

h i
¼ Det Id �

Ys�1

k¼0

Φ1 s� kð Þ
 !

z

" #
¼ Det Id � Φ1 sð Þ � Φ1 1ð Þð Þs�1z

h i
6¼ 0

for all z such that zj j � 1. Hence, the process {X�
t } is stationary if the eigenvalues of

the matrix product Φ1 sð Þ � Φ1 1ð Þð Þs�1
are all strictly smaller than one in modulus

(Franses and Paap 2004; Ursu and Duchesne 2009).

2.7 Extended Least Squares Parameter Estimation

and Model Selection

The autoregressive coefficients and the error covariances of a PVAR model of

arbitrary order (not necessarily limited to a first-order autoregressive process for

each season as previously formulated) without linear constraints on the independent

parameters can be calculated efficiently on the basis of standard least-squares or

maximum-likelihood estimation techniques from textbooks (see, e.g. Brockwell

and Davis 1991; Franses and Paap 2004; Lütkepohl 2005). To apply these tech-

niques, one only has to bring the introduced linear recurrence relations into a

standard regression form and then execute the (usually iterative) estimation pro-

cedures. However, in the developed model formulation we had to pose the con-

straint that some entries of the dynamical operators Φ1(1) (Eq. 81) and Φ1(s)
(Eq. 82) must be zero in order to be able to model the typical hold-and-release

policy of design information in a PD project with periodically correlated work

processes or must be equal to ε or 1� εð Þ for an analytical evaluation of emergent

complexity in later chapters. Furthermore, some coefficients of the work transfor-

mation submatrices are linear dependent. Consequently, we cannot use the standard

estimation techniques but instead have to use an extended algorithm developed by

Ursu and Duchesne (2009) that is able to carry out least-squares estimation with

linear constraints on the regression parameters. For the given model formulation

with zero-mean periodic white noise the least squares estimators are equivalent to

maximum likelihood estimators. In the following sections we will present closed-

form solutions of the estimators of different strength based on the original work of

Ursu and Duchesne (2009). To allow the interested reader to follow the accompa-

nying proofs in the original material, we will use a similar notation to the
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developers of the algorithm. We start by presenting a convenient regression form

and then proceed with the specification of the least square estimators for the full

unconstraint case and the more complex restricted case.

In principle, the asymptotic properties of the least square estimators could be

derived from generalized results for time series based on the multivariate represen-

tation from Eq. 84 (see, e.g. Brockwell and Davis 1991; Lütkepohl 2005). However,

to estimate the statistical properties of the autoregressive coefficient matrices for

each release period v of the formulated model of a PD project with periodically

correlated work processes, the multivariate stochastic process generated by state

Eq. 84 needs to be inverted. This operation seems to be unnecessarily complex in

the multivariate setting. Instead, it is more efficient to use the individual PVAR

components directly in parameter estimation. Consider the sequence of aggregated

random variables Xnsþv, 0 � nsþ v < Tsf g representing the task processing in the

PD project over T time steps, t ¼ 0, 1, . . . , T � 1. At each time step the v ¼ 1, . . . , s
short iterations of the development teams without purposefully withholding design

information are aggregated and therefore the states in between the n long iterations

in which the release of hidden information occurs are combined. Hence, we have a

total sample size equal to n0 ¼ Ts. For a convenient state representation let

Z vð Þ ¼ Xv;Xsþv; . . . ;X T�1ð Þsþv

� � ð92Þ
E vð Þ ¼ εv; εsþv; . . . ; ε T�1ð Þsþv

� � ð93Þ
X vð Þ ¼ X0 vð Þ, . . . ,XT�1 vð Þð Þ ð94Þ

all be d � T random matrices, where

Xt vð Þ ¼ Xtsþv�1

denotes the d � 1 random vectors of work remaining of the component-level and

system-level tasks at time steps t ¼ 0, 1, . . . ,T � 1. Utilizing these aggregated

variables, the PVAR model from Eq. 80 can be recast and written in the following

convenient regression form:

Z vð Þ ¼ B vð Þ � X vð Þ þ E vð Þ, v ¼ 1, . . . , s : ð95Þ

The independent parameters of the regression model are collected in the d � d
parameter matrix B(v). Using the definitions of the dynamical operators Φ1(1) and

Φ1(s), the parameter matrix can be defined as:

B vð Þ ¼ Φ1 1ð Þ for v ¼ 1, . . . , s� 1

Φ1 sð Þ for v ¼ s :

�
Since for all v ¼ 1, . . . , s� 1 the regression equation 95 contains the same

unknown regression parameters, it is convenient to concatenate them into one

equation
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Zc ¼ Φ1 1ð Þ � Xc þ Ec; ð96Þ

where

Zc ¼ Z 1ð Þ, . . . ,Z s� 1ð Þð Þ ð97Þ
Xc ¼ X 1ð Þ, . . . ,X s� 1ð Þð Þ ð98Þ
Ec ¼ E 1ð Þ, . . . ,E s� 1ð Þð Þ: ð99Þ

Convenient vector representations of the regression equations 95 and 96 can be

obtained by using the Kronecker product 	. A vectorization of the dependent

variables based on the Kronecker product leads to

z1 ¼ vec Zc½ � ¼ XT
c 	 Id

� � � β 1ð Þ þ vec Ec½ � ð100Þ

and

z2 ¼ vec Z sð Þ½ � ¼ XT sð Þ 	 Id
� � � β sð Þ þ vec E sð Þ½ �: ð101Þ

The vectors of the regression coefficients are given by

β vð Þ ¼ vec Φ1 vð Þ½ � v ¼ 1, . . . , s :

In general, the vector operator vec[A] represents the vector obtained by stacking the
columns of the matrix A onto each other. We can also combine both regression

equations in one large equation:

z ¼ z1
z2

	 

¼ XT

c 	 Id 0

0 XT sð Þ 	 Id

	 

� β 1ð Þ

β sð Þ
	 


þ e: ð102Þ

The combined error vector is given by

e ¼ vec Ec½ �
vec E sð Þ½ �
	 


:

The vector of regression coefficients

β ¼ β 1ð Þ
β sð Þ
	 


contains by parts the same elements (see the definitions of the matrices in Eqs. 81

and 82), i.e. they are linear dependent. Furthermore, many elements of β are known

to be zero. This can be expressed by the following linear relation:
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β ¼ R � ξþ b: ð103Þ

The vector ξ represents a K � 1 vector of unknown regression parameters in the

restricted case. It is evident that the parameter setting

R ¼ I2d2 and b ¼ 0

represents the full unconstraint case, in which no constraints are imposed on the

entries of the dynamical operatorsΦ1(1) andΦ1(s). Through the specification of the
entries in R and b, additional linear constraints can be imposed on the parameters

for each release period v. If, for instance, a matrix entry in Φ1(1) must be zero, the

corresponding row vector of R and vector component of b are set to zero. Through

this encoding the null entries in the dynamical operators are ignored in least squares

estimation and only the non-zero informational couplings between tasks are deter-

mined. Secondly, if the n-th component of β is related to the m-th component of the

irreducible regression vector ξ then we set the element R n;m½ �½ � ¼ 1.

When we convert the linear relation from Eq. 103 into a vector representation

that is similar to Eq. 101, we arrive at the following expression for z:

z ¼ XT 	 Id
� � � β þ e

¼ XT 	 Id
� � � R � ξþ bð Þ þ e;

ð104Þ

where

XT ¼ XT
c 0

0 XT sð Þ
	 


:

The least squares estimators of the parameter vector ξ are calculated by minimizing

the generalized least squares criterion:

ℑg ξð Þ ¼ eT IT 	 Ceð Þ�1e: ð105Þ

The matrix Ce represents the covariance matrix of the combined error vector e, that

isCe ¼ E e � eT½ �. It can be easily composed of the individual covariance matrices C1

and Cs.

In the unrestricted case, an equivalent representation of the least squares esti-

mators based on the above generalized least squares criterion ℑg(ξ) can be obtained
by minimizing the ordinary least squares:

ℑ βð Þ ¼ eT � e:

A similar result holds for VAR models, see Schneider and Neumaier (2001) and

Lütkepohl (2005). To obtain the ordinary least squares estimators, the function ℑ(β)
is differentiated with respect to each “vectorized” dynamical operator Φ1(v):
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δℑ βð Þ
δvec Φ1 vð Þ½ � ¼ �2

XT�1

t¼0

Xtsþv�1 	 εtsþvð Þ, v ¼ 1, . . . , s :

Setting the derivatives to zero yields the following system of equations for a given

release period v:

XT�1

t¼0

Xt vð Þ 	 εtsþvð Þ ¼ 0d2 :

In the above equation 0d2 is the d2 � 1 null vector. Since the fluctuations can be

expressed as εnsþv ¼ Xnsþv � XT
n vð Þ 	 Id

� �
β vð Þ, the normal equations for each

short iteration v are given by

XT�1

t¼0

Xt vð Þ 	 Xtsþvð Þ ¼
XT�1

t¼0

Xt vð Þ � XT
t vð Þ 	 Id

� � !
β vð Þ:

Hence, the desired least squares estimators β̂ vð Þ satisfy the relation:

β̂ vð Þ ¼ X vð Þ � XT vð Þ� ��1
X vð Þ 	 Id

� �
z vð Þ: ð106Þ

The estimated residuals are given by the difference:

ε̂nsþv ¼ Xnsþv � XT
n vð Þ 	 Id

� �
β̂ vð Þ: ð107Þ

In the above estimators the independent variables X(v) and Xnsþv, respectively

denote the time series of empirically acquired state vectors as single realizations of

the periodically correlated work processes in the PD project. If multiple realizations

of the PVAR process had been acquired in N independent trials as opposed to

merely a single time series is being given, the additional time series are simply

appended as additionalN � 1 blocks of rows in the regression Eq. 95. Similarly, the

predictors are extended by additional row blocks. The initial state is determined by

averaging over all initial state vectors.

Solving the least squares problem directly, Ursu and Duchesne (2009) give the

following alternative equation for the least squares estimators:

B̂ vð Þ ¼ Z vð Þ � XT vð Þ X vð Þ � XT vð Þ� ��1
: ð108Þ

Based on the above relation one can also express the difference between estimator

B̂ vð Þ and B(v) as:
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B̂ vð Þ � B vð Þ ¼ 1

T

� �
� E vð Þ � XT vð Þ 1

T

� �
� X vð Þ � XT vð Þ

� �1

:

Noting that for the sum over T time steps it holds that

XT�1

t¼0

vec εnsþv � XT
n vð Þ� � ¼ vec E vð Þ � XT vð Þ� �

;

it follows for the convergence in distribution (symbol “!d ”) that

1ffiffiffi
T

p
� �

� vec E vð Þ � XT vð Þ� �!d N 0d2 ,Ω vð Þ 	 C vð Þð Þ

and for the convergence in probability (symbol “!p ”) that

1

T

� �
� vec E vð Þ � XT vð Þ� �!p 0d2 :

The functionN 0d2 ,Ω vð Þ 	 C vð Þð Þdenotes the d2-variate Gaussian distribution with
location 0d2 and covariance Ω vð Þ 	 C vð Þ. The pdf of this distribution is given in

Eq. 13. Ω(v) denotes the d � d covariance matrix of the aggregated random vector

Xt(v), see Ursu and Duchesne (2009).

After the derivation of the least square estimators for the full unconstraint case,

we proceed with the restricted case, i.e. the case in which additional linear con-

straints must be satisfied. If the parameters satisfy the linear constraint in Eq. 95, the

least squares estimators of ξ(v) minimize the generalized criterion ℑg(ξ) (Eq. 105).
It is evident that the generalized criterion is not equivalent to the ordinary least

squares criterion ℑ(β) (see e.g. Lütkepohl 2005). Rearranging the regression

Eq. 104 leads to the following relation for the combined error vector:

e ¼ z� XT 	 Id
� �

R � ξþ bð Þ:

This relation is sufficient to derive the asymptotic properties of the least squares

estimator of ξ under linear constraints. Owing to limited space we will not present

the stepwise derivation of ξ in this book but only cite the result from the original

work by Ursu and Duchesne (2009):

ξ̂ ¼ RT X � XT 	 C�1
e

� �
R

� ��1
RT X	 C�1

e

� �
z� XT 	 Id

� �
b

� �
:

Ursu and Duchesne (2009) show that the estimator ξ̂ is consistent for ξ and

asymptotically follows a Gaussian distribution:
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ffiffiffi
T

pn o
� ξ̂ � ξ
� �!d 0K; RT Ω	 C�1

e

� �
R

� ��1
� �

:

However, the estimator ξ̂ is unfeasible in almost all practical applications in project

management because it relies on the (usually) unknown covariance matrix Ce.

Instead, a consistent estimator ~Ce of the covariance matrix Ce can be used and we

have the alternative representation:

^̂ξ ¼ RT X � XT 	 ~C�1
e

� �
R

� ��1
RT X	 ~C�1

e

� �
z� XT 	 Id

� �
b

� �
: ð109Þ

According to Ursu and Duchesne (2009) good candidate consistent estimators are

given by the unconstrained least squares estimators:

~Ce ¼ 1

T � d

� �
� Z � B̂ � X� �

Z � B̂ � X� �T
: ð110Þ

In the above equation B̂ denotes the least squares estimators from Eq. 108, which

were obtained for the full unconstraint case. The resulting estimator of β is given by

^̂β ¼ R � ^̂ξ þ b: ð111Þ

Its asymptotic distribution is Gaussian:ffiffiffi
T

pn o
� ^̂β � β
� �

!d N 02d2 ,R RT Ω	 ~C�1
e

� �
R

� ��1
RT

� �
:

The detailed proof of the above results can be found in Ursu and Duchesne (2009).

It follows lines of reasoning similar to the proof in Lütkepohl (2005). However,

Lütkepohl (2005) established the asymptotic properties of least squares estimators

only for VAR models in which the model parameters satisfy linear constraints

according to Eq. 103 and he did not generalize his results to PVAR models.

For applied studies in project management and schedule management/control, it

can also be of interest not only to estimate the coefficient matrices Φ1(v) and the

error covariance matrices C(v) of the PVAR process from time series data based on

the introduced model formulation, but to follow a fully data-driven approach and

also include the regression order for each iteration v and the corresponding multiple

dynamical operators in a combined estimation procedure. Similar to model selec-

tion in the class of VAR(n) models from the previous Section 2.4, in a fully data-

driven approach a good trade-off must be found between the predictive accuracy

gained by increasing the number of independent parameters and the danger of

overfitting the model to performance fluctuations and not persistent patterns of

cooperation. We start by formulating an extended model of periodically correlated

work processes with iteration-dependent correlation lengths and then proceed with

solving the more subtle problem of selecting the “right” regression order for each
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iteration. To incorporate iteration-dependent correlation lengths into a PVAR

process, the state Eq. 80 has to be extended towards multiple interacting

autoregression models (Ursu and Duchesne 2009):

Xnsþv ¼
Xn vð Þ

k¼1

Φk vð Þ � Xnsþv�1 þ εnsþv: ð112Þ

The variable n(v) denotes the autoregressive model order at iteration v of the work
process and Φk(v) represents the multiple dynamical operators holding for that

period of time. n(v) must be smaller than the the length s of the period between

releases of hidden information. Both the autoregressive model order n(v) and the

dynamical operators Φk(v), k ¼ 1, . . . , n vð Þ, are the model coefficients during

iteration v ¼ 1, . . . , s. Therefore, the regression order of the extended PVAR

model is not just a non-negative integer as for the VAR(n) model, but an s-tuple
(n(1), . . ., n(s)) of multiple regression orders in which the vector components

determine the regression order for the individual iteration v ¼ 1, . . . , s.
Similar to the previous model formulation, the combined error process εnsþvf g

corresponds to a zero-mean periodic white noise process. εnsþvf g is composed of

d � 1 random vectors, such that E εnsþv½ � ¼ 0d and E εnsþv εnsþv
T½ � ¼ C vð Þ

for v ¼ 1, . . . , s. It is assumed that the covariance matrices C(v) for the iterations
are not singular.

Following the same procedure as before, we can develop a generalized state

representation for the extended PVAR model:

Z vð Þ ¼ Xv;Xsþv; . . . ;X T�1ð Þsþv

� � ð113Þ
E vð Þ ¼ εv; εsþv; . . . ; ε T�1ð Þsþv

� � ð114Þ
X vð Þ ¼ x0 vð Þ, . . . ,xT�1 vð Þð Þ: ð115Þ

In the generalized state representation Z(v) and E(v) are the same d � T random

matrices as before. By contrast, X(v) is a d2n vð Þ� �� T matrix, where the entries

xt vð Þ ¼ XT
tsþv�1; . . . ;X

T
tsþv�n vð Þ

� �T
denote the d2n vð Þ� �� 1 random vectors of work remaining of the component-level

and system-level tasks at time steps t ¼ 0, 1, . . . ,T � 1. It is evident that the full

PVAR model can be rewritten as Z vð Þ ¼ B vð Þ � X vð Þ þ E vð Þ, v ¼ 1, . . . , s. This
regression form was already introduced in Eq. 95.

The dynamical operators of the full PVAR model are collected for each short

iteration in the extended d � dn vð Þð Þ parameter matrix B(v). The parameter matrix

is defined as
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B vð Þ ¼ Φ1 vð Þ, . . . ,Φn vð Þ vð Þ� �
: ð116Þ

It is important to note that the generalized state representation according to

Eqs. 113�116 is in principle sufficient to estimate the independent parameters in

the full unconstraint case, and the least squares estimators for the parameter matrix

(Eq. 106) and the error covariance (Eq. 107) can be directly applied. To make the

estimation procedure fully operational, the parameters simply have to be stacked

into the parameter vector

β vð Þ ¼ vecT Φ1 1ð Þ½ �, . . . , vecT Φn vð Þ vð Þ� �� �
of dimension d2n vð Þ � 1.

If a least square estimation with linear constraints on the parameters of the

dynamical operators needs to be carried out, we have to define an extended

d2n vð Þ� ��K vð Þ matrix R(v) of rank K(v) and an extended d2n vð Þ� �� 1 vector

b(v) to satisfy the linear relation given by Eq. 103. Similar as before, the vector ξ(v)
represents a K vð Þ � 1 vector of unknown regression parameters. The parameter

setting R vð Þ ¼ Id2n vð Þ and b vð Þ ¼ 0 reflects the full unconstraint case. If certain

matrix entries in Φk(v) must be zero, the corresponding row vectors of R(v) and
vector components of b(v) have to be set to zero. Such a coherent theoretical

framework for constraint satisfaction allows us to use the feasible least squares

estimator from Eq. 109 directly. A more complicated estimation relation is not

necessary. According to Ursu and Duchesne (2009) good candidate consistent

estimators for the error covariance matrix ~C vð Þ are also given by the unconstrained

least squares estimators from Eq. 110.

If the s-tuple (n(1), . . ., n(s)) of regression orders holding for the individual short
iterations v ¼ 1, . . . , s has to be estimated from time series data for an unconstraint

or constraint model in a fully data-driven approach, the cited trade-off between the

predictive accuracy gained by increasing the regression order and the danger of

overfitting the model can be resolved in a similar fashion as in the previous

Section 2.4 by using the standard selection criteria of Akaike (1971, 1973 and

1974) and Schwarz (1978). This is due to the fact that PVAR processes do not

constitute a model class in their own right, but can be expressed as basic vector

autoregressive processes (see Eq. 89). In this chapter we focus on the Schwarz-

Bayes Criterion (cf. Eq. 71) because within the scope of this book it has the same

consequences for regression order selection as the (simplified two-stage) minimum

description length criterion (Hansen and Yu 2001), which in turn is well grounded

in Rissanen’s theory of minimum description length that will be presented and

discussed in the complexity-theoretic Section 3.2.2. Generalizing the fundamental

ideas of McLeod (1994) on diagnostic checking periodic autoregression models,

Ursu and Duchesne (2009) introduce a heuristic approach in which Schwarz’s BIC
criterion is decomposed to obtain separate selection criteria for each short iteration

v ¼ 1, . . . , s. For the unconstrained model, they define the cumulative criterion
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BIC ¼
Xs
v¼1

BICn vð Þ vð Þ ð117Þ

and the iteration dependent criteria

BICn vð Þ vð Þ ¼ ln Det bΣ n vð Þð Þ vð Þ
h i

þ ln T

T
k vð Þ; ð118Þ

where

k vð Þ ¼ n vð Þ p2:

For each separate criterion, the variable bΣ n vð Þð Þ vð Þ denotes the not bias corrected

least squares estimate of C(v) (cf Eq. 107) for the approximating autoregression

model of order n(v). bΣ n vð Þð Þ vð Þ can also be interpreted as the one-step prediction

error resulting from the separate autoregression model with parameter matrix

(Φ1(v), . . .,Φn(v)(v)). Similarly to the definition of the Akaike information criterion

presented in Section 2.5, the last factor k(v) represents the effective number of

parameters for a given iteration v. In the paper of Ursu and Duchesne (2009) the

effective number of parameters is estimated by counting only the freely estimated

parameters in the coefficient matrices. As already pointed out in Section 2.5, from a

theoretical point of view, all functionally independent parameters in the parameter

vector θ which must be estimated have to be considered and therefore the effective

number of parameters of the approximating model is

k vð Þ ¼ n vð Þp2 þ p pþ 1ð Þ
2

: ð119Þ

For a constraint model, the reduced effective number of parameters

k vð Þ ¼ n vð Þp2 � ϒ vð Þ þ p pþ 1ð Þ
2

ð120Þ

must be used (cf. Songsiri et al. 2010). ϒ(v) denotes the total number of constraints

that are posed in iteration v on the work transformation submatrices to model the

hold-and-release policy of design information (in the form of 0 or 1 matrix entries)

and to allow an analytical evaluation of emergent complexity (in the form of ε or
1� εð Þmatrix entries). A calculation of the cumulative criterion from Eq. 117 must

also take account of the coefficients of the work transformation submatrices that are

linear dependent.

The heuristic to estimate the effective number of parameters by counting the

functionally independent parameters in the parameter vector can easily be gener-

alized to other model classes, such as linear dynamical systems, which are intro-

duced and discussed in Section 2.9. For practical purposes, the regression order
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can be varied systematically in the range of n vð Þ 2 1; . . . ; sf g at each iteration v
and the one-step-ahead prediction error is evaluated using the criterion from

Eq. 118.

The regression order nopt(v) of the generative model holding at a given short

iteration v is considered to be the optimal one if it is assigned minimum scores,

that is

nopt vð Þ ¼ arg minn vð ÞBICn vð Þ vð Þ: ð121Þ

The optimum tuple nopt of regression orders for the extended PVAR model is

given by:

nopt ¼ nopt 1ð Þ, . . . , nopt sð Þ� �
: ð122Þ

Ursu and Duchesne (2009) used the introduced model selection criteria to fit a

PVAR model to quarterly seasonally unadjusted West German income and con-

sumption data for the years 1960–1987 and found the autoregressive orders

(2, 1, 3, 1) to be the optimal ones. The same data were also analyzed by Lütkepohl

(2005) based on the classic PVAR model formulation from Section 2.4. Using the

BIC selection criterion according to Eq. 71, Lütkepohl (2005) obtained a minimum

score for a VAR(5) model.

After a model for the full unconstraint case has been fitted to data from a PD

project on the basis of the above two-step procedure, it is sometimes also possible to

reduce the number of independent parameters by setting selected entries in the

dynamical operators Φ1(v), . . .,Φn(v)(v) to zero. Ursu and Duchesne (2009) use a

straightforward selection heuristic in which the standard errors of the individual

regression coefficients are evaluated: If the absolute value of the t-statistic of the

given autoregressive parameter is less than one, the corresponding parameter is set

to zero. The t-statistic is computed as the value of the least squares estimator

divided by its standard error. In a third step these additionally identified constraints

on the parameters are defined in the form of the linear relationship (Eq. 103) and the

parameters are re-estimated using the feasible estimators from Eq. 109 in conjunc-

tion with the consistent estimators from Eq. 110. The effectiveness of this kind of

heuristic parameter reduction was also demonstrated by the authors on the basis of

the quarterly seasonally unadjusted West German income and consumption data.

They were able to reduce the number of independent parameters from 28 for the

full unconstraint case to only 22 for a PVAR model with 6 null regression

coefficients.
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2.8 Simulation Study of Periodically Correlated Work

Processes, and Validation of Estimation and Model

Selection Procedures

Having comprehensively analyzed least squares estimation for applied studies with

and without linear constraints on the entries of the dynamical operators, and having

defined the cumulative and iteration-dependent Schwarz’s criteria for model selec-

tion in periodic vector autoregression models, we now focus on the accuracy of the

methods for estimating the independent parameters of the constraint model

according to the two-level formulation from Eq. 80 (in conjunction with Eqs. 81,

82 and 83) in a fully data-driven approach (Schlick et al. 2014). By fully data-driven

approach, we mean an applied study where the work transformation matrices (AC
0 ,

ACS
0 , ASC

0 , AS
0, A

SH
0 , AHC

0 ), the covariance matrices (C1,Cs) and the initial state vector

have to be estimated from data, as does the regression order for each short iteration

v. Although the model formulation according to Eq. 80 assumes that a first-order

autoregression is sufficient for capturing the essential dynamics of project phases

with periodically correlated work processes, we have to verify whether or not larger

regression orders are needed to make good predictions in real product development

environments. We carried out a comprehensive simulation study to evaluate the

accuracy of the estimation methods in a laboratory-style setting with complete

control of confounding factors. The study is based on Monte Carlo experiments,

which are a special class of computational algorithms that rely on repeated random

sampling of the work processes to numerically evaluate their results. The repeated

random sampling and the statistical analysis was carried out in a simulation

environment that we developed in-house. For the Monte Carlo experiments, a

PVAR model of cooperative task processing is formulated that connects the

dynamics of module design and integration in a vehicle door development project

with component development. This model forms a reference model that can then

simulate the work processes and generate samples of different size. We try to use

this data to reconstruct the reference model representation. Technically speaking,

we investigate the identifiability of the reference model and the associated param-

eter uncertainty in repeated trials. The main question concerns how the accuracy of

the estimation of the model matrices (AC
0 , A

CS
0 , ASC

0 , AS
0, A

SH
0 , AHC

0 , C1 and Cs) is

influenced by the length T of the time series of simulated task processing that is

used for numerical estimation, and whether the introduced heuristic model selection

procedure can reliably select the correct regression orders of the reference PVAR

model. Another important question is whether the obtained model representation

can also accurately capture the underlying geometry of the subspaces and whether

or not it just leads to a small root mean square deviation between the corresponding

model matrices as a conventional measure of distance. To answer this question, we

have to use subspace angles from the theory of linear dynamical systems. Sec-

tion 2.9 will provide an extensive evaluation of this class of linear models with

latent state variables. We follow the mathematical formulation given in de Cock
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(2002) to compute these angles and to evaluate the squared cepstral distance as the

last (Eq. 135) and probably most important independent variable in the Monte Carlo

experiments (see below).

We start by defining the structure and parameters of the reference PVAR model.

As previously stated, the idea is to model the dynamics of cooperative work in a

vehicle door development project. To simplify the analysis and numerical compu-

tation, we focus on the door module of the vehicle door subsystem. A door module

typically consists of a functional carrier plate and other components that are fitted

onto it. The carrier plate is usually made from plastic or steel. It is rubber-sealed to

separate the wet and dry sides of the door system. Various door components, such

as the window lift mechanism, locks, wiring harness, switches, loud speakers, crash

sensors and cables connecting the latch to the inner release handle have to be

integrated. The major automotive manufacturers usually outsource the design,

development and manufacturing of the door module to selected first-tier suppliers

to save costs and weight. We focus on the periodically correlated work processes in

the supplier’s development organization. At the supplier, the corresponding devel-

opment work is located on the first level of the work breakdown structure and is

supported by additional functions, such as manufacturing, procurement, sales,

controlling and quality management. To build our reference PVAR model, we

focus on system design and the related component development and integration

activities. In what follows, we have to greatly simplify the real industrial project

organization so as to obtain simulation models of reasonable complexity that can be

analyzed in Monte Carlo experiments conducted in our simulation environment.

However, this does not limit the generality of the model-driven approach. The

interested reader can easily upscale the reference model to build organization

designs for projects that are much larger and have more complex hierarchical

coordination structures.

We assume in the simulation study that the project work in the engineering

design department of the first-tier supplier mirrors the system structure of the door

module and breaks it down into development teams focusing on mechanical and

electrical/electronic functions. A dedicated module design and integration testing

team handles the systems engineering process and the integration of the compo-

nents into a fully functional module. The team also coordinates the design of the

interfaces to the complete door system and the car body. We focus on the cooper-

ation between the module design and integration testing team and two subordinate

teams dealing with the mechanical design of the functional carrier plate and the

mechanical/kinematic design of the window lift mechanism (including safety and

convenience electronics). As we said at the beginning of this chapter, the module

design team inadvertently hided, for a certain amount of time, information on the

integration and testing of geometric/kinematic entities and thus do not immediately

pass it on to component-level teams. This kind of non-cooperative behavior is

justified by the desire to make the module architecture more mature and to focus

communication with customers and suppliers. To make it easier to evaluate the

accuracy of the estimation methods, we define a PVAR model for the Monte Carlo

experiments that includes only one module-level task and two component-level
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tasks. The three teams process the tasks simultaneously. Each team is assigned one

task in the model. For the sake of simplicity, we do not consider individual task

processing. The three vector components of the state variableXnsþv that relate to the

simultaneous processing of the module-level and component-level tasks represent

the relative number of labor units required to complete the tasks. We assume that

the first component-level team, which designs the functional carrier plate, works

with autonomous task processing rate aC
11 ¼ 0:91. The second component-level

team, which designs the window lift mechanisms, can use a standard mechanism

and several internally standardized parts and therefore processes the task faster,

with autonomous task processing rate aC
22 ¼ 0:88. The cooperative relationships

within both component-level teams are very similar and therefore the tasks are

coupled with symmetric strength aC
12 ¼ aC

21 ¼ 0:03. Due to a well-designed system

architecture and experienced members, the team responsible for module design and

integration testing works with autonomous task processing rate aM ¼ 0:80. The
module-level task generates 5% of finished work at each short iteration that is put in

a hold state until it is released at time step ns n 2 ℕð Þ. Hence, aMH ¼ 0:05.
Furthermore, both component-level teams generate 5% of finished work at each

iteration for the module-level, and we have aCM11 ¼ aCM12 ¼ 0:05. Conversely, the
module design team only feeds back 2% of the unresolved issues at each short

iteration to the two component-level teams, and there is aMC
11 ¼ aMC

21 ¼ 0:02. The
accumulated development issues of the module-level are released to the

component-level team responsible for designing and developing the functional

carrier plate at the end of the period (aHC11 ¼ 1 and aHC21 ¼ 0). This team transfers

the accumulated unresolved issues to the second component-level team at the next

time step and holds regular discussions to find appropriate solutions. Additional

dynamical dependencies were not considered and therefore all other matrix entries

were defined as zero. The release period s, in which component-level teams receive

information on the overall module design and on integration testing of specific

geometric/kinematic entities, is considered as an independent variable.

The complete PVAR representation for state Eq. 89 is as follows:

Combined dynamical operator A*
0 ¼ Φ*

0

� ��1 �Φ*
1:

Φ*
0

� ��1 �Φ*
1 ¼

Φ1 sð Þ Φ1 1ð Þð Þs�1
0 0 � � � 0

Φ1 1ð Þð Þs�1
0 0 � � � 0

Φ1 1ð Þð Þs�2
0 0 � � � 0

⋮ ⋮ 0 ⋱ ⋮
Φ1 1ð Þ 0 0 � � � 0

0BBBB@
1CCCCA:

Work transformation sub-matrices, vectors and real-valued parameters:
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AC
0 ¼ 0:91 0:03

0:03 0:88

� 
ð123Þ

AM
0 ¼ aM ¼ 0:80 ð124Þ

ACM
0 ¼ 0:05 0:05ð Þ ð125Þ

AMC
0 ¼ 0:02

0:02

� 
ð126Þ

AMH
0 ¼ aMH ¼ 0:05 ð127Þ

AHC
0 ¼ 1

0

� 
: ð128Þ

Transformation matrices:

Φ1 1ð Þ ¼
AC
0 AMC

0 0

ACM
0 AM

0 0

0 AMH
0 1� εf g

0@ 1A
¼

0:91 0:03 0:02 0

0:03 0:88 0:02 0

0:05 0:05 0:8 0

0 0 0:05 0:9999

0BB@
1CCA

Φ1 sð Þ ¼
AC
0 AMC

0 AHC
0

ACM
0 AM

0 0

0 0 εf g

0@ 1A
¼

0:91 0:03 0:02 1

0:03 0:88 0:02 0

0:05 0:05 0:8 0

0 0 0 0:0001

0BB@
1CCA:

As explained in the previous chapter, the variable ε is necessary for an explicit

complexity evaluation. We calculated with ε ¼ 10�4 to set the finished work, after

release, back to a nonzero but negligible amount in terms of productivity.

The initial state x�0 was defined using the assumption that all concurrent

development tasks are to be fully completed initially and that no issues are left

unresolved from the previous phase. Hence, for the minimum release period

smin ¼ 2 we have the initial state vector:
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x*0 ¼

1

1

1

0

0

0

0

0

0BBBBBBBBBB@

1CCCCCCCCCCA
:

For larger release periods, we appended additional zeros to the initial state vector.

Furthermore, we have to make reasonable assumptions about the variances and

covariances of the unpredictable performance fluctuations of the development

teams. We assumed that the standard deviation cii of performance fluctuations

(Eq. 10) influencing task i in the module development project is proportional to

the autonomous task processing rate: as the task processing rate increases (i.e. as the

speed of task processing slows down), so the expected root square deviation from

the mean will also increase. We chose a proportionality constant of r ¼ 0:02.
Additional correlations between vector components were not considered. We also

assumed that the variance of the fluctuations related to the issues put in a hold state

is reduced by the factor ε
0 ¼ 10�3 and that the same reduced variance holds for the

fluctuations when releasing the hidden information. Through these variance reduc-

tions, the performance variability related to the augmented substate accounting for

the periodic hold-and-release policy of module-level design information is

extremely small and does not influence the basic mechanisms of cooperation

between teams in the model. Hence, we have the covariance matrix

C* ¼ E ε*n ε
*T
n

� �
:

C* ¼
Cs 0 0 0

0 C1 0 0

0 0 ⋱ 0

0 0 0 C1

0BB@
1CCA;

where the sub-matrices are given by
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C1 ¼ r2
� � �

aC
11

� �2
0 0 0

0 aC
22

� �2
0 0

0 0 aMð Þ2 0

0 0 0 ε
0
1� εð Þ2

0BBB@
1CCCA

¼ 0:022
� � � 0:912 0 0 0

0 0:882 0 0

0 0 0:802 0

0 0 0 10�3 1� 10�4
� �2

0BB@
1CCA

ð129Þ

and

Cs ¼ r2
� � �

aC
11

� �2
0 0 0

0 aC
22

� �2
0 0

0 0 aMð Þ2 0

0 0 0 ε
0
1� εð Þ2

0BBB@
1CCCA

¼ 0:022
� � � 0:912 0 0 0

0 0:882 0 0

0 0 0:802 0

0 0 0 10�3 1� 10�4
� �2

0BB@
1CCA:

ð130Þ

The covariance of the transformed error vector ε⋆n is given by

C⋆ ¼ Φ*
0

� ��1 � C* � Φ*
0

� ��T
. Due to space limitations, we do not show the covari-

ance matrix.

As mentioned earlier, our initial aim was to estimate as many independent

parameters from data as possible. Therefore, we defined the matrix R from

Eq. 103 in a way that only posed linear constraints on the cells in the transformation

matricesΦ1(1) andΦ1(s) that are needed to incorporate the essential mechanisms of

putting a certain amount of finished module work at each short iteration in a hold

state and releasing it at time step ns. To model the hold part of the hold-and-release

policy, the entries [[4,1]], [[4,2]], [[1,4]], [[2,4]] and [[3,4]] in Φ1(1) must be zero

and protected from least square estimation. Conversely, to model the release part of

the policy, the entries [[4,1]], [[4,2]], [[4,3]], [[2,4]] and [[3,4]] of the transforma-

tion matrix Φ1(s) must be null entries, and on entry [[1,4]] we have to impose the

additional constraint that it must equal one. Through the positive integer constraint

on entry [[1,4]], we express that all the accumulated finished work in a hold state is

released to the component-level teams at the corresponding time step. Hence, for

the regression coefficient β(1) related to the transformation matrix Φ1(1), we

defined
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R1 ¼

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

For the regression coefficient β(s) related to the transformation matrix Φ1(s) we
have:

Rs ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

It holds that

R ¼ R1

Rs

	 

:

The intercept vector b1 (cf. Eq. 103) for the regression coefficient β(1) was defined
as a null vector with Dim vec Φ1 1ð Þ½ �½ � ¼ 16 components, that is
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b1 ¼ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0ð ÞT;

because we only posed constraints on Φ1(1) that said selected entries must be zero.

On the other hand, the intercept vector bs for the regression coefficient β(s) has to
indicate that the first component of the parameter vector AHC

0 must be one and

therefore, on the corresponding entry [[1,4]] ofΦ1(s), a positive integer constraint is
defined. We have

bs ¼ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0ð ÞT:

The aggregated intercept vector is, simply

b ¼ b1
bs

	 

:

We used the Mathematica software package from Wolfram Research to carry out

the Monte Carlo experiments. We developed the functions and procedures for least

squares estimation with linear constraints and model selection based on Schwarz’s
adapted BIC criterion ourselves. Dr. Ursu kindly provided us with the original

Matlab routines that Ursu and Duchesne (2009) used to fit a PVAR model to

quarterly seasonally unadjusted West German income and consumption data for

the years 1960–1987. This meant that we could verify and validate our own

Mathematica code. To “reconstruct” the introduced reference model representation

for different release periods s using data on periodically correlated task processing,
we computed repeated Monte Carlo trials for each PVAR model instance. We

systematically varied the release period between smin ¼ 2 and smax ¼ 5 time steps,

increasing the value of this variable by one per step. We also systematically

varied length T of the time series being used for parameter estimation. The range

was Tmin ¼ 100 and Tmax ¼ 1000 time steps with increments of 100 time steps. The

minimum length Tmin ¼ 100 was chosen so that, even for the longest release period

smax of 5 time steps, the meanwork remaining for all three tasks was less than 0.05. To

obtain a good statistic, a total of 1000 separate and independent Monte Carlo runs

(which the literature also refers to as “replications”) were calculated for each setting of

the independent parameters. To increase external validity, we decided not to use a

“warm-up interval” in the simulated task processing, and therefore the T data points

were all the information available.

In order to answer to the main question of how the accuracy of the estimation of

the independent parameters is influenced by the length T of the time series gener-

ated by the reference model with given release period s, we considered the root

mean square deviation (RMSD) between the entries of the reference transformation

and covariance matrices Φ1(1), Φ1(s), C1 and Cs (embedding the work transforma-

tion sub-matrix AC
0 , the vectors ACM

0 , AMC
0 , and AHC

0 , as well as the real-valued

parameters aM and aMH) and their corresponding least square estimates bΦ1 1ð Þ,
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bΦ1 sð Þ, Ĉ1 and Ĉs. We used the following mathematical formulations to calculate

these dependent variables in the Monte Carlo runs:

RMSDΦ1 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr Φ1 1ð Þ � bΦ1 1ð Þ
� �

Φ1 1ð Þ � bΦ1 1ð Þ
� �T	 


Dim vec Φ1 1ð Þ½ �½ �

vuuut ð131Þ

RMSDΦ1 sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr Φ1 sð Þ � bΦ1 sð Þ
� �

Φ1 sð Þ � bΦ1 sð Þ
� �T	 


Dim vec Φ1 sð Þ½ �½ �

vuuut ð132Þ

RMSDC1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr C1 � Ĉ1

� �
C1 � Ĉ 1

� �Th i
Dim vec C1½ �½ �

vuut ð133Þ

RMSDCs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr Cs � Ĉ s

� �
Cs � Ĉ s

� �Th i
Dim vec Cs½ �½ �

vuut
: ð134Þ

We also computed the difference of the subspace angles between the reference

model and its estimated representation to evaluate the accuracy of the introduced

estimation methods. Following the mathematical analysis of de Cock and Moor

(2002) and of de Cock (2002), the subspace angles are defined as the principal

angles between the row spaces of the infinite observability matrix of the model and

of the infinite observability matrix of the inverse model. In this sense, the principal

angles between two subspaces are the angles between their principal directions and

can be used to construct a cepstral distance for VAR and PVAR models (and other

classes of dynamic models, see de Cock and Moor 2002). The subspace angles

allow a holistic evaluation of the estimated model representation in view of the

information dynamics of the true model, as the measurement shows whether the

underlying geometry of the subspaces is accurately reflected and whether or not

only apparent similarities between model matrices in Euclidian space exist. The

cepstral distance between two autoregression models is zero if the underlying

geometry of the subspaces is equivalent and therefore the canonical correlations

(see Section 4.1.3) of the past and future output processes are one, given that both

models are driven by the same zero-mean periodic white noise process {ε�n}. To
evaluate the subspace angles in Monte Carlo experiments, we have to bring the

PVAR reference model represented by parameter tuple A*
0;C

⋆
� �

and its estimated

representation Â*
0; Ĉ

⋆
� �

into the form of a linear dynamical system with additive

zero-mean white noise (see e.g. Gharahmani 2001; Puri 2010). This class of

systems will be introduced and extensively discussed in the next chapter. We

therefore concentrate on the essential preliminaries to calculate the squared cepstral

distance, and sketch only the main steps. To further simplify the analytical
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evaluation of the squared cepstral distance, we focus on estimated model represen-

tations whose autoregression order does not exceed an order of one for all iterations

v. Let

A 1ð Þ ¼ A*
0 2 ℝds�ds

A 2ð Þ ¼ Â *
0 2 ℝds�ds

be the combined dynamical operators of the first-order autoregressive representa-

tions that are compared by the cepstral distance, and let

C 1ð Þ ¼ C⋆ 2 ℝds�ds

C 2ð Þ ¼ Ĉ⋆ 2 ℝds�ds

be the corresponding covariance matrices. Furthermore, let the output operators

(see Section 2.9) be the identity matrices

H 1ð Þ ¼ Ids
H 2ð Þ ¼ Ids

and the covariance matrices of the observation process (see Section 2.9) be the null

matrices

V 1ð Þ ¼ 0ds
V 2ð Þ ¼ 0ds:

Based on these parametric representations of the “forward form” of a linear

dynamical system, we compute the associated forward innovation form. The

forward innovation form is an equivalent form in the sense that the first-order and

second-order statistics of the sequence of observations generated by the system in

steady state are the same, but only a single error process is used to model perfor-

mance fluctuations (see Section 2.9). In both forms the recursive state equations run

forward in time. The forward innovation form can be obtained by solving the

Lyapunov Eq. 27 and the algebraic Ricatti Eq. 296. Let

K 1ð Þ 2 ℝds�ds

K 2ð Þ 2 ℝds�ds

be the Kalman gain matrices of the forward innovation representations of (A(1),

C(1),H(1),V(1)) and (A(2),C(2),H(2),V(2)) according to the definition from Eq. 163.

We assume that both parametric representations correspond to stable and minimum

phase models. The state space matrices of the combined VAR model as a function

of the state-space representations of the separate models is then given by (de Cock

2002):
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A 12ð Þ ¼ A 1ð Þ 0ds
K 2ð Þ � C 1ð Þ A 2ð Þ � K 2ð Þ � C 2ð Þ

� 
K 12ð Þ ¼ K 1ð Þ

K 2ð Þ

� 
C 12ð Þ ¼ C 1ð Þ �C 2ð Þ� �

:

By combined VAR model, we mean a model whose transfer function is equal to the

quotient of the individual transfer functions. The squared cepstral distance

d A*
0;C

⋆
� �

; Â*
0; Ĉ

⋆
� �� �2

between the models parameterized by A*
0;C

⋆
� �

and

Â*
0; Ĉ

⋆
� �

is then, according to de Cock (2002), defined as

d A*
0, C

⋆
� �

; Â*
0; Ĉ

⋆
� �� �2

:¼ log2Det I2ds � Q 12ð Þ
z � P 12ð Þ

h i
; ð135Þ

where the controllability Gramian P(12) of the combined model is given by solving a

Lyapunov equation (cf. Eq. 27)

P 12ð Þ ¼ A 12ð Þ � P 12ð Þ � A 12ð ÞT þ K 12ð Þ � K 12ð ÞT

and the observability Gramian Qð12Þ
z of the inverse combined model is given by

solving another Lyapunov equation

Q 12ð Þ
z ¼ A 12ð Þ � K 12ð Þ � C 12ð Þ

� �T
Q 12ð Þ

z A 12ð Þ � K 12ð Þ � C 12ð Þ
� �

:

The analytical considerations of de Cock (2002) show that a direct theoretical

connection exists between the squared cepstral distance and the effective measure

complexity. The effective measure complexity is an information-theoretic measure

from basic research that can be used to evaluate the “informational structure” of

stochastic processes and is therefore interesting as a way of evaluating self-

generated (emergent) complexity of open organizational systems. It will be intro-

duced and discussed in detail in Section 3.2.4, while in Chapter 4 it will be used to

find different strengths of closed-form complexity solutions for different classes of

models. The theoretical connection exists because the squared cepstral distance

between two VAR models can also be expressed by the mutual information

I X�1
�1;X1

0

� �
(Eq. 237) that is communicated from the infinite past to the infinite

future by the combined state process, and it holds that

d A*
0, C

⋆
� �

; Â*
0; Ĉ

⋆
� �� �2 ¼ 2I X�1

�1;X1
0

� �
:

The quantitiesX�1
�1 andX1

0 denote the infinite past and future histories of the output

process {Xt} of the combined model that are generated under the assumption that

both embedded models are driven by the same zero-mean periodic white noise

process {ε�n}. These and other quantities are defined and explained in Section 3.2.4.
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In the following, we use the shorthand notation d2cepstr to denote the squared cepstral

distance.

The aggregated results of the Monte Carlo experiments are shown in Figs. 2.12–

2.16. Figures 2.12, 2.13, 2.14 and 2.15 show the list plots of the root mean square

deviation between the reference model matrices and their corresponding least

squares estimates according to the definitions from Eqs. 131 to 134. Each plot

shows the obtained mean values of the independent variables as note points, and

their 95% confidence intervals as error bars. The note points have been slightly

offset to make it is easier to see the error bars. The 95% confidence intervals were

calculated under the assumption of a normal distribution and therefore correspond

to 
1:96 standard deviations.

The root mean square deviations between the transformation matrices Φ1(1) andbΦ1 1ð Þ related to the short iterations of the development teams, and the covariance

matrices C1 and Ĉ1 of the corresponding performance fluctuations show a very

similar pattern: as the number of data points T that are available in the time series

being used for least-squares estimation increases, so the root mean square deviation
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Fig. 2.12 List plot of root mean square deviation (RMSD) between reference transformation

matrix Φ1(1) and its least-squares estimate Φ̂ 1 1ð Þ. The release period s of finished work that is put
in a hold state at each short iteration and released by the module design and integration testing

team at time step ns was varied systematically between smin ¼ 2 and smax ¼ 5. The length T of the

time series that was used for least-squares estimation was also varied systematically within the

range of Tmin ¼ 100 and Tmax ¼ 1000 time steps. The plot shows the mean values as note points

and 95% confidence intervals as error bars. The note points have been slightly offset to make it

easier to see the error bars. The Monte Carlo simulation was based on state equation 89 and the

definition of the independent parameters from Eqs. 123 to 130. A total of 1000 separate and

independent runs were calculated
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shrinks, the release period s of finished work that was put in a hold state for a given
time-series length increases, and the average deviation becomes smaller. Further-

more, the 95% confidence interval shows that the more data points available for
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Fig. 2.13 List plot of root mean square deviation (RMSD) between reference transformation

matrix Φ1(s) and its corresponding least square estimate bΦ1 sð Þ. The conditions and parameters of

the Monte Carlo experiments are the same as in Fig. 2.12
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Fig. 2.14 List plot of root mean square deviation (RMSD) between reference covariance matrix

C1 and its corresponding least square estimate Ĉ1. The conditions and parameters of the Monte

Carlo experiments are the same as in Fig. 2.12
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estimation and the longer the release period, the smaller the confidence interval and

therefore the more certain we can be of the estimates. For more than T ¼ 300 data

points, we can expect a RMSDΦ1 1ð Þ that is smaller than 0.1 and a RMSDC1
that is

smaller than 0.0007 (see Figs. 2.12 and 2.14). The overall deviations are low and

the estimation results are consistent.

When we analyze the root mean square deviations between the transformation

matrices Φ1(s) and bΦ1 sð Þ related to the release of finished work by the module

design and integration testing team, and their corresponding covariance matrices Cs

and Ĉs, we find a different but internally consistent pattern: the more data available

for least squares estimation, the smaller the mean deviations and the smaller the

95% confidence intervals. However, the means and 95% confidence intervals show

very little sensitivity to variations in the release period s of finished work that was

put in a hold state. The aggregated means of RMSDΦ1 sð Þ are slightly lower than the

means ofRMSDΦ1 1ð Þ (see Figs. 2.12 and 2.13), and for moreT ¼ 200data points, we

can expect a RMSDΦ1 sð Þ that is smaller than 0.1.

On the other hand, the means of RMSDCs
are significantly larger than the means

of RMSDC1
(compare Figs. 2.14 and 2.15) and can be as large as 0.030 for the

smallest sample size of T ¼ 100 data points (Fig. 2.15). This result was unexpected

because the release of hidden information can be observed for the smallest release

period smin ¼ 2 at every second time step and therefore equally often as the task

processing on the short time scale. A detailed numerical analysis showed that under

all experimental conditions, the average finished work put in a hold state is quite

small in relation to the cumulative variance of the performance fluctuations of the

system integration and testing team, and that this low “signal-to-noise ratio” leads
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Fig. 2.15 List plot of root mean square deviation (RMSD) between reference covariance matrix

Cs and its corresponding least square estimate Ĉs. The conditions and parameters of the Monte

Carlo experiments are the same as in Fig. 2.12
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to an disproportionate increase in the magnitude of the estimation error. However,

in view of an industrial application of the estimation methods, the overall deviations

between the reference covariance matrix Cs and its corresponding least square

estimate Ĉs are acceptable, and the estimation error converges to zero fast.

The results of the analyses of the root mean square deviations show that the least

squares estimation methods that were developed by Ursu and Duchesne (2009) and

adapted to our own model formulation can identify the parametric representation of

the reference model of cooperative work in a vehicle door module development

project with low uncertainty. The estimation results are also highly consistent in the

sample size and in the length of the release period of accumulated development

issues from the module-level to the component-level. It is also important to note

that the estimation methods showed a very good numerical stability in the Monte

Carlo experiments. Re-estimations of the model matrices due to badly conditioned

intermediate matrices were only necessary in one of 40,000 independent runs.

These findings mean that we can turn our attention to the question of whether or

not the estimated parameters only lead to small deviations between the

corresponding model matrices, as they implicitly ignore the geometry of the sub-

spaces but can also accurately capture the higher-order informational and statistical

properties of the true model in non-Euclidian space. The calculated squared cepstral

distances d2cepstr in Fig. 2.16 show that this seems to be the case for all investigated

settings of the independent parameters, as the mean distances and the 95% confi-

dence intervals smoothly and quickly converge to zero for a growing sample size T.
The rate of convergence is not significantly influenced by the release period

s (Fig. 2.16). Additional Monte Carlo experiments showed that the linear
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Fig. 2.16 List plot of squared cepstral distance d2cepstr between the reference PVAR models

parameterized by (A�
0,C *) and their estimated representations (Â�

0, Ĉ *). The squared cepstral

distance goes back to the work of de Cock and Moor (2002) and is defined in Eq. 135. The

conditions and parameters of the Monte Carlo experiments are the same as in Fig. 2.12
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constraints on the entries of the dynamic operators Φ1(1) and Φ1(s) play a very

important role in ensuring small squared cepstral distances. For an unconstrained

model formulation, the obtained cepstral distances are usually 20 (for T ¼ 100) to

50 (for T ¼ 1000 ) times larger. The distances are especially sensitive to the

constraint necessary for modeling the release mechanism of the hold-and-release

policy: if we do not subject entry [[1, 4]] of the transformation matrix Φ1(s) to the

constraint that it must equal one, i.e. Φ1 sð Þ 1;4½ �½ � ¼ 1, and instead treat it as a free

parameter, the resulting squared cepstral distances are five times larger on average.

Therefore, it is necessary to incorporate the complete hold-and-release policy, and

not just the hold mechanism, in the formulation of the constrained estimation

problem. The overall squared cepstral distance in the Monte Carlo experiments is

low and shows that the basic estimation concept is valid and that the accuracy of the

investigated estimation methods is good.

To verify that the squared cepstral distance d2cepstr between the reference PVAR

models and their estimated representations from Fig. 2.16 does indeed converge to

zero, and not to any other non-negative constant value for large sample sizes, we

reduced the proportionality constant of the standard deviation cii of performance

fluctuations (Eq. 10) from r ¼ 0:02 to r ¼ 0:001 and repeated the least squares

estimation. The results are shown in Fig. 2.17 for sample sizes ranging from

T ¼ 400 to T ¼ 3000 under the same regime of the four release periods as before.

Note that the scale of the ordinate in Fig. 2.17 is reduced by a factor of three

compared to Fig. 2.16. As one would expect, Fig. 2.17 shows that reducing the

0 500 1000 1500 2000 2500 3000
0.00

0.05

0.10

0.15

0.20

2

s=5
s=4

s=3

s=2

Fig. 2.17 List plot of squared cepstral distance d2cepstr between the reference PVAR models

parameterized by (A�
0,C *) and their estimated representations (Â�

0, Ĉ *). The conditions and

parameters of the Monte Carlo experiments are the same as in Fig. 2.12, except that we reduced

the proportionally constant of the standard deviation of performance fluctuations from r ¼ 0:02 to
r ¼ 0:001 to accelerate convergence to zero, and we considered larger sample sizes T > 1000 in

the least squares estimation
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proportionality constant significantly reduces the means and standard deviation of

the squared cepstral distance. It also shows that the means quickly converge to

values less than 0.01. Additional Monte Carlo runs showed that the squared

cepstral distance is negligible for sample sizes larger than T ¼ 10, 000. We

observed similar convergent behavior for the root mean square deviation between

the entries of the reference transformation and covariance matrices Φ1(1), Φ1(s),
C1 and Cs and the corresponding least squares estimates.

Finally, we investigated whether the heuristic model selection procedure, which

was developed by Ursu and Duchesne (2009) and introduced in the previous

chapter, leads to reliable decisions about the regression order of the reference

PVAR model from data. In the Monte Carlo experiments, it turned out that the

heuristic model selection procedure based on Schwarz’s BIC criterion is extremely

reliable: the first-order autoregression of the reference model was identified cor-

rectly for all parameter settings in all runs. This result was rather unexpected, as we

knew from the comprehensive Monte Carlo study of Lütkepohl (1985) and our own

studies (Schlick et al. 2013) that, for ordinary first and second-order VARmodels, it

is rare to find levels of accuracy of model selection that exceed 99%. The typical

range is between 95% and 99%. We hypothesize that this maximum reliability is

the result of the additive formulation of the aggregate model selection criterion

from Eq. 117, the comparably low complexity of the four-dimensional reference

model, and the overall small prediction errors. In conclusion, we can say that, in

light of the standards of organizational modeling and simulation (see e.g. Rouse and

Boff 2005), the identifiability of the reference model of periodically correlated,

cooperative work in a vehicle door development project is high and that the

uncertainty in parameter estimation is low. The results are highly consistent and

replicable. The estimation and model selection methods are numerically efficient

and showed a very good numerical stability. To provide additional insights into

modeling and simulation of periodically correlated work processes, we present and

discuss a six-dimensional project model in a similar application scenario in Section

5.2. That chapter also shows that simulated traces of outstanding work can help

improve our understanding of the hold-and-release policy for selected components

in new or updated engineering design information. We also discuss values of key

performance indicators for optimizing problems with and without constraints on the

expected total amount of work xtot according to Eq. 91. In addition, we investigated
the identifiability of this more complex reference model and the resulting parameter

uncertainty in Monte Carlo simulations using the same experimental design and the

same methods. The results show that even the six-dimensional reference model can

be accurately identified from data if constraints are imposed on the auxiliary

variable ε. In this case, the squared cepstral distances are, on average, no larger

than 0.44 and follow a convergence pattern to zero that is similar to the pattern

shown in Fig. 2.17. Furthermore, model selection is extremely reliable. However, if

the auxiliary variable ε is also considered as a free parameter in least square

estimation, the model identifiability is not good. Therefore, we recommend

encoding all constraints of the developed PVAR model formulation in the descrip-

tion of the regression coefficient matrix R and the intercept vector b from linear
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relation 103 that are known in advance. If this is not possible, we recommend

reducing the number of independent parameters by setting selected entries in the

dynamical operators Φ1(v), . . .,Φn(v)(v) to zero, as Ursu and Duchesne (2009)

showed for the quarterly seasonally unadjusted West German income and con-

sumption data (Section 2.7). Otherwise, very large sample sizes will be needed to

accurately estimate the true representation from data.

2.9 Stochastic Formulation with Hidden State Variables

A theoretical extension of the previously introduced approaches to modeling

cooperative work in PD projects through autoregressive processes with periodically

correlated or non-correlated components is the formulation of a stochastic state-

space model with “hidden” (latent) variables (Gharahmani 2001). In statistics, an

independent variable is termed a latent variable (as opposed to an observable

variable) if it cannot be directly observed but is rather inferred through a causal

model from other variables that are directly measured. In our context, the hidden

state variable Xt 2 ℝq represents the comprehensive internal state of the project at a

specific time instant t in vector form. We assume the state vector xt not only
captures the essential dynamics of the work remaining from the q predefined

component-level and system-level tasks (which can be measured, for instance, by

the time left to finalize a specific design or the definable labor units required to

complete a particular development activity or component of the work breakdown

structure; see Yassine et al. 2003 and Sections 2.1 and 2.5) but also the efforts that

must be made to communicate design decisions. The communication conveys the

design information from one person or team to another and contributes to the

common understanding of the design problem, product and processes. Communi-

cation is initiated more or less spontaneously and can also occur across the

organizational hierarchy (Gibson and Hodgetts 1991). If communication occurs

between hierarchically positioned persons, we speak of vertical communication.

Horizontal communication occurs on the same hierarchical level. Diagonal com-

munication refers to communication between managers and working persons

located in different functional divisions. Due to these multiple channels, the internal

state information is not completely known to the project manager but must be

estimated through the mental model of the possible state evolution in conjunction

with readings from dedicated performance measurement instruments (earned value

analysis, etc.). It is assumed that the estimates are obtained periodically in the form

of observation vectors Yt 2 ℝ p. These vectors directly refer to the work remaining

of the predefined work breakdown structure and can be associated to the

corresponding internal state Xt without sequencing errors. Furthermore, it is

assumed that the state process can be decomposed into q interacting subtasks.

These subtasks either represent concurrent development activities on individual

or team levels or vertical, horizontal, or diagonal communication processes based

on speech acts. It is important to note that the dimensions of the state space can
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differ from the observation space. In most cases of practical interest, the internal

state vectors have significantly more components than the observation vectors

Dim Xt½ � > Dim Yt½ �ð Þ. Because we are aiming at a predictive model of a complex

sociotechnical system, the inherent performance fluctuations must also be taken

into account for the representation of the hidden process. We represent the perfor-

mance fluctuations by the random variable εt and assume that they have no

systematic component, that is E εt½ � ¼ 0q. Furthermore, we develop the model

under the assumption that the reliability of the measurement instruments is limited

and non-negligible fluctuations vt of the readings around the true means occur.

However, the instruments are not biased and there is E vt½ � ¼ 0 p.

Formally, we define the state process {Xt} to be linear and influenced by

Gaussian noise εt t ¼ 0, . . . ,Tð Þ. It is assumed that the observation process {Yt}
directly depends on the state process in the sense that each vector Yt being acquired
through observation at time instant t is linearly dependent on the state vector Xt and

not on other instances of the state process. The observation process itself is

perturbed by another Gaussian variable vt. Hence, we have the simultaneous system

of equations

Xtþ1 ¼ A0 � Xt þ εt ð136Þ
Yt ¼ H � Xt þ vt: ð137Þ

The Gaussian vectors εt and vt have zero means and covariances C and V,
respectively:

εteN 0q;C
� �

vteN 0 p;V
� �

:

In contrast to the vector autoregression models, we assume a Gaussian initial state

density with location π0 and covariance Π0 in the above state-space model:

X0eN π0;Π0ð Þ: ð138Þ

Like the stochastic model formulation without hidden variables (Section 2.2), we

make the reasonable assumption that the performance fluctuations and measure-

ments errors are uncorrelated from time step to time step and it holds for all time

steps μ; vf g 2 ℤ that:

E
εμ
vμ

� 
� εμ

vμ

� T	 

¼ C Sεv

ST
εv V

� 
� δμv
� �

:

δμv is the Kronecker delta which was defined in Eq. (14). To simplify the parameter

estimation and complexity analysis, we focus in the following on processes in

which the partial covariances Sεv and STεv are zero:
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E
εμ
vv

� 
� εμ

vv

� T	 

¼ C 0

0 V

� 
� δμv
� �

:

In the literature, the state-space model formulation introduced above is termed the

“forward form” (e.g. van Overschee and de Moor 1996; de Cock 2002). Eq. 136 is

termed the state equation and Eq. 137 the output equation. Additional input

(predictor) variables are not considered in the following. The linear state and output

processes correspond to matrix operations, which are denoted by the operators A0

andH, respectively. The dynamical operator A0 is a square matrix of sizeq� q. The
output operator H is a rectangular matrix of size p� q. The literature often calls A0

the state transition matrix, and H the measurement, observation or generative

matrix. Both matrices can be considered as the system matrices. We assume that

A0 is of rank q, H of rank p and that C, V and Π0 are always of full rank. The

complete parameter vector is θ ¼ A0 H C V π0 Π0½ �.
In the engineering literature, the complete state-space model of cooperative

work in PD projects is termed a linear dynamical system (LDS) with additive

Gaussian noise (de Cock 2002) or—using a more historical terminology—

discrete time Kalman Filter (Puri 2010). In this model, only the vector Yt can be

observed in equidistant time steps, whilst the true state vector Xt and its past

history Xtf gt�1
1 ¼ X1; . . . ;Xt�1ð Þ must be inferred through the stochastic linear

model from the observable variables. A graphical representation in the form of a

dynamic Bayesian network is shown in Fig. 2.18 (cf. Fig. 2.4, Gharahmani 2001).

An LDS model is one of the most prominent models in statistical signal

processing. The model has also proven very useful for sensor data fusion and target

tracking (see e.g. Bar-Shalom et al. 2001; Koch 2010, 2014). Ghahramani and

Hinton (1996), Yamaguchi et al. (2007) and others developed numerical methods to

estimate the independent parameters based on multivariate time series of the

observable variables.

In view of the theory of LDS it is important to point out that the generated

stochastic process {Yt} can have a large memory depth in the sense that the past

X0 X1
...

t = 0 t = 1 t -1

...Y0 Y1 Yt-1

...

...

Xt

t

Yt

t +1

Yt+1

Xt-1 Xt+1

forward backward

Fig. 2.18 Graphical representation of the linear dynamical system with additive Gaussian noise in

the form of a dynamic Bayesian network. The nodes in the graph represent the random state and

observation variables of the stochastic process. The directed arcs encode conditional dependencies

between the variables. The grey arrows indicate the forward and backward messages passed during

the re-estimation of the parameters using the expectation-maximization algorithm (see

Section 2.10 for a detailed explanation of the algorithm)

2.9 Stochastic Formulation with Hidden State Variables 107



must be observed across a long time interval in order to make good predictions of

the future. It is evident that the Markov property (cf. Eq. 18) holds for the hidden

state process {Xt} and the conditional pdf can be expressed as

f θ xtþ1jxt, . . . , x0½ � ¼ f θ xtþ1jxt½ � 8t � 0:

Therefore, the state evolution seems to be memorylessness in the sense that

properties of random variables related to the future depend only on information

about the present state and not on information from past instances of the process

(see Section 2.2). However, for the sequence of observations {Yt} the Markov

property does not necessarily need to be satisfied. This is due to the fact that the

information which is communicated from the past to the future by the hidden

process must not completely flow through the observation Yt. Part of the predictive
information can be “kept secret” from the external observer even over long time

intervals. The predictive information is formally defined in Section 3.2.4 (Eq. 226).

Due to the latent dependency structure, the stochastic process generated by an LDS

can have a certain “crypticity” (Ellison et al. 2009) in that it may not reveal all

internal correlations and structures during the observation time. The process’
crypticity can be analyzed systematically on the basis of “elusive information”

(Marzen and Crutchfield 2014), also defined in Section 3.2.4 (Eq. 231). Formally

speaking, for the conditional pdf of the output process it usually holds that

f θ ytþ1jyt, . . . , y0
� � 6¼ f θ ytþ1jyt

� �
or equivalently expressed based on Bayes theorem as

f θ y0; . . . ; ytþ1

� �
f θ y0; . . . ; yt½ � 6¼ f θ yt; ytþ1

� �
f θ yt½ � :

As a consequence, the LDS representation theoretically allows an infinite memory

depth of the stochastic process and therefore properly subsumes the vector

autoregression model of order n (VAR(n) model) from Section 2.4. As the VAR(n)
model’s memory only reaches back n time steps into the past because its state is the

weighted value of the last n observations, the fact that the observations can covary

with one another through the state process means that in an LDS an observation’s
distribution can be affected by an event occurring arbitrarily far in the past (Rudary

2009).

For the introduced state-space model we can factorize the joint pdf of the system
over time steps t ¼ 0 to t ¼ T as

f θ x0; . . . ; xT ; y0; . . . ; yT½ � ¼ f θ x0½ �
YT�1

t¼0

f θ xtþ1jxt½ �
YT
t¼0

f θ ytjxt½ � ð139Þ

and calculate the marginal pdf by integrating out the hidden states of the process:
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f θ y0; . . . ; yT½ � ¼
Z
q

. . .

Z
q

f θ x0; . . . ; xT ; y0; . . . ; yT½ � dx0 . . . dxT

¼
Z
q

. . .

Z
q

f θ x0½ �
YT�1

t¼0

f θ xtþ1jxt½ �
YT
t¼0

f θ ytjxt½ � dx0 . . . dxT : ð140Þ

If all densities are Gaussian,

f θ x0½ � ¼ N x0; π0;Π0ð Þ
f θ xtjxt�1½ � ¼ N xt;A0xt�1,Cð Þ
f θ ytjxt½ � ¼ N yt;Hxt,Vð Þ,

the integration with respect to the hidden state variables can be carried out analyt-

ically. Using the explicit form for Gaussian densities, we have for a number ofΔt ¼
T þ 1 time steps for the marginal pdf the expression

f θ y0; . . . ; yT½ � ¼ cy

Z
Exp �1

2
x0 � π0ð ÞTΠ�1

0 x0 � π0ð Þ
	

�1

2

XT�1

t¼0

xtþ1 � A0xtð ÞTC�1 xtþ1 � A0xtð Þ

�1

2

XT
t¼0

yt � Hxtð ÞTV�1 yt � Hxtð Þ
#
dx0� � �dxT ; ð141Þ

with the normalization constant

cy ¼ 2πð Þ�Δt
2

pþqð Þ
Det Π0ð Þ�1=2

Det Cð Þ�Δt�1
2 Det Vð Þ�Δt

2 : ð142Þ

It is quite easy to show that the joint pdf is normalized asZ
f θ x0; . . . ; xT ; y0; . . . ; yT½ �dx0� � �dxTdy0� � �dyT ¼ 1:

First, we have to integrate over all yt. As f ytjxt½ � is already a properly normalized

Gaussian, all integrals over yt equal one. We can then carry out the integrals over

x0� � �xT by starting with the one over xT and integrating down to x0. Each integral is
also a normalized Gaussian and finally we obtain unity for all integrals together. A

proper normalization is essential to a correctly computing the effective measure

complexity in Section 4.2.

Based on the notation from Section 2.2, we write the vectors in a more conve-

nient form:
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yT ¼ yT0 � � �yTT
� �

xT ¼ xT0 � � �xTT
� �

bT ¼ yT0 V
�1H þ π0Π�1

0 jyT1 V�1H � � �j jyTT V�1H
� �

and matrices V ¼ IΔt 	 V�1 and C ¼ C1 þ C2 with C1 ¼ IΔt 	 HTV�1H and

C2 ¼

Π�1
0 þAT

0 C
�1A0 �AT

0 C
�1 0

�C�1A0 C�1þAT
0 C

�1A0 �AT
0 C

�1

⋱ ⋱ ⋱
�C�1A0 C�1þAT

0 C
�1A0 �AT

0 C
�1

0 �C�1A0 C�1

0BBBB@
1CCCCA:

The above joint pdf can then be written as

f θ y0; � � �; yT½ � ¼ cyExp �1

2
yTVy� 1

2
π T
0 Π

�1
0 π0

	 
Z
Exp �1

2
xTCxþ bTx

	 

dx0� � �dxT

and computed as:

f θ y0; � � �; yT½ � ¼ cyExp �1

2
yTVy� 1

2
π T
0 Π

�1
0 π0

	 

2πð ÞΔtq=2ffiffiffiffiffiffiffiffiffiffiffiffi
Det Cp Exp

1

2
bTC�1b

	 

: ð143Þ

As we can write

b ¼ I 	 HTV�1
� �

y;

it is convenient to introduce the matrix

B ¼ I 	 V�1H
� �C�1 I 	 HTV�1

� �
:

With this definition, the joint pdf for the observations can be written as

f θ y½ � ¼ cy 2πð ÞΔtq=2ffiffiffiffiffiffiffiffiffiffiffiffi
Det Cp Exp �1

2
yTVy� 1

2
π T
0 Π

�1
0 π0 þ 1

2
yTBy

	 

: ð144Þ

The inverse C�1 of the block tridiagonal matrix C is also a block matrix containing

Δt� Δt blocks of size q� q. As C is symmetric, its inverse is also symmetric. To

illustrate this, Fig. 2.19 shows the inverse C�1 of the matrix C, and Fig. 2.20 shows

the original matrix C for a state process with dimension q ¼ 4 and randomly

generated system matrices A0 and H.
We can observe the following three properties of the inverse, which will be

investigated analytically later on: (1) the matrix elements in the center ofC�1 tend to

a constant block-T€oplitz matrix; (2) the magnitude of the off-diagonal elements
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Fig. 2.19 Matrix elements of the covariance matrix C�1
i j for a state process with dimension q ¼ 4

and randomly generated system matrices A0 and H. The color coding is based on a logarithmic

scale

Fig. 2.20 Matrix elements of the original covariance matrix Ci j (cf. Fig. 2.19) for a state process
with dimension q ¼ 4 and randomly generated system matrices A0 and H. The color coding is

based on a logarithmic scale
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decays exponentially; (3) in the upper and lower left-hand corners the inverse C�1

shows a transient behaviour that is caused by boundary conditions and depends on

the particular covariance of the initial state Π�1
0 .

The ij-th block ofC�1 which we denote asXij, j � i, can be computed explicitely

using the following recursions proven by Bowden (1989):

Xi j ¼ KiK
�1
Δtþ1N j:

The forward recursions for Ki are:

K1 ¼ Iq
K2 ¼ �A�1B1

Kiþ1 ¼ �A�1 BKi þ ATKi�1

� �
, i ¼ 2, � � �,Δt� 1

KΔtþ1 ¼ �BΔtKΔt � ATKΔt�1 ð145Þ

and the backward recursions for Ni read:

NΔt ¼ Iq
NΔt�1 ¼ �BΔtA

�1 ð146Þ

N j�1 ¼ � N jBþ N jþ1A
T

� �
A�1, j ¼ Δt� 1, � � �, 2

N0 ¼ �N1B1 � N2A
T ð147Þ

with

B1 ¼ HTV�1H þ Π�1
0 þ AT

0 C
�1A0

B ¼ HTV�1H þ C�1 þ AT
0 C

�1A0

BΔt ¼ HTV�1H þ C�1

A ¼ �AT
0 C

�1:

As we are interested in the likelihood of some infinitely long observations

y�1
�1; y10 ; y1�1

� �
, we have to study the limiting value of the recursions for Ki!1

and N0 for Δt ! 1. This is accomplished as follows: we transform the recursions

of second order in the following first-order recursions:

Ki

Kiþ1

� 
¼ 0 Ip

�A�1AT A�1B

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:M f

Ki�1

Ki

� 
:

Then the matrices at iteration step i can be expressed explicitly in terms of the initial

matrices:
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Ki

Kiþ1

� 
¼ Mi�1

f

K1

K2

� 
¼ Mi�1

f K
0ð Þ
f :

The initial matrix K
ð0Þ
f depends explicitly on the covariance of the initial state and

the system matrices:

K
0ð Þ
f ¼ K1

K2

� 
¼ Iq

CA�T
0 HTV�1H þ Π�1

0 þ AT
0 C

�1A0

� �� 
:

Expanding the initial matrix K
ð0Þ
f in the eigenvectors vk,f of the forward transition

matrix Mf

M fV f ¼ V fΛ
V f ¼ v1, f � � �v2q, f

� �� �
Λ ¼

λ1, f
⋱

λ2q, f

0@ 1A;

where the eigenvalues are arranged in descending order

λ1, f
�� �� � λ2, f

�� �� � � � � � λ2q, f
�� ��, the coefficients Tf of the basis expansion

K
0ð Þ
f ¼ V fT f

are easily obtained as

T f ¼ V�1
f K

0ð Þ
f :

Note that the rate for reaching the asymptotic behavior depends on the ratio of the

leading eigenvalue to the second largest one. Inserting the above expansion in the

recursions, we find

Ki

Kiþ1

� 
¼ Mi�1

f V fT f

¼ Mi�1
f v1, f � � �Mi�1

f v2q, f

� �
T f

¼ λi�1
1, f v1, f � � �λi�1

2q, f v1, f

� �
T f

!i!1
λi�1
1, f v1, f � � �λi�1

m, f vm, f 0� � �0
� �

T f :

Here, m is the multiplicity of the largest eigenvalue. Let bT f be the m first rows of Tf,

and let bV f be the m most left columns of Vf, then we have:

2.9 Stochastic Formulation with Hidden State Variables 113



Ki

Kiþ1

� 
!i!1

λi�1
1, f
bV f
bT f :

It is easy to show that the eigenvectors can be partitioned as

vi, f ¼ ~v i, f

λi, f ~v i, f

� 
;

because the invariance condition for the forward recursions can be transformed into

the quadratic eigenvalue problem

�λi, fA
�1B~v i, f � A�1AT~v i, f ¼ λ2i, f ~v i, f :

Finally, for large i the matrix Ki tends to

Ki!1 ¼ λi�1
1 Iq0
� � ~v 1, f � � � ~v m, f

λ1, f ~v 1, f � � � λ1, f ~v m, f

� bT f

¼ λi�1
1 ~v 1, f � � �~v m, f

� �bT f

¼ λi�1
1

~V f
bT f ;

i.e. it is the product of a constant matrix ~V f
bT f and a pre-factor λi�1

1 . A similar

equation can be derived for the backward recursions. Consequently, the matrix

block Xij in the middle of C also tends to a constant matrix.

We can derive another expression for Xij that avoids the numerical instability of

the above recursions for large index i ! 1: The block on the diagonal is given by

Xii ¼ lim
N!1

1

N

XN
n¼0

Bþ e
2πin
N Aþ e

2πin N�1ð Þ
N AT

� ��1

:

Moreover, we derive the joint pdf for the observations if the system is in steady

state. Using the result for the joint pdf of the observed states, Eq. 144, we see

that the total covariance of all observations in steady state ( μ ¼ 0, see Eq. 26) is

given by

Cy ¼ V � Bð Þ�1:

Using the Woodbury matrix identity (Higham 2002)

Aþ UCVð Þ�1 ¼ A�1 � A�1U C�1 þ VA�1U
� ��1

VA�1; ð148Þ

we can calculate
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V � Bð Þ�1 ¼ IΔt 	 V�1
� �� IΔt 	 V�1H

� �C�1 IΔt 	 HTV�1
� �� ��1

¼ IΔt 	 V�1
� ��1 � IΔt 	 V�1

� ��1
IΔt 	 V�1H
� �

� �C þ IΔt 	 HTV�1
� �

IΔt 	 V�1
� ��1

IΔt 	 V�1H
� �� ��1

� IΔt 	 HTV�1
� �

IΔt 	 V�1
� ��1

:

Using the identities A	 Bð Þ�1 ¼ A�1 	 B�1 and A	 Bð Þ C	 Dð Þ ¼ AC	 BD, we
find

V � Bð Þ�1 ¼ IΔt 	 V þ IΔt 	 Hð Þ C � IΔt 	 HTV�1H
� ��1

IΔt 	 HT
� �

¼ IΔt 	 V þ IΔt 	 Hð Þ C2ð Þ�1 IΔt 	 HT
� �

: ð149Þ

The matrix C2 appeared in the explicit form for the joint pdf of the Markov process

(see Eq. 33 in Section 2.2). Its inverse could be computed explicitly in Eq. 34 and

was denoted as Cx, which is the covariance of the hidden variables. Finally, the

covariance of the observations is given as

Cy ¼ IΔt 	 V þ IΔt 	 Hð ÞCx IΔt 	 HT
� �

: ð150Þ

This shows that the covariance for the observations in steady state is also block

Toeplitz. The joint pdf for the observed states is given by

f y½ � ¼ 1

2πð Þ pΔt=2 Det Cy

� �1=2Exp �1

2
yTC�1

y y

	 

: ð151Þ

It is evident that in the case of an LDS with an arbitrary structure of the system

matrices A0 and H, not only the evolution of observables between all consecutive

time steps must be considered in order to make good predictions but also all

possible transitions between hidden states of the process in the past that could

give rise to the sequence of observations (see Eq. 140). For two consecutive time

steps, we find the conditional density:

f θ ytþ1jyt
� � ¼ f θ ytþ1; yt

� �
f θ yt½ �

¼ 1

f θ yt½ �
Z
q

Z
q

f θ ytþ1; yt; xtþ1; xt
� �

dxtþ1dxt

¼ 1

f θ yt½ �
Z
q

Z
q

f θ xt½ � f θ ytjxt½ � f θ xtþ1jxt½ � f θ ytþ1

��xtþ1

� �
dxtdxtþ1:

For Gaussian noise vectors εt and vt, the joint pdf of the system can be written as
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f θ x0; . . . ; xT ; y0; . . . ; yT½ � ¼ N x0; π0;Π0ð Þ
YT�1

t¼0

N xtþ1;A0xt,Cð Þ
YT
t¼0

N yt;Hxt,Vð Þ;

ð152Þ

where the Gaussian density N :ð Þ with location μx and covariance Σx is defined as

(cf. Eq. 13)

N x; μx;Σxð Þ ¼ 1

2πð Þ p=2 Det Σx½ �ð Þ1=2
Exp �1

2
x� μxð ÞTΣ�1

x x� μxð Þ
	 


: ð153Þ

The density function fθ[yt] of state Yt given the initial location π0, and the system

and covariance matrices can be written explicitly as (cf. Eq. 19)

f θ yt½ � ¼ 1

2πð Þ p=2 Det Σy;t

� �� �1=2Exp �1

2
yt � HAt

0π0
� �TΣ�1

y;t yt � HAt
0π0

� �	 

; ð154Þ

where

Σy;t ¼ HΣx;tH
T þ V

and

Σx;t ¼ At
0Π0 AT

0

� �t þXt�1

v¼0

Av
0C AT

0

� �v
:

The conditional density of observationYtþ1 given observationYt ¼ yt is (cf. Eq. 20):

f θ ytþ1jyt
� � ¼ 1

f θ yt½ �
Z
ℝq

Z
ℝq

N xt;A
t
0π0,Σx;t

� �N yt;Hxt,Vð Þ

N xtþ1;A0xt,Cð ÞN ytþ1;Hxtþ1,V
� �

dxtdxtþ1:

We will derive the explicit form of this density for the steady-state process in

Section 4.2.

Following the procedure set out in Sections 2.1 and 2.2, a closed-form solution to

the total amount of work done in all tasks during the iteration process (modeled by

hidden initial state x0 and operators A0 and H ) until the stopping criterion δ is

satisfied is given by
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E
XTδ

t¼0

Yt

" #
¼
XTδ

t¼0

E Yt½ �

¼
XTδ

t¼0

H � At
0 � x0

� �
¼ H �

XTδ

t¼0

At
0

 !
� x0

¼ H � I p � A0

� ��1 � I p � A0ð ÞTδþ1
� �

� x0 :

If all subtasks of the state process are initially to be completed 100%, the initial

state is simply

x0 ¼
1

⋮
1

0@ 1A:

As with the vector autoregression models, the expected total amount of work ytot
across the time interval t ¼ 0, . . . , Tδ is estimated by:

ytot ¼ Total H � I p � A0

� ��1 � I p � A0ð ÞTδþ1
� �

� x0
h i

: ð155Þ

In the limit Tδ ! 1 we have for an asymptotically stable project phase the total

amount of work done during the iteration process:

lim
Tδ!1

E
XTδ

t¼0

Yt

" #
¼ H � I p � A0

� ��1 � x0 :

Following the concept from Section 2.3, we can also transform the LDS into the

spectral basis and therefore decompose the state process into a system with

uncoupled processes with correlated noise. To transform the state-space coordi-

nates, the state transitions matrix A0 is diagonalized through an eigendecomposition

as shown in Eq. 35. The eigenvectors ϑi A0ð Þ ¼ S:i i ¼ 1 . . . qð Þ of the state transition
matrix are the column vectors of the linear transformation represented by the

transformation matrix S. The stochastic processes {X
0
t} and {Y

0
t} transformed in

the spectral basis are generated by the system of equations

X0
tþ1 ¼ ΛS � X0

t þ ε0t
Y 0
t ¼ H

0 � X0
t þ v0t

with the additional representation
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H
0 ¼ S�1 � H
ε0te 0q;C

0� �
C

0 ¼ S�1 � C � ST
� �*� ��1

v0te 0 p;V
0� �

V
0 ¼ S�1 � V � ST

� �*� ��1

X0
0e π00;Π

0
0

� �
π00 ¼ S�1 � π0

Π0
0 ¼ S�1 � Π0 � ST

� �*� ��1

:

The transformed covariance matrices C0 and V0 are also positive-semidefinite. The

transformed LDS can be helpful in evaluating emergent complexity of the modeled

PD project, because the steady-state covariance matrix Σ0 of the state process can be
expressed in a simple and expressive matrix form (see Eq. 258).

Moreover, in specific application contexts it can also be interesting to use the

inherent “degeneracy” in the LDS model (see e.g. Roweis and Gharahmani 1999).

Degeneracy means that the complete informational structure contained in the

covariance matrix C of the performance fluctuations can be shifted into the state

transition matrix A0 and the observation matrix H. The informational structure can

be shifted by decomposing C into independent covariance components through the

same eigendecomposition that was used to transform the state-space coordinates:

C ¼ U � ΛU � U�1

with

ΛU ¼ Diag λi Cð Þ½ � 1 � i � q:

Because C is symmetric by definition, the eigenvectors ϑi Cð Þ ¼ U:i are mutually

orthogonal and U�1 ¼ UT holds. Therefore, for any LDS that is not driven by

performance fluctuations represented by a standard normal distribution with iden-

tity covariance matrix Iq, we can build an equivalent model with rescaling based on

the transformation T ¼ U � Λ1=2
U :

X
0 ¼ T�1 � X ð156Þ

A0
0 ¼ T�1 � A0 � T ð157Þ
H

0 ¼ H � T : ð158Þ

The rescaling can be interpreted as a “whitening” of the hidden random vectors

(DelSole and Tippett 2007, cf. Eqs. 253 and 254). A random vector in a sample

space is said to be white if the vector components are statistically independent of

each other. If the independent vector components are also identically distributed, as
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in our case, then the random vector is said to be an i.i.d. random vector. In practice,

variables can be transformed to whitened space by projecting them onto their

principal components and then normalizing the principal components to unit

variance. It is evident that the informational structure of the covariance matrix

V cannot be changed in the same way since the realizations Yt are definitely

observed and we are not free to rescale them.

To support the time-dependent statistical analysis of the work processes and to

simplify the analytical complexity evaluation in Section 4.2, we introduce the

autocovariance function

CYY t; sð Þ :¼ E Yt � μtð Þ Ys � μsð ÞT
h i

¼ E YtY
T
s

� �� μtμ
T
s

of the observation process {Yt}, based on the assumption that the state process {Xt}

is in steady state. If the modeled project is asymptotically stable and therefore the

modulus of the largest eigenvalue of the dynamical operator A0 is less than 1, the

mean of the state process in steady state is equal to the zero vector, indicating that

there is no remaining work and we have μX ¼ 0. A detailed analysis of steady-state

process dynamics will be carried out in Section 4.1, and we only present some basic

results from system theory. If {Xt} is a stationary process, the autocovariance of the

observation process becomes

CYY k; lð Þ ¼ CYY l� kð Þ
¼ CYY τð Þ;

where τ ¼ l� k is the number of time steps by which the observation has been

shifted. As a result, the autocovariance function can be expressed as a function with

the lead time as the only argument:

CYY τð Þ ¼ E Yt � μYð Þ Ytþτ � μYð ÞT
h i

¼ E YtY
T
tþτ

� �� μYμ
T
Y

¼ E YtY
T
tþτ

� �� H � μXð Þ H � μXð ÞT
¼ E YtY

T
tþτ

� �
: ð159Þ

Hence, in a signal processing sense, the autocovariance CYY(τ) and the

autocorrelation

RYY τð Þ :¼ E YtY
T
tþτ

� �
are equal in steady state for every lead time and we have
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CYY τð Þ ¼ RYY τð Þ: ð160Þ

According to the work of van Overschee and de Moor (1996) on subspace identi-

fication of purely stochastic systems the autocovariance function of the observation

process is given by

CYY τð Þ ¼ H � Σ � HT þ V
H � Aτ�1

o � G
τ ¼ 0

τ > 0;

�
ð161Þ

where the coefficient G can be expressed as the expected value

G ¼ E Xtþ1Y
T
t

� �
¼ A0 � Σ � HT:

In this sense G describes the cross-covariance between hidden state Xtþ1 and

observed state Yt. The matrix Σ denotes the covariance of the states in steady-

state of the process {Xt}. It satisfies the Lyapunov equation (see Eq. 27) and can be

expressed in closed-form in the original state-space coordinates according to

Eq. 245.

For the autocovariance function the following symmetry condition holds:

CYY �τð Þ ¼ CYY τð ÞT:

As can be seen in the autocovariance function, the correlations between observa-

tions over τ > 0 time steps can be significantly larger for an LDS in steady state than

for the previously formulated VAR and PVAR models.

Following a similar line of thought as in the forcing matrix concept from

Section 2.1 (see Eq. 23), the LDS model according to Eqs. 136 and 137 can be

transformed into a more compact “forward innovation model” (e.g. van Overschee

and de Moor 1996; de Cock 2002). In this context, “more compact” means that only

a single noise source is used to model performance fluctuations. The forward

innovation model is an equivalent representation in the sense that the first-order

and second-order statistics of the sequence of observations generated by the model

in steady state are the same, i.e., the autocovariances E YtY
T
tþτ

� �
and cross-

covariances E Xtþ1Y
T
t

� �
are identical. The same property holds for the “backward

form” and the corresponding “backward innovation form” that will be derived later

in this chapter.

The forward innovation representation results from applying a Kalman filter

(Kalman 1960; for a comprehensive consideration of theoretical and practical

aspects see e.g. Kailath 1981; Bar-Shalom et al. 2001; Honerkamp 2002 or Puri

2010) to the state-space model. In general, the Kalman filter operates recursively on

time series of noisy input data from a PD project (or other dynamical systems) to

calculate an estimate of the hidden system state that is statistically optimal. The

filter is named after Rudolf E. Kálmán, who was one of the principal developers of
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its theoretical foundations. As will be shown in the analysis below, the algorithm

follows a two-step procedure. In the first step—the so-called prediction step—the

Kalman filter calculates an unbiased and linear estimate of the current state vector

in conjunction with the covariances. Once the result of the next observation is

obtained, the estimates are updated. The update of the state is done by weighting the

previous state estimate and the measurement prediction error. These weights are

determined in a way which assigns larger weights to state estimates with higher

certainty.

Following the textbook of Bar-Shalom et al. (2001), we start the derivation of the

forward innovation representation by defining the hidden-state variable as the

conditional mean of the state Xtþ1 given all measurements up to time t, that is

x̂ tþ1jt :¼ E Xtþ1jY t
0

� �
:¼
Z
q
xtþ1 f θ xtþ1jy t0

� �
dxtþ1:

Following the preferred notation, the term Yt0 represents the sequence of observa-

tions of task processing in the PD project that have been made across an interval of

t and are used to compute the conditional mean.

Using the state-space Eqs. 136 and 137 and the fact that εt has zero-mean, the

state prediction is

x̂ tþ1jt ¼ E A0 � Xt þ εtð ÞjY t
0

� �
¼ A0 � E XtjY t

0

� �
¼ A0 � x̂ tjt:

and the state prediction error is given by

~X tþ1jt :¼ Xtþ1 � x̂ tþ1jt
¼ A0 � Xt þ εt � A0 � x̂ tjt
¼ A0 � ~Xtjt þ εt:

The standard Kalman filter calculates x̂ tjt, which is an unbiased and linear Minimum

Mean Square Error (MMSE, see e.g. Honerkamp 2002) estimate of the state vector

Xt, given the current sequence of observations Yt0.
The state prediction covariance Φtþ1jt is computed as follows:

Φtþ1jt :¼ E ~Xtþ1jt~X T
tþ1jtjY t

0

h i
¼ A0 �Φtjt � AT

0 þ C:

The predicted measurements, defined as
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ŷ tþ1jt :¼ E Ytþ1jY t
0

� �
follow from the observation (measurement) equation and the fact that vt has zero
mean:

ŷ tþ1jt ¼ H � x̂ tþ1jt:

The measurement prediction error

~Ytþ1jt :¼ Ytþ1 � ŷ tþ1jt;

also simply called “innovation,” is given by

~Ytþ1jt ¼ H � Xtþ1 þ vtþ1 � H � x̂ tþ1jt
¼ H � ~Xtþ1jt þ vtþ1:

Moreover, the innovation covariance is given by

Stþ1jt :¼ E ~Ytþ1jt~Y T
tþ1jtjY t

0

h i
¼ H � E ~Xtþ1jt~X T

tþ1jtjY t
0

h i
� HT þ V

¼ H �Φtþ1jt � HT þ V ð162Þ

and the covariance between state and measurement is

Qtþ1jt :¼ E ~Xtþ1jt~Y T
tþ1jtjY t

0

h i
¼ Φtþ1jt � HT:

Defining the filter gain,

W :¼ Qtþ1jt � S�1
tþ1jt

¼ Φtþ1jt � HT � S�1
tþ1jt

the update of the state is the cited MMSE estimate, which is given for Gaussian

random variables in closed form as

x̂ tþ1jtþ1 ¼ x̂ tþ1jt þW � ~Y tþ1jt:

Now the forward innovation representation can be written down: From
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x̂ tþ1jt ¼ A0 � x̂ tjt
¼ A0 x̂ tjt�1 þW � ~Ytjt�1

� �
¼ A0 � x̂ tjt�1 þ A0 �W � ~Ytjt�1

with the definition of the Kalman gain

K :¼ A0 �W
¼ A0 �Φtþ1jt � HT � S�1

tþ1jt ð163Þ

and the more convenient notation

X f
tþ1 :¼ x̂ tþ1jt

ηt :¼ ~Ytjt�1;

we obtain the simultaneous system of equations:

X f
tþ1 ¼ A0 � X f

t þ K � ηt ð164Þ
Yt ¼ H � X f

t þ ηt: ð165Þ

In this alternative representation form, the time-independent Kalman gain matrix

K can be interpreted as forcing matrix of the state process noise ηt (cf. Eq. 23),
which is driven by the single-source fluctuations. The time-dependent Kalman gain

matrix will be calculated in the next chapter.

An explicit calculation of the state prediction covariance in steady-state, using

the fact that x̂ tþ1jt ¼ E Xtþ1jY t
0

� �
is already an expected value, leads to

Φtþ1jt ¼ E ~X tþ1jt ~X T
tþ1jtj Yi, i � tf g

h i
¼ E Xtþ1 � x̂ tþ1jt

� �
Xtþ1 � x̂ tþ1jt
� �Tj Yi, i � tf g

h i
¼ E Xtþ1X

T
tþ1j Yi, i � tf g�� �� E x̂ tþ1jtx̂ tþ1jt

� �Th i
¼ Σ� Σ f : ð166Þ

Σ is the covariance of the original state variable. In steady state it satisfies the

Lyapunov criterion

Σ ¼ A0 � Σ � AT
0 þ C

from Eq. 27. The Lyapunov equation is explained in great detail in Lancaster and

Tismenetsky (1985) and will also be discussed in Sections 4.1.1 and 4.2.2. Σf is the

covariance of the state variable in the forward innovation representation, that is the

conditional mean of the statextþ1 given all measurements from the infinite past up to

time t. Σf satisfies another Lyapunov equation (cf. Eq. 27):
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Σ f ¼ A0 � Σ f � AT
0 þ K � S � KT : ð167Þ

The entries of Σf can be determined by solving an algebraic Ricatti equation (see

Eq. 296), which will be introduced in the implicit formulation of a complexity

solution in Section 4.2.2.

In steady-state Φtþ1jt converges to Φ and so Stþ1jt approaches the constant

covariance matrix S, which was used in the above Lyapunov equation. With the

autocovariance of the observable variables in the innovation representation

CYY 0ð Þ ¼ E YtY
T
t

� �
¼ H � Σ f � HT þ S ð168Þ

we arrive at an expression for the Kalman gain that is equivalent to the solution in

the work of de Cock (2002):

K ¼ A0 � Σ � HT � A0 � Σ f � HT
� �

CYY 0ð Þ � H � Σ f � HT
� ��1

: ð169Þ

It is evident that the single-source performance fluctuations that drive the state

process in the forward innovation form can be expressed as

ηt eN 0q; S
� �

with covariance

S ¼ CYY 0ð Þ � H � Σ f � HT: ð170Þ

Finally, let us show that both representations have the same autocovariances:

CYY 0ð Þ ¼ E YtY
T
t

� �
¼ H � Σ � HT þ V

C f
YY 0ð Þ ¼ E YtY

T
t

� �
Yt generated based on X f

t

� �
¼ H � Σ f � HT þ S

and same cross-covariance between hidden and observable states

G ¼ E Xtþ1Y
T
t

� �
¼ A0 � Σ � HT

G f ¼ E X f
tþ1 Y f

t

� �T	 

¼ A0 � Σ f � HT þ K � S:

To show that CYY 0ð Þ ¼ C f
YY 0ð Þ, we simply insert Eq. 162 into Eq. 166:
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S ¼ H Σ� Σ f
� �

HT þ V:

Rearranging the above equality proves the statement. Secondly, rearranging the

definition of the Kalman gain (Eq. 163)

K ¼ A0 � Σ � HT � A0 � Σ f � HT
� �

S�1

yields

K � S ¼ A0 � Σ � HT � A0 � Σ f � HT;

from which G ¼ G f follows immediately.

In conclusion, the covariance matrices of the hidden states differ among both

representations and it holds that Σ 6¼ Σ f , in general. Furthermore, the covariances

of the single-source performance fluctuations driving the state process in the

forward innovation form differ from the covariances of the measurement error in

the regular forward form and for arbitrary dynamics we have V 6¼ S. However, the
autocovariances and covariances of the observed processes remain unchanged and

the cross-covariance between hidden and observable states are the same. The

parameters of the state-space model are (A0, H, C, V ) whereas in the innovations

representation the parameters are (A0, H, K, S). As we will show in Section 4.2.2,

the differences do not necessarily lead to a conflict in terms of a different com-

plexity evaluation according to de Cock (2002) and this work: The explicit com-

putation of the complexity measure EMC in Section 4.2.1 leads to a result which

depends only on the combined quantity CYY 0ð Þ ¼ RYY 0ð Þ ¼ H � Σ � HT þ V and

G ¼ A0 � Σ � H.

Concerning the analytical complexity evaluation that will be presented in Sec-

tion 4.2, it is also helpful to formulate a complementary “backward model” in

which the autocovariances of the observed process and the cross-covariance

between hidden and observable states are also left unchanged in steady state (van

Overschee and de Moor 1996; de Cock 2002). In this model the recursive state

Eq. 136 runs not forward but backward in time. Due to the backward recursion the

backward model is formulated by considering the MMSE estimate of Xt givenXtþ1:

x̂ tjtþ1 :¼ E XtjXtþ1½ �
¼ E XtX

T
tþ1

� �
E Xtþ1X

T
tþ1

� �� ��1
Xtþ1;

where the last equation holds true because all random variables are Gaussian. From

the state-space representation according to Eq. 136 we compute
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E XtX
T
tþ1

� �¼ E Xt A0 � Xt þ εtð ÞT
h i

¼ Σ � AT
0 ;

and due to the satisfied stationary condition for the state covariance E Xtþ1X
T
tþ1

� �
¼ Σ we can express the MMSE estimate of Xt given Xtþ1 as

x̂ tjtþ1 ¼ Σ � AT
0 � Σ�1 � Xtþ1:

Now, we define the error

εtjtþ1 :¼ Xt � x̂ tjtþ1

and the backward state as

Xt�1 :¼ Σ�1 � Xt: ð171Þ

(note that the hat symbol denotes the hidden state variable of the backward model

and not the means). Transposing the second to last equation and inserting the above

one, we obtain the recursion for the hidden state in the backward model

Xt�1 ¼ Σ�1 x̂ tjtþ1 þ εtjtþ1

� �
¼ Σ�1 Σ � AT

0 � Σ�1 � Xtþ1 þ εtjtþ1

� �
¼ AT

0 � Xt þ εt
¼ A0 � Xt þ εt ð172Þ

with the definition of the backward dynamical operator

A0 :¼ AT
0 ð173Þ

and the error term

εt :¼ Σ�1 � εtjtþ1: ð174Þ

The output equation in backward form is obtained by considering the MMSE

estimate of Yt given Xtþ1:
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ŷ tjtþ1 :¼ E YtjXtþ1½ �
¼ E YtX

T
tþ1

� �
E Xtþ1X

T
tþ1

� �� ��1
Xtþ1

¼ E H � Xt þ vtð Þ AT
0 � Xt þ εt

� �Th i
Σ�1 � Xtþ1

¼ H � Σ � AT
0 � Σ�1 � Xtþ1

¼ H � Σ � AT
0 � Xt

¼ H � Σ � A0 � Xt:

Re-arranging the error equation

vt ¼ Yt � ŷ tjtþ1

we obtain

Yt ¼ ŷ tjtþ1 þ vt
¼ H � Σ � A0 � Xt þ vt
¼ H � Xt þ vt; ð175Þ

where the backward output operator was defined as

H ¼ H � Σ � A0:

The joint covariance matrix of the zero-mean Gaussian processes εμ
� �

and vvf g is

defined as

E
εμ
vv

� 
:

εμ
vv

� T	 

¼ C Sεv

S
T

εv V

� 
� δμv
� �

:

Let Σ denote the covariance of the states in steady-state of the backward process

Xt

� �
. According to the definition from Eq. 171,Σ can be expressed as the inverse of

the forward state covariance:

Σ ¼ Σ�1:

Since in the backward form the variables εt and vt and their past histories are also

independent of state Xt, the backward state covariance matrix Σ also satisfies the

Lyapunov equation (cf. Eq. 101)

Σ ¼ AT
0 � Σ � A0 þ C , Σ�1 ¼ AT

0 � Σ�1 � A0 þ C

and can be expressed in closed-form similar to Eq. 245. Hence, we can express the

individual covariances of the zero-mean Gaussian processes as:
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C ¼ Σ�1 � AT
0 � Σ�1 � A0

V ¼ CYY 0ð Þ � GT � Σ�1 � G:

The autocovariance function is

CYY τð Þ ¼ H � Σ � HT þ V ¼ GT � Σ�1 � Gþ V
H � Aτ�1

o � G ¼ GT � Aτ�1

o � G
τ ¼ 0

τ > 0;

�
where the cross-covariance between hidden and observed state is given by

G ¼ E Xt�1Y
T
t

� �
¼ A0 � Σ � HT þ Sε v:

Due to the definition of the backward state from Eq. 171 the cross-covariance can

be simply written as

G ¼ HT:

We can also develop a corresponding backward innovation form. The derivation of

the backward innovation form follows exactly the same procedure that gave the

forward innovation representation and we therefore only present the essential steps.

The backward oriented hidden-state variable x̂ t�1jt is defined as the conditional

mean of the state xt�1 given all measurements from the last time step T down to time

step t, that is

x̂ t�1jt :¼ E Xt�1jY T
t

� �
:¼
Z
q
xt�1 f θ xt�1jyTt

� �
dxt�1:

The state retrodiction (backward oriented state prediction) is

x̂ t�1jt ¼ E A0 � Xt þ εt
� �jY T

t

� �
¼ A0 � E XtjY T

t

� �
¼ A0 � x̂ tjt:

and the state retrodiction error is
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~Xt�1jt :¼ Xt�1 � x̂ t�1jt

¼ A0 � Xt þ εt � A0 � x̂ tjt

¼ A0 � ~Xtjt þ εt:

The state retrodiction covariance Φtþ1jt is

Φt�1jt :¼ E ~Xt�1jt~X T
t�1jtjY T

t

h i
¼ A0 �Φtjt � AT

0 þ C:

The measurements retrodiction is

ŷ t�1jt :¼ E Yt�1jY T
t

� �
¼ H � x̂ t�1jt :

The measurement retrodiction error ~Yt�1jt :¼ Yt�1 � ŷ t�1jt is given by

~Yt�1jt ¼ H � Xt�1 þ vt�1 � H � x̂ t�1jt
¼ H � ~Xt�1jt þ vt�1:

The innovation covariance is given by

St�1jt :¼ E ~Yt�1jt
~Y
T

t�1jtjY T
t

h i
¼ H � E ~Xt�1jt~X

T

t�1jtjY T
t

h i
� HT þ V

¼ H �Φt�1jt � HT þ V: ð176Þ

The covariance between state and measurement is

Qt�1jt :¼ E ~Xt�1jt
~Y
T

t�1jtjY T
t

h i
¼ Φt�1jt � HT

:

Based on the filter gain

W :¼ Qt�1jt � S�1

t�1jt
¼ Φt�1jt � HT � S�1

t�1jt

the update of the state can be written as
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x̂ t�1jt�1 ¼ x̂ t�1jt þW � ~Yt�1jt:

From the state retrodiction

x̂ t�1jt ¼ A0 � x̂ tjt

¼ A0 x̂ tjtþ1 þW � ~Ytjtþ1

� �
¼ A0 � x̂ tjtþ1 þ A0 �W � ~Ytjtþ1

using the Kalman gain

K ¼ A0 �W
¼ A0 �Φt�1jt � HT � S�1

t�1jt; ð177Þ

we finally arrive at the simultaneous system of equations:

X
b
t�1 ¼ A0 � Xb

t þ K � ηt ð178Þ
Yt ¼ H � Xb

t þ ηt; ð179Þ

where we have used the more convenient notation

Xb
t�1 :¼ x̂ t�1jt

ηt :¼ ~Yt�1jt

and the definitions A0 ¼ AT
0 and H ¼ GT ¼ G f

� �T
as before.

Because x̂ t�1jt ¼ E Xt�1jY T
t

� �
is an expected value, the state retrodiction covari-

ance in steady-state can be expressed as

Φt�1jt ¼ E ~Xt�1jt~X
T

t�1jtj Yi, i � tf g
h i

¼ E Xt�1 � x̂ t�1jt
� �

Xt�1 � x̂ t�1jt
� �T��� Yi, i � tf g

h i
¼ E Xt�1X

T

t�1j Yi, i � tf g�h i
� E x̂ t�1jtx̂ t�1jt

� �Th i
¼ Σ� Σb

: ð180Þ

In steady state Σ and Σb
satisfy the Lyapunov equations:
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Σ ¼ A0 � Σ � AT

0 þ C

Σb ¼ A0 � Σb � AT

0 þ K � S � KT
:

The entries ofΣb
can also be calculated by solving an algebraic Ricatti equation (see

Eq. 298 in Section 4.2.2.).

As before, in steady-state Φt�1jt converges to Φ and St�1jt to S. Based on the

autocovariance

CYY 0ð Þ ¼ E YtY
T
t

� �
¼ H � Σb � HT þ S

we can express the backward Kalman gain (cf. de Cock 2002) as:

K ¼ A0 � Σ � HT � A0 � Σb � HT
� �

CYY 0ð Þ � H � Σb � HT
� ��1

¼ HT � AT
0 � Σb � G

� �
CYY 0ð Þ � GT � Σb � G
� ��1

; ð181Þ

where we have used the previous definitions A0 ¼ AT
0 and H ¼ GT. We define

Gb :¼ H. It holds that Gb ¼ GT ¼ G f
� �T

. The autocovariance function therefore

can be expressed as

CYY τð Þ ¼ H � Σb � HT þ S ¼ GT � Σb � Gþ S τ ¼ 0

H � Aτ�1

o � G ¼ GT � Aτ�1
o

� �T � HT τ > 0:

(

The performance fluctuations in the backward innovation model can therefore be

expressed as

ηt ¼ N ξ; 0q; S
� �

with covariance

S ¼ CYY 0ð Þ � GT � Σb � G: ð182Þ

After comprehensively analyzing different forward and backward representations

of an LDS, we will direct our attention toward a robust technique for estimating the

independent parameters from data. An iterative maximum likelihood estimation

technique for minimizing the deviation of the data from the predictions of the

forward model will be presented in the next chapter. It is not difficult to transform

the parameter estimates into the alternative forms by using the above definitions.
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2.10 Maximum Likelihood Parameter Estimation

with Hidden State Variables

Minimizing the deviation of observations from the model’s predictions is equiva-
lent to maximizing the likelihood of the sequence of observations conditioned on

the model structure and independent parameters. Unfortunately, to date the only

known methods for carrying out a maximum likelihood estimation of the parame-

ters of an LDS have been iterative, and therefore computationally demanding. The

objective function to be maximized is the logarithmic probability ln L (.) of the

fixed sequence of observations ytf gT
0 ¼ y0; y1; . . . ; yTð Þ given an underlying LDS

model with parameter vector θ ¼ A0 H C V π0 Π0½ �:

ln L θj ytf gT
0

� � ¼ ln f θ y0, . . . , yT½ � ! max: ð183Þ

The objective function is also known as the log-likelihood function. The

log-likelihood function can be obtained from the joint pdf fθ[x0, . . ., xT, y0, . . ., yT]
of the LDS (Eq. 139) through marginalization. The marginal pdf fθ[y0 . . . yT] can be
calculated by integrating out the hidden states of the process (Eq. 140) and can be

simplified by factorization:

ln L θj ytf gT
0

� � ¼ ln f θ y0; . . . ; yT½ �
¼ ln

Z
q

. . .

Z
q

f θ x0, . . . , xT , y0, . . . yT½ � dx0 . . . dxT

¼ ln

Z
q

. . .

Z
q

f θ x0½ �
YT�1

t¼0

f θ xtþ1jxt½ �
YT
t¼0

f θ ytjxt½ � dx0 . . . dxT : ð184Þ

While the gradient and Hessian of the log-likelihood function are usually difficult to

compute, it is relatively easy to calculate the logarithmic joint probability and its

expected value for a particular setting of the independent parameters. The observ-

ability, i.e. whether the independent parameters can be identified uniquely for a

particular sequence of observations, is discussed in more depth later on. In the

following we will use a specific algorithm developed by Ghahramani and Hinton

(1996) to indirectly optimize the log-likelihood of the observations by iteratively

maximizing expectations. The general principle behind the Ghahramani-Hinton

algorithm is the expectation-maximization (EM) principle. The principle behind

the EM algorithm was first proposed by Hartley (1958). Hartley’s iterative maxi-

mum likelihood procedure with latent variables was first termed “EM algorithm” in

the classic paper of Dempster et al. (1977) in which they generalized Hartely’s
approach and proved local convergence. The searching direction of the algorithm

has a positive projection on the gradient of the log-likelihood. Each iteration

alternates between two steps, the estimation (E) and the maximization (M). The

maximization step maximizes an expected log-likelihood function for a given

estimate of the parameters that is recalculated in each iteration by the expectation
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step. As Roweis and Gharahmani (1999) show, we can use any parameterized

probability distribution g
θ
^ x0; . . . ; xT½ �—not necessarily multivariate normal—

over the hidden state variables to obtain a lower bound on the log-likelihood

function ln L θj ytf gT
0

� �
:

ln

Z
q

. . .

Z
q

f θ x0; . . . ; xT ; y0; . . . ; yT½ �dx0 . . . dxT

¼ ln

Z
q

. . .

Z
q
g
θ
^ x0; . . . ; xT½ � f θ x0; . . . ; xT ; y0; . . . ; yT½ �

g
θ
^ x0; . . . ; xT½ � dx0 . . . dxT

�
Z
q

. . .

Z
q
g
θ
^ x0; . . . ; xT½ �ln f θ x0; . . . ; xT ; y0; . . . ; yT½ �

g
θ
^ x0; . . . ; xT½ � dx0 . . . dxT

¼
Z
q

. . .

Z
q
g
θ
^ x0; . . . ; xT½ �ln f θ x0; . . . ; xT ; y0; . . . ; yT½ �dx0 . . . dxT

�
Z
q

. . .

Z
q
g
θ
^ x0; . . . ; xT½ �lng

θ
^ x0; . . . ; xT½ �dx0 . . . dxT

¼ F g
θ
^; θ

� �
:

The inequality in the middle of the above expression is known as Jensen’s inequal-

ity. For greater clarity, the parameter vector θ
^

of the auxiliary distribution g
θ
^

x0; . . . ; xT½ � is not explicitly declared in the following. In the EM literature,

the auxiliary distribution g
θ
^ is referred to as the auxiliary function or simply the

Q-function (Dellaert 2002).

If the “energy” of the complete configuration (X0,X1, . . .,XT,Y0,Y1, . . ., YT) is
defined as

�ln f θ x0; . . . ; xT ; y0; . . . ; yT½ �;

then the lower bound F g; θð Þ � ln L θ ytf gT
0

��� �
is the negative of a quantity that is

known in statistical physics as the “free energy” (Honerkamp 2002). The free

energy is the expected energy under the distribution g[x0, . . ., xT] minus the differ-

ential entropy of that distribution (Neal and Hinton 1998; Roweis and Ghahramani

1999). The definition of the differential entropy is given in Eq. 232 and will be used

in later chapters to evaluate emergent complexity of the modeled phase of the PD

project.

The EM algorithm alternates between maximizing the function F (g, θ) by the

auxiliary distribution g and by the parameter vector θ, while holding the other fixed.
The iteration number is denoted by k. Starting from an initial parameter setting θ0 it
holds that
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E� step : gkþ1 ¼ arg maxg F g; θkð Þ ð185Þ
M� step : θkþ1 ¼ arg maxθ F gkþ1; θ

� �
: ð186Þ

It can be shown that the maximum of the E-step is obtained when g is exactly the

conditional pdf fθ of (X0,X1, . . .,XT) given (Y0, Y1, . . .,YT) and it holds that:

gkþ1 x0; . . . ; xT½ � ¼ f θk x0, . . . , xT y0; . . . ; yTj½ �:

Hence, the maximum in the M-step results when the termZ
q

. . .

Z
q
g x0; . . . ; xT½ �ln f θ x0; . . . ; xT ; y0; . . . ; yT½ � dx0 . . . dxT

in the function F (g, θ) is maximized, since the differential entropy does not depend

on the parameters θ. Therefore, we can also express the EM algorithm in a single

maximization step:

M� step : θkþ1

¼ arg maxθ

Z
q

. . .

Z
q

f θk x0, . . . , xT y0; . . . ; yTj½ �ln f θ x0; . . . ; xT ; y0; . . . ; yT½ � dx0 . . . dxT :

ð187Þ

In this sense the EM principle can be interpreted as coordinate ascent in F (g, θ). At

the beginning of each M-step it holds thatF gkþ1; θk
� � ¼ ln L θk ytf gT

0

��� �
. Since the

E-step does not change θ, the likelihood is guaranteed not to decrease after each

combined EM-step (Neal and Hinton 1998; Roweis and Ghahramani 1998). There-

fore, in the EM algorithm the solutions to the filtering and smoothing problem that

are incorporated in the conditional distribution f θk x0, . . . , xT y0; . . . ; yTj½ � are

applied to estimate the hidden states given the observations and the re-estimated

model parameters. These virtually complete data points are used to solve for new

model parameters. In Fig. 2.21 a graphical illustration of the first three iteration

steps of the EM procedure are shown. Each lower bound F (g, θ) touches the

objective function ln L (θ|{yt}T0 ) at the current estimate θk and is in this sense

optimal. However, it is clear from the figure that the approached maximum of the

objective function is only locally optimal and therefore a proper initial setting θ0 of
the independent parameters is crucial for the effectiveness of the EM algorithm. We

will return later in this chapter to this issue.

According to Eq. 184 the joint probability fθ[x0, . . ., xT, y0, . . ., yT] of hidden

states and observations is multivariate normal and therefore the conditional distri-

bution f θk x0, . . . , xT y0; . . . ; yTj½ � also follows a multivariate normal distribution.

There are reasonably efficient algorithms—the introduced Kalman filter and the

corresponding smoother algorithm (see e.g. Shumway and Stoffer 1982)—for

inferring this distribution for a given setting of the parameters. Using the estimated
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states obtained from the filtering and smoothing algorithms, it is usually easy to

calculate solutions for new parameter values. For LDS, solving for new parameter

values typically involves minimizing quadratic expressions such as Eq. 188. This

process is repeated using the new model parameters to infer the hidden states again,

until the log-likelihood grows only very slowly.

The Ghahramani-Hinton algorithm makes the EM principle for LDS fully

operational and can accurately estimate the complete set θ of independent param-

eters. The algorithm is guaranteed to converge to a local maximum of the

log-likelihood function (Dempster et al. 1977, cf. Fig. 2.21). For some applications

in project management, the local optima can be a significant problem because

sometimes many symmetries exist in the LDS parameter space. The convergence

rate is typically linear in T and polynomial in q and it therefore can also take many

iterations to reach a satisfactory predictive accuracy (for simplicity, we assume that

q � p, Martens 2009). This can be a real challenge for long series of observations

and a large state space because each iteration involves recursive estimations for all

hidden states over T time steps. An alternative approach is the combined

deterministic-stochastic subspace identification algorithm of van Overschee and

de Moor (1996). The algorithm is called a subspace algorithm because it retrieves

the system related matrices as subspaces of projected data matrices. The combined

deterministic-stochastic subspace identification algorithm reduces the estimation

problem to that of solving a large singular value decomposition problem

Fig. 2.21 Graphical illustration of the Expectation-Maximization (EM) algorithm (Dempster

et al. 1977). The illustration was adapted from Streit (2006) and Wienecke (2013). The EM

algorithm iterates between computing a lower bound F (x; x(i)) and maximization. The figure

shows the first three iterations for parameter settings x(0), x(1) and x(2) in blue, red and green. In

the illustrated case the EM algorithm converges to the global maximum of the objective function

shown in the middle and not to the local maximum shown on the right. For greater clarity, the

sequences of hidden state variables {xt}
T
0 and observations {yt}

T
0 are denoted by the single vectors

x and y
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(cf. canonical correlation analysis in Section 4.1.3), subject to some heuristics in the

form of user-defined weighting matrices. The user-defined weighting matrices

define which part of the predictive information in the data is important to retain.

The algorithm allows for computing the non-steady-state Kalman filter sequence

(cf. Section 2.9) directly from the observation sequences, without knowledge of the

system matrices. Because subspace identification is not iterative, it tends to be more

efficient than EM when the state space is high dimensional. However, because it

implicitly optimizes an objective function representing a sum of squared prediction

errors instead of the log-likelihood function, and because implicitly uses a rather

simple inference procedure for the hidden states, subspace identification is not

statistically optimal. In particular, point estimates of hidden states lacking covari-

ance information are obtained by conditioning on only the past l data points, where
l is an independent parameter known as the “prediction horizon” (Martens 2009). In

contrast, the EM algorithm estimates hidden states with mean and covariance

information, conditioned on the entire observation sequence {yt}
T
0 and the current

estimate θk of the independent parameters in the kth iteration. Subspace-

identification also tends to scale poorly to high-dimensional time series. When

initialized properly the EM algorithm will find parameter settings with larger values

of the log-likelihood function and lower prediction errors than those found by the

deterministic-stochastic subspace identification algorithm. However, because of the

speed of subspace identification, its ability to estimate the dimensionality of the

state space, and the fact that it optimizes an objective that is similar to that of EM,

subspace identification is often considered an excellent method for initializing

iterative learning algorithms such as EM (Martens 2009). Smith and Robinson

(2000) and Smith et al. (1999) have carried out comprehensive theoretical and

empirical analyses of subspace identification and EM. Another standard approach

for estimating LDS parameters are prediction error methods (Ljung 1999). In this

approach, a one-step prediction-error objective is minimized. This is usually done

via gradient-based optimization methods. In this sense these methods have a close

kinship with the maximum likelihood method. However, prediction error methods

are often based on a stationary predictor and for finite-length sequences of obser-

vation vectors therefore are not equivalent to the maximum likelihood principle,

even if Gaussian noise is incorporated in the system equations. Prediction error

methods are also embodied in a software package and therefore have become the

dominant algorithms for system identification (Ljung 2000). But these methods do

have some shortcomings. Typical implementations use either gradient descent and

therefore require many iterations to converge, or use second-order optimization

methods but then become impractical for large models (Martens 2010). Under

certain circumstances the search for the parameters can be very laborious, involving

search surfaces that may have many local minima. This parameter search is

typically carried out using the damped Gauss-Newton method and therefore having

good initial parameter values is of crucial importance for estimation accuracy.

Because of the cited drawbacks of alternative methods and the theoretically very

satisfactory formulation and solution of the objective function, we will direct our
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attention to the EM procedure in the following presentation. An additional approach

for estimating parameters of linear Gaussian models of stochastic dynamical

systems was introduced recently by Rudary (2009). He introduced a new version

of the predictive linear-Gaussian model (Rudary et al. 2005, 2006) that models

discrete-time dynamical systems with real-vector-valued states and observations

and not just continuous scalar observations. He shows that the new predictive

linear-Gaussian model subsumes LDSs of equal dimensions and introduces an

efficient algorithm to obtain consistent estimates of the parameters from data. The

only significant limitation on the systems that predictive linear-Gaussian models

can be applied to is that the observation vectors cannot have a larger dimension than

the model itself and therefore the observation vector space cannot be underranked

in expectation (Rudary 2009).

According to Eq. 187 the EM procedure requires the evaluation of the expected

log-likelihood function of observations and hidden states for the particular setting

θk of the independent parameters in the kth iteration:

℘k θð Þ ¼ Eθk ln f θ x0; . . . ; xT ; y0; . . . ; yT½ � ytf gT
0

�� , θk
� �

:

{yt}
T
0 denotes the fixed sequence of observations made in the PD project across an

interval of T þ 1 time steps that used to compute the expectations. Similarly, {xt}
t
0

in the following equations denotes the sequence of state vectors that starts at time

instant 0 and ends at instant t � T. We attached the index θk to the expectation

operator to indicate that the expectation has to be calculated with respect to the pdf
corresponding to the actual parameter estimate f θk x0, . . . , xT y0; . . . ; yTj½ �.

Considering the definition of the joint pdf of the dynamic system from Eqs. 152

and 153, the log-likelihood function over all hidden states and observations can be

expressed as a sum of three simple quadratic terms:

ln f θ x0; . . . ;xT ; y0; . . . ; yT½ �
¼� Tþ1ð Þ pþqð Þ

2
ln 2π�1

2
lnDet Π0½ ��1

2
TlnDet C½ ��1

2
Tþ1ð ÞlnDet V½ �

�1

2
x0�π0ð ÞTΠ�1

0 x0�π0ð Þ�1

2

XT
t¼1

xt�A0xt�1ð ÞTC�1 xt�A0xt�1ð Þ

�1

2

XT
t¼0

yt�Hxtð ÞTV�1 yt�Hxtð Þ:
ð188Þ

It can be shown that the expected log-likelihood function depends on three expected

values related to the hidden state variables given the observations, namely

Eθk Xt Y
T
0

��� �
, Eθk XtX

T
t Y T

0

��� �
and Eθk XtX

T
t�1 Y T

0

��� �
. Following the notation of the

creators of the algorithm, we will use the variables
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x̂ t :¼ Eθk Xt Y
T
0

��� �
P̂ t :¼ Eθk XtX

T
t Y T

0

��� �
P̂ t, t�1 :¼ Eθk XtX

T
t�1 Y T

0

��� �
to encode these expectations. The variable x̂ t denotes the (re-)estimated state of the

process {Xt} at time instant t given the complete series of observations YT0 . Inter-
estingly, the state estimate x̂ t is not only based on past observations (Y0, . . .,Yt) but
also on the future history (Yt, . . .,YT). This is in contrast to the classic Kalman filter

in which only the estimates Eθk Xt Y
t
0

��� �
are considered (Puri 2010). The above first-

and second-order statistics over the hidden states allow one to easily evaluate and

optimizeL(θ) with respect to θ in the M-step. These quantities can be considered as

the “full smoother” estimates of the Kalman smoother (Roweis and Ghahramani

1999, see below).

As explained in the M-step each of the independent parameters is re-estimated

(see intuitive graphical representation in Fig. 2.21). The new parameter estimate is

obtained by maximizing the expected log-likelihood. To find a closed form of the

maximum of the expected log-likelihood function the partial derivatives are calcu-

lated for each parameter from Eq. 188. The following equations summarize the

results (Ghahramani and Hinton 1996). The re-estimated quantities are indicated by

the prime symbol.

Initial state location π0:

∂℘k

∂π0
¼ x̂ 0 � π0ð ÞΠ�1

0 ¼ 0

) π00 ¼ x̂ 0

Initial state covariance Π0:

∂℘k

∂Π�1
0

¼ 1

2
Π0 � 1

2
P̂ 0 � x̂ 0π

T
0 � π0x̂

T
0 þ π0π

T
0

� �
Π0

0 ¼ P̂ 0 � x̂ 0x̂
T
0 :

Dynamical operator A0:

∂℘k

∂A0

¼ �
XT
t¼1

C�1P̂ t, t�1 þ
XT
t¼1

C�1A0P̂ t�1 ¼ 0

) A0
0 ¼

XT
t¼1

P̂ t, t�1

 ! XT
t¼1

P̂ t�1

 !�1

State fluctuations covariance C:
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∂℘k

∂C�1
¼ T

2
C� 1

2

XT
t¼1

P̂ t � A0P̂ t�1, t � P̂ t, t�1A
T
0 þ A0P̂ t�1A

T
0

� �
¼ T

2
C� 1

2

XT
t¼1

P̂ t � A0
0

XT
t¼1

P̂ t�1, t

 !
¼ 0

) C
0 ¼ 1

T

XT
t¼1

P̂ t �
XT
t¼1

P̂ t, t�1

XT
t¼1

P̂ t

 !�1XT
t¼1

P̂ t�1, t

0@ 1A
Output operator H:

∂℘k

∂H
¼ �

XT
t¼0

V�1yt x̂
T
t þ

XT
t¼0

V�1HP̂ t ¼ 0

) H
0 ¼

XT
t¼0

yt x̂
T
t

 ! XT
t¼0

Pt

 !�1

Output fluctuations covariance V:

∂℘k

∂V�1
¼ T þ 1

2
V �

XT
t¼0

1

2
yty

T
t � Hx̂ ty

T
t þ 1

2
HP̂ tH

T

� 
¼ 0

) V
0 ¼ 1

T þ 1

XT
t¼0

yty
T
t � H

0
x̂ t y

T
t

� �
Note that the covariances possess the correct symmetry property as each of the

corresponding right-hand sides of the resulting formulas are already symmetric.

This can be expressed simply as P̂ T
t, t�1 ¼ P̂ t�1, t. To simplify the detailed descrip-

tion of the E-step, we will use three intermediate variables:

x τt :¼ Eθk Xt Y
τ
0

��� �
Σ τ
t :¼ Varθk Xt Y

τ
0

��� �
Σ τ
t, t�1 :¼ Eθk XtX

T
t�1 Y τ

1

��� �� x τt x τt
� �T

:

The E-step consists of two sub-steps. The first sub-step is a forward recursion that

uses the sequence of observations from y0 to yt for state estimation. This forward

recursion is the well-known Kalman filter which was introduced in the previous

chapter. The second sub-step carries out a backward recursion that uses the obser-

vations from yT to ytþ1 (Rauch 1963). The combined forward and backward

recursions are known as the Kalman smoother (Shumway and Stoffer 1982). The

following Kalman-filter forward recursions hold for t ¼ 0 to T:
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xt�1
t ¼ A0x

t�1
t�1

Σt�1
t ¼ A0Σt�1

t�1A
T
0 þ C

Kt ¼ Σt�1
t HT HΣt�1

t HT þ V
� ��1

x tt ¼ xt�1
t þ Kt yt � Hxt�1

t

� �
Σ t
t ¼ Σt�1

t � KtHΣt�1
t :

It holds that x�1
0 ¼ π0 and Σ�1

0 ¼ Π0. Kt is the time-dependent Kalman gain matrix

(cf. Section 2.9).

To compute x̂ t ¼ xTt and P̂ t ¼ ΣT
t þ xTt xTt

� �T
the following backward recursions

have to be carried out from t ¼ T to t ¼ 1 (Shumway and Stoffer 1982):

Jt�1 ¼ Σt�1
t�1A

T
0 Σt�1

t

� ��1

x̂ t�1 ¼ xt�1
t�1 þ Jt�1 x̂ t � A0x

t�1
t�1

� �
ΣT
t�1 ¼ Σt�1

t�1 þ Jt�1 ΣT
t � Σt�1

t

� �
J T
t�1:

Moreover, if t < T the conditional covariance P̂ t, t�1 ¼ ΣT
t, t�1 þ xTt xTt�1

� �T
of the

hidden states across two time steps can be obtained through the backward recursion:

ΣT
t, t�1 ¼ Σ t

t J
T
t�1 þ Jt ΣT

tþ1, t � A0Σ t
t

� �
J T
t�1:

The recursion is initialized with ΣT
T,T�1 ¼ Iq � KTH

� �
A0ΣT�1

T�1.

If not only a single sequence of empirically acquired observation vectors yt of
work remaining is given but multiple realizations of the work processes had also

been acquired in N independent measurement trials, then the above equations can

be easily generalized. The basic procedure involves calculating the expected values

in the E-step for each sequence separately and summing up the individual quantities

to accumulated expectations. The only difficulty here is estimating the initial state

covariance. According to Ghahramani and Hinton (1996) we can define x̂
i½ �
t as the

state estimate of sequence [i] at time instant t and x̂ N, t as the mean estimate at the

same time instant:

x̂ N, t ¼ 1

N

XN
i¼1

x̂
i½ �
t :

Based on these estimates, we can then calculate the initial covariance as follows:
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Π0
0 ¼ P̂ 0 � x̂ N, tx̂

T
N, t þ

1

N

XN
i¼1

x̂
i½ �
t � x̂ N, t

� �
x̂

i½ �
t � x̂ N, t

� �T
:

In the M-step, the accumulated expectations are used to re-estimate the independent

parameters.

An interesting way of significantly simplifying the EM algorithm is to replace

the time-dependent matrices in the E- and M-steps with their steady-state values.

There are efficient methods for finding these matrices (e.g. the doubling algorithm,

Anderson and Moore 1979). Martens (2009) improved the efficiency of the EM

algorithm of Ghahramani and Hinton (1996) by using a steady-state approximation,

which simplifies inference of the hidden state and by using the fact that the M-step

requires only a small set of expected second-order statistics that can be approxi-

mated without doing complete inference for each xt as shown above. Martens’
experiments show that the resulting approximate EM algorithm performs nearly as

well as the EM algorithm given the same number of iterations (Martens 2009).

Since the calculations required per iteration of the approximate EM do not depend

on T, it can be much more computationally efficient when T is large.

In application areas with no or only shallow prior knowledge about the dynamic

dependency structure, the (true or approximate) EM iterations are usually initial-

ized with a setting θ0 of the independent parameters in which Gaussian random

numbers are assigned to the initial state, the dynamical operator and the output

operator. In a similar manner the diagonal and off-diagonal entries of the

corresponding covariance matrices are set to Gaussian random numbers at the

start of the iterations. Clearly, randomizing the initial covariance matrices has to

be done under the constraint of matrix symmetry. Let κ denote the number of

iterations that were calculated using the EM algorithm in a specific modeling and

simulation environment. The re-estimated setting of the independent parameters in

the (last) κth iteration is denoted by θ̂ κ . We assume that the independent parameters

were re-estimated sufficiently often. Sufficiently often means that the

log-likelihood grew only very slowly in the final iterations and a stable local

optimum was found. In many practical cases 20 to 30 iterations are sufficient to

reach a stable optimum.

It is important to note that the LDS system identification based on the maximum

likelihood principle lacks identifiability: Owing to the fact that the likelihood

function is invariant under an arbitrary invertible transform Ψ 2 ℝq�q with

Det Ψ½ � ¼ 1, which transforms the set of parameters as
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x0t ¼ Ψ � xt
A0
0 ¼ Ψ � A0 �Ψ�1

H
0 ¼ H � Ψ�1

C
0 ¼ Ψ � C �ΨT

V
0 ¼ V

π00 ¼ Ψ � π0
Π0

0 ¼ Ψ � Π0 � ΨT

the parameters identified with any ML procedure are not uniquely determined. This

statement can easily be proved simply by computing the likelihood of the new

parameter set L({x0
t}

T
0 ,A

0
0,H

0,C0,V0, π
0
0,Π

0
0|{yt}

T
0 ) using the above expressions. The

result then equals L({xt}T0 ,A0,H,C,V, π0,Π0|{yt}
T
0 ).

Therefore, the estimated initial state, initial covariance, dynamical operator,

state covariance, output operator and output covariance are all dependent on the

particular initial setting θ0 of the independent parameters that is used in the first

iteration and there are many different groups of system matrices (A0 and H ) which

can generate a given set of observations. To ensure that the method does not lack

identifiability, constraints are imposed on the parameters to make the transform Ψ
unique. There are several different options for constraining the parameters, e.g., the

one option given in Yamaguchi et al. (2007) in cases where the dimension of the

observed states is not smaller than the dimension of the hidden states. Another

constraint, which also holds in the case p < q, corresponds to the invariants of the

dynamical operator A0 under the transformΨ, namely the eigenvalues λi ¼ λi A0ð Þof
the dynamical operator (see eigendecomposition in Section 2.3). Furthermore, it is

assumed that the initial state x0 is known (cf. Eq. 2). Hence, we have the constraints:

• The dynamical operator is a diagonal matrix with unknown distinct diagonal

elements:

A0 ¼ ΛA ¼ Diag λ1; . . . ; λq
� �

, λi 6¼ λ j:

• The initial state is known, e.g.

x0 ¼
1

⋮
1

0@ 1A:

To prove that imposing the above constraints is sufficient to make the transform

Ψ unique, we start from the invariance condition for A0. Given that

A0 ¼ ΛA ¼ A0
0 ¼ Λ0

A, we must haveΛA ¼ Ψ � ΛA � Ψ�1, or equivalentlyΛA �Ψ ¼ Ψ
�ΛA as Ψ is invertible. Considering this equation in elements, it yields

λif g � Ψi, j ¼ λ j

� � � Ψi, j, which can only be solved with Ψi, j ¼ 0 for i 6¼ j as the

diagonal elements λi 6¼ λ j are distinct. To fix the diagonal elements of Ψ we consider

the invariance condition for x0, x
0
0 ¼ x0 ¼ Ψ � x0, which leads to a unique solution

Ψ ¼ Iq.
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In general, the eigenvalues of the dynamical operator may be complex-valued.

This would, in turn, lead to complex-valued unobserved state vectors. Note, that, in

principle, the transform Ψ can be complex-valued. To circumvent unobserved

complex valued dynamics, it is preferable to use a constraint which diagonalizes

the covariance C of the unobserved process fluctuations. As C is real-valued and

symmetric the eigenvalues λi ¼ λ j Cð Þ are real and an arbitrary covariance can be

transformed by an orthogonal matrix into a diagonal matrix. Similar to the proof

given above, it is easy to show that the following constraints lead to a unique

solution for the transform Ψ:

• The covariance C is a diagonal matrix with unknown distinct diagonal elements:

C ¼ ΛC ¼ Diag λ1; . . . ; λq
� �

, λi 6¼ λ j:

• The signs of the real-valued components of the initial state are known.

However, where emergent complexity of PD projects with hidden state variables

has to be evaluated on the basis of the effective measure complexity (EMC,

Grassberger 1986) the lack of identifiability is not a critical issue, because the measure

is invariant under the above transform of model parameters. This is proved in Section

4.2.1. The EMC is an information-theoretic quantity that measures the mutual infor-

mation between the infinite past and future histories of a stationary stochastic process.

Section 3.2.4 formally introduces the EMC and gives a detailed explanation of its

interrelationships to other key invariants of stochastic processes. In the sense of an

information-theoretic learning curve, EMC measures the amount of apparent random-

ness at small observation windows during the stochastic task processing that can be

resolved by considering correlations between blocks with increasing length. For a

completely randomized work process with independent and identically distributed

state variables, the apparent randomness cannot be reduced by any means, and it

therefore holds that EMC ¼ 0. For all other processes that have a persistent internal

organization, EMC is strictly positive. PD projects with more states and larger

correlation length are assigned higher complexity values. If optimal predictions are

influenced by events in the arbitrarily distant past, EMC can also diverge. However,

this is not relevant for the complexity analysis of the investigated linear systems.

If not only the coefficients and covariance matrices of an LDS have to be

estimated from data but also the dimensionality of the hidden state process {Xt},

a good trade-off between the predictive accuracy gained by increasing the dimen-

sion of independent parameters and the danger of overfitting the model to random

fluctuations and not to rules that generalize to other datasets has to be found. In an

analogous manner to the model selection procedure that was introduced in Sec-

tion 2.4, information-theoretic or Bayesian criteria can be used to evaluate approx-

imating LDS models. An alternative method is to use the previously cited combined

deterministic-stochastic subspace identification algorithm of van Overschee and de

Moor (1996) to estimate the dimensionality of the state space and to initialize the

EM algorithm accordingly. However, in the following we focus on the Schwarz-

Bayes information criterion (BIC, cf. Eq. 71) because of its close theoretical

connection to the minimum description length principle. This principle aims to
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select the model with the briefest recording of all relevant attribute information and

builds on the intuitive notion that model fitting is equivalent to finding an efficient

encoding of the data. However, in searching for an efficient code, it is important to

not only consider the number of bits required to describe the deviations of the data

from the model’s predictions, but also the number of bits required to specify the

independent parameters of the model (Bialek et al. 2001). The minimum descrip-

tion length principle will be elaborated in Section 3.2.2.

According to the work of Yamaguchi et al. (2007), the BIC can be defined for an

LDS with dimension q of the hidden states as:

BIC qð Þ ¼ �2

T
ln f θ̂ κ

y0; . . . ; yT½ � þ ln T

T
k

¼ �2

T
ln
YT
t¼0

f θ̂ κ
yt yt�1; . . . ; y0j½ � þ ln T

T
k

¼ �2

T

XT
t¼0

ln f θ̂ κ
yt yt�1; . . . ; y0j½ � þ ln T

T
k:

ð189Þ

It holds that f θ̂ κ
y0 y�1j½ � ¼ f θ̂ κ

y0½ �. The term ln f θ̂ κ
y0; . . . ; yT½ � denotes the best

estimate of the local maximum of the log-likelihood function. For a converging

estimation process, the best estimate is obtained in the κ-th iteration of the EM

algorithm, and the particular setting of the parameters is

θ̂ κ ¼ Â
κð Þ
0 Ĥ κð Þ Ĉ κð Þ V̂ κð Þ π̂ κð Þ

0 Π̂ κð Þ
0

h i
. According to the analysis in Sec-

tion 2.4, the corresponding quantity

�2

T

XT
t¼0

ln f θ̂ κ
yt yt�1; . . . ; y0j½ � ¼ ln Det bΣ q; pð Þ

h i

is used to evaluate the one-step prediction error bΣ q; pð Þ (cf. Eq. 66) of the parame-

terized LDS and therefore indicates the goodness-of-fit of data and model. The

second term (ln T/T )k penalizes model complexity. Equivalent to the definition of

the BIC for a vector autoregression model of order n in Eq. 71, the factor

k ¼ qþ qpþ q qþ 1ð Þ
2

þ p pþ 1ð Þ
2

ð190Þ

denotes the effective number of parameters of the approximating model. To calcu-

late the effective number of parameters, we have only considered the eigenvalues

λi A0ð Þ of the dynamical operator A0 as they are invariant under the invertible

transform Ψ and therefore well-determined parameters. This is in contrast to Wang

et al. (2011), who count all q2 entries of A0 and ignore that system identification

based on any ML procedure lacks identifiability. We prefer the reduced number of

effective parameters, because it is not only an estimation theoretical necessity but
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can also be traced back to our information-theoretic approach to complexity

evaluation (Chapter 3.2.4).

The log-likelihood f θ̂ κ
y0; . . . ; yT½ � can be written in a simple parametric form

(Martens 2009). To derive this form, we define the conditional covariance of the

observations at time step t as

Ŝ t ¼ Varθ̂ κ
Yt Yt�1; . . . ; Y0j½ �

¼ Ĥ κð ÞVarθ̂ κ
Xt Ytf gt�1

0

��h i
Ĥ κð Þ� �T þ V̂ κð Þ

¼ Ĥ κð ÞΣt�1
t Ĥ κð Þ� �T þ V̂ κð Þ

¼ Ĥ κð ÞÂ κð Þ
0 Σt�1

t�1 Â
κð Þ
0

T
� �

Ĥ κð Þ� �T þ V̂ κð Þ:

It holds that Σ�1
0 ¼ Π̂ κð Þ

0 for t ¼ 0.

It is evident that

f θ̂ κ
yt yt�1; . . . ; y0j½ � ¼ N yt; yt; Ŝt

� �
;

where

yt ¼ Eθ̂ κ
Yt Ytf gt�1

0

��h i
¼ Ĥ κð Þxt�1

t :

It holds that x�1
0 ¼ π̂ κð Þ

0 for t ¼ 0.

Hence, the log-likelihood of the sequence of observations can be expressed by

the equation:

ln f θ̂ κ
y0; . . . ; yT½ � ¼

XT
t¼0

ln f θ̂ κ
yt yt�1; . . . ; y0j½ �

¼ �1

2

XT
t¼0

p ln 2π þ ln Det Ŝt
� �þ yt � Ĥ κð Þxt�1

t

� �T
Ŝt
� ��1

yt � Ĥ κð Þxt�1
t

� �� 
¼ �1

2
T þ 1ð Þp ln 2π þ ln Det Π̂ κð Þ

0

h i
þ y0 � Ĥ κð Þπ̂ κð Þ

0

� �T
Π̂ κð Þ

0

� ��1

y0 � Ĥ κð Þπ̂ κð Þ
0

� �� 
� 1

2

XT
t¼1

ln Det Ŝt
� �þ yt � Ĥ κð Þxt�1

t

� �T
Ŝt
� ��1

yt � Ĥ κð Þxt�1
t

� �� 
:

In the second summand in the last row of the above equation we have

xt�1
t ¼ Eθ̂ κ

xt y
t�1
0

��� � ¼ Â
κð Þ
0 xt�1

t�1 and Ŝ t ¼ Varθ̂ κ
Yt y

t�1
0

��� � ¼ Ĥ κð ÞÂ κð Þ
0 Σt�1

t�1 Â
κð Þ
0

� �T
Ĥ κð Þ� �T

þV̂ κð Þ for t > 0.

The number of dimensions qopt of the hidden states of the LDS is considered as

the optimal one if it is assigned minimum scores, that is

qopt ¼ arg minqBIC qð Þ: ð191Þ
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2.11 Product Development Project Management Example

Revisited

To demonstrate the more complex concept of a state process with hidden variables

and validate the developed project model with field data, the above recursions were

implemented into the Mathematica® modeling and simulation environment. The

estimation routines were also verified through the Bayesian Net Toolbox for Matlab

(BNT), which was developed by Murphy (2001). The field data came from the

previous case study of product development in the small German industrial com-

pany (see Section 2.5, Schlick et al. 2012). For simplicity, we also focus in the

following on the first two overlapping development tasks of project A, “conceptual

sensor design” (task 1) and “design of circuit diagram” (task 2), and model only

their overlapping range. Due to the barcode-based labor time system in the com-

pany, only the series of the time-on-task could be used as an objective observation

to estimate the evolution of the hidden state process. According to Section 2.5, the

conceptual sensor design had reached a completion level of 39.84% when the

design of the circuit diagram began. The observed work remaining at the initial

time step is therefore y0 ¼ 0:6016 1:0000ð ÞT.
Moreover, we assumed that each development task is accompanied by two latent

subtasks representing horizontal and lateral communication. Due to the small size

of the company, diagonal communication was not relevant. Under these conditions

a six dimensional state process seems to be adequate to capture the essential

dynamics of the development project and we have Dim xt½ � ¼ 6. We term the

corresponding LDS model an LDS(6, 2), because the hidden states are six dimen-

sional and the observations two dimensional. We used the implemented estimation

routines to re-estimate the independent parameters in 20 iterations of the EM

algorithm. We chose an initial setting θ0 of the independent parameters, in which

Gaussian random numbers were assigned to the initial state, the dynamical operator

and the output operator. The covariance matrices were set to a multiple of the

identity matrix.

As shown in the previous chapter, the parameters can only be identified up to an

unknown transformation. As the eigenvalues of the covariance of the hidden state

process and the eigenvalues of the dynamical operator are invariant under the

unknown transform, they are the only quantities which are estimated unambigu-

ously. We found the following values:

Eig Â
20ð Þ
0

h i
¼ 0:9075
 0:0273i, 0:8312
 0:2945i, � 0:2638
 0:2188if g ð192Þ

Eig Π̂ 20ð Þ
0

h i
¼ 10�4 � 12:346; 1:198; 0:453; 0:0194; 0:0067; 0:0021f g ð193Þ

Eig Ĉ 20ð Þ
h i

¼ 10�4 � 6:764; 3:952; 1:769; 0:928; 0:137; 0:085f g: ð194Þ
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The estimated covariance matrix V̂ of the normally distributed random variable ηt
related to the observation process is given by

V̂ 20ð Þ ¼ 10�5
� � � 1:53 0:25

0:25 7:13

� 
: ð195Þ

Based on the parameterized LDS model, an additional Monte Carlo simulation was

carried out within the Mathematica® software environment. One thousand separate

and independent simulation runs were calculated.

In an analogous way to Figs. 2.9 and 2.10, Fig. 2.22 shows the list plots of the

empirically acquired work remaining for both tasks as well as the means and 95%

confidence intervals of simulated time series of task processing, which were

calculated for the overlapping range over 50 weeks. The stopping criterion of δ
¼ 0:02was left unchanged and is plotted as a dashed line at the bottom of the chart.

Interestingly, according to Fig. 2.22 all 95% confidence intervals of the simulated

work remaining of both tasks include the empirical data points from the real project

before the stopping criterion is met. Furthermore, the confidence intervals are small.

Therefore, the LDS model can be fitted much better to the data than the rather
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remaining

time [weeks]

task 2: real project

task 2: 95% CI simulated project

task 1: real project

task 1: 95% CI simulated project

2 percent stopping criterion

Fig. 2.22 List plot of work remaining in the real and simulated product development projects. In

an analogous way to Figs. 2.9 and 2.10, only the overlapping range of the first two tasks is shown in

conjunction with the means of simulated traces of task processing as note points and 95%

confidence intervals as error bars. The Monte Carlo simulation was based on the system of

equations 136 and 137. A six dimensional state vector was used to represent the state of the

project (LDS(6, 2) model). The recursion formula for maximum likelihood parameter estimation

based on Expectation-Maximization are given in the text. A total of 1000 separate and independent

runs were calculated. Note points have been offset to distinguish the error bars. The stopping

criterion of 2% is marked by a dashed line at the bottom of the plot
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simple VAR(1) and VAR(2) models from Section 2.5 (compare Figs. 2.9 and 2.10

to Fig. 2.22). For instance, in the parameterized VAR(1) model only 49 out of

50 confidence intervals (95% level) for task 1 and 28 out of 31 intervals for task

2 covered the empirical data points before the stopping criterion is met. It is

important to point out that this high goodness-of-fit only holds under the assump-

tion of a six dimensional state space.

If the parameter space is collapsed into three dimensions, for instance, the

goodness-of-fit is usually not better than with the vector autoregression model of

first order. The six dimensional state process is also able to accurately predict the

quite abrupt completion of task 2 in week 18, because the mean work remaining at

this point in time is equal to the stopping criterion. The root-mean-square deviation

between the predicted work remaining in task 1 and the field data is RMSDtask1

¼ 0:037and therefore 20% lower than the deviation for the VAR(1) model. For task

2, the deviation is RMSDtask2 ¼ 0:055. This value is 48% lower than the deviation

obtained for the autoregression model of first order (see Section 2.5, Schlick

et al. 2012).

If the dimension of the hidden states cannot be specified by the model developer

based on knowledge about the task and communication structure in the project as

shown before, the Schwarz-Bayes criterion (BIC, see Eq. 189) is a theoretically

convincing alternative, because it favors the approximating model which is a

posteriori most probable. The drawback is that the criterion is only valid in a setting

with large sample size and therefore must be carefully applied in our case. We

systematically varied the dimensions of the hidden states between two and six

Dim xt½ � ¼ 2; 3; 4; 5; 6f gð Þ and calculated the corresponding BIC(q) values based on
Eq. 189. For each approximating model, 20 iterations of the EM algorithm were

computed to estimate the independent parameters. As before, we used an initial

setting θ0 of the independent parameters for each model in which Gaussian random

numbers were assigned to the initial state, the dynamical operator and the output

operator. The covariance matrices were set to a multiple of the identity matrix.

The model selection procedure showed that BIC is minimal for an LDS with a

four dimensional state process and we have BIC qopt ¼ 4
� � ¼ �19:311. For this

model the invariant parameters are:

Eig Â
20ð Þ
0

h i
¼ 0:9342, 0:8956
 0:1836i, 0:0443f g ð196Þ

Eig Π̂ 20ð Þ
0

h i
¼ 10�4 � 6:9595, 0:1380, 0:0609, 0:0044f g ð197Þ

Eig Ĉ 20ð Þ
h i

¼ 10�4 � 9:2319, 2:4869, 0:8116, 0:2221f g ð198Þ

and the observation noise covariance is:

148 2 Mathematical Models of Cooperative Work in Product Development Projects



V̂ 20ð Þ ¼ 10�5
� � � 1:17 0:12

0:12 8:76

� 
: ð199Þ

We investigated the sensitivity of the optimal model order that is selected on the

basis of the Schwarz-Bayes criterion. 200 independent trials of repeated parameter

estimation and model order selection were carried out. As before, the dimension-

ality of the state process was varied between two and six. In each trial, the

independent parameters for the given model order were estimated through 20 iter-

ations of the EM algorithm. The estimates were based on an initial parameter

setting θ0, in which Gaussian random numbers were assigned to the initial state,

the dynamical operator and the output operator. The covariance matrices were set to

a multiple of the identity matrix. The results show that on average a LDS with a four

dimensional state process is selected.

In addition, 1000 separate and independent simulation runs were calculated to

determine the root mean square deviation between the predicted work remaining in

task 1 and the field data for the parameterized LDS(4, 2) model according to

Eqs. 196 to 199. The result is RMSDtask1 ¼ 0:034. This empirical deviation is

approximately 9% lower than the value that was computed for the LDS(6, 2) model

and more than 25% lower than the corresponding values for the VAR(1) and VAR

(2) models (Section 2.5). Interestingly, for task 1 the predictive accuracy of the LDS

(4, 2) model is higher than the LDS(6, 2) model, even though the state space was

reduced from six to four dimensions. For task 2, the empirical deviation is

RMSDtask2 ¼ 0:070 and therefore approximately 35% and 38% lower than the

values obtained for the first- and second-order regression models respectively

(Section 2.5). Compared with the previously analyzed LDS, the value is approxi-

mately 27% larger. We conclude that the predictive accuracy of an LDS with a four

dimensional state process whose independent parameters were estimated by the

introduced EM algorithm can be not Pareto-inferior to an LDS(6, 2) model, and the

predictions of the work remaining can be almost as accurate as for the more

complex model. For both tasks the total root mean square deviation is only 13%

higher. The predictive accuracy of the LDS(4, 2) model is significantly higher than

the accuracy of the VAR(1) and VAR(2) models for both tasks and shows the

Pareto-superiority of the approach with hidden state variables. It is important to

point out that these conclusions only hold if the independent parameters are

estimated using a favorable initial setting. We will return to this issue in the

sensitivity analyses.

Figure 2.23 shows the list plots of the time series from the real project as well as

the means and 95% confidence intervals of simulated task processing for the LDS

(4, 2) model. As before, the stopping criterion of δ ¼ 0:02 is plotted as a dashed line
at the bottom of the chart. For both tasks, the means and 95% confidence intervals

follow a pattern that is very similar to the LDS(6, 2) model (Fig. 2.22). Therefore,

all confidence intervals of the simulated work remaining include the data points

from the real project before the stopping criterion is met. The only important

difference between both models with hidden state variables is that for task 2 the
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lower dimensional model shows an oscillatory behavior of the means of work

remaining after the real completion of the task in week 18. The means first

undershoot the abscissa from week 18 to 21, then overshoot it from week 22 to

week 32 and finally follow a smoothly decaying geometric series until week 50 (see

bottom of Fig. 2.23). Interestingly, these oscillations lead to an average system

behavior that makes it possible to predict almost perfectly without using a stopping

criterion the abrupt completion of task 2 in week 18.

Finally, we carried out different sensitivity analyses for the LDS models. The

importance of these analyses should not be underestimated, given that the previ-

ously introduced EM procedure lacks identifiability and therefore an infinite num-

ber of parameterizations θ̂ κ theoretically exist that yield the same maximum

log-likelihood. In the first sensitivity analysis, we investigated the sensitivity of

the predictive accuracy of the LDS models in terms of the root-mean-square

deviation between the predicted work remaining and the field data for both devel-

opment tasks. For each model, 200 independent trials of repeated project execution

were simulated and analyzed. In each trial, the independent parameters were

estimated through 20 iterations of the EM algorithm with an initial setting θ0 of
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Fig. 2.23 List plot of work remaining in the real and simulated product development projects. In

an analogous way to Figs. 2.9, 2.10 and 2.22, only the overlapping range of the first two tasks is

shown in conjunction with the means of simulated traces of task processing as note points and 95%

confidence intervals as error bars. The Monte Carlo simulation was based on the simultaneous

system of equations 136 and 137. In contrast to Fig. 2.22, only a four dimensional state vector was

used to represent the work remaining of the project (known as the LDS(4, 2) model). The recursion

formula for maximum likelihood parameter estimation based on Expectation-Maximization are

given in the text. A total of 1000 separate and independent runs were calculated. Note points have

been offset to distinguish the error bars. The stopping criterion of 2% is marked by a dashed line at
the bottom of the plot
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the independent parameters, in which Gaussian random numbers were assigned to

the initial state, the dynamical operator and the output operator. The covariance

matrices were set to a multiple of the identity matrix. Based on the estimated

independent parameters, 1000 separate and independent simulation runs of project

dynamics were computed and the root-mean-square deviations for each case were

calculated. The complete dataset was used to calculate the mean RMSDall
task1 and

RMSDall
task2 over all trials. These overall means were compared to the corresponding

RMSDtask1 and RMSDtask2 values that were obtained in the previous Monte Carlo

simulation. We were thus able to assess whether the parameterized LDS(6, 2)

model according to Eqs. 192–195 and the LDS(4, 2) model according to

Eqs. 196–199 have an above-average predictive accuracy compared to alternative

models of the same class. If badly conditioned covariance matrices occurred during

the simulation and therefore the EM results possibly contained significant numer-

ical errors, the complete trial was recalculated.

For the LDS(6, 2) model, an overall RMSDall
task1 ¼ 0:0397was computed for task

1 and RMSDall
task2 ¼ 0:0750 for task 2. Both overall deviations are larger than the

RMSDtask1 and RMSDtask2 values from the previous simulation. Therefore, the

predictive accuracy of the LDS(6, 2) model shown is higher than the accuracy of an

average model. An additional analysis of the empirical cumulative distribution

function showed for task 1 that the RMSDtask1 value is equivalent to the 40th

percentile of the distribution. In other words, the RMSDtask1 value is exceeded by

60% of all 200 simulated trials. For task 2 the RMSDtask2 value is equivalent to the

30th percentile of the distribution. The relative accuracy deviation is approximately

7% for task 1 and 26% for task 2 and therefore seems to be negligible for almost

every application in project management. The LDS(4, 2) model leads to an overall

RMSDall
task1 ¼ 0:0455 for task 1 and an overall RMSDall

task2 ¼ 0:1065 for task

2. Similar to the LDS(6, 2) model, both values are larger than the previously

calculated RMSDtask1 and RMSDtask2 values. However, the predictive accuracy

of the LDS(4, 2) model is much higher than the accuracy of average models and

demonstrates unexpected predictive power for such a low-dimensional model. The

empirical cumulative distribution function showed for task 1 that the RMSDtask1

value represents approximately a fourth percentile and for task 2 the RMSDtask2

value a 13th percentile. For task 1 the relative accuracy deviation is approximately

28% and for task 2 approximately 36% for the benefit of the given model. These

values can be relevant for project controlling. For application in project manage-

ment, it therefore makes sense to estimate the independent parameters in indepen-

dent runs of the EM iterations with a randomized initial setting θ0 of the

independent parameters and to select the model with the most favorable properties

for the given application. Desired properties can include the highest total predictive

accuracy, the highest predictive accuracy in certain tasks, etc.

The second sensitivity analysis evaluated the sensitivity of emergent complexity

associated with the parameterized LDS models as constructive representations of a

complex PD project. The dependent variable to evaluate emergent complexity was

the cited effective measure complexity (EMC) according to Grassberger (1986). As
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in the first sensitivity analysis, 200 independent trials of repeated project execution

were considered for each LDS model and the corresponding EMC values were

calculated. In each trial, the independent parameters were re-estimated in 20 itera-

tions of the EM algorithm. We used an initial setting θ0 of the independent

parameters, in which Gaussian random numbers were assigned to the initial state,

the dynamical operator and the output operator. The covariance matrices were set to

a multiple of the identity matrix. The implicit solution of de Cock (2002) from

Eq. 299 was used to calculate the EMC values based on estimated independent

parameters θ̂ 20. The infinitive sum was approximated by a partial sum of 100 terms.

Under this boundary condition the other closed-form solutions from Eqs. 291 and

308 produce results that are correct to three decimal places and can therefore be

considered numerically equivalent. For the LDS(6, 2) model the complexity value

is EMCLDS 6;2ð Þ ¼ 3:1363. The 200 independent trials lead to a mean complexity of

EMCall
LDS 6;2ð Þ ¼ 3:0946. The relative difference is less than 2% and therefore neg-

ligible for almost every application in project management. An analysis of the

empirical cumulative distribution function showed that the EMCLDS(6,2) value is

equivalent to the 54th percentile of the empirical distribution and therefore close to

the median. Regarding the parameterized LDS(4, 2) model a smaller complexity

value of EMCLDS 4;2ð Þ ¼ 2:9312 was obtained as one would expect for a model with

lower dimensional (hidden) state space. The mean complexity over 200 trials was

EMCall
LDS 4;2ð Þ ¼ 3:3041. The relative difference is approximately 13% and therefore

much larger than for LDS(6, 2) model. This difference could be relevant for

practical complexity evaluations. The EMCLDS(4,2) value is equivalent to the 14th

percentile of the empirical distribution. This means that 86% of the models in the

sample exceed the emergent complexity that is associated with the introduced

dynamical operators and covariance matrices. Interestingly, the mean complexity

related to the LDS(4, 2) models is slightly larger than the mean related to the higher-

dimensional LDS(6, 2) models. This counterintuitive result of the sensitivity anal-

ysis shows that a stochastic process generated by an LDS with a comparatively low

dimensionality of the state space must not necessarily be less complex than higher

dimensional representations, because strong interactions between internal states

might exist that lead to strong correlations between observations of task processing

and therefore to increasing time-dependent complexity.

In the third and final sensitivity analysis, we carried out an additional evaluation

of the sensitivity of emergent complexity of cooperative task processing

represented by the LDS models. However, we did not use the introduced indepen-

dent parameter vector θ̂ 20 to directly calculate the EMC values based on the closed-

form solution from Eq. 299. Instead, we used a parameterized LDS model to

simulate task processing, generate time series and (re-)estimate the independent

parameters purely from data. The data consisted of ten independent cases of the

work remaining for both development tasks over T ¼ 100 time steps. In line with

the procedure used for the previous sensitivity analyses, 200 independent trials of

repeated data generation were considered for each LDS model. In each trial, the ten
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independent cases of work remaining were input into the EM algorithm, and

20 iterations were calculated based on an initial setting θ0, in which Gaussian

random numbers were assigned to the initial state, the dynamical operator and the

output operator. The covariance matrices were set to a multiple of the identity

matrix. After the 20th iteration, the re-estimated independent parameters θ̂ 0
20 were

used to calculate the EMC values based on Eq. 130. We hypothesized that although

the introduced EM procedure lacks identifiability, the emergent complexity can be

accurately estimated fusing data from the “true” LDS(6, 2) and LDS(4, 2) models

by averaging over EMC values which were obtained in repeated Monte Carlo trials.

This is a pivotal hypothesis, because if it proved unverifiable, the introduced

maximum likelihood estimation procedure could lead to inaccurate and unreliable

complexity evaluations in the application domain. Concerning the parameterized

LDS(6, 2) model, the mean complexity value that was estimated from the data is

EMCall,data
LDS 6;2ð Þ ¼ 3:1254. The relative difference between this value and the reference

EMCLDS(6,2) value is less than 0.5%. This difference is significantly smaller than the

difference obtained in the purely analytical evaluation, which means it is also

negligible for almost every application in project management. An analysis of the

empirical cumulative distribution function showed that the EMCLDS(6,2) value is

equivalent to the 54th percentile of the empirical distribution of the EMC
all;data
LDSð6;2Þ

values and therefore also very close to the median. For the parameterized LDS(4, 2)

model the corresponding mean complexity is EMCall,data
LDS 4;2ð Þ ¼ 3:0466. The relative

difference is approximately 4%. This value is also significantly lower than the one

obtained in the purely analytical evaluation and seems to be negligible for most

applications. The EMCLDS(4,2) value is equivalent to the 15th percentile of the

empirical distribution. Interestingly, the indirect, data-driven sensitivity analysis

leads, for both LDS models, to mean complexity values that are significantly closer

to the true values than the direct analytical approach. For use in project manage-

ment, it can therefore be beneficial to evaluate emergent complexity using the

introduced indirect estimation methods rather than doing so directly by using the

closed-form solution from Section 4.2.1 or 4.2.2 after completed EM runs.

Finally—and most importantly—the results show that although the EM procedure

lacks identifiability, emergent complexity can be accurately estimated from data

simply by averaging over EMC values which were obtained in repeated Monte

Carlo trials. Additional methods of dealing with divergent and inconsistent findings

by introducing auxiliary concepts seem to be unnecessary.

In conclusion, in terms of emergent complexity the introduced LDS(6, 2) model

seems to be a very good dynamical representation of all models within this class

that are parameterized based on the EM algorithm. The emergent complexity

associated with the alternative LDS(4, 2) model shown is within the first quartile

and therefore too low to be representative. However, we preferred to present that

model with reduced state space dimensionality because the root-mean-square

deviation between the predicted work remaining and the field data is within the

first quantiles for both tasks, and for task 1 it is also lower than the deviation

2.11 Product Development Project Management Example Revisited 153

http://dx.doi.org/10.1007/978-3-319-21717-8_4
http://dx.doi.org/10.1007/978-3-319-21717-8_4


obtained of the LDS(6, 2) model. This finding holds even though lower complexity

values are assigned to the LDS(4, 2) model. This is a good example of how

emergent complexity in the sense of Grassberger’s theory cannot simply be eval-

uated by classic predictability measures. A good model not only has to be able to

make accurate predictions; it must also employ an internal state representation that

is not unnecessarily complex to capture the set of essential regularities in a process.

We will return to this important issue in the next chapter.
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Chapter 3

Evaluation of Complexity in Product

Development

The term “complexity” stems from the Latin word “complexitas,” which means

comprehensive or inclusive. In current usage, it is the opposite of simplicity, though

this interpretation does not appear to be underpinned by any explicit concept that

could be directly used for the development of scientifically rigorous models or

metrics. Various disciplines have studied the concepts and principles of complexity

in basic and applied scientific research. Several frameworks, theories and measures

have been developed, reflecting the differing views of complexity between disci-

plines. An objective evaluation of structural and dynamic complexity in PD would

benefit project managers, developers and customers alike, because it would enable

them to compare and optimize different systems in analytical and experimental

studies. To obtain a comprehensive view of organizational, process and product

elements and their interactions in the product development environment, a thorough

review of the notion of complexity has to start from organizational theory (Section

3.1). The literature on organizational theory shows that the complexity of PD

projects results from different “sources” and the consideration of the underlying

organizational factors and their interrelationships is essential to successful project

management (Kim and Wilemon 2009). However, our analyses have shown that

static factor-based approaches are not sufficient to evaluate emergent complexity in

open organizational systems and therefore the complexity theories and measures of

basic scientific research must also be taken into account to capture the inherently

complex nature of the product development flow (cf. Amaral and Uzzi 2007). These

theories and measures can provide deeper insights into emergent phenomena of

complex sociotechnical systems and dynamic mechanisms of cooperation (Section

3.2). Selected measures can also be used to optimize the project organization

(Schlick et al. 2009, see Sections 5.2 and 5.3). The measures build upon our

intuitive assessment that a system is complex if it is difficult to describe. The

description can focus on structure, processes or both. In the description not only

the length and the format are relevant but also the expressive power of the

“description language.” Furthermore, in a process-centered view, for many

nontrivial systems the difficulty of prediction and retrodiction have to be
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simultaneously taken into account to obtain valid results. Comprehensive over-

views of this and related concepts including detailed mathematical analyses and

illustrations can be found in Shalizi (2006), Prokopenko et al. (2009) and Nicolis

and Nicolis (2007). We will describe the main concepts and methods of basic

scientific research in Section 3.2 based on the material from Shalizi (2006). For

effective complexity management in PD, the product-oriented measures from

theories of systematic engineering design are also relevant (Section 3.3). Seminal

work in this field has been done by Suh (2005) on the basis of information-theoretic

quantities. These quantities are also the foundation of statistical complexity mea-

sures from basic scientific research, which means that Suh’s complexity theory and

recent extensions of it (see Summers and Shah 2010) must be discussed in the light

of the latest theoretical developments. Moreover, the literature that has been

published concerning the design structure matrix (Steward 1981) as a universal

dependency modeling technique has to be considered (see e.g. Lindemann

et al. 2009; Eppinger and Browning 2012). This literature also provides a firm

foundation for quantitative modeling of cooperative work in PD projects by means

of either time- or task-based design structure matrices (see e.g. Gebala and

Eppinger 1991; Smith and Eppinger 1997; Schlick et al. 2007). In general, we

have sought to restrict our analyses to mature scientific theories because of their

universality, objectivity and validity.

3.1 Approaches from Organizational Theory

According to Murmann (1994) and Griffin (1997), complexity in the product

development environment is determined by the number of (different) parts in the

product and the number of embodied product functions. This basic approach can be

used to assess complexity in different types of PD projects, for instance the five

classic types defined by Wheelwright and Clark (1992): research and development,

breakthrough, platform, derivative, and alliances and partnership projects. To make

this approach fully operational, Kim and Wilemon (2003) developed a complexity

assessment template covering these and other important “sources.” The first source

in their assessment template is “technological complexity,” which can be divided

into “component integration” and “technological newness.” The second source is

the “market (environmental) complexity” that results from the sensitivity of the

project’s attributes to market changes. “Development complexity” is the third

source and is generated when different design decisions and components have to

be integrated, qualified suppliers have to be found and supply chain relationships

have to be managed. The fourth source is “marketing complexity,” which results

from the challenges of bringing the product to market. “Organizational complexity”

is the fifth source, because projects usually require intensive cooperation and

involve many areas of the firm. Their coordination leads to “intraorganizational

complexity,” the sixth source. When in large-scale engineering projects many other

companies such as highly specialized engineering service providers are involved
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and must be coordinated in a continuous integration rhythm, this source should be

extended and cover both inter- and intraorganizational complexity. In order to

validate and prioritize sources of complexity, Kim and Wilemon (2009) conducted

an extensive empirical investigation. An analysis of exploratory field interviews

with 32 project leaders and team members showed that technological challenges,

product concept/customer requirement ambiguities and organizational complexity

are major issues that generate complexity in PD. The perceived dominant source

was technological challenges, since roughly half of the respondents noted techno-

logical difficulties encountered in attempting to develop a product using an

unproven technique or process. With regard to complexity in the management of

projects of different types—not necessarily focusing on (new) product development

projects—Mulenburg (2008) distinguishes between the following six sources:

(1) Details: number of variables and interfaces, (2) Ambiguity: lack of awareness

of events and causality, (3) Uncertainty: inability to pre-evaluate actions,

(4) Unpredictability: inability to know what will happen, (5) Dynamics: rapid rate

of change, and (6) Social structure: number and types of interactions between

actors.

H€olttä-Otto and Magee (2006) developed a project complexity framework based

on the seminal work of Summers and Shah (2003). They identified three dimen-

sions: the product itself (artifact), the project mission (design problem), and the

tasks required to develop the product (process). The key indicators for each of these

dimensions are size, interactions and stretch (solvability). H€olttä-Otto and Magee

conducted interviews in five divisions of large corporations competing in different

industries on the North American market. Their findings show that the effort

estimation is primarily based on the scale and the stretch of the project. Surpris-

ingly, they found no utilization of the level of either component or task interactions

in estimating project complexity. Further, they found no empirical evidence for

interactions being a determinant of project difficulty (H€olttä-Otto and Magee 2006).

Tatikonda and Rosenthal (2000) focus on the task dimension and relate project

complexity to the nature, quantity and magnitude of the organizational subtasks and

subtask interactions required by a project.

A recent work combining a literature review and their own empirical work on the

elements that contribute to complexity in large engineering projects was published

by Bosch-Rekveldt et al. (2011). The analysis of the literature sources and 18 semi-

structured interviews in which six completed projects were studied in depth led to

the development of the TOE framework. The framework covers 50 different ele-

ments, which are grouped into three main categories: “technical complexity” (T),

“organizational complexity” (O) and “environmental complexity” (E). Additional

subcategories of TOE are defined on a lower level: “goals,” “scope,” tasks,”

“experience,” “size,” “resources,” “project team,” “trust,” “stakeholders,” “loca-

tion,” “market conditions,” and “risks,” showing that organizational and environ-

mental complexity are more often linked with softer, qualitative aspects.

Interestingly, Bosch-Rekveldt et al. (2011) distinguish between project complexity

and project management (or managerial) complexity. Project management com-

plexity is seen as a subset of project complexity. Various normative organizing
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principles for coping with managerial complexity can be found in the standard

literature on project management (e.g. Shtub et al. 2004; Kerzner 2009). If, for

instance, the level of managerial complexity is low, project management within the

classic functional organizational units of the company is usually most efficient and

cross-functional types of project organization can create unnecessary overhead.

However, if coordination needs between functional, spatial and temporal bound-

aries are high, a matrix organization is often the better choice, as it allows devel-

opment projects to be staffed with specialists from across the organization (Shtub

et al. 2004). The preferred organizational structure for large-scale, long-term

engineering projects is pure project organization. The inherent advantage of this

type of structure is that responsibilities for the project lie with one team, which

works full-time on the project tasks throughout the entire project life cycle. Specific

sources of managerial complexity and their impact on performance were also

examined in the literature, e.g. communication across functional boundaries

(Carlile 2002), cross-boundary coordination (Kellogg et al. 2006), spatial and

temporal boundaries in globally distributed projects (Cummings et al. 2009), and

the effects of a misalignment in the geographic configuration of globally distributed

teams (O’Leary and Mortensen 2010). Maylor et al. (2008) developed an integra-

tive model of perceived managerial complexity in project-based operations. Based

on a multistage empirical study elements of complexity were identified and classi-

fied under the dimensions of “mission,” “organization,” “delivery,” “stakeholder,”

and “team.”

The literature review shows that there are a large variety of nomenclatures and

definitions for the sources of complexity in PD projects. However, the underlying

factors have not yet been integrated into a single objective and valid framework.

According to Lebcir (2011) there is an urgent need for a new, non-confusing, and

comprehensive framework that is derived from the extensive body of available

knowledge. He suggests a framework in which “project complexity” is decomposed

into “product complexity” and “innovation.” Product complexity refers to structural

complexity (see Section 3.3) and is determined by “product size” in terms of the

number of elements (components, parts, subsystems, functions) in the product and

by “product interconnectivity,” which represents the level of linkages between

elements. On the other hand, innovation refers to “product newness” and “project

uncertainty.” Product newness represents the degree of redesign of the product

compared to previous generations of the same or similar products. Project uncer-

tainty represents the fact that methods and capabilities are often not clearly defined

at the start of a project. The results of a dynamic simulation indicate that an increase

in uncertainty has a significant impact on the development time. The other factors

also tend to increase development time as they increase, but their impact is not

significantly different in projects involving medium or high levels of these factors.

In reviews of the more practice-oriented project management literature, two

complexity models have received considerable attention, especially at large-scale

development organizations: (1) the UCP (uncertainty, complexity and pace) model

and the (2) NTCP (novelty, technology, complexity and pace) model. Both models

were developed by Shenhar and colleagues (Shenhar and Dvir 1996, 2007; Shenhar
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1998). In principle, these models can be applied to all types of projects. The UCP

model is based on a conceptual two-dimensional taxonomy which classifies a

project according to four levels of technological uncertainty and three levels of

system scope. The four levels of technological uncertainty (low-tech, medium-tech,

high-tech and super-high-tech) mainly refer to the uncertainty as perceived by the

organization at the time of the project’s initiation and thereby indicate how soon the

product functions can be concretized. Moreover, they characterize the extent of new

and therefore possibly premature technologies that are needed to reach the project

goals. In the UCP model, the second dimension of system scope is based on the

complexity of the system as expressed by the different hierarchies inside the

product (assembly, system and array). Since systems are composed of subsystems

and subsystems of components, hierarchies usually involve many levels. Hierar-

chies apply to systems as well as to tasks, which together determine the overall

complexity of the project. The element of time in terms of “pace” was added to the

model to account for the urgency and criticality of reaching milestones, as mile-

stones with different time constraints call for different managerial strategies (Dvir

et al. 2006). When complexity, uncertainty or pace increase, project planning

becomes more difficult and the risk of project failure increases. Consequently, the

formality of project management must also increase. The UCP model is based on

quantitative and qualitative analyses of more than 250 projects within the US and

Israeli defense and industry sectors. However, since it is usually used in retrospect

rather than at the outset of new projects, the UCP model has a descriptive character.

In contrast, the NTCP model, also called the “Diamond Framework,” was devel-

oped as a prescriptive model in order to analyze projects and provide a better

understanding of what needs to be done in order to ensure their success. The

Diamond Framework is based on four pillars. The first pillar, “novelty,” refers to

the degree of newness (derivate vs. platform vs. breakthrough) of project results or

crucial aspects of the project. With varying degrees of novelty, different require-

ments must be satisfied and corresponding action plans have to be developed. The

second pillar represents the level of “technological uncertainty” in a project.

Technological uncertainty is primarily determined by the level of new and mature

technology required (low vs. medium vs. high vs. super-high technology). As the

level of technological uncertainty rises, the risk of failure and efficiency loss

increases. “Complexity,” the third pillar, describes the types of arrangement

between elements within the system, especially their hierarchical structure (assem-

bly vs. system vs. array). Higher degrees of complexity entail more interaction

between elements, which in turn demands higher project management formality.

The fourth and final pillar of the NTCP model is “pace.” As within the UCP model,

pace refers to the urgency of reaching time goals and milestones. It chiefly depends

on the available time for project completion and is divided into four types: regular,

fast/competitive, time-critical and blitz. By considering all four pillars of the NTCP

model at the beginning of the project and revisiting them as it progresses, project

managers are provided with a methodology for assessing the uniqueness of their

project and selecting appropriate management methods and techniques for coping

with complexity.
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Like the UCP and NCTP models, the Project Complexity Model developed by

Hass (2009) has received a great deal of attention in the practice-oriented project

management community. This model offers a broad framework for identifying and

diagnosing the aspects of complexity within a project so that the project team can

make appropriate management decisions. The model captures a number of sources

of project complexity, including project duration and value; team size and compo-

sition; urgency; schedule, cost, and scope flexibility; clarity of the problem and

solution; stability of requirements; strategic importance; stakeholder influence;

level of organizational and commercial change; external constraints and dependen-

cies; political sensitivity; and unproven technology (Hass 2009). The detailed

complexity dimensions are shown in Table 3.1. The Project Complexity Model

can also be used to evaluate the complexity of a particular project in an enterprise.

To carry out the evaluation, Hass (2009) developed a corresponding “Project

Complexity Formula,” which is summarized in Table 3.2.

The complexity templates and frameworks that have been developed in organi-

zation theory and neighboring disciplines are especially beneficial for the manage-

ment of product development projects because they help to focus managerial

intervention on empirically validated performance-shaping factors and key ele-

ments of complexity. It must be criticized, though, that without a quantitative

theory of emergent complexity it is almost impossible to identify the essential

variables and their interrelationships. Furthermore, it is very difficult to consolidate

them into one consistent complexity metric. In the literature very few authors, such

as Mihm et al. (2003, 2010), Rivkin and Siggelkow (2003, 2007), and Braha and

Bar-Yam (2007) build upon quantitative scientific concepts for the analysis of

complex sociotechnical systems. Mihm et al. (2003) present analytical results

from random matrix theory predicting that the larger the project, as measured by

components or interdependencies, the more likely are problem-solving oscillations

are and the more severe they become—failure rates grow exponentially. In the work

of Rivkin and Siggelkow (2003, 2007), Kaufman’s the famous biological evolution

theory and the NK model are used to study organizations as systems of interacting

decisions. Different interaction patterns such as block diagonal, hierarchical, scale-

free, and so on are integrated into a simulation model to identify local optima. The

results show that, by keeping the total number of interactions between decisions

fixed, a shift in the pattern can alter the number of local optima by more than one

order of magnitude. In a similar fashion Mihm et al. (2010) use a statistical model

and Monte Carlo experiments to explore the effect of an organizational hierarchy

on search solution stability, quality and speed. Their results show that assigning a

lead function to “anchor” a solution speeds up problem-solving, that the choice of

local solutions should be delegated to the lowest hierarchical level, and that

organizational structure is comparatively unimportant at the middle management

level, but does indeed matter at the “front line,” where groups should be kept small.

Braha and Bar-Yam (2007) examine the statistical properties of networks of people

engaged in distributed development and discuss their significance. The

autoregression models of cooperative work that were introduced in Chapter 2

(Eq. 8 and 39) are quite closely related to their dynamical model. However, there
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Table 3.1 Complexity dimensions and project complexity profiles of the Project Complexity

Model developed by Hass (2009)

Complexity

dimensions

Project complexity profile

Independent Moderately complex Highly complex

Time/Cost <3 months

< $250K

3–6 months

$250K–$750K

>6 months

> $750K

Team Size 3–4 team members 5–10 team members >10 team members

Team Composi-
tion and
Performance

• Strong project leader-

ship

• Team staffed inter-

nally, has worked

together in the past, and

has a track record of

reliable estimates

• Formal, proven PM,

BA and SE methodol-

ogy with QA and QC

processes defined and

operational

• Competent project

leadership

• Team staffed with

internal and external

resources; internal staff

has worked together in

the past and has track

record of reliable esti-

mates

• Contract for external

resources is straightfor-

ward; contractor perfor-

mance is known

• Semi-formal method-

ology with QA/QC pro-

cesses defined

• Project manager

inexperienced in

leading complex pro-

jects

• Complex team

structure of varying

competencies (e.g.,

contractor, virtual,

culturally diverse,

outsourced)

• Complex contracts;

contractor perfor-

mance unknown

• Diverse

methodologies

Urgency and
Flexibility of
Cost, Time and
Scope

• Minimized scope

• Small milestones

• Flexible schedule,

budget and scope

• Schedule, budget and

scope can undergo

minor variations, but

deadlines are firm

• Achievable scope and

milestones

• Over-ambitious

schedule and scope

• Deadline is aggres-

sive, fixed, and cannot

be changed

• Budget, scope and

quality leave no room

for flexibility

Clarity of Prob-
lem, Opportunity
and Solution

• Clear business objec-

tives

• Easily understood

problem, opportunity

or solution

• Defined business

objectives

• Problem or opportunity

is partially defined

• Solution is partially

defined

• Unclear business

objectives

• Problem or opportu-

nity is ambiguous and

undefined

• Solution is difficult

to define

Requirements
Volatility and
Risk

• Strong customer/user

support

• Basic requirements

are understood,

straightforward and

stable

• Adequate customer/

user support

• Basic requirements are

understood but are

expected to change

• Moderately complex

functionality

• Inadequate cus-

tomer/user support

• Requirements are

poorly understood,

volatile and largely

undefined

• Highly complex

functionality

Strategic Impor-
tance, Political
Implications,
Multiple
Stakeholders

• Strong executive sup-

port

• No political implica-

tions

• Straightforward

communications

• Adequate executive

support

• Some direct impact on

mission

• Minor political

implications

• Mixed/inadequate

executive support

• Impact on core mis-

sion

• Major political

implications

(continued)
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Table 3.1 (continued)

Complexity

dimensions

Project complexity profile

Independent Moderately complex Highly complex

• 2–3 stakeholder groups

• Challenging communi-

cation and coordination

effort

• Visible at highest

levels of the organi-

zation

• Multiple stakeholder

groups with

conflicting

expectations

Level of Organi-
zational Change

• Impacts a single busi-

ness unit, one familiar

business process and

one IT system

• Impacts 2–3 somewhat

familiar business units,

processes and IT

systems

• Large-scale organi-

zational change that

impacts the enterprise

• Spans functional

groups or agencies

• Shifts or transforms

the organization

• Impacts many busi-

ness processes and IT

systems

Level of Com-
mercial Change

• Minor changes to

existing commercial

practices

• Enhancements to

existing commercial

practices

• Groundbreaking

commercial practices

Risks, Depen-
dencies, and
External
Constraints

• Considered low risk

• Some external influ-

ences

• No challenging inte-

gration issues

• No new or unfamiliar

regulatory require-

ments

• No punitive exposure

• Considered moderate

risk

• Some project objec-

tives are dependent on

external factors

• Challenging integra-

tion effort

• Some new regulatory

requirements

• Acceptable exposure

• Considered high risk

• Overall project suc-

cess largely depends

on external factors

• Significant integra-

tion required

• Highly regulated or

novel sector

• Significant exposure

Level of IT
Complexity

• Solution is readily

achievable using

existing, well-

understood technolo-

gies

• IT complexity is low

• Solution is difficult to

achieve or technology is

proven but new to the

organization

• IT complexity and leg-

acy integration are

moderate

• Solution requires

groundbreaking inno-

vation

• Solution is likely to

use immature,

unproven or complex

technologies provided

by outside vendors

• IT complexity and

legacy integration are

high
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are important differences: the VAR(1) models are defined over a continuous range

of state values and can therefore represent different kinds of cooperative relation-

ships as well as precedence relations (e.g. overlapping); each task is unequally

influenced by other tasks; and finally, correlations ρij between performance fluctu-

ations among tasks i and j can be captured.

3.2 Approaches from Basic Scientific Research

3.2.1 Algorithmic Complexity

Historically, the most important measure from basic scientific research is algorith-

mic complexity, which dates back to the great mathematicians Kolmogorov,

Solomonoff and Chaitin. They independently developed a measure known today

as the “Kolmogorov�Chaitin complexity” (Chaitin 1987; Li and Vitányi 1997). In

terms of information processing, the complexity of the intricate mechanisms of a

nontrivial system can be evaluated using output signals, signs and symbols that are

communicated to an intelligent observer. In this sense, complexity is manifested to

an observer through the complicated way in which events unfold in time and are

organized in state space. According to Nicolis and Nicolis (2007), the characteristic

hallmarks of such spatiotemporal complexity are nonrepetitiveness, a pronounced

variability extending over many scales of place and time, and sensitivity to initial

conditions and to the other parameters. Furthermore, a given system can generate a

variety of dependencies of this kind associated with the different states simulta-

neously available. If the transmitted output of a complex system is symbolic, it can

be concatenated in the form of a data string x and may be sequentially stored in a

computer file for post-hoc analysis. The symbols are typically chosen from a

Table 3.2 Decision table of the Project Complexity Formula developed by Hass (2009)

Highly Complex Moderately Complex Independent

Level of change ¼ large-scale

enterprise impacts

or
Both the problem and the solution

are difficult to define or under-

stand, and the solution is difficult

to achieve. The solution is likely

to use unproven technologies.

or
Four or more categories in the

“highly complex” column

Two or more categories in the

“moderately complex” column

or
One category in the “highly

complex” column and three or

more in the “moderately com-

plex” column

No more than one

category in the

“moderately

complex” column

and
No categories in the

“highly complex”

column

To evaluate the complexity of a particular project, the boxes in the Project Complexity Model from

Table 3.1 that best describe the project must be shaded out. Then, the complexity formula can be

applied by following the decision rules above
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predefined alphabet X . If the output is a time- or space-continuous signal, it can be

effectively encoded with methods of symbolic dynamics (Lind and Marcus 1995;

Nicolis and Nicolis 2007). The central idea put forward by Kolmogorov,

Solomonoff and Chaitin is that a generated string is “complex” if it is difficult for

the observer to describe. The observer can describe the string by writing a computer

program that reproduces it. The difficulty of description is measured by the length

of the computer program on a Universal Turing Machine U. If x is transformed into

binary form, the algorithmic complexity of x, termed KU(x), is the length of the

shortest program with respect to U that will print x and then halt. According to

Chaitin (1987), an additional requirement is that the string x has to be encoded by a
prefix code d(x). A prefix code is a type of code system that has no valid code word

that is a prefix (start substring) of any other valid code word in the set. The

corresponding universal prefix computer U has the property that if it is defined

for a string s, then U(st) is undefined for every string t that is not the empty string ε
(Li and Vitányi 1997). The complete definition of the Kolmogorov�Chaitin com-

plexity is:

KU xð Þ ¼ min d pð Þj j : U pð Þ ¼ xf g: ð200Þ

In this sense, KU(x) is a measure of the computational resources needed to specify

the data string x in the language of U. We can directly apply this algorithmic

complexity concept to project management by breaking down the total amount of

work involved in the project into fine-grained activities ai and labeling the activities
unambiguously by using discrete events ei from a predefined setX i ¼ 1, . . . , Xj jð Þ.
During project execution it is recorded when activity ai is successfully completed

and this is indicated by scheduling the corresponding event ei. The sequence of

scheduled events x ¼ ej oð Þ, ej 1ð Þ . . .
� �

ej ið Þ 2 X , j τð Þ 2 1; . . . ; Xj jf g, τ ¼ 0, 1, . . .
� �

encodes how the events unfold in time and are organized in a goal-directed

workflow. The index j(τ) can be interpreted as a pointer to the event e that occurred
at position τ in the data sequence x. It is evident that a simple periodic work process

whose activities are processed in strict cycles, like in an assembly line, is not

complex because we can store a sample of the period and write a program that

repeatedly outputs it. At the opposite end of the complexity range in the algorithmic

sense, a completely unpredictable work process without purposeful internal orga-

nization cannot be described in any meaningful way except by storing every feature

of task processing, because we cannot identify any persisting structure that could

offer a shorter description. This example quite clearly shows that the algorithmic

complexity is not a good measure for emergent complexity in PD projects, because

it is maximal in the case of purely random task processing. Intuitively, such a state

of “amnesia,” in which no piece of information from the project history is valuable

for improving the forecasts of the project manager and the team members, is not

truly complex. Nor can the algorithmic complexity reveal the important long-range

interactions between tasks or evaluate multilayer interactions in the hierarchy of an

organization either. An additional conceptual weakness of the algorithmic com-

plexity measure and its later refinements is that it aims for an exact description of
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patterns. Many of the details of any configuration are simply random fluctuations

from different sources such as human performance variability. Clearly, it is impos-

sible to identify regularities from random fluctuations that generalize to other

datasets from the same complex system; to assess complexity, the focus must be

on the underlying regularities and rules shaping system dynamics. These regular-

ities and rules must be distinguished from noise by employing specific selection

principles. Therefore, a statistical representation is necessary that refers not to

individual patterns but to a joint ensemble generated by a complex system in

terms of an information source. In complex systems, the deterministic and proba-

bilistic dimensions become two facets of the same reality: the limited predictability

of complex systems (in the sense of the traditional description of phenomena)

necessitates adopting an alternative view, and the probabilistic description allows

us to sort out regularities of a new kind. On the other hand, far from being applied in

a heuristic manner, in which observations have to fit certain preexisting laws

imported from classical statistics, the probabilistic description we are dealing

with here is “intrinsic” (Nicolis and Nicolis 2007), meaning that it is self-generated

by the underlying system dynamics. Depending on the scale of the phenomenon, a

complex system may have to develop mechanisms for controlling randomness to

sustain a global behavioral pattern or, in contrast, to thrive on randomness and to

acquire in a transient manner the variability and flexibility needed for its evolution

between two such configurations. In addition to these significant conceptual weak-

nesses, a fundamental computational problem is that KU(x) cannot be calculated

exactly. We can only approximate it “from above,” which is the subject of the

famous Chaitin theorem (Chaitin 1987). Later extensions of the classic concept of

algorithmic complexity focus on complementary computational resources. In

Bennett’s (1988) logical depth the number of computing steps is counted that the

minimum length program on a Universal Turing MachineU requires to generate the

data string x. In Koppel and Atlan’s (1991) theory of “sophistication” only the

length of the part of the program on U is evaluated that captures all regularities of

the data string. This means that, as with effective complexity (Gell-Mann 1995;

Gell-Mann and Lloyd 1996; Gell-Mann and Lloyd 2004, see Section 3.2.3), irre-

ducible random fluctuations that do not generalize to other datasets are sorted out.

As with the Kolmogorov�Chaitin complexity, logical depth and sophistication are

not computable, even with a generative model (Crutchfield and Marzen 2015).

3.2.2 Stochastic Complexity

The most prominent statistical complexity measure is Rissanen’s (1989, 2007)

stochastic complexity. It is rooted in the construction of complexity penalties for

model selection (see procedure for VAR(n) model in Section 2.4), where a good

trade-off between the prediction accuracy gained by increasing the number of free

parameters and the danger of overfitting the model to random fluctuations and not

regularities that generalize to other datasets has to be found. In an early paper,
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Wallace and Boulton (1968) hypothesized that this trade-off could best be achieved

by selecting the model with “the briefest recording of all attribute information.”

Akaike (1973, 1974) developed an important quantitative step along this line of

thought by formulating a simple relationship between the expected Kullback-

Leibler information and Fisher’s maximized log-likelihood function (see deLeeuw

1992). He created his model selection criterion—which is today known as the

Akaike Information Criterion (AIC, see Section 2.4)—without explicit links to

complexity theory. Yet even from a complexity-theoretical perspective the AIC is

not arbitrary, as it represents the asymptotic bias correction term of the maximized

log-likelihood from each approximating model to full reality and can therefore be

interpreted as a “complexity penalty” for increasing the number of free parameters

beyond a point that is justified by the data (Burnham and Anderson 2002).

Mathematically speaking, the AIC is defined as (Burnham and Anderson 2002)

AIC ¼ �2 ln L bθ xj
� �

þ 2k; ð201Þ

where the expression ln L bθ xj
� �

denotes the numerical value of the log-likelihood at

its maximum point, and k denotes the effective number of parameters (see Section

2.4). The maximum point of the log-likelihood function corresponds to the values

of the maximum likelihood estimates bθ of the free parameters of the approximating

model given data x. In terms of a heuristic complexity-theoretic interpretation, the

first term in AIC,�2 ln L bθ xj
� �

can be considered as a measure of lack of model fit,

while the second term 2k represents the cited complexity penalty for increasing the

freely estimated parameters beyond a point that is compatible with the data-

generating mechanisms. In the above definition, the dependency of the criterion

on the number of data points is only implicit through the likelihood function.

According to Section 2.4, for VAR(n) models assuming normally distributed errors

with a constant covariance, the dependency can easily be made explicit from least

square regression statistics (Eq. 67) as

AIC nð Þ ¼ ln Det bΣ nð Þ

h i
þ 2

T
k;

where bΣ nð Þ ¼
bΔ nð Þ
T

ð202Þ

is the maximum likelihood estimate of the one-step prediction error of order n and

k ¼ n p2 þ p pþ 1ð Þ
2

denotes according to Eq. 68 the effective number of parameters related to the

coefficient matrices A0, . . . ,An�1 and the covariance matrix C of the inherent

one-step prediction error (sensu Akaike 1973).
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Akaike’s fundamental ideas were systematically developed by Rissanen in a

series of papers and books starting from 1978. Rissanen (1989, 2007) emphasizes

that fitting a statistical model to data is equivalent to finding an efficient encoding of

that data, and that in searching for an efficient code we need to measure not only the

number of bits required to describe the deviations of the data from the model’s
predictions, but also the number of bits required to specify the independent param-

eters of the model (Bialek et al. 2001). This specification has to be made with a level

of precision that is supported by the data.

To clarify this theoretically convincing concept, it is assumed that we carried out

a work sampling study in a complex PD project involving many and intensive

cooperative relationships between the development teams. Based on a large number

of observations the proportion of time spent by the developers in predefined

categories of activity X ¼ x1; . . . ; xmf g (e.g. sketching, drawing, calculating,

communicating etc.) was estimated with high statistical accuracy. In addition to

the observations made at random times, a comprehensive longitudinal observation

of the workflows of different development teams was carried out in a specific

project phase at regular intervals. The observations were made in R independent

trials and encoded by the same categories of activityX . We define the r-th workflow

in the specific project phase in formal terms as a data string xTr ¼ xjr 0ð Þ; . . . ; xjr Tð Þ
� �

of length T þ 1ð Þ xjr τð Þ 2 X , jr τð Þ 2 1; . . . ; Xj jf g,
�

τ ¼ 0, 1, . . . , T , r ¼ 1, . . . ,RÞ.
In a similar manner as in the previous section the index jr(τ) can be interpreted as a

pointer to activity xjr τð Þ 2 X observed at time instant τ in the r-th workflow encoded

by xTr . All empirically acquired data strings are stored in a database of ordered

sequences DB ¼ xT1 ; . . . ; x
T
R

� �
. We aim at developing an integrative workflow

model that can be used for the prediction and evaluation of development activities

in the project phase based on the theory of discrete random processes. Therefore,

we start by defining a finite one-dimensional random process X0; . . . ;XTð Þ of

discrete state variables. In terms of information theory the process communicates

to an observer how the development activities unfold and are organized in time. In

formal terms, X0; . . . ;XTð Þ is a joint ensemble , in which each outcome is an

ordered sequence xj 0ð Þ; . . . ; xj Tð Þ
� �

with xj 0ð Þ 2 X ¼ x1; . . . ; xmf g, xj 1ð Þ 2 X , . . . ,

xj τð Þ 2 X , . . . , xj Tð Þ 2 X (see, e.g. MacKay 2003). Each component Xτ of the joint

ensemble  ¼ X0, . . . ,Xτ, . . . ,XT is an ensemble. An ensemble Xτ is a triple

xj τð Þ;AXτ ;PXτ

� �
, where the outcome xj(τ) is the value of a random variable that can

take on one of a set of possible values AX ¼ a1; a2; . . . ; a Xj j
� �

, having probabilities

PX ¼ p1; p2; . . . ; a Xj j
� �

, withP Xτ ¼ aið Þ ¼ pi (MacKay 2003). It holds that pi � 0

and Σai2AX
P X ¼ aið Þ ¼ 1. We call the term

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

j τð Þ 2 1; . . . ; Xj jf g

the joint probability of xj 0ð Þ; . . . ; xj Tð Þ
� �

. The joint probability describes the statis-

tical properties of the joint ensemble in the sense that, when evaluated at a given

data point xj oð Þ; . . . ; xj Tð Þ
� �

, we get the probability that the realization of the random
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sequence will be equal to that data point. A joint ensemble is therefore a probability

distribution on x1; . . . ; xmf gT . Similar to the definition of the probability density

function of a continuous-type random variable from Section 2.2, we can make the

functional relationship between the values and their joint probability explicit and

use a joint probability mass function p X0;...;XTð Þ:

p X0;...;XTð Þ xj 0ð Þ; . . . ; xj Tð Þ
� �

¼ P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

j τð Þ 2 1; . . . ; Xj jf g :

The joint probability mass function completely characterizes the probability

distribution of a joint ensemble. Without limiting the generality of the approach,

the joint probability P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

of xj oð Þ; . . . ; xj Tð Þ
� �

as an inte-

grative workflow model of the specific phase of the PD project can be factorized

over all T time steps using, iteratively, the definition for the conditional probability

P X Yjð Þ ¼ P X;Yð Þ=P Yð Þ as:

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �
¼ P X0 ¼ xj 0ð Þ

� �YT
τ¼1

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ, . . . ,X0 ¼ xj 0ð Þ

� �
:

The above decomposition of the joint probability into conditional distributions

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ, . . . ,X0 ¼ xj 0ð Þ

� �
with correlations of increasing length

τ can theoretically capture interactions between activities of long range and

therefore holds true under any circumstances of cooperative relationships in the

given phase. It is assumed that there are persistent workflow patterns in the

project phase and we can express them by means of a reduced dependency

structure capturing only short correlations, e.g. by using a Markov chain of

order n � T or an equivalent dynamic Bayesian network (see Gharahmani

2001). As such, the reduced dependency structure reflects only the essential

signature of spatiotemporal coordination in the project phase on a specific time

scale. In the simplest case, only transitions between two consecutive development

activities must be taken into account and a Markov chain of first order is an

adequate candidate model for capturing these direct dynamic dependencies. In

this model the conditional probability distribution of development activities at the

next time step—and in fact all future steps—depends only on the current activity

and not on past instances of the process when the current activity is known.

Accordingly, the current activity shields the future from past histories, and the

joint probability can be expressed as:

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

¼ P X0 ¼ xj 0ð Þ
� �YT

τ¼1

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ

� �
:

After the model structure of the Markov chain of first order has been defined by the

above factorization of the joint probability, we have to specify the free parameters.
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Continuing the notation of the previous chapters we denote the parameter vector by

θ 2 ℝk. Due to the intrinsic “memorylessness” of the chain, only the initial

distribution

π0 ¼ P X0 ¼ x1ð Þ . . . P X0 ¼ x Xj j
� �� �

2 0; 1½ � Xj j

of the probability mass over the state space X and the transition probabilities

P ¼ pij
� �

¼
P Xτ ¼ x1

��Xτ�1 ¼ x1
� �

P Xτ ¼ x2
��Xτ�1 ¼ x1

� �
. . .

P Xτ ¼ x1
��Xτ�1 ¼ x2

� �
P Xτ ¼ x2

��Xτ�1 ¼ x2
� �

⋮ ⋱

0@ 1A 2 0; 1½ � Xj j2

between consecutive activities are relevant for making good predictions. Hence, we

have the ordered pair of parameters:

θ1 ¼ π0 P½ � :

Note that only Xj j � 1ð Þparameters of the initial distribution π0 and Xj j Xj j � 1ð Þof
the transition matrix P are freely estimated parameters, because a legitimate

probability distribution has to be formed and the constraints

XXj j

i¼1

π ið Þ
0 ¼ 1 and 8i :

XXj j

j¼1

pij ¼ 1

have to be satisfied.

We can use Maximum Likelihood Estimation (MLE, see Section 2.4) to mini-

mize the deviations of the empirically acquired data sequences from the model’s
predictions (see e.g. Papoulis and Pillai 2002; Shalizi 2006). In other words, the

goodness of fit is maximized. The maximum likelihood estimate of the parameter

pair θ1 is denoted by bθ1,T . MLE was pioneered by R. A. Fisher (cf. Edwards 1972)

under a repeated-sampling paradigm and is the most prominent estimation tech-

nique. As an estimation principle, maximum likelihood is supported by bθ1,T ’s
asymptotic efficiency in a repeated sampling setting under mild regularity condi-

tions and its attainment of the Cramér-Rao lower bound in many exponential family

examples in the finite-sample case (Hansen and Yu 2001). For a first-order Markov

chain, the estimate bθ1,T can be determined by solving the objective function:

bθ1,T ¼ arg maxθ1

YR
r¼1

P X0 ¼ xjr 0ð Þ θ1j
� �YT

τ¼1

P Xτ ¼ xjr τð Þ
��Xτ�1 ¼ xjr τ�1ð Þ, θ1

� �
¼ arg max π0;Pð Þ

YR
r¼1

P X0 ¼ xjr 0ð Þ π0j
� �YT

τ¼1

P Xτ ¼ xjr τð Þ
��Xτ�1 ¼ xjr τ�1ð Þ,P

� �
:

Note that the objective function is only valid if all R data sequences had been

acquired in independent trials.

3.2 Approaches from Basic Scientific Research 173

http://dx.doi.org/10.1007/978-3-319-21717-8_2


Due to the inherent memorylessness of the first-order Markov chain, this model

is usually not expressive enough to capture the complicated dynamic dependencies

between activities in a project phase. Consequently, a second-order Markov chain is

considered as a second approximating model with extended memory capacity. For

this model, the joint probability can be expressed as:

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

¼ P X0 ¼ xj 0ð Þ
� �

P X1 ¼ xj 1ð Þ
��X0 ¼ xj 0ð Þ

� �
�
YT
τ¼2

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ,Xτ�2 ¼ xj τ�2ð Þ

� �
:

It is evident that the conditional distribution P Xτ ¼ xj τð Þ
��Xτ�1 ¼

�
xj τ�1ð Þ,Xτ�2 ¼

xj τ�2ð ÞÞ cannot only be used to predict direct transitions between current and future

activities but can also model transitions between activities of the process that are

conditioned on two time steps in the past. To parameterize this extended chain,

three quantities are required: The initial distribution

π0 ¼ P X0 ¼ x1ð Þ . . . P X0 ¼ x Xj j
� �� �

2 0; 1½ � Xj j;

the transition probabilities between consecutive activities at the first two time steps

P0 ¼ p0, ij
� �

¼
P X1 ¼ x1

��X0 ¼ x1
� �

P X1 ¼ x2
��X0 ¼ x1

� �
. . .

P X1 ¼ x1
��X0 ¼ x2

� �
P X1 ¼ x2

��X0 ¼ x2
� �

⋮ ⋱

0@ 1A 2 0; 1½ � Xj j2

and the transition probabilities for the next activity given both preceding activities

at arbitrary time steps

P ¼ pij
� �

¼

p x1
��x1, x1� �

p x1
��x1, x2� �

� � � p x1
��x1, x Xj j

� �
p x1

��x2, x1� �
p x1

��x2, x2� �
� � � p x1

��x2, x Xj j
� �

⋮ ⋮ ⋮
p x1

��x Xj j, x1
� �

p x1
��x Xj j, x2

� �
p x1

��x Xj j, x Xj j
� �

p x2
��x1, x1� �

p x2
��x1, x2� �

p x2
��x1, x Xj j

� �
p x2

��x2, x1� �
p x2

��x2, x2� �
p x2

��x2, x Xj j
� �

⋮ ⋮ ⋮
⋮ ⋮ ⋮

p x Xj j
��x Xj j, x1

� �
p x Xj j

��x Xj j, x2
� �

p x Xj j
��x Xj j, x Xj j

� �

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
2 0; 1½ � Xj j3 :

In the above matrix the shorthand notation p xi
��xj, xk� �

¼ P Xτ ¼ xi
��Xτ�1 ¼

�
xj,Xτ�2

¼ xkÞ was used. Hence, we have the parameter triple

θ2 ¼ π0 P0 P½ �:

In this triple Xj j � 1ð Þ parameters of the initial distribution π0, Xj j Xj j � 1ð Þ,
parameters of the initial transition matrix P0 and Xj j2 Xj j � 1ð Þ of the general

transition matrix P are freely estimated parameters, because a legitimate probability
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distribution has to be formed. The ordered pair π0 P0½ � can be regarded as the

initial state of the chain. We denote the maximum likelihood estimate for the

parameterized model by bθ2,T . The corresponding objective function is:

bθ2,T ¼ arg maxθ2

YR
r¼1

P X0 ¼ xjr 0ð Þ θ2j
� �

P X1 ¼ xjr 1ð Þ
��X0 ¼ xjr 0ð Þ, θ2

� �
�
YT
τ¼2

P Xτ ¼ xjr τð Þ
��Xτ�1 ¼ xjr τ�1ð Þ,Xτ�2 ¼ xjr τ�2ð Þ, θ2

� �
¼ arg max π0;P0;Pð Þ

YR
r¼1

P X0 ¼ xjr 0ð Þ π0j
� �

P X1 ¼ xjr 1ð Þ
��X0 ¼ xjr 0ð Þ,P0

� �
�
YT
τ¼2

P Xτ ¼ xjr τð Þ
��Xτ�1 ¼ xjr τ�1ð Þ,Xτ�2 ¼ xjr τ�2ð Þ,P

� �
:

It is not difficult to prove that the solutions of the objective functions for Markov

chains of first and second order (as well as all higher orders) are equivalent to the

relative frequencies of observed subsequences of activity in the database DB
(Papoulis and Pillai 2002). In other words, the MLE results can be obtained by

simple frequency counting of data substrings of interest. Let the #-operator be a

unary counting operator that counts the number of times the data string (xj(o)xj(1) . . .)

in the argument occurred in DB ¼ xT1 ; . . . ; x
T
R

� �
. Then the MLE yields

bπ0 ¼
1

R

	 

� # x1ð Þτ¼0 . . . # x Xj j

� �
τ¼0

� �
bP ¼ 1

RT

	 

�

# x1x1ð Þ # x1x2ð Þ . . .
# x2x1ð Þ # x2x2ð Þ
⋮ ⋱

0@ 1A
for the first-order Markov chain and

bπ0 ¼
1

R

	 

� # x1ð Þτ¼0 . . . # x Xj j

� �
τ¼0

� �
bP0 ¼

1

R

	 

�

# x1x1ð Þτ¼0 # x1x2ð Þτ¼0 . . .
# x2x1ð Þτ¼0 # x2x2ð Þτ¼0

⋮ ⋱

0@ 1A

bP ¼ 1

R T � 1ð Þ

	 

�

# x1x1x1ð Þ # x2x1x1ð Þ � � � # x Xj jx1x1
� �

# x1x2x1ð Þ # x2x2x1ð Þ � � � # x Xj jx2x1
� �

⋮ ⋮ ⋮
# x1x Xj jx1
� �

# x2x Xj jx1
� �

# x Xj jx Xj jx1
� �

# x1x1x2ð Þ # x2x1x2ð Þ # x Xj jx1x2
� �

# x1x2x2ð Þ # x2x2x2ð Þ # x Xj jx2x2
� �

⋮ ⋮ ⋮
⋮ ⋮ ⋮

# x1x Xj jx Xj j
� �

# x2x Xj jx Xj j
� �

# x Xj jx Xj jx Xj j
� �

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

3.2 Approaches from Basic Scientific Research 175



for the second-order chain. To estimate the initial state probabilities bπ0 only the

observations # x1ð Þτ¼0 . . . # x Xj j
� �

τ¼0

� �
in the first time step τ ¼ 0 must be

counted. To calculate the initial transition matrix P0 of the Markov chain of second

order, only the data points in the first two time steps have to be considered, and we

therefore use # x:x:ð Þτ¼0 to indicate the number of all leading substrings of length

two. The estimate of the initial state distribution can be refined by using the data

from the cited work sampling study that was carried out prior to the longitudinal

observation of workflows.

The above solutions show that in a complex PD project that already manifests its

intrinsic complexity in a single project phase by a rich body of data sequences with

higher-order correlations, the data can usually be predicted much better with a

second-order Markov chain than with a first-order model. This is due to the simple

fact that the second-order chain has additional Xj j2 Xj j � 1ð Þ free parameters for

encoding specific activity patterns and therefore a larger memory capacity. By

inductive reasoning we can proceed with nesting Markov models of increasing

order n

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

¼
P X0 ¼ xj 0ð Þ
� �

P X1 ¼ xj 1ð Þ
��X0 ¼ xj 0ð Þ

� �
. . .

P Xn�1 ¼ xj n�1ð Þ
��Xn�2 ¼ xj n�2ð Þ, . . . ,X0 ¼ xj 0ð Þ

� �
�
YT
τ¼n

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ, . . . ,Xτ�n ¼ xj τ�nð Þ

� �
ð203Þ

and capture more and more details of the workflows. Formally speaking, the n-
th order Markov model is the set of all n-th order Markov chains, i.e. all

statistical representations that are equipped with a starting state and satisfy the

above factorization of the joint probability. Given the order n of the chain, the

probability distribution of Xτ depends only on the n observations preceding τ.
However, beyond an order that is supported by the data, we begin to encounter

the problem of “not seeing the forest for the trees” and incrementally fitting the

model to random fluctuations that do not generalize to other datasets from the

same project phase.

In order to avoid this kind of overfitting, the maximum likelihood paradigm has

to be extended, because for an approximating model of interest, the likelihood

function only reflects the conformity of the model to the data. As the complexity of

the model is increased and more freely estimated parameters are included, the

model usually becomes more capable of adapting to specific characteristics of the

data. Therefore, selecting the parameterized model that maximizes the likelihood

often leads to choosing the most complex model in the approximating set.

Rissanen’s minimum description length (MDL) principle (1989) provides a natural

safeguard against overfitting by using the briefest encoding of not only the attribute

information related to the data sequences but also to the parameters of the approx-

imating models. In general, let θ be a parameter vector of model
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M nð Þ ¼ P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

: θ 2 Θ � n
� �

whose support is a set  of adequate dimensionality and consider the class

M ¼
[N

n¼1
M nð Þ

consisting of all models represented by parametric probability distributions

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

from the first order up to order N (Rissanen

2012). Note that Rissanen (2012) also calls M(n) a model class that is defined by

the independent parameters. For the sake of simplicity and to remain consistent

with the previously used notation, we simply speak of an approximating model. The

sequence of discrete state variables X0, . . . ,XT
��θ� �

forms a one-dimensional

random process encoding a joint ensemble of histories that can be explained by

the structure and independent parameters of an approximating model within the

class M. By using a model with a specific structure and parameters, the joint

probability can usually be decomposed into predictive distributions whose condi-

tional part does not scale with the length of the sequence and therefore does not

need an exponentially growing number of freely estimated parameters. In the

following the number of parameters incorporated in the vector θ is the only variable
of interest that is related to a specific model representation within class M.

As previously shown, a model from class M with parameter vector θ assigns a

certain probability

pθ xT
� �

¼ P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

ð204Þ

to a data sequence xj 0ð Þ; . . . ; xj Tð Þ
� �

of interest. If we take the definition of the

Shannon information content of an ensemble X

I x½ � :¼ log2
1

P X ¼ xð Þ; ð205Þ

then the likelihood function pθ xT
� �

can be transformed into an information-theory

loss function L

L θ; xT
� �

¼ I pθ xT
� �� �

¼ log2
1

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

¼ �log2P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

: ð206Þ

According to Eq. 203 we can interpret L θ; xT
� �

in a predictive view as the loss

incurred when forecasting Xτ sequentially based on the conditional distributions

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ, . . . ,Xτ�n ¼ xj τ�nð Þ, θ

� �
. The loss is measured using a

logarithmic scale. In the predictive view MLE aims at minimizing the accumulated
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logarithmic loss. We denote the maximum likelihood estimate by the member bθT .
In the sense of information theory, minimizing the loss can also be thought of as

minimizing the encoded length of the data based on an adequate prefix code d(x).
Shannon’s famous source coding theorem (see e.g. Cover and Thomas 1991)

tells us that for an ensemble X there exists a prefix code d(x) with expected length

L[d(x),X] satisfying

�
X
xEX

P X ¼ xð Þ log2P X ¼ xð Þ � L d xð Þ,X½ �

< �
X
xEX

P X ¼ xð Þ log2P X ¼ xð Þ þ 1: ð207Þ

The term on the left of the inequality is the “information entropy” (see Eq. 210). It

measures in [bits] the amount of freedom of choice in the coding process. This

fundamental quantity will be explained in detail in the next chapter. A beautifully

simple algorithm for finding a prefix code with minimal expected length is the

Huffman coding algorithm (see e.g. Cover and Thomas 1991). In this algorithm the

two least probable data points in X are taken and assigned the longest codewords.

The longest codewords are of equal length and differ only in the last digit. In the

next step, these two symbols are combined into a new single symbol and the

procedure is repeated. Since each recursion reduces the size of the alphabet by

one, the algorithm will have assigned strings to all symbols after Xj j � 1 steps.

Following the predictive view, we can obtain an intuitive interpretation of the

logarithmic loss in terms of coding: the code length needed to encode the data

points xj 0ð Þ; . . . ; xj Tð Þ
� �

with prefix code d(x) based on the joint distribution P(.) is

simply the accumulated logarithmic loss incurred when the corresponding condi-

tional distributions P(. |.) are used to sequentially predict the τ-th outcome on the

basis of the previous τ � 1ð Þ observations (Grünwald 2007).

It is evident that this interpretation is incomplete; we have an encoded version of

the data, but we have still not said what the encoding scheme for the member bθT
is. Thus, the total description length DL must be divided into two parts,

DL xT ; θ;Θ
� �

¼ L θ; xT
� �

þ D θ;Θ½ �;

where D[θ,Θ] denotes the code length in terms of the number of bits needed to

specify the member within classM. The two parts of description length are usually

obtained in a sequential two-stage encoding process (see Hansen and Yu 2001). In

the first stage, the description length D bθT ;Θh i
for the best-fitting member bθT is

calculated. The bθT ’s maximizing the goodness-of-fit can be obtained both by MLE

and Bayesian estimation. In the second stage, the description length of data LbθT ; xTh i
is determined on the basis of the parameterized probability mass function

pθ̂ T
xT
� �

.
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Clearly, the model related to D[θ,Θ] represents the part of the description that

can be generalized, whileL θ; xT
� �

includes the noisy part that does not generalize to

other datasets. If D[θ,Θ] assigns short code words to simple models, we have the

desired tradeoff: we can reduce the part of the data that looks like noise only by

using a more elaborate approximating model. Such an assignment provides an

effective safeguard against overfitting. The minimum description length (MDL)

principle supplied by Rissanen (1989, 2007) allow us to select the model that

minimizes the total description length:

θMDL :¼ arg minθDL xT ; θ;Θ
� �

:

The only requirement for the code length of the optimizing parametersD bθT ;Θh i
of

this general MDL principle is that they be decodable (Rissanen 2012). The defini-

tion of a prior probability as in Bayesian estimation is therefore not required.

Minimizing the total description length is apparently a consistent principle in

connection with maximum likelihood estimation, because if we want to maximize

the joint probability DL xT ; θ;Θ
� �

we need to calculate the probability of the

coincidence of the observed data and the different approximating models and

choose the maximizing model. It is important to point out that in MDL, one

is never concerned with actual encodings but only with code length functions,

e.g. L[d(x),X] for an ensemble X encoded by a prefix code d(x) (Grünwald 2007).

The stochastic complexity CSC of the joint ensembleXT with reference to the model

class M is simply the MDL:

CSC xT ;Θ
� �

:¼ minθ DL xT ; θ;Θ
� �

: ð208Þ

Under mild conditions for the underlying data-generating process in the model

class, as we provide more data, θMDL will converge to the model that minimizes the

generalization error.

Returning to our previous example of workflow modeling with Markov chains,

we can follow the considerations of Hansen and Yu (2001) and, for didactic

purposes, construct a simple but reasonable two-part code for the n-th order Markov

chain M(n) within the class M of finite-order Markov chains up to order N. The
parameter vector of the n-th order Markov chain is denoted by θn 2 Θn. Firstly, the

order has to be described. We can start with a straightforward, explicit description

for n that is based on a binary prefix code with dlog2ne zeros followed by a one. The
encoding of n can be done by using a simple uniform code for 1; . . . ; 2 log2nd e� �

.

Therefore, we need approximately2 log2nd e þ 1bits to describe the model order. By

applying Huffman’s algorithm here, we can also obtain a more efficient uniform

code with a length function that is not greater than b log2nc for all values of

{1, 2, . . ., n} but is equal to b log2nc for at least two values in this set. The function

b.c provides the integer part of the argument. Whereas we know from Shannon’s
source coding theorem (Eq. 207) that an expected length of such a code is optimal
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only for a true uniform distribution of the order of the model, this code is a

reasonable choice when little is known about how the data was generated. Sec-

ondly, the Σn
i¼0 Xj ji Xj j � 1ð Þ ¼ Xj jnþ1

best-fitting free parameters bθ n,T have to be

described. We start by discretizing the range [0; 1] of a single ensemble into equal

cells of size δ and then apply Huffman’s algorithm. If we discretize the Cartesian

productΘn ¼ 0; 1½ � Xj jnþ1

associated with the joint ensemble XT in the same fashion,

the quantity �log2 p 0; 1½ � Xj jnþ1
� �

� δ Xj jnþ1
� �

¼ �log2 p 0; 1½ � Xj jnþ1
� �

� Xj jnþ1
log2δ

can be viewed as the code length of a prefix code for bθn,T (Hansen and Yu 2001).

Here, the probability density p can be regarded as an auxiliary density. It is used

instead of the unknown true parameter-generating density f. Assuming a continuous

uniform distribution with density p xð Þ ¼ 1 for x 2 0; 1½ � Xj jnþ1

(and q xð Þ ¼ 0

otherwise), an additional Xj jnþ1
log2δ bits are needed to describe the free parame-

ters. In a compact parameter space, we can refine the description and choose for the

precision δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= T þ 1ð Þ

p
for each effective dimension. Rissanen (1989) showed

that this choice of precision is optimal in regular parametric families. The intuitive

explanation is that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= T þ 1ð Þ

p
represents the magnitude of the estimation error inbθn,T and therefore there is no need to encode the estimator with greater precision

(Hansen and Yu 2001). When the uniform encoder is used, one needs a total of

Xj jnþ1=2
� �

log2 T þ 1ð Þ bits to communicate an estimated parameter bθn,T of

dimension Xj jnþ1
. Putting both partial descriptions together leads to

D θn;Θn½ � ¼ log2nþ
Xj jnþ1

2
log2 T þ 1ð Þ:

Interestingly, the formalized total description length of the n-th order Markov chain

is similar to the Schwarz-Bayes Criterion (BIC) for the VAR(n) (Eq. 71) and LDS

(Eq. 189) models of cooperative work in the sense that model complexity is

penalized with a factor that increases linearly in the number of free parameters

and logarithmically in the number of observations in the joint ensemble. This is a

clear and unambiguous indication that there are deep theoretical connections

between different approaches to model selection. The predictive view of Markovian

models provides us with a refined interpretation of model selection based on the

MDL principle: given two approximating modelsM(1) andM(2), we should prefer

the model that minimizes the accumulated prediction error resulting from a sequen-

tial prediction of future outcomes given all past histories (Grünwald 2007).

Regarded as a principle of model selection, MDL has proven very successful in

many areas of application (see e.g. Grünwald 2007; Rissanen 2007). Nevertheless, a

part of this success comes from carefully tuning the model-coding term D[θ,Θ] in
such a manner that those models that do not generalize well turn out to have long

encodings. Though not illegitimate, this approach relies on the intuition and

knowledge of the human model builder. Motivated in part by this kind of theoretical
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incompleteness, Rissanen (2012) refined the above general MDL principle in his

latest textbook on optimal estimation of parameters, formulating a “complete MDL

principle.” The complete MDL principle differs from the previously formulated

principle in the requirement that the code length for the parameters defining the

model M(k) is the negative logarithm of the probability defined by the joint

distribution

p̂k xT
� �

¼
pθ̂ xTð Þ xT

� �
Ĉ k

;

where Ĉk is a normalizing coefficient. bθ xT
� �

represents the ML estimator and

k denotes the number of parameters incorporated in the parameter vector θ
(Rissanen 2012). The requirement for the code length can also be generalized to

the case where even the number of parameters is estimated, see Rissanen (2012).

Since p̂k xT
� �

is determined by the model M(k), its code length is common for all

data sequences. The code of p̂ k xT
� �

for fixed k is complete. The logarithm of the

normalizing coefficient is given by the maximum capacity for the model M(k)

within class M:

log2Ĉ k ¼ log2

ð
Θ

X
xT :θ̂ xTð Þ¼θ

pθ̂ xTð Þ xT
� �

dθ > 0:

The range Θ of the integration is selected to make the integral finite. Rissanen

(2012) also calls the term log2Ĉk, representing the maximum capacity for model

M(k), the maximum estimation information, and interprets it as a measure of the

maximum amount of information an estimator can obtain about the corresponding

distribution. The estimator maximizing the estimation information agrees with the

standard ML estimator. The model related to p̂ k xT
� �

was introduced earlier by

Shtarkov (1987) as a universal information-theoretic model for data compression.

In spite of these recent refinements, the complete MDL principle has limitations

in terms of selecting an adequate family of model classes. An additional shortcom-

ing is non-optimality if the model class cannot be well defined (Rissanen 2007,

2012). Whatever its merits as a model selection method, stochastic complexity is

not a good metric of emergent complexity in open organizational systems for three

reasons (sensu Shalizi 2006). (1) The dependence on the model-encoding scheme is

very difficult to formulate in a valid form for project-based organizations. (2) The

log-likelihood term, L θ; xT
� �

, can be decomposed into additional parts, one of

which is related to the entropy rate of the information-generating work processes

(hμ, Eq. 223) and which therefore reflects their intrinsic unpredictability, not their

complexity. Other parts indicate the degree to which even the most accurate model

in M is misspecified, for instance, through an improper choice of the coordinate

system. Thus, it largely reflects our unconscious incompetence as modelers, rather

than a fundamental characteristic of the process. (3) The stochastic complexity
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reflects the need to specify some particular organizational model and to formally

represent this specification. This is necessarily part of the process of model devel-

opment but seems to have no significance from a theoretical point of view. For

instance, a sociotechnical system being studied does not need to represent its

organization; it simply has it (Shalizi 2006).

3.2.3 Effective Complexity

Effective complexity (EC) was developed by Seth Lloyd and the Nobel laureate

Murray Gell-Mann. The fact that random strings without any purposeful informa-

tional structure display maximal Kolmogorov�Chaitin complexity (see Section

3.2.1) was one of the main reasons for Gell-Mann and Lloyd’s criticism of the

algorithmic complexity concept from Section 3.2.1 and for their attempt to define

effective complexity as a more intuitive measure for scientific discourse. The

concept of EC and its mathematical treatment were the subject of a series of papers

that gained a great deal of attention in the scientific community (Gell-Mann 1995;

Gell-Mann and Lloyd 1996, 2004). As with previous approaches for evaluating the

complexity of an entity with inherent regularities in terms of its structure and

behavior, it is assumed that its complexity is manifested to an observer in the

form of a data string x, typically encoded in binary form. However, Gell-Mann and

Lloyd do not consider the minimum description length of the string itself, which is

what Wallace and Boulton (1968) and Rissanen (1989, 2007) did to evaluate

stochastic complexity. Instead, they consider the joint ensemble  in which the

string is embedded as a typical member (Ladyman et al. 2013). “Typicality” is

defined using the theory of types (see e.g. Cover and Thomas 1991), which means

that the negative binary logarithm of the joint probability distribution of  x½ � on
x1; . . . ; xmf gT is approximately equal to the information entropy H ½ � (see below

and next chapter). To evaluate the minimum description length of the ensemble ,
the (prefix) Kolmogorov�Chaitin complexity from Eq. 200 is used. This approach

assumes that one can find a meaningful way to estimate what the ensemble is. The

resulting informal definition of the EC[x] of an entity is the Kolmogorov�Chaitin

complexity of the ensemble , in which the string x manifesting the object’s
complexity to an observer is embedded as a δ-typical member. Instead of

Kolmogorov�Chaitin complexity, Gell-Mann and Lloyd use the equivalent term

“algorithmic information content” (Gell-Mann and Lloyd 1996, 2004). The main

idea of EC is therefore to split the algorithmic information content of the string

x into two parts, where the first contains all regularities and the second contains all

random features. The EC of x is defined as the algorithmic information content of

the regularities alone (Ay et al. 2010). In contrast to previous approaches, the EC is

therefore not a metric for evaluating the difficulty of describing all the attribute

information of an entity, but rather the degree of organization (Ladyman

et al. 2013). By degree of organization, we mean the internal structural and
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behavioral regularities that can be identified by using ensembles as models of the

string. Following this concept of ensemble-based complexity measurement, in

order to compute the ensemble  a computer program on a universal computer

U takes as input the target string x and a precision parameter n and simply outputs

 x½ � to precision n. This approach can resolve the paradox from Section 3.2.1,

whereby random strings without any internal structure display high Kolmogor-

ov�Chaitin complexity because no underlying regularities or rules exist that could

allow a shorter description. The ideal ensemble for modeling a random string is a

joint ensemble with a uniform distribution of the probability mass that assigns equal

probability to every string x0 of length |x|, and it holds that (Foley and Oliver 2011):

U
x x0½ � ¼ 2� xj j:

The Kolmogorov�Chaitin complexity of this ensemble is apparently very low,

because the computer program used to calculate it on U simply calculates 2� xj j to
precision n when confronted with input x0. The EC of a random string is thus low,

although it is incompressible and the Kolmogorov�Chaitin complexity is maximal

for its length |x| (Foley and Oliver 2011).

Ay et al. (2010) introduced a more formal approach to defining EC and proving

some of its basic properties. In the following, we summarize their main definitions

and interpretations. First, we have to define the Kolmogorov�Chaitin complexity

KU ½ � of a joint ensemble . As previously stated, a program to compute the

ensemble  on a universal prefix computer U expects two inputs: the target string

x and a precision parameter nEℕ. It outputs the binary digits of the approximationU
x

of x½ �with an accuracy of at least2�n. The Kolmogorov�Chaitin complexityKU ½ �
of is then the length of the shortest program for the universal prefix computerU that

computeson the basis of the approximationU
x (Ay et al. 2010). Unfortunately, not

every ensemble is computable, as there is a continuum of string ensembles but only a

finite number of algorithms computing ensembles. Another subtlety is that the

information entropy H ½ � ¼ ΣxEXT  xð Þlog2 xð Þ (cf. Eq. 210) as a measure of the

“ignorance” of the probability distribution of a computable ensemble xð Þ for string
x does not necessarily need to be computable. All that is known is that it can be

enumerated from “below.” Thus, it must be assumed in the following that all

ensembles are computable and have computable and finite entropy. Even when we

restrict the analysis to the set of ensembles that are computable and have computable

and finite entropy, the map �H ½ � is not necessarily a computable function.

Hence, the approximate equality KU ,H ½ �½ �þ¼ KU ½ � is not necessarily uniformly

true in  (the operator þ¼ denotes an equality to within a constant). Therefore, the

definition of KU ð Þ has to be refined (Ay et al. 2010):

KU ½ � :¼ KU ,H ½ �½ �:

We therefore assume that the programs on the universal prefix computer

U computing  when confronted with input x carry an additional subroutine
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to compute the information entropy H ½ �. The Kolmogorov�Chaitin complexity

KU ½ � is integer-valued. Second, we have to define the “total information” Σ ½ � of
an ensemble  (Gell-Mann and Lloyd 1996, 2004). To explain the role of the total

information within the theory, Gell-Mann and Lloyd (2004) consider a typical

situation in which a theoretical scientist is trying to construct a theory to explain

a large body of data. The theory is represented by a probability distribution over a

set of bodies of data. One body consists of the real data, while the rest of the bodies

are imagined. In this setting, the Kolmogorov�Chaitin complexity KU ½ � corre-
sponds to the complexity of the theory, and the information entropy H ½ �measures

the extent to which the predictions of the theory are distributed widely over

different possible bodies of data. Ideally, the theorist would like both quantities

to be small: the Kolmogorov�Chaitin complexity KU ½ � so as to make the theory

simple, and the information entropyH ½ � so as to make it focus narrowly on the real

data points. However, there can be a trade-off. By adding more details to the theory

and more arbitrary parameters, the theoretical scientist might be able to focus on the

real data, but only at the expense of complicating the theory. Similarly, by allowing

appreciable probabilities for many possible bodies of data, the scientist might be

able to develop a simple theory. In any case, it makes good sense to minimize the

sum of the two quantities that is defined as the total information Σ ½ �:

Σ ½ � :¼ KU ½ � þ H ½ �:

This allows the scientist to deal with the possible trade-off: a good estimate of

the ensemble that generated the string x should not only have a small

Kolmogorov�Chaitin complexity and therefore provide a simple explanation in

the language of U; it should also have a small information entropy, as the explana-

tion should have a low level of arbitrariness and prefer outcomes that include the

string x. The total information is a real number larger than or equal to one. Third, we

have to explain what is meant by an ensemble in which the string is embedded as a

typical member. As previously stated, typicality is defined according to the theory

of types (see, e.g. Cover and Thomas 1991). To briefly explain the concept of

typicality, suppose that we toss a biased coin with probability p that it lands on

heads and q ¼ 1� p that it lands on tails n times. We call the resulting probability

distribution the ensemble 0. It is well known from theoretical and empirical

considerations that typical outcomes x have a probability 0 x½ � that is close to

2�nH (Cover and Thomas 1991). In this case the information entropy is defined as

H :¼ � p log2 p� q log2q. We can prove that the probability that0 x½ � lies between
2�n Hþεð Þ and 2�n H�εð Þ for ε > 0 tends to one as the number of tosses n grows. This

property is a simple consequence of the weak law of large numbers and is the

subject of the “asymptotic equipartition theorem” (Cover and Thomas 1991).

Generalizing this property, we consider a string x as typical for a joint ensemble

 if its probability is not much smaller than 2�nH ½ �. We say x is δ–typical for  for

some small constant δ � 0 if
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 x½ � � 2�H ½ � 1þδð Þ:

Fourth, we have to define how small the total information Σ ½ � should be for an

ensemble  that explains the string x well but is not unnecessarily complex in the

language of U. This lemma by Ay et al. (2010) shows that the total information

should not be too small: it uniformly holds for xEX * and δ � 0 that

KU xð Þ
1þ δ

<þInf Σ ½ � : x is typical for f g<þKU xð Þ:

The symbol <þ denotes an inequality to within a constant. KU(x) is the (algorith-
mic) Kolmogorov�Chaitin complexity of x according to Eq. 200. The function

Inf{.} denotes the infimum of the generated set of total information values. Put

simply, the lemma tells us that the total information Σ ½ � should not be much larger

than the Kolmogorov�Chaitin complexity of the string of interest. Fifth, the

ultimate question is, of all the “good” ensembles according to the previously

defined criteria, which ensemble  is the best for evaluating an entity’s degree of

organization? In their simple yet convincing answer, Gell-Mann and Lloyd (1996,

2004) claim it is the ensemble with minimum Kolmogorov�Chaitin complexity.

The exact definition (Ay et al. 2010) is that, given small constants δ � 0 andΔ � 0,

the effective complexity EC[x] of any string xEX * is defined as:

EC x½ � :¼ Inf K ½ � : x is typical for  and Σ ½ � � K xð Þ þ Δf g; ð209Þ

or as 1 if this set is the empty set. The right-hand side of the above definition

defines the minimization domain of the string x for effective complexity. Ensem-

bles  of the minimization domain of xEX* satisfy

KU xð Þ
1þ δ

<þΣ ½ � � K xð Þ þ Δ:

As Gell-Mann and Lloyd (2004) point out, it is often necessary to extend this

definition of effective complexity by imposing additional constraints on the ensem-

bles allowed in the minimization domain. These additional constraints can refer to

certain properties of the string x that are judged important from the standpoint of a

general scientific theory, or they can involve additional information about the

processes that generated x (Ay et al. 2010). Ay et al. (2010) prove several properties
of EC[x], such as its finiteness, and they show that incompressible strings are

effectively simple, which is desirable given the criticism of the algorithmic com-

plexity concept from Section 3.2.1. They also show that strings exist that have

effective complexity close to their length |x|. Finally, one can show that EC[x] is
related to Bennett’s logical depth (1988, see Section 3.2.1). If the effective com-

plexity of a string x exceeds a certain threshold, then the string must have an

extremely large depth (Ay et al. 2010).
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Moreover, Duncan Foley recently presented an interesting re-phrased formalism

based on Bayesian inference. The Bayesian formulation allows us to interpret

effective complexity in terms of the minimum description length principle of

Wallace and Boulton (1968) and Rissanen (1989, 2007) as a two-part code (see

notes on facticity and effective complexity by Foley and Oliver, 2011). To apply the

method of Bayesian inference, Foley regards the problem of assigning probabilities

to joint ensembles  as hypotheses, and the target string x as data. In this case,

Bayes’ theorem can be written as

P 
��x� �

¼ P ð Þ
P x
��� �

P xð Þ ;

where P ð Þ is the prior probability assigned to the joint ensemble , P x
��� �

is the

probability of the data given the ensemble (“likelihood”), and P(x) is a normalizing

constant. P 
��x� �

is the posterior probability of the joint ensemble given the data

string x. Given the prior probability distribution P ð Þ ¼ 2�KU ½ �, the posterior

distribution will be

P 
��x� �

/ 2�KU ½ �P x
��� �

/ 2�KU ½ �E x½ �:

The term E[x] denotes the expected value of the corresponding discrete sequence.

When we take the logarithm to base 2 to express information content in bits, we

have

log2P 
��x� �

/ �KU ½ � þ log2E x½ �:

From Shannon’s source coding theorem (Eq. 207), we know that the quantity

�log2E x½ � is the prefix code d(x) with expected length L[d(x),X] assigned to the

data string x as a message to minimize average code length when the probabil-

ities of messages are given by the joint ensemble . The negative logarithm of

the posterior probability of a joint ensemble can therefore be regarded as the

sum of the number of bits required to encode the ensemble as a program on

U and as the length of code required to identify the string x given the

distribution corresponding to . The logarithm of the posterior probability can

also be interpreted in terms of the minimum description length principle from

Sect 3.2.2 as the negative of the length of the two-part code transmitting the

string x given the joint ensemble  as a generative model. Hence, we have the

intuitive definition (Foley and Oliver 2011):

EC½x� :¼ KU
bx ¼ arg min KU ½ � � log2E x½ �f g
h i

:

It is important to note that this direct definition is a limited concept of effective

complexity, as the information entropy H ½ � of the ensemble is not evaluated.
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In spite of its convincing concept and its conformity with the aforementioned

expectations for a consistent complexity measure, in the following we will not

consider the effective complexity in evaluating the emergent complexity of PD

projects, as it is not computable. As Gell-Mann says: “There can exist no procedure

for finding the set of all regularities of an entity” (Gell-Mann 1995, p. 2). This

severe practical limitation leaves us with information-theoretic quantities based on

dynamic entropies of joint ensembles that possess many (though not all) of the

theoretically desired properties and can be efficiently and robustly estimated from

data in a product development environment. These quantities will be discussed in

the next chapter.

3.2.4 Effective Measure Complexity and Forecasting
Complexity

Motivated in part by the theoretical weaknesses of the concept of stochastic

complexity that were cited in Section 3.2.2 and by the uncomputability of algorith-

mic measures, the German physicist Peter Grassberger (1986) developed a simple

but highly satisfactory complexity theory. He posits that complexity is the amount

of information required for optimal prediction. We will begin by analyzing why this

concept is plausible, and then go on to look at how to develop measuring concepts

and make them fully operational. In general, there is a limit to the accuracy of any

prediction of a given sociotechnical system set by the characteristics of the system

itself, e.g. the free will of the decision makers, spontaneous human error, limited

precision of measurement, sensitive dependence on initial conditions, etc. Suppose

we have a model that is maximally predictive, i.e. its predictions are at the

theoretical limit of accuracy. Prediction is always a matter of mapping inputs to

outputs. In our application context, the inputs are the encoded observations of single

instances of task processing (encoding, for instance, the labor units required to

finalize a specific component, open design issues that need to be addressed before

design release, etc.) and the outputs are the expectations about the work remaining,

as well as macroscopic key performance indicators such as the finishing time of the

project phase. However, usually not all aspects of the entire past are relevant for

making good predictions. In fact, if the task processing is strictly periodic with a

predefined cycle time, one only needs to know which of the φ phases the work

process is in. For a completely randomized work process with independent and

identically distributed (iid) state variables, the past is completely irrelevant for

predicting the future. Because of this “memorylessness,” the clever, evidence-based

estimates of an experienced project manager on average do not outperform naı̈ve

guesses of the outcome based on means. If we ask how much information about the

past is relevant in these two extreme cases, the correct answers are log2(φ) and
0, respectively. It is intuitive that these cases are of low complexity, and more

informative dynamics “somewhere in between” must be assigned high complexity
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values. In terms of Shannon’s famous information entropyH :½ � the “randomness” of

the output either is simply a constant (low-period deterministic process with small

algorithmic complexity) or grows precisely linearly with the length (completely

randomized process with large algorithmic complexity). Hence, it can be concluded

that both cases share the feature that corrections to the asymptotic behavior do not

grow with the size of the dataset (Prokopenko et al. 2009). Grassberger considered

the slow approach of the entropy to its extensive limit as an indicator of complexity.

In other words, the subextensive components growing less rapidly with time than a

linear function are of special interest for complexity evaluation.

When dealing with a Markovian model, such as the VAR model of cooperative

task processing formulated in Section 2.2, only the present state of work remaining

is relevant for predicting the future (see Eq. 8), so the amount of information needed

for optimal prediction is simply equal to the amount of information needed to

specify the current state. More formally, any predictor g will translate the

one-dimensional infinite past X�1
�1 ¼ X�1;X�1þ1; . . . ;X�1ð Þ into an effective

state S ¼ g X�1
�1

� �
and then make its prediction on the basis of S. This is true

whether or not g �½ � is formally a state-space model as we have formulated. The

amount of information required to specify the effective state in the case of discrete-

type random variables (or discretized continuous-type random variables) can be

expressed by Shannon’s information entropy H[S] (Cover and Thomas 1991). We

will return to this point later in the chapter and take H[S] to be the statistical

complexity CGCY of g �½ � under the assumption of a minimal maximally predictive

model of the stationary stochastic process {Xt} (t 2 ℤ, see Eq. 228).
Shannon’s information entropy represents the average information content of an

outcome. Formally, it is defined for a discrete-type random variable X with values

in the alphabet X and probability distribution P :ð Þ as

H X½ � :¼ �
X
xEX

P X ¼ xð Þlog2P X ¼ xð Þ: ð210Þ

The information entropy H :½ � is non-negative and measures in [bits] the amount of

freedom of choice in the associated decision process or, in other words, the degree

of randomness. If we focus on the set M of maximally predictive models, we can

define what Grassberger called “the true measure complexity Cμ of the process” as

the minimal amount of information needed for optimal prediction:

Cμ :¼ min
g2M

H g X�1
�1

� �� �
: ð211Þ

The true measure complexity is also termed “forecasting complexity” (Zambella

and Grassberger 1988), because it is defined on the basis of maximally predictive

models requiring the least average information content of the memory variable. We

will use the term “forecasting complexity” in the following, as it is well-established

and more intuitive. Unfortunately, Grassberger provided no procedure for finding

the maximally predictive models or for minimizing the information content. How-

ever, he did draw the following conclusion. A basic result of information theory,
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called “the data-processing inequality” (Cover and Thomas 1991), states that for

any pair of random variables X and Y (or pair of sequences of random variables) the

mutual information I[.;.] follows the rule

I X; Y½ � � I g X½ �; Y½ �:

It is therefore impossible to extract more information from observations by

processing than was in the sample to begin with. Since the state S of the predictor

is a function of the past, it follows that

I X�1
�1;X1

0

� �
� I g X�1

�1
� �

;X1
0

� �
;

whereX1
0 ¼ X0;X1; . . . ;X1ð Þ represents the infinite future of the stochastic process

including the “present” that is encoded in the observation X0.

The mutual information I[.;.] is another key quantity of information theory

(Cover and Thomas 1991). It can be equivalently expressed on the basis of the

joint P(.,.) and marginal probability mass functions P(.) as

I X; Y½ � :¼
X
xEX

X
yEY

P X ¼ x,Y ¼ yð Þlog2
P X ¼ x,Y ¼ yð Þ
P X ¼ xð ÞP Y ¼ yð Þ ð212Þ

or in terms of the information entropy H[.] as

I X; Y½ � ¼ H X½ � � H X
��Y� �

¼ H Y½ � � H Y
��X� �

¼ H X½ � þ H Y½ � � H X; Y½ �
¼ H X; Y½ � � H X

��Y� �
� H Y

��X� �
:

In the above equations, with the conditional entropy (also called equivocation,

Cover and Thomas 1991) we have used another important information-theoretic

quantity which measures the amount of information for the random variable X given

the value of another random variable Y. It can be explicitly written as

H X
��Y� �

¼ H X; Y½ � � H Y½ �: ð213Þ

The mutual information I[.;.] is non-negative and measures the amount of informa-

tion that can be obtained about one random variable by observing another. It is

symmetric in terms of these variables. System designers often maximize the amount

of information I[A;B] shared by transmitted and received signals by choosing the

best transmission technique. Channel coding guarantees that reliable communica-

tion is possible over noisy communication channels, if the rate of information

transmission is below a certain threshold that is termed “the channel capacity,”

defined as the maximum mutual information for the channel over all possible
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probability distributions of the signal (see Cover and Thomas 1991). According to

Polani et al. (2006) mutual information should not be regarded as something that is

transported from a transmitter to a receiver as a “bulk” quantity. Instead, the mutual

information makes it possible to evaluate the intrinsic dynamics that can provide

deeper insights into the inner structure of information; maximization of information

transfer through selected channels appears to be one of the main evolutionary

processes (Bialek et al. 2001; Polani et al. 2006).

In a similar manner, the conditional mutual information I[X; Y|Z] (Cover and
Thomas 1991) can be defined on the basis of the joint P(.,.), marginal P(.) and
conditional P(. |.) probability mass functions as

I X;YjZ½ �:¼
X
zEZ

P Z¼ zð Þ
X
xEX

X
yEY

P X¼ x,Y¼ yjZ¼ zð Þlog2
P X¼ x,Y¼ yjZ¼ zð Þ

P X¼ xjZ¼ zð ÞP Y¼ yjZ¼ zð Þ :

ð214Þ

The conditional mutual information can be interpreted in its most basic form as the

expected value of the mutual information of two random variables given the value

of a third one. Alternatively, we can write

I X; YjZ½ � ¼ H X
��Z� �

þ H Y
��Z� �

� H X,Y
��Z� �

: ð215Þ

Presumably, for optimal predictors, the amounts of information I X�1
�1;X1

0

� �
and

I g X�1
�1

� �
;X1

0

� �
are equal and the predictor’s state is just as informative as the

original data. This is the case for so-called “ε-machines,” which are analyzed

below. Otherwise, the model would be missing potential predictive power. Another

basic inequality is that H X½ � � I X; Y½ �, i.e. no variable contains more information

about another than it does about itself (Cover and Thomas 1991). Even for the

maximally predictive models it therefore holds that H X�1
�1

� �
� I X�1

�1;X1
0

� �
.

Grassberger called the latter quantity I X�1
�1;X1

0

� �
— the mutual information

between the infinite past and future histories of a stochastic process—the effective

measure complexity (EMC):

EMC :¼ I X�1
�1;X1

0

� �
: ð216Þ

Recall that EMC is defined with reference to infinite sequences of random variables

and is therefore only valid for stationary stochastic processes. The same is true for

the forecasting complexity. For the sequence . . . ;X�1;X0;X1; . . .ð Þ stationarity

implies that the joint probability distribution P(., . . .,.) associated with any finite

block of n variables Xn :¼ Xtþn
tþ1 ¼ Xtþ1; . . . ;Xtþnð Þ is independent of t and only

depends on the block length n. The independency of the joint probability distribu-

tion of t can limit the evaluation of PD projects in industry, as the dynamical

dependencies between process and product can significantly change over time.

In this case an alternative complexity measure—known as the “binding
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information”—developed by Abdallah and Plumbley (2012) should be taken into

consideration, as it can be used to evaluate non-stationary processes of different

kinds.

If optimal predictions of the stationary stochastic process are influenced by

events in the arbitrarily distant past, the mutual information diverges and the

measure EMC tends to infinity (see discussion of predictive information Ipred
below).

Shalizi and Crutchfield (2001) proved that the forecasting complexity gives an

upper bound of the EMC:

EMC � Cμ: ð217Þ

In terms of a communication channel, EMC is the effective information transmis-

sion rate of the process. The units are bits. Cμ is the memory stored in that channel.

Hence, the inequality above means that the memory needed to carry out an optimal

prediction of the future cannot be less than the information that is transmitted from

the past X�1
�1 to the future X1

0 (by storing it in the present). However, the

specification of how the memory has to be designed and managed cannot be derived

on the basis of information-theory considerations. Instead, a constructive and more

structural approach based on a theory of computation must be developed. A highly

satisfactory theory based on “causal states” was developed by Crutchfield and

Feldman (2003). These causal states lead to the cited ε-machines, as well as the

Grassberger–Crutchfield–Young statistical complexity CGCY, which will be

presented later in this chapter.

EMC can be estimated purely from historical data, without use of a generative

stochastic model of cooperative work. If the data is generated by a model in a

specific class but with unknown parameter values, we can derive closed-form

solutions for EMC, as will be shown in Sections 4.1.1, 4.1.2 and 4.1.3 for a VAR

(1) model (cf. Eq. 262). The mutual information between the infinite past and future

histories of a stochastic process has been considered in many contexts. It is termed,

for example, excess entropy E (Crutchfield and Feldman 2003; Ellison et al. 2009;

Crutchfield et al. 2010), predictive information Ipred n ! 1ð Þ (Bialek et al. 2001,

see below), stored information (Shaw 1984), past-future information Ip� f (Li and

Xie 1996, see Section 5.1) or simply complexity (Arnold 1996; Li 1991). Rissanen

(1996, 2007) also refers to the part of stochastic complexity required for coding

model parameters as model complexity. Hence, there should be a close connection

between Rissanen’s ideas of encoding a data stream based on generative models

and Grassberger’s ideas of extracting the amount of information required for

optimal prediction. In fact, if the data allows a description by a model with a finite

number of independent parameters, then mutual information between the data and

the parameters is of interest, and this is also the predictive information about all of

the future (Bialek et al. 2001). Rissanen’s approach was further strengthened by a

result put forward by Vitányi and Li (2000) showing that an estimation of param-

eters using the MDL principle is equivalent to Bayesian parameter estimations with
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a “universal” prior (Li and Vitányi 1997). Since the mutual information between the

infinite past and future histories can quantify the statistical dependency structures of

cooperative work processes, it will be used in the following to evaluate the

emergent complexity in PD projects.

In addition to Cμ and EMC, another key invariant of stochastic processes that

was discovered much earlier is Shannon’s source entropy rate (Cover and Thomas

1991):

hμ :¼ lim
η!1

H Xn¼η½ �
η

: ð218Þ

This limit exists for all stationary processes. The source entropy rate is the intrinsic

randomness that cannot be reduced, even after considering statistics over longer and

longer blocks of generating variables. The unit of hμ is bits/symbol. It is also known

as per-symbol entropy, thermodynamic entropy density, Kolmogorov–Sinai

entropy or metric entropy. The source entropy rate is zero for periodic processes.

Surprisingly, it is also zero for deterministic processes with infinite memory. The

source entropy rate is larger than zero for irreducibly unpredictable processes like

the cited iid process or Markov processes. The capacity of a communication

channel must be larger than hμ for error-free data transmission (Cover and Thomas

1991). Interestingly, the source entropy rate is related to the algorithmic complexity

(Section 3.1): hμ is equal to the average length (per variable) of the minimal

program with respect to U that, when run, will cause the Universal Turing Machine

to produce a typical configuration and then halt (Cover and Thomas 1991). In the

above definition the variable H[Xn] is the joint information entropy of length-n
blocks Xtþ1; . . . ;Xtþnð Þ. This entropy is not the entropy of a finite string xn with
length n; rather, it is the entropy of sequences with length n drawn from mainly

much longer or infinite output generated by the process in the steady state. The

variable n is the nonnegative order parameter and can be interpreted as an

expanding observation window of length n over the output. In the following, we

will use the shorthand notation H(n) to represent this kind of entropy, which is also

termed Shannon block entropy (Grassberger 1986; Bialek et al. 2001). For discrete-

type random variables the block entropy is defined as

H nð Þ :¼ H Xn½ �
¼ H Xtþ1; . . . ;Xtþn½ �
¼�

X
X

. . .
X
X

P Xtþ1 ¼ xj tþ1ð Þ, . . . ,Xtþn ¼ xj tþnð Þ
� �

� log2P Xtþ1 ¼ xj tþ1ð Þ, . . . ,Xtþn ¼ xj tþnð Þ
� � ð219Þ

with

H 0ð Þ :¼ 0: ð220Þ

The sums in Eq. 219 run over all possible blocks of length n. The corresponding

definition for continuous-type variables will be given in Eq. 233. Interestingly, the
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length-n approximation hμ(n) of the entropy rate hμ can be defined as the two-point

slope of the block entropy H(n):

hμ nð Þ :¼ H nð Þ � H n� 1ð Þ; ð221Þ

with

hμ 0ð Þ :¼ log2 Xj j: ð222Þ

Vice versa, hμ(n) is the discrete derivative of the block entropy with respect to the

block length n. In this sense, the length-n approximation is a dynamic entropy

representing the entropy gain (Crutchfield and Feldman 2003). It can be seen that

the entropy gain can also be expressed as conditional entropy

hμ nð Þ :¼ H Xn

��Xn�1
� �

:

In the limit of infinitely long blocks, it is equal to the source entropy rate

hμ ¼ lim
η!1

hμ n ¼ ηð Þ: ð223Þ

In general hμ(n) differs from the estimate H(n)/n for any given n but converges

to the same limit, namely the source entropy rate hμ. According to Crutchfield

and Feldman (2003), hμ(n) typically overestimates hμ at finite n, and each difference
hn � hμ represents the difference between the entropy rate conditioned on nmeasure-

ments and the entropy rate conditioned on an infinite number of measurements. As

such, it estimates the information-carrying capacity in blocks in which the difference

is not actually random but arises from correlations. The difference hn � hμ can

therefore be interpreted as the local predictability. These local “overestimates” can

be used to define a universal learning curve Λ(n) (Bialek et al. 2001) as

Λ nð Þ :¼ hμ nð Þ � hμ, n � 1: ð224Þ

EMC is simply the discrete integral of Λ(n) with respect to the block length n,
which controls the speed of convergence of the dynamic entropy to its limit

(Crutchfield et al. 2010):

EMC :¼
X1
n¼1

Λ nð Þ: ð225Þ

In the sense of a learning curve, EMC measures the amount of apparent randomness

at small block length n that can be “explained away” by considering correlations

between blocks with increasing lengths nþ 1, nþ 2, . . .. Grassberger (1986) ana-
lyzed the manner in which hμ(n) approaches its limit hμ, noting that for certain classes
of stochastic processes with long-range correlations, the convergence can be very
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slow and that this is an indicator of complexity. He also found that the approach of the

limit can be so slow that hμ(n) decays slower than 1/n and therefore EMC is infinite.

These processes are termed infinitary processes (Travers and Crutchfield 2014).

When EMC is infinite, then the manner of its divergence can provide additional

information of how a system’s internal state space is coarse grained (see e.g. Bialek

et al. 2001 and Crutchfield and Feldman 2003). This phenomenon has been analyzed

in greatest detail by Bialek et al. (2001). To carry out their analysis, they defined the

predictive information Ipred nð Þ n � 1ð Þ as the mutual information between a block of

length n and the infinite future following the block:

Ipred nð Þ :¼ lim
η !1

I X�1
�n;X

η
0

� �
¼ lim

η !1
H nð Þ þ H ηð Þ � H nþ ηð Þ: ð226Þ

Bialek et al. (2001) showed that even if Ipred(n) diverges as n tends to infinity, the

way in which it grows is an indicator of a process’s complexity in its own right.

They also emphasized that the predictive information is the subextensive compo-

nent of the entropy:

H nð Þ ¼ nhμ þ Ipred nð Þ: ð227Þ

From the above equation, it can be seen that the sum of the first n terms of the

discrete integral of the universal learning curve Λ(n), that is,H nð Þ � nhμ, is equal to
Ipred(n) (Abdallah and Plumbley 2012):

Ipred nð Þ ¼
Xn
i¼1

Λ ið Þ:

As expected, Ipred(n) (as well as EMC) is zero for an iid process. According to

Bialek et al. (2001), it is positive in all other cases and grows less rapidly than a

linear function (subextensive). Ipred(n) may either stay finite or grow infinitely. If it

stays finite, no matter how long we observe the past of a process, we gain only a

finite amount of information about the future. This holds true, for instance, for the

cited periodic processes after the period φ has been identified. A longer period

results in larger complexity values and Ipred n ! 1ð Þ ¼ EMC ¼ log2 φð Þ. For some

irregular processes, the best predictions may depend only on the immediate past,

e.g. in our Markovian model of task processing or generally when evaluating a

system far away from phase transitions or symmetry breaking. In these cases, Ipred
n ! 1ð Þ ¼ EMC is also small and is bound by the logarithm of the number of

accessible states. Systems with more accessible states and larger memories are

assigned larger complexity values. On the other hand, if Ipred(n) diverges and

optimal predictions are influenced by events in the arbitrarily distant past, then

the rate of growth may be slow (logarithmic) or fast (sublinear power). If the

acquired data allows us to infer a model with a finite number of independent

parameters, or to identify a set of generative rules that can be described by a finite
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number of parameters, then Ipred(n) grows logarithmically with the size of the

sample. The coefficient of this divergence counts the dimensionality of the model

space (i.e. the effective number of independent parameters). Sublinear power-law

growth can be associated with infinite parameter models or with nonparametric

models, such as continuous functions with smoothness constraints. Typically these

cases occur where predictability over long time scales is governed by a progres-

sively more detailed description as more data points are observed.

To make the previously introduced key invariant Cμ (forecasting complexity,

Eq. 211) of a stochastic process operational in terms of a theory of computation and

to clarify its relationship to the other key invariant EMC (effective measure

complexity, Eq. 225) by using a structurally rich model and not simply a purely

mathematical representation of a communication channel, in the following we refer

to the seminal work of Crutchfield and Young (1989, 1990) on computational

mechanics. They provided a procedure for finding the minimal maximally predic-

tive model and its causal states by means of an ε-machine (Ellison et al. 2009;

Crutchfield et al. 2010). The general goal of building an ε-machine is to find a

constructive representation of a nontrivial process that not only allows good pre-

dictions on the basis of the stored predictive information, but also reveals the

essential mechanisms that produce a system’s behavior. To build a minimal max-

imally predictive model of a stationary stochastic process, we can formally define

an equivalence relation x�1
�1 	 bx�1

�1 that groups all process histories that give rise to

the same prediction:

x�1
�1 	 bx�1

�1 :, P X1
0

��X�1
�1 ¼ x�1

�1
� �

¼ P X1
0

��X�1
�1 ¼ bx�1

�1
� �� �

:

Hence, for the purpose of forecasting, two different sequences of past observations

are considered equivalent if they result in the same predictive distribution. The

above equivalence relation determines the process’s causal state, which partitions

the space X�1
�1 of pasts into sets that are predictively equivalent. The causal state

ε x�1
�1

� �
of x�1

�1 is its equivalence class

ε x�1
�1

� �
:¼ bx�1

�1 : x�1
�1 	 bx�1

�1
� �

;

and the causal state function ε(.) defines a deterministic sufficient memoryMε (see

Shalizi and Crutchfield 2001; L€ohr 2012). The set of memory states of the ε-
machine is simply the set of causal states

Mε :¼ ε x�1
�1

� �
: x�1

�1 2 Xℕ� �
:

The setX represents the finite alphabet on which the stationary stochastic process is

defined. The set of causal statesMε does not need to be countable and can therefore

represent either discrete or continuous state spaces. Shalizi and Crutchfield (2001)

showed that the equivalence relation x�1
�1 	 bx�1

�1 is minimally sufficient and

unique. Hence, it allows the highest compression of the data, while containing all

the relevant information on local dynamics. For practical purposes, longer and
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longer histories are analyzed, from x�1
�L up to a predefined maximum length

L ¼ Lmax, and the partition into classes for a fixed future horizon Xt
0 is obtained.

In principle, we start at the most coarse-grained level, grouping together those

histories that have the same predictive distribution for the next observable X0, and

then refine the partition. The refinement is recursively carried out by further

subdividing the classes using the predictive distributions of the next two observ-

ables X1
0, the next three observables X

2
0, etc.

After all causal states have been identified, an ε-machine can be constructed. To

simplify the definition of the forecasting complexity Cμ, we start by using an

informal representation in the form of a stochastic output automaton that is

expressed by the causal state function ε, a set of transition matrices ℐ for the states
defined by ε, and the start state s0. The start state is unique. Given the current state

s 2 Mε of the automaton, a transition to the next state s0 2 Mε is determined by the

output symbol (or measurement) x 2 X . State-to-state transitions are probabilistic

and must therefore be represented for each output symbol x by a separate transition

matrix T xð Þ 2 ℐ. Each row and column of the transition matrices in the set ℐ stands
for an individual causal state. A stochastic output automaton can also be
transformed into an equivalent edge-emitting hidden Markov model (L€ohr 2012).
A hidden Markov model is a universal machine that is defined over a set of
non-observable internal states Mε. It therefore does not directly reveal its internal
mechanisms to external observers; it only expresses them indirectly through emitted
symbols. The emitted symbols are edge-labels of the hidden states. The model can be

formally represented by the tuple Mε;X ; π; T xð Þ� �� �
. The start state of the hidden

Markov model is not unique but determined by an initial probability distribution π.
Depending on the current internal state st, at each time step t a transition to the new
internal state stþ1 is made and an output symbol xtþ1 from the alphabetX is emitted.

The corresponding entry T
ðxÞ
ij of the transition matrix T(x) gives the probability P

Stþ1 ¼ stþ1,Xtþ1 ¼ xtþ1

��St ¼ st
� �

of transitioning from current state st indexed by

i to the next stþ1 indexed by j on “seeing” measurement x. This operation may also

be thought of as a weighted random walk on the associated graphical model

(Travers and Crutchfield 2011): from the current state st, the next state stþ1 is

determined by selecting an outgoing edge from current state st according to their

probabilities. After a transition has been selected, the model moves to the new state

and outputs the symbol of the current state x labeling the edge. The transition

matrices are usually non-symmetric. From the theory of Markov processes (see

e.g. Puri 2010) it is well known that in a steady state the probability distribution

over the hidden states is independent of the initial-state distribution. Edge-emitting

hidden Markov models can also be expressed by an initial probability distribution π,
by a state process {St} and by an output process {Xt}, which means that they are

theoretically similar to the continuous-type linear dynamical systems that were

analyzed in Section 2.9. However, continuous-type linear dynamical systems usu-

ally do not possess the property of “unifilarity” (see below) and therefore cannot be

used to directly calculate the entropy rate of the process.
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To obtain the transition matrices T(x), one can parse the data sequence of interest
in a sequential manner, identify all causal state transitions defined by ε over

histories xt0 and xtþ1
0 , and estimate the transition probabilities P S0,X ¼ xtþ1

��S� �
using frequency counting (MLE, see Section 2.4) or Bayesian methods. The

transition probabilities allow calculation of an invariant probability distribution P
(S) over the causal states. This probability is obtained as the normalized principal

eigenvector of the transition matrix T ¼ Σx2XT
xð Þ (Ellison et al. 2009). The matrix

T is stochastic and ΣMεj j
j¼1 Tij ¼ 1 holds for each i.

Interestingly, causal states have a Markovian property in that they render the past

and future statistically independent. In other words, they shield the future from the

past:

P X�1
�1,X1

0

��S� �
¼ P X�1

�1
��S� �

P X1
0

��S� �
:

Moreover, they are optimally predictive in the sense that knowing what causal state

a process is in is as good as having the entire past:P X1
0

��S� �
¼ P X1

0

��X�1
�1

� �
. Causal

shielding is therefore equivalent to the fact that the causal states capture all of the

information shared between past and future. Hence, I S;X1
0

� �
¼ EMC. Out of all

maximally predictive models M for which I M;X1
0

� �
¼ EMC, the ε-machine

captures the minimal amount of information that a stationary stochastic process

must store in order to communicate all excess entropy from the past to the future.

Accordingly, the ε-machine is as close to perfect determinism as any rival that has

the same predictive power (Jänicke and Scheuermann 2009). The minimal amount

of information that must be stored on a stationary stochastic process

X1
�1 ¼ . . . ;X�1;X0;X1; . . .ð Þ for optimal prediction is the Shannon information

entropy over the stationary distribution of its ε-machine’s causal states—the fore-

casting complexity—and it holds that

Cμ X1
�1

� �
¼ H S½ �:

Because of its significance in complex systems science, the forecasting complexity

is also termed Grassberger–Crutchfield–Young statistical complexity CGCY (Shalizi

2006). It should not be confused with Rissanen’s stochastic complexity CSC from

Eq. 208, because the underlying concepts are based on a theory of computation. We

have (Ellison et al. 2009)

CGCY ¼ H S½ � � H M½ �

CGCY ¼ �
X
sEMs

P Sð Þlog2P Sð Þ � H M½ �:
ð228Þ

As we have argued, the causal states are an objective property of the stochastic

process under consideration and therefore the associated statistical complexity

CGCY cannot be influenced by our ineptness as modelers or our (possibly poor)
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means of description. It is equal to the length of the shortest description of the past

that is relevant to the actual dynamics of the system. As was shown above, for iid

sequences it is exactly 0, and for periodic sequences it is log2(φ). A detailed

description of an algorithm providing an ε-machine reconstruction and calculation

of CGCY for one-dimensional and two-dimensional time series can be found in

Shalizi and Shalizi (2004, 2003).

Moreover, the entropy rate hμ can be directly calculated on the basis of a

process’s ε-machine (Ellison et al. 2009) because of unifilarity:

hμ ¼ H X
��S� �

¼ �
X
sEMs

P Sð Þ
X

xs0EXMs

T
xð Þ
ss0 log2

X
s0EMs

T
xð Þ
ss0 :

XMs denotes the set whose elements are generated by concatenating all elements

of the sets X and Ms. Unifilarity means that from the start state s0 of the process,
each generated sequence of observations corresponds to exactly one sequence of

causal states. In a hidden Markov model representation of an ε-machine this

property can easily be verified. For each hidden state, each emitted symbol appears

on at most one edge. In the above equation, we used the shorthand notation T
xð Þ
ss0 to

denote the matrix entry T
ðxÞ
ij corresponding to causal state s in row i and causal state

s0 in column j of the transition matrix associated with output symbol x. The
probability P(S) denotes the asymptotic probability of the causal states.

In a recent paper, Gu et al. (2012) extended the framework of ε-machines by

allowing the casual states to have quantum mechanical properties. This extension

also makes it possible to define the quantum complexity of a stochastic process.

Interestingly, the quantum complexity of a process is bounded below by EMC and

above by CGCY (Wiesner 2015).

An especially interesting variant of Grassberger’s classic definition of the

effective measure complexity has recently been developed by Ball et al. (2010).

These authors also quantify strong emergence within an ensemble of histories of a

complex system in terms of mutual information between past and future history, but

focus on the part of the information that persists across an interval of time τ > 0. As

such, we can specify the “persistent mutual information” as a complexity measure

in its own right that evaluates the deficit in the information entropy in the joint

history compared with that of past and future taken independently. Formally, the

persistent mutual information can be defined on the basis of the EMC (Eq. 216)

extended by the lead time τ to evaluate the persistent part as

EMC τð Þ :¼ I X�1
�1;X1

τ

� �
; ð229Þ

where X�1
�1 designates the history of the stochastic process from an infinite past

to the present, and X1
τ is the corresponding future of the system from the later time
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τ onwards. The key distinguishing feature of the definition above is that it ignores

the information captured in block Xτ�1
0 , that is, the intervening interval of observa-

tions of length τ. For continuous state variables, EMC(τ) has the merit of being

independent of continuous changes of the variable, as long as they preserve time

labeling (Ball et al. 2010). EMC(τ) is known to be a Lyapunov function for the

process, so that it decays with increasing lead time (Ay et al. 2012). For positive

lead times the persistent mutual information is nonzero if a process has a memory

mechanism to store the predictive information persistently and is therefore sensitive

to how a system’s state space is observed (Marzen and Crutchfield 2014). Li (2006)

defines an information-regular process as a process whose persistent mutual infor-

mation converges to zero as the lead time grows over all given limits and it

holds that EMC τð Þ ! 0 as τ ! 1. Otherwise, the process is information-irregular.

The differences between the effective measure complexity and the persistent

mutual information for continuous-state processes are presented in more detail in

Section 4.1.6.

It is evident that the persistent mutual information enables the specification of an

intuitive lower bound on EMC:

EMC τð Þ � EMC: ð230Þ

In fact, for zero lead time we have

EMC 0ð Þ ¼ EMC:

The recent work of James et al. (2011), Marzen and Crutchfield (2014) and others

has shown that a fine decomposition of the persistent mutual information can be

carried out, essentially breaking it down into two pieces. With respect to emergent

complexity, the most interesting piece is the so-called “elusive information” σμ(τ),
which is the mutual information between the past X�1

�1 and the future X1
τ

conditioned on the length-τ present Xτ�1
0 (cf. Eq. 214):

σμ τð Þ :¼ I X�1
�1;X1

τ Xτ�1
0

��� �
: ð231Þ

According to the analysis by James et al. (2011) the elusive information has an

especially interesting interpretation: it represents the Shannon information that is

communicated from the past to the future, but does not flow through the currently

observed length-τ sequence Xτ�1
0 . The key distinguishing feature of the persistent

mutual information is that it is nonzero for positive length τ if a process necessarily
has hidden states. In this case, all the information from the past that is relevant for

generating future behavior has to be stored by an internal configuration to arrive at a

complete description of the process. The internal configuration is necessary to keep

track of the state information, because the present sequence of observations Xτ�1
0

can only capture features of shorter term correlation and therefore does not have

enough capacity to capture all the features that are relevant for forecasting. In the
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words of James et al. (2011): “This is why we build models and cannot rely on only

collecting observation sequences.” For instance, for the n-th order Markov chains

that were introduced in Section 3.2.2, we have σμ τð Þ ¼ 0 for lead times τ that are
larger than or equal to the model order n. In this case with only fully observable

state variables, the length-nmemory of the chain model serves as the effective state,

rendering the process’s past and future independent (Marzen and Crutchfield 2014).

For infinite-order Markov chains EMC(τ) only vanishes asymptotically. Therefore,

the elusive information is sensitive to which extent a system’s internal state space is
coarse grained (Marzen and Crutchfield 2014).

3.3 Complexity Measures from Theories of Systematic

Engineering Design

The most prominent complexity theory in the field of systematic engineering design

has been developed by Suh (2005). His theory aims at providing a systematic way

of designing products and large-scale systems, as well as of determining the best

designs from those proposed. Suh’s complexity theory is based on his famous

axiomatic design theory (Suh 2001). He defines complexity in the functional

domain rather than in the physical domain of the design world. In the functional

domain, uncertainty is measured through information-theoretic quantities like the

information content that was already introduced and defined in Section 3.2.2.

Alternative approaches to characterizing complexity in engineering design that

are not based on information-theory and statistical models (see e.g. Lindemann

et al. 2009; Kreimeyer and Lindemann 2011) are only very briefly addressed in the

following, as they tend to be valid only for evaluating structural and not time-

dependent complexity.

In Suh’s axiomatic design theory, the product to be developed and the problem

of solving the design issues are coupled through functional requirements (FRs) and

design parameters (DPs). He proposes two axioms for design: the independence

axiom and the information axiom. The independence axiom states that the FRs

should be maintained by the designer or design team independent of each other.

When there are two or more FRs, the design solution must be such that each of the

FRs can be satisfied without affecting any of the other FRs. This means that a

correct set of DPs is to be chosen so as to satisfy the FRs and maintain their

independence. If the independence can be maintained for all FRs, the design is

said to be “uncoupled.” An uncoupled design is an optimal solution in the sense of

the theory. Once the FRs are established, the next step in the design process is the

conceptualization process, which occurs during the mapping process from the

functional to the physical domain.

The conceptualization process may produce several designs, all of which may be

satisfactory in terms of the independence axiom. Even for the same task defined by

a given set of FRs, it is likely that different engineers will come up with different
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designs, because there are many solutions that satisfy a given set of m FRs

(FR1, . . .,FRm). The information axiom provides a quantitative measure of the

merits of a given design, and is thus useful in selecting the best design from

among those that are acceptable. The information axiom is formulated within an

information-theory framework and states that the best design is that with the highest

probability of success. Following the definition of the Shannon information content

in Eq. 205 the information content Ii for a given functional requirement

FRi 1 � i � mð Þ is expressed as the logarithmic probability pi of satisfying this

specific FR:

Ii ¼ log2
1

pi

¼ �log2 pi:

In the general case of m specified FRs, the information content Isys for the entire

system under study is

Isys ¼ �log2P Xmð Þ;

where P(Xm) denotes the joint probability that all m FRs are satisfied. When all FRs

are statistically independent, as in an uncoupled design, the information content Isys
can be decomposed into independent summands and expressed as

Isys ¼
Xm
i¼1

Ii

¼ �
Xm
i¼1

log2 pi:

When not all FRs are statistically independent (in the so called “decoupled

design”), there holds

Isys ¼ �
Xm
i¼1

log2 pij jf g for jf g ¼ 1, . . . , i� 1f g

In the above equation pij jf g is the conditional probability of satisfying FRi given that

all other correlated FRj
� �

j¼1, ..., i�1
are also satisfied. It is assumed that the FRs are

ordered according to their number of correlations. The information axiom states

that the best design is that with the smallest Isys, because the least amount of

information in the sense of Shannon’s theory is required to achieve the design

goals. When all probabilities are one, the information content is zero and the design

is optimal in the sense of the axiom. Conversely, when one or more probabilities are

zero, the information required is infinite and the system has to be redesigned to

satisfy the information axiom.
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The probability of success pi can be determined by the intersection of the design

range defined by the designers to satisfy the FRs and the ability of the system to

produce the part within the specified range. This probability can be computed by

specifying the design range (r) for the FR and by determining the system range (sr)
that the proposed design can provide to satisfy the FR. The lower bound of the

specified design range for functional requirement FRi is denoted by r
l[FRi], and the

upper bound by ru[FRi]. The system range can be modeled in statistical terms on the

basis of a probability density function (pdf, see Section 2.1). The pdf is specified
over the theoretically feasible state space. The system pdf is denoted by

fsys[FRi]. The overlap between the design and system ranges is called “the common

range” (cr), and this is the only range where the FR is satisfied. Consequently, the

area Acr under the system pdf within the common range is the design’s probability
of achieving the specified goal. Hence, the information content Ii can be expressed

as

Ii ¼ �log2Acr

¼ �log2

ðru FRi½ �

rl FRi½ �
f sys FRi½ � dFRi:

Suh (2005) considers a design to be complex when its probability of success is low

and hence the information content Isys required to satisfy the FRs is high. Complex

designs often arise when there are many components, because as their number

increases through functional decomposition, the probability that some of them do

not meet the specified requirements also increases, such as when the interfaces

between components introduce additional errors. In order to steer the design

process toward more effective, efficient and robust large-scale systems, a dedicated

complexity axiom is defined that simply states “reduce the complexity of a system”

(Suh 2005). The quantitative measure for complexity in the sense of this axiom is

the information content, which was defined in the above equations. The rationale

behind the axiom is that complex systems may require more information to make

the system function. Therefore, Suh (2005) ties the notion of complexity to the

design range for the FRs—the tighter the design range, the more difficult it becomes

to satisfy the FRs. An uncoupled design is likely to be least complex. However, the

complexity of a decoupled design can be high because of so-called “imaginary

complexity” if we do not understand the system. It is not truly complex, but it

appears to be so because of our lack of understanding of generalized or physical

functions.

According to Suh (2005) complexity can also be a function of time if the system

range changes as a function of time. In this case, we must differentiate between two

types of time-dependent complexity: time-dependent combinatorial complexity and

time-dependent periodic complexity. Time-dependent combinatorial complexity is

defined as the complexity that increases as a function of time because of a continued

expansion in the number of possible combinations of FRs and DPs in time, which

may lead to chaotic behavior or system failure. It occurs because future events
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occur randomly in time and only have a limited predictability, even though they

depend on the current state. Conversely, periodic complexity is defined as the

complexity that only exists in a finite time period, resulting in a finite and limited

number of probable configurations. Concerning a system subjected to combinato-

rial complexity, Suh (2005) concludes that the uncertainty of future outcomes

continues to grow over time, and as a result, the system cannot have long-term

stability and reliability. In the case of systems with periodic complexity, it is

assumed that the system is deterministic and can renew itself over each period.

Therefore, he concludes that a stable and reliable system must be periodic. It is

readily apparent that a system with time-dependent combinatorial complexity can

be changed to one with time-dependent periodic complexity by defining a set of

functions that repeat periodically. This can be achieved temporally, geometrically,

thermally, electrically and by other constructive means. In conclusion, engineered

systems in PD should have small time-independent real and imaginary complexities

and no time-dependent combinatorial complexity. If the system range must change

as a function of time, the developer should be able to introduce time-dependent

periodic complexity. These criteria need to be satisfied regardless of the size of the

system or the number of FRs and DPs specified for the system.

Although Suh’s complexity theory is grounded in axiomatic design theory and

has been successfully applied in different domains, our criticism is that product and

design problems are evaluated irrespective of the work processes, which are needed

to decompose the FRs and DPs. The decomposition is a highly cooperative process

that must be taken into account to satisfy all specified FRs on time and to avoid

cycles of continual revision. Furthermore, the fact that Suh uses the information

content Isys directly as a complexity measure can be a point of criticism. Isys is a
simple additive measure that only represents the encoded length of the design in

terms of binary design decisions; it does not take into account the encoding scheme.

However, both parts of the description of a design are important because the

description can always be simplified by formulating more complicated design

rules, more complex standard components or interfaces (cf. Section 3.2.2). Lastly,

Suh (2005) does not define specific measures for time-dependent complexity.

El-Haik and Yang (1999) have extended Suh’s theory by representing the

imaginary part of complexity through the differential entropy (Chapter 4) associ-

ated with the joint pdf of FRs with three components of variability, vulnerability

and correlation. These components evaluate the product design according to the

vector of DPs (see Summers and Shah 2010). Although this approach can be used to

assess the mapping from the FRs to the DPs through an analysis of the topological

structure of the design structure matrix (Browning 2001, see discussion below) and

the variability of the design parameters (measured by the differential entropy of the

joint pdf of DPs), the dynamics of the development processes in terms of a work

transformation matrix (WTM, Section 2.2) are not taken into account. An alterna-

tive view introduced by Braha and Maimon (1998) suggests that complexity is a

fundamental characteristic of the information content within either the product or

the process. They introduce two measures that quantify either the structural repre-

sentation of the information or the functional probability of achieving the specified
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requirements. The measures can be applied to compare products and processes at

different levels of abstraction. The process is nominally defined as mapping

between the product and problem, where the coupling determines process com-

plexity. The size of the process is defined as the summation over the number of

instances of operators (relationships) and operands (entities). A process instance is

a sequence of the instances of operands and operators. The average information

content of sequences can be evaluated on the basis of the block entropy (Eq. 219).

As the design takes on different types of representations through the development

stages, the average information contained changes. Braha and Maimon (1998)

suggest that the ratio of the amount of average information content between the

initial and current states is a measure of the current abstraction level. The effort

required to move between abstraction levels is inversely proportional to this ratio.

The proportionality constant is the information content of the current state. Sum-

mers and Shah (2010) follow these lines of reasoning and propose a process size

complexity measure that includes the vocabulary of the specific representation for

the problem, the product, the development process and the four operators available

for sequencing the states of the design evolution. The measure is defined as

Cxsize process :¼ Mo þ Co þ Pop
� �

ln idvþ ddvþ dr þmgþ aop þ eop þ sop þ rop
� �

:

In the above definition the size of the vocabulary is represented by the total number

of possible primitive modules (Mo), possible relations between these modules (Co)

and possible operators and operands (Pop). The additional parameters denote the

variables whose values are controlled by the designer (idv), are derived from the

independent design parameters, other dependent variables and design relations

(ddv), are constraints that dictate the association between the other design variables
(dr), or are used to determine how well the current design configuration meets the

goals (mg), plus the four operators available for sequencing the states. Although the
extended concepts based on information content within either the product or the

process are appealing, the fact that the development process is only analyzed on

stage-dependent hierarchical description levels, not on the basis of an explicit state-

space model of cooperative work, opens it to criticism. Moreover, dynamic entro-

pies in the sense of Grassberger’s theory are not taken into account to evaluate time-

dependent combinatorial complexity in an open organizational system. Last but not

least, in real design problems, it is difficult to identify all operators and operands in

advance and to specify valid sequences leading from one level of abstraction to

the next.

In addition to methods for measuring characteristics of the design based on

information-theoretic quantities, a large body of literature has been published on

the design structure matrix (Steward 1981) as a dependency modeling technique

supporting complexity management by focusing attention on the elements of a

system and the dependencies through which they are related. Recent surveys can be

found in the textbooks of Lindemann et al. (2009) or Eppinger and Browning

(2012). Browning (2001) distinguishes between two basic types of DSMs: static

and time-based. Static DSMs represent either product components or teams in an
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organization that exist simultaneously. Time-based DSMs either represent dynamic

activities indicating precedence relationships or design parameters that change as a

function of time. Generated static DSMs are usually analyzed for structural char-

acteristics or by clustering algorithms (e.g. Rogers et al. 2006), whereas time-based

DSMs are typically used to optimize workflows based on sequencing, tearing and

banding algorithms (e.g. Gebala and Eppinger 1991; Maurer 2007). Kreimeyer and

Lindemann (2011) review and discuss a comprehensive set of metrics that can be

applied to assess the structure of engineering design processes encoded by DSMs

(and other forms). According to Browning’s taxonomy, the WTM as dynamical

operator of state equation 8 is a static task-based DSM, because the development

tasks are processed concurrently and persistent feedback/feed forward loops are

modeled through the off-diagonal elements. The majority of work on complexity

management with static DSMs focuses on the concept of modularity in identifying

cluster structures (see Baldwin and Clark 2000). This work has been very influential

in academia and industry. An important limitation, however, is its purely static view

of the product structure and, consequently, of the task structure and the interactions

between them. A task processing on different time scales corresponding to different

autonomous task processing rates cannot be represented. Recent publications indi-

cate that technical dependencies in product families tend to be volatile and therefore

coordination needs among development tasks can evolve over time (e.g. Cataldo

et al. 2006, 2008; Sosa 2008). When these evolving coordination needs are not

adequately managed, significant misalignments of organizational structure and

product architecture can occur that have a negative effect on product quality

(Gokpinar et al. 2010). An effective method for dealing with volatility of depen-

dencies is to use different WTMs for different phases of the project in which no task

is theoretically processed independently of the others. Furthermore, additional task-

mapping matrices can be specified at the transition points between phases. By doing

so, the number of tasks as well as the kind and intensity of coordination needs can

be adapted. It is also possible to specify phase-dependent covariances of perfor-

mance fluctuations. In many PD projects the performance fluctuations tend to be

larger for late development stages that are close to the desired start of production.

Another limitation of the concept of product modularity is that the organizational

patterns of a development project (e.g. communication links, team co-membership)

do not necessarily mirror the technical dependency structures (Sosa et al. 2004).

The literature review by Colfer and Baldwin (2010) shows that the “mirroring

hypothesis” was supported in only 69% of the cases. Support for the hypothesis was

strongest in the within-firm sample, less strong in the across-firm sample, and

relatively weak in the open collaborative sample. As such, WTMs and covariance

matrices represent dynamic dependency structures in their own right. They must be

related to product components or organizational elements through additional mul-

tiple domain mapping matrices (Danilovic and Browning 2007) and cannot be

substituted by the traditional modeling elements.

An approach to measuring structural complexity based on static component-

based DSMs that is formally similar to our own analysis in the spectral basis

(see Sections 2.3 and 4.2) has recently been developed by Sinha and de Weck
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(2011; 2012). The three terms of their metric CSW are related to the complexities of

each of the n components in the system (local effect, represented by the αi’s), the
number and complexity of each pairwise interaction (local effect, represented by

the βij’s and aij’s) and the arrangement of the m interfaces (global, system level

effect, represented by E(A)). Moreover, a normalization factor γ is introduced. The
definition is (Denman et al. 2011; Sinha and de Weck 2012; Sinha 2014):

CSW :¼
Xn
i¼1

αi þ
Xn
i¼1

Xn
j¼1

βijaij

 !
γE Að Þ:

The normalization factor γ is taken as 1/n and used to map the n different compo-

nents in the system onto a comparable scale. The matrix A is an adjacency matrix

that corresponds to the component-based DSM of the product as follows:

A ¼ aij
� �

¼ 1 8 i; jð Þ : i 6¼ jð Þ ^ i; jð Þ 2 Υ
0 otherwise:

	
The exogenous variable ϒ represents the set of connected nodes in the system.

Accordingly, the adjacency matrix is simply a binary form of the component-based

DSM, in which ones are placed in the cells with marks and zeros elsewhere. The

diagonal elements of A are zero. The underlying concept of the metric CSW is that in

order to develop the individual components, a non-zero complexity is involved.

This complexity can vary across components and is represented by the αi’s, the
so-called component complexity estimate (Sinha and de Weck 2012; Sinha 2014).

Similar arguments hold true for the complexity βij of each interface, the so-called

final interface complexity (Sinha and de Weck 2012; Sinha 2014). If there are

multiple types of interface between two components (energy flow, material flow,

control action flow etc.), large beta coefficients are assigned, since it would require

more effort to implement them compared to a simpler (univariate) connection. An

important aspect is that the correlation between the component complexity estimate

and the final interface complexity can vary depending on the kind of product. For

large-scale mechanical systems, the βij’s are often much smaller than the αi’s and
αj’s. However, in micro or nanoscale systems it can be the opposite, because it is

often much more difficult to develop the interfaces (Sinha 2014). The different

interface complexities can be captured using a multiplicative model

βij ¼ f ijαiαj;

where fij stands for the interface complexity factor (Eppinger and Browning 2012;

Sinha and de Weck 2012; Sinha 2014). Finally, the term E(A) represents the graph
energy of the adjacency matrix A. The graph energy is defined as the sum of the

singular values σi of the orthogonal vectors:
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E Að Þ :¼
Xn
i¼1

σi;

where the singular values are computed by the decomposition

A ¼ U � ΣA � VT

ΣA ¼ Diag σi½ �:

The graph energy is invariant under isomorphic transformations (Weyuker 1988)

and therefore highly objective.

Ameri and Summers (Ameri et al. 2008; Summers and Ameri 2008) developed a

complementary connectedness measure and an algorithm for assessing design

connectivity complexity based on graphical models. In the graphical models, the

development tasks are nodes of a graph and connected through variable depen-

dency. The algorithm manipulates the graph in terms of connectivity. This manip-

ulation starts by eliminating all unary relations, as they do not contribute to the

connectivity complexity of the graph. Once the unary relations have been removed,

the score keeping variables are initialized. From this point forward, the graph

connectivity algorithm is a recursive algorithm that is applied against all subgraphs

that are generated in the process. A cumulative score is maintained to quantify the

connectedness of the whole structure (see Summers and Shah 2010). This approach

also seems to have certain limitations for assessing emergent complexity in PD

projects. The graph of development tasks is recursively decomposed into sub-

graphs, which tears apart potentially important indirect connections that can lead

to higher-order interactions between activities. Furthermore, due to the determin-

istic approach to modeling the work processes it is impossible to analyze or

evaluate the “problem-solving oscillations” (Mihm et al. 2003; Mihm and Loch

2006) emerging from cooperative task processing in conjunction with performance

variability. Consequently, we will not consider the design connectivity complexity

in the following.

The interested reader can find additional approaches to measuring and evaluat-

ing complexity in engineering design with a specific focus on structural character-

istics in the excellent textbook by Kreimeyer and Lindemann (2011). The authors

present a total of 52 complexity metrics from different disciplines and show in three

case studies from process management in the automotive industry how different

facets of complexity can materialize in real design processes. They also introduce

the Structural Goal Question Metric framework for selecting metrics in a goal-

oriented manner and guiding their application.

The information-theory and dependency-structure-based complexity metrics

from theories of systematic engineering design are undoubtedly beneficial in

facilitating studies that require the use of equivalent but different design problems

and in comparing computer-aided design automation tools. Nevertheless, in the

following analytical Chapter 4 we will shift our focus to the EMC metric first put

forward in Grassberger’s seminal theoretical work (1986), as it can both effectively
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measure self-generated complexity and provide a foundation for deriving closed-

form solutions of different strengths from first principles. Furthermore, EMC

stresses the dynamic nature of cooperative work in PD projects and can be calcu-

lated efficiently from generative models or from historical data.

Also very interesting for applications in project management is the later-

formulated persistent mutual information EMC(τ) (Section 3.2.4). This is partly

because of its intimate relationship with the famous Lyapunov function (Nicolis

and Nicolis 2007) of a process, and partly because the generated complexity

“landscape” often becomes more and more informative as the lead time increases.

However, this phenomenon goes beyond the scope of this book and will be

analyzed in detail in future work. To lay the analytical foundations for future

studies of emergent complexity we will present closed-form solutions of the

persistent mutual information for the developed vector autoregression models in

the corresponding chapters. These solutions are generalized from the expressions

for EMC ¼ EMC τ ¼ 0ð Þ, which will be presented in the beginning of Sections

4.1.1, 4.1.2 and 4.1.3 (see Eqs. 247, 253, 262 and 265). Due to the limited space in

this book, the closed-form solutions of the persistent mutual information that is

generated by a linear dynamical system (Section 2.9) will not be presented. The

interested reader can develop them by applying the solution principles that will be

introduced in Section 4.2.

The purely information-theoretic view on emergent complexity also opens EMC

and the corresponding persistent mutual information EMC(τ) to criticism. In their

latest paper on effective complexity (see also Section 3.2.4) Gell-Mann and Lloyd

(2004) point out that, without modification, EMC assigns two identical and very

long bit strings consisting entirely of 1’s with high complexity values because the

mutual information between them is very large, yet each process representation is

obviously very simple. This is in stark contrast to the fundamental ideas of their EC

metric (Eq. 209), which evaluates the algorithmic information content of the

strings. The ideal ensemble for modeling an identical very long bit string x is the

Dirac measure δx, i.e. the ensemble with δx xð Þ ¼ 1 and δx x0ð Þ ¼ 0 for x 6¼ x0. This
ensemble has Kolmogorov�Chaitin complexity KU δx xð Þ½ � ¼ KU xð Þ and informa-

tion entropy H ½ � ¼ 0 (Ay et al. 2010). Its total information Σ ½ � is therefore

minimal. The algorithmic complexity KU(x) is apparently very low because the

computer program used to calculate x on U simply outputs |x| 1’s in a simple pre- or

post-test loop. Shiner et al. (2000) also criticize the fact that EMC is not uniquely

defined for higher dimensional systems, e.g. spins in two dimensions. In spite of

these apparent conceptual weaknesses, the ability of both measures to quantify the

degree of informational structure between past and future histories of cooperative

task processing and the value of that information in helping to make predictions

mean that they are especially interesting and valuable for analyzing, evaluating and

optimizing PD projects.

More details on complexity measures from statistical physics, information

theory and computer science are presented in Shalizi (2006), Prokopenko

et al. (2009), Nicolis and Nicolis (2007), Ellison et al. (2009) and Crutchfield

et al. (2010). A focused review of complexity measures for the evaluation of
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human�computer interaction including two empirical validation studies can be

found in Schlick et al. (2006, 2010).
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Chapter 4

Model-Driven Evaluation of the Emergent
Complexity of Cooperative Work Based
on Effective Measure Complexity

In this book, the main improvement on Grassberger’s original definition of the

effective measure complexity EMC, which is based on classic information-

theoretic quantities like Shannon’s information entropy that were developed to

evaluate stochastic processes with discrete states, is the generalization of the theory

and measures to continuous-state processes like that generated by the previously

introduced VAR(1) model of cooperative work according to state Eq. 8. However,

Li and Xie (1996), Bialek et al. (2001), de Cock (2002), Bialek (2003), Ellison

et al. (2009) and others have already pioneered the generalization of Grassberger’s
concepts toward continuous systems in their works, and we can build upon their

results. Their analyses show that we must primarily consider the so-called “differ-

ential block entropy” (Eq. 233) and the corresponding continuous-type mutual

information (Eq. 234) as basic information-theoretic quantities.

In general, the differential entropy extends the basic idea of Shannon’s infor-
mation entropy as a universal measure of uncertainty about a discrete-type random

variable with known probability mass function over the finite alphabet X to a

p-dimensional continuous-type variable X with a probability density function f x½ �
(pdf, see previous chapters) whose support is a set p. The differential entropy is

defined as:

H X½ � :¼ �
ð
p

f x½ �log2 f x½ � dx: ð232Þ

The differential block entropy (cf. Eq. 219) is defined in an analogous manner as:

H nð Þ :¼ H Xn½ � ¼ �
ð
p
� � �
ð
p

f x1; . . . ; xn½ �log2 f x1; . . . ; xn½ � dx1 . . . dxn: ð233Þ

In the above equation f [x1, . . ., xn] denotes the joint pdf of the vectors (X1, . . .,Xn)

with support np.
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The information entropy of a discrete-type random variable is non-negative and

can be used as a measure of average surprisal. This is slightly different for a

continuous-type random variable, whose differential entropy can take any value

from �1 to 1 and is only used to measure changes in uncertainty (Cover and

Thomas 1991; Papoulis and Pillai 2002). For instance, the differential entropy of a

continuous random variable X that is uniformly distributed from 0 to a (and whose

pdf is therefore f x½ � ¼ 1=a from 0 to a, and 0 elsewhere) is log2a. For a < 1 the

differential entropy is negative and can become arbitrarily small as a approaches

0. The differential entropy measures the entropy of a continuous distribution

relative to the uniformly distributed one. For a Gaussian distribution with a variance

of σ2 the differential entropy is H X½ � ¼ 1=2log2σ
2 þ const. Thus the differential

entropy can be regarded as a generalization of the familiar notion of variance. With

a normal distribution, the differential entropy is maximized for a given variance. An

additional subtlety is that the differential entropy can be negative or positive

depending on the coordinate system used for encoding the vectors. This also

holds true for the differential block entropy. However, it can be proven that the

complexity measure EMC calculated on the basis of dynamic entropies

(cf. Eqs. 224 and 225) is always positive and may exist even in cases where the

block entropies diverge. Under the assumption of an underlying VAR model, for

instance, a closed-form solution for the EMC can be derived that is simply a

logarithmic ratio of determinants of covariance matrices (cf. Eqs. 246 and 258),

which in most industrial case studies is a real number that is much larger than zero.

In this case, the generalized complexity measure can be interpreted similarly to

discrete-state processes. Furthermore, it can be proven that for finite complexity

values EMC is independent of the basis in which the state vectors of work

remaining are represented, and is invariant under linear transformations of the

state-space coordinates for any regular transformation matrix (Schneider and

Griffies 1999). This invariance is due to the fact that the measure can be expressed

as the continuous-type mutual information I X�1
�1;X1

0

� �
between the infinite past

and future histories of a stochastic process, where the base-independent mutual

information I[.;.] between the sequencesXn
1 ¼ X1; . . . ;Xnð Þ and Ym

1 ¼ Y1; . . . ; Ymð Þ
of random vectors with support nq and mp is defined as

I Xn
1 ; Y

m
1

� �
:¼
ð
q
� � �
ð
p

f x1; . . . ; xn; y1; . . . ; ym½ �

log2
f x1; . . . ; xn; y1; . . . ; ym½ �
f x1; . . . ; xn½ � f y1; . . . ; ym½ � dx1 . . . dxndy1 . . . dym : ð234Þ

For two random variables X and Y that are jointly normal with a correlation

coefficient of ρ there is I X; Y½ � ¼ 1=2log2 1� ρ2ð Þ. As such, the mutual information

can be viewed as a generalized covariance. Kraskov et al. (2004) published a simple

proof that the mutual information as defined in Eq. 234 is not only invariant under

linear transformations but also with respect to arbitrary reparameterizations based
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on smooth and uniquely invertible maps x01 ¼ x01 x1ð Þ, . . . , x0n ¼ x0n xnð Þ, y01 ¼
y01 y1ð Þ, . . . , y0m ¼ y0m ymð Þ. Therefore, I[.;.] provides a measure of statistical depen-

dency structures between variables that is independent of the subjective choice of

the measurement instrument. The analyses of Bialek et al. (2001) and other

researchers show that this measure is a valid, expressive and consistent quantity

for evaluating emergent complexity in open systems.

In the following chapters the generalization of the EMC to project organizations

that are modeled by continuous state variables will be carried out step-by-step.

Though some of the calculations are quite involved, the interested reader will find

that they lay important groundwork for the complexity analysis of cooperative work

in various kinds of open organizational systems, not only product development

organizations. In Section 4.1, we start by calculating closed-form solutions with

different strength for the vector autoregression models that were introduced in

Sections 2.1, 2.2 and 2.4. These models do not have “hidden” state variables and

therefore are quite easy to analyze in information-theoretic terms. To simplify the

analysis a generalized solution for a VAR(1) process that does not refer to a specific

family of pdfs of the unpredictable performance fluctuations is calculated in

Section 4.1. We will use this generalized solution to derive closed-form solutions

for the original state space (Section 4.1.1) and the spectral basis (Section 4.1.2)

under the assumption of Gaussian behavior. Furthermore, a very compact closed-

form solution will be obtained through a canonical correlation analysis (Sec-

tion 4.1.3). For these three different approaches, we will also present the

corresponding closed-form solutions of the persistent mutual information EMC(τ)
(Eq. 229) according to Ball et al. (2010). Moreover, to clarify the concept of

emergent complexity, polynomial-based solutions for simple processes with two

and three tasks are presented in Section 4.1.4. This chapter also includes a short

analytical study of minimizing emergent complexity subject to the constraint that

the expected total amount of work done over all tasks is constant. Moreover, lower

bounds are put on the EMC in Section 4.1.5. In Section 4.2.1, an additional explicit

closed-form solution for a Markov process with hidden variables (a linear dynam-

ical system, LDS, see Section 2.9) is calculated. This solution is, admittedly,

complicated and difficult to interpret because the state variables of cooperative

work that are not directly accessible can generate a significant number of long-

range correlations between observations, and a great deal of linear algebra is needed

to evaluate the associated infinite-dimensional integrals. Therefore, Section 4.2.2

will introduce two additional implicit formulations for the EMC. The first implicit

solution is based on the seminal work of de Cock (2002) and allows analogical

reasoning between the forward and backward innovation forms developed in

Section 2.9, and the generated past-future mutual information. The second implicit

solution is directly derived from the infinite-dimensional integrals and makes it

possible for the interested reader to gain additional insights into the information-

generating mechanisms by following the calculation step by step. Although the

closed-form solutions for LDS are significantly more complicated, their derivations

show that Grassberger’s theory can, in principle, be applied in a straightforward
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manner to a larger model class that, thanks to its informational richness and

predictive power, is especially attractive for applications in project management.

4.1 Closed-Form Solutions of Effective Measure
Complexity for Vector Autoregression Models
of Cooperative Work

To obtain analytical results, it is assumed that the parameterized VAR(1) process

{Xt} is strict-sense stationary (Puri 2010) and therefore all its statistical properties

(especially the first and second moments) are invariant to a shift in the chosen time

origin. Let fθ xtþ1; . . . ; xtþn½ � (t E ℤ, n Eℕ) be the joint pdf of the block of vectors

Xtþ1; . . . ;Xtþnð Þ generating the stochastic process, and let f θ xtþn

��xtþ1, . . . , xtþn�1

� �
be the conditional density of vectorXtþn given vectorsXtþ1, . . . ,Xtþn�1. We use the

shorthand notation f [.] and f :
��:� �

in the following to denote these density functions.

Due to strict sense stationarity the joint distribution of any sequence of samples

does not depend on the sample’s placement:

f xtþ1; . . . ; xtþn½ � ¼ f xtþ1þτ; . . . ; xtþnþτ½ � t E ℤ, n E ℕ, τ � 0ð Þ :

We can use the index υ instead of t to express the shift-invariance. Therefore,

f xvþ1; . . . ; xυþn½ � denotes the joint pdf and f xυþn

��xυþ1, . . . , xυþn�1

� �
denotes the

conditional density of the process in the steady state. The conditional density is

given by (cf. Billingsley 1995):

f xυþn

��xυþ1, . . . , xυþn�1

� � ¼ f xυþ1; . . . ; xυþn½ �
f xυþ1; . . . ; xυþn�1½ � :

Since the considered VAR(1) process is a Markov process (Eq. 18), the conditional

density simplifies to

f xυþn

��xυþ1, . . . , xυþn�1

� � ¼ f xυþn

��xυþn�1

� � ¼ f xυþn�1; xυþn½ �
f xυþn�1½ � ; ð235Þ

and the strict stationarity condition implies (Brockwell and Davis 1991)

f xυþn

��xυþn�1

� � ¼ f xυ
��xυ�1

� � ¼ f x2
��x1� �

and f xυþn�1½ � ¼ f xυ½ � ¼ f x1½ � 8υ � 2 :
ð236Þ

Furthermore, we assume that ergodicity holds, and the complexity measure can be

conveniently derived using stochastic calculus based on an ensemble average or an

infinite number of realizations of the unpredictable performance fluctuations (see
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Puri 2010). To compute the EMC for the introduced VAR(1) process in the steady

state, please recall from Eq. 216 that

EMC ¼ I X�1
�1;X1

0

� �
:

According to the definition of the mutual information I[.;.] from Eq. 234, we can

write the information that is communicated from the past to the future as

I X�1
�1;X1

0

� � ¼ ð
p
� � �
ð
p

f x�1
�1; x10

� �
log2

f x�1
�1; x10

� �
f x�1�1
� �

f x10
� � dx�1

�1 dx10 : ð237Þ

In the above equation the shorthand notation f x�1
�1;x10

� �¼ f x�1,x�1þ1, . . . ,x�1,½
x0,x1, , . . . ,x1�1,x1�, f x�1

�1
� �¼ f x�1;x�1þ1; . . . ;x�1½ �, f x10

� �¼ f x0;x1; . . . ;½
x1�1;x1�, dx�1

�1 ¼ dx�1dx�1þ1 . . .dx�1 and dx10 ¼ dx0dx1 . . .dx1 was used.

Due to the Markov property (Eqs. 235 and 236) the joint pdfs can be factorized:

f x�1
�1; x10

� � ¼ f x�1½ � f x�1þ1

��x�1
� �

. . . f x�1

��x�2

� �
f x0

��x�1

� �
f x1

��x0� �
. . . f x1

��x1�1

� �
f x�1

�1
� � ¼ f x�1½ � f x�1þ1

��x�1
� �

. . . f x�1

��x�2

� �
f x10
� � ¼ f x0½ � f x1

��x0� �
. . . f x1

��x1�1

� �
:

Hence, we can simplify the mutual information:

I X�1
�1;X1

0

� � ¼
ð
p
� � �
ð
p

f x�1
�1;x10

� �
log2

f x0
��x�1

� �
f x0½ � dx�1

�1 dx10

¼
ð
 p
� � �
ð
 p

f x�1
�1;x10

� �
log2 f x0

��x�1

� �
dx�1

�1 dx10

�
ð
 p
� � �
ð
 p

f x�1
�1;x10

� �
log2 f x0½ � dx�1

�1 dx10

¼
ð
 p

ð
 p
log2 f x0

��x�1

� �
dx0dx�1

ð
 p
� � �
ð
 p

f x�1
�1;x10

� �
dx�1 . . .dx�2dx1 . . .dx1

�
ð
 p
log2 f x0½ �dx0

ð
 p
� � �
ð
 p

f x�1
�1;x10

� �
dx�1 . . .dx�1dx1 . . .dx1: ð238Þ
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On the basis of the definitions of the marginal density functions

f x0½ � ¼
ð
p
� � �
ð
p

f x�1
�1; x10

� �
dx�1 . . . dx�1dx1 . . . dx1

f x�1; x0½ � ¼
ð
p
� � �
ð
p

f x�1
�1; x10

� �
dx�1 . . . dx�2dx1 . . . dx1

we can conclude that

I X�1
�1;X1

0

� � ¼ ð
p

ð
p

f x�1; x0½ �log2 f x0
��x�1

� �
dx�1dx0 �

ð
p

f x0½ �log2 f x0½ �dx0

¼
ð
p

ð
p

f x0
��x�1

� �
f x�1½ �log2 f x0

��x�1

� �
dx�1dx0 �

ð
p

f x0½ �log2 f x0½ �dx0;
ð239Þ

or equivalently

I X�1
�1;X1

0

� � ¼ ð
p

ð
p

f x1
��x0� �

f x0½ �log2 f x1
��x0� �

dx0dx1 �
ð
p

f x0½ �log2 f x0½ �dx0:

It is evident that the second summand is the differential entropy of the random

variable X0 with probability density function f[x0]. The first summand represents the

entropy of the random variable X1 conditioned on the variable X0 taking a value in

the supportp. The first summand therefore represents a conditional entropy that is

obtained by averaging over all possible values for X0.

Before we proceed with calculating the EMC on the basis of the generalized

solution from Eq. 239 in the coordinates of the original state space ℝp, we

summarize five essential properties that hold completely independent of the sto-

chastic model generating a strict-sense stationary Gaussian process {Xt}. A Gauss-

ian process is a stochastic process whose realizations consist of random values

associated with every time step such that each random variable in the sequence has

a normal distribution. In addition, every finite ensemble of random variables

generating the process has a multivariate normal distribution (Puri 2010).

The five essential properties are as follows (cf. Boets et al. 2007):

1) The EMC of a strict-sense stationary Gaussian process equals zero if and only if

the process is temporally uncorrelated:

EMC ¼ I X�1
�1;X1

0

� � ¼ 0 , Xt ¼ vt with

vt ¼ N η; μ;Vð Þ and E vtv
T
s

� � ¼ Vδts :
ð240Þ

μ denotes the mean of the process and s 2 ℤ an arbitrary time step. δts is the
Kronecker delta according to Eq. 14. The implication EMC ¼ 0 can be easily

deduced as Gaussian random variables being uncorrelated is equivalent to

220 4 Model-Driven Evaluation of the Emergent Complexity of Cooperative Work. . .

http://dx.doi.org/10.1007/978-3-319-21717-8_2


statistical independence, i.e. f X�1
�1;X1

0

� � ¼ f X�1
�1

� � � f X1
0

� �
. A proof of

the implication that the process is temporally uncorrelated involves

Jensen’s inequality and can be found in elementary textbooks like Cover and

Thomas (1991). Concerning the state and output equations of a LDS with

additive Gaussian noise (Eqs. 136 and 137), this may be realized either by

setting H ¼ 0 or with A0 ¼ 0.

2) The range of values of the Effective Measure Complexity is

EMC 2 0, þ1½ Þ: ð241Þ

This property follows directly from the canonical correlation analysis of the past

X�1
�1

� �
and future X1

0

� �
histories of the Gaussian process (see Eq. 265 in

Section 4.1.3)

I X�1
�1;X1

0

� � ¼ �1

2
log2

Yq
i¼1

1� ρ2i
� �

and the fact that the canonical correlations ρi are confined to ρi 2 0; 1½ Þ (see

e.g. de Cock 2002). The variable q > p denotes the effective dimensionality of

the process (see Section 4.2.1). The canonical correlation analysis was intro-

duced by Hotelling (1935) and is often used for state-space identification. The

goal is to find a suitable basis for cross-correlation between two random vari-

ables—in our case the infinite, one-dimensional sequences of random variables

representing the past and future histories of the process. Based on the material of

Creutzig (2008) we use a common variant of the canonical correlation analysis

to provide a so-called balanced state-space representation (cf. Section 4.2).

Given the ordered concatenation of the variables representing the past history

Xpast ¼ XT
�1 � � � XT

�2 XT
�1

� �T
and the future history

Xfut ¼ XT
0 XT

1 � � � XT
1

� �T
of the Gaussian process we seek an orthonormal base U ¼ U 1ð Þ; . . . ;U mð Þ� �

for

Xpast and another orthonormal base V ¼ V 1ð Þ; . . . ;V nð Þ� �
for Xfut that have

maximal correlations but are internally uncorrelated. Therefore, it must hold

that E U ið ÞV jð Þ� � ¼ ρiδi j, for i, j � min m; nð Þ. U(i) and V( j) are two zero-mean

random variables of dimensions m and n, respectively. The resulting basis

variables (U(1), . . .,U(m)) and (V(1), . . .,V(n)) are called canonical variates, and

the correlation coefficients ρi between the canonical variates are called canon-

ical correlations. The cardinalities of the bases must be chosen in a way that is

compatible with the persistent informational structure of the process. The ρi’s
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are not to be confused with the introduced ordinary correlations ρij and ρ0ij from
Chapter 2.

To find the orthonormal bases, we normalize with Cholesky factors. The

factors are given by

Lpast � LT
past :¼

1

N

� �
� Xpast � XT

past

Lf ut � LT
f ut :¼

1

N

� �
� Xfut � XT

f ut:

N denotes the number of samples that are taken from the stochastic process. The

sample size must be sufficiently large to uncover all canonical correlations. The

normalized variables bXpast and bXfut to determine the balanced state-space

representation are computed by

bXpast ¼ L�1
past � XpastbXfut ¼ L�1
f ut � Xfut:

A singular value decomposition is carried out (see e.g. de Cock 2002, and

Section 4.1.3) to identify the orthonormal bases:

1

N

� �
� bX fut � bX T

past ¼ Σyu � bV � bΣ � bU:

Σyu denotes the cross-covariance between Xfut and Xpast. We compute the state

space by

bXt :¼ bVT � bXpast ¼ bVT � L�1
past � Xpast

and balance

bX 0
t ¼ bΣ1

2 � bXt

such that for the covariance matrix it holds that

1

N

� �
� bX 0

t � bX 0
t

	 
T
¼ bΣ:

The requirement that the ρi’s be nonnegative and ordered in decreasing magni-

tude makes the choice of bases unique if all canonical correlations are distinct. It

is important to note that for a strict-sense stationary VAR(1) process {Xt}, only
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the p leading canonical correlations ρi of each pair X�1
�1;X1

0

� �
of subprocesses

are non-zero and therefore the cardinality of the base is equal to p (de Cock

2002; Boets et al. 2007). This is due to the simple fact that the process is

Markovian and so the amount of information that the past provides about the

future can always be encoded in the probability distribution over the p-dimen-

sional present state (assuming an efficient coding mechanism is used). Further-

more, because of strict-sense stationarity, all ρi’s are less than one.

3) EMC is a strictly increasing function of each of the canonical correlations. This

property also follows directly from relation 265:

I X�1
�1;X1

0

� � ¼ �1

2

Xq
i¼1

log2 1� ρ2i
� �

: ð242Þ

4) The EMC is invariant under a transformation of the observations Xt by a

nonsingular constant matrix T 2 ℝ p� p. When we denote the transformed obser-

vations Zt ¼ T � Xt, it holds that

I Z�1
�1; Z1

0

� � ¼ I X�1
�1;X1

0

� �
: ð243Þ

From the explicit result in Eq. 291 for the EMC of a process that is generated by

a linear dynamical system with additive Gaussian noise, one can directly derive

this invariance property. Similar to the notation in Section 4.2, xt2t1 denotes the

vector obtained by stacking the observation sequence Xt2
t1
in a long vector of size

p t2 � t1 þ 1ð Þ � 1. We define the long vector zt2t1 in the same way. Then we

can relate the transformed observations to the original ones via Zt2
t1
¼

It2�t1þ1 � Tð Þ � Xt2
t1
. The covariance of the history of transformed observations

follows immediately and can be related to the covariance

Cxð Þt2t1 ¼ E Xt2
t1

Xt2
t1

	 
T� �
:

Czð Þt2t1 ¼ E Zt2
t1

Zt2
t1

	 
T� �
¼ E It2�t1þ1 � Tð ÞXt2

t1
Xt2
t1

	 
T
It2�t1þ1 � Tð ÞT

� �
¼ It2�t1þ1 � Tð Þ Cxð Þt2t1 It2�t1þ1 � Tð ÞT:

It is straightforward to compute EMC by using the general expression for LDS

(Eq. 291) with H ¼ I and V ¼ 0 as
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I Z�1
�1; Z1

0

� � ¼ 1

2
log2

Det Czð Þ�1
�1Det Czð Þ10

Det Czð Þ1�1

¼ 1

2
lim

tp!�1
tf!1

log2
Det Czð Þ�1

tp
Det Czð Þtf0

Det Czð Þtftp

¼ 1

2
lim

tp!�1
tf!1

log2Det I�t p � T
� �

Cxð Þ�1
tp

I�tp � T
� �T	 
n

þ log2Det Itfþ1 � T
� �

Cxð Þtf0 Itfþ1 � T
� �T	 


� log2Det Itf�tpþ1 � T
� �

Cxð Þtftp Itf�tpþ1 � T
� �T	 
o

¼ 1

2
lim

tp!�1
tf!1

log2
Det Cxð Þ�1

tp
Det Cxð Þtf0

Det Cxð Þtftp

¼ I X�1
�1;X1

0

� �
;

where we have used the fact that Det A � Bð Þ ¼ Det Að Þ � Det Bð Þ and that for

matrices A 2 ℝn�n,B 2 ℝm�m we have Det A� Bð Þ ¼ Det Að Þð Þn Det Bð Þð Þm.
5) If the p-component vector of all observations Xt can be divided into two separate

sets comprised of the vectors X
1ð Þ
t 2 ℝ p1 and X

2ð Þ
t 2 ℝ p2 with p ¼ p1 þ p2,

which are completely uncorrelated,

CXX τð Þ ¼ E XtX
T
tþτ

� � ¼ E
X

1ð Þ
t

X
2ð Þ
t

" #
X

1ð Þ
tþτ

X
2ð Þ
tþτ

" #T" #
¼ CX 1ð ÞX 1ð Þ τð Þ 0

0 CX 2ð ÞX 2ð Þ τð Þ
� �

;

then the EMC of the whole sequence of observations equals the sum of the EMC

of each set resulting from the partitioning:

I X�1
�1;X1

0

� � ¼ I X 1ð Þ� ��1

�1; X 1ð Þ� �1
0

h i
þ I X 2ð Þ� ��1

�1; X 2ð Þ� �1
0

h i
: ð244Þ

Since uncorrelated Gaussian random variables are independent, i.e. their joint

pdf equals the product of the individual pdfs—in this case

f x�1
�1; x10

� � ¼ f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0
; x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
¼ f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0

h i
� f x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
;
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the above property of additivity for uncorrelated observations can be easily

verified:

I X�1
�1;X1

0

� � ¼ ð f x�1
�1; x10

� �
log2

f x�1
�1; x10

� �
f x�1�1
� �

f x10
� � dx�1

�1dx10

¼
ð
f x�1

�1; x10
� �

log2

f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0

h i
f x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
f x 1ð Þð Þ�1

�1
h i

f x 1ð Þð Þ10
� �

f x 2ð Þð Þ�1

�1
h i

f x 2ð Þð Þ10
� � dx�1

�1dx10

¼
ð
f x 1ð Þ
	 
�1

�1
; x 1ð Þ
	 
1

0

� �
f x 2ð Þ
	 
�1

�1
; x 2ð Þ
	 
1

0

� �

log2

f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0

h i
f x 1ð Þð Þ�1

�1
h i

f x 1ð Þð Þ10
� � dx�1

�1dx10

þ
ð
f x 1ð Þ
	 
�1

�1
; x 1ð Þ
	 
1

0

� �
f x 2ð Þ
	 
�1

�1
; x 2ð Þ
	 
1

0

� �

log2

f x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
f x 2ð Þð Þ�1

�1
h i

f x 2ð Þð Þ10
� � dx�1

�1dx10 :

In the first term, the integration with respect to x 2ð Þ� ��1

�1, x 2ð Þ� �1
0
yields one, and

analogously in the second term the integration with respect to the first variable

set yields one. Ultimately, we obtain:

I X�1
�1;X1

0

� � ¼ ð f x 1ð Þ
	 
�1

�1
; x 1ð Þ
	 
1

0

� �
log2

f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0

h i
f x 1ð Þð Þ�1

�1
h i

f x 1ð Þð Þ10
� � d x 1ð Þ

	 
�1

�1
d x 1ð Þ
	 
1

0

þ
ð
f x 2ð Þ
	 
�1

�1
; x 2ð Þ
	 
1

0

� �
log2

f x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
f x 2ð Þð Þ�1

�1
h i

f x 2ð Þð Þ10
� � d x 2ð Þ

	 
�1

�1
d x 2ð Þ
	 
1

0

¼ I ðX 1ð ÞÞ�1
�1ðX 1ð ÞÞ10

h i
þ I ðX 2ð ÞÞ�1

�1; ðX 2ð ÞÞ10
h i

:

4.1.1 Closed-Form Solutions in Original State Space

To calculate the EMC on the basis of the generalized solution from Eq. 239 in the

coordinates of the original state space ℝp, we must find the pdf of the generated

stochastic process in the steady state. Let the p-dimensional random vectorX�1�τþ1

be normally distributed with location μ�1�τþ1 ¼ A0 � x�1�τ and covariance
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Σ�1�τþ1 ¼ Σ1 (Eqs. 19 and 20), that is X�1�τþ1 eN x;A0 � x�1�τ ,Σ1ð Þ. Starting
with this random vector the project evolves according to state Eq. 8. As already

shown in Section 2.2, the strictly stationary behavior for t ! 1 means that a joint

probability density is formed that is invariant under shifting the origin. Hence, for

the locus we must have μ ¼ A0 � μþ E εt½ � ¼ A0 � μ, and for the covariance matrix

the well-known Lyapunov criterion Σ ¼ A0 � Σ � AΤ
0 þ Var εt½ � ¼ A0 � Σ � AΤ

0 þ C
must be satisfied (Eqs. 4 and 27). It follows that μ must be an eigenvector

corresponding to the eigenvalue 1 of the WTM A0. Clearly, if the modeled project

is asymptotically stable and the modulus of the largest eigenvalue of A0 is less than

1, no such eigenvector can exist. Hence, the only vector that satisfies this equation is

the zero vector 0p, which indicates that there is no remaining work (Eq. 26).

Let λ1(A0), . . ., λp(A0) be the eigenvalues of WTM A0 ordered by magnitude. If

λ1 A0ð Þj j < 1, the solution of the Lyapunov Eq. 27 can be written as an infinite

power series (Lancaster and Tismenetsky 1985):

Σ ¼
X1
k¼0

Ak
0 � C � AΤ

0

� �k
: ð245Þ

It can also be expressed using the Kronecker product �:

vec Σ½ � ¼ Ip2 � A0 � A0

� ��1
vec C½ � :

Σ is also positive-semidefinite. In the above equation it is assumed that Ip2 � A0 � A0

is invertible, vec[C ] is the vector function which was already used for the

derivation of the least square estimators in Section 2.7, and Ip2 is the identity matrix

of size p2 � p2.
Under the assumption of Gaussian behavior, it is not difficult to find different

closed-form solutions. Recalling that the random vector X0 in steady state is

normally distributed with location μ ¼ 0 p and covariance Σ, it follows from

textbooks (e.g. Cover and Thomas 1991) that the differential entropy as the second

summand in Eq. 239 can be expressed as

�
ð
p

f x0½ �log2 f x0½ �dx0 ¼ �
ð
ℝp

N x0; μ;Σð Þ log2N x0; μ;Σð Þdx0

¼ 1

2
log2 2πeð ÞpDet Σ½ �:

For the calculation of the conditional entropy (first summand in Eq. 239), the

following insight is helpful. Given a value x0, the distribution of X1 is a normal

distribution with location A0 � x0 and covariance C. Hence, the conditional entropy
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is simply equal to minus the differential entropy of that distribution. For Gaussian

distributions, the differential entropy is independent of the locus. Therefore, for the

conditional entropy it holds thatð
p

ð
p

f x1
��x0� �

f x0½ �log2 f x1
��x0� �

dx0dx1

¼
ð
ℝp

ð
ℝp

N x1;A0x0,Cð ÞN x0; μ;Σð Þlog2N x1;A0x0,Cð Þdx0dx1

¼
ð
ℝp

N x1;A0x0,Cð Þ log2N x1;A0x0,Cð Þdx1

¼ �1

2
log2 2πeð Þ pDet C½ �:

It follows for the VAR(1) model of cooperative work that

EMC ¼ 1

2
log2

Det Σ½ �
Det C½ �
 �

¼ 1

2
log2Det Σ½ � � 1

2
log2Det C½ �

¼ 1

2
log2Det Σ � C�1

� �
: ð246Þ

According to the above equation, the EMC can be decomposed additively into

dynamic and pure-fluctuation parts. The dynamic part represents the variance of the

process in steady state. If the fluctuations are isotropic, the dynamic part completely

decouples from the fluctuations, as will be shown in Eqs. 250 and 251

(Ay et al. 2012). If the solution of the Lyapunov equation (Eq. 245) is substituted

into the above equation, we can write the desired first closed-form solution as

EMC ¼ 1

2
log2

Det
X1

k¼0
Ak
0 � C � AΤ

0

� �kh i
Det C½ �

0@ 1A: ð247Þ

The determinant Det[Σ] of the covariance matrix Σ ¼
X1

k¼0
Ak
0 � C � AΤ

0

� �k
in the

numerator of the solution above can be interpreted as a generalized variance of the

stationary process. In the same manner Det[C] represents the generalized variance

of the inherent fluctuations. The inverseC�1 is the so-called “concentration matrix”

or “precision matrix” (Puri 2010). Det[C] can also be interpreted as the intrinsic

(mean squared) one-step prediction error that cannot be underrun, even if we

condition the observation on infinite past histories to build a maximally predictive

model. An analogous interpretation of Det[Σ] is to consider it as the (mean squared)

error for an infinite-step forecast of the VAR(1) model that is parameterized by the

optimizing parameters x0, A0 and C (Lütkepohl 1985). In this sense, EMC is the

logarithmic ratio related to the mean squared errors for infinite-step and one-step

forecasts of the process state. Another interesting interpretation of Det[Σ] is pro-
duced if we do not refer to the predictions of a parameterized VAR(1) model over

an infinite forecast horizon but instead to the one-step prediction error of a naı̈ve
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VAR(0) model whose predictions are based on the (zero) mean of the stationary

process. It is evident that this kind of model completely lacks the ability to

compress past project trajectories into a meaningful internal configuration to denote

the state of the project and therefore has zero complexity. Hence, EMC can also be

interpreted as the logarithmic ratio of the (mean squared) one-step prediction error

of a naı̈ve VAR(0) model with zero complexity and a standard VAR(1) model with

non-negligible complexity due to procedural memory that incorporates an effective

prediction mechanism. In this context “effective” means that the state should be

formed in a way that the mean squared prediction error is minimized at fixed

memory (sensu Still 2014). In terms of information theory, the generalized variance

ratio can be interpreted as the entropy lost and information gained when the

modeled project is in the steady state, and the state is observed by the project

manager with predefined “error bars”, which cannot be underrun because of the

intrinsic prediction error (Bialek 2003).

The covariance matrices Σ and C are positive-semidefinite. Under the assump-

tion that they are of full rank, the determinants are positive, and the range of the

EMC is
�
0, þ1�. This was already mentioned in the discussion of the essential

properties of EMC (see Eq. 241).

Interestingly, we can reshape the above solution so that it can be interpreted in

terms of Shannon’s famous “Gaussian channel” (cf. Eq. 262 and the associated

discussion) as

EMC ¼ 1

2
log2Det Ip þ

X1
k¼1

Ak
0 � C � AΤ

0

� �k !
� C�1

" #
: ð248Þ

If the covariance C is decomposed into an orthogonal forcing matrix K and a

diagonal matrix ΛK as shown in Eq. 22, the determinant in the denominator of

Eq. 247 can be replaced by Det C½ � ¼ Det ΛK½ �.
We can also separate the noise componentK � ΛK � KΤ in the sum and reshape the

determinant in the numerator as follows:

EMC¼ 1

2
log2

Det
X1

k¼0
Ak
0 �K �ΛK �KΤ � AΤ

0

� �kh i
Det ΛK½ �

0@ 1A
¼1

2
log2

Det
X1

k¼1
Ak
0 �K �ΛK �KΤ � AΤ

0

� �kþK �ΛK �KΤ
h i

Det ΛK½ �

0@ 1A
¼1

2
log2

Det K½ � �Det KΤ �
X1

k¼1
Ak
0 �K �ΛK �KΤ � AΤ

0

� �k	 

�KþΛK

h i
�Det KΤ

� �
Det ΛK½ �

0@ 1A
¼ 1

2
log2

Det KΤ �
X1

k¼1
Ak
0 �K �ΛK �KΤ � AΤ

0

� �k	 

�KþΛK

h i
Det ΛK½ �

0@ 1A:
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Moreover, because ΛK is diagonal, taking Tr[log2(ΛK)] is equivalent to

log2(Det[ΛK]) and we have

EMC ¼ 1

2
log2Det A

ı
0 þ ΛK

� �� 1

2

Xp
i¼1

log2λi Cð Þ; ð249Þ

where Aı
0 ¼ KΤ � P1

k¼1A
k
0 � K � ΛK � KΤ � AΤ

0

� �k	 

� K:

If the noise is isotropic, that is, the variances along the independent directions

are equal C ¼ σ2
� � � Ip� �

, and therefore correlations ρij (Eq. 43) between perfor-

mance fluctuations do not exist, we obtain a surprisingly simple solution:

EMC ¼ 1

2
log2Det

X1
k¼0

Ak
0 � AΤ

0

� �k" #

¼ 1

2
log2Det Ip � A0 � AΤ

0

� ��1
h i

¼ �1

2
log2Det Ip � A0 � AΤ

0

� �
: ð250Þ

The above solution is based on the von Neumann series that generalizes the

geometric series to matrices (cf. Section 2.2).

If the matrix A0 is diagonalizable, it can be decomposed into eigenvectors ϑi(A0)

in the columns S:i of S (Eq. 35) and written as A0 ¼ S � ΛS � S�1. ΛS is a diagonal

matrix with eigenvalues λi(A0) along the principal diagonal. Hence, if C ¼ σ2
� � � Ip

and A0 is diagonalizable, the EMC from Eq. 250 can be fully simplified:

EMC ¼ 1

2
log2

Yp
i¼1

1

1� λi A0ð Þ2

¼ 1

2

Xp
i¼1

log2
1

1� λi A0ð Þ2

¼ �1

2

Xp
i¼1

log2 1� λi A0ð Þ2
	 


: ð251Þ

Both closed-form solutions that were obtained under the assumption of isotropic

fluctuations only depend on the dynamical operator A0, and therefore the dynamic

part of the project can be seen to decouple completely from the unpredictable

performance fluctuations. Under these circumstances the argument 1� λi A0ð Þ2
	 


of the binary logarithmic function can be interpreted as the damping coefficient of

design mode ϕi ¼ λi A0ð Þ,ϑi A0ð Þð Þ (see Section 2.1).

Similarly, for a project phase in which all p development tasks are processed

independently at the same autonomous processing rate a, the dynamic part
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completely decouples from the performance fluctuations under arbitrary correlation

coefficients. In this non-cooperative environment with minimum richness of tem-

poral and structure-organizational dependencies, we simply have

A0 ¼ Diag a; . . . ; a½ �. For EMC, it therefore holds that

EMC ¼ 1

2
log2

Det
X1

k¼0
Diag a; . . . ; a½ �ð Þk � C � Diag a; . . . ; a½ �T

	 
k� �
Det C½ �

0BB@
1CCA

¼ 1

2
log2

Det C �
X1

k¼0
Diag a; . . . ; a½ �ð Þk � Diag a; . . . ; a½ �ð Þk

h i
Det C½ �

0@ 1A
¼ 1

2
log2Det

X1
k¼0

Diag a2; . . . ; a2
� �� �k" #

¼ 1

2
log2Det Diag

1

1� a2
; . . . ;

1

1� a2

� �� �
¼ � p

2
log2 1� a2

� �
: ð252Þ

An additional closed-form solution in which the EMC can be expressed in terms

of the dynamical operator A0 and a so-called prewhitened operator W was formu-

lated by DelSole and Tippett (2007) and Ay et al. (2012). Using Det A½ �=Det B½ � ¼
Det A � B�1
� �

and the Lyapunov Eq. 27 we can write

Det C½ �
Det Σ½ � ¼ Det Σ� A0 � Σ � AΤ

0

� � � Σ�1
� � ¼ Det Ip � A0 � Σ � AΤ

0 � Σ�1
� �

:

Defining

W :¼ Σ�1
2 � A0 � Σ 1

2

we obtain

Det C½ �
Det Σ½ � ¼ Det Ip �W �WΤ

� �
;

where Det Ip � A � N � A�1
� � ¼ Det Ip � N

� �
and Σ ¼ ΣΤ were used. Hence, we

obtain the EMC also as
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EMC ¼ �1

2
log2Det Ip �W �WΤ

� �
: ð253Þ

According to DelSole and Tippett (2007) the application of the dynamical operator

W can be regarded as a whitening transformation of the state-space coordinates of

the dynamical operator A0 by means of the covariance matrix Σ.
Concerning the evaluation of the persistent mutual information—represented by

the variable EMC(τ)—of a vector autoregressive process, Section 3.2.4 showed that

this can be expressed by the continuous-type mutual information I[.;.] as

EMC τð Þ ¼ I X�1
�1;X1

τ

� �
¼
ð
p
� � �
ð
p

f x�1
�1; x1τ

� �
log2

f x�1
�1; x1τ

� �
f x�1�1
� �

f x1τ
� � dx�1

�1 dx1τ :

The independent parameter τ � 0 denotes the lead time. The term f x�1
�1

� �
designates the joint pdf of the infinite one-dimensional history of the stochastic

process. Likewise, f x1τ
� �

designates the corresponding pdf of the infinite future

from time τ onward. We used the shorthand notation f x�1
�1; x1τ

� � ¼ f x�1,½
x�1þ1, . . . , x�1, xτ, xτþ1, , . . . , x1�1, x1�, f x�1

�1
� � ¼ f x�1; . . . ; x�1½ �, f x1τ

� � ¼
f xτ; . . . ; x1½ �, dx�1

�1 ¼ dx�1 . . . dx�1 and dx1τ ¼ dxτ . . . dx1. Informally, for

positive lead times the term I X�1
�1;X1

τ

� �
can be interpreted as the information

that is communicated from the past to the future ignoring the current length-τ
sequence of observations Xτ�1

0 . Assuming strict stationarity, the joint pdfs are

invariant under shifting the origin. Due to the Markov property of the VAR

(1) model they can be factorized as follows:

f x�1
�1; x1τ

� � ¼ ð
p
� � �
ð
p

f x�1
�1; x10

� �
dx0 . . . dxτ�1

¼ f x�1½ � f x�1þ1

��x�1
� �

. . . f x�1

��x�2

� �
f xτþ1

��xτ� �
. . . f x1

��x1�1

� �
�
ð
p
� � �
ð
p

f x0
��x�1

� �
. . . f xτ

��xτ�1

� �
dx0 . . . dxτ�1

f x�1
�1

� � ¼ f x�1½ � f x�1þ1

��x�1
� �

. . . f x�1

��x�2

� �
f x1τ
� � ¼ f xτ½ � f xτþ1

��xτ� �
. . . f x1

��x1�1

� �
:

Hence, we can simplify the mutual information as follows:

I X�1
�1;X1

τ

� � ¼ ð
p
� � �
ð
p

f x�1
�1; x1τ

� �

log2

ð
p
� � �
ð
p

f x0
��x�1

� �
. . . f xτ

��xτ�1

� �
dx0 . . . dxτ�1

f xτ½ � dx�1
�1 dx1τ :

4.1 Closed-Form Solutions of Effective Measure Complexity for Vector. . . 231

http://dx.doi.org/10.1007/978-3-319-21717-8_3


According to the famous Chapman-Kolmogorov equation (Papoulis and Pillai

2002) it holds that:ð
p
� � �
ð
p

f x0
��x�1

� �
. . . f xτ

��xτ�1

� �
dx0 . . . dxτ�1 ¼ f xτ

��x�1

� �
Hence, we have

I X�1
�1;X1

τ

� �¼ð
 p

ð
 p
log2 f xτ

��x�1

� �
dx�1dxτ

ð
 p
� � �
ð
 p

f x�1
�1;x1τ

� �
dx�2

�1 dx1τþ1

�
ð
 p
log2 f xτ½ �dxτ

ð
 p
� � �
ð
 p

f x�1
�1;x1τ

� �
dx�1

�1 dx1τþ1

¼
ð
 p

ð
 p

f x�1;xτ½ �log2 f xτ
��x�1

� �
dx�1dxτ�

ð
 p

f xτ½ �log2 f xτ½ �dxτ

¼
ð
 p

f x�1½ �dx�1

ð
 p

f xτ
��x�1

� �
log2 f xτ

��x�1

� �
dxτ�

ð
 p

f xτ½ �log2 f xτ½ �dxτ:

For a VAR(1) process the transition function is defined as

f xτ
��x�1

� � ¼ N xτ;A
τ
0 � x�1,C τð Þ� �

;

with the lead-time dependent covariance

C τð Þ ¼ A0 � C τ � 1ð Þ � AΤ
0 þ C

¼
Xτ
k¼0

Ak
0 � C � AΤ

0

� �k
:

We find the solution

EMC τð Þ ¼ 1

2
log2Det Σ½ � � 1

2
log2Det C τð Þ½ �

¼ 1

2
log2

Det Σ½ �
Det C τð Þ½ �
 �

¼ 1

2
log2Det Σ � C τð Þð Þ�1

h i
:

The solution can also be expressed as the logarithm of the variance ratio

(Ay et al. 2012):

EMC τð Þ ¼ 1

2
log2

Det Σ½ �
Det Σ� Aτþ1

0 � Σ � AΤ
0

� �τþ1
h i

0@ 1A; ð254Þ
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noting thatC ¼ Σ� A0 � Σ � AΤ
0 . As in Section 4.1 we can rewrite the above solution

on the basis of the dynamical operator A0 and lead-time dependent prewhitened

operator W(τ) (Eq. 253; DelSole and Tippett 2007; Ay et al. 2012) as

EMC τð Þ ¼ �1

2
log2Det Ip �W τð Þ �W τð ÞΤ

h i
;

with

W τð Þ ¼ Σ�1
2 � Aτþ1

0 � Σ1
2: ð255Þ

Following the same principles, a closed-form solution can be calculated for the

elusive information σμ τð Þ ¼ I X�1
�1;X1

τ Xτ�1
o

��� �
from Eq. 231. As explained in

Section 3.2.4, the elusive information is one of two essential pieces of the persistent

mutual information and represents the Shannon information that is communicated

from the past to the future by the stochastic process, but does not flow through the

currently observed length-τ sequence Xτ�1
0 (James et al. 2011). The key

distinguishing feature of the persistent mutual information is that it is nonzero for

τ � 1 if a process necessarily has hidden states (Marzen and Crutchfield 2014).

Conversely, due to the Markov property of the VAR(1) model, the elusive infor-

mation completely vanishes for positive length τ.
This statement is easy to prove by using the definitions for the conditional

mutual information from Eq. 214 and the conditional entropy from Eq. 213.

Based on these definitions, the following relationship can be expressed:

I X; Y
��Z� � ¼ H X

��Z� �þ H Y
��Z� �� H X,Y

��Z� �
¼ H X; Z½ � � H Z½ � þ H Y; Z½ � � H Z½ � � H X; Y; Z½ � þ H Z½ �
¼ H X; Z½ � þ H Y; Z½ � � H Z½ � � H X; Y; Z½ �:

As it holds

I X; Z; Y½ � ¼ H X½ � þ H Z; Y½ � � H X; Y; Z½ �

we find

I X; Y
��Z� � ¼ H X;Z½ � � H Z½ � � H X½ � þ I X; Z; Y½ �

¼ I X; Z; Y½ � � I X; Z½ �:

In particular, we have

σμ τð Þ ¼ I X�1
�1;X1

τ

��Xτ�1
0

� �
¼ I X�1

�1;Xτ�1
0 ;X1

τ

� �� I X�1
�1;Xτ�1

0

� �
¼ I X�1

�1;X1
0

� �� I X�1
�1;Xτ�1

0

� �
:
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Using the Markov property (Eq. 235), we see from the calculations Eq. 237–238

that the emergent complexity does not depend on the future of the autoregressive

process beyond the lead time τ, i.e.

I X�1
�1;X1

0

� � ¼ I X�1
�1;Xτ�1

0

� �
:

This proves that it holds for τ � 1:

σμ τð Þ ¼ 0:

This result is independent of the coordinate system in the vector autoregression

model of cooperative work.

4.1.2 Closed-Form Solutions in the Spectral Basis

In this chapter, we calculate additional solutions in which the dependence of the

EMC on the anisotropy of the performance fluctuations is made explicit. These

solutions are much easier to interpret, and to derive them we work in the spectral

basis (cf. Eq. 35). According to Neumaier and Schneider (2001), the steady-state

covariance matrix Σ0 in the spectral basis can be calculated on the basis of the

transformed covariance matrix of the performance fluctuations

C0 ¼ S�1 � C � SΤ
� �*	 
�1

(Eq. 41) as

Σ0 ¼

c011
2

1� λ1λ1

ρ012c
0
11c

0
22

1� λ1λ2
� � �

ρ012c
0
11c022

1� λ2λ1

c022
2

1� λ2λ2
� � �

⋮ ⋮ ⋱

0BBBBB@

1CCCCCA: ð256Þ

In the above equation, the ρ0ij’s are the transformed correlations, which were defined

in Eq. 43 for a WTM A0 with arbitrary structure and in Eq. 47 for A0’s that are
symmetric. The c0ii

2’s (cf. Eq. 10) and ρ0ijc
0
iic

0
jj’s (cf. Eq. 11) are the scalar-valued

variance and covariance components of C0 in the spectral basis:

C0 ¼
c011

2 ρ012c
0
11c

0
22 � � �

ρ012c
0
11c

0
22 c022

2 � � �
⋮ ⋮ ⋱

0B@
1CA: ð257Þ

The transformation into the spectral basis is a linear transformation of the state-

space coordinates (see Eq. 41) and therefore does not change the mutual informa-

tion being communicated from the infinite past into the infinite future by the
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stochastic process. Hence, the functional form of the closed-form solution from

Eq. 246 holds, and the EMC can be calculated as the (logarithmic) variance ratio

(Schneider and Griffies 1999; de Cock 2002):

EMC ¼ 1

2
log2

Det Σ0½ �
Det C0½ �
 �

¼ 1

2
log2Det Σ0 � C0�1

h i
: ð258Þ

The basis transformation does not change the positive-definiteness of the covari-

ance matrices. Under the assumption that the matrices are of full rank, the deter-

minants are positive. As already shown in Section 4.1.1., the determinant Det[Σ0] of
the covariance matrix Σ0 can be interpreted as a generalized variance of the

stationary process in the spectral basis, whereas Det[C0] represents the generalized
variance of the inherent performance fluctuations after the basis transformation.

The variance ratio can also be interpreted in a geometrical framework (de Cock

2002). It is well known that the volume Vol[.] of the parallelepiped spanned by the

rows or columns of a covariance matrix, e.g. Σ0, is equal to the value of its

determinant:

Vol parallelepiped Σ0½ �½ � ¼ Det Σ0½ �:

In this sense the inverse variance ratio Det[C0]/Det[Σ0] represents the factor by

which the volume of the parallelepiped referring to the dynamical part of the

process can be collapsed due to the state observation by the project manager leading

to a certain information gain.

An important finding is that the scalar-valued variance and covariance compo-

nents of the fluctuation part are not relevant for the calculation of the EMC. This

follows from the definition of a determinant (see Eq. 267). The calculated deter-

minants of Σ0 and C0 just give rise to the occurrence of the factor
Yp

n¼1
c0nn

2, which

cancels out:

Det Σ0 � C0�1
h i

¼ Det Σ0½ � � Det C0�1
h i

¼ Det Σ0½ �
Det C0½ � ¼

Det Σ0
N

� �
Det C

0
N

� � :
Hence, we can also calculate with the “normalized” covariance matrices Σ0

N and

C0
N:

Σ0
N ¼

1

1� ��λ1��2 ρ012
1� λ1λ2

� � �

ρ012
1� λ2λ1

1

1� ��λ2��2 � � �

⋮ ⋮ ⋱

0BBBBBB@

1CCCCCCA ð259Þ
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C0
N ¼

1 ρ012 � � �
ρ012 1 � � �
⋮ ⋮ ⋱

0B@
1CA: ð260Þ

It can be proved that the normalized covariance matrices are also positive-

semidefinite. If they are furthermore not rank deficient, inconsistencies of the

complexity measure do not occur. According to Shannon’s classic information-

theory findings about the capacity of a Gaussian channel (Cover and Thomas 1991),

the normalized covariance matrix Σ0
N can be decomposed into summands as

follows:

Σ0
N ¼ C0

N þ

1

1� ��λ1��2 � 1
ρ012

1� λ1λ2
� ρ012 . . .

ρ012
1� λ2λ1

� ρ012
1

1� ��λ2��2 � 1 . . .

⋮ ⋮ ⋱

0BBBBBB@

1CCCCCCA:

The second summand in the above equation is defined as Σ00
N. This matrix can be

simplified:

Σ
00
N ¼

��λ1��2
1� ��λ1��2 ρ012

λ1λ2
1� λ1λ2

. . .

ρ012
λ2λ1

1� λ2λ1

��λ2��2
1� ��λ2��2 . . .

⋮ ⋮ ⋱

0BBBBBB@

1CCCCCCA: ð261Þ

We obtain the most expressive closed-form solution based on the signal-to-noise

ratio SNR :¼ Σ00
N:C

0
N
�1

:

EMC ¼ 1

2
log2Det Ip þ Σ

00
N � C0

N
�1

h i
: ð262Þ

The SNR can be interpreted as the ratio of the variance Σ00
N of the signal in the

spectral basis that is generated by cooperative task processing and the effective

variance C0
N of the performance fluctuations. The variance of the signal drives the

process to a certain extent and can be reinforced through the structural organization

of the project. The effective fluctuations are in the same units as the input xt. This is
called “referring the noise to the input” and is a standard method in physics for
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characterizing detectors, amplifiers and other devices (Bialek 2003). Clearly, if one

builds a photodetector it is not so useful to quote the noise level at the output in

volts; one wants to know how this noise limits the ability to detect dim lights.

Similarly, when we characterize a PD project that uses a stream of progress reports

to document a quasicontinuous workflow, we don’t want to know the variance in

the absolute labor units; we want to know how variability in the performance of the

developers limits precision in estimating the real work progress (signal), which

amounts to defining an effective “noise level” in the units of the signal itself. In the

present case, this is just a matter of “dividing” generalized variances, but in reality it

is a fairly complex task. According to Sylvester’s determinant theorem, we can

swap the factors in the second summand:

Det Ip þ Σ
00
N � C0

N
�1

h i
¼ Det Ip þ C0

N
�1 � Σ00

N

h i
:

The obtained closed-form solution in the spectral basis has at most only p2 � pð Þ=
2þ p ¼ p pþ 1ð Þ=2 independent parameters, namely the eigenvalues λi(A0) of the

WTM and the correlations ρ0ij in the spectral basis, and not a maximum of

the approximately p2 þ p2 � pð Þ=2þ p ¼ p 3 pþ 1ð Þ=2 parameters encoded in

both the WTM A0 and the covariance matrix C (Eq. 248). In other words, through

a transformation into the spectral basis we can identify the essential variables

influencing emergent complexity in the sense of Grassberger’s theory and

reduce the dimensionality of the problem in many cases by the factor

3pþ 1
�
=
�
pþ 1

� �
.

Furthermore, these independent parameters are easy to interpret, and at this point

we can make a number of comments to stress the importance and usefulness of the

analytical results. It is evident that the eigenvalues λi(A0) represent the essential

temporal dependencies of the modeled project phase in terms of effective produc-

tivity rates on linearly independent scales determined by the eigenvectors ϑi(A0)

i ¼ 1 . . . pð Þ. The effective productivity rates depend only on the design modes ϕi

of the WTM A0 and therefore reflect the project’s organizational design. The lower
the effective productivity rates because of slow task processing or strong task

couplings, the less the design modes are “damped,” and hence the larger the project

complexity. On the other hand, the correlations ρ0ij model the essential dependencies

between the unpredictable performance fluctuations in open organizational systems

that can give rise to an excitation of the design modes and their interactions. This

excitation can compensate for the damping factors of the design mode. The ρ0ij’s
scale linearly with the λi(C) along each independent direction of the fluctuation

variable ε0t: the larger the λi(C), the larger the correlations and the stronger the

excitation (Eq. 43). However, the scale factors are determined not only by a linear
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interference between design modes ϕi and ϕj caused by cooperative task processing

but also by the weighted interference with performance fluctuation modes Ψi and Ψj

caused by correlations between performance variability (cf. Eqs. 43 and 47). In

other words, the emergent complexity of the modeled project phase does not simply

come from the least-damped design modeϕ1 ¼ λ1 A0ð Þ,ϑ1 A0ð Þð Þ because this mode

may not be sufficiently excited, but rather is caused (at least theoretically) by a

complete interference between all design and performance fluctuation modes. Like

the analytical considerations of Crutchfield et al. (2013) concerning stationary and

ergodic stochastic processes whose measurement values cover a finite alphabet, the

obtained closed-form solutions show that in a development process complexity is

not just controlled by the “first spectral gap,” i.e. the difference between the

dominant eigenvalue and the eigenvalue with the second largest magnitude. Rather,

the entire spectrum of eigenvalues is relevant and therefore all subspaces of the

underlying causal-state process can contribute to emergent complexity (Crutchfield

et al. 2013). In most practical case studies, only a few subspaces will dominate

project dynamics. However, the closed-form solution from Eq. 262 in conjunction

with Eqs. 260 and 261 shows that this is not generally the case. In Section 4.1.4, we

will present fairly simple polynomial-based solutions for projects with only two or

three tasks, and we will make the theoretical connections between the eigenvalues,

the spectral gaps and the correlations very clear. The solution for two tasks will also

allow us to identify simple scaling laws for real-valued eigenvalues. As a result, we

see that emergent complexity in the sense of Grassberger’s theory is a holistic

property of the structure and process organization, and that, in most real cases, it

cannot be reduced to singular properties of the project organizational design. This is

a truly nonreductionist approach to complexity assessment insisting on the specific

character of the organizational design as a whole.

Similarly to the previous chapter, we can obtain a closed-form solution for the

persistent mutual information EMC(τ) in the spectral basis. The transformation into

the spectral basis is a linear transformation of the state-space coordinates and

therefore does not change the persistent mutual information communicated from

the past into the future by the stochastic process. Hence, in analogy to Eq. 256 the

variance ratio can also be calculated

EMC τð Þ ¼ 1

2
log2

Det Σ0½ �
Det Σ0 � Λτþ1

S � Σ0 � ΛΤ
S

� �*	 
τþ1
� �

0BB@
1CCA

in the spectral basis, where the diagonal matrix ΛS is the dynamical operator

(Eq. 39) as

ΛS ¼ Diag λi A0ð Þ½ � 1 � i � p :
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Because ΛS is diagonal, the solution in the spectral basis can be simplified to

EMC τð Þ ¼ �1

2
log2

Det Σ0 � Λτþ1
S � Σ0 � ΛΤ

S

� �*	 
τþ1
� �

Det Σ0½ �

0BB@
1CCA

¼ �1

2
log2

Det Σ0 � Λτþ1
S � Σ0 � Λ*

S

τþ1
h i

Det Σ0½ �

0@ 1A
¼ �1

2
log2Det Ip � Λτþ1

S � Σ0 � Λ*
S

τþ1 � Σ0�1
h i

¼ �1

2
log2Det Ip � Σ0 τð Þ � Σ0�1

h i
; ð263Þ

with Σ0 τð Þ ¼ Λτþ1
S � Σ0 � Λ*

S

τþ1
τ � 0ð Þ.

As with the derivation of the expressive closed-form solution in Section 4.2, the

generalized variance term Σ0 � Λτþ1
S � Σ0 � ΛΤ

S

� �*	 
τþ1

¼ Σ0 � Λτþ1
S � Σ0 � Λ*τþ1

S in

the denominator of the variance ratio can be written in an explicit matrix form:

Σ0 �Λτþ1
S �Σ0 �Λ*τþ1

S

¼

c011
2

1� λ1λ1
� λ1

τþ1c011
2 λ1
� �τþ1

1� λ1λ1

ρ012c
0
11c

0
22

1� λ1λ2
� λ1

τþ1ρ012c
0
11c

0
22 λ2
� �τþ1

1� λ1λ2
� � �

ρ012c
0
11c

0
22

1� λ2λ1
� λ2

τþ1ρ012c
0
11c

0
22 λ1
� �τþ1

1� λ2λ1

c022
2

1� λ2λ2
� λ2

τþ1c022
2 λ2
� �τþ1

1� λ2λ1
� � �

⋮ ⋮ ⋱

0BBBBBB@

1CCCCCCA

¼

c011
2

� �1� λ1j j2 τþ1ð Þ

1� λ1j j2 c011c
0
22

ρ012 1� λ1
τþ1 λ2
� �τþ1

	 

1� λ1λ2

� � �

c011c
0
22

ρ012 1� λ2
τþ1 λ1
� �τþ1

	 

1� λ2λ1

c022
2

� �1� λ1j j2 τþ1ð Þ

1� λ1j j2 � � �

⋮ ⋮ ⋱

0BBBBBBBB@

1CCCCCCCCA
:

It can be proved that the covariances c0ij in the above matrix form are not relevant for

the calculation of EMC(τ). This follows from the definition of a determinant (see

Eq. 267). When calculating the determinants of Σ0 and Σ0 �Λτþ1
S �Σ0 �Λ*τþ1

S they

just give rise to the occurrence of a factor
Y p

n¼1
c0nn

2
, which cancels out in the

variance ratio. Therefore, the persistent mutual information can also be calculated

using normalized covariance matrices. The normalized covariance matrix of Σ0,

termed Σ0
N , was defined in Eq. 259. The normalized covariance matrix of Σ0 �Λτþ1

S

�Σ0 �Λ*
S

τþ1
is simply
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Σ0
N � Λτþ1

S � Σ0
N � Λ*τþ1

S

¼

1� λ1j j2 τþ1ð Þ

1� λ1j j2 ρ012
1� λ1

τþ1 λ2
� �τþ1

	 

1� λ1λ2

� � �

ρ012
1� λ2

τþ1 λ1
� �τþ1

	 

1� λ2λ1

1� λ2j j2 τþ1ð Þ

1� λ2j j2 � � �

⋮ ⋮ ⋱

0BBBBBBBB@

1CCCCCCCCA
:

Hence,

EMC τð Þ ¼ �1

2
log2

Det Σ0
N � Λτþ1

S � Σ0
N � Λ*

S
τþ1

� �
Det Σ0

N

� � !

¼ �1

2
log2Det Ip � Λτþ1

S � Σ0
N � Λ*

S
τþ1 � Σ0

N
�1

� �
¼ �1

2
log2Det Ip � Σ0

N τð Þ � Σ0
N
�1

� �
; ð264Þ

with Σ0
N τð Þ ¼ Λτþ1

S � Σ0
N � Λ*

S
τþ1 τ � 0ð Þ.

4.1.3 Closed-form Solution through Canonical Correlation
Analysis

If the matrix C
0
N representing the intrinsic prediction error in the spectral basis is

diagonal in the same coordinate system as the normalized covariance matrix Σ0
N

contributed by cooperative task processing, then the matrix product Σ0
N � C0

N
�1 ¼

Ip þ Σ00
N � C0

N
�1

� �
is diagonal, and simple reduction of emergent complexity to

singular properties of the design modes ϕi ¼ λi A0ð Þ, ϑi A0ð Þð Þ and performance

fluctuation modes Ψ i ¼ λi Cð Þ, ki Cð Þð Þ will work. In this case, the elements along

the principal diagonal are the signal-to-noise ratios along each independent direc-

tion. Hence, the EMC is proportional to the sum of the log-transformed ratios, and

these summands are the only independent parameters. However, in the general case

we have to diagonalize the above matrix product in a first step to obtain an additional

closed-form solution. This closed-form solution has the least number of independent

parameters. In spite of its algebraic simplicity, the solution is not very expressive,

because the spatiotemporal covariance structures of the open organizational system

are not revealed. We will return to this point after presenting the solution.

Unfortunately, the diagonalization of the matrix product Σ0
N � C0

N
�1

cannot be

carried out through an eigendecomposition, because the product of two symmetric

matrices is not necessarily symmetric itself. Therefore, the left and right eigenvec-

tors can differ and do not form a set of mutually orthogonal vectors, as they would if

the product was diagonal. Nevertheless, we can always rotate our coordinate system
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in the space of the output to make the matrix product diagonal (Schneider and

Griffies 1999). To do this, we decompose Σ0
N � C0

N
�1 into singular values (singular

value decomposition, see e.g. de Cock 2002) as

Σ0
N � C0

N
�1 ¼ U � ΛUV � VΤ;

where

U � UΤ ¼ Ip and V � VΤ ¼ Ip

and

ΛUV ¼ Diag σ0i
� �

1 � i � p :

The columns of U are the left singular vectors; those of V are the right singular

vectors. The columns of V can be regarded as a set of orthonormal “input” basis

vectors for Σ0
N � C0

N
�1; the columns of U form a set of orthonormal “output” basis

vectors. The diagonal values σ0i in matrix ΛUV are the singular values, which can be

thought of as scalar “gain controls” by which each corresponding input is multiplied

to give a corresponding output. The σ0i’s are the only independent parameters of the

following closed-form solution (see ). The relationship between the singular values

σ0i of Σ0
N � C0

N
�1 and the canonical correlations ρi (see summary of properties of

EMC at the end of Section 4.1) in our case is as follows (de Cock 2002):

σ0i ¼
1

1� ρ2i
1 � i � p :

Under the assumption that Det Σ0
N � C0

N
�1

� �
> 0, it is possible to prove that

Det U½ � � Det V½ � ¼ 1. We can obtain the desired closed-form solution as follows:

EMC ¼ 1

2
log2det Σ

0
N � C0

N
�1

� �
¼ 1

2
log2det U � ΛUV � VΤ

� �
¼ 1

2
log2 Det U½ � � Det ΛUV½ � � Det V½ �ð Þ

¼ 1

2
log2det ΛUV½ �

¼ 1

2
Tr log2 ΛUVð Þ½ �

¼ 1

2

Xp
i¼1

log2σ
0
i

¼ 1

2

Xp
i¼1

log2
1

1� ρ2i

 �
¼ �1

2

Xp
i¼1

log2 1� ρ2i
� �

: ð265Þ
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In spite of its algebraic simplicity, a main disadvantage of this closed-form solution

with only p parameters σ0i or ρ2i is that both the temporal dependencies of the

modeled work process in terms of essential productivity rates (represented by the

λi’s), and the essential cooperative relationships exciting fluctuations (represented

by the ρ0ij’s) are not explicit, but are compounded into correlation coefficients

between the canonical variates. Therefore, it is impossible for the project manager

to analyze and interpret the spatiotemporal covariance structures of the organiza-

tional system and to identify countermeasures for coping with emergent complexity.

A canonical correlation analysis over τ time steps leads to the following solution

of the persistent mutual information:

EMC τð Þ ¼ 1

2
log2Det Σ0

N � Σ0
N � Λτþ1

S � Σ0
N � Λ*

S
τþ1

� ��1
h i

¼ 1

2
log2Det U τð Þ � ΛUV τð Þ � V τð ÞΤ

h i
¼ 1

2
log2 Det U τð Þ½ � � Det ΛUV τð Þ½ � � Det V τð Þ½ �ð Þ

¼ 1

2
log2Det ΛUV τð Þ½ �

¼ 1

2
Tr log2 ΛUV τð Þð Þ½ �

¼ 1

2

Xp
i¼1

log2σ
0
i τð Þ

¼ 1

2

Xp
i¼1

log2
1

1� ρi τð Þð Þ2
 !

¼ �1

2

Xp
i¼1

log2 1� ρi τð Þð Þ2
	 


: ð266Þ

The termU τð Þ � ΛUV τð Þ � V τð ÞΤ represents the product of the matrices resulting from a

decomposition ofΣ0
N � Σ0

N � Λτþ1
S � Σ0

N � ΛS
*

� �τþ1
	 
�1

as a function of the lead time τ:

U τð Þ,ΛUV τð Þ,V τð Þð Þ ¼ SVD Σ0
N � Σ0

N � Λτþ1
S � Σ0

N � ΛS
*

� �τþ1
	 
�1

� �
;

where the matrix-valued function SVD[.] represents the singular value decompo-

sition of the argument. The σ0i(τ)’s and ρi(τ)’s represent, respectively, the singular

values and canonical correlations given the lead time.

4.1.4 Polynomial-Based Solutions for Processes with Two
and Three Tasks

We can also analyze the spatiotemporal covariance structure of Σ0
N (Eq. 259) in the

spectral basis explicitly by recalling the definition of a determinant. IfB ¼ bi j
� �

is a

matrix of size p, then
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Det Bð Þ ¼
X
β2Rp

sgn βð Þ
Yp
i¼1

bi,β ið Þ ð267Þ

holds. Rp is the set of all permutations of {1, . . ., p}. Thus, because of the regular

structure of the matrix Σ0
N , Det[Σ0

N] is a sum of p ! summands. Each of these

summands is a fraction, because it is a product of elements from Σ0
N , where exactly

one entry is chosen from each row and column. The denominator of those fractions

is a product consisting of p factors of 1� λi A0ð Þλiλ j A0ð Þ. The numerator is a

product of 2, 3, . . ., p factors ρ0ij, or simply 1 if the permutation is the identity. (The

case of one factor cannot occur, because the amount of factors equals the amount of

numbers changed by the permutation β, and there is no permutation that changes

just one number). The coefficients (i, j) of the factor 1� λi A0ð Þλ j A0ð Þ in the

denominator correspond to the coefficients (k, l ) of the factor ρ0kl in the numerator,

i.e. i ¼ l and j ¼ k, if i 6¼ k holds. Otherwise, in the case that i ¼ k, no

corresponding factor is multiplied in the numerator, because the appropriate entry

of Σ0
N lies on the principal diagonal. Moreover, 1� λi A0ð Þλ j A0ð Þ ¼ 1� λi A0ð Þj j2

holds in that case.

These circumstances are elucidated for project phases with only p ¼ 2 and

p ¼ 3 fully interdependent tasks. For p ¼ 2 we have

Σ0
N ¼

1

1� ��λ1��2 ρ012
1� λ1λ2

ρ012
1� λ2λ1

1

1� ��λ2��2
0BBB@

1CCCA;

hence,

Det Σ0
N

� � ¼ 1

1� ��λ1��2� �
1� ��λ2��2� �� ρ012

2

1� λ2λ1
� �

1� λ1λ2
� � :

For p ¼ 3 we have

Σ0
N¼

1

1� ��λ1��2 ρ012
1� λ1λ2

ρ013
1� λ1λ3

ρ012
1� λ2λ1

1

1� ��λ2��2 ρ023
1� λ2λ3

ρ013
1� λ3λ1

ρ023
1� λ3λ2

1

1� ��λ3��2

0BBBBBBB@

1CCCCCCCA;
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hence,

Det Σ0
N

� � ¼ 1

1� ��λ1��2� �
1� ��λ2��2� �

1� ��λ3��2� �
� ρ0232

1� ��λ1��2� �
1� λ3λ2
� �

1� λ2λ3
� �� ρ0132

1� ��λ2��2� �
1� λ3λ1
� �

1� λ1λ3
� �

� ρ0122
1� ��λ3��2� �

1� λ1λ2
� �

1� λ2λ1
� �þ ρ012ρ

0
13ρ

0
23

1� λ1λ2
� �

1� λ2λ3
� �

1� λ3λ1
� �

þ ρ012ρ
0
13ρ

0
23

1� λ2λ1
� �

1� λ3λ2
� �

1� λ1λ3
� � :

The results for C0
N are much simpler. From Eqs. 259 and 260 it follows that the

numerator is the same, whereas the denominator is simply 1.

For p ¼ 2 we have

C0
N ¼ 1 ρ012

ρ012 1

 �
;

hence,

Det C0
N

� � ¼ 1� ρ012
2:

For p ¼ 3 we have

C0
N ¼

1 ρ012 ρ013
ρ012 1 ρ023
ρ013 ρ023 1

0@ 1A;

hence,

Det C0
N

� � ¼ 1þ 2ρ012ρ
0
13ρ

0
23 � ρ012

2 � ρ013
2 � ρ023

2:

These results readily yield the closed-form expression

EMC ¼ 1

2
log2

1

1� ρ0122
1

1� ��λ1��2� �
1� ��λ2��2� �� ρ012

2 1

1� λ2λ1
� �

1� λ1λ2
� � !" #

ð268Þ
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for p ¼ 2 tasks and

EMC ¼ 1

2
log2

1

1þ 2ρ012ρ
0
13ρ

0
23 � ρ0122 � ρ0132 � ρ0232

Det Σ0
N

� �� �
ð269Þ

for p ¼ 3 tasks, where the simplified determinant Det[Σ0
N] of the normalized

covariance matrix Σ0
N is given by

Det Σ0
N

� �¼ 1

1� ��λ1��2� � 1

1� ��λ2��2� �
1� ��λ3��2� �� ρ023

1� λ3λ2
� �

1� λ2λ3
� � !

þρ012ρ
0
13ρ

0
23

1

1� λ1λ2
� �

1� λ2λ3
� �

1� λ3λ1
� �þ 1

1� λ1λ3
� �

1� λ2λ1
� �

1� λ3λ2
� � !

� ρ012
2

1� ��λ3��2� �
1� λ1λ2
� �

1� λ2λ1
� �� ρ013

2

1� ��λ2��2� �
1� λ3λ1
� �

1� λ1λ3
� � : ð270Þ

Now, we suppose that all eigenvalues λi(A0) are real. Under this assumption EMC

can be expressed by the spectral gaps λi � λ j

� �
i6¼ j

between eigenvalues as

EMC ¼ 1

2
log2

1

1� λ1
2

� �
1� λ2

2
� �þ ρ012

2

1� ρ0122
λ1 � λ2ð Þ2

1� λ1
2

� �
1� λ2

2
� �

1� λ1λ2ð Þ2
" #

¼ 1

2
log2

1

1� λ1
2

� �
1� λ2

2
� � 1þ ρ012

2

1� ρ0122
λ1 � λ2ð Þ2
1� λ1λ2ð Þ2

 !" #

¼ �1

2
log2 1� λ1

2
� �� 1

2
log2 1� λ2

2
� �þ log2 1þ ρ012

2

1� ρ0122
λ1 � λ2ð Þ2
1� λ1λ2ð Þ2

" #
;

ð271Þ

for p ¼ 2, and as

EMC ¼ �1

2
log2 1� λ1

2
� �� 1

2
log2 1� λ2

2
� �� 1

2
log2 1� λ3

2
� �

þ1

2
log2 1þ ρ012

2

ρ0
λ1 � λ2ð Þ2
1� λ1λ2ð Þ2 þ

ρ013
2

ρ0
λ1 � λ3ð Þ2
1� λ1λ3ð Þ2 þ

ρ023
2

ρ0
λ2 � λ3ð Þ2
1� λ2λ3ð Þ2

"

þ 2ρ012
2ρ013

2ρ023
2

ρ0
1� λ1

2
� �

1� λ2
2

� �
1� λ3

2
� �� 1� λ1λ2ð Þ 1� λ1λ3ð Þ 1� λ2λ3ð Þ

1� λ1λ2ð Þ 1� λ1λ3ð Þ 1� λ2λ3ð Þ

#
ð272Þ

for p ¼ 3 using analogous simplifications. The factor ρ0 equals the determinant of

the covariance matrix of a standard trivariate normal distribution taking variances

c211 ¼ c222 ¼ c233 ¼ 1 and is given by
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ρ0 ¼ 1þ 2ρ012ρ
0
13ρ

0
23 � ρ012

2 � ρ013
2 � ρ023

2:

Hence, if the dynamical operator A0 has only real eigenvalues λi(A0), EMC can be

decomposed into simple additive complexity factors and the factor related to the

correlations between the covariance components of C0 in the spectral basis is a

simple function of the spectral gap(s).

For a process with p ¼ 2 tasks that is asymptotically stable in the sense of

Lyapunov (Eq. 4), it is evident that the first, second and third summand in the last

row of Eq. 271 can only take values in the range 0, þ1½ Þ, and for different

correlations ρ012 E �1; 1½ � the sum of the first and second summand

�1=2log2 1� λ1
2

� �� 1=2 log2 1� λ2
2

� �
is a lower bound. To gain additional

insights into the scaling behavior of EMC in the spectral gap Δλ ¼ λ1 � λ2ð Þ and
the correlation coefficient ρ012, we define another variable ς ¼ λ1 þ λ2ð Þ that is

orthogonal to Δλ. The Taylor series expansion of EMC in the spectral gap Δλ about
the point Δλ ¼ 0 to order Δλ2 leads to:

EMC ¼ �1

2
log2 1� ς2

4

 �2
" #

þ 4 1þ ρ012
2

� �þ ς2 � 3ρ012
2ς2

� �
ρ0122 � 1
� �

ς2 � 4ð Þlog10 2ð Þ Δλ2 þ o Δλ½ �3:

For the correlation coefficient ρ012 we obtain the series expansion

EMC ¼ �1

2
log2 1� ς� Δλð Þ2

4

 !
1� ςþ Δλð Þ2

4

 !" #

þ 2Δλ2

4þ Δλ2 � ς2
� �

log10 2ð Þ ρ
0
12

2 þ o ρ012
� �3

about the point ρ012 ¼ 0 to order ρ012
2.

For p ¼ 3 tasks it can also be proved that the fourth summand in Eq. 272 can

only take values in the range 0, þ1½ Þ in view of the definition of the covariance

matrix. The sum of the first, second and third summands is also a lower bound.

Interestingly, the coefficient ρ012
2= 1� ρ012

2
� �

in Eq. 271 is equivalent to Cohen’s
f2, which is an effect size measure that is frequently used in the context of an F-test

for ANOVA or multiple regression. By convention, in the behavioral sciences

effect sizes of 0.02, 0.15, and 0.35 are termed small, medium, and large, respec-

tively (Cohen 1988). The squared product-moment correlation ρ012
2 can also be

easily interpreted within the class of linear regression models. If an intercept is

included in a linear regression model, then ρ012
2 is equivalent to the well known

coefficient of determination R2. The coefficient of determination provides a mea-

sure of how well future outcomes are likely to be predicted by the statistical model.

Moreover, interesting questions arise from the identification of these lower

bounds. The answers will improve the understanding of the unexpectedly rich

dynamics that even small open organizational systems can generate. The identified

lower bounds can be reached, if and only if either the performance fluctuations are

246 4 Model-Driven Evaluation of the Emergent Complexity of Cooperative Work. . .

http://dx.doi.org/10.1007/978-3-319-21717-8_2


isotropic, that is, for the corresponding covariance matrix in the original state-space

coordinates the expression C ¼ σ2
� � � Ip holds (see Eq. 250), or the dynamical

operator A0 is symmetric and the column vectors of the forcing matrix K are

“aligned,” in the sense that A0 ¼ cf g � K holds (c 2 ℝ or c ¼ Diag ci½ � in general).

More details about the interrelationship between A0 and K were presented earlier in

Section 2.3. In the following, we focus on the question of how to identify the

“optimal” spectrum of eigenvalues λi, in the sense that emergent complexity

according to the metric EMC ¼ 1
2
log2Det Σ0

N � C0�1
N

h i
is minimized subject to the

constraint that the expected total amount of work xtot 2 ℝþ done over all tasks in the

modeled project phase is constant. This constrained optimization problem will be

solved under the assumptions that all eigenvalues λi(A0) are real, it holds that λi
A0ð Þ > 0 and the performance fluctuations are isotropic, i.e. for a process consisting

only of relaxators (see Fig. 2.6) and in which the design modes are excited as little

as possible. We therefore need to find project organization designs that could, on

average, process the same amount of work while leading to minimum emergent

complexity. A closed-form solution of the mean vector x of the accumulated work

for distinct tasks in an asymptotically stable process given the initial state x0 can be

calculated across an infinite time interval as x ¼ Ip � A0

� ��1 � x0 (see Section 2.2).

The expected total amount of work xtot ¼ Total x½ � is simply the sum of the vector

components (Eq. 16). For two tasks, the above question can be formulated as the

following constrained optimization problem:

min
a11;a12;a21;a22ð Þ

1

2
log2Det 1� λ1

a11 a21
a12 a22

 �� �2 !
1� λ2

a11 a21
a12 a22

 �� �2 ! !�1
24 35

subject to Total
1� a11 � a12
�a21 1� a22

 ��1

� x01
x02

 �" #
¼ xtot:

For three tasks, the corresponding formulation would be:

min

ai jf g
i; jð ÞE 1;2;3f g2

	 
 1
2
log2Det

Y3
i¼1

1� λi

a11 a12 a13
a21 a22 a23
a31 a32 a33

0@ 1A24 3520@ 1A0@ 1A�1
264

375

subject to Total

1� a11 �a12 �a13
�a21 1� a22 �a23
�a31 �a32 1� a33

0@ 1A�1

�
x01
x02
x03

0@ 1A24 35 ¼ xtot:

In these equations, λi[.] represents the i-th eigenvalue of the argument matrix. To

solve the constrained optimization problems, the method of Lagrange multipliers is
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used. Unfortunately, this method leads to simple and expressive closed-form

solutions that this book can only present and discuss under additional constraints.

The first additional constraint is that only two development tasks are processed.

Furthermore, both tasks have to be “uncoupled” and the corresponding off-diagonal

elements a12 ¼ 0 and a21 ¼ 0 indicate the absence of cooperative relationships.

Finally, the initial state is constrained to a setting in which both tasks are 100% to be

completed, that is x0 ¼ 1 1½ �Τ, and in this case the total amount of work must be

larger than 2 xtot > 2ð Þ. Under these constraints, it follows that the eigenvalues

λ1(A0) and λ2(A0) are equal to the autonomous task processing rates:

λ1
a11 0

0 a22

 �� �
¼ a11 and λ2

a11 0

0 a22

 �� �
¼ a22 :

The closed-form solution of the constrained optimization problem is the piecewise-

defined complexity function:

EMCmin ¼
log2

xtot
2

xtot � 1ð Þ
 �

� 2 if 2 < xtot � 2þ ffiffiffi
2

p

1

2
log2 2xtot � 1ð Þ � 1 if 2þ ffiffiffi

2
p

< xtot:

8>><>>:
The corresponding equations for the autonomous task processing rates (alias eigen-

values) are

amin
11 ¼ λmin1 ¼

xtot � 2

xtot
if 2 < xtot � 2þ ffiffiffi

2
p

1

xtot � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ xtot � 4ð Þxtot

p if 2þ ffiffiffi
2

p
< xtot

8>><>>:
amin
22 ¼ λmin2 ¼

xtot � 2

xtot
if 2 < xtot � 2þ ffiffiffi

2
p

1

xtot � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ xtot � 4ð Þxtot

p if 2þ ffiffiffi
2

p
< xtot:

8>><>>:
When we analyze the above solutions, an interesting finding is that the value x1tot ¼
2þ ffiffiffi

2
p 	 3:414 of the total amount of work indicates a kind of “bifurcation point”

in the complexity landscape. Below that point, minimum complexity values are

assigned for equal autonomous task processing rates (or eigenvalues); above it,

minimum complexity values are attained, if and only if the difference between

rates (the spectral gap Δλmin ¼ λmin1 � λmin2 ) is

amin
11 � amin

22 ¼ λmin1 � λmin2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ xtot � 4ð Þxtot

p
2xtot � 1

:

This bifurcation behavior of an open organizational system in which only two

uncoupled tasks are concurrently processed was unexpected. Figure 4.1 shows the

bifurcation point in detail.
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We also found analytical results for the constrained optimization problem in the

more general case of two uncoupled overlapping tasks, i.e. a bundle of independent

tasks where, initially, only the second task has to be fully completed, while the first

task is already completed to a level of x% and we therefore have an initial state

x0 ¼ 1� xð Þ=100 1½ �Τ. However, the closed-form solutions are very complicated

and, due to space limitations, cannot be presented here. It is important to note that

the piecewise-defined complexity function and the corresponding bifurcation point

are completely independent of the degree of task overlapping and only depend on

the dynamics of task processing. This is a highly desirable property of the preferred

complexity metric.

When we relax the constraint that both tasks have to be uncoupled, and consider

all four matrix entries of the WTM A0 as free parameters, we find another simple

analytical solution to the constrained optimization problem. The initial state is

constrained to be x0 ¼ 1 1½ �Τ as before. However, the obtained solution is not

very structurally informative, as all four elements of A0 are supposed to be equal to

xtot � 2ð Þ=2xtot, and we have the symmetric matrix representation

Amin
0 ¼

1

2
� 1

xtot

1

2
� 1

xtot
1

2
� 1

xtot

1

2
� 1

xtot

0B@
1CA:

From a practical point of view, this kind of project organizational design seems to

be rather “pathological” because the relative couplings between tasks are extremely

strong and one must expect a large amount of additional work in the iterations. The

corresponding complexity solution is

2.5 3.0 3.5 4.0 4.5 5.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 4.1 Plot of autonomous task processing rates a11 and a22 leading to a minimum EMC subject

to the constraint that the expected total amount of work xtot is constant. The underlying closed-

form solution was calculated based on Lagrange multipliers. Note that the solution only holds

under the assumption that the tasks are uncoupled and the initial state is x0 ¼ 1 1½ �Τ, in which case
xtot must be larger than 2
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EMCmin ¼ 1

2
log2

xtot
2

4 xtot � 1ð Þ
 �

if 2 < xtot :

It is evident that the above minimum of emergent complexity scales for xtot > 2:5
almost linearly in the expected total amount of work.

4.1.5 Bounds on Effective Measure Complexity

To calculate the lower bounds on EMC for an arbitrary number of tasks we can

make use of Oppenheim’s inequality (see Horn and Johnson 1985). LetM and N be

positive-semidefinite matrices and let M∘N be the entry-wise product of these

matrices (so-called “Hadamard product”). The Hadamard product of two positive-

semidefinite matrices is again positive-semidefinite. Furthermore, if M and N are

positive-semidefinite, then the following equality based on Oppenheim holds:

Det M∘N½ � �
Y p

i¼1
M i;i½ �½ �

	 

Det N½ �:

Let M ¼ M i; j½ �½ �
� � ¼ 1= 1� λi A0ð Þλ j A0ð Þ

	 
	 

be a Cauchy matrix 1 � i, j � pð Þ.

The elements along the principal diagonal of this matrix represent the “damping

factor” 1� ��λi��2 of design mode ϕi, and the off-diagonal elements 1� λiλi are the
damping factors between the interacting modes ϕi and ϕj. We follow the convention

that the eigenvalues are ordered in decreasing magnitude in rows. Let N ¼ C0
N be

the normalized covariance matrix of the noise, as defined in Eq. 260. Then the

normalized covariance matrix of the signal Σ0
N from Eq. 259 can be written as the

Hadamard productΣ0
N ¼ M∘C0

N . According to Oppenheim’s inequality, the follow-
ing inequality holds:

EMC¼ 1

2
log2

Det Σ0
N

� �
Det C0

N

� � !
¼ 1

2
log2

Det M∘C0
N

� �
Det C0

N

� � !
� 1

2
log2

Y p

i¼1
M i;i½ �½ �

	 

Det C0

N

� �
Det C0

N

� �
0@ 1A

¼ 1

2
log2

Y p

i¼1

1

1� ��λi��2
 !

¼�1

2

Xp
i¼1

log2 1� ��λi��2� �
: ð273Þ

The lower bound according to the above equation is equal to the closed-form

solution for EMC that was obtained under the assumptions of isotropic noise

C¼ σ2
� � � Ip� �

and A0 being diagonalizable (see Eq. 251). In other words, emer-

gent complexity in PD projects can be kept to a minimum, if the variances of the
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unpredictable performance fluctuations are equalized by purposeful interventions

of the project manager and correlations between vector components are suppressed.

Next, because of the commutativity of the Hadamard product, it holds that

EMC¼ 1

2
log2

Det Σ0
N

� �
Det C0

N

� � !
¼ 1

2
log2

Det C0
N∘M

� �
Det C0

N

� � !
� 1

2
log2

Y p

i¼1
C0
N i;i½ �½ �

	 

Det M½ �

Det C0
N

� �
0@ 1A

¼ 1

2
log2

Det M½ �
Det C0

N

� � !
:

The determinant of the Cauchy matrix M in the numerator can be written as

(Krattenthaler 2005)

Det M½ � ¼ Det

1

1� ��λ1��2 1

1� λ1λ2
. . .

1

1� λ2λ1

1

1� ��λ2��2 . . .

⋮ ⋮ ⋱

266664
377775 ¼

Y p

i< j
λi � λ j

� �
λi � λ j

� �Y p

i, j
1� λiλ j

� � :

Hence,

EMC¼1

2
log2

Det C0
N∘M

� �
Det C0

N

� � !

� 1

2
log2

Y p

i< j
λi�λ j

� �
λi �λ j

� �Y p

i, j
1�λiλ j

� �
Det C0

N

� �
0@ 1A

¼ 1

2

Xp
i< j

log2 λi�λ j

� �þ log2 λi �λ j

� �� ��Xp
i, j

log2 1�λiλ j

� �� log2Det C
0
N

� � !
:

ð274Þ

The lower bound on the EMC in the above equation is only defined for a dynamical

operator A0 with distinct eigenvalues. Under this assumption, a particularly inter-

esting property of the bound is that it includes not only the damping factors

1�λiλi
� �

inherent to the dynamical operator A0 (as does the bound in Eq. 273)

but also the spectral gap between eigenvalues λi�λ j

� �
and their complex conju-

gates λi �λ j

� �
. We can draw the conclusion that under certain circumstances,

differences among effective productivity rates (represented by the λi’s) stimulate

emergent complexity in PD (cf. Eqs. 271 and 272). Conversely, small complexity

scores are assigned if the effective productivity rates are similar.

Additional analyses have shown that the lower bound defined in Eq. 273 is

tighter when the eigenvalues of the dynamical operator A0 are of similar
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magnitudes. Conversely, the lower bound defined in Eq. 274 comes closer to the

true complexity values if the magnitudes of the eigenvalues are unevenly

distributed.

Finally, it is also possible to put both upper and lower bounds on the EMC that

are explicit functions of the dynamical operator A0 and its dimension p. To find

these bounds, we considered results for the determinant of the solution of the

Lyapunov equation (Eq. 27, cf. Mori et al. 1982). Let Σ be the covariance matrix

of the process in the steady state, and let the dominant eigenvalue ρ A0ð Þ ¼ max ij j of
A0 be less than 1 in magnitude (see Section 2.1). Then we have

Det Σ½ � � Det C½ �
1� Det A0½ �ð Þ p

2

	 
 p :

Moreover, if A0 is diagonalizable and ρ AΤ
0 � A0

� � � C� A0 � Σ � AΤ0 is positive-

semidefinite, then

Det Σ½ � � Det C½ �
1� ρ AΤ

0 � A0

� �� � p ;
where ρ AΤ0 � A0

� �
denotes the dominant eigenvalue ofAΤ

0 � A0. Based on Eq. 246 we

can calculate the following bounds:

� p

2
log2 1� Det A0½ �ð Þ p

2

	 

� EMC � � p

2
log2 1� ρ AΤ0 � A0

� �� �
: ð275Þ

The upper bound only holds if A0 is diagonalizable and ρ AΤ
0 � A0

� � � C� A0 � Σ � AΤ0
is positive-semidefinite. If C is diagonal, then ρ AΤ0 � A0

� � � C� A0 � Σ � AΤ0 is always
positive-semidefinite. Both bounds grow strictly monotonically with the dimension

of the dynamical operator A0 and it is evident that the EMC assigns larger com-

plexity values to projects with more tasks, if the task couplings are similar. One can

also divide the measure by the dimension p of the state space and compare the

complexity of project phases with different cardinalities.

4.1.6 Closed-Form Solutions for Higher-Order Models

It is also not difficult to calculate the EMC of stochastic processes in steady state

that are generated by higher-order autoregressive models of cooperative work in PD

projects. In Section 2.4, we said that a vector autoregression model of order n,
abbreviated as VAR(n) model, without an intercept term is defined by the state

equation (see Neumaier and Schneider 2001 or Lütkepohl 2005):
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Xt ¼
Xn�1

i¼0

Ai � Xt�i�1 þ εt:

The probability density function of the vector εt of performance fluctuations is

given in Eq. 13. It is evident that due to the autoregressive behavior involving

n instances of the process in the past, the generated stochastic process {Xt} does not

possess the Markov property (cf. Eq. 18) and therefore neither the generalized

complexity solution from Eq. 239 nor the closed-form solution for a VAR(1) pro-

cess from Eq. 247 can be used to evaluate emergent complexity. However, as we

showed in Section 2.5, we can make the stochastic process Markovian by

“augmenting” the state vector and rewriting the state equation as a first-order

recurrence relation (Eq. 59):

~Xt ¼ ~A � ~Xt�1 þ ~εt t ¼ 1, . . . ,T ; ð276Þ

where ~X t is the augmented state vector (Eq. 60)

~Xt ¼
Xt

Xt�1

⋮
Xt�nþ1

0BB@
1CCA;

~ε t is the augmented noise vector (Eq. 61)

~ε t ¼
εt
0

⋮
0

0BB@
1CCA

and ~A is the extended dynamical operator (Eq. 62)

~A ¼

A0 A1 � � � An�2 An�1

Ip 0 � � � 0 0

0 Ip � � � 0 0

0 0 ⋱ 0 0

0 0 . . . Ip 0

0BBBBBB@

1CCCCCCA:

The covariance matrix ~C can be written as
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~C ¼ E
�
~εt~ε

T
t

�
¼

C 0 � � � 0

0 0 0

⋮ ⋱ ⋮
0 0 � � � 0

0BB@
1CCA :

ð277Þ

The partial covariance C ¼ E εtεTt
� �

represents the intrinsic one-step prediction

error of the original autoregressive process.

In light of the mutual information that is communicated from the infinite past to

the infinite future (by storing it in the present) the problem with this kind of order

reduction by state-space augmentation is that the augmented state vector ~X t has

vector components that are also included in the previous state vector ~X t�1 and

therefore the past and future are not completely shielded in information-theoretic

terms, given the present state. To be able to apply the closed-form complexity

solution from Eq. 247 directly to the higher-order model in the coordinates of the

original state space ℝp, we have to find a state representation with disjoint vector

components. This can be easily done by defining the combined future and present

project state ~X tþn�1 to be the block of random vectors

~Xtþn�1 ¼
Xtþn�1

Xtþn�2

⋮
Xt

0BB@
1CCA

and the past project state ~X t�1 to be the block of vectors

~Xt�1 ¼
Xt�1

Xt�2

⋮
Xt�n

0BB@
1CCA:

The calculation of the n-th iterate of ~X tþn�1 leads to the higher-order recurrence

relation

~X tþn�1 ¼ ~A � ~X tþn�2 þ ~ε tþn�1

¼ ~A ~A � ~X tþn�3 þ ~ε tþn�2

� �þ ~ε tþn�1

¼ ~A 2 � ~X tþn�3 þ ~A � ~ε tþn�2 þ ~ε tþn�1

⋮

¼ ~A n � ~X t�1 þ
Xn
i¼1

~A
� �n�i � ~ε tþi�1 t ¼ 2� n, . . . ,T � nþ 1 : ð278Þ

Under the assumption of strictly stationary behavior of ~X t

� �
for t ! 1, we can

utilize the complexity solution from eq. 247 and express the mutual information

that is communicated by the VAR(n) model from the infinite past to the infinite
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future through the present project state by the logarithmic generalized variance ratio

as follows:

EMC ¼ 1

2
log2

Det
X1

k¼0
~A n
� �k �

Xn

i¼1
~A
� �n�i � ~C � ~A

� �n�i
	 
Τ �

� ~A n
� �Τ	 
k� �

Det
Xn

i¼1
~A
� �n�i � ~C � ~A

� �n�i
	 
Τ� �

0BB@
1CCA

¼ 1

2
log2

Det ~Σ
� �

Det
Xn

i¼1
~A
� �n�i � ~C � ~A

� �n�i
	 
Τ� �

0BB@
1CCA; ð279Þ

where the steady-state covariance ~Σ in the denominator is given by the infinite sum

~Σ ¼
X1
k¼0

~A n
� �k � Xn

i¼1

~A
� �n�i � ~C � ~A

� �n�i
	 
Τ !

� ~A n
� �Τ	 
k

:

As an alternative to this solution, we can calculate the mutual information between

infinite past and future histories using the additive factors method of Li and Xie

(1996). In this method, the total mutual information is decomposed into additive

components which can be expressed as a ratio of conditional (auto)covariances of

the steady-state process. This method is very appealing as it allows us to interpret

the additive components in terms of the universal learning curve Λ(m) that was
formulated by Bialek et al. (2001, see Eq. 224) and is explained in detail in Section

3.2.4. EMC is simply the discrete integral of Λ(m) with respect to the block length

m, which controls the speed at which the mutual information converges to its limit

(Crutchfield et al. 2010). When we use the block length as a natural order parameter

of the additive components, we can also easily evaluate the speed of convergence. If

convergence is slow, it is an indicator of emergent complexity (see discussion in

Section 3.2.4).

Let

Cm ¼
C ~X ~X 0ð Þ C ~X ~X 1ð Þ . . . C ~X ~X m� 1ð Þ
C ~X ~X 1ð Þ C ~X ~X 0ð Þ . . . C ~X ~X m� 2ð Þ

⋮ ⋮ ⋱ ⋮
C ~X ~X m� 1ð Þ C ~X ~X m� 2ð Þ . . . C ~X ~X 0ð Þ

0BB@
1CCA ð280Þ

be a mp� mp m 2 ℕð Þ Toeplitz matrix (Li and Xie 1996) storing the values of the

autocovariance functions (Eq. 159)
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C ~X ~X τð Þ ¼ E ~Xt � μ ~X

� �
~Xtþτ � μ ~X

� �Th i
¼ E ~Xt

~X T
tþτ

� �� μ ~X μ
T
~X

¼ E ~Xt
~X T
tþτ

� �
of the steady-state process generated by state Eq. 59 (and not Eq. 276) for lead times

τ ¼ 0, 1, . . . ,m� 1. We know from Section 2.9 that, in steady state, the

autocovariance C ~X ~X τð Þ and the autocorrelation R ~X ~X τð Þ (Eq. 160) are equal and that

we have C ~X ~X τð Þ ¼ R ~X ~X τð Þ. Note that the matrix elements C ~X ~X τð Þ are defined to be

p� pblock autocovariancematrices of the corresponding subspaces. Furthermore, let

~Σ μ ¼ Det E
�

~X t � E ~X t
~X t�1

�� , . . . , ~X �1
� �� �

~X t � E ~X t
~X t�1

�� , . . . , ~X �1
� �� �Th i

be the (mean squared) one-step prediction error with respect to the steady-state

process and

~Σ mð Þ ¼ Det E
�

~X t � E ~X t
~X t�1

�� , . . . , ~X t�m

� �� �
~X t � E ~X t

~X t�1

�� , . . . , ~X t�m

� �� �Th i
ð281Þ

be the one-step prediction error of order m (cf. Eq. 66 in Section 2.4). According to

these definitions ~Σ μ can be interpreted as the inherent prediction error of the process

that cannot be underrun, even if we condition our observations on the infinite past to

build a maximally predictive model. ~Σ mð Þ represents the prediction error resulting

from conditioning the observations on only m past instances of the process to build

a maximally predictive model, and not on all instances that were theoretically

possible. In this sense a certain error component of ~Σ mð Þ does not result from the

inherent unpredictability because of limited knowledge or chaotic behavior, but

because of the unpredictability resulting from a limit of the length of the observa-

tion window on the state evolution. Under the assumption that Cm is invertible, the

one-step prediction error ~Σ mð Þ of order m can be expressed as the generalized

variance ratio (Li and Xie 1996):

~Σ mð Þ ¼ Det Cmþ1½ �
Det Cm½ � : ð282Þ

The zeroth-order prediction error can be derived from the autocovariance for zero

lead time, and it holds that:

~Σ 0ð Þ ¼ Det C ~X ~X 0ð Þ� �
: ð283Þ

Following the information-theoretic considerations of a VAR(n) model that were

carried out in Section 4.1 (cf. Eq. 238) it is not difficult to show that, for any

autocovariance matrix representation Cm with m � n, it holds for the one-step

prediction errors that
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~Σ mð Þ ¼ ~Σ nð Þ ¼ ~Σ μ 8m � n :

In other words, due to the limited “memory depth” of the generative VAR(n) model,

conditioning the current observation on sequences larger than the regression order

does not, on average, lead to further reductions of the one-step prediction error in

steady state. Under these circumstances of severely limited procedural memory the

prediction error of order n equals the intrinsic prediction error. As a consequence of
this behavior, higher-dimensional matrix representations than Cn must not be

considered when evaluating the past-future mutual information. An additional

theoretical analysis of the vector autoregression model in the original state-space

coordinates allows us to conclude that the inherent prediction error equals the

determinant of the expectation E[εtεTt ] and that it can be simply expressed as

~Σ μ ¼ Det E εtε
T
t

� �� � ¼ Det C½ �:

Furthermore, in steady state the np� np matrix Cn storing all relevant

autocovariances up to lead time τ ¼ n� 1 equals the steady-state covariance of

the process generated by state Eq. 59, and we have (Eq. 245, Lancaster and

Tismenetsky 1985):

Cn ¼
X1
k¼0

~A k � ~C � ~A T
� �k

;

where ~A is the extended dynamical operator from Eq. 62, and ~C is the corresponding

covariance matrix from Eq. 277. If needed, the autocovariances for smaller lead

times can be easily extracted as block matrices from this large representation. Based

on these theoretic considerations and the material of Li and Xie (1996), the mutual

information between infinite past and future histories can be conveniently

expressed by n additive components as

EMC ¼ 1

2

Xn�1

i¼0

log2 ~Σ ið Þ � log2 ~Σ μ

� � !

¼ 1

2

Xn�1

i¼0

log2
~Σ ið Þ � nlog2 ~Σ μ

 !

¼ 1

2

Xn�1

i¼0

log2 ~Σ ið Þ � 1

2
nlog2Det C½ �: ð284Þ

Each summand1=2 log2
~Σ ið Þ � log2

~Σ μ

� � ¼ 1=2 log2
~Σ ið Þ � log2Det C½ �� �

can be used

to evaluate the local predictability of the process. The corresponding local “over-

estimates” of the intrinsic prediction error allow us to define a universal learning

curve Λ(i) in the sense of Bialek et al. (2001) with respect to block length i as
(cf. Eq. 224)
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Λ ið Þ ¼ log2 ~Σ i�1ð Þ � log2Det C½ �, i ¼ 1, 2, . . . , n ;

where the maximum block length is determined by the autoregression order of the

generative model. As already explained in Section 3.1.4, in light of a learning

curve, EMC measures the amount of apparent randomness at small order i, which
can be “explained away” by considering correlations between sequences with

increasing length iþ 1, iþ 2, . . ..
Returning to state Eq. 276 for informationally separated instances of past and

future histories, we can use the first-order recurrence relation to apply the solution

principles that were introduced at the end of Section 4.1.1 and find a simple

expression for the persistent mutual information EMC(τ) (Eq. 229) as a function

of the lead time τ � 0. Substituting the steady-state covariance and the dynamical

operator in Eq. 254, we can express EMC(τ) as the logarithmic generalized variance

ratio (Ay et al. 2012):

EMC τð Þ ¼ 1

2
log2

Det ~Σ
� �

Det ~Σ � ~A n
� �τþ1 � ~Σ � ~A n

� �T	 
τþ1
� �

0BB@
1CCA; ð285Þ

As one would expect, the steady-state covariances in the numerators of the variance

ratios related to both measures of emergent complexity are equal (Eqs. 279 and

285). We note that for the inherent one-step prediction error it holds that

E ~εt~εTt
� � ¼ ~C ¼ ~Σ � ~A n � ~Σ � ~A n

� �Τ
.

Applying the principles and techniques introduced in Section 4.1.2 and 4.1.3, it

is also not difficult to derive additional closed-form solutions in the spectral basis

and other coordinate systems. We leave this as an exercise for the interested reader.

With the previous complexity considerations of higher-order autoregressive

models of cooperative work in PD projects, it is possible to analyze in detail the

differences between the EMC as originally developed by Grassberger (1986) and

the persistent mutual information EMC(τ) according to Eq. 229, proposed recently

by Ball et al. (2010) as a complexity measure. In order to clarify the differences

between both measures we refer to the seminal work of Li (2006) and evaluate both

the emergent complexity of a strict-sense stationary process {Xt} generated by a

VAR(n) model, and the emergent complexity related to the model in conjunction

with a causal finite impulse response (FIR) filter (see e.g. Puri 2010) of order

m m � 1ð Þ. Each of the output sequences of such a filter is a weighted sum of the

most recent m filter input values:

258 4 Model-Driven Evaluation of the Emergent Complexity of Cooperative Work. . .

http://dx.doi.org/10.1007/978-3-319-21717-8_3
http://dx.doi.org/10.1007/978-3-319-21717-8_3
http://dx.doi.org/10.1007/978-3-319-21717-8_3


yt ¼
Xm
i¼0

bi � xt�i:

The bi’s denotes the filter coefficients. The transfer function of the FIR filter is

denoted byH(z) (cf. Section 4.2.1). It is assumed that the filter has all its roots on the

unit circle. We pass the VAR(n) model outputs xt through the filter to obtain the

output sequence yt. If m � 1, according to Li (2006) it holds that the EMCy related

to the stationary filter output yt is not finite:

EMCy ! 1:

However, the corresponding persistent mutual information EMCy(m) is finite and

equal to the effective measure complexity EMCx of the steady-state process that is

filtered:

EMCy mð Þ ¼ EMCx:

Li (2006) proved these properties for arbitrary stationary Gaussian processes. His

theorems also show that zeros on the unit circle can easily cause EMC to be infinite.

For instance, even for a simple first-order moving average process {Xt} (a so-called

MA(1) process, see Section 4.2.1) generated by state equation

Xt ¼ εt � εt�1

the corresponding effective measure complexity

EMC ! 1

grows over all given limits (Li 2006). Nevertheless, the persistent mutual

information

EMC 1ð Þ < 1

for lead time one is finite. Hence, in cases where we have a transfer function in the

form of a polynomial of degree m that has all its roots on the unit circle, the

persistent mutual information EMC(τ) according to Eq. 229 should be used instead

of the original formulation of the EMC. However, these cases are extremely rare in

project management.
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4.2 Closed-Form Solutions of Effective Measure
Complexity for Linear Dynamical System Models
of Cooperative Work

4.2.1 Explicit Formulation

According to the analytical considerations set out at the beginning of Section 4.1, the

EMC of a linear dynamical system (LDS, see Section 2.9.) as an advanced model of

cooperative work in PD projects, which is defined by the system of equations

Xtþ1 ¼ A0Xt þ εt
Yt ¼ HXt þ νt

with εt ¼ N ξ; 0q;C
� �

and νt ¼ N η; 0 p;V
� �

, can be expressed by the continuous-

type mutual information I[.;.] as

EMC¼ I Y�1
�1; Y1

0

� �
¼
ð
f y�1

�1; y10
� �

log2
f y�1

�1; y10
� �

f y�1�1
� �

f y10
� �dy1�1 : ð286Þ

In contrast to the previous chapters we have not written the multiplication symbol

“�” between a matrix and a vector explicitly in the above equations. We will use this

more compact notation here and in the following chapter to save space and simplify

the interpretation of longer terms. Their meaning should always be clear from the

context.

The function f y�1
�1

� �
designates the joint pdf of the observable infinite

one-dimensional history. Similarly, the function f y10
� �

represents the corresponding

pdf of the observable infinite future.

It is important to point out that if, and only if, the joint pdf of the past f y1�1
� �

and

future f y10
� �

histories of observations reach the same steady state, the evaluation of

the infinite-dimensional integral yields a finite value. Otherwise, the integral will

diverge, as will become clear below. This is possible if the covariance for the initial

state in the infinite past with pdf given by f x�1½ � ¼ xt; μ;Σ0ð Þ equals the one in the
steady state Σ, i.e. the one that satisfies the Lyapunov criterion

Σ ¼ A0ΣAT
0 þ C

from Eq. 27. If the initial state is in steady state, then its expected value is the zero

vector μ ¼ 0.

In what follows we will therefore assume that the hidden Markov process {Xt} is

strict-sense stationary and that in steady state a stable distribution f[xν] is formed.

From the state-space model, the following normal distributions can be deduced in

steady state:
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f xν½ � ¼ N xν; μ;Σð Þ
f xν

��xν�1

� � ¼ N xν;A0xν�1,Cð Þ
f yν

��xν� � ¼ N yν;Hxν,Vð Þ:

Before we proceed, note of the following: if only the observations yt are available, it
is always possible to introduce an arbitrary invertible transform T so that the model

for the observations Yt ¼ HXt þ νt remains unchanged if H0 ¼ HT,X0
t ¼ T�1Xt, as

Yt ¼ H0X0
t þ νt

¼ HTT�1Xt þ νt
¼ HXt þ νt: ð287Þ

For example, one could choose a whitening transform, cf. Eqs. 156, 157 and 158,

X0
t ¼ Λ�1=2

u UTXt for the hidden-state process which leads to a covariance of the

performance fluctuations equal to the identity matrix C ¼ Iq. However, in the

subsequent derivations, we will continue to use a general covariance C to clarify

the interrelationships between the random performance fluctuations and emergent

complexity. Following the notation introduced in Section 2.9, we will use the (long)

vector y1�1 of the stacked variables y1�1, i.e. y1�1 ¼ yT�1; � � �; yT1
� �T

in what

follows. The vectors y�1
�1 and y10 are defined accordingly. We also add subscripts

and superscripts to the quantities V,C,Δt, b to mark the corresponding time step.

The three joint pdf’s in the general definition of the EMC are given for the Gaussian

density model (see Eq. 134 in Section 2.9):

f y1�1
� �¼cy1�1Exp �1

2
y1�1
� �TV1

�1y1�1

� �
2πð ÞΔt1�1q=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetC1�1

p Exp
1

2
b1�1
� �T C1�1

� ��1
b1�1

� �
ð288Þ

f y�1
�1

� �¼cy�1�1Exp �1

2
y�1
�1

� �TV�1
�1y�1

�1

� �
2πð ÞΔt�1

�1q=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetC�1

�1
q Exp

1

2
b�1
�1

� �T C�1
�1

� ��1
b�1
�1

� �
ð289Þ

f y10
� �¼cy1

0
Exp �1

2
y10
� �TV1

0 y10

� �
2πð ÞΔt10 q=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetC10

p Exp
1

2
b10
� �T C10

� ��1
b10

� �
: ð290Þ

Within a direct calculation of the EMC, given by the integral 286, here are two

possible paths: One involves splitting the integral into two parts:
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I Y�1
�1; Y1

0

� � ¼ ð f y�1
�1; y10

� �
log2

f y�1
�1; y10

� �
f y�1�1
� �

f y10
� � dy1�1

¼
ð
f y�1

�1; y10
� �

log2 f y�1
�1; y10

� �
dy1�1

�
ð
f y�1

�1, y10
� �

log2 f y�1
�1

� �
f y10
� �

dy1�1:

The other involves leaving the integral as a whole, computing first the ratio

f y1�1
� �

= f y�1
�1
�
f
�
y10

� �� �
, and then carrying out the integration at the end. The

latter approach will lead to an implicit formulation of the EMC. We will pursue this

in Section 4.2.2.

For now, we will follow the first path, which will lead us to a result for the EMC

in an expressive form given by the (logarithmic) ratio of the product of the

determinants of the covariances of the joint pdfs of the past and future histories

and the determinant of the covariance for the whole history. These covariances are

infinite-dimensional in principle, but we will see, numerically, that low-dimensional

approximations come very close to the asymptotic result. The smallest possible

dimension, i.e. if only two time steps are involved, leads to a simple yet meaningful

approximation, which will be discussed in more detail below.

For the first term we can use the result for the differential entropy of a Gaussian

variable, see e.g. Cover and Thomas (1991),ð
f y�1

�1; y10
� �

log2 f y�1
�1; y10

� �
dy1�1 ¼ �1

2
log2 2πeð Þ pΔt1�1

	 

� 1

2
log2 Det Cy

� �1
�1

	 

:

The second term can be computed as follows:ð
f y�1

�1;y10
� �

log2 f y�1
�1

� �
f y10
� �

dy1�1

¼
ð
f y�1

�1;y10
� �

log2

Exp �1

2
y�1
�1

� �T Cy

� ��1

�1
	 
�1

y�1
�1�1

2
y10
� �T Cy

� �1
0

	 
�1

y10

� �
ffiffiffiffiffi
2π

p pΔt1�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Cy

� ��1

�1Det Cy

� �1
0

q dy1�1

¼�1

2

ð
f y�1

�1;y10
� � 1

ln2
y1�1
� �TbC y1�1dy1�1�1

2
log2 2πð Þ pΔt1�1

	 

�1

2
log2 Det Cy

� ��1

�1Det Cy

� �1
0

	 

;

with

bC ¼
Cy

� ��1

�1
	 
�1

0

0 Cy

� �1
0

	 
�1

0B@
1CA:
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The integral in the first summand of the above equation yields

1

2

ð
f y�1

�1; y10
� � 1

ln2
y1�1
� �TbC y1�1dy1�1 ¼ 1

2

1

ln2
Tr bC � Cy

� �1
�1

	 

¼ 1

2

1

ln2
pΔt1�1

¼ 1

2
log2e

pΔt1�1 ;

where we used the fact that Cy

� �1
�1 can be partitioned in a 2� 2 block matrix, in

which the upper left block equals Cy

� ��1

�1 and the lower right block equals Cy

� �1
0
, as

can be seen from the block Toeplitz structure of the covariance of the observations.

The matrix product bC � Cy

� �1
�1 then has only ones on the diagonal and it is easy to

evaluate the trace. Finally, by combining the individual results, we obtain

I Y�1
�1; Y1

0

� � ¼ 1

2
log2

Det Cy

� ��1

�1Det Cy

� �1
0

Det Cy

� �1
�1

: ð291Þ

Note that this result has been obtained in a more general context by de Cock (2002),

see Eq. 295. The matrices are infinite dimensional, which makes this result imprac-

tical for direct use. However, we found in simulations that for a moderately small

number of time steps Δt ¼ t2 � t1 þ 1 of either the past or the future (the total

number of time steps involved is then 2Δt), the value for the EMC tends to its

asymptotic value (see Fig. 4.2).

As we have shown in Section 2.10, the likelihood of the observation sequence

ytf gt2t1 is invariant under an arbitrary invertible transform Ψ 2 ℝq�q with Det Ψð Þ
¼ 1 transforming the set of parameters as x0t ¼ Ψxt, π00 ¼ Ψ π0, A

0
0 ¼ Ψ A0 Ψ�1,

C0 ¼ Ψ C ΨT , Π0
0 ¼ Ψ Π0 ΨT , H0 ¼ H Ψ�1 and V 0 ¼ V. Therefore, the system

matrices can not be identified uniquely.

However, the emergent complexity is invariant under this parameter transform,

as easily proved by using the expression for the EMC from Eq. 291:

C0
y ¼ IΔt � V þ IΔt � H0ð ÞC0

x IΔt � H0T� �
¼ IΔt � V þ IΔt � HΨ�1

� �
IΔt � Ψð ÞCx IΔt � ΨT

� �
IΔt � Ψ�THT
� �

¼ IΔt � V þ IΔt � IΔtð Þ � HΨ�1Ψ
� �

Cx IΔt � IΔtð Þ � ΨTΨ�THT
� �

¼ IΔt � V þ IΔt � Hð ÞCx IΔt � HT
� �

¼ Cy:

This general result holds for the covariance of any observation interval, in particular

for Cy

� ��1

�1, Cy

� �1
0
, Cy

� �1
�1, and, therefore, the EMC remains unchanged.

Surprisingly, the smallest possible value Δt ¼ 1, i.e. if we consider that just
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EMC 1ð Þ ¼ 1

2
log2

Det Cy

� ��1

�1
Det Cy

� �0
0

Det Cy

� �0
�1

leads to a result that is very close to the asymptotic value (see Fig. 4.2). In this case,

which we can call a first-order approximation, a very simple closed-form expres-

sion for the EMC can be derived. The covariances for a single time step are given by

Cy

� ��1

�1
¼ Cy

� �0
0
¼ I1 � V þ I1 � Hð ÞCx I1 � HT

� �
¼ V þ HCxHT

¼ V þ HΣHT:

For two time steps we have

Cy

� �0
�1

¼ I2 � V þ I2 � Hð ÞCx I2 � HT
� �

¼ V 0

0 V

 �
þ H 0

0 H

 �
Σ ΣAT

0

A0Σ V

 �
HT 0

0 HT

 �
¼ V þ HΣHT HΣAT

0 H
T

HA0ΣHT V þ HΣHT

 �
:

The determinant of covariance of the two time steps can be simplified using a

formula for the determinant of block-matrices,

Fig. 4.2 Calculated values of log10(EMC) for five different, randomly chosen system matrices A0

and H and varying number of time steps Δt
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Det Cy

� �0
�1

¼Det VþHΣHT
� �

Det VþHΣHT�HΣAT
0 H

T VþHΣHT
� ��1

HA0ΣHT
	 


;

and we obtain the following first-order approximation for the EMC:

EMC 1ð Þ ¼ 1

2
log2

Det V þ HΣHT
� �

Det V þ HΣHT � HΣAT
0 H

T V þ HΣHT
� ��1

HA0ΣHT
	 


¼ �1

2
log2Det Ip � HΣAT

0 H
T V þ HΣHT
� ��1

HA0ΣHT V þ HΣHT
� ��1

	 

:

ð292Þ

Interestingly, this approximate result can be derived if one starts from the assump-

tion that the Markov property holds in steady state for the observable process, and

we have

f y�1
�1;y10

� �¼ f y�1½ � f y�1þ1

��y�1
� �

... f y�1jy�2½ � f y0jy�1½ � f y1jy0½ �... f y1jy1�1½ �
f y�1

�1
� �¼ f y�1½ � f y�1þ1

��y�1
� �

... f y�1jy�2½ �
f y10
� �¼ f y0½ � f y1jy0½ �... f y1jy1�1½ �:

Hence, the expression for the EMC reduces to

I Y�1
�1; Y1

0

� � ¼ ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
log2

f y0jy�1½ �
f y0½ � dy�1

�1dy10

¼
ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
log2 f y0jy�1½ �dy�1

�1dy10

�
ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
log2 f y0½ �dy�1

�1dy10

¼
ð
 p

ð
 p

log2 f y0jy�1½ �dy�1dy0

ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
dy�1 . . . dy�2dy1 . . . dy1

 �
�
ð
 p

log2 f y0½ �dy0
ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
dy�1 . . . dy�1dy1 . . . dy1

 �
:

Exploiting the relations for the marginal probability densities, we obtain:

I Y�1
�1; Y1

0

� � ¼ ð
 p

f y�1, y0½ �log2 f y0jy�1½ �dy�1dy0 �
ð
 p

f y0½ �log2 f y0½ �dy0
¼
ð
 p

f y�1½ �dy�1

ð
 p

f y0jy�1½ �log2 f y0jy�1½ �dy0 �
ð
 p

f y0½ �log2 f y0½ �dy0:

The probability density for the observable variable Yt can then be expressed as:
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f yt½ � ¼
ð
p

f yt; xt½ �dxt

¼
ð
p

f ytjxt½ � f xt½ �dxt

¼
ð
p
N yt;Hxt,Vð ÞN xt; μ;Σð Þdxt:

In order to solve the above integral, it is useful to apply the following transforma-

tion formula for normal distributions:

N y;Hx;Vð ÞN x; μ;Σð Þ ¼ N y;Hμ; Sð ÞN x; μþW y� Hμð Þ,Σ�WSWT
� �

with

S ¼ HΣHT þ V and W ¼ ΣHTS�1:

Hence, we obtain:

f yt½ � ¼ N yt;Hμ,HΣHT þ V
� �

:

For the calculation of f y0
��y�1

� � ¼ f y�1; y0½ �= f y�1½ �we insert the hidden states x�1

and x0 and exploit the Markov property

f y0
��y�1

� � ¼ ð
q

ð
q

f y�1; y0; x�1; x0½ �
f y�1½ � dx�1dx0

¼
ð
q

ð
q

f x�1

��y�1

� �
f x0jx�1½ � f y0jx0½ �dx�1dx0:

Because of Bayes theorem

f x�1

��y�1

� � ¼ f y�1jx�1½ � f x�1½ �
f y�1½ � ;

we find

f y0
��y�1

� �
¼ 1

f y�1½ �
ð
q

ð
q

f x�1½ � f y�1jx�1½ � f x0jx�1½ � f y0jx0½ �dx�1dx0

¼ 1

f y�1½ �
ð
ℝq

ð
ℝq

N x�1;μ;Σð ÞN y�1;Hx�1,Vð ÞN x0;A0x�1,Cð ÞN y0;Hx0,Vð Þdx�1dx0:

First, we transform the first two Gaussians as:
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N x�1; μ;Σð ÞN y�1;Hx�1,Vð Þ ¼ N y�1;Hμ,HΣHT þ V
� �

�N x�1; μþW y�1 � Hμð Þ,Σ�WSWT
� �

;

with

S ¼ HΣHT þ V andW ¼ ΣHTS�1:

The first Gaussian on the right hand side cancels f y�1½ �. The second Gaussian on the
right hand side together with the third GaussianN x0;A0x�1,Cð Þ from the previous

expression for f y0
��y�1

� �
yields:

N x0;A0x�1,Cð ÞN x�1; μþW y�1 � Hμð Þ,Σ�WSWT
� �

¼ N x0;A0 μþW y�1 � Hμð Þð Þ, A0 Σ�WSWT
� �

AT
0 þ C

� �N x�1; x�1;C
0ð Þ

with some inconsequential mean x�1 and covariance C0. After integration with

respect to x�1 we have:

f y0
��y�1

� �¼ð
ℝq

N x0;A0 μþW y�1�Hμð Þð Þ,A0 Σ�WSWT
� �

AT
0 þC

� �N y0;Hx0,Vð Þdx0:

Again, by transforming the two Gaussians we can carry out easily the integration

with respect to x0 and obtain:

f y0
��y�1

� � ¼ N y0;HA0 μþW y�1 � Hμð Þð Þ,H A0 Σ�WSWT
� �

AT
0 þ C

� �
HT þ V

� �
:

Using the fact that the differential entropy of a multivariate Gaussian distribution

N x; μ;Cð Þ is given by

�
ð
q
N x; μ;Cð Þlog2N x; μ;Cð Þdx ¼ 1

2
log2 2πeð Þ pDet C½ �;

we arrive at the known first-order approximation from Eq. 292 for the EMC:

EMC 1ð Þ ¼ 1

2
log2Det HΣHT þ V

� �� 1

2
log2Det D½ �;

with

D ¼ V þ HΣHT � HΣAT
0 H

T V þ HΣHT
� ��1

HA0ΣHT :

It is evident that in the case ofH ¼ I andV ¼ 0f gIq, we obtain the same result as we

did for the VAR(1) model (see Eq. 246).
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For small covariance V, i.e. if the eigenvalues of HΣHT
� ��1

V lie inside the unit

circle, we can expand

HΣHT þ V
� ��T ¼ HΣHT

� ��1
Ip þ HΣHT

� ��1
V

	 
�1


 HΣHT
� ��1

Ip � HΣHT
� ��1

V
	 


and arrive at an approximate expression for D:

D ¼ H A0H
�1H�TΣ�1H�1VHΣA0 þ C

� �
HT þ V:

Assuming furthermore V ¼ σ2v
� �

Ip, we obtain:

D ¼ H σ2v
� �

A0H
�1H�TA0 þ C

� �
HT þ σ2v

� �
Ip:

Following the procedure from Section 4.1.2, we can also express the first-order

approximation for the EMC as the signal-to-noise ratio:

EMC 1ð Þ ¼ �1

2
log2Det Ip � HA0ΣHT HΣHT þ V

� ��T
HΣTAT

0 H
T HΣHT þ V
� ��1

h i
¼ 1

2
log2 Det Ip � HA0ΣHT HΣHT þ V

� ��T
HΣTAT

0 H
T HΣHT þ V
� ��1

h i	 
�1

¼ 1

2
log2Det Ip � HA0ΣHT HΣHT þ V

� ��T
HΣTAT

0 H
T HΣHT þ V
� ��1

	 
�1
� �

¼ 1

2
log2Det

X1
k¼0

HA0ΣHT HΣHT þ V
� ��T

HΣTAT
0 H

T HΣHT þ V
� ��1

	 
k" #

¼ 1

2
log2Det Ip þ

X1
k¼1

HA0ΣHT HΣHT þ V
� ��T

HΣTAT
0 H

T HΣHT þ V
� ��1

	 
k" #
:

ð293Þ

The above derivation is based on the von Neumann series generated by the operator

HA0ΣHT HΣHT þ V
� ��T

HΣTAT
0 H

T HΣHT þ V
� ��1

. The von Neumann series gen-

eralizes the geometric series (cf. Section 2.1). The infinite sum represents the

signal-to-noise ratio.

The closed-form solution from Eq. 286 also allows us to develop homologous

vector autoregressionmodels for linear dynamical systems. For t ! 1 thesemodels

generate stochastic processes with equivalent effective measure complexity, but the

state variables are completely observable. In this sense, the homologous models

reveal all correlations and dynamical dependency structures during the observation

time and do not possess any kind of crypticity (Ellison et al. 2009). To make this

possible we usually have to use a higher dimensionality p > q. We start by focusing

on homologous VAR(1) models with dynamical operator Ah
0 and covariance matrix

Ch that are defined over a p-dimensional space ℝp of observable states Xh
t :
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Xh
t ¼ Ah

0X
h
t�1 þ εht t ¼ 1, . . . , T ;

with

εht 	 N 0 p;C
h

� �
:

Assuming that the performance fluctuations represented by the homologous model

are isotropic and temporally uncorrelated, i.e. εht 	 N 0 p, σ2v
� �

Ip
� �

and

E εht εhs
� �Th i

¼ Chδts, we can construct a dynamical operator Ah
0 representing a

large variety of cooperative relationships. The preferred structure of relationships

must be determined in the specific application context of complexity evaluation.

According to the analysis in Section 4.1.1 only two constraints must be satisfied:

(1) Ah
0 must be diagonalizable and (2) for the weighted sum of eigenvalues λi(Ah

0), it

must hold that (cf. Eq. 251):

�1

2

Xp
i¼1

log2 1� λi A
h
0

� �2	 

¼ 1

2
log2

Det Cy

� ��1

�1Det Cy

� �1
0

Det Cy

� �1
�1

¼ 1

2
log2Det Cy

� ��1

�1Det Cy

� �1
0
� log2Det Cy

� �1
�1

	 

:

ð294Þ

It is evident that the most simple homologous model can be constructed by setting

the autonomous task processing rates as diagonal elements of Ah
0 to the same rate a,

i.e. Ah
0 ¼ Diag a; . . . ; a½ �. For this structurally non-informative model, the

corresponding stationary stochastic process communicates the same amount of

information from the infinite past to the infinite future, if

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

1
p log2Det C yð Þ�1

�1Det Cyð Þ1
0
�log2Det Cyð Þ1�1

� �q
:

The above equation also holds for homologous models with non-isotropic fluctua-

tions, because all tasks are processed at the same time scale.

Finally, we can develop a homologous model that is defined over a

one-dimensional state space. This model is termed an auto-regressive moving

average (ARMA) model and is characterized by the following linear difference

equation (see e.g. Puri 2010):

Yt ¼
Xp
i¼1

aiYt�i þ
Xq
j¼1

biUt� j:

The input of the model is Gaussian white noise with variance σ2 ¼ 1, i.e.

U 	 N 0; 1ð Þ. This model is notated ARMA( p, q) in the literature (note that in
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this notation the variable q does not denote the dimensionality of the observation

vectors Yt; it denotes the number of inputs Ut� j driving the process). It is evident

that an ARMA( p, q) model can be rewritten as either a VAR( p) model of order

p (Section 2.4) or an LDS( p, 1) model (Section 2.9) (see e.g. de Cock 2002). It is

not difficult to show that for a stable and strictly minimum phase ARMA( p, q)
model the effective measure complexity is given by

EMC ¼ 1

2
log2

Y p,q

i, j¼1
1� αiβ j

�� ��Y p

i, j¼1
1� αiα j

�� ��Yq

i, j¼1
1� βiβ j

�� ��
¼ 1

2

Xp, q
i, j

log2 1� αiβ j

�� ���Xp
i, j

log2 1� αiα j

�� ��þXq
i, j

log2 1� βiβ j

�� �� !
;

where the variables α1, . . ., αp denote the roots of the polynomial a zð Þ ¼ z p þ a1
z p�1 þ . . .þ a p and β1, . . ., βq the roots of the polynomial b zð Þ ¼ zq þ b1z

q�1 þ . . .
þbq (see e.g. de Cock 2002). These polynomials are the results of the z-transform of

the difference equation of the ARMA( p, q) model. The well-known transfer func-

tion H(z) from control theory is the quotient of these polynomials. Since the poly-

nomials are real, the roots are all real or come in conjugate pairs. Hence, for the

poles α1, . . ., αp and the zeros β1, . . ., βq of the transfer function H(z) of the homol-

ogous ARMA( p, q) model, it must hold that

1

2

Xp, q
i, j

log2 1� αiβ j

�� ���Xp
i, j

log2 1� αiα j

�� ��þXq
i, j

log2 1� βiβ j

�� �� !
¼ 1

2
log2Det Cy

� ��1

�1Det Cy

� �1
0
� log2Det Cy

� �1
�1

	 

:

4.2.2 Implicit Formulation

Interestingly, the sophisticated closed-form solution of EMC from Eq. 286 that was

obtained through the evaluation of the infinite-dimensional integral of the

continuous-type mutual information (Eq. 286) can also be written in a structurally

rich implicit form. This form is based on the seminal work of de Cock (2002). The

implicit form is especially easy to interpret because its independent parameters can

be derived from solutions of fundamental equations. In order to derive the implicit

form of de Cock (2002) we work with the “forward innovation model” from Section

2.9 (Eqs. 164 and 165):

X f
tþ1 ¼ A0X

f
t þ Kηt

Yt ¼ HX f
t þ ηt:

According to de Cock (2002), the effective measure complexity can be expressed as
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EMC ¼ I Y�1
�1; Y1

0

� �
¼ �1

2
log2Det Iq � Σ f G�1

z þ Σ f
� ��1

h i
: ð295Þ

The covariance matrix Σ f is the solution of the Lyapunov equation (cf. Eq. 167)

Σ f ¼ A0Σ f AT
0 þ KSKT:

In the above Lyapunov equation

K ¼ G f � A0Σ f HΤ
� �

CYY 0ð Þ � HΣ f HΤ
� ��1

is the Kalman gain (Eq. 169) and

S ¼ CYY 0ð Þ � HΣ f HΤ:

is the covarianceStþ1jt (Eq. 168) of the single-source performance fluctuations ηt for
t ! 1. Hence, we have the following algebraic Riccati equation for Σf (van

Overschee and de Moor 1996):

Σ f ¼A0Σ f AT
0 þ G f �A0Σ f HΤ

� �
CYY 0ð Þ�HΣ f HΤ
� ��1

G f
� �T�HΣ f HΤ
	 


: ð296Þ

The additional covariance matrix Gz from Eq. 295 satisfies the Lyapunov equation

Gz ¼ A0 � KHð ÞTGz A0 � KHð Þ þ HTS�1H: ð297Þ

An important finding of de Cock (2002) is that the inverse aggregated covariance

matrix G�1
z þ Σ f

� ��1
is the solution of another Lyapunov equation

Σb ¼ A0Σ
b
A

T

0 þ KSK
T

¼ AT
0 Σ

b
A0 þ KSK

T
;

which is related to the backward innovation representation of the corresponding

backward model (Eqs. 178 and 179):

X
b
t�1 ¼ A0X

b
t þ Kηt

Yt ¼ HX
b
t þ ηt:

Substituting the Kalman gain K (Eq. 181) and the fluctuations covariance

S ¼ E ηtη
T
t

� �
(Eq. 182) in the Lyapunov equation for the backward innovation

representation leads to the following algebraic Riccati equation for the back-

ward state covariance matrix:
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Σb ¼ AT
0 Σ

b
A0 þ HT � AT

0 Σ
b
G

	 

HT � AT

0 Σ
b
G

	 

CYY 0ð Þ � GTΣb

G
	 
�1

 �T

¼ AT
0 Σ

b
A0 þ HT � AT

0 Σ
b
G

	 

CYY 0ð Þ � GTΣb

G
	 
�T

HT � AT
0 Σ

b
G

	 
T
¼ AT

0 Σ
b
A0 þ HT � AT

0 Σ
b
G

	 

CYY 0ð Þ � GTΣb

G
	 
�1

H � GTΣb
A0

	 

:
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Hence, the most intuitive solution is obtained (de Cock 2002):

I Y�1
�1; Y1

0

� � ¼ �1

2
log2Det Iq � Σ f G�1

z þ Σ f
� ��1

h i
¼ �1

2
log2Det Iq � Σ fΣb

h i
: ð299Þ

According to Sylvester’s determinant theorem, this solution can equivalently be

expressed based on the signal-to-noise ratio SNR ¼ Gz Σ f
� ��1
	 
�1

, and we have:

I Y�1
�1; Y1

0

� � ¼ �1

2
log2Det Iq � ΣbΣ f

h i
¼ 1

2
log2Det Iq þ GzΣ f

� �
¼ 1

2
log2Det Iq þ Σ f Gz

� �
:

The standard numerical approach to solve the forward Riccati Eq. 296 is to solve

the generalized eigenvalue problem

AT
0 � HT CYY 0ð Þð Þ�1G f 0

�G f CYY 0ð Þð Þ�1 G f
� �T

Iq

 !
W1

W2

 �
¼ Iq �HT CYY 0ð Þð Þ�1H

0 A0 � G f CYY 0ð Þð Þ�1H

 �
W1

W2

 �
Λ

and compute the covariance matrix Σf as

Σ f ¼ W2W
�1
1 ;

see, e.g. van Overschee and de Moor (1996). The complementary backward Riccati

Eq. 298 can be tackled by solving

A0�G CYY 0ð Þð Þ�1H 0

�HT CYY 0ð Þð Þ�1H Iq

 �
W1

W2

 �
¼ Iq �G CYY 0ð Þð Þ�1HT

0 AT
0 �HT CYY 0ð Þð Þ�1 G f

� �T
 !

W1

W2

 �
Λ

and computing the covariance matrix Σb as
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Σb ¼ W2W
�1
1 :

It is evident that the same numerical function can be used in the preferred

programming language to solve the above generalized eigenvalue problems.

This function must be called for the forward Riccati equation with the argument

(A0,H,G
f,CYY(0)), whilst for the backward Riccati equation the argument must be

(AT
0 , (G

f)T,HT,CYY(0)).

Similar to the canonical correlation analysis of the basic VAR(1) process in

Section 4.1.3, we can diagonalize the forward and backward state covariance

matrices obtained by solving the algebraic Riccati Eqs. 296 and 298 simultaneously

and bring them in a form called “stochastic balanced realization” (Desai and Pal

1984). A stochastic balanced representation is an innovations representation with

state covariance matrix equal to the canonical correlation coefficient matrix for the

sequence of observations. Let the eigendecomposition (cf. Eq. 22) of the product of

the state covariance matrices Σ fΣb
be given by the representation

Σ fΣb ¼ MΛ2
MM

�1

Λ2
M ¼ Diag λi Σ fΣb

	 
h i
1 � i � q,

where the eigenvector matrix M is picked as

M ¼ U
Σ
bΛ�1=2

Σ
b UΣ fΛ

1=2
M
.

The matrices U
Σ
b and Λ

Σ
b can be specified by the eigendecomposition of Σb as

U
Σ
bΛ

Σ
bU�1

Σ
b ¼ Σb

;

and for UΣ f it holds that

UΣ fΛ2
MU

�1
Σ f ¼ Λ

1=2

Σ
bU�1

Σ
b Σ fΛ

1=2

Σ
b.

Furthermore, let the forward state that is subject to the simultaneous diagonaliza-

tion of the state covariance matrices be

Xd
t ¼ TX f

t

and the corresponding backward state be

X
d
t ¼ T�1X

b
t

with the coefficient of the similarity transformation
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T ¼ MT;

then in steady state it holds for the expectations (Desai and Pal 1984) that:

E Xd
t X d

t

� �Th i
¼ ΛM ¼ E X

d
t X

d
t

	 
T� �
:

Hence, the stochastic balanced representation allows us to make the dependency of

the effective measure complexity on the eigenvalues of the product of the state

covariance matrices Σ fΣb
explicit:

I Y�1
�1; Y1

0

� � ¼ �1

2
log2Det Ip � Σ fΣb

h i
¼ �1

2
log2Det Iq � Λ2

M

� �
¼ �1

2
log2

Yq
i¼1

1� λi Σ fΣb
	 
	 


¼ �1

2
log2

Yq
i¼1

1� ρi
2

� �
¼ �1

2

Xq
i¼1

log2 1� ρi
2

� �
: ð300Þ

In the last line of the above equation the ρi’s represent the canonical correlations,
which were already introduced in Section 4.1.3 (cf. Eq. 265) to analyze emergent

complexity based on a reduced number of independent parameters. In other words,

the eigenvalues of Σ fΣb
are simply the squares of the canonical correlation

coefficients between the canonical variates. However, it is important to note

that in contrast to Section 4.1.3 the infinite random sequences representing the past

Xpast ¼ XT
�1 � � � XT

�2 XT
�1

� �T�
and future X fut ¼ XT

0 XT
1 � � � XT

1
� �T

histories of the hidden state process are not the subject of the canonical

correlation analysis, but rather the canonical correlations between the pair

Y T
�1 � � � Y T

�2 Y T
�1

� �T
, Y T

0 Y T
1 � � � Y T

1
� �T	 


of past and future histories

of the observation process {Yt} are considered to evaluate complexity explicitly. Due

to the potentially higher dimensionality of the state space of the hidden state process

q > pð Þ, all q complexity-shaping summands log2 1� ρi
2ð Þ that can give rise to

correlations between observations of the project state must therefore be considered.

The reduced dimension of the observation process is usually not sufficient, because

apart from organizationally retarded cases not only the p but also the q leading

canonical correlations are non-zero. The observation process is not necessarily Mar-

kovian and therefore the amount of information that the past provides about the future

usually cannot be “stored” in the p-dimensional present state. However, because of

274 4 Model-Driven Evaluation of the Emergent Complexity of Cooperative Work. . .



strict-sense stationarity of the state process, all ρi’s are less than one. The canonical

correlations ρi’s should not be confused with the ordinary correlations ρij and ρ0ij,
which were introduced in Chapter 2.

As an alternative to the use of the stochastic balanced representation of Desai

and Pal (1984), a minimum phase balancing based on the scheme of McGinnie

(1994) could be carried out. The minimum phase balancing scheme allows us to

find a forward innovation form of the LDS model in which the state covariance

matrix Σf (Eq. 296) and the covariance matrix Gz (Eq. 297) are equal and diagonal.

Let

ΛP ¼ Diag σi½ � 1 � i � q

be this diagonal matrix and σi the minimum phase singular values of the dynamical

system. Under these circumstances, we simply have

I Y�1
�1; Y1

0

� � ¼ �1

2

Xq
i¼1

log2 1� σi
2

� �
: ð301Þ

A structurally different implicit formulation for the EMC can be obained when we

compute the integral in formula 286 directly. Plugging the results for the joint pdfs
of the past, the future and the whole observation sequence into the general expres-

sion for the EMC from Eq. 286, the ratio of the whole pdf to the ones of the past and
the future histories is given by:

f y1�1
� �

f y�1�1
� �

f y10
� � ¼ cy1�1

cy�1�1cy10
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C10
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C1�1
p

�Exp 1

2
b1�1
� �T C1�1

� ��1
b1�1 � 1

2
b�1
�1

� �T C�1
�1

� ��1
b�1
�1 � 1

2
b10
� �T C10

� ��1
b10

� �
¼ c1 � Exp 1

2
y1�1
� �TBy1�1

� �
: ð302Þ

The constant c1 is defined accordingly. As we can write

bt2t1 ¼ I � HTV�1
� �

yt2t1 ;

we defined the covariance matrix

B ¼ I � V�1H
� � C1�1

� ��1 � C�1
�1

� ��1
0

0 C10
� ��1

" # !
I � HTV�1
� �

:

Inserting Eq. 302 into the general Eq. 286 leads to
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I Y�1
�1; Y1

0

� � ¼ ð f y�1
�1; y10

� �
log2c1Exp

1

2
y1�1
� �TBy1�1

� �
dy1�1

¼
ð
f y�1

�1; y10
� �

log2c1dy
1
�1 þ 1

ln 2

ð
f y�1

�1; y10
� �

y1�1
� �TBy1�1dy1�1:

Using the fact that the joint pdf is normalized to one and some well-known results

for Gaussian integrals, we obtain

I Y�1
�1; Y1

0

� � ¼ log2c1 þ
1

ln 2
Tr B V1

�1 � B1
�1

� ��1
h i

; ð303Þ

where

B1
�1 ¼ I � V�1H

� � C1�1
� ��1

I � HTV�1
� �

:

Using the Woodbury matrix identity (Higham 2002, Eq. 148)

Aþ UCVð Þ�1 ¼ A�1 � A�1U C�1 þ VA�1U
� ��1

VA�1;

we can calculate

V1
�1 � B1

�1
� ��1 ¼ I � V�1

� �� I � V�1H
� � C1�1

� ��1
I � HTV�1
� �	 
�1

¼ I � V�1
� ��1 � I � V�1

� ��1
I � V�1H
� �

� �C1�1 þ I � HTV�1
� �

I � V�1
� ��1

I � V�1H
� �	 
�1

� I � HTV�1
� �

I � V�1
� ��1

:

Using the identities A� Bð Þ�1 ¼ A�1 � B�1 and A� Bð Þ C� Dð Þ ¼ AC� BD, we
find

V1
�1 � B1

�1
� ��1 ¼ I � V þ I � Hð Þ C1�1 � I � HTV�1H

� ��1
I � HT
� �

¼ I � V þ I � Hð Þ C2ð Þ1�1
� ��1

I � HT
� �

:

We note that the above expression equals the inverse of the covariance of the

observed states y1�1.

The first part of the constant c1 can be evaluated directly:

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Det Σ
Det C

r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C10
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C1�1
p ; ð304Þ

whereas the second part containing the determinants can be solved as follows: first,

we observe that we have
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C10

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det ~C 1

�1

q
;

where the covariance ~C 1
�1 is given by

~C 1
�1 ¼

0 � � � 0

C�1
�1 0 ⋮

A 0 0

0 C10

0BBBBBB@

1CCCCCCA

¼

B1 A
AT B ⋱

⋱ ⋱ ⋱
⋱ B A

AT BΔt A
B1 A
AT B ⋱

⋱ ⋱ ⋱
⋱ B A

AT BΔt

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

~C 1
�1 differs from C1�1 given by

C1�1 ¼

B1 A
AT B ⋱

⋱ ⋱ ⋱
⋱ B A

AT B A
AT B A

AT B ⋱
⋱ ⋱ ⋱

⋱ B A
AT BΔt

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
only in three blocks in the center. If we introduce a vector et ¼ 0� � �010� � �0ð ÞT
which has only a one at the position corresponding to time step t, then eie

T
j is a

matrix that has zeros everywhere except at postion i, j. Accordingly, eie
T
j

	 

� A is a

block-matrix where only the block i, j contains the matrix A. With these prerequi-

sites we can write
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~C 1
�1 ¼ C1�1 þ e0e

T
0

� �� BΔt � Bð Þ 0

�AT B1 � B

 �
;

where e0 is chosen to select the central four blocks of ~C 1
�1. Using the identity for

Kronecker products

AC� BD ¼ A� Bð Þ C� Dð Þ

we get

~C 1
�1 ¼ C1�1 þ e0 � BΔt � Bð Þ 0

�AT B1 � B

 � �
eT0 � I2q
� �

:

Using Sylvester’s determinant theorem, which states that for matrices A 2 ℝm�n,

B 2 ℝn�m,X 2 ℝm�m it holds that

Det X þ ABð Þ ¼ Det Xð ÞDet In þ BX�1A
� �

;

we obtain

Det ~C1
�1

� �¼Det C1�1
� �

Det I2qþ eT0 �I2q
� � C1�1

� ��1
e0� BΔt�Bð Þ 0

�AT B1�B

 � � �
:

In the second term of the right determinant, only the central blocks of C1
�1

contribute. They are denoted as

C1�1
� ��1
	 


i¼ �1,0f g, j¼ �1,0f g
:¼ X0 X1

XT
1 X0

 �
:

Note thatC1
�1 is symmetric and that the blocks along the diagonal are contant in the

asymptotic regime. Finally, we getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C10
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C1�1
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det I2q þ X0 X1

XT
1 X0

 �
BΔt � B 0

�AT B1 � B

 � �s
: ð305Þ

Using the fact thatB1 � B ¼ Σ�1 � C�1,BΔt � B ¼ �AT
0 C

�1A0, andA
T ¼ �C�1A0

an expression for the constant c1 in terms of the system matrices then reads:
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c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Det Σ
Det C

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det I2q þ X1 � X0A

T
0

� �
C�1A0 X1 Σ�1 � C�1

� �
X0 � XT

1 A
T
0

� �
C�1A0 X0 Σ�1 � C�1

� � � �s
: ð306Þ

Next, we turn to the second term in the expression for the EMC, Eq. 303. The matrix

B consists of the difference of C1�1
� ��1

for the whole time axis and C�1
�1

� ��1

þ C10
� ��1

for the past and the future of the observed process. Evidently, the matrix

for the whole time history C1�1
� ��1

coincides with the one for the past C1�1
� ��1

at

least from the infinite past until a certain point of time in the past, where the later

matrix elements are still in the asymptotic regime. For later times until t ¼ �1, the

matrix C�1
�1

� ��1
is characterized by the transition regime due to the transient phase

in the recursions for Nj. This is illustrated in Fig. 4.3 where the transition regimes

are shown in yellow. Similarly, the matrix corresponding to the future observations

C1
0

� ��1
deviates significantly from the one for the whole time history only in the

beginning and up to some finite point in time in the future (we assumed that the

whole process is in steady state and that the covariances of the initial states are

equal). Furthermore, the matrix elements decay exponentially in the direction

perpendicular to the diagonal. Therefore, the contributions to the sum in Eq. 303

only come from the finite area enclosed by the red lines in Fig. 4.3.

Altogether, in order to numerically compute the EMC given the system matrices,

one has to calculate the invers matrices of C and C2 for some sufficiently large order

Δt, where the asymptotic regime has been reached in the center. The corresponding

matrix elements can then be plugged directly into the final result.

Fig. 4.3 Structure of

inverses of C1�1, C�1
�1, and

C10 : only in the area

enclosed by the red lines do

the inverses differ and

contribute to the EMC
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Using some of the results obtained so far, we can now simplify the general result

Eq. 286: We use the results for the normalization of the joint pdf, which we obtained
by integrating over the hidden states. The ratio of the normalization constants of the

joint pdf’s was denoted as

c1 ¼
cy1�1

cy�1�1cy10
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C10
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C1�1
p :

Alternatively, the ratio can be expressed directly in terms of the determinants of the

corresponding covariances:

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Cy

� ��1

�1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Cy

� �1
0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Cy

� �1
�1

q : ð307Þ

Therefore, we can finally write the closed-form solution as

I Y�1
�1;Y1

0

� �¼ log2c1

¼ log2

ffiffiffiffiffiffiffiffiffiffiffiffi
Det Σ
Det C

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det I2qþ X1�X0A

T
0

� �
C�1A0 X1 Σ�1�C�1

� �
X0�XT

1 A
T
0

� �
C�1A0 X0 Σ�1�C�1

� �� � �s
¼ 1

2
log2

Det Σ
Det C

Det IqþX0 Σ�1�C�1
� �� �

�Det Iqþ X1�X0A
T
0

� �
C�1A0�X1 X0þ Σ�1�C�1

� �� ��1
X0�XT

1 A
T
0

� �
C�1A0

	 

:

ð308Þ
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Chapter 5

Validity Analysis of Selected Closed-Form

Solutions for Effective Measure Complexity

Following our comprehensive and unified treatment of emergent complexity based

on information theory and the application of information-theoretic methods asso-

ciated with complexity measures, we will now analyze the validity of closed-form

solutions for the effective measure complexity (EMC) that were obtained for vector

autoregression models as the basic mathematical representation of cooperative

work in PD projects (see Sections 2.2, 2.3, 2.4 and 2.6 in conjunction with Section

4.1). In the validation studies we not only investigated “flat” project organization

forms but also analyzed work processes with periodically correlated components

due to a multi-level hierarchical coordination structure. It is well established that

validity is one of the most influential concepts in industrial engineering and

engineering management because questions concerning its nature and scope influ-

ence everything from the design of project organization for a PD project to the

application and evaluation of specific design criteria. In this context we follow

classic validity theory and distinguish between criterion-related, content-related,

and construct-related validity (Salkind and Rasmussen 2007). Criterion-related

validity refers to the extent to which a measure—EMC in our case—predicts the

values of another measure, for instance the total time taken to complete particular

development activities in a PD project (Eaves and Woods-Grooves 2007,

cf. Section 5.2). The first measure is usually called the predictor variable. We

have dubbed the second measure the criterion variable because our extensive

analysis in Section 3.2.4 has already shown that EMC is theoretically valid. The

literature distinguishes between two types of criterion-related validity (see

e.g. Eaves and Woods-Grooves 2007): (1) predictive validity and (2) concurrent

validity. The distinctive factor here is the time interval between obtaining the first

and the second set of measurements. For predictive validity, the data related to the

criterion variable is collected some time after the data for the predictor variable. For

concurrent validity, the data from both variables is collected at about the same time

in the same experiment.
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5.1 Selection of Predictive Models of Cooperative Work

First, we focus on concurrent validity. Before presenting the methods and results of

the studies of concurrent validity in Section 5.1.2, we must first lay additional

theoretical foundations on model selection. These foundations build primarily on

the work of Li and Xie (1996) on the principle of “minimal mutual information.”

Although this principle was developed independently from the complexity-

theoretic measures of Grassberger (1986) and other researchers in this area, it is

very closely related to EMC as the mutual information communicated from the

infinite past to the infinite future by the stochastic process (see Section 3.2.4) is

evaluated to select the class of parametric models under certain constraints. Fur-

thermore, the same principle can be used to formulate a model selection criterion

that is based on EMC estimates from data and can be directly applied to identify the

optimal model order within a preferred class (Section 5.1.1). The principle and its

instantiations have universal reach and its scope of application extends beyond

selecting an optimal model for project management activities. The validation

studies themselves are much narrower in their focus and based on Monte Carlo

experiments. As already demonstrated in the simulation study from Section 2.8,

Monte Carlo experiments are a special class of algorithms that are based on

repeated random sampling of the work processes to compute their outcomes. The

repeated random sampling was carried out in a Mathematica® modeling and

simulation environment. After presenting the methods used in the validation studies

(Section 5.1.2), we will present and discuss the results of two Monte Carlo studies

(Section 5.1.3). The studies had the same overall objective but used different

parametric model forms. The overall objective was to compare the accuracy of

the EMC-based model selection criterion with standard criteria like the (original

and bias corrected) Akaike information criterion (see Sections 2.4 and 3.2.2) and

the Schwarz-Bayes criterion (see Sections 2.3, 2.10 and 3.2.2). We hypothesized

that model selection based on EMC allows us to select the true model order with

high accuracy and that the histogram distributions of the selected model orders are

not significantly different from the distributions obtained under the alternative

criteria. To evaluate this hypothesis we focused on the class of VAR models,

which were analyzed and discussed in detail in Sections 2.2, 2.4 and 4.1. The

parametric model forms were not only derived from field data of a PD project in a

small industrial company, but were also synthetically generated so that we could

systematically compare the concurrent validity of the different model selection

criteria. In the first study, we used the specific VAR(1) and VAR(2) model repre-

sentations from Section 2.5 to simulate the cooperative task processing of the

developers in a sensor development project (Schlick et al. 2013). In the second

study, we partially replicated Lütkepohl’s experimental setup (Lütkepohl 1985) and

analyzed 1000 bivariate VAR(1) and 1000 bivariate VAR(2) models with complex

conjugate and distinct real characteristic roots. We also investigated 400 trivariate

(i.e. three-dimensional) VAR(1) models. By systematically evaluating a total of

2400 models we were able to consider a large variety of parameter sets
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corresponding to a wide range of characteristic roots in different regions of the unit

circle and thus generalize the model selection results (Schlick et al. 2013).

5.1.1 Principles for Model Selection

As already discussed in Sections 2.4 and 3.2.2 in relation to VAR models and

Markov chains, a central aspect in model selection tasks within a predefined class of

statistical models is to find a good trade-off between the predictive accuracy gained

by increasing the number of freely estimated parameters, and the danger of

overfitting the model to non-predictable fluctuations and not regularities in the

observed processes that generalize to other datasets. As mentioned earlier in the

literature review in Section 3.2.2, Akaike (1973, 1974) developed the first rigorous

approach along this line of thought based on the expected Kullback-Leibler infor-

mation. His famous AIC criterion (see Sections 2.4 and 3.2.2) represents the

asymptotic bias correction term of the maximized log-likelihood from each approx-

imating model to full reality. Akaike’s fundamental ideas were further developed

by Rissanen in a series of papers and books starting from 1978 (see Section 3.2.2).

He emphasizes that fitting a statistical model to data is equivalent to finding an

efficient encoding. We therefore need to measure both the code length required to

describe the deviations in the data from the model’s predictions, and the code length
required to specify the model’s structure and independent parameters (Bialek

et al. 2001). Without explicit links to complexity theory, Schwarz developed his

now famous criterion (Schwarz-Bayes criterion, or Bayesian information criterion,

BIC, see Sections 2.4, 2.10 and 3.2.2) as an asymptotic approximation to a trans-

formation of the Bayesian posterior probability of an approximating model. When

the sample size is large, this criterion favors a model that ideally corresponds to the

approximating model, which is most probable a posteriori.

To underline the specific properties of EMC, we have to leave the pragmatic

considerations from Sections 2.4, 2.7 and 2.10 behind and interpret model selection

from a theoretical perspective developed in the classic works of Jaynes (1957,

comprehensively described in his posthumous book edited by Bretthorst and

published in 2003), Li and Xie (1996) and others on universal information-theoretic

principles. Their works show that model selection has not one but two central

aspects: (1) selection of the model class based on the preferred principle, (2) selec-

tion of the optimal model order within that class using the same or at least similar

principles. Our previous considerations focused exclusively on the second aspect

and did not address model class selection as this is, in a sense, a more abstract

decision problem for finding a theoretically optimal representation of the regular-

ities of an entity that can be generalized without posing unjustified constraints on

the internal configuration. Jaynes’ famous principle of maximum entropy can be

applied in the first step to select the model class that maximizes the entropy subject

to given constraints on certain statistics on the observations from the process such

as the expectation values, autocovariances (see e.g. 309), or any other function for
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which the samples provide a reliable estimate. The principle assumes that we base

our decision on exactly stated prior information and that the set of all trial proba-

bility distributions is considered that would adequately encode the prior informa-

tion. From all continuous prior distributions we seek a model probability density

which is normalized and will exactly reproduce the measured expectation values

(or autocovariances etc.), but will otherwise be as unstructured, or random, as

possible—hence maximum entropy (Tkačik and Bialek 2014). According to the

principle, of the densities considered, the one with the maximal entropy is the

proper density and therefore the differential entropy according to Eq. 232 is to be

maximized. As such, the principle selects a probability density function that makes

the “least claim” to being informative beyond the stated prior and therefore admits

the most ignorance about the dynamical dependency structure of the process

beyond the stated prior (sensu Jaynes 2003). In practice, this amounts to solving a

variational problem for the model probability density. The resulting maximum

entropy distribution has an exponential form (see e.g. Tkačik and Bialek, 2014).

The principle of maximum entropy does not correspond to a single model for the

process, but rather provides a systematic method for building a hierarchy of models

that provide increasingly good approximations to the true distribution. At each step

in the hierarchy, the models are parsimonious, having the minimal dynamical

dependency structure required to reproduce certain statistics on the data that one

is trying to match (Tkačik and Bialek, 2014).

An analogous principle is the principle of “minimum mutual information”

(MMI) which is based not on the differential entropy but on the mutual information

(see definition in Eq. 234) and was formulated later by Li and Xie (1996). For time

series of state vectors, the principle of MMI selects the model that minimizes EMC

as an indicator of mutual information between the infinite past-future histories of

the process subject to given constraints on autocovariances or other important

parameters. If, for example, the values CXX(0), . . .,CXX(n) of the first nþ 1

autocovariance functions

Cnþ1 ¼
CXX 0ð Þ CXX 1ð Þ . . . CXX nð Þ
CXX 1ð Þ CXX 0ð Þ . . . CXX n� 1ð Þ
⋮ ⋮ ⋱ ⋮

CXX nð Þ CXX n� 1ð Þ . . . CXX 0ð Þ

0BB@
1CCA ð309Þ

of a p-dimensional stationary Gaussian process {Xt} are given in the form of a

nþ 1ð Þp� nþ 1ð Þp n 2 ℕð Þ Toeplitz matrix Cnþ1 (Eq. 280), then under the

principle of MMI the state vector Xt has to satisfy a VAR(n) model (Li and Xie

1996) such as

Xt ¼
Xn�1

i¼0

Ai � Xt�i�1 þ εt:
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(cf. state equation 58). In other words, the VAR(n) model minimizes EMC with

respect to given autocovariances. Note that the matrix elements CXX(τ) in the

Toeplitz matrix are defined as p� p block autocovariance matrices of the

corresponding subspaces for lead times τ ¼ 0, 1, . . . , n. Using Jaynes’ principle
of maximum entropy for model class selection under the same constraints on

autocovariances will also result in a VAR(n) model. The conceptual difference

between both principles is that the principle of MMI favors model classes that do

not impose more constraints on the canonical correlations between the infinite past-

future histories than are justified by the informational structure of the process

independently of the preferred coordinate system (see, e.g., the beginning of

Chapter 4 and Section 4.1.3), whilst the principle of maximum entropy lacks invari-

ance under change of variablesxt ! y xtð Þ. To do something similar to this principle, a

definite group of transformation must be specified, which requires additional knowl-

edge of the human model builder (Jaynes 2003). If, in another case, the l cepstrum
coefficients (see de Cock 2002) are given instead of the autocovariances, the MMI

principle selects the Bloomfield model BL(l) (see Li and Xie 1996).
In Section 3.2.4 we introduced two key invariants of stochastic processes—

Grassberger’s EMC (Eq. 216) and Shannon’s source entropy rate hμ (Eq. 218). We

also saw that Bialek et al.’s (2001) analysis of the predictive information Ipred(n)
(Eq. 226) uncovered interesting interrelationships between these two key invari-

ants. Let us recall that the predictive information Ipred(n) (Eq. 226) indicates for a
strict-sense stationary process the distribution of EMC over the block length n and

can be interpreted as the subextensive component of the block entropy H(n)
(Eq. 227). The extensive component of the block entropy is driven by the source

entropy rate hμ and it holds that

H nð Þ ¼ nhμ þ Ipred nð Þ:

To analyze this relationship from a different perspective, we refer to a theorem of Li

(2006) and express the log-likelihood ln fθ[x1, . . ., xT] of T observations from an

arbitrary Gaussian stationary process {Xt} with density function fθ with the follow-

ing sum:

ln fθ x1; . . . ; xT½ � ¼ �1

2
Tp ln 2πð Þ þ lnDet CT½ � þ x1; . . . ; xTð ÞTC�1

T x1; . . . ; xTð Þ
� �

:

CT is a Tp� Tp Toeplitz matrix (cf. Eqs. 280 and 309) encoding the

autocovariances of the stationary process over T time steps. Li (2006) shows that

the entropy rate and the effective measure complexity are—apart from a constant—

simply the first and second term in the expansion of ln Det[CT]:

lnDet CT½ � þ Tp ln2πð Þ ¼ 2Thμ þ 2EMCþ o 1ð Þ: ð310Þ

The term o(1) denotes an arbitrary sequence that remains bounded. It is not difficult

to see that the entropy rate and the effective measure complexity denote the

extensive and subextensive components of the log-likelihood of the observation
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sequence in the same manner as the entropy rate and the predictive information

represent the extensive and subextensive parts of the block entropy. Hence, EMC

and hμ can be regarded as complementary key invariants not only with respect to the

block length but also in the time domain. We will now illustrate their complemen-

tarity by applying them to model order selection.

In our information-theoretic considerations on stochastic complexity in Section

3.2.2 we pointed out that Akaike’s AIC was originally developed to identify the

candidate model that minimizes the expected Kullback-Leibler divergence between

the candidate model and the true model. From an engineering perspective, we can

interpret the AIC statistic as a penalty term of the entropy rate

hμ ¼ lim
η!1

H Xn¼η½ �
η

of the stationary process (Eq. 218) and rewrite the criterion informally as

AIC nð Þ ¼ 2ĥμ nð Þ þ penalty; ð311Þ

where ĥμ(n) denotes the estimate of the entropy rate under the fitted model of order

n (Li 2006). Using the closed-form solutions developed in Section 4.1.6, we can

now express the estimate of the entropy rate in the class of VAR models explicitly

as

ĥμ nð Þ ¼ 1

2
log2Det Σ̂ nð Þ

� �þ p

2
log2 2πeð Þ;

where

Σ̂ nð Þ ¼
T � n p

� �
T

� 	
� Ĉ

¼ 1

T

� 	
� RT

22 � R22

denotes, according to Eq. 66, the one-step prediction error matrix of a VAR(n)
model that was fitted to data based on least squares estimation for a time series of

state vectors Xt indexed by t ¼ 1� n, . . . T. Alternatively, the maximum likelihood

parameters could be used. The index n denotes the model order and p the dimen-

sionality of the state vectors. It holds that n p ¼ np.
In the same manner, Li and Xie (1996) constructed penalized estimates of the

EMC. In their work they refer to the mutual information between the infinite past-

future histories of the stationary process as simply “past-future information” and

denote it with the symbol Ip� f (cf. Eq. 216). For finite complexity values we have

the following identities (Eqs. 216 and 226)
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EMC ¼ Ip� f ¼ I X�1
�1;X1

0

� � ¼ lim
η!1 Ipred n ¼ ηð Þ:

A new complexity-based criterion for order selection can be derived by replacing

the entropy rate ĥμ(n) estimated under an n-th order VAR model by the estimated

effective measure complexity dEMC nð Þ and properly adjusting the penalty term. Li

and Xie’s (1996) development of the criterion leads to an alternative statistic,

termed the mutual information criterion, which can be informally written as:

MIC nð Þ ¼ dEMC nð Þ þ penalty: ð312Þ

Analogously to AIC(n) and BIC(n) (see Eqs. 67 and 71 for VAR models), the

penalty term should take the sample size and the effective number of parameters

into account.

Li and Xie (1996) developed the mutual information criterion for

one-dimensional autoregressive processes. Their formulation can be easily gener-

alized to p-dimensional VAR(n) models. We arrive at

MIC nð Þ ¼
0 for n ¼ 0

�2 dEMC nð Þ þ log2T

T

n p npþ 1ð Þ
2

for n � 1:

(
ð313Þ

In information-theoretic terms, the order n is considered to be the optimal one if it

satisfies:

nopt ¼ argminnMIC nð Þ: ð314Þ

In Eq. 313 dEMC nð Þ denotes the complexity value that is assigned to the fitted

nth-order VAR model. T denotes the last time step of the state vectors indexed by

t ¼ 1� n, . . . T which are used to estimate the parameters. The second summand in

the definition of MIC(n) for n � 1 is the penalty for models that are unnecessarily

complex with respect to the finite sample size. This term serves the same purpose as

the penalties formulated for AIC(n) in Eq. 67 and for BIC(n) in Eq. 71. Similarly to

the alternative formulations of model selection criteria, the penalty only depends on

the sample size, the model order n and the effective number n p npþ 1ð Þ=2 of

parameters. The effective number of parameters corresponds to the number of

freely estimated parameters in the Toeplitz matrix Cn (Eq. 309).

To make the model selection mechanism fully operational, we can apply the

closed-form solutions from Section 4.1.6 and express the complexity estimate in

matrix form (Eq. 279 in conjunction with Eqs. 62 and 277) as
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dEMC nð Þ ¼ 1

2
log2

Det Σ̂
� �

Det
X n

i¼1
Â
� �n�i � eC � Â

� �n�i
� �T
 �

0BB@
1CCA;

where the estimated steady-state covariance matrix Σ̂ in the numerator is given by

the infinite sum

Σ̂ ¼
X1
k¼0

Â n
� �k � Xn

i¼1

Â
� �n�i � Ĉ � Â

� �n�i
� �T !

� Â n
� �T� �k

:

An alternative, more intuitive expression can be obtained on the basis of the (mean

squared) one-step prediction errors eΣ ið Þ (Eq. 284):

dEMC nð Þ ¼ 1

2

Xn�1

i¼0

log2
beΣ ið Þ � 1

2
nlog2

beΣ nð Þ;

where the estimated one-step prediction errors for i > 0 are given by (Eq. 282)

beΣ ið Þ ¼
Det bCiþ1

h i
Det bCi

h i :

The zeroth-order prediction error equals the determinant of the estimated

autocovariance for zero lead time (Eq. 283):

beΣ 0ð Þ ¼ Det bC
X
�
X
� 0ð Þ

h i
:

As shown in Section 4.1.6, the alternative expression can also be interpreted using

an information-theoretic learning curve bΛ ið Þ i ¼ 1, 2, . . . , nð Þ in which each

summand 1=2 log2
beΣ i�1ð Þ � log2

beΣ nð Þ
� �

can be used to evaluate the amount of

apparent randomness at small model order i, which can be “explained away” by

considering parameterized models with increasing order iþ 1, iþ 2, . . ..
At first glance, the objective function formulated in Eq. 314 in conjunction with

Eq. 313 to select the optimal order within the class of VAR models seems to

contradict the MMI principle, because it is designed to select the model that

maximizes emergent complexity in the meaning of EMC and not a representation

that corresponds to minimum mutual information. However, this is only seemingly

in contradiction, because each nth-order model defines a map from the process past

history (x0, x1, . . ., xt) to a Gaussian state variable St summarizing the properties. We

are interested in a state representation that summarizes the properties in such a way

that it enables us to make good predictions (sensu Still 2014). As the VAR model’s
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memory only reaches back n time steps into the past because the state is the

weighted value of the last n observations, we need efficient mapping to capture as

much information about the past as possible to improve predictions of possible

future histories Xtþ1;Xtþ2; . . . ;X1ð Þ. This mapping can be carried out by either

maximizing the predictive information Ipred n ! 1ð Þ (Eq. 226), or equivalently

EMC. However, our information-theoretic considerations in Section 4.1.6 have

shown that the captured predictive information for VAR(n) models cannot on

average be larger than the amount of information corresponding to the model

order and it holds that Ipred nð Þ ¼ Ipred nþ 1ð Þ ¼ . . .. In other words, a VAR(n)
model has a limited capacity to store the predictive information communicated over

an infinite time horizon. Maximizing the predictive information over all fitted

models up to order n thus corresponds to maximizing the predictive accuracy of

possible future histories within the range of model capacities which, in turn,

requires maximum effective measure complexity values as stated in the objective

function. With a finite sample size, the complexity values must be adjusted in the

same way as the penalty term.

Li and Xie (1996) also formulated an alternative criterion, called the “least-

information criterion,” abbreviated as LIC(n). In our own analysis we found that

this criterion is not only less rigorous in its derivation but also often leads to lower

accuracy in model selection tasks. It is therefore not considered below. For more

information, the corresponding proofs and additional background information on

both criteria are presented in Li and Xie (1996).

5.1.2 Methods

Two Monte Carlo studies were carried out to investigate the concurrent validity of

the mutual information criterion MIC according to Eq. 314 in conjunction with

Eq. 313 within the class of VAR models in different model selection tasks. We

speak of concurrent validity, because the data for the calculation of the criterion and

the estimates of the underlying effective measure complexity are collected simul-

taneously in the sameMonte Carlo experiment. In the first validation study, we used

the field data that were acquired in the industrial case study as input for the

experiments and followed the procedure that was introduced in Section 2.5 to

model and simulate the task processing. Within the industrial multiproject environ-

ment, we focused on Project A, the largest project, with ten partially overlapping

development tasks spanning the project phases from conceptual design to product

documentation. Here, we concentrate on the first two overlapping tasks of this

project, and only modeled their overlapping range (see Section 2.5). We used the

least square method developed by Neumaier and Schneider (2001) to estimate the

parameters of the corresponding bivariate VAR(n) models of different order n. The
model selection procedure based on the classic criteria showed that the Bayesian

information criterion BIC according to Eq. 71 is minimal for a VAR(1) model (see
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Section 2.5). For this model, we obtained the following optimizing parameters

(Eqs. 73, 74, 75):

x̂ 0 ¼ 0:6016
1:0000

� 
Â 0 ¼ 0:9406 �0:0017

0:0085 0:8720

� 
Ĉ ¼ 0:0135ð Þ2 �0:38 � 0:0135 � 0:0416

�0:38 � 0:0135 � 0:0416 0:0416ð Þ2
� 

:

When using the corrected Akaike information criterion AICc according to Eq. 69

instead of the Bayesian information criterion, a VAR(2) model is assigned mini-

mum scores. We focused on AICc in the first Monte Carlo study, because it is

known to have superior bias properties for small samples. Burnham and Anderson

(2002) recommend applying the corrected criterion instead of the classic AIC when

it holds that T=k < 40 (Eq. 70), as in our case. The impact of the sample size on the

bias properties and on selection accuracy was investigated in the second Monte

Carlo study. The optimizing parameters for the VAR(2) model are given by the

representation (Eqs. 73, 76, 77, 78 and 79):

x̂0 ¼ 0:6016
1:0000

� 
x̂1 ¼ 0:6016

0:7154

� 
Â0 ¼ 1:1884 �0:1476

0:0470 1:1496

� 
Â1 ¼ �0:2418 0:1344

�0:0554 �0:2622

� 
Ĉ ¼ 0:0116ð Þ2 �0:013 � 0:0116 � 0:0257

�0:013 � 0:0116 � 0:0257 0:0257ð Þ2
� 

:

The VAR(1) and VAR(2) models were then used to simulate the processing of the

first two development tasks in repeated trials and to generate the data sets required

to investigate concurrent validity. To ensure robust parameter estimation, two

independent time series of 100 time steps were generated in each trial. These

time series were used to estimate the parameters of candidate VAR(n) models of

different order based on the cited least square method. The model orders considered

were in the range nmin ¼ 1 and nmax ¼ 6. The candidate VAR(n) models were then

evaluated based on the mutual information criterion MIC(n) from Eq. 313 and the

alternative BIC(n) and AICc(n) criteria. We hypothesized that the complexity-based

MIC(n) is highly accurate and can identify the true model order (either n ¼ 1 for the

VAR(1) model with parameters according to Eqs. 73, 74, 75, or n ¼ 2 for the VAR

(2) model represented by Eqs. 73, 76, 77, 78 and 79) from the generated data sets

with a level of accuracy that is not significantly different from the alternative
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criteria in statistical terms. 1000 independent trials were computed for each model

to obtain a good statistic for the pairwise comparison of the histogram distributions

of the model orders which were selected by the three different criteria. Pearson’s chi
squared test (see e.g. Field 2009) was used to investigate whether there were

significant differences in the histogram distribution. The level of significance in

all tests was set to α ¼ 0:05.
In the second study of concurrent validity, we partially replicated Lütkepohl’s

(1985) experimental setup and analyzed a total of 1000 bivariate VAR(1) and 1000

bivariate VAR(2) models with both complex conjugate and distinct real character-

istic roots as well as 400 trivariate (i.e. three-dimensional) VAR(1) models with

distinct real characteristic roots. In contrast to Lütkepohl’s (1985) study, we only

allowed for zero means and therefore did not include intercept terms in the models.

Furthermore, with respect to the theoretical analysis of cooperative work in PD

projects in Chapter 2, we excluded moving average models and focused on purely

autoregressive recurrence relations. In general, bivariate VAR models can be used

to simulate the processing of two development tasks, whilst three-dimensional

models can simulate the processing of three tasks in a compact statistical represen-

tation form. The basic idea underlying Lütkepohl’s (1985) design of the Monte

Carlo experiments is to consider a large variety of parameter sets corresponding to a

wide range of characteristic roots in different regions of the unit circle in the data

generation. To simplify the interpretation of the results, the data can be regarded as

instantiations of different cooperative relationships between developers processing

either two or three tasks under varying regimes of cooperative problem solving

processes. The aggregated evaluation of the task processing indicates which crite-

rion has the highest accuracy of model selection where no prior information about

the location and covariance of the true parameters is available. Note that even if

only stable bivariate and trivariate autoregressive processes are considered, the

parameter space is theoretically unbounded and therefore only a very small area can

be investigated.

The investigated bivariate VAR(1) models were defined by the well-known state

equation (cf. Eq. 2):

Xt ¼ A0 � Xt�1 þ εt:

Ignoring the error term εt and using a parametric representation of the dynamical

operator

A0 ¼ a11 a12
a21 a11 þ Δa

� 
according to Eq. 54, where a11;Δa; a12; a21f g 2 ℝþ, we can express the eigen-

values (Eqs. 56 and 57) as roots of the characteristic polynomial by

5.1 Selection of Predictive Models of Cooperative Work 293

http://dx.doi.org/10.1007/978-3-319-21717-8_2
http://dx.doi.org/10.1007/978-3-319-21717-8_2
http://dx.doi.org/10.1007/978-3-319-21717-8_2
http://dx.doi.org/10.1007/978-3-319-21717-8_2
http://dx.doi.org/10.1007/978-3-319-21717-8_2


λ1 ¼ 1

2
2a11 þ Δa�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δa2 þ 4a12a21

p� �
λ2 ¼ 1

2
2a11 þ Δaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δa2 þ 4a12a21

p� �
:

Theoretically, all parameter values a11;Δa; a12; a21f g 2 ℝ for which it holds that

λ1j j < 1and λ2j j < 1 lead to asymptotically stable processes (see Section 2.1). In the

Monte Carlo study, we concentrated on Lütkepohl’s (1985) parameter values

corresponding to a wide range of characteristic roots in different regions of the

unit circle. These values are summarized in Table 5.1.

If the eigenvalues are complex, they can be written as complex conjugate pairs

(cf. Eq. 53) and interpreted as a stochastically driven oscillator with non-minimum

period (see Section 2.3). Based on the typical notation

λ1 ¼ r cos θð Þ þ i sin θð Þð Þ
λ2 ¼ r cos θð Þ � i sin θð Þð Þ;

it is easy to see that the matrix entries Δa and a12 can be expressed as

Δa ¼ 2r cos θð Þ
a12 ¼ 2a12r cos θð Þ � a211 � r2

a21

provided a21 6¼ 0 (Lütkepohl 1985). If, on the other hand, both eigenvalues are real,

the matrix entries Δa and a12 are given by

Δa ¼ λ1 þ λ2 � 2a11

a12 ¼ λ21 � λ1 2a11 þ Δað Þ þ a11 a11 þ Δað Þ
a21

Table 5.1 Parameters and

parameter values of the

bivariate VAR(1) and
VAR(2) processes
investigated in the Monte

Carlo experiments (after

Lütkepohl 1985)

Bivariate processes

(a) Processes with complex conjugate characteristic roots

Parameter Parameter values

a11 �1 �0.5 0 0.5 1

a21 �1.5 �0.5 0.5 1.5

θ 2πk/10 k ¼ 0, 1, . . . , 9

r 0.8 0.6 0.4 0.2

(b) Processes with distinct real characteristic roots

Parameter Parameter values

a11 �1 �0.5 0 0.5 1

a21 �0.5 0.5

λ1 �0.8 �0.4 0 0.4 0.8

λ2 �0.6 �0.2 0.2 0.6

Covariance matrices C ¼ I2
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provided a21 6¼ 0 (Lütkepohl 1985). In this case the eigenvalues represent either

relaxators or stochastically driven damped oscillator with minimum period (see

Section 2.3). Once the values of λ1, λ2, a11 and a21 are given, the matrix entries Δa
and a12 can be calculated using the above equations.

The complete set of parameters and parameter values for all 1000 bivariate VAR

(1) processes is shown in Table 5.1. As shown in Table 5.1, 800 VAR(1) models

with complex conjugate characteristic roots and 200 VAR(1) models with real

distinct characteristic roots were investigated in the second Monte Carlo study.

The Monte Carlo experiments for the bivariate VAR(2) models were carried out

in a similar way. To ensure comparability, the bivariate VAR(2) models were

defined by a recurrence relation with the same dynamical operator A0 and a state

variable Xt that is determined by the prior state of the process reaching back two

time steps into the past and ignoring the previous time step:

Xt ¼ A0 � Xt�2 þ εt:

The same parameter values from Table 5.1 were applied to the VAR(2) model

representation, meaning that 800 VAR(2) models with complex conjugate charac-

teristic roots and 200 VAR(2) models with real distinct characteristic roots were

investigated.

In all Monte Carlo experiments the error process εt corresponded to a white noise
process. The covariance matrix of εt was equal to the identity matrix, so that the

variances and standard deviations equal 1 and the covariance equals zero:

C ¼ 1 0

0 1

� 
:

The investigated three-dimensional VAR(1) models with distinct real characteristic

roots are based on the parametric representation

A0 ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

0@ 1A
of the dynamical operator, where ai j

� � 2 ℝ 1 � i, j � 3ð Þ. The eigenvalues of A0

are the roots of the characteristic polynomial

λ3þλ2 �a11�a22�a33ð Þþλ �a12a21þa11a22�a13a31�a23a32þa11a33þa22a33ð Þ
þa13a22a31�a12a23a31�a13a21a32þa11a23a32þa12a21a33�a11a22a33 :

All parameter values ai j
� �2ℝ for which it holds that λ1j j<1, λ2j j<1 and λ3j j<1

correspond to asymptotically stable processes (see Section 2.1). As before, we used

Lütkepohl’s (1985) parametric representation and parameter values in the Monte

Carlo study to cover a wide range of characteristic roots in different regions of the

unit circle. The parameters and parameter values are summarized in Table 5.2.
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In the parametric representation of Table 5.2, the matrix entries a13, a23 and a33
can be determined from given eigenvalues λ1, λ2 and λ3 on the basis of the following
three equations:

a13¼ 1= �a12 a
2
31þa32 a11�a22ð Þa31þa21 a32ð Þ� �

a212 a21 a31�a311 a32þa32 λ1 λ2 λ3
�

þa211 a12 a31þa32 λ1þλ2þλ3ð Þð Þ
þa11 �a32 λ2 λ3þλ1 λ2þλ3ð Þð Þð
þa12 a22 a31�2a21 a32�a31

�
λ1þλ2þλ3

� �� ��
þa12 a222 a31þa21 a32 λ1þλ2þλ3ð Þ�a31 λ1þλ2þ λ1þλ2ð Þ λ3ð Þ�
�a22 a21 a32þa31 λ1þλ2þλ3ð Þð ÞÞ�

a23 ¼ 1= a12 a231 � a32 a11 � a22ð Þ a31 þ a21 a32ð Þ� �
a211 a21 a32
�

� a22 a31 � a21 a32ð Þ a22 � λ1ð Þ a22 � λ2ð Þ
þ a22 a31 � a21 a32ð Þ a22 � λ1ð Þ þ a21 a32 þ a31 �a22 þ λ1ð Þð Þλ2ð Þλ3
þa12 a21 a21 a32 þ a31 �2 a22 þ λ1 þ λ2 þ λ3ð Þð Þ
�a11 a21 a12 a31 þ a32 �a22 þ λ1 þ λ2 þ λ3ð Þð Þ�

a33 ¼ λ1 þ λ2 þ λ3 � a11 � a22:

Similarly to the investigation of the bivariate models, the Monte Carlo experiments

were carried out under the condition that the error process εt corresponded to a

white noise process, such that the variances and standard deviations equal 1 and the

covariance equals zero:

C ¼
1 0 0

0 1 0

0 0 1

0@ 1A:

A total of 400 three-dimensional VAR(1) models were investigated.

Table 5.2 Parameters and parameter values of the trivariate VAR(1) processes investigated in the
Monte Carlo experiments (after Lütkepohl 1985)

Three-dimensional processes (only real characteristic roots λ1, λ2, λ3)

Parameter Parameter values

a11 �0.5

a12 0.5

a21 0.5

a22 0.5

a31 �0.5 0.5

a32 �1 �0.5 0 0.5 1

λ1 �0.6 �0.2 0.2 0.6

λ2 �0.8 �0.4 0 0.4 0.8

λ3 �0.5 0.5

Covariance matrix C ¼ I3
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A single time series was generated for each model. To investigate a broad range

of execution conditions, the length was varied systematically between T1 ¼ 40 and

T17 ¼ 200 time steps. Starting with T1 ¼ 40 time steps, the number of time steps

was increased by 10 after each simulation run, so that in total 19 different lengths

were analyzed in independent runs. A pre-sample warm-up interval with 100 time

steps was calculated to reduce the impact of starting-up values. From the time series

generated, the independent parameters were estimated based on the cited least

square method. As before, the order was varied systematically between first- and

sixth-order models, the corresponding likelihood and penalty terms were calculated

for each parameterized model, and the order was estimated based on the minimi-

zation principle introduced above. We carried out ten separate repeated and inde-

pendent trials so that we could make an inferential statistical comparison of model

order selection accuracy for all five investigated types of models from Tables 5.1

and 5.2. Regarding the penalty terms in the model selection procedure, we did not

only use the corrected Akaike information criterion AICc(n) from Eq. 69, but also

included Akaike’s classic AIC(n) criterion according to Eq. 67 to investigate

whether the heuristic decision rule advocated by Burnham and Anderson (2002)

leads to good selection decisions. This decision rule recommends using AICc

instead of AIC when it holds that T=k < 40 (Eq. 70). T denotes the sample size

and k is the number of freely estimated parameters in the dynamical operator. For

two-dimensional VAR(1) models there are k ¼ 4 freely estimated parameters so for

a sample size of T13 ¼ 160 time steps or larger switching from the corrected

criterion to the original formulation should be considered to obtain an optimal

selection accuracy. For two-dimensional VAR(2) and three-dimensional VAR

(1) models the number of freely estimated parameters is k ¼ 8 and k ¼ 9,

respectively. With respect to the decision rule, in both cases even the maximum

sample size of T17 ¼ 200 time steps can regarded as small and hence the superior

bias properties of AICc should produce a higher accuracy level in model selection.

If the sample size exceeds 500 time steps under the given experimental conditions,

AIC and AICc will strongly tend to consistently select the same model order.

In a similar way to the first Monte Carlo study, Pearson’s chi squared test was

used for each time series of given length to investigate whether there are significant

differences in the histogram distribution of the empirically selected model orders

between the AIC(n), AICc(n), BIC(n) and MIC(n) criteria for all types of models

listed in Tables 5.1 and 5.2 over all ten trials. Where significant differences were

found, the values in the histogram distribution corresponding to the true model

order were compared against each other to decide which criterion leads to highest

accuracy in the model selection task. The level of significance was set to α ¼ 0:05
for all tests. To focus our presentation and discussion of the results of the second

Monte Carlo study on the essential effects, we have not included a report on the

individual chi squared tests in the following chapters. Instead, we will present the

relative frequencies fcs of correct model order selection for the five types of models

investigated in the form of error list plots and only report characteristic parameter

settings in which significant differences in the histogram distribution of the empir-

ically selected model orders were found.
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5.1.3 Results and Discussion

The results of the first Monte Carlo study show that the complexity-based mutual

information criterion MIC(n) identifies the correct order of the VAR(1) model of

the first two overlapping tasks with optimizing parameters according to Eqs. 73, 74,

75 in 933 of 1000 trials. In 64 trials a wrong estimate of n ¼ 2 was obtained, and in

only 4 trials an estimate of n ¼ 3. Higher model orders were never assigned

minimum scores and were therefore never selected. Comparing this histogram

distribution with the corresponding distributions of the alternative criteria, we can

see that the Bayesian information criterion BIC is the only one that leads to a higher

level of accuracy. For the VAR(1) model, BIC assigned the correct model order in

999 cases. Based on AICc, the first model order was selected correctly in 928 trials.

For the VAR(2) model represented by Eqs. 77, 78 and 79, the accuracy of selecting

the true model order based onMIC(n) led to similar results, with a correct selection

of the model order in 930 of 1000 trials. A third-order model was considered to be

the true model in only 15 trials, whilst the first order was wrongly selected in

55 trials. Other model orders never led to minimum scores and were therefore never

selected. The number of correct identifications of the VAR(2) model for BIC and

AICC was much lower, at 813 and 892, respectively. Table 5.3 shows the relative

frequency of the selected model order for the VAR(1) model for all three criteria.

The corresponding frequency distribution for the VAR(2) model is shown in

Table 5.4.

The datasets in Tables 5.3 and 5.4 show that the complexity-based mutual

information criterion MIC enables the selection of the true model orders in approx-

imately 93% of all trials and therefore leads to the highest overall accuracy level.

However, we have to differentiate between first- and second-order models. In the

case of a first-order model, the null hypothesis that the datasets related MIC(n) and
BIC(n) have the same distribution is rejected at the α ¼ 0:05 level (test statistic

x0 ¼ 11:61, p < 0:0404). This test result indicates that, in terms of the histogram

distribution, the novel criterion is inferior to the classic Bayesian approach. Com-

pared to AICc, we did not find any significant differences in accuracy (x0 ¼ 0:84,
p < 0:9738). Regarding the second-order model, the chi squared tests show that the

corresponding null hypotheses related to the distributions of MIC(n) and BIC(n) as
well as MIC(n) and AICC(n) are both rejected at the α ¼ 0:05 level (MIC ‐BIC:
x0 ¼ 55:54, p < 0:0001; MIC� AICc: x0 ¼ 19:16, p < 0:0018). Due to a higher

frequency of correctly identified model orders (Table 5.4), we can conclude that

Table 5.3 Relative frequency of identified model order for VAR(1) model based on the corrected

Akaike information criterion (AICc, Eq. 69), the Bayesian information criterion (BIC, Eq. 71), and
the mutual information criterion (MIC, Eq. 313)

Model order 1 2 3 4 5 6

AICc 0.928 0.062 0.009 0.001 0 0

BIC 0.999 0.001 0 0 0 0

MIC 0.933 0.640 0.003 0 0 0
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under the given experimental conditions the novel criterion leads to superior

accuracy for processes with larger memory depth. The results of the second

Monte Carlo study will give us additional evidence to decide whether this conclu-

sion can be generalized to model selection tasks in much larger areas of the

parameters space, or whether it only applies to the two specific two-dimensional

model representations of PD environments investigated.

The relative frequencies fcs of correct model order selection in the second Monte

Carlo study for bivariate VAR(1) processes based on AIC, AICC, BIC and MIC are

shown in the error list plots in Fig. 5.1. Each plot shows the means as note points,

and the 95% confidence intervals as error bars. The note points have been slightly

offset to make it is easier to see the error bars. The 95% confidence intervals were

calculated under the assumption of a normal distribution and therefore correspond

to	1:96standard deviations. Part (a) of the figure shows the relative frequencies for
first-order processes with complex conjugate characteristic roots (see parameter and

parameter values in part (a) of Table 5.1), whilst part (b) presents the frequencies

for the case of distinct real characteristic roots (see parameters and parameter

values in part (b) of Table 5.1). By comparing both parts of the figure, we can see

that the means and 95% confidence intervals of the relative frequencies are very

similar. A detailed analysis of the data sets also revealed great similarity in the

results of the statistical tests. We will therefore interpret them in a single discussion.

According to the error list plots in both parts of Fig. 5.1, the Bayesian information

criterion BIC leads to the highest accuracy on average and the smallest 95 %

confidence intervals and is therefore the empirically optimal criterion for the

selection of bivariate first-order models under all investigated parameters and

parameter values. Both parts of Fig. 5.1 also show that for time series of length

equal or larger than T2 ¼ 50 time steps the novel mutual information criterion MIC

leads to second highest means and second smallest 95 % confidence intervals. The

corrected Akaike information criterion AICC only revealed higher average accura-

cies than MIC and similarly large 95 % confidence intervals in the minimum sample

size of T1 ¼ 40 time steps. The differences in accuracy here are also significant as

shown by the chi squared tests of the histogram distributions (x0¼51:28, p<0:0342
for first-order processes with complex conjugate characteristic roots; x0¼12:04,
p<0:0342 in the case of distinct real characteristic roots). For time series of

greater length, MIC produces significantly higher accuracies than AICC. This is

due to the fact that AIC and AICc strongly tend to consistently select the same

model order as the sample size increases, in this case on a consistently lower

Table 5.4 Relative frequency of identified model order for VAR(2) model based on the corrected

Akaike information criterion (AICc, Eq. 69), the Bayesian information criterion (BIC, Eq. 71), and
the mutual information criterion (MIC, Eq. 313)

Model order 1 2 3 4 5 6

AICc 0.015 0.892 0.070 0.015 0.008 0

BIC 0.185 0.813 0.002 0 0 0

MIC 0.055 0.930 0.015 0 0 0
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Fig. 5.1 Error list plots of relative frequencies fcs of correct model order selection for bivariate

VAR(1) processes based on Akaike’s classic information criterion (AIC, Eq. 67), the corrected

Akaike information criterion (AICc, Eq. 69), the Bayesian information criterion (BIC, Eq. 71), and
the mutual information criterion (MIC, Eq. 313). T denotes the length of the time series that was

used to estimate the model order and parameters. A pre-sample warm-up interval with 100 time

steps was calculated. A total of 10 separate and independent trials were computed to obtain the

statistic. The plots show mean frequencies as note points and 95 % confidence intervals as error

bars. Note points have been offset to distinguish the error bars. Part (a) of the figure (top) shows the
relative frequencies for VAR(1) processes with complex conjugate characteristic roots. The

parameters and parameter values of these 800 processes are given in Table 5.1, part (a). Part (b)

of the figure (bottom) shows the corresponding frequencies for VAR(1) processes with distinct real
characteristic roots. The parameters and parameter values of these 200 processes are given in

Table 5.1, part (b)
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accuracy level (Fig. 5.1). An interesting finding when comparing BIC and MIC is

that there were no significant differences in the histogram distributions for time

series of length equal or larger than T3¼60 time steps—neither for models with

complex conjugate characteristic roots nor for representations with distinct real

characteristic roots. In other words, the empirical optimality of BIC can only be

proved statistically for the smallest and second smallest sample size. For larger

sample sizes BIC and MIC must be regarded as equally accurate in the class of

bivariate first-order models under the predefined parameters and parameter

values. Both parts of Fig. 5.1 also show that Akaike’s classic criterion does not

lead to an accuracy level that is comparable to the other criteria. For all inves-

tigated lengths of the time series the means were much lower. The chi squared

tests demonstrate that even for the largest sample size of T17¼200 time steps the

differences in the histogram distributions are significant for the 800 models with

complex conjugate characteristic roots x0¼14:45, p<0:0115ð Þ. In contrast, the

200 models with distinct real characteristic roots do not lead to significant

differences for the largest sample size considered x0¼5:14, p<0:3991ð Þ. We

can conclude that the heuristic decision rule introduced by Burnham and Ander-

son (2002) to use AICc instead of AIC when it holds that T=k<40 (Eq. 70) is too

conservative for the investigated first-order models and leads to suboptimal

accuracy. We can still find superior bias properties of AICc for T=k<50.

In an analogous manner to Fig. 5.1, Fig. 5.2 shows the means and 95 %

confidence intervals of relative frequencies fcs of correct model order selection

for the investigated bivariate VAR(2) processes. Part (a) of the figure shows the

note points and error bars of the frequencies corresponding to the 800 models with

complex conjugate characteristic roots. Part (b) presents the results for the 200 gen-

erated processes with distinct real characteristic roots. As to be expected after the

investigation of the first-order models, the means and 95 % confidence intervals of

relative frequencies evolve very similarly over the time series length T under both

conditions and we can discuss the data sets independently from of whether they

have complex conjugate or distinct real characteristic roots. As can be seen in the

error list plots in both parts of Fig. 5.2, for time series of length equal to or larger

than T2 ¼ 50 time steps the Bayesian information criterion BIC leads to the highest

mean accuracy and the smallest 95 % confidence intervals. This makes it the

optimal criterion for the selection of bivariate second-order model under the

given experimental conditions. Parts (a) and (b) of Fig. 5.2 also show that for

sample sizes equal to or larger than T3 ¼ 60 time steps the mutual information

criterion MIC results in the second highest means of selection accuracy and second

smallest 95 % confidence intervals. The corrected Akaike information criterion

AICc only leads to highest average accuracy and the smallest 95 % confidence

interval in the smallest sample sizes of T1 ¼ 40 time steps. In this case there were

significant differences in the histogram distributions for AICc and MIC and for

AICc and BIC (AICc �MIC : x0 ¼ 88:16, p < 0:0001 for complex conjugate

characteristic roots and x0 ¼ 25:82, p < 0:0001 for distinct real characteristic

roots; BIC�MIC: x0 ¼ 5483:16, p < 0:0001 for complex conjugate characteristic

roots and x0 ¼ 60:68, p < 0:0001 for distinct real characteristic roots). For a sample
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Fig. 5.2 Error list plots of relative frequencies fcs of correct model order selection for bivariate

VAR(2) processes based on Akaike’s classic information criterion (AIC, Eq. 67), the corrected

Akaike information criterion (AICc, Eq. 69), the Bayesian information criterion (BIC, Eq. 71), and
the mutual information criterion (MIC, Eq. 313). T denotes the length of the time series that was

used to estimate the model order and parameters. The experimental conditions were the same as in

Fig. 5.1. Part (a) of the figure (top) shows the relative frequencies for VAR(2) processes with

complex conjugate characteristic roots. The parameters and parameter values of these 800 pro-

cesses are given in Table 5.1, part (a). Part (b) of the figure (bottom) shows the corresponding

frequencies for VAR(1) processes with distinct real characteristic roots. The parameters and

parameter values of these 200 processes are given in Table 5.1, part (b)
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size of T2 ¼ 50 time steps the corrected Akaike information criterion AICC also

leads to higher average accuracies than MIC and to slightly smaller 95 %

confidence intervals. This difference in accuracy is again significant (x0 ¼ 38:00,
p < 0:0001 for complex conjugate characteristic roots and x0 ¼ 12:48, p < 0:0287
for distinct real characteristic roots). Similar to the investigation of the first-order

models, the more data points we have at hand to estimate the parameters, the higher

the accuracy of MIC becomes in comparison to AICc (and the lower the

corresponding p-values in the chi squared tests) as AIC and AICc strongly tend to

consistently select the same model order (Fig. 5.2). When we compare BIC and

MIC, the statistical tests show that for the 800 second-order models with complex

conjugate characteristic roots a sample size of equal to or larger than T5 ¼ 80 time

steps is needed to render the differences in histogram distributions insignificant. In

contrast, for the 200 model representations with distinct real characteristic roots a

sample size equal to or larger than T3 ¼ 60 time steps is already sufficient to lead to

insignificant differences in accuracy. Weighting this evidence conservatively, we

can demonstrate empirical optimality of BIC only under the constraint that we have

a sample size of equal to or smaller thanT4 ¼ 70 time steps. For larger sample sizes

BIC and MIC have proven to be equally accurate under the parametric representa-

tion that were defined in parts (a) and (b) of Table 5.1. Similar to the first-order

processes, parts (a) and (b) of Fig. 5.2 show that when AIC is used for model

selection, it is impossible to reach an accuracy level that is comparable to that of the

other criteria. For all investigated lengths of the time series the means are much

lower. The chi squared tests show that even for the largest sample size ofT17 ¼ 200

time steps there are significant differences in the histogram distributions for models

with complex conjugate characteristic roots x0 ¼ 28:11, p < 0:0001ð Þ. For models

with distinct real characteristic roots, however, there were no significant differences

x0 ¼ 4:93, p < 0:4241ð Þ. Due to the fact that we have eight and not only four freely
estimated parameters in the bivariate VAR(2) model representation, the cited

decision rule of Burnham and Anderson (2002) leads to the highest possible

accuracy level over all VAR(2) models under evaluation and therefore seems to

be adequate. Comparing Figs. 5.1 and 5.2, we find that the selection accuracy of the

four criteria is quite similar for bivariate VAR(1) and for VAR(2) processes.

However, the larger the model order and hence the memory depth of the process,

the more data points are needed for the estimation of parameters to reach compa-

rable accuracy levels. From a more qualitative perspective, we consistently find that

the larger the sample size, the larger the differences in accuracy between BIC and

MIC on the one hand, and AICc and AIC on the other. Another consistent finding is

that the classic BIC criterion outperforms the other criteria on average accuracy. In

spite of this fact, even for small sample sizes, the novel MIC criterion leads to

histogram distributions of selected model orders that are not significantly different

from the distributions produced by BIC on the α ¼ 0:05 level.

Finally, Fig. 5.3 shows the means and 95 % confidence intervals of relative

frequencies fcs of correct model order selection for the evaluated three-dimensional

VAR(1) processes. Compared to the two bivariate model representations the results

are unexpected. With the smallest sample size of T1 ¼ 40 time steps, the corrected
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Akaike information criterion AICc already leads to a relative frequency of more than

0.99 and is therefore extremely accurate. This level can only be matched by using the

Bayesian information criterion BIC in the same manner (Fig. 5.3). Differences in the

corresponding histogram distributions were not found x0 ¼ 1:05, p < 0:9588ð Þ.
The accuracy of the novel mutual information criterion MIC is significantly lower

(AICc �MIC: x0 ¼ 95:15, p < 0:0001; MIC� BIC: x0 ¼ 98:12, p < 0:0001).
However, when the time series data is extended to T3 ¼ 60 or more time steps, the

accuracy of MIC becomes significantly higher than AICc as we would expect for

consistency reasons (Fig. 5.3). Similar to the bivariate first-order processes, the chi

squared tests of the histogram distributions related to BIC and MIC show that a

sample size of equal or larger than T3 ¼ 60 time steps is sufficient to render the

differences in distributions insignificant. For equal or more T3 ¼ 60 data points MIC

also leads to significantly higher selection accuracies than AICC. Finally, the chi

squared tests show that for the largest sample size of T17 ¼ 200 time steps there

are no significant differences in the histogram distributions of AICC and AIC

x0 ¼ 4:89, p < 0:43ð Þ. Hence, the heuristic decision rule of Burnham and Anderson

(2002) can be safely applied.

The results of both Monte Carlo studies show that the novel complexity-based

mutual information criterion MIC is not only very effective for making model

selection decisions in specific PD environments but that it appears to be a highly
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Fig. 5.3 Error list plots of relative frequencies fcs of correct model order selection for three-

dimensional VAR(1) processes based on Akaike’s classic information criterion (AIC, Eq. 67), the
corrected Akaike information criterion (AICc, Eq. 69), the Bayesian information criterion (BIC,
Eq. 71), and the mutual information criterion (MIC, Eq. 313). The experimental conditions were

the same as in Fig. 5.1. Only processes with real characteristic roots were investigated. The

parameters and parameter values of these 400 processes are given in Table 5.2
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accurate universal quantity for model selection in the class of vector autoregression

models. Although the results of the more comprehensive second Monte Carlo study

do not confirm the preliminary conclusion from the first study that MIC has a

significantly higher accuracy for second-order processes than AICc and BIC, we

can conclude that MIC is, on average, only outperformed by the Bayesian infor-

mation criterion BIC and leads to the second highest overall accuracy. The 95 %

confidence intervals are also second smallest. Furthermore, the statistical tests of

the histogram distributions show that a sample size of only T3 ¼ 60 time steps is

sufficient in four out of five types of models investigated (see Tables 5.1 and 5.2) to

render the differences between MIC and BIC in distributions insignificant. The only

exception are second-order processes with complex conjugate characteristic roots.

In this case a sample size of T5 ¼ 80 time steps is sufficiently large. Additional

Monte Carlo studies replicating the setups of Mantalos et al. (2010) and Pereira

et al. (2012) have shown that the mutual information criterion MIC is also highly

accurate in selecting the true model order for larger memory depths. Furthermore, it

is important to mention that the formulation of the criterion according to Eq. 314 in

conjunction with Eq. 313 can be generalized to the broader class of linear dynam-

ical systems (see Section 2.9). To do so, we only have to count the free parameters

in the equations generating the state and the observation processes (Eqs. 136 and

137) and (re-)estimate the effective number of parameters by using the introduced

MMI principle.

5.2 Optimization of Project Organization

Following this analysis of concurrent validity of the preferred operationalization of

emergent complexity in model selection tasks based on Monte Carlo experiments,

we will now move our focus on to predictive validity and focus on more

application-oriented problems in project management. In this context, predictive

validity means the degree to which the information-theoretic metric EMC can

predict (or correlate with) standard key performance indicators of PD projects,

such as the total time to complete the process (duration) and total amount of work

done in the process (effort), which are measured at some point in the future during

the (simulated) execution of a project. In order to analyze the predictive validity, we

systematically manipulate different independent variables (such as differences in

productivity between developers and development teams, and the release period of

information about geometrical/topological entities between teams on different

levels of the hierarchy) to see what effect it has on emergent complexity and on

the other cited indicators of the same construct. The analysis is based on simple

parameter studies and additional Monte Carlo experiments. The repeated random

sampling was carried out within a self-developed simulation environment. We will

present and discuss the results of two validation studies with different objectives

and different mathematical models of cooperative work. In the first study we used

the least complex first-order vector autoregression model (VAR(1) model, see

Sections 2.2 and 2.3) to represent the direct cooperative relationships between the
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developers and the corresponding development teams (Schlick et al. 2009). In the

second study we also allowed the occurrence of periodically correlated work

processes (PVAR model, see Section 2.6) that are caused by a two-level hierarchi-

cal coordination structure in which subsystem-level and component-level design

teams cooperate directly and indirectly (Schlick et al. 2011).

The objective of the first study is to design the project organization of an PD

project subjected to concurrent engineering for minimal emergent complexity. To

evaluate emergent complexity the information-theoretic metric EMC is used in the

spectral basis (see Section 2.3) and different settings of cooperative task processing

that can be represented by the basic VAR(1) model are considered. To simplify the

calculations we developed efficient numerical functions based on the most expres-

sive closed-form solution from Eq. 262. Organizational optimization based on a

formal complexity metric in conjunction with vector autoregression models of

cooperative work is an application area that is particularly interesting, because

complex sociotechnical systems can be purposefully designed, and established

management principles and heuristics can be objectively evaluated. Especially in

PD projects requiring intensive cooperation, the classical principles and heuristics

(e.g. constructing self-contained systems, Peters 1991; striving for decoupled

design with minimum information content, Suh 2005; etc.) can fall short because

they focus on the formalized design problem and product and tend to underestimate

the effects of the cooperative problem solving process. As shown in the previous

chapters, the iterative and closely interacting work processes can induce unex-

pected variability and generate effects that cannot be trivially reduced to singular

properties of the constituent tasks. These effects emerge as a result of higher-order

interactions and can lead to critical phenomena of emergent complexity such as the

cited “design churns” (Yassine et al. 2003) or “problem-solving oscillations”

(Mihm et al. 2003; Mihm and Loch 2006). Moreover, from a theoretical point of

view, it is interesting to analyze whether EMC is not only valid for stochastic

processes in the steady state but can also assess the “preasymptotic” behavior of

project dynamics. It is evident that different projects can have different

preasymptotics, according to the speed and kind of convergence to that asymptote.

Some properties that hold in the preasymptote of a complex project can be signif-

icantly different from those that take place in the long run, and we want to

investigate in the following chapters whether the relevant features, in terms of

duration and effort, are captured by the complexity metric. Moreover, a

nonnegligible percentage of PD projects in industry show divergent work

remaining that does not have any asymptote at all. Maintaining the terminology of

Section 2.1 we refer to these projects as unstable, because the work remaining then

exceeds all given limits. If a project is unstable, a complete redesign of tasks and their

interactions is necessary. Although divergent behavior of projects is critical from a

practical point of view, it can be predicted easily within the framework of the

developed theory of cooperative work and need not be analyzed further. This is

because EMC simply assigns infinite complexity values to a divergent process as one

would expect. For instance, for first-order models defined in Eq. 8 it is not difficult to

see that the infinite sum in Eq. 247 diverges if the dominant eigenvalue λ1(A0) of

WTM A0 has a magnitude larger than 1. The equation λ1 A0ð Þj j ¼ 1 determines the
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boundary between stable and asymptotically stable regimes. Recall from Section 2.2

that the first-order model is asymptotically stable in the sense of Lyapunov (Eq. 4) if

and only if the spectral radius of WTM A0 is strictly less than one and the matrix in

Eq. 4 is positive definite. A first-order model without diffusion and unit spectral

radius ρ A0ð Þ ¼ 1 would steadily move away from the equilibrium state xe and

therefore only be marginally stable (Halanay and Rasvan 2000).

5.2.1 Unconstrained Optimization

We start the studies on optimizing project organization by formulating an

unconstrained optimization problem and solving it through a complete enumeration

of organization designs satisfying certain boundary conditions. In a second step, a

constrained optimization problem is formulated and solved by applying the same

principle. The constraint is that the expected total amount of work xtot according to
Eq. 17 is constant among the experimental conditions.

5.2.1.1 Methods

The developed objective function in our first study quantifies the complexity of a

given organization design under the dynamic regime of the introduced state equa-

tions (Eq. 8 for original state space coordinates and Eq. 39 for spectral basis). We

seek to minimize emergent complexity by systematically choosing the optimal

project organization from within an allowed set. The elements of the set are distinct

project organization designs that satisfy boundary conditions on productivity,

cooperative relationships and performance variability. The set is complete in the

sense that valid alternative organization designs with different asymptotic behavior

do not exist. To simplify the problem formulation, the elements of the set are

represented by WTMs and the corresponding covariance matrices. The covariance

matrices are linear functions of the WTMs.

In the first optimization study, we consider a small but complete PD project that

is organized according to the management concept of concurrent engineering (CE,

see definition of Winner et al., 1988, in Chapter 1) and involves different teams. We

decided to model and simulate a complete project and not only a distinct phase in

order to demonstrate the introduced modeling concepts in a holistic manner. This

also simplifies the interpretation of the results, because, in this case, the time to

complete the process corresponds to the known project duration and the amount of

work done in the process corresponds to the project effort involved in completing

all tasks. The project duration is also termed the finishing time in the following. We

focus on three CE teams in the project whose work is coordinated by a system-

integration engineer. Each CE team has three members, with each team member

i processing one development task i with an autonomous task processing rate aii.
Tasks 1, 2 and 3 are processed by the members in team 1, tasks 4, 5 and 6 are

processed by team 2 and tasks 7, 8 and 9 by team 3. The teams work on a component
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design level (see the V-model of the systems engineering process from Fig. 2.11). A

work transformation from one time step to the next represents 1 week of develop-

ment. Due to the complexity of the system to be developed, the finishing time of the

complete project is on average more than 4 years of continuous development even

under the most favorable organizational conditions (cf. Section 5.2.1.2). Similar to

the modeling example in Section 2.8, the vector components of the state variable Xt

represent the relative number of labor units required to complete the tasks. The

tasks in each team are “fully coupled” with respect to the components to be

designed (fully interdependent tasks, see Section 5.2), and the corresponding

off-diagonal elements aij i 6¼ jð Þ of the WTM indicate a symmetric intensity of

cooperative relationships that is encoded by the independent parameter f 1 > 0. To

avoid additional reinforcement loops, it is assumed that the three CE teams are not

directly cooperating. The average task processing rate of the developers is

represented by the independent parameter a 2 0; 1ð �. The individual task processing
rates must not be equal but can vary around the mean by an offsetΔa > 0. There are

three distinct productivity levels: (1) the most productive developers were able to

process their tasks at rate aii ¼ a� Δa ; (2) the least productive developers

processed their tasks at rateaii ¼ aþ Δa ; and (3) averagely productive developers
processed their tasks at rate aii ¼ a. Because the three CE teams are not directly

cooperating, boundary-spanning activities have to be coordinated by a 10th system-

integration engineer i ¼ 10ð Þ who exchanged information directly with all nine

developers. The productivity of this engineer is average, and it holds that a10,10 ¼ a
for task 10. The additional independent parameters 0 < f 2 
 a and 0 < f 3 
 a
represent the strength of the forward and backward informational couplings

between the nine developers and the system-integration engineer. In real projects,

for instance in the German automotive industry, the system-integration engineer is

usually a member of a superordinate subsystem-level or module-level team coor-

dinating the development work on large scale (e.g. powertrain, door module).

However, for the sake of simplicity, in what follows we ignore this additional

hierarchical coordination structure (see systems engineering considerations in

Section 2.6). We also do not consider other technical or organizational interfaces

between teams. In addition to the cited boundary conditions holding on individual

and team levels, we assumed that the mean task processing rate ā of all individuals

in the entire project is a. We also assume that the project is asymptotically stable

and that the means converge to the fix point of no remaining work for all tasks. In

order to guarantee asymptotic stability, the values of the independent parameters a,
Δa, f1, f2 and f3 must be carefully chosen, so that for all feasible project organization

designs the dominant eigenvalue λ1[.] of the corresponding WTM has a magnitude

smaller than 1. By doing so, only finite complexity values are assigned.

The optimization of project organization aims to assign team members with

different productivity levels a� Δa, aþ Δa or að Þ to the three CE teams such that

the emergent complexity in the sense of the EMC metric can be kept to a minimum.

Under the given boundary conditions a total of 40,320 assignments of team

members can be distinguished. However, due the symmetry of cooperative relation-

ships within teams, these assignments can be reduced to eight essential assignments
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and therefore the allowed set consists of only eight distinct work transformation

matrices (WTMs). The additional assignments are simply permutations of the eight

basic WTMs and therefore lead to identical complexity values. The eight distinct

WTMs can be ordered according to the total variance of the productivity rates over

all three teams. In the following we also term the total variance the “diversity” of

the organization design, because it represents the accumulated deviation of the

individual productivity rates from the mean rate a. Equation 315 shows the first

WTM A01 from the allowed set, where the total variance of productivity rates is

maximal and therefore represents a organization design with maximum diversity.

This is due to the fact that the mean task-processing rate a holds not only for the

entire project but also on the level of the three CE teams. For each team the variance

of productivity rates is Δa2. Hence, the total variance is 3Δa2.

A01 ¼

a�Δa f 1 f 1 0 0 0 0 0 0 f 3
f 1 a f 1 0 0 0 0 0 0 f 3
f 1 f 1 aþΔa 0 0 0 0 0 0 f 3
0 0 0 a�Δa f 1 f 1 0 0 0 f 3
0 0 0 f 1 a f 1 0 0 0 f 3
0 0 0 f 1 f 1 aþΔa 0 0 0 f 3
0 0 0 0 0 0 a�Δa f 1 f 1 f 3
0 0 0 0 0 0 f 1 a f 1 f 3
0 0 0 0 0 0 f 1 f 1 aþΔa f 3
f 2 f 2 f 2 f 2 f 2 f 2 f 2 f 2 f 2 a

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
ð315Þ

Equation 316 shows the WTM A08 as the last element of the allowed set.

A08 ¼

a�Δa f 1 f 1 0 0 0 0 0 0 f 3
f 1 a�Δa f 1 0 0 0 0 0 0 f 3
f 1 f 1 a�Δa 0 0 0 0 0 0 f 3
0 0 0 a f 1 f 1 0 0 0 f 3
0 0 0 f 1 a f 1 0 0 0 f 3
0 0 0 f 1 f 1 a 0 0 0 f 3
0 0 0 0 0 0 aþΔa f 1 f 1 f 3
0 0 0 0 0 0 f 1 aþΔa f 1 f 3
0 0 0 0 0 0 f 1 f 1 aþΔa f 3
f 2 f 2 f 2 f 2 f 2 f 2 f 2 f 2 f 2 a

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
ð316Þ

WTM A08 represents an organization design with zero productivity variance on

team level and therefore also zero total variance. It is evident that this design has

minimum diversity. In terms of human-centered organization design and manage-

ment we have an extreme kind of “selective” team organization because CE team

1 only includes team members with maximum productivity, whilst team 3 consist

only of persons with low productivity. To conserve space we do not show all eight
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distinct WTMs explicitly but present the essential properties of the team organiza-

tion in parametric form in Table 5.5.

For all eight organization designs in Table 5.5, we assumed that the standard

deviation cii of performance fluctuations (Eq. 10) influencing task i in the project is
proportional to the task processing rate aii i ¼ 1, . . . , 10ð Þ : the faster a task is

processed, the less it is perturbed, and the smaller the standard deviation

cii � aiið Þ. The c2ii’s are the elements along the principal diagonal of covariance

matrix C j2 1;...;8f g (see Eq. 10). The proportionality constant is r ¼ 0:02. We also

assumed that correlations between the performance variability of tasks do not exist

and that the covariance matrices are diagonal. We therefore have the following

covariance matrices related to the WTMs A01 and A08 that represent organization

designs with maximum and minimum diversity:

C1

¼ r2
� �

:

a�Δað Þ2 0 0 0 0 0 0 0 0 0

0 a2 0 0 0 0 0 0 0 0

0 0 aþΔað Þ2 0 0 0 0 0 0 0

0 0 0 a�Δað Þ2 0 0 0 0 0 0

0 0 0 0 a2 0 0 0 0 0

0 0 0 0 0 aþΔað Þ2 0 0 0 0

0 0 0 0 0 0 a�Δað Þ2 0 0 0

0 0 0 0 0 0 0 a2 0 0

0 0 0 0 0 0 0 0 aþΔað Þ2 0

0 0 0 0 0 0 0 0 0 a2

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA
ð317Þ

Table 5.5 Overview of the eight distinct assignments of team members with different produc-

tivity levels a� Δa, aþ Δa or að Þ to the three CE teams

WTM

mean productivity variance productivity

team 1 team 2 team 3 team 1 team 2 team 3

A01 a a a Δa2 Δa2 Δa2

A02 a a� 1=3Δa aþ 1=3Δa Δa2 4/3Δa2 1/3Δa2

A03 a� 1=3Δa a aþ 1=3Δa 4/3Δa2 0 4/3Δa2

A04 a a� 1=3Δa aþ 1=3Δa Δa2 1/3Δa2 4/3Δa2

A05 aþ 1=3Δa aþ 1=3Δa a� 2=3Δa 4/3Δa2 1/3Δa2 1/3Δa2

A06 a� 2=3Δa a aþ 2=3Δa 1/3Δa2 Δa2 1/3Δa2

A07 a� 2=3Δa a� 1=3Δa aþ Δa 1/3Δa2 1/3Δa2 0

A08 a� Δa a aþ Δa 0 0 0

The WTMs A01 and A08 representing project organization designs with maximum total variance

3Δa2 and zero total variance of autonomous productivity rates are shown explicitly in Eqs. 315 and

316. The mean productivity rate over all three CE teams is always a
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C8

¼ r2
� ��

a�Δað Þ2 0 0 0 0 0 0 0 0 0

0 a�Δað Þ2 0 0 0 0 0 0 0 0

0 0 a�Δað Þ2 0 0 0 0 0 0 0

0 0 0 a2 0 0 0 0 0 0

0 0 0 0 a2 0 0 0 0 0

0 0 0 0 0 a2 0 0 0 0

0 0 0 0 0 0 aþΔað Þ2 0 0 0

0 0 0 0 0 0 0 aþΔað Þ2 0 0

0 0 0 0 0 0 0 0 aþΔað Þ2 0

0 0 0 0 0 0 0 0 0 a2

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

:

ð318Þ

We assumed that all ten parallel tasks were initially 100 % incomplete and the

initial state is

x0 ¼

1

1

1

1

1

1

1

1

1

1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
: ð319Þ

In conformity with the basic principle of diversity management, namely to manage

teams in organizations so that the potential advantages of diversity are maximized

while its potential disadvantages are minimized (Cox 1994), it is hypothesized that

for significant individual differences between developers attributable to their skills,

abilities or access to information (Lazear 1998, 1999), “productivity balancing” at

the team level minimizes emergent complexity. Productivity balancing at the team

level means that in each of the three CE teams, members with high productivity

a� Δað Þ, low productivity aþ Δað Þ and average productivity (a) directly cooper-

ate and that the average task processing rate a does not only hold for the whole

project but also on the team level. Such an assignment was shown in WTM A01

(Eq. 315). Productivity balancing is a self-developed concept that borrows some

highly effective elements of the popular concept of production leveling (see

e.g. Liker 2004) and transfers them from the domain of manufacturing systems to

PD projects and knowledge-intensive service processes in such a way that cooper-

ative work is also designed on human terms. Production leveling, also known as
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production smoothing, is a rather pragmatic concept for improving efficiency and

not the working conditions. It was vital to developing production efficiency in the

Toyota Production System and lean production (Liker 2004). The goal is to produce

parts, components and modules at a constant rate so that further processing and

assembly can also be carried out at a constant rate with small variance. If a later

process step varies its output in terms of timing and quality, the variability of these

variables increases in a demand-driven system as we move up the line towards the

earlier processes and therefore tends to excite demand fluctuations. In textbooks,

this phenomenon is termed demand amplification (see e.g. Liker 2004). It can also

spill over into the complete supply chain, leading to the well-known bullwhip effect

(see e.g. Sterman 2000). For this reason, demand amplification induced variability

of internal or external ordering patterns must be reduced as far as possible to

improve overall productivity in manufacturing systems. The concept of productiv-

ity balancing also aims to increase the productivity of an organization and the

performance of work teams and individuals. The general idea, however, is not to

standardize the work and process the work tasks at a constant rate, which would

severely limit the possible scope of action and stifle creative expression in product

development, but rather to make the cited basic principle of diversity management

(Cox 1994) operational and find optimal (or near optimal) assignments of team

members with different productivity levels due to individual differences. This

allows the project work to be carried out effectively and efficiently without the

cited “design churns” (Yassine et al. 2003) or similar critical emergent phenomena

of complex sociotechnical systems that lead to unacceptably high levels of stress

and create an unbearable workload. Productivity balancing also makes it possible to

keep developing human knowledge, skills and abilities through cooperation and

communication. Productivity balancing is not a demand-driven concept in the way

that production leveling is. Rather, it is a holistic approach to systematically

designing interactions between humans, tasks and products/services that considers

performance fluctuations as an opportunity to innovate and learn. The objective is

to increase awareness of emergent phenomena that are characteristic to open

organizational systems and to leverage from them the greatest advantage for the

individuals and the work teams. In large-scale development organizations, produc-

tivity balancing is most effective if the incentive systems support the coherence of

the work teams and if the individual differences in skills and abilities are not too

large. Furthermore, the productivity goals that are set by the management must be

attainable and realistic and the corresponding action plans must be compatible. In

the light of the concept of productivity balancing, we can reinterpret the above

“productivity balancing” hypothesis and formulate a complementary “team diver-

sity” hypothesis positing that maximum productivity diversity in teams leads to

working conditions with minimum self-generated complexity and therefore reduces

the potential risks of stress caused by an excessive workload and a narrow scope of

action. In the framework of the developed theory and models of cooperative work,

both aspects are just two sides of the same coin.

To verify these complementary hypotheses, all distinct eight assignments of team

members to the three CE teams were analyzed. For each assignment the value of the

complexity measure EMC was calculated on the basis of Eq. 262. The base set
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of independent parameters was θ1¼ a¼0:9 f 1¼0:01 f 2¼0:01 f 3¼0:005½ �. The
productivity offset Δa was varied systematically on levels Δa1¼0:001 (small

difference) and Δa2¼0:01 (large difference). The small productivity difference

was primarily of theoretical interest and served as the baseline condition. As men-

tioned earlier in Section 5.2, in addition to EMC as an innovative information-theory

key performance indicator (KPI) the project duration Tδ and the total amount of work

xtot involved in completing all tasks were considered to be conventional KPIs based

on a sample of 10,000 independent Monte Carlo runs for all valid assignments. The

means and standard deviations were calculated and evaluated for both KPIs.

According to the model formulation from Chapter 2, the project duration Tδ,l in
each run l (also termed replication l in what follows) is determined on the basis of

the decision rule that the work remaining is at most 100δ percent for all p tasks and

therefore that the one-dimensional stopping criterion δ is met (see Section 2.1). In the

Monte Carlo experiments, we worked with a stopping criterion of δ¼0:05. Similarly,

the total effort xtot,l involved in completing the tasks in each run l is determined by

accumulating the work remaining over all time steps and all ten tasks until the cited

stopping criterion is satisfied. The time units are [weeks], the effort units are [work

measurement units], abbreviated as [wmu]. The [wmu] refer to the units of the vector

components of the state variable Xt and therefore represent the relative number of

labor units required to complete the tasks. To simplify the discussion in the following

chapter, we refer to the mean total amount of work xtot done over all tasks as the mean

total amount of work. Clearly, the larger the mean project duration T or mean total

amount of work xtot and the corresponding standard deviations, the lower the

performance under the given organizational boundary conditions. We also calculated

the expected total amount of work xtot done over all tasks analytically according to

Eq. 17. We accumulated the work over an infinite past history and therefore did not

take the stopping criterion of theMonte Carlo experiments into account. Furthermore,

the expected duration Tσ¼0 of the project was considered under the assumption that

the processing of the development tasks is unperturbed and therefore the variances

and covariances incorporated in the covariance matrix of unpredictable performance

fluctuations are all zero. The expected duration was determined by inspecting the

unperturbed state vectors for increasing time intervals T (Eq. 15), until all vector

components are smaller than the stopping criterion of δ¼0:05.
In addition, we analyzed the data sets with the conventional KPIs which were

calculated in the Monte Carlo experiments with respect to the assumption that they

come from a log-normal distribution function. The log-normal distribution is a

reasonable tool for modeling stochastic execution times of work processes because

it possesses the following properties (Baker and Trietsch 2009; Trietsch et al.,

2012): (1) it is strictly positive, (2) its coefficient of variation is not restricted, (3) it

can approximate sums of positive random variables, (4) it can represent the

relationship between (limited) work capacity and execution time and (5) it can

also represent the ratio between actual and estimated execution time. The last

property greatly facilitates parameter estimation by regression in applied studies.

Similar arguments hold true when we want to model the cumulative effort

expended. The stochastic model developed by Huberman and Wilkinson (2005)
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leads to log-normally distributed finishing times for the modeled design project.

The most important effect represented by a log-normal distribution function,

regardless of whether we are modeling execution times or cumulative effort, is to

shift the average dynamics away from the unperturbed course leading to skewed

data sets. This effect was not only observed by Huberman and Wilkinson (2005) in

Monte Carlo experiments but was also investigated in detail through analytical

considerations. However, the Huberman-Wilkinson model incorporates multiplica-

tive “noise” instead of non-predictable performance fluctuations having an additive

effect (cf. Eq. 8). The main question in our context is therefore whether the

developed basic model of cooperative work in conjunction with the predefined

stopping criterion can simulate the special kind of dynamics that leads to

log-normally distributed data sets. To evaluate whether the data sets on time and

effort were coming from the log-normal distribution, quantile-quantile (Q-Q) plots

(see e.g. Field 2009) were computed for all experimental conditions. In order to

simplify interpretation of the scales, the natural logarithm of the data points was

calculated and plotted against the quantiles of a normal distribution. For each

condition, we estimated the parameters using a maximum likelihood estimator

(see e.g. Kundu and Raqab 2007). If the Q-Q plots showed that the quantiles of

the theoretical and data distributions agree and therefore the plotted points fall on or

are near the line y ¼ x, the log-likelihood functions of the simulated time and effort

values were calculated on the basis of the formula given in Kundu and Raqab

(2007). Note that in this formula the natural logarithm is used as in the definition of

the log-likelihood function for a LDS from Eq. 183 and not the binary logarithm.

The computed log-likelihood values are denoted by LL in the following. Further-

more, as the log-normal distribution shares many properties with the generalized

Rayleigh distribution and both can be used effectively to analyze skewed data sets,

we used the likelihood ratio test developed by Kundu and Raqab (2007) to discrim-

inate between the two distribution functions. The test statistic of this test is based on

the difference between the log-likelihood values for the maximizing parameters.

The generalized Rayleigh distribution was introduced recently by Surles and

Padgett (2001). It does not only have a scale parameter λ, like the conventional

Rayleigh distribution, but also a shape parameter α. The shape of the density

function only depends on α. It is known that for α � 1=2, the density function is

strictly decreasing and for α > 1=2, it is unimodal (Kundu and Raqab 2007). The

density functions of a generalized Rayleigh distribution are always right skewed.

For α ¼ 1 the generalized Rayleigh distribution corresponds to the conventional

Rayleigh distribution which is quite popular in project management to estimate cost

and effort. The conventional Rayleigh distribution was initially proposed by

Norden (1970) as a statistical model of the manpower utilizations during a project.

Putnam (1978) was the first to apply this model to software development projects.

Lee, Hogue and Hoffmann (1993) evaluated the agreement of the model with

observed outlays in a wide variety of defense acquisition programs which were in

the development phase. Additional studies by Lee and others (see e.g. Lee

et al. 2002) using data from Earned Value Management systems on research and

development projects have shown that the cost can be accurately estimated using
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the Rayleigh distribution. Because of similar teamwork mechanisms in engineering

projects, Bennett and Ho (2014) and others advocate modeling the cumulative

effort to complete a phase of work by a Rayleigh distribution. Following the

procedure of Kundu and Raqab (2007), we calculated the probability of correct

selection of the log-normal and generalized Rayleigh distribution functions in each

case through additional Monte Carlo simulations. We replicated the selection

process 100 times to obtain an estimate of the probability of correct selection.

The Mathematica software package from Wolfram Research was used to carry

out the Monte Carlo experiments and to compute the dependent variables.

5.2.1.2 Results and Discussion

To get an impression of the dynamics of concurrent task processing and performance

variability, Fig. 5.4 shows the results of a typical run of the Monte Carlo simulation

for WTM A01 (Eq. 315) representing the project organization design with maximum

productivity diversity in teams. The initial state x0 is given in Eq. 319. A large

productivity offset was simulated and therefore the complete parameter vector is

work
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Fig. 5.4 List plot of work remaining in a simulated product development project, in which the

mean task-processing rate a holds not only for the entire project but also on the level of the three

CE teams. This project organizational design leads to maximum diversity of autonomous task

processing rates within teams (see WTM A01 in Eq. 315). The concurrent processing of all ten

development tasks is shown. The data are based on a single run of the Monte Carlo experiment

with initial state x0 (Eq. 319). The plot also shows the expected work remaining as dashed curves.

The Monte Carlo experiment was based on state equation 8. A large productivity offset was

simulated and therefore the parameters were a ¼ 0:9, f 1 ¼ 0:04, f 2 ¼ 0:01, f 3 ¼ 0:005 and

Δa ¼ 0:01. The stopping criterion of 5 % is marked by a dashed line at the bottom of the plot
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θ1¼ a¼0:9 f 1¼0:04 f 2¼0:01 f 3¼0:005 Δa¼Δa2¼0:01½ �:Note that in the run
shown, the task processing was simulated in a way that meant negative values of

work remaining could not occur. If the unpredictable performance fluctuations

for a certain task had led to a negative value of work remaining in the next time

step, the corresponding vector component was set to zero for the next and all

following time steps. In this sense, the zero state was “absorbing” for all state

vector components. The same procedure was also used to calculate the other

typical runs given in Figs. 5.5, 5.17, 5.18 and 5.19.

Even though the chosen productivity offsetΔa2 ¼ 0:01 is large in the run shown
in Fig. 5.4 and the intensity of cooperative relationships f 1 ¼ 0:04ð Þ is high, the

time series of work remaining decay quite smoothly to the fixpoint of zero work

remaining and do not show heavy performance fluctuations around mean values. In

contrast to this, Fig. 5.5 shows a typical simulation run for WTM A08 according to

Eq. 316 representing the organization design with minimum diversity. The same

initial state and parameter vector were used. As can be seen in Fig. 5.5, this kind of

“unbalanced” organization design with minimum diversity within development

teams leads to larger performance fluctuations, especially in tasks 7, 8 and

9, which were processed slowly.

Knowing that it is not very meaningful to discuss individual traces of work

remaining and their deviation from the means for different organization designs

work
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Fig. 5.5 List plot of work remaining in a simulated product development project with minimum

diversity of autonomous task processing rates within teams (see WTM A08 in Eq. 316). The

concurrent processing of all ten development tasks is shown. The data are based on a single run of

the Monte Carlo experiment. The plot also shows the expected work remaining as dashed curves.
The other simulation conditions and parameters were the same as in Fig. 5.4. The stopping

criterion of 5 % is marked by a dashed line at the bottom of the plot
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under the given initial and boundary conditions, we also calculated a statistic for

both WTMs A01 and A08 based on 100 simulated projects and visualized them in the

form of error list plots. These plots are given in Figs. 5.6 and 5.7. They show the

mean values as note points for each time step, and the 95% confidence intervals as

error bars. To simplify the visual analysis, the 95% confidence intervals were

calculated under the assumption of a normal distribution and therefore correspond

to 	1:96 standard deviations as in the previous figures.

A comparison of the error list plots from Figs. 5.6 and 5.7 shows that the

organization design with minimum diversity (encoded by WTM A08) leads to

significantly slower processing of development tasks 7, 8 and 9, which is to be

expected as the least productive developers are all in team 3. It also leads to much

stronger growth in the performance variability of that team over the first 300 time

steps. Furthermore, this increased performance variability spills over into the other

design teams and leads to slightly enhanced correlations between all work

processes.

The analytical analyses show that for a small productivity offset Δa1 ¼ 0:001ð Þ
but high intensity of cooperative relationships f 1 ¼ 0:04ð Þ, the organization design
has little influence on complexity. The lowest complexity value under these con-

ditions is EMC A01ð Þ ¼ 14:205 and the largest value is EMC A01ð Þ ¼ 14:2068. The
corresponding expected total amount of work is xtot A01ð Þ ¼ 680:851 and

xtot A08ð Þ ¼ 682:092. The maximum difference in the complexity variable EMC

among the valid assignments is only 0.00163. Surprisingly, this holds, although the
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Fig. 5.6 Error list plot of work remaining in simulated PD projects with maximum diversity of

autonomous task processing rates within teams (see WTM A01 in Eq. 315). The other simulation

conditions and parameters are the same as in Fig. 5.4. A total of 100 separate and independent runs

were calculated. The plot shows means of work remaining as note points and 95 % confidence

intervals as error bars. Note points have been offset to distinguish the error bars
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intensity of cooperative relationships is close to the bound of project divergence.

Interestingly, in case of such a small productivity offset the Monte Carlo experi-

ments show that the mean project duration differs by only 0.65 % among the eight

valid assignments. The shortest mean project durationT A01ð Þ is 213.019 [weeks]. It
is obtained for WTM A01, which was assigned the minimum complexity value. The

standard deviation is 36.50 [weeks]. The largest mean project duration is T A08ð Þ
¼ 213:73 [weeks]. As expected, it is obtained for WTM A08 representing a process

with maximum complexity. The standard deviation is 37.05 [weeks]. In the case of

unperturbed task processing with zero performance fluctuations the differences in

the project duration are a little larger and differ by 0.98% among the eight valid

assignments. As expected, the shortest project duration ofTσ¼0 A01ð Þ ¼ 206 [weeks]

is obtained for WTM A01, while the longest finishing time of Tσ¼0 A08ð Þ ¼ 211

[weeks] occurs in the organization design represented by WTM A08. We can

conclude that if the project manager is able to “balance” the productivity of all

team members through a good design of the work processes and the fair sharing of

resources with such a small offset, the organization design has little effect. This

finding holds for all considered KPIs and all mean task processing rates a that

guarantee the asymptotic stability of the process (see Section 2.1), because all tasks

are processed on very similar time scales.

However, when the productivity offset is increased to Δa2 ¼ 0:01—ceteris

paribus—the complexity differences among the eight distinct assignments of

team members grow significantly. The corresponding EMC values are shown in

0.2

100 200 300 400

–0.2

0.4

0.6

0.8

1.0

task 1

task 2

task 3

task 4

task 5

task 6

task 7

task 8

task 9

task 10

stopcrit.

time [weeks]

work

remaining

Fig. 5.7 Error list plot of work remaining in simulated PD projects with minimum diversity of

autonomous task processing rates within teams (see WTM A08 in Eq. 316). The other simulation

conditions and parameters are the same as in Fig. 5.4. A total of 100 separate and independent runs

were calculated. The plot shows means of work remaining as note points and 95 % confidence

intervals as error bars. Note points have been offset to distinguish the error bars
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Fig. 5.8 and are given in numeric form in the second column of Table 5.6.

Interestingly, the EMC values increase monotonically with the total variance of

autonomous productivity rates over all three teams (see Table 5.5). Hence, the

complexity metric partially acts as a scale parameter of the autonomous task

processing rates.

The most important finding from the analysis of the eight organization designs

that are encoded by the WTMs A01 to A08 from Table 5.5 is that an assignment with

Fig. 5.8 Effective measure complexity for the eight organization designs that are encoded by the

WTMs A01 to A08 from Table 5.5. The complexity values were calculated under the assumption

that the productivity offset between team members is large and it holds thatΔa ¼ Δa2 ¼ 0:01. The
additional parameters were a ¼ 0:9, f 1 ¼ 0:04, f 2 ¼ 0:01 and f 3 ¼ 0:005

Table 5.6 Means and

standard deviations (SD) of

the project duration and total

amount of work that were

calculated in the Monte Carlo

experiments for the eight

distinct assignments of team

members with different

productivity levels to the

three CE teams

WTM EMC

Project duration Total amount of work

Mean SD Mean SD

A01 14.266 220.435 38.45 675.999 55.99

A02 14.283 230.344 43.80 689.649 59.33

A03 14.286 232.692 45.00 692.033 60.30

A04 14.288 234.233 45.18 694.933 60.71

A05 14.319 246.673 47.97 716.940 64.41

A06 14.347 268.479 59.11 742.150 71.87

A07 14.446 341.481 87.21 840.662 99.10

A08 14.468 344.091 86.34 855.171 99.93

These assignments are encoded by the WTMs A01 to A08

according to Table 5.5. The experiments are based on state

equation 8. The sample consisted of 10,000 independent runs.

In these runs all tasks were initially 100 % incomplete. Simula-

tion conditions and parameters are the same as in Fig. 5.9. In

addition, the EMC values that were obtained on the basis of the

closed form solution from Eq. 262 are shown in the second

column
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balanced productivity at the team level and therefore maximum diversity of pro-

ductivity within teams leads to minimal complexity and it holds that

EMC A01ð Þ ¼ 14:266. This supports the cited “productivity balancing” hypothesis

and the complementary “team diversity” hypothesis. The expected total amount of

work is xtot A01ð Þ ¼ 701:939. In the case of unperturbed task processing with zero

performance fluctuations, a finishing time of Tσ¼0 A01ð Þ ¼ 215 [weeks] was calcu-

lated. The corresponding histogram of the durations that were computed on the

basis of a sample of 10,000 simulated projects is shown in Fig. 5.9. In this and the

following histograms we overlay the probability density function of a log-normal

distribution for comparison. The sample mean is T A01ð Þ ¼ 220:435 [weeks]. The

standard deviation is 38.45 [weeks]. The corresponding histogram of the total

amount of work xtot in the simulated projects is shown in Fig. 5.10. The sample

mean is xtot A01ð Þ ¼ 675:888 [weeks] and the standard deviation is 55.988 [weeks].

Conversely, CE team building toward low diversity (above- or below-average

productivity) at the team level significantly increases emergent complexity. An

extreme example of organization design with zero total variance of autonomous

task processing rates and therefore minimum diversity within teams was shown in

WTM A08 (Eq. 316 and Table 5.5). In this case, the calculated complexity value is

at a maximum, with EMC A08ð Þ ¼ 14:468. The corresponding expected total

amount of work is xtot A08ð Þ ¼ 886:207. Under the assumption of unperturbed

task processing, a project duration of Tσ¼0 A08ð Þ ¼ 404 [weeks] is obtained. The

histogram of the project duration that was calculated in the Monte Carlo
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Fig. 5.9 Histogram of the project duration calculated for the organization design with maximum

diversity of autonomous task processing rates within teams. This design is encoded by WTM A01

in Eq. 315. The total variance of autonomous productivity rates is 3Δa2 (Table 5.5). The sample

consisted of 10,000 independent runs. In these runs all tasks were initially 100 % incomplete. The

Monte Carlo experiment was based on state equation 8. The parameters were a ¼ 0:9, f 1 ¼ 0:04,
f 2 ¼ 0:01, f 3 ¼ 0:005 andΔa ¼ 0:01. The effective measure complexity is EMC A01ð Þ ¼ 14:266.
We overlaid the probability density function of a log-normal distribution for comparison
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experiments is shown in Fig. 5.11. The mean grows fromT A01ð Þ ¼ 220:467 [weeks]

in the case of maximum diversity (Fig. 5.9) to T A08ð Þ ¼ 344:091 [weeks] in the

extremely nondiverse case shown. Furthermore, the standard deviation increases

from 38.449 to 86.34 [weeks], and therefore the risk of schedule overruns grows

significantly. The growth of means and standard deviation of the project duration in

the Monte Carlo experiments is not unexpected because teams 1 and 2 and the

system-integration engineer have to wait for the members of team 3 to finish their

work. Therefore, in spite of performance fluctuations the project duration is largely

determined by the least productive team. The corresponding histogram of the total

amount of work xtot is shown in Fig. 5.11. The sample mean is xtot A08ð Þ ¼ 855:171
[weeks] and the standard deviation is 99.93 [weeks]. For the other six WTMs

representing cases of team diversity in between the extremes, the means and

standard deviations of the project duration, as well as the total amount of work

grow monotonically with EMC. The detailed values are shown in Table 5.6. Hence,

the complexity metric is a good predictor for both KPIs.

Detailed analyses have shown that the larger the emergent complexity, the more

the evolution toward an equilibrium state of work remaining can differ from the

unperturbed process. As a result, projects that in the absence of unpredictable

performance fluctuations would converge smoothly to the desired goal state of

zero remaining work can deviate significantly from this path. When emergent

complexity is low, convergence to zero remaining work is smooth, and the project

duration as well as the total amount of work can be statistically accurately modeled

0 250 500 750 1000 1250 1500

500

1000

1500

2000

2500

absolute 

frequency

total work

[wmu]

Fig. 5.10 Histogram of the total amount of work calculated for the organization design with

maximum diversity of autonomous task processing rates within teams. This design is encoded by

WTM A01 in Eq. 315. The sample consisted of 10,000 independent runs. In these runs all tasks

were initially 100 % incomplete. The Monte Carlo experiment was based on state equation 8.

Simulation conditions and parameters are the same as in Fig. 5.9. The effective measure com-

plexity is EMC A01ð Þ ¼ 14:266. The expected total amount of work is xtot A01ð Þ ¼ 680:851. We

overlaid the probability density function of a log-normal distribution for comparison
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by log-normal distributions with small variance and therefore “short tails” (see

Figs. 5.9 and 5.10). Above certain complexity thresholds, however, the distributions

undergo a visible transition to a long-tailed log-normal form (see Figs. 5.11 and 5.12)
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Fig. 5.11 Histogram of the project duration calculated for the organization design with minimum

diversity of autonomous task processing rates within teams. This design is encoded by WTM A08

in Eq. 316. The total variance of autonomous task processing rates within teams is zero (Table 5.5).

Simulation conditions and parameters were the same as in Fig. 5.9. The effective measure

complexity is EMC A08ð Þ ¼ 14:468. We overlaid the probability density function of a

log-normal distribution for comparison
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Fig. 5.12 Histogram of the total amount of work calculated for the organization design with

minimum diversity of autonomous task processing rates within teams. This design is encoded by

WTM A08 in Eq. 316. Simulation conditions and parameters were the same as in Fig. 5.9. The

effective measure complexity is EMC A08ð Þ ¼ 14:468. We overlaid the probability density func-

tion of a log-normal distribution for comparison
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and the correlations between tasks processed imply a possible execution time and

cumulative effort that can significantly deviate from the average unperturbed course.

Concerning the statistical data analysis, in all cases the Q-Q plots of the data sets

showed the fit of the log-normal to be very good. Only for the tails on the far left and

the far right sides of the theoretical distributions did the plotted quantile points deviate

a little bit from the corresponding straight line. However, the maximum deviation

from the straight line is in all cases smaller than 0.2. This corresponds to an estimated

p-value for a two-tailed test of less than 0.05. The log-likelihood functions were thus
calculated to allow for a comparison of the different organizational conditions. The

evaluation of the log-likelihood functions of the simulated time and effort data under

the assumption that they come from a log-normal distribution consistently produced

high values. For a small productivity offset Δa1 ¼ 0:001ð Þ, the log-likelihood of the
simulated project durations is between LLmin ¼ �49:716 and LLmax ¼ �49:520.
For the total amount of work, log-likelihood values between LLmin ¼ �53:969 and

LLmax ¼ �53:814 were obtained. If the productivity offset is large Δa2 ¼ 0:01ð Þ,
the log-likelihood of the simulated project durations decreases to values between

Lmin ¼ �57:819 and LLmax ¼ �50:149. Similarly, the log-likelihood values of the

generated total amount of work decrease to the range betweenLLmin ¼ �59:983and
LLmax ¼ �54:340. For a large productivity offset, the log-likelihood values decrease
monotonically with the total variance of autonomous productivity rates of all three

teams (see variances in Table 5.5). The high goodness of fit of the log-normal

distribution as represented by high log-likelihood values is somehow counterintuitive

as the model of the work processes is based on a linear stochastic difference equation

and does not incorporate multiplicative noise as the one developed by Huberman and

Wilkinson (2005), which by design leads to log-normally distributed time behavior.

However, because of the necessary stopping criterion that must be assigned by the

project manager, significant deviations from normality can occur, and lead times as

well as amounts of work far from the average unperturbed process are quite likely.

The careful reader may have noticed that under certain circumstances large deviations

from normality can also contribute to an “accelerated” processing of the tasks.

Accelerated processing means that the mean project duration T in the Monte Carlo

experiments is shorter than the expected duration Tσ¼0. Recall that the expected

duration was determined under the assumption that the processing of the development

tasks is unperturbed. This “acceleration effect” can be found for WTM A08: for the

whole process an expected duration ofTσ¼0 A08ð Þ ¼ 404 [weeks] is calculated, whilst

the sample mean is only T A08ð Þ ¼ 344:091 [weeks] (see Fig. 5.11 and Table 5.6).

However, it is very difficult to make use of this effect in applied cases, because the

95% confidence intervals also growmonotonically with the expected duration, which

significantly increases the risk of not meeting the schedule. Due to the limited space in

this book, we can only report this interesting tradeoff and cannot carry out additional

computational analyses. This has to be subject of future work. Finally, the results of

the likelihood ratio tests according to Kundu and Raqab (2007) indicate that, inde-

pendently of the productivity offset, for the majority of the investigated project

organization designs the project duration can be modeled more accurately by
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generalized Rayleigh distribution functions. The estimated probability of correct

selection is in all cases larger than 0.95. In contrast, the test results show that the

log-normal distribution should be preferred in the majority of organizational settings

to model the total amount of work under uncertainty. For this KPI, the probability of

correct selection in all Monte Carlo simulations is also larger than 0.95. However, the

values of the test statistic are only in an interval of [�171;69] and are therefore very

small.

5.2.2 Constrained Optimization

After the presentation and discussion of the results of the basic unconstrained

optimization problem in project organization, we move on to formulating

and solving an associated constrained optimization problem. The constraint is

that the expected total amount of work xtot remains on a constant level among the

different assignments of individuals to the three CE teams. The constraint is

satisfied by systematic intervention in the strength f3 of the backward informational

couplings between the nine developers and the system-integration engineer.

We only considered a setting in which the productivity offset Δa was large

Δa ¼ Δa2 ¼ 0:01ð Þ. The base set of independent parameters therefore was

θ2 ¼ a ¼ 0:9 f 1 ¼ 0:04 f 2 ¼ 0:01 Δa ¼ 0:01½ �. The WTMs A01 to A08

were arranged in order of emergent complexity as before (see Table 5.6). Hence,

WTM A01 represents the organization design that leads to minimum emergent

complexity in the sense of the EMCmetric and WTM A08 to maximum complexity.

This order corresponds to an ordering by the total variance of autonomous task

processing rates over all three design teams (see Table 5.5). We start by presenting

analytical complexity results and go on to present the results of the Monte Carlo

experiments.

5.2.2.1 Methods

As in the previous study, the developed objective function in the constraint

optimization represents the emergent complexity of a given project organization

under the dynamic regime of the state equations 8 and 39. We seek to minimize

complexity by systematically choosing the organization design from the introduced

eight assignments under the constraint that the expected total amount of work xtot
according Eq. 17 equals 701.939 [wmu]. This expected total amount of work

corresponds to the minimum value that was identified in the previous study for

the organization design with minimum emergent complexity. This design is

encoded by WTM A01 (Eq. 315) and is characterized by a maximum diversity of

autonomous productivity rates in the three teams. Starting with the base level f 3
¼ 0:005 of the strength of the backward informational couplings between the nine
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developers and the system-integration engineer, the feedback strength was reduced

incrementally for organization designs with less diversity of autonomous produc-

tivity rates until the required total amount of work xtot ¼ 701:939 was reached. In

other words, the independent parameter was adjusted by systematic algorithmic

intervention of the experimenter so that the total expected effort in the project did

not change under the eight distinct organization designs. To keep the total amount

of work constant the independent parameter f3 was adjusted by a self-developed

iterative method so that it did not deviate more than 10�6 wmu½ � from the correct

value xtot ¼ xtot A01ð Þ ¼ 701:939. The time scale was not modified.

Following the procedure in Section 5.2.1.1, we assumed that the standard

deviation cii of performance fluctuations (Eq. 10), which influence task i in the

project is proportional to the task processing rate aii with proportionality constant

r ¼ 0:02. Hence, the covariance matrices must not be modified (see Eq. 317 for

organization design encoded by WTM A01 and Eq. 318 for organization design

encoded by WTM A08). Other correlations between vector components were not

considered. The initial state was not changed and is given by Eq. 319.

The Mathematica software package from Wolfram Research was used to carry

out the analytical calculations and the Monte Carlo experiments. The stopping

criterion was that if a maximum of 5 % of work remained for all tasks the simulated

project was terminated. In addition to EMC as an innovative information-theory

KPI, the project duration and total amount of work were used to evaluate perfor-

mance in the same way as in the unconstrained optimization problem from the

previous chapter. To calculate these KPIs, 10,000 independent runs were consid-

ered for each organization design. Furthermore, the expected duration Tσ¼0 was

calculated under the assumption that the processing of the development tasks is

unperturbed.

The results of the Monte Carlo experiments were analyzed in detail by descrip-

tive and inferential statistical methods. To evaluate whether the data sets of both

KPIs conform to the log-normal distribution, we followed the same procedure as in

Section 5.2.1.1 and computed Q-Q plots for all cases using a maximum likelihood

estimator. If the Q-Q plots showed that the quantiles of the theoretical and data

distributions agree, the log-likelihood functions of the simulated time and effort

values were calculated. Furthermore, likelihood ratio tests according to Kundu and

Raqab (2007) were carried out to discriminate between log-normal and generalized

Rayleigh distribution functions. The probability of correct selection was deter-

mined by the same procedure as in Section 5.2.1.1. To carry out an additional

inferential statistical analysis of the organization designs, additional samples based

on 100 independent Monte Carlo runs were drawn and the corresponding test

statistics for the project duration and total amount of work were calculated. To

simplify the analysis, only the organization designs with maximum diversity of

autonomous task processing rates within teams (see WTM A01 in Eq. 299) and zero

diversity (see WTM A08 in Eq. 316) were considered as before. We hypothesized

that lower values of the complexity metric EMC lead to a significantly lower project

duration. To evaluate this hypothesis the Kruskal-Wallis (see e.g. Field 2009)
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location equivalence test was used. The level of significance in the test was set to

α ¼ 0:05. The Kruskal-Wallis test performs a hypothesis test on the project dura-

tion data with null hypothesis H0,T that the true location parameters of the samples

are equal, i.e. μT A01ð Þ ¼ μT A08ð Þ, and alternative hypothesis Ha,T that at least one is

different. The test is a non-parametric method and is based on ranks. We decided to

use a non-parametric test as the previous Monte Carlo study has shown that

depending on the specific project organization design, either a log-normal or a

generalized Rayleigh distribution function is more accurate to obtain statistical

models for both KPIs. Under the specified execution conditions it is therefore not

possible to specify a consistent parametric null distribution. In addition to the cited

hypothesis on the project duration, we hypothesized that different values of the

complexity metric do not lead to significantly different means of the total amount of

work in the Monte Carlo experiments. The rationale behind this (possibly slightly

counterintuitive) hypothesis is that we have formulated a constrained optimization

problem, in which the analytically obtained expected total amount of work xtot is
deliberately kept constant under the different organizational conditions and this

systematic intervention should not lead to significant differences of the total effort

in the simulated projects. Hence, we formulate the null hypothesis H0,xtot that the

true location parameters of the samples are equal, i.e. μxtot A01ð Þ ¼ μxtot A08ð Þ.
We also carried out goodness-of-fit hypothesis tests to evaluate the differences

between the distributions of performance data for both organization designs. The

null hypothesis H0,gof was that performance data drawn from a sample with

maximum diversity in autonomous task processing rates do not come from a

different distribution than the data that was obtained for zero diversity. The

alternative hypothesis Ha,gof is that the data comes from a different distribution.

The well-known Kolmogorov-Smirnov test was used to evaluate the hypothesis

(see e.g. Field 2009). The level of significance was also set to α ¼ 0:05.

5.2.2.2 Results and Discussion

In order to satisfy the constraint xtot ¼ 701:939 that was imposed on the total effort

involved in completing the deliverables, the strength f3 of the backward informa-

tional couplings between the nine developers and the system-integration engineer

had to be reduced by a minimum value of 0.00027 for an organization design in

which the mean productivity of team 1 is average, the mean autonomous task

processing rates of team 2 are 1/3Δa below average and the mean autonomous

task processing rates of team 3 are 1/3Δa above average. The means and variance in

productivity of the associated WTM A02 are shown in Table 5.5. Due to limited

space, the complete matrix representation is not given but readers can easily

construct it themselves. Interestingly, the maximum reduction of the backward

coupling strength was necessary for the organization design with zero diversity

(see WTM A08 in Eq. 316). In this case the reduction was 0.00303. A list plot of the

reductions of the backward coupling strength is shown in Fig. 5.13. The results
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show that the lower the productivity diversity within teams (following the order of

the WTMs A01 to A08 from left to right in the figure), the more the backward

coupling strength must be reduced to satisfy the constraint.

The values of the complexity metric EMC that correspond to the reduction of the

backward coupling strength f3 are visualized in Fig. 5.14. The numerical values can

be found in the second column of Table 5.7. Interestingly, a comparison of Figs. 5.8

and 5.14 shows that although the backward informational couplings between the

nine developers and the system-integration engineer are reduced in strength step-

by-step (Fig. 5.13) and therefore tend to decrease the emergent complexity of the

process, the increase in total variance of autonomous task processing rates of the

ordered WTMs (Table 5.5) overcompensates this effect. The net effect is that the

constrained optimization still leads to complexity values that grow monotonically

with the total variance of autonomous task processing rates and do not shrink with

decreasing backward coupling strength f3. Hence, the consistent ordering of the

organization designs by total variance of autonomous task processing rates as well

as emergent complexity that was found in the previous chapter does not change

after imposing the constraint on the total effort (cf. Fig. 5.8). However, the

adjustments of the original coupling parameter f 3 ¼ 0:005 that were necessary to

satisfy the constraint lead to considerably lower complexity values for WTMs A02

to A08 and therefore the complexity metric acts less intensively as a scale parameter

of the autonomous task processing rates (see Figs. 5.8 and 5.14).

Fig. 5.13 Adjustments of original coupling parameter f 3 ¼ 0:005 (see for instance the WTMs in

Eqs. 315 and 316) that were necessary to satisfy the constraint on the expected total amount of

work xtot A01ð Þ ¼ . . . ¼ xtot A08ð Þ ¼ 701:939 for the eight distinct project organization designs

represented by the WTMs A0 i½ � i ¼ 1, . . . , 8ð Þ. An organizational setting was considered in which

the productivity offset was large and it holds that Δa ¼ 0:01. The additional parameters were

a ¼ 0:9, f 1 ¼ 0:04 and f 2 ¼ 0:01
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For unperturbed task processing with zero performance fluctuations the shortest

finishing time of Tσ¼0 A01ð Þ ¼ 215 [weeks] is obtained, as expected, for WTM A01.

Interestingly, under these conditions the longest project duration of Tσ¼0 A07ð Þ ¼
336 [weeks] occurs in the case of the organization design represented by WTM A07

Fig. 5.14 Effective measure complexity for the investigated eight project organization

designs under the constraint that the expected total amount of work is kept on constant level, i.e.

xtot A01ð Þ ¼ . . . ¼ xtot A08ð Þ ¼ 701:939: To keep the expected total amount of work constant, the

original coupling parameter f 3 ¼ 0:005 was adjusted according to Fig. 5.13. The additional

independent parameters are the same as in Fig. 5.13

Table 5.7 Means and standard deviations (SD) of the project duration and total amount of work

obtained in the Monte Carlo experiments for the eight distinct assignments of team members with

different productivity levels to the three CE teams under the constraint that the expected total

amount of work remains on the level xtot ¼ 701:939

WTM EMC

Project duration Total amount of work

Mean SD Mean SD

A01 14.266 220.170 34.45 676.506 56.42

A02 14.272 226.444 42.93 676.272 58.12

A03 14.274 228.767 43.63 677.338 58.22

A04 14.274 229.371 44.31 677.707 58.83

A05 14.287 235.878 46.59 678.210 60.56

A06 14.296 249.771 54.75 679.208 62.99

A07 14.326 289.127 75.05 680.362 74.90

A08 14.337 286.438 72.37 679.318 73.48

These assignments are encoded by the WTMs A01 to A08 according to Table 5.5. The experiments

are based on state equation 8. The sample consisted of 10,000 independent runs. In these runs all

tasks were initially 100 % incomplete. The coupling strength f 3 ¼ 0:005 was adjusted according

to Fig. 5.13 to satisfy the constraint on the total amount of work. The additional independent

parameters are the same as in Fig. 5.13. In addition, the EMC values that were obtained on the basis

of the closed form solution from Eq. 262 are shown in the second column
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and not WTM A08 as before. However, for WTM A08 the project duration is

Tσ¼0 A08ð Þ ¼ 333 [weeks] and thus only slightly shorter.

Selected results of the Monte Carlo experiments are shown in Figs. 5.15 and

5.16. Figure 5.15 shows the histogram of the simulated project duration for orga-

nization designs with maximum and minimum diversity of autonomous
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Fig. 5.15 Histograms of the project duration obtained for organization designs with maximum

diversity (encoded by WTM A01) and minimum diversity (encoded by WTM A08) of autonomous

task processing rates within teams. We computed 10,000 independent runs. In these runs all tasks

were initially 100 % incomplete. The stopping criterion for the simulated projects was that a

maximum of 5 % of work remained for all tasks. The Monte Carlo experiments were based on state

equation 8. The coupling strength f 3 ¼ 0:005 was adjusted according to Fig. 5.13 to satisfy the

constraint on the total amount of work. The additional parameters are the same as in Fig. 5.13. We

overlaid the probability density function of a log-normal distribution for comparison
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Fig. 5.16 Histograms of the total amount of work obtained for organization designs with

maximum diversity (encoded by WTM A01) and minimum diversity (encoded by WTM A08)

of autonomous task processing rates within teams. We computed 10,000 independent runs. In

these runs all tasks were initially 100 % incomplete. The stopping criterion for the simulated

projects was that a maximum of 5 % of work remained for all tasks. The Monte Carlo experiments

were based on state equation 8. The coupling strength f 3 ¼ 0:005 was adjusted according to

Fig. 5.13 to satisfy the constraint on the total amount of work. The additional parameters are the

same as in Fig. 5.13. We overlaid the probability density function of a log-normal distribution for

comparison
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productivity rates within teams. In Fig. 5.16, the histograms for the total amount of

work are given. To simplify the interpretation of the results, the figures also show

the means and standard deviations.
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Fig. 5.17 List plot of work remaining in a simulated product development project with correlated

work processes. It shows the simultaneous processing of all four development tasks. The release

period is s ¼ 2 [weeks]. The data is based on a single run of the Monte Carlo experiment with

initial state x�0 (Eq. 327). The plot also shows the means as dashed curves. The Monte Carlo

experiment was based on state equation 89. The parameters are given by Eqs. 321–326. The

stopping criterion of 5 % is marked by a dashed line at the bottom of the plot
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Fig. 5.18 List plot of work remaining in a simulated product development project with correlated

work processes. The release period is s ¼ 10 [weeks]. The other simulation conditions and

parameters are the same as in Fig. 5.17
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According to Fig. 5.15, the organization design with maximum diversity of

autonomous task processing rates within teams that is encoded by WTM A01

leads to an average project duration of T A01ð Þ ¼ 220:17 [weeks]. If the team

members are assigned so that diversity is minimum within teams, the average

project duration is extended to T A01ð Þ ¼ 286:439 [weeks]. Furthermore, the

standard deviation is more than twice as large. In contrast to these findings, the

difference in the mean total amount of work for both organizational conditions is

less than 1 % (Fig. 5.16). The constraint optimization based on the analytically

obtained expected total amount of work therefore leads to very similar mean efforts

in the Monte Carlo experiments.

Similarly to the unconstrained optimization of project organization, the means

and standard deviations of the project duration monotonically grow with EMC. The

values are summarized in Table 5.7. Hence, the complexity metric is also a good

predictor for the project duration under the constraint that the expected total amount

of work xtot remains on an (almost) constant level. To verify the adjustments of the

original coupling parameter f 3 ¼ 0:005 that were necessary to satisfy this con-

straint, the means and standard deviations of the total amount of work are also given

in Table 5.7, which shows that the adjustments are effective and lead to mean values

with an average deviation of less than 0.5%. Note that the amounts of work shown in

Table 5.7 are approximately 4% lower than the value of the constraint

xtot ¼ 701:939, because we worked with a stopping criterion of δ ¼ 0:05 on the

project duration.

Regarding the comparison of the quantiles of the theoretical distribution with the

data distributions of both KPIs, in all cases the Q-Q plots showed the fit of the
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Fig. 5.19 List plot of work remaining in a simulated product development project with correlated

work processes. The release period is s ¼ 20[weeks]. The data are based on a single run of theMonte

Carlo experiment. The other simulation conditions and parameters are the same as in Fig. 5.17
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log-normal to be very good. Similar to the unconstrained optimization, the plotted

quantile points only deviated a little from the corresponding straight line for the

parts of the theoretical distributions that are on the far left and right sides of the

mean. The maximum deviation from the straight line is in all cases smaller than 0.2.

The evaluation of the log-likelihood functions of the simulated time and effort data

consistently led to high values. The log-likelihood of the simulated project dura-

tions is between LLmin ¼ �56:075 and LLmax ¼ �50:139. For the total amount of

work, values between LLmin ¼ �56:937 and LLmax ¼ �54:408 were obtained. The

likelihood ratio tests according to Kundu and Raqab (2007) lead to very similar

results as in the unconstrained optimization and show that for the majority of the

investigated organization designs the project duration can be modeled more accu-

rately by a generalized Raleigh distribution function. In contrast, the tests indicated

that the log-normal distribution should be preferred by the modeler in the majority

of organizational settings to represent the total amount of work. For both KPIs the

probability of correct selection is also larger than 0.95. However, similar to the

unconstrained optimization the values of the test statistic are very small (in the

range of [�185;55]).

For 100 additional independent runs, the Kruskal-Wallis test on the project

duration data shows that the location differences between both organization designs

are significant KT ¼ 68:25, p ¼ 8:35 � 10�20
� �

. Hence, the null hypothesis H0,T that

the true location parameters of the samples are equal can be rejected on the signif-

icance level of α ¼ 0:05. The Kruskal-Wallis test on the total amount of work data

comes to a different result. It shows that the locations between both organization

designs are not significantly different Kxtot ¼ 1:96, p ¼ 0:16ð Þ. The null hypothesis
H0,xtot that the true location parameters of the samples are equal cannot be rejected on

a significance level of α ¼ 0:05. Hence, the constraint imposed on the objective

function is effective in the Monte Carlo experiments and leads to very small and

insignificant differences in total effort. The goodness-of-fit hypothesis test between

both organization designs also indicates that the differences in the distributions from

which the total amount of work data were drawn are not significant. The

Kolmogorov-Smirnov test statistic is DT ¼ 0:0688. The associated p-value is

p ¼ 0:705. The slight differences in the complexity metric according to Fig. 5.14

therefore do not lead to significant differences in probability distributions of the total

amount of work if the work processes are systematically reorganized by the project

manager to satisfy the constraint. As expected, the additional distribution fit test of the

project duration data shows significant differences among the organizational condi-

tions. The corresponding test statistic is Dxtot ¼ 0:374 p ¼ 7:25 � 10�13
� �

.

The combined theoretical and computational analyses provide some evidence

that the information-theory complexity metric EMC is not only a theoretically

highly satisfactory quantity for the evaluation of emergent complexity of vector

autoregressive processes as statistical models of cooperative work in PD, but under

the investigated initial and boundary conditions it is also a good predictor of the

mean and standard deviation of classic KPIs such as the project duration and total

effort involved in completing the deliverables. Moreover, the results show that the
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self-developed concept of productivity balancing and designing organizations on

the team level for diversity are promising for optimizing cooperative work in PD

projects subjected to concurrent engineering.

5.3 Optimization of Release Period of Finished Work

Between Design Teams at the Subsystem-

and Component-Levels

The second study aims to optimize the release period using EMC as optimization

objective function in projects where information about design, integration and tests

of geometric/topological entities is deliberately withheld by systems engineering

teams and not released to design teams working at the component level (Schlick

et al. 2011; cf. Yassine et al. 2003). Based on the systems engineering consider-

ations from Section 2.6, we focus on the subsystem and component levels of

product design (levels 3 and 4 in V-model of the systems engineering process,

see Fig. 2.11). According to Section 2.6, the outcome of finished work on subsystem

level is “hidden” between the releases, and work in the subordinate component-

level teams is based on product and process knowledge from the previous release

period. This kind of noncooperative behavior is justified by the aim to improve the

implementation of the product architecture through better subsystem-level design

and validation and thus release only those designs that have a sufficient level of

maturity. This can significantly reduce the overall amount of coordination. Opti-

mizing the release period by using a formal complexity metric in conjunction with a

mathematical model of periodically correlated work processes is an especially

interesting application area because cross-hierarchical teamwork in large-scale

PD projects can be designed systematically and unnecessary coordination efforts

can be avoided. As in the previous chapter, it is also theoretically interesting to

analyze whether, in addition to being valid for steady-state processes, EMC can be

used to evaluate the preasymptotic range of the modeled project (phase). We start

by formulating the unconstrained optimization problem and the presentation of its

solution based on a complete enumeration of the release period. We then formulate

a constrained optimization problem and solve it by applying the same principle. The

constraint is that the expected total amount of work xtot done over all tasks in the

limit n ! 1 (Eq. 91) is constant across the different release periods.

5.3.1 Unconstrained Optimization

5.3.1.1 Methods

The objective function developed in the second study quantifies the complexity of

periodically correlated work processes in PD as a function of the release period

under the dynamic regime of the state equation (Eq. 89). We seek to minimize

emergent complexity. The release period was varied systematically in the range
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[2;20] by increments of 1 week. The analytical calculations and Monte Carlo

experiments consider different correlation lengths and simulate the work processes

accordingly. The time scale is [weeks]. Using state equation 89 in conjunction with

the closed-form solution from Eq. 247, we can express the EMC of the generated

process in the original state space coordinates as
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� Φ*

0

� ��1 �C* � Φ*
0

� ��T
� �

� Φ*
0

� ��T � Φ*
1

� �T� �k
 �
Det Φ*

0

� ��1 �C* � Φ*
0

� ��T
h i

0BB@
1CCA:

ð320Þ

The transformed matrix Φ�
0 is defined in Eq. 85. Its inverse is given by the

representation in Eq. 90. The autoregressive coefficient matrix Φ�
1 was defined in

Eq. 86. The above definition of the complexity metric is an implicit function of the

release period s as the dimension of both matrices Φ�
0 and Φ�

1 scales linearly with

the period (cf. Eq. 86).

To ensure comparability between the first and second validation study, we also

modeled a complete PD project that involves different teams. As before, the total

time to complete the process corresponds to the project duration and the total

amount of work done in the process to the project effort. For the Monte Carlo

experiments, we developed an example project that includes two component-level

and two subsystem-level tasks. The example project is based on the work of

McDaniel et al. (1996). This work was developed into a complete PD project

with periodically correlated work processes (Schlick et al. 2011). In the project,

different teams process the tasks simultaneously. Every team is assigned a specific

complex design task. Individual task processing is not considered. The component-

level tasks aim to design and develop components of a high-end instrument panel

for a completely new vehicle, including a drive-by-wire steering wheel, completely

digital instrument panel cluster, navigation infotainment systems, gesture control

for intuitive interaction etc. The subsystem-level tasks deal with panel design as a

whole and integration testing of components. Due to the many components of the

panel that must be newly developed, their multiple interfaces and the complex

software functions, the finishing time of the complete project, even under the most

favorable organizational conditions, is on average more than three and a half years

of continuous development (cf. Sections 5.2.1.2 and 5.2.2.2). As in the previous

validation study, the vector components of the state variable Xnsþv that are related to

processing the subsystem-level and component-level tasks represent the relative

number of labor units required to complete the tasks. We assume that both

component-level design teams work at the same autonomous task processing rate

aC
11 ¼ aC

22 ¼ 0:90. The tasks are coupled with symmetric strength and we have

aC
12 ¼ aC

21 ¼ 0:05. Similarly, the teams responsible for subsystems design, validation

and integration testing both work at the same (but slightly lower) autonomous task

processing rate aSS11 ¼ aSS22 ¼ 0:85. The tasks are coupled at the same (but slightly

higher) strengthaSS12 ¼ aSS21 ¼ 0:07.Both subsystem level tasks generate 3%of finished

work at each short iteration that is put in hold state until it is released at time step

334 5 Validity Analysis of Selected Closed-Form Solutions for Effective Measure. . .

http://dx.doi.org/10.1007/978-3-319-21717-8_2
http://dx.doi.org/10.1007/978-3-319-21717-8_4
http://dx.doi.org/10.1007/978-3-319-21717-8_2
http://dx.doi.org/10.1007/978-3-319-21717-8_2
http://dx.doi.org/10.1007/978-3-319-21717-8_2
http://dx.doi.org/10.1007/978-3-319-21717-8_2


ns n 2 ℕð Þ. Hence, aSSH11 ¼ aSSH22 ¼ 0:03. Furthermore, the first component-level

task generates 6% of finished work at each iteration for the first system-level task

and vice versa. Hence, we have aCSS11 ¼ aSSC11 ¼ 0:06. The accumulated development

issues of the subsystem-level teams are released to component-level teams in the

form of a reworked subsystem design at the end of the period aHC11 ¼ aHC22 ¼ 1
� �

.

Additional dynamical dependencies were not considered and therefore all other

matrix entries were defined to be zero.

The complete representation for state equation 89 is as follows:

Combined dynamical operator A*
0 ¼ Φ*

0

� ��1 �Φ*
1:

Φ*
0

� ��1 �Φ*
1 ¼

Φ1 sð Þ Φ1 1ð Þð Þs�1
0 0 � � � 0

Φ1 1ð Þð Þs�1
0 0 � � � 0

Φ1 1ð Þð Þs�2
0 0 � � � 0

⋮ ⋮ 0 ⋱ ⋮
Φ1 1ð Þ 0 0 � � � 0

0BBBB@
1CCCCA

Work transformation sub-matrices:

AC
0 ¼ 0:90 0:05

0:05 0:90

� 
ð321Þ

ASS
0 ¼ 0:85 0:07

0:07 0:85

� 
ð322Þ

ACSS
0 ¼ 0:06 0

0 0

� 
ð323Þ

ASSC
0 ¼ 0:06 0

0 0

� 
ð324Þ

ASSH
0 ¼ 0:03 0

0 0:03

� 
ð325Þ

AHC
0 ¼ 1 0

0 1

� 
ð326Þ

Transformation matrices:

Φ1 1ð Þ ¼
AC
0 ASSC

0 0

ACSS
0 ASS

0 0

0 ASSH
0 1� εf g � I2

0B@
1CA

Φ1 sð Þ ¼
AC
0 ASSC

0 AHC
0

ACSS
0 ASS

0 0

0 0 εf g � I2

0B@
1CA:

As explained in Section 2.7, the variable ε is necessary for an explicit complexity

evaluation. EMCPVAR then contains an correction term that scales linearly with ε,
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i.e. it holds that EMCPVAR ¼ EMCPVAR ε ¼ 0ð Þ þ ε � h Φ*
0;Φ

*
1;C

*
� �

(cf. Eq. 320).

We calculated with ε ¼ 10�4. By doing so, the finished work after release is set

back to a nonzero but negligible amount in terms of productivity.

The initial state x�0 was defined based on the assumption that all parallel tasks are

initially to be fully completed and that no work is in hold state. Hence, for the

minimum release period smin ¼ 2, we have:

x*0 ¼

1

1

1

1

0

0
0

0

0

0

0

0

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

; ð327Þ

For larger release periods, additional zeros were appended to the initial state.

Following the procedure of the first study (Section 5.1.1), we assumed that the

standard deviation cii of performance fluctuations (Eq. 10) influencing task i in the

project is proportional to the task processing rate. The proportionality constant is

r ¼ 0:02. Other correlations among vector components were not considered. Further-

more, we assumed that the variance of the fluctuations related to the finished work put

in a hold state by system-level design teams is reduced by the factor ε
0 ¼ 10�4 and is

therefore numerically negligible in the Monte Carlo experiments. Hence, we have the

covariance matrix C* ¼ E ε*n ε
*
n
T

h i

C* ¼
Cs 0 0 0

0 C1 0 0

0 0 ⋱ 0

0 0 0 C1

0BB@
1CCA;

where the submatrices are given by
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C1 ¼ r2
� � �

aC
11

� �2
0 0 0 0 0

0 aC
22

� �2
0 0 0 0

0 0 aSS11
� �2

0 0 0

0 0 0 aSS22
� �2

0 0

0 0 0 0 ε
0
1� εð Þ2 0

0 0 0 0 0 ε
0
1� εð Þ2

0BBBBBBBBBB@

1CCCCCCCCCCA

¼ 0:022
� � �

0:92 0 0 0 0 0

0 0:92 0 0 0 0

0 0 0:852 0 0 0

0 0 0 0:852 0 0

0 0 0 0 10�4 1� 10�4
� �2

0

0 0 0 0 0 10�4 1� 10�4
� �2

0BBBBBBBBB@

1CCCCCCCCCA
ð328Þ

and

Cs ¼ r2
� � �

aC
11

� �2
0 0 0 0 0

0 aC
22

� �2
0 0 0 0

0 0 aSS11
� �2

0 0 0

0 0 0 aSS22
� �2

0 0

0 0 0 0 ε
0
ε2 0

0 0 0 0 0 ε
0
ε2

0BBBBBBBB@

1CCCCCCCCA

¼ 0:022
� � �

0:92 0 0 0 0 0

0 0:92 0 0 0 0

0 0 0:852 0 0 0

0 0 0 0:852 0 0

0 0 0 0 10�12 0

0 0 0 0 0 10�12

0BBBBBB@

1CCCCCCA:

ð329Þ

The covariance matrix of the transformed error vector ε⋆n is given by

C⋆ ¼ Φ*
0

� ��1 � C* � Φ*
0

� ��T
. Due to space limitations, we do not show this matrix.

The Mathematica software package from Wolfram Research was used to carry

out the analytical calculations and the Monte Carlo experiments. The stopping

criterion for the simulated projects was that a maximum of 5% of work remained

for all tasks. The classic KPIs “project duration” and “total effort” were used in
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addition to EMC. To calculate these KPIs, we generated samples of 10,000 inde-

pendent runs for each release period. We calculated the expected total amount of

work xtot analytically according to Eq. 91. Furthermore, the expected duration Tσ¼0

was calculated under the assumption that the processing of the development tasks is

unperturbed.

We analyzed the data sets generated in the Monte Carlo experiments in the same

manner as in the previous studies and used Q-Q plots to evaluate whether they come

from a log-normal distribution (see Section 5.2.1.1). If the Q-Q plots showed that

the quantiles of the theoretical and data distributions agree, the log-likelihood

functions of the simulated time and effort values were calculated. As before, the

log-likelihood values are denoted by LL. Following the procedure from Sec-

tions 5.2.1.1 and 5.2.2.1, we used the likelihood ratio test developed by Kundu

and Raqab (2007) to discriminate between log-normal and generalized Rayleigh

distribution functions.

5.3.1.2 Results and Discussion

Figure 5.17 shows the results of a typical run of the Monte Carlo simulation for the

parameterized project model with initial state x�0 assuming a minimal release period

of s ¼ smin ¼ 2 [weeks]. The finished work that was put in hold state when

processing both subsystem-level tasks at each short iteration is also shown in the

list plot around the abscissa. Additional typical time series for extended release

periods with s ¼ 10 and s ¼ smax ¼ 20 [weeks] are shown in Figs. 5.18 and 5.19,

respectively.

As in Section 5.1, we calculated a separate statistic for the three release periods

s 2 2; 10; 20f g [weeks] based on 100 simulated projects and visualized them in the

form of error list plots. These plots are shown in Figs. 5.20, 5.21 and 5.22 to give a

comprehensive overview of how the release period length affects the means and

95% confidence intervals of work remaining. The comparison of Figs. 5.20, 5.21

and 5.22 shows that an extension of the release period from 2 weeks to 10 or

20 weeks increases the average work remaining before the stopping criterion of 5%

is met. Furthermore, it is not difficult to see that, for the development task on the

component level, the magnitude of the performance fluctuations is inversely pro-

portional to the period length: the longer the release period, the more single

instances of task processing deviate from the mean (unperturbed) work remaining

and the larger the average performance variability. For all three release periods

significant deviations from the means occur as early as in week 20 and proceed until

the project is finished. Figures 5.21 and 5.22 also clearly show that the “sawtooth”

behavior of finished work that is put in hold state by the teams processing the

subsystem-level tasks spills over to the component-level tasks and is exacerbated

by the unpredictable performance fluctuations. Conversely, under the given bound-

ary conditions, the processing of the subsystem-level tasks is relatively fast and

smooth.
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When the development tasks are processed deterministically without perfor-

mance fluctuations, the shortest project duration of Tσ¼0 s ¼ 2ð Þ ¼ 182 [weeks] is

obtained, as one must expect, for the minimum release period of 2 weeks. The
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Fig. 5.20 Error list plot of work remaining in simulated product development projects with

correlated work processes. The release period is s ¼ 2 [weeks]. A total of 100 separate and

independent runs were calculated. The plot shows means of work remaining as note points and

95 % confidence intervals as error bars. Note points have been offset to distinguish the error bars.

The other simulation conditions and parameters are the same as in Fig. 5.17
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Fig. 5.21 Error list plot of work remaining in simulated product development projects with

correlated work processes. The release period is s ¼ 10 [weeks]. The other simulation conditions

and parameters are the same as in Fig. 5.17
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longest finishing time of Tσ¼0 s ¼ 2ð Þ ¼ 259 [weeks] occurs in the case of the

maximum release period of 20 weeks.

The 10,000 runs that were computed for each release period show that theminimum

release period of 2 weeks leads to a mean project duration of T s ¼ 2ð Þ ¼ 158:553
[weeks]. The standard deviation is SD s ¼ 2ð Þ ¼ 34:234 [weeks]. Both the mean

project duration and the standard deviation are minimal within the sample. If the

release period of finished work is extended to 10 weeks, the mean project duration

increases to T s ¼ 10ð Þ ¼ 212:828 [weeks] and the standard deviation to SD s ¼ 10ð Þ
¼ 51:181 [weeks]. An additional extension of the release period to the maximum of

20 weeks further increases the mean project duration and standard deviation, and we

have T s ¼ 20ð Þ ¼ 226:333 [weeks] and SD s ¼ 20ð Þ ¼ 54:000 [weeks]. Figure 5.23

shows the histograms of the calculated project duration for the three considered release

periods. For the longest release period of 20 weeks the histogram shows quite heavy

oscillations of the distribution of the probability mass for project durations of longer

than 175 weeks. This effect is due to the long time span between average release

points. The oscillation period follows the release period.

The means and standard deviations of the total amount of work xtot (see Section
2.7) in the simulated projects follows a similar pattern of growth (Fig. 5.24).

However, the accumulation of work reduces the intrinsic periodic correlations,

and an oscillation of the distribution of the probability mass does not occur for

the release period of 20 weeks.

We also calculated analytically the expected total amount of work xtot in the

modeled project for different release periods. The expected total amount of work is

by definition accumulated over an infinite past history and therefore does not take
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Fig. 5.22 Error list plot of work remaining in simulated product development projects with

correlated work processes. The release period is s ¼ 20 [weeks]. The other simulation conditions

and parameters are the same as in Fig. 5.17
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the stopping criterion of the Monte Carlo experiments into account. The results are

presented in Fig. 5.25, which shows that the total amount of work is smallest for the

shortest period length smin ¼ 2 and grows sublinearly with the release period.

The complexity values EMCPVAR (Eq. 320) that were obtained for different

period lengths are shown in Fig. 5.26.

The comparison of Figs. 5.25 and 5.26 shows that the complexity metric

EMCPVAR closely resembles the functional behavior of the expected total amount

of work xtot in the modeled project over different periods. Moreover—and most

importantly in view of the objective of the study—the smallest complexity

values are assigned to periodically correlated work processes with minimum period

sopt ¼ 2 [weeks]. In other words, for the given initial and boundary conditions it

makes sense to minimize the period in which information about system design and

integration testing of geometric/topological entities is deliberately withheld by

subsystem-level teams and not released to component-level teams. By minimizing
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Fig. 5.23 Histograms of the project duration obtained for three different release periods s ¼ 2, 10

and 20 [weeks]. We computed 10,000 independent runs. In these runs all tasks were initially 100 %

incomplete. The stopping criterion for the simulated projects was that a maximum of 5 % of work

remained for all tasks. The Monte Carlo experiments were based on state equation 89. The

parameters are given by Eqs. 321–326. We overlaid the probability density function of a

log-normal distribution for comparison
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Fig. 5.24 Histograms of the total amount of work obtained for three different release periods s
¼ 2, 10 and 20 [weeks]. We computed 10,000 independent runs. In these runs all tasks were

initially 100 % incomplete. The stopping criterion for the simulated projects was that a maximum

of 5 % of work remained for all tasks. The Monte Carlo experiments were based on state equation

89. The parameters are given by Eqs. 321–326. We overlaid the probability density function of a

log-normal distribution for comparison
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the period length, the emergent complexity can be kept to a minimum and the total

effort involved in the project can be reduced as far as possible. This recommenda-

tion is also fully supported by the results of the Monte Carlo experiments because

they show that, as the period length increases, the means and standard deviation of

s [weeks]

[wmu]

Fig. 5.25 Expected total amount of work xtot in the modeled project according to Eq. 91. The units

are work measurement units [wmu] that refer to the definition of the state of work remaining in the

project. The parameters are given by Eqs. 321–326

s [ weeks] 

Fig. 5.26 Effective measure complexity EMCPVAR in the modeled project according to Eq. 320.

The parameters are given by Eqs. 321–326
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the project duration and the total amount of work also increase (see Figs. 5.23 and

5.24).

Similar to the optimization of project organization in Sections 5.2.1.1 and

5.2.2.1, the descriptive statistical analysis based on the Q-Q plots showed for all

periods that the fit of the log-normal distribution is very good and noticeable

deviations from the corresponding straight line occurred only for the tails on the

far left and the far right sides. The maximum deviation from the straight line is in all

cases smaller than 0.2. This corresponds to an estimated p-value for a two-tailed test
of less than 0.05. Interestingly, although for the longest release period of 20 weeks

the histogram in Fig. 5.23 shows significant oscillations of the distribution of the

probability mass for project durations of longer than 175 weeks, these oscillations

only have a very small effect on the displacement of data points in the Q-Q plots.

Hence, even for periodically correlated work processes with large periods,

the choice of this type of distribution seems to be appropriate. The evaluation

of the log-likelihood functions of the time and effort variables also consistently

led to high values. The log-likelihood of the simulated project duration

decreases monotonically with the period and is between LLmax ¼ �48:767
(s¼ 2) and LLmin ¼ �53:201 (s¼ 20). For the total amount of work the values

are much larger, but follow the same pattern. We have LLmax ¼ �45:138 for s ¼ 2

and LLmin ¼ �51:177 for s ¼ 20. Therefore, as one must expect from the results of

the previous Monte Carlo studies, significant deviations from normality can also

occur for periodically correlated work processes, and lead times as well as amounts

of work far from the average unperturbed process are quite likely. In contrast to

the optimization of project organization, the results of the likelihood ratio tests

according to Kundu and Raqab (2007) show that for all periods the project duration

can be modeled more accurately by a log-normal than by a generalized Raleigh

distribution function. On the other hand, the tests indicate that the generalized

Rayleigh distribution should be preferred to represent the total amount of work:

for both KPIs the probability of correct selection is larger than 0.95. However,

compared with the previous Monte Carlo studies the values of the test statistic are in

an even narrower range of [�137;33] and therefore indicate a low discriminative

power.

5.3.2 Constrained Optimization

After presenting and discussing the results of the basic unconstrained optimization

problem, we move on to formulating and solving a corresponding constrained

optimization problem. This is done in a similar manner as in Section 5.1.2. The

constraint is that the expected total amount of work xtot remains on a constant level

among the different release periods and does not vary with the period as in the

previous chapter. To satisfy this constraint, systematic interventions were carried

out on the subsystem-level of cooperative development. We start by presenting

analytical complexity results and go on to present results of the Monte Carlo

experiments.
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5.3.2.1 Methods

The objective function for the constrained optimization quantifies the emergent

complexity of periodically correlated work processes in PD in the same manner as

in the previous chapter, and is given by Eq. 320. We seek to minimize complexity

under the constraint that the expected total amount of work xtot according to Eq. 91
is equal to 204.897 [wmu] for different release periods. This expected total effort

corresponds to the minimum value that was identified in the previous study. Recall

that this minimum expected total amount of work is obtained for the minimum

release period smin ¼ 2 [weeks] and for a parameter vector according to Eqs. 321–

329. Starting with the minimum period, the release period was extended by

increments of 1 week until the maximum release period smax ¼ 20 [weeks] was

reached. The analytical considerations and Monte Carlo experiments must therefore

not only consider the different correlation lengths, they must also adjust the

independent parameters by systematic algorithmic intervention of the experimenter

so that the total expected effort in the project does not change under the different

release conditions. To keep xtot constant, the independent parameters aSSH11 and aSSH22

were adjusted (see Eq. 325). These parameters represent the fraction of work that

is put in hold state by the subsystem design teams at each short iteration before

it is released at the end of period s. The parameter adjustment was done by

a self-developed iterative method in which the reference values aSSH11 ¼ 0:03 and

aSSH22 ¼ 0:03 were reduced incrementally until the expected value xtot 3 � s < 20ð Þ
did not deviate more than 10�6 wmu½ � from the correct value xtot s ¼ 2ð Þ ¼ 204:897.
Both reference values were reduced by the same amount and it always held

aSSH11 ¼ aSSH22 . The time scale was not modified.

Following the previous procedures, we assumed that the standard deviation cii of
performance fluctuations (Eq. 10) influencing task i in the project is proportional to
the task processing rate with proportionality constant r ¼ 0:02. Other correlations
between vector components were not considered. The variance of the fluctuations

related to the finished work that is put in hold state is again reduced by the factor

10�3.

The Mathematica software package from Wolfram Research was used to carry

out the analytical calculations and the Monte Carlo experiments. The stopping

criterion for the Monte Carlo experiments was that a maximum of 5 % of work

remained for all tasks in the simulated projects. It was assumed that all development

tasks on component- and subsystem-levels were initially fully incomplete. In

addition to EMC, we used the KPIs “project duration” and “total effort” to evaluate

performance as before. To calculate these KPIs, 10,000 independent runs were

considered for each release period. To allow a systematic comparison of the data,

the expected duration Tσ¼0 was calculated under the assumption that the processing

of the development tasks is unperturbed.

The data sets were analyzed by the same descriptive and inferential statistical

methods that were described in Sections 5.2.2.1 and 5.3.1.1, respectively. If the

Q-Q plots in the descriptive analysis showed that the quantiles of the theoretical and
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data distributions agreed, the log-likelihood functions of the simulated time and

effort values were calculated. As before, the log-likelihood values are denoted by

LL. The likelihood ratio test developed by Kundu and Raqab (2007) and the

corresponding simulation techniques were used to discriminate between

log-normal and generalized Rayleigh distribution functions. For a better compara-

bility of results, we applied the same non-parametric location equivalence test as in

Section 5.2.2.1 in the inferential statistical analysis. To carry out this test, we drew

additional samples based on 100 independent runs. To simplify the interpretation

and discussion of the data, we only considered three release periods, namely

smin ¼ 2, smed ¼ 10 and smax ¼ 20, in order to guarantee a sufficient coverage of

the complete interval. We hypothesized that lower values of the complexity metric

EMCPVAR lead to a significantly lower expected project duration. We also hypoth-

esized that different levels of the complexity metric EMCPVAR do not correspond to

significantly different means of the total amount of work in the Monte Carlo

experiments. The null hypotheses H0,T and H0,xtot were formulated accordingly.

To evaluate these hypotheses the Kruskal-Wallis location equivalence test was

used. The level of significance was set to α ¼ 0:05.
Following the procedure from Section 5.1.2, additional goodness-of-fit hypoth-

esis tests were carried out to evaluate the differences between the distributions of

performance data for the three release periods. The focus was on paired compari-

sons between the minimum release period smin ¼ 2 and the other periods. The null

hypothesis H0,gof was always that performance data drawn from a sample with

release period smed ¼ 10 or smax ¼ 20 do not come from a different distribution than

the data obtained for the minimum release period smin ¼ 2. The alternative hypoth-

esis Ha,gof is that the data come from a different distribution. The Kolmogorov-

Smirnov test was used to evaluate the hypotheses. The level of significance was also

set to α ¼ 0:05.

5.3.2.2 Results and Discussion

In order to satisfy the constraint imposed for the total amount of work, the fractions

aSSH11 ¼ 0:03andaSSH22 ¼ 0:03of work that are put in hold state by the teams working

on subsystems-level at each short iteration had to be reduced by a minimum value

of 0.00769 for release period s ¼ 3 and a maximum value of 0.01646 for release

period smax ¼ 20. A list plot of the necessary reductions of aSSH11 and aSSH22 is shown

in Fig. 5.27. It shows that the longer the release period, the more the fraction of

work put in hold state at each short iteration must be reduced in order to satisfy the

constraint. The reduction scales sublinearly with the length of the release period.

The corresponding values of the complexity metric EMCPVAR are shown in

Fig. 5.28. Interestingly, the constrained optimization of the release period leads to

complexity values that strictly decrease as the period increases. Hence, the release

period minimizing emergent complexity in the sense of the complexity

metric under the constraint xtot 2ð Þ ¼ . . . ¼ xtot 20ð Þ ¼ 204:897 is the maximum
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s [weeks]

11 , 22

Fig. 5.27 Adjustments of original parameters aSSH11 ¼ 0:03 and aSSH22 ¼ 0:03 (Eq. 325) that were

made to satisfy the constraint on the expected total amount of work xtot 2ð Þ ¼ . . . ¼ xtot 20ð Þ ¼
204:897 in the modeled projects with periodically correlated work processes. The additional

parameters were not changed and are given by Eqs. 321–326

s [weeks]

Fig. 5.28 Effective measure complexity EMCPVAR in the modeled project according to Eq. 320

under the constraint that the expected total amount of work is kept on a constant level, i.e.

xtot 2ð Þ ¼ . . . ¼ xtot 20ð Þ ¼ 204:897. To keep the expected total amount of work constant, the

original parameters aSSH11 ¼ 0:03 and aSSH22 ¼ 0:03 (Eq. 325) were adjusted by the same value

(see Fig. 5.27). The additional parameters were not changed and are given by Eqs. 321–326

346 5 Validity Analysis of Selected Closed-Form Solutions for Effective Measure. . .



period scopt ¼ 20 [weeks]. This result is in stark contrast to the solution of the

unconstrained optimization problem, in which minimum complexity values were

assigned to periodically correlated work processes with minimum period and we

had sopt ¼ 2 [weeks]. Thus, for the given constraint on the total effort, the theory

recommends to maximizing the period in which information about system design

and integration testing of geometric/topological entities is deliberately withheld by

subsystem-level teams and not released to component-level teams. When extending

the period length to the largest possible value, the emergent complexity in the sense

of Grassberger’s measure can be kept to a minimum. Note that this recommenda-

tion, in principle, is only valid if the work processes can be organized in a way that

for large release periods it is possible to significantly reduce the fractions of work

that are put in hold state by the teams working on subsystems-level at each short

iteration. Significant means in this context reducing the fractions of work by at least

25 %. In applied project management this is extremely difficult to achieve.

Interestingly, through the simulated reduction of the fractions of work that

are put in hold state, the deterministic processing of the development tasks

leads to finishing times that only slightly fluctuate between Tσ¼0 s ¼ 16ð Þ ¼ 175

and Tσ¼0 s ¼ 3ð Þ ¼ 181 [weeks].

The corresponding results of the Monte Carlo experiments for minimum and

maximum release periods are shown in Fig. 5.29. The results for a release period of

10 weeks are also included (cf. Fig. 5.23). The associated histograms of the total

amount of work are shown in Fig. 5.30.

The analysis of project duration and total amount of work from Figs. 5.29 and

5.30 shows that, once again, the values of the complexity metric EMCPVAR that

were given in Fig. 5.28 are predictive for the means and standard deviations of these

classic KPIs. The smaller the complexity values assigned to a given release period,

the shorter the resulting mean project duration and mean total amount of work, and
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Fig. 5.29 Histograms of the project duration obtained for the three release periods s ¼ 2, 10 and

20 [weeks] under the constraint xtot 2ð Þ ¼ xtot 10ð Þ ¼ xtot 20ð Þ ¼ 204:897. We computed 10,000

independent runs. In these runs all tasks were initially 100 % incomplete. The stopping criterion

for the simulated projects was that a maximum of 5 % of work remained for all tasks. The Monte

Carlo experiments are based on state equation 89. The parameters are given by Eqs. 321–326. The

adjustments of parameters aSSH11 and aSSH22 follows the list plot from Fig. 5.27. We overlaid the

probability density function of a log-normal distribution for comparison
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the smaller the corresponding standard deviations. However, the performance

differences are rather small compared to the previous analysis. The question is

therefore whether these small differences are significant or not.

As in Sections 5.2.1.2, 5.2.2.2 and 5.3.1.2, the descriptive statistical analysis

revealed a very good fit of the log-normal distribution for all release periods.

Noticeable deviations from the corresponding straight line occurred in the Q-Q

plots only for the tails on the far left and the far right sides of the theoretical

distributions. However, the maximum deviation from the straight line is in all cases

smaller than 0.2. Similar to the unconstrained optimization, although for the longest

period of 20 weeks the histogram in Fig. 5.29 shows significant oscillations of the

distribution of the probability mass for project durations of longer than 175 weeks,

the deviation of the data points in the Q-Q plots from the straight line is very small

and therefore the choice of a log-normal distribution seems to be appropriate. The

evaluation of the log-likelihood functions consistently leads to satisfactorily

high values. However, the log-likelihood of the simulated project durations

grows monotonically with the period and is between LLmin ¼ �48:924 s ¼ 2ð Þ
and LLmax ¼ �44:416 s ¼ 20ð Þ. This result is in contrast to the solution of

the unconstrained optimization problem, in which minimum likelihood values

were assigned to work processes with maximum period. The evaluation of the

total amount of work leads to the same monotonic growth of the log-

likelihood with the release period and values between LLmin ¼ �45:226 s ¼ 2ð Þ
and LLmax ¼ �44:985 s ¼ 20ð Þ are obtained. Due to the constraint on the total

amount of work the range of the log-likelihood values is much smaller. We can

conclude that under this execution condition, too, significant deviations from

normality can occur, and lead times as well as amounts of work far from the

average unperturbed process are quite likely. The likelihood ratio tests according
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Fig. 5.30 Histograms of the total amount of work obtained for the three release periods s ¼ 2, 10

and 20 [weeks] under the constraint xtot 2ð Þ ¼ xtot 10ð Þ ¼ xtot 20ð Þ ¼ 204:897. We computed 10,000

independent runs. In these runs all tasks were initially 100 % incomplete. The stopping criterion

for the simulated projects was that a maximum of 5 % of work remained for all tasks. The Monte

Carlo experiments are based on state equation 89. The parameters are given by Eqs. 321–326. The

adjustments of parameters aSSH11 and aSSH22 follows the list plot from Fig. 5.27. We overlaid the

probability density function of a log-normal distribution for comparison
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to Kundu and Raqab (2007) lead to very similar results as in the unconstrained

optimization problem: for all periods the project duration can be modeled more

accurately by a log-normal than by a generalized Raleigh distribution function,

while the generalized Rayleigh distribution should be preferred to model the total

amount of work under uncertainty. For both KPIs the Monte Carlo simulations

reveal estimated probabilities of correct selection that are larger than 0.95. The

values of the test statistic are in the range of [�75;4] and therefore, as before,

indicate only a low discriminative power.

The final question in this chapter is whether the comparably small differences in

performance as shown in the histograms of Figs. 5.29 and 5.30 are significant or

not. For 100 additional independent runs, the Kruskal-Wallis test on the project

duration data shows that the location differences between the three release periods

are not significant KT ¼ 2:5157, p ¼ 0:2852ð Þ. Hence, the null hypothesis H0,T that

the true location parameters of the samples are equal cannot be rejected on the

significance level of α ¼ 0:05. The Kruskal-Wallis test on the total amount of work

data comes to a similar conclusion and shows that the location differences between

the three release periods are not significant Kxtot ¼ 1:2870, p ¼ 0:5270ð Þ. The null
hypothesis H0,xtot that the true location parameters of the samples are equal also

cannot be rejected on the significance level of α ¼ 0:05.
In spite of these insignificant differences in mean performance, the goodness-of-

fit hypothesis test between minimum release period smin ¼ 2 and maximum period

smax ¼ 20 indicates significant differences in the distributions of the project duration

from which data were drawn. In this case, the Kolmogorov-Smirnov test statistic is

DT, 2�20 ¼ 0:138. The associated p-value is p ¼ 0:0401. Hence, the differences in
the complexity metric EMCPVAR according to the interval bounds shown in Fig. 5.28

also lead to significant differences in probability distributions. The additional dis-

tribution fit tests of the project duration and total effort data do not show significant

differences among the experimental conditions. The test statistic related to the

project duration data for release periods smin ¼ 2 and smed ¼ 10 is

DT, 2�10 ¼ 0:096 p ¼ 0:2961ð Þ. For the simulated total amount of work the test

statistic for release periods smin ¼ 2 and smed ¼ 10 is Dxtot, 2�10 ¼ 0:0945
p ¼ 0:3135ð Þ and for periods smin ¼ 2 and smax ¼ 20 it is Dxtot, 2�20 ¼ 0:1038
p ¼ 0:2159ð Þ.
The combined theoretical and computational analyses also provide, for the

periodically correlated work processes, some evidence that the information-theory

complexity metric EMC is a theoretically very satisfactory quantity and that, under

the investigated organizational conditions, it is also a good predictor of the mean

and standard deviation of the project duration for different release periods and

different formulations of the optimization problem—either unconstrained in the

total amount of work (see Fig. 5.26 in conjunction with Figs. 5.23 and 5.24) or

constrained (see Fig. 5.28 in conjunction with Figs. 5.29 and 5.30). The predictive

power is much larger for the unconstrained optimization of the release period. In

summary, inconsistencies in performance predictions or disordinal interactions

between the independent parameters did not occur and prove the predictive validity

of the closed-form solutions for the investigated class of models of cooperative work.
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Chapter 6

Conclusions and Outlook

In this book, we have presented theoretical and empirical analyses of the dynamics

and emergent complexity of cooperative work in product development projects. To

do so, we have mainly focused on projects that are organized according to the

management concept of concurrent engineering. Concurrent engineering offers a

systematic approach to the integrated, concurrent design of products and their

related processes, including manufacture and support (Winner et al. 1988).

Designed to encourage developers to consider all elements of the product life

cycle from the outset, it requires intensive cooperation between and within teams.

We opted for a model-driven approach and formulated various mathematical

models to analyze cooperative work in these kinds of open organizational systems.

These models are based on the fundamental work of Smith and Eppinger (1997,

1998) and Yassine et al. (2003) on a deterministic product development flow and

also take account of the important developments by Huberman and Wilkinson

(2005) on the theory of stochastic processes. We preferred statistical models,

because they can account for unpredictable performance fluctuations in the iteration

process due to limited information-processing capacities and the intrinsic mecha-

nisms of error correction in product development. Further, from an ergonomics

perspective, unpredictable performance fluctuations can be seen as essential com-

ponents of creative activities in design work and are therefore basic ingredients of

success that should not be limited in their reach and capacity to benefit the whole

process. These fluctuations are inherent to open organizational systems and are

especially prevalent in concurrent engineering because of the multitude of inter-

faces between mechanical, electrical and electronic modules and the high level of

integration of technical knowledge and methodological approaches to problem-

solving, all of which are aspects crucial to the success of a parallel and highly

iterative execution of the work processes.

To gain a deeper understanding of the dynamics of cooperative work, we did not

simply consider a basic model class in which the project state under uncertainty is

represented by a linear combination of observable random vectors, but also a

broader class with latent variables which cannot be directly observed but must be
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inferred through a causal model from the estimated project state. As in the works of

Smith and Eppinger (1997, 1998) and Yassine et al. (2003), the project state was

expressed as the amount of work remaining for all tasks at time step t. The work

remaining can be measured by the time left to finalize a specific design, by the

definable labor units required to complete a particular development activity or

component of the work breakdown structure, by the number of engineering draw-

ings requiring completion before design release, by the number of engineering

design studies required before design release, or by the number of issues that still

need to be addressed/resolved before design release (Yassine et al. 2003). The basic

model class comprises vector autoregression models of finite order which can

capture the apparent cooperative processing of the development tasks with short

iteration length in a given project phase. Despite their simple structure and low

logical depth, these models can simulate a surprisingly diverse set of patterns of

cooperative task processing in product development projects. Furthermore, they can

be used to explain the “problem-solving oscillations” (Mihm et al. 2003) specified

in the introductory chapter by making only a few, very reasonable assumptions

about the problem-solving processes in the iteration process. According to the

deterministic and stochastic parts of the state equations, the irregular oscillations

between being on, ahead of, and behind schedule can be interpreted as excited

performance fluctuations (Schlick et al. 2008; Schlick et al. 2013). For first-order

models the excitation can occur because of the interrelationship between the

dependency structure encoded in the work transformation matrix A0 and the forcing

matrix K. These mechanisms were explicitly revealed in the spectral basis (see

e.g. Eqs. 43 and 47 in conjunction with Eqs. 258 and 262). An augmented state-

space formulation also makes it possible to model and simulate more complex

autoregressive processes with periodically correlated components. These so-called

periodic vector autoregressive stochastic processes can be used to model hierarchi-

cal coordination structures in large-scale product development projects and to

simulate the long-term effect of intentionally withholding the release of design

information for a certain period of time and not immediately disseminating it to

lower hierarchical levels. To go beyond vector autoregressive processes, we also

considered the theoretically interesting class of linear dynamical systems with

additive Gaussian noise. As mentioned above, the state of the project cannot be

directly observed in these system models with latent variables but is inferred

through a causal model. This makes it possible to distinguish between a “hidden”

state process of cooperative development and the observation process in the product

development flow. The internal configuration is not entirely accessible to the

project manager but must be estimated on the basis of repeated readings from

dedicated performance measurement instruments. This fundamental degree of

uncertainty in the project state and its evolution can lead to a non-negligible

fraction of long-term correlations between development activities and therefore

significantly increase emergent complexity. In addition to the statistical models of

cooperative work, the corresponding least squares and maximum likelihood esti-

mation methods were introduced to demonstrate how the parameters can be effi-

ciently estimated from time series of task processing in industrial product
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development environments. To validate the basic vector autoregression and linear

dynamical system models with field data, a case study was carried out at a German

industrial company that develops sensor technologies for the automotive industry.

The validation results show that in terms of the standards of organizational model-

ing and simulation, the overall predictive accuracy of the parameterized models is

high. As is to be expected, the more complex linear dynamical system model leads

to slightly better predictions. Moreover, for periodic vector autoregressive stochas-

tic processes the accuracy of the introduced least squares estimation technique was

investigated in a simulation study in order to completely control the confounding

factors. We formulated a periodic vector autoregression model that connects the

dynamics of module design and integration in a vehicle door development project

with component development. This served as a reference model to simulate task

processing and generate time series for different lengths of work remaining. We

then “reconstructed” the reference model representation purely from data. To

simplify the analysis, we focused on the door module of the vehicle door subsystem.

Here too, we were able to show that in terms of the standards of organizational

modeling and simulation, the identifiability of the reference model of cooperative

work was high and the uncertainty in parameter estimation was low. The results

were highly consistent and replicable.

Furthermore, and most importantly from a scientific point of view, the complex-

ity framework, consisting of theories and measures developed in organizational

theory, systematic engineering design and basic scientific research on complex

systems, was reviewed in great detail and applied to project management as far as

possible. To evaluate emergent complexity of cooperative work in product devel-

opment projects, an information-theory measure from basic scientific research—

termed “effective measure complexity”—was chosen because it can be derived

from first principles and therefore offers high construct validity. Effective measure

complexity quantifies the mutual information between the infinite past and future

histories of a stochastic process. According to this principle, this measure is of

particular interest for evaluating the time-dependent complexity of cooperative

development processes and identifying the essential interactions between activities.

Effective measure complexity and the underlying complexity theory can be traced

back to the theoretical physicist Grassberger (1986), whose seminal work has been

completely overlooked in organization theory and engineering management litera-

ture. It is important to point out that effective measure complexity is not limited to a

specific class of statistical models of cooperative work: if the data is generated by a

process in a specific class but with unknown parameter values, we can calculate the

effective measure complexity explicitly, as we did. It is also possible, however, to

quantify the complexity of processes that fall outside the conventional models. The

formulated vector autoregression models provided the mathematical foundation for

the calculation of several closed-form solutions of effective measure complexity in

the original state space, solutions that allow an explicit complexity evaluation based

on the model’s parameters. For first-order models we also carried out a transfor-

mation into the spectral basis to obtain additional, more expressive solutions in

matrix form. In the spectral basis, the essential parameters driving emergent
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complexity, which are surprisingly few in number, were identified and the effects of

cooperative relationships were directly interpreted. The essential parameters

include the eigenvalues of the work transformation matrix as a dynamical operator

of the vector autoregression model and the correlation coefficients between com-

ponents of unpredictable performance fluctuations. In this context, the closed-form

solution from Eq. 262 is especially interesting for a complexity analysis with

respect to first-order processes, as it significantly reduces the effective number of

parameters without blurring the essential spatiotemporal structures that shape

emergent complexity in the product development projects modeled. Through a

simple rewriting of the state equation as a first-order recurrence relation it was

also possible to calculate the effective measure complexity of processes that are

generated by higher-order autoregressive models. Furthermore, different types of

closed-form solutions of effective measure complexity in the original state-space

coordinates were calculated for linear dynamical systems with additive Gaussian

noise. Because linear dynamical systems with additive Gaussian noise are very

common in mechanical, electrical and control engineering, these solutions are not

only interesting for evaluating emergent complexity in open organizational sys-

tems; they can also be used to analyze, design and control purely technical systems.

Due to the comparatively complicated structure of linear dynamical systems the

derivation of the closed-form solutions was much more involved mathematically

speaking. The most sophisticated solution is based on infinite dimensional matrices

and was presented in Eq. 291 in explicit form. A similar result has been obtained in

a more general context by de Cock (2002), whose seminal work also made it

possible to express effective measure complexity in a structurally rich but much

simpler implicit form. The implicit form is significantly easier to interpret because

its parameters can be derived from the solutions of fundamental equations. This

most intuitive solution is provided in Eq. 299. Both the explicit and implicit

formulations of the solutions lead to consistent and robust numerical complexity

results, as we have shown in the sensitivity analysis of Section 2.11. Hence, both

approaches can be very helpful for evaluating strong emergence in terms of mutual

information communicated from the infinite past to the infinite future by the

stochastic process as a model of cooperative work in product development projects.

The closed-form solutions obtained show that effective measure complexity is

non-negative. The detailed discussions in Section 4.1 made it clear that this

measure has four especially favorable properties in the application domain of

project management:

1. It is small for project phases in which tasks can be processed independently and

it assigns larger complexity values to intuitively more complex work processes

with the same dominant eigenvalue of the corresponding dynamical operator but

stronger task coupling due to intense cooperation. The effective measure com-

plexity equals zero if the process observed is completely temporally

uncorrelated and therefore no meaningful informational dependency structure

exists between the processed tasks, which can be used to make good predictions

(see Section 4.1). Moreover, if the vector of work remaining over all tasks can be
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divided into two subsets which are completely uncorrelated and therefore rep-

resent completely independent work streams in the product development flow,

the effective measure complexity of the whole process equals the sum of the

complexities of each subprocess resulting from the division (see Section 4.1).

The importance of the nature, quantity and magnitude of organizational subtasks

and subtask interactions is also pointed out in the theoretical and empirical

analyses of Tatikonda and Rosenthal (2000). Interestingly, the empirical studies

of H€olttä-Otto and Magee (2006) show that estimation of effort in product

development projects is primarily based on the scale and stretch of the project

and not on interactions. This is due to the fact that the balancing or reinforcing

effects of concurrent interactions in open organizational systems are very diffi-

cult for project managers to anticipate. Accordingly, the measure can contribute

to achieving more reliable estimates of time and effort. The dependencies

between tasks were also mentioned as complexity-contributing elements in

four out of six cases in the empirical analysis put forward by Bosch-Rekveldt

et al. (2011). Mulenburg (2008) considers the number and types of task-based

interactions between actors in projects of different types as one of six main

sources of complexity, while Summers and Shah (2010) consider “complexity as

coupling” to be one of three main aspects of design complexity. Both the number

of activities in a project and their interconnectedness are complexity-shaping

factors in the UCP and NTCP models developed by Shenhar and colleagues

(Shenhar and Dvir 2007; Shenhar 1998; Shenhar and Dvir 1996).

2. The effective measure complexity tends to assign larger complexity values to

project phases with more tasks if the intensity of cooperative relationships is

similar, and is thus sensitive to the dimensionality of the state space of the

process. The measure is also a strictly increasing function of each of the

canonical correlations (see Section 4.1 in conjunction with Section 4.1.3). The

complexity-reinforcing effects of the “size” of a project are also stressed in

Mihm et al. (2003), Huberman and Wilkinson (2005), Suh (2005), H€olttä-Otto
and Magee (2006), Mihm and Loch (2006), Shenhar and Dvir (2007),

Mulenburg (2008), Hass (2009), Summers and Shah (2010), and Bosch-

Rekveldt et al. (2011). Alternatively, one can divide the effective measure

complexity by the dimension of the state space and compare processes with

different dimensionalities.

3. The measure can evaluate both weak and strong emergence in an uncertain

product development environment. According to Chalmers (2002), weak emer-

gence means that there is in principle no choice of outcome. As such, the

outcome can be anticipated without a detailed inspection of particular instances

of task processing. Given the state equation, there are entirely reproducible

features of its subsequent evolution that inevitably emerge over time, such as

reaching a steady state. In light of our approach, a simple technique for evalu-

ating weak emergence in the class of vector autoregression models is the

eigenvalue analysis of the dynamical operator (assuming that for higher-order

models the state equation was rewritten as a first-order recurrence relation and

the combined dynamical operator can be evaluated, see Section 4.1.6). It is
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evident that effective measure complexity indicates the same bound of asymp-

totic stability as does a classic eigenvalue analysis by assigning infinite com-

plexity values: if the dominant eigenvalue has modulus less than one, the infinite

sum in Eq. 247 converges, and the project will converge toward the asymptote of

“no remaining work;” on the other hand, if the dominant eigenvalue has modulus

greater than one, the sum diverges, and the work remaining grows over all given

limits. The emergence of complexity is termed strong if the patterns of cooper-

ative task processing can only be reliably forecasted by observing the distant

past of each particular development task instance and with relevant knowledge

of the prior history of the interacting processes (Chalmers 2002). In management

literature this phenomenon is also known as “path dependence” (Maylor

et al. 2008). Relevant information on the prior history is extracted through

Bialek’s predictive information (cf. Eq. 226) and utilized in the different

closed-form solutions in the limit of an infinite block length. The importance

of the factor “uncertainty” in the scope and methods of a project in conjunction

with “stability of project environment” is also pointed out in the TOE framework

of Bosch-Rekveldt et al. (2011). Mulenburg (2008) identifies uncertainty in the

sense of the inability to pre-evaluate actions as one of the six main sources of

complexity in projects, listing the unpredictability of the project state and events

as another main source. It is readily apparent that for a first-order vector

autoregression model of cooperative work, for instance, these sources are clearly

separated through the definition of the effective measure complexity from

Eq. 246: the inherent inability to pre-evaluate the consequence of actions

concerning the amount of work is expressed by the determinant of the covari-

ance matrix C of the intrinsic prediction error. The unpredictability of the

iteration process, which can only be “explained away” through an increasingly

detailed inspection of the particular instances of task processing is represented

by the ratio of generalized variances Det[Σ] and Det[C]. Suh’s information

axiom (2005) addresses both size and uncertainty, while Hass (2009) focuses

on the stability of the requirements, as well as the clarity of the problem and its

solution. The simulation study contributed by Lebcir (2011) shows that devel-

opment time significantly increases when project uncertainty is changed from

low to reference level.

4. The measure is independent of the basis in which the state vectors are

represented. It is invariant under arbitrary reparameterizations based on smooth

and uniquely invertible maps (Kraskov et al. 2004) and is therefore independent

of the project manager’s subjective choice of measurement instrument. As such,

it can contribute to reducing ambiguity in projects by promoting awareness of

causality and persistent dynamical dependency structures (sensu Mulenburg

2008). To the best of our knowledge, this fundamental objectivity is a unique

property that other metrics do not possess. Moreover, this invariance property is

mandatory, given that the likelihood function ℒ(θ|{yt}T0 ) of a sequence of fixed
observations {yt}

T
0 of a linear dynamical system possesses the same invariance

property, as outlined in Section 2.10.
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Finally, the theoretical complexity analyses were elucidated in practical terms

using three validation studies. We investigated the validity of closed-form solutions

for effective measure complexity that were obtained for vector autoregression

models as the basic mathematical representations of cooperative work in product

development projects. With respect to classic validity theory, the focus was on the

criterion-based conception of validity. We evaluated two types of criterion-related

validity: concurrent validity and predictive validity. In the first study, we concen-

trated on concurrent validity. To do so, we expanded the theoretical foundations on

model selection, primarily building upon the work of Li and Xie (1996) on the

principle of minimal mutual information. Although this principle was developed

independently from the work of Grassberger (1986) and others, it is very closely

related, as the mutual information communicated from the infinite past to the

infinite future by the stochastic process is evaluated to select the class of models

under certain constraints. Furthermore, this principle allowed us to formulate a

complexity-based model selection criterion (termed the mutual information crite-

rion) that could be directly applied to identify an optimal model order within the

class of vector autoregression models. The studies of concurrent validity were

based on two Monte Carlo experiments, which shared the same overall objective

but used different parametric model forms. The overall objective was to compare

the accuracy of the mutual information criterion with standard criteria like the

(original and bias corrected) Akaike information criterion and the Schwarz-Bayes

criterion. It was hypothesized that model selection based on effective measure

complexity makes it possible to select the true model order with high accuracy

and that the histogram distributions of the selected model orders are not signifi-

cantly different from the distributions obtained under the alternative criteria. The

parametric model forms were not only derived on the basis of field data from the

previously mentioned PD project at the small industrial company, but were also

synthetically generated to allow a systematic comparison of concurrent validity of

the different model selection criteria (cf. Lütkepohl 1985). The results of the Monte

Carlo experiments unambiguously show that the mutual information criterion is not

only very effective for making model selection decisions in specific PD environ-

ments, but also appears to offer a highly accurate universal quantity for model

selection in the class of vector autoregression models. Further, additional analytical

and numerical considerations have shown that the formulation of the criterion can

easily be generalized to the class of linear dynamical systems, and that using the

criterion for model selection within this broader class also allows us to select the

true model order with a high degree of accuracy. The significance of the criterion’s
effectiveness at universally penalizing unnecessarily complex models should not be

underestimated. It not only shows that vector autoregression and linear dynamical

system models as specific instances of homogeneous recurrence relations can be

used to validate a quantitative theory of emergent complexity in open organiza-

tional systems, but also demonstrates that theoretical knowledge can be transferred

and a systematic method provided to find optimal parametric representations for

different classes of systems that are completely independent of the systems’ repre-
sentation of its organization. The second and third validation studies focused on
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predictive validity. In the second study our goal was to optimize organization

design, and concretely to minimize emergent complexity by selecting the optimal

staffing of three concurrent engineering teams with developers who have different

levels of productivity (attributable to their skills, abilities or access to information)

in a simulated product development project. We hypothesized that for significant

individual differences “productivity balancing” at the team level leads to minimal

emergent complexity. The aim of the third study was to optimize the period for

minimal emergent complexity in which information about integration and tests of

geometric/topological entities is deliberately withheld by subsystem-level teams

and not released to component-level teams. This type of non-cooperative behavior

is justified by the aim to improve the implementation of the product architecture and

reduce coordination efforts. In both the second and third studies we formulated

unconstrained as well as constrained optimization problems and solved them on the

basis of the analytically obtained complexity solutions. We consistently modeled

and analyzed small but complete product development projects in both studies

where all tasks have to be processed completely in parallel and are fully

interdependent, as this approach allowed us to demonstrate the introduced concepts

in a holistic manner and simplified the interpretation of the results. Furthermore, we

carried out Monte Carlo experiments to investigate the influence of emergent

complexity in the sense of effective measure complexity on means and standard

deviations of the project duration and the effort. In our cases the term effort referred

to the total amount of work done in the iteration process to complete the project as a

whole. In the constrained optimization problems we considered the mean total

amount of work as the externally set constraint and concentrated on the interrela-

tionship between emergent complexity and project duration. In practical terms, the

most important finding of the second validation study was that an assignment of

team members with “balanced” productivity at the team level and therefore max-

imum diversity within teams produces minimal emergent complexity. Moreover,

this organization design led to the lowest means and standard deviations of the

project duration in the Monte Carlo experiments. These results are independent of

whether a constraint was put on the mean total amount of work or not. When the

mean total amount of work was considered as a constraint in the Monte Carlo

experiments, the standard deviation of the total amount of work that was calculated

for the optimal project organizational design was also smallest. Hence, the results

consistently supported the formulated “productivity balancing” and the comple-

mentary “team diversity” hypothesis. From a theoretical perspective another inter-

esting finding of the second validation study was that the larger the emergent

complexity, the more the evolution toward a stable solution of the project duration

at any particular instance can differ from the average unperturbed process. Hence,

projects that in the absence of unpredictable performance fluctuations would

converge smoothly to the desired goal of zero work remaining for all tasks can

deviate significantly from this path. When emergent complexity is low, conver-

gence is smooth, and both the project duration and the total amount of work are

distributed approximately log-normally with small variance. Above certain com-

plexity thresholds, we observed that the distributions undergo a transition to a long-
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tailed log-normal form. The appearance of a long-tailed log-normal form implies

that while there may be work processes where time to completion seems to be

compatible with the expected duration of the project, on other occasions it will be

significantly longer, with the concomitant aggravation that the project manager is

unable to predict when such long delays will arise (Huberman andWilkinson 2005).

One of the most important findings of the third validation study was that in

unconstrained optimization, the smallest complexity values are assigned to period-

ically correlated work processes with minimum correlation length. For the organi-

zational conditions investigated we must therefore recommend minimizing the

period in which information about the system design and integration testing is

deliberately withheld by subsystem-level teams. By minimizing the length of this

period, the emergent complexity can be kept as low as possible. This recommen-

dation is also fully supported by the results of the Monte Carlo experiments because

they show that, as the release period increases, the means and standard deviations of

the project duration and the total amount of work also increase significantly. In the

case of constrained optimization, specifying a constraint on the mean total amount

of work leads to complexity values that strictly decrease as the release period

increases and are therefore in contrast to the solution of the unconstrained optimi-

zation problem. However, the results of the Monte Carlo experiments again support

the predictive validity of the complexity measure, as the means and standard

deviations of the project duration and the total effort expended strictly decrease

as well. The differences in project duration are much smaller but still statistically

significant. Maximizing the period in which information is deliberately withheld by

subsystem-level teams can only be recommended if the work processes can be

organized in such a way that the fractions of work that are put on hold at each short

iteration can be reduced by at least 25%. In real product development environments

this can usually only be achieved through substantially intensified communication

between developers or with an exorbitant number of standards on how a work

process is to be executed. Not only do these organization-level interventions often

result in excessive work stress; they can also have adverse effects on creative

solutions and innovative approaches and are therefore not desirable. The combined

computational analyses in the second and third validation study show that the

effective measure complexity is not only a highly satisfactory quantity in theory,

but also a good predictor of the mean and standard deviation of the project duration

for different staffings of concurrent engineering teams, for different release periods

of design information and for different formulations of the optimization problem –

regardless of whether the mean total amount of work is unconstrained or

constrained. The predictive accuracy is higher for the unconstrained optimization

of the release period. In summary, inconsistencies in performance predictions or

disordinal interactions between the independent variables did not occur, proving the

predictive validity of the closed-form solutions for the investigated class of vector

autoregression models. The studies also showed that the developed statistical

models of cooperative work in conjunction with the application of the complexity

theory can lead to interesting and useful results in applied organizational simulation

and optimization.
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The information-theory approach to evaluating emergent complexity in product

development projects in conjunction with the state-space representations of coop-

erative work still needs to be worked out in more detail in the future. A first step in

this direction would be to compute the effective measure complexity of processes

that are generated by the statistical project model developed by Huberman and

Wilkinson (2005), which incorporates multiplicative instead of additive noise to

model non-predictable performance fluctuations (cf. Eq. 8). The multiplicative

approach to modeling performance variability is interesting not only because it

can reproduce the critical effects of large design teams and highly interdependent

tasks with conceptually convincing and practically useful conclusions about the

cooperative problem-solving processes, but also because of its theoretically rea-

sonable assumption that the autonomous task processing rates and the intensity of

cooperative relationships are subject to random influences. However, to the best of

our knowledge, the Huberman-Wilkinson model has not been supported by any

empirical evidence and therefore it remains an open question whether it can

produce better managerial decisions than our additive approach. Furthermore,

since there is no sufficient reason to believe that this is the only theoretically

reasonable assumption, let alone whether this assumption would be empirically

especially relevant for the product development flow, we believe that our simpler

autoregressive models of cooperative work already offer a good explanation of the

cited problem-solving oscillations and high predictive validity. As mentioned

before and shown in detail in Section 4.1.2, within this basic class of models one

can explain problem-solving oscillations by the interference pattern between all

design and performance fluctuation modes that can exacerbate performance fluctu-

ations. It may be possible to calculate the effective measure complexity related to

the Huberman-Wilkinson model by following three main steps: First, calculate the

covariance matrix in the steady state. Second, show that performance variability in

the steady state is governed by a log-normal distribution. The simulation results

indicate that the distribution in the steady state may be log-normal (Huberman and

Wilkinson 2005). Third, calculate the dynamic entropies of the state variables and

derive the corresponding measure. Unfortunately, these three calculations are

extremely involved, mathematically speaking. A natural extension on the basis of

linear state-space models would be to incorporate both multiplicative and additive

performance fluctuations (Arnold andWishtutz 1982). However, under this premise

the parameter estimation from the small sample size typical for organizational

modeling is difficult and can be unreliable.

In the long term, we plan to conduct an external validation study of the

complexity theory and the related measures with experienced project managers in

industry. By “measures” we mean not only the effective measure complexity which

has been heavily stressed in this book, but also the persistent mutual information

that was recently proposed by Ball et al. (2010, see definition in Eq. 229). The

closed-form solutions that were presented in Section 4.1 and the theoretical analysis

in Section 4.1.6 have shown that the persistent mutual information can be consid-

ered as a complexity measure in its own right and can lead to meaningful com-

plexity values even if there are zeros on the unit circle, which can easily cause the
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effective measure complexity to be infinite (Li 2006). It is hypothesized that the

effective measure complexity and the persistent mutual information are also exter-

nally valid complexity metrics, which can be used for the simulation-supported

optimization of organizational structures and processes in projects of different scale

and scope (cf. Sections 5.2 and 5.3). Furthermore, they also have the potential to

capture the implicit knowledge of project managers based on the nature, quantity

and magnitude of concurrent tasks and can therefore serve as a good foundation for

developing effective managerial interventions to cope with emergent complexity in

the product development flow. In general, we believe that the effective measure

complexity and the persistent mutual information provide valuable information

enabling the project manager and concurrent engineering teams to better organize

their work and to improve coordination processes. The results of the optimization

study on project organization in Section 5.2 may also have practical implications.

Within the modeling framework developed for evaluating complexity we found

some experimental evidence that the self-developed concept of productivity

balancing can lead to a reduction in the finishing time in product development

projects and its variance. The concept also has the potential to simultaneously

reduce the total effort expended. As we pointed out in Section 5.2, the general

idea behind the concept of productivity balancing is not to standardize the work and

complete the tasks at a constant rate, which would severely limit the developers’
scope of action and place limits on their creative thinking. Rather, the goal is to

implement the basic principle of diversity management and find optimal (or near

optimal) assignments of team members with different levels of performance so as to

maximize the potential advantages of diversity and keep its potential disadvantages

down to a tolerable level (sensu Cox 1994). This approach makes it possible to

carry out the project work effectively and efficiently without design churns

(Yassine et al. 2003) or other critical emergent phenomena of complex

sociotechnical systems that often lead to unacceptably high levels of stress and

excessive workloads. Productivity balancing promotes the continuous development

of human knowledge, skills and abilities through effective cooperation and inten-

sive communication. As such, it can be regarded as a holistic concept for the goal-

oriented design of interactions between individuals, tasks and products/services that

views performance fluctuations as an opportunity to innovate and learn. Thanks to

its participatory design and evaluation of these interactions it also aims to increase

awareness of characteristic emergent phenomena in open organizational systems

and to leverage from them the greatest advantage for the individuals and work

teams. A theoretically possible but still highly speculative effect of leverage is that

under certain circumstances unpredictable performance fluctuations in conjunction

with team diversity can accelerate the completion of the development tasks: the

mean project duration obtained in the Monte Carlo experiments is shorter than the

duration without performance variability. However, the standard deviation usually

grows simultaneously with the acceleration factor and therefore the risk of falling

behind the schedule tends to increase. Furthermore, there is a certain degree of risk

that the resulting work intensity coupled with multitasking could have a negative

effect on well-being. Using analytical methods, simulation models or empirical
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studies, we need to find the optimal project organization arrangement in which

either this trade-off is non-existent or its potential negative consequences on

individuals and teamwork can be significantly reduced. The theoretical framework

developed here would seem to offer a stable foundation for analyzing the novel

concept of productivity balancing in more detail in the future and for developing

human-centered solutions for cooperative work in product development projects.
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