
Practical
GameMaker:
Studio

Language Projects
—
Ben Tyers

Practical GameMaker:
Studio

Language Projects

Ben Tyers

Practical GameMaker: Studio

Ben Tyers
Worthing, West Sussex, United Kingdom

ISBN-13 (pbk): 978-1-4842-2372-7 ISBN-13 (electronic): 978-1-4842-2373-4
DOI 10.1007/978-1-4842-2373-4

Library of Congress Control Number: 2016962191

Copyright © 2016 by Ben Tyers

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Dickson Law
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

iii

Contents at a Glance

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ��xvii

Introduction ��xix

 ■Chapter 1: Variables �� 1

 ■Chapter 2: Conditionals ��� 11

 ■Chapter 3: Drawing �� 19

 ■Chapter 4: Drawing Continued ��� 29

 ■Chapter 5: Keyboard Input and Simple Movement �� 39

 ■Chapter 6: Objects and Events ��� 45

 ■Chapter 7: Sprites �� 55

 ■Chapter 8: Health, Lives, and Score ��� 65

 ■Chapter 9: Mouse �� 75

 ■Chapter 10: Alarms �� 83

 ■Chapter 11: Collisions�� 91

 ■Chapter 12: Rooms �� 103

 ■Chapter 13: Backgrounds �� 113

 ■Chapter 14: Sounds and Music �� 121

 ■Chapter 15: Splash Screens and Menu �� 129

 ■Chapter 16: Random �� 139

 ■Chapter 17: More Movement (Basic AI) ��� 145

■ Contents at a GlanCe

iv

 ■Chapter 18: INI Files �� 155

 ■Chapter 19: Effects �� 161

 ■Chapter 20: Loops �� 167

 ■Chapter 21: Arrays �� 173

 ■Chapter 22: ds_lists��� 185

 ■Chapter 23: Paths �� 193

 ■Chapter 24: Scripts �� 201

 ■Chapter 25: Hints and Tips �� 209

 ■Chapter 26: Creating a Game – Outline ��� 215

 ■Chapter 27: Creating a Game – Sprites ��� 217

 ■Chapter 28: Creating a Game – Sounds ��� 223

 ■Chapter 29: Creating a Game – Backgrounds �� 225

 ■Chapter 30: Creating a Game – Paths �� 227

 ■Chapter 31: Creating a Game – Fonts �� 229

 ■Chapter 32: Creating a Game – Scripts ��� 231

 ■Chapter 33: Creating a Game – Parent Objects ��� 237

 ■Chapter 34: Creating a Game – Objects ��� 243

 ■Chapter 35: Creating a Game – Rooms �� 277

 ■Chapter 36: Creating a Game – Progress Sheet ��� 285

 ■Chapter 37: Creating a Game – Marking Guide ��� 287

 ■Chapter 38: Creating a Game – End of Projects Assignments ���������������������������� 289

 ■Chapter 39: End of Project Test ��� 295

 ■Chapter 40: Summary �� 307

Erratum ��� E1

Index ��� 309

v

Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ��xvii

Introduction ��xix

 ■Chapter 1: Variables �� 1

Worksheet – Variables �� 5

Worksheet – Variables – Answer Sheet�� 6

Basic Projects ��� 8

Advanced Project ��� 8

End of Book Game Variables �� 9

 ■Chapter 2: Conditionals ��� 11

Worksheet – Conditionals��� 14

Worksheet – Conditionals – Answer Sheet �� 15

Basic Projects ��� 16

Advanced Projects �� 16

End of Book Game Conditionals ��� 17

 ■Chapter 3: Drawing �� 19

Worksheet – Drawing ��� 24

Worksheet – Drawing – Answer Sheet ��� 25

Basic Projects ��� 26

Advanced Project ��� 26

End of Book Game Drawing �� 28

■ Contents

vi

 ■Chapter 4: Drawing Continued ��� 29

Worksheet – Drawing Continued �� 35

Worksheet – Drawing Continued – Answer Sheet �� 36

Basic Projects ��� 37

Advanced Projects �� 37

End of Book Game Drawing Continued �� 38

 ■Chapter 5: Keyboard Input and Simple Movement �� 39

Worksheet – Key Presses and Simple Movement �� 41

Worksheet – Key Presses and Simple Movement – Answer Sheet �������������������������������� 42

Basic Projects ��� 43

Advanced Project ��� 43

End of Book Game Keypresses and Simple Movement �� 44

 ■Chapter 6: Objects and Events ��� 45

Worksheet – Objects �� 50

Worksheet – Objects – Answer Sheet �� 51

Basic Projects ��� 52

Advanced Project ��� 52

End of Book Game Objects ��� 53

 ■Chapter 7: Sprites �� 55

Worksheet – Sprites ��� 60

Worksheet – Sprites – Answer Sheet ��� 61

Basic Projects ��� 62

Advanced Project ��� 62

End of Book Game Sprites �� 63

 ■Chapter 8: Health, Lives, and Score ��� 65

Worksheet – Lives, Health, & Score ��� 70

Worksheet – Lives, Health, Lives, & Score – Answer Sheet ��� 71

■ Contents

vii

Basic Projects ��� 72

Advanced Projects �� 72

End of Book Game Health, Lives, & Score �� 73

 ■Chapter 9: Mouse �� 75

Worksheet – Mouse Movement �� 78

Worksheet – Mouse Movement – Answer Sheet �� 79

Basic Projects ��� 80

Advanced Projects �� 80

End of Book Game Mouse Movement �� 81

 ■Chapter 10: Alarms �� 83

Worksheet – Alarms ��� 86

Worksheet – Alarms – Answer Sheet ��� 87

Basic Projects ��� 88

Advanced Projects �� 88

End of Book Game Ten Alarms ��� 89

 ■Chapter 11: Collisions�� 91

Worksheet – Collision Events ��� 98

Worksheet – Collision Events – Answer Sheet ��� 99

Basic Projects ��� 100

Advanced Projects �� 100

End of Book Game Collisions �� 101

 ■Chapter 12: Rooms �� 103

Worksheet – Rooms ��� 108

Worksheet – Rooms – Answer Sheet ��� 109

Basic Projects ��� 110

Advanced Project ��� 110

End of Book Game Rooms �� 111

■ Contents

viii

 ■Chapter 13: Backgrounds �� 113

Worksheet - Backgrounds �� 116

Worksheet – Backgrounds – Answer Sheet ��� 117

Basic Projects ��� 118

Advanced Projects �� 118

End of Book Game Backgrounds �� 119

 ■Chapter 14: Sounds and Music �� 121

Worksheet – Sounds & Music �� 125

Worksheet – Sounds & Music – Answer Sheet �� 126

Basic Projects ��� 127

Advanced Projects �� 127

End of Book Game Sounds & Music ��� 128

 ■Chapter 15: Splash Screens and Menu �� 129

Worksheet – Splash Screens & Menu �� 134

Worksheet – Splash Screens & Menu – Answer Sheet �� 135

Basic Projects ��� 137

Advanced Project ��� 137

End of Book Game Splash Screens & Menu ��� 138

 ■Chapter 16: Random �� 139

Worksheet – Random ��� 141

Worksheet – Random – Answer Sheet ��� 142

Basic Projects ��� 143

Advanced Project ��� 143

End of Book Game Random �� 144

 ■Chapter 17: More Movement (Basic AI) ��� 145

Worksheet – More Movement �� 151

Worksheet – More Movement – Answer Sheet �� 152

■ Contents

ix

Basic Projects ��� 153

Advanced Projects �� 153

End of Book Game �� 154

 ■Chapter 18: INI Files �� 155

Worksheet – INI Files ��� 157

Worksheet – INI Files – Answer Sheet ��� 158

Basic Projects ��� 159

Advanced Project ��� 159

End of Book Game INI files ��� 160

 ■Chapter 19: Effects �� 161

Worksheet – Effects ��� 163

Worksheet – Effects – Answer Sheet ��� 164

Basic Projects ��� 165

Advanced Projects �� 165

End of Book Game Effects �� 166

 ■Chapter 20: Loops �� 167

Worksheet – Loops ��� 169

Worksheet – Loops – Answer Sheet��� 170

Basic Projects ��� 171

Advanced Projects �� 171

End of Book Game Loops ��� 172

 ■Chapter 21: Arrays �� 173

Worksheet – Array �� 179

Worksheet – Array – Answer Sheet �� 180

Basic Projects ��� 182

Advanced Projects �� 182

End of Book Game Arrays ��� 183

■ Contents

x

 ■Chapter 22: ds_lists��� 185

Worksheet – ds_lists �� 188

Worksheet – ds_lists – Answer Sheet �� 189

Basic Projects ��� 190

Advanced Project ��� 190

End of Book Game ds_list �� 191

 ■Chapter 23: Paths �� 193

Worksheet – Paths ��� 197

Worksheet – Paths – Answer Sheet ��� 198

Basic Projects ��� 199

Advanced Projects �� 199

End of Book Game Paths �� 200

 ■Chapter 24: Scripts �� 201

Worksheet – Scripts ��� 204

Worksheet – Scripts – Answer Sheet ��� 205

Basic Projects ��� 206

Advanced Projects �� 206

End of Book Game Scripts �� 207

 ■Chapter 25: Hints and Tips �� 209

Scripts Tricks �� 209

Testing �� 211

Assets Handling �� 211

Projects �� 213

 ■Chapter 26: Creating a Game – Outline ��� 215

 ■Chapter 27: Creating a Game – Sprites ��� 217

 ■Chapter 28: Creating a Game – Sounds ��� 223

 ■Chapter 29: Creating a Game – Backgrounds �� 225

 ■Chapter 30: Creating a Game – Paths �� 227

■ Contents

xi

 ■Chapter 31: Creating a Game – Fonts �� 229

 ■Chapter 32: Creating a Game – Scripts ��� 231

 ■Chapter 33: Creating a Game – Parent Objects ��� 237

 ■Chapter 34: Creating a Game – Objects ��� 243

 ■Chapter 35: Creating a Game – Rooms �� 277

 ■Chapter 36: Creating a Game – Progress Sheet ��� 285

 ■Chapter 37: Creating a Game – Marking Guide ��� 287

 ■Chapter 38: Creating a Game – End of Projects Assignments ���������������������������� 289

Endless Runner �� 289

Shoot The Ducks �� 290

Pontoon �� 291

Side-Scrolling Shooter ��� 292

End of Project Marking Guide ��� 293

 ■Chapter 39: End of Project Test ��� 295

Test Paper Answers �� 299

 ■Chapter 40: Summary �� 307

Erratum ��� E1

Index ��� 309

xiii

About the Author

Ben Tyers is a freelance programmer and technical writer by day, and a sci-fi horror novel writer by night.
He made his first computer game way back in 1984, on a ZX Spectrum 48K computer, when he was eight
years old. His passion for creation has continued since then. He holds a number of computer-related
qualifications. When relaxing, Ben has an infatuation for old-school horror and sci-fi films, particularly
1960s B-movies.

xv

About the Technical Reviewer

Dickson Law is a GameMaker hobbyist, commentator, and extension developer with six years of community
experience. In his spare time, he enjoys writing general-purpose libraries, tools, and articles covering basic
techniques for GameMaker: Studio. As a web programmer by day, his main areas of interest include
integration with server-side scripting and API design. He lives in Toronto, Canada.

xvii

Acknowledgments

Yellow Afterlife – Thanks for your help
Thanks to the following for your support:
Nathan Brown
Loukas Bozikis
Alesia Buonomo
Kehran Carr
Arik Chadima
Rom Haviv
Zachary Helm
Credit also to the following for permission to reuse their assets:
Kenney.nl – Playing card sprites
http://millionthvector.blogspot.de – Spaceship Sprites
Napoleon – Missile Sprite
New_Regime by Nuclear_Spring – Backing Music
JM.Atencia – Enemy Spaceship Sprite
Cover Art:
Phaelax – Asteroid
JM.Atencia – Enemy Spaceship
Napoleon – Missile Sprite
KennyLand – Explosion

The original version of this book was revised. An erratum to this book can be found at
DOI 10.1007/978-1-4842-2373-4_41

http://millionthvector.blogspot.de/
http://dx.doi.org/10.1007/978-1-4842-2373-4_41

xix

Introduction

This book serves as an introduction to using GML (GameMaker Language) for creating games using the
popular software, GameMaker: Studio. GameMaker: Studio is a software package created by YoYo Games
that allows the creation of software for different platforms including Windows, HTML5, Android, iOS, and
Mac OS X. The software allows for quick prototyping of games. Its IDE allows for the creation of games using
its D&D (Drag & Drop) system, which allows the creation of games with minimal programming experience,
and the more versatile scripting language, GML. It allows you to export to various platforms with only minor
changes to code. According to their website, their software allows faster coding than native languages, and
rapid prototyping.

Using this book you’ll learn 24 programming elements that are important when creating a game. Each
section includes an introduction to a new programming element, some examples, a worksheet with answer
key, mini projects to apply your to new knowledge (with example GMZ project file for each), and after each
element there is information on how this learned code will be applied in a final end of book game. After
completing all sections, you will put into action what you have learned to create an arcade style shooting
game.

There are then a number of assignments, from which you may choose, to create a final project. If you are
teaching in schools you may include this as part of your students' coursework.

This book is suitable for home study or in a classroom.
GML code is provided in the following style:

GML code in this style.
Comments in this style.

Assets in the resources tree are in this style.

Health, lives, score, are in this style.

Events are in this style. User interface elements (e.g., buttons) are also shown in this style.

For example:

draw_self(); //draws sprite assigned to this object
draw_set_font(font_hud); //set font
draw_text(100,100, "Hello World"); //draw text

This book assumes some basic knowledge of using GameMaker: Studio. This introduction covers the
basics needed to attempt the exercises in this book. If you’re using this book in a school, it’s recommended
that you either cover this first, or photocopy it and hand out before the first class.

■ IntroduCtIon

xx

By following this introduction you'll create a basic click-the-object game. You'll learn the basics of how
to set up and use the following:

Rooms Sounds Sprites

Fonts Objects Drawing

GUI Alarms INI Files

Randomization Create Events Mouse Events

Step Events

All the above will be introduced as you create a simple click-the-object game. There will be an object
that appears at random positions and the aim of the game is to click it before the timer runs out. Each time
you successfully click the object the timer will get faster. If you don’t click the object before the time runs out,
the game ends.

Resources

The resources for this book can be downloaded via the Download Source Code link at
http://www.apress.com/us/book/9781484223727. These include all resources broken down by chapter, all
GML in the book, and all resources and GML for the final game. Example answers for each project are also
included. The resources for this introduction are in the folder: Project Assets & GMZ Files ➤ Assets Used
In Main Chapters ➤ Introduction. There is a project file for this introduction.

Sprites
Sprites are images that will be used in your game. You’ll use them to display the player, enemy, and other
graphics in your game. They are in the downloadable resource folder: Assets Used In Book ➤ Introduction.
Sprites will be drawn by referencing or assigning them to objects. Next, load in the sprites for this game.
There are five of them, spr_logo, spr_start, spr_target, spr_exit, and spr_lives.

You can create a new sprite by clicking the Create a sprite button as shown in Figure i-1:

Name the sprite spr_logo and click Load Sprite, select the file shown below, then Open, set the Origin
to the Center and click OK. This process is shown in Figure i-2:

Figure i-1. Create sprite button

www.springer.com

■ IntroduCtIon

xxi

Figure i-2. Naming and loading a sprite – step 1

Figure i-3. The sprite section will look like this

Repeat this for the remaining sprites, naming them spr_exit, spr_lives, spr_start, and spr_target.
Set the origin of all sprites to center. The origin is point in the sprite where it will be positioned in the room.
More information is provided in the sprite section. For example, using the sprite in Figure i-2, the origin
is 112,112.

If you’ve followed along correctly so far, your resources tree will look like Figure i-3.

■ IntroduCtIon

xxii

Rooms

 ■ Note When starting out, ensure all rooms have the same size settings, for example a width of 800 and a
height of 400. If rooms have different sizes then anything drawn may be distorted.

Rooms are where the action takes place and where you put your objects. You’ll use these objects to display
graphics, process user input, play sounds, and make other things happen.

We will create two rooms. The first will be a splash screen that shows some information about the game,
while the second room will be where the actual gameplay takes place. First create two rooms; name them
room_menu and room_game. Set the room size for each as 800 by 400.

You can do this by clicking the Create a room button as shown circled in Figure i-4:

Figure i-4. Create room button

Follow these actions to create a new room:

 1� Click the Create a room button as shown in Figure i-4.

 2� Name the room and set the dimensions as shown in Figure i-5.

 3� Save the room by clicking the green tick in the top left as in Figure i-5.

 ■ IntroduCtIon

xxiii

Figure i-5. Name room and set dimensions – step 2

Now that you’ve created a room, you have a place for objects to be added to.
Repeat this process for room_game, again setting the dimensions to 800 by 400.

Sounds
Sounds can be music or sound effects. You name each one and use code later to play the sound when you
want to hear it. We will load them now, so we can simply refer to them later.

The example uses two sounds: snd_yeah and snd_you_are_dead.
You can do this by clicking the Create a sound button as shown in Figure i-6:

■ IntroduCtIon

xxiv

Then navigate to where the resource file is stored. Give the sound a name – snd_yeah – you can use the
default settings, and then click OK. This step is shown in Figure i-7:

Figure i-6. Create a new sound

Figure i-7. Name a sound and load it from the resources folder – step 3

■ IntroduCtIon

xxv

Select the appropriate sound from the resources folder as shown in Figure i-8:

Repeat this with the sound file snd_you_are_dead.

Fonts
If you want to display text or variables on screen in your game, you’re going to need to define and name
some fonts. You can then set drawing to this font when you want it displayed. A font can be created by
clicking the Create a font button as shown in Figure i-9:

Set the font name as font_hud and the size as 20 Arial as shown in Figure i-10:

Figure i-8. Choosing a sound file to load

Figure i-9. Creating a font

Figure i-10. Naming and setting a font – step 4

■ IntroduCtIon

xxvi

Objects
Objects are the life blood of GameMaker: Studio. Objects will be used for displaying sprites, playing sounds,
drawing text, detecting movement, processing functions, performing math calculations, and more.

Next we'll create the objects. There are five of them: obj_logo, obj_start, obj_target, obj_exit, and
obj_hud.

First create the object obj_logo and assign the sprite to it.
This can be done by clicking the Create Object button shown in Figure i-11:

Next is to assign a sprite to this object, assign the sprite spr_logo as shown in Figure i-12:

Then click ok.
Next create a new object, obj_start and assign the sprite spr_start_game.
The next step is to program some Events. Events are things that happen. The events you’ll use most

are the Create Event, Step Event, Alarm Event, and Draw Event. These can be set up using GameMaker:
Studio’s built-in GUI.

Figure i-11. Creating a new object

Figure i-12. Assigning a sprite to an object – step 5

■ IntroduCtIon

xxvii

Do this by clicking Add Event then Create Event, as shown in Figure i-13:

Click on the control tab, and click and drag Execute Code to the actions window, shown below in
Figure i-14:

Figure i-13. Making a create event

Figure i-14. Adding a code action – step 5

■ IntroduCtIon

xxviii

In the open window, enter the following code:

//see if ini file exists and load saved score
ini_open("savedata.ini"); //open file savedata.ini
global.highscore = ini_read_real("score", "highscore", 0); //set global.highscore to value
or set as 0 if no value present
ini_close(); //close ini file - always do this after loading or saving data
//set starting values for game:
score=0;
lives=5;

This code will load any high score from a previous play of the game to the variable global.highscore,
set current score to 0, and lives to 5. It is not important at this stage to understand this code. The purpose
of this exercise is to learn how to add GML code to an event. When you’ve added the code, the open window
will look as shown in Figure i-15.

Figure i-15. Adding code to action – step 6

■ IntroduCtIon

xxix

Next create a new event, a Mouse Left Button Released Event as shown in Figure i-16:

Again drag over the Execute Code action and add the following code, as shown in Figure i-17, to this
action:

room_goto(room_game); //goto the room room_game

Next add a Draw Event by clicking Add Event followed by Draw Event, then drag across the Execute
Code. Add the following GML to this:

draw_self(); //draws sprite assigned to this object
draw_set_font(font_hud); //set font
draw_set_halign(fa_center); //set horizontal alignment for drawn text
draw_set_colour(c_black); //sets drawing colour as black
draw_text(250,280, "Highscore: "+ string(global.highscore)); //draw Highscore: plus value
of global.highscore

Figure i-16. Creating a mouse left button released event – step 7

■ IntroduCtIon

xxx

A Draw Event is where you place your code, or D&D, to place text and images on the screen. Drawing
functions, such as draw_text and draw_self, must be placed in Draw Event. Figure i-18 shows this setup
with code added.

Figure i-17. Adding code to the left mouse button released event – step 8

■ IntroduCtIon

xxxi

Click OK to save all changes.
Explanation of the code above:

draw_text(250,280, "Highscore: "+ string(global.highscore)); //draw Highscore: plus value
of global.highscore

This draws the text at position 250 across the screen and 280 down, in pixels.
global.highscore has a numerical value. Because we are drawing it with a string, "Highscore: ", we

need to convert it also to a string. The code string(global.highscore) does this conversion. A more in-
depth explanation of variable types is provided in Chapter 1.

Next create a new object obj_exit and assign the sprite spr_exit.
Create a Left Mouse Button Released Event and add this code:

game_end(); //closes game and returns to windows

That is all for this object. You should now know some of the basics of using Objects, such as creating a
new object and setting a sprite.

Create a new object obj_target and set the sprite spr_target.
Next we’ll use a Create Event to set up some initial variables. A Create Event is only run once when the

object is created, or when a room starts if the object is already placed in it.

Figure i-18. Adding code to a draw event – step 9

http://dx.doi.org/10.1007/978-1-4842-2373-4_1

■ IntroduCtIon

xxxii

We’ll use this event to create at a random position across the screen, X, and down the screen Y between
100 and 700.

We’ll then start an Alarm with a value of 100 minus the score. This makes the alarm quicker as the score
increases, making it get progressively harder to click in time.

In a Create Event put this code, which will choose a whole integer between 100 and 700, sets timer to
100 less the score, with a minimum value of 5, and then sets an alarm with the timer:

x=irandom_range(100,700); //sets x position at random between 100 & 700
y=irandom_range(100,300); //sets y position at random between 100 & 300
timer=100-score; //set timer as 100 less score - so it gets faster
if timer<=5 timer=5; //check if less than 5, set as 5 if it is
alarm[0]=timer;

Next create an Alarm Event0 as shown in Figure i-19. This will activate if the player hasn’t clicked the
object in time. The GML will play a sound first, reduce the player’s lives by 1, and create a new object, then
destroy itself.

Drag across Execute Code and add the following code:

audio_play_sound(snd_you_are_dead,1,false);//plays a sound
lives-=1; //reduce lives
instance_create(50,50,obj_target); // create a target
instance_destroy(); //destroy self

Figure i-19. Creating an alarm event for alarm[0] – step 10

■ IntroduCtIon

xxxiii

Create a Left Mouse Button Released Event into the same object, obj_target and put the following
code in it:

score+=1; //add 1 to score
audio_play_sound(snd_yeah,1,false); //play sound yeah
instance_create(50,50,obj_target); //create new skull
instance_destroy(); //removes self from screen

In a Draw Event of obj_target put:

draw_self(); // draws assigned sprite
draw_set_colour(c_red); //sets drawing colour
draw_rectangle(x-(alarm[0]/2), y-30, x+(alarm[0]/2), y-25,0); //draws a rectangle that
reduces size based on alarm[0] value

The above code will draw the sprite for the object, set the drawing colour to red, and then draw a
rectangle based on the current value of the alarm – this will serve as visual so the player knows how long they
have to click the object. Save this object by clicking OK. You’ll learn more about drawing geometric shapes in
section 3.

Next create an object obj_hud. There is no sprite for this object. This object will be used as a control
object that will be used to draw a HUD of the player’s lives and score. It will also monitor how many lives
the player has, and if the player has lost all of their lives it will update the high score if the player has a new
high score and then restart the game. You do not need to create this file; it will be created automatically upon
saving if it doesn’t already exist. Click Add Event and then Step Event. Add the following code to the Step
Event:

if (lives<0)
{
 if (score>global.highscore)
 {
 ini_open("savedata.ini");
 ini_write_real("score", "highscore", score);
 ini_close(); //closes ini file
 }
 game_restart(); //restarts game
}

This is shown added in Figure i-20. This code will update the saved value in the INI file if the current
score is bigger than global.highscore.

■ IntroduCtIon

xxxiv

Create a Draw GUI Event, under the draw tab. This code sets up the font, alignment, and drawing
colour. Then it draws the score and as a high score if bigger than previous global.highscore.

draw_set_font(font_hud); //sets the font
draw_set_halign(fa_left); //sets alignment
draw_set_colour(c_blue); //sets drawing colour
draw_text(25, 25, "Score: "+string(score)); //draws score: + score
if (score <= global.highscore) { draw_set_colour(c_red); } draw_text(300, 25, "
(Highscore: " + string(global.highscore));

This makes use of a Draw GUI Event. This type of event will draw above any other objects in the room
and is independent of any views. This type of event is commonly used to display health stats, scores, player
info, weapon info, etc.

Next is to draw the lives as images. There is a Drag & Drop action for this in the Score section. Drag
this across and set to draw at 500,25 using the sprite spr_lives as shown in Figure i-21:

Figure i-20. Step event code for obj_hud – step 11

■ IntroduCtIon

xxxv

Click OK twice to close open windows.
Open room room_menu for editing by clicking on it in the resource tree.
Use the object tab to select objects and then place one each of obj_logo, obj_start and obj_exit.

Select the object then click in the room to place it. This step is shown in Figure i-22:

Figure i-21. Drawing lives on screen as images – step 12

■ IntroduCtIon

xxxvi

Click the green tick in the top left of the window to save these settings.
Next open room_game.
Place one instance of obj_target and one of obj_hud in the room. It doesn't matter where you place

them.
Click the green tick in the top left to apply changes.
Now click File and Save As. Give your game a name and save it.
Click the green triangle, shown in Figure i-23, at the top left to play your game.

Comments
Although well-formatted code with appropriately named assets can be easy to read, it’s always worth adding
comments to any code. When you come back or share the code with someone, you don’t have to waste time
trying to figure out or explaining what a certain code does.

In GameMaker: Studio there are three type of comments you can use. The first type is using the
double //

Figure i-22. Placing objects in room – step 13

Figure i-23. Testing the game – step 14

■ IntroduCtIon

xxxvii

An example in code would look like this:

//This is my comment

In your game, this would look like this as shown in Figure i-24. Anything written after the // is
commented out and will not be processed. This can be a line on its own, or after code. Figure i-24 shows
both being used.

The next type uses the triple ///. When placed at the top of code block it changes the default Execute a
piece of code to the comment. This can also be used at the beginning of a piece of script to make it appear in
Auto-Complete.

An example of this code would be:

///Detect Mouse Movement

Figure i-24. Showing a comment

■ IntroduCtIon

xxxviii

In game this would look like as shown in Figure i-25. This is a great to keep track of your code blocks,
especially if you break them down into smaller sections.

Figure i-25. Naming a code block

■ IntroduCtIon

xxxix

You can also use separate code blocks together while making use of the triple ///, for example, as
shown in Figure i-26.

The third type allows you to comment out multiple lines. Any lines commented out will not be executed
when the game is run.

You start this section with /* and end with */ .
For example:

/*
//weapon 2
ini-open("save.ini");
global.cash=ini_read_real("main", "cash", 10000);
health=ini_read_real("main", "health", 100);
lives=ini_read_real("main", "lives", 8);
global.hits=ini_read_real("main", "hits", 0);
global.shots=ini_read_real("main", "shots", 0);
global.level=ini_read_real("main", "level", 1);global.weapon_info[3,2]=ini_read_
real("weapon2", "bullets", 10000);
global.weapon_info[6,2]=ini_read_real("weapon2", "shots", 0);
ini-close();
*/

Figure i-26. Using multiple named code blocks

■ IntroduCtIon

xl

This would look like that shown in Figure i-27:

As before, any commented out code will not be executed.
You should now be aware of the basic elements that make up a game, and how to add GML.

Figure i-27. Commenting out multiple lines

1© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_1

CHAPTER 1

Variables

This section deals with the two main variable types: strings and numbers (also known as real values). You
need to learn the different types, what you can do with them, how to combine them, and how to draw them
on the screen.

Variables are an important part of every game. You can use variables for things such as the following:

•	 Keeping track of score, health, and lives

•	 Processing data

•	 Performing math’s functions

•	 Moving objects

•	 Drawing data / text on screen

•	 Keeping track of a player’s progress

•	 Making a game easier / harder

 ■ Note There are a number of variable types. The ones focused on in this book are built-in, instance, and global.

Built-in variables include health, score, and lives. These are automatically global in nature and can be
accessed by any other object. User-defined global variables start with global: for example, global.weapon,
which can also be accessed by any other object. You’ll learn more about instance and global variables, and
how to use them as you work through this book.

Instance variables relate only to the instance using it: for example x and y, and size.
The basic code for drawing text is:

draw_text(x_position, y_position, text);

An example would be:
To draw text:

draw_text(100, 100, "Hello World");

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-2373-4_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2373-4_1

ChapTer 1 ■ Variables

2

To draw a variable with a number (real value), for example:

weight=250;
draw_text(100, 120, weight);

Create an object, obj_example_1, add a Create Event by clicking Add Event, followed by Create Event.
Add the following GML to the Create Event, and drag it across the Execute Code action entering the

following with your own name:

example_text="My Name Is Ben";

Create a Draw Event and add the following code. To do this, select the Draw Event, then draw, and then
drag across the Execute Code action.

draw_text(200,200,example_text);

Click the OK button in the bottom left to apply changes. This will draw the value of example_text at the
screen position 200,200, with 0,0 being at the top left. An example is shown in Figure 1-1:

Figure 1-1. Showing various locations in a room

Create a room and place one instance of this object in the room. Do this by clicking the Create a Room
button at the top of the screen. In the room editor, in the settings tab, set the name as room_1, click the
object tab, and then click in the room to create an instance. Close the room, click File and Save As, and
then give the project the name example 1.

Real numbers can be whole integers: for example, 20; or include decimals, for example, 3.14.

ChapTer 1 ■ Variables

3

Double-click on obj_example_1 in the resource tree. In the Create Event, double-click on the code icon
and add the following code on the next page to the bottom, then click the green tick on the top left:

my_age=21;

Then add the following to the Draw Event:

draw_text(100, 120, my_age);

Save and test.
You can add strings together using concatenation:

first_name="Samuel";
last_name="Raven";
my_name=first_name+" "+last_name;

You can add strings together, like in the example above.
You can do mathematical operations on numbers:

cakes=8;
cost=5;
total_cost=cakes*cost;

You can perform mathematical calculations on real numbers, for example, +, -, * and /.
GameMaker also allows use of other operators such as mod and div.
For example:

a=20;
b=7;

Where:
c=a mod b; would set c as 6; (b goes into a twice with a remainder of 6).
c=a div b; would set c as 2 (b goes into a 2 times).

You can generate random numbers using a number of functions:

number=irandom(20);

The above would give an integer (a whole number) between 0 and 20 inclusive (any number in the
given range can be used).

To make testing easier, GameMaker: Studio will create the same sequence of numbers. You can override
this setting by using the following code:

randomize();

This only needs to be performed once, for example, in the room creation code.

You cannot add together numbers and strings directly. For example, this would create an error:

example_text="My age is:";
my_age=17;
name_and_age=example_text+my_age; //This Line Creates an Error

ChapTer 1 ■ Variables

4

You can convert a number to a string using this:

name_and_age=example_text+string(my_age);

This works, as it converts the number to a string and adds to the other string.

draw_text(50,50,name_and_age);
"My age is: 17" at position 50,50.

Equally, you can change a string to a variable; however it will cause an error only when it doesn’t
correspond to a number. For example “-5” and “2.45” consist of more than just numbers, but real() can
process them fine.

a="3.14";
b=real(a);

Would set a b as 3.14.

Extra Useful Code:
You can get a user to enter integer/string with this:

age=get_integer("Age? ", 1);
name=get_string("Name? ", "Enter Your Name Here");

 ■ Note These functions above should really be only used for testing purposes and are fine for beginners.
as you advance, you should use get_integer_async and get_string_async. There is an example for each of
these in the manual.

Variables can also be set to true or false (which also return as 1 or 0, respectively, but you should really
always try to use the built-in constants, true and false).

There are also built-in constants and you can also define your own as macros.
You should now be aware of the two main types of variables: first, numbers, such as these:

age=10;
pay_per_hour=2.17;
bonus=5000;

And second, strings, such as these:

name="Ben";
level_name="Dungeon";
food="Cheese";
date="Twentieth";

ChapTer 1 ■ Variables

5

Worksheet – Variables
 1. Circle the correct definitions of these strings and numbers:

"Ben" string / number

"thirty-two" string / number

32 string / number

"56.5" string / number

39.4 string / number

"Ben is 21" string / number

"London" string / number

"First" string / number

"nine plus 4" string / number

Using the following values:

a=5;
b=10;
c=20;

Work out answers to the following, and then check them in GameMaker.

a+b+c
c div a
(a*b)+c
b mod a
(b+c) div a

 2. Given the following variables:

age=21;
month="April";
year="2006";
money=2716;
place=“London”;
time="2:30";
book="Harry Potter";
dollars=98.55;
day="Tuesday";

Which of the following is allowed? Write the correct code if wrong.

details=book+" is "+string(age);
location=place+" at "+time;
date=year+month;
cash=age+money;
payment=day+dollars;
birthday=day+" "+month+" "+year;
celebrate_at=place+" "+string(age);
something=real(year)+money;
total=age*(money/real(year));

ChapTer 1 ■ Variables

6

Worksheet – Variables – Answer Sheet
 1. Circle the correct definitions of these strings and numbers:

"Ben" string

"thirty-two" string

32 number

"56.5" string

39.4 number

"Ben is 21" string

"London" string

"First" string

"nine plus 4" string

Using the following values:

a=5;
b=10;
c=20;

Work out answers to the following, and then check them in GameMaker.

a+b+c 35

c div a 4

(a*b)+c 70

b mod a 0

(b+c) div a 6

 2. Given the following variables:

age=21;
month="April";
year="2006";
money=2716;
place="London";
time="2:30";
book="Harry Potter";
dollars=98.55;
day="Tuesday";

Which of the following is allowed? Write the correct code if wrong.

ChapTer 1 ■ Variables

7

 ■ Note in some cases, more than one answer is possible; for example, you could turn a string into a real and
add to a real, or convert the real to a string and add to a string.

details=book+" is "+string(age); correct
location=place+" at "+time; correct
date=year+month; correct
cash=age+money; correct
payment=day+dollars; incorrect – day+string(dollars);
birthday=day+" "+month+" "+year; correct
celebrate_at=place+" "+string(age); correct
something=real(year)+money; correct
total=age*(money/real(year)); correct

ChapTer 1 ■ Variables

8

Basic Projects
•	 A) Make a program that takes in name, age, and date of birth and displays it on the

screen.

	 1 Point for attempting this question - 1 Point for making a working example

	 1 Point for using good variable names and tidy GML formatting

•	 B) Make a program that takes in five numbers and calculates the average.

	 1 Point for attempting this question - 1 Point for using good variable descriptions

Advanced Project
•	 C) Make a program where you enter the date and the program displays correct tag,

like 1st, or 23rd.

	 1 Point for attempting this question

	 1 Point for good formatting

	 2 Points for using their own data input system - 1 Point for displaying output nicely
on screen

PROJECTS NOTES

if (number mod 2==0)
{
 // will draw if number is even
 draw_text(50, 50, string(number)+ " is even");
}
 if (age==20)
{

 // will draw “You Are Twenty” if age is equal to 20
 draw_text(50,50, "You Are Twenty");
}

ChapTer 1 ■ Variables

9

End of Book Game Variables
The game that you’ll create at the end of the book will use a fair amount of global and instance variables.

They’ll be global variables for things such as the current level, score, cash, lives, health, and current
weapon; and for weapon info such as the name of the weapon, its power, cost, and current quantity.

The asteroids and enemy will have their own custom health that will reduce when hit by a player’s bullet.
The player will control a ship and be able to use a keypress to fire the currently selected weapon, if that

weapon has ammo available. If there is, it will create a bullet and reduce the weapon count.
Asteroids will have instance variables for its hp, speed, and direction.
When the game starts it will look for saved data from the last time the game was played. If there is data

to be read, the game will load all of the variables into memory to be used.
Upon running the game, the player will be briefly presented with a loading splash screen, and then be

taken to the level select screen. There will be a number of buttons to play levels 1 to 4. Each button will check
what the current value of the global level is, in order to allow the player to only play levels that have been
unlocked. When the player runs the game the first time, only level 1 will be unlocked, level 2 will only unlock
once the player has successfully completed level 1, and so on with levels 3 and 4. When a player successfully
completes a level, all the variables relating to the player and weapons will be saved, so upon running the
game again the player can continue from where they left off.

A control object will display the vital variables at the top of the screen, using a combination of graphics
and text. It will also monitor the values of health and lives; if the player runs out of health, having crashed
into to many asteroids, the player will lose a life. If the player loses all lives, the game is over.

Think about what variables will be needed to accomplish this. Think of suitable names for the variables,
and whether they should be instance or global variables.

11© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_2

CHAPTER 2

Conditionals

Conditional statements are used to check and compare variables (and other values such as instance ids, if
sounds are playing, keypresses, functions, mouse position, and more).

Therefore, conditional statements will be used often. Having a strong understanding of them is very
important. Conditionals can combine with other functions. Conditionals, or combinations of them, can be
used to make things happen (or not happen). For example:

•	 Make a ball bounce when it hits a wall

•	 Make an enemy fire a bullet if it can see the player

•	 Play sound effects when an object loses some of its health

•	 Unlock a level if a score is met

•	 Make a player move if a mouse button or key is pressed

•	 Detect the middle mouse button to change a weapon

•	 See if a player has enough cash to buy an upgrade

•	 Check if a player is jumping or not

•	 Create an effect if a weapon is fired, etc.

Explained in the most basic sense, conditionals evaluate expressions, and will execute and perform
actions accordingly. For example, taking the following values:

a=3;
b=2;
c=5;

Would give the following results:

(a+b)==c returns true.

(a==b) returns false.

 ■ Note Use == when using conditionals, rather than a single =.

Actual code will look like this:

if (a+b)==c
{

ChApter 2 ■ ConditionAls

12

 //do something if true
 show_message("true");
}
else
{
 // do something if false
 show_message("false");

}

You can add !, which means not. So ! is an expression that negates a logic sentence. So a true sentence
turns into a false sentence, and a false sentence turns into a true sentence:

!(a==b) returns true if a is not equal to b.

You can test if a sound is playing or not:

if audio_is_playing(snd_background_music)
{
 //do something
}

You can test the pressing of a mouse button:

if (mouse_check_button_pressed(mb_left))
{
 //do something
}

You can also check for keyboard presses, for example:

if keyboard_check_pressed(ord('Q'))
{
 //Do something here
}

ord is a function that identifies a keypress of letters and numbers in a way that GameMaker: Studio can
understand. This is known as virtual keycodes, and also includes a series of constants starting with vk_.

Variables can also be set to true or false:

answer=true;
alive=false;

ChApter 2 ■ ConditionAls

13

so:

if (answer)
{
 //Do Something
}

would perform any code between { and }.

if (alive)
{
 //do something first part
}
else
{
 //do something second part
}

would not execute the first part, but it would execute the second part.
You can also use operands and mathematical comparisons when checking a conditional:

a=3;
b=2;
c=5;

(a < b) returns false, (c > b) returns true.
You can also use <= to check if a value is equal to or less than, and >= to check if a value is equal to or

greater than.
You can use the following logic operators, && and and for and, || and or for or. For example, the following

will execute code if A and the right arrow are pressed:

if (keyboard_check(ord('A'))&& keyboard_check(vk_right))
{
 //do something if A and right arrow is pressed
}

The following will check either, so it will execute any code if A is pressed or the right arrow is pressed or
both are pressed:

if (keyboard_check(ord('A'))|| keyboard_check(vk_right))
{
 //do something if A or right arrow is pressed (or both)
}

ChApter 2 ■ ConditionAls

14

Worksheet – Conditionals
Given the following variables:

first_name="Bob";
age=24;
city="London";
surname="Scott";
distance=48
seconds=50;
friend=true;
enemy=false;
time=7;
full_name="Bob Scott";
xx=50;

Determine if the following are true or false:

 (age>20) true / false
!(first_name=="Bob") true / false
 (distance<time) true / false
 (!friend) true / false
 (enemy) true / false
 ((first_name+" "+surname)==full_name) true / false
 (city=="Paris") true / false
 (time<seconds) true / false

ChApter 2 ■ ConditionAls

15

Worksheet – Conditionals – Answer Sheet
Given the following variables:

first_name="Bob";
age=24;
city="London";
surname="Scott";
distance=48
seconds=50;
friend=true;
enemy=false;
time=7;
full_name="Bob Scott";
xx=5;

Determine if the following are true or false:

(age>20) true
!(first_name=="Bob") false
(distance<time) false
(!friend) false
(enemy) false
((first_name+" "+surname)==full_name) true
(city=="Paris") false
(time<seconds) true

ChApter 2 ■ ConditionAls

16

Basic Projects
•	 A) Create a password system where the user has to enter a correct password to

continue.

1 Point for a working example

•	 B) Display an object at a random position on the screen for one second. Player must
then click where the object appeared. Award points depending on how close the
player clicked.

2 Points for a working example

Advanced Projects
•	 C) Create a simple text input system using keypresses. Allow the user to enter their

name. Then store as global.name when enter is pressed.

Project Note: Look up usage of keyboard_string
3 Points for a working example

•	 D) Make a game where the player selects a number at random from 1 to 100. Player
enters a value (for example 25) and the game will tell you if you are too high, too low,
or correct.

2 Points for a working example
2 Points for good code formatting

ChApter 2 ■ ConditionAls

17

End of Book Game Conditionals
The game you’ll make at the end of the book will contain lots of conditionals, and they’ll be used for such
things as the following:

•	 Detecting presses of arrow keys to move the player’s ship

•	 Selecting and firing weapons through keypresses

•	 Checking whether the player has enough ammo to fire a bullet

•	 Checking a player’s health and lives

•	 Allowing the purchase of a weapon in the shop if the player has enough money

•	 Checking if a level is unlocked and clickable

•	 Checking if an asteroid exists for the homing missile weapon to lock on to

•	 Checking asteroids and enemy health

•	 Reducing the alpha (transparency) of a sprite to make the weapon fade away

•	 Detecting mouse clicks on buttons, such as play game from the shop

•	 Deleting a save file if present

•	 Destroying a cloud object if it’s finished moving

•	 Allowing something to happen/not happen while something is true or false

Have a go at trying to plan out what some of the code for the above conditionals may look like.
All conditionals follow the same premise: if something is true, do something or don’t do something. Or

if something is not true, do something or do not do something else.

19© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_3

CHAPTER 3

Drawing

GameMaker: Studio has a number of built-in functions for drawing. These include setting drawing colours,
setting text fonts, and drawing geometric shapes.

In the most basic terms, drawing items uses an X Y positional system. X relates to pixels across from
the top left, Y the number of pixels down from the to. Drawing can be relative to the room position or a view.
This and the next section assume drawing in a standard room using default room settings without the use of
views. See Figure 1-1 in Chapter 1 for an explanation of coordinates.

This section serves as an introduction to drawing basic shapes on the screen and familiarization with
using X and Y coordinates.

Basic geometric shapes are useful for the following:

•	 Drawing a room border

•	 Creating pop-up boxes

•	 Creating room transitions

•	 Creating effects

•	 Drawing shadows of objects

 ■ Note Due to YYG being a British company, the spelling used is colour, though color can also be used.

Drawing code must be placed in a Draw Event. There are several options available, but for now we’ll
just use the main Draw Event. Figure 3-1 shows how to select this, and the options available.

http://dx.doi.org/10.1007/978-1-4842-2373-4_1#Fig1
http://dx.doi.org/10.1007/978-1-4842-2373-4_1

Chapter 3 ■ DrawinG

20

Colour constants have built-in values:

Figure 3-1. Showing how to select draw event

Chapter 3 ■ DrawinG

21

Colour Appearance RGB Value

c_aqua 0,255,255

c_black 0,0,0

c_blue 0,0,255

c_dkgray 64,64,64

c_fuchsia 255,0,255

c_gray 128,128,128

c_green 0,128,0

c_lime 0,255,0

c_ltgray 192,192,192

c_maroon 128,0,0

c_navy 0,0,128

c_olive 128,128,0

c_orange 255,160,64

c_purple 128,0,128

c_red 255,0,0

c_silver 192,192,192

c_teal 0,128,128

c_white 255,255,255

c_yellow 255,255,0

Chapter 3 ■ DrawinG

22

The following code can be used to set a drawing colour:

draw_set_colour(c_orange);

Colour can also be set using hexadecimal values prefixed with a '$' character, which in GameMaker:
Studio is in the format BBGGRR:

draw_set_colour($FFA040);

Or you can set the colour by setting each colour channel:

colour=make_colour_rgb(240, 90, 100);

You can also set the colour using RGB and saving this as a user-defined variable. Obviously, any value
for make_colour_rgb should be in the range of 0 to 255. For example:

my_colour=make_colour_rgb(255, 160, 64);
draw_set_colour(my_colour);
draw_circle(50, 50, 25, false);

The above example would draw the following on screen as shown in Figure 3-2, when the object is
placed into a room; note the drawing code needs to be in a Drawing Event.

Figure 3-2. Showing circle having been drawn

Chapter 3 ■ DrawinG

23

Which will draw a red circle at position 50,50 with a radius of 25 and using false draws as a solid circle.
If you were to use true it would only draw the outline.

This code would draw a line from position 100,100 to 200,200 in blue:

draw_set_colour(c_blue);
draw_line(100, 100, 200, 200);

The following will draw a solid gray rectangle from 5,5 to 110,110. The last false sets the rectangle to be
filled in. Using true would draw the outline only.

draw_set_colour(c_gray);
draw_rectangle(5, 5, 110, 110, false);

Other drawing functions that you can use include (again true or false draws filled or border only), for
example:

draw_ellipse(x1, y1, x2, y2, true); //draw an ellipse with outline
draw_point(x, y); // draws a single pixel
draw_roundrect(x1, y1, x2, y2, false); //draws a solid rounded rectangle
draw_line_width(x1, y1, x2, y2, width);//draws a line of given width
draw_triangle(x1, y1, x2, y2, x3, y3, false); //draws a solid triangle

If you're looking for something more advanced, you can look up primitives in the manual. You can open
the manual by pressing F1 in GameMaker: Studio.

Chapter 3 ■ DrawinG

24

Worksheet – Drawing
 1. Draw each of the following on graph paper, and then write what the picture is.

Then enter the GML code into a Draw Event of an object and see if you drew it
correctly.

Picture 1:

c_face_colour=make_colour_rgb(204, 153, 0);
draw_set_colour(c_face_colour);
draw_circle(50, 50, 40, 0);
draw_set_colour(c_white);
draw_circle(40, 40, 5, 0);
draw_circle(60, 40, 5, 0);
draw_set_colour(c_red);
draw_ellipse(30, 70, 70, 80, 0);

Picture 2:

draw_set_colour(c_red);
draw_rectangle(30, 30, 90, 70, 1);
draw_rectangle(35, 40, 45, 50, 1);
draw_rectangle(75, 40, 85, 50, 1);
draw_rectangle(50, 50, 70, 70, 1);
draw_line(30, 30, 40, 10);
draw_line(40, 10, 80, 10);
draw_line(80, 10, 90, 30);

Chapter 3 ■ DrawinG

25

Figure 3-3. Showing face made with picture 1 code

Figure 3-4. Showing face made with picture 2 code

Worksheet – Drawing – Answer Sheet
 1. Draw each of the following on graph paper, and then write what the picture is. Then

enter the GML code into a Draw Event of an object and see if you drew it correctly.

Picture 1 is a smiling face as shown in Figure 3-3:

Picture 2 is a house as shown in Figure 3-4:

Chapter 3 ■ DrawinG

26

Basic Projects
•	 A) Draw a grid of black and white squares, suitable for playing chess or checkers on.

3 Points

•	 B) Create a floor plan of the classroom; include furniture, windows, and doors (use
different colour for each).

3 Points

Advanced Project
•	 C) Draw a picture of the Mona Lisa or one of Piet Mondrian’s paintings using basic

drawing.

4 Points

note on projects for chapter 3:

It’s also possible to draw a sequence of connected lines using primitives.
For example:

draw_primitive_begin(pr_linestrip);
draw_vertex(50,50);
draw_vertex(150,50);
draw_vertex(50,150);
draw_vertex(250,50);
draw_vertex(50,250);
draw_primitive_end();

http://dx.doi.org/10.1007/978-1-4842-2373-4_3

Chapter 3 ■ DrawinG

27

Scale: 1 Square=___ Pixels

Figure 3-5. Graph sheet for drawing on

Chapter 3 ■ DrawinG

28

End of Book Game Drawing
The game will utilize some basic drawing for the HUD. There’ll be a space at the top of the screen for
displaying current weapon, stats, and lives. The HUD will consist of a solid rectangle at the top, with another
rectangle to display health. Lives will be drawn as images using the D&D Draw lives action. Text will be
used to draw the weapon type, weapon strength, current ammo, total weapon fired (both current and all
weapons), and cash.

In the bottom corner of the screen will be radar. The radar’s scope will be drawn using circles and lines.
There will also be a room border.
The advantage of using the drawing functions is that while testing, it allows you to quickly change the

colour, size, and shape of the area being drawn. If you were to use a sprite or background, you’d have to
constantly edit the graphics file.

29© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_4

CHAPTER 4

Drawing Continued

There are a number of other functions for drawing images and variables. These can be used separately
or combined to create a number of effects. In any game, you’re likely to have a number of sprites and
information you want to display on the screen.

For example, images can be used for drawing:

•	 The player

•	 Missiles and bombs

•	 Menu buttons

•	 Walls and platforms

Text can be used for:

•	 Scores and health

•	 Player names

•	 Game information

•	 Pop-up text

•	 Game timer

 ■ Note Only try to draw the value of a variable if it has already been declared in the Create Event or prior to
drawing it; failing to do so may cause an error. Built-in variables are OK to draw without being declared.

Create a new project in GameMaker: Studio, along with a new object.
To use drawing functions, they need to be placed within a Drawing Event. Create a Draw Event for the

object you just created.

draw_text(100, 100, "Hello World! ");

This will draw the Hello World! sentence in the room at position 100,100 – where this position is the
top-left corner of this drawn text.

You can also include strings and reals, by converting the real to a string:

age=20;
draw_text(100, 100, "I am "+string(age)+ " years old");

Chapter 4 ■ Drawing COntinueD

30

This will draw the text I am 20 years old sentence on the screen.
You can format text too:

•	 Use a different font

•	 Use a colour

•	 Have different horizontal and vertical alignment

Save the code you just wrote, and close the object. Create a new font using the Resources menu at the
top of the screen. Give the font a name, something like font_Myfont, and select a better-looking typeface, for
example, Calibri.

Resize the font to about 30 pixels, and make it bold, so the user can see it better. Now, save the font and
return to your object’s Draw Event.

Formatting functions need to be applied before drawing text, and they can be applied in any event;
however, the best practice is to set drawing directly before drawing any text. This can be in code or by calling
a script you’ve set up. For example you can set font, colour, and alignment:

draw_set_font(font_Myfont); //Use this font for drawing text
draw_set_colour(c_blue); //Make the text blue
draw_set_halign(fa_center); //Center the text to the x position
draw_set_valign(fa_middle); // Center the text vertically to the y position

 ■ Note when you apply formatting, it will remain in place for all objects; ideally you should set the
formatting right before any drawing code.

Now, the text will be significantly bigger, since you created a bigger font. It will also appear blue, and its
position will be changed because of the horizontal and vertical alignment settings.

Here are some more arguments that you can use with the alignment functions.

For horizontal alignment: fa_left, fa_center, fa_right

For vertical alignment: fa_top, fa_middle, fa_bottom

Notes:

•	 You can insert a new line using the # symbol.

•	 If you need an actual # symbol, you can do \#.

•	 If you want to draw a value of a variable that is not a string, use the string() function
before the variable name, and this will convert it into a string. This will allow you to
combine strings and real. If you are drawing just a real, you do not need to convert to
a string, though it’s best practice to always convert reals to strings for drawing.

•	 When you apply drawing formatting, like font, colour, or alignment, it will apply to all
drawing, including other objects, until you change to something else. For this reason
it is a good idea to apply formatting right before you do any drawing.

For example, you do the following code in the Create Event of an object, obj_example:

name="Ben";
age=28;
country="England";
food="Pizza";

Chapter 4 ■ Drawing COntinueD

31

Which would look like Figure 4-1:

You can then set a font, for example, as shown in Figure 4-2:

Figure 4-1. Showing create event

Figure 4-2. Setting a font

Chapter 4 ■ Drawing COntinueD

32

You can then apply the settings and draw the text on screen, by putting the following code in the Draw
Event of obj_example:

draw_set_font(font_example);
draw_set_halign(fa_center);
draw_set_valign(fa_middle);
draw_set_colour(c_red);
draw_text(300,200,"His name is "+name+".#He is "+string(age)+" years old.#He lives in
"+country+".#His favourite food is "+food+".");

Create a room, room_example, and place one instance of obj_example in it. When run, you will see that
shown in Figure 4-3:

There is a GMZ for this example in the resources: Project Assets & GMZ Files ➤ Assets Used In Main
Chapters ➤ Chapter 4 ➤ example 1

Create a new project. Load a sprite into the same project as before, and give it a practical name,
something short like spr_test.

Our goal is to draw this sprite in a few different ways, so open up the Draw Event inside your object, and
use this code to draw a normal sprite on the screen.

draw_sprite(spr_test, 0, 100, 200);

This will draw the sprite spr_test, using sub image 0 and position 100, 200.

Figure 4-3. Showing example output

http://dx.doi.org/10.1007/978-1-4842-2373-4_4

Chapter 4 ■ Drawing COntinueD

33

Sub image refers to which frame of the sprite to use. A sprite can have 0 (which can be useful tool in
certain circumstances), 1, or multiple sub images. They can be used for animations, or to show a different
image when facing different directions or performing an action like shooting or climbing a ladder.

If you run the game now, you will see your sprite at the 100,200 position, but what if we want to make
the sprite look different? For extra formatting options, use the draw_sprite_ext function:

draw_sprite_ext(sprite, sub image, x, y, xscale, yscale,
rotation, colour, 1);

The above is used when you want more flexibility in drawing the sprite. It may also be used to draw the
default sprite. It will draw the sub image frame, at the given x and y location, while xscale and yscale set its
size, 1 is 100% size, 0.5 would be half size, 2 would be double size. Rotation changes the angle of the image
counterclockwise. Colour blends the image colour. An example using draw_sprite_ext(); would be the
following, which would draw the sprite spr_enemy, sub image 0, at position 180,120, 50% larger, rotated 25’
counterclockwise with a reddened colour:

draw_sprite_ext(spr_enemy, 0, 180, 120, 1.5, 1.5,
25, c_red, 1);

The colour blending can be used to great effect to give a visual reference of something happening. For
example, blending with red can visualize that the enemy has been hit by a bullet.

If your sprite has just one sub image, and no other drawing actions, you don't need to add anything in
the Draw Event as the sprite will be automatically drawn. If you are drawing text or want to draw multiple
sprites from a single object and your object has a sprite, you can add this:

draw_self();

If using draw_self(); you may want to manually set which sub image (if you have multiple sub
images). You can do this using:

image_index=1;
image_speed=0;

Which would set the sub image 1 as the sub image to be drawn. Sub images start with an index of 0.
Setting the image speed to 0 prevents it from automatically animating.

You can also set the speed the sub images will play at using, for example:

image_speed=2;

Which would set the animation speed at 2. The speed is a scalar value, so 0.5 will draw the same sub
image for two steps, 0.25 for four steps, and that larger values like 2 will “skip” a sub image and only show
every second sub image per step.

You can also set the angle of an image (its rotation). This can be a value between 0 and 359. For
example:

image_angle=45;

Chapter 4 ■ Drawing COntinueD

34

You can set an object moving, for example the following will make the object move to the right at a
speed of 2:

motion_set(0,2);

draw_self() is the same as draw_sprite_ext() using only all the default image variables, which is the
same as letting GM default draw (i.e., no draw event defined, so GM draws the given sprite). You can use
draw_sprite_ext() with the default settings, for example:

draw_sprite_ext(sprite_index, image_index, x, y, image_xscale, image_yscale, image_angle,
image_blend, image_alpha);

You can change the variables to change how the image is drawn.

 ■ Note image blending works better with lighter sprites, and best with ones that are white.

For example, the following will stretch the sprite 80% on the length and by 120% on its height; rotate by
45 degrees and blend with the colour c_blue:

draw_sprite_ext(spr_example, 0, 200, 200, 0.8, 1.2, 45, c_blue,1);

Figure 4-4 shows a sprite drawn normally, and with the code above:

Figure 4-4. Showing sprite drawn normally, and with draw_sprite_ext

Chapter 4 ■ Drawing COntinueD

35

Worksheet – Drawing Continued
 1. True or False

 A) You can draw a value of a variable when using the draw_text function. T / F

 B) You should apply formatting changes before drawing the text. T / F

 C) Only the horizontal alignment of the text can be changed. T / F

 D) You can change the size and rotation of drawn sprites. T / F

 E) You cannot change the colour of drawn sprites. T / F

 2. What is the name of the function for advanced sprite drawing?

 3. Look up each of the following in the help manual, and write an example for each:

draw_sprite_general
draw_sprite_tile
draw_text_transformed

 4. How would you do each of the following in GML:

 A) Draw the 4th sub image of a sprite

 B) Set the animation speed to 5

 C) Rotate the sprite 180 degrees

 D) Draw text in red size 20 in Arial.

 E) Draw text right justified at position 140,80

Chapter 4 ■ Drawing COntinueD

36

Worksheet – Drawing Continued – Answer Sheet
 1. True or False

 A) You can draw a value of a variable when using the draw_text function. T

 B) You should apply formatting changes before drawing the text. T

 C) Only the horizontal alignment of the text can be changed. F

 D) You can change the size and rotation of drawn sprites. T

 E) You cannot change the colour of drawn sprites. F

 2. What is the name of the function for advanced sprite drawing? draw_sprite_
ext();

 3. Look up each of the following in the help manual, and write an example for each:

draw_sprite_general(spr_example, 1, 10, 10, 50, 100, 120, 150, 1, -1, 45,
c_white, c_white, c_red, c_red, 0.5);
draw_sprite_tiled(spr_brick, 0, 25, 25);
draw_text_transformed(200, 200, "Hello World", 3, 0.8, 270);

 4. How would you do each of the following in GML:

 A) Draw the 4th sub image sprite image_index=3; draw_self(); or equally
draw_sprite(sprite_index, 3, x, y);

 B) Set the animation speed to 5 image_speed=5;

 C) Rotate the sprite 180 degrees draw_sprite_ext(spr_example, 0, 100,
100, 1, 1, -90, c_white, 1); or equally image_angle=180;
draw_sprite();

 D) Draw text in red size 20 in Arial Create a font font_example,

draw_set_font(font_example);
draw_set_colour=c_red;

 E) Draw text right justified at position 140,80 draw_set_halign(fa_right);
draw_text(140,90, "example");

Any other suitable code is also a valid answer

Chapter 4 ■ Drawing COntinueD

37

Basic Projects
•	 A) Make a program that draws a rotating sprite.

	 2 Points

•	 B) Make a program that writes a formatted message on the screen. Set a font type,
colour, and alignment.

	 2 Points

Advanced Projects
•	 C) Make a program that draws randomly positioned cloud sprites moving to the left

at various speeds, with varying size and opacity (alpha).

	 2 Points

•	 D) Get user to enter their name. Draw this on the screen, formatted, moving from the
top of screen to the bottom. Destroy the object when it reaches the bottom

	 4 Points

Chapter 4 ■ Drawing COntinueD

38

End of Book Game Drawing Continued
The game will involve drawing various graphics and text.

Using text, for example:

•	 Basic stats on the level select screen

•	 Info on weapons in the shop

•	 A HUD in game to display stats and weapon info

•	 Displaying various variables for testing purposes

•	 Testing purposes

We’ll use a selection of different fonts and font sizes for the text.
Sprites will be used for:

•	 Buttons that the player clicks to start levels

•	 Buttons to quit and restart game

•	 Buttons

•	 Asteroids

•	 Ship

•	 Bonus items

•	 Lives image

•	 Radar blips

39© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_5

CHAPTER 5

Keyboard Input and Simple
Movement

When playing your game, players will need some method of interaction with the sprites on the computer
screen. The main types you’re likely to use are keypress, mouse movement, and mouse buttons. This section
deals with keyboard and mouse input.

You can use this input to make things happen, for example:

•	 Make a player move

•	 Fire a weapon

•	 Add text to string

•	 Create an effect

•	 Execute other GML code

Keypresses can be detected using GML in the Step Event. In its basic form, GML uses an expression and
performs accordingly.

A very basic example that would perform while X is being pressed down:

if (keyboard_check(ord('X')))
{
 //do something
}

 ■ Note Keyboard letters, that is, 'X' must be in capital when used with ord.

In addition to keyboard_check, you can also use keyboard_check_pressed.
Note that there is a strong distinction between these two:

keyboard_check checks whether the key is currently being pressed.

keyboard_check_pressed checks whether the key has just been pressed.

Another option is detecting when a key is released:

keyboard_check_released

Chapter 5 ■ Keyboard Input and SImple movement

40

As well as keypresses, you can detect mouse button presses, also in the Step Event for example. As with
key_check, there is a difference between mouse_check_button, mouse_check_button_pressed and mouse_
check_button_released :

if (mouse_check_button(mb_left)) // Checks if left mouse button is being held down.
{
 // do something
}

You can move an object by changing its x and y positions. x is the position in pixels across the screen,
and y is how many down.

For example, you could put the following into a Step Event:

if (keyboard_check(ord('A'))) {x-=5;}
if (keyboard_check(ord('D'))) {x+=5;}
if (keyboard_check(ord('W'))) {y-=5;}
if (keyboard_check(ord('S'))) {y+=5;}

or

if (keyboard_check(vk_left)) {x-=5;}
if (keyboard_check(vk_right)) {x+=5;}
if (keyboard_check(vk_up)) {y-=5;}
if (keyboard_check(vk_down)) {y+=5;}

You can also use Boolean values as multipliers, since a value of false will return 0, and a value of 1 will
return true, but this can be a bit confusing at first. The following allows you to move an object with key
presses. vk_right is the built-in constant for the right-arrow key; it will return as true when the right-arrow
key is pressed. The same applies for the other arrow keys:

x+=5*(keyboard_check(vk_right)-keyboard_check(vk_left));
y+=5*(keyboard_check(vk_down)-keyboard_check(vk_up));

See Reference ➤ Mouse, Keyboard and Other Controls ➤ Keyboard Input in the GameMaker: Studio
manual for more keycodes.

You can also get the value of the last key that has been pressed with

keyboard_lastkey

Using keyboard_lastchar example, you make a string of what has been typed.
In the Create Event of an object, obj_example put:

typed="";

In the Step Event place:

typed=typed+keyboard_lastchar;
keyboard_lastchar="";

And in a Draw Event put:

draw_text(100,100,typed);

Put this object in a room and then test it.
There is an example for the above in the resources folder:
Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter 5

http://dx.doi.org/10.1007/978-1-4842-2373-4_5

Chapter 5 ■ Keyboard Input and SImple movement

41

Worksheet – Key Presses and Simple Movement
Which of the following are correct? Write a correct version if incorrect.

if (keyboard_check(vk_left))
if (keyboard_check(right))
if (keyboard_check(shift)&&keyboard_check(ord('X')))
if (keyboard_check(spacebar)||keyboard_check(vk_enter))
if (keyboard_check(ord('1'))
if (keyboard_check(ord('p')))
if (keyboard_check_released(vk_up))
if (keyboard_ pressed_check ('vk_backspace'))
if (keyboard_check('vk_right') || keyboard_check(ord('d')))

Write code for the following:

If J is being pressed:

If Left arrow is released:

If Shift and U are being pressed:

If 1 and 8 are being pressed:

Enter has just been pressed:

Chapter 5 ■ Keyboard Input and SImple movement

42

Worksheet – Key Presses and Simple Movement – Answer
Sheet
Which of the following are correct? Write a correct version if incorrect.

if (keyboard_check(vk_left)) correct
if (keyboard_check(right)) incorrect if (keyboard_check(vk_right))
if (keyboard_check(shift)&& keyboard_check(ord('X'))) incorrect if (keyboard_check(vk_shift)
&& keyboard_check(ord('X')))
if (keyboard_check(spacebar)||keyboard_check(vk_enter)) incorrect if (keyboard_check(vk_
space) || keyboard_check(vk_enter))
if (keyboard_check(ord('1')) correct
if (keyboard_check(ord('p'))) incorrect (keyboard_check(ord('P'))
if (keyboard_check_released(vk_up)) correct
if (keyboard_pressed_check('vk_backspace')) incorrect if (keyboard_check_pressed(vk_
backspace))
if (keyboard_check('vk_right') || keyboard_check(ord('d'))) incorrect if (keyboard_check(vk_
right) || keyboard_check(ord('D')))

Write code for the following:

If J is being pressed: if (keyboard_check(ord('J')))

If Left arrow is released: if (keyboard_check_released(vk_left))

If Shift and U are being pressed: if (keyboard_check(vk_shift) && keyboard_
check(ord('U')))

If 1 and 8 are being pressed: if (keyboard_check(ord('1'))) && (keyboard_
check(ord('8')))

Enter has just been pressed: if (keyboard_check_pressed(vk_enter))

Chapter 5 ■ Keyboard Input and SImple movement

43

Basic Projects
•	 A) Make a movable object that can wrap around the screen, so if it goes off of the

screen it appears on the opposite side.

	 2 Points

•	 B) Create a simple two-player game, one player using WSAD and the other with
arrow keys. One player must chase the other player around the room.

	 4 Points

Advanced Project
•	 C) Create a maze that the player should navigate.

	 4 Points

	 Note: You can check for the presence of another object at a location using, for
example:

if place_meeting(x,y+4,obj_wall)
{
 //do something
}

Chapter 5 ■ Keyboard Input and SImple movement

44

End of Book Game Keypresses and Simple Movement
The game will use a combination of mouse and keyboard input.

Mouse input will be used solely to detect button presses.
The player will control their ship and select weapon type using the keyboard.
Keypresses will also be used for testing purposes, that is, changing a variable’s value such as global.

level or health.
The arrow keys will be used for movement and number keys 1 through 4 for weapon selection.

45© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_6

CHAPTER 6

Objects and Events

This chapter describes using objects and reflects what has been learned in previous chapters.
Objects are the lifeblood of GameMaker: Studio. You use objects to do the following:

•	 Make moving sprites

•	 Insert code blocks of GML

•	 Combine with events to make things happen

•	 Detect collisions with other objects

•	 Detect keypresses and mouse input

Objects consist of events. You put your code (or Drag & Drop) in these events to create, change, detect,
draw, or make things happen.

The main events you will use most often:
Create Event
This event is executed when the object is created or at start of the room if already present. This event

is only executed once. It is useful for defining variables, and for any other sort of setup associated with new
instances of the object, for example:

my_health=50;
lives=5;

Mouse Events
These are great for things such as creating an object when the mouse button is clicked, or changing the

sub image of a sprite when mouse is over it. This can be used to execute code/actions if the mouse condition
is true. This can be done using GML code Mouse Events.

Also note: global mouse allows actions to be done if the mouse button is clicked anywhere on the
screen, not just over the sprite of the object.

Figure 6-1 shows the Mouse Event options available:

Chapter 6 ■ ObjeCts and events

46

Mouse interaction can also be done in GML in a Step Event: for example, the following will play a
sound when the left mouse button is released over the objects sprite:

if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 audio_play_sound(snd_bounce,1,false);
}

The equivalent event for the above code would be Mouse Left released, and the code would be:

audio_play_sound(snd_bounce,1,false);

Destroy Event
Code/actions in this event will be executed when the object is destroyed. It's great for changing global

variables or playing a sound when it's destroyed. For example, when an enemy object loses all its health and
you destroy the object, this can also be achieved in code:

instance_destroy();

In the Destroy Event you could put:

score+=10;

Figure 6-1. Showing available mouse events

Chapter 6 ■ ObjeCts and events

47

It is worth noting that Destroy Events don't run upon changing rooms. This has several knock-on effects
involving on-death effects and cleanup.

Alarm Event
Code / actions here will be executed when the chosen alarm reaches 0.
Alarms lose 1 for each step of the game. The default room speed is 30 frames per second. So an alarm

set for 60 will trigger after 2 seconds. You can set an alarm using GML and then use an Alarm Event to
execute code when the alarm triggers.

For example, you could use this as controller for a splash_screen to show a sprite for 5 seconds:
In the Create Event:

alarm[0]=room_speed*5;
score=0;
lives=5;
global.level=1;

And in an Alarm0 Event:

room_goto(room_menu);

Alarm Events must be present for the corresponding alarm[] to count down.
Draw Event
Your code / D&D actions for drawing should be put here, drawing text, shapes, or sprites.
It should be noted that wherever possible, only drawing code should be placed in a Draw Event.
If you have any code in a Draw Event you will also have to force the object draw the sprite, for example,

using it in the simplest form:

draw_self();

You could add to this, for example, which would draw the score at the top of the screen with the caption
Score :

draw_text(10,10,"Score "+string(score));
draw_self();

Step Event
Code/actions here are executed every step (frame). At the default room speed this will be 30 frames per

second. This is most likely where you’ll use the most code. An example would be check the value of health
and reduce lives accordingly:

if health<0
{
 lives-=1;
 health=100;
 if lives==0 room_goto(room_game_over);
}

There may times that you want to execute code before or after a main Step Event. For this you can use
Begin Step or End Step accordingly.

Chapter 6 ■ ObjeCts and events

48

Key Events
Will execute code/actions if a Key Press Event executes code or actions if the specified key is being

pressed / released. In this book keypress events will be mostly checked using GML code. However you could
use Key Press Events. An example would be creating moving an object 4 pixels left each time the left arrow
is pressed, as shown in Figure 6-2.

 ■ Note the one-time nature of Key press and Key release events: they will not execute each step, instead
only when the key is pressed or released.

Figure 6-2. Showing an example using a keyboard event

If you want to make code execute while the key is being held done, use the Keyboard Event. Similarly
for key releases, use the Key Release Event.

Detecting keypress and releases using GML code offers much more flexibility, and is the preferred
method.

It’s important to note that the Key Press Event will only execute once, when the key is pressed.
Collision Event
Code in this section is executed if two instances (or their masks) collide. For this purpose of this book

the Collision Event will be used rather than GML.
You select which object to test a collision with, and any code or D&D inside that event will be executed

if a collision is taking place.
An example would be setting up a collision between obj_player and obj_enemy, as shown in Figure 6-3.

Chapter 6 ■ ObjeCts and events

49

In this event only, other can refer to the colliding instance.
For example, based on Figure 6-3 above, the code could be:

with (other) hp-=1;

Then take one point off of the colliding instance's hp value for each frame (step).
Draw GUI Event
This event allows you to draw relative to the screen. It is mainly used for HUD elements, such as

displaying the score, lives, bonuses, etc.
This draws independent of any view, so if the view moves, the GUI will not.
In most uses the GUI draws elements that cannot interact with the player.

Figure 6-3. Setting up a collision event

Chapter 6 ■ ObjeCts and events

50

Worksheet – Objects
Which event would you place the following:

(some have more than one method)

•	 Drawing the string "Score: "

•	 To do something when two objects touch each other.

•	 To change the background music when score is over 100.

•	 When your health is 0 (or below), lose a life.

•	 Destroy an object if it leaves the room.

•	 To check on left mouse button pressed anywhere in the room.

•	 To check for a keypress of "X."

•	 Do something when alarm5 reaches 0.

•	 To force an object to draw the object's sprite image.

•	 Change a variables value when health is less than 50.

•	 Some GML you want to run every step.

•	 When the mouse cursor leaves an object.

•	 Execute code when an objects is destroyed

Chapter 6 ■ ObjeCts and events

51

Worksheet – Objects – Answer Sheet
Which event would you place the following:

(some have more than one method)

•	 Drawing the string "Score: " In a Draw Event.

•	 To do something when two objects touch each other. In a Collision Event, or using
GML in a Step Event.

•	 To change the background music when score is over 100. In a Step Event.

•	 When your health is 0 (or below), lose a life. In a No More Health Event, or using
GML in a Step Event.

•	 Destroy an object if it leaves the room. In an Intersect Room Boundary Event, or
using GML in a Step Event.

•	 To check on left mouse button pressed anywhere in the room. In Global Left Mouse
Button Event, or using GML in a Step Event.

•	 To check for a keypress of "X." Using a Key Press Event, or using GML in a Step
Event.

•	 Do something when alarm5 reaches 0. Using Alarm5 Event. Assumes that an
alarm[5] has been set and started.

•	 To force an object to draw the object's sprite image. In a Draw Event put draw_
self().

•	 Change a variable’s value when health is less than 50. In a Step Event.

•	 Some GML you want to run every step. In a Step Event.

•	 When the mouse cursor leaves an object. Using a Mouse Leave Event or using GML
in a Step Event.

•	 Execute code when an object is destroyed. Using a Destroy Event or using GML in a
Step Event.

Chapter 6 ■ ObjeCts and events

52

Basic Projects
•	 A) Draw the health of a player as text in red above a player when health is less than

20. Set it up so P and L change the value of health.

	 2 Points

•	 B) Make some text change colour, at random, each time the space bar is pressed.

	 2 Points

•	 C) Create an object that changes colour when the mouse is over and when clicked on
the object. Use a different sub image for each colour.

	 2 Points

Advanced Project
•	 D) Create a mini game that randomly displays three objects that move in random

directions when created and when clicked by the player. If objects go off side of
screen, wrap around screen. Player is to click objects to get points and display points
onscreen.

	 4 Points

Chapter 6 ■ ObjeCts and events

53

End of Book Game Objects
A number of objects will be used in the end game, and they will be for this:

•	 A splash screen object to load / define variables

•	 Menu and shop buttons

•	 Player’s ship

•	 Bullets

•	 Asteroids

•	 Bonus objects

•	 Control objects for spawning asteroids

•	 Control object for a messaging system

•	 Parent objects for asteroids and bullets (makes coding easier)

Each of these objects will serve a different purpose, and as such will be programmed accordingly.
Think about a few of these objects. Try to work out some variables that each of these objects will need.

What will they do; and importantly, when and how will these objects interact with each other and the player?

55© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_7

CHAPTER 7

Sprites

Sprites are images or sets of images that are assigned to objects. Sprites are images or multiple images.
Multiple images can be used, for example, to create animations, or a change of image when a mouse cursor
is over it. An example animation would be a character running. An example of a single image would be a
menu button. Sprites are the graphic element of an object, which are displayed in game. There are lots of
ways you can change how a sprite is drawn, which can be used to create various effects. Sprites can be used
for the following such things:

•	 Displaying player and enemies

•	 Missiles and weapons

•	 Walls and platforms

•	 Menu buttons

•	 Upgrade buttons

•	 Lives

•	 Moving objects

•	 Collectibles

You set an origin for a sprite. It is this point that will be used for displaying onscreen at an X and Y
location. It is also worth noting that this point is also where transformations such as scaling and rotation are
based around. It should be chosen carefully according to what the sprite will be used for. Figure 7-1 shows
the sprite origin set as center.

Chapter 7 ■ SpriteS

56

Create a new object, obj_coin, and click New as shown in Figure 7-2.

Next, name this sprite spr_coin and click Load Sprite. This step is shown in Figure 7-3:

Figure 7-1. Showing sprite origin set at center

Figure 7-2. Creating a new object and loading sprite

Chapter 7 ■ SpriteS

57

Next load all the coins sprites. These can be found in the resources Project Assets & GMZ Files ➤
Assets Used In Main Chapters ➤ Chapter 7. Click the first image, then scroll down to the last image and
click this while holding shift. This will select all images as shown in Figure 7-4. Click Open to load them.

This coin is provided as a strip that contains all sub images in a single image. To load this create a sprite,
spr_coin, click Edit ➤ File and the Create From Strip. Load in as shown in Figure 7-4:

Figure 7-3. Naming sprite and loading images

Figure 7-4. Loading in coin strip

http://dx.doi.org/10.1007/978-1-4842-2373-4_7

Chapter 7 ■ SpriteS

58

Set the origin to center, and click OK twice to close all windows.
Sprites with multiple sub images may also be in a strip format. To load a strip, create a new sprite, click

Edit, File, and Create From Strip, select the appropriate sprite strip, and apply settings as needed.
Note that all sprites have an origin point; this can be considered the point where the sprite will be

“pinned” to the instance in the room. The origin point of the selected sprite will match with the chosen
position.

Next create an object, obj_player, and assign the player sprite from the resource folder.
Create a Step Event, and put in the following code. This code will detect keypresses of A, W, S, and D

and change the X and Y location of the instance in the room. This will make the sprite appear to move.

if keyboard_check(ord("W")){y-=3;}
if keyboard_check(ord("A")){x-=3;}
if keyboard_check(ord("S")){y+=3;}
if keyboard_check(ord("D")){x+=3;}

Open obj_coin again, and put the following code into a Collision Event with obj_player, as shown in
Figure 7-5.

x=irandom_range(16,room_width-16);
y=irandom_range(16,room_height-16);

Figure 7-5. Adding code to a collision event

Chapter 7 ■ SpriteS

59

The above code will chose a random value with the given range. 16 is used so that the coin does not
appear over the room’s border.

Create a room, room_game, set the dimensions as 800 by 400. Place one of each object in the room. Now
test this game.

An example GMZ for this available in the resources at: Project Assets & GMZ Files ➤ Assets Used In
Main Chapters ➤ Chapter 7

For other useful code, see the manual for usage; the first three are useful for checking a value as well as
setting it.

image_angle – Can be used to set the direction (rotation of a sprite).

image_speed – How quickly a sprite’s sub images animate.

image_index – Set a specific sub image.

sprite_get_number(index) – Returns how many sub images a sprite has.

draw_sprite_ext(); - Allows drawing with additional settings.

For example, you may a have a different sprite for the character moving left and moving right. These
could be sub images 0 and 1. You can set the sub image that is being shown by using image_index, for
example, when the player is moving left:

image_index=0;

And when it’s moving right:

image_index=1;

Remember you can set image_speed to 0 to set the frame so it doesn't animate away on its own; do this
in the object’s Format for Event or change the above code to:

image_speed=0;
image_index=0;

And when it’s moving right:

image_speed=0;
image_index=1;

http://dx.doi.org/10.1007/978-1-4842-2373-4_7

Chapter 7 ■ SpriteS

60

Worksheet – Sprites
 1. Cross out the wrong answers.

•	 Sprites are images that can be used inside a game.

•	 The only way to create a sprite is to draw it using GameMaker: Studio.

•	 Sprites must be manually drawn.

•	 Sprites can be animated using more than one frame/sub image.

•	 All sprites have an origin point.

•	 All sprites must have precise collision checking enabled.

•	 You can assign a sprite to any object in the game.

•	 New sprites can be created from inside the game.

 2. What is an origin point in a sprite?

 3. Correct the mistakes in the following GML.

instance_destroy;
imageIndex=2;
image_speed=five;

Chapter 7 ■ SpriteS

61

Worksheet – Sprites – Answer Sheet
 1. Cross out the wrong answers.

Sprites are images that can be used inside a game. True

The only way to create a sprite is to draw it using GML. False

Sprites must be manually drawn. False

Sprites can be animated using more than one frame/sub image. True

All sprites have an origin point. True

All sprites must have precise collision checking enabled. False

You can assign a sprite to any object in the game. True

New sprites can be created from inside the game. True

 2. What is an origin point in a sprite?

The point where a sprite will be drawn

 3. Correct the mistakes in the following GML.

instance_destroy; instance_destroy();
imageIndex=2; image_index=2;
image_speed=five; image_speed=5;

Chapter 7 ■ SpriteS

62

Basic Projects
•	 A) Draw an animated character sprite that animates when moving right.

	 2 Points

•	 B) Set it so the coin animates through its cycle 4 times, then jumps to a new position
and starts the cycle again.

	 2 Points

•	 C) Make simple top-down maze game with a character that points in the direction
the player is moving.

	 3 Points

Advanced Project
•	 D) Draw a sprite that changes perspective (size) depending on the y location.

	 3 Points

Chapter 7 ■ SpriteS

63

End of Book Game Sprites
Sprites will be used for:

•	 Asteroids, one for each size

•	 Menu button showing locked or unlocked

•	 Various game buttons

•	 Player ship

•	 Bullets

•	 Bonus objects

•	 Radar blips

Sprites required for the game are included in the resources download, but have a go at making your
own. There are several graphics programs for creating sprites and images. A selection:

•	 GIMP

•	 Draw Plus Starter

•	 InkScape

•	 Paint.net

•	 Pyxel Edit – Although $9, some consider this the best program for sprite creation

There’s also a few programs designed for sprite editing / generation, which are worth a mention:

http://www.piskelapp.com/ (online)
http://esotericsoftware.com/ (download)
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/ (online)

http://www.piskelapp.com/
http://esotericsoftware.com/
http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/

65© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_8

CHAPTER 8

Health, Lives, and Score

Most casual games will have some sort of health, lives, or score system. Players usually start off with full
health and lose some of it when they get hit by an enemy bullet, land on spikes, or collide with something
they shouldn’t. Once a player loses all their health, they usually lose a life and are transported back in the
level to a re-spawn site. Different games have different goals, though with a lot of them the aim is to achieve
the highest score possible. Fortunately GameMaker: Studio makes it really easy to set up such a system
described above.

health, lives, and score are built-in global variables. However, you don’t need to put “global.” before
them.

You would use global. when using your own variables that you want multiple objects to be able to use,
for example: global.level, global.hp.

Note: health, lives, and score are basically global variables; as such it should only be used for one
instance, usually the player. If you need to monitor health, lives, or score from more than one object, you’ll
need to create your own instance or global variables, for example, my_health or global.enemy_1_health.

Most games you create are likely to have a number of lives and / or health, and a score to keep track
of. You’re not obliged to use the built in variables. Lots of casual games have an aim of trying to get the
highest score.

health, lives, and score can be drawn on the screen in text or graphically.
At the start of the game you’ll want to set the initial values for these (or load them as saved from a

previous play). An example is shown below.

score=0;
health=100;
lives=5;

 ■ Note health starts with a default value of 100; however, I prefer to set it so I may change it later,
depending on what’s required for the game.

Health
You can treat all of these: health, lives, and score the same as you would any variable; you can test,

change, and draw these variables.
Some examples:
In the Collision Event of enemy bullet with the player.

 ■ Note it is very important to destroy the bullet at this point, to prevent health being reduced by 1 each
step / frame.

Chapter 8 ■ health, lIves, and sCore

66

For example, in a bullets Collision Event with a player object:

health-=1;
instance_destroy();

Or if you are doing the Collision Event within the player object:

health-=1;
with (other) instance_destroy();

In the Collision Event with a health bonus object. As before, destroy the health bonus straightaway to
prevent it being added every step:

health+=5;
with (other) instance_destroy();

 ■ Note health is not capped at 100. You can make use of this depending on what your game requires. For
example, you could test if it’s greater than 100 and cap at 100, or create an extra life if it reaches a determined
value.

In a Step Event you may want to constantly check the health and lives variables:

if health<=0
{
 lives-=1;
 health=100;
}
if lives<=-1
{
 room_goto(room_game_over);
}

You can draw the value health just as you would any other real variable.
There is also a built-in Drag & Drop action for drawing a health bar, Draw the health bar. Figure 8-1

shows an example setup.
x1 is the X location at the top left of the health bar
y1 is the Y location at the top left of the health bar
x2 is the X location at the bottom right of the health bar
y2 is the Y location bottom right of the health bar

Chapter 8 ■ health, lIves, and sCore

67

 ■ Note the example in Figure 8-1 uses the Draw GUI Event, not the Draw Event. as mentioned in a
previous chapter, this event draws independently of the view and is generally used for hUd elements such as
the score, health, lives, etc.

Lives
As with other variables, you can test, change, and draw the lives variable. Draw score:

draw_text(50,50,lives);

You can also draw lives graphically using the in-built Drag & Drop action. There is no single function
to do this in GML. This example assumes sprite spr_lives has been loaded in, and this is available at
Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter 8.

It’s OK to use D&D if you need to, as shown in Figure 8-2.

Figure 8-1. Drawing health bar as an image

http://dx.doi.org/10.1007/978-1-4842-2373-4_8

Chapter 8 ■ health, lIves, and sCore

68

If you wanted to draw lives as images manually you could use the following, where spr_lives is the
image you’ve created. This will draw the sprite at 50 pixel spacing. This assumes that the variable lives has
already been set, though not essential as it is a built in variable:

for (var i = 0; i < lives; i += 1)
{
 draw_sprite(spr_lives,0,50+(50*i),50);
}

This will space out the lives at 50 pixel intervals; this will look like what is shown in Figure 8-3.

Figure 8-2. Drawing lives as separate images

Figure 8-3. Showing lives drawn using code

Chapter 8 ■ health, lIves, and sCore

69

Score
You can draw the score using GML, for example:

draw_text(30,30, "Score "+string(score));

You may also wish to display this graphically, for example, to indicate how many points are needed until
you reach the next level. This will depend on the style of game you’re creating.

For example, you have a game that levels up after every 1000 points. The following code would draw a
bar at the top of the room, visually displaying how many points the player needs for the next level and their
current level. This example assumes a room width of 800 and a font font_score set up an Arial size 20.

Step Event

level=(score div 1000)+1; //calculate level
bar_width=(score mod 1000)*.8; //make bar fit room width of 800

Draw Event or Draw GUI Event

//draw background of bar
draw_set_colour(c_red);
draw_rectangle(1,1,800,40,false);
//Draw Current Level
draw_set_colour(c_green);
draw_rectangle(1,1,bar_width,40,false);
//Draw Over Hud
draw_set_colour(c_blue);
draw_rectangle(1,1,800,40,true);
//Draw Current Level in Text
draw_set_font(font_score);
draw_set_colour(c_white);
draw_set_halign(fa_center);
draw_set_valign(fa_middle);
draw_text(400,25, "Level="+string(level));

Chapter 8 ■ health, lIves, and sCore

70

Worksheet – Lives, Health, & Score
True or False?

 A) lives can be set to a maximum of 10. T / F

 B) When health == 0, lives will automatically decrement by 1. T / F

 C) Health bar can be drawn in any colour. T / F

 D) lives can be drawn as integer or sprites. T / F

 E) health can have a negative value. T / F

 F) score can be saved and loaded from an INI file. T / F

Correct any mistakes in the following:

 A) lives=+1;

 B) if (global.score>1000)

 C) if score>1000 room_goto(room_level_2);

 D) draw_healthbar(50, 50, 550, 100, 50, c_blue, c_red, c_yellow, 1,
yes, no);

Chapter 8 ■ health, lIves, and sCore

71

Worksheet – Lives, Health, Lives, & Score – Answer Sheet
True or False?

 A) lives can set to a maximum of 10. F

 B) When health == 0, lives will automatically decrement by 1. T / F – If you
want something to happen when health runs out (reaches 0) you’ll need to
program it in

 C) Health bar can be drawn in any colour. T

 D) lives can be drawn as integers or sprites. T

 E) health can have a negative value. T

 F) score can be saved and loaded from an INI file. T

Correct any mistakes in the following:

 A) lives=+1; Though technically correct, this will reset lives to a value of 1. To
increment lives you would use lives+=1;

 B) if (global.score>1000) score is already a globally accessible variable, using
the prefix global is not required and could cause confusion.

 C) if (score>1000) room_goto(room_level_2); This will work fine, though it’s
good practice to use { code } after a conditional for example:

if score>1000
{
 room_goto(room_level_2);
}

 D) draw_healthbar(50, 50, 550, 100, 50, c_blue, c_red, c_yellow, 1,
yes, no); Use true and false instead of yes and no

Chapter 8 ■ health, lIves, and sCore

72

Basic Projects
•	 A) Draw a health bar across the whole of the top of the game window, draw lives

under this as images. Allows keys Q and W to change health value, and A and S to
change lives.

	 2 Points

•	 B) Use GML that draws lives as images, using an animated sprite. Use GML, not the
built-in Draw Lives action.

	 2 Points

Advanced Projects
•	 C) Draw a bar at the top of the screen that draws the current score mod 1000. For

each 1000 score increase the level by 1. Also draw score and level as text.

	 3 Points

•	 D) Create 4 level buttons that each become clickable for every 1000 score points.
Show they are clickable using different sub images. Also change sub image when
mouse over and when clicked.

	 3 Points

Chapter 8 ■ health, lIves, and sCore

73

End of Book Game Health, Lives, & Score
The main player object will make use of the built-in variables health and lives. A global variable global.
cash will be used to assess the players progress, which will also allow the use of this variable in a shop where
the player can buy weapons.

A control object will be used to monitor player stats and draw this at the top of the screen.
health and lives will be drawn graphically at the top of the game window.
Each asteroid and enemy ship will use instance variables for its health.
Think about what code will be needed to draw, monitor, and change these variables. What have you

learned in previous sections that you can apply here?

75© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_9

CHAPTER 9

Mouse

Mouse interaction is valuable in quickly providing inputs into a game. Object movement and selection is
more intuitive and doesn’t require memorization that may be required with keyboard interaction. This
section serves as an introduction to using the mouse.

Mouse input can be used for:

•	 Clicking on menu buttons

•	 Creating a location to move an object to

•	 Making an object move

•	 Using the middle button to change weapons

•	 Making an object point in the direction of the mouse

•	 Detecting screen presses (in iOS / Android)

•	 Displaying mouse cursor

•	 Display stats of a clicked object

About 99% of the time you'll want to constantly check the position of the mouse or mouse button
interaction. This is achieved by placing your code at the Step Event.

As with keyboard interaction, you can test the mouse just being clicked, being held down, and being
released, for example:

if mouse_check_button(mb_left) // check for being held down
{
 //do something
}
if mouse_check_button_pressed(mb_left) //activates one time only when button is pressed
{
 //do something
}
if mouse_check_button_released(mb_left) // activates one time only when button is released
{
 //do something
}

The same logic applies when using Mouse Events.

Chapter 9 ■ Mouse

76

The position of the mouse can be found using:

mouse_x the x position of the mouse in the room.

mouse_y the y position of the mouse in the room.

For mouse buttons actions you can use, for example:

if (mouse_check_button(button))

Where button can be any of the following: mb_left, mb_right, mb_middle, mb_none, mb_any

mb_middle means middle button

mb_none means no button

mb_any means any mouse button

You can also use the Mouse Events instead of GML, though using GML will provide you with more
flexibility.

Using GML you can make things happen when a mouse button is pressed. So the following, when
placed in the Step Event, would make the object move slowly to the mouse’s position when the left button is
pressed:

if (mouse_check_button(mb_left))
{
 movement_speed=25; //Higher Number Makes Slower Speed
 target_x=mouse_x; //or other target position
 target_y=mouse_y; //or other target position
 x +=(target_x-x)/ movement_speed; //target position-current
 position
 y +=(target_y-y)/ movement_speed; //target position-current
 position
}

An example GMZ for the above is available in the resources at: Project Assets & GMZ Files ➤ Assets
Used In Main Chapters ➤ Chapter 9

You can also detect movement of the mouse wheel (if present):

if (mouse_wheel_up())
{
 weapon+=1;
}

You can detect scroll down in a similar manner:

if (mouse_wheel_down())
{
 weapon-=1;
}

You can also set the cursor to a sprite of your choice:

cursor_sprite=spr_name;

http://dx.doi.org/10.1007/978-1-4842-2373-4_9

Chapter 9 ■ Mouse

77

when spr_name is a sprite that exists.
You can hide the default windows cursor using:

window_set_cursor(cr_none);

There are a number of built-in cursor types, see window_set_cursor in the manual for more info. This
can be used (as with cursor_sprite above) with great effect in a game. Changing the cursor depending what
the player is doing or what objects are at the cursor can give your player extra info, that is, making it clear an
instance can be interacted with.

The following code will detect if the mouse is over an object and add to the score, which would
increment by 1 every step if placed in a Step Event:

if (position_meeting(mouse_x, mouse_y, object_name))
{
 score+=1;
}

The following code would check that the mouse is over the object’s sprite and the left mouse button is
released. The code will then play a sound snd_bounce, with a priority of 1 with looping set as false.

if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 audio_play_sound(snd_bounce,1,false);
}

There are also a number of Mouse Events that can be used instead of code, which are perfectly viable
options; these are shown back in Figure 6-1. As with GML code, you can check for a button being held down,
just pressed, or released (and you should understand the difference by now):

http://dx.doi.org/10.1007/978-1-4842-2373-4_6#Fig1

Chapter 9 ■ Mouse

78

Worksheet – Mouse Movement
Explain what each of the following code blocks do, when placed in the Step Event:

1)
if (mouse_check_button_pressed(mb_left))
{
 audio_play_sound(snd_beep, 10, false);
}
2)
if position_meeting(mouse_x, mouse_y, obj_button)
{
 show="mouse over";
}
else
{
 show="not over";
}
3) x = mouse_x
 y = mouse_y
 repeat (10)
 {
 instance_create(x, y, obj_smoke);
 }
repeat (3)
 {
 instance_create(x, y, obj_fire);
}

Chapter 9 ■ Mouse

79

Worksheet – Mouse Movement – Answer Sheet
Explain what each of the following code blocks do, when placed in the Step Event:

 1) This will check for the left mouse button; when pressed it will play the sound
snd_beep

 2) This will set the variable show to mouse over when mouse cursor is over object,
or not over otherwise

 3) This would create 10 instances of obj_smoke and 3 instances of obj_fire at the
mouse location

Chapter 9 ■ Mouse

80

Basic Projects
•	 A) Create an object that follows only the mouse’s x position.

	 2 Points

•	 B) Make the mouse cursor change when it’s over an object.

	 2 Points

•	 C) Draw the mouse’s x and y positions in the bottom left of the screen. Remember to
use the font and drawing colour and formatting.

	 2 Points

Advanced Projects
•	 D) Create a sound board (lots of buttons each of which plays a sound when clicked

with the mouse). Draw text over each button, explaining what sound it plays.

	 2 Points

•	 E) Create an object that can be moved around the room with the mouse.

	 2 Points

Chapter 9 ■ Mouse

81

End of Book Game Mouse Movement
Although there’s minimal mouse interaction with the game made in this book, other games that you make
may be mouse intensive. Mouse interaction in this game is only used for button presses.

However, games made for the Android platform will mostly likely be wholly mouse based (a screen
press on a tablet device is the equivalent of a mouse click). GameMaker: Studio allows you to detect taps,
double taps, and screen swipes. It’s also possible to create virtual buttons for different parts of the screen,
which can, with a bit of coding, allow the taps to be recorded as Keyboard Pressed Events. Virtual keys
map to regular Keyboard and Keyboard Released Events as well. This is an awesome method, especially if
you’re porting a game that was originally designed to run on a desktop platform.

83© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_10

CHAPTER 10

Alarms

Alarms are useful for many timed activities or abilities that are temporarily available. Timers can enhance
gameplay by creating urgency in completing an action before an ability disappears. This section covers
the basics of alarms. Alarms can be used to make something happen (or stop happening) when an alarm
triggers. Alarms are set to a starting value when the alarm is created.

Alarms can be used for the following:

•	 Displaying a splash screen for a while

•	 Making a bomb explode an amount of time after firing

•	 Changing the player to invincible and then back again

•	 Display a bonus object for a set amount of time

•	 Create or move objects after an amount of time

•	 Create basic AI systems

•	 Limiting how quickly a player can shoot

An alarm can be set, for example, using, using the default room_speed of 30:

alarm[0]=60; //set alarm at 2 seconds

As you may wish to change the default room speed, a better code would be to use the following
approach in all your alarms:

alarm[0]=2*room_speed; //set alarm at 2 seconds

By using the above method you can change the room_speed as needed without messing up your
timings.

In total you can have 12 alarms for each object:

alarm[0]
alarm[1]
....
alarm[10]
alarm[11]

Chapter 10 ■ alarms

84

When an alarm activates (alarm goes off / runs out of time) you can detect this using an Alarm Event,
which can be selected as shown in Figure 10-1:

Figure 10-1. Showing alarm events

You can add to an existing alarm, for example, adding 1 second:

alarm[0]+=1*room_speed;

Alarms run until they reach 0, and then count one more to -1, so you can stop an alarm by setting it to -1.
Here are some examples:
Moving to another room, room_menu after 5 seconds. You could use this in a room set up as a splash

screen. For example, this could be used to display your company's logo or a graphic of some description.
Create Event:

alarm[0]=5*room_speed

Alarm[0] Event:

room_goto(room_menu);

Chapter 10 ■ alarms

85

Delaying how quickly a player can shoot, the code below would limit the rate of fire to once every 2
seconds:

Create Event:

can_shoot=true;

When player shoots, by pressing the Z key:

if can_shoot && keyboard_check(ord('Z'))
{
 //bullet creation code here
 can_fire=false;
 alarm[1]=2*room_speed;
}

Alarm [1] Event:

can_shoot=true;

As you can see, Alarm Events are a very useful commodity allowing us to set how often something can
happen or how long something lasts.

 ■ Note Be careful about holding alarms open by constantly setting them. Use a flag to prevent this, as was
done with can_shoot in the example above.

Chapter 10 ■ alarms

86

Worksheet – Alarms
 1. What are alarms?

 2. How do you start an alarm?

 3. What event would you use to execute code when alarm[4] goes off?

 4. How many steps for an alarm set to 7 seconds with a room speed of 30?

 5. How many alarms can a single object have?

 6. How would you decrease an alarm by 45 steps?

 7. How would you make a player invincible for 10 seconds?

 8. How would you spawn an enemy every 15 seconds, then every 14 seconds, then
every 13 seconds…? You should set a minimum for this so that the time doesn't
go to 0.

Chapter 10 ■ alarms

87

Worksheet – Alarms – Answer Sheet
 1. What are alarms?

Alarms are timers that can be programmed to allow something to happen.

 2. How do you start an alarm?

In GML, alarm[number]=time;

 3. What event would you use to execute code alarm[4] goes off?

The Alarm4 Event.

 4. How many steps for an alarm set to 7 seconds with a room speed of 30?

210 steps

 5. How many alarms can a single object have? Up to 12. They go from 0 through to 11.

 6. How would you decrease an alarm by 45 steps?

alarm[0]-=45;

 7. How would you make a player invincible for 10 seconds?

Set invincible to true: invincibility=true, create an alarm:
alarm[0]=10*room_speed, reset invincible back to false when alarm triggers:
invincibility=false;

 8. How would you spawn an enemy every 15 seconds, then every 14 seconds, then
every 13 seconds…?

Create Event:

time=14;
alarm[0]=time*room_speed;

Alarm 0 Event:

instance_create(50,50,obj_enemy);
time--;
if time>1 alarm[0]=time*room_speed else alarm[0]=room_speed;

Chapter 10 ■ alarms

88

Basic Projects
•	 A) Create a program that changes the drawn text every 5 seconds, and use a list of 10

strings.

	 2 Points

•	 B) Create a program with an object that moves with a speed of 1 and increases the
speed of the object every 5 seconds. Also make the object wrap around the screen.

	 2 Points

•	 C) Create a program that plays a random sound every 4 seconds.

	 2 Points

Advanced Projects
•	 D) Create a simple system that allows the player to shoot bullets at a maximum rate

of 1 bullet every 2 seconds.

	 2 Points

•	 E) Create an enemy AI that changes direction randomly every 5 seconds. Make the
enemy object’s sprite point in the direction that it is traveling. Also make the enemy
object wrap around the screen. Set the object to shoot a bullet in the direction it is
traveling every 8 seconds.

	 Note: You can assign an instance’s value to a variable when you create it, and then set
other variables for that instance. For example:

ball=instance_create(x,y,obj_ball);
ball.speed=2;
ball.heatlh=50;

Chapter 10 ■ alarms

89

End of Book Game Ten Alarms
The game will use a few alarms. They’ll be used for:

•	 Limiting how quickly a player can shoot bullets

•	 Showing the splash screen

•	 Showing message on screen

•	 Start fading bullets after a set amount of time

Alarms are great for changing a value from true to false. By combining two alarms you can change
from true to false and then back again. This type of system will be used to display important messages on
the screen. There will be an object for monitoring these messages. When the object receives a message, it
will display it onscreen. If the object receives more than one message at a time, it will cue the messages and
display them with a gap in between. This is achieved by using two different alarms in the one object.

91© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_11

CHAPTER 11

Collisions

When planning on motions or deciding actions, it is often critical to see if collisions occurred with other
instances within the game world. Put simply, collisions are what happens when two instances (with sprites
or masks assigned) collide (their sprite or mask overlaps) with each other.

You use this to check if an instance is in collision with another, for example, a character walking on a
platform in a platformer game or an enemy being hit by a player’s bullet.

For example, here are things that can be made to happen when a collision occurs:

•	 destroy an object

•	 create an effect

•	 play a sound

•	 change score, health, or lives

•	 make something start or stop moving

•	 create a new object

Most of the time it’s sufficient to use the Collision Event. You can create a Collision Event as shown in
Figure 11-1; just select the object you want to check a collision with.

Figure 11-1. Setting up a collision event

Chapter 11 ■ Collisions

92

There are a number of different ways to use GML to check for a collision.
For example, check whether it does not collide with another object, returning true or false:

place_empty(x, y);

As above, but checks for solid objects only:

place_free(x, y);

You can check for a specific object, which uses the sprite as base to check for overlap:

place_meeting(x, y, object);

You can check a single pixel location to see if an object is in that position, for example to check for a
specific instance:

position_meeting(mouse_x,mouse_y,id);

You can destroy all objects at a location:

position_destroy(x, y);

Or the following, which finds the instance ID:

instance_position(x, y, obj);

For the purpose of this level 1 book we’ll mainly be using the in-built Collision Event for all object
collisions (except for buttons that detect a mouse click), but feel free to experiment with GML. Project files
and resources are available in the download resources folder.

Coding examples: Example 1: Bouncing ball
Create a solid wall obj_wall, as a 32x32 pixels sprite-coloured solid blue, and a player object obj_ball

as a smiley face also 32x32:
Set the origin at the center for each sprite shown in Figure 11-2:

Chapter 11 ■ Collisions

93

In Create Event of obj_ball object put:

direction=(irandom(360));
speed=5;
image_speed=0;

This will make the object start moving in a random direction at a speed of 5.
Open up object obj_ball, make a Collision Event with obj_wall and put:

move_bounce_all(true);

This step is shown in Figure 11-3:

Figure 11-2. Creating two objects, assigning sprite, and setting as solid – step 1

Chapter 11 ■ Collisions

94

Create a room and line the border with obj_wall and place one of obj_ball in the middle, as
demonstrated in Figure 11-4.

Figure 11-3. Adding GML to a collision event – step 2

Figure 11-4. Adding objects to a room – step 3

Chapter 11 ■ Collisions

95

If you now play this game, the ball will bounce around the room.
An example GMZ for the above is available at: Project Assets & GMZ Files ➤ Assets Used In Main

Chapters ➤ Chapter 11
Example 2 Mouse Over
There will be lots of occasions that you may want to check that the mouse cursor is over an object before

performing any additional code. This is a simple example.
Create a new sprite, spr_button. Add two sub images, one blue and one red, with a size of 32x32, as

shown in Figure 11-5:

Figure 11-5. Showing sprite with two sub images set

Create an object obj_button and assign this sprite you've just made.
For the Create Event use this code:

image_speed=0;
image_index=0;

For the Step Event use:

if (position_meeting(mouse_x, mouse_y, id))
{
 image_index=0;
}
else
{
 image_index=1;
}

The above code will set a different image index depending whether the mouse cursor is over its sprite or not.
A GMZ example for the above is available in the resources at: Project Assets & GMZ Files ➤ Assets

Used In Main Chapters ➤ Chapter 11.

http://dx.doi.org/10.1007/978-1-4842-2373-4_11
http://dx.doi.org/10.1007/978-1-4842-2373-4_11

Chapter 11 ■ Collisions

96

Figure 11-6. Showing example room with objects added

Example 3 Collision Line
For this example you'll need three sprites, spr_yellow_face and spr_red_face and spr_wall. A size of

32x32 with origin set as center will be fine.
Create a wall object obj_wall with a solid blue sprite, set as solid.
Create an object, obj_player, set the sprite spr_yellow_face.
In the Step Event of obj_player put the following; this will allow you to move the player object using

the arrow keys:

x+=4*(keyboard_check(vk_right)-keyboard_check(vk_left));
y+=4*(keyboard_check(vk_down)-keyboard_check(vk_up));

Create an object, obj_target. Set the sprite spr_red_face.
In the Draw Event of obj_target put the following code, which will draw a line between obj_target

and obj_player if there is a direct line of sight (i.e., no walls in the way):

draw_self();
if (collision_line(x,y,obj_player.x,obj_player.y,obj_wall, false,true)) == noone
{
 draw_line(x,y,obj_player.x,obj_player.y);
}

Place one instance of obj_player, and a few each of obj_target and obj_wall into a new room. An
example layout is shown in Figure 11-6.

Chapter 11 ■ Collisions

97

When the obj_target can ‘see’ obj_player it will draw a line between the two, as shown in Figure 11-7:

Figure 11-7. Showing lines being draw to player if enemy can see it

A GMZ for the above is available at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤
Chapter 11.

You could use something like this as the basis for an AI system.

http://dx.doi.org/10.1007/978-1-4842-2373-4_11

Chapter 11 ■ Collisions

98

Worksheet – Collision Events
Correct the following code, if there is an error:

if place_meeting(obj_car, 65, 80)
if (position_meeting(mouse_x, mouse_y, obj_tree))
if (!place_free(x+5, y))
if (position_meeting(x, y, spr_bonus))
if (collision_line(x+100, y, obj_player.x, obj_player.y, obj_wall, true, true))

Explain what the following code does:

if (position_meeting(x, y, obj_bomb)){audio_play_sound(snd_bomb, 10 ,false); health-=1;}

if (place_free(x+5, y)) {x+=5;}

if (place_empty(x, y)){instance_create(x, y, obj_enemy);}

How would you do the following using events / GML:

 A) Set player variable can_see to true if it can be seen by an instance of obj_enemy_1
and obj_enemy_2? For this question, assume that there is only one of each
instance.

 B) Move an object to the right unless it collides with obj_wall?

Chapter 11 ■ Collisions

99

Worksheet – Collision Events – Answer Sheet
Correct the following code, if there is an error:

if place_meeting(obj_car, 65, 80) if place_meeting(65,80,obj_car)
if (position_meeting(mouse_x, mouse_y, obj_tree)) correct
if (!place_free(x+5, y)) correct
if (position_meeting(x, y, spr_bonus)) Should be obj_bonus
if (collision_line(x+100, y, obj_player.x, obj_player.y, obj_wall, true, true))Should be
(collision_line(x+100, y, obj_player.x, obj_player.y, obj_wall, true, true)!=noone

Explain what the following code does:

 A) Will play sound snd_bomb and reduce health by 1 if obj_bomb is at a position.

 B) Will move right 5 pixels if no solid object present 5 pixels to the right.

 C) Checks if any instance exists at position; if not create obj_enemy at position.

How would you do the following using events / GML:

 A) Set player variable can_see to true if it can be seen by an instance of obj_enemy_1
and obj_enemy_2?

 B) if (collision_line(x,y,obj_target.x,obj_target.y,obj_wall,false,true)) == noone or
(collision_line(x,y,obj_target_2.x,obj_target_2.y,obj_wall,false,true)) == noone

{
 can_see=true;
}
 else
{
 can_see=false;
}

 C) Move an object to the right unless it collides with obj_wall?

if !place_meeting(x+(sprite_width/2), y, obj_wall) x+=4;

Chapter 11 ■ Collisions

100

Basic Projects
•	 A) Make the player change colour when it can see one or more of obj_enemy.

2 Points

•	 B) Create a new object, obj_target, and assign a pink sprite to it. If player collides
with it, play a sound and make it destroy itself.

2 Points

•	 C) Create a clickable object with four sub images. When the mouse button is released
when over the object change the sub image. On the forth click destroy the object.

2 Points

Advanced Projects
•	 D) Make the player change direction at random if the mouse gets within 100 pixels in

any direction, but only check this once every 5 seconds. Also make the object wrap
around the screen. See distance_to_point(x, y); in the manual.

2 Points

•	 E) Surround the outside of a room with walls. Create a ball that bounces around
the room. Have some objects in the room that require four hits of the ball to be
destroyed, changing the sub image each time it’s hit. Note: You can use the D&D
Bounce in the jump section of the Move tab.

Chapter 11 ■ Collisions

101

End of Book Game Collisions
•	 Player with asteroid

•	 Player with enemy bullet

•	 Player with enemy ship

•	 Asteroid with bullet

•	 Enemy with bullet

•	 Player with bonus item

Try and work out what you want to happen when these objects collide. Choose from: Collisions

•	 Change a variable

•	 Play a sound effect

•	 Play a voice

•	 Create a graphical effect

•	 Create / destroy an object

•	 Make something move or stop moving

Player with asteroid - When this happens we’ll want to reduce the player’s health and also create a
visual effect and a sound effect or voice.

Asteroid with bullet - When this happens we’ll want to reduce the asteroid’s health, play a sound effect
and create a visual effect, then destroy the bullet.

Player with bonus item - Add the value of the bonus to the player, and destroy the bonus object.
Player with enemy ship or bullet - Reduce player’s health and create a sound effect and graphical effect.

If collision with an enemy's bullet occurs, destroy the enemy bullet upon collision with the player.

103© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_12

CHAPTER 12

Rooms

Rooms are where you place your instances and where the action happens. A simple room may have an
enemy instance and player instance – and maybe a few platforms to jump on – where the player and enemy
try to shoot each other.

Instances are placed in the room, which then interact with other instances, keypresses, and mouse
events.

The room editor is a very powerful visual layout tool, and has many useful features like views, creation
codes, and tile settings.

It allows you to place objects in the room where you want them. You can also do the following:

•	 Set room creation code (GML that runs on room start, which happens after the
Create Event of instances already in the room)

•	 Set backgrounds

•	 Set views

•	 Turn physics on or off

•	 Set the room size and name

•	 Set and add tiles

Most games have one than one room. You can use different rooms, for example:

•	 Splash Screen – Defining variables and showing your company’s logo

•	 Menu – Where a player selects a level to play

•	 Shop – Where weapons and upgrades can be purchased

•	 Game Levels – Where the main game action takes place

•	 Boss Levels – Special level between levels – usually harder than standard levels

•	 Game Over – When a player completes the game or loses all lives

Most rooms will have some form of background, from the basic static background to moving parallax
backgrounds.

Create a new GameMaker: Studio project, and load in a new background. This can be done by clicking
the Create Background icon, as shown in Figure 12-1 below:

Chapter 12 ■ rooms

104

Click the Create a background button on the top menu bar, and load in a background from the resources;
this step is shown in Figure 12-2. The background to load is supplied in the resources for Chapter 12.

You can set this background in a room. Create a new room, room_example, and set the room
dimensions as 800 by 400; you can do this from the settings tab, as shown in Figure 12-3:

Figure 12-1. Creating a new background

Figure 12-2. Loading in a background

http://dx.doi.org/10.1007/978-1-4842-2373-4_12

Chapter 12 ■ rooms

105

Set the background by clicking on the background tab, unchecking draw background color, checking
visible when it starts, and choosing bg_1 that you just loaded. This process is shown in Figure 12-4.

Figure 12-3. Setting room dimensions

Figure 12-4. Setting a background

Chapter 12 ■ rooms

106

Rooms are dealt with in more detail in Chapter 13.
Next we’ll look at the views tab. You set a view so it only shows part of the room at any one time. This is

useful if you have a large room and only want to show the part where the player is, for example.
Create a new project.
Create new object, obj_player and create and assign a red sprite (32x32 is fine) for it. In a Step Event put:

x+=4*(keyboard_check(vk_right)-keyboard_check(vk_left));
y+=4*(keyboard_check(vk_down)-keyboard_check(vk_up));

Create another object, obj_wall, and create and assign a blue sprite for it. No code is needed for this.
Create a room, set the name as room_example and the room width and height to 2000 each. Place one
instance of obj_player and multiple of obj_wall. It doesn’t matter too much where you place them. An
example is shown in Figure 12-5.

Set up a view, as shown in Figure 12-6. This will create a view that keeps the player visible on the screen.
Note: If the view and the viewport have different aspect ratios, this will cause unwanted stretching.

Figure 12-5. Showing objects added to room – step 3

http://dx.doi.org/10.1007/978-1-4842-2373-4_13

Chapter 12 ■ rooms

107

An example for this is in the resources folder at: Project Assets & GMZ Files ➤ Assets Used In Main
Chapters ➤ Chapter 12

A view can be used to show part of the room. For example you may have a huge level that’s 2000 by 2000
pixels – a view can be used just show a part, maybe 800 by 400 at any one time.

There is a number of built-in functions for backgrounds and views. If you’re feeling adventurous, look
these up in the manual, by pressed F1.

There’s a ton of GML for using with rooms. The main ones are these:
This one will take you to a named room: room_goto(room_name);
This GML will take you to the next room (as shown in the resource tree): room_goto_next();
This GML will take you to the previous room (as shown in the resource tree): room_goto_previous();
You can restart the room using: room_restart();

Figure 12-6. Setting up view to follow an object

http://dx.doi.org/10.1007/978-1-4842-2373-4_12

Chapter 12 ■ rooms

108

Worksheet – Rooms
 1. Check your understanding

 A) What are rooms?

 B) How do you add objects to an existing room?

 C) Can you draw sprites to a room using the room editor?

 D) How do you add backgrounds to existing rooms?

 E) How do you set room size?

 F) How do you create a view of 200 by 200?

Correct the code in the following:

goto_room(room_level_2);
goto_room_next;
restart_room(room_level_1);
if (room_exists(room_boss)) room_boss;

True or False

 A) There is a limit of 20 rooms. T / F

 B) room_goto_next();will take you to the next room in the resource tree. T / F

 C) You can change views without restarting the room. T / F

 D) Rooms can have more than one background. T / F

Chapter 12 ■ rooms

109

Worksheet – Rooms – Answer Sheet
 1.

 A) What are rooms?

Rooms are places where you show backgrounds, place objects, place tiles,
and set views.

 B) How do you add objects to an existing room?

Go to the object tab, select object, and place in the room by clicking.

 C) Can you draw sprites to a room using the room editor?

Not directly, but you can place an object that can draw a sprite.

 D) How do you add backgrounds to existing rooms?

Load in and name the background, go to the room editor, and apply it
under backgrounds tab.

 E) How do you set room size?

You can set this in the settings tab.

 F) How do you create a view of 200 by 200?

Go to view tabs and set width and height of view.

Correct the code in the following:

A) goto_room(room_level_2); room_goto(room_level_2);

B) goto_room_next; room_goto_next();

C) restart_room(room_level_1); room_restart();

D) if (room_exists(room_boss)) room_boss;

if (room_exists(room_boss)) room_goto(room_boss);

True or False

 A) There is a limit of 20 rooms T / F

 B) room_goto_next();will take you to the next room in the resource tree. T / F

 C) You can change views without restarting the room. T / F

 D) Rooms can have more than one background. T / F

Chapter 12 ■ rooms

110

Basic Projects
•	 A) Make a splash screen with a background that shows for 5 seconds, plays a sound,

and then goes to a new room.

	 3 Points

•	 B) Create a level select screen that has 5 buttons that each go to a different room.
Make the buttons change colour when a mouse is over them. Draw the level as text in
the middle of each button. Remember to set up text drawing correctly.

	 3 Points

Advanced Project
•	 C) Create 2 rooms, A B. Visualize them as:

A B

	 Make the player wrap up and down in each room.

	 Make it so a player object can move from one room to the next. So if the player moves
off the right of room A, the player will appear at the same Y location in room B, but
on the left of the room; and, if the player moves off the right of room B, the player
will appear at the same Y location in room A, but on the left of the room. Do this for
moving left also.

	 4 Points

Chapter 12 ■ rooms

111

End of Book Game Rooms
This game consists of a number of rooms. All rooms will have the same dimensions, 800 by 400.

They are:

•	 Splash screen – displays logo and initiates global game variables

•	 Menu – shows unlocked level and buttons to restart / quit

•	 Shop – allows player to buy weapons

•	 Game Level – this the game level the player controls

•	 Game over – player goes here if they lose all their lives

•	 Game complete – player goes here if they successfully complete the game

Think about what objects would need to go in each room and what they do.

113© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_13

CHAPTER 13

Backgrounds

Backgrounds are one of the basic resources that are used for rooms in which the game takes place.
Backgrounds can be made of one large image or tiles of a smaller image. Additionally, you can have static
and moving backgrounds in GameMaker: Studio. These backgrounds can be set using the room editor, or in
GML. You can also set and change backgrounds using GML.

Backgrounds are images that show in the room but do not have any direct interaction with objects.
You can combine two or more backgrounds to create a parallax scrolling effect.
Some uses of backgrounds include:

•	 Splash screens

•	 Backgrounds for levels

•	 Moving backgrounds for infinite runner type games

Let’s make an example by creating a new project. We are going to create a moving background. This is
useful as it creates a more professional look to the game, and it is useful for scrolling type games. Load in a
background from the resources, and name it as bg_wire. Set it as shown in Figure 13-1.

Chapter 13 ■ BaCkgrounds

114

Now create a new room, room_example, and set the dimensions as 800 by 400.
Set the background as shown below in Figure 13-2:

Figure 13-2. Setting background for the room

Figure 13-1. Setting up a background

Chapter 13 ■ BaCkgrounds

115

Now test your game; you should now see a room with background showing.
Now create an object obj_view_control.
In a Step Event put in the following code; this will move the background horizontally 5 pixels each step:

background_x[0]+=5;

Place one instance of obj_view_control in the room. Now test your game again, and the background
will now move. Similarly you can set the vertical movement:

background_y[0]+=5;

You can set horizontal and vertical movement in the background tab of an open room. Also you set a
constant speed for a background, for example, as shown below:

 ■ Note these don't have to be in the Step Event.

background_hspeed[4] = 2;
background_vspeed[4] = 1;

There are a heap of other background functions; see the manual if you’re interested. A room’s
background colour can be set:

background_colour= c_blue;

You can make a background move vertically using:

background_vspeed[0] = speed;

and horizontally using:

background_hspeed[0] = speed;

You can have up to eight backgrounds, for example background_index[0] or background_index[7].
You can set a loaded background using:

background_index[5] = bg_trees;

You can set a background to visible, for example:

background_visible[2]=true;

If you have another background visible, you can set it to invisible using:

background_visible[1]=false;

You can also check if a background is visible:

if background_visible[0]
{
 //do something
}

Chapter 13 ■ BaCkgrounds

116

Worksheet - Backgrounds
 1. True or False:

Backgrounds can be animated. T / F
Backgrounds can be scrolled using GML code. T / F
Backgrounds can be tiled a limited number of times. T / F

 2. Use the manual (docs.yoyogames.com) to look up the following:

 A) background_vtiled[1]

 B) background_yscale[4]

Explain what each of the above does:

A)

B)

Chapter 13 ■ BaCkgrounds

117

Worksheet – Backgrounds – Answer Sheet
 1. True or False:

Backgrounds can be animated. False Note: It can if you change it every frame,
but not on its own. But this is correct to some point at the beginner level.

Backgrounds can be scrolled using GML code. True

Backgrounds can be tiled a limited number of times. False Note: It can be tiled
up to eight times by setting eight backgrounds, each with their horizontal and
vertical repeating disabled. But this is correct to some point at the beginner level.

Comment

 2. Use the manual to look up the following:

 A) background_vtiled[1]

 B) background_yscale[4]

Explain what each of the above does:

 A) Sets vertical tiling of background

 B) Can be used to stretch the background

Chapter 13 ■ BaCkgrounds

118

Basic Projects
•	 A) Make a program sets whether backgrounds are visible when keys 1 to 5 are

pressed.

	 2 Points

•	 B) Make a background that scrolls left after 5 seconds.

	 2 Points

Advanced Projects
•	 C) Create two horizontal views, one which follows obj_player and one which follows

obj_enemy (make both objects movable using key presses).

	 2 Points

•	 D) Create a parallax system using at least four backgrounds. Have the backgrounds
move to the left, with the top layer moving the fastest. Change the Y location of the
background proportionate to player objects y location.

	 4 Points

•	 Background assets are available for this in the downloadable resources, in the folder
Assets Used In Book ➤ 13.

Chapter 13 ■ BaCkgrounds

119

End of Book Game Backgrounds
This game consists of a number of rooms, and each room will need some form of background to make the
game look better.

The splash, menu, shop, game level, game over, and game complete rooms.
For the level, we’ll change the background that’s being show by changing the background_index[0] to a

different background that has been loaded in.

121© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_14

CHAPTER 14

Sounds and Music

Sounds and music are very important in games. The correct style of music can set the scene for the game:
a horror-themed game would require different music than an RPG. Sound effects and voices can provide
feedback too. For example when you buy an item in a shop, you want audio confirmation the purchase has
gone through. When you fire a weapon or swipe a sword you want to hear a reassuring sound. This section
serves as an introduction to playing sounds and music in GameMaker.

A few sound resources are included in the resources download for you to play with.
Sounds can be used for the following:

•	 Explosions effects

•	 Button clicks

•	 Giving player feedback using voices

•	 Playing background music

•	 Jumping and landing effects

•	 Collision sounds

You can create a new sound by clicking the Create a sound button on the title bar as shown in
Figure 14-1.

Load in the sound effect, snd_tank, and name the sound snd_tank; this step is shown in Figure 14-2.

Figure 14-1. Creating a new sound

Chapter 14 ■ SoundS and MuSiC

122

Figure 14-2. Loading a sound file using default settings

Chapter 14 ■ SoundS and MuSiC

123

Create an object, obj_example, and put the following code in the Step Event:

if keyboard_check(ord('X'))
{
 audio_play_sound(snd_tank,1,false);
}

The snd_tank is the sound file to play, 1 is the channel priority, and false stops the sound from looping.
Then create a room, room_example, and place one instance of obj_example in the room.
Test this game, when you press the X key, the sound effect will play.
Add a new sound, snd_music_1 and load Retro.mp3 from the resources. Put the following code in to a

Create Event of object obj_example.

audio_play_sound(snd_music_1,1,true);

Test again, and a background track will play. Check that you can hear the tank sound over the
background music.

You can lower the volume of the background music, and make the sound effect easier to hear:

bg_music=audio_play_sound(snd_music_1,1,true);
audio_sound_gain(bg_music, 0.2, 0);

You can check if a sound is playing, and stop it if it is:

if (audio_is_playing(snd_music_1))
{
 audio_stop_sound(snd_music_1);
}

An example for this, including pause and resume, is in the resources: Project Assets & GMZ Files ➤
Assets Used In Main Chapters ➤ Chapter 14

Some additional functions include:

audio_pause_sound
audio_resume_sound

An example using the pause and resume functions could look like the following, which would pause the
sound on keypress P and resume on keypress R:

Create Event:

audio_play_sound(snd_music_1,1,true);

http://dx.doi.org/10.1007/978-1-4842-2373-4_14

Chapter 14 ■ SoundS and MuSiC

124

Step Event:

if keyboard_check_pressed(ord('P'))
{
 if audio_is_playing(snd_music_1)
 {
 audio_pause_sound(snd_music_1);
 }
}
if keyboard_check_pressed(ord('R'))
{
 if audio_is_playing(snd_music_1)
 {
 audio_resume_sound(snd_music_1);
 }
}

You can also stop all sounds. Stopped sounds cannot be resumed.

audio_stop_all

Here is an example of this being used, which would stop any and all audio when X is pressed:
Create Event:

audio_play_sound(snd_music,1,true);

Step Event:

if (keyboard_check_pressed(ord('X')))
{
 audio_stop_all();
}

Chapter 14 ■ SoundS and MuSiC

125

Worksheet – Sounds & Music
 1. Cross out the audio function that doesn’t exist in GameMaker: Studio:

-audio_exists
-audio_play_sound
-audio_play_all
-audio_pause_sound
-audio_pause_all
-audio_resume_sound
-audio_resume_all
-audio_stop_sound
-audio_stop_all
-audio_is_playing
-audio_is_paused

 2. How would you do each of the following in GML:

 a. Play a sound effect when a ball bounces off of a wall.

 b. Play a sound when X is pressed, for example shooting a bullet.

 c. Go to a room when a music track stops playing, for example, when splash
screen music has finished.

Chapter 14 ■ SoundS and MuSiC

126

Worksheet – Sounds & Music – Answer Sheet
 1. Cross out the audio function that doesn’t exist in GameMaker: Studio:

-audio_play_all – This doesn’t exist

 2. How would you do each of the following in GML:

There are few possible ways to achieve any tidy code that does what’s required or
would be suitable.

 a. Play a sound effect when a ball bounces off of a wall.

In a Collision Event put:

audio_play_sound(snd_bounce,1,false);

 b. Play a sound when X is pressed, for example, shooting a bullet.

This can be placed in the Step Event:

if (keyboard_check_pressed(ord('X')))
{
 audio_play_sound(snd_effect,1,false);
 instance_create(x,y,obj_bullet);
}

 c. Go to a room when a music track stops playing.

Placed in a Step Event:

if !audio_is_playing(snd_music);
{
 room_goto(room_menu);
}

Chapter 14 ■ SoundS and MuSiC

127

Basic Projects
•	 A) Make a program that can play, pause, and stop a song.

	 3 Points

•	 B) Play one of four sound effects at random when a ball collides with a wall.

	 3 Points

Advanced Projects
•	 C) Create a Juke Box program with five of your favorite songs.

	 2 Points

•	 D) Create a movable player object, and a target object. If the player object is less than
200 pixels from the target object play a sound effect. Increase the sound volume the
closer the mouse gets to it.

	 (see audio_sound_gain)

	 2 Points

Chapter 14 ■ SoundS and MuSiC

128

End of Book Game Sounds & Music
The game will include sounds and music.

The music will be single track that plays repeatedly in the background.
Sounds will include sound effects and voices, which will be triggered to play upon various conditions.
For example, when a bullet is fired, an appropriate sound effect will be played.
When a bullet collides with an asteroid an explosion sound effect will be played.
The game will also use a number of voices, which will provide information to the player, such as:

•	 A successful or unsuccessful purchase in the shop

•	 That the player has changed weapon

•	 Alert the player to no ammo

•	 Warn the player when health is getting low

•	 Notify the player that level has started

•	 Play a selection of different voices if player collides with an asteroid

To make it easier to call these sound effects, a couple of simple scripts will be written so you can call a
sound effect using, for example:

scr_play_effect(snd_explosion_double_gun);

and similar for calling voices:

scr_voice(snd_voice_low_ammo);

Think about what sounds should be available, and write a list of voices that could provide informative
feedback to the player.

129© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_15

CHAPTER 15

Splash Screens and Menu

A splash screen is usually shown when a game starts up. It’s an ideal time to initialize variables and load
external resources. It’s also a great way to show your company logo or a sponsor’s message. You can create
a splash screen in the Global Game Settings; however, normally GameMaker: Studio loads the game very
fast and so the user will hardly have time to see it, which is another good reason to create your own. A good
way to show a splash screen is to create a new room, assign a background, and then move it to the top of the
room’s resources tree, for example, as shown in Figure 15-1.

Menus are great ways to allow the player to select a difficulty, turn sound on or off, or visit an
unlocked level.

A completed game rooms tree may look something like this:

As you will see above, in Figure 15-1, each room has a distinct name.
The room at the top of the tree will be loaded first.

Start a new project within GameMaker: Studio.
Create a new object, obj_splash_screen.
Create Event code:

global.level=1;
lives=5; //Set initial lives to 5
score=0; //Start with a score of 0
global.bonus_score=0; //Set with a value of 0
health=100; //Start with full health
alarm[0]=7*room_speed; //Set alarm for 7 seconds

Figure 15-1. Showing an example of room order in resource tree

Chapter 15 ■ SplaSh SCreenS and Menu

130

Alarm[0] Event code:

room_goto_next();

Load in the background from the resources folder, Project Assets & GMZ Files ➤ Assets Used In Main
Chapters ➤ Chapter 14.

Create a new room, room_splash_screen, and set this new background to the room, making it visible on
room start.

Then place one instance of obj_splash_screen in room_splash_screen.
Next we’ll look and the menu room. Create a new room, room_menu, and place it under the room

room_splash_screen as shown in Figure 15-2:

Next create a new sprite, spr_locked_or_not, and set up as shown in Figure 15-3, with two sub images
loaded in:

Create an object, obj_button_parent, and assign the sprite you have just created.
In a Step Event put:

if global.level>=my_id locked=false else locked=true

Figure 15-2. Showing room order

Figure 15-3. Loading in sub images and assigning to a sprite

http://dx.doi.org/10.1007/978-1-4842-2373-4_14

Chapter 15 ■ SplaSh SCreenS and Menu

131

if locked image_index=0 else image_index=1
if (!locked && position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_
left))
{
 if my_id==1 room_goto(room_level_1);
 if my_id==2 room_goto(room_level_2);
 if my_id==3 room_goto(room_level_3);
 if my_id==4 room_goto(room_level_4);
}

and in Draw Event put:

draw_self();
draw_set_font(font_lock);
draw_set_valign(fa_middle);
draw_set_halign(fa_center);
draw_set_colour(c_black); // These two lines create
draw_text(x-1,y-1,my_id); // a shadow effect
draw_set_colour(c_white);
draw_text(x,y,my_id);

That is all for this object. Create a new object, obj_button_1, and set the parent object as obj_button_
parent, as shown in Figure 15-4:

Now add a Create Event to this object, obj_button_1, and put the following code

my_id=1;

Figure 15-4. Setting a parent object

Chapter 15 ■ SplaSh SCreenS and Menu

132

Repeat this for obj_button_2, obj_button_3, and obj_button_4, setting the parent object, but
changing the Create Event code as:

For obj_button_2:

my_id=2;

and obj_button_3:

my_id=3;

and obj_button_4:

my_id=4;

accordingly.
Now create four new rooms:

room_level_1, room_level_2, room_level_3, room_level_4

Next create a new object, obj_control, but no sprite is needed. This is used so we can check it all works
as planned.

In a Step Event place:

if keyboard_check_released(ord('Q'))
{
 global.level+=1;
}
if keyboard_check_released(ord('A'))
{
 global.level-=1;
}

And in a Draw Event:

draw_text(10,10,global.level); //for testing only

Open room room_menu, place one instance of obj_control in the top left, and one of each of the button
objects, in order, from left to right: obj_button_1, obj_button_2, obj_button_3, and obj_button_4. So it
looks Figure 15-5:

Chapter 15 ■ SplaSh SCreenS and Menu

133

You can now save and test this.
An example project in GMZ is available at: Project Assets & GMZ Files ➤ Assets Used In Main

Chapters ➤ Chapter 15

Figure 15-5. Showing room setup with objects placed

http://dx.doi.org/10.1007/978-1-4842-2373-4_15

Chapter 15 ■ SplaSh SCreenS and Menu

134

Worksheet – Splash Screens & Menu
Correct the following if there is a mistake:

if (room_exist(room_level_20))
{goto_room, "room_level_20";}

True or False:

 A. All rooms must be the same size. T / F

 B. You can restart a room using GML. T / F

 C. The room at the bottom in the resource tree is the first room when a game starts.
T / F

 D. You can’t have two rooms with the same name. T / F

 E. If a room is set as persistent it will ‘remember’ where instances are. T / F

How would you code the following using GML?

 A. A button that changes its image index on mouse over? (both sub images are same
size and shape)

 B. A bonus level button that becomes clickable when score exceeds 5000?

 C. A new button for a boss level becomes visible when levels 1 to 4 are completed?

 D. A button that rotates left and right slowly to 45’.

Chapter 15 ■ SplaSh SCreenS and Menu

135

Worksheet – Splash Screens & Menu – Answer Sheet
Correct the following if there is a mistake:

if (room_exists(room_level_20))
{
 room_goto(room_level_20));
}

True or False:

 A. All rooms must be the same size. F

 B. You can restart a room using GML. T

 C. The room at the bottom in the resource tree is the first room when a game starts. F

 D. You can’t have two rooms with the same name. F

 E. If a room is set as persistent it will ‘remember’ where instances are. T

How would you code the following using GML?

 A. A button that changes its image index on mouse over? (both sub images are same
size and shape).

 B. One approach is to have an object with a sprite that has two images and uses the
following code:

Create Event:

image_speed=0;

Step Event:

if position_meeting(mouse_x, mouse_y, id)
{
 image_index=0;
}
else
{
 image_index=1;
}

 A. A bonus level button that becomes clickable when score exceeds 5000?

if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_pressed(mb_left)
&& score>5000
{
 //do something
}

Chapter 15 ■ SplaSh SCreenS and Menu

136

 B. A new button for a boss level becomes visible when levels 1 to 4 are completed?
In Draw Event:

if global.level==5
{
 draw_self();
}

 C. A button that rotates left and right slowly to 45’.

Create Event:

clockwise=true;

Step Event:

if clockwise
{
 image_angle-=1;
 if image_angle<=-45 clockwise=false;
}
else
{
 image_angle+=1;
 if image_angle>=45 clockwise=true;
}

Chapter 15 ■ SplaSh SCreenS and Menu

137

Basic Projects
•	 A) Create a splash screen and place an object with a sprite animation. Set it to go to

the next room 5 seconds after the animation has ended.

	 2 Points

•	 B) Create a menu room with background music with a button for it to go to an
instructions room (with button to return to menu room), and a game room. Change
the music for instruction screen and playing the game.

	 4 Points

Advanced Project
•	 D) Create an object that becomes unlocked only if user types in a password on the

keyboard. Make the password “xbacon.” Display visibly whether the object is locked
or unlocked.

	 4 Points

Chapter 15 ■ SplaSh SCreenS and Menu

138

End of Book Game Splash Screens & Menu
The game will make use of a splash screen and menu.

The main purpose of the splash screen will be to define the initial data and load any saved INI file (if it
exists).

The splash screen will use an alarm to take the player to the menu after a few seconds.
The game will need to store a number of variables so the player can return to the game and continue on

their current level with the same stats as when they left.
The game will need to know the player’s current level, health, amount of cash, and total bullets fired.

It also needs to know weapon stats such as how many bullets they have left and how many shots have been
taken of each weapon.

The level select screen will allow the player to play any unlocked level, quit the game, or restart it
(deleting all data). Upon loading, the menu select screen will store all player data to the INI file. This is so
when the player returns, they can continue with the next level.

139© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_16

CHAPTER 16

Random

A static game with the exact same pattern of movement doesn’t have much replay value. This type of game
can be memorized. Using randomness in your games to create variety in game play greatly increases the
game replay value.

Strictly speaking there is no such thing as a true random number on a regular PC, but it can be
simulated and approximated for game play.

For the purposes of making games easier to create and test, GameMaker: Studio will always generate
the same random numbers each time a game is played. For example, if in your game you rolled a dice 5
times and got 5 3 1 6 3 2, the next time you played from the Studio IDE you’d also get 5 3 1 6 3 2. Depending
on your game you may want different numbers each time when testing, so remember that a final executable
will not display this behavior. To do this, use randomize(), which only needs to be called once at the start of
the game.

For example, in the Needs event formatting of an object in your splash screen you may have:

randomize();

Then in your game you may have:

starting_x=irandom(800);
starting_y=irandom(400);

Now each time the game is run, starting_x and starting_y will have different random values.
Randomness can be used for such things as the following:

•	 Selecting an effect to use

•	 Making AI move / change direction

•	 Choose an attack from a selection

•	 Choose a random sound effect / backing music

•	 Move an object to a new location

An example of a random function:

attack=choose(1, 1, 1, 2, 2, 3);

This will choose a number at random. There will be a 50%(3/6) chance of getting a '1,' a 33%(2/6)
chance of getting a '2,' and a 17%(1/6) chance of getting a '3.'

Chapter 16 ■ random

140

You can also use other things as well as numbers: for example, objects, sounds, colours:

music_track=choose(snd_track_1, snd_track_2, snd_track_3);
text_colour=choose(c_green, c_red, c_blue);
spawn_enemy=choose(obj_enemy_1, obj_enemy_2);

You can create a real random number:

number=random(50);

This will choose a random number between 0 and 50 exclusive, with decimal places.
An example of a value returned by the random() function: 44.7768221937 (which may contain more

digits than this).
If you are generating real numbers with decimals, the following is useful; however floor is generally

used for randomized values:

floor(4.2) would return 4

ceil(4.2) would return 5

round (4.2) would return 4

A method more suited to most applications, as it creates whole integers is:

number=irandom(50);

This will choose a whole number integer between 0 and 50 inclusive.
An example of this value is 38.
You can also choose a whole random integer number between values, for example, between 40 and

50 inclusive:

irandom_range(40, 50);

There may be times that you want the randomization to be the same each time, even when the
game has been compiled to the final executable for distribution: for example, when you have a randomly
generated level. To achieve this, you can use the following function:

random_set_seed(number);

or

randomize();

If you want a random outcome each time.

 ■ Note this should be placed just before any deterministic results are generated.

Chapter 16 ■ random

141

Worksheet – Random
 A. With this code:

my_colour=choose(c_blue, c_blue, c_olive, c_orange);

What is the chance of each colour being chosen?

 B. How would you choose an integer number between 0 and 75?

 C. How would you move the object to a random x position between 150 and 450?

 D. What value would floor(19.8) return?

 E. What value would floor(11.2) return?

 F. What value would ceil(0.06) return?

 G. What value would round(53.487) return?

 H. What value would round(1076.882) return?

You have five objects, obj_bonus_1, through to obj_bonus_5.

 I. How would you program it so each has an equal chance of being selected?

 J. How would you program it so that object obj_bonus_1 has a 50% chance of being
selected and the rest an equal chance?

Chapter 16 ■ random

142

Worksheet – Random – Answer Sheet
 A. With this code:

my_colour=choose(c_blue, c_blue, c_olive, c_orange);

What is the chance of each colour being chosen? Blue 50%, 25% for both olive
and orange

 B. How would you choose an integer number between 0 and 75? irandom_
range(0,75);

Or equally:

irandom(75);

 C. How would you move the object to a random x position between 150 and 450?
x=irandom_range(150,450);

 D. What value would floor(19.8) return? 19

 E. What value would floor(11.2) return? 11

 F. What value would ceil(0.06) return? 1

 G. What value would round(53.487) return? 53

 H. What value would round(1076.882) return? 1077

You have five objects, obj_bonus_1, through to obj_bonus_5.

 I. How would you program it so each has an equal chance of being selected?

selected=choose(obj_bonus_1, obj_bonus_2, obj_bonus_3, obj_bonus_4, obj_bonus_5);

 J. How would you program it so that object obj_bonus_1 has a 50% chance of being
selected and the rest an equal chance?

selected=choose(obj_bonus_1, obj_bonus_1, obj_bonus_1, obj_bonus_1, obj_bonus_2,
obj_bonus_3, obj_bonus_4, obj_bonus_5);

Chapter 16 ■ random

143

Basic Projects
•	 A) Play a random sound every time the player presses the spacebar.

	 2 Points

•	 B) Make an object jump to a random position, no closer than 50 pixels near the edge
of the window, when clicked with the mouse. Use a sprite with multiple sub images.
Stop the animation on the last sub image.

	 2 Points

•	 C) Make an object move randomly around the room without going off of the edges.
Make it change direction every 5 seconds. If it gets within 10 pixels of the edge of the
screen, make it change direction away from the edge.

	 2 Points

Advanced Project
•	 D) Create a lottery game that chooses six different numbers between 1 and 49.

Display them in ascending order, inside a circle. If the number is between 1 and 9
make the circle white, 10-19 blue, 20-29 green, 30-39 red, 40-49 yellow.

	 4 Points

Chapter 16 ■ random

144

End of Book Game Random
Randomization will only be used a few times in the game.

It will be used to randomly set the direction and rotational speed of asteroids, within a given range.
It will also be used to play random voices, again from a selection, at various points in the game.

145© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_17

CHAPTER 17

More Movement (Basic AI)

Most casual games involve a player and some form of computer AI (Artificial Intelligence). Basically an AI
object will interact with what’s onscreen and what the player does. For example, in a top-down game the
AI object may move toward the player avoiding other objects and shoot a bullet toward the player if they’re
within a certain range. Usually in the first few levels of a game the AI object will be more forgiving to the
player, but higher levels may make the AI more aggressive.

Some of the functions the AI may have:

•	 Move toward player

•	 Fire a bullet / missile toward player

•	 Decide which card to play next

•	 Punch the player if they’re not blocking

In most cases you’ll be checking whether a variable equals some number, or if a function is true or
false – and use this to create the illusion of AI.

This starts with a very basic AI and progressively makes it more intelligent.
We’ll create a basic AI system that makes an enemy move toward the player, if there is a direct line of sight.
Start a new project.
Create three new objects, obj_wall, obj_player, and obj_enemy.
Load in the appropriate sprites from the resources at: Project Assets & GMZ Files ➤ Assets Used In

Main Chapters ➤ Chapter 17
Place the following code in the Step Event of obj_player. This code will allow the player to move so

long as it does not collide in the direction it is traveling with an obj_wall instance:

hor=4*(keyboard_check(vk_right)-keyboard_check(vk_left));
vert=4*(keyboard_check(vk_down)-keyboard_check(vk_up));
if place_free(x+hor,y)
{
 x+=hor;
}
if place_free(x,y+vert)
{
 y+=vert;
}

That is all for this object.

http://dx.doi.org/10.1007/978-1-4842-2373-4_17

Chapter 17 ■ More MoveMent (BasiC ai)

146

Open up object obj_enemy and put the following code in a Create Event. This will create a flag that can
be changed and tested upon, with true if it has a direct line of sight to the player, or false otherwise:

can_see=false;

In the Step Event of this object put:

//if there is a direct line of sight between the player and the enemy then set can_see to
true, otherwise false
if (collision_line(x, y, obj_player.x, obj_player.y,
obj_wall, true,false))!=noone
{
 can_see=false;
}
else
{
 can_see=true;
}

if can_see
{
 mp_potential_step(obj_player.x, obj_player.y, 2, true);
}

collision_line returns whether an imaginary line between it and the player instance collides with an
instance of obj_wall. It returns false if it collides with obj_wall.

mp_potential_step(obj_player.x, obj_player.y, 2, true); moves the object 2 pixels towards the
player for each frame.

Finally create a Draw Event for this object with the following code:

draw_self();
if can_see
{
 draw_line(x, y, obj_player.x, obj_player.y);
}

This will draw its own sprite, and a line between itself and player if can_see it true.
Set the room up as shown in Figure 17-1:

Chapter 17 ■ More MoveMent (BasiC ai)

147

This project is available in the resources at: Project Assets & GMZ Files ➤ Assets Used In Main
Chapters ➤ Chapter 17 ➤ example17a

This next part continues adding to the example created above. Do not start a new project.
First load in and assign the sound file, snd_ouch, from the resources.
Next create a new object, obj_bullet and load in assign the spr_bullet from the resource.
In the Create Event of obj_bullet put:

direction=point_direction(x,y,obj_player.x, obj_player.y);
speed=3;

In a Collision Event with obj_player put:

audio_play_sound(snd_ouch,1,false);
instance_destroy();

The above code will play the sound on collision with the player instance, then destroy itself.
Instead of playing a sound you could do things such as removing a life or making a graphical effect.
Finally for this part, we'll set the obj_bullet to destroy itself when outside the room, using the Outside

Room Event, as shown in Figure 17-2:

Figure 17-1. Showing example room layout

http://dx.doi.org/10.1007/978-1-4842-2373-4_17

Chapter 17 ■ More MoveMent (BasiC ai)

148

Put this code in this event:

instance_destroy();

That is all for this object.
Open up object obj_enemy, and change the Create Event code to:

can_see=false;
timer=0;

This will initialize the variable timer to 0.
And change the Step Event for obj_enemy to:

//if there is a direct line of sight between the player and the enemy then set can_see to
true, otherwise false
if (collision_line(x, y, obj_player.x, obj_player.y,
obj_wall, true,false))!=noone
{
 can_see=false;
}
else
{
 can_see=true;
}

Figure 17-2. Setting an outside room event

Chapter 17 ■ More MoveMent (BasiC ai)

149

if can_see
{
 mp_potential_step(obj_player.x, obj_player.y, 2, true);
 timer++;
}
else
{
 timer=0;
}

if timer==10
{
 instance_create(x,y,obj_bullet);
 timer=0;
}

This change will make the variable timer count up if it can see the player instance. If it reaches 10 it will
create a bullet instance and reset the timer. If the player is hidden, the timer will be set to 0.

You can now save and test the game. An example project is available at:
Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter 17 ➤ example17b
This next part continues on from the previous example; do not start a new project.
Create a new room, room_splash. Ensure this sits above the room room_example in the resources tree.

You can change its position by clicking and holding the left mouse button, then move it by dragging it.
Set the room size to 800 by 400.
Create a new object obj_splash and place the following in its Create Event:

global.enemy=0;
global.player=0;
room_goto_next();

Place one instance of this object in the room room_splash.room_splash
That is all for this object.
You can delete the object obj_bullet and sprite spr_bullet as they are not required.
To delete a resource from the resource tree you can right-click on it and select delete.
Create a new object, obj_star and load in and set the appropriate sprite from the resources folder.
In a Create Event put:

move=false;

In the Step Event of this object, put the following code:

if move
{
 while(!place_free(x,y))
 {
 x=irandom(800);
 y=irandom(400);
 }
 move=false;
}

http://dx.doi.org/10.1007/978-1-4842-2373-4_17

Chapter 17 ■ More MoveMent (BasiC ai)

150

In a Collision Event with obj_enemy put:

global.enemy+=1;
move=true;

In a Collision Event with obj_player put:

global.player+=1;
move=true;

This will find a random empty position in the room.
If it collides with the player or enemy it will award a point and then seek a new empty position.
Place one instance of this object into room_example.
Next change the Create Event code of object obj_enemy to:

can_see=false;

And its Step Event code to:

if instance_exists(obj_star)
{
 mp_potential_step(obj_star.x, obj_star.y, 2, false);
}

This code above will move towards the obj_star instance, avoiding objects.
The Draw Event is no longer required, as a default drawing will be used. You can remove it by right-

clicking and choosing delete.
Finally create an object obj_score, and place the following in the Draw Event (or Draw GUI Event):

draw_text(100,50,"Player:"+string(global.player));
draw_text(200,50,"Computer:"+string(global.enemy));

Place one instance of this object in room room_example.
You can now save and test.
An example project is available at:
Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter 17 ➤ example17c

http://dx.doi.org/10.1007/978-1-4842-2373-4_17

Chapter 17 ■ More MoveMent (BasiC ai)

151

Worksheet – More Movement
Using the game created previously:

 A. How would you change the game to make the bullets move faster when the
player reaches a score of 10 or more?

 B. How would you add a sound effect when the bullet is fired?

 C. How would you make an enemy only follow the player's X position?

 D. How would you add a sound effect when a bullet is created?

Correct the mistakes in the following code:

 A. alarm[7]=roomspeed*10; (roomspeed is not a declared variable)

 B. instance_create(obj_star, x, 10);

 C. draw_self;

 D. draw_text(lives, 50, 100);

 E. if (keyboard_check(ord('d))){x+=5;}

Chapter 17 ■ More MoveMent (BasiC ai)

152

Worksheet – More Movement – Answer Sheet
Using the game created previously:

 A. How would you change the game to make the bullets move faster when the
player reaches a score of 10 or more? One method is:

Create Event

global.faster=false;

Step Event

if (score>=10)
{
global.faster=true
}

 B. Bullet object Create Event:

 C. direction=point_direction(x,y,obj_player.x,obj_player.y);

speed=4;
if (score >= 10) { speed *= 2; }

 D. How would you make an enemy only follow the player's X position?

x=obj_player.x;

 E. How would you add a sound effect when a bullet is created?

In Create Event of bullet object:

audio_play_sound(snd_fire,0,false);

 F. How would you make an enemy only follow the player's x or y position?

In enemy’s Step Event:

x=obj_player.x

Correct the mistakes in the following code:

 A. alarm[7]=roomspeed*10; alarm[7]=room_speed*10;

 B. instance_create(obj_star, x, 10); instance_create(x,10,obj_star);

 C. draw_self; draw_self();

 D. draw_text(lives, 50, 100); draw_text(50,100,lives);

 E. if (keyboard_check(ord('d))) {x+=5;} if (keyboard_check(ord('D')))
{x+=5;}

Chapter 17 ■ More MoveMent (BasiC ai)

153

Basic Projects
•	 A) Create a control object that creates a star every 5 seconds at a random position

at the top of the screen that then falls toward the bottom. Player gets a point for
every one collected. Player can only move left and right at the bottom of the screen,
without being able to leave the window. Use the control object to draw the score in
the top left of the window, remembering to set a font, drawing style, and colour.

	 2 Points

•	 B) Make a movable player object (using arrow keys) and a static enemy object. Make
the enemy shoot at the player, getting faster as the player gets closer. Prevent the
player from leaving the window. Ensure the bullet gets destroyed when leaving the
room; use room_width & room_height for this.

•	 (See distance_to_object in the help file).

	 4 Points

Advanced Projects
•	 C) Create an enemy that changes direction every 5 seconds to move away from

the player, and wraps around the room if it goes off of the edge. Also add the bullet
function from project 17 B, but make the firing speed no more than two seconds
between shots.

	 4 Points

Chapter 17 ■ More MoveMent (BasiC ai)

154

End of Book Game
This game will only have one AI object, a spaceship that will hunt down the player object.

It will be set up to spawn when a large asteroid is created. It will slowly move toward the player and fire
bullets at the player as it does so.

This is only very basic AI, but it adds an extra dimension to the game.

155© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_18

CHAPTER 18

INI Files

With casual games that people may only play for a few minutes at a time, the ability to store the player’s
progress is a required feature. Initialization or INI files provide an easy way to save and load data.

With INI files you can pretty much save any data, but the main ones you’re most likely to save are these:

•	 Player’s name

•	 Health

•	 Score

•	 Lives

•	 High Score

•	 Distance traveled

•	 Enemies killed

INI files involve two main elements:

[section]

and

key=data

A simple ini file would look like this:

[player]
top_score=100
name="Bob"

You can save this as an INI file (use a text editor and save as savedata.ini) and add it to the included
files on the project tree. You can do this by right-clicking on Included Files and selecting Create Included
File. Note: On most exports it is not required to include an INI as an included file. This is not the case in
HTML5, in which you must include one.

To load data from this file you can use:

ini_open("savedata.ini");
global.top_score=ini_read_real("player","top_score",0);
global.player_name=ini_read_string("player","name","");
ini_close();

Chapter 18 ■ INI FIles

156

What the above code does:
Looks for a file named savedata.ini
Sets the variable global.top_score to the value stored in the INI file. If the file or section and key do

not exist it sets global.top_score to a default value, in this case 0 (the value after the last ,).
Sets the variable global.player_name to the value stored in the INI file. If the file or section and key do

not exist it sets global.player_name to a default value, in this case "" (the value after the last ,).
It then closes the open INI file. When you are done reading / writing with INI files, it’s a good practice to

close it immediately after you’re done.
You can also write variables to an INI file. For example:

ini_open("savedata.ini");
ini_write_real("level_section", "level", global.level);
ini_write_real("distance_section" , "distance", global.distance);
ini_close();

This will store the current values of global.level and global.distance. If the values were 3 and 287,
then the created INI file would look like this:

[level_section]
level=3
[distance_section]
distance=287

ini_read_real() and ini_write_real() work with real numbers.
ini_read_string() and ini_write_string() work with strings.

Chapter 18 ■ INI FIles

157

Worksheet – INI Files
Given the Following INI file, game_data.ini:

[level_info]
current_level=5
enemies_destroyed=2056
[player_info]
player_name=Bob
player_score=12768
player_best_score=17456
player_health=45
player_lives=2
[game_info]
total_games_played=11
total_enemies_destroyed=167328

What code would you use (including opening and closing the INI file) to:
Load player_name, player_score, player_health, player_lives on game start and store each as a

global variable?
At the end of the level add the value of the enemies destroyed in that level to value of total_enemies_

destroyed?
At the end of game, increment the value of total_games_played?
At end of game, if the player’s score is greater than player_best_score, update the value?

Chapter 18 ■ INI FIles

158

Worksheet – INI Files – Answer Sheet
Load player_name, player_score, player_health, player_lives on game start and store each as a
global variable?

ini_open("game_data.ini");
global.player_name = ini_read_string("player_info", "player_name", "");
global.player_health = ini_read_real("player_info", "player_health", 100);
global.player_lives = ini_read_real("player_info", "player_lives", 5);
ini_close();

At the end of the level add the value of the enemies destroyed in that level to value of total_enemies_
destroyed?

ini_open("game_data.ini");
current=ini_read_real("game_info", "total_enemies_destroyed", 0);
to_save=current+total_destroyed;
ini_write_real("game_info", "total_enemies_destroyed", to_save);
ini_close();

At the end of game, increment the value of total_games_played?

ini_open("game_data.ini");
total_played=ini_read_real("game_info", "total_games_played", 0);
total_played+=1;
ini_write_real("game_info", "total_games_played", total_played);
ini_close();

At end of game, if the player’s score is greater than player_best_score, update the value?

ini_open("game_data.ini");
best_score=ini_read_real("player_info", "player_best_score", 0);
if score>best_score
{
 ini_write_real("player_info", "player_best_score", score);
}
ini_close();

Chapter 18 ■ INI FIles

159

Basic Projects
•	 A) Create two rooms, room_splash and room_game. Create an object for room_

splash that loads any data from an INI file to two global variables. If no INI file is
present, set the starting location the value of each to 100. Make this object clickable
to go to room_game. Create a movable object for room_game, which starts in the
position stored in the INI file. Pressing X saves the location to the INI file and restarts
the game.

	 3 Points

•	 B) Create a counter that keeps track of how many keypresses the player makes in
total, and save/load the value of this counter to keep track of presses over multiple
games. Use a splash screen with an object to load from the INI file. Use a separate
object for detecting space presses.

	 3 Points

Advanced Project
•	 C) Create an object that takes in five people’s names, ages, and favorite food. Display

this data on screen. When the game is restarted, and an INI file exists, give the option
to display the current INI file or enter new data. Create a splash and main room as
required. This example should use arrays, which haven’t been taught yet; this project
is for the more adventurous.

	 4 Points

Chapter 18 ■ INI FIles

160

End of Book Game INI files
The game at the end of the book will use INI files to store various game and player stats.

Upon loading, the game will load any saved data (if it exists) or use default values otherwise.
When that player enters the menu screen, all player data will be saved to the INI file.
The INI file will store the variables needed for health, lives, and cash. It will also store the current

unlocked level, total shots taken in game, and how many bullets are left for each weapon.
Think about what would be suitable sections and keys for the INI file to keep the data organized nicely.

161© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_19

CHAPTER 19

Effects

Eye candy is quite important in modern graphical games. Your backgrounds, sprites, and buttons need to be
of high quality in a finished game. You can also create an assortment of graphical effects using the built-in
effects function. The advantage of using effects is they’re easy to program and update if required.

In its most basic form you can create an effect using (“ef” designates effect):

effect_create_above(ef_cloud, 100, 150, 2, c_green);

This would create an effect above the current object. The effect will be a cloud at position x 100 and y
150 in the colour green. The 2 denotes the size of the effect, which is large.

You can also create an effect below the current object using

effect_create_below(type, x, y, size, colour);

You can try out these effects. Create an object, obj_example, and put this in the Step Event:

if (mouse_check_button(mb_left))
{
 effect_create_above(ef_cloud,mouse_x, mouse_y, 2, c_green);
}

Create a room and place one instance of this of object in it. You can test the effect using the left mouse
button.

You can use the following types of effects:

ef_cloud, ef_ellipse, ef_explosion, ef_firework, ef_flare, ef_rain,
ef_ring, ef_smoke, ef_smokeup, ef_snow, ef_spark, ef_star.

You can introduce some randomness into it, for example, change the code to:

if (mouse_check_button_pressed(mb_left))
{
 effect_create_above(ef_firework,mouse_x, mouse_y, 2, choose(c_green,c_red,c_white,c_
yellow));
}

Chapter 19 ■ effeCts

162

Now test again.
Try the following code:

if (mouse_check_button_pressed(mb_left))
{
 effect_create_above(choose(ef_smoke,ef_ring, ef_explosion, ef_firework),mouse_x,
mouse_y, 2, choose(c_green,c_red,c_white,c_yellow));
}

You can also create a mouse trail using effects. Create a new object obj_trail, and put in the following
code in the Step Event:

repeat 2
{
 effect_create_above(ef_star ,mouse_x, mouse_y, 2, choose(c_green,c_red,c_white,c_
yellow));
}

Now test the game again. You will see an effect like that shown in Figure 19-1:

Figure 19-1. Showing effect trail

Chapter 19 ■ effeCts

163

Worksheet – Effects
 A. What would the following code do?

effect_create_above(ef_ring,x, y+40, 2, c_white);

 B. Which effect type would you use to make snow?

 C. Correct the mistakes in the following code:

effect_create_above(ef_smoke, 92, 80, c_blue);
effect_create_below(ef_flare, 80,56, 2, c_yellow, c_green);

 D. If you wanted to create an effect 50 pixels above the current mouse position, what
would be the Y value to create the effect at? Y-50

 E. Why would you use effects instead of a sprite animation? Quicker and easier to
update.

 F. What does the GML effect_clear(); do?

 G. How many effects can be on the screen at once?

 H. Can you create custom colours to use in effects?

Chapter 19 ■ effeCts

164

Worksheet – Effects – Answer Sheet
 A. What would the following code do?

effect_create_above(ef_ring,x, y+40, 2, c_white);

Create a ring 40 pixels below object in white

 B. Which effect type would you use to make snow? ef_snow

 C. Correct the mistakes in the following code:

effect_create_above(ef_smoke, 92, 80, c_blue);

Needs a size defined, like: effect_create_above(ef_smoke, 92, 80, 2,
c_blue);

effect_create_below(ef_flare, 80,56, 2, c_yellow, c_green);
effect_create_below(ef_flare, 80,56, 2, choose(c_yellow, c_green));

 D. If you wanted to create an effect 50 pixels above the current mouse position, what
would be the Y value to create the effect at?

mouse_y-50

 E. Why would you use effects instead of a sprite animation?

Easy to use, takes up less space.

 F. What does the GML effect_clear(); do? Clears / removes any active effects

 G. How many effects can be on the screen at once?

No real limit, though too many will cause the game to slow down.

 H. Can you create custom colours to use in effects?

Yes, just as you’d create any other custom colour.

Chapter 19 ■ effeCts

165

Basic Projects
•	 A) Allow the user to change the weather by pressing W. Change between a snow and

rain effect.

	 2 Points

•	 B) Create a menu button that creates firework effects of different colours in the
middle when pressed with the mouse button.

	 2 Points

Advanced Projects
•	 C) Create a line of effects, 20 pixels apart, which start at the top of the screen and fall

down to the bottom, then start from the top again.

	 3 Points

•	 D) Create an effect that spreads out from a location when the mouse is clicked. Make
the effect move out every 10 degrees from the starting point. Destroy any effects after
3 seconds.

	 3 Points

Chapter 19 ■ effeCts

166

End of Book Game Effects
The game will use a combination of effects to visually show weapons exploding and collisions.

Some effects will happen straight off of a Collision Event, while some will utilize an alarm system to
limit the time between effects.

167© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_20

CHAPTER 20

Loops

A common need in programming is to repeat the same code multiple times. This functionality is available
through using loops. There are four main loop functions in the GameMaker Language: do, while, for, and
repeat. Each of these has its own strengths and weaknesses.

A loop can result in many similar actions being executed in a very short notice.
Note: It is important to make certain that loops run the correct number of times and then stop. It is

possible through a coding mistake to create an infinite loop that runs forever. This will cause the game to
stop working. Care needs to be taken to avoid this from happening.

repeat Loop:
repeat is a very simple control structure, which will repeat an assigned action for a specified number of

times. The following code creates five enemies in a single step, all at random positions in the room.

repeat(5) //Repeat the following code block 5 times
{
 instance_create(irandom(room_width),
 irandom(room_height), obj_enemy);
}

while Loop
The while loop will repeat an action as long as the expression assigned to it is true or until you call a

break. For example the following checks for an empty space randomly, and when it finds a free space the
loop stops.

while (!place_free(x, y))
{
 x = random(room_width);
 y = random(room_height);
}

for Loop:
The for loop will execute different actions, and after each one it will check if its expression is true. If the

expression is not true, the loop will end, and none of the following functions will be executed. Like before,
we’ll use it to create a 50-point array in a matter of milliseconds. In almost all cases, you’d want to use var i
here, as the loop counter generally has no need to be used outside of the block scope.

for(var i=0; i<50; i++)
{
 array[i]=i;
}

Chapter 20 ■ Loops

168

The first statement (i=0) initializes the loop and sets a starting value. After initialization, the loop will
check if i is smaller than 50, and if it is, it will increase the value of i using the i+=1; statement; this can also
be written as i++;. After each step, the array’s length will increase by 1 and add i to that array’s position.

 ■ Note alternatively you can reduce a value by 1 using i--;.

To iterate n times with a for loop:

•	 If you start with i=0, check i<n.

•	 If you start with i=1, check i<=n.

do Loop:
This will repeat until an expression is true. For example, the following will repeat until it finds an empty

position:

do
 {
 x = random(room_width);
 y = random(room_height);
 }
until (place_free(x, y));

Not too hard to understand, right? It can be used in many ways and it’s one of the most practical
functions in the GameMaker Language, so don’t forget about it.

Notes: Some of these functions can loop forever, so be careful how you use them.
The do loop will always execute at least one time, but in for or while, it can be skipped.

Chapter 20 ■ Loops

169

Worksheet – Loops
 A. True or False

Loops are used to perform many tasks in a very short time. T / F

It’s impossible for them to loop forever. T / F

The DO function will loop until its expression is true. T / F

 B. How do we use the DO, FOR, and WHILE loops? Write an example for each:

 C. Write a For loop that initializes a 100-index array, with values 1 through to 100.

 D. You have a 2D array 5 by 5 in size. Write the appropriate code to draw all data
onscreen:

Chapter 20 ■ Loops

170

Worksheet – Loops – Answer Sheet
 A. True or False

-Loops are used to perform many tasks in a very short time. T

-It’s impossible for them to loop forever. F

-The DO function will loop until its expression is true. T

 B. How do we use the DO, FOR, and WHILE loops? Write an example for each:

Any suitable answer is OK here.

 C. Write a WHILE loop that initializes a 100-index array, with values 1 through
to 100.

for(var i=0; i<100; i++)
{
 array[i]=i+1;
}

 D. You have a 2D array 5 by 5 in size. Write the appropriate code to draw all data
onscreen. One suitable approach is this:

var loop1,loop2;
for (loop1 = 0; loop1 < 5; loop1 += 1)
{
 for (loop2 = 0; loop2 < 5; loop2 += 1)
 draw_text(loop1*100,loop2*50,array[loop1,loop2]);

}

Chapter 20 ■ Loops

171

Basic Projects
•	 A) Place an object in a room at a random position. Create another object that finds a

random location within 100 pixels of the first object. Use a while loop for this.

	 2 Points

•	 B) Add 100 random numbers between 1 and 1000 to a ds_list, then sort them into
order, highest value first. Display onscreen in 4 columns of 25. Use for loops for this.

	 2 Points

Advanced Projects
•	 C) Create four random points in the room. Get an object to visit each point in order.

Display a message when all the have been visited.

	 3 Points

•	 D) Store the names of students in your class in an appropriate way. Display names
in alphabetical in order, one at a time on the screen for 5 seconds, with a gap with no
name for 2 seconds.

	 3 Points

Chapter 20 ■ Loops

172

End of Book Game Loops
The game includes two examples of a loop.

A repeat loop used for creating multiple explosions for the nuke when it collides with an asteroid or
enemy ship.

And a for loop for displaying the total number of shots for each weapon and the total of all weapons
combined.

173© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_21

CHAPTER 21

Arrays

Arrays are a useful way of storing data in an organized format. They allow similar information to be stored
together. This allows for easy access, manipulation, and displaying of data.

You can store real numbers, integers, strings; and the indexes of sounds, sprites, and objects in a single
array.

Some use applications for arrays include the following:

•	 Storing weapon information for multiweapon games

•	 Keeping lists of data

•	 Storing data in order created

•	 Storing facts and information

There are both one-dimensional arrays and two-dimensional arrays in GameMaker.
An example of setting a 1D array:

name[0]= "Bob";
name[1]= "Claire";
name[2]= "Steve";
name[3]= "Nigel";
name[4]= "Sue";

A visualization of this would look something like this:

Location

0 Bob

1 Claire

2 Steve

3 Nigel

4 Sue

The following would draw the string stored in the array "name" at index 2, "Steve," at position 100, 100.

draw_text(100, 100, name[2]);

An example of a 2D array, storing name, age, and country of residence.

Chapter 21 ■ arrays

174

//names
info[0, 0]= "Bob";
info[0, 1]= "Claire";
info[0, 2]= "Steve";
info[0, 3]= "Nigel";
info[0, 4]= "Sue";
//ages
info[1, 0]=27;
info[1, 1]=19;
info[1, 2]=52;
info[1, 3]=40;
info[1, 4]=102;
//country
info[2, 0]= "America";
info[2, 1]= "Spain";
info[2, 2]= "Brazil";
info[2, 3]= "Canada";
info[2, 4]= "France";

A visualization of this in table form would look like this:

0 1 2

0 Bob 27 America

1 Claire 19 Spain

2 Steve 52 Brazil

3 Nigel 40 Canada

4 Sue 102 France

So the value at cell [1, 3] would be 40.
You can use and change the values of an array as you would with any variable.
Arrays come into their own when processing data, especially with 2D arrays, as each array entry can be

different lengths. Put the code shown previously into the Create Event of an object.
For loops are great ways to sequentially process data. The example below will repeat i three times and

each time repeat j five times each time for i; this is known as a nested loop. It will then draw the value of the
array cell at that position.

In a Draw Event put:

for (i=0; i < 3; i++)
{
 for (j= 0; j < 5; j++)
 {
 draw_text(i*70, j*80, info[i, j]);
 }
}

This code will draw the values of information onscreen in a table format, as shown in Figure 21-1.

Chapter 21 ■ arrays

175

An example GMZ is available in the resources at: Project Assets & GMZ Files ➤ Assets Used In Main
Chapters ➤ Chapter 21 ➤ examplea

You can add to an array variable just like a regular variable. For example:

info[1, 3]+=1;

Which would increase Nigel's age by 1.
You can compare array values:

if (info[1 ,0]>info[1, 1])
{
 text_to_show=(info[0, 0]+ " is older than "+info[0, 1]);
}

Which sets text_to_show to Bob is older than Claire.
That is all for this example.

Figure 21-1. Showing output of data

http://dx.doi.org/10.1007/978-1-4842-2373-4_21

Chapter 21 ■ arrays

176

An application of this in GameMaker: Studio as an example; arrays are very useful for holding data for
multiple weapons, as shown:

Weapon Name Strength Cost Current Ammo Sound Effect Image Bullet Object

Gun 1 1 200 snd_gun spr_gun obj_bullet_
gun

Machine Gun 5 10 400 snd_mach_
gun

spr_mach_
gun

obj_bullet_
mach_gun

Rocket
Grenade

250 300 8 snd_rocket spr_rocket obj_bullet_
rocket

Nuke 1000 5000 2 snd_nuke spr_nuke obj_bullet_
nuke

You can create a data array for the previous code using:

//declare other variables needed
global.cash=100000;
global.selected_weapon=0;
//declare array
//weapon name
weapon_info[0,0]= "Gun";
weapon_info[0,1]= "Machine Gun";
weapon_info[0,2]= "Rocket Grenade";
weapon_info[0,3]= "Nuke";

//weapon strength
weapon_info[1,0]=1;
weapon_info[1,1]=5;
weapon_info[1,2]=250;
weapon_info[1,3]=1000;

//weapon cost
weapon_info[2,0]=1;
weapon_info[2,1]=10;
weapon_info[2,2]=300;
weapon_info[2,3]=5000;

//weapon ammo
weapon_info[3,0]=200;
weapon_info[3,1]=400;
weapon_info[3,2]=8;
weapon_info[3,3]=2;

Chapter 21 ■ arrays

177

//weapon sound effect
weapon_info[4,0]=snd_gun;
weapon_info[4,1]=snd_mach_gun;
weapon_info[4,2]=snd_rocket;
weapon_info[4,3]=snd_nuke;

//weapon sprite
weapon_info[5,0]=spr_gun;
weapon_info[5,1]=spr_mach_gun;
weapon_info[5,2]=spr_rocket;
weapon_info[5,3]=spr_nuke;

//weapon bullet object
weapon_info[6,0]=obj_bullet_gun;
weapon_info[6,1]=obj_bullet_mach_gun;
weapon_info[6,2]=obj_bullet_rocket;
weapon_info[6,3]=obj_bullet_nuke;

Create an object, obj_example, and place the above code in a Create Event.
The resources needed for this example are in the downloadable resources.
You can set up an easy weapon select system using the following in a Step Event.

if (keyboard_check_pressed (ord('0')))
{
 global.selected_weapon=0;
}
if (keyboard_check_pressed(ord('1')))
{
 global.selected_weapon=1;
}
if (keyboard_check_pressed(ord('2')))
{
 global.selected_weapon=2;
}
if (keyboard_check_pressed(ord('3')))
{
 global.selected_weapon=3;
}

Chapter 21 ■ arrays

178

Then you can do something like the following to fire the gun, also in the Step Event:

if (mouse_check_button_pressed(mb_left)) && weapon_info[3, global.selected_weapon]>=1
{
 audio_play_sound(weapon_info[4, global.selected_weapon], 10, false); //play firing sound
 weapon_info[3, global.selected_weapon]-=1; //reduce ammo
 instance_create(mouse_x, mouse_y, weapon_info[6, global.selected_weapon=0]); //create
bullet
}
x=mouse_x;
y=mouse_y;

In a Draw Event put:

draw_sprite(weapon_info[5,global.selected_weapon],0,x,y);
//draw info
draw_text(10,20, "Strength: " +string(weapon_info[1,global.selected_weapon]));
draw_text(10,40, "Cost: "+ string(weapon_info[2,global.selected_weapon]));
draw_text(10,60, "Current Ammo: " +string(weapon_info[3,global.selected_weapon]));

If you wanted to take this further, then you could add sprites to the bullets and use this as a basis for a
game. For instance if you had a constant, w_strength set to a value of 1, you could replace this code:

draw_text(10,20, "Strength: " +string(weapon_info[1,global.selected_weapon]));

with:

draw_text(10,20, "Strength: " +string(weapon_info[w_strength,global.selected_weapon]));

Which is easier to understand.
Using a macros constant this way keeps the code VERY tidy and makes changing the value later if

required easy, as it only need changed in one place.
An example is available at Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter 21

➤ exampleb

http://dx.doi.org/10.1007/978-1-4842-2373-4_21

Chapter 21 ■ arrays

179

Worksheet – Array
Put the following data into an array, called car_array:

Car Type Miles Seats Colour Image Cost

Rover 52000 5 Red spr_rover 2800

Ford 28000 5 Yellow spr_ford 4200

Bugatti 800 2 Black spr_bugatti 156000

Nissan 14500 4 Blue spr_nissan 1400

Kia 0 6 Silver spr_kia 18995

Mini 126500 4 Green spr_mini 1100

Limousine 3500 8 White spr_limo 36000

Create code to:

 A. Draw all of the values and legends on screen in a grid format, including the sprite
image.

 B. Reduce all costs by 10%.

 C. Add an additional element for damage, and set a value of 1 (low damage) to 10
for each car.

Chapter 21 ■ arrays

180

Worksheet – Array – Answer Sheet
Put the following data into an array, called car_array:

The following will populate the array with initial data:

//Car Names
car_array[0,0]= "Rover";
car_array[0,1]= "Ford";
car_array[0,2]= "Bugatti";
car_array[0,3]= "Nissan";
car_array[0,4]= "Kia";
car_array[0,5]= "Mini";
car_array[0,6]= "Limousine";
//Car Mileage
car_array[1,0]=52000;
car_array[1,1]=28000;
car_array[1,2]=800;
car_array[1,3]=14500;
car_array[1,4]=0;
car_array[1,5]=126500;
car_array[1,6]=3500;
//Car Seats
car_array[2,0]=5;
car_array[2,1]=5;
car_array[2,2]=2;
car_array[2,3]=4;
car_array[2,4]=6;
car_array[2,5]=4;
car_array[2,6]=8;
//Car Colour
car_array[3,0]= "Red";
car_array[3,1]= "Yellow";
car_array[3,2]= "Black";
car_array[3,3]= "Blue";
car_array[3,4]= "Silver";
car_array[3,5]= "Green";
car_array[3,6]= "White";
//Car Image
car_array[4,0]=spr_rover
car_array[4,1]=spr_ford;
car_array[4,2]=spr_bugatti;
car_array[4,3]=spr_nissan;
car_array[4,4]=spr_kia;
car_array[4,5]=spr_mini;
car_array[4,6]=spr_limo;
//Car Cost
car_array[5,0]=2800;
car_array[5,1]=4200;
car_array[5,2]=156000;
car_array[5,3]=1400;
car_array[5,4]=18995;

Chapter 21 ■ arrays

181

car_array[5,5]=1100;
car_array[5,6]=36000;

Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter 21
Create code to:

 A. This is one approach, there are several other valid ways to program this:

var loop;
for (loop = 0; loop < 7; loop += 1)
{
 draw_text(20,70+(loop*50),car_array[0,loop]); //Draw Car Type
 draw_text(120,70+(loop*50),car_array[1,loop]); //Draw Miles
 draw_text(220,70+(loop*50),car_array[2,loop]); //Draw Seats
 draw_text(320,70+(loop*50),car_array[3,loop]); //Draw Car Type
 draw_sprite(car_array[4,loop],0,420,70+(loop*50)); //Draw Sprite
 draw_text(520,70+(loop*50),car_array[5,loop]); //Draw Price
}

draw_text(20,20, "Car Type: "); //Draw Legend
draw_text(120,20, "Miles: "); //Draw Legend
draw_text(220,20, "Seats: "); //Draw Legend
draw_text(320,20, "Colour: "); //Draw Legend
draw_text(420,20, "Image: "); //Draw Legend
draw_text(520,20, "Price: "); //Draw Legend

 B. Reduce all costs by 10%. The following code will do this, when executed once:

//reduce costs by 10%
var loop;
for (loop = 0; loop < 7; loop += 1)
{
 car_array[5,loop]*=0.9;
}

 C. Add an additional element for damage, and set a random value of 1
(low damage) to 10 for each car.

//add damage
var loop;
for (loop = 0; loop < 7; loop += 1)
{
 car_array[6,loop]=irandom_range(1,10); :
}

And update the Draw Event accordingly, by adding the following within the loop of the Draw Event:

draw_text(620,70+(loop*50),car_array[6,loop]);//Draw Damage

And the following below:

draw_text(620,20, "Damage: ");//Draw Legend

An example for this worksheet projects is in the downloadable assets folder:

Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter 21

http://dx.doi.org/10.1007/978-1-4842-2373-4_21
http://dx.doi.org/10.1007/978-1-4842-2373-4_21

Chapter 21 ■ arrays

182

Basic Projects
•	 A) Create a 2D array with data relating to four students in your group. Include

variables name, age, height, eye colour, and favourite food. Display this data
onscreen.

	 2 Points

•	 B) Make a 1D array with the values of 10 types of food. Display one at random each
time the spacebar is pressed.

	 2 Points

Advanced Projects
•	 C) Create and populate a two-dimensional array with the 12 times table. Draw the

contents on the screen.

	 3 Points

•	 D) Create an array to store the starting positions in a game of chess, use letters to
represent each piece, that is, K for King, Q for Queen, N for knight, B for bishop, and
C for castle; all other squares to have a value of 0. Use UPPER CASE for black and
lowercase for white. Represent this board on the screen. Try to use one or more loops
to populate the array. Draw a chessboard with the correct value in the middle of each
square.

	 3 Points

Chapter 21 ■ arrays

183

End of Book Game Arrays
Arrays will be used in the game to store data for the weapons.

An example section for weapon with the index 1 will look like this:

//name of weapon
global.weapon_info[0,1]= "Gun";
//strength of weapon
global.weapon_info[2,1]=1;
//number of bullets
global.weapon_info[3,1]=200;
//sprite of ship when weapon selected
global.weapon_info[4,1]=spr_ship_gun;
//weapon firing sound
global.weapon_info[5,1]=snd_gun;
//weapon explosion sound
global.weapon_info[6,1]=snd_explosion_gun;

In total there will be four types of weapons. By placing the data in an array we can quickly and easily
access any weapon data.

185© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_22

CHAPTER 22

ds_lists

ds Lists (Data Structure) are effectively one-dimensional arrays that allow you to add data sequentially.
However, they are much more flexible than a one-dimensional array, and you can perform lots of cool
functions with them. They are great for the following:

•	 Sorting data alphabetically

•	 An inventory system

•	 Shuffling items

•	 Card games

•	 Music management

•	 Message management

•	 Sort the contents

•	 Delete contents, which will shift the remaining contents

•	 Add content at the start, anywhere in the middle, or at the end, which again can shift
contents

•	 Find where something occurs in the list

 ■ Note ds_lists start with an index of 0, so if you wanted to insert at position 5, the actual index would be 4.

ds_lists are awesome for making an inventory system. You can easily add items and remove them. So
in an RPG type game you may pick up a key, then remove it when you collide with a door.

To start you need to declare a ds_list, for example:

example_list = ds_list_create();

Then add something to the list:

ds_list_add(example_list, "cheese");
ds_list_add(example_list, "bacon");
ds_list_add(example_list, "mushroom");
ds_list_add(example_list, "ham");
ds_list_add(example_list, "tomato");

Chapter 22 ■ ds_lists

186

 ■ Note it’s also possible to add many values within one line of code. For example:

ds_list_add(example_list, "cheese", "bacon", "mushroom, "ham", "tomato");

This would give the following result:

Index value

0 "cheese"

1 "bacon"

2 "mushroom"

3 "ham"

4 "tomato"

You can sort the list:

ds_list_sort(example_list, true);

Where true will be ascending or false for descending. Strings are sorted alphabetically, lowest to
highest for values.

This would then look like:

Index value

0 "bacon"

1 "cheese"

2 "ham"

3 "mushroom"

4 "tomato"

You can remove a value:

ds_list_delete(example_list, 2);

Would remove the value at position 3 (index 2).
The list will then look like:

Index value

0 "bacon"

1 "cheese"

2 "mushroom"

3 "tomato"

You can insert a new value:

ds_list_insert(example_list, 1, "egg");

Chapter 22 ■ ds_lists

187

Would insert "egg" at position 2 (index 1).
The list will then look like:

Index value

0 "bacon"

1 "egg"

2 "cheese"

3 "mushroom"

4 "tomato"

After adding an element you may want to sort your list again.
Other things you may want to do, such as finding where in the list something appears:

position = ds_list_find_index(example_list, "cheese");

You can return a value to a variable, for example, the following, which would set word to "mushroom":

word=ds_list_find_value(example_list, 3);

You may need to find the size of a list, for example:

list_size=ds_list_size(example_list);

 ■ Note the first position is at 0. so if the size is 5, its indexes will be 0,1,2,3,4

Which is great to use before you try and find a value at a position.
You can shuffle (randomize) the values with:

ds_list_shuffle(example_list);

You can also use the accessor | that will allow you treat the ds_list as an array, for example, the
following code would draw the value in index 3 at 100,100 on the screen:

draw_text(100,100,example_list[| 3]);

You can look up how to use:

ds_list_clear()
ds_list_empty()
ds_list_replace()
ds_list_copy()
ds_list_read()
ds_list_write()

When you have finished using a ds_list it's essential to destroy it. This helps prevent memory leaks.
For example:

ds_list_destroy(example_list);

Chapter 22 ■ ds_lists

188

Worksheet – ds_lists
Write the GML code to perform the following:

 A. Add the following values to a ds_list, list_example.

232, 6, 34, 989, 42, 56

 B. What does the list look like?

0

1

2

3

4

5

 C. Sort the values in ascending order; what does it look like now?

 D. Remove value at index 3…what does it look like now?

 E. Add the following values: 12, 388, 191, 17

 F. Sort descending; what does it look like?

 G. What code would you use to find out how many elements are in the ds_list?

 H. What code would you use to remove one index at random?

 I. What code would you use to shuffle the list and find the value of index 0?

Chapter 22 ■ ds_lists

189

Worksheet – ds_lists – Answer Sheet
Write the GML code to perform the following:

 A. Add the following values to a ds_list called list_example

232, 6, 34, 989, 42, 56

 B. What does the list look like?

0 232

1 6

2 34

3 989

4 42

5 56

 C. Sort the values in ascending order; what does it look like now? 6,34,42,56,232,989

 D. Remove value at index 3…what does it look like now? 6,34,42,232,989

 E. Add the following values: 12, 388, 191, 17: Will look like:

6,34,42,232,989,12,388,191,17

 F. Sort descending; what does it look like? 989,388,232,191,42,34,17,12,6

 G. What code would you use to find out how many elements are in the ds_list?

ds_list_size(list_example);

 H. What code would you use to remove one index at random?

ds_list_delete(list_example, irandom(ds_list_size(list_example) – 1));

 I. What code would you use to shuffle the list and find the value of index 0?

ds_list_shuffle(list_example);
example=ds_list_find_value(list_example, 0);

Chapter 22 ■ ds_lists

190

Basic Projects
•	 A) Create an inventory system for five objects. If you add an additional item, add it to

the end of the list, then remove the top item. Draw this onscreen.

	 2 Points

•	 B) Create a ds_list with five fruits. Player enters a fruit; if it matches a value in the
ds_list, remove it, and tell player they made a correct guess. Player wins when all
five fruits are guessed.

	 2 Points

•	 C) Create a list with the names of students in the class. Sort them in ascending order
and draw on the screen.

	 2 Points

Advanced Project
•	 D) Add the names of all playing cards to a list. Shuffle them. Create four new

ds_lists to represent player’s hands. Deal and remove the top card from the main
list and deal to each player until each has five cards. Draw the values of each player's
hand on the screen. Represent value and suit like: AS, 9H, 2D etc.

	 4 Points

Chapter 22 ■ ds_lists

191

End of Book Game ds_list
This game will use a DS list to store and process messages. We can add a message to the list anytime we want
to, then use a control object to process them in the order they arrived.

We can take the message from position 0 and assign it to another variable. We can then delete the
message at position 0 and allow the next one to take its place (if there is another message).

Taking this new variables string we can do what we want with it. In this instance we’ll display it as a
message on the screen in a big font and give the player time to read it. We’ll then remove it, wait a short
amount, and then display the next message if there is one.

193© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_23

CHAPTER 23

Paths

Sometimes you want to have repeated object motion similar to how code is repeated with scripts. Paths are
a useful way to make objects move in a set way. You can create paths using the built-in path editor or using
GML. This section covers both.

You can create a new path by clicking the Create a path button at the top as shown in Figure 23-1.

Figure 23-1. Creating a new path

You can then create the path, and add points by clicking. Figure 23-2 shows a path with four points
added, with Closed and Smooth curve checked. sp means the speed.

Chapter 23 ■ paths

194

If you were to create the same path using GML, you would use the code below:

path_example=path_add();
path_add_point(path_example,10,10,5);
path_add_point(path_example,100,10,5);
path_add_point(path_example,100,100,5);
path_add_point(path_example,10,100,5);

Figure 23-2. Showing an example path closed and smooth curve

Chapter 23 ■ paths

195

This creates the path and stores it in instance scope, not global scope as the path editor would have.
This would create a memory leak if the instance is destroyed later without calling path_delete().

The 5 at the end relates to the objects speed, though this is usually superseded when starting the path.
The above example could be used to make a sentry move around and protect a building.

You can then set whether the path is straight or curved: use 0 for straight, 1 for curved. So in this
example we’ll use:

path_set_kind(path_example, 1);

Then set that the path is closed with:

path_set_closed(path_example, true);

Then start the path with:

path_start(path_example,50, path_action_restart, false);

path_example is the name of the path you created in the editor.
50 relates to the speed.
path_action_restart tells what should happen when the last path location (end) is reached.
The last part can be true or false. false places the path at the absolute position within the room

(i.e., where you defined it in the path editor) and true positions it relative to the instance (i.e., the start
position will be at the current instance x/y position).

There are several end path actions. They are:

Action name Path Action Value What It Does

path_action_stop 0 Stops at the end of the path

path_action_restart 1 Restarts path from first position

path_action_continue 2 Continues the current path

path_action_reverse 3 Reverses along current path

A neat feature that should be pointed out is that using the inbuilt path editor, you can show a room’s
object setup, enabling you to create a path avoiding objects you’ve already placed. To use this feature, click
as shown in Figure 23-3.

Figure 23-3. Showing a room in the path editor

Chapter 23 ■ paths

196

Some other useful functions for dealing with paths include the following:

 ■ Note these should not be used for paths currently being followed.

You can insert a new point in a path using the following, which would add a new point to the path
path_example at position 3 with the X and Y at with a speed of 5:

path_insert_point(path_example,3, 50,50, 5);

You can change a point’s location, or speed using the following, which would change the path’s point at
position 4 to an X and Y of 25 with a speed of 5:

path_change_point(path_example, 4, 25, 25, 5);

You can get the X or Y point of a path’s position using, for example, the following, which give the point of
X location at position 2:

xpoint=path_get_point_x(path_example, 2);

You can set how precise a curved path is using 1(low) to 8(high):

path_set_precision(path_example, 4);

Chapter 23 ■ paths

197

Worksheet – Paths
Correct mistakes in the following:

path_get_point_x(3, path_example);
path_point_insert(path_example,2, 100,45, 15);
path_start(path_example, 5, path_action_restart, 2);
path_example=path_add(new);

True or False:

 1. Paths can be straight lines. T / F

 2. At the end of the path it will automatically start from the beginning again. T / F

 3. You can only add 5 new points to a path. T / F

 4. You can reverse the direction of a path at any time. T / F

 5. You can calculate the X and Y location of the object at any time. T / F

 6. You can calculate the X and Y location of the next point in the path. T / F

 7. You can delete or change any point in a path. T / F

Chapter 23 ■ paths

198

Worksheet – Paths – Answer Sheet
Correct mistakes in the following:

path_get_point_x(3, path_example);
path_get_point_x(path_example,3);
path_point_insert(path_example,2, 100,45, 15); path_insert_point(path_example,2,
100,45, 15);
path_start(path_example, 5, path_action_restart , 2);
path_start(path_example, 5, path_action_restart, true);
path_example=path_add(new);
path_example=path_add();

True or False:

 1. Paths can be straight lines. T

 2. At the end of the path it will automatically start from the beginning again. T

 3. You can only add 5 new points to a path. F

 4. You can reverse the direction of a path at any time. T

 5. You can calculate the X and Y location of the object at any time. T

 6. You can calculate the X and Y location of the next point in the path. T

 7. You can delete or change any Y point in a path. T

Chapter 23 ■ paths

199

Basic Projects
•	 A) Create a path for an object, and make it move in a circle.

1 Point

•	 B) When the player left-clicks the mouse add the location as a new point on the path.
Use project 23 A as a basis.

2 Points

Advanced Projects
•	 C) Make an object point in the direction of movement when following a path. Use

project 23 B as a basis.

3 Points

•	 D) Create a random path of 10 points, and save the points to an INI file.

3 Points

Chapter 23 ■ paths

200

End of Book Game Paths
The game includes two examples of paths.

Paths are used for moving the bonus coin object and the cloud object.

201© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_24

CHAPTER 24

Scripts

Reusable code makes it easy to update program objects at the same time. Additionally, it makes it easier to
organize and understand how code works. GML scripts are useful in processing data, especially if you will be
doing the same calculation again and again. This can include sending data to the script and then returning a
value if required. If you are using the same code twice or more anywhere in your program, then you should
consider using a script. This allows you to make just one change to update your code. Imagine a game that
had over 100 enemy monsters with their own code; changing the code for each would take many hours, and
be prone to errors. Using a script you could do this in a few minutes. It also allows for nice and tidy code.

Also, scripts allow the possibility of sharing code between multiple projects.
Some examples for scripts:

•	 Doing a math calculation and returning the answer, even if only used once; it means
that your code is easier to read through and understand.

•	 Setting a drawing or font type, formatting, and colour – makes code easier to read.

•	 Playing sound effects and voices.

•	 Sending through an object and returning the closest instance.

•	 Drawing text that’s used multiple times.

•	 Recording bullet hits against multiple different objects.

•	 Adding things to a DS list.

•	 Any other GML that’s used more than once.

You can create a new script by clicking the Create a script button at the top of the window in the
location shown in Figure 24-1.

Figure 24-1. Creating a new script

Chapter 24 ■ SCriptS

202

Name the script scr_example. Put in the following code:

///scr_example(value1,value2,value3)
//this script adds 3 numbers
var total=argument0+argument1+argument2;
return total;

Save this by pressing the green tick.
Create an object obj_example.
In its Create Event put (so we don't try and draw a nonexistent variable):

answer=scr_example(12,18,7);

In the Draw Event put:

draw_text(100,100,answer);

This will send the values 12, 18, and 7 to the script. The script will perform its GML and then return the
value of total.

You can return strings, integers, real numbers, Boolean (true or false) and indexes of sounds, objects,
rooms etc.

For example you can send through some objects:
Create a script and name it scr_pos:

/// scr_pos(obj1, obj2)
//compares heights on y axis
if (instance_exists(argument0) && instance_exists(argument1))
{
 if argument0.y < argument1.y
 {
 return true;
 }
}
return false;

This will return true if obj_1 is higher up the room than obj_2, by checking the Y location of each, or
false otherwise.

Note that when you call return you are exiting the script, and no further code will be run from it.
You do not have to return a value, as shown in the following example. Another example, this script will

use views to keep two objects in view, and set the border size. It takes the X and Y locations of two objects
and adjusts the view so that both can be seen at the same time.

scr_view_control(obj1,obj2,border)

var o1,o2,x1,x2,y1,y2,vw,vh,vb,vscale;
o1=argument0; x1=o1.x; y1=o1.y;
o2=argument1; x2=o2.x; y2=o2.y;
vb=argument2; vw=view_wport[0]; vh=view_hport[0];
vscale=max(1,abs(x2-x1)/(vw-(vb*2)),abs(y2-y1)/(vh-(vb*2)));
view_wview[0]=vscale*vw;
view_hview[0]=vscale*vh;
view_xview[0]=(x1+x2-view_wview)/2;
view_yview[0]=(y1+y2-view_hview)/2;

Chapter 24 ■ SCriptS

203

For example scr_view_control(obj_player1, obj_player2, 150);
You can send through positions of an instance or of the mouse, for example, without returning. The

following would draw a laser between two endpoints.
scr_laser(start_x,start_y,end_x,end_y)

draw_set_color(make_color_rgb(irandom(255),irandom(255),irandom(255)));
draw_line_width(argument0, argument1, argument2, argument3, 5);
draw_set_color(c_lime);
draw_line(argument0+1,argument1+1,argument2,argument3);
draw_line(argument0+1,argument1-1,argument2,argument3);
draw_line(argument0-1,argument1+1,argument2,argument3);
draw_line(argument0-1,argument1-1,argument2,argument3);
draw_line(argument0,argument1,argument2,argument3);
effect_create_above(ef_spark, argument2, argument3, 1,
choose(c_red,c_orange));

An example of using this script, which would draw a laser effect from the object to the mouse position:

scr_laser(x, y, mouse_x, mouse_y);

Arguments can be accessed in two ways, for example:

name=argument0;

Or

name=argument[0];

 ■ Note You cannot mix the two argument formats shown above.

Chapter 24 ■ SCriptS

204

Worksheet – Scripts
Describe what each of the following scripts would do:

 1.

number=floor((argument0+argument1+argument2)/3);
return number;

 2.

if argument0 mod 2==0
{
 return true;
}
else
{
 return false;
}

 3.

if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 if global.total<global.max_total
 {
 global.total+=1;
 }
}

Chapter 24 ■ SCriptS

205

Worksheet – Scripts – Answer Sheet
Describe what each of the following scripts would do:

 1. Will add three numbers and return the average

number=floor((argument0+argument1+argument2)/3);
return number;

 2. Will return true if number is even or false if it is odd

if argument0 mod 2==0
{
 return true;
}
else
{
 return false;
}

 3. If mouse is left, button released over object will add 1 to global.total if it is less
than global.max_total

if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 if global.total<global.max_total
 {
 global.total+=1;
 }
}

Chapter 24 ■ SCriptS

206

Basic Projects
Create a script to do each of following, and display any result onscreen visually, as required, remembering to
set up any text drawing.

•	 A) Find the average of five numerical values and round to the nearest whole number.

1 Point

•	 B) Work out if the player is within 200 pixels of an enemy object, and return true or
false.

1 Point

•	 C) Draw given text, in black with a red shadow, at given position.

1 Point

•	 D) Create three different fonts. Create a script that allows you to quickly draw text,
using font, alignment, colour, and position.

1 Points

Advanced Projects
•	 E) Create a script that finds an average point between two objects, and draws a star

effect at that position.

2 Points

•	 F) Create a script that takes and calculates an angle between two objects and draws
that direction as text as the angle were on a compass needle, that is, North or South
West. The direction is that from the first object to the second. North is up.

4 points

Chapter 24 ■ SCriptS

207

End of Book Game Scripts
The game makes use of a lot of scripts. They are used when code is used in more than one place; this makes
code easier to understand and for performing some math calculations.

The scripts used are:

•	 scr_angle_rotate – for rotating player and enemy ships

•	 scr_bullet_hit – reducing asteroid or enemy health when hit by a bullet

•	 scr_buy – buys a bullet in shop if player has enough cash

•	 scr_create_bullet – creating bullet(s) if player has enough

•	 scr_cycle – performing a math calculation

•	 scr_draw_shop – draws data for a weapon in the shop

•	 scr_fading – used for fading a bullet if alarm is reached

•	 scr_locked_or_unlocked – works out if level is unlocked and displays appropriate
sprite

•	 scr_msg – a message to a DS list

•	 scr_play_effect – plays a given sound effect

•	 scr_set_menu_text – sets font drawing properties for menu

•	 scr_shop_set_text – sets font drawing properties for shop

•	 scr_target – works out nearest enemy or asteroid for missile weapon, and for enemy
to find player

•	 scr_voice – plays a voice sound effect

209© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_25

CHAPTER 25

Hints and Tips

Scripts Tricks
When you’ve finished your game, or while making it, you may want to make changes to your code. Here are
some tips for code handling.

You can search in scripts by clicking Scripts ➤ Search in scripts. This is shown below in Figure 25-1.

Figure 25-1. Starting a search in scripts

For example, you could search everything for global.selected_weapon; this search is shown in
Figure 25-2 and the result in Figure 25-3.

Chapter 25 ■ hints and tips

210

Figure 25-2. An example search

Figure 25-3. Showing search results

Chapter 25 ■ hints and tips

211

You can then click on each result to be taken directly to where that search is found.

Testing
When testing, you don’t want to spend hours repeating the same sections of your game to get to the bit you
want to test. For example, if your game had four levels, you wouldn’t want to have to spend time repeatedly
going through levels 1 to 3 just to test the fourth level.

What you can do is create shortcuts in your game to allow you to do things like change the level:
health, lives, etc. Sometimes programmers leave these in the final game – these are known as easter-eggs.
You’ve probably played a console game where you enter a certain button combination used to unlock things;
most of these were put in for the benefit of testers (and sometimes for the player).

An example would be:

if keyboard_check_released(ord('Q'))
{
 global.level+=1;
}
if keyboard_check_released(ord('A'))
{
 global.level-=1;
}

Placed in an object on a level select screen would allow you to change/unlock levels.
You can easily do other key combinations to change other variables as needed.

Assets Handling
It’s important to keep your assets well named and tidy.

You can right-click on a folder or section and select Sort by Name, as shown in Figure 25-4.

Figure 25-4. Sorting assets by name

Chapter 25 ■ hints and tips

212

Alternatively you can click on individual assets and drag them to a new location, as there may be times
where you want assets in a non-alphabetical order.

Similarly, you can Create a Group (a folder) and divide assets into sections; this is a great way to
organize your assets and find them quickly. This is shown in Figure 25-5.

Figure 25-5. Sorting assets into groups

After creating a group, you can click and drag an asset to that group as needed, and sort the contents of
the group.

Chapter 25 ■ hints and tips

213

Projects
The final project combines what you have learned previously. Each is 1 point.

•	 A) Create a background and control object that makes the background change
direction every 5 seconds. Make it move up, down, left, right, and diagonally.

•	 B) Create a movable player object and an enemy object that moves towards the
player every 5 seconds. Only an enemy can wrap around the screen. Make both point
in the direction traveling.

•	 C) Make the enemy shoot in the direction every time it changes direction, in the
direction it’s moving. Player can also shoot in direction that it’s moving, no quicker
than once that every 4 seconds.

•	 D) Create a small health bar above player and enemy objects. Set it so being hit by a
bullet reduces health.

•	 E) Allow player to place a bomb anywhere onscreen using the mouse. Bomb
detonates after 3 seconds. If player or enemy are in range, they lose health.

•	 F) Make it rain if player has more health, snow if the enemy has more.

•	 G) Create visual and audio effects if a bullet hits player or enemy, or when bomb
explodes.

215© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_26

CHAPTER 26

Creating a Game – Outline

First up, note that the process of making a game is never as shown in the following chapters. The purpose
of these chapters is to demonstrate how you can apply what has been learned in the book in the context
of a game. If you were creating a game from scratch, you would generally make some design notes prior to
starting to program. You would then start off with a single object, that is, obj_ship, and build the game up
from there, adding new elements and constantly testing.

We’ll create an arcade style shooting game.
At this point you now should be able to understand what all the GML code in this example game does.

Explanations are still given, so you can understand how the code is combined and actually applied to the
making of the game.

This will also give you extra insight into programming and game implementation that you can apply in
the final book projects.

As before, all assets for this game are in the downloadable resource at:

Project Assets & GMZ Files ➤ Final Game Assets

217© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_27

CHAPTER 27

Creating a Game – Sprites

All assets for the game are included; you just need to load them in, and they are as shown in Figure 27-1:

Figure 27-1. All sprites used in game

Sprites are named as the asset that you’ll be naming them, except for spr_coin and spr_cloud which
make use of an image strip. To create a strip create a new sprite, name it and click edit, followed by File then
Edit, File then Create From Strip, then click the image to load and apply the settings needed.

 ■ Note You can drag these assets into the resource tree from the folder and rename as required.

Chapter 27 ■ Creating a game – SpriteS

218

Figure 27-2. Showing strip settings for spr_coin_strip31

The settings for spr_coin is shown in Figure 27-2:

Chapter 27 ■ Creating a game – SpriteS

219

When saved, by clicking OK, you can click and preview to check it all loaded OK: for example, as shown
in Figure 27-3:

Figure 27-3. Showing sprite with sub images

Chapter 27 ■ Creating a game – SpriteS

220

Figure 27-4. Showing strip settings for spr_cloud

Settings for spr_cloud are shown in Figure 27-4:

Chapter 27 ■ Creating a game – SpriteS

221

The sprite origin is center, unless otherwise indicated.
Once loaded and organized, your resource tree for the sprites will look like Figure 27-5.

Figure 27-5. Showing sprites loaded and organized

223© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_28

CHAPTER 28

Creating a Game – Sounds

Next is to load in the sounds. They are all ready to use from the assets folder. Each file is named the same as
the resource; you just need to load them in. It’s fine to use the default sound settings for each of them. Your
resource folder will appear as shown in Figure 28-1.

Figure 28-1. Showing sound assets folders

 ■ Note You can drag these assets into the resources tree and rename as needed.

Chapter 28 ■ Creating a game – SoundS

224

Once loaded in and organized, you resource tree will look like Figure 28-2.

Figure 28-2. Showing sounds loaded and organized

225© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_29

CHAPTER 29

Creating a Game – Backgrounds

The backgrounds are ready to load, and again have been the same as the assets. Your background folder will
look like the one as shown in Figure 29-1:

Figure 29-2. Showing assets added to game

After loading into the game, the resource tree will be as shown in Figure 29-2.

Figure 29-1. Showing background files in folder

227© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_30

CHAPTER 30

Creating a Game – Paths

The game makes use of two paths: one for the cloud bonus and one for the coin bonus.
Set the paths up as shown in Figure 30-1 and Figure 30-2; you don’t need to be 100% accurate.

Figure 30-1. Showing path path_cloud

Chapter 30 ■ Creating a game – paths

228

Figure 30-2. Showing path_coin_bonus

229© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_31

CHAPTER 31

Creating a Game – Fonts

This game makes use of seven fonts:

font_asteroid_text – Arial size 12

font_lock – Arial size 25

font_menu_stats – Garamond size 22

font_message – Arial size 50

font_mini_message – Arial size 15

font_restart – Arial size 14

font_shop – Arial size 18

Create the fonts as listed above.

231© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_32

CHAPTER 32

Creating a Game – Scripts

This game uses a lot of scripts. The script file is available in the resources at:

Project Assets & GMZ Files ➤ Final Game Assets ➤ Scripts

To add these scripts to your project, just drag the file across to your resource tree, as shown in
Figure 32-1 below:

Figure 32-1. Importing script file

Once added, your resource tree will look like Figure 32-2 on next page.

scr_angle_rotate

//find rotation angle
return argument0 + max(min(scr_cycle(argument1 - argument0, -180, 180), argument2), -argument2);

Chapter 32 ■ Creating a game – SCriptS

232

This script finds the shortest was to rotate to a given angle: for example if it’s at 350’ and the target is at
10’, it will work out that it needs to rotate 20’ clockwise.

scr_bullet_hit

//do if hit by bullet
my_health-=other.strength;
global.hits+=1;
with (other) instance_destroy();

This script reduces the my_health value by the strength of the colliding bullet, makes note of this
increasing global.hits, and then destroys the bullet.

scr_buy

//check if player can buy
if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 if global.cash>=global.weapon_info[2,button_id] //check if enough cash
 {
 global.cash-=global.weapon_info[2,button_id]; //take cash away
 global.weapon_info[3,button_id]+=1; //add ammo
 scr_voice(snd_voice_purchase_complete);
 }
 else scr_voice(snd_voice_not_enough_cash);
}

Figure 32-2. Showing all scripts added

Chapter 32 ■ Creating a game – SCriptS

233

The previous script checks for a mouse button released over itself. It then checks if the player has
enough cash; if it does it takes the cash away, increases the ammo of that bullet, and plays the voice
purchase complete. If there is not enough cash to purchase it, it plays the voice not enough cash.

scr_cycle

// cycle - works with scr_angle_rotate
argument0 = (argument0 - argument1) mod (argument2 - argument1)
if (argument0 < 0) return argument0 + argument2
return argument0 + argument1;

scr_draw_shop

//draw button and text
draw_self();
scr_shop_set_text();
draw_text(50,y, global.weapon_info[0,button_id]); //draw name
draw_text(250,y, global.weapon_info[1,button_id]); //strength
draw_text(350,y, global.weapon_info[2,button_id]); //cost
draw_text(450,y, global.weapon_info[3,button_id]); //current ammo

This script draws a button for the object, sets text to the font for the shop, then draws the values of the
weapon in a line, with the y relative to where the button has been placed.

scr_fading

//reduce alpha when not live
if (!live) image_alpha-=0.05;
if image_alpha<0 instance_destroy();

If live has been set to false (after an alarm has triggered), it will fade the object by 0.05 per step and then
destroy it when alpha is below 0.

scr_locked_or_unlocked

///Check If Unlocked - Goto Shop If OK
if global.level>=my_id
{
 locked=false;
}
else
{
 locked=true;
}
if locked
{
 image_index=0;
}
else
{
 image_index=1;
}

Chapter 32 ■ Creating a game – SCriptS

234

if (!locked && position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 global.my_level=my_id;
 room_goto(room_shop);
}

Displays locked or unlocked image depending on current level. If unlocked, player can click it to start level.

scr_msg

//add message to a ds list
ds_list_add(global.message,argument0);

Cues up a message to be used by the message object.

scr_play_effect

//plays a sound effect
audio_play_sound(argument0,2,0);

This script plays a given sound effect.

scr_set_menu_text

//this script sets drawing font, alignment and colour
draw_set_font(font_shop);
draw_set_colour(c_white);
draw_set_halign(fa_left);
draw_set_valign(fa_middle);

The above script sets the drawing text style. Although a script isn’t really required, it does make the code
in the calling object a bit tidier.

scr_shop_set_text

//this script sets drawing font, alignment and colour
draw_set_font(font_shop);
draw_set_colour(c_red);
draw_set_halign(fa_left);
draw_set_valign(fa_middle);

Used to set drawing text style. Used to make calling object code tidier.

scr_spawn

var asteroid=instance_create(argument0,argument1,argument2);
asteroid.my_health=argument3;
asteroid.my_starting_health=argument4;
i=irandom_range(argument5,argument6);
asteroid.rotate=choose(i,-i);
asteroid.direction=argument7;
asteroid.speed=irandom_range(argument8,argument9);

Chapter 32 ■ Creating a game – SCriptS

235

The previous script spawns asteroids with the give attributes.

scr_target

//Find a nearest object
return instance_nearest(argument0,argument1,argument2);

Although only one line, it’s used a few times, so it justifies having a script.

scr_voice

//play a voice sound effect]
audio_play_sound(argument0,1,0);

Used to play a voice sound effect. Voices are used a lot, and this script makes the calling object’s code
easier to read.

237© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_33

CHAPTER 33

Creating a Game – Parent Objects

Figure 33-1. Assigning a parent object

In order to allow you to create the objects in a progressive, organized manner, first we’re going to create
objects that are used as parent objects.

You assign parents from other objects. Put basically, a child object will perform events implemented by
its parent, except those that have been explicitly specified in the child.

For example, assigning obj_lock_parent as a parent of obj_button_1, as shown in Figure 33-1:

Chapter 33 ■ Creating a game – parent ObjeCts

238

The following objects are parent objects:

obj_bullet_parent
obj_asteroid_parent
obj_lock_parent
obj_shop_button_parent

The information for each of these objects is in the resource folder:

Project Assets & GMZ Files ➤ Final Game Assets ➤ Parent Objects

Each file can opened in a text editor such as Notepad.
You can then use the information to create the object.
Start with obj_bullet_parent.
The contents of this file looks like this:

Information about object: obj_bullet_parent
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:

Children
obj_double_gun_bullet
obj_gun_bullet
obj_missile_bullet
obj_nuke_bullet

Mask:

No Physics Object

Alarm Event for alarm 0:

execute code:

///Alarm trigger - start fading
live=false;

Step Event:

execute code:

///Create fading if enabled
scr_fading();

wrap in both directions when an instance moves outside the room

Chapter 33 ■ Creating a game – parent ObjeCts

239

The header tells you basic info:

Information about object: obj_bullet_parent
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent:

The object name is: obj_bullet_parent, it has no sprite, isn’t set to solid and has a depth of 0 and is
not persistent.

This provides all information required to re-create this object. For example, this part:
Alarm Event for alarm 0:

execute code:

///Alarm trigger - start fading
live=false;

Tells you to create an Alarm[0] Event with the code:

///Alarm trigger - start fading
live=false;

The following tells you it has a Step Event that calls scr_fading(); :
Step Event:

execute code:

///Create fading if enabled
scr_fading();

This part:

wrap in both directions when an instance moves outside the room

Indicates that a D&D action has been used, in this case the Wrap Room In Both Direction, which can
be found in the Move Tab. This is in the Step Event.

Complete for the remaining objects in this resource folder.
The rest of the information for the other parent objects is below.

obj_asteroid_parent
Information about object: obj_asteroid_parent
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:

Chapter 33 ■ Creating a game – parent ObjeCts

240

Children
obj_asteroid_big
obj_asteroid_medium
obj_asteroid_small
obj_enemy

Mask:

No Physics Object

Collision Event with object obj_bullet_parent:

execute code:

scr_bullet_hit();

Draw Event:

execute code:

///draw self and a healthbar

draw_self();
if health>0
{
 draw_set_colour(c_blue);
 draw_rectangle(x-50,y-50,x+50,y-40,0)
 draw_set_colour(c_red);
 draw_rectangle(x-50,y-50,x-50+((100/my_starting_health)*my_health),y-40,0);
 draw_set_colour(c_black);
 draw_rectangle(x-50,y-50,x+50,y-40,1)
}

obj_lock_parent
Information about object: obj_lock_parent
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:

Children
obj_button_1
obj_button_2
obj_button_3
obj_button_4

Mask:

No Physics Object

Chapter 33 ■ Creating a game – parent ObjeCts

241

Step Event:

execute code:

///Check If Unlocked - Goto Shop If OK
if global.level>=my_id
{
 locked=false;
}
else
{
 locked=true;
}
if locked
{
 image_index=0;
}
else
{
 image_index=1
}
if (!locked && position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 //level check
 if global.level=my_id
 {
 global.current=true;
 }
 else
 {
 global.current=false;
 }
 global.my_level=my_id;
 room_goto(room_shop);
}

Draw Event:

execute code:

///Draw Locked / Unlocked & ID
draw_self();
draw_set_font(font_lock);
draw_set_valign(fa_middle);
draw_set_halign(fa_center);
draw_set_colour(c_black); //These two lines create
draw_text(x-1,y-1,my_id); //a shadow effect
draw_set_colour(c_white);
draw_text(x,y,my_id); //Draw Over Black Text

Chapter 33 ■ Creating a game – parent ObjeCts

242

obj_shop_button_parent
Information about object: obj_shop_button_parent
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:

Children
obj_shop_button_1
obj_shop_button_2
obj_shop_button_3
obj_shop_button_4

Mask:

No Physics Object

Step Event:

execute code:

/// Buy If Enough && voices
scr_buy(button_id);

Draw Event:

execute code:

//Draw Button & Data
scr_draw_shop();
draw_self();

243© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_34

CHAPTER 34

Creating a Game – Objects

As before, the text files for these objects are available in the resources, at: Project Assets & GMZ Files ➤
Final Game Assets ➤ Object

In the object information below, where this is more than one execute code: within an event, each is a
separate code block.

Next repeat the process with the remaining object; the suggested order is below:

obj_asteroid_big

Information about object: obj_asteroid_big
Sprite: spr_asteroid_big
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_asteroid_parent
Children:
Mask:
No Physics Object

Step Event:

execute code:

///Rotate & Health Check
image_angle+=rotate;

if my_health<1
{
 scr_msg("Large##Asteroid##Destroyed");
 //Add cash
 global.cash+=my_starting_health;
 //create a medium first

 scr_spawn(x,y,obj_asteroid_medium,my_starting_health/2,my_starting_health/2,rotate*-
1,rotate*-1,direction-30,speed,speed);

 scr_spawn(x,y,obj_asteroid_medium,my_starting_health/2,my_starting_health/2,rotate*-
1,rotate*-1,direction+30,speed,speed);

Chapter 34 ■ Creating a game – ObjeCts

244

 //create enemy
 enemy=instance_create(x,y,obj_enemy);
 enemy.my_health=20*global.level*global.level;
 enemy.my_starting_health=20*global.level*global.level;

 instance_destroy();
}

wrap in both directions when an instance moves outside the room

obj_asteroid_medium

Information about object: obj_asteroid_medium
Sprite: spr_asteroid_medium
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_asteroid_parent
Children:
Mask:
No Physics Object

Step Event:

execute code:

///Rotate & Health Check
image_angle+=rotate

if my_health<1
{
 //Add cash
 global.cash+=my_starting_health;
 scr_spawn(x,y,obj_asteroid_small,my_starting_health/2,my_starting_health/2,rotate*-

1,rotate*-1,direction-50,speed*1.5,speed*1.5);
 scr_spawn(x,y,obj_asteroid_small,my_starting_health/2,my_starting_health/2,rotate*-

1,rotate*-1,direction+50,speed*1.5,speed*1.5);
 scr_spawn(x,y,obj_asteroid_small,my_starting_health/2,my_starting_health/2,rotate*-

1,rotate*-1,direction-180,speed*1.5,speed*1.5);

 instance_destroy();
}

wrap in both directions when an instance moves outside the room

obj_asteroid_small

Information about object: obj_asteroid_small
Sprite: spr_asteroid_small
Solid: false

Chapter 34 ■ Creating a game – ObjeCts

245

Visible: true
Depth: 0
Persistent: false
Parent: obj_asteroid_parent
Children:
Mask:
No Physics Object

Step Event:

execute code:

///Rotate & Health Check
image_angle+=rotate;

if my_health<1
{
 global.cash+=my_starting_health;
 instance_destroy();
}

wrap in both directions when an instance moves outside the room

obj_cloud

Information about object: obj_cloud
Sprite: spr_cloud
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set image and start path & play voice
image_index=0;
image_speed=0;
y=irandom_range(100,700);
path_start(path_cloud,irandom_range(2,10),path_action_continue,false);
scr_voice(snd_voice_weather_warning);

Chapter 34 ■ Creating a game – ObjeCts

246

Alarm Event for alarm 0:

execute code:

instance_destroy();

Collision Event with object obj_bullet_parent:

execute code:

///Change Image When Hit By Bullet
if image_index==0
{
 global.cash+=1000;
 image_index=1;
}
alarm[0]=room_speed*3;

obj_coin

Information about object: obj_coin
Sprite: spr_coin
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Create Event:

execute code:

///start path & play voice
y=irandom_range(200,600);
path_start(path_coin_bonus, 5, path_action_continue, false);
scr_voice(snd_voice_bonus);

Collision Event with object obj_ship:

execute code:

///Increase Cash & Destroy
global.cash+=10000;
scr_voice(snd_voice_cash_boost);
scr_msg("Bonus Cash");
effect_create_above(ef_star,x,y,2,c_orange);
instance_destroy();

Chapter 34 ■ Creating a game – ObjeCts

247

obj_double_gun_bullet

Information about object: obj_double_gun_bullet
Sprite: spr_double_gun_bullet
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_bullet_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set up
live=true;
alarm[0]=room_speed;
strength=global.weapon_info[1,2];
global.weapon_info[6,2]+=1;

Collision Event with object obj_asteroid_parent:

execute code:

///explosion and sound effect
scr_play_effect(snd_explosion_double_gun);
effect_create_above(ef_explosion,x,y,5,c_orange);

obj_gun_bullet

Information about object: obj_gun_bullet
Sprite: spr_gun_bullet
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_bullet_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set up
live=true;
alarm[0]=room_speed;
strength=global.weapon_info[1,1];
global.weapon_info[6,1]+=1;

Chapter 34 ■ Creating a game – ObjeCts

248

Collision Event with object obj_asteroid_parent:

execute code:

///explosion and sound effect
scr_play_effect(snd_explosion_gun);
effect_create_above(ef_explosion,x,y,2,c_red);

obj_missile_bullet

Information about object: obj_missile_bullet
Sprite: spr_missile_bullet
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_bullet_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set Up
live=true;
active=true;
alarm[0]=room_speed*5;
strength=global.weapon_info[1,3];
global.weapon_info[6,3]+=1;

execute code:

///Find a Target
if instance_exists(obj_asteroid_parent)
{
 target=scr_target(x,y,obj_asteroid_parent);
}

Step Event:

execute code:

///Look For Target - if destroyed find another
if instance_exists(target) && instance_exists(obj_asteroid_parent)
{
 target=scr_target(x,y,obj_asteroid_parent);
}
else//if no target available (ie all asteroids destroyed)

Chapter 34 ■ Creating a game – ObjeCts

249

{
 active=false;
}

execute code:

///Set Moving Direction Angle

if active
{
 tx = target.x;
 ty = target.y;
 direction = scr_angle_rotate(direction, point_direction(x, y, tx, ty), 5);
 image_angle = direction;
}
execute code:

///Create Fading if enabled
scr_fading();

Collision Event with object obj_asteroid_parent:

execute code:

///Explosion Sound and Effects
scr_play_effect(snd_explosion_missile);
effect_create_above(ef_explosion,x,y,2,c_white);

obj_nuke_bullet

Information about object: obj_nuke_bullet
Sprite: spr_nuke_bullet
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_bullet_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set up
live=true;
alarm[0]=room_speed;
strength=global.weapon_info[1,4];
global.weapon_info[6,4]+=1;

Chapter 34 ■ Creating a game – ObjeCts

250

Collision Event with object obj_asteroid_parent:

execute code:

///explosion sound and effects
scr_play_effect(snd_explosion_nuke);
repeat 20
{
 effect_create_above(ef_explosion,x+50-irandom(100),y+50-irandom(100),2,c_red);
}

obj_level_control_and_hud

Information about object: obj_level_control_and_hud
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set Background

if global.my_level==1 background_index[0]=bg_level_1;
if global.my_level==2 background_index[0]=bg_level_2;
if global.my_level==3 background_index[0]=bg_level_3;
if global.my_level==4 background_index[0]=bg_level_4;

execute code:

///Create Ship & Set Variables
instance_create(400,400,obj_ship);
//create message system
instance_create(10,10,obj_message);
//Show some user messages:
scr_msg("Get Ready");
scr_msg("Move With#Arrow Keys");
scr_msg("Fire With#Z");
scr_msg("Select Weapon#With# 1 2 3 4");
//set other variables
low_health=false;
//start timer
timer=0;
alarm[1]=room_speed;
//set flag for low health warning
health_alarm=false;

Chapter 34 ■ Creating a game – ObjeCts

251

execute code:

/// Play Voice

if global.my_level==1 scr_voice(snd_voice_level_1);
if global.my_level==2 scr_voice(snd_voice_level_2);
if global.my_level==3 scr_voice(snd_voice_level_3);
if global.my_level==4 scr_voice(snd_voice_level_4);

execute code:

///Set Count to 0
count=0;
execute code:

/// Spawn Asteroids
//scr_spawn = Create an asteroid, x,y,asteroid,my_health,my_starting_health,min rotate, max
rotate,
//direction,speed min, speed max
//level 1 Spawn
if global.my_level==1
{
 //asteroid no 1
 scr_spawn(200,200,obj_asteroid_big,20,20,1,6,25,2,5);

 //asteroid no 2
 scr_spawn(600,600,obj_asteroid_big,20,20,1,6,180,2,5);

 //asteroid no 3
 scr_spawn(800,200,obj_asteroid_big,20,20,1,6,230,2,5);
}

//level 2 Spawn
if global.my_level==2
{
 //asteroid no 1
 scr_spawn(200,200,obj_asteroid_big,200,290,1,6,75,2,5);

 //asteroid no 2
 scr_spawn(600,600,obj_asteroid_big,200,200,1,6,300,2,5);

 //asteroid no 3
 scr_spawn(800,200,obj_asteroid_big,200,200,1,6,45,2,5);

 //asteroid no 4
 scr_spawn(800,200,obj_asteroid_big,200,200,1,6,130,2,5);
}

//level 3 Spawn
if global.my_level==3
{

Chapter 34 ■ Creating a game – ObjeCts

252

 //asteroid no 1
 scr_spawn(200,200,obj_asteroid_big,200,290,1,6,75,2,5);

 //asteroid no 2
 scr_spawn(100,500,obj_asteroid_big,2000,2000,1,6,300,2,5);

 //asteroid no 3
 scr_spawn(800,200,obj_asteroid_big,2000,2000,1,6,45,2,5);

 //asteroid no 4
 scr_spawn(800,200,obj_asteroid_big,2000,2000,1,6,130,2,5);

 //asteroid no 5
 scr_spawn(800,200,obj_asteroid_small,2000,2000,1,6,130,2,5);

 //asteroid no 6
 scr_spawn(0,0,obj_asteroid_small,2000,2000,1,6,130,2,5);
}

//level 4 Spawn
if global.my_level==4
{
 //asteroid no 1
 scr_spawn(200,200,obj_asteroid_big,8000,8000,1,6,75,2,5);

 //asteroid no 2
 scr_spawn(100,500,obj_asteroid_big,2000,2000,1,6,300,2,5);

 //asteroid no 3
 scr_spawn(800,200,obj_asteroid_big,6000,6000,1,6,45,2,5);

 //asteroid no 4
 scr_spawn(800,200,obj_asteroid_big,20000,20000,1,6,130,2,5);

 //asteroid no 5
 scr_spawn(800,200,obj_asteroid_small,2000,2000,1,6,130,2,5);

 //asteroid no 6
 scr_spawn(0,0,obj_asteroid_small,4000,4000,1,6,130,2,5);
}

Alarm Event for alarm 0:

execute code:

///Alarm for Health warning
alarm[0]=room_speed*4; // set alarm at 4 seconds
scr_voice(snd_voice_low_health);
scr_msg("Low#Health");

Chapter 34 ■ Creating a game – ObjeCts

253

Alarm Event for alarm 1:

execute code:

///Increase & Reset Timer
timer+=1;
alarm[1]=5;

Step Event:

execute code:

///Monitor Player
if health<=0
{
 health=100;
 lives-=1;
 scr_voice(snd_voice_you_are_dead);
 health_alarm=false;
 alarm[0]=-1;
}
if lives<0 room_goto(room_game_over);
//count shots of all weapons
global.total_shots=global.weapon_info[6,1]+global.weapon_info[6,2]+global.weapon_
info[6,3]+global.weapon_info[6,4];
if !object_exists(obj_asteroid_parent)
{
 global.level+=global.level;
 room_goto(room_menu);
}

//check if low health, if it is play warning and set a new alarm

if (health<25) && (!health_alarm=false)
{
 health_alarm=true;
 alarm[0]=1;
}
execute code:

///Timer Events
if timer==5
{
 // prevent activating twice
 timer+=1;
 //perform action
 instance_create(0,0,obj_cloud);
}

Chapter 34 ■ Creating a game – ObjeCts

254

if timer==10
{
 // prevent activating twice
 timer+=1;
 //perform action
 instance_create(0,0,obj_coin);
}
if timer==100
{
 // prevent activating twice
 timer+=1;
 //perform action
 instance_create(0,0,obj_coin);
}
if timer==200
{
 // prevent activating twice
 timer+=1;
 //perform action
 instance_create(0,0,obj_cloud);
}

if timer==500 timer=0;
execute code:

///Instance Count
count=instance_number(obj_asteroid_parent);

execute code:

///Check If Level Complete
if (instance_number(obj_asteroid_parent) == 0)
{
 if global.current==true global.level+=1;
 room_goto(room_menu);
}

Draw GUI Event:

execute code:

///Draw Hud

scr_shop_set_text();//draw HUD background
//top bar
draw_set_colour(c_blue);
draw_rectangle(0,0,800,90,0);
//border
draw_rectangle(1,1,799,799,1);

Chapter 34 ■ Creating a game – ObjeCts

255

//draw weapon and ammo info
draw_set_font(font_shop);
draw_set_colour(c_white);
draw_text(10,40,"Type: "+global.weapon_info[0,global.selected_weapon]);
draw_text(320,40,"Ammo: "+string(global.weapon_info[3,global.selected_weapon]));
draw_text(10,70,"Stength: "+string(global.weapon_info[1,global.selected_weapon]));
draw_text(160,70,"Fired: "+string(global.weapon_info[6,global.selected_weapon]));
draw_text(300,70 ,"Fired All: "+string(global.total_shots));
draw_text(450,70 ,"Total Hits: "+string(global.hits));
draw_text(620,70 ,"Cash: "+string(global.cash));

draw the lives at (500,40) with sprite spr_lives
draw the health bar with size (2,2,798,28) with back color blue and bar color green to red
execute code:

///Draw Radar
draw_set_alpha(0.2);
draw_circle(75,500,75,0);
draw_set_alpha(1);
draw_set_colour(c_green);
draw_circle(75,500,75,1);
draw_circle(75,500,10,1);
draw_line(75,425,75,575);
draw_line(0,500,150,500);

//set internal radar coords to Ship.x and Ship.y
if (!instance_exists(obj_ship))
{
 exit;
}

var d,a,radarX,radarY;

radarX = obj_ship.x;
radarY = obj_ship.y;

with(obj_asteroid_parent)
{
 //how far
 d = point_distance(radarX,radarY,x,y);
 //in range
 if(d < 800 && d > 600) // This will set the blips to the outside edge, creating a

lingering effect
 {
 //convert radar range to radar display radius
 d = 75;
 //angle to target
 a = point_direction(radarX,radarY,x,y)
 //draw relative to center of radar using simplified lengthdir function
 draw_sprite(spr_blip, 0, 75 + lengthdir_x(d,a), 700 + lengthdir_y(d,a));
 }

Chapter 34 ■ Creating a game – ObjeCts

256

 else if(d <= 600) // This is the standard distance conversion on the radar screen.
 {
 d = d/600*75;
 a = point_direction(radarX,radarY,x,y)
 draw_sprite(spr_blip, 0, 75 + lengthdir_x(d,a), 500 + lengthdir_y(d,a));
 }
}

For reference, Figure 34-1 shows how the Draw Life as Images D&D looks:

Figure 34-1. Showing draw lives as image

Chapter 34 ■ Creating a game – ObjeCts

257

Figure 34-2 below shows how the Draw Health Bar D&D will look:

Figure 34-2. Drawing health bar D&D

obj_ship

Information about object: obj_ship
Sprite: spr_ship_gun
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set Variables
can_be_hit=true;
can_shoot=true;
low_ammo=false;

Chapter 34 ■ Creating a game – ObjeCts

258

ship_speed=0;
direction=0;
rotation=0;
turning_speed=2;
acc_speed=0.3;
max_speed=7;
friction=0.1;
slowing_speed=0.1;

Alarm Event for alarm 0:

execute code:

///Set Shooting to True
can_shoot=true;

Alarm Event for alarm 1:

execute code:

///Can Be Hit (can lose health)
can_be_hit=true;

execute code:

//Low Ammo Set
low_ammo=false;

Step Event:

execute code:

///Weapon Keyboard Control

//change weapon / ship type
if keyboard_check_pressed(ord('1'))
{
 global.selected_weapon=1;
 scr_voice(snd_voice_weapon_selected);
}
if keyboard_check_pressed(ord('2'))
{
 global.selected_weapon=2;
 scr_voice(snd_voice_weapon_selected);
}
if keyboard_check_pressed(ord('3'))
{
 global.selected_weapon=3;
 scr_voice(snd_voice_weapon_selected);
}

Chapter 34 ■ Creating a game – ObjeCts

259

if keyboard_check_pressed(ord('4'))
{
 global.selected_weapon=4;
 scr_voice(snd_voice_weapon_selected);
}

execute code:

///Spawn Bullets
if (global.weapon_info[3,global.selected_weapon]==0 && keyboard_check(ord('Z')) && can_
shoot)
{
scr_voice(choose(snd_voice_weapon_empty,snd_voice_no_ammo,snd_voice_number_keys_to_select_
weapons));
 can_shoot=false;
 alarm[0]=room_speed; // Stops constant playing on keypress
}
//create weapon 1 bullet
if (keyboard_check(ord('Z')) && global.selected_weapon==1 && global.weapon_info[3,global.
selected_weapon]>0 && can_shoot)

{
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_gun_bullet);
 bullet_id.direction = image_angle;
 bullet_id.speed = 6+speed;
 global.weapon_info[3,global.selected_weapon]-=1;
 alarm[0]=global.selected_weapon*8;
 can_shoot=false;
 scr_play_effect(global.weapon_info[5,global.selected_weapon]);

}

//create weapon 2 bullets
if (keyboard_check(ord('Z')) && global.selected_weapon==2 && global.weapon_info[3,global.
selected_weapon]>0 && can_shoot)

{
 //This Weapon Only Has Two Bullets
 //one
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_double_gun_bullet);
 bullet_id.direction = image_angle-12;
 bullet_id.speed = 8+speed;

 //two
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_double_gun_bullet);
 bullet_id.direction = image_angle+12;
 bullet_id.speed = 8+speed;

Chapter 34 ■ Creating a game – ObjeCts

260

 global.weapon_info[3,global.selected_weapon]-=2;
 alarm[0]=global.selected_weapon*8;
 can_shoot=false;
 scr_play_effect(global.weapon_info[5,global.selected_weapon]);
}

//create weapon 3 bullet
if (keyboard_check(ord('Z')) && global.selected_weapon==3 && global.weapon_info[3,global.
selected_weapon]>0 && can_shoot)

{
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_missile_bullet);
 bullet_id.direction = image_angle;
 bullet_id.speed = 5+speed;
 global.weapon_info[3,global.selected_weapon]-=1;
 alarm[0]=global.selected_weapon*4;
 can_shoot=false;
 scr_play_effect(global.weapon_info[5,global.selected_weapon]);

}

//create weapon 4 bullet
if (keyboard_check(ord('Z')) && global.selected_weapon==4 && global.weapon_info[3,global.
selected_weapon]>0 && can_shoot)

{
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_nuke_bullet);
 bullet_id.direction = image_angle;
 bullet_id.speed = 10+speed;
 global.weapon_info[3,global.selected_weapon]-=1;
 alarm[0]=global.selected_weapon*4;
 can_shoot=false;
 scr_play_effect(global.weapon_info[5,global.selected_weapon]);

}

execute code:

///Movement Code
if (image_angle > 360) image_angle -= 360;
if (image_angle < 0) image_angle += 360;
if keyboard_check(vk_up)
{
 if ship_speed<max_speed
 {
 ship_speed=ship_speed+acc_speed+(ship_speed/6);
 }
}

Chapter 34 ■ Creating a game – ObjeCts

261

if keyboard_check(vk_down)
{
 if ship_speed>0
 {
 ship_speed-=.5;
 }
 else if ship_speed>-3
 {
 ship_speed-=.05;
 }
}
if ! keyboard_check(vk_down) && ! keyboard_check(vk_up)
{
 if ship_speed<-.5
 {
 ship_speed+=.5;
 }
 else if ship_speed>.5
 {
 ship_speed-=.2;
 }
 else ship_speed=0;
}
if keyboard_check(vk_right)
{
 if rotation>-40
 {
 rotation-=turning_speed;
 }
}
if keyboard_check(vk_left)
{
 if rotation<40
 {
 rotation+=turning_speed;
 }
}
if ! keyboard_check(vk_left) && ! keyboard_check(vk_right)
{
 if rotation<-5
 {
 rotation+=5;
 }
 else if rotation>5
 {
 rotation-=5;
 }
 else rotation=0;
}

Chapter 34 ■ Creating a game – ObjeCts

262

if ship_speed>0
{
 image_angle+=ship_speed/30*rotation;
}
else
if ship_speed<0
{
 image_angle+=ship_speed/20*rotation;
}
if image_angle>360
{
 image_angle-=360;
}
if image_angle<0
{
 image_angle+=360;
}
friction=speed/10;
motion_add(image_angle,ship_speed/6);

execute code:

///Low Ammo Warning

if (global.weapon_info[3,global.selected_weapon]<5 &&global.weapon_info[3,global.selected_
weapon]>0 && !low_ammo)
{
 low_ammo=true;
 alarm[2]=room_speed*3;
 scr_voice(snd_voice_low_ammo);
}
execute code:

///Testing
//////////////////////////////testing buttons
//for testing reset to middle
if keyboard_check(ord('R')) {room_restart();}
if keyboard_check(ord('A')) {health-=1;}
if keyboard_check(ord('S')) {health+=1;}
//////////////////////////////testing buttons
wrap in both directions when an instance moves outside the room

Collision Event with object obj_asteroid_parent:

execute code:

///If Can Be Hit is true lose health and reset alarm[1]
if can_be_hit
{
 health-=global.level*2;
 can_be_hit=false;

Chapter 34 ■ Creating a game – ObjeCts

263

 alarm[1]=room_speed;
 scr_voice(choose(snd_voice_im_bleeding,snd_voice_ouch,snd_voice_ow,snd_voice_thats_got_

to_hurt));
 effect_create_above(ef_firework,x,y,2,c_red);
}

Collision Event with object obj_enemy_bullet:

execute code:

///Hit by Bullet
health-=global.level*2;
scr_voice(choose(snd_voice_im_bleeding,snd_voice_ouch,snd_voice_ow,snd_voice_thats_got_to_
hurt))
effect_create_above(ef_firework,x,y,3,c_red);
with (other) instance_destroy();

Draw Event:

execute code:

///Draw Selected Ship
draw_sprite_ext(global.weapon_info[4,global.selected_weapon],0,x,y,1,1,image_angle,c_
white,1);

obj_button_1

Information about object: obj_button_1
Sprite: spr_locked_or_not
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_lock_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

//Set a button ID
my_id=1;

obj_button_2

Information about object: obj_button_2
Sprite: spr_locked_or_not
Solid: false
Visible: true

Chapter 34 ■ Creating a game – ObjeCts

264

Depth: 0
Persistent: false
Parent: obj_lock_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

//Set a button ID
my_id=2;

obj_button_3

Information about object: obj_button_3
Sprite: spr_locked_or_not
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_lock_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

//Set a button ID
my_id=3;

obj_button_4

Information about object: obj_button_4
Sprite: spr_locked_or_not
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_lock_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

//Set a button ID
my_id=4;

Chapter 34 ■ Creating a game – ObjeCts

265

obj_menu_control

Information about object: obj_menu_control
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Save to INI Save File
save=ini_open("save.ini");
ini_write_real("main", "cash", global.cash);
ini_write_real("main", "health", health);
ini_write_real("main", "lives", lives);
ini_write_real("main", "hits", global.hits);
ini_write_real("main", "shots", global.shots);
ini_write_real("main", "level", global.level);

//weapon 1
ini_write_real("weapon1", "bullets", global.weapon_info[3,1]);
ini_write_real("weapon1", "shots", global.weapon_info[6,1]);

//weapon 2
ini_write_real("weapon2", "bullets", global.weapon_info[3,2]);
ini_write_real("weapon2", "shots", global.weapon_info[6,2]);

//weapon 3
ini_write_real("weapon3", "bullets", global.weapon_info[3,3]);
ini_write_real("weapon3", "shots", global.weapon_info[6,3]);

//weapon 4
ini_write_real("weapon4", "bullets", global.weapon_info[3,4]);
ini_write_real("weapon4", "shots", global.weapon_info[6,4]);

ini_close();
execute code:

///Play Music
if !audio_is_playing(snd_music)
{
 audio_play_sound(snd_music,2,true);
}

Chapter 34 ■ Creating a game – ObjeCts

266

Step Event:

execute code:

///Check If Game Complete

if global.level==5
{
 room_goto(room_game_complete);
}
execute code:

///For testing
if keyboard_check_pressed(ord('Q'))
{
 global.level+=1;
}
if keyboard_check_pressed(ord('A'))
{
 global.level-=1;
}

Draw GUI Event:

execute code:

///draw stats and stuff
scr_set_menu_text();
draw_text(20,400,"Lives="+string(lives));
draw_text(400,400,"Health="+string(health));
draw_text(600,400,"Cash="+string(global.cash));
total=0;
for (i = 1; i < 5; i += 1)
{
 draw_text(20,400+(i*40),"Weapon: "+global.weapon_info[0,i]);
 draw_text(400,400+(i*40),"Shots Fired: "+string(global.weapon_info[6,i]));
 total+=global.weapon_info[6,i];
}
draw_text(20,640,"Total Shots Fired: "+string(total));

draw_text(20,700 ,"Total Hits: "+string(global.hits));

obj_quit

Information about object: obj_quit
Sprite: spr_quit
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:

Chapter 34 ■ Creating a game – ObjeCts

267

Children:
Mask:
No Physics Object

Alarm Event for alarm 0:

execute code:

game_end();

Step Event:

execute code:

///End Game If Clicked
if (position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 scr_voice(snd_voice_thanks_for_playing);
 alarm[0]=room_speed*3;
}

obj_restart

Information about object: obj_restart
Sprite: spr_restart
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Step Event:

execute code:

if (position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 /// delete all stats in ini and restart game
 scr_voice(snd_voice_game_restarted);
 ///Save to INI Save File
 if file_exists("save.ini") file_delete("save.ini");
 game_restart();
}

Chapter 34 ■ Creating a game – ObjeCts

268

Draw Event:

execute code:

///Draw Self and Message
draw_self();
draw_set_colour(c_white);
draw_set_font(font_mini_message);
draw_set_halign(fa_center);
draw_set_valign(fa_middle);
draw_text(x,y+40,"Clears All#Progress");

obj_music_controller

Information about object: obj_music_controller
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Create Event:

execute code:

if !audio_is_playing(snd_music)
{
 audio_play_sound(snd_music,3,true);
 audio_sound_gain(snd_music, 0.2, 0);
}

obj_game_over_voice

Information about object: obj_game_over_voice
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Chapter 34 ■ Creating a game – ObjeCts

269

Create Event:

execute code:

///Voice Game Over
scr_voice(snd_voice_game_over);

obj_message

Information about object: obj_message
Sprite:
Solid: false
Visible: true
Depth: -100
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Create Event:

execute code:

///set up
can_show=true;
to_draw="";

Alarm Event for alarm 0:

execute code:

///alarm0 set alarm1
alarm[1]=room_speed;
to_draw="";

Alarm Event for alarm 1:

execute code:

///set as able to show
can_show=true;

Step Event:

execute code:

///check if message waiting
check=ds_list_size(global.message);
if check>0 && can_show
{

Chapter 34 ■ Creating a game – ObjeCts

270

 to_draw=ds_list_find_value(global.message,0);
 ds_list_delete(global.message,0);
 can_show=false;
 alarm[0]=room_speed*2;
}

Draw Event:

execute code:

///draw a message
draw_set_font(font_message);
draw_set_halign(fa_center);
draw_set_valign(fa_middle);
draw_set_colour(c_black);
draw_text(400-2,400-2,to_draw);
draw_set_colour(c_red);
draw_text(400,400,to_draw);

obj_shop_button_1

Information about object: obj_shop_button_1
Sprite: spr_buy
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_shop_button_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set ID
button_id=1;

obj_shop_button_2

Information about object: obj_shop_button_2
Sprite: spr_buy
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_shop_button_parent
Children:
Mask:
No Physics Object

Chapter 34 ■ Creating a game – ObjeCts

271

Create Event:

execute code:

///Set ID
button_id=2;

obj_shop_button_3

Information about object: obj_shop_button_3
Sprite: spr_buy
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_shop_button_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set ID
button_id=3;

obj_shop_button_4

Information about object: obj_shop_button_41
Sprite: spr_buy
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_shop_button_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Set ID
button_id=4;

obj_play_shop_button

Information about object: obj_play_shop_button
Sprite: spr_play

Chapter 34 ■ Creating a game – ObjeCts

272

Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Create Message Object, display message
scr_voice(snd_voice_shop);
instance_create(10,10,obj_message);
scr_msg("Buy Your##Weapons");

Step Event:

execute code:

///Goto Level When Clicked
if (position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 room_goto(room_level);
}

Draw Event:

execute code:

///Draw Text For Shop
draw_self();
scr_shop_set_text();
draw_text(20,20,"Cash: "+string(global.cash));
draw_text(50,40, "Weapon Type");//draw name
draw_text(250,40, "Strength");//strength
draw_text(350,40, "Cost");//cost
draw_text(450,40, "Current");//current ammo

obj_splash

Information about object: obj_splash
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:

Chapter 34 ■ Creating a game – ObjeCts

273

Mask:

No Physics Object

Create Event:

execute code:

///Set Splash Timer
alarm[0]=1*room_speed;

execute code:

///Declare Things Needed in Game
randomize();
//declare messaging system
global.message=ds_list_create();
global.selected_weapon=1;

execute code:

///Load From INI Save File
save=ini_open("save.ini");
global.cash=ini_read_real("main", "cash", 10000);
health=ini_read_real("main", "health", 100);
lives=ini_read_real("main", "lives", 8);
global.hits=ini_read_real("main", "hits", 0);
global.shots=ini_read_real("main", "shots", 0);
global.level=ini_read_real("main", "level", 1);

//weapon 1
global.weapon_info[3,1]=ini_read_real("weapon1", "bullets", 200);
global.weapon_info[6,1]=ini_read_real("weapon1", "shots", 0);

//weapon 2
global.weapon_info[3,2]=ini_read_real("weapon2", "bullets", 250);
global.weapon_info[6,2]=ini_read_real("weapon2", "shots", 0);

//weapon 3
global.weapon_info[3,3]=ini_read_real("weapon3", "bullets", 200);
global.weapon_info[6,3]=ini_read_real("weapon3", "shots", 0);

//weapon 4
global.weapon_info[3,4]=ini_read_real("weapon4", "bullets", 10);
global.weapon_info[6,4]=ini_read_real("weapon4", "shots", 0);

ini_close();

execute code:

///Declare Static Weapon Info

Chapter 34 ■ Creating a game – ObjeCts

274

//Ship Type
global.weapon_info[0,1]="Gun";
global.weapon_info[0,2]="Double Gun";
global.weapon_info[0,3]="Missle";
global.weapon_info[0,4]="Nuke";

//Ship Weapon Strength
global.weapon_info[1,1]=1;
global.weapon_info[1,2]=5;
global.weapon_info[1,3]=250;
global.weapon_info[1,4]=1000;

//Weapon Cost Per Bullet
global.weapon_info[2,1]=1;
global.weapon_info[2,2]=10;
global.weapon_info[2,3]=300;
global.weapon_info[2,4]=5000;

//weapon sprite
global.weapon_info[4,1]=spr_ship_gun;
global.weapon_info[4,2]=spr_ship_double_gun;
global.weapon_info[4,3]=spr_ship_missile;
global.weapon_info[4,4]=spr_ship_nuke;

//weapon firing sound
global.weapon_info[5,1]=snd_gun;
global.weapon_info[5,2]=snd_double_gun;
global.weapon_info[5,3]=snd_missile;
global.weapon_info[5,4]=snd_nuke;

Alarm Event for alarm 0:

execute code:

///Splash Timer Exp - Goto Menu
room_goto(room_menu);

obj_enemy_bullet

Information about object: obj_enemy_bullet
Sprite: spr_enemy_bullet
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:
Children:
Mask:

No Physics Object

Chapter 34 ■ Creating a game – ObjeCts

275

Create Event:

execute code:

///Set Target and start moving
target=scr_target(x,y,obj_ship);
speed=2;

Alarm Event for alarm 0:

execute code:

///Destroy
instance_destroy();

obj_enemy

Information about object: obj_enemy
Sprite: spr_enemy
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_asteroid_parent
Children:
Mask:
No Physics Object

Create Event:

execute code:

///Start Alarm Bullet
alarm[0]=((room_speed*4)/global.level);

execute code:

///Set Target and start moving
target=scr_target(x,y,obj_ship);
speed=2;

Alarm Event for alarm 0:

execute code:

///Fire Bullet & Reset Alarm
instance_create(x,y,obj_enemy_bullet);
alarm[0]=((room_speed*4)/global.level);

Chapter 34 ■ Creating a game – ObjeCts

276

Step Event:

execute code:

///Target & Destroy

if instance_exists(target)
{
 tx = target.x;
 ty = target.y;
 direction = scr_angle_rotate(direction, point_direction(x, y, tx, ty), 5);
 image_angle = direction;
 if my_health<0
 {
 scr_voice(snd_voice_enemy_killed);
 effect_create_above(ef_firework,x,y,2,c_red);
 effect_create_above(ef_flare,x,y,2,c_yellow);
 instance_destroy();
 }
}

Collision Event with object obj_bullet_parent:

execute code:

///Hit By Player
effect_create_above(ef_ring,x,y,2,c_white);
scr_bullet_hit();

277© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_35

CHAPTER 35

Creating a Game – Rooms

The game consists of the following six rooms, with the following order in the resource tree:

 – room_splash_screen
 – room_menu
 – room_shop
 – room_level
 – room_game_over
 – room_game_complete

All rooms have the same dimensions, with a width of 800 and a height of 720.
Room room_splash_screen has a single object, obj_splash in it and the background bg_splash, as

shown in Figure 35-1:

Chapter 35 ■ Creating a game – rooms

278

The next room is room_menu, as shown in Figure 35-2. It contains one each of (from left to right) of obj_
button_1, obj_button_2, obj_button_3, obj_button_4. It also has one instance each of obj_restart and
obj_quit. The three circled instances are: obj_menu_control, obj_message, and obj_music_controller.
The background image set is bg_menu.

Figure 35-1. Showing obj_splash (circled) placed in room

Chapter 35 ■ Creating a game – rooms

279

Figure 35-3 shows the object placement for room_shop. It consists (top to bottom) of obj_shop_
button_1, obj_shop_button_2, obj_shop_button_3, obj_shop_button_4 and below them obj_play_shop_
button. The background is bg_shop.

Figure 35-2. Showing object placement in room_menu

Chapter 35 ■ Creating a game – rooms

280

The room room_level has a single object, obj_level_control_and_hud and the background bg_level
set. This is shown in Figure 35-4 below:

Figure 35-3. Showing room_shop setup

Chapter 35 ■ Creating a game – rooms

281

Figure 35-4. Room room_level with an instance of obj_level_control_and_hud (circled)

The next room is room_game_over. This has the background bg_game_over set. It has one instance of
obj_restart and one of obj_game_over_voice. This is shown in Figure 35-5.

Chapter 35 ■ Creating a game – rooms

282

Finally room room_game_complete has the background bg_game_complete and a single instance of
obj_restart. This is shown in Figure 35-6:

Figure 35-5. Showing placement in room room_game_over

Chapter 35 ■ Creating a game – rooms

283

Figure 35-6. Showing setup of room_game_complete

285© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_36

CHAPTER 36

Creating a Game – Progress Sheet

Student Progress Sheet
Student Name: _________________________________ Class: ________________________
Project Scores:

Project 1 Project 2 Project 3 Project 4 Project 5

Project 6 Project 7 Project 8 Project 9 Project 10

Project 11 Project 12 Project 13 Project 14 Project 15

Project 16 Project 17 Project 18 Project 19 Project 20

Project 21 Project 22 Project 23 Project 24 Project 25

Total From 250

Exam Score From 100 Assignment From 150

Final Score From 500 Grade

Comments

287© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_37

CHAPTER 37

Creating a Game – Marking Guide

The following is a suggested marking strategy; you can, of course, use your own marking convention.
Worksheets are used to test your understanding but do not carry any marks.
Each section has a number of projects, worth 10 points in total for each, with scoring detailed for each

project. These total 250 points across all the topics.
The final assignment is worth 150 points. A marking strategy for this is provided. Only attempt one final

assignment. The final exam is worth 100 points, and a marking guide is provided. Therefore, the maximum
you can achieve is 500. You can divide this by 5 to reach a percentage. A suggested final mark is this:

400-500 Grade A+ 350-400 Grade A 300-350 Grade B+ 250-300 Grade B

200-250 Grade C+ 150-200 Grade C 100-150 Grade D 50-100 Grade E

0-50 Grade F

289© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_38

CHAPTER 38

Creating a Game – End of Projects
Assignments

Endless Runner
Design and create an endless runner type game with the following features:

•	 Randomly generated objects the player must avoid

•	 Move player up / down using cursors keys or middle mouse button

•	 Create coins for player to collect

•	 Increase score for every 10 pixels traveled

•	 Create a system using INI files that saves / displays the highest score

•	 Game gets faster for every 1000 points

•	 GUI that displays distance traveled and coins collected

•	 Some graphical effects when colliding or collecting bonuses

•	 A simple menu system that displays highest score and a start game button

•	 Background music and sound effect when collecting coins

For each element included in the game you receive 10 points
Extra points are awarded for (up to 10 points for each):

•	 Formatted and commented code, with suitably named variables and assets

•	 Usage of more advanced GML coding

•	 Easy player interaction with the game

•	 Use of graphical effects

•	 Overall professional finish to the game

In total there are 150 points available.

Chapter 38 ■ Creating a game – end of projeCts assignments

290

Shoot The Ducks
•	 Create duck objects that fly across the screen

•	 Make a gun sight movable using mouse

•	 Create a menu system with 5 unlockable levels

•	 Create a save system using INI files that stores the current levels currently unlocked
and number of coins

•	 Give player a choice of 4 weapons to choose from, selectable using 1-4 or middle
mouse button

•	 Player earns coins for each duck shot; the closer to the center of the duck, the more
points

•	 Player must have accuracy of at least 90% to unlock next level

•	 Create a shop where player can use coins to buy weapons

•	 Create a graphical effect when a duck has been shot

•	 Use a different background for each level

For each element included in the game you receive 10 points
Extra points are awarded for (up to 10 points for each):

•	 Formatted and commented code, with suitably named variables and assets

•	 Usage of more advanced GML coding

•	 Easy player interaction with the game

•	 Use of graphical effects

•	 Overall professional finish to the game

In total there are 150 points available.

Chapter 38 ■ Creating a game – end of projeCts assignments

291

Pontoon
Create a Pontoon(21 or Blackjack) style card where player plays against the banker

•	 Player starts with 1000 coins and can bet up to 100 per hand

•	 Create a DS list for the card deck

•	 Use a separate sprite image for each card

•	 Deal two cards each to player and banker, showing one of the banker’s cards

•	 Player can hit, stand, double down, or split if two cards are the same. Aces can be
worth 1 or 11; make sure to include this

•	 Banker must hit if 16 or below

•	 Player wins if higher than banker without going over 21

•	 Add winnings to player if they win

•	 Create a save system to save players coins

•	 If a player hits pontoon (21) take them to bonus room to play high / low to win
extra cash

For each element included in the game you receive 10 points
Extra points are awarded for (up to 10 points for each):

•	 Formatted and commented code, with suitably named variables and assets

•	 Usage of more advanced GML coding

•	 Easy player interaction with the game

•	 Use of graphical effects

•	 Overall professional finish to the game

In total there are 150 points available.

Chapter 38 ■ Creating a game – end of projeCts assignments

292

Side-Scrolling Shooter
•	 Create a player controllable using arrow keys and space

•	 Enemy types should each follow a separate path

•	 Draw player score, lives, and health using GUI

•	 Create 5 weapon upgrade types (i.e., missile, side-shooting)

•	 A collectible that makes player invincible for 30 seconds

•	 Five unlockable levels, each with an end boss

•	 Sound effects for each weapon type

•	 A suitable save system to save player values

•	 A shop between levels where player can use points to purchase extra weapons

•	 A save system using INI files

For each element included in the game you receive 10 points
Extra points are awarded for (up to 10 points for each):

•	 Formatted and commented code, with suitably named variables and assets

•	 Usage of more advanced GML coding

•	 Easy player interaction with the game

•	 Use of graphical effects

•	 Overall professional finish to the game

In total there are 150 points available.

Chapter 38 ■ Creating a game – end of projeCts assignments

293

End of Project Marking Guide
Choose one option from the previous as an end-of-term assignment.

For each element included in the game you receive 10 points.
Extra points are awarded for (up to 10 points for each):

•	 Formatted and commented code, with suitably named variables and assets

•	 Usage of more advanced GML coding

•	 Easy player interaction with the game

•	 Use of graphical effects

•	 Overall professional finish to the game

In total there are 150 points available.

295© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_39

CHAPTER 39

End of Project Test

Student’s Name:_______________________________ Class:_______________________________
Date:____/____/______
Instructions
You have one hour (60 minutes) to complete this paper.
Only start when your proctor tells you to.
Answers should be given in English.
For multiple choice questions, circle the answer you deem to be correct.
Any coding answers should be written in GML.
If you require extra space, there are blank pages at the end of the test paper for this.
There are 50 questions, and each correct answer is worth 2 points.
Access to a computer is allowed, solely for the purpose of accessing GameMaker: Studio’s

manual / help system.
Question 1
What type of variable is each of the following?

name="Benjamin";
height=182;

Question 2
What will be drawn on the screen in the following example?

name="Benjamin";
height=182;
draw_text(20,20, "His name is "+name+". His height is "+string(height));

Question 3
In the following example, which block will be executed, A or B?

i=15;
j=5;
k=i mod j;
if k==0
{
 //block A
}
else

Chapter 39 ■ end of projeCt test

296

{
 //block B
}

Question 4
Write the code that will execute every step that keys Z and up arrow are held down.
Question 5
Write the code to draw a solid blue circle at position 100,100 with a radius of 50, with a black border.
Question 6
Correct the mistake in the following example:

my_colour=rgb_make_colour(40, 80, 70);

Question 7
Assume a sprite has 3 sub images, 0 1 and 2. Write the code to prevent animation, and set it to show

sub image 1.
Question 8
Write the code to center both the horizontal and vertical alignment of text.
Question 9
Explain what the following code does:

if (mouse_check_button_pressed(mb_right))
{
 // do something
}

Question 10
What does this code do:

key=keyboard_lastkey;

Question 11
When, and how many times is Create Event of an object executed?
Question 12
When does the following return as true?

position_meeting(mouse_x, mouse_y, id)

Question 13
How would you set an image speed of 0.5?
Question 14
What is the default image angle? Which direction is this (left, right, up, or down)?
Question 15
Name three variables that have global scope (i.e., can be accessed by any object without having to use

global. prefix).
Question 16
What does the following code do, in a Draw Event:

lives=5;
for (var i = 0; i < lives; i += 1)
{
 draw_sprite(spr_lives,0,50,50+(50*i));
}

Chapter 39 ■ end of projeCt test

297

Question 17
What code would you use to execute code once when the middle mouse button is pressed down?
Question 18
What code would you use to set i to mouse’s x position and j to the mouse’s y position?
Question 19
What is default game room speed, in steps per second?
Question 20
How many alarm events are available per object?
Question 21
What does place_empty(50, 75) do?
Question 22
Explain what the function collision_line does.
Question 23
What code would use to go to the next room, below the current room in the resource tree?
Question 24
Explain the process of setting a 400x400 view that keeps obj_example in the center of the view.
Question 25
How would you load background bg_splash and set it as the background of room room_splash?
Question 26
How would you make and use a tiled background that scrolls up 2 pixels for each step?
Question 27
Write the code that would check whether a music sound is playing; if it isn’t, start it playing without looping.
Question 28
What code would you use to pause background music for 5 seconds when X is pressed, and then

resume it?
Question 29
Provide three reasons for using a splash screen.
Question 30
Explain the process to only display a new button for a special level, when 3 other levels have been

completed.
Question 31
What does this code do?

i=irandom_range(10,25);

Question 32
What does randomize(); do?
Question 33
Explain what the following code does:

mp_potential_step(obj_enemy.x, obj_enemy.y, 1, true);

Question 34
What does the following code do? (assume this is placed in the Step Event of obj_player, and there is

one instance each of obj_player and obj_enemy in a room)

image_angle=(point_direction(x,y,obj_enemy.x, obj_enemy.y)+180) mod 360;

Chapter 39 ■ end of projeCt test

298

Question 35
Using this:

lives=22;

Assume you have a new INI file and have just executed the following:

ini_open("example.ini");
ini_write_string("health", "lives", string(lives));
ini_close();

What would the contents of the INI file look like?
Question 36
What functions would you use to write and read real values?
Question 37
Write the code to create a star effect at the mouse’s position when the key T is pressed.
Question 38
What is the difference between effect_create_above and effect_create_below?
Question 39
How would you make a block of code run 25 times?
Question 40
Explain an example where you would use a for loop:
Question 41
Given the following:

size[0]=5;
size[1]=3;
size[2]=9;

Provide an example to double all values, use a loop of some kind.
Question 42
Write the code required to draw the data from question 41 vertically across the room.
Question 43
What is the code required to sort a ds_list descending?
Question 44
How would you replace an entry in a ds_list?
Question 45
Explain what the path end action path_action_reverse does.
Question 46
What code would you use to get the Y position of a path’s 2nd position?
Question 47
Give two reasons for using scripts:
Question 48
Write a script that takes in two real numbers and returns the value of the highest.
Question 49
How would you search all scripts for references to spr_example?
Question 50
Explain the difference between // , ///, and /* */ .

Chapter 39 ■ end of projeCt test

299

Test Paper Answers
Question 1

What type of variable is each of the following?

name="Benjamin"; This is a string.
height=182; This is a real.

Question 2
What will be drawn on the screen in the following example?

name="Benjamin";
height=182;
draw_text(20,20, "His name is "+name+". His height is "+string(height));

His name is Benjamin. His height is 182
Question 3
In the following example, which block will be executed, A or B?

i=15;
j=5;
k=i mod j;
if k==0
{
 //block A
}
else
{
 //block B
}

Block A will be executed.
Question 4
Write the code that will execute every step that keys Z and up arrow are held down.

if (keyboard_check (ord('Z')) && keyboard_check(vk_up))

Question 5
Write the code to draw a solid blue circle at position 100,100 with a radius of 50, with a black border.

draw_set_colour(c_blue);
draw_circle(100,100,50,false);
draw_set_colour(c_black);
draw_circle(100,100,50,true);

Question 6
Correct the mistake in the following example:

my_colour=rgb_make_colour(40, 80, 70);
Should be my_colour=make_colour_rgb(40, 80, 70);

Chapter 39 ■ end of projeCt test

300

Question 7
Assume a sprite has 3 sub images, 0 1 and 2. Write the code to prevent animation, and set it to show sub

image 1.

image_speed=0;
image_index=1;

Question 8
Write the code to center both the horizontal and vertical alignment of text.

draw_set_halign(fa_center);
draw_set_valign(fa_middle);

Question 9
Explain what the following code does:

if (mouse_check_button_pressed(mb_right))
{
 // do something
}

This will execute the code one time only when the right mouse button is pressed.
Question 10
What does this code do:

key=keyboard_lastkey;

It will set key to hold the last key that was pressed.
Question 11
When, and how many times is Create Event of an object executed?
When the object is created in the room.
Question 12
When does the following return as true?

position_meeting(mouse_x, mouse_y, id)

This will return as true if the mouse cursor is over the object’s sprite (if present), otherwise it will
return false.

Question 13
How would you set an image speed of 0.5?

image_speed=0.5;

Question 14
What is the default image angle? Which direction is this (left, right, up, or down)?
The default image angle is 0, this points to the right.
Question 15
Name three variables that have global scope (i.e., can be accessed by any object without having to use

global. prefix):
They are health, lives, and score.

Chapter 39 ■ end of projeCt test

301

Question 16
What does the following code do, in a Draw Event:

lives=5;
for (var i = 0; i < lives; i += 1)
{
 draw_sprite(spr_lives,0,50,50+(50*i));
}

It will draw the sprite spr_lives 5 times vertically.
Question 17
What code would you use to execute code once when the middle mouse button is pressed down?

if mouse_check_button_pressed(mb_middle)
{
 //do something
}

Question 18
What code would you use to set i to mouse’s x position and j to the mouse’s y position?

i=mouse_x;
j=mouse_y;

Question 19
What is default game room speed, in steps per second?
30 frames per second.
Question 20
How many alarms events are available per object?
There are 12 alarms, 0 through 11.
Question 21
What does place_empty(50, 75) do?
Checks whether the instance collides with any other instance at the given position.
Question 22
Explain what the function collision_line does.
It will check a collision of an object between two points; if a collision is found it will return its

instance, otherwise no one.
Question 23
What code would use to go to the next room, below the current room in the resource tree?

room_goto_next()

Question 24
Explain the process of setting a 400x400 view that keeps obj_example in the center of the view.
In a room, enable the use of views and set as visible on room start. Set the view and port size.

Choose the object to follow and set borders as 200.

Chapter 39 ■ end of projeCt test

302

Question 25
How would you load background bg_splash and set it as the background of room room_splash?
Load and name the background using the load background icon at the top. Open room room_

splash, set visible on room start, and then choose the loaded background.
Question 26
How would you make and use a tiled background that scrolls up 2 pixels for each step?
This can be done several ways.
You can set the Vert Speed in the room editor’s background tab to -2.
Or through code on a Step Event of an object that is in the room:

background_y[0]-=2;

Question 27
Write the code that would check whether a music sound is playing, if it isn’t, start it playing without

looping.

if !audio_is_playing(snd_music)
{
 audio_play_sound(snd_music,1,false);
}

Question 28
What code would you use to pause background music for 5 seconds when X is pressed, and then

resume it?
Create Event:

audio_play_sound(snd_music,1,true);

Step Event:

if (keyboard_check_pressed(ord('X')))
{
 if audio_is_playing(snd_music)
 {
 audio_pause_sound(snd_music);
 alarm[0]=room_speed*5;
 }

}

Alarm 0 Event:

audio_resume_sound(snd_music);

Question 29
Provide three reasons for using a splash screen.
To show company logo / graphics.
To load any saved data.
Initialize any variables, ds_lists, etc.
Other answers are possible.

Chapter 39 ■ end of projeCt test

303

Question 30
Explain the process to only display a new button for a special level, when 3 other levels have been

completed.
Check if all levels done (i.e., global.level variable is used to check). In the Draw Event only draw if

other levels complete.
Make this object clickable and take player to special level when clicked.
Question 31
What does this code do?

i=irandom_range(10,25);

It will choose a whole integer between 10 and 25 inclusive.
Question 32
What does randomize(); do?
It will allow random functions to have different results each time the game is played.
Question 33
Explain what the following code does:

mp_potential_step(obj_enemy.x, obj_enemy.y, 1, true);

It will move toward obj_enemy 1 pixel each step, avoiding all objects.
Question 34
What does the following code do? (assume this is placed in the Step Event of obj_player, and there is

one instance each of obj_player and obj_enemy in a room)

image_angle=(point_direction(x,y,obj_enemy.x, obj_enemy.y)+180) mod 360;

It will make obj_player point away from obj_enemy.
Question 35
Using this:

lives=22;

Assume you have a new INI file and have just executed the following:

ini_open("example.ini");
ini_write_string("health", "lives", string(lives));
ini_close();

What would the contents of the INI file look like?

[health]
lives=22

Question 36
What functions would you use to write and read real values?

ini_read_real
ini_write_real

Chapter 39 ■ end of projeCt test

304

Question 37
Write the code to create a star effect at the mouse’s position when the key T is pressed.

if (keyboard_check_pressed(ord('T')))
{
 effect_create_above(ef_star,mouse_x,mouse_y,2,c_yellow);
}

Question 38
What is the difference between effect_create_above and effect_create_below?
effect_create_above will draw above any other drawing the object has, effect_create_below will

draw below it.
Question 39
How would you make a block of code run 25 times?

repeat (25)
{
 //code here
}

Question 40
Explain an example where you would use a for loop.
For example, for getting and drawing data from an array.
There are many possible answers to this, so any valid answer is correct.
Question 41
Given the following:

size[0]=5;
size[1]=3;
size[2]=9;

Provide an example to double all values, use a loop of some kind.

for (i = 0; i < 3; i += 1)
{
 size[i]*=2
}

Other valid examples are possible.
Question 42
Write the code required to draw the data from question 41 vertically across the room.

for (i = 0; i < 3; i += 1)
{
 draw_text(100+(100*i),50, size[i]);
}

Chapter 39 ■ end of projeCt test

305

Question 43
What is the code required to sort a ds_list descending?

ds_list_sort(ds_list_name, false);

Question 44
How would you replace an entry in a ds_list?
For example:

ds_list_replace(ds_list_name, 2, new_value);

Question 45
Explain what the path end action path_action_reverse does.
When the object following the path reaches the end of the path, it will reverse and follow the path

backwards.
Question 46
What code would you use to get the Y position of a path’s 2nd position?

ypoint=path_get_point_y(path_example, 1);

Question 47
Give two reasons for using scripts:
For example:
Great if same code used in more than one place.
Keeps things tidy.
Makes changing things quicker and easier,
Other answers possible.
Question 48
Write a script that takes in two real numbers and returns the value of the highest.

///scr_highest
if argument0 > argument1 return argument0; else return argument1;

Question 49
How would you search all scripts for references to spr_example?
Go to Scrips ➤ Search In Scripts, or press Shift+CTRL+F, and enter spr_example.
Question 50
Explain the difference between // , ///, and /* */ .

// is a general comment
/// can be used to give preview in actions of object’s events, and used as auto complete for

scripts.
/* */ can be used to block out multiple lines

307© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4_40

CHAPTER 40

Summary

Now that you have completed this book, you have the basic knowledge of GameMaker: Studio, its IDE and
GML coding language.

You can take these skills to start making your own games. When trying GML coding for functions not
covered in the book, remember that the GameMaker: Studio help manual is your friend – just press F1 – clear
explanations and example usage is shown.

If you’re up for a challenge, try the next book in this series, GameMaker: Studio Programming
Challenges. It’s a collection of 100 programming projects to test your GML skills. Each has a challenge
outline, useful code to use, and an example solution in GMZ.

Erratum to: Practical GameMaker: Studio

Ben Tyers

Erratum to:
Practical GameMaker: Studio,
DOI 10.1007/978-1-4842-2373-4

The published version of this book included errors in code listings throughout the
book. These code listings have been corrected and text has been updated throughout
the book.

The updated online version of the original book can be found under
DOI 10.1007/978-1-4842-2373-4

Ben Tyers, Practical GameMaker: Studio
DOI 10.1007/978-1-4842-2373-4_41
Copyright © 2017 by Ben Tyers

Ben Tyers
14 Bury House, Broadwater Street East, Flat 14
BN14 9AG, Worthing, West Sussex
England
e-mail: gamemakerbook@gmail.com

E1

http://dx.doi.org/10.1007/978-1-4842-2373-4
http://dx.doi.org/10.1007/978-1-4842-2373-4
http://dx.doi.org/10.1007/978-1-4842-2373-4_41
mailto:gamemakerbook@gmail.com

309© Ben Tyers 2016
B. Tyers, Practical GameMaker: Studio, DOI 10.1007/978-1-4842-2373-4

��������� A
Alarm Event, 47, 84
Alarms

advanced projects, 88
basic projects, 88
Create Event, 84–85
worksheet, 86

Arrays
advanced projects, 182–183
applications, 173, 176, 178–179
basic projects, 182
car_info, 179–181
Create Event of an object, 174
creation, data array, 176–177
data, weapons, 183
Draw Event, 174
one-dimensional, 173
output, 175
processing data, 174
resources, 177
storing data, 173
two-dimensional, 173
values, 174
variable, 175

Artificial intelligence (AI)
advanced projects, 153
basic projects, 153
creation, 145
functions, 145
obj_bullet and spr_bullet, 147–148
obj_enemy, 146
obj_score, 150
obj_star, 149–150
room layout, 147
room_splash, 149

Assets handling, 211–212

��������� B
Backgrounds

advanced projects, 118
basic projects, 118
colour, 115
creation, 113
files

assets, 225
folder, 225
resource tree, 225

image or tiles, 113
level, 119
rooms, 113

new room creation, 114
room editor, 113

setting, 114
Step Event, 115
uses, 113

��������� C
Child object, 237
Coin strip, 57
Collision Event, 48, 49, 58, 65–66
Collisions

adding GML, 94
adding objects, 94
advanced projects, 100
basic projects, 100
checking, 92
different image index, 95
event, 91
game, 101
line, 96–97
motions or deciding actions, 91
origin, 92

Index

■ INDEX

310

sprite with two sub images set, 95
worksheet

and answer sheet, 98, 99
correction, code, 98

Conditional statements
advanced projects, 16
basic projects, 16
false sentence, 12
ord, 12
virtual keycodes, 12
worksheet, 14

��������� D, E
Draw GUI Event, 49
Drawing

advanced project, 26, 37
basic projects, 26, 37
colour blending, 33
colour constants, 20
create event, 31
formatting functions, 30
geometric shapes, 19
horizontal and vertical alignment settings, 30
images, 29
worksheet, 24, 35

draw_self(), 34
DS lists

advanced project, 190
basic projects, 190
destroying, 187
inventory system, 185
one-dimensional arrays, 185
outcomes, 186
removal, value, 186
RPG type game, 185
sorting, 186–187
store and process messages, 191
values, 187

��������� F
Fonts, 229
Formatting functions, 30

��������� G
Game effects

advanced projects, 165
advantages, 161
basic projects, 165
Collision Event, 166
combination, 166
creation, 161, 163

graphical, 161
randomness, 161
test, 162
trail, 162
types, 161

Game–end of projects
awarded, 290
duck objects, 290
element, 290
points, 289
runner type game, 289

GameMaker: Studio Programming Challenges, 307
Game–marking guide, 287
Game–objects

Alarm Event, 258, 267, 269
code execution, 244
Collision Event, 246–247
Collision Event with object, 249–250, 262–263
execute code, 249, 251–252, 254–255, 259–262,

265–266, 272–273, 276
health bar D&D, 257
images D&D, 256
information, 243
lives as image, 256
obj_asteroid_medium, 244
obj_asteroid_parent, 248
obj_asteroid_small, 244
obj_button_3, 264
obj_cloud, 245
obj_coin, 246
obj_double_gun_bullet, 247
obj_enemy_bullet, 274
obj_game_over_voice, 268
obj_menu_control, 265
obj_message, 269
obj_missile_bullet, 248
obj_music_controller, 268
obj_play_shop_button, 271
obj_quit, 266
obj_restart, 267
obj_shop_button_1, 270
obj_shop_button_3, 271
process, 243
Step Event, 258
suggested order, 243

Game paths
path_cloud, 227
path_coin_bonus, 228

Game–progress sheet, 285
Game sounds

assets folders, 223
loaded and organized, 224

Game sprites
loaded and organized, 221
spr_cloud, 220

Collisions (cont.)

■ INDEX

311

spr_coin, 218
sub images, 219

GML coding language, 307

��������� H
Health, lives, and score, 69

advanced projects, 72
basic projects, 72
Collision Event, 66
font_score, 69
global variables, 65
health bar, 66
spr_lives, 68
Step Event, 66, 69
worksheet, 70

��������� I, J
INI files

add value, levels, 158
advanced project, 159
basic projects, 159
elements, 155
game_data.ini, 157
loading, 160
player data, 160
player stats, 160
project tree, included files, 155
reading/writing, 156
save and load data, 155
store various game, 160
values, 156
variables, 156, 158, 160

��������� K
Keyboard input and simple movement

advanced project, 43
basic projects, 43
Boolean values, 40
Draw Event, 40
Step Event, 39
strong distinction, 39

Key Release Event, 48

��������� L
Loops

advanced projects, 171
basic projects, 171
DO function, 170
do loop, 168
for loop, 167, 172

functions, 167
GameMaker Language, 167
infinite, 167
repeat, 167, 172
while, 167, 170

��������� M, N
Marking strategy, 287
Mouse Event options, 45, 77
Mouse interaction

advanced projects, 80
basic projects, 80
input, 75
logic applies, 75
Step Event, 75
worksheet, 78

��������� O
obj_asteroid_big, 243
obj_asteroid_medium, 244
obj_asteroid_small, 244
obj_cloud, 245
obj_coin, 58
obj_double_gun_bullet, 247
Objects and events

advanced project, 52
Alarm Event, 47
basic projects, 52
Collision Event, 48
Create Event, 45
Destroy Event, 46
Draw Event, 47
equivalent event, 46
GameMaker, 45
Key Events, 48
Mouse Events, 45
Step Event, 47

obj_gun_bullet, 247
obj_level_control_and_hud, 250
obj_missile_bullet, 248
obj_nuke_bullet, 249–250
obj_player, 48

��������� P, Q
Parent objects

assignment, 237
obj_asteroid_parent, 239–240
obj_bullet_parent, 238–239
obj_lock_parent, 240–241
obj_shop_button_parent, 242
resource folder, 238

■ INDEX

312

Paths
advanced projects, 199
basic projects, 199
closed, 195
closed and smooth curve, 194
creation, 193
delete(), 195
editor, 195
end path actions, 195
GML, 194
location, 196
straight or curved, 195

Pontoon, 291
Project answer paper

alarms events, 301
background bg_splash, 302
background music, 302
block, 299
collision, function, 301
default image angle, 300
Draw Event, 301
ds_list descending, 305
functions, 303
horizontal and vertical alignment, 300
INI file, 303
instance, 303
integer, 303
loop, 304
mistake correction, 299
mouse button, 300
mouse cursor, 300
mouse’s position, 304
mouse’s x position, 301
numbers, 305
object’s events, 305
path_action_reverse, 305
random functions, 303
resource tree, 301
screen, 299
scripts, 305
splash screen, 302
variable, 299
Vert Speed, 302
Z and up arrow keys, 299

Project marking guide, 293
Projects creation, 213
Project test paper

bg_splash, 297
block, 295
code, 296–297
computer, 295
ds_list, 298
function, 297
horizontal and vertical alignment, 296

image speed, 296
INI file, 298
loop, 298
mouse’s position, 297–298
music sound, 297
path_action_reverse, 298
proctor, 295
screen, 295
scripts, 298
solid blue circle, 296
splash screen, 297
variables, 295, 296

��������� R
Random

advanced project, 143
applications, 140
basic projects, 143
direction and rotational speed, asteroids, 144
game play, 139
game replay value, 139
integer number, 141
number, 139
randomize(), 139
randomness, 139
Studio, 139
testing, 139
values, 139–140

room_game, 59
Rooms

advanced project, 110
backgrounds and views, 107
basic projects, 110
bg_menu, 278
Create Event, 103
creation, GameMaker, 103
dimensions, setting, 105
editor, 103
games, 103, 111
instances, 103
loading, background, 104
objects, 103, 106, 111
obj_level_control_and_hud (circled), 281
obj_splash (circled), 278
player visible on the screen, 106
resources folder, 107
resource tree, 277
room_game_complete, 282–283
room_game_over, 281–282
room_menu, 278–279
room_shop setup, 280
setting, background, 105
worksheet, 108–109

■ INDEX

313

��������� S
Scripts

advanced projects, 206
basic projects, 206
codes, 207
Create Event, 202
creation, 201
Draw Event, 202, 203
GML, 201
importing, 231
objects, 202
processing data, 201
resource tree, 231
scr_angle_rotate, 231
scr_bullet_hit, 232
scr_buy, 232
scr_cycle, 233
scr_draw_shop, 233
scr_fading, 233
scr_locked_or_unlocked, 233–234
scr_msg, 234
scr_play_effect, 234
scr_set_menu_text, 234
scr_shop_set_text, 234
scr_spawn, 234
scr_target, 235
scr_voice, 235
sharing code, 201
tricks

code handling, 209
search, 209–210

values, 202
Side-scrolling shooter, 292
snd_bounce, 77
Sounds and music

advanced projects, 127
asteroid, 128
background track, 123
basic projects, 127
channel priority, 123
creation, new sound, 121
effects and voices, 121, 128
GameMaker, 121
informative feedback, 128
loading, sound file, 122
pause and resume functions, 123–124
resources, 121
RPG, 121

single track, 128
style, 121
testing, 123
volume, 123

Splash screens and menu
advanced project, 137
basic projects, 137
company logo or sponsor’s message, 129
creation, 129
Draw Event, 131
GML, 134
images, 135
level, 138
loading in sub images, 130
purposes, 138
rooms

order, 130
in resource tree, 129–130
setup with objects, 133

setting, parent object, 131
sound, 129
Step Event, 130

Sprites
coin strip, 57
object and loading, 56–57
origin, 55, 56
worksheet, 60

spr_name, 77
spr_test, 32
Step Event, 58, 76
Student progress sheet, 285

��������� T, U
Testing, 211

��������� V
Variables

advanced project, 8
basic projects, 8
book game variables, 9
control object, 9
strings and numbers, 1

Virtual keycodes, 12

��������� W, X, Y, Z
Worksheets, 287

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Variables
	Worksheet – Variables
	Worksheet – Variables – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game Variables

	Chapter 2: Conditionals
	Worksheet – Conditionals
	Worksheet – Conditionals – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Conditionals

	Chapter 3: Drawing
	Worksheet – Drawing
	Worksheet – Drawing – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game Drawing

	Chapter 4: Drawing Continued
	Worksheet – Drawing Continued
	Worksheet – Drawing Continued – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Drawing Continued

	Chapter 5: Keyboard Input and Simple Movement
	Worksheet – Key Presses and Simple Movement
	Worksheet – Key Presses and Simple Movement – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game Keypresses and Simple Movement

	Chapter 6: Objects and Events
	Worksheet – Objects
	Worksheet – Objects – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game Objects

	Chapter 7: Sprites
	Worksheet – Sprites
	Worksheet – Sprites – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game Sprites

	Chapter 8: Health, Lives, and Score
	Worksheet – Lives, Health, & Score
	Worksheet – Lives, Health, Lives, & Score – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Health, Lives, & Score

	Chapter 9: Mouse
	Worksheet – Mouse Movement
	Worksheet – Mouse Movement – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Mouse Movement

	Chapter 10: Alarms
	Worksheet – Alarms
	Worksheet – Alarms – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Ten Alarms

	Chapter 11: Collisions
	Worksheet – Collision Events
	Worksheet – Collision Events – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Collisions

	Chapter 12: Rooms
	Worksheet – Rooms
	Worksheet – Rooms – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game Rooms

	Chapter 13: Backgrounds
	Worksheet - Backgrounds
	Worksheet – Backgrounds – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Backgrounds

	Chapter 14: Sounds and Music
	Worksheet – Sounds & Music
	Worksheet – Sounds & Music – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Sounds & Music

	Chapter 15: Splash Screens and Menu
	Worksheet – Splash Screens & Menu
	Worksheet – Splash Screens & Menu – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game Splash Screens & Menu

	Chapter 16: Random
	Worksheet – Random
	Worksheet – Random – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game Random

	Chapter 17: More Movement (Basic AI)
	Worksheet – More Movement
	Worksheet – More Movement – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game

	Chapter 18: INI Files
	Worksheet – INI Files
	Worksheet – INI Files – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game INI files

	Chapter 19: Effects
	Worksheet – Effects
	Worksheet – Effects – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Effects

	Chapter 20: Loops
	Worksheet – Loops
	Worksheet – Loops – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Loops

	Chapter 21: Arrays
	Worksheet – Array
	Worksheet – Array – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Arrays

	Chapter 22: ds_lists
	Worksheet – ds_lists
	Worksheet – ds_lists – Answer Sheet
	Basic Projects
	Advanced Project
	End of Book Game ds_list

	Chapter 23: Paths
	Worksheet – Paths
	Worksheet – Paths – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Paths

	Chapter 24: Scripts
	Worksheet – Scripts
	Worksheet – Scripts – Answer Sheet
	Basic Projects
	Advanced Projects
	End of Book Game Scripts

	Chapter 25: Hints and Tips
	Scripts Tricks
	Testing
	Assets Handling
	Projects

	Chapter 26: Creating a Game – Outline
	Chapter 27: Creating a Game – Sprites
	Chapter 28: Creating a Game – Sounds
	Chapter 29: Creating a Game – Backgrounds
	Chapter 30: Creating a Game – Paths
	Chapter 31: Creating a Game – Fonts
	Chapter 32: Creating a Game – Scripts
	Chapter 33: Creating a Game – Parent Objects
	Chapter 34: Creating a Game – Objects
	Chapter 35: Creating a Game – Rooms
	Chapter 36: Creating a Game – Progress Sheet
	Chapter 37: Creating a Game – Marking Guide
	Chapter 38: Creating a Game – End of Projects Assignments
	Endless Runner
	Shoot The Ducks
	Pontoon
	Side-Scrolling Shooter
	End of Project Marking Guide

	Chapter 39: End of Project Test
	Outline Placeholder
	Test Paper Answers

	Chapter 40: Summary
	Erratum
	Index

