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Preface

Why do we look at some things and think they are beautiful while other things do
not appear esthetically pleasing to us? This is a question that has always interested
mankind. One answer is given by the following quotation from an early president of
the College of New Jersey (now Princeton University):

“Beauty is found in immaterial things like proportion or uniformity. . ..
called by various names of regularity, order, uniformity, symmetry,
proportion, harmony, etc.”. .. Jonathan Edwards'

Symmetry not only provides the natural harmony that makes something appear
beautiful to us, but also is of great value to science because it dictates the physical
traits of many objects. Nature itself seems to love beauty since atoms tend to self-
assemble into shapes with specific symmetry and crystals grow in geometric
lattices. In many cases, if we know the symmetry of something we can predict
some of its important properties without having to resort to experimentation or
complicated calculations.

One area where the concept of symmetry plays an important role is that of
crystalline solids. Crystals, by their very nature, exhibit specific symmetries.
Crystalline materials have many important applications in devices based on their
electronic, optical, thermal, magnetic, and mechanical properties. Solid state phy-
sicists and chemists, as well as material scientists and engineers, have developed
rigorous quantum theoretical models to describe these properties and sophisticated
measurement techniques to verify these models.

Many times, however, in screening materials for a new application it is useful
to be able to quickly and easily determine if a specific material will have the
appropriate properties without making detailed calculations or experiments. This
can be done by analyzing the symmetry properties of the material. The mathemati-
cal formalism that has been developed to accomplish this is called group theory.
The symmetry properties of a crystal can be described by a group of mathematical

13, Edwards, Works of Jonathan Edwards (Banner of Truth Trust, Edinburgh, 1979)
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operations. Then using simple group theory procedures, the physical properties of
the crystal can be determined.

During the 45 years I have been involved in teaching and research in various
areas of solid state physics, I have made extensive use of the concepts of group
theory. Yet I have been surprised at how little emphasis this topic receives in any
formal educational curriculum. Generally, a student studying solid state physics or
chemistry will be exposed to crystal structures early in the semester and then have
no further exposure to crystal symmetry until some special topic such as nonlinear
optics is discussed. This book focuses on the symmetry of crystals and the descrip-
tion of this symmetry through the use of group theory. Although specific examples
are provided of using this formalism to determine both the microscopic and
macroscopic properties of materials, the emphasis is on the comprehensive, perva-
sive nature of symmetry in all areas of solid state science.

The intent of the book is to be a reference source for those doing research or
teaching in solid state science and engineering, or a text for a specialty course in
group theory applied to the properties of crystals.

Tucson, AZ Richard C. Powell
June 2010
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Chapter 1
Symmetry in Solids

The intent of this book is to demonstrate the importance of symmetry in
determining the properties of solids and the power of using group theory and tensor
algebra to elucidate these properties. It is not meant to be a comprehensive text on
solid state physics, so many important aspects of condensed matter physics not
related to symmetry are not covered here. The book begins by discussing the
concepts of symmetry relevant to crystal structures. This is followed by a summary
of the basics of group theory and how it is applied to quantum mechanics. Next is a
discussion of the description of the macroscopic properties of crystals by tensors
and how symmetry determines the form of these tensors. The basic concepts
covered in these early chapters are then applied to a series of different examples.
There is a discussion of the use of point symmetry in the crystal field theory
treatment of point defects in solids. Next is a discussion of crystal symmetry in
determining the optical properties of solids, followed by a chapter on the nonlinear
optical properties of solids. Then the role of symmetry in treating lattice vibrations
is described. The last chapter discusses the effects of translational symmetry on
electronic energy bands in solids. The emphasis throughout the book shows how
group theory and tensor algebra can provide important information about the
properties of a system without resorting to first principal calculations.

1.1 Symmetry

The word “symmetry” commonly refers to the fact that the shapes and dimensions
of some objects repeat themselves in different parts of the object or when the object
is viewed from different perspectives. Symmetry pervades every aspect of our lives
(Fig. 1.1). In the realm of art and architecture, symmetry gives the object a certain
esthetically pleasing quality. Many musical compositions of classical composers
such as J.S. Bach show symmetry in their structure by repeating the same theme
many times throughout the piece, sometimes with variations. In the realm of
science, symmetry determines some of the fundamental physical and chemical
properties of an object.

R.C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals, 1
Lecture Notes in Physics 824, DOI 10.1007/978-1-4419-7598-0_1,
© Springer Science+Business Media, LLC 2010



2 1 Symmetry in Solids

Fig. 1.1 Navajo weavers are
famous for being able to
produce patterns that are
symmetric about horizontal
and vertical center lines
without having any predrawn
plan to follow

The concept of symmetry in science is important in theories and models as well
as the shape of discrete objects. Nature likes to have things symmetric.
The symmetry of nature plays a critical role in everything from our understanding
of the nature of elementary particles to our models of the structure of galaxies in the
universe. Almost all of the laws of nature have their root in some type of symmetry.
Because of this, if we elucidate the symmetry of a physical system we can predict
many of its physical properties. Nowhere is symmetry more important than in
understanding the physical and chemical properties of solids.

If a change is made to a physical system (either a discrete object or a mathematical
formula describing a physical property), this is called a transformation. If a system
appears to be exactly the same before and after the transformation, it is said to be
invariant under that transformation. The symmetry of the system is made up of all of
the transformation operations that leave the system invariant. This can be applied to
both classical and quantum physics and is important in understanding both the atomic
scale and the macroscopic properties of solids. The laws of physics relevant to a
system must remain invariant under the symmetry transformations for the system.
For example, the Hamiltonian operator describing the total energy of a quantum
mechanical system must be invariant under any symmetry operation of the system.

A spatial symmetry transformation acts about a symmetry element. A symmetry
element can be a point, an axis, or a plane of symmetry resulting in inversion, rotation,
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Fig. 1.2 Symmetry elements 4 3

of a square array of four samsssmssssssgssmssmsnsnnnn

equivalent atoms H :
1 2

and mirror types of transformations. As an example, consider a two-dimensional array
of four equivalent atoms arranged at the corners of a square as shown in Fig. 1.2.
The point at the center of the square is a symmetry element for an inversion operation.
It takes the atom at point 1 into point 3, the atom at point 3 into point 1, the atom at
point 2 into point 4, and the atom at point 4 into point 2. An axis at this center point
perpendicular to the plane of the paper is a symmetry element for rotation operations.
Rotations of the square about this axis by 90°, 180°, 270°, and 360° all leave the
arrangement of atoms invariant. For example, a 90° counterclockwise rotation about
this axis takes the atom at point 1 to point 2, the atom at point 2 to point 3, the atom
at point 3 to point 4, and the atom at point 4 to point 1. Four mirror planes perpendicu-
lar to the plane of the paper and containing the symmetry axis are symmetry elements.
Two of these bisect the sides of the square while the other two go through opposite
corners. As an example, the mirror plane going from point 1 through the center to
point 3 will leave the atoms at points 1 and 3 invariant while interchanging the
atoms at points 2 and 4. In three dimensions it is also possible to have a combined
symmetry elements of rotation about an axis followed by reflection in a plane
perpendicular to that axis.

Mathematically these operations can be represented by matrices operating on the
coordinates used to describe the physical system of interest. The physical properties
of matter can be described by tensors of specific ranks. An nth rank tensor in three-
dimensional space is a mathematical entity with n indices and 3" components
that obey specific transformation rules. A zero-rank tensor has no indices and
is referred to as a scalar. A first-rank tensor has one index and three components
and is called a vector. A second-rank tensor has two indices and 9 components and
is called a matrix. General tensors are extensions of this progression to higher
orders. The mathematical fields of group theory and tensor algebra have been
developed to describe the symmetry properties of a system. Group theory is a
powerful tool in physics. It allows the determination of many of the physical
properties of a system without resorting to rigorous first principal calculations of
these properties. However, group theory provides only qualitative information
about whether or not a system possesses a particular property; it can not predict
the magnitude of the property.
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1.2 Crystal Structures

Solids can be either amorphous or crystalline. Glass has an amorphous structure
with no long-range order. However, glass can have short-range symmetry on the
molecular scale. Crystals on the other hand do have long-range order represented by
translational symmetry.

Crystals are three-dimensional, periodic arrays of atoms or molecules. They
have distinct structures made up of a lattice and a basis [1, 2]. The group of atoms or
molecules that repeats itself is called a basis or a unit cell, and the smallest possible
unit cell is called a primitive unit cell. The vectors that define a primitive unit
cell are called primitive translation vectors. The array of points generated by
the primitive translation vectors is called a lattice. Lattice points are given by the
equation

Tn = nla+n2b+n3c, (11)

where a, b, and ¢ are the primitive translation vectors and the n; are integers.
The arrangement of atoms or molecules will look exactly the same from any lattice
point.

Each atom that is a part of the basis is associated with a specific lattice point but
all atoms do not appear on a lattice point. A simple example of this is shown in
Fig. 1.3 for a basis of atoms A and B on a two-dimensional square lattice. The A
atoms are located on each lattice point designated Ty = O while the B atoms are
between lattice points at positions designated Ty = (1/2)(a + b).

Any operation performed on a crystal that carries the crystal structure into itself
is part of the symmetry group for that crystal. This may include translations,

A A A A A A
A A A A A A
A
b
B B B B B
(a+b)/2
A A Al A A A
a

B B B B B

A A A A A A

Fig. 1.3 Square lattice with basis atoms A and B
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reflections through planes, rotations about axes, inversion through a point, and
combinations of these operations. The fundamental types of crystal lattices are
defined by their symmetry operations. These include translation group, point
group, and space group symmetries. The translation group has operations given
by {E|T } where E is the identity rotation operation and T is a translation operation
that leaves the crystal invariant. Examples of translation operations shown in
Fig. 1.3 are the primitive lattice vectors T = la,T = 1b,and T = la + 2b. The
point group has operations given by {al0} where o is a symmetry operation at a
point that leaves the crystal invariant with no translation. A lattice point group for a
crystal can have a two-, three-, four-, or sixfold axis of rotation plus reflections and
inversion operations.

For the example shown in Fig. 1.3, the point group symmetry operations at
lattice point A are those shown in Fig. 1.2 and discussed earlier. The space group
has operations {o|T } that leave the crystal invariant. If all operations {|0} in a
space group form a subgroup the space group is called symmorphic. In the examples
given above, the point group operations for the array of equivalent atoms in Fig. 1.2
combine with the translation operations of the lattice shown in Fig. 1.3 to form a
symmorphic space group. If the atoms on the lattice are not all equivalent as shown
in Fig. 1.4, the space group may not be symmorphic and some symmetry operations
involve the combination of a translation with a point group operation. For example
in Fig. 1.4a, the 90°, 180°, and 270° rotations are still symmetry operations but
the four mirror planes only leave the array invariant if they are combined with the
translation operation Tg = 1/2(a+b). These combined translation—reflection
operations {ag;|T 5 }, where o, represents one of the four mirror planes, are referred
to as glide planes. Similarly, for the example array of atoms shown in Fig. 1.4b, the
rotations of 90° and 270° only leave the system invariant when combined with
the translation operation 75 = (1/2)(a + b). These combined translation—rotation
operations {Ci|TB}, where C; represents one of the two rotation operations, are
referred to as screw axes. There is an important restriction on glide plane and
screw axis symmetry operations in three dimensions that does not apply to the
two-dimensional examples discussed above [3]. In three dimensions the translation

1 a 2

Fig. 1.4 A lattice with a basis of nonequivalent shapes



6 1 Symmetry in Solids

part of the combined operation must be in the mirror plane of the glide operation or
parallel to the rotation axis for the screw operation. If the array of atoms in Fig. 1.4a
continues out of the page making it three dimensional, then it could be expressed as

{o13](a + b + ¢)/2} where the vector (@ + b + ¢ )/2 lies in the &, plane. For the
situation shown in Fig. 1.4b, a rotation of 180° about lhe 1-3 axis leaves the array
invariant only if it is combined with a translation of 75 = (1/2)(a + b), which is
parallel to the 1-3 axis and therefore can be a screw axis in three dimensions.

There are 14 different types of crystal lattices found in nature, referred to as
Bravais lattices [1, 2, 4]. These are defined by the primitive translation vectors and
the angles between them where o is the angle between b and ¢, f§ is the angle
between ¢ and a, and 7y is the angle between a and b. The magnitudes of the
translation vectors are called the lattice parameters. The conventional cells
(not necessarily primitive) are shown in Fig. 1.5 for each type of lattice organized
into seven crystal systems. Each crystal system has a distinctly different shape.
The relationships between the lattice parameters and the angles for each of these are
given in Table 1.1. The Bravais unit cell is the smallest unit cell that exhibits the
symmetry of the structure.

The primitive Bravais lattices have one lattice site at position (0,0,0). There are
three types of nonprimitive Bravais lattices. The two-face-centered lattice
designated by C has lattice sites at positions (0,0,0,) and (1/2,1/2,0). The internally
centered lattice designated by I has lattice sites at positions (0,0,0) and
(1/2,1/2,1/2). The all-face-centered lattice designated by F has lattice sites at
positions (0,0,0), (1/2,1/2,0), (1/2,0,1/2), and (0,1/2,1/2). There are seven types
of primitive Bravais lattices and seven types of nonprimitive lattices that make up
the fourteen crystal symmetries. In dealing with space groups discussed below it is
important to further divide the two-face-centered lattice structure into three types

Table 1.1 Three-dimensional crystal lattices

Crystal systems and Bravais Lattice Point group symmetry (Crystal
lattices parameters Angles classes)
Triclinic P a#b#c aFf#Ay#90° C; (Cy
Monoclinic P a#b#c oa=y=90°#£f Cy), (Co, Cy)
C
Orthorhombic P a#b#c oa=p=y=90° D»;, (D», Cy,)
C
I
F
Tetragonal P a=b#c a=p=y=90° Dyj, (Dy, Cay, Capy Cay Doy, Sa)
I
Cubic P a=b=c a=p=y=90° 0,0,T, Ty, T)
I
F
Trigonal R a=b=c a=p=y<120°, D34 (D3, C3,, Ss, C3)
#90°
Hexagonal P azb#c 1:[)’:90", D6h (D(,, Cﬁv, C(,h, C(,, D3h, C3h)

y=120°
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MONOCLINIC P MONOCLINIC C

a

TETRAGONAL P

1

b b
ORTHORHOMBIC P ORTHORHOMBIC C

Fig. 1.5 Crystal structures
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ORTHORHOMBIC I

a a

CUBIC P CUBIC I
o

P

CUBIC F a
HEXAGONAL P

Fig. 1.5 (continued)

depending on which faces have the centered lattice points. These are designated
A (1/2b+1/2¢), B (1/2¢+1/2a), and C (1/2a+1/2b) where the coordinates of the
face center are given in parenthesis.

Each crystal system has a characteristic point group symmetry (as defined in
Chap. 2) that can be used to differentiate it from other crystal systems. This is listed
in the last column of Table 1.1 (not in parentheses) and describes the symmetry of
the simple Bravais lattice. This has the maximum possible symmetry elements for
that crystal class. The other point groups listed in parentheses are subgroups of this
point group and have lower symmetry. Crystals with these symmetries occur when
the molecules or atoms placed as a basis on the Bravais lattice have lower symmetry
than the lattice itself. Chapter 2 has a detailed discussion of these point group



1.2 Crystal Structures 9

symmetries. There are two types of point groups for the triclinic lattice, three types
each for the monoclinic and orthorhombic systems, seven each for the tetragonal
and hexagonal systems, and five each for trigonal and cubic systems. This gives a
total of 32 point groups associated with the 14 Bravais lattices as summarized in
Table 1.1.

There are five types of symmetry axes that occur in crystals representing n-fold
rotations. These are one-, two-, three-, four-, and sixfold axes representing
360/ns>degrees of rotation designated as C,. In addition there are mirror
planes perpendicular to the major rotation axis designated as ¢, and mirror planes
containing the major rotation axis designated as ¢,. Mirror planes diagonal to the
rotation axes are designated as ¢, The identity and inversion operations are
designated E and i. Combined rotation/reflection operations with the mirror
plane perpendicular to the rotation axis are designated S,. The point groups in
Table 1.1 are given in the Schoenflies notation [5]. Groups with nth order cyclic
rotations about a single axis are designated C,,. Adding a mirror reflection element
normal to the rotation axis gives groups designated C,,. C,, designates groups with
mirror planes containing the rotation axis. Adding a twofold rotation element
perpendicular to the major rotation axis gives groups designated as D,,. D,,, groups
have additional vertical symmetry planes between the twofold axes. In addition,
there are tetrahedral groups T, T,;, and T}, as well as octahedral groups O and O,
The resulting lattice systems are shown in Fig. 1.5.

The triclinic system is identified by the fact that it has no rotation or reflection
symmetry elements. It is the least symmetric of all the lattice systems. It can be
characterized as a parallelepiped with unequal edges and unequal angles.

One twofold axis in the b-direction identifies the monoclinic system. In addition
it has a mirror plane perpendicular to this axis. The three edges of the unit cell are
unequal in length with two being perpendicular to the symmetry axis. This may
occur as a simple primitive lattice or a base-center cell with points at the center of
the faces parallel to the reflection plane.

Three mutually orthogonal twofold axes identify an orthorhombic system.
In addition there are reflection planes perpendicular to these axes. The three edges
of the unit cell are unequal in length but are all mutually orthogonal. This gives rise
to four Bravais lattices: primitive, base centered, body centered, and face centered.

One fourfold rotation axis is the characteristic symmetry for the retragonal
system. This is in addition to the twofold axes and mirror planes found in the
orthorhombic system. This comes about because two of the edges of the lattice cell
in this system are equal. This leads to a primitive lattice and a body-centered lattice.

One threefold rotation axes is the characteristic symmetry for the trigonal
system. The shape of the lattice cell is a rhombohedron with equal sides and
equal angles (none of which are 90°). There are three twofold rotation axes
perpendicular to the trigonal axis, the inversion operation, three reflection planes
containing the trigonal axis, and two combined rotations of 60° about the trigonal
axis and reflection in a plane perpendicular to this axis. There is a second type of
lattice in the trigonal system designated P that is equivalent to the hexagonal lattice
so it is not shown as a separate lattice in Fig. 1.5.
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The characteristic symmetry for the hexagonal system is one sixfold axes. It also
has threefold and twofold rotations about this axis and twofold rotation axes
perpendicular to this axis. There is also inversion symmetry. Two of the edges of
the lattice cell have equal lengths, two of the angles are 90°, and the third one is
120°. This has only the primitive lattice structure.

The cubic system is identified by the presence of either four equivalent threefold
axes or three equivalent fourfold axes. In addition it contains several twofold
rotation axes, mirror planes, and inversion symmetry. These can be found in
simple-cubic, body-centered-cubic, and face-centered-cubic lattices. This is the
most symmetric type of crystal structure.

Twenty-seven of the 32 point group symmetries have a preferred axis of symme-
try. Because of this, it is useful to represent each of the these noncubic point group
symmetries by stereograms that specifically show the symmetry elements of the
group [6]. These are circles with the z-axis coming out of the page, @ representing a
point on top of the page, O representing a point below the plane of the page, and
© representing points above and below the plane of the page. These are useful in
describing an inversion operation. A mirror plane is a full line. Rotation axes are
represented by ., A ‘, and ‘ for twofold, threefold, fourfold, and sixfold rotations,
respectively. These 27 sterograms are shown in Fig. 1.6.

The five cubic point symmetry groups have equivalent, orthogonal axes of
symmetry instead of a single, preferred axis of symmetry. Thus it is not useful to
try to represent the symmetry elements of these groups by simple two-dimensional
stereograms such as those shown in Fig. 1.6. Instead these must be visualized using
a three-dimensional cube. Figure 1.7 shows the symmetry elements of the O and O,
cubic groups. The notations for the rotation axes and the inversion operation are the
same as those used in Fig. 1.6. There are three twofold and fourfold axes of
symmetry parallel to the cube edges. There are also six twofold axes parallel to
the face diagonals (only two are shown in the figure for simplicity). There are four
threefold axes of symmetry about the body diagonals (only two are shown in the
figure for simplicity). Inversion symmetry is present in O but not in O and is
represented by the open and filled circles as in Fig. 1.7. There are three reflection
planes perpendicular to the cube edges. There are six reflection planes parallel to
the face diagonals (only one of which is shown for simplicity). In addition there are
combined operations consisting of a +90° rotation about the axis parallel to the
cube edges followed by reflection through a plane perpendicular to the rotation axis.
This is represented in the figure by o Finally, there are combined rotations of
+120° about the body diagonals followed by reflections through the planes perpen-
dicular to these axes. These are represented in the figure by A. Only two of these are
shown in the figure for simplicity.

The final three groups of the cubic class can be visualized by carving out a
tetrahedron from the cube shown in Fig. 1.7. This is shown in Fig. 1.8. Then comparing
the symmetry operations shown in Fig. 1.8 with Fig. 1.9 shows that the tetrahedron still
has the three twofold symmetry axes parallel to the face edges and the eight threefold
symmetry axes about the body diagonals. The T point group is made up of the identity
plus these pure rotations as shown in Fig. 1.9. The T}, group contains the elements of T’
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Fig. 1.6 Stereograms for the 27 noncubic crystallographic point groups

plus the inversion operation and its product with each of the other elements, as shown
Fig. 1.9. The T,; group has the elements of 7 plus a mirror plane containing one edge of
the tetrahedron and bisecting the opposite edge and the elements obtained from
multiplying this mirror element with each of the other elements of T. This is also
shown in Fig. 1.9.

One of the 14 Bravais lattices having one of the seven symmetry types coupled
with one of the 32 point groups can be used to describe the total symmetry of
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Fig. 1.6 (continued)

any crystal. Only a limited number of combinations can be formed that meet the
requirement of invariance under all translation and point symmetry operations.
These are called space groups [3, 7]. The symmetry operations of a specific space
group include the point group operations and the translation operations, and any
combined translational rotation or reflection operations. These can be used to obtain
66 of the 73 symmorphic space groups. The other seven symmorphic space groups
have point groups that have two possible nonequivalent orientations on the Bravais
lattice. For example C,, can be on an A face centered lattice with operations such as
glide planes and screw axes. As discussed above, the translations for screw and
glide operations are nonprimitive lattice vectors, and in three dimensions their
direction is parallel to the screw rotation axis or in the mirror plane of the glide
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Fig. 1.6 (continued)

operation. As mentioned previously, space groups that do not contain these types of
operations are referred to as symmorphic while space groups containing screw or
glide operations are called asymmorphic.

There are 230 possible space groups of which 73 are symmorphic and 157 are
asymmorphic. Symmorphic space groups are made up of all the symmetry
operations of a crystallographic point group {a|0} combined with all of the
translational symmetry operations of a Bravais lattice {E|T } to give a complete
set of symmetry operations for the crystal {«|T }. This simple method combines
point groups and centered lattice or a C-centered lattice. The latter is centered along
a twofold rotation axis while the former is not. This results in two nonequivalent
space groups. Similarly, the point groups D,,, D3y, D3, Cs,, and D3, can each
generate more than one space group because of different types of orientations on
their Bravais lattices. For nonsymmorphic space groups, some of the point group
operations are combined with translation operations to give operators of the form

{ot|§(oc)}, where G () are not lattice translation vectors. There are two space
groups in the triclinic system, 13 in the monoclinic system, 59 in the orthorhombic
system, 68 in the tetragonal system, 25 in the trigonal system, 27 in the hexagonal
system, and 36 in the cubic system.
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Oy
(O is the same except no inversion symmetry operation.)

Fig. 1.7 Symmetry elements of the O and O, crystallographic point groups

Fig. 1.8 Tetrahedral T, Ty, Ty
symmetry as part of a cube
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The 230 space groups are listed in Table 1.2. There are two types of notations
commonly used to designate space groups of crystals. The first of these follows the
Schoenflies notation for the point groups with superscripts used to distinguish
among space groups combined with different types of lattices and involving screw
or glide operations. This notation explicitly designates a specific crystal class which
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Fig. 1.9 Tetrahedral symmetry groups T, T4, T},

implies one of the crystal systems listed in Table 1.1. However, the superscripts are
not helpful in identifying a specific Bravais lattice or the presence of any combined
rotation/translation symmetry elements. For example, the space groups O', where i =
1,...,4 are associated with a simple cubic lattice, the space groups designated O,
wherei =35, ..., 8 are associated with a face-centered cubic lattice, and 02 where i =
9 and 10 are associated with a body-centered cubic lattice.

The second type of notation is called the international notation. A specific space
group designation begins with a capital letter that designates the type of lattice
centering shown in Fig. 1.5. For face-centered lattices the letters A, B, and C designate
the specific face where the centering occurs as opposed to the generic designation C
used in Fig. 1.5. Also the letter R occurs in the trigonal crystal system to designate
rhombohedral lattice while the trigonal lattice designated by the letter P is essentially
equivalent to a hexagonal P lattice. The next part of the space group designation is the
point group symbol for the crystal class. In this notation, the numbers designate the
primary rotation axes (one-, two- three-, four-, or six-fold), letter m designates a mirror
plane containing the rotation axis, and /m a mirror plane perpendicular to the rotation
axis. A bar over an axis number designates a rotation—reflection combined operation.
A subscript on a rotation axis indicates that it is a screw operation. For example, 41, 4,,
and 4; designate a fourfold screw axis with translations of Y4, 5, and % of a lattice
vector. (Note that the translation part of a screw operation is always a submultiple of
the rotation part.) The letters a, b, ¢, n, and d designate glade plane operations
involving translations of one half a lattice translation in a specific direction before
reflection. Knowing the point group and type of centering gives the specific Bravais
lattice for the space group. As an example, the space group OZ in Schoenflies notation
is Fm3m in the international notation. This shows the space group to be in the face-
centered cubic crystal system in the m3m crystal class with no screw axes for glide
plane symmetry operations. The details of this type of designation are given in [5].
Both the Schoenflies and international notations are given in Table 1.2.

1.3 Symmetry in Reciprocal Space

Quasiparticles on a periodic crystal lattice (such as electrons or phonons) are
described by eigenfunctions of the form
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Table 1.2 List of the 230 space groups

1 Symmetry in Solids

Crystal system

Schoenflies notation

International notation

Triclinic

Monoclinic

Orthorhombic

P1
P1
P2
P2,
B2
Pm
Pb
Bm
Bb
P2/m
P2,/m
B2/m
P2/b
P2,/b
B2/b

P222
P222,
P2,2,2
P2,2,2,
C222,
C222
F222
1222
12,2,2,
Pmm?2
Pmc2,
Pcc2
Pma2
Pca2,
Pnc2
Pmn2,
Pba2
Pna2,
Pnn2
Cmm?2
Cmc2,
Ccec2
Amm?2
Abm?2
Ama?2
Aba2
Fmm?2
Fdd2
Imm?2
1ba2
Ima?2

(continued)
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Table 1.2 (continued)

17

Crystal system

Schoenflies notation

International notation

Tetragonal

Pmmm
Pnnn
Pcem
Pban
Pmma
Pnna
Pmna
Pcca
Pbam
Pccn
Pbcm
Pnnm
Pmmn
Pbcn
Pbca
Pnma
Cmem
Cmca
Cmmm
Ccem
Cmma
Ccca
Fmmm
Fddd
Immm
Ibam
Ibca
Imma

P4
P4,
P4,
P45
4

14,

P4

14
P4/m
P4,/m
P4/n
P4,/n
14/m
P4,/a
P422
P42,2
P4,22
P4,2,2

(continued)
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Table 1.2 (continued)

1 Symmetry in Solids

Crystal system

Schoenflies notation

International notation

P4,22
P4,2,2
P4322
P432,2
1422
14,22
Pdmm
P4bm
Pd>cm
Pd,nm
Pdcc
Pdnc
P4>mc
P4,bc
I4mm
l4cm
14,md
14,cd
P42m
P42¢
P42,m
P 4_12 1C
Pdm2
P4c2
P4b2
P4n2
14m?2
I4c2
142m
142d
P4/mmm
P4/mcc
P4/nbm
P4/nnc
P4/mbm
P4/mnc
P4/nmm
P4/ncc
P4,/mmc
P4,/mem
P4,/nbc
P4,/nnm
P4,/mbc
P4,/mnm
P4,/nmc
P4,/ncm

(continued)
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Table 1.2 (continued)
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Crystal system

Schoenflies notation

International notation

Trigonal

Hexagonal

Dj
D}
D}
D}

14/mmm
14/mem
14,/amd
14,/acd

P3
P3,
P32
R3

P3
R3
P312
P321
P3,12
P3,21
P3,12
P3,21
R32
P3ml
P31m
P3cl
P31c
R3m
R3¢
P31m
P31c
P3ml
P3¢l
R3m
P3¢
P6
P6,
P65
P6,
P64
P6
P6/m
P6s;m
P622
P6,22
P6522
P6,22
P6,22
P6522
P6mm

(continued)
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Table 1.2 (continued)

Crystal system Schoenflies notation International notation
lor8 P6cc
C3, P6scm
(o g‘, P6smc
D}, P6m2
D3, P6c2
D3, PG2m
D, PG2e
D é \ P6/mmm
D%, P6/mcc
Dg .\ P6s/mcm
D¢, P6s/mmc

Cubic T! P23
T? F23
T 23
T P23
T° 12,3
T Pm3
T? Pn3
T2 Fm3
T} Fd3
T,51 Im3
T Pa3
TZ 1a3
T; P43m
T3 F43m
TS, 143m
Tj P43n
T3 F43c¢
TS 143d
o' P432
0? P4,32
o’ F432
o* F4,32
0’ 1432
0° P4,32
o’ P4,32
ot 14,32
0}7 Pm3m
0? Pn3n
O?7 Pm3n
o} Pn3m
Ofl Fm3m
02 Fm3c
o} Fd3m
08 Fd3c
02 Im3m

ol la3d
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Y(r) = u(r)e™, (1.2)

where k is the wave vector with magnitude 21t/ and A is the wavelength and u(r) is
a function that has the periodicity of the lattice. To work with wave vectors that have
the periodicity of the lattice, it is useful to construct a reciprocal lattice [1, 2, 3, 7].
This is done by defining three vectors by, b,, and b3 with respect to the primitive
translation vectors given in (1.1):

t; - bj = d;, (1.3)
so that

th X t t; xt t xt
b1:#7 bZ:#, b3=1—2. (1.4)
t1-(t2><t3) tl'(t2Xt3) t1-(t2><t3)

The volume of the unit cell in reciprocal space is by - (b, x bs) which is the
reciprocal of the volume of the unit cell in ordinary space, t; - (t; X t3). Using this
construction, the unit cells in reciprocal space can be formed for each of the Bravais
lattices in ordinary space. These are called Brillouin zones. These are constructed
by drawing the vectors K defining the reciprocal lattice and then bisecting each of
these with planes perpendicular to K. The shape enclosed by these planes is the first
Brillouin zone. This zone is repeated throughout the reciprocal lattice by translating
it by reciprocal lattice vectors. Any point at position k in a given Brillouin zone is
equivalent to the point defined by Kk in the first Brillouin zone.

A wave vector that has the correct periodicity in reciprocal space can then be
expressed as

Kh = 27((/’11])1 + h2b2 —+ ]’13])3)7 (15)

where the A; represent integers. The vectors (f;b;+h,b,+h3b3) go from the origin
to the lattice points in reciprocal space so

iKh'(r"!‘Rn)

e =k, (1.6)

The values of & in each direction in the first Brillouin zone are restricted to

Ta< (1.7)
a a

where « is the unit cell dimension in real space and the end points for k are on the
zone surface. The product of the reciprocal space vector in (1.5) with a unit cell
vector in real space is

K-da;=2nh;, (1.8)
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where /; is an integer. The function in (1.2) with the periodicity of the lattice can
then be written as

u(r) =3 C(K)eK T (1.9)
K

Since the Bravais lattice is invariant with respect to the symmetry elements of its
point group, the corresponding reciprocal lattice must also be invariant with respect

Table 1.3 Equivalent lattices in real and reciprocal space

Lattice in real space

Lattice in reciprocal space

Simple triclinic

Simple monoclinic
One-face-centered monoclinic
Simple orthorhombic
Face-centered orthorhombic
Body-centered orthorhombic
One-face-centered orthorhombic
Simple tetragonal
Body-centered tetragonal
Simple hexagonal
Rhombohedral

Simple cubic

Face-centered cubic
Body-centered cubic

Simple triclinic

Simple monoclinic
One-face-centered monoclinic
Simple orthorhombic
Body-centered orthorhombic
Face-centered orthorhombic
One-face-centered orthorhombic
Simple tetragonal
Body-centered tetragonal
Simple hexagonal
Rhombohedral

Simple cubic

Body-centered cubic
Face-centered cubic

Fig. 1.10 Brillouin zone for a simple cubic lattice with space group O} in ordinary space.
The points with special symmetry are shown
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to this point group. Thus the Brillouin zone for this lattice will belong to the same
crystal system as the lattice in real space but it can have a different distribution
pattern. For example, a face-centered cubic lattice in real space has a body-centered
cubic lattice in reciprocal space. Table 1.3 lists the equivalent lattices in real and
reciprocal space [7].

An example of a Brillouin zone is shown in Fig. 1.10. This is the reciprocal
lattice cell for a simple cubic space group O} in ordinary space. The points of
special symmetry are labeled in Fig. 1.10. The point group symmetry at these points
are: O, for I and R; Dy, for M and X; C,, for A and T;, C5, for A; and C,, for Z, %,
and S.

A second example of a Brillouin zone is shown in Fig. 1.11. This is the
reciprocal lattice for a hexagonal crystal system. Again the points of special
symmetry are shown in Fig 1.11. The Brillouin zone structures for all of the crystal
systems are given in [3].

Translational symmetry and reciprocal space are especially important in
considering wave-like quasiparticles in crystals. Examples of this for phonons
and electrons are given in Chaps. 7 and 8, respectively.

k;

Fig. 1.11 Brillouin zone for a hexagonal crystal structure
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1.4 Problems

1. There are 10 point groups in two dimensions with the following symmetry
operations:

Cll E Clv: E,G

Cz: E,C2 C2‘,I E, Cz, o, GC2

Cs: E, Cs, C% Cs,: E, Cs, C%, s, sCs, xC%

C42 E, C4, C2, CZ C4‘,I E, C4, Cz, Ci, S, SC4, SCz, sCf{

C6Z E, CG, C3, Cz, C%, Cg Cﬁvi E, C6, C3, Cz, C%, Cg, o, GCG, GC3, GCz, O'C%, O'Cg

Draw two-dimensional figures representing each of these symmetry groups.

2. Draw stereograms for each of the ten two-dimensional point groups listed above.
Show how an elongating distortion of the Cy4, shape in problem 1 removes some
of the symmetry elements in the stereogram for this point group and leaves a
new stereogram for a different point group.

3. A two-dimensional hexagonal lattice is shown in the picture below.

Draw the primitive unit cell for this lattice. Draw the symmetric (Wigner—Seitz)
cell. This is defined as the area with points that are closer to a specific lattice
point than any other. Find the areas of each type of cell.

4. Calculate the volume of the conventional unit cell and the primitive unit cell for
a simple cubic lattice, a body-centered cubic lattice, and a face-centered cubic
lattice.

5. Look up the crystal structure of each of the following materials: NaCl, CsCl,
ZnS, Al,O3, and Diamond.
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Chapter 2
Group Theory

The formal mathematical treatment of the symmetry of physical systems discussed
in Chap.1 is called group theory. This chapter summarizes the fundamental proper-
ties of group theory that will be used to treat physical examples of symmetry in the
succeeding chapters. This book is focused on the practical use of group theory and
does not attempt to cover derivations of the fundamental postulates or advanced
aspects of this topic. For a rigorous treatment of group theory the reader is referred
to [1].

A group is defined as a collection of elements that obey certain criteria and are
related to each other through a specific rule of interaction. The rule of interaction is
referred to generically as the “multiplication” of two elements. However, the
interaction may not be the normal multiplication of two numbers since the elements
of a group may not be simple numbers. The number of elements in group /4 is called
the order of the group. There are four requirements for a set of elements to form a

group:

1. One element, designated E and called the identity element, commutes with all
the other elements of the group and multiplication of an element by E leaves the
element unchanged. That is, EA=AE=A.

2. The result of multiplying any two elements in a group (including the product of
an element with itself) is an element of the group. That is, AB=C where A, B, and
C are all elements of the group.

3. Every element of the group must have a reciprocal element that is also an
element of the group. That is, AR=RA=FE where A is an element of the group,
R is its reciprocal, and E the identity element and R and E are both members of
the group.

4. The associative law of multiplication is valid for the product of any three
elements of the group. That is, A(BC)=(AB)C.

It is not necessary for the products of elements of a group to obey the
commutative law. That is, the element resulting in the product AB may not be the
same as the element resulting in the product BA. If the elements of a specific group
happen to obey the commutative law the group is said to be Abelian.

R.C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals, 25
Lecture Notes in Physics 824, DOI 10.1007/978-1-4419-7598-0_2,
© Springer Science+Business Media, LLC 2010
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Group multiplication Table

E A B C D F
E E A B C D F
A A E D F B C
B B F E D C A
c Cc D F E A B
D D C A B F E
F F B c A E D

The properties of a group discussed above can be exemplified in a group
multiplication table. Consider a group consisting of six elements represented by
the letters A, B, C, D, E, and F that obey the multiplication table shown above. The
elements in the table are the product of the element designating its column and
the element designating its row. Following this convention, the table shows that the
identity element is a member of the group, the product of any two elements is
an element of the group, and each group element has an element in the group that
is its inverse. Each element appears only once in any given row or column.
The associative law holds but the commutative law does not hold for all products
so the group is not Abelian. The order of the group is 6.

The multiplication table is useful in identifying subgroups within the whole group.
These are subsets of the total set of group elements that meet the requirements of being
a group without requiring the other elements of the total group. By inspection, it can be
seen that the elements D, E, and F form a subgroup of order 3. Also there are three
subgroups of order 2: E,A; E,B; and E,C. Of course the element E by itself always
forms a subgroup of order 1. Note that the orders of the subgroups are integral factors
of the order of the total group.

Another useful concept in dealing with a group is organizing its elements in
conjugate pairs through the use of a similarity transformation. To find the conjugate
of an element A, the triple product of A with another element of the group and its
reciprocal element is formed. For example,

B = X"'AX.

This type of product is a similarity transformation, and the elements A and B are said
to be conjugates of each other. Every element is conjugate with itself. Also, if A is
conjugate with two elements B and C then B and C are conjugate with each other. A
complete set of elements that are conjugate to each other form a class of the group.

From the multiplication table of the group of elements A, B, C, D, E, F shown
above, it is easily seen that E by itself forms a class of order 1. The elements A, B, C
form a class of order 3. This can be seen by taking all possible similarity
transformations on element A, which gives

E'AE=A, A'AA=A, B 'AB=C, C'AC=B, D 'AD =B,
F'AF = C,
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and then doing the same for elements B and C. Similarly, taking all possible
similarity transformations on elements D and F show that they form a class of
order 2. Note that it is always true that the order of a class is an integral factor of the
order of the group.

The type of group of interest here is a symmetry group. The elements of this type
of group are a complete set of relevant symmetry operations that obey the rules of a
group. The specific symmetry groups of interest are those defining the crystal
classes discussed in Chap. 1.

2.1 Basic Concepts of Group Theory

The basic concepts of group theory can be demonstrated by considering the spatial
symmetry of an object with a specific geometrical shape. The way such an object is
transformed by operations about a specific point in space is referred to as point
group symmetry. The symmetry operations for point groups include rotations about
axes, reflections through planes, inversion through a central point, and combina-
tions of these.

By convention, different types of symmetry elements have specific designations
[1-4]. To reiterate the designations listed in Chap.l, the identity operation,
describing the situation where no transformation takes place, is designated as E.
Rotation about an axis of symmetry is designated by C,, which indicates that the
object is spatially identical after a rotation of 2nt/n about this axis. For example, a
rotation of 180° is represented by the twofold symmetry operation C, while a
fourfold symmetry axis C, represents a rotation of 90°. Since n rotations of C,
take the object back to its original position, C! = E. If a reflection plane is perpen-
dicular to the highest order symmetry axis, it is designated by g, If the reflection
plane contains the highest order symmetry axis, it is designated by a,. Mirror planes
diagonal to the rotation axes are designated as o,,. Mirror operations take twice result
in E. For an object possessing a center of symmetry, the inversion operation is
designated by i and i*=E. There are also combined operations. For example the
inversion operation is a combined rotation and reflection, i=C,0,. A combined
rotation—reflection operation with the mirror plane perpendicular to the rotation
axis is called an improper rotation and designated by S,. Thus, S,=a,C,. The
order of successive symmetry operations is important since not all of them commute.

As discussed above, it is convenient to organize the elements of a group into
classes where all elements in the same class are related to each other by a unitary
transformation of another operator of the group. For example, if T~ 'AT = A’ where
all of these are elements of the group, A and A’ are members of the same class.
As stated before, the order of a class must be an integral factor of the order of the
group.

The action of the elements of a symmetry group on the physical properties of a
system is described in terms of mathematical transformations. The physical proper-
ties may be expressed as vectors, matrices, or tensors of higher rank as discussed in
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Chap. 3. These form vector spaces, and their transformations in this vector space
are the image of the symmetry transformations in coordinate space. For example,
the state vectors of a quantum mechanical system transform into each other in the
same way as the symmetry transformations of the coordinates describing the
system. When the mathematical description of the physical properties of a system
transform in the same way as a symmetry group, they are said to be a representation
of that group. The symmetry elements act as linear operators to produce transfor-
mations in a specific representation of the group. A group will have a number of
different types of representations associated with different physical properties.

Every group has a one-dimensional trivial representation consisting of assigning
the number one to all elements of the group. In general, a set of matrices of a
specific dimension are assigned to the elements of the group to make a representa-
tion of the group. These matrices must obey the same multiplication table as the
elements of the group. The matrix of a representation is square and the number of
elements in a row or column is the dimension of the representation, which is equal
to its degeneracy. It is possible to construct many different representations of this
type for the same group.

It is always possible to find a similarity transformation that puts a matrix into a
box diagonal form

[A1] 0
Al = T'AT = [As] . @2.1)
0 [A3]

In this case A and A’ are matrices representing reducible representations while the
A; are matrices represent irreducible representations. The sum of the squares of
the dimensions of the irreducible representations of a group is equal to the order of
the group:

> di=h (2.2)

The number of irreducible representations of a group is equal to the number of
classes in the group.

The spatial position of an object is represented by vectors in Cartesian
coordinates. A transformation of the object can be represented by a transformation
of these coordinate vectors. The object moves from a vector position designated by
the coordinates (x,y,z) to a new position designated by the coordinates (', y, Z') as
shown in Fig. 2.1. Any vector r can be expressed in terms of its Cartesian
coordinates using the unit vectors, X, ¥, and Z. A transformation operation can
then be applied to each component and the new components recombined to
give the transformed vector r’. If a rotation about the major symmetry axis
(usually taken to be the z-axis) is designated by an angle 0, the transformation is
given as
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Fig. 2.1 Transformation of 1

: . cos 'a,
Cartesian coordinates 2z
z
Z’
cos la,
yz
-~
y
1,
cos 'ay, y
X bl
X
X =xcos 0+ ysin0
y = —xsin0 + ycos0. (2.3)
7 =z
In matrix form this coordinate transformation is written as
X - [x Ay  Qyy Ay X
/
y = A y | =1 ay ayy ay; y . 2.4)
Z z azy Azy Ay z

The matrix elements a;; are the direction cosines of the coordinate represented by i/
with respect to the coordinate represented by j as shown in Fig. 2.1. For the example
of a rotation about the z-axis given by (2.3) the transformation matrix is

- cos sinf O
A(Cy)) = | —sin0 cos® 0 |. (2.5)
0 0 1

A symmetry operation consisting of a mirror reflection plane perpendicular to the z-
axis would be represented by the matrix

0
1 0 |, (2.6)
0
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so that the transformation is

X =X
y =y 2.7
7=—z

Every element of a symmetry group can be represented by a transformation matrix
such as the examples given in (2.5) and (2.6).

In the mathematical manipulation of matrices, one useful property is the sum of
the diagonal elements which is called the frace of the matrix. In the examples of the
two transformation matrices given above,

TrA(Co)) = > @i = 2cos 0 + 1 (2.8)
and
TrA(cy) = Y ai = 1. (2.9)

The trace of a transformation matrix representing a symmetry operation is called
the character of the operation in that representation and is designated by y.

Characters of matrix operators have special properties that make them useful
working with group theory.

1. Since the trace of a matrix is invariant under a similarity transformation, all
symmetry operations belonging to the same class of the group have the same
character.

2. The character of a reducible representation is equal to the sum of the characters
of the irreducible representations that it contains.

3. The number of times that a specific irreducible representation is contained in the
reduction of a reducible representation can be determined by

i 1 i
n(d = XA:X?M (2.10)

Here XX) is the character of the operation A in the ith irreducible representation
while y4 is the character of the same operation in the reducible representation.
The sum is over all of the symmetry operations of the group of order 4.

4. For any irreducible representation, the sum of the squares of the characters of all

the operations equals the order of the group
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> A =nh. (2.11)
5. The set of characters for two different irreducible representations are orthogonal

> w(A)g(A) =0, i) (2.12)
A

6. The direct product of two representations is found by multiplying the characters
of a specific operation in these two representations to give the character of that
operation in the product representation. A direct product representation is
usually a reducible representation of the group.

Another important property of transformation matrices is that irreducible repre-
sentations are orthogonal and obey the relationship

* h
Z [Ff(A)mn] [FJ(A)m’n’} = 51'j'5mm’5nn’~ (2.13)

A V/did;

Here I';(A),,, is the mn matrix element of the transformation matrix for operation
A in the I'; irreducible representation.

Each representation of a symmetry group operates on a set of functions that
transform into each other under that representation of the group. These are
called basis functions for that representation. For physical systems they
represent a specific physical property of the system. In the example of the
coordinate transformation discussed above, the vector coordinates x, y, and z are
the set of basis functions. Any property described by a vector will transform like
this set of basis functions according to the representation of the group of symmetry
elements for the system. The rotation axes Ry, R,, and R. can also act as a set of
basis functions for irreducible representations of a group. These differ from the
spatial coordinates because a symmetry operation may change the direction of
rotation. A third common set of basis functions are the six components of a
pseudovector arising from a vector product. These basis functions are discussed
in the examples given below, and in Chap. 4 it is shown how spherical harmonic
functions can also be used as basis functions.

2.2 Character Tables

A character table for a symmetry group lists the characters for each class of
operations in the group for each of the irreducible representations of the group.
The character tables for each of the 32 crystallographic point groups discussed in
Chap. 1 are given in Tables 2.1-2.32. These are very useful in the application of
group theory to determine the properties of crystals [4-6].
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Table 2.1 Character table for point group C,

2 Group Theory

C, E
A 1
Table 2.2 Character table for point group C;

C, E o, Basis components

A 1 1 Xy, R. ¥y 22 xy
A" 1 -1 z, R.R, yZ, Xz
Table 2.3 Character table for point group C;

C; E i Basis components

Ay 1 1 R.Ry.R. xz,yz,zz,xy,xz,yz
Ay 1 -1 X,),Z

Table 2.4 Character table for point group for C,

C, E C, Basis components

A 1 1 z R. xz,yz,zz, xy
B 1 -1 X,y R.R, VZ,XZ
Table 2.5 Character table for point group C,,

Cop E C, i o, Basis components

A, 11 1 1 R. 2y xy
B, 1 —1 1 -1 R.R, yz,XZ

Ay 1 1 -1 -1 z

B, 1 —1 -1 1 X,y

Table 2.6 Character table for point group C,

C,, E C, o,(xz) avl(yz) Basis components

A 1 1 1 1 z ¥y
A, 1 1 -1 -1 R, Xy

B, 1 -1 1 -1 X R, Xy

B, 1 —1 —1 1 y R, yz
Table 2.7 Character table for point group D,

D, E Cy(2) Co(y) Ch(x) Basis components

A 1 1 1 1 ¥y
B, 1 1 —1 —1 z R. Xy

B, 1 -1 1 -1 y R, Xz

B; 1 -1 -1 1 X R, yz
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Table 2.8 Character table for point group D,

Dy, | E Cyz) Co(y) Colx) i a(xy) o(xz) o(yz) | Basis components
Ay |11 1 1 11 1 1 P2z
B, | 11 -1 -1 1 1 -1 -1 R, xy

By | 1 —1 1 -1 1 -1 1 -1 R, xz

By | 1 -1 -1 1 1 -1 -1 1 R, yz

Ay 1 1 1 1 -1 -1 —1 —1

By, | 11 -1 -1 -1 -1 1 1 z

By | 1 =1 1 -1 -1 1 -1 1

By, | 1 -1 -1 1 -1 1 1 -1 X

Table 2.9 Character table for point group Cy

Cy E Cy C ci Basis components

A 1 1 1 1 z R, X4y2 22
B 1 -1 1 -1 X*—y* xy
E* 2 0 -2 0 () (R.Ry) (yz,xz)
Table 2.10 Character table for point group Cygy,

Cy | E Cy C C3 @i S5 05 S Basis components

Ag 11 1 1 1 1 1 1 R, P
B, 1 -1 1 -1 1 -1 1 -1 X*—y*xy
E*| 2 0 -2 0 2 0 -2 0 (RRy)  (yz,x2)
Ay 11 1 1 -1 -1 -1 -1 z

B, I -1 1 -1 -1 1 -1 1

E*| 2 0 -2 0 2 0 -2 (xy)

Table 2.11 Character table for point group Cy,

Cyy E 2C, C, 20, 204 Basis components

A, 1 1 1 1 1 z Xy? 22
A 1 1 1 -1 -1 R,

B, 1 -1 1 1 -1 x—y?
B, 1 -1 1 -1 1 Xy

E 2 0 -2 0 0 (x,y) (R.Ry) (yz,xz2)
Table 2.12 Character table for point group Sy

S4 E Sy C, S3 Basis components

A 1 1 1 1 R, X y2 22
B 1 —1 1 —1 z xz—yz,xy
E* 2 0 2 0 @) ReR) (23
Table 2.13 Character table for point group D,

D, E 2C; G, 2C, 2CY Basis components

A, 1 1 1 1 1 X4y* 22
A, 11 1 —1 —1 z R.

B, 1 -1 1 1 -1 X —y?
B, 1 -1 1 —1 1 xy

E 2 0 -2 0 0 (xy)  (RoR))  (yz,x2)

33
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Table 2.14 Character table for point group Dy,

2 Group Theory

Dy, E 2C, Cy 2C, 2C5 i 284 o, 20, 20, | Basiscomponents

A | 11 1 1 1 1 1 1 1 1 4y 22
A | 11 1 -1 -1 1 1 1 -1 =1 R,

By | 1 -1 1 1 -1 1 -1 1 1 -1 x—y?
By | 1 -1 1 -1 1 1 -1 1 -1 1 xy

E, 2 0 -2 0 0 2 0 -2 0 0 (RuR,)  (yz,x2)
A | 1 1 11 1 -1 -1 -1 -1 -1

Ay | 1 1 1 -1 -1 -1 -1 -1 1 1 z

B, | 1 -1 1 1 -1 -1 1 -1 -1 1

Boy | 1 1 1 -1 1 -1 1 -1 1 -1

E, 2 0 -2 0 0 -2 0 2 0 0 xy)

Table 2.15 Character table for point group D,

D>, | E 28,4 C, 2C, 20, R 2RS, RC, 2RC, 2Ro, | Basis components

A, 11 11 1 1 1 11 1 Pyt et
A, 11 1 -1 -1 1 1 1 -1 -1 R,

B, 1 -1 1 1 -1 1 -1 1 1 -1 X—y?
B, 1 -1 1 -1 1 1 -1 1 -1 1 z xy

E 20 20 0 2 0 -2 0 0 (xy) (RoR,) (yz,x2)
Dp|2+v2 0 0 0 -2 _\420 0 0

»S 2 _y20 0 0 2.3 0 0 0

Table 2.16 Character table for point group C3

C; E Cs C3 Basis components
A 1 1 1 z R, Xy2 22
E* 2 -1 —1 (x.y) (RRy) (2—y2,xy)(yz,x2)

Table 2.17 Character table for point group Cj,

Cs, E 2C5 30, Basis components

Ay 1 1 1 z x2+y2,22

A, 1 1 -1 R

E 2 -1 0 @y RuR)  (P—y.xy)(yz.x2)

Table 2.18 Character table for point group C3,

Csyp, E Cs c; o S5 83 Basis components

Al 1 1 1 1 1 1 R. Py 2
E'* 2 -1 -1 2 -1 -1 xy) =y*xy)
A" 1 1 1 -1 -1 —1 z

E"# 2 -1 —1 -2 1 1 RoR)  (7x2)
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Table 2.19 Character table for point group D3

35

Ds E 2C5 3C, Basis components

A, 1 1 1 X4y 2

A, 1 1 -1 z R.

E 2 ~1 0 () (R.R,) (0 =y, ) (yz,x2)
Table 2.20 Character table for point group D3,

D5y E 2C3 3C, i PAYS 30,4 Basis components

Aig 11 1 1 1 1 P+y?2?

Agg 11 -1 1 1 -1 R.

E, 2 -1 0 2 -1 0 RoR) (=% (yz,x2)
A 1 1 1 -1 -1 -1

Asy 1 1 -1 -1 -1 1 z

E, 2 -1 0 -2 1 0 (x,y)

Table 2.21 Character table for point group S¢

Se E Cs C3 i S3 Se Basis components

Ay 1 1 1 1 1 R, X y2 22

E; 2 -1 -1 2 -1 -1 (RoR)) (= xy)(yz,x2)
Ay 1 1 1 -1 -1 -1 z

E; 2 -1 -1 -2 1 (xy)

Table 2.22 Character table for point group Cg

Cs E Cs Cs C, C? C3 Basis components

A 1 1 1 1 1 1 z R, X y2 22
B 1 -1 1 -1 1 -1

Ej 2 1 1 -2 1 1 (x,y) (Ry.Ry) (xz,yz)

E; 2 -1 1 2 1 -1 (*=y2,xy)
Table 2.23 Character table for point group Cg,

Cen, E Cs C3 C, Cg Cg i Sg Sg o, Se¢ S3 Basis components

Ag 11 1 1 1 1 1 1 1 1 1 1 R. X y? 22
B, 1 1171 -11 -11 -11 -—-11 -1

E, |21 -1 -2-11 2 1 -1 -2-11 (RoRy) (xz,y2)

Ej |2 -1 -12 -1 -12 -1 -12 -1 -1 (*—y%,xy)
Ay 11 1 1 1 1 -1 -1 -1 -1 -1 -1 z

B, 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

E}, 21 -1 -2 -11 -2 -11 2 1 -1 oY)

Ej, |2 -1 -12 -1 -1 -=21 1 =21 1
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Table 2.24 Character table for point group Cs,

2 Group Theory

Ce, E 2C¢ 2C5 C, 30, 304 Basis components

A, 1 1 1 1 1 1 z Xy2 22
A 1 1 1 1 -1 -1 R.

B, 1 —1 1 —1 1 —1

B, 1 -1 1 -1 -1 1

E, 2 1 -1 -2 0 0 () (R.Ry) (xz,yz)

E» 2 -1 -1 2 0 0 (*=y2,xy)
Table 2.25 Character table for point group Dg

D E 2Cs 2C; Cs 3C, 3CY Basis components

A 1 1 1 1 1 1 Xy2 22
Ay 1 1 1 1 -1 -1 z R,

B, 1 -1 1 -1 1 -1

B, 1 —1 1 —1 —1 1

E, 2 1 -1 -2 0 0 (Y RoRy) (xz,yz)

E, 2 -1 -1 2 0 0 (*—=y2,xy)

Table 2.26 Character table for point group Dgy,

D¢y | E 2Cs 2C5 Cy 3Cy 3Cy i 2S3 2S¢ o, 304 30, | Basis components

Ag |11 1 1 1 1 1 1 1 1 1 1 X4y 22
Ay |11 1 1 -1 -1 1 1 1 1 -1 -1 R.

Big 1 -1 1 -1 1 -1 1 -1 1 -11 -1

By |1 -1 1 -1 -1 1 1 —11 =111

E 2 1 -1 =20 0 2 1 -1 =20 0 R..R)) (xz,yz)
Ey |2 -1 -1 2 0 0 2 -1 -12 0 0 (P —y%,xy)
Al 11 1 1 1 1 -1 -1 -1 -1 -1 -1

Aw |11 1 1 -1 =1 -1 -1 =1 =11 1 z

B 1 -1 1 -1 1 -1 -11 -11 =11

By I -1 1 -1 -1 1 -11 =11 1 -1

E 2 1 -1 =20 0 -2 -11 2 0 0 @xy)

Ep |2 -1 12 0 0 -21 1 -20 0

Table 2.27 Character table for point group D5,

D5y, E 2C3 3C, oy, 283 30, Basis components

A/ 1 1 1 1 1 1 Xy2 22
Ay 1 1 -1 1 1 -1 R.

E' 2 -1 0 2 -1 0 ) (*=y2,xy)
A 1 1 1 -1 -1 -1

A 1 1 -1 -1 -1 1 z

E" 2 -1 0 -2 1 0 (R.Ry) (xz,y2)
Table 2.28 Character table for point group T

T E 3C, 4C; 4Cc3 Basis Components

A 1 1 1 1 2

E* 2 2 —1 -1 X4y?, xi—y?
T 3 —1 0 0 (x.y.2) (R.Ry.R) (xz,yz, xy)
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Table 2.29 Character table for point group T,

T, | E 3C, 4C3 4C3 i 30, 4iC; 4iC3 | Basis Components

Al 11 11 111 1 D I

E; | 2 -1 -1 2 2 -1 -1 Q22 =x*—y* x*—y?)
T, 3 -1 0 0 3 -1 0 0 (R.Ry.R.)  xz,yz,xy

A | 11 1 1 -1 -1 -1 -1

Ef| 2 -1 -1 =2 -2 1 1

T, |3 -1 0 0 =31 0 0 (xy.2)

Table 2.30 Character table for point group T,

T, E 8C; 3C, 654 60, Basis components

A 1 1 1 1 1 Xoyi42?

A 1 1 1 -1 -1

E 2 -1 2 0 0 QA —x*—y* x*—y?)
T, 3 0 -1 1 -1 (RuRy.R.)

T, 3 0 —1 —1 1 (x,,2) (xz,yz,xy)

Table 2.31 Character table for point group O

0 E 8C; 6C, 6C, 3¢? Basis components

A 1 1 1 1 1 X4y* 422

A, 1 1 -1 -1 1

E 2 -1 0 0 2 Q22— =y’ x*—y)
T, 3 0 -1 1 -1 x,),2) (R\.R.R.)

T, 3 0 1 -1 -1 (xz,yz,xy)

Table 2.32 Character table for point group O,

0Oy, E 8C; 6C, 6Cy 3C§ i 654 8S¢ 30, 60,| Basis components

Ay 11 1 1 111 11 1 Ky

Asg 11 -1 -1 1 1 -1 1 1 =1

E, 2 -10 0 2 2 0 -12 0 Q2 —x*—y?,
=y

Ty, 30 -1 1 -1 3 1 0 -1 -1 (R.R,.R.)

Tog 30 1 -1 —-13 -1 0 -11 (xz,yz,xy)

Dps |21 0 V2 0 2 2 1 0 0

2Sg 21 0 —,20 2 _\A1 0 0

Dipg |4 -1 0 0 0 4 0 -10 0

A 11 1 1 1 -1-1 -1 -1 -1

Az 11 -1 -1 1 =11 -1 -1 1

E, 2 -10 0 2 =20 1 20

Tiu 30 -11 -1 =3 -1 0 1 1 xy.2)

Tsy 30 1 -1 -1 =31 0 1 -1

Dp, |21 0 V2 0 -2 _2-10 0

284 21 0 —_\»20 2,2 -10 0

Dspu |4 -1 0 0 0 —40 1 0 0
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Table 2.32 Character table for point group O, (continued)

0y, R 8RC; 6RC, 6RC, 3RC2 Ri 6RS, 8RSs; 3Ro, 6Rag,
A |1 1 1 1 1 11 1 1 1
Ay |1 1 -1 -1 1 1 -1 1 1 -1
E, 2 -1 0 0 2 2 0 -1 2 0
T, [3 O -1 1 -1 3 1 0 -1 -1
Ty |3 0 1 -1 -1 3 -1 0 -1 1
Dip, | -2 =1 0 -2 0 -2 _y2 -1 0 0
2Sg -2 -1 0 V2 0 -2 2 -1 0 0
Dip, | —4 1 0 0 0 —4 0 1 0 0
A, |1 1 1 1 1 -1 -1 -1 -1 -1
Ay |1 1 -1 -1 1 -1 1 -1 -1 1
E, 2 -1 0 0 2 -2 0 1 -2 0
Tuw [3 0 -1 1 -1 -3 -1 0 1 1
T |3 0 1 -1 -1 =31 0 1 -1
Dipu | 2 -1 0 -2 0 2 2 1 0 0
»Su -2 -1 0 V2 0 2 21 0 0
Dspu | —4 1 0 0 0 4 0 -1 0 0

There are different notations used to designate irreducible representations in
group theory. I is used for a generic representation. The character tables shown
here use the Mulliken notation which distinguishes between different types of
irreducible representations. One-dimensional representations are designated by
either A or B. The former is used when the character of the major rotation operation
is 1 and the latter is used if the character of this operation is —1. Two-dimensional
irreducible representations are designated by E and three-dimensional representa-
tions are designated by 7. Subscripts 1 and 2 are used if the representation has
symmetric (y(C,)=1) or antisymmetric (y(C,)=—1) twofold rotations perpendicu-
lar to the principal rotation axis or vertical symmetry plane. Primes and double
primes are used to indicate symmetric or antisymmetric operations with respect to a
horizontal plane of symmetry a;,. If the group has a center of inversion symmetry,
the subscripts g (gerade) and u (ungerade) are used to designate representations that
are symmetric and antisymmetric with respect to this operation, respectively.

For each character table, the point group is designated by its Schoenflies notation
in the top left-hand corner. The next part of the top row lists the symmetry elements
of the group collected into classes. The final part of this row lists some of
the possible basis functions for the irreducible representations. The first column
of the character table below the first row lists the irreducible representations of the
group in the order of increasing dimensions. The main body of the table lists
the characters of the sy mmetry elements in each irreducible representation.
The last column shows the components of a vector, rotation, or vector product
basis function that transforms according to that specific irreducible representation
and therefore acts as a basis for that representation.

In several of the character tables, the two-dimensional £ representation is shown
with an asterisk, £*. This is because the characters for this representation are
imaginary or complex. Technically they should be decomposed into two different
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representations whose characters are complex conjugates of each other. Doing this
allows for the rule of group theory to be fulfilled that the number of irreducible
representations of a group is equal to the number of classes of elements in the group.
However in applying group theory to physical problems, the characters need to be
real so the sum of the characters of these two complex representations is used for
the characters of the real representation. In each case the complex character for a
rotation axis of order n is

2 2
g = exp(2ni/n) = cos T 4 jsin (2.14)
n n

Using this expression, 82 =e =1, 8,’1‘/ 2= _1,and 8,’1‘/ 4 — {. Thus the double-valued
representation E in the point group Cj is actually two complex representations with
sets of characters for the classes E, Cs;, and C3 of 1, (—1/2+ i\/§/2),
(—1/2 —iv/3/2) and 1, (—=1/2 —iV/3/2),(—1/2 +iv/3/2). Adding these gives
the set of characters for the classes of the E* irreducible representation 2,—1,—1.
Only the characters of the real representations are listed in the character tables.

If a system is characterized by a function that has half-integer values instead of
integer values, it is necessary to work with double groups [3, 7-9]. In this case the
order of the group increases and the number of irreducible representations increases
accordingly. This situation occurs most commonly in dealing with spin or half-
integer angular momentum in atomic physics. The spin of an electron is represented
by a function that has two orientations with respect to an axis of quantization.
The Pauli spin operators describing this situation are 2 x 2 matrices

axﬁ) (1)] o—y{? Bi], az{(l) _01} (2.15)

These are related to the angular momentum operator J by
o=2J.

Following the treatment of J in quantum mechanics, the angular momentum rais-
ing and lowering operators for spin can be expressed in terms of the Pauli spin
operators [3].

The Pauli spin operators obey a multiplication table that has the properties of a
group. A rotation about an axis 7 in the two dimensional spin representation is given
by the operator

: 1 1
R(p, ) = e i(1/2erm — cos S — i nsin . (2.16)

The operator R(¢,n) is also a 2 x 2 matrix.
An important result of (2.16) is that a rotation of 27 is not the identity operator
for the group:
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R(p +2m,n) = cos(n + ¢/2) —io - nsin(n + ¢/2)
= —cos(¢/2) +io - nsin(¢/2) = —R(p,n).

Instead an operator representing a rotation of 41 must be introduced as the identity
E while a rotation of 27 is a new operator R. Then R multiplied by all of the other
operators of the group gives the additional group operators. This leads to additional
irreducible representations.

In group theory, spin is represented by a two-dimensional irreducible represen-
tation I'y,,. For some spatial operations the characters for C,, and RC,, are different
and these are referred to as double valued. The complete spatial and spin state of a
system is represented by the product of I'j, with the irreducible representations
describing the spatial state of the system. In some cases this direct product results
in other new irreducible representations of the group. The character tables for the
D, and O, groups show examples of the extra elements and irreducible representa-
tions associated with double groups. These double-valued representations are dis-
cussed in greater detail in Chap. 4 and examples given of how to determine the
characters of the half-integer representations. These concepts are especially impor-
tant for treating magnetic properties and the effects of time reversal in quantum
mechanical systems.

The irreducible representations for space groups are discussed in Chap. 8.

2.3 Group Theory Examples

2.3.1 Cj3, Point Group

The best way to demonstrate the use of group theory is to work out some specific
examples. Consider an object with the shape of an equilateral triangle as shown
in Fig. 2.2. By inspection, this object has six symmetry elements: the identity E;
rotation by 120° around the z-axis Cj; rotation by 240° around the z-axis Cc?
mirror reflection through the plane containing the y and z axes o¢;; and mirror
reflections through the planes containing the z-axis and either axis 2 or axis 3,
designated o, and o3, respectively. Therefore the order of the group is 6. These
elements can be displayed in a multiplication table as shown in Table 2.33. This
shows that the product of any two elements is an element of the group. It also shows
that every element of the group has a reciprocal element that is an element of the
group. It also shows that the associative law of multiplication holds for these
elements. Thus all of the criteria for being a group have been met.

The multiplication rules shown in Table 2.33 can be used to apply similarity
transformations to these elements which allow them to be grouped into classes:
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EC3E=C;, EC3E = (3,

C3C5C3 = G, CIC3C5 = C3,

C3C3C2 = Cs, C3C3C% = (2,

7iCan = C, s

0,C307 = C3, 6:,C307 = C3,

O'3C30'3 :C%, O'3C§O’3 :C3.
y

Fig. 2.2 Equilateral triangle. The z-axis direction is out of the page

Table 2.33 Multiplication table for equilateral triangle symmetry elements

E Cs C? o, o> o3
E E Cs C? o o2 o3
Cs Cs c; E O3 o oy
C3 C3 E Cs OG> o3 o
(o) oy o) o3 E C; 3
o) o) o3 o C? E Cs
o3 o3 o1 o)) Cs C? E

This shows that the elements C3 and C} form one class having two symmetry
elements. Proceeding in the same way for the three mirror planes show that
the elements 74, 0, and g3 form another class. Also, the element E forms a class by itself.

Since there are three classes in this group there must be three irreducible repre-
sentations for the group and the sum of the squares of their dimensions must equal the
order of the group, 6. This is only possible if there are two one-dimensional irreducible
representations and one two-dimensional irreducible representation. There are two
ways to develop the character table for these representations. The first is to express the
character table in terms of unknown characters and then use the orthogonality of
irreducible representations to calculate the characters. In this case the three classes and
three irreducible representations can be written as
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E 2C3 30
Ay 1 1 1
A2 1 a b
E 2 c d

which reflect the fact that the character of the identity operation is always the
dimension of the representation and there is always one totally symmetric irreduc-
ible representation in which the character of each class is 1. Using (2.11) provides
the following equations:

ézy(Af)y(Ag) =(142a+3p)/6=0."2a+3b=—1s0oa=1,b=—1,

1
g O TAIE) = 2+2c+3d)/6 =0 2 +3d = -2,

é 3 9(A)(E) = (2 +2¢ —3d) /6 = 0 . 2¢ — 3d = 2.

r

r

Combining the last two expressions gives c=—1 and d=0, so the character table is

E 205 30
A 1 1 1
As 1 1 -1
E 2 —1 0

The second way to derive the character table for this group is to consider how the
Cartesian coordinates transform under the elements of the group. In this case

X X X 1 00
4 z z 0 0 1
x: x —%/)_H—@y —é_ o0
v =6y —Px =3y G=-F -4 0
z z z 0 0 1
X X —X -1 0 O
Yil=aly|=|v» oo=|0 1 0
4 z z 0 0 1

This is a reducible representation I' that has characters given in the following table:
The final line in this table shows the reduction of the representation I" in terms of
the irreducible representations using the expression from (2.10)
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E 2C3 30
A 1 1 1
A 1 1 —1
E 2 -1 0
r 3 0 | = A +E

) —

ZXX)XA'
A

For A, this gives n") = (1/6)(3+0+3) =1. For A, it gives n““?=(1/6)
(340-3)=0. For E it gives n'®=(1/6)(6-+0+0)=1.
The three transformation matrices found above have a box diagonal form

S -

1 00 -1 1
E=[0o 1]0),c=|_v& _1i]|g|. =] _0
0 0l1 0

The boxes in the upper left-hand corner are the matrices for the irreducible repre-
sentation F while the boxes in the lower right-hand corner are the matrices for the
irreducible representation A;. Note that the traces of these box diagonal matrices
give the characters for the £ and A, representations and the characters for the A,
irreducible representation can then be found from the orthogonality condition.

The transformation matrices for the three classes of symmetry elements
operating on the vector components x,y,z as shown above shows that the z compo-
nent acts as a basis for the A irreducible representation while the components x and
y transform into combinations of each other according to the irreducible represen-
tation E. Thus the set (x,y) form the basis for E.

The rotation axis R, remains unchanged under operations of the E and C5 classes but
it changes sign under an operation of the ¢ class. Thus it transforms according to the A,
irreducible representation. The other two rotation axes R, and R, transform into com-
binations of each other and therefore form a basis for the E irreducible representation.

Finally consider how the product of vector components transforms in this group.
The conventional way to write the components of an axial vector formed by the
product of two vectors is given in (2.17). The way the individual components
transform under the symmetry operations of this group was described above, and
this information can be used to determine how the product of these components
transform. Then transformation matrices can be constructed for each symmetry
element, and their traces are calculated to determine the characters of this reducible
representation as done previously.

The six-dimensional column matrix for a vector product is
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2.17)

Using this as a basis vector, the transformation vectors for an element of each class
are written as

100000
01 000 0
oo1o000| .

E=100010 0 “7e =6
0000 T1 0
00000 1
1000 0 0
0100 0 0

oo 10 0 o0 _,

'“1o 001 0 o0 Yo =5
0000 —1 0
0000 0 —I
Lio0 oo
31 0 0 o ¥

. 0O 0 1 0 0 0 _ .

Tlo 0 0 -1 —F o | e
0 0 0 ¥ 1 o

S0 0 0

This irreducible representation can be reduced in terms of 2E and 2A; irreducible
representations. By observing the transformation properties, it can be seen that z°
forms a basis function for one of the A, irreducible representations while (x2+y2)
forms a basis function for the other one. One of the E representations has the set (xz,yz)
for a basis function and the other has the basis function set (x*—y?,xy).

If all of the information on basis functions is included in the character table for
this group given above, it is identical with Table 2.17. This shows that the
symmetry group for an equilateral triangle is point group Cj,.

For some applications it is important to take the direct product of representations
and reduce the results in terms of the irreducible representations of the group. As an
example for this group, the direct product of the E representation with itself is found
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by multiplying the character of the E representation for each symmetry class with
itself. This gives the characters 4, 1, and O for the E, C3, and o classes of symmetry
operations, respectively. These are the characters of a reducible representation and
(2.10) can be used to show that this reduces to one E, one A;, and one A, irreducible
representations.

2.3.2 0Oy, Point Group

One of the most important symmetries in solid state physics is a regular octahedron
with a center of inversion symmetry. This describes seven atoms arrayed along the
X, y, and z axes of a cube as shown in Fig. 2.3 with the positions of the ions given in
Table 2.34. Each side of the cube has a length 2a. The angle ¢ is measured around
the z-axis in the xy plane counterclockwise from the x-axis. The angle 0 is measured
around the y-axis in the xz plane counterclockwise from the z-axis.

i

<y

Fig. 2.3 Cubic O, symmetry

Table 2.34 Ion positions in Fig. 2.3

X y z r 0 ©

0 0 0 0 0 0

a 0 0 a /2 0

0 a 0 a /2 /2
a 0 0 a /2 T

0 —a 0 a /2 3n/2
0 0 a a 0 0

0 0 —a a T 0
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The cubic Oy, point group describes this symmetry. This group has 48 symmetry
elements divided into 10 classes. The character table for the group is given in
Table 2.32. The symmetry elements are as follows. First is the identity operation £
and the inversion operation i which each forms a class by itself. Next there is a class of
six C4 elements describing +90° rotations about the x, y, or z axes. Then there are three
twofold axes of rotation C, about the x, y, or z axes. Also there are six twofold rotation
axes C,’ that run from the center of an edge through the center of the cube to the center
of the opposite edge. There are eight axes of +-120° rotation about the body diagonals
of the cube. There are three mirror planes of symmetry going through the centers of the
edges of the cube in the xy, xz, and yz planes. Note that these are equivalent to
combined C,i operations. Similarly, there are six diagonal planes of symmetry
equivalent to combined C,'i operations. The reflection operations can also be com-
bined with C; rotations and C, rotations to give eight S¢ and six S, operations,
respectively.

Since there are 10 classes, there must be 10 irreducible representations for the O,
point group. The only way for the sum of the squares of the dimensions of 10
irreducible representations to equal the order of the group, 48, is 4(3)*+2
(2)*>+4(1)*>=48. This shows that the group has four three-dimensional irreducible
representations, two two-dimensional irreducible representations, and four one-
dimensional representations. These are divided into two groups of five each, one
that is even parity under inversion designated by subscript g and one that is odd
parity under inversion designated by subscript u. These can by used to operate on
even and odd parity basis functions, respectively. The character for a symmetry
operation not involving inversion is the same for both even and odd parity.
However, the character for a symmetry operation involving inversion in an odd
parity representation is —1 times the character for the same element in the even
parity version of the same representation.

For use with half-integer functions such as spin, the additional operation R
of a 2m rotation must be introduced since E is a 4w rotation in this case. This
results in three new g and three new u irreducible representations as shown in
Table 4.32.

For situations involving high levels of symmetry such as O, it is sometimes
useful to work with subgroups of the total group. A subgroup of is a subset of
elements of the larger group that by themselves obey all of the mathematical
requirements to be a group. For example, D3, forms a subgroup of O, consisting
of the identity element, two threefold rotation operations, three C,’ operations, and
the inversion operation multiplied by each of these elements. The character table for
D3, is given in Table 2.30. The irreducible representations of the group can be

Oy, D34
A g A g
A2g AZg
Eg E,
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decomposed in terms of combinations of the irreducible representations of the
subgroup. Comparing the characters of the common elements in O, and D3,
shows the correlation between the irreducible representations of the group and its
subgroup. For the even parity representations this is:

The results of this method of inspection can be checked against the predictions of
(2.10). For example, for the T», irreducible representation of O, the A, irreducible
representation of D34 will appear the following number of times:

1
n<T2f):E(1><1><3+2><1><0+3><1><1+1><1><3+2><1><0+3><1><1)

:17

while the A,, irreducible representation will appear the following number of times:

1
n<72x>:§(1><1x3+2x1><0+3x(—1)><1+1><1x3+2><1x0+3

x (=1) x 1)
=0.

This is consistent with the correlation table shown above.

From Table 2.32 it can be seen that the vector components (x,y,z) transform as
the T, irreducible representations. As discussed in Sect. 2.4 and in Chap. 4, this is
important in using group theory to determine allowed electromagnetic transitions.
Also the irreducible representations for Oy, involving half-integer quantities are
shown in the table. Section 4.4 describes an example of using these representations
for atoms with half-integer values of angular momentum.

2.4 Group Theory in Quantum Mechanics

In quantum mechanics a physical system is described by a Hamiltonian operator H.
The allowed states of a system are described by a set of orthonormal
eigenfunctions |, and the energy of these states is a set of eigenvalues E,. The
sets of eigenfunctions and eigenvalues for the system are found by solving the
Schrodinger equation

H,) = Ealfr,)

or

En = (Y, |H|,). (2.18)
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Since the Hamiltonian describes the physical system, it should be invariant under
the same symmetry operations that leave the physical system invariant [2,5]. This is
described as a similarity transformation on H by a symmetry operator A

H=A"'HA. (2.19)

This is the same as saying that a symmetry operator commutes with the
Hamiltonian operator [2, 5]. The symmetry operators that leave H invariant form
a group. Obviously an operator that does not change H at all is an element of the
group and this is the identity operator. For two elements A and B

AHA™'=H and BHB'=H so(AB)H(AB)™' = (AB)H(B™'A™'") =H,

which shows that the product of two elements is an element that leaves H invariant.
Also, the associative law holds. Finally, if (2.19) is multiplied from the left with A
and from the right with A" gives
AHA™' = H,

which shows that the inverse of the element also leaves H invariant. Thus all the
elements that leave H invariant conform to the properties of a group. This is called
the group of the Schrodinger equation or the group of the Hamiltonian and is the
same as the symmetry group of the system described by H.

If one of the operators of the group of the Hamiltonian A is applied to the initial
Schrodinger equation given above,

AHw/n> = E"A|Wn>
or
H|Al//n> = Eﬂ |A¢n>

since A and H commute. This shows that | Ay, is also an eigenfunction belonging
to the same eigenvalue E,. In other words, the eigenfunctions transformed by
an operator of the group of H belong to the same eigenvalue as the initial
eigenfunctions. From (2.18),

E, = (b, JHI,) = (WA HAW,) = (Aly,|H|AY,) = (p,H|p,)  (2.20)
where
) = Alp,) = |Ap,). (2.21)

This derivation uses the fact that for symmetry operators in quantum mechanics
their inverse is equal to their adjoint A~' = A¥.
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If E,, has only one eigenfunction then ¢, = \s,, except for a possible phase factor
and E, is said to be nondegenerate. If an eigenvalue has associated with it an
orthonormal set of eigenfunctions, it is said to be degenerate, and any normalized
linear combination of these eigenfunctions will also have the eigenvalue E,,. This is
expressed as

E, = (¥,|H|¥,)

where
n
W) = aily,)
and | ;) is normalized and a + a3 + - - - + a2 = 1. Thus
(Wi|¥r) = Z lail* (Wil = 1.
P

There are n possible linear orthogonal combinations.

A symmetry operation of the system acting on a set of degenerate eigenfunctions
takes them into a different linear orthogonal combination of the degenerate eigen-
functions:

Y1) anlyy) +anly,) + -+ anlp,)

A Wz> _ an ) +anlp,) + -+ awnly,) . 222)

Wn> am |y) + anals) + -+ amli,)

The discussion above shows that for quantum mechanical systems, if all
symmetry operations for the system leave a specific eigenfunction unchanged
(except for a phase factor), that function transforms like a nondegenerate
solution of the Schrdodinger equation. If some of the symmetry operations act
on an eigenfunction to create new linearly independent eigenfunctions, all of
these functions transform like members of a degenerate set of solutions to the
Schrédinger equation.

From the discussion above, it can be seen that the eigenfunctions belonging to the
same eigenvalue of a quantum mechanical system form a basis for one of
the irreducible representations of group describing the system. The dimension of the
irreducible representation is the same as the degeneracy of the eigenvalue. Thus

HAY;) = EAlY;)

shows that both |};} and A|y,) are eigenfunctions of E;. If E; is nondegenerate
and the eigenfunctions are normalized, A|\};) = +1|y;). Applying all of the
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symmetry operations of the group generates a one-dimensional irreducible repre-
sentation of the group with matrix elements (and characters) 1. That irreducible
representation thus can be used to represent the energy state of the system
associated with the eigenvalue for that specific eigenfunction. Considering the
same procedure for a degenerate state of the system generates an irreducible
representation of the system whose dimension is equal to the degeneracy of
the state it represents.
Consider the example of a system with C3, symmetry described in Sect. 2.3.1.
A quantum mechanical system with this symmetry will have a nondegenerate
eigenfunction that is the basis for the A; irreducible representation so it remains
unchanged under all symmetry operations. It will have another nondegenerate
eigenfunction that remains invariant under operations of the £ and C5 class but
changes sign under o class operations and therefore is the basis for the A,
irreducible representation. Two other degenerate eigenfunctions will form
the basis for the two-dimensional E irreducible representation. If this is desig-
nated I,
A ) = ([ 2T
e e I'3(A)y 1'3(A)y, ,

where A is a symmetry operator in C3,. This leads to

AYy =I3(A) ¥ + T3(A)y ¥,
Ay, =I5(A) Y + T3(A) 0y,

This shows that \s; transforms like the first column of the transformation matrix of
the symmetry operator while s, transforms like the second column.

When spin—orbit interaction is important, the total wavefunction describing the
system is the product of spatial and spin functions:

lIji = W;‘O'ia

where o, represents the spin angular momentum of the system. In this case double-
valued representations must by used. An example of this is given in Chap. 4.

Any physical process interacting with the system can be expressed as a quantum
mechanical operator which also transforms according to one of the irreducible
representations of the group. The transformation of the specific ith operator O} of
a set of n operators is expressed as

(2.23)

Jo

AOIA™! =" 01T, (A)
J

where A is an element of the group of the Hamiltonian and I',, is a representation of
this group.
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The physical process may cause the system to undergo transitions from one
eigenstate to another or to split degenerate energy states into several states with
lower degeneracies. The qualitative features of these effects can be determined by
using group theory techniques such as the direct products and decompositions of
representations to evaluate matrix elements. In general the quantum mechanical
description of these physical processes involves evaluating matrix elements

(UelOW)

where i and f designate initial and final states of the system and O represents the
physical operator. The matrix element represents an integral over all space and to
be nonzero the integrand must be symmetric. Instead of evaluating the complete
mathematical expression for the integral of the products of the operator and
eigenfunctions, we can rewrite this as the product of the group theory representa-
tions of the functions

<lpf|0|l//1> 7& 07 if Ff X FO X Fi = Alg + ... (224)
and
WelOW;) =0, ifTgxToxTi#Ag+---.

Thus the matrix element is nonzero if the decomposition of the triple direct product
representation I'y X I', X I'; contains the totally symmetric A;, representation. This
is called an allowed transition. The matrix element is zero if it does not contain A .
This is called a forbidden transition. This can be stated in a different way knowing
that A,, will only appear in the decomposition of the direct product of a representa-
tion with itself. Thus for a nonzero matrix element the decomposition of the direct
product representation of the initial and final states must contain the irreducible
representation of the operator causing the transition.

These concepts can be visualized using a simple example of rectangular sym-
metry. If the square symmetry shown in Fig. 1.2 is stretched along the x direction
the symmetry group is lowered from Dy, to D,, with the character table given in
Table 2.8. A quantum mechanical state of the system is designated by one of the
eight irreducible representations listed in the character table. The signs of the
eigenfunctions transforming as some of these representations within the rectangular
space are shown in Fig. 2.4. The effect of a symmetry operation on the sign of the
function is given by the character of the operation. A positive character leaves
the sign unchanged while a negative character changes the sign. For example, the
function transforming as the totally symmetric irreducible representation Ag is
positive throughout the rectangular space and does not change when it undergoes
under any of the symmetry operations. The function transforming as B;, changes
sign under the C,(y), C,(x), a(xz), and a(yz) operations, all of which have characters
of —1, and remains unchanged under the other four operations which have char-
acters of +1. The function transforming as B, changes sign under the C»(y), C»(2),
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Y LY
Aq ! X Bs, _ X
y
! ery
1 _ —
Blg ___.__._..:._..-f._ o +
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Polarized in the x Direction

Fig. 2.4 Signs of the basis functions for some of the irreducible representations in a system with
rectangular symmetry

1, and o(yz) operations. The triple product of the three irreducible representations
shown in Fig. 2.4 is a function that has positive values in the two upper quadrants
and negative values in the two lower quadrants. This forms the basis of a By,
representation. Integrating this function over the area of the rectangle is identically
zero since there are equal positive and negative areas. The dipole moment operator
polarized in the x direction is also shown in Fig. 2.4. Applying the symmetry
operations of the D,;, point group shows that this transforms according to the B3,
representation as indicated in the character table for the group. The fact that the
reduction of the triple direct product A,xB3,xBi, =B>, does not contain A is
consistent with the fact that the matrix element is zero and the electric dipole
induced transition between states A, and B, is forbidden. The determination of
transition matrix elements in this way is discussed further in later chapters.

Using these concepts of group theory, the irreducible representations of the
group of symmetry operations that leave the Hamiltonian of the quantum mechan-
ical system invariant provide information about the degrees of degeneracy of the
eigenfunctions of the system and the transformation properties of these eigen-
functions. The group theory procedure of forming and decomposing direct pro-
ducts of representations is useful in quickly determining qualitatively whether a
transition is allowed or forbidden, or how many states occur in the splitting of an
energy level. However, it can not provide quantitative information about these
processes.

2.5 Problems

Consider the thin, square object with the basis set shown in the figure. (O represents
objects above the plane of the square and ® represents objects below this plane.) The
z-axis is directed out of the paper from the center of the square. Answer
the following questions:
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Identify the symmetry elements for the point group of this object.

Develop the multiplication table for the symmetry elements.

Derive the classes of elements for this symmetry group. What is the order of the
group?

Derive the transition matrices for the group elements operating on the x,y,z
coordinates and find the character of each of these.

Derive the character table for this group using the concepts of box diagonaliza-
tion and the properties of characters (especially (2.11) and (1.12)).
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Chapter 3
Tensor Properties of Crystals

Due to the spatial symmetry of crystals discussed in Chap. 1, many important
physical properties of a crystalline material depend on the orientation of the sample
with respect to some specifically defined coordinate directions. Examples of such
properties are electrical conductivity, elasticity, the piezoelectric effect, and
nonlinear optics. The last of these is treated in detail in Chap. 6. In this chapter
the tensor operator formalism that uses symmetry for treating these properties is
summarized, and some specific examples are presented. The discussion focuses on
bulk, macroscopic properties of materials and does not include surface effects or
microscopic phenomena. The concepts of group theory developed in Chap. 2 are
useful in elucidating the qualitative characteristics of these physical properties in
materials with different crystal structures. The quantitative values for these
properties must be found by experimental measurement. The tensor operator
approach to material properties summarized here was developed extensively by
Nye and is presented in detail in his book on the topic [1]. It should be noted that not
all physical properties can be represented as tensors. Examples of nontensor
properties include dielectric strength and surface hardness.

The fundamental question of interest in this analysis [1,2] is, “What is the
physical effect that a specific physical cause will have on a crystal with a specific
structure?” The physical property of the material under study relates the effect to
the cause. Note that the cause under consideration might be external to the crystal,
such as an applied electric field, or internal, such as a local electric field supported
by the geometry of the crystal structure. When the physical cause with specific
directional properties is applied to the crystal, group theory can be used to
determine the directional properties of the effect produced by this cause. This
basic concept is demonstrated by the fundamental equation

E = MC 3.1)

Here C is a tensor representing the physical cause of an effect represented by

another tensor E. These are called field tensors. The matter tensor M represents
the physical property of the crystal that relates the cause and effect. According
to a fundamental postulate of crystal physics known as Neumann’s Principle,
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the symmetry of a physical property of a crystal must include the same spatial
symmetry characteristics as the crystal structure and thus the symmetry of the
matter tensor must include all of the symmetry operations contained in the point
group of the crystal. This principle holds under the conditions of interest for this
chapter as stated in the previous paragraph. Note that nonsymmorphic space groups
may involve small translations on the atomic scale coupled with rotational
operations. For the macroscopic properties of interest here, such small translations
will not make a major contribution to the properties being measured, and thus only
the symmetry operations of the crystallographic point group are important.
As an example, (3.1) can be expressed as a Taylor series expansion

OE; 1/ O%;
E:(C; ) =E;(C; =i T il Adc, — - - -.

Here the field vectors C and E represent the cause and effect vectors while the nine
quantities (OE; / aC ;) are the components of a second-rank matter tensor and the
27 quantities (0°E; / 0C; 0Cy) are the components of a third-rank matter tensor.
The higher terms in the expansion give rise to matter tensors of higher rank. This
type of tensor analysis approach is discussed below for physical properties
described by tensors of different ranks.

The statement of Neumann’s Principle above does not require that the symmetry
group of the matter tensor be exactly the same as the point group of the crystal.
It must include all of the symmetry elements of the crystallographic point
but can also include additional symmetry elements not in the point group of
the crystal.

Physical properties having no directional characteristics are described by scalars
regardless of the symmetry of the crystal. Temperature is an example of this.
Scalars can be represented as tensors of rank zero, and for induced properties the
matter tensor is expressed as a scalar times the unit tensor. In addition, for isotropic
materials there are no special degrees of symmetry so there are no intrinsic
directional characteristics of any physical property in these materials. Since we
have no symmetry operations to use, group theory is not a useful tool for scalar
properties or isotropic materials.

A matter tensor of first rank (vector) relates a physical cause represented by a
scalar to an effect represented by a vector. For cause and effect phenomena that are
both described by vectors, the matter tensor is a second-rank tensor given by a 3x3
matrix. Other physical phenomena may be represented by a matter tensor of third
rank that relates a cause tensor of second rank to an effect tensor of first rank.
A matter tensor of fourth rank can be used to relate cause and effect tensors of
second rank. In each of these cases the symmetry properties of the crystal determine
which of the individual elements of the matter tensor are nonzero and which ones
must be equal to one another. Note that symmetry properties alone cannot
determine the magnitudes of the matter tensor elements. This must be left to
experimental measurement.
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3.1 First-Rank Matter Tensors

Matter tensors of first rank connect a scalar cause with a vector effect. This can be
thought of as having two causes, the scalar cause which is isotropic, and a cause
associated with an intrinsic property of the crystal, which is anisotropic.
An example of this type of property is the pyroelectric effect that relates a change
in temperature (scalar) to the induced electric polarization (vector). This occurs
because the centers of gravity of the positive and negative charges are separated in
their positions in the unit cell of the crystal. As the temperature changes, this
distance changes resulting in a change in the electrical polarization. The asymmetry
of the combined causes must be present before the change in temperature occurs.
The combined effect of the two causes must have the symmetry of the crystal.
As shown below, this limits the types of crystal symmetries that exhibit this type of
physical effect.
The pyroelectric effect is expressed as

P = pAT (3.2)
or in component form as

Here P is the temperature-induced electric polarization vector with components P;,
and p is the pyroelectric matter tensor with components p;, When a material is
heated, thermal expansion occurs. On the atomic scale, if the electric charge
distribution is not uniform in all directions, this can result in local electric dipole
moments. If these dipoles are aligned in the same direction throughout the crystal,
they result in a macroscopic electric polarization of the material.

According to Neumann’s Principle, p must be invariant under all operations of
the point group of the crystal. The effect of a spatial rotation of the crystal on a first-
rank tensor is described by the process developed in Chap. 2. For rotation
represented by R,

p =Rp (3.4)

or in component form as
3
p=">_Ripi. (3.5)
i=1

Thus if rotation R is part of the crystallographic point group, p’ must equal p.
As an example of a specific symmetry operation, consider the effect of a C;
rotational operation on the vector p. From Sect. 2.3.1,
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P —1/2  V3/2 0\ [P«
py|=1-v3/2 -1/2 0]|p
Dl 0 0 1 p-

so pl=—(1/2)p+ (V3/2)py, P, =—(V3/2)p. = (1/2)py, and p.=p..
The only way for p to be invariant in a crystal with a point group that contains
the symmetry operation C is for its components p, and p, to be identically zero.
Then the pyroelectric vector is oriented along the axis of rotation. Thus crystallo-
graphic point groups containing a C; operation may exhibit a pyroelectric effect
depending on the other symmetry operations that are part of the group.

Next consider the effect of an inversion operation R(i). This symmetry transforma-
tion takes p, into —p,, p, into —p,, and p, into —p.. Thus an inversion operation takes
p into —p without leaving any of its components invariant. This means that all crystals
having inversion symmetry cannot exhibit the pyroelectric effect.

This symmetry analysis can be generalized to all point groups without
considering each individual symmetry transformation. From the above example,
it is apparent that a component of the field vector transforms into itself if part of the
transformation matrices operating on this component is the identity representation.
The rotation matrix shown for the C; operationhasa2 x 2and a1 x 1 box diagonal
matrix on its diagonal leading to one field vector component being nonzero.
Equation (2.10) derived in Chap. 2 can then be rewritten to give the number of
times the identity representation is contained in the box diagonals of the symmetry
operation matrices:

1
N == uR), (3.6)

where the characters of the identity representation are 1 for all operations.
The components of the field vectors act a set of basis functions for certain
irreducible representations of the symmetry group of the crystal. It is the characters
of these representations that are used in (3.6). For a first-rank tensor (vector), the
number of times the identity representation appears on the diagonal is the same as
the number of independent components of the basis tensor. The way vector
components transform as basis functions is given in the character tables for all of
the crystallographic point groups in Tables 2.1-2.32.

If we have a crystal with point group symmetry Cs,, the pyroelectric tensor must
be invariant under the symmetry operations E, 2C3, and 30,. The transformation
matrices for a vector basis function have the form shown below which have the
characters y(E)=3, y(C3)=0, and y(o,)=1 that define an reducible representation
that can be reduced using (2.10) into one two-dimensional E irreducible
representation and one one-dimensional A; irreducible representation of the Cj,
point group using the characters in Table 2.17. These results show that the z
component of a vector basis function,



3.1 First-Rank Matter Tensors 59

1 0/0 -1 01]0
E=[0 1|0},c3= 0 1]/0],
0 011 0 o0l1

transforms as the identity representation A; while the y and z components
transform together as the E representation. This can be confirmed by applying
(3.6) to the first-rank pyroelectric tensor in a crystal with a C3, point group which
gives

1

sz6

B4+04+0+1+1+1]=1.
Here the characters are the sum of the characters of the A; and E irreducible
representations according to which the vector components x, y, and z transform.
This is consistent with the result obtained above with the p, component of p being
the only one that is nonzero.

If we are dealing with a crystal having a point group symmetry of C; the relevant
symmetry operations are E and i that have characters 3 and —3 for transformation
matrices having a vector basis function. Equation (3.6) then gives

1
N,=5[-31=0

showing that crystals having point group symmetry C; cannot exhibit a pyroelectric
effect.

The same analysis applied to all of the crystallographic point groups shows that
only crystals having a single rotational axis of symmetry, no center of inversion,
and no mirror planes perpendicular to the rotational axis can have pyroelectric
properties. These include all 10 of the C,, and C,,, point groups whose character
tables are given in Tables 2.1-2.32. A summary of the forms of the first-rank matter
tensors is given in Table 3.1.

Since both the matter tensor and the effect tensor are first-rank tensors, these
vectors must be pointed in the same direction and obey the same symmetry
transformation properties. Thus the analysis described above could have just as
well been applied to the induced polarization tensor. Some materials that posses an

Table 3.1 Form of first-rank tensors for the crystallographic point groups

C4,Cyy Ci,.CoD2,D 2y S4,Caps

C3,C3, D4.D>g, D4j,S6,D34.D3,

C, Cy C2,Cy, Ce.Coy D3,.Cen,DeiDe D3 T
Td,Th’O’Oh

() U
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intrinsic electric polarization give rise to a ferroelectric effect. The spatial
distribution of electric charge on the atomic scale produces a local electric dipole
moment, and when these microscopic dipole moments are aligned in the same
direction throughout the crystal, they produce a macroscopic electric polarization.
If the direction of the aligned dipoles and thus the polarization can be reversed by
the application of an external electric field, the material is said to exhibit a
ferroelectric effect. The analysis given above for the pyroelectric effect holds for
this case also and the same ten crystal classes that support the pyroelectric effect
may exhibit a ferroelectric effect.

The difference between pyroelectric phenomena and ferroelectric phenomena is
the effect of an external electric field. For ferroelectric materials, this changes the
structural orientation of the electric dipole moments on the atomic scale. Many
ferroelectric crystals undergo a phase transition from one crystal structure to
another at some specific temperature. Thus it is possible for a crystal to be
ferroelectric at low temperatures but not at high temperatures. In general, most
ferroelectric crystals have high temperature, nonferroelectric structures belonging
to the D,, D,y or Oy, classes [1]. Below some phase-transition temperature their
structures change to one of the C,, or C,, subgroups of these classes that permit the
ferroelectric effect. Table 3.2 shows the correlation between these typical nonferro-
electric crystal classes and their possible ferroelectric subgroups.

A typical example [3] of this type of crystal is BaTiO3. Above 120°C it has a
cubic perovskite structure with O, symmetry and is not ferroelectric. The barium
ion is located at the center of a cube with titanium ions at the cube corners and
oxygen ions in the centers of the cube faces. Below 120°C the oxygen octahedron
slightly distorts to produce a tetragonal structure with C,, symmetry. The crystal is
then ferroelectric with the polar axis in the (0,0,1) direction. At a temperature close
to 5°C, the crystal further distorts to give an orthorhombic structure with C,
symmetry. The crystal is still ferroelectric in this phase but the polar axis is now
in the (0,1,1) direction. As temperature is further lowered to below —90°C, the
structure changes to trigonal with C3, symmetry. For this phase, barium titanate is
ferroelectric with the polar axis in the (1,1,1) direction.

Any intrinsic physical property of a crystal described by a vector will be subject
to the same symmetry conditions as the pyroelectric and ferroelectric examples
given above. Some of these other properties are the heat of polarization, the
electrocaloric effect, polarization by hydrostatic pressure (piezoelectric effect),
and an electric field due to a change in temperature.

Table 3.2 Correlation between typical nonferroelectric crystal
classes and their ferroelectric subgroups [3]

Nonferroelectric crystal ~ Subgroups of ferroelectric crystal

class classes
D, Gy, Cy
Dy Cay, Ca, Cy, C

Oh C4va C3va C2w Cs, Cl
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It is important to note the difference in transformation properties of a vector and
an axial vector, or pseudovector [4]. An axial vector is the result of a vector cross
product between two vectors. Whereas true vectors are odd parity functions, axial
vectors are even parity functions. Therefore vectors change sign under inversion
operations while pseudovectors do not. For a given symmetry operation, the
character for a vector basis function and the character for an axial vector basis
function are the same if the operation does not involve inversion while they have
opposite signs if the operation does involve inversion. The axial vector basis
functions are the same as the rotational axis basis functions in the character tables
given in Chap. 2. This can be understood by remembering that the vector cross
product involves not only the product of the magnitudes of two vectors but also the
direction of the resulting vector is found from the right-hand rule of rotating the first
vector toward the second vector. A specific symmetry operation can change this
direction of rotation in the same way it changes the direction of a rotational axis.

An example of a physical phenomenon represented by an axial vector is the
ferromagnetic effect where w is the axial vector representing the intrinsic magnetic
dipole moment of an atom in the crystal. This involves the angular momentum of
the electrons

= (g/2)r x v,

where the contribution from electron spin has been omitted for simplicity. The
vector cross product of position and velocity vectors results in an axial vector.
The symmetry transformation properties of p can be found by first considering how
the r and v vector components transform and then the cross product components are
formed. For example, an inversion operation takes r into —r and v into —v but the
rotation direction of the vector product does not change so the resultant vector is
the same as the initial vector. Thus p is invariant under inversion.

Other symmetry elements can be tested in the same way, and (3.6) with the
rotational axes as basis functions can be used to determine which crystallographic
point groups will leave p invariant and which will not. From these considerations, it
can be seen that all of the uniaxial groups such as C,, or D,, plus T'and O groups leave p
invariant while any group with ¢, or g, mirror planes do not. These results are
summarized in Table 3.3. Note that the C,, groups that support vector properties are
not allowed for axial vectors (see Table 3.1). On the other hand, groups involving
inversion operations and a; mirror planes that do not leave a vector invariant are

Table 3.3 Crystallographic point groups that can leave an axial vector invariant

Invariant Not invariant

Cy, Cy, C;, Cs, Cay, C3y, Cay, Coy
Copy D3, Doy, Cy, D3y, Dapy Doy, D3g,
Dy, Cap, Sa, C3, Deps Ta, Oy,

C3hs D3s C69 D(w

Se> Con, T, Ty, O
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allowed for axial vectors. Therefore crystals with point group symmetries such as C;,
C,, and S, can exhibit a ferromagnetic effect but not a ferroelectric effect.

To illustrate this, consider the case of C5, symmetry considered above for a
vector quantity. For an axial vector (3.6) with the appropriate characters from the A,
and E representations from Table 2.17 gives

1
Np=gB+0+0-1-1-1]=0

which was expected because of the g, symmetry planes. Note that the C5 group
which has the same first three symmetry elements as C3,, but not the three reflection
planes does allow the ferromagnetic effect. If we apply this analysis to the point
group C,;, which is not allowed for vector phenomena like the ferroelectric effect
we find for an axial vector that (see Table 2.5)

1
Ny=gB-1+3-1]=1

Therefore one of the components of the p axial vector will be invariant to the
symmetry operations of the C,; group. For this group the ferromagnetic effect is
allowed while the vector ferroelectric effect is not.

A thorough treatment of symmetry and magnetic properties of solids involves
the considerations of different types of magnetism, domain structure, time reversal
operations, and other issues that are beyond the scope of this book. An excellent
introduction to these topics can be found in [5].

3.2 Second-Rank Matter Tensors

Matter tensors of second rank can connect two first-rank field tensors, or a scalar
and a second-rank tensor. Both of these types of situations are discussed below
beginning with the former.

For physical phenomena described by vectors, the cause and effect are repre-
sented by first-rank tensors and the matter tensor is a second-rank tensor given by a
3 x 3 matrix. In this case, (3.1) can be expressed in terms of the vector and matrix
elements as

& = Zm,-jcj. (37)
J

One way to represent the physical properties described by second-rank tensors is by
the geometrical shapes their components generate. These are quadratics such as
ellipsoids or hyperboloids. Properties where this can be useful include thermal
expansion, thermal conductivity, and the refractive index. Examples of quadratics
are given later in this chapter and also in Chaps. 5 and 6.
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As an example of a second-rank matter tensor, let us consider the property of
electrical conductivity s which relates a current density J to the electric field E
which causes it. The crystal is oriented with respect to a laboratory coordinate
system. The current density is proportional to the electric field but its direction in
this coordinate system may be different. The equation describing this case is

J=0E (3.8)
or
Jx Oy Oxy Oy E,
byl =1 0w oy o0y E, 3.9)
Jz Ox Oz Oz E;
In component form this becomes
=Y oyk;. (3.10)
J

Now consider the matrix elements of the conductivity matter tensor. This tensor
must be invariant under all symmetry operations that leave the crystal invariant, i.e.,
the crystallographic point group. The effect of a symmetry operation R on a crystal
rotates the orientations of the electric field, the current density, and the matter tensor
in the laboratory reference frame:

E =RE, J'=RJ, and J =J'E.

Substituting the first two expressions above into the third one and comparing the
result with (3.8) shows that the effect of a rotation on the conductivity tensor is
given by

¢ =RoR™", (3.11)

where R is a matrix representing the symmetry operation and R~ is the inverse of
this operation. In component form, this can be written as

02/» = Tik?j10kl- (312)

According to Neumann’s Principle, if R is a member of the point group of the

crystal the matrix elements of ¢’ must be the same as those of o.

As an example, consider a crystal with cubic symmetry. The symmetry
operations of a cubic point group have been described in Sect. 2.3.1. We can
apply these one at a time to the second-rank matter tensor to find its nonzero
elements and elements of equivalent magnitude. One of the symmetry operations
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of the Oy, crystallographic point group is a rotation of 90° about the z-axis. Since this
takes a vector in the x direction to one in the y direction, a vector in the y direction to
one in the —x direction, and leaves a vector in the z direction unchanged, the matrix
representing this operation is

0 -1 0
R(Cy)=11 0 0
0O 0 1
The inverse of this matrix is
0 1 0
RYCyx)=| -1 0 0
0 0 1

Using these rotation matrices, (3.11) becomes

B 0 -1 0 Oxx Oxy Oy 0 10
d=[1 0 0 Oy Oy Oy -1 0 0
0O 0 1 O Oz Oy 0 0 1

Carrying out the matrix multiplication gives

/ / /

Oy Oxy Oy Oyy Oy — 0y
/ o o _
e ¥ Oxy  Oxx Oxz
zx zy 74 —0zy Ozx O

But this symmetry operation must leave the matrix elements of the matter tensor
unchanged. This will only be true if elements o,., 6y, 6., and ¢, are all identically
zero. In addition 0., must equal o,,, and 6,,= —0,,. The element o, is identically
unchanged. Thus the fourfold rotation symmetry dictates the form of the matter

tensor to be

o=| -0y 0w O
0 0 o,

Similarly, a rotation of 180° about the x-axis takes a vector along the z direction
into one in the —z direction, a vector along the y direction into —y, and leaves a
vector in the x direction unchanged. This operation is represented by the matrix

R(Cx)=10 —1 0 |. (3.13)
0 0 -1
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The inverse of this symmetry operation is represented by exactly the same matrix.
Substituting these symmetry matrices into (3.11) along with the matter tensor as
modified by the C,4, operation gives

1 O 0 0w Oy O 1 O 0 O —0xy O
-1 0 —0y Ox O 0 -1 O =10y Ox 0
0O 0 -1 0 0 o, 0o 0 -1 0 0 O

Comparing the elements of the matter tensor before and after the rotation shows that
the elements o, and o, are also identically zero giving us a diagonal matter tensor
matrix.

Another symmetry operation of the cubic point group is a 90° rotation around the
x-axis. This is represented by the matrix

0
-1

1
R(Cy)= {0
0 0

— o O

and its inverse

1 0 O
RYCyw)=10 0 1
0 -1 0
Substituting these rotation operators into (3.11) along with the diagonal matter

tensor shows that all three nonzero elements of the conductivity tensor are equal in
magnitude. Thus we can express the conductivity tensor as

(3.14)

Q
I
Q
SO =
O = O
- O O

The remaining operations of the cubic point group do not provide any further
simplification. Thus we have simplified the matter tensor as much as it can be for
this crystal symmetry through the use of group theory. This shows that for cubic
crystals conductivity is isotropic. The magnitude of the scalar ¢ must be found from
experimental measurements.

The components of a second-rank tensor transform like the products of vector
components. These are listed as basis functions transforming as specific irreducible
representations in the character tables of the 32 crystallographic point groups in
Chap. 2. For O;, symmetry there are three combinations of the components of a
second-rank tensor that transform as A,,, E,, and T», irreducible representations.
Using (3.6) and the characters from single group part of O, in Table 2.32 gives
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N(Apg) =(I1x1+8x1+6x1+6x1+3x1+1x1+6x1+8x1+3x1+6x1)/48=1
N(Eg) =(1x2+8x (=1)+6x0+6x0+3x2+1x2+6x0+8x (—1)+3x2+6x0)/48=0
N(T2g) =(1x3+8%x0+6X1+6X(=1)+3x (=1)+1x3+6%(-1)+8x0+3x (—1)+6x1)/48=0.

This analysis shows that there should be only one unique matrix element for the
conductivity tensor in crystals exhibiting O;, symmetry. Thus the prediction of (3.6)
is consistent with the derivation of the form of ¢ described above.

Table 3.4 gives the form of second-rank matter tensors for different symmetries
and shows which of the elements are zero and which elements are equivalent. These
are relevant for all properties that can be described by a tensor of second rank. Other
examples of second-rank matter tensors connecting two vector phenomena include
thermal conductivity, dielectric susceptibility, and magnetic susceptibility.
Examples of dielectric and optical properties are given in the later chapters.

As mentioned earlier, a quadratic equation describes a spatial surface that is either
an ellipsoid or a hyperboloid. The coefficients of a quadratic equation transform in
the same way as the components of a second-rank tensor. For the physical properties
represented by a symmetric second-rank tensor, a representation ellipsoid can be
used to visibly describe the anisotropy of the crystal. The general quadratic equation
referenced to a coordinate system xp, x,, X3 can be written as

T11X% + Tox1x2 + Tizx1x3 + To1xpxy + Tm% + Txox3+ (3.15)
T31x3x1 + Tapx3x0 + T33x§ =1. ’

This can always be rotated in space so that the coordinate axes are pointed along the
principal axes of the ellipsoid. In this case the quadratic equation simplifies to

T3 4 Tox3 + Tsx3 = 1. (3.16)
A second-rank tensor referred to its principal axes reduces to a diagonal form

Table 3.4 Form of second-rank tensors for the crystallo-
graphic point groups

C1,C; C2,Cs,Cy, Dy, CayDoy
o1l 012 013 on 0 o3 gy 0 O
g12 022 023 0 on 0 0 oxn 0
ag13 023 033 g13 0 033 0 0 033

C4,84,Capy Dy, Cyy,
D4, Dap, C3,S6, D3,

T7 ThaTd7 Oa 011
C3v, D34, Cs, C3p, Cop,
Dep, Dg, Coy, D3
a11 0 0 g11 0 0
0 011 0 0 a1 0

0 0 033 0 0 011
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_ Ty Tn Ts n o0 0
T= T, T Txn = 0 T, O . (3.17)
T3 Ty T3 0 0 T;

Comparing the general quadratic equation with the equation for an ellipsoid,

=1, (3.18)

shows that the values of the tensor components along the directions of the principal
axes are T; /2 in the x, direction, T, '/? in the x, direction, and T5~'/2 in the x;
direction. T, T5, and T3 are known as the principal values of the tensor property. If
they all have the same sign, the representation surface is an ellipsoid; if they have
different signs, it is a hyperboloid. For triclinic crystal systems the representation
surface has no restrictions on its axes. For monoclinic crystal systems the surface
has one axis parallel to the twofold axis of the crystal while for orthorhombic
systems the axes of the surface are parallel to the crystallographic axes. For
trigonal, tetragonal, and hexagonal crystal systems the representation surface has
an axis of revolution parallel to the C-axis of the crystal. For cubic crystal classes
(and isotropic materials) the representation surface reduces to a spherical shape.
Returning to the example given above for electrical conductivity, using the form
of (3.17) for the conductivity tensor in (3.8) shows that if the electric field is
directed along one of the principal axes, J will be parallel to E. The magnitude of
J will be different along each of the principal axes depending on the magnitudes of
the principal values of ¢. If E is not along a principal axis J is not parallel to E.
Second-rank tensors can also represent physical phenomena relating a scalar
cause to a second-rank tensor effect [1]. An example of this is thermal expansion
where a change in temperature induces a strain in the crystal. As discussed above,
this situation is equivalent to having a dual cause. The extrinsic change in
temperature is isotropic and represented by a tensor of zero rank while the intrinsic
property of the crystal is anisotropic and represented by a tensor of second rank. The
product of their symmetries must exhibit the same symmetry as the crystal. For small
changes in temperature, all components of the strain tensor are proportional to AT so

&jj = OCUAT (319)

Here the temperature-induced deformation is described by the strain tensor with
components &;, and o;; are the components of the thermal expansion tensor. Both of
these are second-rank tensors. If the thermal expansion tensor is referred to its
principal axes as discussed above, (3.10) becomes

& = AT, (3.20)

where i=1, 2, or 3 and oy, o, and o3 are the principal expansion coefficients.
The thermally induced strain ellipsoid referenced to the principal axes is expressed as
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Xt + onx5 + o33 = 1. (3.21)

The second rank thermal expansion tensor o must obey Neumann’s Principle so

the analysis described above for electrical conductivity also applies to this type of

matter tensor. Thus the forms of the thermal expansion tensor for the different
crystallographic point groups are given in Table 3.4.

3.3 Third-Rank Matter Tensors

Next consider a matter tensor of third rank. This can relate a vector to a second-rank
tensor [1]. Examples include the piezoelectric effect and the electrooptical effect.
The former effect is discussed below and the latter is discussed in Chap. 5.

In some crystals, an electrical polarization is induced when the crystal is
stressed. This property is called the piezoelectric effect and a matter tensor of
third rank relates the vector polarization that is induced to the second-rank stress
tensor that caused it. This is expressed as

P=d; (3.22)

or in component form as

Pk. = deifa,j. (323)
i

Here P, represents the kth vector component of the polarizability induced by the
applied stress whose tensor elements are given by ¢;;. The dy;; are the elements of
the piezoelectric matter tensor.

The stress tensor elements are shown in Fig. 3.1. The diagonal elements o¢;;
represent the normal components of stress while the off-diagonal elements o;;
represent the shear stress components. Tensile stress gives positive values of g;;
while compressive stress gives negative values. For shear stress, 6;/=0; so the stress
tensor is symmetric about the diagonal [1].

For the special cases of uniaxial stress and hydrostatic pressure the stress tensor
has the forms

0 0 ) 0 0
Cuniaxial = 0 0 and ahydrostalic = g 0], (3.24)
0 0 0 o

S O Q
S O Q

where the values of ¢ for the hydrostatic stress tensor are all negative. The special
cases of pure shear and simple shear are given by matrices of the form
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X
033
023
032
031
022
N = \
O12
o1 X
X
Fig. 3.1 Components of the stress tensor
B g 0 O B 0 ¢ O
Opure shear — 0 -0 O and Osimple shear — | O 0 0 (3.25)
0 0 O 0 0 O

The piezoelectric tensor d has the form of a 9 x 3 matrix divided into three

matrices of dimensions 3 x 3

din di2 di31
dinn din din
diiz dins di33
- da dan da3
d= | du dr» dr3 (3.26)
doi3 don3 dp33
d311 d31 ds31
dz12 dz ds3r
| da13 d323 dsz |

The rules of multiplication of this tensor in (3.22) or (3.23) is that P is the first row
of 4 multiplied by the first column of ¢ plus the second row of d multiplied by the
second column of ¢ plus the third row of 4 multiplied by the third column of ¢ and
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the same for P, and P;. This shows that each component of P is related to every
component of the 3 x 3 tensor ¢. For example,

Py =di11011 + d112012 + d113613 + d121021 + d122022 + d123023 + d131031
+ di32032 + d133033,
Py =dy11011 + dr12012 + d213013 + d1021 + d222022 + d23023 + d31031
+ d232032 + da33033,
Py =d311011 + d312012 + d313013 + d321021 + d322020 + d323023 + d331031
+ d332032 + d333033.
(3.27)

To simplify this process it is useful to make use of the symmetric nature of the
stress tensor and rewrite it as

B 01 O¢ 05
6 = 02 04 |- (328)
03

The piezoelectric tensor can be rewritten as 3 x 6 tensor to reflect this. Equation
(3.22) then can be written as

g1

02
P dy dip diz diy dis dis -
Py | = da dyn diz doy dos dy 0_3 . (3.29)
P dyy dzp dyz dy dis dig a:

06

With this construction the matrix multiplication is straightforward, and with the
appropriate substitution of indices it gives the same results listed in (3.27). _

The symmetry transformation properties of a third-rank tensor such as d will
determine which of its components are nonzero. These properties can be derived in
the same way as was done Sect. 3.2 for a second-rank tensor. Following the rules of
transformation for the components of a first-rank tensor, p,/ =r;pj, and a second-rank
tensor, o,/ =ryr;0, the components of a third-rank tensor given in (3.26) transform
as

d,l'jk = ri/rjmrkndlmm (3.30)
where the 7;; are components of a transformation matrix for a specific symmetry
operation. According to Neumann’s Principle, the matter tensor components d;j,
must remain invariant under the symmetry group operations of the crystal. In this
case d' iik=dmn- For this to be true, the subscripts /=i, m=j, and n=k. Thus only the
three diagonal components of the transformation matrix r;;, 7, and ry need to
be considered. The product of these three elements must be +1 for d;j; element of
the third-rank tensor to be nonzero.
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For example, consider crystals with symmetry groups that contain the inversion
operation. Each of the diagonal elements of the matrix representing the inversion
operation is equal to —1 so the product of the three of them is also —1. Thus for all
components of the piezoelectric tensor, inversion symmetry requires that

diy = —dijx.

This can only be true if all of the components are identically zero. Therefore
crystals belonging to a symmetry group with a center of inversion do not exhibit a
piezoelectric effect.

The same will hold true for groups with a horizontal reflection plane
perpendicular to a rotation axis. As an example, consider a rotational axis in the z
direction with a horizontal reflection plane ¢,,. The matrix for the mirror reflection is

The product of the diagonal elements is —1 and all the d;;; elements are identically
Zero.

This analysis can be used to determine the form of the piezoelectric tensor for the
32 crystallographic symmetry groups and the results are shown in Table 3.5. For a
crystal with no spatial symmetry (C,) all components of 4 may be nonzero. If the
only symmetry operation is a horizontal symmetry plane (C) then the transforma-
tion matrix will have one —1 matrix element on its diagonal and two +1 elements
(as shown in (2.6)). Thus the components of 4 that are zero will be those that have
one or three of the —1 component in their subscripts. For a twofold rotation axis,
two of the diagonal elements of the transformation matrix will be —1 and one will be
+1 (as shown in (2.5)). The nonzero components of 4 will be those having one or
three of its subscripts related to the +1 element. For example, if the rotation is about
the 2-axis, rop=1 while ry;=r33= —1. Thus d;j, and d,,, elements are nonzero. This is
shown for the C, class in Table 3.5. If a vertical reflection plane of symmetry
containing two of the three major coordinate axes is part of the symmetry group, the
transformation matrix will have one diagonal component of —1 and the other two
+1. Thus any component of 4 having one or three subscripts of the —1 component
will be zero. This is reflected in the « tensor for the C», group shown in Table 3.5.
This same analysis can be repeated to obtain the form of the piezoelectric tensor for
all of the crystal symmetry classes.

In general the applied stress is not isotropic so some of the tensor components of
o may be zero. As an example, consider a uniaxial stress represented by ;. If this
is applied to a crystal the resulting electrical polarization has the components

Py =do11, Py=dyio11, P3;=ds01:.

Then using the components of the piezoelectric tensors given in Table 3.5, it can be
seen that for a crystal belonging to symmetry class Cy; only the P, and P;
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Table 3.5 Form of third-rank tensors for the crystallographic point groups
Ci, Capy Dop,
C4h’ D4h5 Sﬁ’
Dsq, Cen, Dens
Cy Ty O, Oy C, Cy,
[din dir dizi ] [0 0 0] [0 da 0] [0 0 diz |
diy din din 0 0 0 diy 0 dixn 0 0 0
dl 13 d123 d133 0 0 0 0 dl32 0 dl}l 0 0
dany dy da 0 0 0 i 0 di 0 0 0
dryy dan dom 0 0 0 0 dxn O 0 0 dmn
dyz dys da 0 0 0 dyi 0 dos 0 dm O
dzn dan da 0 0 0 0 do O dzn 0 0
di2 din din 0o 0 o0 dyp 0 dyy 0 dm O
Lds1i3 daz ds33 10 0 0] L 0O d O] L 0 0 dis |
Cs D, Cy Dy
[din 0 di3 ] [0 0 0 ] [0 0 di3 [0 0 0 ]
0 din O 0 0 din 0 0  din 0 0 din
dizr 0 diz 0 dxn 0 diz  din 0 0 dixn 0
0 dn O 0 0 dy 0 0 —din 0 0 dy
doi 0 dyp 0 0 o0 0 0  dy 0 0 o0
0 dxp O dz 0 0 —di di31 0 dypr 0 0
dzyin 0 daz 0 dpi O d311 0 0 0 0 0
0 d 0 ds) 0 0 0 dspy 0 0 0 0
(ds1 0 dsss | 0o 0 0| Lo 0 a&u] Lo o o]
S4 Cyy Dq Cs
[0 0 dis] [0 0 dis [0 0 0 ] [ din 2dy, din |
0 0 din 0 0 0 0 0 din 2dy;y —din din
dizi din 0 diz 0 0 0 dxn 0 di31 din 0
7d]3| 0 dl32 0 0 0 0 O d132 d2]| 72d11] 7d|32
0 0 0 0 0 di3 0 0 0 —2dyy1  —dan dy3)
dizn 0 0 0 dim O din 0 0 —dixn  diz 0
dynn da 0 [T 0 0 dom O d3n 0 0
dp —dsn 0 0 dm O dpr 0 0 0 d31 0
0 0 0 ] 0 0 dsgs | 0 0 0 | L O 0 dszz |
D3 C3\= C3h D3h
[ din 0 0 0 —2dyy dizi| [ din —2dym; 0] [ O —2dy; 0]
0 —din din —2dxn» 0 0 —2dy; —din 0 —2dn» 0 0
0 din 0 di3 0 0 0 0 0 0 0 0
0 —2din1 —din —din 0 0 —dyy  2di1 O —dy 0 0
72dl 11 0 0 0 d222 dl_’)] 2d1 11 d222 0 0 d222 0
—d3 0 0 0 dis 0 0 0 0 0 0 0
0 0 0 day 0 0 0 0 0 0 0 0
0 0 0 0 dspy 0 0 0 0 0 0 0
L O 0 (U 0 0 d333 | L O 0 0] L O 0 0]
Ce Cey Dg T,T,
[0 0 diz [0 0 d | [0 0 0 ] [0 0 0 ]
0 0 diz 0 0 0 0 0 dizn 0 0 dixn
dizy dixn 0 dyz 0 0 0 dxn 0 0 din 0
0 0 —d\3 0 0 0 0 0 —d3 0 0 di3n
0 0 diz 0 0 dx 0 0 0 0 0 0
7d]32 d|3| O 0 d232 0 7(1132 0 0 d|32 0 0
diy 0 0 dspy 0 0 0 0 0 0 dxn 0
0 dspy 0 0 di 0 0 0 0 diz 0 0
0 0 dss | L O 0 dsss | L O 0 0 | 0 0 0 ]
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components will be nonzero. On the other hand, for a crystal belonging to class C,
only the P, component will be nonzero and for a crystal with C,, symmetry only the
P3; component will be nonzero.

As a practical example, consider a quartz crystal that has D3 symmetry at room
temperature. The piezoelectric effect for this case is given by

din 0 0
0 —di1 din
0 di3 0
P 0 —2diy11 —dixn o1 012 013
Py | = | —2din, 0 0 021 02 023 |,
P —d32 0 0 031 03 03
0 0 0
0 0 0
0 0 0 |

SO

Py =d\11011 — di11022 + di3203 + d132023 = (011 — 00)di1 + (032 + 023)d132
Py = —2d11031 — d132031 — 2d111012 — d132013 = —2d111(021 + 012)
— (013 +031)din

If a uniaxial stress is applied in the ¢ direction, P1=d;,01; and P,=0. The same
tensile stress applied along g, also produces a polarization along P;. The twofold
rotation axis P is the electric axis of quartz. Shear stress can produce polarization
along P, but no stress conditions can produce a polarization along P3.

The examples given above show the usefulness of symmetry analysis in under-
standing the third-rank tensor properties of crystals. This is discussed further in
Chap. 5 where the electrooptic effect is considered.

3.4 Fourth-Rank Matter Tensors

The tensor analysis of crystal properties described in the preceding sections can be
extended to properties represented by fourth-rank tensors. For example, the elastic
properties of a crystal are represented by Hooks’s Law

&= so. (3.31)
Here ¢ is the second-rank strain tensor, o is the second-rank stress tensor, and the

fourth-rank matter tensor s represents the elastic compliance. The extension of
(3.23) gives the component form of this expression:
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g = Zsijklo'kl- (3.32)
T

Each of the nine components of ¢ is linearly related to all nine of the components of
. The matter tensor s is a 9x9 matrix with 81 components. Similar to the
discussion in Sect. 3.3, this can be organized as nine different 3 x 3 matrices.

Because of the complexity of working with an §1-component tensor, a notation
has been developed to reduce the problem to a 36-component tensor [1]. This is a
6 X 6 matrix

S1t S12 S13 sS4 S15 Si6
S21 S22 823 S24 825 826
= $31 S32 833 S34 S35 836 . (3.33)
S41  S42  S43  S44  S45  S46
S51  S52 853 Ss54  S55 856
S61 S62  S63  Se4 S5 S66

These 36 elements are related to the original 81 elements through the subscript
relationships given in Table 3.6.
In the reduced tensor form, (3.32) is rewritten as

6= 80} (3.34)
J

As an example consider the first element of the strain tensor g,

1 1 1 1 1 1
€1 = 51101 +551606 +§S1505 +551606 + 851202 +§S140'4 +§S150'5 +§S140'4

+ 51303.
In expanded subscript form this is

€11 = S1111011 + S1112012 + $1113013 + S1121021 + S1122022 + $1123023 + $1131031
+ 81132032 + 851133033.

In using (3.34) in this way, the elements ¢4, €5, and &; appear with a factor of 5.
Another way to obtain the correct expansion of the coefficients is to rearrange

the elements of s to give tensor expression in reduced form as

Sit Si6 S15 S12 Si4 813
s Ky N N Ky 523
& & & S21 S26 s25 s22 S24 SZ; 61 g6 Os
3 3
& & & = 3 6 3 2 3 3 0 02 04 (335)
S41  S46  S45  S42  S44 843
& & & g5 04 03
Ss1 Ss6  S55  Ss52 Ss54 0 Ss3

S61  Se6  S65 S62  Se4 563
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The multiplication rules for obtaining the components of ¢ in terms of the compo-
nents of ¢ are the first three components of the first row of s multiply the first
column of ¢, the next two components of the first row of s multiply the last two
components of the second column of a, and the last component of the first row of s
multiplies the last component of the third column of ¢. With these multiplication
rules the factors of /2 and % listed in Table 3.6 are not needed.

The same multiplication results can be obtained by treating the six independent
components of the stress tensor as a 1 x6 matrix

&1 Sit S16 Si15 S12 S14 813 01
& $21 S26  S25 S22 824 823 06
e | _ | 31 S36 835 S32 S34 833 05 ) (3.36)
&4 S41 S46  S45  S42  S44 543 02
&s S51 856 855 S52 Ss4 S8s53 04
&6 S61 S66  S65 S62  Se4 563 03

The extension of (3.27) gives the transformation properties of the elastic compliance
components

/
Sl:jk[ = FimT'inTko"IpSmnop » (3.37)

where the r;; are components of a symmetry transformation matrix.

As before, if the transformation operation is a symmetry element of the crystal-
lographic point group, Neumann’s Principle requires that the components of the
compliance matter tensor must remain unchanged, s’ ik =Smnop- Equation (3.37)
shows that we need to consider only the diagonal elements of the transformation
matrix, and the product of these four components r; must be +1 to have a nonzero
component of the elastic compliance tensor. Thus, as described in Sect. 3.3, an
inversion operation will have the product of four r;=—1 which is a +1 so the
compliance tensor component will be invariant. A similar argument holds for a
o, symmetry operation. For operations such as rotation axes or vertical reflection
planes where the diagonal elements of the matrix representing the operation
have some +1 and some —1 components, the invariant components of s will
be those involving an even number of the —1 components. By applying this
procedure to the symmetry operations of the 32 crystallographic point groups, the
forms of the fourth-rank matter tensor for each class can be determined as was done
above for third-rank tensors. Using the analysis described above with the reduced
tensor notation, the forms of the fourth-rank tensors are given in Table 3.7. These
are in the form of the s tensor in (3.33) not the reorganized form of (3.35).

Table 3.6 Relationships between tensor subscripts

Reduced tensor subscripts: 1 2 3 4 5 6
Tensor subscripts: 11 22 33 23,32 31,13 12,21
Numerical factors: Syn = Sijrg when m and n are 1, 2, 3

Smn=28;x; When either mor nis 4, 5, 6
Symn=4Sij; Wwhen both m and n are 4, 5, 6
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Table 3.7 Form of reduced fourth-rank tensors for the crystallographic point groups

C.C; G, Cy, Cyy,
S11 S12 S13 S14 815 Si6 sitosi2 s;3 0 o550
S21 S22 823 S24 S25 826 S21 S22 8§23 0 525 0
S31 S3% §33 S S35 S36 s31 s» s 0 s35 0
S41 S42  S43 Sa4 S45 S46 0 0 0 s44 0 54
S5 Ss2 S53 854 Ss5 856 ss1 ss2 ss3 0 sss 0
S61  Se2 S63 Se4 S65  S66 0 0 0 s 0O 66
Cay, D3, Dy, Cy, S45 Caps
s sp2os3 0 0 0 st sz os;3 00 0 sge
s210 s2 s3 0 0 O 21 s sz 0 0 =556
531 832 833 0 0 0 531 531 8533 0 0 0
0 0 0 S44 0 0 0 0 0 S44 0 0
0 0 0 0 s5 0 0 0 0 0 su O
0 0 0 0 0 S66 S61 —S61 0 0 0 S66
D4a C4vs D2d$ D4/1
sios2 osi3 00 0
s20 spos;3 00 0
s31 0531 s;3 0 0 O
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 566
Cs, S¢
S11 S12 813 S14 —825 0
S21 S11 S13 —Si4 825 0
s31 831 s 0 0 0
S41 —841 0 S44 0 2Sz§
—s50 s52 0 0 S44 —2514
0 0 0 2S52 —2541 2(511 - 3‘12)
D3’C3vsD3d
S11 S12 513 S14 0 0
521 S11 S13 —S14 0 0
s31 831 sz 0 0 0
S41 —S41 0 Sa4 0 0
0 0 0 0 S44 *2514
0 0 0 0 *2S41 2(S11 — 512)
Cﬁs C3h’ C6/’u Dﬁs C6v9 D3h’ Déh
sitosi2os;3 0000 0
s21 st si3 0 0 0
s31 s31 s 00 0
0 0 0 S44 0 0
0 0 0 0  s44 0
0 0 0 0 0 2(&11*812)
T,T, Ty O, Oy,
sitosi2 s 00 0
s2t s s 00 0
S21 821 811 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 sy
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As an example, consider a crystal with octahedral symmetry belonging to the Oy,
point group. Using the form of the s for this point group in Table 3.7 shows that
there are 12 nonzero components of s. There are only four independent values and
three components have each of these values. Thus using (3.34) or (3.35) gives the
components of ¢ such as

S11 0 0 512 0 S12
e 521 0 0 S11 0 S12 o
_ 521 0 0 521 0 S11
26 22 L)oo 0 0 s o0 Zé Zz ) (3.38)
5 4 3 0 0 Su 0 0 0 5 4 3
0 S44 0 0 0 0

Expanding this gives

&1 =81101 + 81202 + 51203 = 51101 + 512(02 + 03)

& =82101 + S1102 + 51203

&3 =52101 + 52102 + 51103 = 21 (01 + 62) + 51103 (3.39)
&4 =854404

&5 =54405

&6 = S440¢.

This same type of analysis can be used in dealing with other fourth-rank tensors and
higher order tensors.

3.5 Problems

1. Consider a crystal with Dy, symmetry. Derive the transformation matrices for
each of the operations of the group and show how a first-rank tensor transforms
under each of these operations. Use (3.6) to show how many components of a
first-rank matter tensor are nonzero for a crystal with this symmetry.

2. Use (3.6) to determine how many independent components of a second-rank matter
tensor are nonzero for a crystal with D 4, symmetry. Derive the form of the second-rank
matter tensor for this crystal using the transformation matrices found in problem 1.

. Use (3.30) to derive the form of a third-rank matter tensor with D, symmetry.

4. Derive the form of a fourth-rank matter tensor for a crystal with D, symmetry.

(O8]
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Chapter 4
Symmetry Properties of Point Defects in Solids

The properties of solids can be altered by substituting a small concentration of a
different type of ion for one of the normal ions of the host lattice. This is referred to
as doping the solid and is the key to important applications such as solid state laser
materials and microelectronics based on n- and p-type doping of semiconductors.
The dopant ion can be either at a normal lattice site or at an interstitial site. It acts
like a point defect in the host material and its properties are determined largely by
its interaction with its nearest-neighbor ions. The maximum possible concentration
and the uniformity of the distribution of dopant ions are determined by the com-
patibility of the size and valance state of the ion compared to the host lattice ion it is
replacing. As an example of the importance of symmetry in determining the
properties of doped solids, the case of optically active ions in crystal hosts is
described here. To introduce this topic, Sect. 4.1 provides a brief overview of the
electronic properties of free ions. Following that, it is shown how group theory is
used to determine the number and types of energy levels of these ions in different
crystalline environments, and the selection rules for electronic transitions between
their energy levels.

4.1 Energy Levels of Free Ions

The quantum mechanical system of interest is an ion consisting of a nucleus,
electrons in filled inner shells, and electrons in unfilled outer shells. The latter are
the “optically active” electrons that absorb or emit light while undergoing
transitions between unfilled energy levels. The energy levels of the system are
determined by the Coulomb interactions between the nucleus of the ion and each of
the electrons, the Coulomb and exchange interactions among all of the electrons,
and the spin—orbit interactions of the electrons. This problem is treated in detail in
many quantum mechanics or atomic physics text books- [1-3].

The free ion is in a physical environment of total spherical symmetry with both
its energy and angular momentum being quantized. The interactions listed above
determine the radial extent of the electron orbital, its shape, and its spatial

R.C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals, 79
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80 4 Symmetry Properties of Point Defects in Solids

orientation. Each orbital represents an electronic state of the system described by an
eigenfunction and an eigenvalue. In general the electronic states are degenerate.

The problem can be formulated in a center of mass coordinate system in which
an optically active electron interacts with the nucleus as shielded by the inner shell
electrons. The Hamiltonian for the system is

H=Hgg +He n +He . +H507 (41)

where the first term represents the kinetic energy of the electron, the second term is
the electron’s Coulomb interaction with the shielded nucleus, the third term
contains the Coulomb and exchange interactions among all of the electrons in the
unfilled outer shell, and the final term is the spin orbit interaction. The first two
terms contribute an amount to the energy of the system that is common to all of the
electronic energy levels. The interaction among the electrons in the unfilled shell
plus the spin and orbital angular momentum contributions gives the relevant
electronic energy levels of the ion. The Hamiltonian representing these contribu-
tions is

HO:eZZr;I-i-Zf(Vi)E'E}, 4.2)

> i

where e is the electronic charge, r;; is separation of electrons i and j, &(r;) is the
spin—orbit coupling parameter, I; and 5 are the orbital and spin angular momentum
vectors of the ith electron, and the sums run over all optically active electrons.

The single electron wave functions can be expressed as \s,(anlmyms) = |onlmy my)
where 7 is the principal quantum number designating the energy of the state, / is the
orbital angular momentum quantum, »z; is the orientational quantum number, m is
the spin orientation quantum number, and o represents all other quantum numbers
required to make a complete set for the system. Neglecting spin—orbit interaction
and using only the first term in the Hamiltonian in (4.2), the results for the quantum
mechanical operators acting on this wave function are

H;lonlmms) = E,|onlmmy), 4.3)
Plantmymy) = I(1 + 2soitis) 12 |anlmmy), (4.4)
[__|anlmyms) = mylioanlmms), 4.5)
S, |onlnyms) = mgh|onlmyms). (4.6)

The total spin quantum number for an electron is always s=1/2 so it is not explicitly
included in the expressions above. The spin angular momentum operator s, is
quantized so that §*|anlmm) = (3/4)R*|anlmms). The spin orientation
quantum number is m= *£1/2 representing spin up and spin down. The orbital
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angular momentum quantum / can have any integer value between 0 and n—1.
The orientational quantum number m, can have any integer value between —/ and
+1. So every electronic energy state of the ion is 2n(2/+1) degenerate depending on
the spin and orbital angular momentum states.

Angular momentum raising and lowering operators are also important

I |anlmmg) = R[(1F my) (L £ my + 1)]"?|animy £ 1my), (4.7)
55 |anlmms) = R[(s F mg) (s + mg + 1)]"*janlmymg + 1), 4.8)
where
[ =Ty % ily, (4.9)
5% =5, £ iSh. (4.10)

These act to change either the orbital orientation state or the spin orientation state
by £1.

In general, the strength of spin—orbit interaction is small compared to the
Coulomb interaction described above. Thus it can be treated as a perturbation of
the electronic energy levels that partially lifts the degeneracy through spin—orbit
splitting. The second term in (4.2) can be rewritten in terms of the angular
momentum operators as

Ho=Y ¢l 5= &(i? -2 -5/ (@.11)

where the total angular momentum is the vector sum of the orbital and spin angular
momentum operators, j = [+ 5, with quantum number j. The components of j can
also be used to construct a raising and lowering operator for total angular
momentum states. Using first-order perturbation theory, the new energy
eigenvalues and eigenfunctions for the single electron ion considered above are

Er= B+ (Y| Huo V9) (4.12)
and
so|w >
W, = l/, Z< j, 4.13)
J#

respectively. Using (4.11) for the Hamiltonian in (4.12) and the properties of the
raising and lowering operators in (4.7) and (4.8) gives the additional energy of
spin—orbit interaction:
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Ey = (nljmj|(r) (* — > — sz)/2’nl’j'm;>

The spin—orbit coupling constant &,; = (nl|£(r)|nl) depends on the radial extent of
the electron orbital. Equation (4.14) shows that spin—orbit interaction splits the
degenerate energy levels with total angular momentum quantum number j into a set
of energy levels with j ranging from |/—s| to /4s in integer steps.

In spectroscopic notation, the orbital angular momentum quantum number of
an electron is designated by a letter such that s represents /=0, p represents /=1,
d represents /=2, f represents /=3, g represents /=4, etc. The electron configuration
of optically active electrons on an ion is written as nl™ where n is the principal
quantum number for the orbitals, m is the number of optically active electrons, and /
is replaced by the letter designated described above. For example, nd® represents an
ion configuration with three electrons in /=2 orbitals.

For ions with more than one optically active electron, the Coulomb, exchange,
and spin—orbit interactions between all pairs of electrons must be taken into
account. The electron wave functions are written as linear combinations of the
products of single electron wave functions. These are constructed to be antisym-
metric with respect to the interchange of two electrons in different orbitals to insure
that the Pauli exclusion principle is satisfied. Since for our purposes we are
interested in the symmetry properties of the system, we only need to consider the
properties of angular momentum coupling. There are two possible situations to
consider. The first is the case where the individual electron spin—orbit interaction is
small compared to the Coulomb interaction between pairs of electrons. In this case
the orbital angular momentum vectors of the individual electrons add vectorally to
give the total angular momentum vector for the ion designated by L,

EZEZZ (4.15)

and the spin angular momentum vectors of the individual electrons add vectorally
to give the total spin angular momentum vector for the ion designated by

§=> 3. (4.16)

Then spin—orbit interaction is accounted for by vectorally adding the total orbital
angular moment and total spin angular momentum to obtain the total angular
momentum for the ion designated J;

J=L+S§ 4.17)
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In the second case, spin—orbit interaction for an individual electron is stronger
than the Coulomb interaction between pairs of electrons. In this case the individual
electron total angular momenta are first calculated from the vector addition

Ji=h+3 (4.18)
and then the total angular momentum for ion is found from the vector sum
T=>"j (4.19)

Note that since the spin of an electron is Y, the total spin angular momentum S and
the total angular momentum J can have half-integer values.

The strength of the spin—orbit interaction determines which of the two cases
described above is appropriate. In either case the properties of angular momentum
operators including the raising and lowering operators are the same for states with
multielectron quantum numbers as they were for states with single electron quan-
tum numbers. The quantum numbers designating the state of a multielectron ion are
L, S, My, Mg, J, and M. The designation of an electronic state is given by *"VL,
where the orbital angular momentum quantum number is replaced by the appropri-
ate letter from the spectroscopic notation designated discussed above. The super-
script (25+1) is the spin multiplicity. If its value is 1, 2, 3, etc., the state is referred
to as a singlet, doublet, triplet, etc., respectively. A spectroscopic term is designated
by the spin multiplicity and the letter for the orbital angular momentum. A multiplet
of this term also includes the total angular momentum quantum number as sub-
script. For example, °P, represents the /=2 multiplet of a triplet term (S=1) with
orbital angular momentum L=1.

Since the electron—electron interaction Hamiltonian in (4.2) depends on ry L itis
useful to express the spatial part of the electron wave functions in terms of spherical
harmonics and to use the usual expansion for r;; !in terms of spherical harmonics:

V(i) = Ru(J)¥} (0. 9) (4.20)
1 Loo4n A N
it =20 2 G e O )Y (02, 00). (4.21)
k m=—k >

Here R,,; is the radial part of the wave function that depends on the principal quantum
number and the orbital angular momentum quantum number. The angular part of the
wave function is contained in the spherical harmonic function Y;". The first few
spherical harmonic functions are given in Table 4.1. It can be seen by inspection of
the functions in the table that changing r to —r introduces a factor of (—=1)". Thus
Y'(0,¢) has even or odd parity depending on whether the angular momentum
quantum number / is even or odd. The energy associated with electron—electron
interactions is then found by evaluating the matrix element of the Hamiltonian
expressed in terms of spherical harmonics and the electron wave functions expressed
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Table 4.1 Spherical harmonic functions
1

Yy =

/3 z /3
O JE—
Y 47'51 47ICOSO
3 x+i 3 .
vE = 1 2 2 gin e
8t r 8w

322 —r? /5
Y2 \/— E(3 C()S2 0 — 1)
1 +i
Yil = :F\/s—iz—(xrz ) _ Fi/ 8751 sin 0 cos Oe*'?

15 (x+iy)* 15 .
vy — [ — 22 gin? get2ie
2 N 2 e

7 z(52% —3r?) 7
N A G
Y =\1ex 3 =\ ien (5cos® 0 — 3cos 0)
21 (x iy)(522 — r?) /21
£
Yil=x i 3 =¥\ sin 0(5 cos® 9)
[105 z(x + iy)? 1 .
Y3i2 —05 72(( iy) = 05 ——sin 9(009 0)e e
32n 3 32n

35 z(x £iy)’ 35 ;
Yj:3 — Y — Y 3 0 +3ip
ST Wean s Vear™™

9 35z —30z%2 4+ 3r* 9
VW= —— = - 35cos* 0 — 30cos? 0 + 3
4 \/; i 256717 €08 cos”0+3)
[35 (x+ iy) (723 — 322 /45 .
Yi'=7 64 % =7F sm 0(7 cos® 0 — cos 0)e*i#
n r
45 + 7 — i
Y = 2%m G Eiy) (72 1) ) (722 = 2 ”12871 sin? (7 cos? 0 — 1)e*2¥

315z(x £ 1y)3 315 . )
Y9 =1y e =7 %sm3 0 cos 0e*3#

4 315 (x:l:iy)4 315 .
4
512xn r 5127!51

+4ip

in terms of spherical harmonics. Note that for the matrix element to be nonzero the
product of the spherical harmonics involved must be an even function.

For optical absorption or emission transitions between energy levels, the radia-
tion field can be expressed in terms of a multipole expansion with the leading term
being the electric dipole term

Heq = eF. (4.22)
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As discussed in Sect. 2.4, a quantum mechanical transition between an initial and
final state of a system is proportional to the matrix element describing the process.
For an optical transition induced by the electric dipole term of the radiation field
(neglecting polarization) the matrix element can be expressed as

Meq = <lp;

Y. (4.23)

If this matrix element is identically zero the transition is said to be forbidden
while if it is nonzero the transition is allowed. Since the dipole moment operator is
an odd function that can be expressed in terms of spherical harmonics with /=1, the
initial and final states of the system must have opposite parity for the transition to be
allowed. Thus all optical transitions between single electron states with the same
angular momentum quantum number are forbidden.

Since free ions are in an environment of totally spherical symmetry, group
theory is not a helpful tool. However, if an external perturbation such as an electric
or magnetic field is applied with specific directional properties, group theory is
useful in determining change in energy levels and the selection rules for optical
transitions. This is what occurs when an ion is doped into a crystal lattice as
described in Sect. 4.2.

4.2 Crystal Field Symmetry

When an ion with optically active electrons is doped into a crystalline host lattice,
the Hamiltonian describing its energy levels is given by (4.1) with an additional
term H.; added to take into account the effect of the crystal field. The dopant ion
is no longer in an environment of spherical symmetry but rather is surrounded with
a set of host ions located at specific nearest-neighbor lattice positions. These ions are
referred to as ligands. Each ligand has an electric field associated with it, and thus
the dopant ion finds itself in an environment of an electric field with a specific
geometric shape. H. describes the interaction of the optically active electrons with
this electric field. There are three approaches to treating this problem depending on the
relative strengths of the interactions described by the Hamiltonians in (4.1) compared
to the strength of the crystal field interaction [4—6]. These are described below.

If the crystal field interaction is small compared to both the electronic Coulomb
interaction and the spin—orbit interaction, the situation is referred to as a weak
crystal field case. This case is treated using the free-ion multiplets described by total
angular momentum quantum numbers J and M, for the eigenfunctions of the
unperturbed system and treating the crystal field as a perturbation on the system.
This perturbation causes a Stark splitting of the free-ion multiplets and determines
the selection rules for optical transitions between any two split energy levels. Rare
earth ions are an example of a weak crystal field case since their 4f optically active
electrons are shielded from the crystal field by other electrons in different orbitals
with greater radii. An example of this is discussed in Sect. 4.5.
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The opposite situation is one in which the magnitude of the crystal field
interaction is greater than either the electron Coulomb interaction or the
spin—orbit interaction and thus is called a strong crystal field case. In this case the
eigenfunctions of the unperturbed system are taken to be the single-electron wave
functions designated by quantum numbers /, my, s, and mg. The crystal field acts
as a perturbation to split these energy levels into a set of crystal field states. Then
multielectron terms are formed by taking into account the effect of electron
Coulomb interactions, and finally crystal field multiplets are determined from
spin—orbit interaction. Good examples of strong crystal field case can be found in
second and third row transition metal ions. This is discussed further in Sect. 4.4.

The medium crystal field case occurs when the strength of the crystal field is
greater than the magnitude of spin—orbit interaction but less than the strength of the
electron Coulomb interaction. In this case the eigenfunctions of the unperturbed
system are the free ion terms designated by the quantum numbers L, S, M;, and M.
The effect of the crystal field is to split these energy levels into a set of crystal field
terms. Then spin—orbit interaction is applied to form crystal field multiplets. The
first row transition metal ions with unshielded 3d optically active electrons are good
examples of a medium crystal field case. However, it is more difficult to work with
this case so it is common to treat the crystal field effects on 3d ions using either the
strong field or weak field schemes. The results come out the same.

The crystal field Hamiltonian, the wave functions of free ions, and the electric
dipole operator can all be expressed in terms of spherical harmonics. Group theory
can be used to determine how these functions transform under specific symmetry
operations. The angular parts of these functions are given by

Y" = NPJ'(cos 0)e™, (4.24)

where the P7"(cos 0) are the Legendre polynomials and N is a normalization factor,
as shown in Table 4.1. The splitting of the energy levels in the crystal field is
determined from perturbation theory using

E] [0 ¢ <¢I|H0f‘lpl> (425)

and then the electronic transition between levels is determined from (4.23) using the
crystal field energy levels and the irreducible representation for the dipole moment
operator.

The first step in treating the effects of a crystal field on an optically active ion is to
treat the ligands as point charges and determine the electric field at the site of the ion.
To do this the number and location of the ligands with respect to the central ion must
be designated. As an example, consider the octahedral coordination of six ligands
each with a charge Ze located as shown in Fig. 4.1. This situation was treated in the
example of O, point group symmetry in Sect. 2.3.1. The difference here is that
the central ion is not the same as the other six ions. The crystal field Hamiltonian is
found from the electrostatic field at the positions of the optically active electrons
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ION POSITIONS
X,Y5Z, r,0,0
O 2a Optically active ion:
: 0,0,0 0,0,0
Ligands:
y . a,0,0 a,m/2,0
0,a,0 a,m/2,m/2
-a,0,0 a,m/2/m
0,-a,0 a,n/2,3n/2
/ = 0,0,a a,0,0
X 0,0,-a a,m,0
Fig. 4.1 Central ion with octahedral coordination of ligands
6 e/
Ha =3 eVa(n00) = 303 -y
J j i=1 1"J i
6 o0 I g7 (4.26)
. nel 1. m
*ZeZZZﬂ_,_lalHYl (0i,0,)Y] 9}"%‘ .
J i=1 =0 m=—I

Here the standard multipole expansion for |r; — r| ! with [rj|<|ril=a has been
used so the crystal field can be expressed in terms of spherical harmonic functions.
The sum over six ligands is consistent with the example of octahedral coordination.

For d electrons with /=2, the orthogonality of spherical harmonics implies that the
product of the two eigenfunctions in (4.25) will result in spherical harmonics with
| <4. Thus the crystal field matrix element will be zero for any spherical harmonic
terms in H¢ with / greater than 4. Similarly, for f electrons with /=3, the terms in H¢
that give nonzero terms in the crystal field matrix element must have /<6. In addition,
H_ ¢ must contain only even parity terms for the matrix element to be nonzero.

A specific example of a d electron in an octahedral crystal field is described in
Sect. 4.3.

4.3 Energy Levels of Ions in Crystals

Consider an ion in a crystal field of a specific symmetry. If the system is quantized
along a major axis of symmetry, a rotation of o about this axis changes the
exponential factor of a spherical harmonic function from ¢”? into ¢ * * The
ion has an orbital angular momentum quantum represented by number [/ and its
wave function is given by (4.20). Its orientation quantum number ranges from
m=+! to m=—1 in integral steps. A linear combination of these 2/4-1 wave
functions forms the basis function for a representation of the symmetry group of
the system [7]. This can be expressed as
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eilga
ei(lfl)ap

¥, . 4.27)
e—iltp

The symmetry operation of a rotation o about the principal symmetry axis is
represented by the matrix

rR=|"* R (4.28)

The multiplication of (4.28) and (4.27) transforms the wave function as required.
The character of the o rotation operator is found by taking the trace of the
rotation matrix in (4.28):

il _ w. (4.29)

7(0) = Tr(R) = e +l"D* ... 4 o™ ~1
SIH(EO()

For example, the characters for some of the common rotation operations are

Can o] b 1=0nAS
PERS ST L 122367,
0, I[=1,4, -
o=2n/3, 72(C3) = 1, [=0,3,6,---
—1, =25,

Thus, for a d electron with /=2, the characters for rotation operations are y(C,)=1,
7(C4)=—1, and y(C3)=—1. For an f electron with /=3, the characters are y(C,)=—1,
1(Cy)=—1, and y(C3)=1.

For the case where spin—orbit interaction is stronger than the crystal field, the
free-ion wave functions are designated by the total angular momentum quantum
number j instead of the orbital angular momentum quantum number /. In this case
the expression for the character of an operation of rotation through an angel o given
in (4.29) becomes
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sin(1or)

7 (o) (4.30)

When [ or j has integer values, y(a+2mn) = y(«) so a rotation by 2r is the identity
operation. However, when an atom has an odd number of electrons, j can also have
half-integer values. When this occurs, (4.30) shows that y(x+2n)=—y(o) is not the
identity operator but rather a new symmetry operation designated by R. In this
situation the character of the identity operation is given by

AWE) =2j+1 4.31)
and
2(R) = —(2j+1). (4.32)

This case is called a double-valued representation as discussed in Sect. 2.2. The
number of symmetry operations in the group is now twice the original number and
includes the products of R with all of the other members of the group.

To determine the transformation matrix for nonrotational symmetry elements such
as reflection and inversion, it is necessary to consider how the x, y, and z components
of the spherical harmonics given in Table 4.1 transform. Then the traces of these
matrices give the characters of the operations instead of (4.29) or (4.30).

The optically active ions of most interest [4] have orbital angular momentum
quantum numbers of /=2 or 3. As an example of the use of group theory, consider a
strong crystal field case for a d-electron in an octahedral crystal of symmetry class O.
The normal character table for this point group is given in Table 2.31. In order to
treat spin—orbit interaction, this is expanded to the character table for the full double
group in the top portion of Table 4.2 while some special representations and their
reductions are shown in the bottom portion of the table. Using this table and (4.29)
and (4.30) gives the characters for the I'; representation as shown in the lower half
of Table 4.2. Here I'; is the crystal field symmetry state for ions with orbital angular
momentum / (in this case 2). The I', reducible crystal field representation has been
reduced in terms of the irreducible representations of the O group using (2.10). This
shows that the fivefold orbitally degenerate free ion energy level of a d-electron in a
crystal field of O symmetry splits into two crystal field energy levels, a doubly
degenerate E level and a triply degenerate T level as depicted in Fig. 4.2. The orbital
angular momentum / is no longer a good quantum number. It has been replaced by
the irreducible representation designations in the crystal field. Physically this means
that the electron is not free to move about the nucleus of the ion as dictated by
internal Coulomb interactions, but instead its motion is constrained by the crystal
field established by the ligands. Note that the spin multiplicity remains unchanged
since the new spatial symmetry does not change the spin state of the ion. Thus the
total degeneracy of these states is twice the orbital degeneracy as listed in Fig. 4.2.
This analysis is the same if the unperturbed ion is represented by the total angular
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Table 4.2 Representations in a crystal field with O symmetry

0 E 8C; 3C, 6C, 6C', R 8RC; 3RC, 6RC, 6RC',
Ay 1 1 1 1 1 1 1 1 1 1
A, 1 1 -1 -1 1 1 1 -1 -1 1
E 2 -1 0 0 2 2 -1 0 0 2
T 30 -1 1 -1 301 0o -1 -1 (0,2)
T, 3.0 1 -1 -1 3 -1 0 -1 1
Dip 21 0 3 0 -—2-1 0 -3 0
28 21 0 _3 0 -2-1 0 N0
Dsp 4-1 0 0 0 -4 1 0 0 0
r, 51 1 -1 1 5 2 0 -1 3 —E+T,
I, 9 0 1 1 1 9 0 1 -1 1 —A+EAT, +T,
F5/2 6 0 0 — \/Z 0 —6 0 0 \/E 0 :25+D3/2
F3/2 4 —1 0 0 0 —4 1 0 0 0 :D3/2
FI/Z 2 1 O \/j 0 —2 —1 O — \/i 0 :DI/Z
D|/2><T2 6 0 0 _ \/Z 0 -6 1 0 \/E 0 :2S+D3/2
D1/2><E 4 —1 0 0 0 —4 1 0 0 0 = D3/2
E(4) Ds3p(4)———— TI3p(4)
d(10)
d(10) S ()
T2(8) : } I'sx(6)
Ds(4)
FREE C.F. S.0. C.F. S.0. FREE
ION ION

Fig. 4.2 Splitting of the energy level of a d-electron in a strong and weak crystal field of O
symmetry (The numbers in parentheses indicate the degeneracy of the level.)

momentum quantum number j=2 or a Russell-Saunders term with L=2 as dis-
cussed in Sect. 4.1.

The next order of perturbation is spin—orbit interaction. The spin state of a single
electron with s=1/2 transforms as the representation I';, in the O symmetry group.
This has the characters derived by (4.30) shown in Table 4.2. From inspection (or
using (2.10)), the I'|,, reducible representation transforms as the D, irreducible
representation. Taking the product of this representation with the orbital state T,
and E representations gives the representations of the spin—orbit coupled states in
the octahedral crystal field. As shown in Table 4.2 and Fig. 4.2, the use of (2.10)
shows that the E state becomes a D3, state while the T state splits into a ,S state
and a D5, state. Thus the tenfold degenerate free ion d energy level becomes two
fourfold degenerate D3, levels and one twofold degenerate ,S level in a crystal field
with O symmetry and spin—orbit coupling.

For strong spin—orbit coupling, the free ion with a d electron is split into two
levels with total angular momentum quantum numbers j=5/2 or 3/2. Equation
(4.30) can be used to determine the characters of the irreducible representation



4.3 Energy Levels of Ions in Crystals 91

I's;; and I'3p, in the O symmetry group as shown in Table 4.2. These can be reduced
in term of the ,S and D3, irreducible representations. The ['s,, state undergoes a
crystal field splitting into two levels while the I'3,, state does not split. Note that the
crystal field states are the same whether spin—orbit interaction is accounted for
before or after crystal field splitting.

This example shows the ability of group theory to determine the manner in
which the energy levels of free ions are split by crystal field and spin—orbit
perturbations. This is done using very simple manipulations of character tables
and the properties of irreducible representations without the need for very compli-
cated quantum mechanical perturbation theory calculations. However, it should be
noted that simple symmetry arguments cannot provide information on the quantita-
tive magnitude of the energy level splittings.

Group theory can also be used to determine whether or not electronic transitions
between energy levels are allowed or forbidden. It was shown by (4.23) that electric
dipole transitions between free ions states with the same / quantum number are
forbidden. However, since / is not a good quantum number in the crystal, the
electric dipole matrix element describing the transition must be considered between
states designated by crystal field representations. Transitions that are allowed in the
crystal are called forced electric dipole transitions. Allowed transitions of this type
appear as strong lines in the absorption and emission spectra of the material while
forbidden transitions produce much weaker spectral features.

As discussed in Sect. 2.4, when the initial and final states of the transition are
designated by the irreducible representations of the crystal field symmetry group I';
and 'y and the operator of the radiation field causing the transition is designated by
the irreducible representation I'oq, (4.23) for the transition matrix element can be
rewritten in terms of the products of irreducible representations. To determine the
selection rules for the transitions, (4.23) is now expressed as

FiXFedXFfDAlg or I'j xT'eq D IF. (4.33)

The first expression states that the reduction of the triple product irreducible
representations must contain the totally symmetric representation of the crystal field
group for the transition to be allowed. As discussed in Sect. 2.4, this is because the
matrix element involves an integral of the product of these three functions over all
space and this integral will be identically zero unless the integrand is a totally
symmetric function. The second expression in (4.33) follows from the fact that the
totally symmetric representation only appears in the direct product of an irreducible
representation with itself. Thus the reduction of the direct product of any two of the
irreducible representations involved in the transition matrix element must contain
the third irreducible representation for the transition to be allowed.

In the example above with O symmetry, the electric dipole momentum operator
transforms as 7. Thus for the example of O symmetry, it is necessary to find the
direct product representations of 7'} with each of the irreducible representations of
the group and reduce them in terms of the irreducible representations. Using the
characters in Table 4.2 and (2.10) gives
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T, xA =T,

Ti x A, =T,

T\ xE=T,+T,

Ty xTy =T+ T+ E +A,

T'xTr,=T1+T, +E+ A,
Ty X Dyjp =Dy +Ds3pp

Ty X 28 =25+ D3pp
Ty x D3 = 2D3)3 + 2 + D1 o.

From this analysis it can be seen that transitions between the crystal field levels T,
and E in Fig. 4.2 are allowed. Also transitions between all of the spin—orbit split
levels in Fig. 4.2 are allowed.

Group theory can also be used to determine the exact form of the crystal field
Hamiltonian [4, 6]. As discussed in Sect. 4.2, the expression for H ¢ in (4.26) has a
limited number of terms in the sum over / depending on the orbital angular
momentum of the optically active electron. For d electrons, only the /=24 terms
are nonzero. Using the technique described above, Table 4.2 shows how the I"; and
I'4 reducible representations transform in O symmetry and their reduction in terms
of the irreducible representations of the group. Since H is part of the total
Hamiltonian of the system, it must transform as the A, irreducible representation
in order to remain invariant under all symmetry operations of the group. Table 4.2
shows that there are no linear combinations of the Y3' functions that transform as
A, but there is a linear combination of Y}’ functions that transform as A;. Thus the
crystal field expansion in (4.26) contains only Y}’ terms.

To determine the specific linear combination of Y} terms in the expansion
of HY, symmetry operations of the group must be applied to the set of nine
spherical harmonic functions with m = —4,... 4+4. In Cartesian coordinates,
a rotation of m/2 about the z-axis will take (x,y,z) into (y,—x,z). Applying this to
the spherical harmonic functions in Table 4.1 gives

Yy Yy

Y; iv;

vi Y

Y, —iY;

Cy| Y] | = Yy
v, iv,"

Y,? -Y,?

Y,? —iY,?

vt vt



4.3 Energy Levels of Ions in Crystals 93

Since H9 must remain unchanged under the C, operation, the only nonzero
expansion coefficients in (4.26) are those for Y3 and Y*.

Applying the C', changes (x,y,z) into (y,x,—z). Y} is invariant under this opera-
tion while Y 2 and Y, 4 transform into each other. Thus,

HO oY) +d(Y] +Y,4).
The coefficient d can be evaluated by applying the C; operation of the O group. This

operation takes (x,y,z) into (y,z,x) and thus mixes all three spherical harmonics.
Since

C3HS = HS,

35

(35¢* =302 +3) /8 4 dy | — [(y i)y — iz)4]

35
= (357 =302 +3r) /8 + dy | o [(x +iy) (- iy)4] :

Since these must be identical, the coefficients of z* on both sides of the equation

must be equal:
3 / 35
—4+2d\/—=1.
8 + 128

Thus, d = /5/14 so the form of the octahedral crystal field becomes

5 3
HO o Y + ﬁ(Yi +Y ). =yt - gr“. (4.34)

Now that the form of the crystal field Hamiltonian is known for octahedral
symmetry, (4.25) can be used to determine the magnitude of the free ion energy
level splittings due to the presence of HS. For the example of ions with optically
active 3d electrons, the wave functions are

W30m = Ra2(r)Y5" (0, ). (4.35)

So,

1 /5
V300 = R3d\/;;\/;(3 cos” 0 — 1)
1 /15 L
Wipe1 = FR3a o Z(cos@sm 0e*¥)
[T 15, .
Y3240 = Rad I E(sz 0e*27).
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and

1
H?f:C(R)\/E
/9 4 2 [5 BIS 4 iae i
x[ —128(3500s 0 —30cos”0+3) + 7\ 35650 (e e ).

Here C(R) is a factor containing all of the expansion coefficients and radial factors.

The crystal field matrix elements involve integrals over 6 and . Considering the
 integral first,

2n 2
M = <$1|Hg|lpj> X J(eim;¢)*einzopeimjwd(p _ J\ei(moer,vfm,-)q:dsO.
0 0

This integral will equal zero unless mo-+m;—m;=0. Since mg has the values 0, 14,
Am;;=0, +4. The values of m; and m; for d-electrons are 0, =1, £2. This shows that
all diagonal matrix elements (Am;=0) are nonzero and matrix elements with
m;=22, m==2 are nonzero. These are given by

T

(W320[H|3.20) :K%,/%[ (3cos20— 1) (35cos* 0 — 30c0s2 0+ 3) (3cos? 0 — 1) sin 0do,

' ' Jo
< 0 15 9 (T . 4 ) . .
W30 41 |Hg lﬂ3427i1> :KI 18 (cos 0sin 0) (35 cos” 0 — 30cos” 0 + 3) (cos O'sin 0) sin 0 d0),

' ' 0
< o 15 9 (™, .5 4 2 2 :
V32.40|He '//3A2,i2> :KE ﬁJO (sin® 0) (35 cos* 6 — 30 cos® 0+ 3) (sin® 0) sin 0. d0,

o 15 /5 BI5(™, 5/ amiom .

<l/’3,2~i2 Hg ‘//37273F2> :K1—6 1 ﬁjo (sm 9) (sm 9) (sm 9) sin0do.

Here all of the radial functions, expansion parameters, and factors of \/2/%

have been into the parameter K. These integrals can be evaluated using the
expression

v

J (sin**! 6) (cos™ 0)d6 = J (sin” 0) (cos™*! 0)d0
0 0

2n+ln!

m+1)m+3)---(m+2n+1)

It is conventional to express that the results are in terms of the parameters D and g
which are constants multiplied by the factor K. This gives
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w3,2,0|H?f}lp3.2,0> = 6Dq
‘P3,2¢1 ‘H8‘¢3,2,i1> = —4Dq
l//3,2,i2‘H?f lp3,2¢2> = Dq
w372,:t2‘H2‘ ‘P3,2,¢2> = 5Dg.

o o

The secular determinant with these elements is

Dg—E 0 0 0 5Dgq
0 —4Dg—E 0 0 0
0 0 6Dg — E 0 0
0 0 0 —4Dg—E 0
5Dq 0 0 0 Dg—E

This can be box diagonalized and expanded to give the secular equation
(—4Dg — E)*(6Dq — E)| (Dg — E)’—(5Dq)’| = 0.

The solution to this shows that there is a triply degenerate level with E=—4Dg and a
doubly degenerate level with E=6Dgq. Thus the crystal field splitting of the 7, and E
levels in Fig. 4.2 is 10Dgq.

The explicit expressions for D and ¢ are found from evaluating the matrix
elements using all of the radial functions, expansion parameters, and numerical
factors. This gives

35e
D= 4.36
4a’ (436)
and
2Ze
4="155 (R3a(r)|r*|Raa(r)). 4.37)

This shows that the magnitude of the crystal field splitting 10Dg varies as the
inverse fifth power of the ion—ligand distance.

4.4 Example: d-Electrons

Materials with transition metal ion dopants having optically active d-electrons are
important in applications such as lasers and phosphors and in giving color to some
gem stones [4, 5] One important example is ruby. The host material is aluminum
oxide, Al,Os. This is a clear crystal known as sapphire. When less than 1% of the
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AP’ host ions are replaced by Cr’* ions the color of the crystal turns to red and it is
called ruby. Trivalent chromium has three optically active electrons in the unfilled
3d shell outside of a filled inner shell. Since these are unshielded, they are strongly
affected by a crystal field.

In the sapphire host crystal, the AI’" ions are surrounded by six oxygen ions
producing a crystal field of almost O, symmetry. This octahedron is slightly twisted
producing a distortion that results in the actual symmetry being C;. However, the
strength of the octahedral part of the crystal field is so much stronger than the slight
trigonal distortion that the major properties of the optical spectra can be explained
by assuming O, symmetry. Detailed fine structure can then be explained by treating
the reduction in symmetry from Oy, to Cs.

When a Cr’" ion is substituted for an aluminum ion, the energy levels and
electronic transitions of its optically active electrons can be described by treating
three d electrons in an octahedral crystal field site. As described above, a free ion d
electron energy level splits into a triply degenerate and a doubly degenerate energy
in an octahedral crystal field. These crystal field energy levels are designated by the
irreducible representations of the O, symmetry group as discussed previously. It is
common convention to use capital letters for the irreducible representations when
dealing with multielectron energy terms as discussed above. However, for single
electron states the convention is to use small letters for the irreducible representa-
tions. Thus, the multielectron T, and E levels shown in Fig. 4.2 are designated 7 and
e when dealing with a single d-electron. In a addition, for groups with an inversion
symmetry element, it is necessary to include the subscript g (gerade) or u (unger-
ade) to designate an even parity or odd parity representation. For a d-electron with
angular momentum quantum number /=2, the wave functions have even parity so
the single electron orbitals of interest are #,, and e,.

Figure 4.2 shows that the triply orbitally degenerate #,, level will be of lower
energy than the doubly orbitally degenerate e, level. In the strong field model, all
three electrons will occupy the lowest energy t,, orbitals as shown in Fig. 4.3. The
arrows indicate the direction of the electron spin. Hund’s rules state that the lowest
energy state will be the one with the highest spin multiplicity [4] Thus the ground
state will have all three spins of the electrons aligned producing quartet terms. The
configuration of single electrons is designated tggeg where the superscripts indicate
how many electrons are in each type of orbital.

There are two types of electronic transitions in this model as shown in Fig. 4.3.
The first type is a spin-flip transition in which all the electrons retain the t%geg
configuration but now have a spin multiplicity of 2, giving doublet terms. Note that
the energy related to flipping the spin of an electron is independent of the magnitude
of the crystal field. These transitions appear as sharp lines in the optical absorption
and emission spectra.

The second type of transition is one that changes the crystal field configuration
from t%geg to t%geé. As shown in Fig. 4.3, the energy of this type of transition
depends on the magnitude of the crystal field. Since 10Dg varies as a >, this
changes with the thermal vibrations of the crystal lattice that modulate the central
ion-ligand separation. This thermal modulation of the crystal field imparts an
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Fig. 4.3 Optical transitions of three d electrons in an O, crystal field

energy uncertainty to this type of transition. Therefore configuration-changing
transitions appear as broad bands in the optical absorption and emission spectra.
The excited state for this case is still a quartet term since the total spin has not been
changed.

In order to obtain the complete set of crystal field terms, two other single
electron configurations must be considered along with the two given above.
These are tzgleé and tzgeg . The multielectron terms are found from group theory
by finding the direct products representations of single electron configurations and
reducing these in terms of the irreducible representations of the O;, symmetry group.
As an example, consider the ground state configuration tggeg. This requires taking
the triple direct product t,, X f», X tr,. Using the character table for O, given in
Table 2.32, the products of the characters of the #,, irreducible representation with
itself give the characters of the #,, X #,, representation. This reducible representa-
tion can be reduced in terms of the irreducible representations Ay +Eq+T5+T5, by
using (2.10). The next step in evaluating the triple direct product is to find the
direct product of #,, with each of these irreducible representations and determine
the reductions of their product representations. Again using Table 2.32 and (2.10)
gives t2g X Alg:TZg’ t2g X Eg:T1g+T2g, tZg X Tlg:A2g+Eg+T1g+T2g, and t2g X
Tre=A g +Es+T 4+T5,. Similar procedures for the other three single electron
configurations result in twenty multielectron doublet and quartet terms for the
Cr’" ion in an O, crystal field.

In the weak field model, the rules for coupling the angular momenta of three
electrons each with quantum numbers (n=3, /=2, m= +2, £1,0, s=1/2, ms= £1/2)
can be used to determine the multielectron terms of the free ion. Forming all
allowed combinations of quantum numbers shows that the free ion terms for the
Cr** ion are two quartets and six doublets: ‘F ,4P,2H,2G,2F ,2D,2D,2P.

When these free ion terms are put into a crystal field environment with O,
symmetry, they split into states designated by the irreducible representations of the
group. This can be demonstrated more simply by using the O subgroup of O, which
gives the same results. A summary of the results is presented in Table 4.3.



98 4 Symmetry Properties of Point Defects in Solids

Table 4.3 Reduction of the terms of d* free ions in a crystal field of O symmetry

19) E 3C, 8Cs 6C, 6C',

va 7 —1 1 —1 —1 g+ T+ Tog

4p 3 —1 0 1 —1 Ty

H 11 -1 -1 1 -1 PEg 27T g+ Tog

G 9 1 0 1 1 A1 P Eg T g +7To,
’F 7 -1 1 -1 -1 Ang+ T g+ Tag

’D 5 1 —1 -1 1 2By 2Ty,

D 5 1 -1 -1 1 Eg+Tog

’p 3 —1 0 1 —1 T,

As an example of the results shown in Table 4.3, consider the 2G term with L=4.
The characters are found from (4.29) to be

in3

WE)=2x4+1=9 wcy) =2
sin%
sin 22 sin 22

, = 2 _q ) = 4 1,
1(C2) sin % 1(Ca) sin %

Then (2.10) can be used to determine how many times each irreducible representa-
tion of the O group appears in the reduction of the G reducible representation;

11(A1):%(9><1><1—&—1><1><3—|—O><1><8—i—1><1><6—|—1><1><6):17
n(Az):%@xlxl—&—l><1><3+O><1><8—1><1><6—1><1><6):07
n(E):%(9><2><1—&—1><2><3—O><1><8—i—1><0><6+1><0><6):17
n(Tl):%(9><3><1—1><1><3+0><0><8—1><1><6+1><1><6):17
n(Tz):%(9><3><1—1><1><3+O><0><8+1><1><6—1><1><6):1.

Note that the 20 crystal field terms found in this weak field approach are the same as
those found in the strong field approach. The energy levels for Cr’" ions are shown
in Fig. 4.4 for different symmetry environments.

The optical transitions are technically forbidden transitions since they are
between states of the same (even) parity. However, in the exact quantum mechani-
cal treatment there is an admixing of the energy levels due to odd components of the
crystal field and coupling with odd parity lattice vibrations. This leads to forced
electric dipole transitions as discussed previously and the selection rules can be
found from group theory as described in Sect. 4.3. In O, symmetry, the electric
dipole moment operator transforms as the T,, irreducible representation. The
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Fig. 4.4 Energy levels for a Cr*" ion in different symmetry environments

Table 4.4 Forced electric R
. .. 3+ Alg TZg
dipole transitions for Cr- AsperT,
. . 0 t 34 g
ions in O; symmetry EyeTag Eg=Ti,

TlgHAng Tlg‘_'Egs TlgHTlgs TlgHTZg
TZgHAlg, TZgHEg, TZgHTlg, TZgHTZg

transition matrix element is then expressed as the triple cross product of the
irreducible representations for the initial and final states of the transition T»,. The
reduction of the product representation must contain the totally symmetric A,
representation for the transition to be forced electric dipole allowed. For this
example the allowed transitions are those listed in Table 4.4 and all other transitions
are forbidden. Note that transitions between states of the same multiplicity are spin
allowed while those between states of different multiplicity are spin forbidden. The
lowest energy emission transition in ruby is between a 2Eg and a 4A2g state. Group
theory shows that this is both spin forbidden and forced electric dipole forbidden
and thus has a very long fluorescent lifetime which makes it an excellent metastable
state for laser emission.

In this example, group theory has been used to determine the crystal field energy
levels of a Cr’ " ion in an octahedral symmetry environment. More detailed quantum
mechanical calculations are needed to determine the magnitude of the energy level
splittings. The optical absorption and emission spectra appear as a series of sharp
lines and broad bands which are explained as spin-flip and configuration chang-
ing transitions [4]. Depending on the strength of the crystal field of the host
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material, Cr’" ion can form the basis of either sharp line lasers or broad-band
tunable lasers [4].

The first row transition metal ions exist in numerous valance states with a variety of
d" electron configurations, most of which have been made into solid state lasers [4].
As with the example of ruby described above, the optical properties of these combina-
tions of dopant ions and crystal host combinations depend critically on the local site
symmetry and the strength of the crystal field. For example, chromium can exist as a
Cr*" ion which has a d* configuration. This ion has been made to lase in crystals with
garnet (Y3AlsO,) or forsterite (Mg,Si0,) structures. For the former case the ion finds
itself in site symmetry with four oxygen ligands arranged in a tetrahedron stretched
along the S, axis. The strongest contribution to the crystal field has T4 symmetry with
the distortion lowering the final site symmetry to D,4. Following the procedure
described above, the energy levels for an ion with a d* configuration can first be
derived for a crystal field with T4 symmetry, and then a perturbation with D,q4
symmetry applied to split these levels and produce a fine structure in the optical
spectra.

For each of the two electrons in a d° configuration, the value of m runs from
+2 to —2 in integral steps, so the total M; quantum number runs from +4 to —4.
The values of Mg run from 41 to —1. Forming all combinations of these quantum
numbers that obey the Pauli exclusion principle gives five free ion terms, three
singlets and two triplets. Since Hund’s rule requires that the terms with highest
multiplicity represent the states with lowest energies, the two terms giving rise to
the optical spectroscopic properties are *F and *P. Using the character table for T4
symmetry given in Chap. 2 and the procedure described above, a °F term (L=2) will
split into 3A2, 3T2, and > T, crystal field terms, while the 3P term will become a 2T1
crystal field term. Then using the compatibility relations between the T4 group and
its D,4 subgroup along with the character tables in Chap. 2, the crystal field energy
levels for an ion with a d* configuration in a site with a crystal field having Doq
symmetry are 3B,, 332, 3E, 3A2, 3E, 3A2, and E. The forced electric dipole selection
rules can be determined as described above. The results are useful in understanding
the polarized optical spectra of d* ions in crystals with tetrahedral symmetry.

4.5 Example: f-Electrons

Rare earth ions are another important type of dopant for optical materials [4]. Some
of these are used as phosphors, lasers, amplifiers for telecommunications, and other
applications. Nd*" is one of the most important dopant ions for solid state lasers. Its
electronic configuration consists of an inner core of filled orbitals, three optically
active electrons in the partially filled 4f orbitals, two electrons in 5s orbitals, and
6 electrons in the 5p orbitals. The important optical transitions take place between
4f orbitals. The outer shell 5s and 5p electrons shield the 4f electrons from external
perturbations such as crystal fields. Thus the energy levels of Nd>" ions in a host



4.5 Example: f-Electrons 101

crystal are found using the weak field approach. The free ion terms are found by
considering three electrons each with quantum numbers n=4 and /=3 and then
applying spin—orbit coupling to find the multiplet.

Considering all possible allowed combinations of the sets of m; and m, quantum
numbers for the three electrons gives 17 free ion terms: 212K, R 21,%H,°H,*G, G, *G,
ya s ’F s ’F 4D, 2D, 2D, 2P, and *S. Spin—orbit coupling splits each of these terms into
states with total angular momentum quantum number J=L+S, L+S—1, ..., L — S.
Thus for example, the I term splits into four multiplets 4 15/25 4 1372 I 12, and 419/2.
This is the ground state term for the free ion with 419/2 multiplet being the lowest energy
level. The *F 312 level is the first excited state above the ground state multiplets.

For rare earth ions, the crystal field perturbation is generally treated using the
formalism of tensor algebra. In this treatment the expression for the crystal field in
(4.26) is rewritten as

Her = B, > Ciy(0i,0). (4.38)
kq i

The first sum is over the terms in the crystal field and the second sum is over the
number of optically active electrons. The By, are the crystal field expansion
parameters that depend on the crystal structure,

J

The Cy, are tensor operators defined in terms of spherical harmonics as

Cro = [T 1/21/‘?(0 ) (4.40)
M= \okv1) KOF) ‘

As in the example above, the first step in evaluating the crystal field matrix
elements is to determine which terms in the crystal field expansion are nonzero. The
4f electronic states are represented by spherical harmonics with /=3. The matrix
element of the crystal field operator between two of these 4f states each with odd
parity must have even parity to be nonzero. Due to the orthogonality of the spherical
harmonics, the Y{ functions in the crystal field expansion must have k<(l;-+1;)=6.
Thus for this example the only terms in the crystal field are B3 , B , and B¢, . It is
difficult to calculate the values of the By parameters from crystallographic data.
The usual treatment is to calculate the matrix elements of the Cy, tensor operators
and determine the values of the B;, by treating them as adjustable parameters in
fitting theory to experimental data. For important laser crystals such as Y;Al50y5:
Nd** (Nd:YAG), all nine of the By, parameters have been determined from optical
spectroscopy measurements [4].
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Table 4.5 Character table for point group Dy,

D»y E 28,4 C, 2C, 204 Basis components
A, 1 1 1 1 1

A, 1 1 1 -1 -1

B, 1 -1 1 1 -1

B, 1 ~1 1 -1 1 z

E 2 0 -2 0 0 X,z

D1/2 2 -2 \/E — /2 0 0 0

25 2-2 — V22 0 0 0

I'sp 6 V2 0 0 0 2D\t

A YAG host crystal has a garnet structure and the Nd** ions substitute for the
Y>" ijons. They are surrounded by tetrahedrons of oxygen ions. These tetrahedrons
are slightly distorted so the exact site symmetry belongs to the D, point group.
However the crystal field site symmetry is very close to being D,4 and using this
group gives a good description of the crystal field energy levels and transition
selection rules. The character table for D,q4 is given in Table 2.15. This includes the
double group operations and the two double-valued representations needed for
states with half-integer spin angular momentum. The spin—orbit coupled free-ion
multiplets will transform as either the D, or ,S irreducible representations of this
group. The procedure described in the previous example can be used to determine
the crystal field splitting for each free ion multiplet designated by total angular
momentum quantum number J. Since these have half-integer values for Nd**, time
reversal degeneracy requires that each of the crystal field states be doubly degener-
ate. An example of a J=>5/2 multiplet is shown in Table 4.5. The characters of the
reducible I's;, representations can be seen by inspection (or the use of (2.10) to be
reducible to two D, and one ,S irreducible representations). Similarly, the 419/2
free-ion ground state multiplet will split into five crystal field states. To determine
how many of these states transform as D, and how many as ,S, the characters for
the reducible representation I’y must be found in the D,; group. This can then be
reduced in terms of the appropriate irreducible representations. For this case I'g;, =
2D »+3,S. Similar procedures can be carried out for all multiplets with J=1/2,
3/2,...,15/2 to find all of the crystal field states for Nd** in YAG. This is summar-
ized for some of the low-lying energy levels of Nd>* in garnet crystals in Fig. 4.5.

The selection rules for forced electric dipole transitions in Nd:YAG can also be
found using group theory. In the D,, symmetry group the x and y components of the
electric dipole moment operator transform as the E representation while the z
component transforms as the B, irreducible representation. Taking the triple product
of the B, representation with the representations of the initial and final states of the
transition gives a reducible representation that can be reduced in terms of the
irreducible representations of the group. If the totally symmetric A; irreducible
representation is found in this reduction, the transition is allowed. The results of
doing this are summarized in Table 4.6 The different x, y, and z components indicate
the polarization direction of the light involved in the transition.
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Fig. 4.5 Energy levels of 4R -

some of the low-lying 32 ———— (5D
multiplets of a Nd>* ion in

different symmetry

environments
4 (458, 4Dy)
152
i3 —————— (3,5, 4Dyp)
o ——
112 ——— (3,5.3Dyp)
Mgy ———— ———(3:5.2D)
SPHERICAL D, SYMMETRY
SYMMETRY PLUS
SPIN-ORBIT
INTERACTION
Table 4.6 Selection rules for
D D S
Nd®" in a crystal field with Dz" = -
D,y symmetry 1/2 Ly XY,z
>S X,),2 X,y

The tensor algebra formalism mentioned above for obtaining the crystal field
energy levels can be extended to the determination of strength of optical transitions.
This is referred to as Judd—Ofelt theory [4]. The electric dipole moment operator is
treated as first-rank tensor operator expressed in terms of spherical harmonic
functions of order 1. The crystal field is expressed in terms of an expansion of
tensor operators expressed in terms of spherical harmonics. The forced electric
dipole transitions take place because the odd terms in the crystal field expansion
cause an admixture of crystal field states of opposite parity. When these states of
mixed parity are used in the matrix element for an electric dipole transition, the
Laport selection rule no longer requires that result be zero. In this formalism the
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mathematical expressions for optical transition strength can be factored into a
reduced matrix element that is essentially independent of crystal field symmetry
and strength, and a strength parameter that reflects the configuration admixing and
is sensitive to the symmetry and strength of the crystal field. These parameters are
determined by fitting experimentally obtained optical spectra with theoretical
expressions having adjustable parameters.

This type of analysis is helpful in understanding the optical spectroscopy proper-
ties of Nd:YAG and why it makes a good solid state laser material. All of the other
first row rare earth ions existing as +3 or +2 valence states have also been made
into lasers and a similar type of analysis can be used to explain their optical
spectroscopic properties in different host crystals.

4.6 Problems

Derive all of the free ion terms of an atom with three optically active d electrons.
. Show how the energy terms found in problem 1 split when the ion is put into a
crystal site with T,; symmetry.
3. What are the electric dipole selection rules for optical transitions among the
levels found in problem 2
4. Evaluate the matrix element <Y2 ’ Y ] >

N =

Y]

1
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Chapter 5
Symmetry and the Optical Properties of Crystals

As beams of electromagnetic light waves travel through a crystal their properties
may change due to their interaction with the material. In some cases these changes
depend on the direction of travel in the crystal. In these cases the material is said to
be optically anisotropic. The reason for this is that the structure of the crystal
controls the ability of the electrons on the atoms of the crystal to respond to the
influence of an electromagnetic wave. The light wave propagates through the
crystal because its electric field induces the electrons on the atoms of the crystal
to oscillate. If the crystal structure allows the electrons to oscillate more easily in
one direction than another, then the speed of the light wave propagating in one
direction will be greater than that of a light wave propagating in the other direction.
This effect is called birefringence or double refraction. It can occur naturally due to
the anisotropy of the crystal or it can be induced by an external source such as an
electric field (electrooptic effect) or stress (photoelastic effect). Also the properties
of the crystal may cause the light waves to exhibit optical activity which is a
rotation of the direction of polarization. Because of the directional nature of these
properties, the symmetry of the crystal plays an important role in determining the
physical effects and it is possible to use transformation tensor formalism similar to
that discussed in Chap. 3 to treat these optical properties. These properties have
important applications in different types of light modulator devices used in a variety
of optical systems. This chapter deals with “linear” optical properties while nonlin-
ear optical effects are discussed in chap. 6

5.1 Tensor Treatment of Polarization

Due to the transverse nature of an electromagnetic light wave, the direction of its
electric field vector E is perpendicular to the direction of propagation and is defined
as the direction of polarization of the light. For unpolarized light this changes
randomly with time. For polarized light the E vector varies in time in a regular
manner. In the most general case of polarized light, the tip of the vector sweeps out
an elliptical path in the distance traveled of one wavelength of the light. In special
cases this reduces to a circle or a line. These are called states of polarization and
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referred to as elliptically, circularly, or linearly polarized light. It is also possible to
have partially polarized light that is a mixture of unpolarized light and one of the
states of polarization. The physical phenomena involving the interaction of light
with matter are critically dependent on the state of polarization of the light wave.
Because of this, it has been useful to make optical devices that control the state of
polarization of light passing through them. Some examples are linear polarizers,
circular polarizers, and quarter wave plates. The first two of these devices only
transmit light with states of polarization compatible to the orientation of the device.
The third one retards the phase of one of the component waves with respect to the
other one by n/2 which converts the state of polarization from linear to elliptical or
from elliptical to linear.

The electric field of an electromagnetic light wave can always be expressed in
terms of two orthogonal components. If the wave is traveling in the z direction,
these components are expressed mathematically as

E.(z,1) = iEqy cos(kz — wt) (6.1

and

Ey(z, 1) = jEoy cos(kz — ot + &). (5.2)

Here & is the magnitude of the propagation vector for the wave and ¢ is the relative
phase difference between these two components of the wave. For the case of e=0 or
+2m, the two component waves are “in phase” and the electric field of the light is
expressed as

E(z,1) = (iEox + jEoy) cos(kz — ot). (5.3)
This describes a light wave moving in the z direction with the electric field

oscillating linearly in a plane perpendicular to the z direction as shown in
Fig. 5.1. If e==£m, the two components are said to be “180° out of phase.” The

E, <2
E E
Ev E\ E‘
LINEARLY CIRCULARLY ELIPTICALLY
POLARIZED POLARIZED POLARIZED

Fig. 5.1 Direction of oscillation of the electric field of a light wave
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electric field still oscillates linearly but in a direction shifted in position in the xy
plane from the in-phase direction.

The second case of interest is circularly polarized light. In this case both
constituent waves have equal amplitudes given by Ej and their relative phase is
e=—m/2 or this amount plus any integral multiple of 2r. For this case the electric
field of the wave is described by

E(z,t) = Ey [fcos(kz — ot) + jsin(kz — wr)]. (5.4a)

For a wave coming toward an observer, (5.4a) shows that the amplitude of the
electric field vector remains constant but its direction rotates clockwise with time as
shown in Fig. 5.1. This is referred to as right-circularly polarized light. The electric
field vector makes one complete revolution as the wave travels a distance of one
wavelength. If the relative phase difference of the component waves is e=+m/2 or
this amount plus any integral multiple of 2x, (5.4a) becomes

E(z,1) = Eo[i cos(kz — wt) — jsin(kz — or)] (5.4b)

and electric field vector rotates in a counterclockwise direction. This is referred to
as left-circularly polarized light.

In the most general case both the direction and magnitude of the electric field
change as the light wave travels. This results in the tip of the electric field vector
tracing out an ellipse as shown in Fig. 5.1. If the principal axes of the ellipse are
aligned with the x,y coordinates, the expression for the electric field components is

E2 E
4+ =1 (5.5
5. Ej,

For this case, the orientation angle of the ellipse «=0 or e==-m/2. These are related
by [1]

2EnE,, cose

E2

tan 20 =
— E?
Ox Oy

(5.6)

Natural light is generally unpolarized. Through interaction of light with matter,
different states of polarization can be established. This can be achieved through
reflection from a surface or transmission through different types of polarizing
materials or devices.

Instead of formulating the situation in terms of light waves, it is possible to work
with the irradiance of the light, I = |E2| The polarization state of any light wave
can be described by four parameters known as Stokes parameters [1-4]

So = 21, S, =21, — 2Iy,

Sy =21, —2ly, S3 =215 — 2I,. .7



108 5 Symmetry and the Optical Properties of Crystals

These are defined by considering filters that transmit only half the incident irradi-
ance of natural light. If the first one passes all polarization states equally, the
measured transmitted irradiance /, will be half of the incident irradiance Sy. The
second filter transmits only light linearly polarized in the horizontal direction so
the transmitted irradiance /; is equal to the incidence irradiance §; when the
incident light is completely polarized in this direction. Similarly S, represents
light linearly polarized at 45° and S is a filter for circularly polarized light, opaque
to linearly polarized light. Another way of stating these meanings is that: Sy is the
irradiance; S; is the difference between the irradiance transmitted by a linear
polarizer oriented in the horizontal direction and one oriented in the vertical
direction; S is the difference in irradiance transmitted by a linear polarizer oriented
at +45° and one oriented at 135°; and S5 is the difference between the irradiance
transmitted by a right-circular polarizer and a left-circular polarizer.

The Stokes parameters in (5.7) can be rewritten in terms of the temporal
averages of the x and y electric field components as

So= (B3, +E3,), $1 = (B, — E3,),
S, = <2E()xEoy cos s>, S3 = <2E0xEoy sin a>

(5.8)

Here ¢ = ¢, — ¢, which is the relative phase difference between the two component
waves and () denotes an average over time. For monochromatic light the electric
filed amplitudes and ¢ are all time independent and these brackets can be dropped.
For unpolarized light, the x and y components of the electric field magnitude are
equal so Sy, S», and S3 all average to zero while S, does not.

The Stokes parameters can be normalized by dividing each of them by Sy. This is
equivalent to assuming an incident light beam with an irradiance of one. For
unpolarized light, the set of normalized Stokes parameters are (1,0,0,0). The set
of Stokes parameters describing linearly polarized light in the horizontal direction
is (1,1,0,0). For linearly polarized light in the vertical direction, the set of Stokes
parameters representing the light wave is (1, —1,0,0). Similar expressions can be
written for other states of polarized light such as right- or left-circular polarization.

The degree of polarization for partially polarized light is defined as

P =/S?+ 85+ 53/So. (5.9)
For completely polarized light, P = 1 and
Sg=S1+S5+S5. (5.10)

With this notation, the state of polarization of a light wave can then be expressed
as a column vector with the four Stokes parameters as its components
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So

s— | (5.11)
=|sl .

S3

So is the irradiance. S is the degree of linear polarization in the horizontal direction
(>0) or vertical direction (<0). S, is the degree of linearly polarized light in the
+45° (>0) or —45° (<0) direction. Finally, S; represents the degree of right-
circularly polarized light (>0) or left-circularly polarized light (<0). Elliptical
polarization is the sum of linear and circular polarization. The Stokes vectors for
different states of polarization are summarized in Table 5.1. This vector represen-
tation facilitates the use of a transformation tensor approach as discussed below.

Table 5.1 Polarization vectors

Polarization Stokes vector Jones vector
Linear
Horizontal 17 (1]
1 0
0 L]
0]
Vertical 17 [0
-1 1
0 L
0]
+45° 17 . (1]
0 V2|1
X L]
0]
—45° 17 ) [ 1 }
0 V2|
—1 B
0]
Circular
Right 17 1 M1 ]
0 V2|
0 L
1]
Left 17 R }
0 V2|
0 L
—1]

Elliptical (see text)
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A different formalism has been developed to describe the polarization state of
light wave that involves a two-component column vector [1-4] This is called a
Jones vector and is given by

(5.12)

E ()xewX ]
)

Eoye“t/;v

where the ¢; are the phases for the horizontal and vertical components of the wave.
For linearly polarized light in the vertical direction, the x component of the electric
field vector is zero so the Jones vector is

_ .10
EV:E()yew 1 .

Similarly, linearly polarized light in the horizontal direction is represented by the
Jones vector

1

ol

If the amplitudes and phases of the two-component waves are the same, the Jones
vector can be written as

_ ; 1

E = E()e @ 1 .

This describes a light wave with linear polarization in a direction 45° between
horizontal and vertical. As with the Stokes vectors, these vectors can be normalized
such that the sum of the squares of the components equals one. For example,

E—ll E—O E—l
45-%17 v = 1 h= ol

Since the relative phase difference in the two component waves for right-circularly
polarized light is —7t/2 and e ™* = —i, the normalized Jones vector for this state of
polarization is

Eh = Eo,,(ew
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The Jones vectors for the different common states of polarization are summarized in
Table 5.1. Combinations of these vectors can be used to describe any state of
polarization of a light wave.

For linearly polarized light that is not in the horizontal, vertical, or +45°
direction, the normalized Jones vector can be written as

Cos o

sin o

where o is the angle between the horizontal x-axis and the direction of linear
polarization. This angle of polarization is given by oc:tan_l(EOy/EO,\.).

For elliptically polarized light, the general expression for the normalized Jones
vector is [4]

1 A

o= e b kic) -1
Orientation of ellipse Rotation direction of ellipse
A<B: vertical C=0; B positive, imaginary: left
A>B: horizontal C=0; B positive, imaginary: left
A<B: vertical C=0; B negative, imaginary: right
A>B: horizontal C=0; B negative, imaginary: right
Between H and V C positive; B Positive, real: left
Between H and V C negative; B Positive, real: right

Note that the sum of the Jones vectors for left-circularly and right-circularly
polarized light results in the Jones vector for linearly polarized light with twice the
amplitude. Similarly, the sum of Jones vectors for horizontally and vertically
polarized light gives the Jones vector for linearly polarized light at 45°. Thus
some states of polarization can be considered to be combinations of other states
of polarization. There is no Jones vector representing unpolarized light.

With the vector representation for polarization, the effects of passing a light
beam through a transparent material can be described using a transformation tensor.
This will be a second-rank tensor (matrix) whose dimensions depend on whether
the two-component Jones vectors or four-component Stokes vectors are used to
describe the state of polarization. When an optical wave with polarization described
by Jones vector E; passes through an optical material that transforms the polariza-
tion state of the transmitted wave to one described by Jones vector E;, the transfor-
mation can be described by

E, = AE; (5.14)
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where A is a 2 x 2 matrix. Written in component form this is

E;. an an || E;
= , (5.15)
Efy a; an

E;
which can be expanded to give

Ey = anEy + ank;y.

Table 5.2 lists some of the Jones matrices that have been constructed to give
specific types of polarization transitions. These can be used in conjunction with
the Jones vectors from Table 5.1 to find the Jones vector describing the polarization
state of a transmitted wave.

As obvious examples, light with horizontal linear polarization passing through a
horizontal linear polarizer is unchanged while the same light incident on a vertical
linear polarizer has no transmitted beam. These are expressed as

a3 =L - [9

As a second example, consider light polarized linearly at +45° incident on a
quarter-wave plate with its fast axis horizontal. This is expressed as

i 1 0 1 |1 . 1 1
E, = in/4 ) - _ in/4 _~ )
T {0 —JﬁH ©VE[

This transformation changes the light wave from being polarized linearly at +-45° to
one with left-circular polarization with an additional phase factor.
The general transformation for phase retardation is [4]

[en" 0 } (5.16)

0 eiz:).

where ¢; is the phase angle of the i-component wave. This reduces to the quarter-
wave plate and half-wave plate transformation matrices shown in the table using the
appropriate phase angles. The transformation matrix for rotating the direction of
polarization through an angle 0 is [4]

{cos@ —sin@]

sin 0 cos 0 .17
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Table 5.2 Polarization transformation matrices
Polarizing element Jones matrix Mueller matrix
Horizontal linear polarizer 1 0 [1 1 0 0
[0 0} (/110 0
210 0 0 0
100 0 0
Vertical linear polarizer 0 0 1 -1 0 0
[0 1 } (/-1 1 0 0
210 0 00
L0 0 00
Linear polarizer at +45° ) 1 [1 0 1 0
2|1 1} {00000
2t 010
10 0 0 0
Linear polarizer at —45° 1 =1 1 0 -1 0
211 1 } (/0 0 0 0
2l-1 0 1 0
L0 0 0 0
Right circular polarizer T =i [1 0 0 1
201 } 1|00 00
210 0 0 0O
11 0 0 1
Left circular polarizer f i 1 0 0 -1
2 - 1} 1|0 00 0
210 00 O
-1 0 0 1
Quarter-wave plate, fast axis vertical in/a {—i 0} (1 0 0 0]
“lo o1 010 0
00 0 -1
10 0 1 0 |
Quarter-wave plate, fast axis horizontal iwall O (1 0 0 O]
¢ {0 —i} 01 0 0
00 0 1
10 0 -1 0]
Quarter-wave plate +45° Il 1 0 0 07
2 L 1} 00 0 -1
001 O
101 0 0 |
Quarter-wave plate —45° =i (1 0 0 0]
2 {fi 1 } 0 0 01
0 0 1 0
10 -1 0 0]
Half-wave plate 0° or 90° 1 0 1 0 0 0]
[0 —1} 01 0 O
00 -1 O
10 0 0 —1]
Half-wave plate £45° 0 1 1 0 0 0]
[1 0} 0 -1 0 O
0O 0 1 0
10 0 0 —1]
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A similar transformation matrix approach can be applied to polarized light
described by Stokes vectors [1-3]. These Mueller matrices are listed in Table 5.2.
They can be applied using the Stokes vectors given in Table 5.1. For example,
consider an incident light beam of unit irradiance that is unpolarized. If this
passes through a horizontal linear polarizer the transmitted wave is linearly polar-
ized in the horizontal direction

1/2
1/2
o |-
0

S[:

N —
SO = =
SO = -
cooo
cococo
co o~

The transmitted wave has an irradiance of half the irradiance of the incident wave,
S$1>0, and S,=S3=0. The degree of polarization as given by (5.9) is O for the
incident wave and 1 for the transmitted wave.

As a second example, consider a partially polarized light wave described by a
Stokes vector (4, 3, 0, 1). Its irradiance is 4 and its degree of polarization is about
80%. This is elliptically polarized more toward the horizontal direction (S;>0) and
right handed (S3>0). If this goes through a quarter-wave plate oriented in the
vertical direction, the result is

100 074 4
g_ |0 10 o3 |3
=10 0 0 —1]|]o| " |-1

001 0]]1 0

Thus the transmitted beam has the same irradiance as the incident beam but it is
now partially linearly polarized between the horizontal and —45° direction with the
same degree of polarization as the incident beam.

The formalism of Jones vectors and matrices is easier to use if the light is
completely polarized. However, for partially polarized light it is necessary to use
the Stokes vectors and Mueller matrices.

5.2 Birefringence

The dielectric properties of a crystal are expressed as
D,‘ = 8,:,‘Ej, (518)
where E is the electric field vector, associated in this case with the optical wave, D

is the electric displacement vector in the crystal, and ¢ is.the dielectric constant at
optical frequencies. E and D are first-rank tensors and ¢ is a second-rank matter
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tensor with nonzero components depending on the point group of the crystal as
given in Table 3.4. For nonmagnetic materials, the speed of light in a crystal is

v=c/\&j=c/n, (5.19)

where c is the speed of light in vacuum, and at optical frequencies the refractive
index is n =, /&;. For different directions of travel and polarization of the light
wave in the crystal, different tensor components of the dielectric constant will
be active according to (5.18), leading to different speeds of the light wave according
to (5.19).

When a plane-polarized electromagnetic wave is incident on a crystal, it is bent
or refracted as it travels through the material. This is due to the difference in the
speed of light in the material versus its speed in free space and depends on
the refractive index of the material. In the crystal the light wave can be expressed
as the superposition of two plane-polarized waves with polarizations perpendi-
cular to each other. These two waves may travel at different speeds if the
refractive index of the material is anisotropic. This is called double refraction
or birefringence.

For a transverse electromagnetic wave, the electric field is expressed as

E = Egel(kr—ov (5.20)

with similar expressions for D, B, and H. Here k gives the direction of propagation
of the light wave and has a magnitude of (2r)/4, where A is the wavelength and o is
the angular frequency of the wave. E, gives the direction of polarization of the
wave. The magnetic field vectors are perpendicular to this direction. The electric
and magnetic field vectors are related to each other through Maxwell’s equations. A
vector S can be defined as

S— (5)2 — S, (5.21)

Note that S-S = n2. Also, k x E= —wB and k x H = oD which results in
()% x (k x B) = -D.
The electric and magnetic fields expressed in the form of (5.20) along with the
propagation vector of (5.21) can be used in Maxwell’s equations along with
appropriate vector identities to write (5.18) in tensor component form as [5]

Z (S,j + SiSj)Ej = I’l,’izE,'. (5.22)

J
This is the fundamental equation for treating linear optics phenomena.
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As an example of using (5.22), consider a uniaxial crystal with the symmetry
axis in the x5 direction and a wave propagating in the x,x; plane at an angle 6 to the
x3-axis. The relevant vectors and matrices are

) 0 0 0 0  fen 00
S=| nsind |, $iS;=(0 n?sin’0  n?sinfcosh |, e=[ 0 &; 0O
ncos0 0 n?sinfcos® n*cos?d 0 0 e
Then (5.22) becomes
el 0 0 E; n” 0 0 E;
0 & +n%sin’0 n?sinOcosb Exl=(10 n o E,
0 n%sinfcosf e3 + n*cos? 0 E; 0 0 n? Es

Expanding this expression results in three equations

enEy = n’Ey,
(811 + n?sin® 0)E2 + n*sin O cos OE; = n’E,,

n” sin 0 cos OE, + (833 + n? cos? 9)E3 = n’E;.

These can be solved for the two values of the index of refraction. The first equation
gives the value n? = ¢;;. The solution of the second two simultaneous equations is

1 cos?0 sin?0
2 2
(S

2 2
ny ng n

where 13 varies with 0 between the values of n2 = &, and n? = &33. These results
describe a uniaxial ellipsoid with axes of lengths n, and n..

If the crystal is oriented with respect to the laboratory coordinate system so we
can work with the principal axes as discussed in Sect. 3.2, the refractive index is
represented by an ellipsoid called the indicatrix defined by the equation

2 2 2
A A
—2+—2+—2—1, (5.23)

ny np n3

where x;, x,, and x5 are the principal axes. In this case the dielectric tensor is
diagonal with the principal values of the dielectric constant appearing as the diago-
nal tensor elements. The principal values of n are related to these values through
(5.19). In this configuration, if E is directed along a principal axes, D is parallel to E
and its magnitude depends on the principal value of ¢; along that axes. If the electric
field vector is not directed along a principal axes, D is not parallel to E. The details of
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the indicatrix and the resulting refraction depend on the symmetry of the crystal as
discussed below.

For the crystal classes with cubic symmetry, T, T,, T4, O, and O, the three
principal values of ¢; and thus n; are all equal. The shape of the indicatrix is
spherical so all the central sections are circles. Crystals with these crystal classes
do not exhibit double refraction.

Crystals having a symmetry involving one major axis of rotation such as Cy, Sy,
Cany Da, Cayy Dog, Day, C3, Cs34, D3, C3y, D3g, Ce, Capy Cepy Dopy D, Cey, and Dy,
have an indicatrix that is an ellipsoid of revolution about the principal symmetry
axis. If we choose the major symmetry axis to be x3, the indicatrix is defined by the
equation

2 2 2
X X X
N W (5.24)
nO nO ne

and is shown in Fig. 5.2. The value of the refractive index along the major
symmetry axis 7, is called the extraordinary value. The value of the refractive
index along each of the other two principal axes n, is called the ordinary value. The
crystal is said to be positive if (n.—n,) >0 and it is negative if (n.—n,) < 0. The
symmetry axis x3 is called the optic axis. The central section perpendicular to the
optic axis is a circle of radius n,. For a wave propagating along the optic axis there
is no double refraction.

The wave surfaces for ordinary and extraordinary waves for a positive uniaxial
crystal are shown in Fig. 5.3. For an ordinary wave, the value of n is equal to n, for
all directions and thus the velocity of the wave is the same for all directions. For the
extraordinary wave, the value of n varies with direction as n, with its maximum
value being equal to n, along the optic axis. The velocity of this wave has the same
type of variation with direction.

' Optic
E Axis

Propagation
Direction

Fig. 5.2 Indicatrix
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Fig. 5.3 Wave surfaces for a Optic
positive uniaxial crystal Axis

Table 5.3 Properties of some optically anisotropic materials (measured at a wavelength
of 589.3 nm) >*

Index of Refraction

Crystal type no ne

Uniaxial
Calcite 1.4864 1.6584
Quartz 1.5534 1.5443
Sapphire 1.7681 1.7599
Wurtzite 2.356 2.378
Rutile 2.903 2.616

Biaxial n ny ns
Mica 1.552 1.582 1.588
Tridymite 1.469 1.47 1.473
Lanthanite 1.52 1.587 1.613
Topaz 1.619 1.620 1.627
Sulfur 1.95 2.043 2.240

For crystal classes that have two major symmetry axis, Cy, C;, C,, Cy,, Cay, D5,
C»,, and D, there are two directions for which no double refraction occurs. These
are called biaxial crystals and have two optic axes. Except for more complex
geometry, the discussion of wave propagation is the same as that given above for
uniaxial crystals. Table 5.3 lists the refractive indices of several uniaxial and biaxial
crystals.

5.3 Optical Activity

The phenomenon of optical activity refers to the rotation of the plane of polarization
that occurs when a linearly polarized beam of light travels a certain distance
through a material in which no birefringence occurs. This can be either an isotropic
crystal with cubic symmetry or a uniaxial or biaxial crystal with the light traveling
along an optic axis. The amount of rotation is determined by the thickness of the
material.
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A phenomenological description of optical activity can be developed by treating
the light wave in the crystal as the vector sum of two component light waves, one
with right-circular polarization and one with left-circular polarization. In vector
form these are given by (see Table 5.1)

o = (Fo/v2) H o = (o/2) H

It was shown in Sect. 5.1 that the sum of these two types of waves gives a wave with
linear polarization. Due to their crystal structure, it is possible for some materials to
be naturally “right handed” or “left handed” meaning that the beam with clockwise
rotation travels faster or slower than the beam with counterclockwise rotation. The
former is called dextrorotatory and the latter levorotatory. If this is the case, at the
point where the light exits the crystal the two component beams are out of phase with
each other. Since they were in phase when the light entered the crystal, their relative
phase difference causes the direction of the linearly polarized E vector at the exit
point to be rotated from its direction at the entrance point. For a right-handed crystal
the direction of rotation is clockwise since the phase of the right-circularly polarized
component increases faster than the left-circularly polarized component. For a left-
handed crystal the direction of rotation is counterclockwise.

Since the direction of the linear polarization vector E bisects the direction
vectors of its right- and left-circularly polarized components, the amount of rotation
of the linear polarization direction is half the phase difference of its two circularly
polarized components. This can be determined by the difference in the number of
revolutions the right- and left-circularly polarized components make in traveling a
distance d through the crystal;

1 1 2nd
2nd<)q_j¢> —To(nl_nr)_z(b' (5.25)

Here the phase difference o is expressed in radians and 4 is the wavelength of the
light in vacuum. The rotatory power of the crystal is defined as the rotation per unit
length

b

p= T (m — ny). (5.26)

The physical source of optical activity is spatial dispersion, the variation of the
electric field across the unit cell. This creates a contribution to the induced polari-
zation that is proportional to the gradient of the field

where the gradient of the electric field has been found using (5.20). The induced
polarization is then associated with an effective dielectric tensor made up of a
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component from the electric field and a perturbation contribution from the gradient
of the electric field

&ij (a), %) = gj(w) + ik = ej(®) + ijmgmki = &j(@) + 18 G- (5.28)

In this expression, é;, is a component of an antisymmetric third-rank tensor while
2, 1S a component of an antisymmetric second-rank tensor. In the final expression,
Gy, = gmik; s the gyration tensor. The fact that a real electric field must produce a
real displacement field and to have optical activity requires that the crystal have one
direction of propagation that is not equivalent to propagation in the opposite
direction, places restrictions on the nonzero tensor elements as discussed below.

In the formalism developed above, a component of the electric displacement
vector is expressed as

Di = 5(w, K)E; = [e5(@)E; —i(G X E) |. (5.29)

i

The vector product in the last term is

N 0 G  Gis Ey GiEr + Gisks
GXxE=| -G 0 Gos E, | = GxiEs — Gk,
-Gi3 -Gy 0 E; —Gi3E| — G3Es
—G3Ey + G3E;
= —GE3 + G3E,
—G2E + GE;

In the last term of this expression the relationships —G;=G,3=—G35,
—Gor= —G13=G3; and —G3=G,=—G,; have been used.

If the vector defined in (5.21) is used to designate the direction of propagation,
the gyration tensor can be written as

G=GS (5.30)

so the magnitude of the gyration tensor is
G = $1G) + $:G, + $3Gs. (5.31)
The difference in the indices of refraction in (5.26) can be defined as G /i where 7 is

the index of refraction along the optic axis in the absence of optical activity [6]. The
expression for rotatory power then becomes
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_m¢

= ) 32
P =i (5.32)

Note that the rotatory power depends on the wavelength of light. This can lead to a
rotatory dispersion effect.

Since G varies with the direction normal to the wave propagation direction, it
can be expressed in terms of the direction cosines /; of this normal direction with
respect to an arbitrary axis

G = gjlil;. (5.33)
This is a quadratic function that can be written out as
G = guli +gnb + gxl3 + 2823bls + 215l + 2812l ba.

with components g;;=g;;. In tensor formalism

811 812 &13
G= |81 82 8| (5.34)
813 823 §33

The tensor formalism discussed in Chap. 3 can be applied to G to relate the
property of optical activity to the symmetry of the crystal. Since G is related to an
arbitrary choice of reference axes it is important to determine how this set of axes
transforms under a symmetry operation. If the set of reference axes is right handed
and the transformation operation retains its right-hand nature the sign convention
for the rotatory power is positive while an operation that changes the nature of the
set of reference axes to left handed the sign convention is negative,

p = =+p.

Due to the relationship in (5.32), this same sign convention holds for G. The other
transformation properties of G can be determined from (5.33). Since the /; transform
as vectors, a symmetry operation will change the components of (5.33) as follows:

li = Clk,'l;(, lj = am,»l;n, G = :l:G,
Thus the symmetry operation transforms (5.33) to
G = Gnlils

where

Siom = Tk gij- (5.35)
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Except for the +, this is the way the components of a second-rank tensor transform
as discussed in Chap. 3. This difference in second-rank tensors is similar to the
difference in polar and axial vectors (first-rank tensors).

The symmetry properties of the components of the gyration tensor can be treated
using the same method described in Chap. 3 involving analyzing the subscripts. For
example, an inversion operation takes x;— —xi, Xx,— —x,, and x3— —x3 so the
product of any two subscripts is +1. However, an inversion operation changes a
right-handed coordinate system to a left-handed one so the — sign in (5.32) must be
used. This leads to gﬁj = —g;j. Since Neumann’s Principle requires these tensor
components to be invariant under a symmetry operation of the crystallographic
point group, this result shows that a crystal with a center of symmetry cannot be
optically active. As another example consider a symmetry operation of a mirror
plane perpendicular to the x, coordinate axis. This transformation takes x;— x,
Xp— —Xp, and x3— x3 and it changes a right-handed coordinate system into a left-
handed one. Thus the product of subscripts are 11— —11, 12—12, 13— —13,22—
— 22,23—23, and 33— —33. So for crystals with a point group symmetry contain-
ing this type of mirror operation, Neumann’s Principle requires that the gyration
tensor has the form

0 g O
Go,= |82 0 g3
0 g3 O

Table 5.4 lists the form of the gyration tensor for each of the 32 crystallographic
point groups. In some cases there is an arbitrary choice of orientation of a symmetry
axis or mirror plane and the standard orientation is shown in the table. A different
choice of orientation will change which g;; components are nonzero but will not
change the total number of independent components.

Table 5.4 Forms of the gyration tensor crystallographic point groups

Cons Dapy Caps Dap,
S6> Den» D3as Caps

Cas Cay, Cey, Capy, C Co(||x2) Cy(m L x3)
D3y, T, Ty, Ty, Oy
[0 0 0 (g1 g1z g13 (g1 0 i3] [0 g O]
0 00 g1z 82 &3 0 gn O g 0 gx
10 0 0 1813 823 833 183 0 g3 ] | 0 g3 0 |
D, Cs,, (CHX3)D2d(C2HX1) Cy4, Dy, C3, Sa
D3, Cs, D¢
[¢n 0 0O [0 g O [gn 0 0] (g1 g2 O]
0 g2 O g 0 0 0 gn O g —gu O
_0 0 833 0 0 0 _0 0 g33_ _0 0 0_
T, O
(g1 0 0]
0 gn O
L0 0 gu]
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As an example, consider a uniaxial crystal with the symmetry axis along the x;
direction and propagation along x3. For this case, using (5.29) in (5.22) gives

e —iGp  —iGis E o0 0\ (B
iGpp e —iGo3 Ex|l=([0 2 0 E, |,
iGizs  iGas  e33 +n? E; 0 0 n? E;

where the only nonzero component of the S:5; matrix for this propagation direction
is S55;=n?. Ignoring the longitudinal (E5) solution leaves a 2 x 2 determinant to be
solved for the refractive index eigenvalues

2 .
&1 —n —1G12 -0
G —n?|
12 &1 —n

Expanding this gives the solutions for the two values of the refractive index as
2
n"=en G =én £ g

The last term follows from G1,=—G3 and G, = guk;.

Rotation of the direction of polarization of an optical beam passing through a
material can occur whether or not the material is naturally optically active by
applying an external magnetic field in the direction of propagation. This is called
the magnetooptic effect or Faraday effect. Unlike natural optical activity, which
depends on the direction of optical propagation with respect to the orientation of the
crystal, the Faraday effect depends only on the direction of the magnetic field with
respect to the light beam. The formalism for treating magnetooptic polarization
rotation is the same as described above using the gyration tensor except that the
orientation direction is defined as being parallel to the applied magnetic field.

5.4 Electrooptical Effect [2, 6, 7]

At low magnitudes of the electric field E, (5.18) shows that the magnitude of the
displacement D is proportional to the magnitude of the field. However, this may not
be true for higher values of E. The displacement can be expressed as an expansion
in terms of the magnitude of the electric field

D=¢E+aE*+---. (5.36)
In general, o is negative so the second-order term lowers the value of D produced by the

first term. The second term in (5.36) produces a change in the refractive index of the
crystal, and this electric field-induced change in n is known as the electrooptic effect.
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Since the dielectric constant ¢ is related to the refractive index, n can also be
expressed as a series expansion in terms of the magnitude of the electric field

n=n’+aE+bE>+---. (5.37)

The electric field can be one associated with an electromagnetic wave or it can be an
externally applied field, or a combination of both. In general the effect caused by an
external perturbation is referred to as electrooptic while the effect caused by a
strong beam of light is referred to as nonlinear optics. In this section it is assumed
that an external field is present that is much larger than the field associated with a
light wave so the effects of the latter contribution can be neglected. In Chap. 6, the
effects of a strong electric field associated with a light wave is discussed.

In general the second terms in the expansions of (5.36) and (5.37) are the
dominant terms contributing to the changes in ¢ or n. These contributions are called
the first-order electrooptic effect or the Pockels effect. However, if we are dealing
with an externally applied electric field along the major axis of symmetry, it is
possible to reverse the direction of E. In this case, (5.37) is the same except that the
second term is negative. If the crystal has a center of symmetry, the refractive index
must remain the same when the direction of the field is reversed. The only way for
this to be true is for the coefficient a=0. Thus for crystals with a center of symmetry
there is no first-order electrooptic effect. In this case there still can be a second-
order electrooptic effect represented by the third term in (5.37). This is known as the
Kerr effect and is discussed later.

The presence of an external perturbation such as an electric field introduces a
preferred axis leading to anisotropic properties. Since the refractive index of a
crystal is specified by the indicatrix, the small change of n produced by an electric
field is essentially a small change in the size, shape, and orientation of the indica-
trix. The general form of the equation for an ellipsoid is

ZBUX,'XJ' = 1. (538)
i

For an indicatrix the coefficients B;; are the components of the relative dielectric
impermeability tensor. Along a principal axis B; = 1/n?. The change in the indica-
trix induced by the applied electric field can be expressed as the change in the
coefficients B;;

ABU = rijkEk7 (539)

where 7 are the components of the third-rank electrooptic tensor. Since the first-
order electrooptic effect is referred to as the Pockels effect, the r;j are called the
Pockels coefficients.

Given that B;;=B};, the changes induced by the electric field are symmetric,
ABjj= ABj;. This means that the coefficients of the electrooptic tensor will be
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symmetric with respect to the interchange of the first two subscripts, 7;;=7;i. The
components of the second-rank tensor B;; can be further simplified as follows

Bi1 B B By Bs Bs
By By Byy| = |Bs By Bs|. (5.40)
B31 B3 B33 Bs Bsy Bj;

The first two subscripts of 7;; are then collapsed in the same way so (5.39) becomes

3on=

i=1 J

3
I‘,'jEJ'. (541)
j=1

The equation for the indicatrix in the presence of an applied electric field can be
written explicitly as

1 1 1 1 1 1
o), o) () 202 o2 () o2 () o

(5.42)

If the directions of the x;s are chosen to be along the principal directions of the
dielectric tensor in the crystal when no external electric field is applied, then (5.42)
must reduce to (5.28) when E = 0. Then

1 1 1
(—2> =— fori=1,2,3 and (—2> =0 fori=4,5,6.
)i M =/ ie—o0

The change in these coefficients due to an applied electric field E is written in the
form of (5.41) as

1

1 3
A(E) = 1k (5.43)
j=1

or in tensor form as

1 i riz ri
21 T2 T3 E(])
r31 Iz 133 0
= E; |. (5.44)
41 T42 143
- - E°
sy Ts2 Is3 3
'e Te62 7163
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Table 5.5 Form of the electrooptic tensor for the crystallographic point groups

- Cl -
o Tz 13
21 T I3
31 I3z 133
Ta1 T4 743
I'sy Tsz TIs3

L761 Te2 763 |

Ci®

[r n 2 0 |
o orn 0
31 ran 0
0 0 a3
0 0 I's3
re1 T2 0 |

S4

[ 0 0 s
0 0 —rI13
0 0 0
rq1 —r51 O
r's1 T'41 0

L 0 0 63

D;

[ I 0 0

=TI 0 0
0 0 0
41 0 0
0 —T41 0

L 0 —I1 0

Cs

[ 0 0 rs
0 0 rs
0 0 33
ra1 12 O
rep —ry 0
0 0 0

Ci, Cap, Doy
Cap» Dap» Ses
D34, Cops Deps
T,, 0, 0,

[eNeoNoBoNoN o)
[eNeoNoBoRole)

0 —Ipn I3
0 2 T3
0 0 33

0 0 r13
0 0 I3
0 0 33
0

cy*
0 I3
0 3
0 33
rq 0
sy 0
0 63
Cs
0 I3
0 r
0 73
T4 0
—TI41 0
0 0
D 2d
0 0
0 0
0 o0
0 0
41 0
0 63
CSh
—I2 0
k) 0
0 O
0 O
0 O
—r1 0
D¢
0 0
0 0
0 0
0 0
—TI'y1 0
0 O

eNoNoNoRoNe)

—In T3
22 T3

33

S oo oo o

eNoBoBol =]

 Parallel to x3

® Perpendicular to x5
¢ o, perpendicular to x;

Making use of Neumann’s Principal and the techniques described in Chap. 3
for a third-rank tensor, the form of the electrooptic matter tensor can be determined
for each of the 32 crystallographic point groups. These are given in Table 5.5. As an
example, consider the crystal class C, which has one twofold rotation axis parallel
to the z-axis. Using the normal convention for subscripts x=1, y=2, and z=3, this
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Table 5.6 Electrooptic coefficients of several crystals

Material Crystal class r(x1072 m/V)

Quartz Ds rq1=1.4, r;;=0.59

BaTiO, Cay 133=28, 113=8, r4>=820

L]Nb03 C3‘, 1'33=30.8, r42=28, 1‘13=8.6, I"22=3.4
GaAs Td rq1= —1.5

KDP D2d 1'42=8.6, 1'63=10.6

180° rotation takes 1— —1,2 — —2, and 3— 3 and this is how the j subscript of r;;
transforms. Using (5.42), the i subscript of r;; transforms under the C, operation as
1—1,2 —2,3—3,4— —4,5— —5, and 6— 6. Multiplying the ij subscripts shows
that the only ones that remain unchanged after the symmetry operation are 13, 23,
33,41,42, 51, 52, and 63. This is consistent with the form of the electrooptic tensor
for the C, point group shown in Table 5.5.

The third-rank electrooptic tensors are similar to those listed in Table 3.5 except
that the difference between (3.21) and (5.44) requires a rearrangement of the tensor
components. In the former equation, the third-rank tensor multiplies a second-rank
tensor to give a first-rank tensor, while in the latter, the third-rank tensor multiplies
a first-rank tensor to give a second-rank tensor. In the latter form no factors of
2 appear in the components of the electrooptic tensor. Table 5.6 lists the properties
of several common electrooptic materials.

As an example [7], consider a material that belongs to the symmetry group D,
with its fourfold symmetry axis pointed along the x; optic axis and the two axes
with twofold symmetry pointed along x; and x,. Using the appropriate electrooptic
tensor from Table 5.5 in (5.44) and substituting the results into (5.42) gives the
equation for the indicatrix in the presence of an electric field. If the field is applied
in the x5 direction, the equation for the indicatrix becomes

2 2 2

M0 Ea = 1. (5.45)
n2 o nZ o on2

To find the standard equation for the indicatrix in the presence of the electric field it
is necessary to rotate the principal axes to new directions x}, x5, x} to recover the
equation for an ellipsoid

xR AR

2, e
X'l X2 Xy

The length of the axes of the indicatrix is given by 2n¢ which depends on the
magnitude of the applied field. For this example, the expression in (5.45) is
diagonalized by a rotation of 45° about the z-axis:

X1 = X} cos45° — X, sin45°,  x, = x| sin45° + x} cos 45°.
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Using this in (5.45) gives the expression for the indicatrix referenced to the new
principal axes:

1 1 X2
[nz + 1’63E3} XP+ [nz - r63E3]x/22 +5=1. (5.46)
Therefore
1 1 ‘ 1 Lk
— = |=—r — = |5+ .
nirz l’l% 63L3 |, n)2(/1 I’l(z) 63L3

Assuming that the field-induced changes in the refractive index are small, the
differential of (1/n2) can be used to solve for the new values of the refractive
indices:

3 3
n
0 0 ..
Ny = No — > resks, Ny, = Ny + > resks, n, = ne.

Note that when the electric field goes to zero, the first two values of the refractive
indices reduce to 1, as they should.

Another method to obtain this result is to make use of (5.22). For this example,
(5.44) and the electrooptic tensor for D,,; symmetry can be used to obtain the
expressions for the components of the B tensor. Since these are the inverse of the
dielectric tensor components, they can be used along with the dielectric tensor for a
uniaxial tensor in (5.22). The result for this example is

1
11 r(,_;Eg 0 El n2 0 0 E1
ﬁ €11 0 E2 = 0 n2 0 E2
3E3 5
0 0 e3+n? E;3 0 0 n Es

Expanding this gives

1
r63Eg '

fl2:811 —

Since ¢;; is the square of the initial index of refraction perpendicular to the optic
axis, this expression can be rewritten as

1
An—2 = 7}’63E(3).

Expanding the differential gives the values
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C,, ) ¢
QQ g

1 Xy’
Fig. 5.4 Effect of an applied electric field on a crystal with C5, symmetry

%

n = np :t > 163E°

consistent with the results found above.

An interesting way to look at an external directional perturbation such as an
electric field is through the symmetry stereograms shown in Fig. 1.4. The effect of
the external perturbation is to remove some of the symmetry elements from the
system. An example [5] of this is shown in Fig. 5.4. For this case an electric field is
applied along the x, axis of a crystal with 3m symmetry. This removes all the
symmetry elements except the mirror plane therefore changing the symmetry class
to m. The effect is to distort the indicatrix by elongating it in the x, direction and
decreasing its dimension in the x; direction.

In the example discussed above the electric field along the x3 axis removes all the
elements except E and the C, rotation about the z-axis from the D,; symmetry group
the remaining elements form the C, symmetry group. Thus the stereogram for D,
plus E. is equivalent for the stereogram for C,. Comparing the electrooptic tensors
for D,, and C, in Table 5.5 shows that the only Pockels coefficients that these two
tensors have in common are 74, I's, and rg3. This is consistent with the results from
the analysis given above.

For materials that do not exhibit a first-order electrooptic effect, it is possible to
detect a second-order electrooptic effect or Kerr effect. Since (5.39) and (5.40)
show that this term in the expansion depends on the vector square of the electric
field, the equation for the change in components of the indicatrix given in first order
as (5.44) now becomes

1
i("f)l P P2 P13 Pia P15 Pie E}
(?) P21 P2 P23 P24 P25 P E%
A, _|Pn P pxn opu s P || B3| (5.47)
A(L) 4 Pa1 Pa2 Paz Pas Pas  Pas | | E2E3
A(L)s Psi Ps2 Ps3 Psa Pss Pso | | B3k
A (niz) Pe1 P62 Pe3 Posa Poes Pes E\E;

Here the 36 p;; are Kerr coefficients. The forms for the Kerr tensor for the 32
crystallographic point groups can be found using the Neumann’s Principal and
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Table 5.7 Form of the Kerr tensor for the crystallographic point groups

P11
P2
P31
P41
Ps1
Ps1

0
0
L 0

Cls Civ
P12 P13 Pua Pis Pie
P2 P23 Pu Pis P
P32 P33 P P35 P36
Pz Pa3 Pas Pas  Pas
Ps2 P53 Psa Pss Pse
Pe2 P63 Pes P65  Pes
Csy, D, Dy,
P2 P13 O 0 0
Pn P3O 0 0
P P 0 0 0
0 0 py O O
0 0 0 ps5 O
0 0 0 0 pg]|
Cs., D3, D3y
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Cs, Cyy, C
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P12 P13 0 0 P16
Pu1i P13 0 0 —Pie
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ps 0 0 0 oy —pn
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0 0 pyu O 0
0 0 0 pu O
0 0 0 0 pu

symmetry arguments as usual. The results are shown in Table 5.7. Note that these
results are somewhat different than those given for fourth-rank tensors in Table 3.7.
This is because the Kerr tensor connects two 1 X 6 column vectors while the
eleastic compliance tensor discussed in Chap. 3 connected two 3 X 3 matrices.
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For the Kerr coefficients p;; both the i and j subscripts running from 1 to 6
represent xx, yy, zz, yz, xz, and xy. Thus a C, rotation about the z-axis leaves 20 p;;
invariant while the Kerr coefficients pi4, P15, P24, P25, P34 P35> Pa15 Pa2> P435 Pas6
0515 P52> P535 P56 Pes» ANA pes all must be zero. This is different from the Kerr tensor
for the C, point group shown in Table 5.7 because the latter is derived considering a
twofold rotation axis parallel to the y-axis instead of the z-axis. This demonstrates
the importance of knowing the orientation of the axes when making use of these
tensors in (5.37).

The external electric field that produces a linear electrooptic effect also distorts
the material which introduces strain in the crystal. This is called the piezoelectric
effect and was discussed in Chap. 3. It can be represented by a tensor with exactly
the same form for each crystallographic point group as the electrooptic tensors
shown in Table 5.5. In addition, there is a feedback in which the induced strain
causes a change in the refractive index. This is a small perturbation of the electro-
optic effect, but strain-induced changes in the refractive index can be important and
are discussed in Sect. 5.5.

5.5 Photoelastic Effect

Another type of external perturbation that can change the refractive index of a crystal
is stress. This is called the photoelastic effect. In this case, (5.37) is modified to be

n=n’+ak,+dc+bE:+bc* +---, (5.48)

where o is the applied stress and E, can again be either the electric field associated
with a light wave in the crystal or an externally applied electric field.

The external perturbation of a stress field acts to perturb the indicatrix in the
same way as the electric field discussed in Sect. 5.4. Equation (5.38) still holds but
the change in the relative dielectric impermeability tensor coefficients B;; given in
(5.39) for the electric field now becomes

AB,:,' = 71?,:/'1([0']([ (549)

for the applied stress o. In this expression 7 is a fourth-rank photoelastic tensor
whose components are the piezo-optical coefficients.

Symmetry again plays a critical role in determining the 7;;; coefficients that are
nonzero and independent. Since B;;=B};, the changes induced by the applied stress
give AB;= ABj;. Thus, ;1= m;;;. Also, since the stress is symmetric, o =0y, the
piezooptical coefficients are equal under the interchange of the last two subscripts,
7= T These relationships allow for the simplification of the three tensors
in (5.49). The second-rank tensor for B takes the form given in (5.40) with six
independent components. The expression in (5.49) then becomes
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6
AB,, = Z TmnOn- (5.50)
n=1

In this expression the subscripts m and n both run from 1 to 6. The six independent
components of the stress tensor can be put in a form similar to that of the B tensor in
(5.40). However, as was done with the Kerr effect in the previous section, both the B
and o tensors can be expressed as 1 x 6 column matrices and the 7 tensorisa 6 x 6
matrix. In a way similar to the subscript rules given in Table 3.6, m,,,=m;;; for n=1,
2, 3 and m,,,=2m;;; when n=4, 5, 6.

Since the form of (5.47) written as tensors is the same as that of (5.44), it is not
surprising that the forms of the photoelastic tensors are the same as the forms of the
Kerr tensors for most of the 32 crystallographic point groups. There are three
exceptions to this and they are given in Table 5.8.

As an example [6], consider the application of tensile stress along the x; cubic
axis of a crystal with symmetry belonging to the T point group and x, and x;
representing the other two cubic axes. Without the applied stress the indicatrix has a
spherical shape given by

(l’lo)2 ('X% +X% +x§) = 1

With the applied stress the expression for the indicatrix is given by (5.42).
The refractive index coefficients in this equation can be found by writing (5.50)
in tensor form

SN
()
n=J
() o
ns/, g
mp w2 7z 0 0 0 0 10
A(i) m3 o omz2 0 0 0 T30
n*) _|m2 m3 ma 00 0 0 _ | mao
1 0 0 0 my O 0 0 0
Ae), 0 0 0 0 mu 0|, 0
0 0 0 0 0 7wy 0
1 0
A P L~
5
1
()
L \""/¢ ]

This leads to the three equations
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Table 5.8 Form of the Cs, Se
s
hotoelastic tensors that r
P! Ty M2 M3 M4 TS 276)
differ from the tensor forms iy Ay Mz —T T — gy
in Table 5.7 .
31 T3] 33 0 0 0
T4 —T41 0 Tt44 Tt45 2ms)
—ms; w52 0 —mys ma 2741
-T2 T2 0  ms w72
Csy, D3, D3q4
w1 M2 w3 mg 0 0
T2 T T3 T4 0 0
m3 w3y w3 O 0 0
T41 —T41 0 T44 0 0

0 0 0 0 T44 27'[4]
0 0 0 0 ma m— o

CSh’ C6’ Céh
[ 7y 72 mz O 0 276
np wyp om3z o 0 0 )
m31 w3 w3 0 0 0
0 0 0 T44 45 0
0 0 0 —T4a5 T44 0
|72 Te2 O 0 0 my—mp

1 1 1
A(n_%> =m0, A<H_%> = 130, A(n—%) = T20.

Since By, Bs, and Bg are all equal to zero, the axes of the indicatrix remain x1, X,
and x;. Taking the differential of A(1/n?) gives — (2/n})An;. Substituting this
into the first of these equations and solving for An; gives

1
Any = —En?mlo.

Since the changes in the refractive index are very small, it is a good approximation
to set n; =2 n°. The three equations for the stress-induced changes in n then become

1 1 1
Any = ——(n°)3n110, Anpy = ——(n°)3n13a, Anz = ——(n°)37r120'.
2 2 2
The birefringence for light traveling parallel to x, is
1, o3
Ny — ne = Anj; — Any = —E(n ) (711 — mi2)o

and for light traveling parallel to x3 it is
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I, .3
Ny — Ne = Any — Anp = —E(n ) (m11 — mi3)o0.

An alternative way to treat the photoelastic effect is by considering the strains
that the external stress causes. In Chap. 3, the strain tensor components related to
the components of an external stress tensor were given by the expression

&kl = SkirsOrs,

where ¢, is the strain and the sy, are components of the compliance tensor.
Equation (5.49) then becomes

ABij = Dijki €kl

so the elastooptical coefficients p;;, are given by

Dijkl = ﬂzj/rs(srsk/)fl-

The forms of the matrices for the elastooptical tensor are essentially the same
as those given in Tables 5.7 and 5.8. The factors of 2 for the matrices in Table
5.8 are not present for the elastooptical tensor. In addition, the four matrices with
the mg; element equal to (n;; — m;,) have an additional factor of % for the pg;
element.

5.6 Problems

1. Use the Stokes vectors and Mueller matrices to show what happens to a beam of
light polarized linearly at an angle of 45° when it goes through a quarter-wave
plate with its fast axis in the vertical direction. Repeat this problem using Jones
vectors and Jones matrices.

2. Derive the form of the gyration tensor for a crystal with C,, symmetry with the

C, axis parallel to the x; direction.

Derive the form of the electrooptic tensor for a crystal with C5, symmetry.

4. Derive the form of the Kerr tensor for a crystal with C,, symmetry.

(O8]
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Chapter 6
Nonlinear Optics

In the early 1960s the development of lasers provided light sources of sufficient
power to produce nonlinear optical effects in solids. Nonlinear optics Not only
has developed into a major field of research but also has found important applica-
tions in optical systems that require control and modulation of laser beams. Since
lasers generally operate at a fixed wavelength or narrow range of wavelengths, one
important application of nonlinear optics is to shift a laser wavelength to new
wavelengths thus providing versatility necessary for many applications. This can
be achieved by frequency mixing or parametric interactions. As an important
example of this type of process the current chapter focuses on the nonlinear optical
process of second-harmonic generation (SHG). This example demonstrates the
importance of crystal structure and symmetry in these types of processes. Much
of what is discussed in this chapter depends on the concepts of light beam polariza-
tion and crystal birefringence discussed in Chap. 5. It is similar to the electrooptical
effect discussed in Sect. 5.4 except that the electric field causing the effect is
associated with a light wave instead of an external perturbation.

There are different ways to treat the nonlinear optical properties of materials.
These include nonlinear terms in the dielectric susceptibility, the refractive index, and
the polarizability. They are all related since the susceptibility is a complex quantity
with the imaginary part related to absorption and the real part to polarizability. The
polarizability is related to the index of refraction through the Clausius—Mossotti
relationship. Thus, the linear relationships are

7D = nNay, n* =1+ 4aNfiap.

Here «;, is the polarizability, N is the number of atoms or molecules, and f; is the
Lorentz local field factor. When external perturbations cause changes in , o, or n,
any of these parameters can be expressed in terms of an expansion with the higher
order terms representing nonlinear effects. The conventional choice of which of
these parameters to use in the treatment of a specific nonlinear optical process
generally depends on the cause of the nonlinear effect.

The literature for nonlinear optics makes use of equations expressed in both
SI and cgs units. In general, it is common for experimental papers to utilize the
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Table 6.1 Conversion between SI and cgs units

Parameter SI cgs Conversion
Electric field, E V/m sV/cm=(erg/ E(cgs):(4n80)” 2E(SD)
cm?)? E(cgs)=3.33x10"°E(SI)
Second-order C/m? sC/cm2=(erg/ P(cgs)=(4nso)71/ 2p(SI)
polarization, P cm®)? P(cgs)=3x10°P(SI)
Second-order m/V cm?/sC=(cm?¥/ z(z)(cgs): 80(4TE80)73/2X(2)(SI)
susceptibility, 1(2) erg)” 2
1P (cgs)=3/(41)x 10*>(SI)
Vacuum permittivity, & mC/V - -
Intensity, / W/m? erg/s/cm2 I(cgs):lOSI(SI)
I(cgs)=(nc/2m)E*(cgs); 1(SD=(2¢onc)EX(SI)
Power, S W erg/s S(cgs):107S(SI)

former set of units and theoretical papers to utilize the latter. The development of
nonlinear optics expressions in this chapter uses cgs units but the conversion
between unit systems is listed in Table 6.1.

6.1 Basic Concepts

When a high power laser beam at a specific frequency travels through a material,
the transmitted light can have both the initial frequency and new frequencies. This
can provide wavelength flexibility for optical systems utilizing high power lasers.
The nonlinear response can be either an elastic process such as harmonic generation
that conserves optical energy, or an inelastic process such as Raman scattering in
which there is an energy exchange between the light field and the medium. The
most common elastic process is frequency doubling (second-harmonic generation)
where part of the transmitted light has a frequency twice that of the incident light.
This is the type of process that is discussed in this chapter. Inelastic processes such
as Raman scattering are discussed in Chap. 7.

The standard approach to nonlinear optics is to analyze the response of a
material to the electric field of an intense light beam at the atomic level. The
most important effect in a dielectric material is the displacement of the valence
electrons from their normal orbits creating electric dipoles resulting in macroscopic
polarization of the material. At low intensities, the induced polarization is linearly
proportional to the sinusoidally oscillating electric field of the incident beam, and
the radiating dipoles produce an outgoing beam at the same frequency. However, at
high incident intensities the oscillations of the induced dipoles may not accurately
follow the frequency of the incoming wave and different frequency components are
contained in the radiated wave. This is expressed as [1-3]

Py(0)) = 130 Enn (@) + 2o Em(@00)En(og) + -+, 6.1)
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where P(w;) is the induced polarization per unit volume and E(w;) is the electric
field vector of the light wave at frequency w;. The susceptibility tensor X? is of
rank j+1 with indices /,m,n referring to Cartesian coordinates.

For low intensity light waves the magnitude of the electric field is small and the
first term dominates (6.1) leading to the normal linear optics response of dielectric
materials where the index of refraction and dielectric constant of the material ¢ are
related by

n=(1+4nxM)/2 = ¢l/2, 6.2)

In ST units the factor of 41 does not appear in this expression. Since nonlinear optics
is generally studied in spectral regions where the material does not absorb, the
imaginary part of X" is taken to be zero. In this case the real part of X is the
polarizability tensor.

The third-rank tensor X ® is responsible for optical mixing of three waves of
frequency o, traveling in the material, resulting in sum or difference frequency
generation. Second-harmonic generation (SHG) is a special case of sum frequency
mixing with ws=w;+w,. Since w;=w,, in this case w;=2w;. From a photon
perspective, this is conservation of energy as shown in Fig. 6.1. The two incoming
photons make transitions to virtual electronic states of the material and the outgoing
photon is emitted from the higher virtual state. The polarization term for SHG
becomes

Pi(20) = X@ 1 En(0)Ey(o). (6.3)
To use this three wave mixing formalism for SHG, the first two waves are

considered to be two orthogonally polarized components of the incident laser
beam. Each of these components has a frequency @, and they create a polarization

ho

2ho

ho

Fig. 6.1 Photon transitions in
second-harmonic generation
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wave that has a component at frequency w;=2w;. The incident wave has a
wavelength and phase velocity in the material given by

= =S (6.4)
vin np

Energy is transferred from the polarization wave to a light wave traveling at
frequency 2w, with a phase velocity and wavelength given by

,%:L’ V3:£~ (6.5)
Vv3nsz n3

For efficient energy transfer to occur, the polarization wave and the second-
harmonic wave must remain in phase. This will only occur if they have the same
phase velocity which requires that n3=n;. The waves travel with wave vectors
having magnitudes k; that obey the dispersion relation

k,’(a),‘) = (1),‘11((0,‘)/6’ = 271?)’1(0),‘)/)”‘.

In regions of normal dispersion (far from regions of absorption), the phase mis-
match given in wavenumbers for collinear wave vectors is

AkZR(ﬁ—E—E> :4—n(n3—n1)~ (6.6)

Since k; is a vector, conservation of momentum can be satisfied by co-linear waves
or the vector conditions shown in Fig. 6.2. For SHG where k; and k; are components
of the same beam of light the co-linear case applies. For the fundamental and second-
harmonic waves to remain in phase as they travel through the crystal

|k1| = |k2|,k3 = 2k1,w3 = 2(1)1,}’13 = ny.
This “phase matching” is discussed in detail below.

Assuming the light beams to travel as plane waves, the components of the
electric field vectors of the light are expressed as

Ei(z,1) = Ei(z)e &) 4 ¢c.c. (6.7)

kl kZ
or /V\

k3 k3 !

\ 4
vy

Fig. 6.2 Conservation of momentum.
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For propagation in the z direction Maxwell’s wave equation is [4]

OE 1 OE  4n O*Pa(= yEE)

2o @ e 6.8)

Note that in SI units the 47 in the last term is replaced by &;'. Substituting the
expression for the electric fields on the right-hand side of this equation, using
w3=w+wy=2w1, and the slowly varying envelope approximation

d’E
dz?

dE
k—
<|¥g]

gives

dE;(z)  i2nw} 2 AL
— = E\(2)E 18k .
% ok 1Y E(2)Ex(2)e 6.9

Here Ak is given by (6.6) and the polarization vector directions of the electric fields
are temporarily being neglected. Similar equations are obtained for E; and E,. This
“coupled wave equation” describes the increase in the wave amplitude represented
by E5 due to the nonlinear interaction of waves E; and E, over a distance z in the
material. The expressions for £, and E, represent back transfer from Ej to the
original waves.

Integrating both sides of (6.9) from zero to a distance L in the material gives

_ 2711')((2)(1)_%

o IML |
E3 (L) C2k3 Az |

E\(L)E>(L
W)
In deriving this expression it has been assumed that there is no beam depletion so
E|(z) and E,(z) were removed from the integral over z.

The intensity of the second-harmonic beam of light can be found from the square
of the electric field with the appropriate factors given in Table 6.1:

2 AT 2
n3c n3 (2n)2 [X(z)] w§ e*lAkL -1
I(L) = gEg =5 TE%(L)E%L) |

The next steps are to square the final factor in this expression, convert the electric
filed amplitudes to intensities using the factors from Table 6.1, and express the
factors of w3 and k3 in terms of the wavelength 5. This gives

| S5120°dgL?  sin® (AKL/2)
eyl (AKL)2)?

I3 . (6.10)
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Here L is the length traveled in the material and all of the numerical factors have
been combined. In addition, the facts that n,=n, for SHG and A3=4,/2 have been
used. d.¢ is the effective nonlinear coefficient. Its magnitude is defined in terms of
the nonlinear polarizability tensor as ng) /2. At this point the vector polarization
directions for the electric fields are put back into the equation. The effective
nonlinear optic coefficient is a third-rank tensor that is defined in terms of the
unit polarization vectors of the incident light beam and the SHG beam as

do = p3 - d p1pa. (6.11)

This will be discussed further below.

The conversion efficiency for SHG is found by dividing both sides of (6.10) by /;.
The power of the SHG beam is found by multiplying the expression in (6.10) by the
cross-sectional area of the beam. The expression in (6.10) was derived using the
assumption of no depletion of the incident light beam. For many cases this is a good
approximation. If incident beam depletion is significant the expression for the SHG
beam intensity becomes more complicated [2]. However, most of the fundamental
topics discussed below remain the same.

As seen from (6.10), second-harmonic generation depends critically on the phase
mismatch Ak. The functional dependence of SHG conversion on phase mismatch is
shown in Fig. 6.3. It is highly peaked at Ak=0 where there is exact phase matching.
The SHG intensity increases and decreases with the distance traveled in the crystal
L with a period of AkL/2=mn. The SHG is maximum at half of this distance as
measured from the front of the crystal. This distance is called the coherence length,
l.. Using (6.6) it is given by

A
[ — 6.12
4(n3 —ny) ( )

For perfect phase matching n3=n; so [.=00.

sin? A kLA

(AkLA)2

-2n 0 2n A kl/z

Fig. 6.3 Dependence of SHG power on phase mismatch
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The final factor in (6.10) can be expressed in terms of coherence length so the
intensity of the SHG beam is

L
I o sin’ <§1> (6.13)

Note that this intensity oscillates with propagation distance in the crystal with a
period of L=2I.. This is because the coupled electromagnetic waves can transfer
energy in both directions and the decrease in SHG power is due to transfer of energy
from the SHG wave back to the fundamental wave. For perfect phase matching the
SHG intensity is given by

502 12
L S12ndggL”
TR b

141

(6.14)
The intensity of the frequency doubled beam is proportional to the square of the
length of the crystal.

The above discussion demonstrates the importance of matching the indices of
refraction of the incident light wave and the frequency doubled light wave. In
general the index of refraction of a material exhibits a normal dispersion with
frequency (far from any region of absorption). This varies with temperature and
with the direction of beam propagation and polarization in the crystal. Controlling
these parameters to minimize phase mismatch in nonlinear optics is referred to as
“temperature-tuned phase matching” and “angle-tuned phase matching”. The
latter will be discussed below. Proper angle tuning provides a spatial resonance
of the interaction of the light waves. In isotropic crystals it is always true that
n1>n3 so no phase matching can occur. Thus it is necessary to have an anisotropic
crystal with waves having different polarizations. This makes it possible to utilize
the birefringence properties described in Chap. 5 in order to achieve phase
matching.

As an example, consider a plane wave incident on a uniaxial crystal with its optic
axis parallel to the z direction. The “principal plane” is defined as the one contain-
ing the vectors k and z. E polarized perpendicular to the principal plane is called an
“ordinary wave” and E polarized in the principal plane is called an “extraordinary
wave.” This configuration is shown in Fig. 6.4. The polarization direction for an
ordinary wave is always perpendicular to z so the value of its refractive index, n°, is
independent of the direction of k. However, the polarization direction for an
extraordinary wave varies from being parallel to being perpendicular to z depend-
ing on the direction of k. Thus the value of the refractive index for an extraordinary
wave, n°, varies with the angle 0 between k and z. The difference in values of
these two indices of refraction

An=n° —n°(6) (6.15)
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Fig. 6.4 Propagation =
directions in a uniaxial crystal

is called the “birefringence.” An=0 for k along z and is maximum for k
perpendicular to z. The “principal value” of the refractive index of the extraordinary
wave is designated n. which is the value when 0=90°. Since the value of the
refractive index of the ordinary wave is independent of 0, this is its principal
value n,. An expression for the dependence of n°(6) on the angle 6 can be derived
by breaking up the phase velocity of the extraordinary wave into its components
parallel and perpendicular to the z axis, V;(@) = vp(Lz) + vp(||2). Since v = ¢/n and
this is a right triangle, the magnitudes of these vectors are related by

(Fm) - () (29

Using appropriate trigonometry identities this can be solved for n°(0) to give

1/2
1 + tan® 0
n(0) = no (L+ i ) (6.16)
(1 + (nO/ne) tan? H)
With the coordinates shown in Fig. 6.5
n°(0) =n, An(0) =n,—n°(0)
n°(0) =n, An(0)=0 (6.17)

n°(90°) = ne  An(90°) = ny — ne.

If ny>n. the crystal is said to be “negative.” If n,<n. the crystal is said to be
“positive.” The geometry of birefringent phase matching is discussed further in
Sect. 6.3.

From this discussion of the basic concepts of frequency doubling, it is clear
that the critical factors for achieving efficient second-harmonic generation are
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Fig. 6.5 Coordinate system k z

n
»

maximizing the effective nonlinear optical coefficient and minimizing the phase
mismatch between the fundamental and second-harmonic light wave. Methods for
achieving these criteria are discussed below.

6.2 Effective Nonlinear Optical Coefficient

In addition to phase matching, (6.10) shows that the effective nonlinear optical
coefficient is a critical parameter in determining the efficiency of second-harmonic

generation. Since XP =24, the second term in (6.1) can be rewritten as

PN = 2d,E?. (6.18)

Thus d is a third-rank matter tensor connecting a cause represented by a vector
squared with an effect represented by a vector. The polarization wave in (6.18) is
the origin of the second-harmonic light wave.

In general a third-rank tensor has 27 components but crystal symmetry limits the
number of unique, nonzero components as discussed in Chap. 3. For practical
purposes, crystals used for SHG generally have one dominant coefficient that
maximizes the effect for a specific direction of light propagation. The components
of the nonlinear optical tensor d;; are determined through symmetry, and d.¢ defined
in (6.11) is derived based on the polarization vectors of the interacting waves.

The tensor component expression for (6.18) is

£
i
Dx dy1diadizdiadisdis ;
Dy | = | dudndyididysdy - i . (6.19)
D: d31d3pd33dzadssdss e
2E.E.
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The convention used here for dj; is the same as that used previously:

i =1 for x;2 for y; 3 for z
[ =1 for xx;2 for yy;3 for zz;4 for yz = zy; 5 for xz = zx;and 6 for xy = yx.

For a given crystal symmetry class many of the coefficients are O or equal to other
components since they must be invariant under all symmetry operations of the
crystallographic point group. An inversion process changes all three coordinate
directions to minus their initial value and thus crystals with a center of symmetry
have all zero components for d;; and thus SHG is not possible.

As an example consider the tetragonal symmetry group Cy,. This has a fourfold
rotation axis about z as shown in Fig. 6.6. Under this operation, the components of
d;; transform as

dyi =dyx — dyyy = dop but dyy = dyyy — —dy = —dyy . dyp =dp =0
diy =dyy — dyr = doy but doy = dyy — —dyyy = —diy . diy = dy1 = 0
diz =dyz: — dyz. = doz but dy3 = dy.. — —dy.. = —di3 . di3 =di =0
diy =dyy; — —dy; = —dps but dys = dy; — —dyy, = —dig . dig =dos =0
dis =dy; — dyy, = dog and dry = d,y. — —dy: =dis . dis = dog

dig =dyry — —dyy = —dpe but drg = dyyy — dyyx = dis .. dig = dog =0
d31 =doxe — dzyy = d3p and dzp = doyy — dooe = d31 L d3p = d3p

d33 =d;; — dy; = d33

dzs =d.y: — —d.. = —dss but dss = do. — dzy. = dsa . dzg = d3s =0

dsg Zdzxy — —dzyx = —dss .. d3g =0.

Thus the nonlinear optical tensor is

B 0 0 0 0 ds O
d=1| 0 0 0 ds 0 0]. (6.20)
dyy dyyv diz 0 0 O

90°

<

v
v
v

X oy
y =X
X zZ>z

Fig. 6.6 Rotation of 90° about the z-axis
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In addition, if anomalous dispersion can be ignored (which is approximately
true if the frequencies of the light beams are far from absorption transitions
SO X(z)(CLJ3,CUl,0)2) is real), Kleinman showed that the susceptibility remains
unchanged when the frequencies of the three beams are permuted. This leads
to the fact that the indices of d;; must be invariant to all permutations [3]. For
example,

d21 - d)‘xx - dx\’y - d16-
This Kleinman symmetry requires for all crystal classes that

dy = dis diz = dss
dy =dzy diy = dyg = dos (6.21)
dyy =dis  dip = das.

The forms of the nonlinear optical tensor for the 32 crystallographic point groups
including Kleinman symmetry are given in Table 6.2. Note there is some arbitrari-
ness as to the designation a coefficient when there are several equivalent ones. For
example, if d;5 is equivalent to d3; either one can be used to designate these two
coefficients. This creates some confusion in the literature.

The expression for the effective nonlinear optical coefficients for specific polar-
ization directions of the incident and frequency doubled light beams is given by
(6.11). The vector product in the last factor is a six-component column tensor that
can be expressed as

P1xP2x
P1yDP2y
P12
PP, = . (6.22)
PiyDP2:z + P1:zD2y
PixP2z +P1:P2x

P1xP2y + P1yDax

Any linearly polarized wave in a uniaxial crystal can be represented as a superposi-
tion of two waves with o and e polarizations. A unit vector for polarization can be
defined as |p| = 1 with components referenced to the coordinate system shown in
Fig. 6.7 given by

Pox = —sin¢g pS = coslcos¢
Poy = COS ¢ p; = cos 0sin ¢ (6.23)
poz:O p?z—sin@.
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Table 6.2 Nonlinear optical tensors for the crystallographic point groups (with Kleinmann

symmetry conditions)

Ci, Cops Dopy Caps
Dy, Dap, C3;, D3a, Cons

Dg, Dep, Ty, O, O, C,
000000 dy dp diz dis dis die
000000 dig dyp dy dy diy dpp
000000 dis dy dy dy diz du
(&) Cin D3, D2y, T, Ty
0 0 dizds 0 dg dy dp dz 0 dis O 0 0 0 dsg O 0
dig dyy dy3 0 dyy O 0 0 0 dy 0 dp 00 0 0 dg O
0 0 0dy 0 dis dis du dy 0 dy 0 000 0 0 ds
2\! S4
0 0 0 0 dsO 0 0 0 dy ds 0
0 0 0 dy OO 0 0 0 —ds dig O
dis dyy dzz 0 0 0 dis —dis 0 0 0 di
Cs, C4, Cay, Coy Cs Csy
0 0 0 0 ds0 dy —dn 0 0 dis —dgs 0 0 0 0 dis —des
0 0 0ds 00 —dis dig 0 dis 0 —dpy —dy dig 0 dis O 0
disdisds 0 00 dis dis ds 0 0 0 dis dis ds 0 0 0
D3 Csn D3y,
diyy —d;;p 000 0 dy —dy 0 0 0 —ds -
( 0 000 d11> (dm dg 0 0 0 d11> _2]6 d?ﬁ 8 8 g gm
0 000 O 0 0 0 0 0 0 0 0 00 0 0

Fig. 6.7 Coordinate system
for ordinary and
extraordinary polarization
vectors

Here the Z coordinate axis is the direction of the optic axis. p° is in the XY plane

perpendicular to both k and

the optic axis with its direction varying with

the azimuthal angle ¢. p° is in the kZ plane with its direction varying with both

0 and ¢.

Consider as an example the case where p; and p; are ordinary waves and p; is
extraordinary. Then for a tetragonal crystal with C,4, symmetry, the d tensor given
in Table 6.1 and the p; vectors given in (6.23) can be substituted into (6.19) to give
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—sin¢cos¢pcosl
cos ¢ sin¢cosl
0 0 0 0 dsO 0
detr =(—sin¢g,cos,0)| 0 0 0d;s 0 O —cossind
dis dis di3 0 0 0
sin¢sinf

(cos® ¢ —sin® ¢p) cos O
dyssin¢sinf
=(—sin¢,cos ¢,0) —dy5cos¢sinf
dy5(—sin¢cospcosd+cos¢psingcos?)
=—d5sinf.
(6.24)

Here the sign can be neglected since d.¢ is squared in (6.10) so it is only its
magnitude that is of interest. Thus for this particular case only the d;s component
of the ¢ tensor is important and d.¢ varies with crystal orientation as a function of 0
in the coordinate system shown in Fig. 6.7.

As another example, consider having the same polarization vectors as in the
above example but a crystal with T, symmetry. Using the d tensor for 7, symmetry
in Table 6.2 in (6.24) gives the result

—sin¢cos ¢ cosH
cospsin¢cosf
000dy 0 O 0
d, :(—sind),cos¢,0)<0 000 du 0) )
0000 0 dy —cos¢sinf
sin¢sin6

(cos® ¢ —sin? ) cos )
Thus, using a trig identity,
dey = d14sin2¢ sin 0.

In this case it is the d;4 component of the nonlinear optical tensor that is important.
In addition, the magnitude of d.¢ varies not only with the angle 0 but also with the
azimuthal angle ¢. Thus the selection of the direction of propagation and polariza-
tion is critical in maximizing the intensity of the frequency double light beam.
Values of d.; for other combinations of polarization directions are discussed
further below.
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6.3 Index Matching

The importance of phase matching in maximizing the intensity of the second-
harmonic light beam was discussed in Sect. 6.1. Several different types of config-
urations that result in birefringent phase matching are discussed in this section. The
key is finding the right geometry for the directions of travel and directions of
polarizations of the incident light beam components and the second-harmonic
light beam that ensures that their phase velocities are the same. This requires that
ny~n3. This can be accomplished in uniaxial or biaxial crystals by using their
birefringence properties. In these crystals there are two values of the refractive
index for each direction of propagation, corresponding to the two allowed orthogo-
nally polarized modes. By orienting the crystal for an appropriate direction of
propagation and choosing an appropriate direction of polarization, it is possible
to obtain the desired index matching so Ak=0 in (6.6). Figure 6.8 shows a simple
picture of how this can be accomplished by taking advantage of the normal
dispersion for a negative crystal (n,>n.). Note that the value of n°(0) varies
between the values of n, and n. depending on the angle 6.

As an example, consider the case of uniaxial crystals that have an indicatrix that
is an ellipsoid of revolution with the optic axis being the axis of rotation. This was
shown previously in Fig. 5.2 and repeated here in Fig. 6.9 with additional informa-
tion included about the values of the indices of refraction and the two directions of
polarization. I; is the intensity of the incident light beam and Kk; is its direction of
propagation. For frequency doubling of one incident light beam, all the propagation
directions of interest are co-linear as shown in Fig. 6.2. A plane perpendicular to
this direction is shown in the figure. The intersection of this plane with the
indicatrix is an ellipse with its two axes parallel to the two directions of polarization
and their lengths equal to the value of the refractive index in that direction. Note
that the value of the refractive index for polarization perpendicular to the optic axis
(ordinary direction) does not change with the direction of propagation, but the

INDEX OF REFRACTION

2
FREQUENCY ®

Fig. 6.8 Matching the refractive index of the incident beam at frequency w and the SHG beam at
twice this frequency for a negative crystal
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Fig. 6.9 Indicatrix ellipsoid
for a positive crystal

n(6)
Propagation
Direction k

extraordinary direction of propagation has an index of refraction that varies as given
by (6.16) which can be rewritten as

Nolle

7(0) = . 625)
(no)* sin 0 + () cos? 9}

One way to demonstrate phase matching for two wavelengths of light with
different polarizations is shown in Fig. 6.10. For a monochromatic source at the
center, a wavefront for an ordinary ray polarized perpendicular to the optic axis
expands as a sphere but a wavefront for the extraordinary ray expands as an
ellipsoid. The distance of the surface from the origin along the direction of the
wave vector is the magnitude of the refractive index. Along the optic axis the o and
e rays propagate with the same velocity. These index surfaces are shown in
Fig. 6.10 for two wavelengths. If n§ refers to the extraordinary ray for the sec-
ond-harmonic wavelength and 79 is for the ordinary ray of the fundamental, index
matching or phase matching is satisfied for propagation at an angle 6,, from the
optic axis of the crystal as shown in Fig. 6.10. Thus angle-tuned SHG depends on
wavelength, propagation direction, and polarization.

There are two ways for achieving phase matching depending on the phase
velocities of the rays. Type I is when the two components of the fundamental
wave have the same direction of polarization the frequency double wave is polar-
ized orthogonal to that direction. Type II is when the two components of the
fundamental wave are orthogonally polarized and the frequency doubled wave
has one or the other directions of polarization. Thus,
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Fig. 6.10 Index surfaces for
two wavelengths, 4, (solid
line); 13 (dotted line) for a
negative crystal

Type I: n5(0,) = n},n} or n = n{(0,),n](0n),
Type 112 n§(0,,) = (1/2) [n5(0,) + n§] or n = (1/2)[n§(0,,) + n],

(6.26)

where the first choice is for a negative crystal and the second choice is for a positive
crystal.

Another convenient way to look at phase matching is to consider an ordinary
and an extraordinary wave expanding outward from the same origin. This is
shown in Fig. 6.11 for a negative crystal. As an example of the first case of
Type I phase matching, two o rays at frequency w are matched to an e ray at
frequency 2w similar to the situation shown in Figs. 6.8 and 6.10. The index
ellipsoids for Type I phase matching in a negative are shown in Fig. 6.11. As an
example of the second case of Type I phase matching, an o ray and an e ray at
are matched to an e ray at 2w.

Note that the SHG efficiency can depend on the azimuthal angle as well as the
phase matching angle 0,, because d, is expressed as one or several coefficients of
the d tensor and the angles defining the directions of wave propagations and polar-
izations. A typical example of the dependence on both angles is d,y=d,4sin2¢sinf
as derived above.

An expression for the phase matching angle can be found by substituting one of
the expressions in (6.26) into (6.25). This gives

() = (n9) "

sin® 0, =
m n3e)72—(}’lg)72

(6.27)

For the two types of Type I phase matching, (6.27) becomes
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Fig. 6.11 Type I phase 4
matching for a negative I
crystal

(¢} (0] e - —
ny ny ng:  sin0, =

€ (S o ., M —
ny ny ng: sin0, =

These expressions are more complicated for Type II phase matching.

As an example, consider Type I phase matching in a negative crystal with
n{ = 1.507, n{ = 1.468, n§ = 1.528, and n§ = 1.482. Substituting these numbers
into the first expression in (6.28) gives 0,,=65°.

6.4 Maximizing SHG Efficiency

The derivation of (6.10) showed that phase matching and the effective nonlinear
optical coefficient were the two critical parameters in obtaining efficient frequency
doubling. Each of these was discussed individually in Sects. 6.2 and 6.3 In this
section it is shown how the two can be combined to obtain maximum SHG
efficiency.

The key to maximizing /syg is the expression for d.¢ given in (6.11). This can
be written in tensor form using the polarization vector components from (6.23)
based on the coordinate system shown in Fig. 6.7. The phase matching conditions
listed in (6.26) determine the components of the p vectors used in the equation and
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the symmetry of the crystal determines the form of the d matrix from Table 6.2.
As an example, consider a negative crystal with Type I phase matching. In this
case p; and p, are both ordinary vectors while ps is an extraordinary vector. For
this case

sin%¢
cos2 ¢
o= = = 0
deff =p3-dp1p2 =D, -dp,p, = (€080, c0s P, cos 0, sinp, —sin0,,) -d 0
0
—2sin¢cos ¢
(6.29)

At this point, each of the d tensors from Table 6.2 can be used in this expression to
find the effective nonlinear optical coefficient for each symmetry class of uniaxial
crystals.

Using the d tensor for crystal symmetry classes Cy, Cg, Cy4, and Cg, in (6.29)
gives

sinZ¢
0 0 0 0 ds0 cos’ ¢
dofr =(cos Oy cosg,coslysing, —sinby,)-| 0 0 0 dis 0 0 ?)
dis di5 d33 0 0 0
0
—2sin¢cos ¢
0
=(cos b, cos d,cos 0y, sinp, —sinby,) - 0
dis

= —d15 sin()m.

Note that this is the same result as was obtained in the previous example of oeo
polarizations with the same d tensor. For this case the effective nonlinear optical
coefficient depends only on the angle 60,, as determined by (6.28). It would be
maximum if 0,,=90°. The azimuthal direction of propagation of the light beams can
be any direction in the XY plane.

Next consider an example of the same phase matching conditions for the
polarization vectors given in (6.29) but for crystals with D,; symmetry. In this
case (6.29) becomes
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sin?¢
2
000 dy 00 cos”
0
dor =(cos8,,cos,cosf,sing,—sinb,)- 1 0 0 0 0 dia O 0
0000O0 dy 0
—2sin¢cosp
0
=(cosb,,cos¢,cosb,sing,—sinb,,) - 0
—2d4sin¢pcos ¢

=dy48in0,,sin2¢.

Once again this is the same result as obtained in a previous example for oeo

polarizations with the same d tensor. For this case the phase matching angle is
again determined by (6.27) and would be maximized if 0,,=90° but in addition the
azimuthal angle must be ¢=45° for d,; to be maximum. Thus the direction of
propagation of the light beams is in the XY plane half way between the X and Y axes.

This same procedure can be carried out for all of the symmetry classes for
uniaxial crystals and the results are summarized in Table 6.3. Note that only one or
two of the components of the d tensor contribute to d.4 for a specific crystal
symmetry class. Also note that for many symmetry classes, d,g is maximized for
0,,=90°. This is important for practical applications because diffraction and beam
divergence result in a dependence of the propagation vector on 0. If 0,, =90° this
“walk-off” problem disappears. Thus 90° phase matching is referred to as noncriti-
cal phase matching and this allows more effective SHG to occur. Thus crystals that
can maximize d.z with noncritical phase matching are important in frequency
doubling applications.

Table 6.3 Effective nonlinear optical coefficients for uniaxial, negative
crystals for Type I phase matching with both fundamental wave components
polarized in the ordinary direction and the SHG wave polarized in the
extraordinary direction (with Kleinman symmetry)

Symmetry class degr

Dy, D¢ 0

C4, C4‘,-, C6, Cﬁv 7d158in9m

Doy di4sin0,,sin2¢

Cs —(dyc083¢p—d,esin3¢p)cosh,,,—d,ssinb,,
Ds —d;c0s0,,cos83¢p

D, dy6c080,,8in3¢p

Cs, dy6c0s0,,sin3¢p—d,5sinb,,

Csy, —(dyc083¢p—d;esin3¢p)cosh,,

S (d15c082¢+d 48in2¢)sinb,,
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For Type I phase matching in a positive crystal, p; and p, are both extraordinary
vectors while ps is an ordinary vector. For this case

cos2¢pcos® 0
sin® ¢ cos? 0

)
= = R = = 0
deff =p3 -dp1py =P, - dpep. = (cosOcos ¢, cosOsin¢p, —sind) -d .Sm )

—sin20sin ¢

—sin260cos ¢
cos?0sin2¢

The d tensors from Table 6.2 are substituted into this expression to obtain values for
dg for each uniaxial crystal system. Using the same procedure demonstrated above
gives the results in Table 6.4. Note that for this polarization orientation there are
fewer opportunities to maximize degr through 90° phase matching.

When Type II phase matching as defined in (6.26) is used, different combina-
tions for the polarization vectors from (6.23) are needed for (6.29). The same
procedure used above can be carried out using these new polarization vectors. In
this case the two components of the fundamental wave have orthogonal ordinary
and extraordinary polarizations. If the frequency doubled wave is polarized in the
ordinary direction, the values of d.¢ for each crystal system are the same as those
shown in Table 6.3. If the frequency doubled wave is polarized in the extraordinary
direction the values of d, are the same as those given in Table 6.4. For example, for
a positive crystal having D,; symmetry, the d.; can be maximized through either
Type I or Type II phase matching using the expressions

dy4sin20,,cos2¢, Type I,
dygsinf,sin2¢, Type 1L

For both cases the phase matching angle is determined by (6.27). It might be
possible to achieve noncritical phase matching using a Type II configuration but

Table 6.4 Effective nonlinear optical coefficients for uniaxial, positive
crystals for Type I phase matching with both fundamental wave components
polarized in the extraordinary direction and the SHG wave polarized in the
ordinary direction (with Kleinman symmetry)

Symmetry class dess

Dy, D¢ 0

C4’ C4v7 C6» C6v 0

Dyy dy48in26,,c082¢

Cs —(dllsin3¢+d160053¢)00529m
Ds —d,c08%0,,sin3¢

D5y, —d1600520mcos3¢

Cs, —d6c08%0,,c083¢

C3p, —(dllsin3¢+d150053d))00529m

S4 —(d,58in2¢~+d 4c082¢)sin26,,
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not Type 1. For Type I phase matching the propagation direction should have ¢p=0° or
90°. For Type II phase matching the propagation direction should have ¢=45° or
135°. This demonstrates the importance of the azimuthal angle for different types of
phase matching. The same procedures can be used for biaxial crystal systems but the
resulting expressions depend critically on the choice crystallographic axes directions
compared to laboratory coordinates and propagation directions [2].

In summary, maximizing the efficiency of second-harmonic generation as
expressed in (6.14) requires maximizing deg. The parameters involved in doing
this are the choice of the nonlinear material, the wavelength of the incident light
beam, the direction of propagation, and the polarization directions of the initial and
final light beams. These are interdependent and in some cases not subject to
arbitrary choice. For example, a laser of a specific wavelength may be required or
only a specific nonlinear crystal is available. Given these fixed parameters, different
types of polarization combinations and propagation directions can be chosen. The
resulting expressions for d.g in Tables 6.3 and 6.4 can be optimized using the
appropriate values for 6,, and ¢. Note an estimate for 6, that will maximize phase
matching can be found from (6.28). This may not be the value of 6 that will
maximize the trigonometric expression for des. It is generally necessary to tune
the temperature and 0 to obtain the maximum conversion efficiency.

Finally, examples of measured values of nonlinear optical coefficients are given
for some common frequency doubling crystals in Table 6.5. These measured values
are given in SI units of (pm/V). To convert to cgs units of (cm*/erg)"/? the values in
the table should be multiplied by 2.39x 10~°. Different measurements have yielded
slightly different values for the nonlinear optical coefficients depending on the
crystal quality and experimental conditions. Thus there are some discrepancies in
the literature, but the results are all close to those listed in the table. The first row of
each entry lists the primary phase matching configuration and relevant nonlinear
coefficients while the second row lists other phase matching configurations that
have been reported and values of other coefficients that have been measured.
Tables 6.3 and 6.4 can be used with these values to determine d.g. Equation
(6.28) can be used with the values of the refractive indices to determine the phase
matching angle. However, the angle listed is experimentally measured and the
theoretically predicted angle is only approximate due to inaccuracies in the mea-
surements of the indices of refraction.

6.5 Two-Photon Absorption

In optical spectroscopy, the simultaneous absorption of two photons is made
possible by the use of high power laser sources. This can occur using a single
laser source producing indistinguishable photons or by using two different lasers
that produce two different photons. Experimental two-photon absorption spectros-
copy using broadband tunable lasers has become a useful tool for studying the
properties of the excited states of atomic, molecular, and solid state systems. A two-
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Table 6.5 Selected values of nonlinear optical coefficients for some common crystals used in
frequency doubling. Measurements were made at the Nd:YAG laser wavelength of 1,064nm
[1,2,4,5]

Phase Nonlinear optical
Crystal (symmetry) Indices of refraction matching coefficients (pm/V)
Lithium niobate (n,>n.) n{ = 2.2340,n§ = 2.3251 000e=90° dis= —5.95, d14=2.8
LiNbO3:MgO (5%) (C3,)  n{ =2.1554,n§ = 2.2330  eoe, oee dy3=—34.4
KTP (I’lz(,)>nu,) an:1.738, H3X:1778 geoe:300 d|5=6.1, d24:7.6
KTiOPO, (C»,) niy=1.746, n3,=1.789 0eo, 0oe dy=13.7
n1,=1.830, n3,=1.889
ADP (n,>n,) n{ = 1.507,n§ = 1.528 0ee=062° d14=0.53
NH4H,PO (D»,) ng = 1.468,n§ = 1.482 00e, eoe
LBO (n2,,>n,) n1,=1.566, n3,=1.579 Op0e=90°  dps=12
LiB50s5 (Cy,) niy=1.591, n3,=1.607 0e0, €00, dis=1.1, d33=0.07
n.=1.606, n3.=1.621 eoe,
eeo
Quartz (n.>ngp) n{ = 1.534,n3 = 1.5468 d=0.37
SiO, (D3) n{ = 1.543,n§ = 1.5560
KNbO; (n5¢,>n,,) n,=2.114, n3,=2.199 000e=90° doy= —13.2
n1y=2.220, n3,=2.319
ny,=2.258, n3,=2.377
(Cy,) eeo, €00 dis=11.5, d33=-20
LilO3 (no>n.) ng = 1.857,n3 = 1.898 0o0e=30°  dys= —7.1
(Ce) n{ = 1.717,n§ = 1.748 dy=—17.0
BBO (n,>n,) n{ = 1.655,n§ = 1.675 0o0e=23° di5=0.12, d14=1.8
f—BaB,0, (C3,) n{ = 1.543,n§ = 1.556 eoe,oee
KD*P (ny>n,) n{ = 1.4928, n§ = 1.5085 Ocoe=54° d14=0.53
KD,PO4 (D) n{ = 1.4555,n§ = 1.4690 oee, 0oe

photon transition involving a real intermediate state is generally referred to as
excited state absorption while a true two-photon absorption transition involves a
virtual intermediate state. The selection rules for this type of process are different
from single-photon transition processes so a two-photon absorption spectrum can
provide information about the symmetry of the excited state as discussed below.
This section describes the application of two-photon spectroscopy to a molecular
complex as an example of this phenomenon.

The spatial positions of the atoms that constitute a particular molecule define its
symmetry. The symmetry operations that leave the arrangement of the atoms of the
molecule invariant form the symmetry group of the molecule which is given by one
of the point group symmetries discussed in Chap. 2. The stationary electronic states
of a molecule are described by wavefunctions with specific symmetries. Typically
the ground electronic state has the symmetry of the molecular point group while
higher lying electronic states have lower symmetries.

As discussed in previous chapters, for one-photon transitions, allowed transitions
occur only between states of opposite parity. On the other hand, for two-photon
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transitions, the odd parity electric dipole moment operator acts twice so the
allowed transitions are between the states of the same parity. Therefore the two-
photon absorption spectra show lines not seen in the one-phonon spectra.
The polarization direction of the excitation beams is critical in determining the
allowed transitions as described below and this helps determine the symmetry
properties of the excited states of the transitions.

Optical transitions are described through the interaction of an electromagnetic
radiation field with the electronic states of the system. As discussed in Sect. 6.1, the
electric dipole term in the expansion of the radiation field is the dominant operator
inducing the transition. Quantum mechanical perturbation theory is used to show
that the probability, or strength, of the process is determined by the matrix element
of the transition. For a one-photon process this is expressed by (4.23). For a two-
photon process second-order perturbation theory is used and the expression for the
transition matrix element becomes [6, 7]

ed—ZZ[ i ROKIFSLS) | Gl 1) Il )] 630,

Wi — W1 Wi — W2

The transition described by this expression is illustrated in Fig. 6.12. It involves
photons of two different frequencies w; and w, with the two terms in brackets
indicating the contributions depending on which photon was absorbed first.

i)

Fig. 6.12 Energy level diagram for two-photon absorption transitions
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These contributions differ because different photon energies lead to different values
for resonant denominators. The some over k includes all higher lying real states that
play the role of virtual intermediate states (dashed lines) in the transition process.
The initial and final states are designated by i and f while 7, and 7}, are the transition
dipoles for the molecule.

Because of the variation of the transition matrix element in (6.30) with the
polarization directions of the two photons, it can best be expressed as a second-
rank tensor of the form

X My My My
M= | My My My |, (6.31)
M3 Mz Mss

where each component represents the contribution to the transition strength from
the directions of the transition dipoles in the molecule. The nine elements M;;
characterize the symmetry of the excited state of a molecule with specific point
group symmetry.

The individual value a specific tensor element indicates its ability to couple the
two transition dipoles 7, and 7,. The form of the two-photon absorption tensor
depends on the symmetry group of the molecule and the irreducible representations
designating the states involved in the transition. Generalizing the one-photon
transition expressions in (2.24) and (4.33) to the two-photon absorption case, for
the transition matrix in (6.30) to be nonzero

T(Farp)xTy D Ay, (6.32)

where it has been assumed that the initial state of the transition (the ground state of
the molecule) transforms as A;,. For (6.32) to be true, the product of the two
transition dipoles must transform according to the same irreducible representation
of the final state of the transition. Unlike single photon transitions, a change in
parity between the initial and final state is not required for the two-photon transition
to be allowed.

As an example, if the final state of the transition transforms according to the A;,
irreducible representation, the product of the components of the transition dipoles
must also transform as A;,. For O, symmetry where the three x, y, and z coordinate
axes are equivalent, character Table 2.32 shows that the basis function of this type
for Ay is (x*+y*+2%) leading to a form the tensor for this type of transition for
molecules with this point group given by

My 0 0
MY ., (O)=|0 My 0 |,
0 0 My
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where M| ,=(M +M,,+M_..)/3. The same transition in molecules whose symmetry
group has only two equivalent axes such as D, will have a transition tensor of the
form

My 0 0
Mf{l’ﬁAu Dy)=1 0 My 0
0 0 My

Here M =(M,+M,,)/2 and M33=M... (See Tables 2.14 and 3.4.) For symmetries
with no equivalent axes the tensor has the form

M, 0 0
Miﬁgﬁmg (Dm)=| 0 My 0
0 0 M.

If the final state has a wavefunction that transforms according to some irreduc-
ible representation other than A, the off-diagonal elements of the transition tensor
that represent orthogonal transition dipoles can be nonzero. For example, the
transition to a T, state in a molecule having O, symmetry is allowed for the two
transition dipoles orient as xy, yz, and xy (see Table 2.32). Thus the transition tensor
has the form

) 0 My Mp
MA[I);:*’ng (Oh) - M12 0 M23 )
Mz My 0

where M ;=M ,+M,)/2, M 3=(M.+M.,)/2, and Mp3=(M,.+M.,)/2.

The examples given above show the form of the two-photon absorption tensor to
be either diagonal or symmetric. This is always the case when the two photons
involved are identical. For distinguishable photons, some of the high symmetry
groups can have transition tensors that are antisymmetric. This can occur when the
wavefunction of the excited state changes sign under the interchange of the x and y
axes [8].

The transition strength observed experimentally involves the product of the two-
photon absorption tensor with the two photon polarization vectors p; and p,

— 2 —
[217 :leesz
M, Mx‘y M. Dax

- (6.33)
:(plxaply»plz) Myx Myy yz P2y |-

M
sz sz Mzz D2
This form of the expression assumes that the coordinates of all the molecules
involved in the sample being studied are in the same fixed alignment with the
laboratory coordinate system. This is only true for special cases such as molecular
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solids or other systems that can be physically aligned. When this is the case,
polarized two-photon absorption spectroscopy can determine the form of
the transition tensor and thus the symmetry properties of the excited state of the
transition. For example, in the case described above for a molecule with O,
symmetry, polarizing both photons along the x direction will provide a contribution
to the spectral intensity involving only the M., tensor component. Doing similar
experiments with both photons polarized along the y-axis or the z-axis will show the
contributions to the spectral intensity involving the M, and M. tensor components.
If these three tensor components are found experimentally be nonzero and approxi-
mately the same magnitude, it shows that the form of the two-photon absorption
tensor is diagonal which means that the excited state of the transition transforms
according to the Ay, irreducible representation of the O;, symmetry group. On the
other hand, if the spectral intensity is essentially zero for these photon polarization
conditions other experiments are needed. By polarizing one of the photons in the x
direction and the other in the z direction the contribution of the M., component can
be observed. Similarly, polarizing one photon in the x direction and the other in the
y direction gives the contribution of the M,, tensor component while polarizing the
photons in the y and the z directions measures the contribution of the M,. compo-
nent. If these three off-diagonal elements are nonzero, the form of the tensor is
consistent with an excited state transforming according to the T, irreducible
representation of the O, point group. In this way a set of two-photon absorption
spectra for different combinations of photon polarization directions can be used to
determine the irreducible representation according to which the excited state trans-
forms. It should be noted that this procedure is very similar to Raman scattering
spectroscopy discussed in Sect. 7.4 and summarized in Table 7.8.

For the situation in which the coordinate axes of the molecule are not aligned
with the laboratory coordinates, (6.33) must be modified to include a factor of
cosf,cosb;, where the 6; are the angles between the laboratory coordinates and the
molecular axes. This provides the required transformation between molecular axes
and laboratory coordinates. In general, an ensemble of molecules being studied will
have random orientations and the expression for transition strength must be aver-
aged over all directions. This limits the amount of detailed information that can be
obtained through polarized two-photon absorption spectroscopy, but it is still
possible to determine if the transition tensor is diagonal, nondiagonal symmetric,
or nondiagonal antisymmetric.

6.6 Problems

1. What is the coherence length for second-harmonic generation at a wavelength of
532 nm if the relevant refractive indices are n;=1.738 and n3=1.789?

2. Derive the form of the nonlinear optical tensor for a crystal with C,, symmetry
with and without Kleinman Symmetry.
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3. Derive the expression for the effective nonlinear optical coefficient for two
incident light waves with ordinary polarization directions and a frequency
doubled wave with polarization in the extraordinary direction in a crystal with
C3, symmetry.

4. Calculate the phase matching angle with the light polarization conditions given
in problem 3 with n{ = 1.738, 75 = 1.789, and n§ = 1.668.

5. For a crystal with D,, symmetry and noncritical phase matching, what azimuthal
angles maximize the effective nonlinear optical coefficient?
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Chapter 7
Symmetry and Lattice Vibrations

The other chapters in this book deal with the atoms in a crystalline solid being in
their static equilibrium positions. This chapter focuses on the thermal vibrations of
the atoms about their equilibrium positions. This motion is treated in the harmonic
approximation. The symmetry of the lattice plays an important role in determining
how the atoms move. The positions of neighboring atoms can inhibit motion in
some directions while facilitating motion in other directions. This results in certain
“normal modes” of vibration being allowed and other vibrational modes not
allowed. Any state of vibration of the lattice can be expressed as a superposition
of normal modes. The energy of the vibrational modes is quantized and can be
described by eigenvectors and eigenvalues (frequencies). Each of these modes
exhibit specific symmetry and can be associated with one of the irreducible
representations of the crystallographic point group.

The quantized vibrational modes are called phonons. A phonon is an elementary
excitation that can be treated as a quasiparticle in a solid. There are two types of
phonons. One involves only a central ion and its nearest ligands. These are called
local mode phonons. Since these involve atoms in one unit cell, translational
symmetry is not important and the point group of the local complex of atoms is
used to describe the symmetry of the vibrations. The second type of vibration
involves the motion of atoms throughout many unit cells of the lattice. In this
case, translational symmetry is important and the vibrations are called lattice
phonons. The space group of the crystal must be used in analyzing the lattice
vibrations. Some places in the literature reserve the term phonon only for extended
lattice vibrations and not local modes. Here it is used for all vibrational modes.

Transitions between the quantized energy levels of lattice vibrations can occur
through the absorption or emission of electromagnetic radiation. This can be
described as the creation or annihilation of specific phonons. The selection rules
governing whether specific transitions are allowed or forbidden can be determined
through group theory considerations.

Sections 7.1 and 7.2 treat local modes and lattice phonons separately and
demonstrate the importance of symmetry and group theory in analyzing the
vibrational properties of solids. Section 7.3 summarizes the quantum mechanical
treatment of transitions among vibrational energy levels and the selection rules
determined by symmetry. Section 7.4 describes the inelastic scattering of light in
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166 7 Symmetry and Lattice Vibrations

which phonons are created or destroyed. This Raman scattering is characterized as
a second-rank tensor and the tensor mathematics described in Chap. 3 is used
to determine the selection rules for specific phonon modes involved with this type
of process.

7.1 Symmetry and Local Mode Vibrations

Some vibrational modes are localized at specific points in the crystal lattice and can
be described by the motion atoms around these points. This can occur if the physical
system involves a point defect as discussed in Chap. 4 or if there is strong bonding
among a local complex of atoms. In this case, phonon momentum and long range
translational symmetry can be ignored and the point symmetry group of the local
site can be used.

The best way to understand the role of symmetry in lattice vibrations is through
specific examples. Consider seven ions arranged in an octahedral configuration as
shown in Fig. 7.1. Cartesian coordinates can be attached to each ion and three sets
of these are shown in part a of the figure as well as the x,y,z coordinate directions for
the system. The atoms can be designated by their positions with the central atom
being 0, the atoms along the 4 and — z axes being 1 and 6, respectively, the atoms
along the + and — x axes being 2 and 4, respectively, and the atoms along the + and
— y axes being 3 and 5, respectively. The character table for the O, symmetry group
is repeated in Table 7.1 for convenience. The double group operations and half-
integer representations have been omitted for simplicity.

The motion of the atoms of this complex transforms as a reducible representation
I’y of the O), symmetry group with the coordinate vectors attached to each atom
forming the basis vectors of this representation. In order to find the characters of
this representation the transformation matrices for each symmetry operation of the
group must be determined. The trace of each matrix is the character of I, for that

Fig. 7.1 Complex of seven atoms in an octahedral configuration. (a) Laboratory coordinate
directions; (b) internal coordinate directions
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Table 7.1 Character table for point group O,

O, E 8C; 6C, 6C4 3C421 i 6S4 8S¢ 30, 60, | Basiscomponents

Al 1 1 1 1 1 1 1 1 1 1 |[2447

Al 1T 1 —1  —1 1 1 -1 1 1 -1

E, | 2 -1 0 0 2 2 0 -1 2 0 Q= —y* x*—y)

Tl 3 0 -1 1 -1 31 0 -1 -1 (R Ry, R.)

Tl 3 0 1 —1 1 3 —1 0 -1 1 (xz,yz,xy)

Al 1 1 1 1 1 —-1-1 -1 -1 -1

Anl 1 1 =1 -1 1 -1 1 -1 -1 1

E,| 2 -1 0 0 2 -2 0 1 =2 0

Tl 3 0 -1 1 -1 =3-1 0 1 1 (.2

T 3 0 1 -1 -1 -3 1 0 1 -1

I'yl2l 0 -1 3 -3 3-1 0 5 3 |AgtE AT+ g3 1+,
I'r| 3 0 -1 1 -1 =3-1 0 1 1 Tia

Ikl 3 0 -1 1 -1 301 0 -1 -1 Ty,

I'y|15 0 1 I =1 =3-1 0 5 3 | Ag+EtTog+2 1, +Ts,
r.| 6 0 0 2 2 0 0 0 4 2 |AgtEAT,

Iyl12 0 2 0 0 0 0 0 4 2 | AgtE AT +T 1, +Ta,

operation. Since there are 3N coordinate vectors the transformation matrix has the
dimensions 3Nx3N with N the number of ions in the complex. Since N=7 for the
octahedral complex shown in Fig. 7.1, the transformations are represented by
21x21 matrices of the form

Xo Yo Z0 X1 Vi b/ . 1 Yo Z6
Xo fcoso —sina 0 — - - = — —

Yo | sinoe cosae O — — — e e . — — —
Zo 0 0 +1 - — — e e e — — —
X1 — — — coso —sina
Y1 — — — sino  cosa
Z - — - 0 0o £1 ......... — - —

o o

X6 _ _ - — — — ... ... ... cosa —sina O
Y6 _ _ - — — — ... ... ... sine¢ cosa O
Z6 _ — - — — — . ...... 0 0 +1

where the symmetry transformation of the coordinate vectors of each individual
atom is given by the 3x3 matrix that was discussed in (2.5). The +1 or —1 is for
proper and improper rotations, respectively. The submatrices that appear along the
diagonal are for atoms that do not change position under the symmetry operation
while the off-diagonal submatrices are for ions that change from one position to
another in the complex. The trace of this matrix is

Im (@) = Ny(£1 4+ 2cosa), (7.1)
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where N, represents the number of atoms that remain unchanged under the
symmetry operation.

Equation (7.1) can be applied to the symmetry operations of the O,, point group
given in Table 7.1. For the E operation all seven atoms remain in their positions, it is
a proper rotation, and cos a=1 so y,,(E)=21. For the Cj; rotation of 120° about the
body diagonal of the cube only the atom at position 0 remains unchanged. It is a
proper rotation and cos 120°=—1/2 so y»/(C3)=0. The six C, operations that go
through the center of one edge of the cube diagonally through the center and
opposite edge center leave only the central atom unchanged. It is a proper rotation
and cos 180°=—1. Thus the character is y»,(C,)= —1. For the six C, operations
the three atoms along the rotation axis remain unchanged. It is a proper rotation and
cos 90°=0. Equation (7.1) gives y/(C4)=3. The six S, operations are improper and
leave only the central atom unchanged so y;/(Ss)= —1. The results of these
calculations for all of the symmetry elements of the O, point group are given in
Table 7.1 as the characters of the I"), representation.

The motion representation Iy, is a reducible representation for the O, point
group. Table 7.1 shows how this is reduced in terms of eight irreducible representa-
tions of the group. This reduction can be accomplished either by inspection or by
using (2.10). The motion representation includes all degrees of freedom, transla-
tion, rotation, and vibration. Since the interest here is in the vibrational degrees of
freedom the translation and rotation modes must be eliminated. The translation
motion of the entire complex transforms as a vector and in O;, symmetry this forms
the basis of the T, irreducible representation. The rotation mode for the entire
system transforms as the rotational axes which form the basis for the T, irreducible
representation. Subtracting these two irreducible representations from the total
motional representation leaves the vibrational representation I'y. As shown in
Table 7.1 there are 15 normal modes of vibration for this octahedral complex
designated by six irreducible representations of the O, symmetry group, one
nondegenerate mode, one doubly degenerate mode, and four triply degenerate
modes.

In order to determine the directions of motion of each of the atoms for each of
these normal modes of vibration, it is useful to describe their positions in a different
set of coordinates known as symmetry coordinates. These internal coordinates for
the octahedral complex are shown in Fig. 7.2b. For this complex there are 18
symmetry coordinates. Six of them are radial vectors from the central atom to
each of the surrounding atoms labeled r; through rs. The other 12 are angles
between speciﬁc atoms labeled 012, 013, 914, 015, 923, 934, 945, 052, 6627 063, 064’
and 0gs. Only one of these angles is shown as an example in Fig. 7.2b. Next the
reducible representations for the r vectors I', and the angles I'y must be found.
The symmetry transformation matrix for the r coordinates is a 6x6 matrix with
columns ranging from r; to r¢ before the transformation and the rows ranging from
1y to rg after the operation. A value of 1 appears in the ij matrix element when r;
transforms to r; and the other elements are 0. The matrix elements along the
diagonal are 1 when the symmetry operation does not change that r coordinate
and O if the coordinate is changed. Thus the trace of the matrix equals the number
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Fig. 7.2 Normal modes of vibration of an O, complex of atoms
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of r coordinates left unchanged by the symmetry operation. Since there are six
diagonal elements y,(FE)=6. Each of the C, operations leaves the two r coordinates
pointed along the fourfold rotation axis invariant while changing the other four.
Thus y,(C4)=2. The same is true for the C, = Cﬁ operations. The C, operations
around the edge center to edge center diagonal axes change all the r coordinates
as do the Cs, I, S4, and Sg operations. The horizontal mirror planes leave the
four r coordinates in the plane invariant while the diagonal mirror planes leave
the two r coordinates in the plane invariant. These characters appear as the I,
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reducible representation in Table 7.1. The usual procedure for reducing
this representation into its irreducible representations results in three irreducible
representations as shown in the table.

The same procedure can be used for the 0;; symmetry coordinates. In this case, the
transform matrix is a 12x 12 matrix. Again it is only the elements along the diagonal
that are of importance in determining the character of the transformation and these
are associated with angles that remain unchanged by the symmetry operation. Since
the identity operation leaves all 12 angles unchanged yo(E)=12. The
Cy,Cyp = Cﬁ, Cs,i,S4, and S¢ operations each change all of the angular coordinates
so their characters are all 0. The C; axes about the edge centers parallel to the face
diagonals will leave two angles unchanged. For example, looking at the face of the
cube with atom 2 in the center and considering the 180° rotation axis from the center
of the upper right edge to the lower left edge leaves the angles 0,3 and 055 unchanged.
Therefore the character of this class of operations is 2. The horizontal mirror planes
leave the four angles in the plane unchanged so the character of these operations is 4.
Finally the diagonal mirror planes leave two of the angles unchanged giving a
character of 2. These are summarized in Table 7.1 as the characters of the reducible
representation I'y. Its reduction in terms of five reducible representations is shown in
the table. The sum of the irreducible representations in the reductions of the I', and
I'y representations is the same as those contained in the reduction of I'y, with an
additional A, and E, representations. The additional representations occur because
we have chosen 18 symmetry coordinates to represent15 degrees of freedom.

The direction of motion of the atoms for each of the six modes of vibration can
be determined using the expression [1, 2]

S(Ty) =N > 2,(R)RS;. (7.2)
R

In this expression S(I',) is the normal mode of vibration transforming as the I,
irreducible representation and y,(R) is the character for the R symmetry operation of
this representation. S; is one of the 18 symmetry coordinates and RS; is the
coordinate into which S; transforms after the symmetry operation R. The sum is
over all symmetry operations of the group and N is a normalization factor. This can
be applied to all of the r; and 0;; coordinates of the octahedral complex.

For example, the way r; transforms is given in Table 7.2. Consider the six
rotations of +90° and —90° about the x, y, and z axes. From Fig. 7.1b it is clear that
the fourfold rotation about x transforms r; into r5 or r5 and a similar rotation about
the y axis transforms r; into r, or r4. The two C, rotations about the z-axis leave r;
invariant so a 2 appears in this element of the table. None of the six C, operations
transform 7 into 7¢ so a 0 appears in this element of the table. Using this informa-
tion in (7.2) along with the characters of the A, vibrational mode gives

S(Atg) =N 1a, (R)Rry = N8(ry + 1 + 73 + ra + 15 + r).
R
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Table 7.2 Transformation of the r, coordinate in O; symmetry

Rry

R r 7 I3 T4 s e
E 1 0 0 0 0 0
8C; 0 2 2 2 2 0
6C, 0 1 1 1 1 2
6Cy 2 1 1 1 1 0
3C2 1 0 0 0 0 2
i 0 0 0 0 0 1
65, 0 1 1 1 1 2
856 0 2 2 2 2 0
30, 2 0 0 0 0 1
60y 2 1 1 1 1 0

This can be normalized to give

1
S(Ag) = —=(r1 +ra+r3+ra+7rs+76). (7.3)

V6

This describes the vibrational mode of the complex where the six ligands move in
unison away and toward the central atom that remains stationary. This is referred to
as the breathing mode.

Using the same data for Rr; in Table 7.2 with the characters for the E, and T},
irreducible representations in (7.2) gives

1
S(Eq) =N>» xg.(R)Rri =—=2r1 —ry—r3 —ra —rs +2rs) (7.4)
( g) ER: E, 1 3 1 =Ty =713 —=74—1T5 6
and
1
S(Tw) =N ZR: 11, (R)Rry = 7 (r1 —r¢). (7.5)

In the first of these, the two atoms along the z-axis move away from the central atom
while the four atoms in the xy plane all move together toward the central ion. In the
second of these, the two atoms along the z-axis move up and down together while
the atoms in the xy plane remain in their equilibrium positions. The three normal
modes of vibration derived here are shown in Fig. 7.2.

The same procedure is done for each of the r; and 0;; coordinates. As an example
of using one of the angular coordinates in (7.2), consider 0,5 as shown in Fig. 7.1b.
The transformation properties for this angle under the symmetry operations of the
O;, point group are shown in Table 6.3. The Ci (C,) rotation about the z-axis takes
0,5 into 0,3 so a 1 appears in the 6,3 column for this transformation row.



172 7 Symmetry and Lattice Vibrations

Table 7.3 Transformation of the 6,5 coordinate in O;, symmetry

RO1s

R 012 913 014 915 023 934 945 952 962 063 964 965
E 0 0 0 1 0 0 0 0 0 0 0 0
6C; 1 1 1 0 0 0 1 1 0 0 0 1
3¢ 0 1 0 0 0 0 0 0 0 1 0 1
6C, 0 0 0 1 1 0 0 1 1 1 1 0
8C; 1 0 1 0 1 1 1 1 1 0 1 0
i 0 0 0 0 0 0 0 0 0 1 0 0
65, 0 1 0 0 1 1 0 0 1 0 1 1
85 1 0 1 0 1 1 1 1 1 0 1 0
36, O 1 0 1 0 0 0 0 0 0 0 1
60, 1 0 1 1 0 1 1 0 0 1 0 0

The twofold rotation about the x-axis takes 6,5 into 63 while the C, operation about
the y-axis takes 65 into Ogs. This analysis for all of the transformation elements
gives the entries in Table 7.3. The normal vibrational modes can then be found
using these data in (7.2) along with the characters of the irreducible representations
of I'g from Table 6.1. As an example, consider the T, irreducible representation.
Equation (7.2) becomes

S(Tag) =N stp,, (R)ROs = NA(—013 + 015 + O3 — Oss),
R
which can be normalized to give

(015 + Os3 — 013 — Oss). (7.6)

N =

S(TZg) =

This describes a vibrational mode in which atoms 1 and 5 are moving away from
each other, atoms 6 and 3 are moving away from each other, and atoms 0, 2, and 4
remain stationary.

The results of this type of analysis for all of the symmetry coordinates are
summarized in Fig. 7.2. For each of the six types of degenerate symmetry modes
an example of the atomic motion is shown. Of the 15 normal modes of vibration, six
are even parity and nine are odd parity functions. They are divided into one
nondegenerate symmetry mode, one doubly degenerate symmetry mode, and four
triply degenerate symmetry modes.

This example shows how local vibrational modes can be designated in terms of
the irreducible representations of the point symmetry group of the local complex.
Each of these vibrational modes is associated with an energy level of the system.
Transitions between these energy levels are discussed below. In Sect. 7.2 nonloca-
lized vibrational modes are treated.
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7.2 Symmetry and Lattice Vibrational Modes

The vibrational characteristics of the extended lattice of atoms can be characterized
in terms of a set of normal modes of vibration as was done in Sect. 7.1 for a local
mode complex of atoms. In this case, translational symmetry is important and the
phonon momentum or wave vector must be considered. The motion of the atoms in
one unit cell of the lattice is analyzed and two situations are distinguished. In the
first case, the atoms in one unit cell move together with respect to atoms in
neighboring unit cells. This type of vibration is termed an acoustic mode. In the
other case, the atoms in a given unit cell move with respect to each other. This type
of vibration is termed an optic mode. As in Sect. 7.1, each normal mode of vibration
can be associated with an irreducible representation of the symmetry group of the
crystal. However, in this case the relevant symmetry group is determined by how
the phonon wave vector q transforms.

The solution of the vibrational analysis problem for a crystal lattice shows that a
lattice phonon can be described as a wave traveling through the lattice. In analogy
with other quasiparticles in a periodic lattice (see Chap. 8), this is expressed in
terms of a Block wave function [4]

F(R) = u,(R)e'" ™, (7.7)

where u, (k) is the displacement of the atom at position R from its equilibrium
position for a phonon of wave vector g. These functions form the basis functions for
the space group of the crystal lattice. As was done in Sect. 7.1, it is best to illustrate
this with an example.

The crystal structure of strontium titanate (SrTiO5) at room temperature is cubic
perovskite belonging to the space group O,,'. The unit cell for this crystal is shown
in Fig. 7.3a. It has one molecule per unit cell and the positions of the five atoms of
this molecule are shown in the figure. Since there are 15 internal degrees of freedom
there will be 15 optic normal modes of vibration. In addition the atoms of the unit cell
will move together to give three acoustic modes of vibration. The first Brillouin zone
for this crystal structure is shown in Fig. 7.3b. There are seven points of special
symmetry for the q vector in this Brillouin zone as shown in the figure. To characterize
all of the normal modes of vibration of SrTiOj it is necessary to analyze each of these
seven points plus a generic position of q within the Brillouin zone [2, 3, 5, 6]. The
special points generally make the greatest contributions to the phonon density of states
of the material. Thus they play an important role in its thermal properties.

O} is a symmorphic space group so it is possible to factor the translation and
rotation symmetry operations and treat them separately. All symmetry operations
that leave q invariant or transform it into q+Q, where Q is a primitive vector of
reciprocal space, form a symmetry group called the group of the wave vector. This
is designated G,(q) for each point q in the Brillouin zone. The irreducible repre-
sentations of this group are used to designate the phonon modes at that point in the
Brillouin zone. A pure rotation operation in G(q) represented by C operating on the
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(A) SrTiO3 unit cell:
Sr (0,0,0)
Ti (a/2,a/2,a/2)
O1 (a/2,0,a/2)

02 (a,a/2,a/2)
03 (a/2,a/2,0)

(B) First Brillouin zone for SrTiOswith
points of special symmetry:

§ T (0,0,0)
d . A (0,0,q2)
FUIS & A(g=a=qr)
/{,-’ ) Z ( gx=qy,0)
s X (0,0,n/a)
L7 U R (n/a,n/a,n/a)
“«—J7/a M (m/a,m/a,0)

Fig. 7.3 Unit cell and first Brillouin zone for StrTiO;

basis function given in (7.7) will leave this function invariant or transform it into
another member of a set of basis function representing a degenerate mode of
vibration. All members of the set will have the same q vector. This is expressed as

C{uq (fg)ei;}} _ {cu,, (ie) }ei;.a? _— (ﬁ') eiC;.,;
= u, (1?’) G ROR, (7.8)

The character of the symmetry operator C will be the trace of the transformation

matrix multiplied by the factor 2%, As demonstrated in Sect. 7.1 for a complex of
atoms, only those atoms whose position remains unchanged under operation C will
appear along the diagonal of the transformation matrix and thus contribute to the
trace. The character is then similar to (7.1) except that the factor of the number
of ions remaining unchanged is replaced by the sum over the vector positions of
these atoms in the factor e’¢*
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rc(o) = Z (+1 +2cos a)e'@ R, (7.9)

u

Asusual the + and — signs refer to proper and improper rotations. This expression can
be used to find the characters of the symmetry operators at each point in the Brillouin
zone. The resulting representations I",(q) can be reduced in terms of the irreducible
representations of the group of the q vector at that point. The phonon modes at that
point in the Brillouin zone are represented by these irreducible representations.

First consider the I” point at the center of the Brillouin zone. For this location Q=0
and the group of the ¢ vector is the O, point group. Applying (7.9) to each of the
symmetry elements of this group gives the characters shown in Table 7.4. For this case
the sum in (7.9) just gives the number of atoms that remain unchanged under the
symmetry transformation or move the atom to an equivalent position in a neighboring
unit cell. Multiplying this number by the rotational factor in (7.9) gives the character of
the vibrational representation I',(I") at the center of the Brillouin zone. As shown in
Table 7.4 this is a reducible representation that can be reduced in terms of 47, and
2T,, irreducible representations of the O, point group. Since each of these irreducible
representations is triply degenerate, the vibrational motion has 18 normal modes.
Three of these are acoustic modes where the ions in the unit cell move together. This
type of motion transforms as a vector which in O, symmetry forms the basis for a T,
irreducible representation. The other three triply degenerate T, representations and
the two triply degenerate 75, representations describe the 15 optic vibrational modes.

Next consider the point R at the corner of the Brillouin zone as shown in Fig. 7.3b.
At this point the wave vector has the dimensions g(/a,m/a,n/a) and Q is not necessar-
ily zero. The group of the g vector G,(q) is made up of all symmetry operations that
leave the vector g(m/a,m/a,n/a) invariant or transform it into g(m/a,n/a,n/a)+Q.
For example, a rotation of 90° about the z-axis takes the g vector at point R in the
Brillouin zone into the vector ¢g(—mn/a,n/a,m/a) which is the equivalent point in the
neighboring Brillouin located at Q(—2n/a,0,0). There are five other C, rotation
operations in this class. In addition, there are three C,(C?3) operations that take g(R)
into an equivalent point in a neighboring Brillouin zone. For the C,, operation the

Table 7.4 Vibrational representations at the center and corner of the Brillouin zone for SrTiO3
F(Oh) E 8C3 6C2 6C4 3C% i 6S4 88(, 30'/, 60'(1
(£142cosa) 3 0 -1 1 -1 -3-1 0 1 1

5 2 3 3 5 53 2 5 3

T 0k

rn 150 -3 3 -5 —15-3 0 5 3 |4T, 42Ty,
R(Oy)

(£142c0s0) 3 2 -1 1 -1 -3-1 0 1 1

S0k, S 0 L -1 1 31 -2 -1 3

r'(R) 150 -1 -1 =1 =9-1 0 =1 3 |TyptAp+EA2T1+T
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primitive vector in reciprocal space is Q(—2mn/a,—2n/a,0). There are 8C5 rotations
about the diagonal axes of the cubic Brillouin zone that leave R invariant or transform
it into ¢(R)+Q. There are six C, rotations about the axes bisecting the edges of the
cube and parallel to the face diagonals. In addition there is the inversion operation and
the operations formed by the combination of inversion with the operations already
mentioned. All of these together plus the identity operation give G,(R)=0,,. Since this
is the same symmetry as found at the center of the Brillouin zone, the vibrational
analysis at point R is summarized in Table 7.4.

In order to find the characters of the vibrational representation for point R shown
in Table 7.4, the summation factor in (7.9) has to be calculated for each operation.
The results of doing this are summarized in Table 7.5, for example, operations of
each class of O,. For each operator the vector positions for the atoms whose
positions remain unchanged by the operation are listed and the value of the
reciprocal lattice vector Q at point R for that operation is listed. Using these two
quantities in the exponential factor of (7.9) along with the factor for the normal
character of the operation, the summation can be evaluated to give the character of
the vibrational representation I',(R) given in Table 7.4. This irreducible represen-
tation can be reduced in terms of the irreducible representations of the O;, symmetry
group to give the normal modes of vibration at this point in the Brillouin zone.
These 15 normal modes are divided up into four triply degenerate modes, one of
which is even parity and the other three odd parity, one doubly degenerate odd
parity mode, and one nondegenerate odd parity mode.

The other two points on the surface of the Brillouin zone can be analyzed in the
same way. The X point is at the center of the top face of the cube with q(0,0,n/a).
The group of the g vector G,(X) contains some of the same symmetry elements as
G,(R). However neither the C; nor the S classes are present. In addition, only the
two C4 and S, operations about the z-axis leave this g invariant so the other four
operations in these classes are not part of the group. The C,, rotation forms a class
by itself and C,, and C,, form a class of operations. Two of the six diagonal C, axes
are present. One of the three horizontal mirror planes remains as do two of the
diagonal mirror planes. In addition there is a ¢, mirror plane that contains g(X).
These 15 symmetry elements form the Dy, point group which is a subgroup of O,
The same analysis for the M point at the center of one edge of the first Brillouin
zone shown in Fig. 7.3b shows that the G,(M) is also Dy,. For this point the wave
vector is q(rt/a,m/a,0). Table 7.5 lists the values of Q(X) and Q(M) for some of the
operations of D, along with the summation factor in (7.9) and the characters for
these operators in the reducible representations I',(X) and I',(M). These are used in
Table 7.6 along with the characters of the irreducible representations of the Dy,
group to determine the symmetry designations of the normal modes of vibration at
points X and M on the surface of the Brillouin zone. At each point there are 15
vibrational modes divided into singly and doubly degenerate representations. These
are divided into even parity and odd parity modes.

The normal modes of vibration at the three points of special symmetry within the
first Brillouin zone, 4, A, and X, can be found using the same type of analysis
described above. However, G,(q) for these points is a subgroup of the O,, group so a
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Table 7.5 Characters for symmetry operations at different points on the surface of the first

Brillouin zone

Position vectors R
for unchanged

Operator  (£1+2cos &) atoms Reciprocal lattice vector Q(q) . e'Rv  y(a)
Ca. 1 R(SH)=(0,0,0) Q(R)=(—21/a,0,0) 1 1
R(TH=(a/2,a/2.a/2) Q(X)=(0,0,0) 3 3
R(O3)=(a/2.a2.0)  QM)=(—27/a.0,0) ~1 -1
Cs. —1 R(Sr)=(0,0,0) Q(R)=(—2n/a,—2m/a0) 1 -1
R(Ti)=(a/2,a/2,a/2) Q(X)=(0,0,0) 5 -5
R(O,)=(a/2,0,a/2) QM)=(—2x/a,—2m/a,0) 1 —1
R(0,)=(0,a/2,a/2)
R(03)=(a/2,a/2,0)
(54 -1 R(Sr)=(0,0,0) Q(R)=(0,0,—2m/a) 1 —1
(45° x,y) R(Ti)=(a/2,a/2,a/2) QX)=(0,0,—7/2) 1 -1
R(03)=(a/2,a/2,0) Q(M)=(0,0,0) 3 -3
Cs 0 R(Sr)=(0,0,0) Q(R)=(0,0,0) 2 0
(0— xy2) R(Ti)=(a/2,a/2,a/2)
i -3 R(Sr)=(0,0,0) QR)=(—2n/a,—2n/a,—2T/a) 3 -9
R(Ti)=(a/2,a/2,a/2) QX)=(0,0,—2n/a) —1 3
R(01)=(a/2,0,a/2) QM)=(—2r/a,—2m/a,0)
R(0,)=(0,a/2,a/2)
R(03)=(a/2,a/2,0)
S4- -1 R(Sr)=(0,0,0) Q(R)=(—2m/a,0,—21/a) 1 —1
R(Ti)=(a/2,a/2,a/2) QX)=(0,0,—2n/a) 1 -1
R(03)=(a/2,a/2,0) QM)=(0,—2m/a,0) —1 1
Se -2 R(Sr)=(0,0,0) QR)=(—2n/a,—2n/a,—2m/a) O 0
(0— xyz) R(Ti)=(a/2,a/2,a/2)
ap(xy) 1 R(Sr)=(0,0,0) Q(R)=(0,0,—27/a) -1 —1
R(Ti)=(a/2,a/2,a/2) QX)=(0,0,—2n/a)
R(O,)=(a/2,0,a/2) Q(M)=(0,0,0) 5 5
R(0,)=(0,a/2,a/2)
R(03)=(a/2,a/2,0)
oy 1 R(Sr)=(0,0,0) Q(R)=(0,0,0) 3 3
(45° x,y) R(T)=(a/2,a/2,a/2) Q(X)=(0,0,0)
R(03)=(a/2,a/2,0) Q(M)=(0,0,0) 3 3
E 3 R(Sr)=(0,0,0) Q(R)=(0,00) 5 15
R(TH=(a/2,a/2.a/2) Q(X)=(0,0,0) 5 15
R(O)=(a/2,0,a/2)  Q(M)=(0,0,0)

R(0,)=(0,a/2,a/2)
R(03)=(a/2,a/2,0)
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simpler procedure for finding the normal vibrational modes is to use the compatibility
relationships between the irreducible representations of a group and its subgroups. As
discussed in Chap. 7, the irreducible representations of a group transform as reducible
representations in its subgroups. Thus the T, and T5,, irreducible representations of O,
can be reduced in terms of the irreducible representations of G,(4), G,(A), and G(2).
For the 4 points along the z-axis, q(0,0,q.) transforms into itself under the Cy4, and C5,
rotational operations as well as the two ¢, and two ¢, mirror planes that contain the z-
axis. These elements form the Cj, point group that is a subgroup of O,,. For the A
points along the cube diagonal axis, q(¢,=¢,=g) transforms into itself under the C;
rotational operations that contain this diagonal as well as the three ¢, mirror. These
elements form the C3, point group that is a subgroup of O,,. For the 2 points along the
diagonal axis in the xy plane, q(¢,=¢,,0) transforms into itself under the C, rotational
operation and the two mirror planes that contain this ¢ vector axis. These elements
form the C5, point group that is a subgroup of O,,. A generic point in the first Brillouin
zone has a g vector that only transforms into itself under the identity transformation
which is described by the C point group.

Using the concepts discussed in Chap. 2, an example of determining the corre-
lation between the irreducible representations of O, and its Cy, subgroup is shown
in Table 7.7. This shows that the four T, normal modes of vibration of O,
symmetry at the center of the Brillouin zone become four A; and four £ modes of
vibration in Cy4, symmetry as the wave vector moves along the z-axis of the
Brillouin zone. The triply degenerate T, modes at I become a nondegenerate B
mode and a doubly degenerate E mode in the region of Cy4, symmetry.

A summary of the correlations of representations of Oy, and its Cy, C,,, C3,, and
C4, subgroups is shown in Fig. 7.4. In addition, the correlations of the representa-
tions of the D, group and its C,, and Cj, subgroups are shown. This gives all of
the symmetry designations of the 15 normal modes of vibration at every point in the

Table 7.7 Correlation table for O, and C,, point groups

0y, E 8C; 6C, 6C,4 3C§ i 6S, 8S¢ 30, 60,; | Correlation with Cy,
A | 1 1 1 1 1 1 1 1 1 1 A

Ag | 1 1 -1 -1 1 1 -1 1 1 -1 B,

E, 2 -1 0 0 2 2 0 -1 2 0 A+B,
T, | 3 O -1 1 -1 3 1 0 -1 -1 Ay +E
Ts, 3 0 1 —1 —1 3 —1 0 —1 1 B>+E
A | 1 1 1 1 1 -1 -1 -1 -1 -1 A,

A | 1 1 -1 -1 1 -1 1 -1 -1 1 B,

E, 2 -1 0 0 2 -2 0 1 -2 0 Ar+B,;
Tww!| 3 O -1 1 -1 -3 -1 0 1 1 A+E
Tou | 3 O 1 -1 -1 -3 1 0 1 -1 B{+E
Cy | E 2C, C, 20, 204

A |1 1 1 1 1

A, 1 1 -1 -1

B, 1 -1 1 1 -1

B, | 1 -1 1 1 1

E 2 0 -2 0 0
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Fig. 7.4 Symmetry designations of the 15 normal modes of vibration of SrTiO3 at each point in
the first Brillouin zone

first Brillouin zone of SrTiOs. Note that the subgroup analysis is consistent with
the full vibrational analysis at the X, M, and R points described above.

The variation of the phonon frequency as a function of wave vector is called
phonon dispersion. The dispersion of each of the different phonon modes can be
measured experimentally by techniques such as neutron scattering. The dispersion
curves vary smoothly throughout the first Brillouin zone with different shapes
depending on the wave vector direction. The slope of the dispersion curve is
proportional to the phonon velocity and goes to zero at the zone boundary. Section
7.3 describes transitions between these vibrational states of the system caused by
the absorption, emission, or scattering of light.

7.3 Transitions Between Vibrational Energy Levels

The normal modes of vibration discussed in Sect. 7.2 are associated with phonons
of quantized energy and momentum. Phonons have very low energies and the
absorption or emission of phonons can cause transitions to occur between the low
energy electronic energy levels of the material. If no photons are involved, these are
called radiationless processes. If low energy infrared photons are simultaneously
absorbed or emitted with the creation or annihilation of phonons, these are radiative
process similar to those discussed in Chap. 4.
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7.3.1 Radiationless Transitions

The Hamiltonian involved in radiationless transitions is the electron—phonon inter-
action Hamiltonian H.,. The source of this interaction is that the atomic vibrations
associated with a specific phonon mode modulate the local crystal field and thus the
electronic energy levels of the system (as discussed in Chap. 4). The interaction
Hamiltonian describing this effect can be expressed in terms of an expansion of the
crystal field modulation as

Hep=> VySg+ -+, (7.10)
q

where the V,, represents the electron—phonon coupling coefficient, which is the
derivative of the crystal field with respect to the normal vibrational mode
coordinate S,. Here the parameter ¢ designates a specific phonon including its branch,
frequency, wave vector, and polarization. For the absorption or emission of a single
phonon in a transition only the first term in the expansion of (7.10) is needed.

In the basic treatment of lattice vibrations, the phonons are modeled as an
ensemble of linear harmonic oscillators [2, 4]. The quantum mechanical solution
to Schrodinger’s equation for harmonic oscillators shows that the wavefunctions for
the vibrational energy levels are expressed as a series of Hermite polynomials of
order n, where n is the vibrational quantum number for the system. For a specific
normal mode ¢,

U, (q) = Ne 270 H, (ag). (7.11)

Here N is a normalization constant and « = //h. The first several values of the
Hermite polynomials are

Ho(x) = 1,H(x) = 2x,Hy(x) = 4x* — 2,....

The quantum number n designates the degree of excitation of the ¢ normal mode
with n=0 being the ground state, n=1 the first excited state, etc. The vibrational
wave functions for the entire system are products of these single mode wavefunc-
tions.

Using second quantized notation, the vibrational wave functions are expressed in
terms of occupation numbers of each type of normal mode. For treating radiation-
less processes, the wave function for the system can be written as a product of the
electronic and vibrational parts

¥ = o) m)lna) - |ng) -, (7.12)

where the n, are the occupation numbers of specific phonon modes.
The normal mode coordinate S, can then be expressed in terms of phonon, their
creation and annihilation operators
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S, = 22‘[(}:[, +0,). (7.13)

The operator b, annihilates a normal vibrational mode designated by ¢ while the
operator b* creates a phonon designated by —g. The electron—phonon interaction
expressed in this formalism is

Hop = Vqy /ziwq(b(, + b’iq). (7.14)
q

Using the wave functions from (7.12) and the interaction Hamiltonian from
(7.11) in the expression for the transition rate from time-dependent perturbation
theory gives

2 2
W, = 7\<1Pf|1LIep|\Pi>y o5, (7.15)

where ¥; and ¥, represent the initial and final states of the transition and py is the
density of final states. For a transition involving absorption of one phonon of the
type designated by ¢ the transition rate is given by

2n [ ho
=2 () |l — 1) o

Wnr - h
= (22 Vv
27rpv5h q f q i .

For a transition involving the emission of one phonon of the type designated by ¢
the transition rate is given by

(7.16)

Wi = (—360‘3’ )(n + 1) VI (7.17)
em 27'CpV5h q f q|7i : :

These two expressions for transition rates have made use of the properties of the
phonon creation and annihilation operators [2]

balng) = \/iglng = 1), bylng) = \/ng +1{ng +1). (7.18)

Also the material density has been defined as p=M/V. The density of final states in
(7.15) is the product of a delta function for the electronic transition energy and the
Debye phonon density of states [4]. The former function has a factor of (1/#)
needed to convert from energy to frequency units.
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The selection rules that determine whether the transitions described by (7.17)
and (7.18) are allowed or forbidden are contained in the matrix elements of the
electron—phonon interaction operator between the initial and final electronic states
of the system. In Chap. 4 it was shown that the electronic states of the system
transform as the basis functions for irreducible representations of the relevant
symmetry group. Since V/, is the derivative of the crystal field with respect to the
specific phonon symmetry coordinate, the electron—phonon interaction operator
transforms as irreducible representation associated with the ¢ normal mode of
vibration. Thus, in terms of group theory, the matrix elements in (7.17) and
(7.18) are expressed as

<¢§'|Vq‘lﬁfl> =TI x T, x I DA for an allowed transition.

Since the totally symmetric irreducible representation only appears in the reduction
of a direct product of a representation with itself, this expression can be rewritten as

I'e x I D T, (7.19)

The character tables of the different point groups and the techniques of forming
and reducing direct product representations discussed in Chap. 2 can be used with
(7.19) to determine the normal mode symmetries causing allowed transitions
between a specific set of electronic states. As an example of this, consider the
SrTiO;3 structure described in Sect. 7.2. If this crystal has electronic states repre-
sented by E, and A, irreducible representations in O, symmetry their direct
product reduces to the E, irreducible representation. Since there are no normal
modes of vibration transforming as E, at the center of the Brillouin zone, none of
the I' point phonons contribute to radiationless transitions between these electronic
energy levels. However, there is an E,, phonon with wave vector g(n/a,n/a,n/a) at
the R point of the Brillouin zone that is allowed for this transition. If these electronic
energy levels transform as £, and A, in the Dy, symmetry group, then the phonons
with E, symmetry at the X and M points in the Brillouin zone can contribute to
allowed radiationless transitions. For electronic energy levels transforming as T,
and E, in O, symmetry, the reduction of their direct product contains the 7', and
T,, irreducible representations. Thus all 15 vibrational modes at the I" point and
three of the triply degenerate modes at the R point can contribute to allowed
radiationless transitions between these levels.

7.3.2 Infrared Transitions

It is also possible to have transitions between different vibrational energy levels of
the system accompanied by the absorption or emission of photons. Since the
difference in energy levels is small, the photons resonant with the transition have
low energies and appear in the infrared region of the electromagnetic spectrum.
In the case of the absorption of an infrared photon, one or more phonons are created.
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This process must conserve both energy and momentum. These requirements are
expressed as

w = ck (7.20)

and

k=qg+0. (7.20)

Here o is the phonon frequency, k is the photon wave vector, ¢ is the phonon wave
vector, and Q is a reciprocal lattice vector. These conservation requirements are
illustrated in Fig. 7.5. This figure shows an example of how the energy of phonons
vary as a function of their momentum. Typical acoustic phonon modes have zero
energy at the center of the Brillouin zone. Their energy increases with q and
becomes flat near the surface of the first Brillouin zone. Optic modes on the other
hand have some finite energy at q=0, decrease with increasing q, and become flat
near the surface of the Brillouin zone. Plotting the same type of energy versus
momentum curve for photons on this same scale gives a very steep straight line near
the y-axis. This is because the velocity of photons is over five orders of magnitude
greater than the velocity of phonons (sound). The conservation laws are satisfied at
the points that the photon and phonon curves intersect on this plot. This shows that
the acoustic modes of vibration do not contribute to infrared absorption and that
only the optic modes at or very near the center of the Brillouin can contribute to
infrared absorption.

The selection rules for infrared absorption can again be determined from the
transition matrix element. Since infrared radiation is part of the electromagnetic
spectrum, the interaction Hamiltonian is the electric dipole term of the radiation
field similar to (4.23). However, the initial and final states are now represented by
the wave functions given in (7.12). Thus,

ck
optic mode

acoustic mode

Fig. 7.5 Energy versus
momentum curves for
phonons and photons q

v
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Mir = [(1(q)[Healo(9)) (7.21)

As discussed in Chap. 4, the electric dipole operator transforms as the components
of a vector. The ground state vibrational wave function transforms as the exponen-
tial factor in (7.11). This has the same form as the harmonic oscillator potential
energy and thus as part of the Hamiltonian for the system it is invariant under all the
operations of the symmetry of the system. Therefore o(g) transforms as the totally
symmetric irreducible representation A,,. Since the first excited state y/;(¢) has the
additional factor of ¢ from the H (ag), it will transform according to the same
irreducible representation as the ¢ normal mode. The symmetry selection rules are
then given by

T % Teg x T D Ay (7.22)

For this case I'§ = A, so the transition matrix element is nonzero only for those
phonon modes transforming as one of the components of a vector. The character
tables of the 32 crystallographic point groups given in Chap. 2 show the irreducible
representations for which the vector components act as basis functions. Any normal
vibrational mode transforming as one of these irreducible representations will be
infrared active.

For the example of SrTiO; discussed in Sect. 7.2, at the center of the Brillouin
zone there were 15 normal modes of vibration of which three transformed as the
triply degenerate 75, representation and 12 transformed as four triply degenerate
T, modes in the O, symmetry group. Table 2.32 shows that the three vector
components of the electric dipole moment operator transform together as the triply
degenerate T, representation in O,. Thus the I" point Ty, phonons of SrTiO; are
infrared active while all other normal modes are infrared inactive.

7.4 Raman Scattering

Chapter 6 dealt with second-order nonlinear optical processes in which the energy
and momentum of the incident and transmitted photons are conserved. In addition
to these elastic scattering processes, photons can be inelastically scattered by a
material. In this case, the transmitted photons have different energies from the
incident photons with the energy difference being transferred to lattice phonons.
This type of process in which phonons are created or annihilated by photons
traveling through the lattice is called Raman scattering. It is a nonlinear optical
process called Stokes scattering if the phonon is created so the transmitted photons
have lower energy than the incident photons and is called anti-Stokes scattering if a
phonon is annihilated so the transmitted photon has higher energy than the incident
photons. Since there is no requirement for resonance with the difference in energy
levels of the system as there is for infrared absorption, any wavelength of light can
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be used for Raman scattering. The measurement of Raman scattering, called Raman
spectroscopy, has proved to be a useful tool for studying the local and optical
vibrational modes of solids and in areas such as analytical chemistry and remote
sensing. The physical interaction causing Raman scattering can be expressed in
tensor format as described below.

As discussed in Chap. 6, the nonlinear response of a material to an
electromagnetic light wave can be described through higher order terms in the
expansion of the dielectric susceptibility, the refractive index, or the polarizability.
Chapter 6 made use of the expansion in terms of the susceptibility tensor while in
this chapter the expansion in terms of the polarizability tensor is used. The two are
related through the expression given at the start of Chap. 6. The polarization of a
material can be expressed as

In this expression the subscripts i, j, and k are vector direction components, p is a
permanent dipole moment in the material, and the E; are the directional components of
the electric field of the light wave. The second-order and higher order terms represent
the polarization induced by the light wave. The largest contribution to this induced
polarization comes from the second term where « is the polarizability tensor.

The lattice vibrations modulate both the permanent and the light-induced con-
tributions to the polarization. This can be expressed as a Taylor series

O
P; = poi + Z ((‘)ﬁ])l) Gon c08(wyt) + 0;iEq; cos(w;t)
n n/ =0

ot
+ ( %) Gon cOs(wyt)Egj cos(wyt). (7.24)
n aq" q=0

In this expression it has been assumed that the time dependence of the vibrating
atoms is given by ¢,(f)=qo,cos(w,,) and the time dependence of the electric field is
E(t)=Eqcos(wyt).

The second term in (7.24) describes a dipole moment oscillating with the
frequency of a normal vibrational mode. If an infrared light wave is generated by
an electric dipole oscillating at the same frequency (w,=w,,), a resonance interac-
tion can occur leading to infrared absorption as discussed in Sect. 7.3. Thus
the normal vibrational modes for which this term is not zero are the infrared
active modes.

The third term describes a light-induced polarization wave oscillating at the
same frequency of the incident light wave. This part of the polarization wave
produces the transmitted light wave having the same frequency as the incident
light wave that is called Rayleigh scattering.
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Fig. 7.6 Schematic picture of infrared absorption and Raman scattering (a) Transitions;
(b) spectra

The product of the cosine functions in the fourth term can be rewritten using
a trigonometric identity to be cos(w,=w,)t. Therefore this term describes a light-
induced polarization wave modulated by a phonon vibrational mode to oscillate
with beat frequencies of +w, about the central frequency ;. This part of
the polarization wave generates the Stokes and anti-Stokes Raman scattered
transmitted wave. The phonon modes for which this term is not zero are called
Raman active.

This simple treatment of the interaction of a light wave with lattice vibrations
shows that infrared active modes are vibrations that cause a change in the local
dipole moment while Raman active modes are vibrations that cause a change in the
local polarizability. Figure 7.6 shows a schematic picture of the transitions and
spectra associated with infrared and Raman active vibrational modes. Note that the
Stokes and anti-Stokes Raman transitions are symmetric in energy about the central
Rayleigh line and the Raman transitions appear at much higher energy in the
spectrum than the infrared transitions.

As discussed in Chap. 6, the electric field vector of an optical wave transmitted
through a material is proportional to the light-induced polarization in the material.
For the case of Raman scattering this can be expressed as
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o
E,; x P; (“’)on. (7.25)
Oqy

Since the vibrational modulation of the polarizability has the same spatial symme-
try as the normal mode causing the modulation, (80(,-1-/ 0q,,) transforms according to
the same irreducible representation as g,, in the point group of the system. In tensor
form this can be written as

e Oy o) [ Eox
(En,En,Ei) = [ oy oty Eoy |- (7.26)
Oz Ozy O

The polarizability tensor is a symmetric 33 matrix whose elements transform as
basis functions for irreducible representations of point groups. These are shown as
the component products (xx, xy, yz, etc.) as listed in the character tables in Chap. 2.
Using these results from the character tables as the matrix elements in each
irreducible representation associated with a normal mode of vibration gives the
Raman tensor for that vibrational mode in that symmetry group. Table 7.8 shows
the Raman tensors for each of the 32 point symmetry groups. These appear in
numerous different places in the literature and in some cases the tensors have
different forms because of a different choice of symmetry axes. The forms shown
in Table 7.8 are consistent with the character tables given in Chap. 2. Note that for a
crystal with a center of symmetry the Raman active modes are even parity while the
infrared active modes are odd parity.

For a normal mode of vibration to be Raman active it must induce a change in the
polarizability of the material. The selection rules for Raman scattering can be
expressed in terms of group theory as was done for infrared absorption in (7.22)

I x Ty x T D Ay (7.27)

Since the ground state always transforms as the totally symmetric irreducible
representation I'j = Ay, and A, only appears in the reduction of the product of a
representation with itself, the Raman active modes will be those that transform as
one of the components of the Raman tensor. For example, if a material belonged to
the octahedral O symmetry group and had normal modes of vibration transforming
as Ay, E, or T, they would be Raman active. On the other hand if this material had
normal modes transforming as A, or T irreducible representations it would not be
Raman active.

Because of the tensor nature of (7.26), the normal modes of vibration that appear
in a Raman spectroscopy experiment depend on the polarization of the incident and
scattered light. For example, consider a material with a C,,, point group symmetry
that has normal modes of vibration transforming as the A;, A,, B;, and B, irreduc-
ible representations. According to (7.27) all of these modes will be Raman active.
Using (7.26) and the Raman tensors from Table 7.8 shows that a Raman scattering
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experiment with the light incident along the z-axis polarized in the x direction gives
a spectrum described by

Olxx 0 0 E Ox

(Ev,En,Ec) =] 0 ay O 0 | = (anEo,0,0) A,
0 0 o 0
0 oy O Eo,

(Ev,En, Ec) =] oy 0 0 0 = (0,0yE0x,0) Ay
0 0 0 0
0 0 oy Eo,

(En,En,E)=] 0 0 0 0 = (0,0,0.Eq) By
a: 0 0 0
0 0 0 Eox

(Ex,En,E:) =10 0 o 0 = (0,0,0) B,
0 o, O 0

Thus in this experiment, the Raman scattered beam polarized in the x direction will
show a transition associated with the A, normal mode of vibration, while the Raman
spectra polarized in the y and z directions will show transitions associated with the
A, and B normal modes of vibration, respectively. In order to see the B, phonon
mode in the Raman spectrum, a y or z polarization direction of the incident beam
must be used. To summarize, the possible polarization combinations for observing
each of the normal modes of vibration in this example are

A] A2 B] Bz
E()X7Etx EOvaty E0X7E[Z EOZvEty
EO_V7Efy E(Jvatx E()Z7Etx E()vatZ
EOZ, EIZ

Raman scattering is not a resonant process like infrared absorption so it is not

restricted to phonon at the center of the Brillouin zone. However, energy and
momentum still have to be conserved, so for Stokes scattering

kStokes - ki —qR, Wstokes — Wi — WR

and for anti-Stokes scattering

kanlifslokes = ki + qr;, ®anti—Stokes = Wi + WR.

Combining these expressions results in
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2
c2q,2e = nlz(ul2 + n%(w, — )" 2nnsw;(w; — ) cos p, (7.28)

where ¢ is the angle between the incident and scattered light beams. This expres-
sion relates the frequencies and wave vectors of the Raman active phonons observ-
able at different scattering angles in a Raman spectrum.

The experimental technique described above is similar to the use of polarized
two-photon spectroscopy to identify the symmetry properties of excited electronic
states as described in Sect. 6.5. The quantum mechanical description of Raman
scattering involves second-order perturbation theory utilizing the electric dipole
interaction Hamiltonian, the electron—phonon interaction Hamiltonian given in
(7.14), and the electron and phonon wave functions for the system in Fermi’s
Golden Rule for transition rates [7]. This leads to the same Raman transition
selection rules as found above from group theory considerations, but allows the
strength of the Raman scattering cross section to be determined.

Raman spectroscopy is useful in studying the effects of external perturbations on
the vibrational modes of a material. The application of an electric field, magnetic
field, strain field, or other external force with specific directional properties alters
the symmetry of the crystal and thus changes the Raman tensor. The symmetry of
the external perturbation can be combined with the symmetry of the unperturbed
Raman tensor to determine new selection rules. Another method of treating these
types of perturbations is through the use of subgroups and compatibility relations as
discussed in Chap. 2. In the example of Raman scattering from a crystal with C,,
symmetry discussed above, the application of an electric field in the xy plane will
destroy the two o, symmetry planes and change the point group to C,.
The compatibility relations between C,, and its C, subgroup show that the A; and
A, irreducible representations in the former transform as the A irreducible
representation in the latter while the B, and B, irreducible representations in Cs,
transform as the B, irreducible representation in C,. The Raman spectra for the
polarization conditions E,.E.; Eoy.Er; EonEr EopEry; and E,yE, will contain
transitions associated with the A vibrational mode while the spectra with the
associated with the B vibrational mode. In come cases an external perturbation
can cause a Raman inactive mode to become active.

7.5 Jahn-Teller Effect

Up to this point it has been assumed that the wave functions for the system of
interest can be factored into two parts, one describing the electronic state of the
system and the other describing the vibrational part of the system. This is known as
the Born—Oppenheimer approximation and the individual electronic and vibrational
wave functions are eigenfunctions of two different Schrodinger equations. This is
based on the fact that the motion of the atomic nuclei is much slower than the
motion of the electrons. Since the nuclear motion depends on the electronic charge
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distribution, these equations are coupled. An energy eigenvalue of the electronic
Schrodinger equation acts as a potential in the vibrational Schrodinger equation.
The eigenvalues of the vibrational Schrodinger equation represent the total energy
of the system in specific electronic and vibrational states.

The dependence of the electronic eigenvalue E,(X) on the positions of the
nuclei X can be expressed in terms of an expansion about the equilibrium
positions u;,=(X—X(0));,

B0 = E0O)+ 3 (52) ot (729)

iv aui v

where higher order and anharmonic terms have been ignored. The first term on the
left represents the potential with the nuclei in their equilibrium positions and the
second term represents the change in the potential when the nuclei move away from
their equilibrium position. Transforming to normal mode coordinates ¢ as done in
Chap. 5 shows that the first term in (7.29) simply adds a constant in the vibrational
Schrodinger equation [8] while the second term becomes

OE,
E(X) = ( aq-> qi. (7.30)
i/o

qi

If this term is identically equal to zero the system is in equilibrium.

Taking the derivative with respect to ¢; on both sides of the electronic Schro-
dinger equation and multiplying from the right by the electronic eigenfunction ¥/,
gives

OE,\ OH¢
<8Cb)0_ <lpel|87qi|wel>' (731)

This can be rewritten in terms of the irreducible representations of the point
group of the system as has been done previously, for example (7.19). The electronic
wave functions transform according to irreducible representations I. (For
complex representations, one of the two will be the complex conjugate of the
other.) The Hamiltonian always transforms according to the totally symmetric
Aj, representation while the derivative with respect to the normal coordinate
transforms according to the same irreducible representation as g;, I',. Thus the
matrix element on the right-hand side of (7.31) equals zero unless

Felequel D) Alg- (7.32)
Thus for (7.30) to equal zero so the system is in equilibrium, (7.32) requires that

T, ¢ Tal’. (7.33)
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This follows from (7.32) using the fact that the totally symmetric representation will
only appear in the reduction of the product of an irreducible representation with itself.

If the electronic state is nondegenerate, its product transforms as the totally
symmetric representation. Under these conditions the coupling to an asymmetric
normal vibrational mode will fulfill condition (7.33) and the system remains in
equilibrium with the same symmetry as it had without the electron—phonon
coupling. If a nondegenerate electronic state couples to a totally symmetric normal
vibrational mode the criteria in (7.33) is not met so the electron—phonon interaction
does cause a shift from the equilibrium condition. However, since both the electronic
and vibrational modes are totally symmetric, no change in system symmetry occurs in
the coupled equilibrium condition. The same will be true for a degenerate normal
vibrational mode coupled to a degenerate electronic state. The interesting situation
occurs when an asymmetric normal vibrational mode is coupled to a degenerate
electronic state. For some cases of this type the condition in (7.33) is not met and
the electron—phonon coupling forces the system to undergo a change in symmetry to
reach a new equilibrium position. This distortion is called the Jahn-Teller effect and
essentially represents a breakdown of the Born—Oppenheimer approximation.

It was shown by Jahn and Teller [9] that the reduction of the square of each
degenerate irreducible representation of all of the symmetry point groups contains
at least one irreducible representation for an asymmetric vibrational normal mode.
Electron—phonon coupling involving this mode will cause the system to transition
to a new equilibrium symmetry. The Schrodinger equation for the coupled electro-
n—phonon system with degenerate electronic states can have multivalued solutions.

As an example, consider an octahedral with the 15 normal modes of vibration
shown in Fig. 7.2. Since the electronic states in (7.31) have same parity, the normal
vibrational mode must have even parity for this matrix element to be nonzero.
One of these is a nondegenerate A, mode that shifts the energy level of the system
but does not change the symmetry and thus does not cause a splitting of the energy
level. There are two types of degenerate even parity vibrational modes for a
complex with O;, symmetry, a doubly degenerate E, mode and a triply degenerate
T,, mode. As shown in Fig. 7.2, these change the symmetry of the system and
therefore can cause a splitting of the energy level. As an example, consider an
electronic state that transforms according to the E, irreducible representation of O,.
In this point group E,XE,=As+As,+E, so the E, vibrational mode shown in
Fig. 7.2 will cause a Jahn-Teller effect when coupled with an electronic state
transforming as the E, irreducible representation. For an electronic state transform-
ing as T,, in O, symmetry, the reduction of its direct product with itself is
TooxTry=Ag+Eg+T g+T>,. Thus vibrational modes shown in Fig. 7.2
transforming either as E, or T, can couple with a T», electronic state to produce
a Jahn-Teller effect.

Titanium doped sapphire, Al,O5:Ti* ", is an important tunable solid state laser
material [2]. The free ion energy level of the single d electron associated with
trivalent titanium is split by the primarily octahedral crystal field at the site of the
aluminum ion in the sapphire lattice to give a ground state electronic level
transforming as 7,, and an excited state level transforming as E, as shown in
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Fig. 4.3. The E, excited electronic state couples with the E, vibrational mode of the
TiOg octahedral complex to create a Jahn—Teller effect. This causes the electronic
potential well of the excited state to have two energy minima both of which are off-
set in position coordinates from the energy minimum of the ground state potential
well. The absorption shows two unresolved broad bands due to transitions from the
ground state to the two Jahn-Teller split components of the excited state. The
Jahn—Teller splitting of the excited state plays an important role in determining the
spectroscopic properties of titanium-doped sapphire. The T, ground state also
undergoes a Jahn—Teller distortion but it is much smaller and not as important in
determining the optical properties of the material.

Figure 7.7 shows the energy levels involved in the situation described in the
previous paragraph. When the electronic and vibrational states of the system can be
treated separately, the electronic states have the shape of a parabola with respect to
a lattice coordinate ¢ due to the modulation of ¢ by a lattice vibration. The different
vibrational states are designated as horizontal lines in each electronic potential well.
A typical situation of this type is depicted in Fig. 7.7a Note that having different
electron—phonon interactions in the ground and excited states can cause the minima
of the two electronic potentials to be located at different values of ¢. The vertical
arrow shows the absorption transition from the ground to the excited state.
Figure 7.7b shows the same situation when the excited state is a strongly coupled
vibrational-electronic (vibronic) state that exhibits Jahn—Teller splitting. Assuming
that both the electronic part of the coupled state and the vibrational part transform
as the E, irreducible representation in O, symmetry as discussed above, the
vibronic state is described by two parabolic potential wells with their minima

ENERGY

q

Fig. 7.7 Configuration-coordinate diagrams for a system in the Born—Oppenheimer approxima-
tion (a) and with the Jahn—Teller effect (b)
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occurring at different values of ¢. The absorption transition can occur to both of the
excited potential well. The Jahn—Teller energy is the difference in energy between
the bottom of one of the potential wells and the energy at which the two cross. The
Jahn-Teller effect is especially important for transition metal ion with unshielded
d electrons.

7.6 Problems

1. Derive the lattice vibrations for a two-dimensional crystal with C} symmetry as
shown in the figure.

a O

a

2. Derive the normal modes of vibration of the CO3~ molecule shown in the figure.

02

O—&

o, c

3. Use (7.22) to determine which of the vibrations derived in problem 2 are infrared
active.

4. Determine which of the vibrational modes derived in problem 2 can cause
radiationless transitions between electronic states designated by the irreducible
representations of the symmetry group of the molecule.

5. For a crystal having the same symmetry as the molecule in problem 2, determine
which vibrational modes will be active in a Raman scattering experiment with
light incident along the z-axis polarized in the y direction.
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Chapter 8
Symmetry and Electron Energy Levels

Electrons in a crystalline solid interact with the atoms on the lattice and with other
electrons. Some of the electrons remain part of their parent atom. However, others
take part in bonding the atoms together to form the crystal lattice and others may
become quasi-free electrons that can move about in the solid. Chapter 4 discussed
the importance of symmetry in determining the properties of electron energy levels
of an isolated ion in a crystal field. In the examples given, the d and f electron
orbitals were assumed to have no overlap with electrons on neighboring atoms.
The bonding was purely ionic in nature and any covalency was treated as a minor
perturbation on the results. In this chapter the importance of symmetry in describing
the properties of chemical bonding is discussed and then the use of symmetry in
determining the properties of energy bands of quasi-free electrons is described.
The dispersion relations for electronic energy bands are similar to the phonon
dispersion properties described in Chap. 7.

8.1 Symmetry and Molecular Bonds

The first step in treating molecular bonding is to determine the combinations of electron
orbitals on an atom that can be used to construct hybrid orbitals that can form bonds
with neighboring atoms. The most common types of electron orbitals used to create
these combinations are the s (/=0), p (I=1), and d (I=2) orbitals described in Chap. 4.
As discussed previously, the wave functions for these orbitals can be factored into
a radial part and an angular part each of which are normalized separately. The
spherical coordinate system depicting this is shown in Fig. 6.5 with the radial extent
of the orbital measured as the distance from the origin and the two angular directions
giving the spatial orientation as shown. Symmetry considerations have no effect on
the on the radial part of the wave function so only the angular factor must be
considered. The relationships between the Cartesian and spherical coordinates in
Fig. 6.5 are

R.C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals, 201
Lecture Notes in Physics 824, DOI 10.1007/978-1-4419-7598-0_8,
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x =rsinfcosp
y =rsinfsinp 8.1)

z=rcosl

As discussed in Chap. 4, the angular parts of the wave functions of the electron
orbitals on an atom can be expressed in terms of the spherical harmonic functions
listed in Table 4.1. The expressions for the angular parts of the electron wave
functions of interest here are shown explicitly in Table 8.1.

Figure 8.1 shows some examples of the spatial distributions of s, p, and d wave
functions. The plus and minus signs indicate the sign of the wave function at
that point in space as determined by the mathematical expressions in Table 8.1.
The s wave function is spherical symmetric and positive at all points in space. There
are three p wave functions shaped as figure eights oriented along the three
coordinate axes. The p,, orbital is shown in Fig. 8.1. As noted in the figure, it has
a positive sign for the part in the +y direction and a negative sign for the part in

Table 8.1 Angular factors of s, p, and d electron orbitals

Orbital 70, 9)

s 1/(2v/m)

Px [v/3/(2y/7)] sin 0 cos

Py [V3/(2y/)] sinOsin

p: [v/3/(2y/7)] cos 0

d |V5/(4y/n)|(3cos> 0 — 1)

de. [V15/(2y/7) ] (sin 0 cos 0 cos )
2 [V15/(2y/7) ] (sin 0 cos O'sin )
2—y? L\/E/(4ﬁ)J (sin” 0 cos 2¢)
Ly [V15/(4y/)] (sin® 0 sin 2¢)

O o
i

s orbital

Fig. 8.1 Examples of the
spatial distributions of some

of the s, p, and d single ;r , _
electron orbitals d orbital d.%,” orbital
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the —y direction. The other two orbitals p, and p, have similar orientations and signs
with respect to their axes. There are five d orbitals three of which are in the xy, xz,
and yz planes. These have the shape of four-leaf clovers with their lobes oriented
between the axes. The example in the figure is the d,. orbital which is positive in the
first and third quadrants and negative in the second and fourth quadrants. The other
two orbitals are each similar to this example with the appropriate orientations in
their planes. The other two orbitals are designated d.» and d,>_,2. They also have a
four-leaf clover shape but the lobes are oriented along the coordinate axes
directions. The example shown in Fig. 8.1 is the d,»_,» orbital which lies in the xy
plane with lobes along the x and y directions. The signs of both lobes along the
x-axis are negative while the lobes along the y-axis have positive signs. The d,
orbital has a similar shape in the xz plane except that the positive lobes along the
z-axis are larger in magnitude than the negative lobes oriented along the x-axis.

In Chap. 4 the fact that spherical harmonic functions can transform as basis
functions for irreducible representations of symmetry point groups was discussed.
The character tables in Chap. 2 designate how coordinates x, y, and z and products
such as z%, yz, and x*+y” transform for each of the 32 symmetry groups. (Note that
x*+y? transforms in the same was as z°.) These functions appear as subscripts on the
orbital designations in Table 8.1 and the orbital transforms according to the same
representation as its subscript. An s orbital always transforms at the totally
symmetric representation. For a molecule having C3, symmetry, Table 2.17 shows
that the s, p,, and d.» orbitals all transforms as the A; representation. The p, and p,
orbitals transform together as a basis for the doubly degenerate E representation. The
d,y and d,>_, orbitals transform together as the E irreducible representation and the
d,. and d, orbitals form another set of functions transforming as E. Similar assign-
ments can be made for any of the symmetry point groups using the character tables
given in Chap. 2.

The symmetry properties of multielectron atoms are constructed from the
properties of the single electron orbitals discussed above. The combinations of
these orbitals form hybrid orbitals that reflect the symmetry properties of the
molecule and its bonding characteristics. As an example, consider a molecule
AB, with tetrahedral T, symmetry as shown in Fig. 8.2. For this case there must

Fig. 8.2 Tetrahedral molecule
ABy
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be four hybrid orbitals on atom A constructed so their wave functions point to the
four B atoms [1]. The four large vectors in Fig. 8.2 represent the hybrid orbitals.
These can be labeled r, where # runs from 1 to 4 for the different B,, atoms. The set
of four r, hybrid orbitals transform as a basis for a reducible representation in
T, symmetry. The characters for this representation can be found by applying the
symmetry operations of the group to the four vectors. Each symmetry operation is
expressed as a 4x4 matrix with the 16 elements being 1 if the vector labeling that
row transforms into the vector labeling the column. Only the vectors unchanged by
the operation will have 1s along the diagonal of the matrix and thus contribute to the
character. There are five classes of symmetry operations for 7, symmetry as shown
in Table 2.30. The identity operation leaves all the vectors invariant and thus has a
character of 4. The rotation of 180° about the z-axis interchanges r; with r, and 73
with r, and thus has a character of 0. The threefold rotation axes run along the
diagonals of the cube shown in Fig. 8.2 and therefore each of them will contain one
of the vectors. That one vector will remain unchanged while the other three will
transform into each other. This gives y(C3;)=1. The diagonal mirror planes
containing the face diagonals of the cube will leave two of the vectors unchanged
and interchange the other two giving a character of y(o,)=2. Finely, the improper
rotations involving 90° rotations about the x, y, or z axis followed by reflections in
planes perpendicular to the rotation axes leave none of the vectors invariant which
gives y(S4)=0. These results are summarized in the character table for 7,; symmetry
repeated here as Table 8.2.

As seen in Table 8.2, the hybrid orbitals shown in Fig. 8.2 transform as a
reducible representation in the T,; symmetry group of the molecule. The bottom
line of the table shows the characters of this representation and (2.10) (or
inspection) can be used to reduce this in terms of the irreducible representations
A; and T5,. From the discussion above and the basis components shown in the final
column of the table, the presence of the A irreducible representation in I'yo shows
that a single electron s orbital makes up part of the hybrid orbitals. The presence of
the triply degenerate T, irreducible representation in the reduction of I'yo shows
that either the set of three p,, p,, and p; orbitals or the set of three d,y, d., and d,.
orbitals are part of the hybrid orbitals. These two possibilities for the hybrid orbitals
are designated sp” and sd’. In general, the hybrid orbitals in an AB, molecule will

Table 8.2 Character table for point group T,

T, E 8C; 3C, 6S4; 60, | Basiscomponents

A, 11 1 1 1 X4y2+z?

A, 1 1 1 -1 -1

E 2 -1 2 0 0 22 —x*—y*, ¥*—y?)
T, 30 -1 | (R, Ry, R.)

T, 30 -1 -1 1 (x,,2) (xz,yz,xy)

I'mo| 4 1 0 0 2 =A+Th =5+ (p, Py» p-) ors + (d,\'y’d,\‘:adyz)
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be a mixture of these two types if the single electron orbitals are all in the same
energy shell (i.e., the same n quantum number). If the orbitals come from different
energy shells, one type of hybrid might be energetically favored another type.

In the example above, the hybrid orbitals form ¢ bonds; in other words the wave
functions do not have zero amplitudes and change signs on a surface that contains
the bond axes. Wave functions that have one nodal surface containing the bond axis
are called w bonds. For m—n bonding between two atoms in a molecule, each atom
must contribute an orbital with its nodal plan aligned parallel to the nodal plane of
the orbital on the other atom. There are two orthogonal conditions for this to occur.
As an example consider a planar AB; molecule with D3, symmetry as shown in
Fig. 8.3. Each B molecule will have two possible orthogonal m orbitals and
the A molecule will have a set of m orbitals equal to the total number of © orbitals
on the B atoms and aligned in the same directions [1]. The set of orbitals on B and
the set on A both transform according to the same reducible representation of the
symmetry group of the molecule. The characters of this representation are found in
the same way as done in the previous example except that the m bonds are
represented by two orthogonal vectors on each of the B atoms as shown in the
figure. The four atoms are in the xy plane with the z-axis coming out of the plane at
the center of the A atom. The vectors labeled B,,; are in the plane of the molecule
while the dots labeled B,, indicate vectors coming out of the page parallel to the
z-axis. This set of six vectors B;; are the functions used to derive the characters of
the hybrid orbital representation.

The character table for the D3, symmetry group was given in Chap. 2 and is
repeated here for convenience in Table 8.3. None of the symmetry operations of this
group will transform one of the vectors perpendicular to the plane into one of the
vectors in the plane. Thus these two sets of three vectors can be treated separately.
The three vectors in the plane transform according to a representation designated I,
while the three vectors perpendicular to the plane transform according to a represen-
tation labeled I';. First consider the three vectors in the plane. The identity operation
leaves all three of them invariant and thus as a character y;(E)=3. The threefold
rotation about the z-axis interchanges all three of these vectors so y;(C3)=0.
The twofold rotations about the dashed lines shown in Fig. 8.3 each reverses the
direction of one vector and interchanges the directions of the others giving a

Table 8.3 Character table for point group D3,

Dsw, | E 2C; 3C, o 2S;3 30, | Basis components

A1 1 1 11 1 X4y 22
A, |1 1 =1 1 1 -1 R.

E |2-1 0 2 -1 0 |y (*—y?.xy)
A"Vl 1 -1 -1 -1

Al1 1 -1 -1 -1 1 |z

E'" |[2-1 0 -2 1 0 (RuR)) (xzy2)

ry |3 0 -1 3 0 -1 [=A+E=(p,p,)+ (dy,dp_y)

Iy (3 0 -1 =3 0 1 |=A"p»E"=pA+(d.d,)

I'o|l6 0 =2 0 0 0
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Fig. 8.3 AB; molecule with
D3j, symmetry

character of —1. The horizontal mirror plane leaves all three vectors invariant giving
a character of 3. None of the vectors are invariant under the threefold improper
rotation giving it a character of 0. Finally the vertical mirror planes containing the
horizontal lines shown in the figure each reverses the direction of one vector and
interchange the other two. This leads to a character of —1. These results are
summarized in Table 8.3. Similar considerations of the transformation properties
of the three vectors perpendicular to the plane of the molecule give the characters of
the I', representation shown in the table.

The total representation for the hybrid orbitals is the sum of the horizontal and
perpendicular orientations. As shown in the last column in Table 8.3, the reducible
representations for both the horizontal and perpendicular orientations can be
reduced in terms of one one-dimensional and one two-dimensional irreducible
representations. These four irreducible representations then appear in the reduction
of the reducible representation of the total hybrid orbital representation.
The symmetry property of single electron orbitals shown in Table 8.1 along with
the basis functions shown in the final column of Table 8.3 shows that for atom A to
form a m bond with each of the B atoms oriented perpendicular to the plane it must
form a hybrid bond constructed from its p., d.., and d,. single electron orbitals. It is
not possible for atom A to form three equivalent t bonds oriented in the plane of the
molecule since none of the s, p, and d orbitals transform as the A, irreducible
representation. It still may be possible to form two © bonds with this orientation
using the degenerate sets of p and d orbitals that transform as the E irreducible
representation. In this case the two bonds must be shared among the three B atoms.

The mathematical expressions for a specific type of hybrid orbital can be written
as a linear combination of single electron wave functions. This technique is referred
to as LCAO, linear combination of atomic orbitals. It is useful in calculating the
strengths of chemical bonds. In this approach the ith hybrid orbital ¥; written as a
linear expansion of single electron atomic orbitals i,

Vi =ap, +ap, +aph; +---, (8.2)

where the a;, are the expansion coefficient which must be evaluated. Since the
individual atomic orbitals are orthonormal, for ¥; to be normalized
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ay+ap+ag+--=1 (8.3)

Also, for different ¥; to be orthogonal to each other,
ajaj + apap +apa +--- = 0. (8.4)

A set of hybrid orbitals results in a set of simultaneous equations of the form of
(8.2). The values of the expansion coefficients must be consistent with the
transformation of one hybrid orbital to an equivalent one under a symmetry opera-
tion of the group. These criteria can be used to evaluate the expansion coefficients.

As an example consider a set of sp® hybrid orbitals in the xy plane. These can be
visualized using Fig. 8.3 ignoring the 7 orbital vectors and working with Cartesian
coordinate axes. The x-axis is taken to point along direction 1 in the figure, the
y-axis perpendicular to this pointing between the 1 and 2 directions, and the z-axis
coming out of the paper at the central atom. This set of orbitals has D3, symmetry
with the character table shown in Table 8.3. Selecting the first orbital of the set to be
along the direction of the x-axis gives

VY1 = aiss + anp, + anp,.

Since the orbital p, has no amplitude along the x-axis the value of a,, is equal to 0.
The second hybrid orbital of the set will be in the second quadrant of the xy plane
where the sign of the p, wave function is negative. By convention, the expansion
coefficients are taken to be positive and the sign of the term insures a positive
contribution of the single electron orbital. Thus,

Vs = axs — axnp, + azp,.

The final hybrid orbital of the set will be in the third quadrant where the signs of
both the p, and p, wave functions are negative so

V'3 = azs — azp, — azp,.

The symmetry of the system can now be used to evaluate the eight remaining
expansion coefficients. For example, the 60° rotation in the clockwise direction
about the z-axis takes ¥, into ¥,. Applying this to the equations above gives

C3 'Pz = '1”1

or

G {azss —axp, + az)’pyJ = {azscﬂ — axC3p, + azyC3PyJ = a158 + arPx.
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Using the facts that s is invariant under all operations of the group while

p. transforms like a unit vector in the x direction and p, transforms like a unit
vector in the y direction gives

1 V3 V3 1
as + (5 a); + 7‘12y> p. + <7 dyx — EaZy) Py = disS + a1 py-

For the symmetry condition to hold, the coefficients of each orbital on both sides of
the equation must be equal:

ars = dis, doy = \/galx‘; ayy = 2a,.

Next consider the o, reflection plane that will transform ¥, into ¥5 and leave
¥, invariant. This operation on the expressions for the LCAO wave functions gives

0.:¥3 =",

or

Ox; \‘ahs — asp, — a3ypyJ - \‘61335‘ — azP, + a3ypyJ = AsS — APy + CIZyPy»

where the fact that the s and p, orbitals are invariant under this reflection and p,, is
transformed into —p, has been used. For this equation to hold

asg = dyg, A3y = dayx, d3y = dyy.
Next the conditions of normalization and orthogonality can be used to provide

two more equations to complete the set of eight equations to solve for the eight
unknowns. The results give the final expressions for the three hybrid orbitals to be

1 2

¥, =—s+——p,

=TGR
L S (8.5)
VRV AV, Lo '
@ 1 1 1

=—5S——=p,——=D,

TR T T A

This LCAO method can be extended to form sets of orbitals extending over the
entire molecule called molecular orbitals. Using similar symmetry techniques
described above, explicit expressions for the molecular orbital in terms of the
atomic orbitals can be obtained and the energy levels found from the secular
determinant. This provides expressions for the energy levels of the molecule and
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thus determines which ones are stable bonding orbitals and which are not.
The general form of a molecular orbital is

¥ =yA(I)+ Z ag;, (8.6)

where the first term on the right is a wave function of the central atom that
transforms according to the I' irreducible representation of the symmetry group
of the molecule while the second term on the right is a hybrid orbital constructed
from a linear combination of the orbitals of the ligands. This hybrid orbital must
transform as the same irreducible representation as the first term so that the
molecular orbital transforms as I'.

As an example, consider an octahedral molecule made up of a central atom and
six ligands as shown in Figs. 2.3, 4.1, and 7.1. The normal modes of vibration of this
type of molecule with O, symmetry were derived in Sect. 7.1. The coordinate system
for constructing the molecular orbitals is shown in Fig. 8.4. Note that the numbering
of the atoms and the orientations of the coordinates on each atom is different from
Fig. 7.1. Figure 8.4 follows the convention for numbering the ligands and the
directions of the coordinates commonly used for the construction of molecular
orbitals [2]. The z-axis always point from the ligand toward the central ion. This
results in the ¢ bonds being described by the z coordinate and the © bonds by the x
and y coordinates. Also, the central atom has a right-handed coordinate system while
each of the ligands has left-handed coordinate systems.

First consider ¢ bonds which are symmetric about the line joining the ligand
with the central atom. The character table for O, symmetry given in Table 2.32 shows
that the central ion will have s orbitals transforming as a,, p,, orbitals transforming as
t1y, and d,, orbitals transforming as the e, and #,, irreducible representations. There
will be six o bonds constructed from linear combinations of the s, p,, and d.> single
electron orbitals of the ligands. They will be mutually orthogonal and each will

Fig. 8.4 Coordinates for
constructing molecular

orbitals in a molecule with O, X 6
symmetry
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transform as one of the irreducible representations of the O, point group.
The procedure for finding the characters of the representation of the ¢ bonds is
exactly the same as described in Sect. 7.1 for finding the characters of the radial
vibrational modes. The character for a specific symmetry element equals the sum the
number of ligands left in the same position after the symmetry element is applied to
the molecule. This is because these contribute to the diagonal elements of the
transformation matrix for that symmetry operation. Table 7.1 shows the result of
this analysis so it will not be repeated here. As demonstrated, the reducible represen-
tation obtained in this way can be reduced in terms of the a,, €5, and t;, irreducible
representation of the O, symmetry group. Matching the irreducible representations of
the central atom orbitals with those of the ligands shows that the hybrid bond will
include an s orbital, three p orbitals, and two d orbitals, the last of these transforming
as the degenerate e, irreducible representation.

Using the procedure outlined above, the exact form of the molecular orbitals can
be obtained. Since the ¢ bonds only involve the z coordinates, the normalized wave
function transforming as a;, is

1
Vo =—7=(z1+2+23+ 24+ 25+ z6). (8.7

V6

For the three p orbitals transforming as a basis for the ¢, representation, instead of
going through the formal procedure to obtain the wave functions, it can be seen by
inspection that the maximum interaction between the central ion and ligand orbitals
is obtained from wave functions of the form

1 1 1

l//p: = 75(23 - 26)7 !//p), = E(ZZ - 25)7 l,bp\ = 75(21 - 24).

This leaves the two d wave functions transforming as e, to be determined. These
can be determined by first writing out the transformation table for the z-vectors for
the elements of O, symmetry [2]. This can be simplified by considering only the
elements with nonzero characters. In addition, only the elements in O symmetry
must be considered since adding the inversion operation and its products simply
doubles the number of coefficients and this is lost in the final normalization of
the wave function. Since only two wave functions are needed, only z; and z, are
considered. The results are given in Table 8.4. Multiplying each entry in the table
by the character of e, for that operation and combining the like terms gives the two
wave functions as

(8.8)

Wy =2z; — 25 — 23 + 224 — 25 — Zg,

lpz —z1 + 229 — 23 — 24 + 225 — Zg. (8.9)

These or linear combinations of these represent the wave functions for the two d
orbitals. In general, linear combinations transforming like the d» and d,>_» are used.
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Table 8.4 Transformation table for z, and z, for specific elements in O;, symmetry
E G GQ) GEB) GM@ G GO (T Ci8) C() Cx2) C(3)

Z Z Z3 V43 Zg Zp Z3 Zs Zs Zg Z1 Z4 Z4

Zp | Zp I Z3 Z6 Z3 Z4 23 Z4 Z6 Zy Zs Z5

The appropriate linear combination can be found by requiring it to transform like
these two d wave functions. For example, since

C dz?- _ 1 O d22
4 dXz_yz N 0-1 dxz—y2 ’

Calap, +by,) = £(ay, + by,)

it follows that

so a = £ b. Combining the expressions for 1 and i, found above in this way and
normalizing gives the two d wave functions transforming as e, to be

lpd_,z (_Zl — 23+ 223 —z4 — z5 +226)

1
?ﬁ : (8.10)
lpdxz,yz :E (Zl — I+ z4 — 25)

The next step is to determine the expressions for the © bonds. These use the x and
y arrows on each ligand to determine the transformation properties of the bonds.
The characters of the reducible representation in O, symmetry that has these
12 vectors as it basis are y(E)=12, y(C3)=0, y(Cy)=—4, y(C4)=0, 3(C,)=0,
2(@)=0, x(S¢)=0, x(c,)=0, x(S4)=0, and y(c,)=0. Using Table 7.1, this representa-
tion can be reduced into a t14, t1y, f2,, and f, irreducible representations. The ligand
orbitals must also transform according to these irreducible representations.

As an example, consider the #,, representation. The d,, d.., and d,. orbitals
transform according to this irreducible representation. Thus from Figs. 8.1 and 8.4
the vectors representing the 7 orbitals on the ligands interacting with a d,. orbital on
the central atom are shown in Fig. 8.5. From this figure it is possible to write the
expression for the 7 orbital d,. transforming as one of the basis set for the 75,
irreducible representation. Doing the same analysis for the d,. and d,, orbitals
gives the set

Y, (t2g) = (X1 +y2 +x5 +y4), Yy (fe) = (63 +y1 + 22 + ye),

(8.11)
Y, (t2g) = (X2 +y3 + X6 + ys).

The expressions for the wave functions transforming as #,y, 5, and f,, can be found
in the same way.
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Fig. 8.5 Example of a d,. 7,3
orbital of the central atom and 1
the vectors representing +
p bonding on the ligands 5 | T 5
"
+ € -
6

d,, orbital

Now that expressions for the hybrid ¢ and = ligand orbitals have been determined,
(8.6) can be used to determine the molecular orbital. For example, one of the
molecular ¢ bonding orbitals with e, symmetry is given by

lpd'\.z,vz (eg) = O‘d)(zfy2 + g (Zl — 2y +z4 — Z5).

The mixing coefficients o and f§ determine the amount of time the electron is shared
between the central atom and ligand orbital. Solving the secular equations to
determine these coefficients leads to two or more solutions. One will have energy
less than the orbit on the isolated atoms and is called a bonding orbital while one
solution has energy greater than that of the isolated atom and is called an
antibonding orbital. The third solution that occurs in some cases is called
nonbonding. Figure 8.6 summarizes the molecular orbitals for the octahedral
molecule [2]. The lowest three molecular orbitals are bonding, the upper three are
antibonding, and the middle one is nonbonding. The a;, orbital of the central ion
interacts with the a;, ligand orbital to give both an a,,(c¢) bonding and an a,,(0)
antibonding molecular energy level. The same is true for the e, orbitals and for the
t1, orbitals of the central ion and ligands. The three central ion orbitals d,,, d,., and
d., of the central ion transforming as f,, do not interact with the ligands and are
therefore nonbonding. A similar diagram can be constructed for © bonding.

8.2 Character Tables for Space Groups

In Chap. 2 the character tables for the 32 crystallographic points were given. To deal
with delocalized phenomena in solids it is necessary to have a similar character
table for the translation group discussed in Chap. 1. The translation operations
describing a crystal lattice form a symmetry group that is cyclic. Therefore if T is a
translation operation, 7" (where 7 is an integer) is also a symmetry operation in the
group. If there are N; unit cells in the lattice, the translation group will be a cyclic
group of order N; that has N; classes. Since all the irreducible representations are
one dimensional, there will be Nj irreducible representations for this group [2].
The character table for this type of group is shown in Table 8.5.
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Fig. 8.6 Molecular orbitals for o bonding in an octahedral molecule

The trivial representation has 1 for its character for each class of operations as

. N;
always. The other characters are constructed knowing that 7;” = E. One way to
insure this is through the expression

[(T) =e >N (m=0,1,2,...,N;— ). (8.12)

The generic character in Table 8.5 is written as

Lo (Tjnj) _ ef(Znim/N,ﬂ)n,’ — efiijj’ (8.13)

where the integer n; has been associated with a translation in the x direction through
x/=njt;. In addition, a component of the wave vector has been introduced as

. 8.14
tj Nj ®19

This shows that irreducible representations of the translation group can be
expressed in terms of waves on the periodic lattice.

The irreducible representations for the translation group in three dimensions can

be formed as the direct product representation of the three one-dimensional
representations [3]. Equations (8.12) and (8.14) then become

T .fnmy npmp - N3N
lemzmg (T) = exp{_ZT[l< Nl + N2 + N3 )} (8.15)

and
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Table 8.5 Character table for a cyclic group of order N;

Symmetry operation classes

Irreducible representations | £ T; Ti2 e T;.I’ e T?Ij_l
Iy 1 1 1 1 1
r, 1 672ni/Nj ef4ni/N/ C 672nin]/NJ . e+2ni/N/
r, 1 e~ 2mim/N; e—2mim/N; . e—2minjm/N; L. p+2mim/N;
Ty, , 1 S .. S e+2mi/N;

- mp — myp — ms —

k=2n|—b +—b +—bs3]|. 8.16

AR (8.16)

The reciprocal space vectors and real space lattice vectors obey the relationship
givenin (1.3), b; - t; = J;;. The expression in (8.13) for the character of a symmetry
operation can be written in three dimensions as

1 (f?) =e kR, (8.17)

The primitive translations in real space 7 and reciprocal space b are related by
the expressions given in (1.4) and the latter are used to define the Brillouin zone as
discussed in Chap. I. Each Brillouin zone has one k& vector for each irreducible
representation of the translation group. A translation in reciprocal space is
represented by

Kj = 2m(jiby + jaba + jsbs ) (8.18)

where the j; are integers. This operation takes k — k + f( j and leaves the character
given in (8.17) invariant.

8.3 Electron Energy Bands

The physical properties of delocalized electrons must be described using the space
group of the crystal. The quasi-free electrons act as particles described by Bloch waves
[4, 5] that interact with both the atoms in the lattice and with other quasi-free electrons.
These exist in quantized states of energy termed electron energy bands [6, 7].
The highest filled band is called the valance band and the lowest unfilled band is the
conduction band. The wave functions of the electrons in these bands must exhibit
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the periodic symmetry of the crystal lattice. This symmetry requirement results in the
important concept of a forbidden band gap in the energy structure which is critical in
determining whether the material is a conductor or not. In this chapter the atomic
nuclei are assumed to be in a fixed periodic array. The effect of symmetry on the
vibrational motion of these atoms was discussed in Chap. 7.

The concepts of cyclic groups are useful in treating wavelike excitations in
solids such as electrons. The Schrodinger equation for a single electron described
by Bloch function i (?) is

(_%vz + V(?))W(F) = £y (7). (8.19)

The potential energy term is a periodic function of position that contains both a
Coulomb and exchange part. This expression is invariant under translation
operations of the symmetry group of the crystal lattice. Thus,

TV(F) = V(r), Ty(r) =ay(r),

where ¢ is an eigenvalue for this wave function. Since the square of the wave
function is the electron density,

VW () =y (r— )Y (r —t)so gfo = 1.

Since the wave function in a specific direction is periodic over a dimension
L=Na, where a is the lattice constant in that direction,

Ty (x) = (x — na) = o"y(x)

and for n=N, the periodicity requires ¢"=1. One way to insure this condition is to
define

o =N where n =0, +1,+2,.. ..

A wave vector can then be defined with the magnitude k = (2m/a)(n/N). The
eigenvalue then becomes ¢ = e'*"”". The solution to (8.19) is now written as

" (?) T (%, r) , (8.20)

where  is the momentum of the electron in the crystal and u (1 ) is a function that
contains the periodicity of the lattice

u(%,?> - u(%,?+?), (8.21)
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where 7 is a lattice vector. This is called a Bloch wave function and it is subject

to the condition (74 t) =e* (7). Note the similarity between this
eigenfunction for a quasiparticle wave ina crystal lattice and the basis function
for a cyclic group discussed in Sect. 8.2.

A determinant of single electron Bloch functions can be formed to represent the
multielectron wave function for the system (Hartree—Fock approximation).
However, it can be shown that the symmetry properties of multielectron wave
functions are the same as those of single electron wave functions [6] so treating
only the latter is sufficient for the purposes of this book.

A symmetry element of the space group of the crystal is designated {oc|5} where
o represents the rotation part of the operation and a represents the translation part.

=
Using the fact that {oc|?1} = {oc" |—:x‘15}, applying this operation to the Bloch

wave function gives

(i) (o) = iy (). e

Thus this symmetry operation takes an electron wave function with wave vector k
into a wave function with wave vector ak. Since this operation is caused by a
symmetry operator for the system, its application does not change the energy, so

E(ak) = E(k). All of the points ok that have the same energy eigenvalue and
eigenvector are called [7] the star of k. The number of vectors in the star can
range between one and the order of the point group.

The different states of the system can be described in terms of the energies and
wave functions described above by including a subscript n=1,2,3,. .. to designate
the states from the lowest to the highest energies. It is necessary to consider only the
first Brillouin zone because of the periodicity of reciprocal space:

v, (E 1K, ?) —y, (/2, ?) (8.23)

and

b5+ K) =5, (F)

where K is a reciprocal lattice vector. Thus the electron wave functions are Bloch
functions within the first Brillouin zone and periodic functions of k outside the first
Brillouin zone.

In order to derive an expression for energy as a function of wave vector, it is
assumed that the lattice potential acts as a weak perturbation on a free electron. Just as
was the case of localized electronic states discussed in Chap. 4, this symmetric
perturbation can lift the degeneracy of the free electron states. Under these conditions,
the potential can be expressed as a Fourier series in the reciprocal lattice vector [3]
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v(?) = V;ei; = (8.24)
K

This can be used in (8.19) with the wave function in (8.20) expressed as

b(k7) = Z”(E)Gi(w)'r~ (8.25)

K
Equation (8.19) can then be solved for the coefficients u(f( )
72 N2 _ 1
[E - (E) (k + K) ]M(K) - Z u(K ) v o (8.26)

K

The solution for this can be written in two parts. For K = 0,

o, ()
E=(—k +V V- 8.27
(2m> Vot Vo |- (8.27)
K+#0
while for K # 0

u(f{)E_( )(kH()zZ: ( ) (8.28)

In this weak perturbation approximation £ > V' so u ([2 ) / u(0) < 1. Then only

the dominant K =0 term in the sum in (8.28) is retained and the resulting
expression for u(K ) / u(0) substituted in (8.27). Approximating E in the denomi-
nator of (8.28) by the first term of (8.27), the final expression becomes

2

V.
K

B S

K#£0

(8.29)

Note that this has a singularity fog specific reciprocal lattice vectors that obey the
2

L N\2
expression k = (k +K ) if does not vanish. This occurs at the boundary of

V-
K

the Brillouin zone.
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To elucidate the behavior of the energy band near the zone boundary, the secular
determinant can be written as [5]

E,—E V -
Xl =o. (8.30)

V- E,—E
K

Here E is the energy at a wave vector k= EO + Az, where %0 is a general vector on
the plane of the zone boundary and Ak is a small deviation from this plane. E is the
energy at wave vector k + K. From (8.29) these energies are

2

E\=Ej+ <2h—m> [(AE)ZHEO : AE} ,

2

Er—Ey+ (fm) [(Ak)2+2(ko +f(> -Ak], (8.31)

where the unperturbed energy at the boundary is

m

Y,
Ey = kg + Vo. (8.32)

Expanding the determinant in (8.30) gives a quadratic equation for E that can be
solved to give

2

E—E,+ (%) [(A%)2+(2EO + f() : A%}
+ { K%)f( : A%r+ 2} . (8.33)

At the zone boundary Ak = 0, s0 (8.33) simplifies to

7
K

E=E,+|V-

K

, (8.34)

This shows that the electron energy at the zone boundary has two values with a gap
of 2|V-|.
K

Figure 8.7 shows schematically the variation of energy with wave vector
described by (8.29). Near the center of the Brillouin zone the energy varies quad-
ratically with k£ while at the zone boundary it flattens out and becomes double valued
with an energy gap. Since the velocity of the electron is proportional to the slope of
the dispersion curve, the electron approaches zero velocity at the zone boundary.
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Fig. 8.7 Energy versus wave vector

Projecting these dispersion curves onto the energy axis shows the allowed energy
states of the electron in the lattice. The density of states is large so the discrete states
become bands of energies. The double-valued energy at the Brillouin zone boundary
produces a forbidden energy band or band gap. The lowest energy band completely
filled with electrons is the valance band while the lowest partially filled band is the
conduction band. The band gap plays an important role in determining the electrical
conductivity properties of the material.

The symmetry operations of the point group that operate on a position vector in
real space are the same as those that operate on the wave vector in reciprocal space.
A specific operation on k in reciprocal space produces the same effect as its inverse
operation produces on 7 in real space. The translation operations on the position
vector in real space do not have an equivalent operation on the wave vector in
reciprocal space. The symmetry properties of the lattice require that a space group
operation < ot ¢ operating on the lattice potential V(7 ) gives

{aﬁ}v(?) = V(ar +7). (8.35)
Using (8.18), this becomes
{oc|?}\/;( = ei“’;'?v&. (8.36)

For a symmorphic space group the operators {a|0} form a subgroup. In this case,

V- =V - so all coefficients are nonzero. For a nonsymmorphic space group with an
K ek

operation for which oK = K and exp(iK - 7) = —1, (8.36) shows that the results of
applying this symmetry operation to the lattice potential gives V- = —V-. This can

ey L . K ... K
only occur if this coefficient is identically zero. When these conditions occur, no
energy gap occurs at the zone boundary.
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8.4 Symmetry Properties of Electron Energy Bands

As discussed in Chap. 1, Brillouin zones have special points at which the wave
vector has specific symmetry properties. Electron energy bands associated with
these wave vectors will exhibit the same symmetry properties. The set of point
group operations that leave & invariant at a specific point in the Brillouin zone are
designated as the group of the wave vector at that point. These groups are subgroups
of the total point symmetry group of the crystal. Applying these operations to k
form a set of wave vectors that is called the star of k.

For example, Fig. 1.10 shows the Brillouin zone for a simple cubic lattice with
the points of special symmetry of k designated. Consider a wave vector pointed
along the k, axis. This will have the special symmetry designated by 4 which was
shown to be Cy,. The symmetry elements of this point group are shown in Table
2.11tobe E, 2C4, C», 20,, and 20, Figure 8.8 shows the star of the wave vector at
the A point in the first Brillouin zone of simple cubic symmetry.

Energy bands are characterized by their k& vector in the first Brillouin zone.
The star of &k defines a set of basis functions. Going along a direction of high
symmetry in the Brillouin zone, the group of k changes to different subgroups at
different points. Compatibility relations allow the connection of different bands at
different points. For example, Fig. 8.9 shows a schematic diagram of moving from
the center of a Brillouin zone of a crystal with cubic symmetric along the
A direction to the X point on the surface as shown in Fig. 1.6.

Several different theoretical approaches have been developed to derive
mathematical expressions for electron energy bands [5, 7]. The most sophisticated
ones involve computer simulation techniques. One simple approach that
demonstrates the effects of symmetry is to use a local coordinate system at the
site of each atom to determine the charge density and crystal potential. This has to
reflect the point group symmetry of the crystal at each atom. The symmetrized
crystalline potential then acts on each electron to give the energy bands. In this
approach the most general expression for the electron energy can be written as [2]
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vector at the 4 point in the Ky (E, ow)
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Fig. 8.9 Schematic representation of electron energy bands in one part of the Brillouin zone of a
crystal with octahedral symmetry
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n=0 m=—n

The second term is the crystalline potential expressed as a multipole expansion in
terms of spherical harmonic functions. This is the standard way to express the
Coulomb interaction between two charged particles, in this case an electron and a
lattice ion [9]. The spherical harmonic functions Y”'(0, ) can be written as a
product of a normalization factor, an associated Legendre polynomial P (cos ),
and exponential function

Y70, 0) = N, \2Pr(cos ).
The first several associated Legendre polynomials are shown in Table 8.6.

The crystalline potential must be real so the product of the real and imaginary
parts of the exponential function and the complex factor C,,,, can be separated to give

- 22
E(k) Z i k (cos 0)[Cre, cosmp + Cim sinmyp].  (8.38)

n=0 m=—n

The first term in (8.32) represents the contribution from kinetic energy. In a crystal
the effective mass of an electron can be different in different directions so this is
written as the diagonal components of a tensor [3, 5, 6].

There are two additional restrictions on the energy E (k that determine what
terms appear in the expansion of the crystalline potential in (8.38). First it must be

invariant under time reversal, so E (—%) = E(%) Due to the factor of k", this
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Table 8.6 Associated Legendre polynomials P/ (x)

Pi(x) =1
PY(x) =x
Pl(x) = —(1—x)"? Pyl (x) = —3Pi(x)
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requires that only even values of n (n=0,2,4,...) appear in the expansion.
In addition, only the even parity associated Legendre polynomials can be present
so m must also be even. The second requirement is that E( k) is invariant with
respect to all of the symmetry elements that make up the groupof the k vector at a
specific point in reciprocal space. B

As an example, consider a point in reciprocal space at which k has C,,
symmetry. The energy band has the form [8]

N R R
E(k):—[—x—k—y—&-—z

m + Ck*PY(cos 0) + C5k*P3(cos 0) cos 2
XX yy zZ

+ Ck*PY(cos 0) + C5k* P (cos 0) cos 2¢ + Ciyk* P4 (cos 0) cosdg + - - -
(8.39)

For C,, symmetry there are three distinct directions for the effective mass. All of
the associated Legendre polynomials with even values of n and m appear in the
expansion. The term with n=0, m=0 shifts the energy without any dependence on
the angles 0 and ¢ so it is neglected in the expansion. The C», symmetry group has a
twofold rotation about the z-axis and reflections in the xz and yz planes. All three of
these symmetry elements leave § unchanged so they do not restrict the P (cos 6)
appearing in the expansion. These symmetry elements also leave cos(myp)
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unchanged. However, the mirror planes change sin(my) into —sin(mp) so the
coefficients of terms in the expansion with this factor must be zero. B
As another example, consider a point in reciprocal space at which k has D,y
symmetry. In this case the energy band has the form
2 2
K

3 2
() - [ &

+ C5k*PY(cos 0) + C5k*P3(cos 0) cos 4p + - - -

+ C5k*PY(cos 0)

(8.40)

For D,,; symmetry there are only two directions for the effective mass, parallel and
perpendicular to the major axis of rotation. The rest of the expansion is similar to the
expression in (8.39) except that the terms for n=2, m=2 and n=4, m=2 are missing.
The symmetry elements for D, are a major twofold axis of rotation, two other C’,
axes perpendicular to this, a mirror plane bisecting these two axes and containing the
major rotation axis, and an S, rotation—reflection operation. This latter symmetry
element takes ¢ into (w+m/2) so the sine and cosine functions for 2¢ both transform
into minus themselves and thus must have zero expansion coefficients.

A full treatment of the many-body problem of electron energy band theory
requires a choice of the form of the wave functions such as LCAO (linear
combination of atomic orbitals) or LAPW (linear augmented plane waves). These
calculations are beyond the scope of this book and are the subject of complete text
books such as [7] by Slater. The interested reader is referred to these books for
further information. The effects of symmetry on wavelike particles in crystals can
be applied in a similar way to entities other than electrons. Chapter 7 describes these
principles as applied to lattice vibration phonons.

8.5 Problems

1. Consider a crystal with a simple cubic lattice. Determine the group of the
k vector and draw the star of the k vector at the X point at the center of the
face of the Brillouin zone.

2. Using the “tight binding approximation,” the eigenfunctions given in (8.20) are

expressed in terms of atomic orbitals as y — = N~1/2 Z ek, (r — R ) where
Ak

the last factor in this expression is an atomic orbital. For the crystal described in
problem 1, write the eigenfunctions for atomic s and p orbitals at the A4 point of
the Brillouin zone. Show how these functions transform in the group of the k
vector at this point and draw the energy bands going from the I" point along the
A direction to the X point.

3. In the “free electron approximation,” the potential V(r) in (8.19) is taken to be
equal to zero everywhere. The solutions of (8.19) are then eigenfunctions and
eigenvalues of the form
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In these expressions k = (2r/a)(«, #,7) where o, f3, and y are numbers greater
than 0 and less than 1, and K = (2n/a)(L,, Ly, L3) where the L, are integers. For
a face-centered cubic crystal structure L,=(—I+l,+l5), Lr=(/,—Il,+l3), and
Li=(l,+/,—13) where the values of the /; are integers. Find a figure in the
literature of the first Brillouin zone for a face-centered cubic crystal and write
the k vectors, eigenfunctions, and eigenvalues in terms of the o, 5, y, and L;
parameters at the I', 4, and X points of the Brillouin zone.

4. Determine the L vectors for the crystal in problem 3 that give the five lowest
energy eigenvalues at the I' and X points in the Brillouin zone. What are the
energies and degeneracies of each of these electron band states.

5. Determine the common L vectors for the I and X points in the Brillouin zone in
problem 4 and use these L vectors in the expression for the eigenfunction at the 4
point in the Brillouin zone found in problem 3 to derive an expression for the
electron energy bands going from the I' point to the X point along the 4
direction. Draw a diagram to scale showing these energy bands.

6. Write the set of four eigenfunctions for the energy band E(4) =
2ma*/h*= (o — 1)> + 2 found in problem 5. Show how these functions transform
under the operations of the group of the wave vector at the A point in the
Brillouin zone. Express these eigenfunctions in terms of the irreducible repre-
sentations of the group.
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Chapter 3
Tensor Properties of Crystals
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On page 72, Table 3.5 has the forms of 3rd rank tensors for all the crystallographic
point groups. Five of these have factors of 2 in some of the components. These
factors of 2 can be found in other published tables of 3rd rank tensors but they are
only valid for a different type of notation that is not used in the book. To be
consistent with the tensor notation used throughout this book, no factors of 2 should
appear in these tensors. The Erratum provides a corrected Table 3.5 with the factors
of 2 eliminated from all the tensor elements.

In addition, on page 73 an example is given in the second paragraph using one of
the tensors from Table 3.5 that contains erroneous factors of 2 in some of its
components. The Erratum provides a corrected paragraph without the factors of 2.

The online version of the original chapter can be found at El
http://dx.doi.org/10.1007/978-1-4419-7598-0_3



E2 Errata
Table 3.5 Form of third rank tensors for the crystallographic point groups
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Page 73, second paragraph

As a practical example, consider a quartz crystal that has D3 symmetry at room
temperature. The piezoelectric effect for this case is given by

[ din 0 0
0 —diin din
0 diz 0
Py 0 —dir  —din o1 012 013
Py | = | —din 0 0 021 0» 023 |,
P —d32 0 0 031 03 033
0 0 0
0 0 0
o o0 0 |

)
Py =dino1 —di10xn +dinoyn +diznos = (611 — 02)din + (632 + 023)din
Py =—di11021 —d132031 —di11012 —dinoi3 = —di11(021 + 612) — (613 + 031)d 132

P3=0

If a uniaxial stress is applied in the ¢, direction, P1=d;,01; and P,=0. The same
tensile stress applied along g,, also produces a polarization along P;. The two-fold
rotation axis P is the electric axis of quartz. Shear stress can produce polarization
along P, but no stress conditions can produce a polarization along P3.
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polarization (cont.)
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E
Elastic compliance, 74
Electron energy bands
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Judd-Ofelt theory, 103-104
Nd** energy levels, 103
Nd>7 selection rule, 103
point group D,y character table, 102
rare earth ions, 100
spin—orbit coupling splits, 101



Index

First-order electrooptic effect, 123—-124
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G
Group theory
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Pauli spin operators, 39-40
concept, 26
coordinates transformation matrix, 29
definition, 25
order of group, 25-26
physical properties, system, 27-28
point group symmetry, 27
properties, 26
quantum mechanics
eigenfunctions E;, 50
eigenvalue E, 49
rectangular symmetry, 52-53
Schrodinger equation, 48
spatial and spin functions, 51
spin—orbit interaction, 51
trace, transformation matrix, 30
Gyration tensor, 120

H
Hooks’s law, 74

J

Jahn-Teller effect, 194-197
Jones matrices, 112

Jones vector, 110-111
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Judd-Ofelt theory, 103-104

K

Kerr coefficients, 129
Kerr effect, 124-125
Kleinman symmetry, 147

L
Lattice vibrations
acoustic mode, 173
Brillouin zone symmetry operation, 177
Oy, and Cy4, point groups, 179
optic mode, 173
phonon dispersion, 180
SrTiOj3 Brillouin zone, 174-176, 178-179
strontium titanate (SrTiO3) crystal
structure, 173-174
Legendre polynomials, 222-223
Light wave electric field, 106-107

M
Maxwell’s wave equation, 141
Mueller matrices, 113, 114

N
Neumann’s principle, 55
Nonlinear optics
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Clausius—Mossotti relationship, 137
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coordinate system, 144—145
coupled wave equation, 141-142
effective nonlinear optical coefficient
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nonlinear optical tensor, 146
tensor component expression, 145-146
frequency doubling, 138
index matching, 150-153
materials, 137
Maxwell’s wave equation, 141
momentum conservation, 140
Raman scattering, 138
second-harmonic generation, 139
beam, 143
conversion effiiency, 142
photon transitions, 139
polarization, 139-140
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second-harmonic generation (cont.)

power, phase mismatch, 142

SHG efficiency maximizing
noncritical phase matching, 155
positive crystal,, 156-157
type I phase matching, 153—-154
uniaxial negative crystals, 155

standard approach, 138-139

two-photon absorption
laser source producing photons, 157
Oy, point group character table, 38, 161
optical transitions, 159-160
symmetry properties, excited states, 159
tool, 158-159

uniaxial crystal propagation direction, 143,

144

o
Order of group, 25-26

P
Pauli spin operators, 39—40
Photoelastic effect
elastooptical coefficients, 134
photoelastic tensor-tensor form difference,
133
piezooptical coefficients, 131
refractive index coefficients, 132
Pockels effect, 123—-124
Point group symmetry, 27
Polarization, tensor treatment
electromagnetic light wave, electric field,
106
Jones matrices, 112
Jones vector, 110-111
left-circularly polarized light, 107
light wave electric field, 106-107
Mueller matrices, 113, 114
polarization transformation matrices, 113
polarization vectors, 109
polarized light, 108
right-circularly polarized light, 107
state of, 105-106
Stokes parameters, 107—108
Polarizability tensor, 186
Primitive unit cell, 4
Pyroelectric effect, 57
Pyroelectric tensor, 58—-59

Q

Quantum mechanics, in group theory
eigenfunctions E;, 50
eigenvalue E,, 49
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rectangular symmetry, concept, 52

rectangular symmetry, irreducible
representations, 52—53

Schrodinger equation, 48

spatial and spin functions, 51

spin—orbit interaction, 51

R
Raman tensor, 188
Raman scattering
32 crystallographic point groups, Raman
tensor, 188-193
material effects and applications, 194
Raman spectroscopy, 186
schematic picture, infrared absorption,
187-188
Stokes scattering, 185
Rayleigh scattering, 186
Reciprocal space
Brillouin zones, 21-23
description, 15
hexagonal crystal structure, 23
lattice periodicity function, 22
primitive translation vectors, 21
real and reciprocal space, equivalent
lattices, 22, 23
space group list, 16-20
Rotatory dispersion effect, 121

S
Schoenfies notation, 9, 14, 15
Second-rank matter tensors
cause and effects, 62
conductivity tensor, 63
crystallographic point groups, 66
cubic point group symmetry operation, 65
electrical conductivity, 63
four-fold rotation symmetry, 64
nonzero elements, conductivity tensor, 65
quadratic equation, coordinate system, 66
temperature-induced deformation, 67-68
Solids point defects, symmetry properties
crystal field symmetry
medium crystal field case, 86
octahedral coordination, ligands, 86—87
perturbation theory, 86
Stark splitting, 85
strong crystal field case, 86
weak crystal field case, 85
crystal, ions energy levels
Cartesian coordinates, 92
crystal field matrix elements, 94
crystal field splitting, 95
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d-electron, energy level splitting, 90

double-valued representation, 89

forced electric dipole transitions, 91

group theory, 91

nonrotational symmetry elements,
transformation matrix, 89

nonzero expansion coefficients, 93

orbital angular momentum quantum, 87

O symmetry crystal field, 90

principal symmetry axis, 88

rotation operator, 88

secular determinant elements, 95

specific linear combination
determination, 92

d-electrons

applications, 95-96

Cr*t jon electric dipole transitions, 99

Cr*t ion energy levels, 99

crystal field energy determination,
99-100

Oy, crystal field optical transitions, 96

Oy, symmetry group, 97

O symmetry free ions, 98

f-electrons

Cyq spherical harmonics, 101-102
Judd-Ofelt theory, 103—104

Nd** energy levels, 103

Nd*7 selection rule, 103

point group D,y character table, 102
rare earth ions, 100

spin—orbit coupling splits, 101

free ions energy level

angular momentum operators, 81
Coulomb interactions, 79
electron—electron interaction, 83
Hamiltonian represention, 80
spectroscopic notation, 82

spherical harmonic functions, 83—85
spin—orbit coupling constant, 82
spin—orbit interaction, 82-83

Solid symmetry
concept, 2
crystal structure

axes type, 9

Bravais lattices, 6

crystal lattice types, 5

cubic system, 10

3D crystal lattice, 68

hexagonal system, 10

monoclinic system, 9

noncubic crystallographic point groups,
11-13
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O and Oy, crystallographic point groups,
14

orthorhombic system, 9

primitive unit cell, 4

space groups, 12

square lattice, 4-5

stereograms, 10

symmorphic space group, 5

tetragonal system, 9

tetrahedral symmetry, 14—15

triclinic system, 9

trigonal system, 9

definition, 1
elements, 2-3
group theory, 3
reciprocal space

Brillouin zones, 21-23

description, 15

hexagonal crystal structure, 23

lattice periodicity function, 22

primitive translation vectors, 21

real and reciprocal space, equivalent
lattices, 22, 23

space group list, 16-20

square array, elements, 3
Space group list, 16-20
Stokes parameters, 107-108
Strontium titanate (SrTiO3)
Brillouim zone, 174-176, 178-179
crystal structure, 173-174
Symmetry and electron energy levels
electron energy bands

Bloch wave function, 216218
cyclic groups, concepts, 215
energy vz wave vector, 219

molecular bonds

Cartesian and spherical coordinates
relationship, 201-202

D3, symmetry, AB; molecule, 206-208

D3p, symmetry group character table,
205-206

dy, orbital, p bonding, 211

hybrid orbitals, 203

molecular orbitals, 208-209

Oy, symmetry orbitals molecules,
209-211

s, p, and d electron orbitals, angular
factors, 202

spatial distribution, s, p, and d electron
orbitals, 202-203

T4 point group character table,
204-205
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molecular bonds (cont.) 32 crystallographic point groups,
tetrahedral molecule T4 symmetry, Raman tensor, 188—193
203-204 material effects and applications, 194
space groups character tables, 212-214 polarizability tensor, 186
symmetry property, electron energy bands Raman spectroscopy, 186
Brillouin zone, delta point, 220 Raman tensor, 188
Brillouin zone octahedral crystal Rayleigh scattering, 186
symmetry, 221 schematic picture, infrared absorption,
group, wave vector, 220 Raman scattering, 187-188
Legendre polynomials, 222-223 Stokes scattering, 185
many-body problem, 223
Symmetry and lattice vibrations T
Jahn-Teller effect, 194—197 Taylor series, 56
lattice vibration mode Temperature-induced deformation, 67—68
acoustic mode, 173 Third-rank matter tensors

Brillouin zone symmetry operation, 177

Oy, and Cy, point groups, 179

optic mode, 173

phonon dispersion, 180

SrTiOj3 Brillouin zone, 174-176,
178-179

strontium titanate (SrTiOj3) crystal
structure, 173-174

local mode vibrations

breathing mode, 171

definition, 166

normal vibration mode, 168—170

octahedral configuration, 166

Oy, character table for point group, 166,
167

Oy, symmetry r; coordinates
transformation, 170, 171

0,5 coordinate-O;, symmetry
transformation, 171, 172

symmetry coordinates, 168

phonons, 165
Raman scattering

crystallographic point groups, 72—73

mirror reflection matrix, 71

piezoelectric effect, 68

piezoelectric tensor, 69—70

stress sensor components, 68—69

symmetry transformation properties, 70
Two-photon absorption

laser source producing photons, 157

Oy, point group character table, 38, 161

optical transitions, 159—160

symmetry properties, excited states, 159

tool, 158-159

U

Uniaxial negative crystals, 155

\Y

Vibrational energy level transitions
infrared transitions, 183—185
radiationless processes, 180
radiationless transisitions, 181-183
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