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Preface

US psychiatry is in crisis. Perhaps the most evident symptom is the ‘trans-
institutionalization’ of those with serious mental illness (SMI) from hospitals to
jails and prisons, following decades of psychiatric bed eliminations. For New York
State, some 96,000 such beds were available in the mid-1950s. About 3000 remain.
New York City’s Rikers Island jail houses some 11,000 inmates, with about 4000
now diagnosed as suffering SMI. Statewide, approximately 60% of hospital beds in
jails and prisons are occupied by those with SMI. Current policy initiatives focus on
making this mass jailing of the mentally ill ‘more humane’. The pattern is repeated
nationally. As Bastimpillai et al. (2016) note:

Currently, the United States has a relatively low 22 psychiatric beds per 100,000 population
compared with the Organisation for Economic Cooperation and Development (OECD)
average of 71 beds per 100,000 population. Only 4 of the 35 OECD countries (Italy,
Chile, Turkey, and Mexico) have fewer psychiatric beds per 100,000 population than the
United States. . . Germany, Switzerland, and France have 127, 91, and 87 psychiatric beds
per 100,000 population, respectively.
(Bastiampillai, T., S. Sharfstein, S. Allison, 2016, US suicide rates and the critical decline
in psychiatric beds,
JAMA, doi: 10.1001/jama.2016.16989)

Further, the pharmaceutical industry has largely abandoned attempts to develop
new drugs for SMI, beyond some continuing work on supposedly ‘organic’
dementias such as Alzheimer’s disease, which are themselves highly stratified at
the population level according to education, income and social status.

Intellectually, mainstream psychiatric doctrine exceeds even the discredited
neoliberal atomism of mainstream economics, committing the mereological fallacy
of attributing to ‘the brain’ what are complex disorders of not merely the entire
individual but the individual enmeshed in both culture and an environment that, for
humans, involves mostly other humans and their institutions.

Indeed, this latter circumstance has not gone entirely unremarked. As Huys et al.
(2016) put it:

. . . [M]ental health depends not only on the function of the brain. . . but also on how that
function relates to, influences, and is influenced by the individual’s environmental and
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experiential challenges. Understanding mental health, and its disruption, therefore relies
on linking multiple interacting levels, from molecules to cells, circuits, cognition, behavior,
and the physical and social environment.
(Huys, Q., T. Maia, M. Frank, 2016, Computational psychiatry as a bridge from neuro-
science to clinical applications, Nature Neuroscience, 19: 404–413)

But, although there are many attempts in the literature to mathematically model
neural process and, in some measure, its dysfunction, for ideological reasons,
there is little actually available that places mental function within sociocultural,
socioeconomic and environmental context. What does exist is widely scattered, both
as peer-reviewed papers and individual chapters. This book brings the author’s work
in this direction into a single place and significantly extends it.

One central point is that a large class of cognitive processes can be approximated
in terms of information sources. This is because cognition involves active choice
of a response to impinging signals from a larger set of available alternatives.
Choice reduces uncertainty, in a formal manner, and reduction in uncertainty
implies the existence of an information source that we take as ‘dual’ to the
cognitive process. The asymptotic limit theorems of information and control
theories then impose themselves, allowing construction of necessary conditions
statistical models, roughly as the central limit theorem allows construction of least
squares regression models. While statistics is not science, statistical models permit
comparison of similar systems under different conditions and different systems
under similar conditions. To understate the case, iterating such comparisons can
be of great use in refining scientific inference based on observational or empirical
data.

A second central point is that, taking the perspective of Bennett and Feynman,
in spite of its mathematical form, information is not an entropy, but a kind
of free energy. Indeed, it is easy to construct an elegant little ideal machine
that converts the information within a message to useful work. It then becomes
possible to construct dynamic statistical models akin to Onsager’s treatment of
nonequilibrium thermodynamics, albeit without ‘reciprocity relations’ since most
information sources are not even locally reversible: palindromes are very rare.

The first chapter examines the primary mental experience—consciousness—
from an evolutionary perspective, recognizing the ubiquitous role played by the
exaptation of crosstalk between cognitive modules at many different scales and
levels of organization, in an explosion of parallel traits very similar to such examples
as the many different forms of wings for flight.

Chapter 2 explores the missing heritability of complex diseases, focusing on
‘cultural epigenetics’ as essential contributing ‘dark matter’, while Chapter 3 makes
the case that all forms of SMI are—necessarily and inherently—‘culture-bound
syndromes’. Chapter 4 introduces control theory tools to explore the environmental
induction of neurodevelopmental disorders, in a large sense, and Chapter 5 con-
tinues with a study of the synergism between culture, psychopathology and sleep
disorders.

Chapter 6 reexamines function and dysfunction from the perspective of embod-
iment. Chapter 7 introduces ‘hidden symmetry’ methods that should be useful in
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future studies of this nature. Chapters 8 and 9 use perspectives developed from
computational psychiatry to examine failure modes of autonomous vehicle and
autonomous/centaur weapon systems, emerging as de facto ‘psychopathologies’
of automata. Chapter 10 applies approaches from evolutionary economics to the
self-referential dynamics of environmental insult, finding ratchet dynamics that can
trigger increase or decline in factors producing developmental and cognitive dys-
function. The final chapter examines ‘the madness of crowds’ from the perspective
of recent US security doctrine.

The chapters can be read separately according to interest; hence there is some
considerable repetition of methodology between them, but many mathematical
details have been collected into a general appendix.

Contrary, perhaps, to current expectations, it appears that the level of mathe-
matics needed to address cognitive function and dysfunction in full context rivals,
and likely exceeds, the norms of general relativity, high-energy particle physics,
theoretical chemistry, and string theory.
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Two poems by Alfonz Wallace

WARNING

Look into his mind, and then
Never dare to look again;
For, in all that we might see,
There is much of you and me.

BLACK NARCISSUS

Of all night’s strange inhabitants,
The creature I fear worst
Never betrays the countenance
That makes my sleep accursed.

I flee and search, finding no place
His dark shape will not find,
Who lives in my own body’s space
And borrows my own mind.
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Chapter 1
Consciousness, Crosstalk, and the Mereological
Fallacy

Nothing in biology makes sense except in light of evolution.
– T. Dobzhansky

Summary The cross-sectional decontextualization afflicting contemporary
neuroscience—attributing to “the brain” what is the province of the whole
individual—is mirrored by an evolutionary decontextualization exceptionalizing
consciousness. The living state is characterized by cognitive processes at all
scales and levels of organization. Many can be associated with dual information
sources that “speak” a “language” of behavior-in-context. Shifting, tunable, global
broadcasts analogous to consciousness, albeit far slower—wound healing, tumor
control, immune function, gene expression, etc.—have emerged through repeated
evolutionary exaptation of the crosstalk and noise inherent to all information
transmission. These broadcasts recruit “unconscious” cognitive modules into
shifting arrays as needed to meet the threats and opportunities that confront all
organisms across multiple frames of reference. The development is straightforward,
based on the powerful necessary conditions imposed by the asymptotic limit
theorems of communication theory, in the same sense that the Central Limit
Theorem constrains sums of stochastic variates. Recognition of information as
a form of free energy instantiated by physical processes that consume free energy
permits analogs to phase transition and nonequilibrium thermodynamic arguments,
leading to “dynamic regression models” useful for data analysis.

1.1 Introduction

The neuroscientist Max Bennett and the philosopher Peter Hacker characterize
contemporary neuroscience, and particularly consciousness studies, as fatally con-
taminated by a decontextualization that attributes to “the brain” functions and
dynamics inherent to the whole individual, what they call the “mereological fallacy”
(Bennett and Hacker 2003). It is possible, with some formal overhead, to evade
this version of the fallacy by erecting a more comprehensive scientific structure
that embeds the shifting, tunable global neural broadcasts of individual animal
consciousness (e.g., Baars 1988, 2005) within a nested hierarchy of cross-sectional
physiological and sociocultural phenomena (e.g., Wallace 2005, 2007; Wallace and
Fullilove 2008; Wallace and Wallace 2013).

© Springer International Publishing AG 2017
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2 1 Consciousness, Crosstalk, and the Mereological Fallacy

Unfortunately, another fatal manifestation of the fallacy is unaddressed. There
remains the longitudinal decontextualization of consciousness from the body of evo-
lutionary theory that is the foundation of contemporary biology. Was consciousness,
then, sprung Athena-like and full-armed from the brow of an adaptationist Zeus
some 500 million years ago? A rather different kind of “just so” story is needed
that recognizes the necessary conditions imposed by the asymptotic limit theorems
of communication theory on all biological and ecological processes involving the
production and transmission of information.

Recall that information sources produce, and channels transmit, information,
and that transmission and production are constrained by the Shannon Coding,
the Shannon–McMillan Source Coding, and the Rate Distortion Theorems (e.g.,
Khinchin 1957; Ash 1990; Cover and Thomas 2006; Shannon 1959). These are
as confining as the Central Limit Theorem is for sums of independent stochastic
variates, as the Martingale Theorem is for repeated games of chance, and as the
Ergodic Theorem is in converging time averages to cross-sectional means for a
broad class of probabilistic phenomena.

Indeed, parallel to the neuroscience and philosophy debate is what Adams (2003)
calls “the informational turn in philosophy”—explicit application of communication
theory formalism and concepts to “purposive behavior, learning, pattern recognition,
and. . . the naturalization of mind and meaning.” One of the first comprehensive
attempts was that of Dretske (1981, 1988, 1992, 1993, 1994), whose work Adams
describes:

It is not uncommon to think that information is a commodity generated by things with
minds. Let’s say that a naturalized account puts matters the other way around, viz.
it says that minds are things that come into being by purely natural causal means of
exploiting the information in their environments. This is the approach of Dretske as he
tried consciously to unite the cognitive sciences around the well-understood mathematical
theory of communication. . .

Dretske himself (1994) writes:

Communication theory can be interpreted as telling one something important about the
conditions that are needed for the transmission of information as ordinarily understood,
about what it takes for the transmission of semantic information. This has tempted
people. . . to exploit [information theory] in semantic and cognitive studies, and thus in the
philosophy of mind.

. . . Unless there is a statistically reliable channel of communication between [a source
and a receiver]. . . no signal can carry semantic information. . . [thus] the channel over
which the [semantic] signal arrives [must satisfy] the appropriate statistical constraints of
communication theory.

It is fruitful to redirect attention from the informational content or meaning of
individual symbols—the province of semantics which so concerned Dretske—back
to the statistical properties of long, internally structured strings of signals emitted
by an information source that is “dual” in a certain formal manner to a cognitive
process. Application of a variety of tools adapted from statistical physics produces
a dynamically tunable punctuation or phase transition coupling interacting cognitive
modules in a highly natural way.
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As Dretske so clearly saw, this approach allows scientific inference on the
necessary conditions for cognition, greatly illuminating formal models of con-
sciousness and other processes within and across organisms without raising the
eighth Century ghosts of noisy, distorted mechanical clocks inherent to dynamic
systems theory. The technique permits extension far beyond what is possible
from statistical mechanics treatments of neural networks. In essence, the method
broadly recapitulates the General Linear Model (GLM) for independent or simple
serially correlated observations, but on the far more complex behaviors of an
interacting assembly of information sources, using the Shannon Coding, Shannon–
McMillan Source Coding, and Rate Distortion Theorems rather than the Central
Limit Theorem.

Later chapters will explore the implications of the Data Rate Theorem that links
control and information theories.

Wallace (2010) has examined the central role of information transmission
constraints in evolutionary process, but, going in the opposite direction, this analysis
will show how the inherent “flaws” of noise and crosstalk provide hooks for
exaptations, in the sense of Gould (2002), that enabled evolution of a broad spectrum
of tunable physiological global broadcasts, of which consciousness is merely a late,
if remarkably rapid, example.

The next sections provide case histories of phenomena that recruit underlying
sets of cognitive processes—“unconscious” modules—into a larger whole, includ-
ing the Baars model of consciousness itself. The various examples are, however,
much in the spirit of Maturana and Varela (1980, 1992) who long ago understood
the central role that cognition must play in biological phenomena.

1.2 Some Cognitive Global Broadcasts

Immune System

Atlan and Cohen (1998) have proposed an information-theoretic—and implicitly
global broadcast—cognitive model of immune function and process, a paradigm
incorporating cognitive pattern recognition-and-response behaviors that are cer-
tainly analogous to, but much slower than, those of the later-evolved central nervous
system.

From the Atlan/Cohen perspective, the meaning of an antigen can be reduced
to the type of response the antigen generates. That is, the meaning of an antigen
is functionally defined by the response of the immune system. The meaning of an
antigen to the system is discernible in the type of immune response produced, not
merely whether or not the antigen is perceived by the receptor repertoire. Because
the meaning is defined by the type of response there is indeed a response repertoire
and not only a receptor repertoire.
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To account for immune interpretation, Cohen (1992, 2000) has reformulated
the cognitive paradigm for the immune system. The immune system can respond
to a given antigen in various ways, it has “options.” Thus the particular response
observed is the outcome of internal processes of weighing and integrating informa-
tion about the antigen.

In contrast to Burnet’s view of the immune response as a simple reflex, it is
seen to exercise cognition by the interpolation of a level of information processing
between the antigen stimulus and the immune response. A cognitive immune system
organizes the information borne by the antigen stimulus within a given context and
creates a format suitable for internal processing; the antigen and its context are
transcribed internally into the “chemical language” of the immune system.

The cognitive paradigm suggests a language metaphor to describe immune
communication by a string of chemical signals. This metaphor is apt because the
human and immune languages can be seen to manifest several similarities such as
syntax and abstraction. Syntax, for example, enhances both linguistic and immune
meaning.

Although individual words and even letters can have their own meanings, an
unconnected subject or an unconnected predicate will tend to mean less than does
the sentence generated by their connection.

The immune system creates a “language” by linking two ontogenetically
different classes of molecules in a syntactical fashion. One class of molecules
are the T and B cell receptors for antigens. These molecules are not inherited,
but are somatically generated in each individual. The other class of molecules
responsible for internal information processing is encoded in the individual’s
germline.

Meaning, the chosen type of immune response, is the outcome of the concrete
connection between the antigen subject and the germline predicate signals.

The transcription of the antigens into processed peptides embedded in a context
of germline ancillary signals constitutes the functional language of the immune
system. Despite the logic of clonal selection, the immune system does not respond
to antigens as they are, but to abstractions of antigens-in-context, and does so in a
dynamic manner across many tissue—global broadcasts.

Tumor Control

Nunney (1999) has explored cancer occurrence as a function of animal size,
suggesting that in larger animals, whose lifespan grows as about the 4/10 power of
their cell count, prevention of cancer in rapidly proliferating tissues becomes more
difficult in proportion to size. Cancer control requires the development of additional
mechanisms and systems to address tumorigenesis as body size increases—a
synergistic effect of cell number and organism longevity. Nunney concludes that
this pattern may represent a real barrier to the evolution of large, long-lived animals
and predicts that those that do evolve have recruited additional controls over those
of smaller animals to prevent cancer.
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In particular, different tissues may have evolved markedly different tumor control
strategies. All of these, however, are likely to be energetically expensive, permeated
with different complex signaling strategies, and subject to a multiplicity of reactions
to signals, including those related to psychosocial stress. Forlenza and Baum (2000)
explore the effects of stress on the full spectrum of tumor control, ranging from
DNA damage and control, to apoptosis, immune surveillance, and mutation rate.
R. Wallace et al. (2003) argue that this elaborate tumor control strategy, in large
animals, must be at least as cognitive as the immune system itself, one of its
principal components: some comparison must be made with an internal picture of
a healthy cell, and a choice made as to response, i.e., none, attempt DNA repair,
trigger programmed cell death, engage in full-blown immune attack. This is, from
the Atlan/Cohen perspective, the essence of cognition, and clearly involves the
recruitment of a comprehensive set of cognitive subprocesses into a larger, highly
tunable, dynamic structure.

Wound Healing

Following closely Mindwood et al. (2004), mammalian tissue repair is a series
of overlapping events that begins immediately after wounding, as in Fig. 1.1
(Haggstrom 2012).

Platelet aggregation forms a hemostatic plug and blood coagulation forms the
provisional matrix. This dense cross-linked network of fibrin and fibronectin from
blood acts to prevent excessive blood loss. Platelets release growth factors and
adhesive proteins that stimulate the inflammatory response, entraining immune
function, and inducing cell migration into the wound using the provisional matrix as
a substrate. Wound cleaning is done by neutrophils, solubilizing debris, and mono-
cytes that differentiate into macrophages and phagocytose debris. The macrophages
release growth factors and cytokines that activate subsequent events. For cutaneous
wounds, keratinocytes migrate across the area to reestablish the epithelial barrier.
Fibroblasts then enter the wound to replace the provisional matrix with granulation
tissue composed of fibronectin and collagen. As endothelial cells revascularize
the damaged area, fibroblasts differentiate into myofibroblasts and contract the

Fig. 1.1 Stages of wound healing on a logarithmic timescale, after Haggstrom (2012). Multiple
subprocesses are recruited to the wound site in sequence, a global broadcast of cognitive
phenomena slower, but no less sophisticated, than animal consciousness
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matrix to bring the margins of the wound together. The resident cells then undergo
apoptosis, leaving collagen-rich scar tissue that is slowly remodeled in the following
months. Wound healing, then, provides an ancient example of a global broadcast that
recruits a set of cognitive processes, in the sense of Atlan and Cohen (1998). The
mechanism, which may vary across taxa, is inherently tunable, addressing the signal
of “excessive distortion” represented by a wound.

Gene Expression

A cognitive paradigm for gene expression has emerged, a model in which contextual
factors determine the behavior of what must be characterized as a “reactive system,”
not at all a deterministic—or even simple stochastic—mechanical process (Cohen
2006; Cohen and Harel 2007; Wallace and Wallace 2008, 2009, 2010).

O’Nuallain (2008) puts gene expression directly in the realm of complex
linguistic behavior, for which context imposes meaning. He claims that the analogy
between gene expression and language production is useful both as a fruitful
research paradigm and also, given the relative lack of success of natural language
processing by computer, as a cautionary tale for molecular biology. A relatively
simple model of cognitive process as an information source permits use of Dretske’s
(1994) insight that any cognitive phenomenon must be constrained by the limit
theorems of information theory, in the same sense that sums of stochastic variables
are constrained by the Central Limit Theorem. This perspective permits a new
formal approach to gene expression and its dysfunctions, in particular suggesting
new and powerful statistical tools for data analysis that could contribute to exploring
both ontology and its pathologies. Wallace and Wallace (2009, 2010) apply the
perspective, respectively, to infectious and chronic disease.

This approach is consistent with the broad context of epigenetics and epigenetic
epidemiology. Jablonka and Lamb (1995, 1998), for example, argue that informa-
tion can be transmitted from one generation to the next in ways other than through
the base sequence of DNA. It can be transmitted through cultural and behavioral
means in higher animals, and by epigenetic means in cell lineages. All of these
transmission systems allow the inheritance of environmentally induced variation.
Such Epigenetic Inheritance Systems are the memory systems that enable somatic
cells of different phenotypes but identical genotypes to transmit their phenotypes to
their descendants, even when the stimuli that originally induced these phenotypes
are no longer present.

After much research and debate, this epigenetic perspective has received much
empirical confirmation (e.g., Backdahl et al. 2009; Turner 2000; Jaenisch and Bird
2003; Jablonka 2004).

Foley et al. (2009) argue that epimutation is estimated to be 100 times more
frequent than genetic mutation and may occur randomly or in response to the
environment. Periods of rapid cell division and epigenetic remodeling are likely to
be most sensitive to stochastic or environmentally mediated epimutation. Disruption
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of epigenetic profile is a feature of most cancers and is speculated to play a role
in the etiology of other complex diseases including asthma, allergy, obesity, type
2 diabetes, coronary heart disease, autism spectrum and bipolar disorders, and
schizophrenia.

Scherrer and Jost (2007a,b) explicitly invoke information theory in their exten-
sion of the definition of the gene to include the local epigenetic machinery, a
construct they term the “genon.” Their central point is that coding information is
not simply contained in the coded sequence, but is, in their terms, provided by the
genon that accompanies it on the expression pathway and controls in which peptide
it will end up. In their view the information that counts is not about the identity of
a nucleotide or an amino acid derived from it, but about the relative frequency of
the transcription and generation of a particular type of coding sequence that then
contributes to the determination of the types and numbers of functional products
derived from the DNA coding region under consideration.

The genon, as Scherrer and Jost describe it, is precisely a localized form of
global broadcast linking cognitive regulatory modules to direct gene expression in
producing the great variety of tissues, organs, and their linkages that comprise a
living entity.

The proper formal tools for understanding phenomena that “provide”
information—that are information sources—are the Rate Distortion Theorem and
its zero error limit, the Shannon–McMillan Theorem.

Sociocultural Cognition

Humans are particularly noted for a hypersociality that inevitably enmeshes us
all in group decisions and collective cognitive behavior within a social network,
tinged by an embedding shared culture. For humans, culture is truly fundamental.
Durham (1991), Richerson and Boyd (2006), Jablonka and Lamb (1995), and many
others argue that genes and culture are two distinct but interacting systems of
inheritance within human populations. Information of both kinds has influence,
actual or potential, over behaviors, creating a real and unambiguous symmetry
between genes and phenotypes on the one hand, and culture and phenotypes on
the other. Genes and culture are best represented as two parallel lines or tracks of
hereditary influence on phenotypes.

Much of hominid evolution can be characterized as an interweaving of genetic
and cultural systems. Genes came to encode for increasing hypersociality, learning,
and language skills. The most successful populations displayed increasingly com-
plex structures that better aided in buffering the local environment (e.g., Bonner
1980).

Successful human populations seem to have a core of tool usage, sophisticated
language, oral tradition, mythology, music, and decision-making skills focused on
relatively small family/extended family social network groupings. More complex
social structures are built on the periphery of this basic object (e.g., Richerson
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and Boyd 2006). The human species’ very identity may rest on its unique evolved
capacities for social mediation and cultural transmission. These are particularly
expressed through the cognitive decision making of small groups facing changing
patterns of threat and opportunity, processes in which we are all embedded and all
participate.

The emergent cognitive behavior of organizations has, in fact, long been explored
under the label “distributed cognition.” As Hollan et al. (2000) describe,

The theory of distributed cognition, like any cognitive theory, seeks to understand the
organization of cognitive systems. Unlike traditional theories, however, it extends the reach
of what is considered cognitive beyond the individual to encompass interactions between
people and with resources and materials in the environment. It is important from the outset
to understand that distributed cognition refers to a perspective on all of cognition, rather
than a particular kind of cognition. . . Distributed cognition looks for cognitive processes,
wherever they may occur, on the basis of the functional relationships of elements that
participate together in the process. A process is not cognitive simply because it happens in
a brain, nor is a process noncognitive simply because it happens in the interactions between
many brains. . . In distributed cognition one expects to find a system that can dynamically
configure itself to bring subsystems into coordination to accomplish various functions.

Wallace and Fullilove (2008) apply several of the formal models explored below
to institutions and other social structures, and Wallace (2006, 2008, 2009, 2010,
2017) uses them to analyze canonical and idiosyncratic failure modes of massively
parallel real-time computing systems.

1.3 Animal Consciousness

Sergent and Dehaene (2004) describe the context surrounding consciousness studies
as follows:

[A growing body of empirical work shows] large all-or-none changes in neural activity
when a stimulus fails to be [consciously] reported as compared to when it is reported. . . [A]
qualitative difference between unconscious and conscious processing is generally expected
by theories that view recurrent interactions between distant brain areas as a necessary
condition for conscious perception. . . One of these theories [that of Bernard Baars] has
proposed that consciousness is associated with the interconnection of multiple areas
processing a stimulus by a [dynamic] “neuronal workspace” within which recurrent
connections allow long-distance communication and auto-amplification of the activation.
Neuronal network simulations. . . suggest the existence of a fluctuating dynamic threshold.
If the primary activation evoked by a stimulus exceeds this threshold, reverberation
takes place and stimulus information gains access, through the workspace, to a broad
range of [other brain] areas allowing, among other processes, verbal report, voluntary
manipulation, voluntary action and long-term memorization. Below this threshold, however,
stimulus information remains unavailable to these processes. Thus the global neuronal
workspace theory predicts an all-or-nothing transition between conscious and unconscious
perception. . . More generally, many non-linear dynamical systems with self-amplification
are characterized by the presence of discontinuous transitions in internal state. . .
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Thus Bernard Baars’ global workspace model of animal consciousness sees the
phenomenon as a dynamic array of unconscious cognitive modules that unite to
become a global broadcast having a tunable perception threshold not unlike a theater
spotlight, but whose range of attention is constrained by embedding contexts (Baars
1988, 2005). Baars and Franklin (2003) describe these matters as follows:

1. The brain can be viewed as a collection of distributed specialized networks (processors).
2. Consciousness is associated with a global workspace in the brain – a fleeting memory

capacity whose focal contents are widely distributed—“broadcast”—to many uncon-
scious specialized networks.

3. Conversely, a global workspace can also serve to integrate many competing and
cooperating input networks.

4. Some unconscious networks, called contexts, shape conscious contents, for example,
unconscious parietal maps modulate visual feature cells that underlie the perception of
color in the ventral stream.

5. Such contexts work together jointly to constrain conscious events.
6. Motives and emotions can be viewed as goal contexts.
7. Executive functions work as hierarchies of goal contexts.

The basic mechanism emerges from a relatively simple application of the
asymptotic limit theorems of information theory, once a broad range of uncon-
scious cognitive processes is recognized as inherently characterized by information
sources—generalized languages (Wallace 2000, 2005, 2007). This permits mapping
physiological unconscious cognitive modules onto an abstract network of inter-
acting information sources, allowing a simplified mathematical attack that, in the
presence of sufficient linkage—crosstalk, permits rapid, shifting, global broadcasts
in response to sufficiently large impinging signals. The topology of that broadcast is
tunable, depending on the spectrum of distortion measure and other limits imposed
on the system of interest.

While the mathematical description of consciousness is itself relatively simple,
the evolutionary trajectories leading to its emergence seem otherwise. Here we
argue that this is not the case, and that physical restrictions on the availability of
metabolic free energy provide sufficient conditions for the emergence, not only of
consciousness, but also of a spectrum of analogous “global” broadcast phenomena
acting across a variety of biological scales of space, time, and levels of organization.

The argument is, in a sense, an inversion of Gould and Lewontin’s (1979) famous
essay “The Spandrels of San Marco and the Panglossian Paradigm: A Critique
of the Adaptationist Programme.” Spandrels are the triangular sectors of the
intersecting arches that support a cathedral roof—simple byproducts of the need
for arches—and their occurrence is in no way fundamental to the construction
of a cathedral. Crosstalk between “low level” cognitive biological modules is a
similar inessential by product that evolutionary process has exapted to construct the
dynamic global broadcasts of consciousness and a spectrum of roughly analogous
physiological phenomena: Evolution built many new arches from a single spandrel.

A formal overview, much like Onsager’s nonequilibrium thermodynamics, leads
to dynamic “regression models” that should be useful for data analysis.
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1.4 Cognition as “Language”

Atlan and Cohen (1998) argue above, in the context of the immune system, that
cognitive function involves comparison of a perceived signal with an internal,
learned or inherited picture of the world, and then choice of one response from a
much larger repertoire of possible responses. That is, cognitive pattern recognition-
and-response proceeds by an algorithmic combination of an incoming external
sensory signal with an internal ongoing activity—incorporating the internalized
picture of the world—and triggering an appropriate action based on a decision that
the pattern of sensory activity requires a response.

Incoming sensory input is thus mixed in an unspecified but systematic manner
with a pattern of internal ongoing activity to create a path of combined signals x D
.a0; a1; : : : ; an; : : :/. Each ak thus represents some functional composition of the
internal and the external. An application of this perspective to a standard neural
network is given in Wallace (2005, p. 34).

This path is fed into a similarly unspecified, decision function, h, generating an
output h.x/ that is an element of one of two disjoint sets B0 and B1 of possible
system responses. Let

B0 � fb0; : : : ; bkg;
B1 � fbkC1; : : : ; bmg:

Assume a graded response, supposing that if

h.x/ 2 B0;

the pattern is not recognized, and if

h.x/ 2 B1;

the pattern is recognized, and some action bj; k C 1 � j � m takes place.
Formal interest focuses on paths x triggering pattern recognition-and-response:

given a fixed initial state a0, examine all possible subsequent paths x beginning with
a0 and leading to the event h.x/ 2 B1. Thus h.a0; : : : ; aj/ 2 B0 for all 0 � j < m,
but h.a0; : : : ; am/ 2 B1.

For each positive integer n, let N.n/ be the number of high probability paths of
length n that begin with some particular a0 and lead to the condition h.x/ 2 B1.
Call such paths “meaningful,” assuming that N.n/ will be considerably less than the
number of all possible paths of length n leading from a0 to the condition h.x/ 2 B1.

Note that identification of the “alphabet” of the states aj; Bk may depend on
the proper system “coarse graining” in the sense of symbolic dynamics (Beck and
Schlogl 1995).

Combining algorithm, the form of the function h and the details of grammar and
syntax are all unspecified in this model. The assumption permitting inference on
necessary conditions constrained by the asymptotic limit theorems of information
theory is that the finite limit
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H � lim
n!1

logŒN.n/�

n
(1.1)

both exists and is independent of the path x.
Call such a pattern recognition-and-response cognitive process ergodic. Not all

cognitive processes are likely to be ergodic, implying that H, if it indeed exists at
all, is path dependent, although extension to nearly ergodic processes, in a certain
sense, seems possible (e.g., Wallace 2005, pp. 31–32).

Invoking the spirit of the Shannon–McMillan Theorem, it is possible to define
an adiabatically, piecewise stationary, ergodic information source X associated with
stochastic variates Xj having joint and conditional probabilities P.a0; : : : ; an/ and
P.anja0; : : : ; an�1/ such that appropriate joint and conditional Shannon uncertainties
satisfy the classic relations (Cover and Thomas 2006)

HŒX� D lim
n!1

logŒN.n/�

n
D lim

n!1 H.XnjX0; : : : ; Xn�1/ D lim
n!1

H.X0; : : : ; Xn/

n
:

(1.2)

This information source is defined as dual to the underlying ergodic cognitive
process, in the sense of Wallace (2000, 2005, 2007).

“Adiabatic” means that, when the information source is parameterized according
to some appropriate scheme, within continuous “pieces,” changes in parameter
values take place slowly enough so that the information source remains as close
to stationary and ergodic as needed to make the fundamental limit theorems work.
“Stationary” means that probabilities do not change in time, and “ergodic” (roughly)
that cross-sectional means converge to long-time averages. Between “pieces” one
invokes various kinds of phase change formalism, for example, renormalization
theory in cases where a mean field approximation holds (Wallace 2005), or variants
of random network theory where a mean number approximation is applied.

Extension of the theory to “nonergodic” information sources is possible, given
some considerable mathematical overhead, e.g., Wallace (2005, pp. 31–32).

Recall that the Shannon uncertainties H.: : :/ are cross-sectional law-of-large-
numbers sums of the form �Pk Pk logŒPk�, where the Pk constitute a probability
distribution. See Cover and Thomas (2006), Ash (1990), or Khinchin (1957) for the
standard details.

A formal equivalence class algebra can be constructed by choosing different
origin points, a0, and defining the equivalence of two states, am; an, by the existence
of high probability meaningful paths connecting them to the same origin point.
Disjoint partition by equivalence class, analogous to orbit equivalence classes for
dynamical systems, defines the vertices of a network of cognitive dual languages.
Each vertex then represents a different information source dual to a cognitive
process. This is not a representation of a neural network as such, or of some circuit
in silicon. It is, rather, an abstract set of “languages” dual to the set of cognitive
biological processes.

This structure generates a groupoid, leading to complicated algebraic properties
summarized in the Mathematical Appendix.
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1.5 No Free Lunch

Given a set of biological cognitive modules that become linked to solve a problem—
e.g., riding a bicycle in heavy traffic, followed by localized wound healing—the
famous “no free lunch” theorem of Wolpert and MacReady (1995, 1997) illuminates
the next step in the argument. As English (1996) states the matter,

. . . Wolpert and Macready. . . have established that there exists no generally superior [com-
putational] function optimizer. There is no “free lunch” in the sense that an optimizer “pays”
for superior performance on some functions with inferior performance on others. . . gains
and losses balance precisely, and all optimizers have identical average performance. . . [That
is] an optimizer has to “pay” for its superiority on one subset of functions with inferiority
on the complementary subset. . .

Another way of stating this conundrum is to say that a computed solution is
simply the product of the information processing of a problem, and, by a very
famous argument, information can never be gained simply by processing. Thus a
problem X is transmitted as a message by an information processing channel, Y , a
computing device, and recoded as an answer. By the “tuning theorem” argument
of the Mathematical Appendix, there will be a channel coding of Y which, when
properly tuned, is itself most efficiently “transmitted,” in a purely formal sense, by
the problem—the “message” X. In general, then, the most efficient coding of the
transmission channel, that is, the best algorithm turning a problem into a solution,
will necessarily be highly problem-specific. Thus there can be no best algorithm
for all sets of problems, although there will likely be an optimal algorithm for any
given set.

Indeed, something much like this result is well known, using another description.
Shannon (1959) wrote

There is a curious and provocative duality between the properties of [an information]
source with a distortion measure and those of a channel. This duality is enhanced if we
consider channels in which there is a cost associated with the different letters. . . Solving
this problem corresponds, in a sense, to finding a source that is right for the channel and
the desired cost. . . In a somewhat dual way, evaluating the rate distortion function for a
source. . . corresponds to finding a channel that is just right for the source and allowed
distortion level.

From the no free lunch argument, it is clear that different challenges facing an
entity must be met by different arrangements of cooperating “low level” cognitive
modules. It is possible to make a very abstract picture of this phenomenon, not based
on anatomy, but rather on the network of linkages between the information sources
dual to the physiological and learned unconscious cognitive modules (UCM). That
is, the remapped network of lower level cognitive modules is reexpressed in terms
of the information sources dual to the UCM. Given two distinct problems classes
(e.g., riding a bicycle vs. wound healing), there must be two different “wirings” of
the information sources dual to the available physiological UCM, as in Fig. 1.2, with
the network graph edges measured by the amount of information crosstalk between
sets of nodes representing the dual information sources. A more formal treatment
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Fig. 1.2 By the no free lunch theorem, two markedly different problems facing an organism
will be optimally solved by two different linkages of available lower level cognitive modules—
characterized now by their dual information sources Xj—into different temporary networks
of working structures, here represented by crosstalk among those sources rather than by the
physiological UCM themselves. The embedding information source Z represents the influence
of external signals whose effects can be at least formally accounted for by network information
theory

of such coupling can be given in terms of network information theory (Cover and
Thomas 2006), particularly incorporating the effects of embedding contexts, implied
by the “external” information source Z—signals from the environment.

The possible expansion of a closely linked set of information sources dual to the
UCM into a global broadcast—the occurrence of a kind of “spandrel”—depends, in
this model, on the underlying network topology of the dual information sources and
on the strength of the couplings between the individual components of that network.

For random networks the results are well known (Erdos and Renyi 1960).
Following the review by Spenser (2010) closely (see, e.g., Boccaletti et al. 2006,
for more detail), assume there are n network nodes and e edges connecting the
nodes, distributed with uniform probability—no nonrandom clustering. Let GŒn; e�

be the state when there are e edges. The central question is the typical behavior of
GŒn; e� as e changes from 0 to .n � 2/Š=2. The latter expression is the number of
possible pair contacts in a population having n individuals. Another way to say this
is to let G.n; p/ be the probability space over graphs on n vertices where each pair is
adjacent with independent probability p. The behaviors of GŒn; e� and G.n; p/ where
e D p.n � 2/Š=2 are asymptotically the same.

For the simple random case, parameterize as p D c=n. The graph with n=2 edges
then corresponds to c D 1. The essential finding is that the behavior of the random
network has three sections:
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1. If c < 1, all the linked subnetworks are very small, and no global broadcast can
take place.

2. If c D 1, there is a single large interlinked component of a size � n2=3.
3. If c > 1, then there is a single large component of size yn—a global broadcast—

where y is the positive solution to the equation

exp.�cy/ D 1 � y : (1.3)

Then

y D W.�c= exp.c// C c

c
; (1.4)

where W is the Lambert W function.
The solid line in Fig. 1.3 shows y as a function of c, representing the fraction

of network nodes that are incorporated into the interlinked giant component—a de-
facto global broadcast for interacting UCM. To the left of c D 1 there is no giant
component, and large-scale cognitive process is not possible.
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Fig. 1.3 Fraction of network nodes in the giant component as a function of the crosstalk coupling
parameter c. The solid line represents a random graph, the dotted line a star-of-stars-of-stars
network in which all nodes are interconnected, showing that the dynamics of giant component
emergence are highly dependent on an underlying network topology that, for UCM, may itself be
tunable. For the random graph, a strength of c < 1 precludes emergence of a larger-scale “global”
broadcast
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The dotted line, however, represents the fraction of nodes in the giant component
for a highly nonrandom network, a star-of-stars-of-stars (SoS) in which every node
is directly or indirectly connected with every other one. For such a topology there is
no threshold, only a single giant component, showing that the emergence of a giant
component in a network of information sources dual to the UCM is dependent on a
network topology that may itself be tunable. A generalization of this result follows
from an index theorem argument below.

1.6 Multiple Broadcasts, Punctuated Detection

The random network development above is predicated on there being a variable
average number of fixed-strength linkages between components. Clearly, the mutual
information measure of crosstalk is not inherently fixed, but can continuously
vary in magnitude. This suggests a parameterized renormalization. In essence, the
modular network structure linked by mutual information interactions has a topology
depending on the degree of interaction of interest.

Define an interaction parameter !, a real positive number, and look at geometric
structures defined in terms of linkages set to zero if mutual information is less than,
and “renormalized” to unity if greater than, !. Any given ! will define a regime of
giant components of network elements linked by mutual information greater than or
equal to it.

Now invert the argument: A given topology for the giant component will,
in turn, define some critical value, !C, so that network elements interacting by
mutual information less than that value will be unable to participate, i.e., will be
locked out and not be “consciously” perceived. Thus ! is a tunable, syntactically
dependent, detection limit that depends critically on the instantaneous topology of
the giant component of linked cognitive modules defining the global broadcast. That
topology is, fundamentally, the basic tunable syntactic filter across the underlying
modular structure, and variation in ! is the only one aspect of a much more
general topological shift. Further analysis can be given in terms of a topological
rate distortion manifold (Glazebrook and Wallace 2009a,b).

There is considerable empirical evidence from fMRI brain imaging and many
other experiments to show that individual animal consciousness—restricted by
necessity of a time constant near 100 ms—involves a single, shifting and tunable,
global broadcast, a matter leading to the phenomenon of inattentional blindness.
Multiple cognitive submodules within systems not constrained to the 100 ms time
range, for example, institutions—individuals, departments, formal and informal
workgroups—by contrast, can do more than one thing, and indeed, are usually
required to multitask. Clearly, then, multiple global broadcasts—indexed by a set
˝ D f!1; : : : ; !ng—lessen the probability of inattentional blindness, if there is
time to support them, but do not eliminate it, and introduce critical failure modes
related to the degradation of information transmitted between global broadcasts.
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Thus ˝ represents a set of crosstalk information measures between cognitive
submodules, each associated with its own tunable giant component having its own
special topology.

Again, although animal consciousness, with its 100 ms time constant, seems
restricted to a single tunable global broadcast, it is clear that slower physiological
global broadcast analogs would permit individual subsystems, or localized sets of
such subsystems, to engage in more than one global broadcast at a time, to multitask,
in the same sense that workgroups within an institution will usually be given more
than one task at a time. Thus the immune system can be expected to simultaneously
engage in wound healing, attack on invading microorganisms, neuroimmuno dialog,
and routine tissue maintenance tasks (Cohen 2000).

1.7 Metabolic Constraints

The information sources dual to the linked unconscious cognitive modules repre-
sented in Fig. 1.2 are not independent, but are correlated, so that a joint information
source can be defined having the properties

H.X1; : : : ; Xn/ �
nX

jD1

H.Xj/ (1.5)

This is the information chain rule (e.g., Cover and Thomas 2006), and has
profound implications. Feynman (2000) describes in great detail how information
and free energy have an inherent duality. Feynman, in fact, defines information
precisely as the free energy needed to erase a message. The argument is surprisingly
direct (e.g., Bennett 1988), and for very simple systems it is easy to design a
small (idealized) machine that turns the information within a message directly into
usable work—free energy. Information is a form of free energy and the construction
and transmission of information within living things—the physical instantiation
of information—consumes metabolic free energy, with inevitable and considerable
losses via the second law of thermodynamics.

Suppose an intensity of metabolic free energy is associated with each information
source H.X; Y/; H.X/; H.Y/, e.g., rates MX;Y ; MX; MY .

Although information is a form of free energy, in the sense of Feynman (2000)
and Bennett (1988), there is a massive entropic loss in its physical expression, so
that the probability distribution of a source uncertainty H can be written as

PŒH� D expŒ�H=�M�
R

expŒ�H=�M�dH
(1.6)

assuming � is very small.
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To first order,

OH D
Z

HPŒH�dH � �M (1.7)

and, using Eq. (1.5),

OH.X; Y/ � OH.X/ C OH.Y/

MX;Y � MX C MY (1.8)

Thus, as a consequence of the information chain rule, allowing crosstalk
consumes a lower rate of metabolic free energy than isolating information sources.
A more detailed calculation is given in Sect. 11.3 of the Mathematical Appendix.
That is, in general, it takes more metabolic free energy to isolate a set of cognitive
phenomena than it does to allow them to engage in crosstalk, a signal interaction
that, under typical electrical engineering circumstances, grows as the inverse square
of the separation between circuits. This is a well-known problem in electrical
engineering that can consume considerable attention and other resources for proper
address.

The global broadcast mechanisms of consciousness and its slower physiological
generalizations make an arch of this spandrel, using the lowered metabolic free
energy requirement of crosstalk interaction between low level cognitive modules as
the springboard for launching (sometimes) rapid, tunable, more highly correlated,
multiple global broadcasts that link those modules to solve problems.

1.8 Environmental Signals

Lower level cognitive modules operate within larger, highly structured, environmen-
tal signals and other constraints whose regularities may also have a recognizable
grammar and syntax, represented in Fig. 1.2 by an embedding information source Z.
Under such a circumstance the splitting criterion for three jointly typical sequences
is given by the classic relation of network information theory (Cover and Thomas
2006, Theorem 15.2.3)

I.X1; X2jZ/ D H.Z/ C H.X1jZ/ C H.X2jZ/ � H.X1; X2; Z/; (1.9)

that generalizes as

I.X1; : : : ; XnjZ/ D H.Z/ C
nX

jD1

H.XjjZ/ � H.X1; : : : ; Xn; Z/ (1.10)
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More complicated multivariate typical sequences are treated much the same (e.g.,
El Gamal and Kim 2010, pp. 2–26). Given a basic set of interacting information
sources .X1; : : : ; Xk/ that one partitions into two ordered sets X.J / and X.J 0/,
then the splitting criterion becomes HŒX.J jJ 0/�. Extension to a greater number
of ordered sets is straightforward.

Then the joint splitting criterion—I; H above—however it may be expressed as
a composite of the underlying information sources and their interactions, satisfies
a relation like the first expression in Eq. (1.2), where N.n/ is the number of high
probability jointly typical paths of length n, and the theory carries through, now
incorporating the effects of external signals as the information source Z.

1.9 Dynamic “Regression Models”

Given the splitting criteria I.X1; : : : ; XnjZ/ or HŒX.J jJ 0/� as above, the essential
point is that these are the limit, for large n, of the expression logŒN.n/�=n, where
N.n/ is the number of jointly typical high probability paths of the interacting
information sources of length n. Again, as Feynman (2000) argues at great length,
information is simply another form of free energy, and its dynamics can be expressed
using a formalism similar to Onsager’s nonequilibrium thermodynamics (de Groot
and Mazur 1984). This is particularly apt in view of the enormous levels of free
energy needed to physically instantiate information transmission.

First, the physical model. Let F.K/ be the free energy density of a physical
system, K the normalized temperature, V the volume, and Z.K; V/ the partition
function defined from the Hamiltonian characterizing energy states Ei. Then

Z.V; K/ �
X

i

expŒ�Ei.V/=K� � expŒF=K� (1.11)

so that

F.K/ D lim
V!1 �K

logŒZ.V; K//

V
� logŒ OZ.K; V/�

V
:

If a nonequilibrium physical system is parameterized by a set of variables fKig,
then the empirical Onsager equations are defined in terms of the gradient of the
entropy S � F �P

j KjdF=dKj—the Legendre transform of F—as

dKj=dt D
X

i

Li;j@S=@Ki (1.12)

where the Li;j are empirical constants. For a physical system having microreversibil-
ity, Li;j D Lj;i. For an information source where, for example, “the” has a much
different probability than “eht,” no such microreversibility is possible, and no
“reciprocity relations” can apply.
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For stochastic systems this generalizes to the set of stochastic differential
equations

dKj
t D

X

i

ŒLj;i.t; : : : @S=@Ki : : :/dt C �j;i.t; : : : @S=@Ki/dBi
t�

D L.t; K1; : : : ; Kn/dt C
X

i

�.t; K1; : : : ; Kn/dBi
t (1.13)

where terms have been collected and expressed in the driving parameters. The dBi
t

represent different kinds of “noise” whose characteristics are usually expressed by
their quadratic variation. See any standard text for definitions, examples, and details
(e.g., Protter 1990).

For the splitting criteria I.X1; : : : ; XnjZ/ or HŒX.J jJ 0/�, the role of information
as a form of free energy and the corresponding limit in logŒN.n/�=n make it possible
to define entropy-analogs as

S � I.: : : Ki : : :/ �
X

j

Kj@I=@Kj;

S � HŒX.J jJ 0/� �
X

j

Kj@HŒX.J jJ 0/�=@Kj;

S / MJ jJ 0 �
X

j

Kj@MJ jJ 0=@Kj (1.14)

where the last relation invokes the embedding metabolic free energies that instanti-
ate the actual mechanisms by which information is transmitted.

The basic dynamic “regression equations” for the system of Figs. 1.2 and 1.3,
driven by a set of external “sensory” and other, internal, signal parameters K D
.K1; : : : ; Kn/ that may be measured by the information source uncertainty of other
information sources, are then precisely the set of Eq. (1.13) above.

That is, the underlying picture becomes reversed, and the actual driving
metabolic free energy measures MX are now seen as indexed by the source
uncertainties HŒX�. The different MX become each others’ embedding environments
in an analog to coevolutionary dynamics.

Several features emerge directly from invoking such a coevolutionary
approach.

1. Setting the expectation of Eq. (1.13) equal to zero and solving for stationary
points gives attractor states since the noise terms preclude unstable equilibria.

2. This system may converge to limit cycle or pseudorandom “strange attractor”
behaviors in which the system seems to chase its tail endlessly within a limited
venue—a kind of “Red Queen” pathology.

3. What is converged to in both cases is not a simple state or limit cycle of states.
Rather it is an equivalence class, or set of them, of highly dynamic information
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sources coupled by mutual interaction through crosstalk. Thus “stability” in this
structure represents particular patterns of ongoing dynamics rather than some
identifiable static configuration.

This represents a highly recursive phenomenological set of stochastic differential
equations (Zhu et al. 2007), but operates in a dynamic rather than static manner. The
objects of this dynamical system are equivalence classes of information sources,
rather than simple “stationary states” of a dynamical or reactive chemical system.
The necessary conditions of the asymptotic limit theorems of communication theory
have beaten the mathematical thicket back one layer.

Third, as Champagnet et al. (2006) note, shifts between the quasi-equilibria
of a coevolutionary system can be addressed by the large deviations formalism.
The issue of dynamics drifting away from trajectories predicted by the canonical
equation can be investigated by considering the asymptotic of the probability of
“rare events” for the sample paths of the diffusion.

“Rare events” are the diffusion paths drifting far away from the direct solutions
of the canonical equation. The probability of such rare events is governed by a
large deviation principle: when a critical parameter (designated �) goes to zero,
the probability that the sample path of the diffusion is close to a given rare path
� decreases exponentially to 0 with rate I.�/, where the “rate function” I can be
expressed in terms of the parameters of the diffusion.

This result can be used to study long-time behavior of the diffusion process
when there are multiple attractive singularities. Under proper conditions the most
likely path followed by the diffusion when exiting a basin of attraction is the one
minimizing the rate function I over all the appropriate trajectories. The time needed
to exit the basin is of the order exp.V=�/ where V is a quasi-potential representing
the minimum of the rate function I over all possible trajectories.

An essential fact of large deviations theory is that the rate function I that
Champagnat et al. invoke can be expressed as a kind of formal entropy measure,
that is, having the canonical form

I D �
X

j

Pj log.Pj/ (1.15)

for some probability distribution. This result goes under a number of names: Sanov’s
Theorem, Cramer’s Theorem, the Gartner–Ellis Theorem, the Shannon–McMillan
Theorem, and so forth (Dembo and Zeitouni 1998).

These arguments are very much in the direction of Eq. (1.13), now seen as
subject to internally driven large deviations that can themselves be described as
information sources, providing K D f .I/-parameters that can trigger punctuated
shifts between quasi-stable modes. Thus both external signals, characterized by the
information source Z, and internal “ruminations,” characterized by an information
source I, can provide K-parameters that serve to drive the system to different quasi-
equilibrium “conscious attention states” in a highly punctuated manner, if they are
of sufficient magnitude to overcome the topological renormalization !-constraints
described in Sect. 1.6.
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Fig. 1.4 Adapted from Fig. 1 of Kitano (2004). Using a two-dimensional schematic, different
basins of attraction in parameter space show system response to perturbation. (A) Return to a
periodic (or chaotic) attractor. (B) Transition to a new attractor. (C) Stochastic process or external
information source I influences the trajectory. (D) Return to a point attractor. (E) Unstable random
walk to another basin of attraction. Compare with Fig. 1.2 which represents the different network
topologies of the dual information sources that underlie the parameterization

A schematic of these ideas has become common currency in systems biology,
and Fig. 1.4, adapted from Fig. 1 of Kitano (2004), provides a caricature, including
several possible modes. Taking a two-dimensional parameterization, so that there
are two Kj, different basins of attraction in parameter space show system response
to perturbation: (A) Return to a periodic (or chaotic) attractor. (B) Transition to a
new attractor. (C) Stochastic process or external information source I influences
the trajectory. (D) Return to a point attractor. (E) An unstable random walk to
another basin of attraction. This should be compared with Fig. 1.2 that represents
two of the different network topologies of the dual information sources behind the
parameterization.

Figure 1.4 then presents, in parameter space, several of the different “no free
lunch” arrangements of unconscious cognitive modules, as in Fig. 1.2, that unite to
address problems facing the organism.

More generally, however, following the topological arguments of Sect. 1.6,
setting the expectation of Eq. (1.13) to zero generates an index theorem (Hazewinkel
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2002), in the sense of Atiyah and Singer (1963). Such an object relates analytic
results—the solutions to the equations—to an underlying set of topological struc-
tures that are eigenmodes of a complicated ˝-network geometric operator whose
spectrum represents the possible multiple global broadcast states of the system. This
structure and its dynamics do not really have simple mechanical or electrical system
analogs.

Index theorems, in this context, instantiate relations between “conserved”
quantities—here, the quasi-equilibria of basins of attraction in parameter space—
and underlying topological form—here, the cognitive network conformations of
Fig. 1.2. Section 1.4, however, described how that network was itself defined in
terms of equivalence classes of meaningful paths that, in turn, defined groupoids, a
significant generalization of the group symmetries more familiar to physicists.

The approach, then, in a sense—via the groupoid construction—generalizes the
famous relation between group symmetries and conservation laws uncovered by E.
Noether that has become the central foundation of modern physics (Byers 1999).
Thus this work proposes a kind of Noetherian (NER-terian) statistical dynamics of
the living state. The saving grace of the method is that it represents the fitting of
dynamic regression-like statistical models based on the asymptotic limit theorems
of information theory to data, and does not presume to be a “real” picture of the
underlying systems and their time behaviors: biology is not relativity theory.

As with simple fitted regression equations, actual scientific inference is done
most often by comparing the same systems under different, and different systems
under the same, conditions. Statistics is not science, and one can easily imagine the
necessity of “nonparametric” or “non-Noetherian” models.

1.10 Phase Transition Approaches

Basic Ideas

Given sufficient available metabolic free energy, it is possible to refine the topo-
logical “renormalization” arguments of Sect. 1.6 in terms of the joint uncertainty
measure driven by changes in the coupling parameter !. Joint dynamic trajectories
are assumed constrained by crosstalk, as indexed by !, so that the probability
distribution density function of a joint information source representing linked
cognitive submodules is given, in a first approximation, by the standard expression
for the Gibbs distribution

PŒH.X1; : : : ; Xn/� D expŒ�H=�!�
R

expŒ�H=�!�dH
; (1.16)

where � is a scaling constant. Roughly, increasing the crosstalk measure ! permits
higher “symmetries” by allowing more interaction.
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The Gibbs distribution may not work well for systems whose dynamics are
thermodynamically open, and it is possible to generalize the treatment, using an
adiabatic approximation in which the dynamics remain “close enough” to a form
in which the mathematical theory can work, adapting standard phase transition
formalism for shifts between adiabatic realms. In particular, rather than using
exponential terms, one might well use any functional form g.H; !/ such that the
integral over H converges.

A partition function-analog can be defined as

Z.�!/ D
Z

expŒ�H=�!�dH (1.17)

Now define a “free energy,” F, over the full set of possible dynamic trajectories
as constrained by !, as

expŒ�F=�!� �
Z

expŒ�H=�!�dH; (1.18)

so that

F.�!/ D ��! logŒZ.�!/� : (1.19)

This is to be taken as a Morse Function, in the sense of the Mathematical
Appendix. Other—essentially similar—Morse Functions may perhaps be defined
on this system, having a more “natural” interpretation from information theory.

Argument is now by abduction from statistical physics (Landau and Lifshitz
2007; Pettini 2007). The Morse Function F is seen as constrained by the crosstalk
linkage parameter ! in a manner that allows application of Landau’s theory of
punctuated phase transition in terms of groupoid, rather than group, symmetries.

Recall Landau’s perspective on phase transition (Pettini 2007). The essence of
his insight was that certain physical phase transitions took place in the context
of a significant symmetry change, with one phase being more symmetric than the
other. A symmetry is lost in the transition, i.e., spontaneous symmetry breaking.
The greatest possible set of symmetries being that of the Hamiltonian describing
the energy states. Usually, states accessible at lower temperatures will lack the
symmetries available at higher temperatures, so that the lower temperature state
is less symmetric, and transitions can be highly punctuated.

Here, dynamic process is characterized in terms of groupoid, rather than group,
symmetries, and the argument by abduction is essentially similar: Increasing
crosstalk—rising !—will allow richer interactions between the interacting infor-
mation sources, and will do so in a highly punctuated manner.
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Kadanoff Theory

Given F as a free energy analog, a mathematical treatment of transitions between
adiabatic realms is of interest. Define a characteristic “length,” r, on the network of
interacting information sources, as more fully described below. It is then possible
to apply renormalization symmetries in terms of the “clumping” transformation, so
that, for clumps of size R, in an external “field” of strength J (that can be set to 0 in
the limit), in the usual manner (e.g., Wilson 1971),

FŒ!.R/; J.R/� D f .R/FŒ!.1/; J.1/�

�.!.R/; J.R// D �.!.1/; J.1//

R
(1.20)

where � is a characteristic correlation length.
As will be described below, many “biological” renormalizations, f .R/, are

possible that lead to a number of quite different universality classes for phase
transition.

In order to define the metric r, impose a topology on the system of interacting
information sources, so that, near a particular “language” A defining some uncer-
tainty measure H there is (in an appropriate sense) an open set U of closely similar
languages OA, such that A; OA � U.

Since the information sources are “similar,” for all pairs of languages A; OA in U,
it is possible to:

1. Create an embedding alphabet which includes all symbols allowed to both of
them.

2. Define an information-theoretic distortion measure in that extended, joint alpha-
bet between any high probability (grammatical and syntactical) paths in A and
OA, which we write as d.Ax; OAx/ (Cover and Thomas 2006). Note that these
languages do not interact, in this approximation.

3. Define a metric on U, for example,

r.A; OA/ D j lim

R
A; OA d.Ax; OAx/
R

A;A d.Ax; AOx/
� 1j; (1.21)

using an appropriate integration limit argument over the high probability paths.
Note that the integration in the denominator is over different paths within A itself,
while in the numerator it is between different paths in A and OA. Consideration
suggests r is indeed a formal metric.
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Other Versions of the Kadanoff Model

Clearly, other ways of constructing a metric seem possible, as are other ways of
renormalizing. For example, Wallace (2005) uses a more direct argument in which
the richness of the joint uncertainty across the network of interacting cognitive
modules itself grows according to something like Eq. (1.20). While Wilson’s (1971)
calculation necessarily had a volume functional dependence, f .R/ D R3, source
uncertainty is likely to “top out” and not increase without limit, or at least not
so rapidly, and Wallace (2005) explores the influence of different forms of f .R/ W
Rı; m log.R/ C 1; expŒm.R � 1/=R�. Surprisingly, a variety of functional forms for
f .R/ carries through using this technique.

1.11 The Rate Distortion Approach

Some Formalism

A different perspective regarding cognitive global broadcasts emerges through an
index theorem attack based on an Onsager-like nonequilibrium treatment of the
disjunction between intent and impact of cognitive subprocesses, in the context
of “perturbations” that may range from incoming sensory signals to pathogens,
developing tumors, and the like. This is done via the Rate Distortion Theorem,
leading to a conceptual simplification of previous arguments.

Many real-time biological problems are inherently rate distortion problems, in
the same sense that the retina is a tool for projection of complex visual stimuli down
onto a “simpler” neural substrate, and it is possible to reformulate the underlying
theory from that perspective. The implementation of a complex cognitive structure,
say a sequence of control orders generated by some regulatory dual information
source Y , having output yn D y1; y2; : : : is “digitized” in terms of the observed
behavior of the regulated system, say the sequence bn D b1; b2; : : :. The bi are
thus what happens in real time, the actual impact of the cognitive structure on its
embedding environment. Assume each bn is then deterministically retranslated back
into a reproduction of the original control signal, bn ! Oyn D Oy1; Oy2; : : :.

Define a distortion measure d.y; Oy/ that compares the original to the retranslated
path. See Cover and Thomas (2006) for example. Suppose that with each path yn and
bn-path retranslation into the y-language, denoted Oyn, there are associated individual,
joint, and conditional probability distributions p.yn/; p.Oyn/; p.ynjOyn/.

The average distortion is defined as

D �
X

yn

p.yn/d.yn; Oyn/ : (1.22)
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It is possible, using the distributions given above, to define the information
transmitted from the incoming Y to the outgoing OY process using the Shannon source
uncertainty of the strings:

I.Y; OY/ � H.Y/ � H.Yj OY/ D H.Y/ C H. OY/ � H.Y; OY/:

If there is no uncertainty in Y , given the retranslation OY , then no information is
lost, and the regulated system is perfectly under control.

In general, this will not be true.
The information Rate Distortion Function R.D/ for a source Y with a distortion

measure d.y; Oy/ is defined as

R.D/ D min
p.y;Oy/IP.y;Oy/ p.y/p.yjOy/d.y;Oy/�D

I.Y; OY/ (1.23)

Cover and Thomas (2006) provide more detail.
The minimization is over all conditional distributions p.yjOy/ for which the joint

distribution p.y; Oy/ D p.y/p.yjOy/ satisfies the average distortion constraint (i.e.,
average distortion � D).

The Rate Distortion Theorem states that R.D/ is the minimum necessary rate
of information transmission—essentially minimum channel capacity—that ensures
the transmission does not exceed average distortion D (Cover and Thomas 2006).
The Rate Distortion Function has been calculated for a number of systems,
using Lagrange multiplier methods. Cover and Thomas (2006) show that R.D/ is
necessarily a decreasing convex function of D, that is, always a reverse J-shaped
curve. This is a critical observation, since convexity is an exceptionally powerful
mathematical condition (Ellis 1985; Rockafellar 1970).

Recall, now, the classic relation between information source uncertainty and
channel capacity. First,

HŒX� � C; (1.24)

where H is the uncertainty of the source X and C the channel capacity. Recall that
C is defined according to the relation

C � max
P.X/

I.XjY/; (1.25)

where P.X/ is the probability distribution of the message chosen so as to maximize
the rate of information transmission along a channel Y .
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A Simple Model

The Rate Distortion Function places limits on information source uncertainty. Thus
distortion measures can drive information system dynamics. That is, the Rate
Distortion Function itself has a homological relation to free energy density.

The motivation for this approach is the observation that a Gaussian channel
with noise variance �2 and zero mean has a Rate Distortion Function R.D/ D
1=2 logŒ�2=D� using the squared distortion measure. Defining a “Rate Distortion
entropy” as the Legendre transform of the Rate Distortion Function

SR � R.D/ � DdR.D/=dD D 1=2 logŒ�2=D� C 1=2;

the simplest possible nonequilibrium Onsager equation (de Groot and Mazur
1984) is

dD=dt D ��dSR=dD D �=2D;

where t is the time and � is a diffusion coefficient. By inspection,

D.t/ D p
�t

very precisely the solution to the diffusion equation.
Some thought will suggest this correspondence reduction is of singular impor-

tance, and it is now possible to argue upward from it in both scale and complexity.
Suppose the relation between system challenge and system response—the man-

ner in which physiological activities of the cognitive systems of interest more-or-less
accurately reflect what is called for by environmental conditions—is characterized
by another Gaussian channel. Again defining a rate distortion entropy as SR D
R.D/ � DdR=dD permits definition of a more complicated nonequilibrium Onsager
equation in the presence of an incoming system perturbation ıT as

dD=dt D ��dSR=dD � 1=ıT D �

2D
� 1=ıT (1.26)

having the equilibrium solution, where dD=dt D 0,

Dequilib D �

2
ıT (1.27)

The perturbation might be a sensory or regulatory signal, an incoming pathogen,
a growing tumor, and so on.

For this simplistic model, the distortion between physiological need and actual
physiological response is proportional to the perturbation. In reality, the final
distortion measure D is the consequence of a vast array of internal processes that
all contribute to it and that, individually, must all be optimized for the organism to
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survive. That is, overall distortion between total need and total response cannot be
constrained by allowing critical subsystems to overload beyond survivable limits:
Too high a blood pressure spike in response to a stress spike can be fatal.

A Less Simple Model

Consider individual responses of the interacting cognitive physiological systems,
for the moment, to be a set of m independent but not identically distributed normal
random variates having zero mean and variance �2

i ; i D 1 : : : m. Following the
argument of Sect. 10.3.3 of Cover and Thomas (2006), assume a fixed channel
capacity R available with which to represent this random vector. How should we
allot signal to the various components to minimize the total distortion D? A brief
argument shows it necessary to optimize

R.D/ D minP
DiDD

mX

iD1

maxf1=2 logŒ�2
i =Di�; 0g (1.28)

subject to the inequality restraint
P

i Di � D.
Using the Kuhn–Tucker generalization of the Lagrange multiplier method

necessary under inequality conditions (e.g., Nocedal and Wright 1999) gives

R.D/ D
mX

iD1

1=2 logŒ�2
i =Di�; (1.29)

where Di D 	 if 	 < �2
i or D D �2

i if 	 � �2
i , and 	 is chosen so that

P
i Di D D.

Thus, even under conditions of “independence,” there is a complex “reverse
water-filling” relation for Gaussian variables.

In the real world, the different subcomponents will engage in complicated
crosstalk.

Assume m different subsystems that are not independent. Define a Rate Distor-
tion function R.D1; : : : ; Dm/ D R.D/ and an associated Legendre transform “rate
distortion entropy” SR having the Onsager-like form

SR D R.D/ �
X

j

Dj@SR=@Dj (1.30)

The most direct generalization of Eq. (1.28) is

dDi=dt D �
X

j

Li;j@SR=@Dj � 1=ıTi (1.31)
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At equilibrium, all dDi=dt � 0, so that it becomes necessary to minimize each
Di under the joint constraints

2

4
X

j

Li;j@SR=@Dj

3

5C 1=ıTi D 0;

Di � Dmax
i 8i (1.32)

remembering that R.D/ must be a convex function.
The Dmax

i represent limits on both internal and external distortion measures as
needed for survival.

This is a complicated problem in Kuhn–Tucker optimization for which the
exact form of the crosstalk-dominated R.D/ is quite unknown, in the context that
even the independent Gaussian channel example involves constraints of mutual
influence via reverse water-filling. In sum, changing a single perturbation ıTi will
inevitably reverberate across the entire system, necessarily affecting—sometimes
markedly—each distortion measure that characterizes the difference between
needed and observed physiological subsystem response to challenge.

Most importantly, there may, in fact, be no general solution having Di � Dmax
i 8 i,

that is, no possible Pareto surface defining the limits of optimality. Such failure
of solution is precisely the punctuated accession to detection of that perturbation.
The setting of the variates Dmax

i represents the tuning of the system of interacting
cognitive modules. More subtle tuning, in the presence of noise, leads to the final
model.

The Index Theorem Attack

The model of Eq. (1.31) admits unstable equilibria. Their elimination, and the
imposition of more general tuning criteria, can be met by an appropriate system
of stochastic Onsager differential equations, having the form

dDi
t D ŒLi.t; D/ � 1=fi.T/�dt C �i.t; D/dBi

t;

Di � Dmax
i 8i (1.33)

where, again, the dBi
t represent noise terms having characteristic quadratic variations

(Protter 1990) and the fi.T/ are monotonic increasing functions of the perturbation
vector T D .ıT1; : : : ; ıTn/. As above, noise precludes unstable equilibria, and is
thus quite as important as crosstalk, interpreted as the exaptation of both noise and
crosstalk into physiological global broadcasts.

Thus both the vectors D � .D1; : : : ; Dn/ and T provide tuning criteria under the
stochastic Kuhn–Tucker optimization conditions that would generalize Eq. (1.32).
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That is, D establishes thresholds for perturbation detection, and the fi.T/ tune
the sensitivity of the system across the perturbation vector T, determining what will
be “looked for” under nominal circumstances. Amplified perturbations that resonate
across the system, and cause some Di to exceed its Dmax

i , enter the “theater of
generalized consciousness” for the particular set of linked, crosstalking cognitive
modules being brought into collaboration.

Note that Eq. (1.33) can be more simply expressed as

dDi
t D Li.t; D; T/dt C �i.t; D/dBi

t;

Di � Dmax
i 8i (1.34)

Then the stochastic Kuhn–Tucker optimization is across the system of equations

ŒLi.t; D; T/dt C �i.t; D/dBi
t� D 0;

Di � Dmax
i 8i (1.35)

at a fixed perturbation setting T.
By the network linkages inherent in the functions Lj.t; D; T/, a perturbation ıTk

can influence more than just the distortion measure Dk. That is, a perturbation ıTk

that does not trigger a particular Dk > Dmax
k may still resonate across the system’s

crosstalk connections, violating an apparently distant Dj constraint, j ¤ k.
Equation (1.35) represents, then, a generalized index theorem, in the sense

discussed above, in that—underlying the analytic conditions—there are particular
topologies of interconnected dual information sources linked by crosstalk, as
described earlier. The details, however, can become mathematically complicated
(e.g., Glazebrook and Wallace 2009a,b).

This argument provides another approach, via necessary conditions imposed
by the asymptotic limits of information theory, to empirical models for a broad
spectrum of global broadcast phenomena that recruit individual cognitive modules
into shifting cooperative arrays that have both tunable detection thresholds for
perturbation and tunable sensitivities to perturbation. These dynamic rate distortion
models are, again, analogous to empirical regression models based on the Central
Limit Theorem. When optimization by an “unconscious” cognitive system fails—
there is no Pareto surface—the signal is propelled, in a punctuated manner, into
detection by the “spotlight” that represents accession to attention from a global
broadcast of linked subsystems needed to address a problem too complex for any
single submodule.

1.12 Discussion and Conclusions

Sections 1.9–1.11 explore related statistical models of cognitive global broadcasts,
slightly different views of the same elephant, as it were. While useful for data
analysis—analogous to the varieties of regression models—they also provide exam-
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ples of Dretske’s imperative: the necessary conditions imposed by the asymptotic
limit theorems of communication theory constrain cognitive process at all scales,
levels of organization, and modes of distribution.

Information is a form of free energy instantiated by physical processes that them-
selves consume free energy, permitting adaptation of empirical approaches from
nonequilibrium thermodynamics and statistical mechanics to cognitive phenomena.
There are, however, restrictions imposed by the local irreversibility of information
sources. Embedding high-level neural global broadcasts within a nested hierarchy
of cognitive and other sources of impinging information evades the logical fallacy
of attributing to “the brain” and the broad spectrum of functions that can only be
embodied by the full individual-in-context.

The mereological fallacy is, then, fundamentally a matter of decontextualization.
Bennett and Hacker (2003) use the lever of that fallacy to banish a philosophical
ignis fatuus long afflicting consciousness studies that ranges across “the redness of
red,” “qualia,” the “hard problem,” “what is it like to be a bat,” and so on. Further,
Baars’ global broadcast model makes clear that consciousness is very much an
expression of classical physics and biochemistry that does not require reification to
some new quality like mass or charge, or invocation of room-temperature quantum
computing (Tegmark 2000).

There remains, however, an implicit and no less debilitating decontextualization
that assumes individual consciousness is not merely different from other evolu-
tionary adaptations, but exceptionally so. This belief has deep cultural roots, of
concern, perhaps, to anthropologists or social scientists engaged in the study of
religion. The biological or physical science context for the study of consciousness,
however, must explicitly include the evolutionary trajectories that produced it some
500 million years ago. While we cannot make direct observations on extinct species,
we can examine the many analogous global broadcasts, neural and otherwise, rapid
and otherwise, available to empirical study within and across many individual
organisms, species, taxa, and their interacting communities.

This chapter argues that the ubiquity of cognitive process at all levels of scale
and organization within the living state leaves open to evolutionary exaptation
the inevitable occurrence of both crosstalk and noise. A principal outcome of
such exaptation will be the repeated evolution of punctuated global broadcast
mechanisms that entrain sets of “unconscious” cognitive modules into shifting,
tunable cooperative arrays tasked with meeting the changing patterns of threat and
opportunity that challenge all organisms. When such entrainment involves neural
systems acting on a timescale of a few hundred milliseconds, the phenomenon
is characterized as consciousness. When entrainment involves many individuals
or cultural artifacts, the outcomes are social or institutional processes. All such
phenomena will, of course, also interact by crosstalk. Following the injunction
of Huys et al. (2016) this is a mechanism “. . . linking multiple interacting levels,
from molecules to cells, circuits, cognition, behavior, and the physical and social
environment.”
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Chapter 2
Cultural Epigenetics: On the Missing
Heritability of Complex Diseases

Written in collaboration with Dr. D.N. Wallace.

Summary We extend a cognitive paradigm for gene expression based on the
asymptotic limit theorems of information theory to the epigenetic epidemiology of
complex developmental disorders in humans. In particular, we recognize the funda-
mental role culture plays in human biology, another heritage mechanism parallel to,
and interacting with, the more familiar genetic and epigenetic systems. We do this
via a model through which culture acts as another tunable epigenetic catalyst that
both directs developmental trajectories, and becomes convoluted with individual
ontology, via a mutually interacting crosstalk mediated by a social interaction that
is itself culturally driven. We call for the incorporation of embedding culture as
an essential component of the epigenetic regulation of human development and its
dysfunctions. The cultural and epigenetic systems of heritage may well provide the
“missing” heritability of complex diseases now under so much intense discussion.

2.1 Introduction

Mental Disorders and Culture

We begin with a discussion of human mental disorders, that, while increasingly
recognized as quintessentially developmental in nature, are still not well understood.
The classic scientific task will then be to infer the general from the particular,
extending focus on the central role of culture in human mental dysfunction to a
vastly larger spectrum of developmental pathologies. This is a task that requires
cutting-edge mathematical methods for its formal expression.

The understanding of mental disorders is in considerable disarray. Official clas-
sifications of mental illness such as the Diagnostic and Statistical Manual of Mental
Disorders - fourth edition, (DSM-IV 1994, and now its replacement as “DSM-V”),
the standard descriptive nosology in the USA, have even been characterized as
“prescientific” by P. Gilbert (2001) and others. Johnson-Laird et al. (2006) claim
that current knowledge about psychological illnesses is comparable to the medical
understanding of epidemics in the early nineteenth century. Physicians realized then
that cholera, for example, was a specific disease, which killed about a third of the
people whom it infected. What they disagreed about was the cause, the pathology,
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and the communication of the disease. Similarly, according to Johnson-Laird et al.,
most medical professionals these days realize that psychological illnesses occur
(cf. DSMIV), but they disagree about their cause and pathology. Notwithstanding
DSMIV, Johnson-Laird et al. doubt whether any satisfactory a priori definition of
psychological illness can exist because it is a matter for theory to elucidate.

Atmanspacher (2006) argues that formal theory of high-level cognitive process
is itself at a point similar to that of physics 400 years ago, in that the basic entities,
and the relations between them, have yet to be delineated.

More generally, simple arguments from genetic determinism regarding mental
disorders fail, in part because of a draconian population bottleneck that, early in
our species’ history, resulted in an overall genetic diversity less than that observed
within and between contemporary chimpanzee subgroups.

Manolio et al. (2009) describe this conundrum more generally in terms of
“finding the missing heritability of complex diseases.” They observe, for example,
that at least 40 loci have been associated with human height, a classic complex
trait with an estimated heritability of about 80%, yet they explain only about 5%
of phenotype variance despite studies of tens of thousands of people. This result,
they find, is typical across a broad range of supposedly heritable diseases, and call
for extending beyond current genome-wide association approaches to illuminate the
genetics of complex diseases and enhance its potential to enable effective disease
prevention or treatment.

Arguments from psychosocial stress fare better (e.g., Brown et al. 1973; Dohren-
wend and Dohrenwend 1974; Eaton 1978), particularly for depression (e.g., Risch
et al. 2009), but are affected by the apparently complex and contingent develop-
mental paths determining the onset of schizophrenia, dementias, psychoses, and so
forth, some of which may be triggered in utero by exposure to infection, low birth
weight, or other functional teratogens.

P. Gilbert (2001) suggests an extended evolutionary perspective, in which
evolved mechanisms like the “flight-or-fight” response are inappropriately excited
or suppressed, resulting in such conditions as anxiety or post-traumatic stress
disorders. Nesse (2000) suggests that depression may represent the dysfunction
of an evolutionary adaptation which downregulates foraging activity in the face of
unattainable goals.

Kleinman and Good, however, (1985, p. 492) outline something of the cross
cultural subtleties affecting the study of depression that seem to argue against any
simple evolutionary or genetic interpretation. They state that, when culture is treated
as a constant, as is common when studies are conducted in our own society, it
is relatively easy to view depression as a biological disorder, triggered by social
stressors in the presence of ineffective support, and reflected in a set of symptoms
or complaints that map back onto the biological substrate of the disorder. However,
they continue, when culture is treated as a significant variable, for example, when
the researcher seriously confronts the world of meaning and experience of members
of non-Western societies, many of our assumptions about the nature of emotions
and illness are cast in sharp relief.
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Dramatic differences are found across cultures in the social organization, per-
sonal experience, and consequences of such emotions as sadness, grief, and anger,
of behaviors such as withdrawal or aggression, and of psychological characteristics
such as passivity and helplessness or the resort to altered states of consciousness.
They are organized differently as psychological realities, communicated in a wide
range of idioms, related to quite varied local contexts of power relations, and
are interpreted, evaluated, and responded to as fundamentally different meaningful
realities. Depressive illness and dysphoria are thus not only interpreted differently
in non-Western societies and across cultures; they are constituted as fundamentally
different forms of social reality.

Since the publication of that landmark study, a number of comprehensive
overviews have been published that support its conclusions, for example, Bebbing-
ton (1993), Jenkins et al. (1990), Journal of Clinical Psychiatry (Supplement 13),
and Manson (1995). As Marsella (2003) writes, it is now clear that cultural varia-
tions exist in the areas of meaning, perceived causes, onset patterns, epidemiology,
symptom expression, course, and outcome, variations having important implications
for understanding clinical activities including conceptualization, assessment, and
therapy.

Kleinman and Cohen (1997) argue forcefully that several myths have become
central to psychiatry. The first is that the forms of mental illness everywhere
display similar degrees of prevalence. The second is an excessive adherence to a
principle known as the pathogenic/pathoplastic dichotomy, which holds that biology
is responsible for the underlying structure of a malaise, whereas cultural beliefs
shape the specific ways in which a person experiences it. The third myth maintains
that various unusual culture-specific disorders whose biological bases are uncertain
occur only in exotic places outside the West. In an effort to base psychiatry in “hard”
science and thus raise its status to that of other medical disciplines, psychiatrists
have narrowly focused on the biological underpinnings of mental disorders while
discounting the importance of such “soft” variables as culture and socioeconomic
status.

Heine (2001) describes an explicit cultural psychology that views the person
as containing a set of biological potentials interacting with particular situational
contexts that constrain and afford the expression of various constellations of traits
and patterns of behavior. He says that, unlike much of personality psychology,
cultural psychology focuses on the constraints and affordances inherent to the
cultural environment that give shape to those biological potentials. Human nature,
from this perspective, is seen as emerging from participation in cultural worlds, and
of adapting oneself to the imperatives of cultural directives, meaning that our nature
is ultimately that of a cultural being.

Heine describes how cultural psychology does not view culture as a superficial
wrapping of the self, or as a framework within which selves interact, but as
something that is intrinsic to the self, so that without culture there is no self,
only a biological entity deprived of its potential. Individual selves, from Heine’s
perspective, are inextricably grounded in a configuration of consensual understand-
ings and behavioral customs particular to a given cultural and historical context, so
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that understanding the self requires an understanding of the culture that sustains it.
Heine argues, then, that the process of becoming a self is contingent on individuals
interacting with, and seizing meanings from, the cultural environment.

Heine warns that the extreme nature of American individualism means that
a psychology based on the late twentieth century American research not only
stands the risk of developing models that are particular to that culture, but also of
developing an understanding of the self that is peculiar in the context of the world’s
cultures.

Indeed, as Norenzayan and Heine (2005) point out, for the better part of a
century, a considerable controversy has raged within anthropology regarding the
degree to which psychological and other human universals do, in fact, actually exist
independent of the particularities of culture.

Many other observers have made similar points over the years (e.g., Arnett 2008;
Henrich et al. 2010; Markus and Kitayama 1991; Matsuda and Nisbett 2006; Nisbett
et al. 2001; Wallace 2007).

As Durham (1991) and Richerson and Boyd (2004) explore at some length,
humans are endowed with two distinct but interacting heritage systems: genes
and culture. Durham (1991), for example, writes that genes and culture constitute
two distinct but interacting systems of information inheritance within human
populations and information of both kinds has influence, actual or potential, over
behaviors, which creates a real and unambiguous symmetry between genes and
phenotypes on the one hand, and culture and phenotypes on the other. Genes and
culture, in his view, are best represented as two parallel lines or tracks of hereditary
influence on phenotypes.

Both genes and culture can be envisioned as generalized languages in that they
have recognizable “grammar” and “syntax,” in the sense of Wallace (2005) and
Wallace and Wallace (2008, 2009).

More recent work has identified epigenetic heritage mechanisms involving such
processes as environmentally induced gene methylation, that can have strong
influence across several generations (e.g., Jablonka and Lamb 1995, 1998; Jablonka
2004; Wallace and Wallace 2009), and are the subject of intense current research, a
matter to which we will return below.

There are, it seems, two powerful heritage mechanisms in addition to the genetic
where one may perhaps find the “missing heritability of complex diseases” that
Manolio et al. seek.

Here we will expand recent explorations of a cognitive paradigm for gene expres-
sion (Wallace and Wallace 2008, 2009) that incorporates the effects of surrounding
epigenetic regulatory machinery as a kind of catalyst to include the effects of the
embedding information source of human culture on human ontology. The essential
feature is that a cognitive process, including gene expression, can instantiate a dual
information source that can interact with the generalized language of culture in
which, for example, social interplay and the interpretation of socioeconomic and
environmental stressors involve complicated matters of symbolism and its grammar
and syntax. These information sources interact by a crosstalk that, over the life
course, determines human ontology and its manifold dysfunctions.
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2.2 A Cognitive Paradigm for Gene Expression

Recapitulating something of the previous chapter, a cognitive paradigm for gene
expression is under active study, a model in which contextual factors determine
the behavior of what Cohen characterizes as a “reactive system,” not at all a
deterministic—or even simple stochastic—mechanical process (e.g., Cohen 2006;
Cohen and Harel 2007; Wallace and Wallace 2008, 2009). The various formal
approaches are, however, all in the spirit of Maturana and Varela (1980, 1992) who
understood the central role that cognitive process must play across a vast array of
biological phenomena.

O’Nuallain (2008) puts gene expression directly in the realm of complex
linguistic behavior, for which context imposes meaning. He claims that the analogy
between gene expression and language production is useful both as a fruitful
research paradigm and also, given the relative lack of success of natural language
processing (nlp) by computer, as a cautionary tale for molecular biology. A rela-
tively simple model of cognitive process as an information source permits use of
Dretske’s (1994) insight that any cognitive phenomenon must be constrained by
the limit theorems of information theory, in the same sense that sums of stochastic
variables are constrained by the Central Limit Theorem. This perspective permits
a new formal approach to gene expression and its dysfunctions, in particular
suggesting new and powerful statistical tools for data analysis that could contribute
to exploring both ontology and its pathologies. Wallace and Wallace (1998, 2009)
apply the perspective, respectively, to infectious and chronic disease. Here we
extend the mathematical foundations of that work to examine the topological struc-
tures of development and developmental disorder, in the context of an embedding
information source representing the compelling varieties of human culture.

This approach is consistent with the broad context of epigenetics and epigenetic
epidemiology. Jablonka and Lamb (1995, 1998), for example, argue that informa-
tion can be transmitted from one generation to the next in ways other than through
the base sequence of DNA. It can be transmitted through cultural and behavioral
means in higher animals, and by epigenetic means in cell lineages. All of these
transmission systems allow the inheritance of environmentally induced variation.
Such Epigenetic Inheritance Systems are the memory systems that enable somatic
cells of different phenotypes but identical genotypes to transmit their phenotypes to
their descendants, even when the stimuli that originally induced these phenotypes
are no longer present.

This epigenetic perspective has received much empirical confirmation (e.g.,
Backdahl et al. 2009; Turner 2000; Jaenisch and Bird 2003; Jablonka 2004).

Foley et al. (2009) argue that epimutation is estimated to be 100 times more
frequent than genetic mutation and may occur randomly or in response to the
environment. Periods of rapid cell division and epigenetic remodeling are likely to
be most sensitive to stochastic or environmentally mediated epimutation. Disruption
of epigenetic profile is a feature of most cancers and is speculated to play a role in
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the etiology of other complex diseases including asthma allergy, obesity, type 2
diabetes, coronary heart disease, autism spectrum disorders and bipolar disorders,
and schizophrenia.

Similarly, Scherrer and Jost (2007a,b) explicitly invoke information theory
in their extension of the definition of the gene to include the local epigenetic
machinery, a construct they term the “genon.” Their point is that coding information
is not simply contained in the coded sequence, but is, in their terms, provided by the
genon that accompanies it on the expression pathway and controls in which peptide
it will end up. In their view the information that counts is not about the identity of
a nucleotide or an amino acid derived from it, but about the relative frequency of
the transcription and generation of a particular type of coding sequence that then
contributes to the determination of the types and numbers of functional products
derived from the DNA coding region under consideration.

Again, the proper formal tools for understanding phenomena that “provide”
information—that are information sources—are the Rate Distortion Theorem and
its zero error limit, the Shannon–McMillan Theorem.

2.3 Models of Development

The currently popular spinglass model of development (e.g., Ciliberti et al. 2007a,b)
assumes that N transcriptional regulators are represented by their expression
patterns

S.t/ D ŒS1.t/; : : : ; SN.t/� (2.1)

at some time t during a developmental or cell-biological process and in one cell
or domain of an embryo. The transcriptional regulators influence each other’s
expression through cross-regulatory and autoregulatory interactions described by
a matrix w D .wij/. For nonzero elements, if wij > 0 the interaction is activating,
if wij < 0 it is repressing. w represents, in this model, the regulatory genotype
of the system, while the expression state S.t/ is the phenotype. These regulatory
interactions change the expression of the network S.t/ as time progresses according
to a difference equation

Si.t C 
t/ D �

2

4
NX

jD1

wijSj.t/

3

5 (2.2)

where 
t is a constant and � a sigmoidal function whose value lies in the interval
.�1; 1/. In the spinglass limit � is the sign function, taking only the values ˙1.

The regulatory networks of interest here are those whose expression state begins
from a prespecified initial state S.0/ at time t D 0 and converges to a prespecified
stable equilibrium state S1. Such networks are termed viable and must necessarily
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be a very small fraction of the total possible number of networks, since most do not
begin and end on the specified states. This “simple” observation is not at all simple
in our reformulation, although other results become far more accessible, as we can
then invoke the asymptotic limit theorems of information theory.

The spinglass approach to development is formally similar to spinglass neural
network models of learning by selection, e.g., as proposed by Toulouse et al. (1986)
nearly a generation ago. Much subsequent work, summarized by Dehaene and
Naccache (2001), suggests that such models are simply not sufficient to the task of
understanding high-level cognitive function, and these have been largely supplanted
by complicated “global workspace” concepts whose mathematical characterization
is highly nontrivial (Atmanspacher 2006).

It is possible to shift the perspective on development by invoking a cognitive
paradigm for gene expression, following the example of the Atlan/Cohen model of
immune cognition.

Atlan and Cohen (1998), in the context of a study of the immune system, argue
that the essence of cognition is the comparison of a perceived signal with an internal
(learned or inherited) picture of the world, and then, upon that comparison, the
choice of a single response from a larger repertoire of possible responses.

Such choice inherently involves information and information transmission since
it always generates a reduction in uncertainty, as explained by Ash (1990, p. 21).

More formally, a pattern of incoming input—like the S.t/ above—is mixed in
a systematic algorithmic manner with a pattern of internal ongoing activity—like
the .wij/ above—to create a path of combined signals x D .a0; a1; : : : ; an; : : :/—
analogous to the sequence of S.t C 
t/ above, with, say, n D t=
t. Each ak thus
represents some functional composition of internal and external signals.

For a cognitive process, this path is supposed to be fed into a “highly nonlinear
decision oscillator,” h, a sudden threshold machine whose canonical model could
well be taken as the famous integrate-and-fire neuron (e.g., Hoppensteadt and
Izhikevich 1997, Proposition 8.12). h.x/, otherwise seen as a “black box,” thus
generates an output that is an element of one of two disjoint sets B0 and B1 of
possible system responses. Let us define the sets Bk as

B0 � fb0; : : : ; bkg
B1 � fbkC1; : : : ; bmg (2.3)

Assume a graded response, supposing that if h.x/ 2 B0, the pattern is not
recognized, and if h.x/ 2 B1, the pattern has been recognized, and some action
bj; k C 1 � j � m takes place.

Rather than focusing on the properties of h, we shift the perspective: The
principal objects of formal interest become paths x triggering pattern recognition-
and-response. That is, given a fixed initial state a0, examine all possible subsequent
paths x beginning with a0 and leading to the event h.x/ 2 B1. Thus h.a0; : : : ; aj/ 2
B0 for all 0 < j < m, but h.a0; : : : ; am/ 2 B1.
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Several points are central to the shift in perspective we are making:

1. It is very important to understand that the fundamental core of the argument
does not regard the exact internal details of the inferred (but perhaps not easily
observable) function h.x/, but rather in the “grammar” and “syntax” of the strings
x D a0; a1; : : : leading to action of that function, and which are more likely to be
observable.

2. For each positive integer n, let N.n/ be the number of high probability grammat-
ical and syntactical paths of length n which begin with some particular a0 and
lead to the condition h.x/ 2 B1. Call such paths “meaningful,” assuming, not
unreasonably, that N.n/ will be considerably less than the number of all possible
paths of length n leading from a0 to the condition h.x/ 2 B1.

3. While the combining algorithm, the form of the “nonlinear oscillator” h, and
the details of grammar and syntax are all unspecified in this model, the critical
assumption that permits inference of the necessary conditions constrained by the
asymptotic limit theorems of information theory is that the finite limit

H � lim
n!1

logŒN.n/�

n
(2.4)

both exists and is independent of the path x.

Define such a pattern recognition-and-response cognitive process as ergodic.
Not all cognitive processes are likely to be ergodic in this sense, implying that H,
if it indeed exists at all, is path dependent, although extension to nearly ergodic
processes seems possible (Wallace and Fullilove 2008).

Invoking the spirit of the Shannon–McMillan Theorem, as choice involves an
inherent reduction in uncertainty, it is then possible to define an adiabatically,
piecewise stationary, ergodic (APSE) information source X associated with
stochastic variates Xj having joint and conditional probabilities P.a0; : : : ; an/ and
P.anja0; : : : ; an�1/ such that appropriate conditional and joint Shannon uncertainties
satisfy the classic relations

HŒX� D lim
n!1

logŒN.n/�

n

D lim
n!1 H.XnjX0; : : : ; Xn�1/

D lim
n!1

H.X0; : : : ; Xn/

n C 1
(2.5)

This information source is defined as dual to the underlying ergodic cognitive
process.

Adiabatic means that the source has been parameterized according to some
scheme, and that, over a certain range, along a particular piece, as the parameters
vary, the source remains as close to stationary and ergodic as needed for information
theory’s central theorems to apply. Stationary means that the system’s probabilities
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do not change in time, and ergodic, roughly, that the cross-sectional means
approximate long-time averages. Between pieces it is necessary to invoke various
kinds of phase transition formalisms, as described more fully in Wallace (2005) or
Wallace and Wallace (2008).

In the developmental vernacular of Ciliberti et al., we now examine paths
in phenotype space that begin at some S0 and converge n D t=
t ! 1 to
some other S1. Suppose the system is conceived at S0, and h represents (for
example) reproduction when phenotype S1 is reached. Thus h.x/ can have two
values, i.e., B0 not able to reproduce, and B1, mature enough to reproduce. Then
x D .S0; S
t; : : : ; Sn
t; : : :/ until h.x/ D B1.

Structure is now subsumed within the sequential grammar and syntax of the dual
information source rather than within the cross-sectional internals of .wij/-space, a
simplifying shift in perspective.

This transformation carries considerable computational burdens, as well as, and
perhaps in consequence of, providing deep mathematical insight.

First, the fact that viable networks comprise a tiny fraction of all those possible
emerges easily from the spinglass formulation simply because of the “mechanical”
limit that the number of paths from S0 to S1 will always be far smaller than the
total number of possible paths, most of which simply do not end on the target
configuration.

From the information source perspective, which inherently subsumes a far larger
set of dynamical structures than possible in a spinglass model—not simply those
of symbolic dynamics—the result is what Khinchin (1957) characterizes as the
‘‘E-property” of a stationary, ergodic information source. This property allows, in
the limit of infinitely long output, the classification of output strings into two sets:

1. a very large collection of gibberish which does not conform to underlying
(sequential) rules of grammar and syntax, in a large sense, and which has near-
zero probability, and

2. a relatively small “meaningful” set, in conformity with underlying structural
rules, having very high probability.

The essential content of the Shannon–McMillan Theorem is that, if N.n/ is the
number of meaningful strings of length n, then the uncertainty of an information
source X can be defined as

HŒX� D lim
n!1 logŒN.n/�=n

that can be expressed in terms of joint and conditional probabilities. Proving these
results for general stationary, ergodic information sources require considerable
mathematical machinery (e.g., Khinchin 1957; Cover and Thomas 2006; Dembo
and Zeitouni 1998).

Second, according to Ash (1990), information source uncertainty has an impor-
tant heuristic interpretation in that we may regard a portion of text in a particular
language as being produced by an information source. A large uncertainty means,
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by the Shannon–McMillan Theorem, a large number of “meaningful” sequences.
Thus given two languages with uncertainties H1 and H2, respectively, if H1 > H2,
then in the absence of noise it is easier to communicate in the first language; more
can be said in the same amount of time. On the other hand, it will be easier to
reconstruct a scrambled portion of text in the second language, since fewer of the
possible sequences of length n are meaningful.

Third, information source uncertainty is homologous with free energy density in
a physical system, a matter having implications across a broad class of dynamical
behaviors.

The free energy density of a physical system having volume V and partition
function Z.K/ derived from the system’s Hamiltonian—the energy function—at
inverse temperature K is (e.g., Landau and Lifshitz 2007)

FŒK� D lim
V!1 � 1

K

logŒZ.K; V/�

V

D lim
V!1

logŒ OZ.K; V/�

V
(2.6)

where OZ D Z�1=K :

The partition function for a physical system is the normalizing sum in an equation
having the form

PŒEi� D expŒ�Ei=kT�
P

j expŒ�Ej=kT�
(2.7)

where Ei is the energy of state i, k a constant, and T the system temperature.
Feynman (2000), following the classic approach by Bennett (1988), who exam-

ined idealized machines using information to do work, concludes that the informa-
tion contained in a message is most simply measured by the free energy needed to
erase it.

Thus, according to this argument, source uncertainty is homologous to free
energy density as defined above, i.e., from the similarity with the relation
H D limn!1 logŒN.n/�=n.

Ash’s perspective then has an important corollary: If, for a biological system,
H1 > H2, source 1 will require more metabolic free energy than source 2.

2.4 Tunable Epigenetic Catalysis

Incorporating the influence of embedding contexts—generalized epigenetic
effects—is most elegantly done by invoking the Joint Asymptotic Equipartition
Theorem (JAEPT) (Cover and Thomas 2006). For example, given an embedding
epigenetic information source, say Y , that affects development, then the dual
cognitive source uncertainty HŒX� is replaced by a joint uncertainty H.X; Y/.
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The objects of interest then become the jointly typical dual sequences zn D .xn; yn/,
where x is associated with cognitive gene expression and y with the embedding
epigenetic regulatory context. Restricting consideration of x and y to those
sequences that are in fact jointly typical allows use of the information transmitted
from Y to X as the splitting criterion.

From the information theory “chain rule” (Cover and Thomas 2006),

H.X; Y/ D H.X/ C H.YjX/ � H.X/ C H.Y/

Equality occurs only for stochastically independent processes.
Interpreting the homology between information and free energy rather broadly,

the embedding context, in effect lowers an analog to the relative activation energy
of a particular developmental channel, at the expense of raising the total free energy
needed, since the system must now support two information sources instead of one,
i.e., that regulated, and that providing the regulation.

Thus the effect of epigenetic regulation is to change the probability of devel-
opmental pathways, while requiring more total energy for development. Hence the
epigenetic information source Y acts as a tunable catalyst, a kind of second order
cognitive enzyme, to enable and direct developmental pathways. This result permits
hierarchical models similar to those of higher order cognitive neural function that
incorporate contexts in a natural way (e.g., Wallace and Wallace 2008; Wallace and
Fullilove 2008). The cost of this ability to channel is the metabolic necessity of
supporting two information sources, X and Y , rather than just X itself.

This elaboration allows a spectrum of possible “final” phenotypes, what S.
Gilbert (2001) calls developmental or phenotype plasticity. Thus gene expression
is seen as, in part, responding to environmental or other, internal, developmental
signals.

Including the effects of embedding culture in human ontology is, according to
this formalism, straightforward: Consider culture as another embedding information
source, Z, having source uncertainty H.Z/. Then the information chain rule becomes

H.X; Y; Z/ � H.X/ C H.Y/ C H.Z/ (2.8)

and the numbers of “typical” sequences of length n are then approximately

expŒnH.X; Y; Z/� � expŒn.H.X/ C H.Y/ C H.Z//� (2.9)

where, again, equality occurs only under stochastic independence.
A cultural regulatory apparatus, however, has very considerable free energy

requirements, to grossly understate the matter.
In this model, following explicitly the direction indicated by Boyd, Kleinman,

and their colleagues, culture is seen as an essential component of the catalytic
epigenetic machinery that regulates human ontology, including development of the
human mind. This is not to say that the development in other animals, particularly
those that are highly social, does not undergo analogous regulation by larger-scale
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structures of interaction. For human populations, however, social relations are
themselves very highly regulated through an often strictly formalized cultural
grammar and syntax.

2.5 The Groupoid Free Energy

A formal equivalence class algebra can now be constructed by choosing different
origin and end points S0; S1 and defining equivalence of two states by the existence
of a high probability meaningful path connecting them with the same origin and end.
Disjoint partition by equivalence class, analogous to orbit equivalence classes
for dynamical systems, defines the vertices of the proposed network of cognitive
dual languages, much enlarged beyond the spinglass example. We thus envision
a network of metanetworks. Each vertex then represents a different equivalence
class of information sources dual to a cognitive process. This is an abstract set of
metanetwork “languages” dual to the cognitive processes of gene expression and
development.

This structure generates a groupoid, in the sense of Weinstein (1996). States aj; ak

in a set A are related by the groupoid morphism if and only if there exists a high
probability grammatical path connecting them to the same base and end points, and
tuning across the various possible ways in which that can happen—the different
cognitive languages—parameterizes the set of equivalence relations and creates the
(very large) groupoid. See the Mathematical Appendix for a summary of standard
material on groupoids.

There is a hierarchy in groupoid structures. First, there is structure within the
system having the same base and end points, as in Ciliberti et al. Second, there
is a complicated groupoid structure defined by sets of dual information sources
surrounding the variation of base and end points. We do not need to know what that
structure is in any detail, but can show that its existence has profound implications.

First we examine the simple case, the set of dual information sources associated
with a fixed pair of beginning and end states.

Taking the serial grammar/syntax model above, we find that not all high
probability meaningful paths from S0 to S1 are the same. They are structured by
the uncertainty of the associated dual information source, and that has a homological
relation with free energy density.

Let us index possible dual information sources connecting base and end points by
some set A D [˛. Argument by abduction from statistical physics is direct: Given
metabolic energy density available at a rate M, and an allowed (fixed) characteristic
development time � , let K D 1=�M� for some appropriate scaling constant �, so that
M� is total developmental free energy. Then we take the probability of a particular
H˛ as determined by a standard expression (e.g., Landau and Lifshitz 2007),

PŒHˇ� D expŒ�HˇK�
P

˛ expŒ�H˛K�
(2.10)

where the sum may, in fact, be a complicated abstract integral.
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This is just a version of the fundamental probability relation from statistical
mechanics, as above. The sum in the denominator, the partition function in statistical
physics, is a crucial normalizing factor that allows the definition of PŒHˇ� as a
probability.

A basic requirement, then, is that the sum/integral always converges. K is the
inverse product of a scaling factor, a metabolic energy density rate term, and a
characteristic (presumed fixed) development time � . The developmental energy
might be raised to some power, e.g., K D 1=.�.M�/b/, suggesting the possibility of
allometric scaling.

Some dual information sources will be “richer”/smarter than others, but, con-
versely, will require more metabolic energy for their completion.

While we might simply impose an equivalence class structure based on equal
levels of energy/source uncertainty, producing a groupoid, we can do more by now
allowing both source and end points to vary, as well as by imposing energy-level
equivalence. This produces a far more highly structured groupoid that we now
investigate.

Equivalence classes define groupoids, by standard mechanisms (e.g., Weinstein
1996; Brown 1987; Golubitsky and Stewart 2006). The basic equivalence classes,
here involving both information source uncertainty level and the variation of S0 and
S1, will define transitive groupoids, and higher order systems can be constructed
by the union of transitive groupoids, having larger alphabets that allow more
complicated statements in the sense of Ash above.

Again, given an appropriately scaled, dimensionless, fixed, inverse available
metabolic energy density rate and development time, so that K D 1=�M� , we
propose that the metabolic-energy-constrained probability of an information source
representing equivalence class Gi, HGi , will be given by the classic relation

PŒHG˛ � D expŒ�HG˛ K�
P

ˇ expŒ�HGˇ
K�

where, now, we have shifted perspective, and the sum/integral is over all possible
elements of the largest available symmetry groupoid representing the equivalence
class structure. By the arguments of Ash above, compound sources, formed by the
union of underlying transitive groupoids, being more complex, generally having
richer alphabets, as it were, will all have higher free-energy-density-equivalents than
those of the base (transitive) groupoids.

Let ZG � P
˛ expŒ�HG˛ K�. We now define the Groupoid free energy of the

system, FG, at inverse normalized metabolic energy density K, as

FGŒK� � � 1

K
logŒZGŒK�� (2.11)

again following the standard arguments from statistical physics (again, Landau and
Lifshitz 2007, or Feynman 2000).
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Spontaneous Symmetry Breaking

The groupoid free energy permits introduction important ideas from statistical
physics.

We have expressed the probability of an information source in terms of its
relation to a fixed, scaled, available (inverse) metabolic free energy density, seen
as a kind of equivalent (inverse) system temperature. This gives a statistical
thermodynamic path leading to definition of a “higher” free energy construct—
FGŒK�—to which we now apply Landau’s fundamental heuristic phase transition
argument (Landau and Lifshitz 2007; Skierski et al. 1989; Pettini 2007). See, in
particular, Pettini (2007) for details.

Landau’s insight was that second order phase transitions were usually in the
context of a significant symmetry change in the physical states of a system, with one
phase being far more symmetric than the other. A symmetry is lost in the transition,
a phenomenon called spontaneous symmetry breaking, and symmetry changes are
inherently punctuated. The greatest possible set of symmetries in a physical system
is that of the Hamiltonian describing its energy states. Usually states accessible
at lower temperatures will lack the symmetries available at higher temperatures,
so that the lower temperature phase is less symmetric: The randomization of
higher temperatures—in this case limited by available metabolic free energy
densities—ensures that higher symmetry/energy states—mixed transitive groupoid
structures—will then be accessible to the system. Absent high metabolic free energy
rates and densities, however, only the simplest transitive groupoid structures can
be manifest. A full treatment from this perspective seems to require invocation of
groupoid representations, no small matter (e.g., Buneci 2003; Bos 2007).

Something like Pettini’s (2007) Morse-Theory-based topological hypothesis can
now be invoked, i.e., that changes in underlying groupoid structure are a necessary
(but not sufficient) consequence of phase changes in FGŒK�. Necessity, but not
sufficiency, is important, as it, in theory, allows mixed groupoid symmetries, leading
to comorbidity in “condensation” dysfunctions.

Using this formulation, the mechanisms of epigenetic catalysis are accomplished
by allowing the set B1 above to span a distribution of possible “final” states S1.
Then the groupoid arguments merely expand to permit traverse of both initial states
and possible final sets, recognizing that there can now be a possible overlap in
the latter, and the epigenetic effects are realized through the joint uncertainties
H.XG˛ ; Z/, so that the epigenetic information source Z serves to direct as well the
possible final states of XG˛ . Again, Scherrer and Jost (2007a,b) use information
theory arguments to suggest something similar.
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The Groupoid Atlas

The groupoid free energy inherently defines a groupoid atlas in the sense of Bak
et al. (2006). Following closely Glazebrook and Wallace (2009a,b), the set of
groupoids G˛ comprise a groupoid atlas A as follows.

A family of local groupoids .GA/ is defined with respective object sets .XA/˛ ,
and a coordinate system ˚A of A equipped with a reflexive relation �. These satisfy
the following conditions:

1. If ˛ � ˇ in ˚A, then .XA/˛ \ .XA/ˇ is a union of components of .GA/, that is, if
x 2 .XA/˛ \ .XA/ˇ and g 2 .GA/˛ acts as G W x ! y, then y 2 .XA/˛ \ .XA/ˇ .

2. If ˛ � ˇ in ˚A, then there is a groupoid morphism defined between the
restrictions of the local groupoids to intersections

.GA/˛j.XA/˛ \ .XA/ˇ ! .GA/ˇj.XA/˛ \ .XA/ˇ;

and which is the identity morphism on objects.

Thus each of the G˛ with its associated dual information source HG˛ constitutes
a component of an atlas that incorporates the dynamics of an interactive system by
means of the intrinsic groupoid actions.

These are matters currently under very active study (e.g., del Hoyo and Minian
2008).

2.6 “Phase Change” and the Developmental Holonomy
Groupoid in Phenotype Space

There is a more direct way to look at phase transitions in cognitive, and here cul-
turally driven, gene expression, adapting the topological perspectives of homotopy
and holonomy directly within phenotype space.

We begin with ideas of directed homotopy.
In conventional topology one constructs equivalence classes of loops that can be

continuously transformed into one another on a surface. The prospect of interest is
to attempt to collapse such a family of loops to a point while remaining within
the surface. If this cannot be done, there is a hole. Here we are concerned, as
in Fig. 2.1, with sets of one-way developmental trajectories, beginning with an
initial phenotype Si, and converging on some final phenotype, here characteristic
(highly dynamic) brain phenotypes labeled, respectively, Sn and So. One might view
them as, respectively, “normal” and “other,” and the developmental pathways as
representing convergence on the two different configurations. The filled triangle
represents the effect of a composite external epigenetic catalyst—including the
effects of culture and culturally structured social interaction—acting at a critical
developmental period represented by the initial phenotype Si.
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Fig. 2.1 Developmental homotopy equivalence classes in phenotype space. The set on one-way
paths from Si to Sn represents an equivalence class of developmental trajectories converging on a
particular phenotype, here representing a highly dynamic normal mind structure. In the presence
of a noxious external epigenetic catalyst, developmental trajectories can converge on an abnormal
mind structure, represented by the dynamic phenotype So

Fig. 2.2 Parallel transport of a tangent vector Vi ! Vf around a loop on a manifold. Only
for a geometrically flat object will the angle between the initial and final vectors be zero. By a
fundamental theorem the path integral around the loop by parallel displacement is the surface
integral of the curvature over the loop

We assume phenotype space to be directly measurable and to have a simple
“natural” metric defining the difference between developmental paths.

Developmental paths continuously transformable into each other without cross-
ing the filled triangle define equivalence classes characteristic of different informa-
tion sources dual to cognitive gene expression, as above.

Given a metric on phenotype space, and given equivalence classes of devel-
opmental trajectories having more than one path each, we can pair one-way
developmental trajectories to make loop structures. In Fig. 2.1 the solid and dotted
lines above and below the filled triangle can be pasted together to make loops
characteristic of the different developmental equivalence classes. Although Fig. 2.1
is represented as topologically flat, there is no inherent reason for the phenotype
manifold itself to be flat. The existence of a metric in phenotype space permits
determining the degree of curvature, using standard methods. Figure 2.2 shows
a loop in phenotype space. Using the metric definition it is possible to parallel
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transport a tangent vector starting at point s around the loop, and to mea-
sure the angle between the initial and final vectors, as indicated. A central
result from elementary metric geometry is that the angle ˛ will be given by
the integral of the curvature tensor of the metric over the interior of the loop
(e.g., Frankel 2006, Sect. 9.6).

The holonomy group is defined as follows (e.g., Helgason 1962):
If s is a point on a manifold M having a metric, then the holonomy group of M is

the group of all linear transformations of the tangent space Ms obtained by parallel
translation along closed curves starting at s.

For Fig. 2.1 the phenotype holonomy groupoid is the disjoint union of the
different holonomy groups corresponding to the different branches separated by
“developmental shadows” induced by epigenetic information sources acting as
developmental catalysts.

The relation between the phenotype groupoid as defined here and the phase
transitions in FDŒK� as defined above is an open question.

2.7 Holonomy on the Manifold of Dual Information Sources

Basic Structure

Glazebrook and Wallace (2009a) examined holonomy groupoid phase transi-
tion arguments for networks of interacting information sources dual to cognitive
phenomena. A more elementary form of this arises directly through extending
holonomy groupoid arguments to a manifold of different information source dual
to cognitive phenomena as follows.

Different cognitive phenomena will have different dual information sources, and
we are interested in the local properties of the system near a particular reference
state. We impose a topology on the system, so that, near a particular “language” A,
dual to an underlying cognitive process, there is an open set U of closely similar
languages OA, such that A; OA � U. It may be necessary to coarse-grain the system’s
responses to define these information sources. The problem is to proceed in such
a way as to preserve the underlying essential topology, while eliminating “high
frequency noise.” The formal tools for this can be found elsewhere, e.g., in Chap. 8
of Burago et al. (2001).

Since the information sources dual to the cognitive processes are similar, for all
pairs of languages A; OA in U, it is possible to:

1. Create an embedding alphabet which includes all symbols allowed to both of
them.

2. Define an information-theoretic distortion measure in that extended, joint alpha-
bet between any high probability (grammatical and syntactical) paths in A and OA,
which we write as d.Ax; OAx/ (Cover and Thomas 2006). More detail on distortion
measures is given in the section below on the Rate Distortion Theorem. Note that
these languages do not interact, in this approximation.
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3. Define a metric on U, for example,

M.A; OA/ D
ˇ
ˇ
ˇ
ˇ
ˇ
lim

R
A; OA d.Ax; OAx/
R

A;A d.Ax; AOx/
� 1

ˇ
ˇ
ˇ
ˇ
ˇ

(2.12)

integrating over the sets of high probability paths. Note that the integration in
the denominator is over different paths within A itself, while in the numerator
it is between different paths in A and OA. Other metric constructions on U seem
possible, leading to similar results, just as different definitions of distortion lead
to the same end in the Rate Distortion Theorem.

Structures weaker than a conventional metric would be of more general utility,
but the mathematical complications are formidable.

Note that these conditions can be used to define equivalence classes of languages
dual to cognitive processes, where previously we defined equivalence classes of
states that could be linked by high probability, grammatical and syntactical paths
connecting two phenotypes. This led to the characterization of different information
sources. Here we construct an entity, formally a topological manifold, that is an
equivalence class of information sources. This is, provided M is a conventional
metric, a classic differentiable manifold. The set of such equivalence classes
generates the dynamical groupoid, and questions arise regarding mechanisms,
internal or external, which can break that groupoid symmetry.

Since H and M are both scalars, a “covariant” derivative can be defined
directly as

dH=dM D lim
OA!A

H.A/ � H. OA/

M.A; OA/
(2.13)

where H.A/ is the source uncertainty of language A.
The essential point of a “covariant” derivative is that it is independent of coordi-

nate systems, a condition this definition fulfills. As we will show below, this leads
directly to ideas of a derivative along a tangent vector and to ideas of parallel trans-
port leading to deep topological concepts such as holonomy. Introduction of a coor-
dinate system in the definition of M quickly leads to the usual Christoffel symbols
and the familiar geodesic equations (e.g., Wallace and Fullilove 2008, Sect. 8.3).

Suppose the system to be set in some reference configuration A0.
To obtain the unperturbed dynamics of that state, impose a Legendre transform

using this derivative, defining another scalar, an “entropy” analog, as

S � H � MdH=dM (2.14)

The simplest possible generalized Onsager relation—here seen as an empirical,
fitted, equation like a regression model—is in terms of the gradient of S,
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dM=dt D LdS=dM (2.15)

where t is the time and dS=dM represents an analog to the thermodynamic force in
a chemical system. This is seen as acting on the reference state A0.

Again, explicit parameterization of M—that is, imposing a coordinate system—
introduces standard, and quite considerable, notational complications (Burago et al.
2001). Defining a metric for different cognitive dual languages parameterized by
K leads to Riemannian, or even Finsler, geometries, including the usual geodesics
(e.g., Wallace and Fullilove 2008; Glazebrook and Wallace 2009a,b).

The dynamics, as we have presented them so far, have been noiseless. The
simplest generalized Onsager relation in the presence of noise might be rewritten as

dM=dt D LdS=dM C �W.t/

where � is a constant and W.t/ represents white noise. Again, S is seen as a function
of the parameter M. This leads directly to a family of classic stochastic differential
equations of the form

dMt D L.t;M/dt C �.t;M/dBt (2.16)

where L and � are appropriately regular functions of t and M, and dBt represents
the noise structure, characterized by its quadratic variation. In the sense of Emery
(1989), this leads into complicated realms of stochastic differential geometry and
related topics.

The natural generalization is to a system of developmental processes that interact
via mutual information crosstalk, as described by Wallace and Wallace (2009).

“Coevolutionary” Development

The model can be applied to multiple interacting information sources representing
simultaneous gene expression processes. This is, in a broad sense, a “coevolution-
ary” phenomenon in that the development of one process may affect that of others.

Most generally we assume that different cognitive developmental subprocesses
of gene expression characterized by information sources Hm interact through
chemical or other signals and assume that different processes become each other’s
principal environments, a broadly coevolutionary phenomenon.

We write

Hm D Hm.K1 : : : Ks; : : : Hj : : :/ (2.17)

where the Ks represent other relevant parameters and j ¤ m.
The dynamics of such a system is driven by a recursive network of stochastic

differential equations, similar to those used to study many other highly parallel
dynamic structures (e.g., Zhu et al. 2007).
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Letting the Kj and Hm all be represented as parameters Qj (with the caveat
that Hm not depend on itself), one can define, according to the generalized
Onsager development of Wallace and Wallace (2009), “entropies” via the Legendre
transforms as

Sm � Hm �
X

i

Qi@Hm=@Qi

to obtain a complicated recursive system of phenomenological “Onsager relations”
stochastic differential equations,

dQj
t D

X

i

ŒLj;i.t; : : : @Sm=@Qi : : :/dt C �j;i.t; : : : @Sm=@Qi : : :/dBi
t� (2.18)

where, again for notational simplicity only, we have expressed both the Hj and the
external K’s in terms of the same symbols Qj.

m ranges over the Hm and we could allow different kinds of “noise” dBi
t, having

particular forms of quadratic variation that may, in fact, represent a projection of
environmental factors under something like a rate distortion manifold (Glazebrook
and Wallace 2009).

It is important to realize that, for this formulation, one does not necessarily have
the equivalent of “Onsager’s fourth law” of thermodynamics, i.e., the symmetry
relation Li;j D Lj;i. This is because such a symmetry, at base, is a statement
of local time reversal invariance (e.g., de Groot and Mazur 1984, pp. 35–41).
But information sources are notoriously one-way in time, for example, someone
speaking or writing in English is much more likely to utter the five-character string
“the” than its reverse. Or, to put it another way, long palindromes, such as “Able was
I ere I saw Elba,” or “A man, a plan, a canal: Panama,” are quite rare, and always
relatively short, while information theory is based on asymptotic limit theorems
most often involving very long strings of symbols.

As usual, for a system of equations like (2.18), there will be multiple quasi-stable
nonequilibrium steady states, representing a class of generalized resilience modes
accessible via holonomy punctuation.

There are, indeed, many possible patterns:

1. Setting the expectation of Eq. (2.18) equal to zero and solving for stationary
points gives attractor states since the noise terms preclude unstable equilibria.

2. This system may, however, converge to limit cycle or “strange attractors” that
are very highly dynamic.

3. What is converged to in both cases is not a simple state or limit cycle of
states. Rather it is an equivalence class, or set of them, of generalized language
information sources coupled by mutual interaction through crosstalk. Thus
“stability” in this extended model represents particular patterns of ongoing
dynamics rather than some identifiable “state,” although such dynamics may
be indexed by a “stable” set of phenotypes.
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Here we become enmeshed in a system of highly recursive phenomenological
stochastic differential equations, but at a deeper level than the standard stochastic
chemical reaction model (e.g., Zhu et al. 2007), and in a dynamic rather than static
manner: the objects of this system are equivalence classes of information sources
and their crosstalk, rather than simple final states of a chemical system.

We have defined a groupoid for the system based on a particular set of equiv-
alence classes of information sources dual to cognitive processes. That groupoid
parsimoniously characterizes the available dynamical manifolds, and breaking of
the groupoid symmetry by epigenetic crosstalk creates more complex objects of
considerable interest. This leads to the possibility, indeed, the necessity of epigenetic
Deus ex Machina mechanisms—analogous to programming, stochastic resonance,
etc. —to force transitions between the different possible modes within and across
dynamic manifolds. In one model the external “programmer” creates the manifold
structure, and the system hunts within that structure for the “solution” to the problem
according to equivalence classes of paths on the manifold. Noise, as with random
mutation in evolutionary algorithms, precludes simple unstable equilibria, but not
other possible structures.

Equivalence classes of states gave dual information sources. Equivalence classes
of information sources give different characteristic dynamical manifolds. Equiva-
lence classes of one-way developmental paths produce different directed homotopy
topologies characterizing those dynamical manifolds. This introduces the possibility
of having different quasi-stable modes within individual manifolds, and leads
to ideas of holonomy and the holonomy groupoid of the set of quasi-stable
developmental modes.

2.8 Rate Distortion Models

The Rate Distortion Theorem

The interaction between cognitive structures can be restated from a highly formal,
but far more restricted, Rate Distortion Theorem perspective. Suppose a sequence
of signals is generated by an information source dual to a cognitive process, Y
having output yn D y1; y2; : : :. This is “digitized” in terms of the observed behavior
of the system with which it communicates, say a sequence of observed behaviors
bn D b1; b2; : : :. Often the bi will happen in a characteristic “real time” � . Assume
each bn is then deterministically retranslated back into a reproduction of the original
biological signal,

bn ! Oyn D Oy1; Oy2; : : : :

Define a distortion measure d.y; Oy/ that compares the original to the retranslated
path. Many such measures are possible. The Hamming distortion, for example, is
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d.y; Oy/ D 1; y ¤ Oy

d.y; Oy/ D 0; y D Oy

For continuous variates the squared error distortion is

d.y; Oy/ D .y � Oy/2:

The distortion between paths yn and Oyn is defined as

d.yn; Oyn/ � 1

n

nX

jD1

d.yj; Oyj/:

A remarkable fact of the Rate Distortion Theorem is that the basic result is
independent of the exact distortion measure chosen (Cover and Thomas 2006;
Dembo and Zeitouni 1998).

Suppose that with each path yn and bn-path retranslation into the y-language,
denoted Oyn, there are associated individual, joint, and conditional probability
distributions

p.yn/; p.Oyn/; p.yn; Oyn/; p.ynjOyn/:

The average distortion is defined as

D �
X

yn

p.yn/d.yn; Oyn/ (2.19)

It is possible, using the distributions given above, to define the information
transmitted from the Y to the OY process using the Shannon source uncertainty of
the strings:

I.Y; OY/ � H.Y/ � H.Yj OY/ D H.Y/ C H. OY/ � H.Y; OY/ (2.20)

where H.: : : ; : : :/ is the joint and H.: : : j : : :/ the conditional uncertainty (Cover and
Thomas 2006; Ash 1990).

If there is no uncertainty in Y given the retranslation OY , then no information is
lost, and the systems are in perfect synchrony.

In general, of course, this will not be true.
The Rate Distortion Function R.D/ for a source Y with a distortion measure

d.y; Oy/ is defined as

R.D/ D min
p.y;Oy/IP.y;Oy/ p.y/p.yjOy/d.y;Oy/�D

I.Y; OY/ (2.21)
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The minimization is over all conditional distributions p.yjOy/ for which the joint
distribution p.y; Oy/ D p.y/p.yjOy/ satisfies the average distortion constraint (i.e.,
average distortion � D).

The Rate Distortion Theorem states that R.D/ is the minimum necessary rate of
information transmission which ensures the communication between the modules
does not exceed average distortion D. Thus R.D/ defines a minimum necessary
channel capacity. Cover and Thomas (2006) or Dembo and Zeitouni (1998) provide
details. The Rate Distortion Function has been calculated for a number of systems
using Lagrange multiplier and related methods.

There is an absolutely central fact characterizing the Rate Distortion Function:
Cover and Thomas (2006) show that R.D/ is necessarily a decreasing convex
function of D for any reasonable definition of distortion.

That is, R.D/ is always a reverse J-shaped curve. This will prove crucial for
the overall argument. Indeed, convexity is an exceedingly powerful mathematical
condition, and permits deep inference (e.g., Rockafellar 1970). Ellis (1985, Chap.
VI) applies convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and variance �2 under the
squared distortion measure (Cover and Thomas 2006),

R.D/ D 1=2 logŒ�2=D�; 0 � D � �2

R.D/ D 0; D � �2 (2.22)

Recall, now, the relation between information source uncertainty and channel
capacity (e.g., Ash 1990):

HŒX� � C (2.23)

where H is the uncertainty of the source X and C the channel capacity, defined
according to the relation (Ash 1990)

C � max
P.X/

I.XjY/ (2.24)

where P.X/ is chosen so as to maximize the rate of information transmission along
a channel Y .

Finally, recall the analogous definition of the Rate Distortion Function from
Eq. (2.21), again an extremum over a probability distribution.

Rate Distortion Dynamics

R.D/ defines the minimum channel capacity necessary for the system to have
average distortion less than or equal to D, placing a limit on information source
uncertainty. Thus, we suggest distortion measures can drive information system
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dynamics. That is, the Rate Distortion Function also has a homological relation
to free energy density, similar to the relation between free energy density and
information source uncertainty.

We are led to propose, as a heuristic, that the dynamics of cognitive modules
interacting in a characteristic “real time” � will be constrained by the system as
described in terms of a parameterized Rate Distortion Function. To do this, take
R as parameterized, not only by the distortion D, but also by some vector of
variates Q D .Q1; : : : ; Qk/, for which the first component is the average distortion.
The assumed dynamics are, as in Wallace and Wallace (2008), then driven by
gradients in the rate distortion disorder defined as the Legendre transform of the
Rate Distortion Function

SR � R.Q/ �
kX

iD1

Qi@R=@Qi (2.25)

This leads to the deterministic and stochastic systems of equations analogous to
the Onsager relations of nonequilibrium thermodynamics:

dQj=dt D
X

i

Lj;i@SR=@Qi (2.26)

and

dQj
t D Lj.Q1; : : : ; Qk; t/dt C

X

i

� j;i.Q1; : : : ; Qk; t/dBi
t (2.27)

where the dBi
t represent added, often highly structured, stochastic “noise” whose

properties are characterized by the quadratic variation (e.g., Protter 1995).
Even for this simplified structure, it is not clear under what circumstances

“Onsager reciprocal relations” are possible. Since average distortion is a scalar,
however, some systems may indeed display the kind of time reversal invariance
required for those symmetries.

A central focus of this chapter, however, is to generalize these equations in the
face of richer structures, for example, interactions between cognitive modules that
may not be time-reversible, the existence of characteristic time constants within
nested processes, and the influence of an embedding source of free energy.

For a simple Gaussian channel with noise having zero mean and variance �2, an
entropy can be defined as the Legendre transform

SR.D/ D R.D/ � DdR.D/=dD D 1=2 log.�2=D/ C 1=2 (2.28)

The simplest possible Onsager relation becomes

dD=dt D ��dSR=dD D �

2D
(2.29)
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where �dSR=dD represents the force of an entropic wind, a kind of internal dissipa-
tion inevitably driving the real time, system of interacting (cognitive) information
sources toward greater distortion.

This has the solution

D D p
�t (2.30)

so that the average distortion increases monotonically with time, for this model.
A central observation is that similar results must necessarily apply to any of

the reverse-J-shaped relations that inevitably characterize R.D/, since the Rate
Distortion Function is necessarily a convex decreasing function of the average
distortion D, whatever distortion measure is chosen. Again, see Cover and Thomas
(2006) for details.

The explicit implication is that a system of cognitive modules interacting in real
time will inevitably be subject to a relentless entropic force, requiring a constant
free energy expenditure for maintenance of some fixed average distortion in the
communication between them: The distortion in the communication between two
interacting modules will, without free energy input, have time dependence

D D f .t/ (2.31)

with f .t/ monotonic increasing in t.
This necessarily leads to the punctuated failure of the system.
Note that Eq. (2.30) is similar to classical Brownian motion as treated by

Einstein: Let p.x; t/dx be the probability a particle located at the origin at time zero
and undergoing Brownian motion is found at locations x ! x C dx at time t. Then,
p satisfies the diffusion equation @p.x; t/=@t D �@2p.x; t/=@x2. Einstein’s solution
is that

p.x; t/ D 1p
4��t

expŒ�x2=4�t�:

It is easy to show that the standard deviation of the particle position increases in
proportion to

p
�t, just as above.

Some comment is appropriate. Following, e.g., Chung and Williams (1990), a
process B D Bt; t 2 RC is called a Brownian motion in RC iff:

1. for 0 � s < t < 1; Bt � Bs is a normally distributed random variate with mean
zero and variance jt � sj.

2. for 0 � t0 < t1 < � � � < tk < 1,

fBt0 I Btj � Btj�1 ; j D 1; : : : ; kg

is a set of independent random variates.
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An information source, of course, generates a highly correlated sequence that
grossly violates these simple assumptions. What we have shown is that the distortion
in the communication between interacting cognitive modules, under appropriate
empirical Onsager relations, can behave as if it were undergoing Brownian motion.

This is a simple, but far from trivial, result.
Prandolini and Moody (1995) have, in fact, observed something much like this in

the time base error of recorded signals. Wow and flutter are the instantaneous speed
error between recording and reproduction epochs. The time base error (TBE) in the
reproduced signal is a function of the wow and flutter. They show, empirically, that
the nonperiodic TBE is a fractional Brownian motion. The implication is that the
nonperiodic flutter is fractional Gaussian, and thus what they call a “blind” TBE
system is impractical for the design of a TBE compensation system.

Normalized fractional Brownian motion on .0; t/; t 2 RC is a continuous time
Gaussian process starting at zero, with mean zero, and having the covariance
function (Beran 1994)

EŒBH.t/BH.s/� D .1=2/Œjtj2H C jsj2H � jt � sj2H�:

If H D 1=2 the process is a regular Brownian motion. Otherwise, for H > 1=2,
the increments are positively correlated, and for H < 1=2, negatively correlated.

We will explore this kind of relation in more detail below.

Rate Distortion Coevolutionary Dynamics

A simplified version of Eq. (2.18) can be constructed using the Rate Distortion
Functions for mutual crosstalk between a set of interacting cognitive modules, using
the homology of the Rate Distortion Function itself with free energy, as driven by
the inherent convexity of the Rate Distortion Function R.D/. That convexity is, in
fact, why we invoke the Rate Distortion Function.

Given different cognitive processes 1 : : : s, the quantities of special interest thus
become the mutual Rate Distortion Functions Ri;j characterizing communication
(and the distortion Di;j) between them, while the essential parameters remain
the characteristic time constants of each process, �j; j D 1 : : : s, and an overall,
embedding, available free energy density, F.

Taking the Q˛ to run over all the relevant parameters and mutual Rate Distortion
Functions (including distortion measures Di;j), Eq. (2.14) becomes

Si;j
R � Ri;j �

X

k

Qk@Ri;j=@Qk (2.32)
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Equation (2.18) accordingly becomes

dQ˛
t D

X

ˇD.i;j/

ŒLˇ.t; : : : @Sˇ
R=@Q˛ : : :/dt C �ˇ.t; : : : @Sˇ

R=@Q˛ : : :/dBˇ
t � (2.33)

and this generalizes the treatment in terms of crosstalk, its distortion, the inherent
time constants of the different cognitive modules, and the overall available free
energy density.

This is a very complicated structure indeed, but its general dynamical behaviors
will obviously be analogous to those described just above. For example, setting
the expectation of Eq. (2.33) to zero gives the “coevolutionary stable states” of a
system of interacting cognitive modules. Again, limit cycles and strange attractors
seem possible as well. And again, what is converged to is a dynamic behavior
pattern, not some fixed “state.” And again, such a system will display highly
punctuated dynamics almost exactly akin to resilience domain shifts in ecosystems
(e.g., Holling 1973, 1992; Gunderson 2000). Indeed, the formalism seems directly
applicable to ecosystem studies.

And again, because these are highly self-dynamic cognitive phenomena and not
simple crystals or other physical objects, it may not often be possible to invoke time
reversal invariance to give Onsager-like reciprocal symmetries to Eq. (2.33).

2.9 Expanding the Mathematical Approach

We have, in the context of a tunable epigenetic catalysis, developed several
phase transition/branching models of cognitive gene expression based on groupoid
structures that may be applied to the development of the human mind and its
dysfunctions, as known to be particularly influenced by embedding culture. The
first used Landau’s spontaneous symmetry breaking to explore phase transitions
in a groupoid free energy FDŒK�. The second examined a holonomy groupoid
in phenotype space generated by disjoint developmental homotopy equivalence
classes, and “loops” constructed by pairing one-way development paths. The third
introduced a metric on a manifold of different information sources dual to cognitive
gene expression, leading to a more conventional picture of parallel transport around
a loop leading to holonomy. The dynamical groupoid of Wallace and Fullilove
(2008, Sect. 3.8) is seen as involving a disjoint union across underlying manifolds
that produces a holonomy groupoid in a natural manner.

There are a number of outstanding mathematical questions.
The first is the relation between the Landau formalism and the structures of

phenotype space S and those of the associated manifold of dual information
sources, the manifold M having metric M. How does epigenetic catalysis in
M-space imposes structure on S-space? How is this related to spontaneous symmetry
breaking?
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What would a stochastic version of the theory, in the sense of Emery (1989), look
like? It is quite possible, using appropriate averages of the stochastic differential
equations that arise naturally, to define parallel transport, holonomy, and the like
for these structures. In particular a stochastic extension of the results of the first
question would seem both fairly direct and interesting from a real-world perspective,
as development is always “noisy.”

The construction of loops from directed homotopy arcs in Fig. 2.1 is complicated
by the necessity of imposing a consistent piecewise patching rule for parallel
translation at the end of each arc, say from Si to Sn. This can probably be done
by some standard fiat, but the details will likely be messy.

On another matter, we have imposed metrics on S and M space, making possible a
fairly standard manifold analysis of complex cognitive processes of gene expression
and development. While this is no small thing, the “natural” generalization, given
the ubiquity of groupoids across our formalism, would be to a more complete
groupoid atlas treatment in the spirit of section “The Groupoid Atlas”. The groupoid
atlas permits a weaker structure compared with that of a conventional manifold since
no condition of compatibility between arbitrary overlaps of the patches is necessary.
It is possible that the groupoid atlas will become, to complicated problems in
biological cognitive process, something of what the Riemannian manifold has been
to physics.

With regard to questions of “smoothness,” we are assuming that the cognitive
landscape of gene expression is sufficiently rich that discrete paths can be well
approximated as continuous where necessary, the usual physicist’s hack.

Finally, Sects. 2.6 and 2.7 are based on existence of more-or-less conventional
metrics, and this may not be a good approximation to many real systems. Extending
topological phase transition theory to “weaker” topologies, e.g., Finsler geometries
and the like, is not a trivial task.

2.10 Discussion

Culturally structured psychosocial stress, and similar noxious exposures, can write
distorted images of themselves onto human ontology—both child growth, and, if
sufficiently powerful, adult development as well—by a variety of mechanisms,
initiating a punctuated trajectory to characteristic forms of comorbid mind/body
dysfunction. This occurs in a manner recognizably analogous to resilience domain
shifts affecting stressed ecosystems (e.g., Wallace 2008; Holling 1973; Gunderson
2000). Consequently, like ecosystem restoration, reversal or palliation may often be
exceedingly difficult once a generalized domain shift has taken place. Thus a public
health approach to the prevention of mental disorders may be paramount: rather
than seeking to understand why half a population does not respond to the LD50 of a
teratogenic environmental exposure, one seeks policies and social reforms that limit
the exposure.
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Both sociocultural and epigenetic environmental influences—like gene
methylation—are heritable, in addition to genetic mechanisms. The missing
heritability of complex diseases that Manolio et al. (2009) seek to find in more
and better gene studies is most likely dispersed within the “dark matter” of these
two other systems of heritage that together constitute the larger, and likely highly
synergistic, regulatory machinery for gene expression. More and more purely
genetic studies would, under such circumstances, be akin to using increasingly
powerful microscopes to look for cosmic membranes of strewn galaxies.

A crucial matter is the conversion of the probability models we present here
into statistical tools suitable for analyzing real data, and hence actually testing the
theoretical models we present here. Some work in this direction has been done
in Sect. 2.8, but the problem involves not just programming such models for use,
but identifying appropriate real-world problems, assembling available data sets,
transforming the data as needed for the models, and actually applying the statistical
models. Indeed, the environmental health literature contains numerous examples of
developmental deviations due to either chemical exposures or interaction between
chemical and socioeconomic exposures, and these could serve as sources of data for
direct analysis (e.g., Needleman et al. 1996; Fullilove 2004; Dietrich et al. 2001;
Miranda et al. 2007; Glass et al. 2009; Jacobson and Jacobson (2002); Shankardass
et al. 2009; Clougherty et al. 2007; Ben-Jonathan et al. 2009; Karp et al. 2005;
Sarlio-Lahteenkorva and Lahelma 2001; Wallace and Wallace 2005; Wallace et al.
2003). Thus, quite a number of data sets exist in the environmental health and
socioeconomic epidemiological literature that could be subjected to meta-analysis
and other review for model verification and fitting. Our topological models, when
converted to statistical tools for data analysis, hold great potential for understanding
developmental trajectories and interfering factors (teratogens) through the life
course. Sets of cross cultural variants of these data focusing specifically on mental
disorders would be needed to address the particular concerns of this chapter.

Nonetheless, what we have done is of no small interest for understanding the
ontology of the human mind and its pathologies. West-Eberhard (2003, 2005) argues
that any new input, whether it comes from the genome, like a mutation, or from
the external environment, like a temperature change, a pathogen, or a parental
opinion, has a developmental effect only if the preexisting phenotype is responsive
to it. A new input causes a reorganization of the phenotype, or “developmental
recombination.” In developmental recombination, phenotypic traits are expressed in
new or distinctive combinations during ontogeny, or undergo correlated quantitative
change in dimensions. Developmental recombination can result in evolutionary
divergence at all levels of organization.

According to West-Eberhard, individual development can be visualized as a
series of branching pathways. Each branch point is a developmental decision, or
switch point, governed by some regulatory apparatus, and each switch point defines
a modular trait. Developmental recombination implies the origin or deletion of a
branch and a new or lost modular trait. The novel regulatory response and the novel
trait originate simultaneously. Their origins are, in fact, inseparable events: There
cannot, West-Eberhard concludes, be a change in the phenotype, a novel phenotypic
state, without an altered developmental pathway.
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Our analysis provides a new formal picture of this process as it applies to
human development: The normal branching of developmental trajectories, and
the disruptive impacts of teratogenic events of various kinds, can be described
in terms of a growing sequence of holonomy groupoids, each associated with a
set of dual information sources representing patterns of cognitive gene expression
catalyzed by epigenetic information sources that, for humans, must include culture
and culturally modulated social interaction as well as more direct mechanisms like
gene methylation. This is a novel way of looking at human development and its
disorders that may prove to be of some use. The most important innovation of
this work, however, seems to be the natural incorporation of embedding culture
as an essential component of the epigenetic regulation of human ontology, and in
the effects of environment on the expression of a broad spectrum of developmental
disorders: the missing heritability of complex diseases found.
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Chapter 3
Western Atomism and Its Culture-Bound
Syndromes

Culture is as much a part of human biology as the enamel on our teeth.
– Robert Boyd.

Summary The stabilization of human cognition via feedback from embedding
social and cultural contexts is a dynamic process deeply intertwined with it,
constituting, in a sense, the riverbanks directing the flow of a stream of generalized
consciousness at different scales: cultural norms and social interaction are syner-
gistic with individual and group cognition and their disorders. A canonical failure
mode in atomistic cultures is found to be a “ground state” collapse well-represented
by atomistic models of economic interaction that are increasingly characterized as
divorced from reality by heterodox economists. That is, high rates of psychopathic
and antisocial personality disorder and obsessive-compulsive disorder emerge as
culture-bound syndromes particular to Western or Westernizing societies, or to those
undergoing social disintegration.

3.1 Introduction

Cognition and its regulation, we will argue, must be viewed as an interacting gestalt,
involving not just an atomized individual, but the individual in a rich context
that includes embedding social and cultural norms and path-dependent historical
trajectory. There can be no cognition without regulation, just as there can be no
heartbeat without the control of blood pressure, and no multicellularity without
control of rogue cell cancers. Cognitive streams must be contained within regulatory
riverbanks.

We implicitly extend the criticisms of Bennett and Hacker (2003) who examined
the mereological fallacy of a decontextualization that attributes to “the brain” what
is the province of the whole individual. Here, we argue that the “whole individual”
incorporates embedding environmental and regulatory settings that, for humans,
must include cultural heritage and social interaction.

More specifically, earlier work in this direction (Wallace 2014a,b) explored how
information and control theories could be used to examine the stability of cognitive
biological processes, in the sense of Maturana and Varela (1980). The failure of
such processes is often expressed by the onset of behavioral pathologies and the
chronic diseases of aging. Glazebrook and Wallace (2014) apply somewhat similar
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methods to autism spectrum disorders. Here, we look at certain characteristic mental
dysfunctions more specifically in their social and cultural contexts, focusing on
observational studies that contrast Western and East Asian populations.

The criteria for antisocial personality disorder (ASPD) in the Diagnostic and
Statistical Manual of Mental Disorders (DSM III-R 1987, pp. 344–346)—a standard
US medical nosology—lists a set of chronic disruptive, irresponsible, and antisocial
behaviors, including lack of remorse and empathy, and similar matters. See Hare
et al. (1991) for discussion. Kessler et al. (1994) found, for the USA, a prevalence
of about 3.5% of ASPD. Subsequent studies a decade later found similar preva-
lence (Grant et al. 2004; Compton et al. 2005). By some contrast, Hwu et al. (1989),
using DSM III instruments translated into Chinese, found in Taiwan, prevalences
of 0.03, 0.07, and 0.14%, respectively, in a large study of village, small town, and
Taipei settings. While the “free air of the city” perhaps attracts or enables those with
behavioral patterns similar to ASPD, all rates are markedly lower than in the USA.

Similarly, Weissman et al. (1994) used DSM III criteria to quantify obsessive-
compulsive disorder (OCD) across a number of international settings. While the
lifetime rates for Western societies were found to be approximately 2.3%, in Taiwan,
the observed rate was 0.7%. As they put the matter,

. . . [T]he lifetime. . . and. . . annual prevalence rates (cases per 100) of obsessive compulsive
disorder in seven international communities were remarkably consistent (with the exception
of Taiwan). . . The prevalence rates for Taiwan were substantially lower than all of the other
sites, paralleling Taiwan’s low published rates for all psychiatric disorders.

South Korea, in the aftermath of attempts at deculturation carried out during the
Japanese occupation between 1910 and 1945, followed by the Korean War, was
found to suffer an OCD rate of 1.9% in the study, still lower than the USA at 2.3%.

These observations suggest the necessity of some meditation on the differences
between East Asian and Western modes of thinking. Such examination is badly
needed: the cultural psychologist Heine (2001) argues that the extreme nature of
American individualism suggests that a psychology based on the late twentieth
century American research not only stands the risk of developing models that are
particular to that culture, but also of developing an understanding of the self that is
peculiar in the context of the world’s cultures.

In particular, Western atomistic thinking, which pervades a spectrum of dis-
ciplines ranging from economics and evolutionary theory to psychology and
psychiatry, has deep cultural roots (Wallace 2015, Chap. 1).

Nisbett et al. (2001), following in a long line of research (Markus and Kitayama
1991; Heine 2001), review an extensive literature on empirical studies of basic
cognitive differences between individuals raised in East Asian and Western cultural
heritages, which they characterize, respectively, as “holistic” and “analytic.” They
argue:

1. Social organization directs attention to some aspects of the perceptual field at the expense
of others.

2. What is attended to influences metaphysics.
3. Metaphysics guides tacit epistemology, that is, beliefs about the nature of the world and

causality.
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4. Epistemology dictates the development and application of some cognitive processes at
the expense of others.

5. Social organization can directly affect the plausibility of metaphysical assumptions, such
as whether causality should be regarded as residing in the field vs. in the object.

6. Social organization and social practice can directly influence the development and use
of cognitive processes such as dialectical vs. logical ones.

Nisbett et al. (2001) conclude that tools of thought embody a culture’s intellectual
history, that tools have theories built into them, and that users accept these theories,
albeit unknowingly, when they use these tools.

Masuda and Nisbett (2006) find that research on perception and cognition
suggests that whereas East Asians view the world holistically, attending to the entire
field and relations among objects, Westerners view the world analytically, focusing
on the attributes of salient objects. Compared to Americans, East Asians were
more sensitive to contextual changes than to focal object changes. These results
suggest that there can be cultural variation in what may seem to be basic perceptual
processes.

Similarly, Nisbett and Miyamoto (2005) argue that fundamental perceptual
processes are influenced by culture. These findings establish a dynamic relationship
between the cultural context and perceptual processes. They suggest that perception
can no longer be regarded as consisting of processes that are universal across all
people at all times.

Wallace (2007) explores analogous dynamics involving inattentional blindness
and culture.

A canonical example of how tools of thought embody a culture’s intellectual
history can be found in mainstream Western economic theory.

3.2 Western Atomistic Economics

The inadequacy of conventional Western economic theorizing has become painfully
obvious since the 2008 debacle. Lawson (2010) and Wallace (2015, Chap. 1) provide
details and historical context. Important for our purposes is the central point of
Lawson’s critique of atomistic mathematical models in economics—including, but
not limited to, game theory. He identifies a basic mismatch between the sorts of
mathematical methods economists employ and the nature of the social, including
economic, phenomena that economists seek to illuminate. Their approach usually
involves maximization of a simple “utility function” over a distribution of possible
strategies. Most fundamentally, economists’ methods can be seen to be restricted
to closed systems where such maximization can be carried out using standard
mathematical techniques. To date, such closures have been found to occur only
very rarely in the social realm and we have good reason to suppose they will
remain uncommon. In addition, as many heterodox economic theories emphasize,
real human dynamics are almost never restricted to atomistic interactions (Lawson
2010; Wallace 2015).
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Here, however—and contrarily—we will argue that the symptom spectra of
certain psychopathologies may actually characterize such a closed system, one
in which the individual (or group) is inherently, or becomes under dynamics of
social disintegration, divorced from social or cultural embedding, and engages
in a strongly self-referential cognitive dynamic that is most pronounced among
atomistic, culturally Western, populations. Different “economic” models may then
apply to different characteristic patterns of cognitive dysfunction.

Some development is required.
Cohen (1987) describes control and game theory as follows:

[H]euristically. . . the major problem of control theory is to find the maximum of some
performance criterion (or criteria), given a set of constraints. . . . When the objective function
is single valued. . . then one is dealing with optimal control theory. When more than one
objective is involved, and the objectives are generally incompatible, then one is dealing
with game theory.

The prisoners’ dilemma, a classic game theory paradox and a singular example of
Lawson’s criticisms, is worth special comment. Two prisoners, who engaged jointly
in a major crime, have been taken in custody for a relatively minor offense, and
are confronted separately and individually by a district attorney. If neither confesses
to the major crime, both will serve a short sentence for the minor crime. If both
confess, each will receive a longer sentence. If one confesses, and the other does
not, the “defector” will be released and the other will serve a very long sentence in
prison. Von Neumann game theory predicts—the Nash equilibrium for a one-time
game implies—that each will betray the other (Watson 2013).

Field (2014), with a relentless and scathing deconstruction, describes the appli-
cation of game theory to Cold War nuclear strategy in these terms:

In the Prisoner’s Dilemma played once, for example, the Nash prediction is unambiguous:
no cooperation. Defection is the strictly dominant strategy. Experiment. . . however, provides
abundant evidence of positive rates of cooperation. Similar “anomalies” are found in volun-
tary contribution to public goods games (which are multi person Prisoner’s Dilemmas),
where one sees positive contribution levels, in the trust game, where one sees positive
transfers in both directions, and in many other instances.

Game theory has faced similar predictive failures in its treatment of behavior in the
real world. As John von Neumann argued [and, parenthetically, strongly advocated]. . . its
canonical behavioral assumptions predicted devastating conflict between nuclear adver-
saries. . . This has not happened. . .

Field asserts quite forcefully that, because of the disjunction between human
behavior and the self-regarding assumptions often used in formal game theory, the
latter offers little guidance, normatively or predictively, in thinking about behavior
or strategy in a world of potential conflict.

Again, and by contrast, we argue that the behaviorally depauperate dynamics
of formal game theory and other closed system mainstream atomistic economic
models may actually provide useful characterizations of several Western culture-
bound syndromes defined by symptom clusters, including obsessive-compulsive
disorder (OCD) and psychopathic and antisocial personality disorders. The latter
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appear to represent two ends in a spectrum of “natural” and “socially induced”
pathology that may generalize to group phenomena in the context of cultural and
social collapse.

While the use of game theory to examine psychopathy is far from original
(Mokros et al. 2008; Amsel 2007), our route to a more comprehensive formalism
is novel. We find game theory and analogous “economic” behaviors can represent
forms of relatively simplistic behavioral “ground states” that follow from the
developmentally punctuated collapse of essential regulatory systems, both internal
and contextual. Ours is, however, most centrally, a “cultural” perspective consistent
with the work of Arthur Kleinman and others (Kleinman 1991).

Below, we pursue a minimal line of formal argument for a dauntingly compli-
cated set of nested dynamical structures. Although expressed in only four equations,
the embedding mathematical tools are far from elementary.

We begin with an information theory formulation of cognition.

3.3 Cognition as an Information Source

Natural cognitive systems operate at all scales and levels of organization of biolog-
ical process (Wallace 2012, 2014a). The failure of low level biological cognition in
humans is often expressed through early onset of the intractable chronic diseases of
senescence (Wallace and Wallace 2010, 2013). Failure of high-order cognition in
humans has been the subject of intensive scientific study for over 200 years, with
little if any consensus: medical professionals realize that psychological illnesses
occur, but they disagree profoundly about their cause and pathology (Johnson-Laird
et al. 2006).

This may be something an understatement.
Atmanspacher (2006) argues that theories of high-level cognition are at a point

like that of physics 400 years ago, with the basic entities and the relations between
them yet to be determined. Further complications arise via the overwhelming
influence of culture on both mental process and its dysfunction (e.g., Heine 2001;
Kleinman and Cohen 1997).

The stabilization and regulation of high-order cognition for individuals and
groups may thus be as complex as such cognition itself.

Some simplification, however, is possible. Cognition can be described in terms
of a sophisticated real-time feedback between interior and exterior, necessarily
constrained, as Dretske (1994) has noted, by certain asymptotic limit theorems of
probability:

Unless there is a statistically reliable channel of communication between [a source and a
receiver]. . . no signal can carry semantic information. . . [thus] the channel over which the
[semantic] signal arrives [must satisfy] the appropriate statistical constraints of information
theory.
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The first step in our analysis is a recapitulation of an approach to cognition using
the asymptotic limit theorems of information theory (Wallace 2000, 2005a,b, 2007,
2012, 2014a,b).

Atlan and Cohen (1998) argue that the essence of cognition involves comparison
of a perceived signal with an internal, learned or inherited picture of the world, and
then choice of one response from a much larger repertoire of possible responses.
That is, cognitive pattern recognition-and-response proceeds by an algorithmic
combination of an incoming external sensory signal with an internal ongoing
activity—incorporating the internalized picture of the world—and triggering an
appropriate action based on a decision that the pattern of sensory activity requires a
response.

Incoming sensory input is thus mixed in an unspecified but systematic man-
ner with internal ongoing activity to create a path of combined signals x D
.a0; a1; : : : ; an; : : :/. Each ak thus represents some functional composition of the
internal and the external. An application of this perspective to a standard neural
network is given in Wallace (2005a, p. 34).

This path is fed into a similarly unspecified decision function, h, generating an
output h.x/ that is an element of one of two disjoint sets B0 and B1 of possible
system responses. Let

B0 � fb0; : : : ; bkg;
B1 � fbkC1; : : : ; bmg:

Assume a graded response, supposing that if

h.x/ 2 B0;

the pattern is not recognized, and if

h.x/ 2 B1;

the pattern is recognized, and some action bj; k C 1 � j � m takes place.
Interest focuses on paths x triggering pattern recognition-and-response: given a

fixed initial state a0, examine all possible subsequent paths x beginning with a0 and
leading to the event h.x/ 2 B1. Thus h.a0; : : : ; aj/ 2 B0 for all 0 � j < m, but
h.a0; : : : ; am/ 2 B1.

For each positive integer n, take N.n/ as the number of high probability paths
of length n that begin with some particular a0 and lead to the condition h.x/ 2 B1.
Call such paths “meaningful,” assuming that N.n/ will be considerably less than the
number of all possible paths of length n leading from a0 to the condition h.x/ 2 B1.

The essence of the Shannon–McMillan Theorem that we will invoke below is
that the set of low probability paths has, in fact, vanishingly low probability. We
will return to this.

Identification of the “alphabet” of the states aj; Bk may depend on the proper
system coarse-graining in the sense of symbolic dynamics (Beck and Schlogl 1995).
That is, the larger pattern of behavioral dynamics is projected down onto a simpler,
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but characteristic, “alphabet” whose combinations and permutations form patterns
of “words” and “statements” in a kind of behavioral language “spoken” by the
system of interest.

Combining algorithm—i.e., the exact form of the function h—and the details of
grammar and syntax are all unspecified in this model. The assumption permitting
inference on necessary conditions constrained by the asymptotic limit theorems of
information theory is that the finite limit

H � lim
n!1

logŒN.n/�

n
(3.1)

both exists and is independent of the path x. Again, N.n/ is the number of high
probability paths of length n, with low probability paths forming a set of vanishingly
small probability.

Call such a pattern recognition-and-response cognitive process ergodic. Not all
cognitive processes are likely to be ergodic, implying that H, if it indeed exists at
all, is path dependent, although extension to nearly ergodic processes, in a certain
sense, seems possible (Wallace 2005a, pp. 31–32).

Invoking the Shannon–McMillan Theorem (Cover and Thomas 2006; Khinchin
1957), we define an adiabatically, piecewise stationary, ergodic information source
X associated with stochastic variates Xj having joint and conditional probabilities
P.a0; : : : ; an/ and P.anja0; : : : ; an�1/ such that appropriate joint and conditional
Shannon uncertainties satisfy the classic relations

HŒX� D lim
n!1

logŒN.n/�

n

D lim
n!1 H.XnjX0; : : : ; Xn�1/

D lim
n!1

H.X0; : : : ; Xn/

n
(3.2)

This information source is defined as dual to the underlying ergodic cognitive
process, in the mathematical sense of Wallace (2005a, 2007, 2012).

Again, following Khinchin (1957), the real value of this theorem is that it
shows how paths can be divided into just two sets. The first, of high probability,
is consistent with inherent patterns of “grammar” and “syntax” (in a large sense)
that characterize the information source. The second set, of vanishingly small
probability, violates those rules.

“Adiabatic” means that, when the information source is properly parameterized,
within continuous “pieces,” changes in parameter values take place slowly enough
so that the information source remains as close to stationary and ergodic as needed
to make the fundamental limit theorems work. “Stationary” means that probabilities
do not change in time, and “ergodic” that cross-sectional means converge to long-
time averages. Between pieces it is necessary to invoke phase change formalism, a
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“biological” renormalization that generalizes Wilson’s (1971) approach to physical
phase transition (Wallace 2005a).

Shannon uncertainties H.: : :/ are cross-sectional law-of-large-numbers sums of
the form �Pk Pk logŒPk�, where the Pk constitute a probability distribution (Cover
and Thomas 2006).

For cognitive systems, an equivalence class algebra can be constructed by
choosing different origin points a0, and defining the equivalence of two states am; an

by the existence of high probability meaningful paths connecting them to the same
origin point. Disjoint partition by equivalence class, analogous to orbit equivalence
classes for a dynamical system, defines the vertices of a network of cognitive dual
languages that interact to actually constitute the system of interest. Each vertex then
represents a different information source dual to a cognitive process. This is not a
representation of a network of interacting physical systems as such, in the sense of
network systems biology (Arrell and Terzic 2010). It is an abstract set of languages
dual to the set of cognitive processes of interest, that may become linked into higher
order structures.

Topology, however, has long been an object of algebraic study, the so-called
algebraic topology, via the fundamental underlying symmetries of geometric spaces.
Rotations, mirror transformations, simple (“affine”) displacements, and the like
uniquely characterize topological spaces, and the networks inherent to cognitive
phenomena having dual information sources also have complex underlying sym-
metries: characterization via equivalence classes defines a groupoid, an extension
of the idea of a symmetry group, as summarized by Brown (1987) and Weinstein
(1996). Linkages across this set of languages occur via the groupoid generalization
of Landau’s spontaneous symmetry breaking arguments that will be used below
(Landau and Lifshitz 2007; Pettini 2007). See the Mathematical Appendix for a
brief summary of basic material on groupoids.

Recognize, however, that we are not constrained in this approach to the Atlan–
Cohen model of cognition that, through the comparison with an internal picture
of the world, invokes representation. The essential inference is that a broad class
of cognitive phenomena—with and without representation—can be associated
with a dual information source. That is, cognition inevitably involves choice,
choice reduces uncertainty, and reduction of uncertainty implies the existence of
an information source whose dynamics are constrained by the asymptotic limit
theorems of information theory.

3.4 Environment as an Information Source

Multifactorial cognitive and behavioral systems interact with, affect, and are
affected by embedding environments—including culture and social relations—
that “remember” interaction by various mechanisms. It is possible to reexpress
environmental dynamics in terms of a grammar and syntax that represent the output
of an information source—another generalized language.
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Some simple examples:

1. The turn-of-the seasons in a temperate climate, for many ecosystems, looks
remarkably the same year after year: the ice melts, the migrating birds return, the
trees bud, the grass grows, plants and animals reproduce, high summer arrives,
the foliage turns, the birds leave, frost, snow, the rivers freeze, and so on.

2. Human interactions take place within fairly well-defined social, cultural, and
historical constraints, depending on context: birthday party behaviors are not
the same as cocktail party behaviors in a particular social set, but both will be
characteristic across different cultural settings.

3. Gene expression during development is highly patterned by embedding environ-
mental context via “norms of reaction” (Wallace and Wallace 2010).

Suppose it possible to coarse-grain the (continuously represented) generalized
“ecosystem” at time t, in the sense of symbolic dynamics (e.g., Beck and Schlogl
1995) according to some appropriate finite (or at least countable) partition of the
phase space in which each division Aj represent a particular range of numbers of
each possible fundamental actor in the generalized ecosystem, along with associated
larger system parameters. Of central interest is the set of longitudinal paths—system
statements, in a sense—of the form x.n/ D A0; A1; : : : ; An defined in terms of
some natural time unit of the system. Thus n corresponds to an again appropriate
characteristic time unit T , so that t D T; 2T; : : : ; nT .

Let N.n/ be the number of possible paths of length n that are consistent with
the underlying grammar and syntax of the appropriately coarse-grained embedding
ecosystem, in a large sense. As above, the fundamental assumptions are that—for
this chosen coarse-graining—N.n/, the number of possible grammatical paths, is
much smaller than the total number of paths possible, and that, in the limit of
(relatively) large n, H D limn!1 logŒN.n/�=n both exists and is independent of
path.

These considerations represent a parallel with parametric statistics. Systems for
which the simplifying assumptions are not true will require specialized approaches.

Nonetheless, not all possible ecosystem coarse-grainings—divisions of a contin-
uous system into a finite alphabet-like structure—are likely to work, and different
such divisions, even when appropriate, might well lead to different descriptive quasi-
languages for the ecosystem of interest. Thus, empirical identification of relevant
coarse-grainings for which this theory will work may represent a difficult scientific
problem.

Given an appropriately chosen coarse-graining, define joint and conditional
probabilities for different ecosystem paths, having the form P.A0; A1; : : : ; An/,
P.AnjA0; : : : ; An�1/, such that appropriate joint and conditional Shannon uncertain-
ties can be defined on them that satisfy Eq. (3.2).

Taking the definitions of Shannon uncertainties as above, and arguing backwards
from the latter two parts of Eq. (3.2), it is indeed possible to recover the first, and
divide the set of all possible ecosystem temporal paths into two subsets, one very
small, containing the grammatically correct, and hence highly probable paths, that
we will call “meaningful,” and a much larger set of vanishingly low probability.
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Learned culture (and its associated patterns of social interaction) contextually
constrain possible behaviors, spoken language, body postures, and many other
phenotypes. That is, different cultures impose different probability structures on
essential matters of living and of the life course trajectory. Even sleep is widely
discordant across cultural boundaries. Birth, marriage, death, social conflict, eco-
nomic exchange, and so on are all strongly patterned by culture, in the context of
historical trajectory and social segmentation. Some discussion of these matters in the
context of mental disorder can be found in Kleinman and Good (1985), Desjarlais
et al. (1995), and the references therein. Boyd and Richerson (2005) provide a more
comprehensive introduction.

More generally, as Durham (1991) argues, genes and culture are two distinct but
interacting systems of heritage in human populations. Information of both kinds
has potential or actual influence over behaviors, creating a real and unambiguous
symmetry between genes and phenotypes on the one hand, and culture and pheno-
types on the other. Genes and culture are best represented as two parallel tracks
of hereditary influence on phenotypes, acting, of course, on markedly different
timescales. Human species’ identity rests, in no small part, on its unique evolved
capabilities for social mediation and cultural transmission, creating, again, high and
low probability sets of real-time behavioral sequences.

3.5 Interacting Information Sources

Given a set of information sources that are linked to solve a problem, in the sense
of Wilson and Golonka (2013), the “no free lunch” theorem (English 1996; Wolpert
and MacReady 1995, 1997) extends a network-based theory (e.g., Arrell and Terzic
2010). Wolpert and Macready show there exists no generally superior computational
function optimizer. That is, there is no “free lunch” in the sense that an optimizer
pays for superior performance on some functions with inferior performance on
others. Gains and losses balance precisely, and all optimizers have identical average
performance. In sum, an optimizer has to pay for its superiority on one subset of
functions with inferiority on the complementary subset.

This result is known using another description. Shannon (1959) recognized
a powerful symmetry between the properties of an information source with a
distortion measure and those of a channel. This symmetry is enhanced if we consider
channels in which there is a cost associated with the different letters. Solving this
problem corresponds to finding a source that is right for the channel and the desired
cost. Evaluating the Rate Distortion Function for a source corresponds to finding a
channel that is just right for the source and allowed distortion level.

Yet another approach to the same result is through the “Tuning Theorem” of the
Mathematical Appendix, which inverts the Shannon Coding Theorem by noting that,
formally, one can view the channel as “transmitted” by the signal. Then another kind
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of “channel capacity” can be defined in terms of the channel probability distribution
that maximizes information transmission assuming a fixed message probability
distribution.

From the no free lunch argument, Shannon’s insight, or the “tuning theorem,”
it becomes clear that different challenges facing any cognitive system, distributed
collection of them, or interacting set of other information sources, that constitute
an organism or automaton, must be met by different arrangements of cooperating
modules represented as information sources.

It is possible to make a very abstract picture of this phenomenon based on
the network of linkages between the information sources dual to the individual
“unconscious” cognitive modules (UCM), and those of related information sources
with which they interact. That is, a shifting, task-mapped, network of information
sources is continually reexpressed: given two distinct problems classes confronting
the organism or automaton, there must be two different wirings of the information
sources, including those dual to the available UCM, with the network graph edges
measured by the amount of information crosstalk between sets of nodes representing
the different sources.

Thus “embodied” systems, in the sense of Wilson and Golonka (2013), involve
interaction between very general sets of information sources assembled into a “task-
specific device” in the sense of Bingham (1988) that is necessarily highly tunable.
This mechanism represents a broad evolutionary generalization of the “shifting
spotlight” characterizing the global neuronal workspace model of consciousness
described in Chap. 1.

3.6 Crosstalk Topologies

A mutual information measure of the inevitable crosstalk between information
channels—a kind of energy leakage—is not inherently fixed, but can continuously
vary in magnitude. This suggests a parameterized renormalization: the modular
network structure linked by crosstalk has a topology depending on the degree of
interaction of interest.

Define an interaction parameter !, a real positive number, and look at geometric
structures in the network of interacting cognitive and other information sources
defined in terms of linkages set to zero if mutual information is less than, and
“renormalized” to unity if greater than, !. A given ! will define a topologically
dependent regime of “giant components” of network elements linked by mutual
information greater than or equal to it. See Sect. 1.5 above for details. The
emergence of the giant component is well known for random networks.

Now invert the argument: a given topology for the giant component will, in
turn, define some critical value, !C, so that network elements interacting by mutual
information less than that value will be unable to participate, i.e., will be locked out
and not be consciously or otherwise perceived. Thus ! is a tunable, syntactically
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dependent, detection limit that depends critically on the instantaneous topology of
the giant component of linked information sources defining the analog to a global
broadcast of consciousness.

That topology is the basic tunable syntactic filter across the underlying modular
structure, and variation in ! is the only one aspect of more general topological
properties that can be described in terms of index theorems, where far more general
analytic constraints can become closely linked to the topological structure and
dynamics of underlying networks, and, in fact, can stand in place of them (Atiyah
and Singer 1963; Hazewinkel 2002). See Sect. 1.6 above for details.

3.7 Punctuated Critical Phenomena

A homology between the information source uncertainty dual to a cognitive process
and the free energy density of a physical system arises, in part, from the formal
similarity between their definitions in the asymptotic limit. Information source
uncertainty can be defined as in the first part of Eq. (3.2). This is quite analogous to
the free energy density of a physical system in terms of the thermodynamic limit of
infinite volume (Wilson 1971; Wallace 2005a, 2012). Feynman (2000) provides a
series of physical examples, based on Bennett’s (1988) work, where this homology
is an identity, at least for very simple systems. Bennett argues, in terms of idealized
irreducibly elementary computing machines, that the information contained in a
message can be viewed as the work saved by not needing to recompute what has
been transmitted.

It is possible to model a cognitive system interacting with an embedding
environment using an extension of the language-of-cognition approach above.
Recall that cognitive processes can be formally associated with information sources,
and how a formal equivalence class algebra can be constructed for a complicated
cognitive system by choosing different origin points in a particular abstract “space”
and defining the equivalence of two states by the existence of a high probability
meaningful path connecting each of them to some defined origin point within that
space.

Recall that disjoint partition by equivalence class is analogous to orbit equiv-
alence relations for dynamical systems, and defines the vertices of a network
of cognitive dual languages available to the system: each vertex represents a
different information source dual to a cognitive process. The structure creates
a large groupoid, with each orbit corresponding to a transitive groupoid whose
disjoint union is the full groupoid, and each subgroupoid associated with its own
dual information source. Larger groupoids will, in general, have “richer” dual
information sources than smaller.

We can now begin to examine the relation between system cognition and the
feedback of information from the rapidly changing real-time (as opposed to a slow-
time cultural or other) environment, having source uncertainty H.
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With each subgroupoid Gi of the (large) cognitive groupoid we can associate
a joint information source uncertainty H.XGi ; Y/ � HGi , where X is the dual
information source of the cognitive phenomenon of interest, and Y that of the
embedding human context—largely defined in terms of culture, embedding social
structure, and path-dependent historical trajectory. Y is seen as having much slower
dynamics that the immediate “environmental” system defining H.

Real-time dynamic responses of a cognitive system can now be represented by
high probability paths connecting “initial” multivariate states to “final” configu-
rations, across a great variety of beginning and end points. This creates a similar
variety of groupoid classifications and associated dual cognitive processes in which
the equivalence of two states is defined by linkages to the same beginning and
end states. Thus, we will show, it becomes possible to construct a “groupoid free
energy” driven by the quality of rapidly changing, real-time information coming
from the embedding ecosystem, represented by the information rate H, taken as a
temperature analog.

For humans in particular, H is a driver for the underlying cognitive processes of
interest, here the tunable, shifting, global broadcasts of consciousness as embedded
in culture and social relations. The argument-by-abduction from physical theory
is, then, that H constitutes a kind of thermal bath for the processes of culturally
channeled cognition. Thus we can, in analogy with the standard approach from
statistical physics (Pettini 2007; Landau and Lifshitz 2007), construct a Morse
Function by writing a pseudoprobability for the jointly defined information sources
XGi ; Y having source uncertainty HGi as

PŒHGi � D expŒ�HGi=�H/�
P

j expŒ�HGj=�H�
(3.3)

where � is an appropriate dimensionless constant characteristic of the particular
system and its linkages to embedding control signals. The sum is over all pos-
sible subgroupiods of the largest available symmetry groupoid. Again, compound
sources, formed by the (tunable, shifting) union of underlying transitive groupoids,
being more complex, will have higher free-energy-density equivalents than those of
the base transitive groupoids.

Landau’s and Pettini’s insights regarding phase transitions in physical systems
were that certain critical phenomena take place in the context of a significant alter-
ation in symmetry, with one phase being far more symmetric than the other (Landau
and Lifshitz 2007; Pettini 2007). A symmetry is lost in the transition—spontaneous
symmetry breaking. The greatest possible set of symmetries in a physical system
is that of the Hamiltonian describing its energy states. Usually states accessible at
lower temperatures will lack the symmetries available at higher temperatures, so
that the lower temperature phase is less symmetric: The randomization of higher
temperatures ensures that higher symmetry/energy states will then be accessible to
the system. The shift between symmetries is highly punctuated in the temperature
index.
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A possible Morse Function for invocation of Pettini’s topological hypothesis
or Landau’s spontaneous symmetry breaking is then a “groupoid free energy” F
defined by

expŒ�F=�H� �
X

j

expŒ�HGj=�H� (3.4)

Then, using the free energy-analog F, we apply Landau’s spontaneous symmetry
breaking arguments, and Pettini’s topological hypothesis, to the groupoid associated
with the set of dual information sources.

Many other Morse Functions might be constructed here, for example, based
on representations of the cognitive groupoid(s). The resulting qualitative pictures
would be similar. See the Mathematical Appendix for a summary of results from
Morse Theory.

The essential point is that decline in the richness of real-time social and cultural
environmental feedback H, or in the ability of that feedback to influence response, as
indexed by �, can lead to punctuated decline in the complexity of cognitive process
within the entity of interest, according to this model.

This permits a Landau-analog phase transition analysis in which the quality of
incoming information from the embedding ecosystem—feedback—serves to raise
or lower the possible richness of an organism’s cognitive response to patterns of
challenge. If �H is relatively large—a rich and varied real-time environment, as
perceived by the organism—then there are many possible cognitive responses. If,
however, noise or simple constraint limit the magnitude of �H, then behavior
collapses in a highly punctuated manner to a kind of ground state in which only
limited responses are possible, represented by a pathologically simplified cognitive
groupoid structure.

3.8 Discussion and Conclusions

We have used a Morse-theoretic extension of results from information theory to
explore the dynamics of cognition and its inherently necessary regulation that
involves synergistic interpenetration among nested sets of actors, represented here
as information sources. These may include dual sources to internal cognitive mod-
ules, environmental information, language, culture, social network, socioeconomic
affordances and limitations, and so on.

Two factors determine the possible range of real-time cognitive response in the
model. These are the magnitude of the environmental feedback control signal and
the inherent structural richness of the underlying cognitive groupoid. If that richness
is lacking—if the available topologies of internal !-driven connections is limited—
then even very high levels of �H may not be adequate to activate appropriate
behavioral responses to important regulatory feedback signals. Glazebrook and
Wallace (2014), in fact, examine autism spectrum disorders from this viewpoint.
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Here, we are particularly interested in a “ground state collapse” in which cultural
and social restraints fail to stabilize individual (and perhaps group) behaviors.
A key observation, we contend, is the marked difference in observed prevalence of
obsessive-compulsive disorder and antisocial personality disorder(s) among “East
Asian” Taiwanese and “Western” populations.

Using the theoretical framework above, psychopathic behaviors would be viewed
as intrinsic to culturally modulated brain development, represented by failures in
the topological !-mechanisms. Acquired antisocial personality disorder would then
stem from imposed psychosocial stresses during the life course, weakening �H in
the phase transition model.

The resulting ground state pathologies seem described by surprisingly uncom-
plicated behaviors arising from simplistic self-interest calculations that apparently
follow something much like von Neumann’s game theory model of a Cold War
preemptive thermonuclear exchange, or the calculations of a mainstream economist
who analyzes criminal behavior (Becker 1968; Wallace and Fullilove 2014).
Amsel’s (2007) work indicates that OCD behaviors may involve analogous, but
more subtle, regulatory collapse leading again to simplistic closed-system “cost”
analysis. High rates of such pathologies are to be viewed, taking Kleinman’s
(1991) perspective, as culture-bound syndromes peculiar to, or at least significantly
enhanced in, atomistic Western or Westernizing societies, or, in the case of Korea,
communities exposed to severe colonial depredation and war.

The underlying cultural dynamics have been the subject of much past commen-
tary. Maxim Gorky (1972), in his classic City of the Yellow Devil describing New
York City, writes:

The youth leaning against the lamppost shakes his head from time to time. His hungry
teeth are tightly clenched. I believe I understand what he is thinking of, what he wants. . . to
possess enormous hands of frightful strength and wings on his back, that is what he wants, I
believe. So that, soaring 1 day over the city, he may reach down with hands like steel levers
and reduce the whole to a heap of rubbish and ashes, mixing bricks and pearls, gold and
the flesh of slaves, glass and millionaires, dirt, idiots, temples, the dirt-poisoned trees, and
these foolish multi-storeyed skyscrapers, everything, the whole city into one heap, into a
dough compounded of dirt and the blood of people—into a loathsome chaos. This frightful
wish is as natural in this youth’s brain as a sore on the body of a sick man. Where there is
much work for slaves, there can be no place for free, creative thought, and only the ideas of
destruction, the poisonous flowers of vengeance, the turbulent protest of the brute beast can
flourish. This is understandable—if you warp a man’s soul you must not expect mercy from
him.

The French-trained psychiatrist Frantz Fanon (1966), describing the impact of
Western colonialism, characterized the underlying mechanism as follows:

The colonized man will first manifest this aggressiveness which has been deposited in his
bones against his own people. This is the period when the niggers beat each other up, and
the police and magistrates do not know which way to turn when faced with the astonishing
waves of crime. . .

Effective untangling of such developmental knots will require more than inter-
ventions at the individual level. Necessary as they may be, they are never sufficient.
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In closing, it could be conjectured that the perspective expressed in the chapter
title, “Western atomism and its culture-bound syndromes,” might generalize across
cultures, perhaps in the direction of “East Asian collectivism and its culture-bound
syndromes,” a matter for further study.
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Chapter 4
Environmental Induction
of Neurodevelopmental Disorders

Summary Chemical exposures, pre- and neonatal infections, psychosocial stress,
and the cross-generational cultural and epigenetic impacts of these and other
toxicants become an integrated, sometimes synergistic, signal that can overwhelm
essential neurodevelopmental regulation. We characterize that dynamic through
statistical models based on the asymptotic limit theorems of control and information
theories. Schizophrenia and autism emerge as two different “phases” of patholog-
ical neurodevelopmental “condensations” that impair the dynamic, shifting global
workspace of normal mental function.

Early neglect and life course environmental insults. . . can lead to impaired neuronal
responsiveness and symptoms of profound prefrontal cortical dysfunction, providing a
direct link between the environment and the cognitive impairments observed in psychotic
syndrome. (van Os et al. 2010)

4.1 Introduction

Growing horror over the possible relation between the rapid spread of mosquito-
borne Zika virus and increased rates of microcephaly among children born to
women infected during pregnancy (Hayden 2016; Garcez et al. 2016) sharply
focuses attention on how environmental exposures, in a large sense, might trigger
neurodevelopmental disorders. Here, we extend the perspective of Wallace (2015a),
which focused on the pathologies of aging, to examine the induction of develop-
mental disorders in the presence of environmental disruption, in a large sense.

The underlying importance of neurodevelopment in the etiology of serious
mental disorder has been described cogently by Corbin et al. (2008) who conclude
that

. . . [U]nraveling the mechanisms of neural progenitor cell diversity in the brain has
tremendous clinical importance. . . [D]efects in any of these processes can have devastating
and long lasting consequences on brain function. . .

. . . [A]bnormal development of interneurons may be an underlying causative factor, or
contribute to the phenotype of a variety of developmental disorders. . . [including] autism
spectrum disorders. . . [and] schizophrenia. . .

© Springer International Publishing AG 2017
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Similarly, Tiberi et al. (2012) describe how the cerebral cortex is composed
of hundreds of different types of neurons, which underlie its ability to perform
highly complex neural processes. How cortical neurons are generated during
development constitutes a major challenge in developmental neurosciences with
important implications for brain repair and diseases. Cortical neurogenesis is
dependent on intrinsic and extrinsic clues, which interplay to generate cortical
neurons at the right number, time, and place. Recent evidence, in their view,
indicates that most classical morphogens, produced by various neural and non-
neural sources throughout embryonic development, contribute to the master control
and fine tuning of cortical neurogenesis. They conclude that the molecular control
of cortical neurogenesis involves the interplay of intrinsic and extrinsic cues that
coordinate the pattern of neural progenitor division and differentiation.

Rapoport et al. (2012) find the neurodevelopmental model positing illness as the
end stage of abnormal neurodevelopmental processes that began years before the
onset of the illness. Environmental risk factors such as urbanicity, childhood trauma,
and social adversity have received strong replication with marked phenotypic
nonspecificity pointing to common brain development pathways across disorders.
The neurodevelopmental model of schizophrenia has long existed as a model for
other childhood-onset conditions, including attention deficit hyperactivity disorder,
intellectual deficiency, autism spectrum disorders, and epilepsy.

Rapoport et al. specifically identify infection/famine, placental pathology, low
birth weight, urban environment, childhood trauma, and ethnic minority/immigrant
status in disease etiology, concluding that in the central nervous system, neuronal
proliferation, cell migration, morphological and biochemical differentiation, and
circuit formation all depend on cell and cell–environment interactions that control
developmental process, and so can cause altered trajectories. Their Fig. 1 provides a
summary schematic.

A parallel line of argument explores mitochondrial abnormalities that are closely
associated with both schizophreniform and autism spectrum disorders.

Ben-Shachar (2002) finds mitochondrial impairment could provide an expla-
nation for the broad spectrum of clinical and pathological manifestations in
schizophrenia. Several independent lines of evidence, Ben-Shachar asserts, suggest
an involvement of mitochondrial dysfunction in the disorder, including altered
cerebral energy metabolism, mitochondrial polyplasia, dysfunction of the oxidative
phosphorylation system, and altered mitochondrial related gene expression. They
conclude that the interaction between dopamine, a predominant etiological factor
in schizophrenia, and mitochondrial respiration is a possible mechanism underlying
the hyper- and hypo-activity cycling in schizophrenia.

Prabakaran et al. (2004) claim that almost half the altered proteins identified
by a brain tissue proteomics analysis of samples from schizophrenic patients
were associated with mitochondrial function and oxidative stress responses. They
propose that oxidative stress and the ensuing cellular adaptations are linked to the
schizophrenia disease process.
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Shao et al. (2008) similarly find evidence of mitochondrial dysfunction in
schizophrenia. Likewise, Scaglia (2010) suggests involvement of mitochondrial
dysfunction in schizophrenia and argues that mechanisms of dysfunctional cellular
energy metabolism underlie the pathophysiology of major subsets of psychiatric
disorders.

Clay et al. (2011) point to an underlying dysfunction of mitochondria in bipolar
disorder and schizophrenia including (1) decreased mitochondrial respiration;
(2) changes in mitochondrial morphology; (3) increases in mitochondrial DNA
(mtDNA) polymorphisms and in levels of mtDNA mutations; (4) downregulation
of nuclear mRNA molecules and proteins involved in mitochondrial respiration;
(5) decreased high-energy phosphates and decreased pH in the brain; and (6)
psychotic and affective symptoms, and cognitive decline in mitochondrial disorders.
They conclude that understanding the role of mitochondria, both developmentally
and in the ailing brain, is of critical importance to elucidate pathophysiological
mechanisms in psychiatric disorders.

There is likewise considerable and growing evidence for mitochondrial mecha-
nisms in autism spectrum disorders (ASD).

Palmieri and Persico (2010) find ASD often associated with clinical, biochemi-
cal, or neuropathological evidence of altered mitochondrial function. The majority
of autistic patients display functional abnormalities in mitochondrial metabolism
seemingly secondary to pathophysiological triggers. Thus, in their view, mitochon-
drial function may play a critical role not just in rarely causing the disease, but
also in frequently determining to what extent different prenatal triggers will derange
neurodevelopment and yield abnormal postnatal behavior.

Giulivi et al. (2010) similarly assert that impaired mitochondrial function may
influence processes highly dependent on energy, such as neurodevelopment, and
contribute to autism. In their study, children with autism were more likely to have
mitochondrial dysfunction, mtDNA overreplication, and mtDNA deletions than
typically developing children.

A long series of studies by Rossignol and Frye (2010) find evidence accumulating
that ASD is characterized by certain physiological abnormalities, including oxida-
tive stress, mitochondrial dysfunction, and immune dysregulation/inflammation.
Recent studies, they conclude, have reported these abnormalities in brain tissue
derived from individuals diagnosed with ASD as compared to brain tissue derived
from control individuals, suggesting that ASD has a clear biological basis with
features of known medical disorders.

Goh et al. (2014) argue that impaired mitochondrial function impacts many
biological processes that depend heavily on energy and metabolism and can lead
to a wide range of neurodevelopmental disorders, including ASD. Although, in
their view, evidence that mitochondrial dysfunction is a biological subtype of ASD
has grown in recent years, no study had previously demonstrated evidence of
mitochondrial dysfunction in brain tissue in vivo in a large, well-defined sample
of individuals with ASD. Their use of sensitive imaging technologies allowed them
to identify in vivo a biological subtype of ASD with mitochondrial dysfunction.
Lactate-positive voxels in their sample were detected most frequently in the
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cingulate gyrus, a structure that supports higher order control of thought, emotion,
and behavior, and one in which both anatomical and functional disturbances have
been reported previously in ASD.

For neurodevelopment, control of gene expression is everything, and mecha-
nisms by which environmental factors interfere with control are of essential clinical
and epidemiological concern.

Here, we will describe statistical models of developmental failure based on the
asymptotic limit theorems of control and information theories that may provide new
tools in exploring such mechanisms. The models are analogous to more familiar
empirical least-squares regression and may permit deep scientific inference arising
from comparison of similar systems under different, or different systems under
similar, experimental or observational circumstances.

4.2 A Control Theory Model

It is well understood that there is no gene expression without regulation. This
implies that gene expression is inherently unstable in the formal control theory
sense of the Data Rate Theorem (Nair et al. 2007), and must be stabilized by
provision of control information at a critical rate. Failure to provide control
information at or above that rate initiates characteristic modes of system failure
that, for neural systems, are expressed as developmental disorders. More explicitly,
assuming an approximate nonequilibrium steady state, the simplest “regression”
model of deviations from that state—described in terms of an n-dimensional vector
of observables xt at time t—has the form

xtC1 D Axt C But C Wt (4.1)

where xtC1 is the state at time t C 1, ut is the imposed n-dimensional control signal
vector at time t, Wt is an added noise signal, and A and B are, in this approximation,
fixed n 	 n matrices. See Fig. 4.1 for a schematic.

The Data Rate Theorem (Nair et al. 2007) states that, for an inherently unstable
system, the control information represented by the vector ut must be provided at
a rate H that is greater than the rate at which the system produces “topological
information.” For the system of Eq. (4.1) and Fig. 4.1, that rate is given as

H > logŒj det.Au/j� � ˛0 (4.2)

where det is the determinant and Au is the component submatrix of A that has
eigenvalues � 1.

An alternate derivation of Eq. (4.2) is given in the Mathematical Appendix.
Generalization to more complex inherently unstable systems in the context of a

scalar integrated environmental insult —for example, taken as the magnitude of the
largest vector of an empirical principal component analysis—suggests that Eq. (4.2)
will become something like

H./ > f ./˛0 (4.3)
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Fig. 4.1 “Regression model”
for a control system near a
nonequilibrium steady state.
xt is system output at time t,
ut the control signal, and Wt

an added noise term

f .0/˛0 is then interpreted as the rate at which the system generates topological
information in the absence of an integrated environmental exposure.

What are the forms of H./ and f ./? In the Mathematical Appendix we
calculate H./ as the “cost” of control information, given the “investment” , using
a classic Black–Scholes approximation (Black and Scholes 1973). To first order,

H./ � �1 C �2 (4.4)

where the �i are positive or zero.
If we take the same level of approximation, f ./ in Eq. (4.3) can be similarly

expressed as �3 C �4 so that the stability condition is

T � �1 C �2

�3 C �4

> ˛0 (4.5)

For small  the stability requirement is �2=�4 > ˛0, and at high  it becomes
�1=�3 > ˛0. If �2=�4 
 �1=�3, then at some intermediate value of  the essential
inequality may be violated, leading to failure of neurodevelopmental regulation.
See Fig. 4.2.

Fetal, child, and indeed adult, developmental trajectories are embedded not only
in environments of direct exposure, but also of multimodal inheritance, both through
cross-generational gene methylation and other biochemical mechanisms and via
sociocultural influences. It is, however, implicit that direct environmental exposures,
inherited gene methylation, sociocultural inheritance, and other important factors
must interact along the developmental trajectory. Thus, rather than a simple scalar
we are confronted by an m 	 m matrix having elements i;j i; j D 1 : : : m.

Square matrices of order m, however, have m scalar invariants, m real numbers
that characterize the matrix regardless of how it is expressed in different coordinate
systems. The first is the trace, and the last ˙ the determinant. In general, the
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Fig. 4.2 The horizontal line is the limit ˛0. If �2=�4 � �1=�3, at some intermediate value of
integrated environmental insult , T D .�1 C �2/=.�3 C �4/ falls below criticality, and control
of neural gene expression fails catastrophically.  itself might be calculated as the magnitude of
the “volume” vector in an empirical Principal Component Analysis or through a more complicated
model that explicitly accounts for different epigenetic inheritances and their cross-influences

invariants are the coefficients of the characteristic polynomial P.	/:

P.	/ D det. � 	I/ D 	m C r1	m�1 C � � � C rm�1	 C rm (4.6)

where 	 is a parameter that is an element of some ring, det is the determinant, and I
the m 	 m identity matrix. Note that 	 may, in fact, be taken as the matrix  itself,
since square matrices form a ring, in which case the relation is a matrix polynomial
P./ D 0 	 I.

For an m 	 m matrix we have invariants r1; : : : ; rm and an appropriate scalar
“” in Eq. (4.6)—determining the “temperature” T —is then a monotonic increasing
function of the ri:

O D O.r1; : : : ; rm/ (4.7)

so that

T . O/ D �1 O C �2

�3 O C �4

(4.8)

We have invoked the “Rate Distortion Manifold” of Glazebrook and Wallace
(2009)—formulated as a “generalized retina” in Wallace and Wallace (2010)—
to project a complicated “information manifold” down onto a lower dimensional
“tangent space” tuned across that manifold in such a way as to preserve most
of the underlying information. Here, we assume a scalar tangent space. Higher
dimensional structures are possible in a standard manner at the cost of some
considerable increase in mathematical overhead.

What are the dynamics of T . O/ under stochastic circumstances? We explore this
by examining how a control signal ut in Fig. 4.1 is expressed in the system response
xtC1. More explicitly, we suppose it possible to deterministically retranslate a
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sequence of system outputs Xi D xi
1; xi

2; : : : into a sequence of possible control
signals OUi D Oui

0; Oui
1; : : : and then compare that sequence with the original control

sequence Ui D ui
0; ui

1; : : :. The difference between them is a real number measured
by a chosen distortion measure, enabling definition of an average distortion

< d >D
X

i

p.Ui/d.Ui; OUi/ (4.9)

where (1), p.Ui/ is the probability of the sequence Ui (2), d.Ui; OUi/ is the
distortion between Ui and OUi and (3), the sequence of control signals has been
deterministically reconstructed from the system output.

It then becomes possible to apply a classic Rate Distortion Theorem (RDT)
argument. According to the RDT, there exists a Rate Distortion Function (RDF)
that determines the minimum channel capacity, R.D/, necessary to keep the average
distortion < d > below some fixed limit D (Cover and Thomas 2006). Based
on Feynman’s (2000) interpretation of information as a form of (free) energy, we
can then construct a Boltzmann-like pseudoprobability density in the “temperature”
T as

dP.R; T / D expŒ�R=T �dR
R1

0
expŒ�R=T �dR

(4.10)

since higher T necessarily implies greater channel capacity.
The integral in the denominator is essentially a statistical mechanical partition

function, and we can then define a “free energy” Morse Function F (Pettini 2007) as

expŒ�F=T � D
Z 1

0

expŒ�R=T �dR D T (4.11)

so that F.T / D �T logŒT �.
Then an entropy-analog can also be defined as the Legendre transform of F:

S � F.T / � T dF=dT D T (4.12)

As a first approximation, Onsager’s treatment of nonequilibrium thermodynam-
ics (de Groot and Mazur 1984) can be applied, so that system dynamics are driven
by the gradient of S in essential parameters—here T —under conditions of noise.
This gives a stochastic differential equation

dTt � .�dS=dT /dt C ˇTtdWt D �dt C ˇTtdWt (4.13)

where � is a “diffusion coefficient” representing the efforts of the underlying control
mechanism, and ˇ is the magnitude of an inherent impinging white noise dWt in the
context of volatility, i.e., noise proportional to signal.
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Somewhat heuristically, applying the Ito chain rule to log.T / in Eq. (4.13), via
Jensen’s inequality for a concave function, a nonequilibrium steady state (nss)
expectation for T can be calculated as

E.Tt/ � �

ˇ2=2
(4.14)

Again, � is interpreted as indexing the attempt by the embedding control
apparatus to impose stability—raise T . Thus impinging noise can significantly
increase the probability that T falls below the critical limit of Fig. 4.2, initiating
a control failure.

However, E.T / is an expectation, so that, in this model, there is always some
nonzero probability that T will fall below the critical value ˛0 in the multimodal
expression for T . O/: sporadic control dysfunctions have not been eliminated.
Raising � and lowering ˇ decreases their probability, but will not drive it to zero in
this model, a matter of some importance for population-rates of neurodevelopmental
disorders.

4.3 A “Cognitive” Model

A different approach to the dynamics of neurodevelopmental regulation applies the
“cognitive paradigm” of Atlan and Cohen (1998), who recognized that the immune
response is not merely an automatic reflex, but involves active choice of a particular
response to insult from a larger repertoire of possible responses. Choice reduces
uncertainty and implies the existence of an underlying information source as argued
in earlier chapters.

Given an information source associated with an inherently unstable, rapidly
acting cognitive neurodevelopmental control system—called “dual” to it—an equiv-
alence class algebra can be constructed by choosing different system origin states
a0 and defining the equivalence of two subsequent states at times m; n > 0, written
as am; an, by the existence of high probability meaningful paths connecting them
to the same origin point. Disjoint partition by equivalence class, analogous to orbit
equivalence classes in dynamical systems, defines a symmetry groupoid associated
with the cognitive process. Groupoids are deep generalizations of the group concept
in which there is not necessarily a product defined for each possible element pair
(Weinstein 1996).

The equivalence classes define a set of cognitive dual information sources
available to the inherently unstable neurodevelopment regulation system, creating
a large groupoid, with each orbit corresponding to a transitive groupoid whose
disjoint union is the full groupoid. Each subgroupoid is associated with its own dual
information source, and larger groupoids will have richer dual information sources
than smaller.
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Let XGi be the control system’s dual information source associated with the
groupoid element Gi, and let Y be the information source associated with embedding
“normal” environmental variation that impinges on development. Wallace (2012,
2015b) gives details of how environmental regularities imply the existence of an
environmental information source that, for humans, particularly includes cultural
and socioeconomic factors (e.g., Wallace 2015c).

We can again construct a “free energy” Morse Function (Pettini 2007). Let
H.XGi ; Y/ � HGi be the joint uncertainty of the two information sources. Another
Boltzmann-like pseudoprobability can then be written as

PŒHGi � D expŒ�HGi=T �
P

j expŒ�HGj=T �
(4.15)

T is the “temperature” from Eq. (4.9), via the O of Eq. (4.7), and the sum is over
the different possible cognitive modes of the full system.

A new Morse Function F is defined by

expŒ�F=T � �
X

j

expŒ�HGj=T � (4.16)

Given the inherent groupoid structure as a generalization of the simple symmetry
group, it becomes possible to apply an extension of Landau’s picture of phase
transition (Pettini 2007). In Landau’s “spontaneous symmetry breaking”, phase
transitions driven by temperature changes occur as alteration of system symmetry,
with higher energies at higher temperatures being more symmetric.

For this model, the shift between symmetries is highly punctuated in the
“temperature” index T under the Data Rate Theorem for unstable control systems.
Typically, there are only a very limited number of possible phases, which may or
may not coexist under particular circumstances.

Decline in T can lead to punctuated decline in the complexity of cognitive
process possible within the neurodevelopmental control system, driving it into a
ground state collapse in which neural systems fail to develop normally.

The essential feature is the integrated environmental insult O. Most of the
topology of the inherently unstable neurodevelopmental system has been “factored
out” so that O.r1; : : : ; rm/ remains the only possible index of the rate of topological
information generation for the DRT. Thus, in Eqs. (4.15) and (4.16), T . O/ is again
the driving parameter.

Increasing O is then equivalent to lowering the “temperature” T , and the
system passes from high symmetry “free flow” to different forms of “crystalline”
structure—broken symmetries representing the punctuated onset of significant
neurodevelopmental failure.

Again, if �2=�4 
 �1=�3 in Eq. (4.8), accumulated environmental insult will
quickly bring the effective “temperature” below some critical value, raising the
probability for, or triggering the collapse into, a dysfunctional ground state of low
symmetry in which essential network connections are not made or else become
locally overconnected and globally disjoint.
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Sufficient conditions for the intractability—stability—of the pathological ground
state can be explored using the methods of Wallace (2016). Given a vector of
parameters characteristic of and driving that phase, say J, that measures deviations
from a nonequilibrium steady state, the “free energy” analog F in Eq. (4.16) can be
used to define a new “entropy” scalar as the Legendre transform

S � F.J/ � J � rJF (4.17)

Again, a first order dynamic equation follows using a stochastic version of the
Onsager formalism from nonequilibrium thermodynamics (de Groot and Mazur
1984)

dJi
t �

 
X

k

�i;k@S=@Jk
t

!

dt C �iJ
i
tdBt (4.18)

where �i;k defines a diffusion matrix, the �i are parameters, and dBt represents a
noise that may be colored, i.e., not the usual Brownian motion under undifferentiated
white noise.

If it is possible to factor out Ji, then Eq. (4.18) can be represented in the form

dJi
t D Ji

tdYi
t (4.19)

where Yi
t is a stochastic process.

The expectation of J can then be found in terms of the Doleans-Dade exponential
(Protter 1990) as

E.Ji
t/ / exp.Yi

t � 1=2ŒYi
t ; Yi

t �/ (4.20)

where ŒYi
t ; Yi

t � is the quadratic variation of the stochastic process Yi
t (Protter 1990).

Heuristically, invoking the Mean Value Theorem, if

1=2dŒYi
t ; Yi

t �=dt > dYi
t =dt (4.21)

then the pathological ground state is stable: deviations from nonequilibrium steady
state measured by Ji

t then converge in expectation to 0. That is, sufficient ongoing
“noise”—determining the quadratic variation terms—can lock-in the failure of
neurodevelopment with high probability, in this model.

Parallel stability arguments arise in ecosystem resilience theory (Holling 1973)
which characterizes multiple quasi-stable nonequilibrium steady states among
interacting populations. Pristine alpine lake ecosystems, having limited nutrient
inflows, can be permanently shifted into a toxic eutrophic state by excess nutrient
influx, e.g., a sewage leak, fertilizer runoff, and so on. Once shifted, the lake ecology
will remain trapped in a mode of recurrent “red tide”-like plankton blooms even
after sewage or fertilizer inflow is stemmed.
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The quadratic variation of a stochastic process Xt, which we write as ŒXt; Xt�, is
important to understanding the pathological stability of “eutrophic” neurodevelop-
mental trajectories, in this model. It can be estimated from appropriate time series
data using a Fourier expansion methodology adapted from financial engineering, as
described in the Mathematical Appendix.

4.4 The Mitochondrial Connection

Development is not simply a matter of response to external signals, powerful as
such effects may be. Metabolic free energy—the high-energy conversion of ATP
to ADP—powers the many cognitive process of gene expression that must control
developmental trajectories. Most directly, we can posit a Rate Distortion argument
in which a developmental message is sent along biochemical channels, and the
success of failure measured by complicated control and feedback mechanisms as
indicated by the schematic of Fig. 4.1. In essence, there must be a parallel argument
to that leading to Eq. (4.10), where T is replaced by the rate of metabolic free
energy M.

Assuming a Gaussian channel, having the Rate Distortion Function R.D/ D
.1=2/ logŒ�2=D�, where D is the average distortion by the square measure (Cover
and Thomas 2006) and �2 the inherent channel noise, we can write, for the mean of
D D �2 expŒ�2R�,

< D >D
R1

0
�2 expŒ�2R� expŒ�R=!M�dR
R1

0
expŒ�R=!M�dR

D �2

2!M C 1
(4.22)

! represents the efficiency with which the system converts mitochondrial free
energy into control information. Small ! implies greatly increased levels of
mitochondrial free energy are necessary for successful development, i.e., small
< D >. The obvious inference is that ! will be affected by the degree of integrated
environmental insult indexed by T , so that we can, to first order at least assume
! D !0T and write the synergistic relation

< D >D �2

2!0T M C 1
(4.23)

inversely characterizing the success of the developmental control systems: large
< D > indicates failure. Other channels, as a consequence of the convexity of the
Rate Distortion Function in D, will have similar expressions.

A next level of approximation takes M itself as a monotonic increasing function
of T —normalized by ˛0 of Eq. (4.2)—so that, to first order, < D >/ 1=T 2. Under
such a model, rising environmental insult, leading to the condition T < 1, rapidly
distorts developmental process by impairing mechanisms for both the generation
and use of mitochondrial free energy.
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4.5 Discussion and Conclusions

Chemical exposures, pre- and neonatal infections, psychosocial stress, genetic
predisposition, and the cross-generational cultural and epigenetic impacts of these
and other toxicants become an integrated, perhaps synergistic, signal that can
overwhelm essential neurodevelopmental regulation, demanding levels of mito-
chondrial free energy that cannot be met. Such insult may, as well, directly
interfere with the production of mitochondrial free energy. We have characterized
that dynamic through statistical models based on the asymptotic limit theorems
of control and information theories, models that are the functional equivalent
of the usual least-squares regression based on other asymptotic limit theorems
of probability theory. The greatest scientific utility of such models remains the
experimental or observational comparison of similar systems under different, and
different systems under similar, conditions.

The use of such tools, however, often is not easy, as the sometimes deceptive
subtleties of “ordinary” regression remind us. Nonetheless, the conceptual approach
taken here may still illuminate empirical studies.

A recent paper by Berman et al. (2016) describes the phenomenon of childhood-
onset schizophrenia, a “pure” form of the disorder observed without the often
confusing correlates of an extended disease course (Lancaster and Hall 2016).
Berman et al. write:

. . . [W]e examined large-scale network interactions in childhood-onset schizophre-
nia. . . Using. . . resting-state functional magnetic resonance imaging. . . [that] identified
26 regions with decreased functional correlations in schizophrenia compared to controls. . .

Lancaster and Hall (2016) find that the results of Berman et al. are compat-
ible with a pathodevelopmental model in which patients with childhood-onset
schizophrenia experience excessive “over-pruning” of short-distance functional
connections.

By contrast, autism spectrum disorders are marked by excessive early neural
growth. Rapoport et al. (2009) assert that in autism there is an acceleration or
excess of early postnatal brain development (1–3 years), whereas in childhood-
onset schizophrenia (COS) there is exaggeration of the brain maturation processes
of childhood and early adolescence (10–16 years):

Both could be seen as “increased gain” of general developmental processes, albeit at
different stages; both patterns could also be seen as an abnormal “shift to the left”
with respect to age compared to normal brain development, with autism showing initial
overgrowth and COS showing greater “pruning down” of the cortex in early and middle
parts of the trajectory; both accelerations normalizing with age. . .

Indeed, a recent comprehensive analysis of US insurance data indicates a
strong role for environmental factors in the etiology of autism spectrum disorders.
Rzhetsky et al. (2014) write

By analyzing the spatial incidence patterns of autism and intellectual disability drawn
from insurance claims for nearly one third of the total US population, we found strong
statistical evidence that environmental factors drive apparent spatial heterogeneity of
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both phenotypes [intellectual disability and autism] while economic incentives and
population structure appear to have relatively large albeit weaker effects. The strongest
predictors for autism were associated with the environment. . . The environmental
factors implicated so far include pesticides. . . environmental lead. . . , sex hormone
analogs. . . medications. . . plasticizers. . . and other synthetic molecules. . .
It is very likely that the list of environmental factors potentially affecting development of
human embryo is large and yet predominantly undocumented. . .
Our results have implications for the ongoing scientific quest for the etiology of neurodevel-
opmental disorders. We provide evidence [for] routinely expanding the scope of inquiry to
include environmental, demographic and socioeconomic factors, and governmental policies
at a broad scale in a unified geospatial framework.

Environmental effects are now frequently cited as important in the etiology of
autism and similar conditions (e.g., Croen et al. 2011; Landrigan 2012; DeSoto
2009). Keil and Lein (2016) in particular identify epigenetic mechanisms linking
environmental chemical exposures to risk of autism spectrum disorders. Govorko
et al. (2012) explore the male germline transmission of adverse effects of alcohol on
fetal development.

Thus, it seems reasonable to infer that cross-generational transmission of gene
methylation may also affect probabilities of ASD and other neurodevelopmental
disorders. As Bohacek et al. (2013) comment,

Psychiatric diseases are multifaceted disorders with complex etiology, recognized to have
strong heritable components. Despite intense research efforts, genetic loci that substantially
account for disease heritability have not yet been identified. Over the last several years,
epigenetic processes have emerged as important factors for many brain diseases, and the
discovery of epigenetic processes in germ cells has raised the possibility that they may
contribute to disease heritability and disease risk.

They specifically note “..[E]vidence suggests that highly stressful experiences at
different stages of life can markedly affect behaviors across generations and might
constitute heritable risk factors for affective disorders” and go on to examine the
opposite effects of chemical exposures and environmental enrichment.

One central feature of the cognitive “phase change” approach above is the
possibility of a “supercooled” state during critical neurodevelopmental periods.
That is, although the “temperature” defined by T falls below threshold for phase
transition, “condensation” into nonfunctional neuronetwork configuration during a
critical growth domain is made more probable rather than inevitable.

Under such a condition, however, as with supercooled liquids, some sudden
perturbation can then trigger “crystallization” from high to low symmetry states, i.e.,
from a normal system capable of the full “global workspace” dynamics that Bernard
Baars asserts are necessary and sufficient for consciousness in higher animals as
described in Chap. 1, to a fractured and fragmented structure in which essential
subcomponent networks are not sufficiently linked, or become, in fact, overlinked.
Different condensation dynamics would broadly account for the observations of
Berman et al. and Rapoport et al., the difference between autism spectrum and
COS disorders being seen as different condensation phases. Typically, in such
“spontaneous symmetry breaking,” there will be only a small number of possible
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different phases. Comorbidity would be seen as the existence of both possible phase
types in the same individual.

This inference may constitute the most central outcome of the modeling exercise,
i.e., that “environmental” stress, in a large sense, during a critical growth regime
can trigger a relatively small number of characteristic phase change analogs in
neurodevelopment, although the symmetry shifts will likely involve subtle groupoid
changes rather than alterations of the finite groups more familiar from network
theory (Yeung 2008, Chap. 16; Golubitsky and Stewart 2006). Again, simultaneous
occurrence of several such “phase condensations” would account for observed
patterns of comorbidity, albeit with distinct cultural convolutions.

Indeed, as the previous chapter (following Wallace 2015c) puts it, the stabiliza-
tion of human cognition via feedback from embedding social and cultural contexts
is a dynamic process deeply intertwined with it, constituting the “riverbanks”
directing flow of a stream of generalized consciousness at various scales and
levels of organization: cultural norms and social interaction are synergistic with
individual and group cognition and their disorders. That analysis finds high rates of
psychopathic and antisocial personality disorder, as well as obsessive/compulsive
disorder, to be culture-bound syndromes particular to Western “atomistic” societies,
or to those undergoing social disintegration. Some such cultural patterning may well
express itself across the forms of developmental neural malcondensation described
here (e.g., Kleinman 1991; Kleinman and Cohen 1997).

While detailed application of the modeling strategies outlined here to experi-
mental or clinical data remains to be done, the unification, after a concerted 50
year effort, of control and information theories via the Data Rate Theorem may
provide opportunity for conceptual advance. Although high-end neural structures
and the genetic regulators that build them are most definitely not computers in the
severely limited mathematical venue of the Turing Machine, all such systems—
including computers—are bounded by the asymptotic limit theorems that constrain
the generation and transmission of information in the context of dynamic control.
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Chapter 5
Sleep, Psychopathology, and Culture

Summary Evolutionary process has selected for inherently unstable systems in
higher animals that can react swiftly to changing patterns of threat or opportu-
nity, for example, blood pressure, the immune response, and gene expression.
However, these require continual strict regulation: uncontrolled blood pressure
is fatal, immune cells can attack “self” tissues, and improper gene expression
triggers developmental disorders. Consciousness in particular demands high rates
of metabolic free energy to both operate and regulate the fundamental biological
machinery: both the “stream of consciousness” and the “riverbanks” that confine
it to socially defined useful realms are constructed and reconstructed moment-by-
moment in response to highly dynamic internal and environmental circumstances.
We develop powerful necessary conditions models for such phenomena based on
the Data Rate Theorem linking control and information theories in the context
of inherent instability. The synergism between conscious action and its regulation
underlies the ten-fold higher rate of metabolic energy consumption in human neural
tissues and implies a close, culturally modulated relation between sleep disorders
and certain psychopathologies that may be induced by environmental stress, in a
large sense.

5.1 Introduction

Why do neural tissues in humans consume metabolic free energy at ten times
the rate of other tissues (Clarke and Sokoloff 1999)? A simplistic answer is
that, in humans, consciousness must operate with a time constant of a hundred
milliseconds, and straightforward adaptation of the Arrhenius reaction rate law
suggests an exponential increase of neural reaction rate with the rate of adenosine
triphosphate (ATP) consumption. While this surely accounts for substantial increase
in energy demand as we will argue below, an order of magnitude difference in
energy consumption seems somewhat excessive. Is more going on? We will contend
that, in addition to the matter of a short time constant, metabolic free energy
must be supplied to parallel, rapidly operating regulatory systems that stabilize
consciousness as an inherently unstable phenomenon constrained by the Data Rate
Theorem, necessitating independent metabolic free energy supplies for control
purposes.
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A control theory digression. At the beginning of World War II, according
to report, British fighters were close adaptations of training aircraft that were
inherently stable, in the sense that the aerodynamic center of pressure (CP) was
well behind the machine’s center of gravity (CG). Thus, hands-off, a perturbed
aircraft would, after a few oscillations, return to stable flight. Early German
fighters had less separation between CG and CP and were far harder to fly, but,
in consequence, could turn on a dime, and were significantly better in high speed
combat maneuvers than early British fighters, with serious consequences for the
Allies. Current fighter jets are, by contrast, designed to be inherently unstable, thus
even more highly maneuverable, and must be flown-by-wire using a number of
independent computers operating under high speed majority-voting rules. For such
machines, regulation is everything.

Indeed, for many physiological systems, regulation is likewise—almost—
everything. Some examples.

Even our basic multicellularity seems inherently unstable: cancerous “cheating”
is expected to be an ongoing threat to multi-celled organisms (Aktipis et al. 2015).
Nunney (1999) looked at cancer occurrence as a function of animal size, arguing
that, in larger animals, whose lifespan grows as about the 4/10 power of their
cell count, prevention of cancer in rapidly proliferating tissues becomes more
difficult in proportion to size. Cancer control requires the development of additional
mechanisms and systems to address tumorigenesis as body size increases—a
synergistic effect of cell number and organism longevity.

This pattern may represent a real barrier to the evolution of large, long-lived
animals, and Nunney predicts that those that do evolve have recruited additional
controls over those of smaller animals to prevent cancer. Different tissues may have
evolved markedly different tumor control strategies, all energetically expensive,
using different complex signaling strategies, and subject to a multiplicity of
reactions to signals, including, in social animals like humans, those related to
psychosocial stress.

In a similar way, gene expression itself seems inherently unstable, requiring
massive regulatory machineries at every stage of growth to prevent developmental
disorders. Many such stages involve critical periods in which “epigenetic” factors—
including patterns of cultural input and psychosocial stress often embedded in
generational history—have amplified effect (Wallace and Wallace 2009, 2010).

The immune system, seen as an independent subcomponent of the more general
tumor control system (Atlan and Cohen 1998), is also inherently unstable: failure
of differentiation between “self” and “nonself” leads to carcinogenic chronic
inflammation (Rakoff-Nahoum 2006) and autoimmune disorders (Mackay and Rose
2014). The immune system must, then, both respond quickly to injury or pathogenic
challenge and yet be closely regulated to avoid self-attack.

On a shorter timescale, unregulated blood pressure would be quickly fatal in any
animal with a circulatory system. The associated baroreceptor control reflex is not
simple (Rau and Elbert 2001), but can be inhibited through peripheral processes,
for example, under conditions of high metabolic demand. Higher brain structures
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modulate the reflex, for instance, when threat is detected and fight or flight responses
are being prepared. This suggests, then, that blood pressure control is a broad and
actively regulated modular physiological system.

The stream of consciousness, or whatever metaphor one prefers, seems similarly
regulated, and high speed mechanisms, in concert with high speed regulators, will
require a high rate of metabolic free energy.

Indeed, something of this has long been known.
Schiff (2008):

Many neurons within the central thalamus. . . share specific anatomical and physiological
specializations that support their key role in the general functions of sustained attention,
working memory, and motor preparation. . . Collectively, these anatomical specializations
suggest that many neurons within the central thalamus may serve a general purpose
function supporting large-scale cerebral dynamics associated with goal-directed behaviors
and consciousness. . . Human imaging studies reveal that selective activation of central
thalamus occurs both during tasks requiring short-term attention. . . and during tasks placing
sustained demands of high vigilance over extended time periods. . .

Markman and Otto (2011):

. . . [C]haracterization of. . . optimality. . . should take into account the resource-limited
nature of the human cognitive apparatus. . . the brain consumes a significant amount of
energy. Thus energy minimization is likely to be an important constraint on cognitive
processing. . .

The ideal observer or actor defined purely in terms of information is. . . a point of
comparison against human cognitive or sensory abilities rather than as a statement of what
is optimal as a cognitive process. . . A definition of optimal behavior needs to take energy
minimization into account.

Christie and Schrater (2015):

[T]reating cognitive effort as a resource control problem. . . [implies] the brain has mech-
anisms that allow control of cognitive effort. . . [T]here are limitations on. . . the ability to
control resource allocation. . . [and]. . . on the impact that effort has on performance. . . [I]t
is reasonable to posit the existence of some signal by which neuronal gain is modulated
according to both the availability of metabolic resource and reward signals.

Here we will attempt to formally address the deep synergistic intertwinings
of metabolic energy rate, information transmission rate, and system control using
powerful necessary conditions asymptotic limit theorems allowing construction of
statistical models that can be fitted to data.

We will, in particular, examine the environmental induction of sleep pathologies
in their inevitable cultural context.

5.2 Reaction Rate

Physiological processes such as wound healing, the immune response, tumor
control, and animal consciousness all represent the evolutionary exaptation of
inevitable information crosstalk into dynamic processes that recruit sets of simpler
cognitive modules to build temporary working coalitions addressing particular
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patterns of threat and opportunity confronting an organism, as described in Chap. 1.
Such tunable coalitions operate, however, at markedly different rates. Wound
healing, depending on the extent of injury, may take 18 months to complete its
work (Mindwood et al. 2004). Animal consciousness typically operates with a time
constant of a few hundred milliseconds.

How can phenomena acting on such different rates be subsumed under the same
underlying mechanism? A heuristic adaptation of Arrhenius’ law (Laidler 1987),
which predicts exponential differences in reaction rate with “temperature,” in a
large sense, produces a first approximation to the result, recognizing that, in contrast
to simple chemical reactions, cognitive phenomena are inherently nonequilibrium.
That is, a large class of cognitive processes can be associated with dual information
sources for which palindromes are highly improbable. The easiest way to understand
the association is to recognize that, at its most basic, cognition at any scale or level
of organization requires choice of some particular action from a larger set of those
possible. Such choice reduces uncertainty, and the reduction of uncertainty implies
existence of an information source. The argument can be made quite formally, as in
the first chapter.

The rate of biocognition, we nonetheless argue, appears driven by the rate of
available metabolic free energy as something of a heuristic temperature analog.
Absent other theory, we try the Arrhenius relation. A more different treatment,
leading to similar results, can be found in Eqs. (11)–(15) and Fig. 4 of Kostal and
Kobayashi (2015).

In any event, the energetics of biological reactions are remarkable: at 300 K,
molecular energies represent approximately 2.5 kJ/mol in available free energy.
By contrast, the basic biological energy reaction, the hydrolysis of adenosine
triphosphate (ATP) to adenosine diphosphate—under proper conditions at 300 K,
produces some 50 kJ/mol in reaction energy. This is equivalent to a “reaction
temperature” of 6000 K. Increasing the rate of ATP delivery to one kind of tissue
an order of magnitude over any others provides sufficient energy for very rapid
biocognition.

The question is how such rapid biocognition is parceled out between conscious-
ness itself and the mechanisms that must regulate and stabilize it.

In more detail, given a chemical reaction of the form aA C bB ! pP C qQ, the
rate of change in (for example) the concentration of chemical species P (written ŒP�)
is often determined by an equation like

dŒP�=dt D �.T/ŒA�nŒB�m (5.1)

where n and m depend on the reaction details. The rate constant � is expressed by
the Arrhenius relation as

� D ˛ expŒ�Ea=CT� (5.2)

where ˛ is another characteristic constant, Ea is the reaction activation energy, T
is the Kelvin temperature, and C a universal constant. expŒ�Ea=CT� is, using the
Boltzmann distribution, the fraction of molecular interactions having energy greater
than Ea.
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The inherently nonequilibrium nature of cognition, however, requires a slightly
more sophisticated treatment.

Consciousness appears to be largely an all-or-nothing phenomenon (Sergeant and
Dehaene 2004), so that conscious signal perception must exceed a threshold before
becoming entrained into the characteristic general broadcast.

A direct information theory argument focuses on the Rate Distortion Function
(RDF) R.D/ associated with the channel connecting the cognitive individual with
an embedding and embodying environment. R.D/ � 0, a convex function (Cover
and Thomas 2006), defines the minimum rate of information transmission needed
to ensure that the average distortion between what is sent and what is received is less
than or equal to D � 0, according to an appropriate distortion measure. See Cover
and Thomas (2006) for details. Assuming a threshold R0 for conscious perception
of an incoming signal, we can, following Feynman’s (2000) identification of
information as a form of free energy, write a Boltzmann-like probability for the
rate of cognition as

PŒR � R0� D
R1

R0
expŒ�R=!M�dR

R1
0

expŒ�R=!M�dR
D expŒ�R0=!M� (5.3)

where M is the supplied rate of metabolic free energy, ! a constant (representing
entropic loss-in-translation), and Fig. 5.1 follows, writing R0=! D k.

If we define an efficiency measure as (cognition rate)/M, we see that energy
efficiency peaks at M D k, with the width of the curve depending on k; larger values
generate very broad efficiency curves. The form of expŒ�k=M�=M is distinct, and
closely similar to what has been found in other recent work. Using numerical models
of optimal coding and information transmission in Hodgkin–Huxley neurons under
metabolic constraints, Kostal and Kobayashi (2015) find an almost exactly similar
efficiency curve. Their treatment, however, involves regimes determined by the
critical value of the effective reversal potential of an explicit neural model.

We will later interpret the efficiency peaks in Fig. 5.1 as characterizing low blood
flow NREM sleep states in some higher animals.

For mammals, since body temperature remains constant, the rate of available
metabolic free energy—dependent on mitochondrial function—serves as a tem-
perature index for rates of biocognition. This determines the characteristic rate
of chemically generated consciousness, or of the individual lower level cognitive
modules that come together in a temporary assemblage to form such an analog.
Neural tissues, in humans consuming metabolic energy at an order of magnitude
greater rate than other tissues, thus can provide cognitive function many orders of
magnitude faster than similar physiological phenomena.

But is this the whole story? Kostal and Kobayashi (2015) argue that efficiency
matters in neural process, so that regimes of lower energy consumption may be
favored over the highest cognitive rates. But, as Ristroph et al. (2013) argue, inherent
instability, in itself, allows extremely rapid responses that have been strongly
selected for. Here, we will argue that regulation of such phenomena must consume
significant metabolic free energy, in addition to that needed for (relatively) rapid
cognition.
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Fig. 5.1 The dashed lines are the “Arrhenius” relation expŒ�k=M� for rate of cognition as a
function of the rate of available metabolic free energy M. The solid lines show the efficiency
measure of rate per unit metabolic energy, expŒ�k=M�=M. An order of magnitude increase in such
free energy can enable several orders of magnitude increase in the rate of cognition. The point of
greatest efficiency is at M D k, which we shall later interpret as an NREM sleep state in higher
animals. The width of the efficiency measure, however, rapidly increases with k. Decline in M
much below the shoulder of the curve triggers catastrophic collapse of cognition. The efficiency
curve has the same overall form as the analogous Fig. 4 of Kostal and Kobayashi (2015), who use
numerical methods

How do we understand the regulation of inherently unstable control systems?
Two fundamental relations, the Data Rate and Rate Distortion Theorems, are a
necessary foundation. Their convolution, we shall show, provides further insight
on metabolic energy demands of high speed cognition.

5.3 The Data Rate Theorem

The Data Rate Theorem (DRT), based on an extension of the Bode Integral Theorem
for linear control systems, describes the stability of feedback control under data rate
constraints (Nair et al. 2007). Given a noise-free data link between a discrete linear
plant and its controller, unstable modes can be stabilized only if the feedback data
rate H is greater than the rate of “topological information” generated by the unstable
system.

For the simplest incarnation—a linear expansion near a nonequilibrium steady
state—the matrix equation of the plant is

xtC1 D Axt C But C Wt (5.4)
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Fig. 5.2 “Regression model”
for a control system near a
nonequilibrium steady state.
xt is system output at time t,
ut the control signal, and Wt

an added noise term

where xt is the n-dimensional state vector at time t, ut is the imposed n-dimensional
control signal vector at time t, Wt is an added noise signal, and A and B are, in this
approximation, n	n fixed matrices. See Fig. 5.2 for a schematic. Then the necessary
condition for stabilizability is

H > logŒjdet.Au/j� � a0 (5.5)

where det is the determinant and Au is the decoupled unstable component of A,
i.e., the part having eigenvalues � 1. The determinant represents a generalized
volume. Thus there is a critical positive data rate below which there does not exist
any quantization and control scheme able to stabilize an unstable system (Nair et al.
2007).

The DRT, in its various forms, relates control theory to information theory and is
as fundamental as the Shannon Coding and Source Coding Theorems, and the Rate
Distortion Theorem for understanding complex biological phenomena. In the next
section we derive a more biologically relevant form of the DRT than Eq. (5.5) that
relates control and stability to the availability of metabolic free energy.

Accepting Feynman’s (2000) insight that information is simply a form of free
energy, in biological circumstances, we can write that M D m.H/, where M is the
rate of metabolic free energy used to generate the control information rate H, and
m is a sharply increasing monotonic function, a consequence of massive entropic
losses necessarily associated with translation of metabolic energy to information.
Equation (5.5) thus implies that there is a minimum necessary rate of free energy
consumption below which it is not possible to stabilize an inherently unstable
biological control system. Some calculation provides details.

5.4 Rate Distortion Dynamics

We examine how the control signal ut in Fig. 5.2 is expressed in the system
response xtC1. That is, we suppose it possible to deterministically retranslate—
without error—a sequence of observed system outputs, Xi D xi

1; xi
2 : : :, at times
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1, 2, . . . , into a sequence of control signals OUi D Oui
1; Oui

2; : : : and then compare
that inferred sequence with the original control signal sequence Ui D ui

1; ui
2; : : :.

The difference between them is a real number measured by some chosen measure
of distortion, d.Ui; OUi/, in the sense of the Rate Distortion Theorem (Cover and
Thomas 2006), allowing definition of an average distortion as

< d >D
X

i

p.Ui/d.Ui; OUi/ (5.6)

where p.Ui/ is the probability of the sequence Ui. We can then define a Rate Dis-
tortion Function (RDF), R.D/, denoting the minimum channel capacity necessary
for the limit condition < d >� D to apply, often found using Lagrange multiplier
methods or their generalizations (Cover and Thomas 2006). It is important to note
that R.D/ is always a convex function of D, i.e., a reverse J-shaped curve, allowing
deep inference (e.g., Ellis 1985).

This allows invocation of a dynamic model as follows, adopting Feynman’s
(2000) characterization of information as a form of free energy, measured here by
the minimum channel capacity.

For a Gaussian channel, which has a Rate Distortion Function R.D/ D
1=2 logŒ�2=D�, we can now define a “Rate Distortion entropy” as the Legendre
transform of the RDF as

SR D R.D/ � DdR.D/=dD D 1=2 logŒ�2=D� C 1=2 (5.7)

The simplest nonequilibrium Onsager equation describing the dynamics of
average distortion in terms of the gradient of this “entropy” is then (de Groot and
Mazur 1984)

dD=dt D ��dSR=dD D �=2D (5.8)

where t is the time and � > 0 is a diffusion coefficient. This has the solution

D.t/ D p
�t (5.9)

which is the classic outcome of the diffusion equation. Such correspondence
reduction serves as the foundation for arguing upward in both scale and complexity.

Other channels will have similar results as a consequence of the convexity of
the Rate Distortion Function, i.e., monotonic growth in time. For example, a simple
calculation shows that the “natural” channel, with R.D/ / 1=D, gives D.t/ / 3

p
t.

Regulation, however, does not involve the diffusive drift of average distortion.
Let M be the rate of metabolic free energy available for such regulation. Then a
plausible model, in the presence of an internal system noise ˇ2 in addition to the
environmental channel noise defined by �2, is the stochastic differential equation

dDt D
�

�

2Dt
� F.M/

�

dt C ˇ2

2
DtdWt (5.10)

where dWt represents unstructured white noise and F.M/ � 0 is a monotonically
increasing function in the rate of metabolic free energy supply M.
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This relation has the nonequilibrium steady state expectation

Dnss D �

2F.M/
(5.11)

Using the Ito chain rule on equation (5.10) (Protter 1990; Khasminskii 2012), it
is possible to calculate the variance in the distortion as E.D2

t / � .E.Dt//
2.

Applying the Ito relation D2
t , however, we find that no real number solution for

its expectation is possible unless the discriminant of the resulting quadratic equation
is � 0, giving the necessary condition

F.M/ � ˇ2

2

p
� (5.12)

Note that similar conditions will apply to other kinds of channel as a consequence
of the convexity of the RDF.

From Eq. (5.11), for a Gaussian channel,

Rnss � 1

2
log

�
�2ˇ2

p
�

�

(5.13)

Applying the Black–Scholes calculation of the Mathematical Appendix to find
the “cost” of R in terms of the rate M gives

M D 2C

b2
logŒR� C �1R C �2 (5.14)

where b is a noise term characteristic of the Black–Scholes approximation.
Substituting the result of equation (5.13) into this relation, a necessary condition

for second order stability is

Mnss � 2C

b2
log

�
1

2
log

�
�2ˇ2

p
�

��

C�1

1

2
log

�
�2ˇ2

p
�

�

C �2 � a0 (5.15)

where all constants are positive or zero.
This represents, for a Gaussian channel, another form of the Data Rate Theorem,

involving an example of the iterated logarithm so characteristic of diffusion
processes.

Values of M below this limit will trigger a phase transition into a disintegrated,
pathological, system dynamic in a highly punctuated manner. Again, similar models
can be constructed using the “natural” channel having the Rate Distortion Function
R.D/ D ˇ=D.
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Note, however, the two distinctly different “cost” modes implied by the condi-
tions �1 D 0 ; > 0.

Under more complex circumstances—for example, when there are several or
many possible different F.M/ functions representing different physiological and/or
psychological states—setting the time-average expectation of dDt in Eq. (5.10) to
zero

< dDt >D 0 (5.16)

defines an index theorem in the sense of Hazewinkel (2002) and Atiyah and Singer
(1963). An index theorem is an analytic relation whose solutions represent different
topological modes of an underlying manifold, in a large sense. Such topologies are
always characterized by group or groupoid structures (e.g., Lee 2000). The topolog-
ically distinct multiple solutions represent quasi-stable nonequilibrium steady state
(nss) modes of the higher order maintenance system. These may range from a set
of distinct nss fixed points to closed “Red Queen” cycles or pseudorandom “strange
attractors” within a bounded region. Below, we will examine “directed transitions”
between such modes representing large deviations in the sense of Champagnat et al.
(2006), involving methods that can be applied when noise has “color.”

A somewhat different attack is possible, however, having implications for the
regulation and control of sleep/wake dynamics.

5.5 The Sleep Cycle: An Optimization Model

Something much like the set of quasi-stable nss states implied by the index theorem
of equation (5.16)—and by the �1 D 0; > 0 conditions in equation (5.15)—can also
be derived via an optimization argument applied to the rate calculation of equation
(5.3). The essential point is that both consciousness and its necessary cognitive
regulatory system(s) will follow similar metabolic scaling functions, so that we
can seek to maximize a joint efficiency measure subject to constraint, applying
the usual Lagrange multiplier argument. That is, letting the subscript C represent
consciousness and R its regulatory machinery, we seek to maximize an efficiency
functional

expŒ�kC=MC�

MC
C expŒ�kR=MR�

MR
(5.17)

subject to the constraint

MC C MR D M (5.18)

The kX are appropriate constants and MX is the metabolic free energy rate for
process X.
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Taking

ƒ.MC; MR; 	/ � expŒ�kC=MC�

MC
C expŒ�kR=MR�

MR

C	.MC C MR � M/ (5.19)

gives the Lagrange optimization conditions as

rMC ;MR;	ƒ D 0 (5.20)

The resulting complicated third order equation for solution pairs MC; MR implies
the existence of several different possible optimization points for the system,
strongly parameterized by the overall energy rate M. This represents another index
theorem relating solutions of an analytic equation to underlying topological modes:
increasing the number of systems to be optimized—adding terms of the form
expŒ�kJ=MJ�=MJ—increases the number of possible nonequilibrium quasi-stable
states.

In a first approximation to a sleep cycle model, however, there are only a small
number of stages to the normal pattern: NREM (non-rapid eye movement) which
involves low rates of blood flow to the brain—low M—and REM sleep which can
rival or exceed conscious state blood flows. Sleep states must, like other neural
processes, be highly regulated, and the argument seems to carry through, as follows.

Assuming kC � kR in Eq. (5.17), direct calculation shows a symmetric efficiency
curve with one or two peaks, depending on the magnitude of M D MC C MR, as in
Fig. 5.3. There, taking kX D 1; MC C MR D M D 1 ! 3:6, we obtain a maximum
efficiency index, about 0.74, at MC D MR � 1 for M � 2, or along symmetric ridge
points for larger M. The maximum value of 3.6 for M is chosen from the work of
Madsen and Vorstrup (1991), who infer a 44% decline in cerebral metabolic rate
during deep, slow-wave, NREM sleep.

That is, the highest efficiency peak is taken to be at the relatively quiescent
NREM mode. For higher M, however, the two symmetric greatest efficiency
points suggest waking/active sleep modes in which REM “sleep” may represent
a parsimonious assumption of essential maintenance duties by systems otherwise
dedicated to the regulation of awake consciousness. This seems analogous to the
immune system which, when not extinguishing the fires of infection, wound healing,
and malignancy, is deeply involved with processes of routine cellular maintenance
(Cohen 2000). Long-term sleep dysfunction may be very serious indeed.

Similar ideas are in the literature. As Harris et al. (2012) put it,

Increasingly, sleep is thought to play an energetically restorative role in the brain. . . [D]uring
sleep there is a transient increase in ATP level in cells of awake-active regions of the
brain. . . suggested to fuel restorative biosynthetic processes in cells that, during the day,
must use all their energy on electrical and chemical signaling. This implies an energy
consumption trade-off; a high use of ATP on synapses during awake periods is balanced
by more ATP being allocated to other tasks during sleep.
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Fig. 5.3 Total consciousness-and-regulator efficiency as a function of the metabolic free energy
consumed by consciousness, MC, for kX D 1; M D MC C MR D 1 ! 3:6. A single maximum
dominates the low energy mode, suggesting NREM sleep, denoted N, representing a 44% decline
from the maximum M. The maxima at higher energies are ridges, suggesting REM sleep/awake
modes, denoted R, W. Normal transitions are from W to N, followed by N-R oscillation. During
sleep modes, “regulator” systems for consciousness may perform routine maintenance, as does
the immune system when not fighting fires of infection, wound healing, or malignancy. NREM
sleep becomes a transition path between the two more active states. Changing the values of the kX

markedly shifts the relative heights and widths of the peaks, suggesting an added control mode. A
little more work produces the models described in Booth and Diniz Behn (2014). There appears
to be a necessary relation between sleep disturbance and the dysregulations of consciousness
expressed as psychopathologies

Energy use in the awake state also increases due to synaptic potentiation. . . compared
to sleep. . .
These changes are reversed during sleep, presumably because of homeostatic plastic-
ity. . . Thus sleep is essential for adjusting synaptic energy use.

It is known that the normal route from waking, the W point in Fig. 5.3, to REM
sleep, the point R, is from W to N, and then down the other ridge from N to R.
Direct transition from R to W does occur, and cycling between N and R is normal.

Note that values of kC D kR > 1 generate much broader symmetric curves with
far less well-defined peaks, while values less than 1 are much more sharply peaked.
Unequal values raise or lower one or the other ridge. Thus “tuning” these parameters
would provide significant added system control.

This model is consistent with Hobson’s (2009, Fig. 4) three-dimensional
Activation-Modulation-Input/Output (AIM) picture of the Western sleep cycle.
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In Hobson’s work, the normal progression is from waking to low-energy NREM
sleep, followed by oscillation between NREM mode and the high-energy REM
state.

Our model is also consistent with the observations of Hudson et al. (2014) on
the punctuated recovery to consciousness from anesthesia. See their Fig. 4C which
identifies three hubs between which there is directed transition during recovery.

REM sleep is now viewed as a state of consciousness which, compared to alert
waking, is deficient in neuromuscular function (i.e., sleep paralysis), analytic ability,
and transient episodic memory, while particularly rich in emotional cognition.
In addition, both waking up and falling sleep involve complicated physiological
processes to effect a transition between states. Since the late 1940s researchers have
understood the importance of the reticular activating mechanism in the change from
sleep to waking (Evans 2003). More recently, an arousal inhibitory mechanism,
a thalamo-cortical process, has been recognized which transfers the body from
waking to sleep (Evans 2003). Other work (Saper et al. 2005; Lu et al. 2006) has
identified a putative neural flip-flop switch structure which controls REM sleep.

The standard phenomenological model for sleep is the “two-process” approach
of Borbely (1982) and Daan et al. (1984). As Skeldon et al. (2014) put it, the
homeostatic process takes the form of a relaxation oscillator that results in a
monotonically increasing “sleep pressure” during wake that is dissipated during
sleep. Switching from wake to sleep, and vice versa, occurs at upper and lower
threshold values of the sleep pressure, respectively, where the thresholds are
modulated by an approximately sinusoidal circadian oscillator. Skeldon et al. (2014)
go on to show that the two-process model is essentially the same as the slow-time
dynamic of the neurologically based Phillips and Robinson (2007) model.

But are there more general principles hidden here?

5.6 Transition Dynamics

How does a consciousness/regulator structure—however we choose to characterize
it—make changes between the quasi-stable nss that the different modeling strategies
above imply are central to the regulatory process? Indeed, recent primate experi-
ments imply that even routine conscious decision making takes place in discrete
steps (Latimer et al. 2015). Similar problems arise in evolutionary theory. Taking
the approach of equation (5.10) in an evolutionary context, Champagnat et al. (2006)
argue that the probability of a “large deviation” driving the system from one quasi-
stable mode to another is given by a negative exponential of an entropy-like function

I D �
X

j

Pj logŒPj� (5.21)

where the Pj represent a particular probability distribution. This result—the large
deviations argument—is well known in numerous contexts under various names—
Sanov’s Theorem, the Gartner/Ellis Theorem, etc (Dembo and Zeitouni 1998).
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For the composite of human consciousness-and-regulation, we argue, the transition
between “states” involves the effect of impinging information sources. That is, I is
not simply an “entropy” in this case, but represents action of an external information
source (or sources) that, iteratively, regulates the internal regulators controlling
individual consciousness.

A variant on this kind of approach would, for the optimization model, make
different values of the essential parameters M, kC and kR the outputs of another,
embedding, cognitive information source that drives the sleep cycle, turning off
waking consciousness via the low-energy NREM mode, and then engaging high-
energy REM sleep (Booth and Diniz Behn 2014).

5.7 Cultural Catalysis of the Sleep Cycle

As many have argued, humans sustain a dual heritage system of genes and culture
(e.g., Richerson and Boyd 2006). Waking/REM consciousness and the associated
full sleep cycle takes place in the context of a learned cultural system—an
internalized information source having regularities of “grammar” and “syntax,” in a
large sense—that must be maintained in memory, and such maintenance requires an
additional expenditure of metabolic free energy beyond what is implied by Fig. 5.3.
A simple heuristic argument follows from the “chain rule” of information theory
(Cover and Thomas 2006) which states that, for information sources X and Y , the
joint uncertainty H.X; Y/ follows an inequality:

H.X; Y/ D H.X/ C H.YjX/ � H.X/ C H.Y/ (5.22)

We can, in general, write for the probability density function of some H at a
metabolic free energy rate M,

dPŒH� D expŒ�H=kM�dH
R

expŒ�H=kM�dH
(5.23)

If k is very small as a consequence of an expected massive entropic loss, we can
write, for the average of H,

< H >D
R

H expŒ�H=kM�dH
R

expŒ�H=kM�dH
� kM (5.24)

so that

< H.X; Y/ > � kMX;Y �< H.X/ > C < H.Y/ >

� kMX C kMY

MX;Y � MX C MY (5.25)
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If X represents the information source associated with the sleep/wake cycle,
and Y that of internalized, learned culture, then we can expect that, through joint
influence and crosstalk, culture will act as a kind of catalyst to canalize patterns of
the sleep/wake cycle and their dysfunctions.

5.8 Environmental Induction of Sleep Disorders

We suppose, for the moment, that there is a scalar index of environmental stress,
in a large sense, that affects patterns of sleep. Call it . The stability condition of
equation (5.15) then becomes something like

MC./ C MR./ D M./ > f ./a0 (5.26)

for appropriate functional forms in . We make a first order approximation, i.e.,
M D �1 C �2; f D �3 C �4, so that the stability condition becomes

T D �1 C �2

�3 C �4

> a0 (5.27)

For small , stability requires �2=�4 > a0. At high  the condition is �1=�3 > a0.
If �2=�4 
 �1=�3 < a0, then at some intermediate value of , the basic inequality
may be violated, leading to instability in the sleep/wake system. See Fig. 5.4.

Rather than a simple scalar index of stress, there are usually multiple sources that
interact via different mechanisms at various scales and levels of organization. Thus
we are confronted by some matrix O having components i;j ¤ j;i; i; j D 1; : : : ; n
since stresses may have different effects on each other. Square matrices of order
n, however, have n scalar invariants, that is, n numbers that characterize the matrix
regardless of how it may be expressed in different coordinate systems. The first
is the trace, the last ˙ the determinant. The invariants are the coefficients of the
characteristic polynomial of the matrix

P.	/ D det. O � 	I/

D 	n C r1	n�1 C � � � C rn�1	 C rn (5.28)

where 	 is a parameter, det is the determinant, and I is the n 	 n identity matrix.

Fig. 5.4 The horizontal line
is the limit ˛0. If
�2=�4 � �1=�3 < a0, at
some intermediate value of
integrated environmental
insult , T D .�1 C �2/=

.�3 C �4/ falls below
criticality, and control of the
sleep/wake cycle fails
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We invoke the “Rate Distortion Manifold” methods of Glazebrook and Wallace
(2009) or the “generalized retina” of Wallace and Wallace (2010) to argue that it is
possible to accurately project high dimension information processes down onto low
dimension “tangent spaces” that track an underlying complex information manifold,
in a formal sense. Thus we assume there is some scalar function � of the matrix
invariants ri that permits definition of a T as in Eq. (5.27).

What are the dynamics of T .� / under stochastic circumstances? We again
examine how a control signal ut in Fig. 5.2 is expressed in the system response xtC1.
Again, we suppose it possible to deterministically retranslate a sequence of system
outputs Xi D xi

1; xi
2; : : : into a sequence of possible control signals OUi D Oui

0; Oui
1; : : :

and then compare that sequence with the original control sequence Ui D ui
0; ui

1; : : :.
The difference between them is a real number measured by a chosen distortion
measure d, enabling definition of an average distortion < d > as in Eq. (5.6).

Again, we apply a classic Rate Distortion Theorem (RDT) argument. According
to the RDT, there exists a Rate Distortion Function (RDF) that determines the
minimum channel capacity, R.D/, necessary to keep the average distortion < d >

below the fixed limit D (Cover and Thomas 2006). Based on Feynman’s (2000)
interpretation of information as a form of (free) energy, we can now construct a
Boltzmann-like probability density in the “temperature” T as

dP.R; T / D expŒ�R=T �dR
R1

0
expŒ�R=T �dR

(5.29)

since higher T necessarily implies greater channel capacity.
The integral in the denominator is essentially a statistical mechanical partition

function, and we define a “free energy” Morse Function F (Pettini 2007) as

expŒ�F=T � D
Z 1

0

expŒ�R=T �dR D T (5.30)

so that F.T / D �T logŒT �.
Then an entropy-analog can also be defined as the Legendre transform of F:

S � F.T / � T dF=dT D T (5.31)

As the usual first approximation, Onsager’s treatment of nonequilibrium thermo-
dynamics (de Groot and Mazur 1984) can be applied, so that system dynamics are
driven by the gradient of S in essential parameters—here T —under conditions of
noise. This gives a stochastic differential equation

dTt � .�dS=dT /dt C ˇTtdWt

D �dt C ˇTtdWt (5.32)
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where � is a “diffusion coefficient” representing the efforts of the underlying control
mechanism, and ˇ is the magnitude of an inherent impinging white noise dWt in the
context of volatility, i.e., noise proportional to signal.

Again, via Jensen’s inequality for a concave function, applying the Ito chain rule
to log.T / in Eq. (5.32), a nonequilibrium steady state (nss) expectation for T can be
calculated as

E.Tt/ � �

ˇ2=2
(5.33)

Again, � is interpreted as indexing the attempt by the embedding control
apparatus to impose stability—raise T . Thus impinging noise can significantly
increase the probability that T falls below the critical limit of Fig. 5.4, initiating
a control failure.

However, E.T / is an expectation, so that, in this model, there is always some
nonzero probability that T will fall below the critical value ˛0 in the multimodal
expression for T .� /: sporadic control dysfunctions have not been eliminated.
Raising � and lowering ˇ decreases their probability, but will not drive it to zero
in this model, a matter of some importance in determining population-rates of sleep
disorders.

5.9 Chronic Dysfunctions of the Sleep Cycle

The normal sleep cycle involves regular transitions between the quasi-stable
nonequilibrium steady states of Fig. 5.3, designated as the peak efficiency modes
N; R; W. While we have described failure of the control system regulating that cycle
in terms of the expectation relation of equation (5.33), the mechanism involved
episodic disturbances, sporadic control dysfunctions. Here, we attempt to model
chronic failure of regulation, which appears to have a somewhat different aspect.

One possible approach applies the “cognitive paradigm” of Atlan and Cohen
(1998), who recognized that the immune response is not merely an automatic reflex,
but involves active choice of a particular response to insult from a larger repertoire
of possible responses. Choice reduces uncertainty and implies the existence of an
underlying information source (Wallace 2012).

Given an information source associated with an inherently unstable, rapidly
acting cognitive sleep regulation system—represented here as “dual” to it—a
“natural” equivalence class algebra emerges by choosing different system origin
states b0 and defining an equivalence relation for two subsequent states bm; bn at
times m; n > 0 by the existence of high probability—and hence “meaningful”—
paths connecting them to the same origin point. Disjoint partition by equivalence
class, similar to orbit equivalence classes in dynamical systems, defines a groupoid
that is to be associated with the cognitive process. Groupoids generalize of the group
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concept in that there is not necessarily a product defined for each possible element
pair (Weinstein 1996).

The equivalence classes define a set of cognitive dual information sources
available to the inherently unstable sleep regulation system, generating a groupoid.
Each orbit corresponds to a transitive groupoid whose disjoint union is the full
groupoid. Each subgroupoid is associated with a distinct dual information source,
and larger groupoids must have richer dual information sources than smaller.

Take XGi as the sleep cycle control system’s dual information source associated
with the groupoid element Gi, and Y as the information source associated with an
imposed environmental stress, again in a large sense. Earlier chapters detail how
the regularities of environmental exposures imply the existence of an environmental
information source.

It is again possible to construct a “free energy” Morse Function (Pettini 2007).
Take H.XGi ; Y/ � HGi as the joint uncertainty of the two information sources.
A pseudoprobability can be written:

PŒHGi � D expŒ�HGi=T �
P

j expŒ�HGj=T �
(5.34)

Again, T is the “temperature” from Eq. (5.27), via � .r1; : : :/, and the sum is over
all possible cognitive modes.

Another Morse Function, F , can now be defined as

expŒ�F=T � �
X

j

expŒ�HGj=T � (5.35)

Since groupoids are extensions of more familiar symmetry groups, we argue by
abduction that it is possible to apply an extension of Landau’s picture of phase
transition (Pettini 2007). In Landau’s spontaneous symmetry breaking approach,
phase transitions driven by temperature changes occur as alteration of system
symmetry, with higher energies at higher temperatures being more symmetric.
Transition between symmetries is punctuated in the temperature index T under the
Data Rate Theorem for unstable control systems. Usually, there are only a very
limited number of possible phases.

Lowering of T can lead to sudden, highly punctuated, decrease in the complexity
of cognitive process possible within the sleep cycle control system, driving it into a
kind of “ground state collapse” in which the sleep cycle is no long “normal,” within
expected and accepted cultural patterns.

The driving force is the integrated environmental insult � . Increasing � is
then equivalent to lowering the “temperature” T , and the system passes from
high symmetry “free flow” to different forms of “crystalline” structure—broken
symmetries representing the punctuated onset of regulatory failure.

To reiterate, if �2=�4 
 �1=�3 < a0 in Eq. (5.27) and its extension by replacing 

with the composite scalar � .r1; : : :/, accumulated environmental insult will quickly
bring the effective “temperature” below some critical value, raising the probability
for, or triggering the collapse into, a dysfunctional ground state.
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Sufficient conditions for the intractability—stability—of the pathological state
can be explored as follows.

Given a vector of parameters characteristic of and driving the pathological phase,
J, measuring deviations from a nonequilibrium steady state, the “free energy”
analog F in Eq. (5.35) can be used to define a new “entropy” scalar as the Legendre
transform

S � F.J/ � J � rJF (5.36)

As before, a first order dynamic equation follows from a stochastic version of
the Onsager formalism from nonequilibrium thermodynamics (de Groot and Mazur
1984)

dJi
t �

 
X

k

�i;k@S=@Jk
t

!

dt C �iJ
i
tdBt (5.37)

where �i;k defines a diffusion matrix, the �i are parameters, and dBt represents a
noise that may not the usual undifferentiated white noise.

Factoring out Ji, Eq. (5.37) takes the form

dJi
t D Ji

tdYi
t (5.38)

where Yi
t is a stochastic process.

The expectation of J is found in terms of the Doleans-Dade exponential (Protter
1990):

E.Ji
t/ / exp.Yi

t � 1=2ŒYi
t ; Yi

t �/ (5.39)

taking ŒYi
t ; Yi

t � as the quadratic variation of the stochastic process Yi
t (Protter 1990).

Applying the Mean Value Theorem, if

1=2dŒYi
t ; Yi

t �=dt > dYi
t =dt (5.40)

then the (culturally sculpted) pathological ground state is stable: deviations from
nonequilibrium steady state measured by Ji

t converge in expectation to 0. Thus
sufficient noise—determining the quadratic variation—can lock-in the failure of the
sleep cycle.

The argument is similar to that of ecosystem resilience theory (e.g., Holling
1973) characterizing multiple quasi-stable nonequilibrium steady states among
interacting populations. Pristine alpine lakes, having limited nutrient inflows, can be
permanently shifted into a toxic eutrophic state by excess nutrient influx—a sewage
leak, fertilizer runoff, and so on. Once shifted, the lake’s ecology remains trapped
in a dynamic mode of recurrent “red tide”-like plankton blooms even after sewage
or fertilizer inflow ceases.
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5.10 Discussion and Conclusions

Evolutionary process has selected for unstable control systems in higher animals
that can react relatively swiftly to patterns of threat or affordance, but require strict
ongoing regulation at different scales and levels of organization. Here, we have
argued that consciousness, perhaps the most significant and sophisticated rapid
large-scale neural process, must be supplied with high rates of metabolic free energy
to both operate and stabilize the basic physiological dynamics. That is, both the
“stream of consciousness” and the “riverbanks” that confine it to socially defined
useful realms are constructed and reconstructed moment-by-moment in response
to highly dynamic internal and environmental circumstances. High speed response
requires considerable metabolic free energy.

Further, neural structures in higher animals are “coevolutionary” in that they
respond rapidly both to incoming environmental signals, in a large sense, and
to signals from other neural systems. It has long been known that stabilizing
coevolutionary computing systems is as inherently difficult as programming them
(Wallace 2017). Although working out the full details remains to be done, punctu-
ated transitions seem inherent.

As has often been speculated, however, failure of regulation appears to underlie
many psychiatric disorders.

Emotions, Thayer and Lane (2000) assert, are an integrative index of individual
adjustment to changing environmental demands, a response to an environmental
event that allows rapid mobilization of multiple subsystems. Emotions allow
the efficient coordination of the organism for goal-directed behavior. When the
system works properly, it allows for flexible adaptation to changing environmental
demands. An emotional response must be regulated to represent a proper selection
of an appropriate response and the inhibition of other less appropriate responses
from a more or less broad behavioral repertoire of possible responses. From their
perspective, disorders of affect represent a condition in which the individual is
unable to select the appropriate response, or to inhibit the inappropriate response,
so that the response selection mechanism is somehow corrupted—regulation fails.

Gilbert (2001) similarly suggests that a canonical form of such corruption is the
inappropriate excitation of modes that, in other circumstances, represent normal
evolutionary adaptations, again representing a fundamental failure of regulation.

The formal development thus extends the perspective of Wallace (2015) on the
pathologies of mitochondrial dysfunction toward realms of psychiatric disorders.

Our argument further suggest a necessarily intimate synergism between sleep
disorders and a spectrum of psychopathologies. That is, if the regulatory machinery
for sleep is that of consciousness off-duty, as it were, sleep disorders imply some
form of consciousness failure—psychopathology. Indeed, this has long been known.
As Morin and Ware (1996) put it,

Epidemiological, cross sectional, and longitudinal data suggest a high rate of comor-
bidity between sleep disturbance and psychopathology, particularly between insomnia,
anxiety, and depression. Between 50% and 80% of psychiatric patients complain of sleep
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disturbances during the acute phase of their illness. Conversely, among treatment-seeking
individuals with a primary complaint of insomnia and randomly selected community
samples, approximately one third display a concurrent psychopathology, one third exhibit
psychological symptoms that do not necessarily exceed the threshold for a psychiatric
disorder, and another third present insomnia as a functionally autonomous disorder.
There is a positive relationship between severity of sleep disturbances and concurrent
psychopathology. . .

More recent studies confirm the relation (e.g., Eidelman et al. 2012).
However, for humans, atomistic, individual-scale regulation must be iterated

to include social and cultural influences. “Culture,” to use the words of the
evolutionary anthropologist Robert Boyd, “is as much a part of human biology as
the enamel on our teeth,” and this leads to extensions of the transition arguments
above: the principal environment of humans is other humans, and we are the
naked mole rats of primates. Thus social interaction and cultural heritage tend to
confine individual consciousness to realms leading to socially acceptable pheno-
types. Failure of such constraint is then socially constructed as misbehavior or
pathology. Indeed, as described in Chap. 3, cultural norms and social interaction
are generally synergistic with individual and group cognition and their disorders.
Most particularly, a canonical failure mode in atomistic cultures is found to be
a ground state collapse analogous to the psychopathic behaviors predicted by
mainstream Western economic models. That is, high rates of psychopathic and
antisocial personality disorders emerge as culture-bound syndromes characteristic
of Westernizing societies, or of those undergoing large-scale social disintegration.

From the perspective of this chapter, in which consciousness-and-regulation are
a synergistic composite, sleep must also reflect similar cultural influences, and this
is indeed well known. That is, the structure, content, and meaning of sleep itself
are very much cultural artifacts. Juillerat (1999), for example, describes sleep in the
Yafar culture of Papua, New Guinea as follows:

The conceptions [of] the Yafar about the constituents of personhood and the transformations
under which they go at death. . . [involve] a double, the spiritual value of blood and bones,
and an Ego (or soul) that becomes autonomous during sleep and communicates with
the spirits of the deceased during dreams. . . Death does not destroy them; it reorganizes
them differently. Whereas the living person experiences a temporal alternation between
being awake and asleep (conscious/unconscious), this cleavage stabilizes after death, when
constituents are redistributed among different categories of spirits. The quality of relations
that people maintain with spirits, as well as cosmological divisions, suggest a native
metapsychology.

Jeong (1995), a Korean researcher, writes

Sleep. . . is a developmental product. . . subjected to the vicissitudes of human behavior
and culture. . . sleep medicine/research [must involve]. . . a developmental perspec-
tive. . . Understanding of sleep and of sleep disorders is not complete without in-depth
understanding of culture, philosophy, and tradition from developmental perspectives.
Traditional ideas and wisdom from the past are the unavoidable resources for further
understanding sleep and developing sleep research and medicine. . .
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Worthman and Melby (2002), following a lengthy anthropological study of sleep
ecologies across cultures, go further, concluding that

. . . [P]hysical, social, and temporal factors generating variation in human sleep ecol-
ogy. . . may be paralleled by variation not only in sleep behavior but also in its physiology—
specific cultural settings and practices may be associated with specific, distinctive risks for
disorders of sleep and state regulation.

. . . [A]ssociations of cultural ecologies of sleep to such “basic” physiological regulatory
systems as sleep biology, chronobiology, state regulation, and emotion regulation would
imply that these systems are partially influenced or organized through cultural ecologies
operating developmentally and across the life-span. Further, these associations may argue
the need for attention to cultural ecology in the explanation, prevention, and possible
treatment of disorders of these systems.

In sum, the composite of consciousness-and-regulation, its diurnal and other
dynamics, and its pathologies, seem, for humans, as much cultural artifacts as
they are biological realities. That is, an implication of our analysis is that the
differences in cultural expression of waking consciousness that Nisbett et al. (2001)
and other cultural psychologists have observed should be fully carried over into
our understanding of all aspects of human psychology. Heine (2001) states the
underlying case as follows:

Cultural psychology does not view culture as a superficial wrapping of the self, or as
a framework within which selves interact, but as something that is intrinsic to the self.
It assumes that without culture there is no self, only a biological entity deprived of its
potential. . . Cultural psychology maintains that the process of becoming a self is contingent
on individuals interacting with and seizing meanings from the cultural environment. . .

Other higher animals, for whom culture is a less central experience, may still
display dynamics somewhat similar to what we have explored here, although
inferences from experiments on them may not translate well into human modal-
ities that have been strongly sculpted by embedding culture. For humans, social
interactions carrying cultural structures must impose themselves both on long-term
developmental trajectories and on the conformation and dynamics of the short-term
regulators that define the riverbanks confining the streams of waking and REM
consciousness.

We would argue that epigenetic information sources—including, but not limited
to embedding/internalized culture—act as analogs to a tunable catalyst, directing
development into different characteristic pathways according to the structure of
external signals, a perspective having significant implications for understanding
how environmental stressors, in a large sense, can induce a broad spectrum of
developmental disorders in humans.
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Chapter 6
Embodied Cognition and Its Disorders

Summary The Data Rate Theorem that establishes a formal linkage between
control theory and information theory carries deep implications for the study of
embodied cognition and its dysfunctions across human, machine, and composite
man–machine cockpit entities. The stabilization of such cognition is a dynamic
process deeply intertwined with it, constituting, in a sense, the riverbanks directing
the flow of a stream of generalized consciousness. The fundamental role of culture
in human life has long been understood. Here we argue that, not only is culture, in
the words of the evolutionary anthropologist Robert Boyd, “as much a part of human
biology as the enamel on our teeth,” but that it is an important part of the disorders of
embodied cognition that different communities socially construct as mental illness.
A shift in perspective on such illness is badly needed, from naive geneticism and a
simplistic “biomarker” focus to a broad cognitive theory that recognizes the central
roles of culture, socioeconomic structure, their histories, and their dynamics, in
human development. Unfortunately, stabilizing analogs to cultural influence are
unavailable to high-order real-time machine and cockpit systems that, increasingly,
will be tasked with control of critical enterprises ranging from communication,
power, and travel networks to nuclear and chemical reactors, organized deadly force,
and so on (Wallace, Information Theory Models of Instabilities in Critical Systems.
World Scientific Series in Information Studies. World Scientific, Singapore, 2017).

6.1 Introduction

Varela et al. (1991), in their pioneering study The Embodied Mind: Cognitive
Science and Human Experience, asserted that the world is portrayed and determined
by mutual interaction between the physiology of an organism, its sensorimotor
circuitry, and the environment. The essential point, in their view, being the inherent
structural coupling of brain–body-world. Lively debate has followed and continues
(e.g., Clark 1998; Wilson 2002; Wilson and Golonka 2013). As Wilson and Golonka
put it,

The most exciting hypothesis in cognitive science right now is the theory that cognition
is embodied. . . [T]he implications of embodiment are. . . radical. . . If cognition can span the
brain, body, and environment, then the “states of mind” of disembodied cognitive science
won’t exist to be modified. Cognition will instead be an extended system assembled from a
broad variety of resources. . . [that] can span brain, body, and environment. . .

© Springer International Publishing AG 2017
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[We] treat perception-action problems and language problems as the same kind of
thing. . . Linguistic information is a task resource in exactly the same way as perceptual
information. . . Our behavior emerges from a pool of potential task resources that include
the body, the environment and. . . the brain. . .

In the same year as the work by Varela et al. (1991), Brooks (1991) explored
analogous ideas in robotics.

Barrett and Henzi (2005) summarize matters as follows:

. . . [C]ognition is “situated” and “distributed”. Cognition is not limited by the “skin and
skull” of the individual. . . but uses resources and materials in the environment. . . The
dynamic social interactions of primates. . . can be investigated as cognitive processes in
themselves. . . A distributed approach. . . considers all cognitive processes to emerge from
the interactions between individuals, and between individuals and the world.

We will explore how this picture, of the recruitment of disparate resources into
shifting, temporary coalitions in real time to address challenges and opportunities,
represents a significant extension of the Baars (1988) model of consciousness, as
described in Chap. 1.

It is possible to study cognition and embodiment through the Data Rate Theorem
that formally relates control theory and information theory, and to include as well
the needed regulation and stabilization mechanisms in a unitary construct that must
interpenetrate in a similar manner.

Natural cognitive systems operate at all scales and levels of organization of
biological process (e.g., Wallace 2012, 2014a). The failure of low level biological
cognition in humans is often expressed through early onset of the intractable chronic
diseases of senescence (e.g., Wallace and Wallace 2010, 2013; Wallace 2015).
Failure of high-order cognition in humans has been the subject of intensive scientific
study for over 200 years, with little if any consensus. As Johnson-Laird et al. (2006)
put it,

Current knowledge about psychological illnesses is comparable to the medical under-
standing of epidemics in the early 19th Century. Physicians realized that cholera, for
example, was a specific disease, which killed about a third of the people whom it infected.
What they disagreed about was the cause, the pathology, and the communication of the
disease. Similarly, most medical professionals these days realize that psychological illnesses
occur. . . but they disagree about their cause and pathology.

As the media chatter surrounding the release of the latest official US nosology
of mental disorders—the so-called DSM-V—indicates, this may be something
an understatement. Indeed, the entire enterprise of the Diagnostic and Statistical
Manual of Mental Disorders has been characterized as “prescientific” (e.g., Gilbert
2001). Atmanspacher (2006), for example, argues that formal theory of high-level
cognition is itself at a point like that of physics 400 years ago, with the basic entities
and the relations between them yet to be determined. Further complications arise via
the overwhelming influence of culture on both mental process and its dysfunction
(e.g., Heine 2001; Kleinman and Cohen 1997), something to which we will return.
Previous chapters provide further exploration.



6.2 The Data Rate Theorem 131

The stabilization and regulation of high-order cognition may be as complex as
such cognition itself.

Some simplification, however, is possible. Cognition can be described in terms
of a sophisticated real-time feedback between interior and exterior, necessarily
constrained, as Dretske (1994) has noted, by certain asymptotic limit theorems of
probability,

Communication theory can be interpreted as telling one something important about the
conditions that are needed for the transmission of information as ordinarily understood,
about what it takes for the transmission of semantic information. This has tempted
people. . . to exploit [information theory] in semantic and cognitive studies. . .

. . . Unless there is a statistically reliable channel of communication between [a source
and a receiver]. . . no signal can carry semantic information. . . [thus] the channel over
which the [semantic] signal arrives [must satisfy] the appropriate statistical constraints of
information theory.

Recent intersection of that theory with the formalisms of real-time feedback
systems—control theory—may provide insight into matters of embodied cognition
and the parallel synergistic problem of embodied regulation and control. Here,
we extend that work and apply the resulting conceptual model toward formally
characterizing the unitary structural coupling of brain–body-world, a coupling in
which, for humans, culture is a central mode. In the process, we will explore
dynamic statistical models that can be fitted to data.

We will find, after some considerable development, results recognizably similar
to those of Verduzco-Flores (2012). They, using a detailed neural network model,
observed that

[Certain network] changes result in a set of dynamics which may be associated with
cognitive symptoms associated with different neuropathologies, particularly epilepsy,
schizophrenia, and obsessive compulsive disorders. . . [S]ymptoms in these disorders may
arise from similar or the same general mechanisms. . . [and] these pathological dynamics
may form a set of overlapping states within the normal network function..[related] to
observed associations between different pathologies.

Apparently, these are robust observations across a variety of cognitive systems.

6.2 The Data Rate Theorem

The Data Rate Theorem, a generalization of the Bode integral theorem for linear
control systems (e.g., Yu and Mehta 2010; Kitano 2007; Csete and Doyle 2002),
describes the stability of linear feedback control under data rate constraints (e.g.,
Mitter 2001; Tatikonda and Mitter 2004; Sahai 2004; Sahai and Mitter 2006; Minero
et al. 2009; Nair et al. 2007; You and Xie 2013). Given a noise-free data link between
a discrete linear plant and its controller, unstable modes can be stabilized only if the
feedback data rate H is greater than the rate of “topological information” generated
by the unstable system. For the simplest incarnation, if the linear matrix equation of
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the plant is of the form xtC1 D Axt C � � � , where xt is the n-dimensional state vector
at time t, then the necessary condition for stabilizability is

H > logŒjdetAuj� (6.1)

where det is the determinant and Au is the decoupled unstable component of A, i.e.,
the part having eigenvalues � 1.

There is, then, a critical positive data rate below which there does not exist
any quantization and control scheme able to stabilize an unstable (linear) feedback
system.

This result and its variations are as fundamental as the Shannon Coding and
Source Coding Theorems, and the Rate Distortion Theorem (Cover and Thomas
2006; Ash 1990; Khinchin 1957).

It is possible to entertain and extend these considerations, using methods from
cognitive theory to explore brain–body-world dynamics that inherently take place
under data rate constraints.

The essential analytic tool will be something much like Pettini’s (2007) “topolog-
ical hypothesis”—a version of Landau’s spontaneous symmetry breaking insight for
physical systems (Landau and Lifshitz 2007)—which infers that punctuated events
often involve a change in the topology of an underlying configuration space, and the
observed singularities in the measures of interest can be interpreted as a “shadow”
of major topological change happening at a more basic level.

The tool for the study of such topological changes is Morse Theory (Pettini 2007;
Matsumoto 2002), summarized in the Mathematical Appendix, and it is possible to
construct a relevant Morse Function as a “representation” of the underlying theory.

The first step is a recapitulation of an approach to cognition using the asymptotic
limit theorems of information theory (Wallace 2000, 2005a,b, 2007, 2012, 2014a).

6.3 Cognition as an Information Source

Atlan and Cohen (1998) argue that the essence of cognition involves comparison of
a perceived signal with an internal, learned or inherited picture of the world, and
then choice of one response from a much larger repertoire of possible responses.
That is, cognitive pattern recognition-and-response proceeds by an algorithmic
combination of an incoming external sensory signal with an internal ongoing
activity—incorporating the internalized picture of the world—and triggering an
appropriate action based on a decision that the pattern of sensory activity requires a
response.

Incoming sensory input is thus mixed in an unspecified but systematic man-
ner with internal ongoing activity to create a path of combined signals x D
.a0; a1; : : : ; an; : : :/. Each ak thus represents some functional composition of the
internal and the external. An application of this perspective to a standard neural
network is given in Wallace (2005a, p. 34).
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This path is fed into a highly nonlinear, but otherwise similarly unspecified,
decision function, h, generating an output h.x/ that is an element of one of two
disjoint sets B0 and B1 of possible system responses. Let

B0 � fb0; : : : ; bkg;
B1 � fbkC1; : : : ; bmg:

Assume a graded response, supposing that if

h.x/ 2 B0;

the pattern is not recognized, and if

h.x/ 2 B1;

the pattern is recognized, and some action bj; k C 1 � j � m takes place.
Interest focuses on paths x triggering pattern recognition-and-response: given a

fixed initial state a0, examine all possible subsequent paths x beginning with a0 and
leading to the event h.x/ 2 B1. Thus h.a0; : : : ; aj/ 2 B0 for all 0 � j < m, but
h.a0; : : : ; am/ 2 B1.

For each positive integer n, take N.n/ as the number of high probability paths
of length n that begin with some particular a0 and lead to the condition h.x/ 2 B1.
Call such paths “meaningful,” assuming that N.n/ will be considerably less than the
number of all possible paths of length n leading from a0 to the condition h.x/ 2 B1.

Identification of the “alphabet” of the states aj; Bk may depend on the proper
system coarse-graining in the sense of symbolic dynamics (e.g., Beck and Schlogl
1995).

Combining algorithm, the form of the function h, and the details of grammar and
syntax are all unspecified in this model. The assumption permitting inference on
necessary conditions constrained by the asymptotic limit theorems of information
theory is that the finite limit

H � lim
n!1

logŒN.n/�

n

both exists and is independent of the path x. Again, N.n/ is the number of high
probability paths of length n.

Call such a pattern recognition-and-response cognitive process ergodic. Not all
cognitive processes are likely to be ergodic, implying that H, if it indeed exists at
all, is path dependent, although extension to nearly ergodic processes, in a certain
sense, seems possible (e.g., Wallace 2005a, pp. 31–32).

Invoking the Shannon–McMillan Theorem (Cover and Thomas 2006; Khinchin
1957), it becomes possible to define an adiabatically, piecewise stationary, ergodic
information source X associated with stochastic variates Xj having joint and
conditional probabilities P.a0; : : : ; an/ and P.anja0; : : : ; an�1/ such that appropriate
joint and conditional Shannon uncertainties satisfy the classic relations
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HŒX� D lim
n!1

logŒN.n/�

n

D lim
n!1 H.XnjX0; : : : ; Xn�1/

D lim
n!1

H.X0; : : : ; Xn/

n
(6.2)

This information source is defined as dual to the underlying ergodic cognitive
process, in the sense of Wallace (2005a, 2007).

“Adiabatic” means that, when the information source is properly parameterized,
within continuous “pieces,” changes in parameter values take place slowly enough
so that the information source remains as close to stationary and ergodic as needed
to make the fundamental limit theorems work. “Stationary” means that probabilities
do not change in time, and “ergodic” that cross-sectional means converge to long-
time averages. Between pieces it is necessary to invoke phase change formalism, a
“biological” renormalization that generalizes Wilson’s (1971) approach to physical
phase transition (Wallace 2005a).

Shannon uncertainties H.: : :/ are cross-sectional law-of-large-numbers sums of
the form �Pk Pk logŒPk�, where the Pk constitute a probability distribution. See
Cover and Thomas (2006), Ash (1990), or Khinchin (1957) for the standard details.

For cognitive systems, an equivalence class algebra can be constructed by
choosing different origin points a0, and defining the equivalence of two states am; an

by the existence of high probability meaningful paths connecting them to the same
origin point. Disjoint partition by equivalence class, analogous to orbit equivalence
classes for a dynamical system, defines the vertices of a network of cognitive dual
languages that interact to actually constitute the system of interest. Each vertex then
represents a different information source dual to a cognitive process. This is not a
representation of a network of interacting physical systems as such, in the sense
of network systems biology (e.g., Arrell and Terzic 2010). It is an abstract set of
languages dual to the set of cognitive processes of interest, that may become linked
into higher order structures.

Topology has become an object of algebraic study, the so-called algebraic
topology, via the fundamental underlying symmetries of geometric spaces. Rota-
tions, mirror transformations, simple (“affine”) displacements, and the like uniquely
characterize topological spaces, and the networks inherent to cognitive phenomena
having dual information sources also have complex underlying symmetries: charac-
terization via equivalence classes defines a groupoid, an extension of the idea of a
symmetry group, as summarized by Brown (1987) and Weinstein (1996). Linkages
across this set of languages occur via the groupoid generalization of Landau’s
spontaneous symmetry breaking arguments that will be used below (Landau and
Lifshitz 2007; Pettini 2007). See the Mathematical Appendix for a brief summary
of basic material on groupoids.

Recognize, however, that we are not constrained in this approach to the Atlan–
Cohen model of cognition that, through the comparison with an internal picture of
the world, invokes representation. The essential inference is that a broad class of
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cognitive phenomena—with and without representation—can be associated with
a dual information source. That is, cognition inevitably involves choice, choice
reduces uncertainty, and this implies the existence of an information source.

Again, extension to nonergodic information sources can be done using the
methods of Wallace (2005a, Sect. 3.1).

6.4 Environment as an Information Source

Multifactorial cognitive and behavioral systems interact with, affect, and are
affected by embedding environments that “remember” such interaction by various
mechanisms. It is possible to reexpress environmental dynamics in terms of a
grammar and syntax that represent the output of an information source—another
generalized language.

Some examples:

1. The turn-of-the seasons in a temperate climate, for many ecosystems, looks
remarkably the same year after year: the ice melts, the migrating birds return, the
trees bud, the grass grows, plants and animals reproduce, high summer arrives,
the foliage turns, the birds leave, frost, snow, the rivers freeze, and so on.

2. Human interactions take place within fairly well-defined social, cultural, and
historical constraints, depending on context: birthday party behaviors are not
the same as cocktail party behaviors in a particular social set, but both will be
characteristic.

3. Gene expression during development is highly patterned by embedding environ-
mental context via “norms of reaction,” as summarized in Chap. 1.

Suppose it possible to coarse-grain the generalized “ecosystem” at time t, in
the sense of symbolic dynamics (e.g., Beck and Schlogl 1995) according to some
appropriate partition of the phase space in which each division Aj represent a
particular range of numbers of each possible fundamental actor in the generalized
ecosystem, along with associated larger system parameters. What is of particular
interest is the set of longitudinal paths, system statements, in a sense, of the form
x.n/ D A0; A1; : : : ; An defined in terms of some natural time unit of the system.
Thus n corresponds to an again appropriate characteristic time unit T , so that
t D T; 2T; : : : ; nT .

Again, the central interest is in serial correlations along paths.
Let N.n/ be the number of possible paths of length n that are consistent with

the underlying grammar and syntax of the appropriately coarse-grained embedding
ecosystem, in a large sense. As above, the fundamental assumptions are that—for
this chosen coarse-graining—N.n/, the number of possible grammatical paths is
much smaller than the total number of paths possible, and that, in the limit of
(relatively) large n, H D limn!1 logŒN.n/�=n both exists and is independent of
path.
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These conditions represent a parallel with parametric statistics systems for which
the assumptions are not true will require specialized approaches.

Nonetheless, not all possible ecosystem coarse-grainings are likely to work, and
different such divisions, even when appropriate, might well lead to different descrip-
tive quasi-languages for the ecosystem of interest. Thus, empirical identification of
relevant coarse-grainings for which this theory will work may represent a difficult
scientific problem.

Given an appropriately chosen coarse-graining, define joint and conditional
probabilities for different ecosystem paths, having the form P.A0; A1; : : : ; An/,
P.AnjA0; : : : ; An�1/, such that appropriate joint and conditional Shannon uncertain-
ties can be defined on them that satisfy Eq. (6.2).

Taking the definitions of Shannon uncertainties as above, and arguing backwards
from the latter two parts of equation (6.2), it is indeed possible to recover the first,
and divide the set of all possible ecosystem temporal paths into two subsets, one
very small, containing the grammatically correct, and hence highly probable paths,
that we will call “meaningful,” and a much larger set of vanishingly low probability
(Khinchin 1957).

6.5 Body Dynamics and Culture as Information Sources

Body movement is inherently constrained by evolutionary Bauplan: snakes do not
brachiate, humans cannot (easily) scratch their ears with their hind legs, fish do
not breathe air, nor mammals water. This is so evident that one simply does not
think about it. Nonetheless, teaching a human to walk and talk, a bird to fly, or a
lion to hunt, in spite of evolution, are arduous enterprises that take considerable
attention from parents or even larger social groupings. Given the basic bodyplan of
head and four limbs, or two feet and wings, or of a limbless spine, the essential
point is that not all motions are possible. Bauplan imposes limits on dynamics.
That is, if we coarse-grain motions, perhaps using some form of the standard
methods for choreography transcription appropriate to the organism (or mechanism)
under study, we see immediately that not all “statements” possible using the dance
symbols have the same probability. That is, there will inevitably be a grammar and
syntax to observed body-based behaviors imposed by evolutionary or explicit design
bauplan. Sequences of symbols, say of length n, representing observed motions can
be segregated into two sets, the first, and vastly larger, consisting of meaningless
sequences (like humans scratching their ears with their feet) that have vanishingly
small probability as n ! 1. The other set, consistent with underlying bauplan
grammar and syntax, can be viewed as the output of an information source, in
precisely the manner of the previous two sections, in first approximation following
the relations of equation (6.2).

In precisely the same manner as evolutionary Bauplan constrains possible
sequences of motions into high and low probability sets, so too learned culture (and
its associated patterns of social interaction) contextually constrain possible behav-
iors, spoken language, body postures, and many other phenotypes. That is, different
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cultures impose different probability structures, in a large sense, on essential matters
of living and of the life course trajectory. Even sleep is widely discordant across
cultural boundaries. Birth, marriage, death, social conflict, economic exchange, and
so on are all strongly patterned by culture, in the context of historical trajectory
and social segmentation. Some discussion of these matters in the context of mental
disorder can be found in Kleinman and Good (1985), Desjarlais et al. (1995), and
the references therein. Boyd and Richerson (2005) provide a more comprehensive
introduction.

More generally, as Durham (1991) argues, genes and culture are two distinct but
interacting systems of heritage in human populations. Information of both kinds
has potential or actual influence over behaviors, creating a real and unambiguous
symmetry between genes and phenotypes on the one hand, and culture and pheno-
types on the other. Genes and culture are best represented as two parallel tracks
of hereditary influence on phenotypes, acting, of course, on markedly different
timescales. Human species’ identity rests, in no small part, on its unique evolved
capabilities for social mediation and cultural transmission, creating, again, high and
low probability sets of real-time behavioral sequences.

6.6 Interacting Information Sources

Given a set of information sources that are linked to solve a problem, in the sense of
Wilson and Golonka (2013), the “no free lunch” theorem (English 1996; Wolpert
and MacReady 1995, 1997) extends a network theory-based theory (e.g., Arrell
and Terzic 2010). Wolpert and Macready show there exists no generally superior
computational function optimizer. That is, there is no “free lunch” in the sense
that an optimizer pays for superior performance on some functions with inferior
performance on others gains and losses balance precisely, and all optimizers have
identical average performance. In sum, an optimizer has to pay for its superiority on
one subset of functions with inferiority on the complementary subset.

This result is well known using another description. Shannon (1959) recognized
a powerful duality between the properties of an information source with a distortion
measure and those of a channel. This duality is enhanced if we consider channels
in which there is a cost associated with the different letters. Solving this problem
corresponds to finding a source that is right for the channel and the desired cost.
Evaluating the Rate Distortion Function for a source corresponds to finding a
channel that is just right for the source and allowed distortion level.

Yet another approach to the same result is through the “tuning theorem” of the
Mathematical Appendix which inverts the Shannon Coding Theorem by noting that,
formally, one can view the channel as “transmitted” by the signal. Then a dual
channel capacity can be defined in terms of the channel probability distribution
that maximizes information transmission assuming a fixed message probability
distribution.
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From the no free lunch argument, Shannon’s insight, or the “Tuning Theorem”,
it becomes clear that different challenges facing any cognitive system, distributed
collection of them, or interacting set of other information sources, that constitute
an organism or automaton, must be met by different arrangements of cooperating
modules represented as information sources.

It is possible to make a very abstract picture of this phenomenon based on
the network of linkages between the information sources dual to the individual
“unconscious” cognitive modules (UCM), and those of related information sources
with which they interact. That is, a shifting, task-mapped, network of information
sources is continually reexpressed: given two distinct problems classes confronting
the organism or automaton, there must be two different wirings of the information
sources, including those dual to the available UCM, with the network graph edges
measured by the amount of information crosstalk between sets of nodes representing
the different sources.

Thus fully embodied systems, in the sense of Wilson and Golonka (2013),
involve interaction between very general sets of information sources assembled
into a “task-specific device” in the sense of Bingham (1988) that is necessarily
highly tunable. This mechanism represents a broad evolutionary generalization
of the “shifting spotlight” characterizing the global neuronal workspace model of
consciousness (Wallace 2005a). We will return to this point in more detail below.

The mutual information measure of crosstalk is not inherently fixed, but can
continuously vary in magnitude. This suggests a parameterized renormalization:
the modular network structure linked by crosstalk has a topology depending on the
degree of interaction of interest.

Define an interaction parameter !, a real positive number, and look at geometric
structures defined in terms of linkages set to zero if mutual information is less than,
and “renormalized” to unity if greater than, !. Any given ! will define a regime of
giant components of network elements linked by mutual information greater than or
equal to it.

Now invert the argument: a given topology for the giant component will, in
turn, define some critical value, !C, so that network elements interacting by mutual
information less than that value will be unable to participate, i.e., will be locked
out and not be consciously or otherwise perceived. See Chap. 1 for details. Thus
! is a tunable, syntactically dependent, detection limit that depends critically on
the instantaneous topology of the giant component of linked information sources
defining the analog to a global broadcast of consciousness. That topology is the
basic tunable syntactic filter across the underlying modular structure, and variation
in ! is only one aspect of more general topological properties that can be described
in terms of index theorems, where far more general analytic constraints can become
closely linked to the topological structure and dynamics of underlying networks,
and, in fact, can stand in place of them (Atiyah and Singer 1963; Hazewinkel 2002).
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6.7 Simple Regulation

Continuing the formal theory, information sources are often not independent, but
are correlated, so that a joint information source—representing, for example, the
interaction between brain, body, and the environment—can be defined having the
properties

H.X1; : : : ; Xn/ �
nX

jD1

H.Xj/ (6.3)

with equality only for isolated, independent information streams.
This is the information chain rule (Cover and Thomas 2006), and has implica-

tions for free energy consumption in regulation and control of embodied cognitive
processes. Feynman (2000) describes how information and free energy have an
inherent duality, defining information precisely as the free energy needed to erase
a message. The argument is quite direct, and it is easy to design an idealized
machine that turns the information within a message directly into usable work—free
energy. Information is a form of free energy and the construction and transmission
of information within living things—the physical instantiation of information—
consumes considerable free energy, with inevitable—and massive—losses via the
second law of thermodynamics.

Suppose an intensity of available free energy is associated with each defined joint
and individual information source H.X; Y/; H.X/; H.Y/, e.g., rates MX;Y , MX ,MY .

Although information is a form of free energy, there is necessarily a massive
entropic loss in its actual expression, so that the probability distribution of a source
uncertainty H might be written in Gibbs form as

PŒH� � expŒ�H=�M�
R

expŒ�H=�M�dH
(6.4)

assuming � is very small.
To first order, then,

OH �
Z

HPŒH�dH � �M (6.5)

and, using Eq. (6.3),

OH.X; Y/ � OH.X/ C OH.Y/

MX;Y � MX C MY (6.6)

Thus, as a consequence of the information chain rule, allowing crosstalk
consumes a lower rate of free energy than isolating information sources. That is,
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in general, it takes more free energy—higher total cost—to isolate a set of cognitive
phenomena and an embedding environment than it does to allow them to engage in
crosstalk.

Hence, at the free energy expense of supporting two information sources—X
and Y together—it is possible to catalyze a set of joint paths defined by their joint
information source. In consequence, given a cognitive module (or set of them)
having an associated information source H.: : :/, an external information source
Y—the embedding environment—can catalyze the joint paths associated with the
joint information source H.: : : ; Y/ so that a particular chosen developmental or
behavioral pathway—in a large sense—has the lowest relative free energy.

At the expense of larger global free information expenditure—maintaining two
(or more) information sources with their often considerable entropic losses instead
of one—the system can feed, in a sense, the generalized physiology of a Maxwell’s
Demon, doing work so that environmental signals can direct system cognitive
response, thus locally reducing uncertainty at the expense of larger global entropy
production.

Given a cognitive biological system characterized by an information source X,
in the context of—for humans—an explicitly, slowly changing, cultural “environ-
mental” information source Y , we will be particularly interested in the joint source
uncertainty defined as H.X; Y/, and next examine some details of how such a
mutually embedded system might operate in real time, focusing on the role of
rapidly changing feedback information, via the Data Rate Theorem.

6.8 Extending the Data Rate Theorem

The homology between the information source uncertainty dual to a cognitive
process and the free energy density of a physical system arises, in part, from the
formal similarity between their definitions in the asymptotic limit. Information
source uncertainty can be defined as in the first part of equation (6.2). This
is quite analogous to the free energy density of a physical system in terms of
the thermodynamic limit of infinite volume (e.g., Wilson 1971; Wallace 2005a).
Feynman (2000) provides a series of physical examples, based on Bennett’s (1988)
work, where this homology is an identity, at least for very simple systems. Bennett
argues, in terms of idealized irreducibly elementary computing machines, that the
information contained in a message can be viewed as the work saved by not needing
to recompute what has been transmitted.

It is possible to model a cognitive system interacting with an embedding
environment using an extension of the language-of-cognition approach above.
Recall that cognitive processes can be formally associated with information sources,
and how a formal equivalence class algebra can be constructed for a complicated
cognitive system by choosing different origin points in a particular abstract “space”
and defining the equivalence of two states by the existence of a high probability
meaningful path connecting each of them to some defined origin point within that
space.
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Recall that disjoint partition by equivalence class is analogous to orbit equiv-
alence relations for dynamical systems, and defines the vertices of a network
of cognitive dual languages available to the system: each vertex represents a
different information source dual to a cognitive process. The structure creates
a large groupoid, with each orbit corresponding to a transitive groupoid whose
disjoint union is the full groupoid, and each subgroupoid associated with its own
dual information source. Larger groupoids will, in general, have “richer” dual
information sources than smaller.

We can now begin to examine the relation between system cognition and the
feedback of information from the rapidly changing real-time (as opposed to a slow-
time cultural or other) environment, H, in the sense of equation (6.1).

With each subgroupoid Gi of the (large) cognitive groupoid we can associate
a joint information source uncertainty H.XGi ; Y/ � HGi , where X is the dual
information source of the cognitive phenomenon of interest, and Y that of the
embedding environmental context—largely defined, for humans, in terms of culture
and path-dependent historical trajectory.

Real-time dynamic responses of a cognitive system can now be represented by
high probability paths connecting “initial” multivariate states to “final” configu-
rations, across a great variety of beginning and end points. This creates a similar
variety of groupoid classifications and associated dual cognitive processes in which
the equivalence of two states is defined by linkages to the same beginning and end
states. Thus, it becomes possible to construct a “groupoid free energy” driven by
the quality of rapidly changing, real-time information coming from the embedding
ecosystem, represented by the information rate H, taken as a temperature analog.

For humans in particular, H is an embedding context for the underlying cognitive
processes of interest, here the tunable, shifting, global broadcasts of consciousness
as embedded in, and regulated by, culture. The argument-by-abduction from
physical theory is, then, that H constitutes a kind of thermal bath for the processes of
culturally channeled cognition. Thus we can, in analogy with the standard approach
from physics (Pettini 2007; Landau and Lifshitz 2007), construct a Morse Function
by writing a pseudoprobability for the jointly defined information sources XGi ; Y
having source uncertainty HGi as

PŒHGi � D expŒ�HGi=�H/�
P

j expŒ�HGj=�H�
(6.7)

where � is an appropriate dimensionless constant characteristic of the particular
system. The sum is over all possible subgroupiods of the largest available symmetry
groupoid. Again, compound sources, formed by the (tunable, shifting) union of
underlying transitive groupoids, being more complex, will have higher free-energy-
density equivalents than those of the base transitive groupoids.

A possible Morse Function for invocation of Pettini’s topological hypothesis
or Landau’s spontaneous symmetry breaking is then a “groupoid free energy” F
defined by

expŒ�F=�H� �
X

j

expŒ�HGj=�H� (6.8)
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It is possible, using the free energy-analog F, to apply Landau’s spontaneous
symmetry breaking arguments, and Pettini’s topological hypothesis, to the groupoid
associated with the set of dual information sources.

Many other Morse Functions might be constructed here, for example, based on
representations of the cognitive groupoid(s). The resulting qualitative picture would
not be significantly different. We will return to this argument below.

Again, Landau’s and Pettini’s insights regarding phase transitions in physical
systems were that certain critical phenomena take place in the context of a
significant alteration in symmetry, with one phase being far more symmetric than
the other (Landau and Lifshitz 2007; Pettini 2007). A symmetry is lost in the
transition—spontaneous symmetry breaking. The greatest possible set of symme-
tries in a physical system is that of the Hamiltonian describing its energy states.
Usually states accessible at lower temperatures will lack the symmetries available
at higher temperatures, so that the lower temperature phase is less symmetric: The
randomization of higher temperatures ensures that higher symmetry/energy states
will then be accessible to the system. The shift between symmetries is highly
punctuated in the temperature index.

The essential point is that decline in the richness of the cultural control signal
H, or in the ability of that signal to influence response, as indexed by �, can lead to
punctuated decline in the complexity of cognitive process, according to this model.

This permits a Landau-analog phase transition analysis in which the quality of
incoming information from the embedding regulatory system serves to raise or
lower the possible richness of cognitive response to patterns of challenge. If �H
is relatively large—a rich and varied regulatory cultural environment—then there
are many possible cognitive responses. If, however, noise or simple constraint limit
the magnitude of �H, then behavior collapses in a highly punctuated manner to a
kind of ground state in which only limited responses are possible, represented by a
simplified cognitive groupoid structure.

Certain details of such information phase transitions can be calculated using
“biological” renormalization methods (Wallace 2005a, Sect. 4.2) analogous to, but
much different from, those used in the determination of physical phase transition
universality classes (Wilson 1971).

These results represent a significant generalization of the Data Rate Theorem, as
expressed in Eq. (6.1).

6.9 Another Picture

Here we use the rich vocabulary associated with the stability of stochastic differen-
tial equations to model, from another perspective, phase transitions in the composite
system of “brain/body/environment” (e.g., Horsthemeke and Lefever 2006; Van den
Broeck et al. 1994, 1997).
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Define a “symmetry entropy” based on the Morse Function F of equation (6.8)
over a set of structural parameters Q D ŒQ1; : : : ; Qn� (that may include H and other
information source uncertainties) as the Legendre transform

S D F.Q/ �
X

i

Qi@F.Q/=@Qi

D F.Q/ � Q � rQF (6.9)

The dynamics of such a system will be driven, at least in first approximation, by
Onsager-like nonequilibrium thermodynamics relations having the standard form
(de Groot and Mazur 1984):

dQi=dt D
X

j

Ki;j@S=@Qj (6.10)

where the Ki;j are appropriate empirical parameters and t is the time. A biological
system involving the transmission of information may not have local time reversibil-
ity: in English, for example, the string “eht” has a much lower probability than “the.”
Without microreversibility, Ki;j ¤ Kj;i.

Since, however, biological systems are quintessentially noisy, a more fitting
approach is through a set of stochastic differential equations having the form

dQi
t D Ki.t; Q/dt C

X

j

�i;j.t; Q/dBj (6.11)

where the Ki and �i;j are appropriate functions, and different kinds of “noise” dBj

will have particular kinds of quadratic variation affecting dynamics (Protter 1990).
Several important dynamics become evident:

1. Setting the expectation of equation (6.11) equal to zero and solving for stationary
points gives attractor states since the noise terms preclude unstable states.
Obtaining this result, however, requires some further development.

2. This system may converge to limit cycle or pseudorandom “strange attractor”
behaviors similar to thrashing in which the system seems to chase its tail
endlessly within a limited venue—a kind of “Red Queen” pathology.

3. What is converged to in both cases is not a simple state or limit cycle of states.
Rather it is an equivalence class, or set of them, of highly dynamic modes coupled
by mutual interaction through crosstalk and other interactions. Thus “stability” in
this structure represents particular patterns of ongoing dynamics rather than some
identifiable static configuration or “answer.” These are, then, quasi-stationary
nonequilibrium states.

4. Applying Ito’s chain rule for stochastic differential equations to the .Qj
t/

2 and
taking expectations allows calculation of variances. These may depend very
powerfully on a system’s defining structural constants, leading to significant
instabilities depending on the magnitudes of the Qi, as in the Data Rate Theorem
(Khasminskii 2012).
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5. Following the arguments of Champagnat et al. (2006), this is very much a
coevolutionary structure, where fundamental dynamics are determined by the
feedback between internal and external.

In particular, setting the expectation of equation (6.11) to zero generates an index
theorem (Hazewinkel 2002) in the sense of Atiyah and Singer (1963), that is, an
expression that relates analytic results, the solutions of the equations, to underlying
topological structure, the eigenmodes of a complicated geometric operator whose
groupoid spectrum represents symmetries of the possible changes that must take
place for a global workspace to become activated.

6.10 Large Deviations and Epileptiform Disorders

As Champagnat et al. (2006) describe, shifts between the quasi-steady states of a
coevolutionary system like that of equation (6.11) can be addressed by the large
deviations formalism. The dynamics of drift away from trajectories predicted by
the canonical equations can be investigated by considering the asymptotic of the
probability of “rare events” for the sample paths of the diffusion.

“Rare events” are the diffusion paths drifting far away from the direct solutions
of the canonical equation. The probability of such rare events is governed by a large
deviation principle, driven by a “rate function” I that can be expressed in terms of
the parameters of the diffusion.

This result can be used to study long-time behavior of the diffusion process
when there are multiple attractive singularities. Under proper conditions, the most
likely path followed by the diffusion when exiting a basin of attraction is the one
minimizing the rate function I over all the appropriate trajectories.

An essential fact of large deviations theory is that the rate function I almost
always has the canonical form

I D �
X

j

Pj log.Pj/ (6.12)

for some probability distribution (Dembo and Zeitouni 1998).
The argument relates to Eq. (6.11), now seen as subject to large deviations that

can themselves be described as the output of an information source (or sources),
say LD, defining I, driving Qj-parameters that can trigger punctuated shifts between
quasi-steady state topological modes of interacting cognitive submodules.

It should be clear that both internal and feedback signals, and independent,
externally imposed perturbations associated with the source uncertainty I, can
cause such transitions in a highly punctuated manner. Some impacts may, in such
a coevolutionary system, be highly pathological over a developmental trajectory,
necessitating higher order regulatory system counterinterventions over a subsequent
trajectory.

Similar ideas now pervade systems biology (Kitano 2004). See Chap. 1, Fig. 1.4.
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An information source defining a large deviations rate function I in Eq. (6.12)
can also represent input from “unexpected or unexplained internal dynamics”
(UUID) unrelated to external perturbation. Such UUID will always be possible in
sufficiently large cognitive systems, since crosstalk between cognitive submodules
is inevitable, and any critical value can be exceeded if the structure is large enough
or is driven hard enough. This suggests that, as Nunney (1999) describes for
cancer, large-scale cognitive systems must be embedded in powerful regulatory
structures over the life course. Wallace (2005b), in fact, examines a “cancer model”
of regulatory failure for mental dysfunction.

Wallace (2000) uses a large deviations argument to examine epileptiform
disorders. Martinerie et al. (1998) and Elger and Lenertz (1998) find a simplified
“grammar” and “syntax” characterize brain dynamic pathways to epileptic seizure.
As Martinerie et al. put it,

The view of chronic focal epilepsy now is that abnormally discharging neurons act
as pacemakers to recruit and entrain other normal neurons by loss of inhibition and
synchronization into a critical mass. Thus preictal changes should be detectable during
the stages of recruitment. . . Nonlinear indicators may undergo consistent changes around
seizure onset. . . We demonstrated that in most cases. . . seizure onset could be anticipated
well in advance [using nonlinear analytic methods] and that all subjects seemed to share a
similar “route” towards seizure.

Wallace (2000) looks at such a phase transition in the dual source uncertainty of
a spatial array of resonators itself as a large fluctuational event, having a pattern
of optimal/meaningful paths defined by a (pathological) information source LD.
Failure of regulation then permits entrainment of normal neurons by abnormally
discharging pacemakers, producing a seizure.

6.11 Ground State Collapse 1: Anxiety/Depression Analogs

There is, however, more to the influence of large deviations. The arguments leading
to Eqs. (6.7) and (6.8) could be reexpressed using a joint information source

H.XGi ; Y; LD/ (6.13)

providing a more complete picture of large-scale cognitive dynamics in the presence
of embedding regulatory systems, or of sporadic external “therapeutic” interven-
tions. However, the joint information source of equation (6.13) now represents a de-
facto distributed cognition involving interpenetration between both the underlying
embodied cognitive process and its regulatory machinery.

That is, we can now define a composite Morse Function of embodied cognition-
and-regulation, F , as

expŒ�F=!.H; �/� �
X

i

expŒ�H.XGi ; Y; LD/=!.H; �/� (6.14)
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where !.H; �/ is a monotonic increasing function of both the control data rate H
and of the “richness” of the internal cognitive function defined by an internal—
strictly cognitive—network coupling parameter �, a more limited version of the
argument in Sect. 6.6. Typical examples might include !0

p
H�, !0ŒH��� , � > 0,

!1 logŒ!2H� C 1�, and so on.
More generally, H.XGi ; Y; LD/ in Eq. (6.14) can be replaced by the norm

j�Y;LD.Gi/j

for appropriately chosen representations � of the underlying cognitive-defined
groupoid, in the sense of Bos (2007) and Buneci (2003). That is, many Morse
Functions similarly parameterized by the monotonic functions !.H; �/ are possible,
with the underlying topology, in the sense of Pettini, itself subtly parameterized by
the information sources Y and LD.

Applying Pettini’s topological hypothesis to the chosen Morse Function, reduc-
tion of either H or �, or both, can trigger a “ground state collapse” representing a
phase transition to a less (groupoid) symmetric “frozen” state. In higher organisms,
which must generally function under real-time constraints, elaborate secondary
back-up systems have evolved to take over behavioral control under such conditions.
These typically range across basic emotional, as well as hypothalamic–pituitary–
adrenal (HPA) and hypothalamic–pituitary–thyroid (HPT) axis, responses (e.g.,
Wallace 2005a, 2012, 2013; Wallace and Fullilove 2008). Failures of these systems
are implicated across a vast range of common, and usually comorbid, mental and
physical illnesses (e.g., Wallace 2005a,b; Wallace and Wallace 2010, 2013).

6.12 Ground State Collapse 2: Obsessive Compulsive
Disorders

Following Overduin and Furnham (2012), obsessive compulsive disorder (OCD) is
a widespread condition with prevalence rates from about 1% (current) and 2–2.5%
(lifetime). Subclinical manifestations are frequently present in individuals without
OCD, ranging perhaps as high as 25% of the general population. They state that

Individuals with OCD, or with a high risk of developing OCD, suffer from recurrent,
unwanted, and intrusive thoughts (obsessions) and engage in repetitive ritualistic behaviors
(compulsions), usually aimed to prevent, reduce, or eliminate distress or feared conse-
quences of the obsessions. Relief by rituals is generally temporary and contributes to future
ritual engagement. . . [U]ntreated symptoms often persist or increase over time, causing
significant impairment in social, professional, academic, and/or family functioning. . .

OCD and its subclinical manifestations thus appear widespread in studied
culturally Western populations, indeed, perhaps a canonical failure mode (but see
Heine 2001 for another possible interpretation).
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Adapting the Onsager method of Sect. 6.9 to the Morse Function F of equation
(6.14) leads to a generalized form of equation (6.11), now involving gradients in the
extended entropy-analog

S D F.Q/ � Q � rQF (6.15)

Again, setting the expectation the resulting set of stochastic differential equations
to zero and solving for stationary sets may provide individual nonequilibrium
steady states, “Red Queen” limit cycles—where the system seems to chase its tail
in repititive cycles—or even characteristic “strange attractor” sets over which the
system engages in pseudorandom excursions.

Most typically, then, the Red Queen behaviors, analogous to computer thrashing,
seem to provide a compelling model of OCD in sophisticated cognitive structures
that are generally both embodied and distributed.

6.13 Topological Dysfunctions: Autism Spectrum
and Schizophreniform Analogs

Recall that the global workspace model of consciousness (Baars 1988; Baars
et al. 2013; Wallace 2005a, 2007, 2012) posits a “theater spotlight” involving the
recruitment of unconscious cognitive modules of the brain into a temporary, tunable,
general broadcast fueled by crosstalk that allows formation of the shifting coalitions
needed to address real-time problems facing a higher organism. Similar exaptations
of crosstalk between cognitive modules at smaller scales have been recognized in
wound healing, the immune system, and so on (Wallace 2012, 2014a). Theories
of embodied cognition envision that phenomenon as analogous, that is, as the
temporary assembly of interacting modules from brain, body, and environment to
address real-time problems facing an organism. This is likewise a dynamic process
that sees many available information sources—not limited to those dual to cognitive
brain or internal physiological modules—again linked by crosstalk into a tunable
real-time phenomenon that is, in effect, a generalized consciousness.

The perspective has particular implications for disorders of brain connectivity
like schizophrenia and autism. Figure 6.1 shows a schematic of a “generalized con-
sciousness” involving dynamic patterns of crosstalk between information sources—
the Xj—representing brain, body, culture, socioeconomy, and environment, in no
particular order, and treated as fundamentally equivalent. The full and dotted lines
represent recruitment of these dispersed resources (involving crosstalk at or above
some tunable value !) in two different topological patterns to address two different
kinds of problems in real time.

“Mental disorders,” in a large sense, emerge as a synergistic dysfunction of
internal process and regulatory milieu, which above was simply characterized
by the interaction between the driving parameters � and H. Other forms of



148 6 Embodied Cognition and Its Disorders

Fig. 6.1 Full and dotted lines represent two different recruitments of brain, body, cultural,
socioeconomic, and other environmental information sources to address real-time problems facing
an individual (or composite distributed cognition system). Both underlying topology and the
crosstalk index !.H; �/ are dynamically tunable, representing a generalized consciousness.
Pathological restrictions on connectivity or topology would be manifest as analogs to autism or
schizophrenia, in this model, in addition to the “anxiety/depression” mode of ground state collapse

dysfunction likely involve characteristic irregularities in topological connections.
For example, autism spectrum and schizophreniform disorders are widely viewed as
caused by failures in linkage that limit recruitment of unconscious cognitive brain
modules (e.g., Wallace 2005b). Thus analogous disorders might arise from similar
“topological failures” affecting the real-time recruitment of brain, body, culture,
regulatory, and environmental information sources. The central role of culture in
human biology means, of course, that, for humans, all such disorders are inherently
“culture bound syndromes,” much in the spirit of Kleinman and Cohen (1997) and
Heine (2001).

6.14 Discussion and Conclusions

Here, we have made formal use of the Data Rate Theorem in exploring the dynamics
of such an embodied cognition, and of a necessarily related embodied regulation.
These, according to theory, inevitably involve a synergistic interpenetration among
nested sets of actors, represented here as information sources. They may include
dual sources to internal cognitive modules, body bauplan, environmental informa-
tion, language, culture, and so on. Following the arguments of Wallace (2014b),
similar considerations apply to machine and man/machine cockpit systems, a matter
discussed more fully in Wallace (2017) and addressed in Chaps. 8 and 9.
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Two factors determine the possible range of real-time cognitive response, in
the simplest version of the model. These are the magnitude of the environmental
feedback signal and the inherent structural richness of the underlying cognitive
groupoid. If that richness is lacking—if the possibility of internal �-connections
is limited—then even very high levels of H may not be adequate to activate
appropriate behavioral responses to important real-time feedback signals, following
the argument of equation (6.14).

Cognition and regulation must, then, be viewed as interacting gestalt processes,
involving not just an atomized individual (or, taking an even more limited “NIMH”
perspective, just the brain of that individual), but the individual in a rich context that
must include both the body that acts on the environment, and the environment that
reacts on body and brain. Huys et al. (2016) make much the same point.

The large deviations analysis suggests that cognitive function also occurs in the
context, not only of a powerful environmental embedding, but also of a specific
regulatory milieu: there can be no cognition without regulation. The “stream of
generalized consciousness” represented by embodied cognition must be contained
within regulatory riverbanks.

For humans and some other animal species (e.g., Avital and Jablonka 2000), this
view must be expanded by another layer of information sources: as the evolutionary
anthropologist Robert Boyd has expressed it, “Culture is as much a part of human
biology as the enamel on our teeth.” Thus, for humans, the schematic hierarchy of
interacting information sources becomes

Brain ! Body ! Culture ! Environment

Current theory on embodied cognition omits the critical level of cultural modu-
lation, which is, by structure, unavailable to machine and man/machine systems.

We thus significantly extend the criticisms of Bennett and Hacker (2003) who
examined the mereological fallacy of a decontextualization that attributes to “the
brain” what is the province of the whole individual. Here, the “whole individual”
includes essential interactions with embedding environmental and regulatory set-
tings that, for humans, must include cultural heritage and socioeconomic dynamics.

We have explored in particular epileptiform seizures and “ground state collapses”
analogous to anxiety/depression and OCD, but more diverse and subtle “topologi-
cal” failures seem likely. As Johnson-Laird et al. (2006) indicate, surprisingly little
is known about such dysfunction in humans. For some time, the study of mental
disorders has been strongly dominated by a simplistic paradigm driven largely by
the interests of the pharmaceutical industry, which has since abandoned the effort
as a dry hole. The story is well known, and parallels the arguments in Chap. 1 of
Wallace and Wallace (2013).

A shift in perspective is needed to a comprehensive cognitive theory of mental
disorders that recognizes the central roles of culture, socioeconomic structure, and
their dynamics in both healthy human development and its pathologies. At present,
little such work is actively supported in the USA, for deep cultural, ideological, and
political reasons.
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In addition, this work can be seen as extending the considerations of Wallace
(2014b, 2017) from a simple “ground state collapse” of machines and man/machine
cockpits in which “all possible targets are enemies” to spectra of more subtle failures
that will afflict real-time systems increasingly being given control of critical human
structures and processes. Indeed, considering the collapse of “pharmaceutical
industry” paradigms, it seems possible that study of machine and man/machine
failures could provide the intellectual and financial horsepower necessary to lift
psychiatry from its longstanding and ideologically enforced doldrums.
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Chapter 7
Tools for the Future: Hidden Symmetries

Summary Adopting Maturana’s and Varela’s perspective on the necessity of
cognition—or Rosen’s view of “anticipation”—at every scale and level of orga-
nization of the living state it is possible to extend Yeung’s relation between
information inequalities and finite group structure to a fundamental duality between
an information-theoretic characterization of cognition in gene expression and
the groupoid extension of simple symmetries. It appears that gene expression,
responding to and hence “anticipating” environmental clues, in a large sense, may
sometimes be characterized by groupoids of increasing complexity constructed from
underlying finite groups. While higher organisms at later developmental stages
may not be described so simply, Yeung’s powerful results suggest the existence
of regularities built from finite groups during certain developmental periods via
an extension of the spontaneous symmetry breaking/making formalism familiar
from physical theory. Essentially, the S-shaped developmental curve serves as
a temperature analog driving increasing levels of deeply underlying topological
symmetries. This suggests, as in the characterization of complex geometric objects
by “simpler” structures in algebraic topology, that a shift of perspective from gene
expression networks and their dynamics to their underlying symmetries may provide
deeper insight to ontology and its dysfunctions.

The inference of gene regulatory networks. . . from experimental observations is at the heart
of systems biology. This includes the inference of both network topology and its dynamics.
(Vera-Licona et al. 2014)

. . . [P]eriodic solutions. . . can occur in a network with no symmetry. . . generated by symme-
try on a quotient network. (Golubitsky et al. 2012)

. . . [I] was astonished to find this profusion of anticipatory behavior at all levels of biological
organization. (Rosen 2012)

7.1 Introduction

Recent work by Hendriks et al. (2014) on gene expression in the relatively
simple reference organism C. elegans uncovered unexpected periodicities. The
experimenters found that their genome-wide and temporally highly resolved gene
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expression studies revealed extensive periodic gene expression during C. elegans
larval development. This observation affected a fifth of expressed genes, revealing
robust, transcriptionally driven oscillations across a continuum of phases that
result in periodic translation, promoting periodic developmental processes. These
unanticipated results highlight dynamics and complexity of gene expression patterns
during C. elegans development. Hendriks et al. propose that a unique combination
of features makes these oscillations a powerful model to study coordinated gene
expression in an animal, i.e., that insights into the mechanisms that achieve
robust phase locking and broad distribution of phases may be illuminating for the
understanding of coordinated gene expression more generally. They find it striking
that oscillations are robustly detectable in RNA from whole animals, suggesting the
presence of effective mechanisms, yet to be uncovered, that coordinate oscillations
spatially and temporally.

The associated commentary by Laxman et al. (2014) explores numerous similar
examples, finding that such transcriptional clocks allow organisms to temporally
compartmentalize biological processes in synchrony with environmental cues. As
they note, in photosynthetic cyanobacteria, the periodic expression of clusters
of circadian clock-controlled genes enables the organism to generate energy and
grow while temporally separating incompatible chemical processes, a mechanism
also observed in plants. Such cycles, they assert, can be considered as being
polytopic, regulating multiple processes through temporal compartmentalization of
metabolism, suggesting that cyclic changes in a cell’s metabolic state can drive such
biological oscillations. Their reference list is striking.

Theoretical work on symmetries associated with periodicities and oscillations
in network systems lays a foundation for understanding the yet-to-be-uncovered
mechanisms. Following closely the arguments of Golubitsky and Stewart (2006),
a formal theory of symmetries of networks of coupled dynamical systems, using
the permutation group of the nodes that preserve the network topology, has existed
for some time. Global network symmetries impose strong constraints on their
associated dynamical systems, characterizing equilibria, periodic states, heteroclinic
cycles, and chaotic states. The group symmetries of the network can lead to
synchrony, phase relations, resonances, and synchronous or cycling chaos. However,
group symmetry is, they argue, too restrictive an assumption, and network theory
should be more comprehensive. They use an extension of the group-theoretic notion
of symmetry to replace global symmetries with bijections between appropriate input
subsets of the directed edges of the network. The symmetry group then is a groupoid,
an algebraic structure that resembles a group but is different in that the product
of two elements is not necessarily defined. Golubitsky and Stewart argue that use
of groupoids makes it possible to extend group-theoretic methods to more general
networks, permitting full classification of dominant patterns of synchrony in terms
of the combinatorial structure of the network. Golubitsky et al. (2012) find that
periodicities can be driven on a network without symmetries by those characterizing
a quotient network .
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Adapting an information theory treatment of cognition and Yeung’s (2008)
analysis of the consonance between information theory inequalities and results from
the theory of finite groups, it becomes possible to expand the underlying arguments
to more complex systems than C. elegans and yeasts.

7.2 The Cognitive Paradigm for Gene Expression

A direct approach to the dynamics of the regulation of gene expression invokes an
extension of the “cognitive paradigm” of Atlan and Cohen (1998), who recognized
that the immune response is not merely an automatic reflex, but involves active
choice of a particular response to insult from a larger repertoire of possible
responses, according to comparison with an internal learned or inherited pic-
ture of the world. Choice reduces uncertainty and implies the existence of an
underlying information source (Wallace 2012a). Similar perspectives apply to
gene expression (Wallace and Wallace 2010). That is, gene expression is also a
cognitive phenomenon, analogous to, if different from, the immune response since,
at developmental branch points, choice must be made regarding which genes to
activate and which to suppress.

The Atlan/Cohen perspective is recognizably similar to Rosen’s (2012, p. 313)
characterization of an “anticipatory system” as one

. . . containing a predictive model of itself and/or its environment, which allows it to change
state in an instant in accord with the model’s predictions. . .

Following Chap. 1, given an information source associated with a cognitive
gene expression system—called “dual” to it—an equivalence class algebra can
be constructed by choosing different system origin states a0 and defining the
equivalence of two subsequent states at times m; n > 0, written as am; an, by the
existence of high probability “meaningful” paths connecting them to the same origin
point. Disjoint partition by equivalence class, analogous to orbit equivalence classes
in dynamical systems, defines a symmetry groupoid associated with the cognitive
process. Again, groupoids are generalizations of the group concept in which there is
not necessarily a product defined for each possible element pair (Weinstein 1996).

The equivalence classes define a set of cognitive dual information sources
available to the gene regulation system, creating a large groupoid, with each orbit
corresponding to a transitive groupoid whose disjoint union is the full groupoid.
Each subgroupoid has its own dual information source, and larger groupoids will
have richer dual information sources than smaller.

Let XGi be the gene expression system’s dual information source associated
with the groupoid element Gi, and take Y as the information source associated
with an embedding environment that, in a large sense, signals the developmental
process. Chapter 1 details how environmental regularities imply the existence of an
environmental information source.
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Fig. 7.1 Dimensionless
“developmental state” T.t/ as
a function of real time t

A “free energy” Morse Function (Pettini 2007) can now be constructed using a
pseudoprobability argument.

Let H.XGi ; Y/ � HGi be the joint uncertainty of the two information sources.
A Boltzmann-like pseudoprobability is written as

PŒHGi � D expŒ�HGi=T.t/�
P

j expŒ�HGj=T.t/�
(7.1)

where T.t/ is a dimensionless “developmental state” characteristic of the organism,
t is the real time, and the sum is over the different possible cognitive modes of the
full system. T.t/ would be expected to have the usual S-shaped form, for example,

T.t/ D �1

1 C �2 expŒ�˛t�
(7.2)

with ˛ > 0; �2 
 �1 > 0, leading to a dynamic like that of Fig. 7.1. ˛ has the
dimension of a rate and the �i are numerical.

A Morse Function F—analogous to free energy in a physical system—can be
defined in terms of the “partition function” in the denominator of Eq. (7.1) as

expŒ�F=T.t/� �
X

j

expŒ�HGj=T.t/� (7.3)

Given a groupoid structure characteristic of gene expression networks as a
generalization of the simple symmetry group, it becomes possible to apply an
extension of Landau’s picture of phase transition in a physical system (Pettini
2007). In Landau’s “spontaneous symmetry breaking,” phase transitions driven
by temperature changes occur as alteration of system symmetry, with higher
energies at higher temperatures being more symmetric. The proposed shift between
symmetries is highly punctuated in the temperature. Typically, there are only a very
limited number of possible phases. Here, the developmental index plays the role
of temperature. That is, increasing T.t/ leads to staged increase in the complexity
of cognitive developmental process—as affected by signals from the embedding
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environment determining norms of reaction—although development itself is, of
course, uniform. Some further effort, however, suggests the possibility of a more
specific approach.

It is worth reiterating that incorporation of the environmental information source
Y into the calculation of F implies that norms of reaction will be incorporated into
the developmental trajectory of the organism. Different norms would be associated
with different sequences of groupoids observable during development, particularly
at critical ontological branch points.

7.3 The Group Structures of Information Processes

There is some theoretical support for this approach. Yeung (2008) has explored
the deep relationship between information theory and the theory of finite groups,
mirroring the relation between synchronicity in networks and their permutation
symmetries as discussed at length in Golubitsky and Stewart (2006). For example,
given two random variables X1 and X2 with Shannon uncertainties H.X1/ and H.X2/,
the information theory chain rule (Cover and Thomas 2006) states that, for the joint
uncertainty H.X1; X2/,

H.X1/ C H.X2/ � H.X1; X2/ (7.4)

Similarly, let G be any finite group, and G1; G2 be subgroups of G. Let jGj
represent the order of a group—the number of elements. Then the intersection
G1 \ G2 is also a subgroup, and a “group inequality” can be derived that is the
precise analog of Eq. (7.4):

log

� jGj
jG1j

�

C log

� jGj
jG2

�

� log

� jGj
jG1 \ G2j

�

(7.5)

Yeung defines a probability for a pseudorandom variate associated with a group
G as PrfX D ag D 1=jGj. This allows construction of a group-characterized
information source, noting that, in general, the joint uncertainty of a set of random
variables is not necessarily the logarithm of a rational number. The surprising
result Yeung (2008) ultimately establishes is a one-to-one correspondence between
unconstrained information inequalities—generalizations of Eq. (7.4)—and finite
group inequalities: unconstrained inequalities can be proved by techniques in group
theory, and many group-theoretic inequalities can be proven by techniques of
information theory. Yeung uses an obscure unconstrained information inequality
to derive, in his Eq. (16.116), a complex group inequality for which, as he puts it,
the “. . . implications in group theory are yet to be understood.”

An intuitive argument in this direction actually follows from the essential mantra
of algebraic topology (Hatcher 2001): forming algebraic images of topological
spaces. The most basic of these images is the fundamental group, leading to Van
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Kampen’s theorem allowing the computation of the fundamental group of spaces
that can be decomposed into simpler spaces whose fundamental group is already
known. As Hatcher (2001, p. 40) puts it, “By systematic use of this theorem one
can compute the fundamental groups of a very large number of spaces. . . [F]or
every group G there is a space XG whose fundamental group is isomorphic to G”.
As Golubitsky and Stewart forcefully argue, network structures and dynamics are
imaged by fundamental groupoids, for which there also exists a version of the
Seifert–Van Kampen theorem (Brown et al. 2011). Yeung’s (2008) results suggest
information theory-based “cognitive” generalizations that may include essential
dynamics of gene expression and its regulation.

7.4 The Topology of “Code Networks”

Curiously parallel results emerge from Tlusty’s (2007, 2008) error-minimization
analysis of the genetic code, in which a “network” of codons is embedded in a larger
topological structure having a fundamental group. Tlusty finds that discussion of the
topology of errors portrays the codon space as a graph whose vertices are the codons.
In his analysis, two codons are linked by an edge if they are likely to be confused by
misreading. He assumes that two codons are most likely to be confused if all their
letters except for one agree and therefore draw an edge between them. The resulting
graph is, in his approach, “natural” for considering the impact of translation errors
on mutations because such errors almost always involve a single letter difference,
that is, a movement along an edge of the graph to a neighboring vertex.

The topology of a graph is characterized by its genus � , the minimal number
of holes required for a surface to embed the graph such that no two edges cross.
The more connected that a graph is the more holes are required for its minimal
embedding. The highly interconnected 64-codon graph is embedded in a hole, � D
41 surface. The genus is somewhat reduced to � D 25 if only 48 effective codons
are considered.

Tlusty uses the extremum of an information-theoretic Morse Function to deter-
mine a single contiguous domain where a certain amino acid is encoded. Thus every
mode corresponds to an amino acid and the number of modes is the number of amino
acids. This compact organization is advantageous, he claims, because misreading of
one codon as another codon within the same domain has no deleterious impact: if
the code has two amino acids, it is the error load of an arrangement where there
are two large contiguous regions, each coding for a different amino acid is much
smaller than a checkerboard arrangement of the amino acids.

This result is analogous to—but significantly different from—the topological
coloring problem. In the coding problem one desires maximal similarity in the col-
ors of neighboring “countries,” while the coloring problem must color neighboring
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countries by different colors. The number of possible amino acids in this scheme is
determined by Heawood’s formula (Ringel and Young 1968),

chr.�/ D Int

�
1

2
.7 Cp

1 C 48�/

�

(7.6)

chr.�/ is the number of “colored” regions, Int is the integer value of the enclosed
expression, and � is the genus of the surface, roughly speaking, the number of
“holes.” In general, � D 1 � .1=2/.V � E C F/, where V is the number of code
network vertices, E the number of network edges, and F the number of enclosed
faces.

The text table below gives the first few steps in the calculation.

� (# surface holes) chr(�) (# error classes)

0 4

1 7

2 8

3 9

4 10

5 11

6, 7 12

8, 9 13

Tlusty (2007) then models the emergence of the genetic code as a phase transition
in a noisy information channel, using the Rate Distortion Theorem, with the optimal
code is described by the minimum of a “free energy”-like functional, as above,
characterizing the code’s emergence as a transition akin to a phase transition
in statistical physics: a supercritical phase transition is known to take place in
noisy information channels. The noisy channel is controlled by a temperature-
like parameter that determines the balance between the information rate and the
distortion in the same way that physical temperature controls the balance between
energy and entropy in a physical system. Following Tlusty’s (2007) equation (2),
the free energy functional has the form D � OTS where D is the average error load’,
equivalent to average distortion in a rate distortion problem, S is the “entropy due to
random drift,” and OT measures the strength of random drift relative to the selection
force that pushes toward fitness maximization. This is essentially a Morse Function
(Pettini 2007). At high OT , in this model, the channel is totally random and it conveys
zero information. At a certain critical temperature OTc the information rate starts to
increase continuously.

This is not the only such example. Hecht et al. (2004) found that protein ˛-helices
have an inherent “code” 101100100110. . . where 1 indicates a polar and 0 a non-
polar amino acid. Protein ˇ-sheets have the simpler coding 10101010. . . Wallace
(2010) extends Tlusty’s topological analysis via Heawood’s graph genus formula—
the “magic numbers” above—to the more complicated protein folding classifica-
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tions uncovered by Chou and Maggiora (1998). Going beyond the four classes
of Levitt and Chothia (1976)—˛ helices, ˇ sheets, ˛ C ˇ and ˛=ˇ structures—
three more minor classifications, and possibly another three subminor classes. The
globular “protein folding error code network” becomes a large connected “sphere”
producing the four fundamental classes, having one minor, and possibly as many as
three more subminor attachment handles, in the Morse Theory sense (Pettini 2007).

Wallace (2012b) finds that similar arguments apply to the twelve monosaccha-
rides associated with the mammalian glycan “kelp frond” production at the surface
of the cell, suggesting an underlying code network having genus 6 or 7, according
to the table above.

Applying a Morse Function approach to error-limiting code networks, as Wallace
(2015) notes,

1. The genus of the embedding surface for a topological code can be expressed in
terms of the Euler characteristic of the manifold, � D 1 � 1

2
�.

2. � can be expressed in terms of the cohomology structure of the manifold (Lee
2000, Theorem 13.38). In particular, for the code manifold, � D V � E C F
where V is the number of code network vertices, E the number of edges, and F
the number of faces.

3. The fundamental group of a closed, orientable surface of genus � is the quotient
of the free group on the 2� generators a1; ::; a� ; b1; ::; b� by the normal subgroup
generated by the product of the commutators

a1b1a�1
1 b�1

1 ; : : : ; a� b� a�1
� b�1

�

This is a standard construction (e.g., Lee 2000).

As codes become more complex, the appropriate quotient groups must become
richer, consonant with “spontaneous symmetry” arguments.

A similar approach will apply to other kinds of networks—direct biochemical
or indirect nets of interacting information sources—that are associated with gene
expression and its control.

In sum, the developmental state index T.t/ from Eqs. (7.1)–(7.3) will serve as a
temperature analog driving increased levels of deep network topological symmetry.

7.5 Expanding the Model

Equation (7.4)—and its symmetry expression in Eq. (7.5)—has profound implica-
tions for development. In essence, one information source can act as an “information
catalyst” to direct, or at least influence, the trajectory of another.

At some developmental time T.t/, a Boltzmann probability density can be
constructed in terms of the rate of metabolic free energy consumed by development.
For an information source X, having source uncertainty H.X/ and metabolic free
energy (MFE) available at some rate M,
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PPŒX� � expŒ�H=�M�
R

expŒ�H=�M�dH
(7.7)

Assuming the translation rate of MFE into information is very small, to first order
OH � R

H PPŒH�dH � �M, and, using Eq. (7.4),

OH.X; Y/ � OH.X/ C OH.Y/

MX;Y � MX C MY (7.8)

A more comprehensive argument might involve the maximum capacities for
developmental channels under the Rate Distortion Theorem, in which case H in
Eq. (7.7) is replaced by a Rate Distortion Function R integrated over the range
0 ! 1, so that OR D �M.

As a consequence of the information inequality of Eq. (7.4)—inherent in the
symmetry relation of Eq. (7.5)—allowing crosstalk between information sources
consumes less MFE than isolating information sources, something that confounds
electrical engineers attempting to isolate individual signals. For developing organ-
isms, however, information catalysis becomes a central tool for gene expression and
its control. It seems likely that other expressions of the relation between information
inequalities and group inequalities will sometimes have similar importance.

We can now iterate the argument across developmental time T.t/, in terms of a
network of interacting information sources rather than a network of biochemical
reactions, as is the current practice. We thus, in a sense, extend the idea of a
“quotient network” from Golubitsky and Stewart (2006), involving equivalence
classes of network nodes. Golubtisky and Stewart demonstrate that dynamics of
the quotient network impose themselves onto the original network, although there
can be lower level network dynamics that are not reflected in the quotient. This
is, perhaps, analogous to “unconscious” vs “conscious” processes in the brains
of higher animals: consciousness is taken as a function of “global workspace”
dynamics at higher levels than individual cognitive modules. Again, see Chap. 1.

For a given underlying network topology of n interacting information sources
representing cognitive submodules of a developing organism at time T.t/, there
will be some average crosstalk between them, say �n. For that given network
topology—remember, a network of interacting information sources—there will be
some critical value �C

n at which a giant component (GC) emerges. That is, at �C
n , a

very large number of cognitive developmental processes become linked across the
developing organism into a joint GC information source. For random networks this
phenomenon has been well studied and the conditions under which it occurs are
well understood (Wallace 2012a). While other topologies impose different detailed
conditions, the punctuated emergence of a GC is almost universal across a very large
class of networks. If � > �C at some T.t/, then individual cognitive developmental
modules become coordinated across the organism. Conversely, different network
topologies can impose different critical crosstalk values for onset of the GC.
Topology can drive crosstalk, crosstalk can drive topology, and topologies are
inherently defined by various symmetry indices, both groups and groupoids.
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7.6 Developmental Canalization and Directed Homotopy

Equation (7.8) suggests the possibility of an “information catalysis” in developmen-
tal trajectory via an imposed signal from embedding regulatory information sources.
The analytic tool for this is an extension—or weakening—of the fundamental group
associated with homotopy loops to that of a fundamental groupoid associated with
directed homotopy, in the sense of Goubault and Raussen (2002) and Goubault
(2003). More complete discussions can be found in Grandis (2009) and Fajstrup
et al. (2016).

Directed homotopy is different from simple homotopy in that inherently one-
way paths from one point to another are the fundamental objects, rather than loops
beginning and ending at a point-of-origin. Continuous deformation of directed paths
between the same beginning and end points defines equivalence classes of dihomo-
topy paths constituting a groupoid. In Fig. 7.2, C represents a developmental branch
point leading from an initial phenotype So to two different possible phenotypes, S1

and S2. C casts a developmental shadow, and two equivalence classes of dihomotopy
paths are possible. The embedding regulatory information sources, via Eq. (7.8),
define one of these phenotypes as a relative energy minimum. Thus, for gene
expression and its regulation, the fundamental symmetries are likely to be those
of groupoids, built up via the groupoid version of the Seifert–Van Kampen theorem
and by the occurrence of repeated critical points C1; C2; : : : as the developmental
state index T.t/ increases.

Fig. 7.2 Starting at an initial developmental phenotype So, at critical period C that casts a
developmental shadow, there are two directed homotopy equivalence classes of deformable paths
leading to phenotypes S1 and S2 that define a groupoid. The canalizing “choice” between them
is driven by embedding regulatory information sources via the catalysis of Eq. (7.8). Repeated
critical points, C1; C2; : : : over the developmental state T.t/ systematically enlarge the fundamental
groupoid
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7.7 Discussion

An essential inference from Yeung’s results and the cognitive paradigm for gene
expression is that, for many organisms, development might be associated with
increasingly complex groupoid symmetries—which may sometimes be limited
to simpler symmetry groups—some of which, at least, may be constructed by
appropriate combinations of finite groups. In addition, it may be possible to
characterize developmental trajectories by their associated groupoid sequences,
keyed to different norms of reaction in which gene expression is keyed to envi-
ronmental clues, in a large sense. Thus different “environmental” effects—normal
or pathological—might well be associated with markedly different symmetry
pathways. An interesting research question then asks if normal and pathological
development have different characteristic network groupoid symmetry dynamics,
and whether these can be easily identified, and perhaps modified.

An analog to this general approach can be found in the theory of error-
correcting codes (as opposed to Tlusty’s error-limiting codes), otherwise known
as algebraic coding theory, which looks for redundancies in message coding over
noisy channels enabling efficient reconstruction of lost or distorted information.
Mathematical techniques involve groups, ideals, rings, algebras, and finite fields.
These formalisms have generated many different codes with different capabilities
and complexities, for example, BCH, Goppa, Hamming, Linear, Reed–Muller,
Reed–Solomon, and so on. It may well be that the relations between groups,
groupoids, and a broad spectrum of information related phenomena of interest in
biology are similarly intimate.

Indeed, parallel arguments can be found in computational neuroscience. For
example, Ashwin et al. (2016) infer, regarding the dynamics of neural networks,
that it may be necessary to

. . . further tap into recent ideas for classifying emergent dynamics based upon the group
of structural symmetries of the network. . . For many real-world networks, this can be
decomposed into direct and wreath products of symmetric groups. . .

Adopting the perspective of Maturana and Varela (1980) on the necessity of
cognition at every scale and level of organization of the living state, it seems possible
to extend the relation between information inequalities and finite group structure to a
fundamental duality between an information-theoretic characterization of cognition
in gene expression and groupoids. For some, or even many, organisms, development
might be characterized by groupoids of increasing complexity constructed from
underlying finite groups. Higher organisms at later developmental stages may not be
so simply described, but Yeung’s (2008) powerful results suggest some regularities
involving finite groups during certain developmental stages for some organisms.

This conjecture is a matter for empirical study, which will almost certainly find
matters significantly more complicated than a simple progression to more compli-
cated groupoids constructed from underlying finite groups: biology is inherently
messy. The statistical models proposed here can, however, as with the more familiar
regression models, provide benchmarks against which to compare observations on
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different systems under similar conditions, or the same or similar systems under
different conditions.

In sum, there may be complex interactions between group and groupoid symme-
tries at different levels of organization and across multiple temporal and geometric
scales in the living state. This may even involve the kinds of semidirect and wreath
products of groups and groupoids found in the study of intrinsically disordered
proteins, other nonrigid molecular structures, and symmetric networks (Wallace
2012c; MacArthur et al. 2008; Houghton 1975).

Regarding inherent symmetry, Noether’s first theorem (Wikipedia 2016), as it
applies in classical mechanics, states that every differentiable symmetry of the
action of a physical system has a corresponding conservation law. The action of
a physical system is the integral over time of a Lagrangian function, from which
system behavior can be determined by the variational principle of least action.
A generalization of the formulations on constants of motion in Lagrangian and
Hamiltonian mechanics, the theorem does not apply to systems that cannot be
modeled with a Lagrangian alone: dissipative systems with continuous symmetries
need not have a corresponding conservation law, although Onsager-like linearization
methods similar to those of nonequilibrium thermodynamics may sometimes be
used as a first approximation (Kontogeorgaki et al. 2016).

For non-dissipative systems, rotational symmetry implies conservation of angu-
lar momentum, symmetry in time implies conservation of energy, displacement
symmetry implies conservation of momentum, and so on into quantum mechanics,
where matters become far more subtle. However, network and other such cognitive
systems always act under dissipative circumstances, i.e., metabolic or other free
energy is constantly converted to heat. Then the results of Golubitsky and Stewart
and of Yeung imply—modulo the inherent dimensional collapse necessarily associ-
ated with an information source—that deep, if more complicated, symmetries may
still lie behind networks of gene expression and their control.
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Chapter 8
Psychopathologies of Automata I: Autonomous
Vehicle Systems

Summary We apply the perspectives of computational psychiatry to autonomous
ground vehicles under intelligent traffic control in which swarms of interacting, self-
driving devices are inherently unstable as a consequence of the basic irregularities
of traffic interactions and the road network. It appears that such systems will
experience large-scale failures analogous to the vast propagating fronts of power
network blackouts, and possibly less benign, but more subtle patterns of pathology
and consequent failure at various scales.

8.1 Introduction

Current marketing hype surrounding autonomous vehicles runs something like this:

Since more than 90% of highway deaths are related to driver error, automating out the driver
will reduce loss of life by more than 90%.

Individual vehicles, however, are nested and enmeshed within larger milieus,
creating a multi-scale, multi-level synergism determining crash and fatality rates.
Individual vehicles are only one part of that system, not the system itself. Asserting
that part of a thing is the whole thing is the infamous mereological fallacy, an
important tool for the construction of political lies and other forms of advertising.

One is reminded of another—if different—logical fallacy:

If a woman can gestate a child in nine months, nine women should be able to do it in a
month.

Given the inherently complicated nature of transport system safety, assertions
regarding the effects of autonomous vehicles on traffic fatalities are entirely
speculative and cannot be used as a sound basis for policy development.

Here, we ask a more fundamental question: are large-scale autonomous vehicle
systems actually practical, particularly in the context of a rapidly deteriorating social
and physical infrastructure? To do this, we examine an “end stage” limit in which
many different kinds of vehicles communicate with each other (V2V), and with
an intelligent roadway infrastructure (V2I), both embedded in a highly stochastic
environment.
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In effect, we adapt mathematical models from computational psychiatry to
explore the dynamics of a rapid-acting, inherently unstable command, communi-
cation and control system (C3) that is cognitive in the sense that it must, in an
appropriate “real time,” evaluate a large number of possible actions and choose a
small subset for implementation. Such choice decreases uncertainty, in a formal
manner, and reduction in uncertainty implies the existence of an information source
(Wallace 2012, 2015a).

We particularly study autonomous V2V/V2I systems through the prism of the
Data Rate Theorem (Nair et al. 2007), extending the argument to more general
phase transition analogs, and developing statistical tools useful at different scales
and levels of organization.

8.2 Central Problems

V2V/V2I autonomous systems operate along geodesics in a densely convoluted
“map quotient space” that is in contrast to the much more straightforward problem
of air traffic control, where locally stable vehicle paths are seen as thick braid
geodesics in a simpler Euclidean quotient space (Hu et al. 2001). Such geodesics
are generalizations of the streamline characteristics of hydrodynamic flow (Landau
and Lifshitz 1987).

Hu et al. (2001) show that, in the context of air traffic control, finding collision-
free maneuvers for multiple agents on a Euclidean plane surface R2 is the same
as finding the shortest geodesic in a particular manifold with nonsmooth boundary.
Given n vehicles, the Hu geodesic is calculated for the topological quotient space
R2n=W.r/, where W.r/ is defined by the requirement that no vehicles are closer
together than some critical Euclidean distance r. For autonomous ground vehicles,
R2 must be replaced by a far more topologically complex roadmap space M2

subject to traffic jams and other “snowflake” condensation geometries in real time.
Geodesics for n vehicles are then in a highly irregular quotient space M2n=W.r/
whose dynamics are subject to phase transitions in vehicle density  (Kerner and
Klenov 2009; Kerner et al. 2015; Jin et al. 2013) that, we will show, represent
cognitive groupoid symmetry breaking.

In first order, given the factoring out of most of the topological structure by the
construction of geodesics in the quotient space M2n=W.r/, the only independent
system parameter is the density of vehicles per unit length, which we call .
Figure 8.1 shows, for streets in Rome, Japan, and Flanders, the number of vehicles
per unit time as a function of, respectively, vehicles per mile, per kilometer, and
percent occupancy: the “fundamental diagram” of traffic flow. There is a clear
“phase transition” at about 40 vehicles/mile for the former two examples, and at
about 10% occupancy for the latter.
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Fig. 8.1 (a) Vehicles per
hour as a function of vehicle
density per mile for a street in
Rome (Blandin et al. 2011).
Both streamline geodesic
flow and the phase transition
to “crystallized” turbulent
flow at critical traffic density
are evident at about
40 vehicle/mile. Some of the
states may be “supercooled,”
i.e., delayed “crystallization”
in spite of high traffic density.
“Fine structure” can be
expected within both
geodesic and turbulent
modes. (b) One month of data
at a single point on a Japanese
freeway, flow per 5 min vs.
vehicles per kilometer. The
critical value is about
25 vehicles=km D
39:1 vehicles=mile (Sugiyama
et al. 2008). (c) 49 Mondays
on a Flanders freeway. The
ellipses contain 97.5% of data
points for the free flow and
congested regimes (Maerivoet
and De Moor 2006).
Breakdown begins just shy of
10% occupancy

We shall extend a simple vehicle density measure to a more complicated
unsymmetric density matrix that includes multimodal vehicle indices, an inverse
measure of roadway quality, and can be extended to measures of information
channel congestion.
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Kerner et al. (2015) explicitly apply insights from statistical physics to traffic
flow, finding that in many equilibrium and dissipative metastable systems of natural
science there can be a spontaneous phase transition from one metastable phase to
another metastable phase of a system. Such spontaneous phase transition occurs
when a nucleus for the transition appears randomly in an initial metastable phase of
the system: The growth of the nucleus leads to the phase transition. The nucleus can
be a fluctuation within the initial system phase whose amplitude is equal or larger
than an amplitude of a critical nucleus required for spontaneous phase transition.
Nuclei for such spontaneous phase transitions can be observed in empirical and
experimental studies of many equilibrium and dissipative metastable systems. There
can also be another source for the occurrence of a nucleus, rather than fluctuations:
A nucleus can be induced by an external disturbance applied to the initial phase. In
this case, the phase transition is called an induced phase transition.

A Data Rate Theorem (DRT) approach to stability and flow of autonomous
vehicle/traffic control systems, via spontaneous symmetry breaking in cognitive
groupoids, generalizes and extends these insights, implying a far more complex
picture of control requirements for inherently unstable systems than is suggested
by the Theorem itself, or by “physics” models of phase transition. That is, “higher
order” instabilities can appear. Such systems can require inordinate levels of control
information.

By “higher order” instabilities we mean that C3 systems may remain “stable”
in the strict sense of the DRT, but can collapse into a ground state analogous to
certain psychopathologies, or into even more complicated pathological dynamics.
In biological circumstances, such failures can be associated with the onset of senes-
cence (Wallace 2014, 2015b). Apparently, rapidly responding inherently unstable,
C3 systems can display recognizable analogs to senility under fog-of-war demands.

Using these ideas, it becomes possible to formally represent the interaction of
cognitive ground state collapse in autonomous vehicle/intelligent road systems with
critical transitions in traffic flow.

Defining “stability” as the ability to return, after perturbation, to the streamline
geodesic trajectory of the embedding, topologically complex, road network, it is
clear that individual autonomous vehicles are inherently unstable and require a
constant flow of control information for safe operation, unlike aircraft that can, in
fact, be made inherently stable by placing the center of pressure well behind the
center of gravity. There is no such configuration possible for ground-based vehicles
following sinuous road geometries in heavy, shifting, traffic.

Recall Fig. 8.1. Again, the vertical axis shows the number of vehicles per hour,
the horizontal, the density of vehicles per mile. The streamline geodesic flow and
deviations from it at critical vehicle density are evident. Some of the phases may
be “supercooled”—fast-flowing “liquid” at higher-than-critical densities. Additional
“fine structure” should be expected within both geodesic and turbulent modes.

Classic traffic flow models based on extensions of hydrodynamic perspectives
involving hyperbolic partial differential equations (HPDEs) can be analogously
factored using the methods of characteristic curves and Riemann invariants—
streamlines (Landau and Lifshitz 1987). Along characteristic curves, HPDEs are
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projected down to ordinary differential equations (ODEs) that are usually far easier
to solve. The ODE solution or solutions can then be projected upward as solutions to
the HPDEs. Here, we will show, reduction involves expressing complex dynamics
in terms of relatively simple stochastic differential equations and their stability
properties. Those stability properties, marking the onset of “turbulence,” will be
of central interest.

Taking a somewhat larger view, cognitive phase transitions in V2V/V2I systems,
particularly ground state collapse to some equivalent of “all possible targets
are enemies,” should become synergistic with more familiar traffic flow phase
transitions to produce truly monumental traffic jams.

A heuristic argument is as follows: Consider a random network of roads between
nodal points—intersections. If the average probability of passage falls below a
critical value, the Erdos/Renyi “giant component” that connects across the full
network breaks into a set of disjoint connected equivalence class subcomponents,
with “bottlenecks” at which traffic jams occur marking corridors between them.
Li et al. (2015), in fact, explicitly apply a percolation model to explain this effect
for road congestion in a district of Beijing. The underlying road network is shown
in Fig. 8.2, and in Fig. 8.3 a cross section taken during rush hour showing disjoint
sections when regions with average velocity below 40% of observed maximum for
the road link have been removed.

Such equivalence classes define a groupoid, an extension of the idea of a
symmetry group (Weinstein 1996). Below, we will define the cognitive groupoid
to be associated with a C3 structure, here a system of autonomous vehicles
linked together in a V2V “swarm intelligence” embedded in a larger vehicle
to infrastructure (V2I) traffic management system. Individual vehicle spacings,
speed, acceleration, lane-change, and so on are determined by this encompassing
distributed cognitive machine that attempts to optimize traffic flow and safety.

Fig. 8.2 Adapted from Li et al. (2015). The full road network near central Beijing
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Fig. 8.3 Adapted from Li et al. (2015). Disconnected subcomponents of the Beijing central road
network at rush hour. Sections with average vehicle velocity less than 40% of maximum observed
have been removed. Disjoint pieces form equivalence classes that permit definition of a groupoid
symmetry

The associated individual groupoids are the basic transitive groupoids that build
a larger composite groupoid of the cognitive system (Wallace 2012, 2015a). Thus,
under declining probability of passage, related to traffic congestion and viewed as
a temperature analog, this “vehicle/road” groupoid undergoes a symmetry breaking
transition into a combined cognitive ground state collapse and traffic jam mode—
essentially a transition from “laminar” geodesic to “turbulent” or “crystallized” flow.
Autonomous vehicle systems that become senile under fog-of-war demands will
likely trigger traffic jams that are far different from those associated with human-
controlled vehicles. There is no reason to believe that such differences will be
benign.

We begin the formal development leading to this result with a restatement of
the Data Rate Theorem that characterizes the minimum rate of control information
needed to ensure stability for an inherently unstable system.

8.3 Data Rate Theorem

To reiterate a central point, unlike aircraft, that can be constructed to be inherently
stable in linear flight by placing the aerodynamic center of pressure sufficiently
behind the mechanical center of gravity, the complex nature of road geometry
and the local dynamics of vehicular traffic ensure that V2V/V2I systems will
be inherently unstable, requiring constant input of control information to prevent
crashes, traffic jams, and other tie-ups.
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Fig. 8.4 A linear expansion near a nonequilibrium steady state of an inherently unstable control
system, for which xtC1 D Axt C But C Wt. A; B are square matrices, xt the vector of system
parameters at time t, ut the control vector at time t, and Wt a white noise vector. The Data Rate
Theorem states that the minimum rate at which control information must be provided for system
stability is H > logŒj detŒAmj�, where Am is the subcomponent of A having eigenvalues � 1

The Data Rate Theorem (Nair et al. 2007) establishes the minimum rate at which
externally supplied control information must be provided for an inherently unstable
system to maintain stability. Given the linear expansion near a nonequilibrium
steady state, an n-dimensional vector of system parameters at time t, xt, determines
the state at time t C 1 according to the model of Fig. 8.4, so that

xtC1 D Axt C But C Wt (8.1)

where A; B are fixed n	n matrices, ut is the vector of control information, and Wt is
an n-dimensional vector of white noise. The Data Rate Theorem (DRT) under such
conditions states that the minimum control information rate H is determined by the
relation

H > logŒj det.Am/j� � a0 (8.2)

where, for m � n, Am is the subcomponent of A having eigenvalues �1. The
right-hand side of Eq. (8.2) is interpreted as the rate at which the system generates
“topological information.” The proof of Eq. (8.2) is not particularly straightforward
(Nair et al. 2007), and the Mathematical Appendix uses the Rate Distortion Theorem
(RDT) to derive a more general version of the DRT.

For a simple traffic flow system on a fixed highway network, the source
of “topological information” is the linear vehicle density . The “fundamental
diagram” of traffic flow studies relates the total vehicle flow to the linear vehicle
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Fig. 8.5 The horizontal line
represents the critical limit
a0. If �2=�4 � �1=�3, at
some intermediate value of
linear traffic density , the
temperature analog
T � .�1 C �2/=.�3 C �4/

falls below that limit, traffic
flow becomes “supercooled,”
and traffic jams become
increasingly probable

density, shown in Fig. 8.1. A similar pattern can be expected from “macroscopic
fundamental diagrams” that examine multimodal travel networks (Geroliminis et al.
2014; Chiabaut 2015).

Given  as the critical traffic density parameter, we can extend Eq. (8.2) as

H./ > f ./a0 (8.3)

where a0 is a road network constant and f ./ is a positive, monotonically increasing
function. The Mathematical Appendix uses a Black–Scholes model to approximate
the “cost” of H as a function of the “investment” . The first approximation is linear,
so that H � �1 C �2. Expanding f ./ to similar order,

f ./ � �3 C �4 (8.4)

the limit condition for stability becomes

T � �1 C �2

�3 C �4

> a0 (8.5)

For  D 0, the stability condition is �2=�4 > a0. At large  this becomes �1=�3 >

a0. If �2=�4 
 �1=�3, the stability condition may be violated at high traffic densities,
and instability becomes manifest, as at the higher ranges of Fig. 8.1. See Fig. 8.5.

8.4 Multimodal Traffic on Bad Roads

For vehicles embedded in a larger traffic stream there are many other possible
critical densities that must interact: different kinds of vehicles per linear mile,
V2V/V2I communications bandwidth crowding, and an inverse index of roadway
quality that one might call “potholes per mile,” and so on. There is not, then, a
simple “density” index, but rather a possibly large non-symmetric density matrix O
having interacting components with i;j ¤ j;i.

Can there still be some scalar “” under such complex circumstances so that
the conditions of Fig. 8.5 apply? An n 	 n matrix O has n invariants ri; i D 1::n,
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that remain fixed when “principal component analysis” transformations are applied
to data, and these can be used to construct an invariant scalar measure, using the
polynomial relation

p.	/ D det. O � 	I/ D 	n C r1	n�1 C � � � C rn�1	 C rn (8.6)

det is the determinant, 	 is a parameter, and I the n 	 n identity matrix. The
invariants are the coefficients of 	 in p.	/, normalized so that the coefficient of 	n

is 1. Typically, the first invariant will be the matrix trace and the last ˙ the matrix
determinant.

For an n 	 n matrix it then becomes possible to define a composite scalar index
� as a monotonic increasing function of these invariants

� D f .r1; : : : ; rn/ (8.7)

The simplest example, for a 2 	 2 matrix, would be

� D m1TrŒ O� C m2j detŒ O�j C m3TrŒ O�j detŒ O�j (8.8)

for positive mi. Recall that, for n D 2, TrŒ O� D 11 C 22 and detŒ O� D
1122 � 1221. In terms of the two possible eigenvalues ˛1; ˛2, TrŒ O� D ˛1 C ˛2;

detŒ O� D ˛1˛2.
Again, an n 	 n matrix will have n such invariants from which a scalar index �

can be constructed.
In Eq. (8.5) defining T ,  is then replaced by the composite density index � .
The method is a variant of the “Rate Distortion Manifold” of Glazebrook and

Wallace (2009) or the “Generalized Retina” of Wallace and Wallace (2013, Sect.
10.1) in which high dimensional data flows can be projected down onto lower
dimensional, shifting, tunable “tangent spaces” with minimal loss of essential
information.

8.5 The Dynamics of Service Collapse

We next examine the dynamics of T .� / itself under stochastic circumstances. We
begin by asking how a control signal ut in Fig. 8.4 is expressed in the system
response xtC1. We suppose it possible to deterministically retranslate an observed
sequence of system outputs Xi D xi

1; xi
2; : : : into a sequence of possible control

signals OUi D Oui
0; Oui

1; : : : and to compare that sequence with the original control
sequence Ui D ui

0; ui
1; : : :, with the difference between them having a particular

value under some chosen distortion measure and hence having an average distortion

hdi D
X

i

p.Ui/d.Ui; OUi/ (8.9)
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where p.Ui/ is the probability of the sequence Ui and d.Ui; OUi/ is the distortion
between Ui and the sequence of control signals that has been deterministically
reconstructed from the system output.

We can then apply a classic Rate Distortion argument. According to the Rate
Distortion Theorem, there exists a Rate Distortion Function, R.D/, that determines
the minimum channel capacity necessary to keep the average distortion below some
fixed limit D (Cover and Thomas 2006). Based on Feynman’s (2000) interpretation
of information as a form of free energy, it becomes possible to construct a
Boltzmann-like pseudoprobability density in the “temperature” T as

dP.R; T / D expŒ�R=T �dR
R1

0
expŒ�R=T �dR

(8.10)

since higher T must necessarily be associated with greater channel capacity.
The denominator can be interpreted as a statistical mechanical partition function,

and it becomes possible to define a “free energy” Morse Function (Pettini 2007)
F as

expŒ�F=T � �
Z 1

0

expŒ�R=T �dR D T (8.11)

so that F.T / D �T logŒT �.
Then an “entropy” can also be defined as the Legendre transform of F ,

S � F.T / � T dF=dT D T (8.12)

The Onsager treatment of nonequilibrium thermodynamics (de Groot and Mazur
1984) can now be invoked, based on the gradient of S in T , so that a stochastic
Onsager equation can be written as

dTt D .�dS=dT /dt C ˇTtdWt D �dt C ˇTtdWt (8.13)

where � is a diffusion coefficient and ˇ is the magnitude of the impinging white
noise dWt.

E.Tt/ � �

ˇ2=2
(8.14)

In the V2V/V2I context, � is a “diffusion coefficient” representing attempts by
the system to meet service demand, and ˇ the magnitude of a traffic flow/roadway
state “white noise” dWt contrary to those attempts.

Again, applying the Ito chain rule to log.T / in Eq. (8.13) (Protter 1990), Jensen’s
inequality for a concave function gives the nonequilibrium steady state (nss)
expectation of T as
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Recall that, in the multimodal extension of the model, the condition for stability is

T � �1� C �2

�3� C �4

> a0

The inference is that sufficient system noise, ˇ, can drive T below critical values
in Fig. 8.5, triggering a system collapse analogous to a large, propagating traffic
jam. Under real-world conditions, adequate service will simultaneously raise � and
lower ˇ. Nonetheless, Eq. (8.14) is an expectation, and there will always be some
probability that T < a0, i.e., that the condition for stability is violated. The system
then becomes “supercooled” and subject to a raised likelihood of sudden, rapidly
propagating, traffic jam-like condensations in the sense of Kerner et al. (2015).

8.6 Multiple Phases of Dysfunction

The DRT argument implies a raised probability of a transition between stable and
unstable behavior if the temperature analog T .� / falls below a critical value. Kerner
et al. (2015), however, argue that traffic flow can be subject to more than two phases.
We can recover something similar via a “cognitive paradigm” like that used by Atlan
and Cohen (1998) in their study of the immune system. They view a system as
cognitive if it must compare incoming signals with a learned or inherited picture of
the world, then actively choose a response from a larger set of those possible to it.
V2V/V2I systems are clearly cognitive in that sense. Such choice, however, implies
the existence of an information source, since it reduces uncertainty in a formal way.
See Chap. 1 or Wallace (2015a,b) for details of the argument.

Given the “dual” information source associated with the inherently unstable
cognitive V2V/V2I system, an equivalence class algebra can be constructed by
choosing different system origin states and defining the equivalence of subsequent
states at a later time by the existence of a high probability path connecting them
to the same origin state. Disjoint partition by equivalence class, analogous to orbit
equivalence classes in dynamical systems, defines a symmetry groupoid associated
with the cognitive process. Groupoids are generalizations of group symmetries in
which there is not necessarily a product defined for each possible element pair
(Weinstein 1996), for example, in the disjoint union of different groups.

The equivalence classes across possible origin states define a set of information
sources dual to different cognitive states available to the inherently unstable
V2V/V2I system. These create a large groupoid, with each orbit corresponding to
a transitive groupoid whose disjoint union is the full groupoid. Each subgroupoid
is associated with its own dual information source, and larger groupoids must have
richer dual information sources than smaller.

Let XGi be the system’s dual information source associated with groupoid
element Gi. Given the argument leading to Eqs. (8.5)–(8.7), we construct another
Morse Function (Pettini 2007) as follows.
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Let H.XGi/ � HGi be the Shannon uncertainty of the information source
associated with the groupoid element Gi. We define another pseudoprobability as

PŒHGi � � expŒ�HGi=T �
P

j expŒ�HGj=T �
(8.15)

where the sum is over the different possible cognitive modes of the full system.
Another, more complicated, “free energy” Morse Function F can then be

defined as

expŒ�F=T � �
X

j

expŒ�HGj=T � (8.16)

or, more explicitly,

F D �T log
hX

j

expŒ�HGj=T �
i

(8.17)

As a consequence of the groupoid structures associated with complicated cog-
nition, as opposed to a “simple” stable–unstable control system, we can now apply
an extension of Landau’s version of phase transition (Pettini 2007). Landau saw
spontaneous symmetry breaking as representing phase change in physical systems,
with the higher energies available at higher temperatures being more symmetric.
The shift between symmetries is highly punctuated in the temperature index, here
the “temperature” analog of Eq. (8.5), in terms of the scalar construct � , but in the
context of groupoid rather than group symmetries. Usually, for physical systems,
there are only a few phases possible. Kerner et al. (2015) recognize three phases
in ordinary traffic flow, but V2V/V2I systems may have relatively complex stages
of dysfunction, with highly punctuated transitions between them as various density
indices change and interact.

Section 5.9 above examined sufficient conditions for a pathological ground state
to “lock-in” and become highly resistant to managerial intervention, that is, in this
context, for a highly persistent large-scale traffic jam.

In this context, Birkoff’s (1960, p. 146) perspective on the central role of groups
in fluid mechanics is of considerable interest:

[Group symmetry] underlies the entire theories of dimensional analysis and modeling. In
the form of “inspectional analysis” it greatly generalizes these theories. . . [R]ecognition of
groups. . . often makes possible reductions in the number of independent variables involved
in partial differential equations. . . [E]ven after the number of independent variables is
reduced to one. . . the resulting system of ordinary differential equations can often be
integrated most easily by the use of group-theoretic considerations.

We argue here that, for “cognitive fluids” like vehicle traffic flows, groupoid
generalizations of group theory become central.

Decline in the richness of control information, or in the ability of that information
to influence the system as measured by the “temperature” index T .� /, can lead to
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punctuated decline in the complexity of cognitive process possible within the C3

system, driving it into a ground state collapse that may not be actual “instability”
but rather a kind of dead zone in which, using the armed drone example, “all possible
targets are enemies.” This condition represents a dysfunctionally simple cognitive
groupoid structure roughly akin to certain individual human psychopathologies, as
described in the previous chapters.

It appears that, for large-scale autonomous vehicle/intelligent infrastructure
systems, the ground state dead zone involves massive, propagating tie-ups that far
more resemble power network blackouts than traditional traffic jams. Again, the
essential feature is the role of composite system “temperature” T .� /. Most of the
topology of the inherently unstable vehicles/roads system will be “factored out” via
the construction of geodesics in a topological quotient space, so that T .� / inversely
indexes the rate of topological information generation for an extended DRT.

Lowering the “temperature” T forces the system to pass from high symmetry
“free flow” to different forms of “crystalline” structure—broken symmetries rep-
resenting platoons, shock fronts, traffic jams, and more complicated system-wide
patterns of breakdown.

In the next section, the underlying dynamic is treated in finer detail by viewing
the initial phase transition as the first order onset of a kind of “turbulence,” a
transition from free flow to “flock” structures like those studied in “active matter”
physics. Indeed, the traffic engineering perspective is quite precisely the inverse of
mainstream active matter studies, which Ramaswamy (2010) describes as follows:

It is natural for a condensed matter physicist to regard a coherently moving flock of
birds, beasts, or bacteria as an orientationally ordered phase of living matter. . . . [M]odels
showed a nonequilibrium phase transition from a disordered state to a flock with long-range
order. . . in the particle velocities as the noise strength was decreased or the concentration of
particles was raised.

In traffic engineering, the appearance of such “long-range order” is the first stage
of a traffic jam (Kerner and Klenov 2009; Kerner et al. 2015), a relation made
explicit by Helbing (2001, Sect. VI) in his comprehensive review of traffic and
related self-driven many-particle systems.

While flocking and schooling have obvious survival value against predation
for animals in three-dimensional venues, long-range order—aggregation—among
blood cells flowing along arteries is a blood clot and can be rapidly fatal.

8.7 Turbulence

The “free energy” function F in Eq. (8.17) can be used to explore dynamics within
a particular system phase defined by the associated groupoid.

Given a vector of system parameters K, in standard manner it is possible to define
an “entropy” from F as the Legendre transform

S � F.K/ � K � rKF (8.18)
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and a nonequilibrium Onsager stochastic differential equation for dynamics in terms
of the gradients in S (de Groot and Mazur 1984), which can be written in one
dimension as

dKt D Œ�@S=@Kt�dt C �KtdBt (8.19)

where � is a diffusion coefficient. The last term represents a macroscopic
volatility—proportional to the parameter K—in which dBt is a noise term that
may not be white, i.e., the quadratic variation ŒBt; Bt� may not be proportional to t.
While details will depend on the particular circumstances, such systems are subject
to a distressingly rich spectrum of possible instabilities (Khasminskii 2012). The
full set of equations would involve properly indexed sums across the parameters
making up the vector K.

A simple example. If a system following Eq. (8.19) has been initially placed in
a characteristic eigenmode—e.g., the smooth part of a “fundamental diagram” flow
on some traffic network—then the dynamic equation for deviation of a parameter
K.t/ from that mode can be written, in first order, as

dKt � aKtdt C �KtdWt (8.20)

where dWt represents white noise having uniform spectrum. Then, using the Ito
chain rule on logŒK�,

d logŒKt� � .a � �2=2/dt C �dWt (8.21)

The expectation is then

EŒKt� / expŒ.a � �2=2/t� (8.22)

so that, if a < �2=2, EŒKt� ! 0. �2 then—quite counterintuitively as described
in Wallace (2016a)—is a kind of control information in the sense of the Data Rate
Theorem that serves to stabilize system dynamics.

For an inherently unstable traffic flow, we impose closure on the model by taking
�2=2 D T .� / so that higher “temperature” means more “noise,” an intuitive
result. Then, antiparalleling the arguments of Belletti et al. (2015, Sect. 2.3), for
this simple example a “traffic Froude number” (TFN) F that defines regimes of free
and turbulent flow, can be defined as

F � 1 � Œa � T � (8.23)

where a is then a0 in Eq. (8.5).
When F > 1, the system is in “laminar” free-flow, and becomes “turbulent”

when F < 1.
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A different characterization, from this perspective, is that T represents a kind
of viscosity index so that F is more akin to a Reynolds number than to a classical
Froude number.

A contrast between our approach and that of Belletti et al. (2015) lies in the
central object-of-interest. They invoke a hydrodynamic perspective involving the
“flow” of individual vehicles in a channel that finds “instability” to be associated
with unconstrained travel speed. The focus here is on the stability of geodesics in
the complex topological quotient space M2n=W.r/. This is, in a sense, the inverse
of their problem.

As argued, raising � lowers T , “freezing” the system from “liquid flow”
to “crystallized” broken symmetries—platoons, shock fronts, jams, and myriad
other “snowflake” structures that may include large-scale system-wide “lock-in” as
described in Sects. 4.3 and 5.9 above.

8.8 Reconsidering Network Flow

The analysis of traffic flow failure on a road network is, conceptually, somewhat
similar to characterizing the propagation of a signal via the Markov “network
dynamics” formalism of Wallace (2016a) or Gould and Wallace (1994). This is an
approach that might be used to empirically identify geodesic eigenmodes of real
road network systems under different conditions, as opposed to individual vehicle
dynamics or flow on a single road.

Following Gould and Wallace (1994), the spread of a “signal” on a particular
network of interacting sites—between and within—is described at nonequilibrium
steady state in terms of an equilibrium distribution �i “per unit area” Ai of a
Markov process, where A scales with the different “size” of each node, taken as
distinguishable by a scale variable A (for example, number of entering streets or
average total traffic flow) as well as by its “position” i or the associated probability-
of-contact matrix (POCM). The POCM is normalized to a stochastic matrix Q
having unit row sums, and the vector � calculated as � D �Q

There is a vector set of dimensionless network flows X i
t , i D 1; : : : ; n at time t.

These are each determined by some relation

X i
t D g.t; �i=Ai/ (8.24)

Here, i is the index of the node of interest, X i
t is the corresponding dimensionless

scaled ith signal, t the time, and g an appropriate function. Again, �i is defined
by the relation � D �Q for a stochastic matrix Q, calculated as the network
probability-of-contact matrix between regions, normalized to unit row sums. Using
Q, we have broken out the underlying network topology, a fixed between-and-
within travel configuration weighted by usage that is assumed to change relatively
slowly on the timescale of observation compared to the time needed to approach the
nonequilibrium steady state distribution.
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Since the X are expressed in dimensionless form, g; t, and A must be rewritten as
dimensionless as well giving, for the monotonic increasing (or threshold-triggered)
function F

X i
� D G

�

�;
�i

Ai
	 A�

�

(8.25)

where A� is the value of a “characteristic area” variate that represents the spread of
the perturbation signal—evolving into a traffic jam under worst-case conditions—at
(dimensionless) characteristic time � D t=T0.

G may be quite complicated, including dimensionless “structural” variates for
each individual geographic node i. The idea is that the characteristic “area” A�

grows according to a stochastic process, even though G may be a deterministic
mixmaster driven by systematic local probability-of-contact or flow patterns. Then
the appropriate model for A� of a spreading traffic jam becomes something like
Eq. (8.20), with K replaced by A and t by � . Thus, for the network, the signal
Y� must again have a “noise”/vehicle density threshold condition like Eq. (8.23)
for large-scale propagation of a traffic jam across the full network—something that
would look very similar to the spread of a power blackout.

Zhang (2015) uses a similar Markov method to examine taxicab GPS data
for transit within and between 12 empirically identified “hot zones” in Shanghai,
determining the POCM and its equilibrium distribution.

This approach is something in the spirit of a long line of work summarized by
Cassidy et al. (2011) that attempts to extend the idea of a fundamental diagram for
a single road to a full transport network. As they put it,

Macroscopic fundamental diagrams (MFDs). . . relate the total time spent to the total
distance traveled. . . It is proposed that these macrolevel relations should be observed if the
data come from periods when all lanes on all links throughout the network are in either the
congested or the uncontested regime. . .

Following our arguments here, such conditions might apply when A� ! 0,
or when it encompasses the entire network domain. Indeed, Fig. 8.3 suggests why
MFDs cannot be constructed in general: Congested and free flowing sections of
traffic networks will often, and perhaps usually, coexist in an essentially random
manner depending on local traffic densities. Figure 8.6, adapted from Geroliminis
and Sun (2011), shows the limitations of the MFD approach. It examines the flow,
in vehicles/5 min intervals, vs. percent occupancy over a 3 day period for the
Minnesota Twin Cities freeway network that connects St. Paul and Minneapolis.
See Fig. 1 of their paper for details of the road and sensor spacing. Evidently,
while the unconstrained region of occupancy permits characterization of a geodesic
mode, both strong hysteresis and phase transition effects are evident after about 8%
occupancy, analogous to the “nucleation” dynamics of Fig. 8.1 at high traffic density.
Again, as in Fig. 8.1 “fine structure” should be expected within both geodesic and
turbulent modes, depending on local parameters.
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Fig. 8.6 Adapted from Geroliminis and Sun (2011). Breakdown of the macroscopic fundamental
diagram for the freeway network connecting St. Paul and Minneapolis at high vehicle densities.
Both nucleation and hysteresis effects are evident, showing the fine structure within the turbulent
mode. As in Fig. 8.1c, breakdown begins near 8–10% occupancy

Daganzo et al. (2010) further find that MFD flow, when it can be characterized at
all, will become unstable if the average network traffic density is sufficiently high.
They find that, for certain network configurations, the stable congested state

. . . is one of complete gridlock with zero flow. It is therefore important to ensure that in
real-world applications that a network’s [traffic] density never be allowed to approach this
critical value.

Daqing et al. (2014) examine the dynamic spread of traffic congestion on the
Beijing central road network. They characterize the failure of a road segment to be
a traffic velocity less than 20 km/h and use observational data to define a spatial
correlation length in terms of the Euclidean distances between failed nodes. Our
equivalent might be something like

p
A� . Adapting their results, Fig. 8.7 shows

the daily pattern of the correlation length of cascading traffic jams over a 9 day
period. The two commuting maxima are evident, and greatest correlation lengths
reach the diameter of the main part of the city. Even at rush hour, no MFD can be
defined, as, according to Fig. 8.3, the network will be a dynamic patchwork of free
and congested components.

A next step would be to allow , or a more general � , to vary in space and time,
i.e., to parameterize the model using the moments of various density indices.

Figure 8.8, adapted from The Rand Fire Project (1979, Fig. 6.4), provides a
disturbing counterexample to these careful empirical and theoretical results on
network traffic flow, one with unfortunate results. Summarizing observations carried
out by the Rand Fire Project, it represents a repeated sampling of “travel time vs.
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Fig. 8.7 Adapted from
Daqing et al. (2014). Daily
cycle of traffic jam
correlation length over a 9
day period in central Beijing.
The maxima cover most of
the central city. For rush hour,
no macroscopic fundamental
diagram can be defined since
the region is characterized by
a patchwork of free and
congested parts, as shown in
Fig. 8.3

distance” for the full Trenton NJ road network in 1975 under varying conditions of
time-of-day, day-of-week, weather, and so on, by fire companies responding to calls
for service. This was an attempt to create a Macroscopic Fundamental Diagram in
the sense used above, but without any reference at all to traffic density.

Indeed, fire service responses are a traffic flow “best case” as fire units are
permitted to bypass one-way restrictions, traffic lights, and so on, and usually able
to surmount even the worst weather conditions. In spite of best-case circumstances,
the scatterplot evidently samples whole-network turbulent flow, not unlike that to
the right of the local geodesic in Figs. 8.1 and 8.6, part of a single street and a
highway network, respectively, and consistent with the assertions of Cassidy et al.
(2011) that MFD relations can only be defined under very restrictive conditions, i.e.,
either complete free flow or full network congestion.

The Rand Fire Project, when confronted with intractable whole-network traffic
turbulence, simply collapsed the data onto a “square root-linear” relation, as
indicated on the figure. The computer models resulting from this gross oversim-
plification were used to determine fire service deployment strategies for high fire
incidence, overcrowded neighborhoods in a number of US cities, with literally
devastating results and consequent massive impacts on public health and public
order. Wallace and Wallace (1998), produced under an Investigator Award in
Health Policy Research from the Robert Wood Johnson Foundation, document the
New York City case history. The Rand models are still in use by the New York City
Fire Department, for political purposes outlined in that analysis.

8.9 Directed Homotopy

The symmetry breaking phase transition argument of Sect. 8.6 can be rephrased
in terms of “directed homotopy”—dihomotopy—groupoids on an underlying road
network, again parameterized by the “temperature” index T . Classical homotopy
characterizes topological structures in terms of the number of ways a loop within
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Fig. 8.8 Adapted from Fig. 6.4 of The Rand Fire Project (1979). Relation between fire company
travel time and response distance for the full Trenton, NJ road network, 1975. The Rand Fire
Project collapsed evident large-scale traffic turbulence into a simple “square root-linear” model
used to design fire service deployment policies in high fire incidence, high population density
neighborhoods of many US cities, including the infamous South Bronx. The impacts were literally
devastating (Wallace and Wallace 1998)

the object can be continuously reduced to a base point (Hatcher 2001). For a sphere,
all loops can be reduced. For a toroid—a donut shape—there is a hole so that two
classes of loops cannot be reduced to a point. One then composes loops to create
the “fundamental group” of the topological object. The construction is standard.
Vehicles on a road network, however, are generally traveling from some initial point
So to a final destination S1, as in Fig. 8.9, and directed paths, not loops are the
“natural” objects, at least over a short time period, as in commuting.
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Fig. 8.9 Two equivalence classes of deformable paths connect the origin So with the destination
S1, defining a groupoid. At high T , both sets of paths are available for travel. At some point
the synergism between crowding and road conditions creates a blockage in one or the other routes
around the triangular “hole,” breaking the groupoid symmetry. The “order parameter” is the number
of blockages, which becomes zero at high symmetries

Given some “hole” in the road network, there will usually be more than one
way to reach S1 from So, as indicated. An equivalence class of directed paths
is defined by paths that can be smoothly deformed into one another without
crossing barrier zones (Fajstrup et al. 2016; Grandis 2009), as indicated in the
figure. At high values of the composite index T , many different sets of paths
will be possible, creating a large groupoid. As T declines, roadways and junctions
become increasingly jammed, eliminating entire equivalence classes, and lowering
the groupoid symmetry: phase transitions via classic symmetry breaking on a
network. The “order parameter” that disappears at high T is then simply the number
of blocked roadways.

These results extend to higher dihomotopy groupoids via introduction of cylin-
drical paths rather than one-dimensional lines, producing a more general version of
the quotient space geodesic method of Hu et al. (2001).

8.10 Discussion and Conclusions

Ruelle (1983) raises a red flag that must apply to any traffic flow analysis:

. . . [A] deductive theory of developed turbulence does not exist, and a mathematical basis
for the important theoretical literature on the subject is still lacking. . . A purely deductive
analysis starting with the Navier–Stokes equation. . . does not appear feasible. . . and might
be inappropriate because of the approximate nature of the. . . equation.

Or, as the mathematician Garrett Birkoff (1960, p. 5) puts it,

. . . [V]ery few of the deductions of rational hydrodynamics can be established rigorously.
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Similar difficulties constrain the Black–Scholes models of financial engineering,
and institutions that rely heavily on them have often gone bankrupt in the face of
market turbulence (Wallace 2015c).

Turbulence in traffic flow does not represent simple drift from steady linear
or even parallel travel trajectories. Traffic turbulence involves the exponential
amplification of small perturbations into large-scale deviations from complicated
streamline geodesics in a topologically complex map quotient space. This is the
mechanism of groupoid “symmetry breaking” by which the system undergoes a
phase transition from “liquid” geodesic flow to “crystalline” phases of shock fronts,
platoons, and outright jams.

Under such circumstances, cognitive system initiative serves as a mechanism
for returning to geodesic flows. Inhibition of cognitive initiative occurs when the
composite density index � exceeds a critical limit, triggering complex dynamic
condensation patterns and, for autonomous vehicle systems, perhaps even more
disruptive behaviors.

It is, then, not enough to envision atomistic autonomous ground vehicles as
having only local dynamics in an embedding traffic stream, as seems in the current
American and European practice. Traffic light strategies, road quality, the usually
rapid-shifting road map space, the dynamic composition of the traffic stream,
bandwidth limits, and so on create the synergistic context in which single vehicles
operate and which constitutes the individual “driving experience.” It is necessary
to understand the dynamics of that full system, not simply the behavior of a
vehicle atom within it. The properties of that system will be both overtly and
subtly emergent, as will, we assert, the responses of cognitive vehicles enmeshed
in context, whether controlled by humans or computers.

One inference from this analysis is that failure modes afflicting large-scale
V2V/V2I systems are likely to be more akin to power blackouts than to traffic jams
as we know them, and the description by Kinney et al. (2005) is of interest:

Today the North American power grid is one of the most complex and interconnected sys-
tems of our time, and about one half of all domestic generation is sold over ever-increasing
distances on the wholesale market before it is delivered to customers. . . Unfortunately the
same capabilities that allow power to be transferred over hundreds of miles also enable
the propagation of local failures into grid-wide events. . . It is increasingly recognized that
understanding the complex emergent behaviors of the power grid can only be understood
from a systems perspective, taking advantage of the recent advances in complex network
theory. . .

Dobson (2007) puts it as follows:

[P]robabalistic models of cascading failure and power system simulations suggest that
there is a critical loading at which expected blackout size sharply increases and there is
a power law in the distribution of blackout size. . . There are two attributes of the critical
loading: 1. A sharp change in gradient of some quantity such as expected blackout size as
one passes through the critical loading. 2. A power law region in probability distribution of
blackout size at the critical loading. We use the terminology “critical” because this behavior
is analogous to a critical phase transition in statistical physics.
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Daqing et al. (2014), in fact, explicitly link traffic jams and power failures:

Cascading failures have become major threats to network robustness due to their potential
catastrophic consequences, where local perturbations can induce global propagation of
failures. . . [that] propagate through collective interactions among system components. . . .
[W]e find by analyzing our collected data that jams in city traffic and faults in power grid are
spatially long-range correlated with correlations decaying slowly with distance. Moreover,
we find in the daily traffic, that the correlation length increases dramatically and reaches
maximum, when morning or evening rush hour is approaching. . .

While clever V2V/V2I management strategies might keep traffic streams in
supercooled high-flow mode beyond critical densities, such a state is notoriously
unstable, subject to both random and deliberately caused “condensation” into large-
scale frozen zones. More subtle patterns of autonomous vehicle “psychopathology”
may be even less benign, as studied in detail elsewhere (Wallace 2016b).

It is difficult to escape the inference that, despite understandable marketing hype
and other wishful thinking, large-scale V2V/V2I autonomous vehicle systems may
simply not be practical, particularly in a context of coupled social and infrastructure
deterioration.

It has been said that “The language of business is the language of dreams.”
Business dreams, however, do not necessarily serve as a sound foundation for
the design and implementation of public policies affecting the well-being of large
populations.
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Chapter 9
Psychopathologies of Automata II: Autonomous
Weapons and Centaur Systems

Summary Powerful asymptotic limit theorems of control and information theories
illuminate the dynamics of autonomous weapons and man/machine “centaur”
or “cockpit” systems under increasing fog-of-war burdens. Adapting tools from
previous chapters, a relatively simple analysis shows there will not be graceful
degradation in targeting precision, but sudden, highly punctuated, collapse to a
pathological state in which “all possible targets are enemies.” A central focus is the
complex structure of the fog-of-war ecosystem itself, resulting in statistical tools not
unlike regression models that should be useful in data analysis.

9.1 Introduction

The catastrophic drone wars in the Middle East and Africa (Columbia 2012;
Stanford/NYU 2012; Wallace 2016a) will haunt the USA well into the next century,
just as the miscalculations that created and followed World War I—including the
European colonial “country building” producing Iraq and Syria—haunt us today.
The USA and others are poised to move beyond remotely piloted drone systems to
autonomous weapons and/or centaur warfighting—enhanced man/machine “cock-
pits” (Scharre 2016). It is asserted that centaur systems “keeping the man in the
loop” will not only outperform automatons, but will also constrain, somewhat, the
horrors of war.

Contrary perspectives abound. As Archbishop Silvano Tomasi (2014) puts it,

..[T]he development of complex autonomous weapon systems which remove the human
actor from lethal decision-making is short-sighted and may irreversibly alter the nature of
warfare in a less humane direction, leading to consequences we cannot possibly foresee, but
that will in any case increase the dehumanization of warfare.

As Scharre describes, however, the First Gulf War Patriot missile fratricides
(Hawley 2006; Wallace 2016a) raise significant questions regarding the operational
reliability of such systems under fog-of-war constraints. The Patriot can be seen as
an early example of forthcoming centaur man/machine composites.
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Trsek (2014) examines the 1988 US AEGIS system downing of a civilian airliner
from a similar perspective, concluding that

[Command responsibility] is already several steps removed from the operator in practice—it
is naive to believe that we are relying on biological sensing to fulfill [rules-of-engagement]
criteria, where the majority of information is electronically derived.

To address some of these matters, we expand the approach of Wallace (2016a),
who examined canonical failure modes of real-time control systems using insights
from cognitive theory. That work viewed such failures from the general perspective
of the Data Rate Theorem that links control and information theories. Here, using
the approach of previous chapters, we explore in considerably finer detail the
structure and dynamics of the fog-of-war constraints that can collapse such systems
into a ground state pathology in which “all possible targets are enemies.” Such
collapse moves beyond Scharre’s “operational risk” into violations of the Laws of
Land Warfare that require distinction between combatants and non-combatants.

We review and extend the formal linkage between control and information
theories, leading to deeper understanding of fog-of-war constraints.

9.2 The Data Rate Theorem

Unlike an aircraft that can remain in stable flight as long as the center of pressure
is sufficiently behind the center of gravity, high-order cognitive systems like
human sports and combat teams, man–machine “cockpits,” self-driving vehicles,
autonomous weapons systems, and modern fighter aircraft—built to be maneu-
verable rather than stable—operate in real time on rapidly shifting topological
“highways” of complex multimodal demand. Facing these turbulent topologies, the
cognitive system must receive a constant flow of sufficiently detailed information
describing them. More prosaically, driving on a twisting, pot-holed road after dark
and at high speed requires very good headlights.

It will become clear that high-order cognition is inherently unstable in the sense
of the Data Rate Theorem (Nair et al. 2007), viewing incoming information about
the rapidly shifting topology of demand as the control signal.

The Data Rate Theorem (DRT) states that there is a minimum rate at which
control information must be provided for an inherently unstable system to remain
stable. The most direct approach is a linear expansion near a nonequilibrium steady
state. An n-dimensional vector of system parameters at time t, xt, determines the
state at time t C 1 according to the model of Fig. 9.1, so that

xtC1 D Axt C But C Wt (9.1)

A; B are fixed n 	 n matrices, ut is the vector of control information, and Wt is
an n-dimensional vector of white noise. The Data Rate Theorem (DRT) under such
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Fig. 9.1 A linear expansion near a nonequilibrium steady state of an inherently unstable control
system, for which xtC1 D Axt C But C Wt. A; B are square matrices, xt the vector of system
parameters at time t, ut the vector of control signals at time t, and Wt a white noise vector. The
Data Rate Theorem states that the minimum rate at which control information must be provided for
system stability is H > logŒj detŒAmj�, where Am is the subcomponent of A having eigenvalues �1

conditions states that the minimum control information rate H is determined by the
relation

H > logŒj det.Am/j� � a0 (9.2)

where, for m � n, Am is the subcomponent of A having eigenvalues �1. The
right-hand side of Eq. (9.2) is interpreted as the rate at which the system generates
“topological information.” The Mathematical Appendix uses the Rate Distortion
Theorem (RDT) to derive a more general version of this result.

The next step is both deceptively simple and highly significant. Given, for
the moment, a scalar parameter  as an index of multimodal system demand,
here representing the fog-of-war (most simply, for example, the magnitude of the
dominant vector in a principal component analysis) we extend Eq. (9.2) as

H./ > f ./a0 (9.3)

where a0 is constant characteristic of low system demand and f ./ is a positive,
monotonically increasing function. The Mathematical Appendix uses a Black–
Scholes model to approximate the “cost” of H as a function of the “investment” .
The first approximation is, surprisingly (or not), linear, so that H � �1C�2. Taking
f ./ to similar order, so that

f ./ � �3 C �4 (9.4)
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Fig. 9.2 The horizontal line represents the critical limit a0. If �2=�4 � �1=�3, at some
intermediate value of demand , the temperature analog T � .�1 C �2/=.�3 C �4/ falls below
that limit, the system becomes “supercooled,” and sudden, punctuated, “phase transition” failure
becomes increasingly probable

the limit condition for stability becomes

T ./ � �1 C �2

�3 C �4

> a0 (9.5)

For  D 0, the stability condition is �2=�4 > a0. At large  the condition becomes
�1=�3 > a0. If �2=�4 
 �1=�3, the stability condition may be violated at high
demand densities, and instability becomes manifest. See Fig. 9.2.

9.3 The Fog-of-War Ecosystem

The next stage of the argument is not simple. For a control system embedded in a
complex and dynamic demand stream—here, the fog-of-war ecology—there will be
several (many) -values that are not independent but interact with each other. There
is not, then, a simple scalar index of demand, but rather an n 	 n matrix O with
elements i;j; i; j D 1 : : : n. In general, as opposed to correlation matrices, i;j ¤ j;i,
since influences need not be symmetric.

Can there still be a single scalar “” under such circumstances so that the
conditions of Fig. 9.2 apply? An n 	 n matrix O has n invariants ri; i D 1 : : : n that
remain fixed when “principal component analysis” transformations are applied to
data. The invariants are found using the famous characteristic equation

P.	/ D det. O � 	In/ D 	n C r1	n�1 C � � � C rn�1	 C rn (9.6)

and the ri can be used to construct an invariant scalar measure.
Here, det is the determinant, 	 is a parameter that is an element of a ring, and In

the n 	 n identity matrix. The invariants are the coefficients of 	 in the polynomial
P.	/, normalized so that the coefficient of 	n is 1.
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Since n 	 n matrices themselves form a ring, one has the classic relation

P. O/ D 0 	 In (9.7)

so that a matrix satisfies its own characteristic equation.
Again, an n 	 n matrix will have n such invariants from which a scalar index

� D g.r1; : : : ; rn/ can be constructed to replace  in Eq. (9.5). Typically, the first
invariant will be the trace and the last ˙ the determinant of O.

The reduction of the complicated interaction matrix O to the scalar � is likely to
be an ambiguous matter. We are making an approximation that must be fitted to each
fog-of-war ecosystem: there will be no one-size-fits-all simplification methodology,
although there may be equivalence classes of different systems that can be mapped
onto a particular method.

This method can be seen as a variant of the Rate Distortion Manifold approach
of Glazebrook and Wallace (2009) or the Generalized Retina used by Wallace and
Wallace (2013, Sect. 10.1). Both find necessary conditions that high dimensional
data flows can be projected down onto lower dimensional, shifting, tunable “tangent
spaces” with minimal loss of essential information. Here, we ask that a complicated
matrix interaction be projected onto a scalar function, a significant constraint that
will limit the accuracy of the technique. Permitting a higher dimensional tangent
space would improve possible fits to data, but would require significantly more
formal overhead, and remains to be done.

Essentially we are defining T .� / as a synergistic “temperature” index character-
izing fog-of-war conditions. Further analysis might uncover other “thermodynamic”
quantities characterizing the combat ecosystem. For example, a more complete
description of complex multimodal demand and its impacts on high-order, real-
time cognitive systems—autonomous weapons or man/machine cockpit/centaurs—
might involve concepts of “friction” in addition to fog-of-war “temperature.” That
is, we assume here that a weapon system can act promptly and without loss of
effectiveness. Quite often, however, combat operations are confronted both by
increasing actuation delays and progressive loss of efficiency under stress. The
incorporation of delay in the kind of stochastic differential equation models we
use here, however, introduces formidable mathematical complications, as would
inclusion of stochastic models of damage accumulation.

The simplest approach would be to combine the fog-of-war “temperature” index
with delay and attrition measures into a single “wind-chill” factor.

9.4 The Dynamics of Control Failure

What are the dynamics of T under stochastic circumstances? That is, how is a
control signal ut in Fig. 9.1 expressed in the system response xtC1? We determin-
istically retranslate an observed sequence of system outputs Xi D xi

1; xi
2; : : : into a
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sequence of possible control signals OUi D Oui
0; Oui

1; : : : and compare that sequence
with the original control sequence Ui D ui

0; ui
1; : : :, with the difference between

them having a particular value under some chosen distortion measure and hence
having an average distortion

< d >D
X

i

p.Ui/d.Ui; OUi/ (9.8)

where p.Ui/ is the probability of the sequence Ui and d.Ui; OUi/ is the distortion
between Ui and the sequence of control signals that has been deterministically
reconstructed from the system output.

It is then possible to apply a classic Rate Distortion argument (Cover and
Thomas 2006). According to the Rate Distortion Theorem, there exists a Rate
Distortion Function, R.D/, that determines the minimum channel capacity necessary
to keep the average distortion below some fixed limit D (Cover and Thomas
2006). Based on Feynman’s (2000) interpretation of information as a form of free
energy, it is possible to construct a Boltzmann-like pseudoprobability density in the
“temperature” T as

dP.R; T / D expŒ�R=T �dR
R1

0
expŒ�R=T �dR

(9.9)

since higher T must necessarily be associated with greater channel capacity.
The integral in the denominator can be interpreted as a statistical mechanical

partition function, and it is possible to define a “free energy” Morse Function F
(Pettini 2007) as

expŒ�F=T � D
Z 1

0

expŒ�R=T �dR D T (9.10)

so that F.T / D �T logŒT �.
Then an entropy-analog can also be defined as the Legendre transform of F

S � F.T / � T dF=dT D T (9.11)

The Onsager approximation to nonequilibrium thermodynamics (de Groot and
Mazur 1984) can now be applied, using the gradient of S in T , so that the dynamics
of T are represented by a stochastic differential equation

dTt D .�dS=dT /dt C ˇTtdWt

D �dt C ˇTtdWt (9.12)

where � is a diffusion coefficient and ˇ is the magnitude of the impinging white
noise dWt.
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As above, in the context of Jensen’s inequality for a concave function, applying
the Ito chain rule to log.T / in Eq. (9.12) gives the familiar result for the nonequilib-
rium steady state expectation of T as

E.Tt/ � �

ˇ2=2
(9.13)

� is interpreted as the attempt by the control apparatus—autonomous, centaur,
cockpit—to maintain stability. Thus rising system noise can significantly increase
the probability that T falls below the critical limit, triggering a punctuated failure
of control.

It is important to recognize, however, that, since E.T / is an expectation, in this
model there will always be some probability that T .� / will fall below the critical
value a0.

Raising � and limiting ˇ decreases that probability, but cannot eliminate it:
sudden onset of instability is always possible, triggering a “false target attack” in
the sense of Kish et al. (2009):

Unfortunately. . . adjusting the sensor threshold to increase the number of target attacks also
increases the number of false target attacks. Thus the operator’s objectives are competing,
and a trade-off situation arises.

It is not difficult to construct numerical simulations of these results, for example,
using the ItoProcess construct available in later versions of the computer algebra
program Mathematica.

9.5 The Dynamics of High-Level Cognitive Dysfunction

The DRT argument above implies a raised probability of a transition between stable
and unstable behavior if the temperature analog T .� / from Eq. (9.5) falls below
a critical value, as in Fig. 9.2. We can extend the perspective to more complicated
patterns of phase transition via the “cognitive paradigm” of Atlan and Cohen (1998),
who view a system as cognitive if it compares incoming signals with a learned or
inherited picture of the world, then actively chooses a response from a larger set of
those possible to it. Choice implies the existence of an information source, since it
reduces uncertainty in a formal way (Wallace 2012, 2015, 2016a).

Given such a “dual” information source associated with the inherently unstable
cognitive system of interest, an equivalence class algebra can be constructed by
choosing different system origin states and defining the equivalence of subsequent
states at a later time by the existence of a high probability path connecting them
to the same origin state. Disjoint partition by equivalence class, analogous to orbit
equivalence classes in dynamical systems, defines a symmetry groupoid associated
with the cognitive process (Wallace 2012). Groupoids are generalizations of group
symmetries in which there is not necessarily a product defined for each possible
element pair (Weinstein 1996). An example would be the disjoint union of different
groups.
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The equivalence classes across possible origin states define a set of information
sources dual to different cognitive states available to the inherently unstable
cognitive system. These create a large groupoid, with each orbit corresponding to
a transitive groupoid whose disjoint union is the full groupoid. Each subgroupoid
is associated with its own dual information source, and larger groupoids must have
richer dual information sources than smaller.

Let XGi be the system’s dual information source associated with groupoid
element Gi. Given Eqs. (9.5)–(9.7), we construct a Morse Function (Pettini 2007)
in a standard manner, using � D g.r1; : : : ; rn/ in Eq. (9.5) in place of .

Let H.XGi/ � HGi be the Shannon uncertainty of the information source
associated with the groupoid element Gi. Define another Boltzmann-like pseudo-
probability as

PŒHGi � � expŒ�HGi=T �
P

j expŒ�HGj=T �
(9.14)

where the sum is over the different possible cognitive modes of the full system.
Another “free energy” Morse Function F can then be defined as

expŒ�F=T � �
X

j

expŒ�HGj=T �

F D �T log

2

4
X

j

expŒ�HGj=T �

3

5 (9.15)

As a consequence of the underlying groupoid generalized symmetries associated
with high-order cognition, as opposed to simple control theory, it is possible to apply
an extension of Landau’s version of phase transition (Pettini 2007). Landau argued
that spontaneous symmetry breaking of a group structure represents phase change
in physical systems, with the higher energies available at higher temperatures
being more symmetric. The shift between symmetries is highly punctuated in the
temperature index, here the “temperature” analog of Eq. (9.5), in terms of the scalar
construct � D g.r1; : : : ; rn/, but in the context of groupoid rather than group
symmetries.

Based on the analogy with physical systems, there should be only a few
possible phases, with highly punctuated transitions between them as the fog-of-
war “temperature” T decreases, ultimately freezing the operational phenotype into
the usual always-on mode: “Kill everything, and let God sort them out.” Sufficient
conditions for the stability of this pathological state are discussed in Sects. 4.3
and 5.9 above.
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9.6 Discussion and Conclusions

According to the Data Rate Theorem, if the rate at which control information
can be provided to an unstable system is below the critical limit defined by the
rate at which the system generates “topological information,” there is no coding
strategy, no timing strategy, no control scheme of any form, that can ensure stability.
Generalization to the rate of incoming information from the rapidly changing
multimodal “roadway” environments in which a real-time cognitive system must
operate suggests that there will be sharp onset of serious dysfunction under the
burden of rising demand. Here we have analyzed that multimodal demand in
terms of the crosstalk-like fog-of-war matrix i;j that can be characterized by
situation-specific statistical models leading to the scalar temperature analog T .
More complicated “tangent space” reductions are possible, at the expense of greater
mathematical overhead (e.g., Glazebrook and Wallace 2009).

There will not be graceful degradation under falling fog-of-war “temperature” or
“wind-chill” factors, but rather punctuated functional decline that, for autonomous,
centaur, or man–machine cockpit weapon systems, deteriorates into a frozen
state in which “all possible targets are enemies,” as in the case of the Patriot
missile fratricides (Hawley 2006; Wallace 2016a). Other cognitive systems display
analogous patterns of punctuated collapse into simplistic dysfunctional phenotypes
or behaviors (Wallace 2015, 2016b): the underlying dynamic is ubiquitous and,
apparently, inescapable. In sum, there is no free lunch for cognitive weapon systems,
with or without hands-on human control. All such systems are inherently susceptible
to serious operational instabilities under complex fog-of-war environments. Policy
based on the business dreams of military contractors and their academic or think-
tank clients—promises of precision targeting—will be confronted by nightmare
realities of martyred civilian populations, recurring generations of new “terrorists,”
and the persistent stench of war crime.
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Chapter 10
The Dynamics of Environmental Insult

Summary The principal environment of humans, their machines, man/machine
composites, and institutions, is other entities of the same sort, creating an inherent
positive feedback for the environmental insults triggering developmental and cog-
nitive dysfunctions at different scales and levels of organization. We bookend the
evolutionary discussion of the opening chapter on consciousness with an analogous
treatment adapted from evolutionary economics, parallel to the resilience theory of
ecosystem studies.

10.1 Introduction

Environmental insult plays a central role in developmental and cognitive
dysfunction, affecting regulatory decisions at the directed homotopy branch points
that characterize both ontology and decision. But, for humans, their machines
and man/machine composites, and for institutions, the principal determinant, and
often the major component, of that environment is those very things. This is, then,
inherently a highly reflexive system that has long been characterized by evolutionary
economists as “Schumpeterian” (e.g., Hodgson and Knudsen 2010; Wallace 2015
and the references therein). Such systems are subject to evolutionary selection
pressures similar to, but different from, those outlined in the first chapter of this
book. Nonetheless, the similarities are sufficient to permit formal analysis of the
dynamics of environmental insult from an evolutionary perspective, leading to a
“punctuated equilibrium” treatment analogous to the “domain shifts” of ecosystem
resilience theory (Gould 2002; Holling 1973, 1992).

For the USA, two recent phenomena have driven large-scale patterns of environ-
mental insult, triggering behavioral dysfunctions across multiple scales and levels
of organization. These phenomena are widespread deurbanization and “rust belt”
deindustrialization, both related to public policies and economic decisions (Wallace
and Wallace 1998; Wallace 2015; Ullmann 1988; Melman 1971).

Beginning in the 1970s, cities like New York, Newark, Detroit, Cleveland, and
elsewhere suffered outbreaks of contagious urban decay and building abandonment
leaving vast areas resembling the bombed-out cities of Germany after WW II.
In New York City, the outbreak was driven by cuts in fire-related municipal
services delivered to minority voting blocs (Wallace and Wallace 1998). Figure 10.1
shows the loss of occupied housing units in the Bronx section of New York City
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Fig. 10.1 Percent change in occupied housing units for New York City’s Borough of the Bronx
between 1970 and 1980. The degree of housing loss is unprecedented for an industrialized country
outside of wartime. Similar losses have affected many US central cities, particularly across the
“rust belt” counties suffering Cold War-induced deindustrialization (Wallace 2015, Chap. 7)

between 1970 and 1980. The Bronx, with 1.4 million people, is one of the largest
conurbations in the Western world. Some districts lost as much as 80% of their
housing units in this time, causing massive population displacement and loss of the
social cohesion that is the basis of population physical and mental health (Wallace
and Wallace 1998).

Widespread deindustrialization followed upon the death of the US economic
“Red Queen” that had been fueled by a necessarily relentless focus of scientific
and engineering resources on the improvement of civilian industry (Melman 1971;
Ullmann 1988; Wallace 2015). That is, to remain globally competitive, West-
ern “market” economies must improve productivity some 3% annually. Forever.
Diversion of inherently limited scientific and technological resources into weapons
development and production, what Seymour Melman called the establishment of
“Pentagon capitalism,” fatally undercut the ability of the USA to compete with
“Asian tiger” countries.

Figure 10.2 shows the result: counties of the US rust belt losing 1000 or more
industrial jobs between 1972 and 1987, well before the “globalization” policies now
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Fig. 10.2 “Rust Belt” counties of the USA losing 1000 or more industrial jobs between 1972 and
1987, well before formal “globalization” policies

blamed for the loss of those jobs. Globalization simply involved easing the use of
offshore factories to manufacture what the USA could no longer competitively build
at home.

Chapter 7 of Wallace and Wallace (2017) provides a more complete treatment
of the public health effects of deindustrialization, and Chap. 7 of Wallace (2015)
models the economic impact of the Cold War diversion of scientific and engineering
resources from civilian to military enterprise in terms of a dynamic “Pentagon
ratchet,” treated in more detail here using evolutionary perspectives.

The evolutionary theory of institutional economics provides tools for understand-
ing the action of selection pressure on institutional dynamics, and, at the population
level for a Western nation, these dynamics determine levels of environmental insult
resulting in the developmental disorders studied in the previous chapters. Even
cognitive machine systems may be driven to dysfunction by the positive feedback
of self-referential environmental insult. For example, under combat conditions it
is easy to imagine a feedback loop in which lowering the “wind-chill” fog-of-war
index T serves to intensify selection pressures that ratchet it further down.

We begin with a recapitulation of basic ideas from evolutionary economics.
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10.2 Institutional Evolution

Evolutionary perspectives, long applied to social and economic enterprises, have
become an increasingly attractive alternative to current failing “atomistic” economic
theory (e.g., Hodgson and Knudsen 2010; Wallace 2013, 2015, Chap. 1, and the
references therein). Two dynamics dominate: punctuated equilibrium, in the sense
of Eldredge and Gould (1972), and path dependence (Gould 2002). The argument
is as follows.

Socioeconomic infrastructure, consisting of interacting enterprises, undergoes
evolutionary process according to a modified version of the traditional biological
mode (Wallace 2013):

1. Variation. Among individual institutions there is considerable variation in
structure and behavior.

2. Inheritance of corporate culture. Within its developmental path, which can
be seen as a kind of reproductive process, an institution will resemble its own
history more than that of other institutions, as corporate strategies, resources,
and perspectives are passed on in time.

3. Change. Learned or enforced variation in structure and policy is constantly
occurring in surviving institutions.

4. Environmental interaction. Individual institutions and related groups engage
in powerful, often punctuated, dynamic mutual relations with their embedding
environments that may include the exchange of “heritage material” between
markedly different entities through learning, or the abduction or diffusion of
ideas and opinions.

Many of the essential processes within this structure can be represented in terms
of interacting information sources, constrained by the asymptotic limit theorems of
information and control theories. Following the arguments of Wallace (2013, 2014,
2015), it can be shown that

1. An embedding ecosystem has “grammar” and “syntax” that allows it to be
represented as an information source, say X.

2. Like genetic heritage, institutional heritage is also characterized as a “language,”
and hence an information source Y .

3. As described above, institutional cognition involves a dual information source, Z.
Further, cognition is always associated with groupoids that generalize the idea of
a symmetry group.

4. Large deviations in dynamical systems occur with very high probability only
along certain developmental pathways, allowing definition of an information
source we will call LD. See Wallace (2013, 2014, 2015) for details that follow
the arguments of Champagnat et al. (2006).

As a consequence, we can define a joint Shannon uncertainty representing the
interaction of these information sources as

H.X; Y; Z; LD/
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Defining an “entropy” across a vector of system parameters J as the Legendre
transform

S � H.J/ � J � rJH (10.1)

we can apply, in first order, an analog to the Onsager approximations of earlier
chapters. That is, a first order dynamic equation follows using the stochastic version
of the Onsager formalism from nonequilibrium thermodynamics (de Groot and
Mazur 1984)

dJi
t �

 
X

k

�i;k@S=@Jk
t

!

dt C �iJ
i
tdBt (10.2)

�i;k defines a diffusion matrix, the �i are parameters, and dBt represents a noise
that may not the usual Brownian motion under undifferentiated white noise.

Setting the expectation of this relation to zero, we find a relatively large set of
nonequilibrium steady states (nss), indexed by j. Each nss is characterized by an
uncertainty value Hj.

Importing the environmental stress index T from earlier chapters,

T D �1� C �2

�3� C �4

where � represents a scalar constructed from the invariants of a complex environ-
mental crosstalk matrix, we can write a pseudoprobability for state q as

Pq D exp.�Hq=T /
P

j exp.�Hj=T /
(10.3)

and define a “free energy” Morse Function OF in terms of the denominator sum, i.e.,

exp.� OF=T / �
X

j

exp.�Hj=T / (10.4)

Changes in T (inverse in the index of environmental insult � ) will be associated
with profound—and highly punctuated—evolutionary transitions (Eldredge and
Gould 1972; Gould 2002; Wallace 2014). These transitions, involving cognitive
groupoid analogs to physical “symmetry breaking” (Pettini 2007), then define
entirely new pathways along which socioeconomic systems develop. There is never,
ever, a “return to normal after perturbation” in path-dependent evolutionary process.

Taking the perspective of Wallace (2011), it is possible to examine an economic-
like ratchet that, in evolutionary terms, is usually characterized as a “self-referential”
dynamic. Goldenfeld and Wose (2010) describe the mechanism for biological
evolution:
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Fig. 10.3 The vertical axis indexes degree of social organization. The horizontal axis represents
the degree of environmental insult � . At low insult the system drifts about a nonequilibrium
steady state with significant social integration and organization. Insult exceeding some critical level
triggers a punctuated phase change via a large deviation, leading to a less organized nonequilibrium
steady state. Social disintegration, of itself, constitutes a serious environmental insult, leading to
“self-referential” ratchet dynamics: a positive feedback-driven race to the bottom. Conversely,
however, significant investment in social, technological, and physical infrastructure can trigger
an upward ratchet

. . . [T]he genome encodes the information which governs the response of an organism to its
physical and biological environment. At the same time, this environment actually shapes
genomes through gene transfer processes and phenotype selection. Thus, we encounter a
situation where the dynamics must be self-referential: the update rules change during the
time evolution of the system, and the way in which they change is a function of the state
and thus the history of the system. . . self-referential dynamics is an inherent and probably
defining feature of evolutionary dynamics. . .

The evolutionary dynamic we propose for socioeconomic systems under the
stress of environmental insult is illustrated by Fig. 10.3. The vertical axis represents
an index of social organization—percent voting, educational attainment, percent
active in civic associations or religious institutions, etc. The horizontal axis is taken
as a measure of environmental stress � . At low levels of insult the system drifts
about some nonequilibrium steady state having relatively high degrees of social
integration. When stress exceeds a threshold, there is a punctuated phase change
associated with a large deviation, leading to a less organized nonequilibrium steady
state, as indicated. Thus onset of social disintegration itself constitutes a significant
environmental insult, leading to a fully self-referential downward ratchet.

A relatively simple deterministic mathematical description of such a binary
switch might be as follows. Assume � , the scalar index of environmental stress,
is initially at some nonequilibrium steady state, and that � ! � C 
. Then 
 is
assumed, in first order, to follow a relation
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d
=dt D �
 � C=
; C; � > 0 (10.5)

so that, if 
 � p
C=�, then d
=dt � 0, and the system remains at or near � .

Otherwise d
=dt becomes positive, and the switch is triggered, according to
Fig. 10.3. Other models that lead to such quasi-stability could be used.

Next, we expand in a stochastic treatment, so that

d
t D .�
t � C=
t/dt C �
tdWt (10.6)

where � is an index of the magnitude of impinging white noise dWt. Then, applying
the Ito chain rule to logŒ
t� (Protter 1990), in the context of Jensen’s inequality for
a concave function, the nonequilibrium steady state expectation is

EŒ
t� �
s

C

� � �2=2
(10.7)

Sufficient noise drives an explosive perturbation. In addition, since Eq. (10.7)
is an expectation across a probability distribution, even at relatively low mean
values there may well be much larger stochastic excursions—large deviations—that
can trigger a destabilizing transition, following Fig. 10.3. Again, Wallace (2015,
Chap. 7) examines the impact of the diversion of technological resources from
civilian to military industrial enterprise during the Cold War leading to the massive
“rust belt” collapse in the USA.

Of course, given sufficient “available free energy,” in a large sense, upward
ratchets in levels of organization—analogous to the famous aerobic transition or,
in human social systems, to the American Revolution, the Industrial Revolution, or
the US Labor and Civil Rights Movements—are also possible.

10.3 Discussion and Conclusions

Given that the principal environment of humans, their machines, man/machine
composites, and embedding institutions, is more of the same, it becomes clear
that environmental insult driving both developmental and cognitive dysfunction
can become a self-dynamic force, triggering outcomes that can fuel the fire, as
it were. This can, as indicated, go both ways: ratchets can be upward as well
as downward. Sufficient sociotechnical investment can initiate socioeconomic and
cultural dynamics that reverse environmental factors that are driving developmental
and cognitive dysfunctions across many scales and levels of organization. The
precipitate decline in “normal” death rates for industrialized nations that following
the reforms of the late nineteenth and early twentieth centuries provides a cogent
case history.
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Holling (1992) argues persuasively that, for ecosystems, mesoscale “keystone”
processes in particular entrain both higher and lower levels of organization.
Given the recent history of the USA, it seems clear that the essential mesoscale
perturbations involved deindustrialization and deurbanization, individually and in
synergism. Both dynamics were driven by public policy. Unlike ecosystems under-
going eutrophication, however, socioeconomic systems can be ratcheted upward.
For the USA, both deindustrialization and deurbanization can, in theory, be reversed
by public policy, as outlined by Ullmann (1988) and Wallace (2015, Sect. 7.6).
In brief, reversing the American Catastrophe would require ending “Pentagon
Capitalism,” active reindustrialization and infrastructure reconstruction, rebuilding
of cities to recapture economies of scale, public education through the Masters
Degree for those who wish it, and draconian opposition to the scapegoating of
minorities that is not only a distraction from real issues, but also the canonical
process by which a dying empire eats its own entrails.
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Chapter 11
Social Psychopathology: Military Doctrine
and the Madness of Crowds

Summary Institutions, commercial enterprises, communities, political entities,
and the social milieus in which they are enmeshed must engage in cognitive process
to address day-to-day contingencies and incorporate the learning needed to suc-
cessfully adapt to larger evolutionary selection pressures. Failure of cognition, we
show using control and information theory models, will be driven by environmental
challenges that can force such systems into persistent ground states where cognitive
process becomes pathologically fixated. The consequent path-dependent develop-
mental path then remains pathological in the absence of sufficiently sustained
external correction pressures. Under combat conditions this might translate into
“all possible targets are enemies.” Among human tribal groups, “only we are real
people,” and so on. These powerful dynamics preclude the engineering resilience
approach of current US security doctrine: While it may be possible to ensure return
to normal function for relatively simple power and communications networks under
moderate perturbation, extension of the idea to socioeconomic entities is a ludicrous
fantasy. Ecosystem and evolutionary perspectives that recognize the possibility of
path-dependence and long-term eutrophication, in various forms, are more relevant,
and may lead to realistic and sustainable policy objectives.

11.1 Introduction

The term “resilience” [as used in US security doctrine] refers to the ability to adapt to chang-
ing conditions and withstand and rapidly recover from disruption due to emergencies. . . The
United States officially recognized resilience in national doctrine in the 2010 National
Security Strategy, which states that we must enhance our resilience – the ability to adapt
to changing conditions and prepare for, withstand, and rapidly recover from disruption. (US
Dept. of Homeland Security 2016).

Translated into military terms Bergson’s “elan vital” [the all-conquering will] became the
doctrine of the offensive. In proportion as a defensive strategy gave way to an offensive
strategy, the attention paid to the Belgian frontier gradually gave way in favor of a
progressive shift of gravity eastward toward the point where a French offensive could be
launched to break through to the Rhine.(Tuchman, The Guns of August, 1962).

Western cultural atomism, it has been argued (Wallace 2015a,b Chap. 1, and
the references therein), limits, and indeed badly deforms, theory in economics,
evolution, and human psychology. An example of ideological deformation in
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“resilience” research is the work of Gao et al. (2016) published by the prestigious
journal Nature—and supported by the Army Research Laboratories and the Defense
Threat Reduction Agency—that seeks “universal resilience patterns in complex
networks.” Gao et al. (2016) claim

[Our] analytical results unveil the network characteristics that can enhance or diminish
resilience, offering ways to prevent the collapse of ecological, biological or economic
systems, and guiding the design of technological systems resilient to both internal failures
and environmental changes.

This is a predetermined result clearly driven by the doctrine quoted above.
Military-funded research is centrally tasked with implementing doctrine, here
constrained to deliver a simplistic engineering resilience involving the ability to
bounce back to near normal function after significant perturbation. US security
doctrine thus inhibits exploration more complex—and far more likely—scenarios
that do not have politically palatable outcomes.

This is indeed reminiscent of “elan vital”, a doctrine that involved, in addition to
command blindness regarding German incursion through Belgium, such tactics as
mass charges into concentrations of machine guns entrenched behind barbed wire.
Today, US security doctrine calls for “Resilience.” A 100 years has not been enough
time for Western military practitioners to appreciate the deadly burdens of tactical
and strategic fantasy. The recent US occupation of Iraq also comes to mind.

Apparently this is all of a piece.
We know that enterprises and institutions—cognitive entities that can learn from

experience and incorporate that learning into corporate culture—are subject to
evolutionary selection pressures strongly enforcing path dependence (Hodgso and
Knudsen 2010; Wallace 2015a, and the references therein). “Buggy whip” industries
become extinct in the face of significant market shifts if they do not adapt rapidly
enough.

Evolutionary dynamics profoundly challenge the engineering resilience require-
ments of US defense and homeland security doctrine for enterprises, institutions,
and socioeconomic systems. Intractable difficulties emerge from the powerful cog-
nitive processes that must incorporate learning into corporate culture for successful
adaptation, while crafting responses under shifting day-to-day market demands.
Most particularly, facing environmental pressures, in a large sense, cognitive entities
for which information about the real world is an essential control signal can be
rapidly driven into a pathological ground state of policy paralysis and fixation that
may ensure their ultimate demise. We will provide models of this taken from control
and information theories.

In sum, the cognitive dynamics essential to short-term institutional function and
long-term adaptation are synergistic with path-dependent evolutionary process in
precluding doctrine and policy based on ideas of ensuring simple bounce back to
normal following serious disturbance.
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11.2 A Control Theory Model

Civilian aircraft can, often for considerable periods, remain in stable flight as long
as their center of pressure is well behind their center of gravity: Perturbations of
trajectory quickly diminish. By contrast, cognitive systems like human institutions
usually operate on rapidly shifting topological roadways of complicated “real
time” multimodal demand. These are highly turbulent topologies, and, to function
successfully, cognitive systems embedded in them must receive constant flows of
sufficiently detailed descriptive information. One analog is that of driving at high
speed on a twisting, pot-holed road at night, a feat demanding not only a reliable
vehicle and fast reflexes, but also excellent headlights. See Chap. 8.

We thus argue that a cognitive process operating under such constraints is inher-
ently unstable in the sense of control theory’s Data Rate Theorem, viewing incoming
information about the rapidly shifting topology of demand as the control signal. This
fact has profound implications, particularly for path-dependent phenomena.

The canonical first model uses a linear expansion around a nonequilibrium steady
state for which the rate of control information is sufficient for stability.

Paraphrasing Nair et al. (2007), the Data Rate Theorem (DRT) contends that there
is a minimum rate at which control information must be provided for an inherently
unstable system to remain stable. Making a linear expansion near a nonequilibrium
steady state, an n-dimensional vector of system parameters at time t, xt, determines
the state at time t C 1 according to Fig. 11.1, with

xtC1 D Axt C But C Wt (11.1)

Fig. 11.1 A linear expansion near a nonequilibrium steady state for an inherently unstable control
system. A and B are square matrices, xt the vector of system parameters at time t, ut the vector of
control signals at time t, Wt a white noise vector, and xtC1 D Axt C But C Wt. The Data Rate
Theorem states that the minimum rate at which control information must be provided for system
stability is H > logŒj detŒAmj�, where Am is the subcomponent of A having eigenvalues � 1
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A; B are fixed n 	 n matrices, ut is the vector of control information, and Wt is
an n-dimensional vector of white noise. The DRT under such a condition states that
the minimum control information rate for stability, H, satisfies the inequality

H > logŒj det.Am/j� � a0 (11.2)

where, for m � n, Am is the subcomponent of A having eigenvalues � 1. The right-
hand side of Eq. (11.2) defines the rate at which the system generates topological
information. A more general version of this result is derived in the Mathematical
Appendix using a Rate Distortion Theorem approach.

Defining a parameter  as a scalar representing the magnitude of some index
of multimodal system demand that will be explored further below, we can extend
Eq. (11.2) as

H./ > f ./a0 (11.3)

where a0 is an inherent system parameter and f ./ is a positive, monotonically
increasing function of environmental stress. The Mathematical Appendix uses
a Black–Scholes model to approximate the “cost” of H as a function of the
“investment” . The first approximation is linear, so that H � �1 C �2.

Expanding f ./ to similar order, i.e.,

f ./ � �3 C �4 (11.4)

defines the limit condition for stability as

T � �1 C �2

�3 C �4

> a0 (11.5)

For  D 0, the stability requirement is that �2=�4 > a0. At large  the condition
becomes �1=�2 > a0. If �2=�4 
 �1=�2 < a0, the stability condition may be
breached at high demand densities, and the system becomes instable. See Fig. 11.2.

For a cognitive system embedded in a rapidly shifting and complicated demand
stream “highway,” there may be several different -values that are not independent
but interact and influence each other. Generally there will not be a simple scalar
index of demand, but an unsymmetric n 	 n matrix O having elements i;j; i; j D
1 : : : n.

Can we still find a scalar “” under such complex circumstances so that Fig. 11.2
applies? An n 	 n matrix O has n invariants ri; i D 1 : : : n that remain fixed when
a certain class of “principal component analysis” transformations is applied. The
invariants are found via the characteristic equation of the matrix

P.	/ D det. O � 	In/ D 	n C r1	n�1 C � � � C rn�1	 C rn (11.6)



11.2 A Control Theory Model 213

Fig. 11.2 The horizontal line represents the critical limit a0. If a0 < �2=�4 � �1=�3 < a0, at
some intermediate value of demand , the temperature analog T � .�1 C �2/=.�3 C �4/ falls
below that limit, the system becomes “supercooled,” and failure becomes increasingly probable

det is the determinant, 	 is a parameter that is an element of a ring, and In the
n	n identity matrix. The invariants are the coefficients of 	 in the polynomial P.	/,
normalized so that the coefficient of 	n is 1.

The ri, we claim, can be used to construct an invariant scalar measure, subject to
the approximation inherent in projecting an n 	 n matrix onto one dimension.

Since n 	 n matrices themselves form a ring,

P. O/ D 0 	 In (11.7)

and a matrix satisfies its own characteristic equation.
An n 	 n matrix will thus have n such invariants from which a new scalar index

� D g.r1; : : : ; rn/ can be constructed to replace  in Eq. (11.5). The first invariant
will be the trace and the last ˙ the determinant of O.

We reiterate that reduction of the complicated interaction matrix O to the scalar
� is an ambiguous matter, at best an approximation that must be dynamically
fitted to each fog-of-war ecosystem. There is, as a consequence, no one-size-fits-all
simplification methodology, although there may be equivalence classes of different
systems that can be mapped onto a particular method.

This development is another example of the “Rate Distortion Manifold” (RDM)
of Glazebrook and Wallace (2009), or the equivalent “Generalized Retina” of
Wallace and Wallace (2013, Sect. 10.1) in which high dimensional data flows can be
projected down onto lower dimensional, shifting and tunable “tangent spaces” with
minimal loss of essential information.

The RDM approach is in contrast to the treatment of engineering resilience—
return to a single stable mode after perturbation—by Gao et al. (2016) who
condense network topologies by defining an “effective state” of a multidimensional
network system using the average nearest-neighbor activity. They thus collapse a
multidimensional dynamic equation into one-dimensional form. By contrast, here
the DRT provides an inherently one-dimensional format whose complexities reside
in the matrix O, leading to an understanding of complex ecological resilience in
the sense of Holling (1973), that is, the existence of a number of quasi-stable
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modes, with the possibility of transitions between them driven by changes in context
indexed by an appropriately chosen “temperature” analog T , defined now in terms
of the complicated “retina” index � rather than .

T will, we can show, undergo dynamics strongly affected by embedding
stochastic circumstances.

How is a control signal ut in Fig. 11.1 expressed in the system response xtC1?
In standard Rate Distortion Theorem manner (Cover and Thomas 2006), we
deterministically retranslate an observed sequence of system outputs Xi D xi

1; xi
2; : : :

into a sequence of possible control signals OUi D Oui
0; Oui

1; : : : and to compare that
sequence with the original control sequence Ui D ui

0; ui
1; : : :, with the difference

between them having a particular value under some chosen distortion measure and
hence having an average distortion

< d >D
X

i

p.Ui/d.Ui; OUi/ (11.8)

p.Ui/ is the probability of the sequence Ui. d.Ui; OUi/ is the distortion between
Ui and the sequence of control signals that has been deterministically reconstructed
from system output.

It is then possible to apply a Rate Distortion argument. The Rate Distortion The-
orem asserts that there is a Rate Distortion Function that determines the minimum
channel capacity—R.D/—necessary to keep the average distortion below some
fixed limit D. Again, see Cover and Thomas (2006) for details. Taking Feynman’s
(2000) interpretation of information as a form of free energy, it is possible to
construct a Boltzmann-like pseudoprobability in the temperature analog T :

dP.R; T / D expŒ�R=T �dR
R1

0
expŒ�R=T �dR

(11.9)

since higher T must necessarily be associated with greater channel capacity.
The integral of the denominator is interpreted as a statistical mechanical partition

function, allowing definition of a “second order” free energy Morse Function F
(Pettini 2007):

expŒ�F=T � D
Z 1

0

expŒ�R=T �dR D T (11.10)

This gives F.T / D �T logŒT �.
Similarly, a “second order” entropy-analog can also be defined:

S � F.T / � T dF=dT D T (11.11)

An analog to the Onsager treatment of nonequilibrium thermodynamics (de
Groot and Mazur 1984) can now be used, using the gradient of S in T as the driving
factor, and a stochastic version of the standard Onsager equation emerges:
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dTt � .�dS=dT /dt C ˇTtdWt

D �dt C ˇTtdWt (11.12)

� is an analog to a diffusion coefficient and ˇ is the magnitude of the impinging
white noise dWt.

By a now-familiar argument, applying the Ito chain rule to log.T / in Eq. (11.12)
(Protter 1990), using Jensen’s inequality for a concave function gives the nonequi-
librium steady state expectation of T as

E.Tt/ � �

ˇ2=2
(11.13)

� parameterizes the efforts of the control apparatus to maintain stability. Thus,
according to this approximation, rising system noise—ˇ—can significantly increase
the probability that T falls below the critical limit, triggering a failure of control.

It is critical to note that, since E.T / is an expectation, according to the model,
there will always be some probability that T will fall below the critical value a0 in
the multimodal expression

T � �1� C �2

�3� C �4

> a0 (11.14)

Raising � and limiting ˇ decreases that probability, but does not eliminate it.
Instability remains possible at every level of �.

ˇ itself can, of course, have further structure, leading to more complicated
dynamics.

11.3 A Cognitive Model

The DRT argument above indicates a significantly raised probability of a transition
between stable and unstable behavior if the temperature analog T from Eq. (11.14)
falls below a critical value. It is possible to extend the argument, involving more
complicated patterns of phase transition, using the cognitive approach of Atlan and
Cohen (1998). They define a system as cognitive if it compares incoming signals
with a learned or inherited picture of the world, and then actively chooses a response
from a larger set of what is possible to it. Choice implies the existence of—and
indeed virtually defines—an information source, since it reduces uncertainty in a
formal way (Wallace 2012, 2015a,b).

Assuming such a “dual” information source is associated with the inherently
unstable cognitive system under study, an equivalence class algebra can be con-
structed by choosing different system origin states and defining the equivalence
of subsequent states at a later time by the existence of a high probability path
connecting them to the same origin state. Disjoint partition by equivalence class
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is analogous to orbit equivalence classes in dynamical systems. This inherently
defines a symmetry groupoid associated with the cognitive process (Wallace 2012).
Groupoids are generalizations of group symmetries in which there is not necessarily
a product defined for each possible element pair (Weinstein 1996). The canonical
simple example is the disjoint union of different groups.

The equivalence classes across possible origin states then define a set of
information sources dual to different cognitive states available to the inherently
unstable cognitive system. These instantiate a very large groupoid, with each orbit
corresponding to a transitive groupoid whose disjoint union is the full groupoid.
Each subgroupoid is associated with a dual information source, and larger groupoids
will have richer dual information sources than smaller.

Take XGi as the dual information source associated with some groupoid element
Gi. Assuming Eqs. (11.5)–(11.7), it becomes possible to construct another Morse
Function (Pettini 2007), again using Eq. (11.14) to define the “temperature” T .

Let H.XGi/ � HGi be the Shannon uncertainty of the information source associ-
ated with the groupoid element Gi. Define a Boltzmann-like pseudoprobability:

PŒHGi � � expŒ�HGi=T �
P

j expŒ�HGj=T �
(11.15)

The sum is now over the different possible cognitive modes of the full system.
A “free energy” Morse Function F can again be defined:

expŒ�F=T � �
X

j

expŒ�HGj=T �

F D �T log
hX

j

expŒ�HGj=T �
i

(11.16)

Using the underlying groupoid generalized symmetries, it is possible to invoke
an obvious extension of Landau’s version of phase transition (Pettini 2007). Landau
argued that spontaneous symmetry breaking of a group structure represents phase
change in physical systems, with higher energies available at higher temperatures
being more symmetric. The shift between symmetries is then punctuated in the
temperature index, here the T constructed in terms of the scalar index � D
g.r1; : : : ; rn/. This is now in the context of groupoid rather than group symmetries.
Typically, for physical systems, there are only a few phases possible, with sharply
punctuated transitions between them as T decreases.

Sufficient conditions for the pathological stability of the hypercondensed
“ground state” cognitive phase in which “all possible targets are enemies,” or
some analog, can be explored using the approach of Wallace (2016).

Assuming a vector of parameters J measuring deviations from a pathological
nonequilibrium steady state, the “free energy” analog F in Eq. (11.16) can be used
to define a new “entropy” scalar as the Legendre transform

S � F.J/ � J � rJF (11.17)
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Again, a first order dynamic equation follows using the stochastic version of
the Onsager formalism from nonequilibrium thermodynamics (de Groot and Mazur
1984)

dJi
t �

�X

k

�i;k@S=@Jk
t

�
dt C �iJ

i
tdBt (11.18)

�i;k defines a diffusion matrix, the �i are parameters, and dBt represents a noise
that may not the usual Brownian motion under undifferentiated white noise.

If it is possible to factor out Ji, then Eq. (11.18) can be represented as:

dJi
t D Ji

tdYi
t (11.19)

Here, Yi
t may be a complicated stochastic process.

Equation (11.20) can now be solved in expectation using the Doleans-Dade
exponential (Protter 1990):

E.Ji
t/ / exp.Yi

t � 1=2ŒYi
t ; Yi

t �/ (11.20)

where ŒYi
t ; Yi

t � is the quadratic variation of the stochastic process Yi
t (Protter 1990).

Using the Mean Value Theorem, if

1=2dŒYi
t ; Yi

t �=dt > dYi
t =dt (11.21)

then the pathological ground state is stable. That is, deviations from nonequilibrium
steady state measured by Ji

t then converge in expectation to 0. Thus sufficient
ongoing fog-of-war noise or other environmental stress which determines the
quadratic variation terms can lock-in the failure of “target discrimination,” in a large
sense. There will be no return to the “normal” state under such circumstances: the
“engineering resilience” of Gao et al. (2016), and of current US security doctrine,
fails.

As described above, similar dynamics arise in ecosystem resilience theory
(Holling 1973) that characterizes multiple quasi-stable nonequilibrium steady states
among interacting populations. The standard example is that pristine alpine lake
ecosystems, which have limited nutrient inflows, can be permanently shifted into a
toxic eutrophic state by excess nutrient influx—a sewage leak, fertilizer runoff, and
so on. Once shifted, the lake ecology will remain trapped in a mode of recurrent
“red tide”-like plankton blooms even after sewage or fertilizer inflow is stemmed.

The quadratic variation can be estimated from time series data using the spectral
methods of Dzhaparidze and Spreij (1994), taken from the literature on financial
engineering, in which these approaches are standard.



218 11 Social Psychopathology: Military Doctrine and the Madness of Crowds

11.4 Discussion and Conclusions

Institutions, commercial enterprises, communities, and their enmeshing social
structures must engage in cognitive process to address rapidly changing patterns
of challenge and opportunity, and, more slowly, incorporate the learning necessary
for successful adaptation to shifts in large-scale evolutionary selection pressures.
Failure of cognition, we have indicated, can be triggered by environmental chal-
lenges that drive such structures into highly persistent ground states where cognitive
process becomes pathologically fixated, initiating a pathological developmental
pathway.

Under combat conditions this dynamic might translate into “all possible targets
are enemies.”

Among human tribal groups of various sorts, something like “only we are real
people” emerges, leading to or enforcing social fragmentation.

Failing enterprises often focus on analogs to counting boxes of office pens and
numbers of headquarters toilet paper rolls instead of on new products or market
strategies.

As described above, the accelerating political and public health instabilities
following the Cold War-induced deindustrialization of the USA provide a powerful
case history (Wallace and Wallace 2010, Chap. 7; Wallace 2015a, Chap. 7). Details
of how US deindustrialization was driven by 50 years of Cold War can be found in
Ullmann (1988), Melman (1971), and related works.

Wallace and Wallace (1998) and Wallace (2011) explore the long-term impacts
of a “planned shrinkage” policy aimed against minority voting blocks in New York
City and implemented by the targeted withdrawal of fire extinguishment resources
from poverty-stricken, high fire incidence, high population density neighborhoods.
This deliberate policy triggered rapid downward spirals of social and physical
disintegration causing great exacerbation of multiple indices of morbidity, mortality,
and criminal activity.

Readers will have their own examples.
None of this resembles the engineering resilience of current US security doctrine

as expressed in the opening quotation and instantiated by Gao et al. (2016).
While it may be possible to stabilize relatively simple power and communications
networks under moderate perturbation, extension of the approach to institutions,
enterprises, economic structures, and communities is ludicrous. Ecosystem and
institutional evolutionary perspectives that recognize the possibility of persistent
eutrophication, in various forms, are more to the point (e.g., Holling 1973), although
the implications will most surely not please the present US security establishment,
whose many wishful-thinking “Elan”-like doctrines, and the policies based on them,
have contributed materially to the nation’s decline (Wallace 2015a, Chap. 7; Wallace
and Wallace 2010, Chap. 7, and the references therein).

Ecosystem resilience and institutional evolutionary theories may, if properly
adapted, provide tools actually useful in achieving realistic policy goals.
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Chapter 12
Mathematical Appendix

12.1 Groupoids

Following Weinstein (1996) closely, a groupoid, G, is defined by a base set A upon
which some mapping—a morphism—can be defined. Note that not all possible pairs
of states .aj; ak/ in the base set A can be connected by such a morphism. Those that
can define the groupoid element, a morphism g D .aj; ak/ having the natural inverse
g�1 D .ak; aj/. Given such a pairing, it is possible to define “natural” end-point maps
˛.g/ D aj; ˇ.g/ D ak from the set of morphisms G into A, and a formally associative
product in the groupoid g1g2 provided ˛.g1g2/ D ˛.g1/; ˇ.g1g2/ D ˇ.g2/, and
ˇ.g1/ D ˛.g2/. Then the product is defined, and associative, .g1g2/g3 D g1.g2g3/.

In addition, there are natural left and right identity elements 	g; g such that
	gg D g D gg (Weinstein 1996).

An orbit of the groupoid G over A is an equivalence class for the relation aj �
Gak if and only if there is a groupoid element g with ˛.g/ D aj and ˇ.g/ D ak.
Following Cannas DaSilva and Weinstein (1999), we note that a groupoid is called
transitive if it has just one orbit. The transitive groupoids are the building blocks
of groupoids in that there is a natural decomposition of the base space of a general
groupoid into orbits. Over each orbit there is a transitive groupoid, and the disjoint
union of these transitive groupoids is the original groupoid. Conversely, the disjoint
union of groupoids is itself a groupoid.

The isotropy group of a 2 X consists of those g in G with ˛.g/ D a D ˇ.g/.
These groups prove fundamental to classifying groupoids.

If G is any groupoid over A, the map .˛; ˇ/ W G ! A 	 A is a morphism from
G to the pair groupoid of A. The image of .˛; ˇ/ is the orbit equivalence relation
� G, and the functional kernel is the union of the isotropy groups. If f W X ! Y is a
function, then the kernel of f , ker.f / D Œ.x1; x2/ 2 X 	 X W f .x1/ D f .x2/� defines an
equivalence relation.

Groupoids may have additional structure. As Weinstein (1996) explains, a
groupoid G is a topological groupoid over a base space X if G and X are topological
spaces and ˛; ˇ and multiplication are continuous maps. A criticism sometimes

© Springer International Publishing AG 2017
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applied to groupoid theory is that their classification up to isomorphism is nothing
other than the classification of equivalence relations via the orbit equivalence
relation and groups via the isotropy groups. The imposition of a compatible
topological structure produces a nontrivial interaction between the two structures.
In Sect. 2.7 we introduced a metric structure on manifolds of related information
sources, producing such interaction.

In essence, a groupoid is a category in which all morphisms have an inverse,
here defined in terms of connection to a base point by a meaningful path of an
information source dual to a cognitive process.

As Weinstein (1996) points out, the morphism .˛; ˇ/ suggests another way of
looking at groupoids. A groupoid over A identifies not only which elements of A are
equivalent to one another (isomorphic), but it also parameterizes the different ways
(isomorphisms) in which two elements can be equivalent, i.e., in our context, all
possible information sources dual to some cognitive process. Given the information-
theoretic characterization of cognition presented above, this produces a full modular
cognitive network in a highly natural manner.

Brown (1987) describes the fundamental structure as follows:

A groupoid should be thought of as a group with many objects, or with many identities. . . A
groupoid with one object is essentially just a group. So the notion of groupoid is an
extension of that of groups. It gives an additional convenience, flexibility and range of
applications. . .

EXAMPLE 1. A disjoint union [of groups] G D [	G	; 	 2 �, is a groupoid: the
product ab is defined if and only if a; b belong to the same G	, and ab is then just the
product in the group G	. There is an identity 1	 for each 	 2 �. The maps ˛; ˇ coincide
and map G	 to 	, 	 2 �.

EXAMPLE 2. An equivalence relation R on [a set] X becomes a groupoid with ˛; ˇ W
R ! X the two projections, and product .x; y/.y; z/ D .x; z/ whenever .x; y/; .y; z/ 2 R.
There is an identity, namely .x; x/, for each x 2 X.

Weinstein (1996) makes the following fundamental point:

Almost every interesting equivalence relation on a space B arises in a natural way as the
orbit equivalence relation of some groupoid G over B. Instead of dealing directly with the
orbit space B=G as an object in the category Smap of sets and mappings, one should consider
instead the groupoid G itself as an object in the category Ghtp of groupoids and homotopy
classes of morphisms.

The groupoid approach has become quite popular in the study of networks of
coupled dynamical systems which can be defined by differential equation models
(e.g., Golubitsky and Stewart 2006).

12.2 The Tuning Theorem

Messages from an information source, seen as symbols xj from some alphabet, each
having probabilities Pj associated with a random variable X, are “encoded” into
the language of a “transmission channel,” a random variable Y with symbols yk,
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having probabilities Pk, possibly with error. Someone receiving the symbol yk then
retranslates it (without error) into some xk, which may or may not be the same as
the xj that was sent.

More formally, the message sent along the channel is characterized by a random
variable X having the distribution

P.X D xj/ D Pj; j D 1; : : : ; M:

The channel through which the message is sent is characterized by a second
random variable Y having the distribution

P.Y D yk/ D Pk; k D 1; : : : ; L:

Let the joint probability distribution of X and Y be defined as

P.X D xj; Y D yk/ D P.xj; yk/ D Pj;k

and the conditional probability of Y given X as

P.Y D ykjX D xj/ D P.ykjxj/:

Then the Shannon uncertainty of X and Y independently and the joint uncertainty
of X and Y together are defined, respectively, as

H.X/ D �
MX

jD1

Pj log.Pj/

H.Y/ D �
LX

kD1

Pk log.Pk/

H.X; Y/ D �
MX

jD1

LX

kD1

Pj;k log.Pj;k/ (12.1)

The conditional uncertainty of Y given X is defined as

H.YjX/ D �
MX

jD1

LX

kD1

Pj;k logŒP.ykjxj/� (12.2)

For any two stochastic variates X and Y , H.Y/ � H.YjX/, as knowledge of X
generally gives some knowledge of Y . Equality occurs only in the case of stochastic
independence.

Since P.xj; yk/ D P.xj/P.ykjxj/, then H.XjY/ D H.X; Y/ � H.Y/.
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The information transmitted by translating the variable X into the channel
transmission variable Y—possibly with error—and then retranslating without error
the transmitted Y back into X is defined as

I.XjY/ � H.X/ � H.XjY/ D H.X/ C H.Y/ � H.X; Y/ (12.3)

See Cover and Thomas (2006) for details. The essential point is that if there is no
uncertainty in X given the channel Y , then there is no loss of information through
transmission. In general this will not be true, and herein lies the essence of the
theory.

Given a fixed vocabulary for the transmitted variable X, and a fixed vocabulary
and probability distribution for the channel Y , we may vary the probability
distribution of X in such a way as to maximize the information sent. The capacity of
the channel is defined as

C � max
P.X/

I.XjY/ (12.4)

subject to the subsidiary condition that
P

P.X/ D 1.
The critical trick of the Shannon Coding Theorem for sending a message with

arbitrarily small error along the channel Y at any rate R < C is to encode it in longer
and longer “typical” sequences of the variable X; that is, those sequences whose
distribution of symbols approximates the probability distribution P.X/ above which
maximizes C.

If S.n/ is the number of such “typical” sequences of length n, then

logŒS.n/� � nH.X/

where H.X/ is the uncertainty of the stochastic variable defined above. Some
consideration shows that S.n/ is much less than the total number of possible
messages of length n. Thus, as n ! 1, only a vanishingly small fraction of
all possible messages is meaningful in this sense. This observation, after some
considerable development, is what allows the Coding Theorem to work so well.
In sum, the prescription is to encode messages in typical sequences, which are sent
at very nearly the capacity of the channel. As the encoded messages become longer
and longer, their maximum possible rate of transmission without error approaches
channel capacity as a limit. Again, the standard references provide details.

This approach can be, in a sense, inverted to give a “tuning theorem” variant of
the coding theorem.

Telephone lines, optical wave guides, and the tenuous plasma through which a
planetary probe transmits data to earth may all be viewed in traditional information-
theoretic terms as a noisy channel around which we must structure a message so as
to attain an optimal error-free transmission rate.

Telephone lines, wave guides, and interplanetary plasmas are, relatively speak-
ing, fixed on the timescale of most messages, as are most sociogeographic networks.
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Indeed, the capacity of a channel is defined by varying the probability distribution
of the “message” process X so as to maximize I.XjY/.

Suppose there is some message X so critical that its probability distribution must
remain fixed. The trick is to fix the distribution P.x/ but modify the channel—i.e.,
tune it—so as to maximize I.XjY/. The dual channel capacity C� can be defined as

C� � max
P.Y/;P.YjX/

I.XjY/ (12.5)

But

C� D max
P.Y/;P.YjX/

I.YjX/

since

I.XjY/ D H.X/ C H.Y/ � H.X; Y/ D I.YjX/:

Thus, in a purely formal mathematical sense, the message transmits the channel,
and there will indeed be, according to the Coding Theorem, a channel distribution
P.Y/ which maximizes C�.

One may do better than this, however, by modifying the channel matrix P.YjX/.
Since

P.yj/ D
MX

iD1

P.xi/P.yjjxi/;

P.Y/ is entirely defined by the channel matrix P.YjX/ for fixed P.X/ and

C� D max
P.Y/;P.YjX/

I.YjX/ D max
P.YjX/

I.YjX/:

Calculating C� requires maximizing the complicated expression

I.XjY/ D H.X/ C H.Y/ � H.X; Y/

which contains products of terms and their logs, subject to constraints that the sums
of probabilities are 1 and each probability is itself between 0 and 1. Maximization
is done by varying the channel matrix terms P.yjjxi/ within the constraints. This is
a difficult problem in nonlinear optimization. However, for the special case M D L,
C� may be found by inspection.

If M D L, then choose

P.yjjxi/ D ıj;i

where ıi;j is 1 if i D j and 0 otherwise. For this special case

C� � H.X/
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with P.yk/ D P.xk/ for all k. Information is thus transmitted without error when the
channel becomes “typical” with respect to the fixed message distribution P.X/.

If M < L matters reduce to this case, but for L < M information must be lost,
leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient means of ensuring
transmission of an important message than encoding that message in a “natural”
language which maximizes the rate of transmission of information on a fixed
channel.

We have examined the two limits in which either the distributions of P.Y/ or
of P.X/ are kept fixed. The first provides the usual Shannon Coding Theorem,
and the second a tuning theorem variant, i.e., a tunable, retina-like, Rate Distortion
Manifold, in the sense of Glazebrook and Wallace (2009).

As described above, this result is essentially similar to Shannon’s (1959)
observation that evaluating the Rate Distortion Function corresponds to finding a
channel that is just right for the source and allowed distortion level.

12.3 Metabolic Constraints

Let Q.�M/ � 0; Q.0/ D 0 represent a monotonic increasing function of the
intensity measure of available metabolic free energy M, and C be the maximum
channel capacity available to the cognitive biological processes of interest. One
would expect

OH D
R C

0
H expŒ�H=Q�dH

R C
0

expŒ�H=Q�dH
D QŒexp.C=Q/ � 1� � C

exp.C=Q/ � 1
(12.6)

� is an inverse energy intensity scaling constant that may be quite small
indeed, a consequence of the typically massive entropic translation losses between
the metabolic free energy consumed by the physical processes that instantiate
information and any actual measure of that information.

Near M D 0, expand Q as a Taylor series, with a first term Q � �M.
This expression tops out quite rapidly with increases in either C or Q, producing

energy—and channel capacity—limited results

OH D Q.�M/; C=2 (12.7)

Then, expanding Q near zero, the two limiting relations imply

Q.�MX;Y/ < Q.�MX/ C Q.�MY/ ! MX;Y < MX C MY ;

CX;Y < CX C CY (12.8)
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The channel capacity constraint can be parsed further for a noisy Gaussian
channel. Then (Cover and Thomas 2006)

C D 1=2 logŒ1 C P=�2� � 1=2P=�2 (12.9)

for small P=�2, where P is the “power constraint” such that E.X2/ < P and �2 is
the noise variance. Assuming information sources X and Y act on the same scale,
so that noise variances are the same and quite large, then, taking P D Q.�M/—
channel power is determined by available metabolic free energy—and

Q.�MX;Y/ < Q.�MX/ C Q.�MY/:

Both limiting inequalities are, then, free energy relations leading to a kind of
“reaction canalization” in which a set of lower level cognitive modules consumes
less metabolic free energy if information crosstalk among them is permitted than
under conditions of individual signal isolation.

12.4 Morse Theory

Morse theory examines relations between analytic behavior of a function—the
location and character of its critical points—and the underlying topology of the
manifold on which the function is defined. We are interested in a number of such
functions, for example, a “free energy” constructed from information source uncer-
tainties on a parameter space and “second order” iterations involving parameter
manifolds determining critical behavior. These can be reformulated from a Morse
theory perspective. Here we follow closely Pettini (2007).

The essential idea of Morse theory is to examine an n-dimensional manifold M
as decomposed into level sets of some function f W M ! R where R is the set of
real numbers. The a-level set of f is defined as

f �1.a/ D fx 2 M W f .x/ D ag;

the set of all points in M with f .x/ D a. If M is compact, then the whole manifold can
be decomposed into such slices in a canonical fashion between two limits, defined
by the minimum and maximum of f on M. Let the part of M below a be defined as

Ma D f �1.�1; a� D fx 2 M W f .x/ � ag:

These sets describe the whole manifold as a varies between the minimum and
maximum of f .

Morse Functions are defined as a particular set of smooth functions f W M !
R as follows. Suppose a function f has a critical point xc, so that the derivative
df .xc/ D 0, with critical value f .xc/. Then f is a Morse Function if its critical points
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are nondegenerate in the sense that the Hessian matrix of second derivatives at xc,
whose elements, in terms of local coordinates, are

Hi;j D @2f =@xi@xj;

has rank n, which means that it has only nonzero eigenvalues, so that there are no
lines or surfaces of critical points and, ultimately, critical points are isolated.

The index of the critical point is the number of negative eigenvalues of H at xc.
A level set f �1.a/ of f is called a critical level if a is a critical value of f , that is,

if there is at least one critical point xc 2 f �1.a/.
Again following Pettini (2007), the essential results of Morse theory are:

1. If an interval Œa; b� contains no critical values of f , then the topology of f �1Œa; v�

does not change for any v 2 .a; b�. Importantly, the result is valid even if f is not
a Morse Function, but only a smooth function.

2. If the interval Œa; b� contains critical values, the topology of f �1Œa; v� changes in
a manner determined by the properties of the matrix H at the critical points.

3. If f W M ! R is a Morse Function, the set of all the critical points of f is a
discrete subset of M, i.e., critical points are isolated. This is Sard’s Theorem.

4. If f W M ! R is a Morse Function, with M compact, then on a finite interval
Œa; b� � R, there is only a finite number of critical points p of f such that f .p/ 2
Œa; b�. The set of critical values of f is a discrete set of R.

5. For any differentiable manifold M, the set of Morse Functions on M is an
open dense set in the set of real functions of M of differentiability class r for
0 � r � 1.

6. Some topological invariants of M, that is, quantities that are the same for all the
manifolds that have the same topology as M, can be estimated and sometimes
computed exactly once all the critical points of f are known: Let the Morse
numbers �i.i D 1; : : : ; m/ of a function f on M be the number of critical points of
f of index i (the number of negative eigenvalues of H). The Euler characteristic
of the complicated manifold M can be expressed as the alternating sum of the
Morse numbers of any Morse Function on M,

� D
mX

iD0

.�1/i�i:

The Euler characteristic reduces, in the case of a simple polyhedron, to

� D V � E C F

where V; E, and F are the numbers of vertices, edges, and faces in the polyhe-
dron.

7. Another important theorem states that, if the interval Œa; b� contains a critical
value of f with a single critical point xc, then the topology of the set Mb defined
above differs from that of Ma in a way which is determined by the index, i, of the
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critical point. Then Mb is homeomorphic to the manifold obtained from attaching
to Ma an i-handle, i.e., the direct product of an i-disk and an .m � i/-disk.

Again, Pettini (2007) contains both mathematical details and further references.
See, for example, Matsumoto (2002).

12.5 An RDT Proof of the DRT

The Rate Distortion Theorem of information theory asks how much a signal can be
compressed and have average distortion, according to an appropriate measure, less
than some predetermined limit D > 0. The result is an expression for the minimum
necessary channel capacity, R, as a function of D. See Cover and Thomas (2006)
for details. Different channels have different expressions. For the Gaussian channel
under the squared distortion measure,

R.D/ D 1

2
log

h�2

D

i
D < �2

R.D/ D 0 D � �2 (12.10)

where �2 is the variance of channel noise having zero mean.
Our concern is how a control signal ut is expressed in the system response xtC1.

We suppose it possible to deterministically retranslate an observed sequence of
system outputs x1; x2; x3; : : : into a sequence of possible control signals Ou0; Ou1; : : :

and to compare that sequence with the original control sequence u0; u1; : : :, with
the difference between them having a particular value under the chosen distortion
measure, and hence an observed average distortion.

The correspondence expansion is as follows.
Feynman (2000), following ideas of Bennett, identifies information as a form

of free energy. Thus R.D/, the minimum channel capacity necessary for average
distortion D, is also a free energy measure, and we may define an entropy S as

S � R.D/ � DdR=dD (12.11)

For a Gaussian channel under the squared distortion measure,

S D 1=2 logŒ�2=D� C 1=2 (12.12)

Other channels will have different expressions.
The simplest dynamics of such a system are given by a nonequilibrium Onsager

equation in the gradient of S (de Groot and Mazur 1984) so that

dD=dt D ��dS=dD D �

2D
(12.13)
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By inspection,

D.t/ D p
�t (12.14)

which is the classic outcome of the diffusion equation. For the “natural” channel
having R.D/ / 1=D, D.t/ / the cube root of t.

This correspondence reduction allows an expansion to more complicated sys-
tems, in particular, to the control system of Fig. 4.1.

Let H be the rate at which control information is fed into an inherently unstable
control system, in the presence of a further source of control system noise ˇ,
in addition to the channel noise defined by �2. The simplest generalization of
Eq. (12.13), for a Gaussian channel, is the stochastic differential equation

dDt D
h �

2Dt
� M.H/

i
dt C ˇDtdWt (12.15)

where dWt represents white noise and M.H/ � 0 is a monotonically increasing
function.

This equation has the nonequilibrium steady state expectation

Dnss D �

2M.H/
(12.16)

measuring the average distortion between what the control system wants and what
it gets. In a sense, this is a kind of converse to the famous radar equation which
states that a returned signal will be proportional to the inverse fourth power of the
distance between the transmitter and the target. But there is a deeper result, leading
to the DRT.

Applying the Ito chain rule to Eq. (12.15) (Protter 1990; Khashminskii 2012), it
is possible to calculate the expected variance in the distortion as E.D2

t / � .E.Dt//
2.

But application of the Ito rule to D2
t shows that no real number solution for its

expectation is possible unless the discriminant of the resulting quadratic equation
is �0, so that a necessary condition for stability is

M.H/ � ˇ
p

�

H � M�1.ˇ
p

�/ (12.17)

where the second expression follows from the monotonicity of M.
As a consequence of the correspondence reduction leading to Eq. (12.15), we

have generalized the DRT of Eq. (4.2). Different “control channels,” with different
forms of R.D/, will give different detailed expressions for the rate of generation of
“topological information” by an inherently unstable system.
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12.6 An Information Black–Scholes Model

We look at H./ as the control information rate “cost” of stability at the integrated
environmental insult . To determine the mathematical form of H./ under
conditions of volatility, i.e., variability proportional to a signal, we must first model
the variability of , most simply taken as

dt D g.t; t/dt C btdWt (12.18)

Here, dWt is white noise and—counterintuitively—the function g.t; / will fall
out of the calculation on the assumption of certain regularities.

H.t; t/ is the minimum needed incoming rate of control information under the
Data Rate Theorem. Expand H in  using the Ito chain rule (Protter 1990):

dHt D
�

@H=@t C g.t; t/@H=@ C 1

2
b22

t @2H=@2

�

dt

CŒbt@H=@�dWt (12.19)

It is now possible to define a Legendre transform, L, of the rate H, by convention
having the form

L D �H C @H=@ (12.20)

H is an information index, a free energy measure in the sense of Feynman (2000),
so that L is a classic entropy measure.

We make an approximation, replacing dX with 
X and applying Eq. (12.19),
so that


L D
�

�@H=@t � 1

2
b22@2H=@2

�


t (12.21)

According to the classical Black–Scholes model (Black and Scholes 1973), the
terms in g and dWt “cancel out,” and white noise has been subsumed into the Ito
correction factor, a regularity assumption making this an exactly solvable but highly
approximate model.

The conventional Black–Scholes calculation takes 
L=
T / L. At nonequilib-
rium steady state, by some contrast, we can assume 
L=
t D @H=@t D 0, giving

� 1

2
b22@2H=@2 D 0 (12.22)

so that

H D �1 C �2 (12.23)

The �i will be nonnegative constants.
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12.7 Estimating the Quadratic Variation from Data

The so-called white noise has quadratic variation / t. The “colored” noise relation
can be estimated from the observed periodogram using the methods of Dzhaparidze
and Spreij (1994).

For a stochastic process Xt and a finite stopping time T and each real number 	,
the periodogram of X evaluated at T is defined as

IT.XI 	/ � j
Z T

0

expŒi	t�dXtj2 (12.24)

Take � as a real random variable that has a density ! symmetric around zero and
consider, for any positive real number L, the quantity

E�ŒIT.XI L�/� D
Z C1

�1
IT.XI Ls/!.s/ds (12.25)

Dzhaparidze and Spreij (1994) show that, for L ! 1,

E�ŒIT.XI L�/� ! ŒXT ; XT � (12.26)

Thus, the quadratic variation can be statistically estimated from observational
time series data, as is routinely done in financial engineering, from which, in fact,
this analysis is taken.

12.8 A Metabolic Black–Scholes Model

Suppose metabolic free energy to be available at a rate M, and let R.D/ be a
general RDF for a process ultimately fueled by M. How are M and R related under
conditions of volatility? Let

dRt D f .t; Rt/dt C bRtdWt (12.27)

Let M.Rt; t/ be the incoming rate of metabolic free energy, and expand using the
Ito chain rule

dMt D
�

@M=@t C f .Rt; t/@M=@R C 1

2
b2R2

t @2M=@R2

�

dt

CŒbRt@M=@R�dWt (12.28)

We define a quantity L as a Legendre transform of the rate M, by convention
having the form

L D �M C R@M=@R (12.29)
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Again, heuristically, replacing dX with 
X in these expressions and applying
Eq. (12.28) gives


L D
�

� @M=@t � 1

2
b2R2@2M=@R2

�

t (12.30)

Again, the terms in f and dWt cancel out, and the effects of noise are subsumed
into the Ito correction factor, powerful regularity assumptions that make this an
exactly solvable approximate model.

The conventional Black–Scholes calculation takes 
L=
T / L. Here, at
nonequilibrium steady state, we assume 
L=
t D C � 0; @M=@t D 0, so that

� 1

2
b2R2@2M=@R2 D C (12.31)

with solution

M D 2C

b2
logŒR� C �1R C �2 (12.32)
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Noether’s first theorem, 164
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partition function, 23

path dependence, 204
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pattern recognition, 10
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Rate Distortion Manifold, 94, 195
REM sleep, 116
reverse water-filling, 29
rust belt, 201

S
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security doctrine, 210
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Siefert-van Kampen theorem, 158
sleep disturbance and psychopathology, 124
sociocultural cognition, 7
spandrels of San Marco, 9
spinglass model, 42
spontaneous symmetry breaking, 23, 50, 97
stationary information source, 11
supercooled system, 177
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the hard problem, 31
traffic Froude number, 180
transitive groupoid, 221
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tumor control, 4
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