

Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and
academic-level teaching on both fundamental and applied aspects of complex systems –
cutting across all traditional disciplines of the natural and life sciences, engineering,
economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to
generate a new quality of macroscopic collective behavior the manifestations of which
are the spontaneous formation of distinctive temporal, spatial or functional structures.
Models of such systems can be successfully mapped onto quite diverse “real-life” sit-
uations like the climate, the coherent emission of light from lasers, chemical reaction-
diffusion systems, biological cellular networks, the dynamics of stock markets and of
the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the
formation of opinions in social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the
following main concepts and tools: self-organization, nonlinear dynamics, synergetics,
turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos,
graphs and networks, cellular automata, adaptive systems, genetic algorithms and com-
putational intelligence.

The two major book publication platforms of the Springer Complexity program are
the monograph series “Understanding Complex Systems” focusing on the various appli-
cations of complexity, and the “Springer Series in Synergetics”, which is devoted to the
quantitative theoretical and methodological foundations. In addition to the books in these
two core series, the program also incorporates individual titles ranging from textbooks
to major reference works.

Editorial and Programme Advisory Board

Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA

Péter Érdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of
Sciences, Budapest, Hungary

Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK

Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany

Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland

Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA

Jürgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany

Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA

Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria

Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland

Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland

Understanding Complex Systems

Founding Editor: J.A. Scott Kelso

Future scientific and technological developments in many fields will necessarily
depend upon coming to grips with complex systems. Such systems are complex in
both their composition – typically many different kinds of components interacting
simultaneously and nonlinearly with each other and their environments on multiple
levels – and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) pro-
motes new strategies and paradigms for understanding and realizing applications
of complex systems research in a wide variety of fields and endeavors. UCS is
explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts,
methods and tools of complex systems at all levels of description and in all scientific
fields, especially newly emerging areas within the life, social, behavioral, economic,
neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel
applications of these ideas in various fields of engineering and computation such as
robotics, nano-technology and informatics; third, to provide a single forum within
which commonalities and differences in the workings of complex systems may be
discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions
aimed at communicating new findings to a large multidisciplinary audience.

Alfons G. Hoekstra · Jiří Kroc · Peter M.A. Sloot
Editors

Simulating Complex Systems
by Cellular Automata

123

Editors
Dr. Alfons G. Hoekstra
University of Amsterdam
Computational Science
Faculty of Science
Science Park 107
1098 XG Amsterdam
Netherlands
a.g.hoekstra@uva.nl

Prof. Dr. Peter M.A. Sloot
Universiteit Amsterdam
Computational Science
Faculty of Science
Science Park 107
1098 XG Amsterdam
Netherlands
p.m.a.sloot@uva.nl

Dr. Jiří Kroc
Havlickova 482
CZ 33203 Stahlavy
Czech Republic
kroc@c-mail.cz

ISSN 1860-0832 ISSN 1860-0840
ISBN 978-3-642-12202-6 ISBN 978-3-642-12203-3 (eBook)
DOI 10.1007/978-3-642-12203-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010926596

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: Integra Software Services Pvt. Ltd., Pondicherry

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Simulation based understanding of complex
systems with cellular automata.

Foreword

What are Cellular Automata good for?
What you always wanted to ask about them

but where afraid of the answer.

Cellular automata (CA) are a paradigm of fine-grained, uniform, parallel computa-
tion. This mode of computing is supposedly one that is most naturally and efficiently
supported by physics, since physics itself is at bottom a uniform parallel computing
medium (thence the appeal of “cellular automata machines” and all that). Obvi-
ously, then, if you have a complex system (such as an urban traffic network or a
simultaneous system of chemical reactions) and manage to represent it as a cellular
automaton, then you can “run” it on CA hardware – which you’ll be using effec-
tively as a “numerical integrator,” see what happens, and hopefully develop a better
understanding of your systems structure and function. Just like with experimental
mathematics, there is nothing wrong with this prescription – as long as it is taken
only in trace amounts. But if you think that, just because you’ve managed to dress
your system in the garb of a CA, then running it and watching its evolution will
make you understand it – well, you are in for a big disappointment, and so will your
readers.

Even though their distinguishing characteristic – that they lend themselves to
efficient and exact numerical integration – plays a major role in our story (unlike
partial differential equations, CA are not chronically beset by issues of approxima-
tion, convergence, and stability – and one does not have to be an expert in calculus
and functional analysis to use one), nonetheless CA are primarily a conceptual tool.
In this sense, they play a role, for understanding and taming a complex system,
similar to that played by mathematical physics in making us understand physics
itself.

As 50 years of development consistently testify, the best contribution that a CA
approach can give to the understanding of a complex system is at the stage of devel-
oping the model – not running an industrial version of it. A successful CA model
is the seed of its own demise! The reason is simple. A CA model is a plausible
microscopic dynamics (no mysteries to it, no infinitesimals, no indeterminism) that
yields in a well-understood way the emergence of a desired mesoscopic behavior.
In principle, an astronomically large implementation of that model will also give us

vii

viii Foreword

the full-fledged macroscopics. Suppose we have a CA that “predicts” the formation
of water droplets or ice needles by means of a simple combinatorics of tokens. If we
had the resources, by scaling the model billions of billions of times we could model
fog, clouds, etc., all the way up to global weather. But once we have derived, from
the CA, the bulk properties of a water droplet, we can feed these numerical param-
eters to a higher-level model (a finite-element model or a differential equation), in
which all that counts is just droplets per cubic meter, temperature, and so forth, and
much more practically and efficiently model a whole cloud. At a higher aggregation
level, we can model regional – and ultimatelly global – weather. That is, once we
have learned from a CA how a water droplet emerges and behaves, there is no point
in re-running the entire process from scratch for every single droplet of a rainstorm –
even though in principle we might! A better allocation of our computational budget
is (a) to use CA to learn whether, under what conditions, and at what level there
emerge recognizable mesoscopic laws out of simple microscopic mechanisms; and
then (b) use these mesoscopic laws as a basis for higher-level analytical models
(“equations”) or numerical models (“simulations”).

The present collection gives several examples of this maieutic role of CA.
In addition to that, recent developments in the theory of CA and their “lattice gas”

variants suggest that these structures may play an even more blatantly conceptual
modeling role, analogous to that of analytical mechanics. That is, after the arith-
metization of physics (Galileo), the mechanization of physics (Newton, Faraday,
Maxwell), and the geometrization of physics (Poincaré, Einstein), we may envisage
the informatization of physics not only at the statistical level (Boltzmann, Gibbs)
but also at the fundamental level.

According to Hamiltons “least action” principle, among all conceivable trajecto-
ries of a physical systems the effective ones are those whose action is stationary with
respect to infinitesimal variations of the trajectory. According to Noethers theorem,
in the dynamical systems typically dealt with by physics “to every continuous one-
parameter group of symmetries there correspond a conserved quantity.” (E.g., the
existence of a conserved a quantity called energy comes from the fact that a systems
laws do not change with time.) However, in spite of their sweeping generality, these
principles are predicated only for physical systems that are continous, differentiable,
invertible, and symplectic. Does that mean that nothing at all of these principles is
left if one turns to systems that, like CA, share many properties with physics but are
discrete?

To salvage some aspects of those principles for CA, one has to transliterate
concepts, as far as possible, from the continouous to the discrete; to know how
to do that, one first has to ask “What is the essential, most likely combinatorial, and
inescapably tautological nature of those principles?”, “What kind of accounting is
it that they are doing?”, or, “What is it that they are really trying to tell us?” (think
of Boltzmann and his intuition that entropy has to do with number of states). More
importantly for the advancement of science, we can reverse the roles of means and
goal in the above endeavor. That is, let us work at fitting (as much as posible of)
those principles into a CA context, hoping that that will reveal to all of us (CA
aficionados and physicists alike) what those somewhat mystical and teleological

Foreword ix

principles “really mean.” By using a CA as a discrete “kitchen experiment” of ana-
lytic mechanics, we bring “magical” aspects of theoretical physics down to earth.
After the fair’s magic show, the man in the street – any one of us, really – will then
go home and tell his children (and, what’s more important, to himself), “Oh, there
was nothing to it! Here is how it must work – let me show you. . . .”

In conclusion, the discipline of modeling with cellular automata is an excellent
way to identify, without being distracted by irrelevant technicalities, those element
of a system that are truly essential – namely, those that are both necessary and
sufficient to yield a certain kind of behavior. “Keep things simple!”, or, in Donald
Knuth’s words, “Premature optimization is the root of all evil.”

Boston University, Boston, MA, USA Tommaso Toffoli (tt@bu.edu)

Preface

Deeply rooted in fundamental research in Mathematics and Computer Science,
Cellular Automata are recognized as an intuitive modeling paradigm for Complex
Systems. Very basic Cellular Automata, with extremely simple micro dynamics such
as the Game of Life, show an almost endless display of complex emergent behav-
ior. By modeling natural or man-made Complex Systems with Cellular Automata
we usually dissect the system to it’s most fundamental and minimal properties and
interactions, such that the simulated dynamics mimics the emergent behavior of the
real Complex System, leading to a true understanding of the fundamental properties
of the system under study.

For instance, Cellular Automata models of vehicle traffic are a beautiful example.
A few simple rules relating to acceleration, deceleration, and maximum speed of
vehicles in a one-dimensional Cellular Automata are sufficient to display all dif-
ferent types of motions that cars on a freeway can have (free flow, stop-and-go,
jamming), as well as showing backward traveling density waves in stop-and-go
traffic and reproducing the fundamental diagram of car throughput on a freeway
as a function of car density.

Vice-versa, Cellular Automata can also be designed to produce a desired emer-
gent behavior, using theoretical methodologies or using e.g. evolutionary techniques
to find Cellular Automata rules that produce specified characteristics.

Cellular Automata can also actually reproduce the dynamics of Complex Sys-
tems qualitatively. For instance, Lattice Gas Cellular Automata are a class of Cellu-
lar Automata that reproduce many of the intricate dynamics in fluids. Likewise,
other fundamental physical systems, such as Reaction–Diffusion or Advection–
Diffusion can be qualitatively modeled. These Cellular Automata models can actu-
ally be used to predict the behavior of Complex Systems under many different cir-
cumstances. Nowadays there are many applications of Cellular Automata models
in Computational Physics or – Chemistry, but also in for instance Systems Biology
(e.g. models for diffusion limited gene regulatory networks).

Over the last decade or so, there has been a tremendous progress in studying
Complex Systems with Cellular Automata. They are not only being used within
their originating disciplines (say Physics, Computer Science, Mathematics), but
are also applied in quite different disciplines such as epidemiology, immunology,

xi

xii Preface

sociology, and finance. Cellular Automata are quite successful in for instance mod-
eling immune response after HIV infection, both the short term effects, as well as the
long term effect that finally lead to the development of AIDS. Cellular Automata are
also used to study the dynamics of crowds, for instance in situations where a crowd
must escape from a confined space through a small door.

In this context of fast and impressive progress in the field the idea to compose this
book emerged. Moreover, another experience convinced us that we should embark
on this project that in the end resulted in this book. When teaching Complex Systems
Simulations to Master students in the Amsterdam Master program on Computational
Science, we always experience the great appeal that Cellular Automata have on the
students, and we are always impressed by the deep understanding that our students –
but we as well – obtain of a large range of complex systems they try to model and
understand using Cellular Automata. These students come from many disciplines,
as broad as the application areas of Cellular Automata mentioned earlier.

For us it became evident that an edited book focusing on all aspects of modeling
Complex Systems with Cellular Automata was needed, as a welcome overview of
the field for its practitioners, as well as a good starting point for detailed study
on the graduate and post-graduate level. While Jiří Kroc was a visiting scientist in
Amsterdam, in the period September 2007 to September 2008, the idea materialized
and the “book project” went into high gear.

The book contains three parts, two major parts on theory and applications, and a
smaller part on software. The theory part contains fundamental chapters on how to
design and/or apply Cellular Automata for many different areas. This should give the
readers a representative overview and strong background on many aspects related
to modeling with Cellular Automata. In the applications part a number of represen-
tative examples of really using Cellular Automata in a large range of disciplines
is presented. By providing a large set of examples, this part should give readers a
good idea of the real strength of this kind of modeling and challenge them to apply
Cellular Automata in their own field of study. Finally, we included a smaller section
on software, to highlight the important work that has been done to create high quality
problem solving environments that allow to quickly and relatively easily implement
a Cellular Automata model and run simulations, both on the desktop and if needed,
on High Performance Computing infrastructures.

We are very proud and happy that many prominent scientists agreed to join this
project and prepared a chapter for this book. We are also very pleased to see it mate-
rialize in a way as we originally envisioned. We hope that this book will be a source
of inspiration to the readers. We certainly challenge students on the graduate and
post-graduate level to study this book in detail, learn from it, grasp the fundamental
ideas behind modeling Complex Systems with Cellular Automata, and apply it to
solve their own problems. For scientists working in many different fields we believe
that this book will provide a representative state-of-the-art overview of this field. It
not only shows what we can do, it also shows current gaps in our knowledge, open
issues and suggestions for further study.

Preface xiii

We wish all readers a fruitful time reading this book, and wish they experience
the same excitement as we did – and still do – when using Cellular Automata for
modeling complex systems.

Amsterdam, The Netherlands Alfons G. Hoekstra
May 2010 Jiří Kroc

Peter M.A. Sloot

Acknowledgements

We wish to acknowledge all authors of this book for their continuing efforts writing
high quality chapters and bearing with us during this project. We wish to acknowl-
edge the professional support by Gabriele Hakuba and Chris Caron at Springer. We
acknowledge financial support by the European Commission, through the DynaNets
project (www.dynanets.org, EU-FP7-IST-FET Contract 233847) and through the
COAST project (www.complex-automata.org, EU-FP6-IST-FET Contract 033664).

xv

Contents

1 Introduction to Modeling of Complex Systems
Using Cellular Automata . 1
Alfons G. Hoekstra, Jiří Kroc, and Peter M.A. Sloot

Part I Theory of Cellular Automata

2 Multilevel Cellular Automata as a Tool for Studying
Bioinformatic Processes . 19
Paulien Hogeweg

3 Complex Automata: Multi-scale Modeling with Coupled
Cellular Automata . 29
Alfons G. Hoekstra, Alfonso Caiazzo, Eric Lorenz, Jean-Luc Falcone,
and Bastien Chopard

4 Hierarchical Cellular Automata Methods . 59
Adam Dunn

5 Cellular Automata Composition Techniques for Spatial
Dynamics Simulation . 81
Olga Bandman

6 Problem Solving on One-Bit-Communication Cellular Automata 117
Hiroshi Umeo

7 Minimal Cellular Automaton Model of Inter-species Interactions:
Phenomenology, Complexity and Interpretations 145
Andrew Adamatzky and Martin Grube

8 Cellular Evolutionary Algorithms . 167
Marco Tomassini

xvii

xviii Contents

9 Artificial Evolution of Arbitrary Self-Replicating Structures
in Cellular Spaces . 193
Zhijian Pan and James A. Reggia

Part II Applications of Cellular Automata

10 Game Theoretical Interactions of Moving Agents 219
Wenjian Yu and Dirk Helbing

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 241
Halim Kusumaatmaja and Julia M. Yeomans

12 CA Modeling of Ant-Traffic on Trails . 275
Debashish Chowdhury, Katsuhiro Nishinari,
and Andreas Schadschneider

13 Lattice-Gas Cellular Automaton Modeling of Emergent Behavior
in Interacting Cell Populations . 301
Haralambos Hatzikirou and Andreas Deutsch

14 Cellular Automata for Simultaneous Analysis and Optimal
Structural Topology Design . 333
Zafer Gürdal and Ramzi Zakhama

Part III Cellular Automata Software

15 Parallel Cellular Programming for Emergent Computation 357
Domenico Talia and Lev Naumov

Contributors

Andrew Adamatzky University of the West of England, Bristol, UK,
andrew.adamatzky@uwe.ac.uk

Olga Bandman Supercomputer Software Department, ICM&MG, Siberian Branch
Russian Academy of Sciences, Novosibirsk, 630090, Russia, bandman@ssd.sscc.ru

Alfonso Caiazzo INRIA Rocquencourt – BP 105, F-78153 Le Chesnay Cedex,
France, alfonso.caiazzo@inria.fr

Bastien Chopard Department of Computer Science, University of Geneva, 7 route
de Drize, 1227 Carouge, Switzerland, bastien.chopard@unige.ch

Debashish Chowdhury Department of Physics, Indian Institute of Technology,
Kanpur 208016, India, debch@iitk.ac.in

Andreas Deutsch Center for Information Services and High Performance
Computing, Technische Universität Dresden, Nöthnitzerstr. 46, 01069 Dresden,
Germany, andreas.deutsch@tu-dresden.de

Adam Dunn Centre for Health Informatics, University of New South Wales
UNSW, Sydney NSW 2052, Australia; Alcoa Research Centre for Stronger
Communities, Curtin University of Technology, PO Box U1985, Perth WA 6845,
Australia, a.dunn@curtin.edu.au; a.dunn@unsw.edu.au

Jean-Luc Falcone Department of Computer Science, University of Geneva,
7 route de Drize, 1227 Carouge, Switzerland, jean-luc.falcone@unige.ch

Martin Grube Institute of Plant Sciences, Karl-Franzens-Universität Graz, Graz,
martin.grube@uni-graz.at

Zafer Gürdal Faculty of Aerospace Engineering, Delft University of Technology,
Delft, The Netherlands, z.gurdal@tudelft.nl

Haralambos Hatzikirou Center for Information Services and High Performance
Computing, Technische Universität Dresden, Nöthnitzerstr. 46, 01069 Dresden,
Germany, haralambos.hatzikirou@tu-dresden.de

xix

xx Contributors

Dirk Helbing ETH Zurich, CLU E1, Clausiusstr. 50, 8092 Zurich, Switzerland,
dhelbing@ethz.ch

Alfons G. Hoekstra Computational Science, Faculty of Science, University
of Amsterdam, Science Park 107, 1098 XG, Amsterdam, The Netherlands,
a.g.hoekstra@uva.nl

Paulien Hogeweg Theoretical Biology and Bioinformatics Group, Utrecht
University, Padualaan 8, 3584 CH, Utrecht, The Netherlands, p.hogeweg@bio.uu.nl

Jiří Kroc Havlíčkova 482, 332 03 Štáhlavy, The Czech Republic,
jiri.kroc@gmail.com

Halim Kusumaatmaja Max Planck Institute of Colloids and Interfaces,
Science Park Golm, 14424 Potsdam, Germany; The Rudolf Peierls Centre for
Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, UK,
kusumaatmaja@gmail.com

Eric Lorenz Computational Science Group, Faculty of Science, University
of Amsterdam, Science Park 107, 1098 XG, Amsterdam, The Netherlands,
e.lorenz@uva.nl

Lev Naumov Computational Science Group, Faculty of Science, University
of Amsterdam, Science Park 107, 1098 XG, Amsterdam, The Netherlands,
levnaumov@gmail.com

Katsuhiro Nishinari Research Center for Advanced Science and Technology,
The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan,
tknishi@mail.ecc.u-tokyo.ac.jp

Zhijian Pan IBM Pervasive Computing Lab, 1997 Annapolis Exchange Pkwy,
Annapolis, MD 21401, USA, edzpan@yahoo.com

James A. Reggia Computer Science Department, University of Maryland, A. V.
Williams Building, College Park, MD 20742, USA, reggia@cs.umd.edu

Andreas Schadschneider Institut für Theoretische Physik, Universität zu Köln,
50937 Köln, Germany, as@thp.uni-koeln.de

Peter M.A. Sloot Computational Science, Faculty of Science, University
of Amsterdam, Science Park 107, 1098 XG, Amsterdam, The Netherlands,
p.m.a.sloot@uva.nl

Domenico Talia DEIS, University of Calabria, Rende, Italy, talia@deis.unical.it

Tommaso Toffoli ECE Department, Boston University, 8 Saint Mary’s St, Boston,
MA, USA, tt@bu.edu

Marco Tomassini Information Systems Department, University of Lausanne,
Lausanne, Switzerland, marco.tomassini@unil.ch

Hiroshi Umeo University of Osaka Electro-Communication, Neyagawa-shi,
Hatsu-cho, 18-8, Osaka, 572-8530, Japan, umeo@cyt.osakac.ac.jp

Contributors xxi

Julia M. Yeomans The Rudolf Peierls Centre for Theoretical Physics, Oxford
University, 1 Keble Road, Oxford OX1 3NP, UK, j.yeomans1@physics.ox.ac.uk

Wenjian Yu ETH Zurich, CLU C4, Clausiusstr. 50, 8092 Zurich, Switzerland,
yuwen@ethz.ch

Ramzi Zakhama Faculty of Aerospace Engineering, Delft University
of Technology, Delft, The Netherlands, r.zakhama@tudelft.nl

Chapter 1
Introduction to Modeling of Complex Systems
Using Cellular Automata

Alfons G. Hoekstra, Jiří Kroc, and Peter M.A. Sloot

“The real purpose of scientific method is to make sure Nature
hasn’t misled you into thinking you know something you don’t
actually know.”

Robert M. Pirsig
Zen and the Art of Motorcycle Maintenance, 1974.

Since the sixteenth century there have been two main paradigms in the methodology
of doing science. The first one is referred to as “the experimental” paradigm. Dur-
ing an experiment we observe, measure, and quantify natural phenomena in order
to solve a specific problem, answer a question, or to decide whether a hypothesis
is true or false. The second paradigm is known as “the theoretical” paradigm. A
theory is generally understood as a fundamental, for instance logical and/or mathe-
matical explanation of an observed natural phenomenon. Theory can be supported
or falsified through experimentation.

The roots of the experimental and theoretical paradigms occurred much earlier
and were already used by Pythagoras, Euclid, Archimedes and others (e.g. during
ancient times in Greece, China, Egypt and other cultures thousands years BC). Since
that time, the systematic use of those two paradigms has enabled us to understand
and quantify some bits and pieces of Nature.

Since the Second World War, a third scientific paradigm appeared on the scene.
This one is usually referred to as “the computational” paradigm, in which we study
Nature through computer simulations. The first theoretical results dealing with this
paradigm can be attributed to Alan Turing [24] in the 1930s. Computation is nei-
ther theory nor experiment. Computations can be implemented by many means:
mechanically, electro-mechanically (for example the Bombe machine – used to
decipher the German Enigma coding-machine), using electrical circuits (the first
two programmable digital electronic computers Colossus and ENIAC), electroni-
cally (nowadays built in silico computers), chemically, biochemically, using DNA,
quantum mechanically and in many other ways not mentioned here.

A.G. Hoekstra (B)
Computational Science, Faculty of Science, University of Amsterdam,
Science Park 107, 1098 XG, Amsterdam, The Netherlands
e-mail: a.g.hoekstra@uva.nl

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_1,
C© Springer-Verlag Berlin Heidelberg 2010

1

2 A.G. Hoekstra et al.

1.1 The Computational Paradigm

The computational paradigm uses computation to describe systems and natural phe-
nomena employing a computer. The computational paradigm plays a fundamental
role in situations where analytical descriptions of the observed phenomena are not
tractable and/or out of reach of direct experimentation. Outputs from computations
are often validated against experimental data and against simplified analytical mod-
els. The power of the computational paradigm has been demonstrated in physics,
mathematics, chemistry, engineering and its importance is continuously increasing
in such fields such as biology, medicine, sociology and psychology.

The invention of the computer enabled the solution of analytical models in
terms of their numerical implementations, where by numerical we usually mean
discretization of space and time and keeping continuous variables. In this way, for
example, Partial Differential Equations (PDEs) were solved by the Finite Element
Method (FEM). It brought a big breakthrough in scientific and engineering solutions
of various problems. Finally, scientists realized that sometimes it is not necessary, or
even possible, to design an analytical model describing a given natural phenomenon.
In such cases, the observed phenomena can often be directly implemented using a
discrete model.

1.2 Modeling

An abstract model is a construct incorporating a number of variables, processes
and relationships among them. A model in this sense usually means that details
about the original, modeled phenomenon are excluded from the model itself. An
abstract model employing mathematical methods and tools to describe a natural
phenomenon or system is called a mathematical model. Mathematical models are
used within physics, engineering, biology (natural sciences), sociology, psychology,
political science, economics (social sciences). Mathematical models employ many
different types of mathematical disciplines and methods as statistics, differential
equations, integro-difference equations, dynamical systems, game theory, particle
systems, systems of difference equations, cellular automata, and many other not
mentioned here.

A computer model (often called a computer simulation or computational model)
is an abstract model implemented into a computer program. Computer models of
natural systems (as a part of mathematical modeling) are widely used in physics,
biology, social sciences, economics and engineering.

Mathematical and computational models can be grouped according to the use of
continuous or discrete values in space, state variables and time into several compu-
tationally different classes (for details see Table 1.1).

Toffoli and others [22, 25] pointed out the following sequence of approximations
typically used during modeling of natural phenomena where differential equations
are used. Initially, there is a naturally observed phenomenon. This phenomenon is

1 Introduction to Modeling of Complex Systems 3

Table 1.1 Analytical and numerical methods used to model natural phenomena where C stands
for continuous and D for discrete state, space, or time [3, 7, 21]

Type of model State Space Time

Partial differential equations (PDEs) C C C
Integro-difference equations C C D
Coupled ordinary differential equations (ODEs) C D C
Interacting particle systems D D C
Coupled map lattices (CMLs) and systems of difference C D D

equations lattice Boltzmann equations (LBEs),
Cellular automata (CAs) and lattice gas automata (LGAs) D D D

observed and studied through experimentation. Then a mathematical model is build.
In physics, it often means that suitable (set of) differential equations is used (e.g.
partial differential equations). This represents the first-level approximation. In the
second-level of approximation, the mathematical model is discretized into a numer-
ical one. Typically, such numerical schemes end up with a numerical error.

The third-level approximation is associated with the representation of real num-
bers on computers. In general computers approximate most real numbers by using
nearby rational numbers. In some cases irrational numbers can be treated exactly by
computers (e.g. sqrt(2) function). Computers use either floating point or fixed-point
number representations, resulting in rounding errors.

Contrary to the three previously listed approximations, we identify only one
approximation in computational modeling with cellular automata [22, 25]. The nat-
ural phenomenon is directly implemented in the form of a cellular automaton. This
is a potential advantage compared to the previous approaches. Due to the presence
of only one approximation, the expressivity of cellular automata is in many cases
higher as compared to other techniques.

1.3 Complex Systems

In complex systems we observe group or macroscopic behavior emerging from indi-
vidual actions and interactions. One of the first biological observations of complex
systems, if not the first one, is linked to ant-colony behavior [9], see Fig. 1.1. Each
ant is simply following its internally encoded reactions to external stimuli. It is a
well known fact that ant species may have a set of 20 up to 40 reactions on any
given external stimulus. There is no ant “leader” which tells other ants what they
should do nor a hierarchy of such leaders. Despite the lack of controlling entities,
an ant-colony builds its ant-hill, feeds it, protects it, attacks other colonies, follows
a foraging strategy, etc. This emergent behavior observed in ant-colonies is proto-
typical for many other complex systems.

We now know that a carefully selected set of reactions on external stimuli of large
number of identical copies of several generic, mutually interacting entities creates
a complex system often displaying self-organization and/or emergent behavior [1].

4 A.G. Hoekstra et al.

(b)(a)

Fig. 1.1 One of the biggest challenges of the current level of scientific understanding of Nature
is to find out principles behind self-organizing and emergent systems. An excellent example is the
ant-colony. One ant (a) (species Formica) in isolation is a “simple” system, 1000s ants working
together are capable to build complex structures like an ant-colony without any central control (b).
The solution of the backward problem is “relatively” easy (i.e. if we know ant-colony behavior then
we could find out local rules through the observation of ants). The forward problem is in general
untractable by all currently known techniques. The question is which set of local rules will lead to
the desired global response

Unfortunately, we do not know a generic procedure or algorithm to design such
systems. It is a tremendous task to find a set of local interactions which produce a
desired global response. The opposite direction, which might be called a backward
(or deconstructive) one, is relatively easy to perform.

Another striking biological example of self-organization is the existence of
“V-formations” spontaneously occurring within flocks of flying birds (e.g. geese)
[15]. The model describing this phenomenon takes into account line of sight and
aerodynamic advantages of flocking birds due to an upwash behind their wing tips
creating extra lift. Each bird controls its actual position according to its nearest
neighbors with respect to aerodynamics and vision. The final “V-like formation”
a flock spontaneously occurs due to this self-organization, regardless of the initial
positions of birds.

These two examples lead us to the concept of complex systems. Complex sys-
tems were independently and often simultaneously (re)discovered in many scientific
fields [1, 4, 6, 17]. This is an indirect indication of their universality. A typical com-
plex systems consists of a vast number of identical copies of several generic and
mutually interacting processes. Despite the lack of global control complex systems
often express (macroscopic) self-organization and emergence, which are typically
driven by dissipation of energy and/or information.

In general, self-organization often results from a competition between counter-
acting processes. A good example is provided by self-organized criticality observed
in Earthquakes where the system is constantly fed by elastic energy which is
released abruptly in the form of avalanches of various size and intensity. Self organ-
ised criticality has been observed in many natural and man-made systems [19].
Self-organization generates very robust solutions, which are intrinsically resistant

1 Introduction to Modeling of Complex Systems 5

to any kind of external and/or internal noise and perturbations. Self-organization is
often accompanied by emergence and vice versa.

Emergence is defined as the occurrence of a new quality operating at a higher
level than where the system units are operating. Going back to the example of ant-
colonies, an ant hill is an emergent property arising from the local interactions of
ants. A whole hierarchy of emergents can exist, like e.g. in the human body where
we see a cascade from DNA, amino acids, polypeptides, proteins, cell structures,
cells, tissues, organs, bodies, societies, ecosystems, etc.

Complex system behaviour is observed within Earthquakes, volcano activities,
stock market behavior, social networks, traffic flow, etc. Complex systems like that
express self-organized criticallity. There is a group of complex systems that show
percolation behavior of some property such as, e.g., conductivity of a mixture of
powders of an isolator and a metal, forest fires, opinion development within soci-
eties, and so on. It is worth stressing that no generally accepted definitions exist for
complex systems, self-organization, and emergent behavior. There is a variety of
techniques to model complex systems. In the following parts of the introduction as
well as in the whole book, the attention is focussed to one of those computational
techniques called “cellular automata”.

1.4 Cellular Automata

The notion of cellular automata has a long, living history going back to Stanislav
Ulam and John von Neumann, see for instance [21]. Von Neumann’s cellular
automaton (in plural cellular automata) [16] represents a direct predecessor of cellu-
lar automata (CAs). Shortly, von Neumann introduced cellular automata as a compu-
tational medium for machine self-replication motivated by a simple question: “What
kind of logical organization is sufficient for an automaton to be able to reproduce
itself?”. In another words “Can we reproduce computationally and in silico what liv-
ing cells do?” Unluckily, he left his work unfinished. In principle, self-replication is
possible to solve but, so far, the problem is far from being finished. Self-replication
still attracts the attention of many researchers. There are two main streams in the
design of self-replicating structures. The first one uses hand made local rules and
topologies whereas the second one employs evolutionary algorithms to explore
self-replicating structures and rules. You will find examples of both approaches in
this book.

After the very promising start of cellular automata many theoretical and practi-
cal applications and models of natural phenomena were successfully described and
solved by computational models using classical cellular automata. Some of them are
presented in this book. There are still a vast number of prospective applications of
cellular automata in almost all scientific fields. As you will see in this book, cellu-
lar automata themselves are undergoing a development as a computational method
as well.

6 A.G. Hoekstra et al.

1.5 Classical Cellular Automata

The oldest versions of cellular automata have a simple and straightforward imple-
mentation. It is based on the use of a regular array of cells (often implemented as
a matrix in computer simulations), their local variables, and a transition function
working over a neighborhood. Those components of classical cellular automaton
employing a von Neumann neighborhood are depicted in Fig. 1.2.

Fig. 1.2 A two-dimensional lattice defining cellular automaton having a size of 6×6 cells is shown
(top). The spatially expanded lattice with explicitly displayed links (lines with arrows) between
neighboring cells (bottom-left). Such topology, where only the nearest neighbors are linked, defines
a von Neumann neighborhood with a radius r = 1 (bottom-right), an updated cell (dark gray) and
neighbors (light gray). In general, different neighborhoods are defined by different sets of links

Let us define cellular automata as follows:

• A discrete cellular state space L is a set of locally interconnected finite state
automata (FSAs) that is typically created by a regular d-dimensional lattice of
FSAs. For example, in two-dimensions, a cellular automaton consists of a lat-
tice of L = m × n squares where each square, in the literature called a cell, is
represented by one FSA.

• A local value space
∑

defines all possible states for each FSA. The state σ of
each FSA can be in one of the finite number of states σ ∈ ∑ ≡ {0, 1, 2, 3,
4, . . . , k − 1, k}. The composition of all possible states of all cells create a state
space of the whole cellular automaton.

1 Introduction to Modeling of Complex Systems 7

• A neighborhood N is created by a set of N topologically neighboring cells,
which are influencing a change of the state of each updated cell in the next
simulation step. Typically, homogeneous neighborhoods (composed of nearest
neighbors) are used, see Fig. 1.3 for examples of von Neumann and Moore neigh-
borhoods.

• Boundary conditions can be periodic, fixed or reflecting among others. The most
important are periodic boundary conditions, which are used to simulate the infi-
nite lattice using a finite one. Periodic boundary conditions are implemented as a
torus in two dimensions.

• A transition rule φ:
N

︷ ︸︸ ︷∑
×
∑

× · · · ×
∑

→ ∑
describing the change of each

updated cell from its current state value to a new one, operating over the neigh-
borhood (having size N) – is defined.

(vonNeumann, r = 1)

(Moore)

(vonNeumann, r = 2)

(random)

Fig. 1.3 Various types of neighborhoods are shown: von Neumann (radius 1 and 2), Moore, and a
random one. Variables of cells within a given neighborhood (light gray plus dark gray) are used to
evaluate new values of the updated cell (dark gray) using transition function

8 A.G. Hoekstra et al.

• All cells change their state synchronously at an externally provided clock step.
This is usually called one iteration step.

A definition of a neighborhood is often provided in the following way. In the case
of a von Neumann neighborhood having radius equal to one

N 1
N (i, j) = {σk,l | |i − k| + | j − l| ≤ 1} (1.1)

= {σi, j , σi−1, j , σi, j−1, σi+1, j , σi, j+1} .

This von Neumann neighborhood (with radius equal to one) is depicted in Fig. 1.3.
Only the nearest neighbors of the updated cell are involved in this neighborhood
(i.e. four plus one in total). It is worth to mention out that the updated cell itself (i.e.
the one with indexes (i, j)) is involved in the neighborhood as well. The other type
of neighborhood is Moore neighborhood having a radius r equal to one

N 1
M (i, j) = {σk,l | |i − k| ≤ 1, | j − l| ≤ 1} (1.2)

= {σi, j , σi−1, j , σi−1, j−1, σi, j−1, σi+1, j−1,

σi+1, j , σi+1, j+1, σi, j+1, σi−1, j+1} .

This Moore neighborhood is depicted in Fig. 1.3. It is composed from the first and
second nearest neighbors and the updated cell itself (i.e. eight plus one in total).
All members of the neighborhood are numbered anti-clockwise in both cases. In
general, the size of the lattice must be much larger than the size of the neighborhood
otherwise every cell becomes dependent on other cells.

A commonly used definition of cellular automata states that they represent
dynamical systems where space, variables, and time are discrete. Such definition
enables to employ techniques developed in statistical physics that are used to predict
average, asymptotic and other properties of simulated natural phenomena. Results
of cellular automata models are often compared to results of analytical models using
a mean field approximation. It is a known fact that the behavior of cellular automata
is in general unpredictable. This property is often applied in the design cellular
automata used for encryption.

Any transition rule φ(t) can be written in the form of a function φ(t) using states
σ(t) of all cells in the neighborhood

σi, j (t + 1) = φ(σk,l(t) | σk,l(t) ∈ N), (1.3)

where N defines the neighborhood including the cell itself, see Eqs. (1.1) and (1.2),
and Fig. 1.3 for examples of neighborhoods. The transition rule φ can be any com-
bination of arithmetical and logical operations, including functions. In real appli-
cations, the typical transition rule has either the form of a transition table (defining
for which input values a certain output value is taken) or the form of a computer
program.

1 Introduction to Modeling of Complex Systems 9

In order to provide an illustrative example, the general form of a transition rule
for a von Neumann neighborhood N 1

N is given by

σi, j (t + 1) = φ(σi, j (t), σi−1, j (t), σi, j−1(t), σi+1, j (t), σi, j+1(t)) , (1.4)

which contains all five neighbors including the updated cell itself.
The number of all possible local rules Nr depends on the number of states σ and

the number of neighbors n for a given cellular automaton in the following way

Nr = σσ
n
. (1.5)

As shown in Table 1.2, the number of rules dramatically increases with the number
of neighbors n and states σ .

In general, the most difficult task in the design of cellular automata is to find a
transition rule that will describe the temporal evolution of a modeled system, i.e.
which leads to desired global response of the system. As the number of possible
rules dramatically increases with a number of states σ and the size of the neighbor-
hood n, it is usually non-trivial to find correct transition rules describing the system
being modeled.

In order to narrow down the huge space of all possible rules of a cellular automa-
ton for a given number of states σ and the size of neighborhood n, attempts were
made to classify rules according to their complexity. Wolfram [26] proposed four
classes of cellular automata behavior: (1) almost all configurations relax to a fixed
configuration, (2) almost all configurations relax to either a fixed point or a periodic
cycle according to the initial configuration, (3) almost all configurations relax to
chaotic behavior, (4) sometimes initial configurations produce complex structures
that might be persisting or long-living.

Table 1.2 The total number of local rules for a cellular automaton having a number of states σ
and number of neighbors n. It is evident that even for automata with a relatively small number of
states and neighbors the number of all possible rules increases dramatically with the number of
states and neighbors

Number of states Number of neighbors Number of rules
σ n σσ

n
Nr

2 2 222
16

2 3 223
256

2 5 225
4 294 967 296

2 10 2210
1.797 · 10308

5 2 552
2.98 · 1017

5 3 553
2.35 · 1087

5 5 555
1.91 · 102184

10 2 10102
10100

10 3 10103
101000

10 5 10105
10100000

10 A.G. Hoekstra et al.

Langton studied the average type of behavior with respect to a statistic pro-
vided by the parameter λ of each rule table [13]. In a binary cellular automata,
the parameter λ is the fraction of “ones” within the output column of a transition
table. Advantages and disadvantages of both classification methods are discussed
in detail elsewhere [14]. There have been a wide number of attempts to classify
cellular automata rules without substantial success. All known classification tech-
niques are not reliable (they misclassify rules quite easily). A search for a reliable
classification technique is still needed for the design of new cellular automata rules
having desired properties. Currently, the lack of such classification techniques is
typically overcome by use of, e.g., genetic programming, genetic algorithms or any
other evolutionary algorithm.

1.6 The Game of Life

Before we proceed let us emphasize that not all complex systems can be described
mathematically. One of the best known examples of such a complex system is the
Game of Life [8]. Due to its simplicity, it became a prototypical example of a com-
plex system formulated by a cellular automaton.

The Game of Life represents a simple, vital, widely studied example displaying
an extremely complex behavior arising from an extraordinary simple local rule [8].
This example is, either directly or indirectly, motivating many applications within
such diverse fields as game theory, sociology, ecology, fire spreading, market behav-
ior, etc. The transition rule consists of the evaluation of four independent logical
conditions for each updated cell separately:

1. a living cell having less than two living neighbors dies (loneliness);
2. a living cell having more than three living neighbors dies (overcrowding);
3. a living cell having two or three living neighbors stay living (ideal living

conditions);
4. a dead cell having exactly three living neighbors becomes alive (offspring).

When we take these simple rules and apply them to a randomly chosen initial
configuration of living and dead cells within a lattice of N × M cells, amazing
patterns start to appear. We observe configurations made of living cells transversing
through space and persisting over time. Such configurations are called “gliders”,
see Fig. 1.4 for a sequence of snapshots. We might also find another configuration
generating those “gliders” (called “glider-guns”) or configurations destroying them
(called “glider-eaters”), or oscillating structures. A lot of effort has been spent on
the discovery of various structures emerging from the Game of Life.

Figure 1.5 shows two types of structures, a “glider-gun” and “gliders” produced
by this “glider-gun”. The “glider-gun” located at the bottom-left is continuously
creating persistent, moving, living structures called “gliders” also shown in Fig. 1.4.

It is possible to create a whole set of logical and arithmetic operations using NOT,
AND, and OR gates implemented within the Game of Life employing such building

1 Introduction to Modeling of Complex Systems 11

(a) (b)

(d) (e)

(c)

Fig. 1.4 A sequence of snapshots (a)–(d) depicting the propagation of initial configuration of one
“glider” through a cellular space observed within the Game of Life. Coordinates of all cells are kept
the same within all sub-figures. The “glider” moves by shifting itself one cell upwards and one cell
to the right within four time steps and so on. There are four diagonally symmetrical directions of
glider propagation

Fig. 1.5 One type of glider-gun (bottom) creating gliders (moving from the left-bottom corner
to the right-top one) observed within the Game of Life. The whole logics and arithmetics can be
build from them (such operations as NOT, AND, OR, etc.). Any recursive function can be build
using such operations. Therefore the Game of Life is universal

12 A.G. Hoekstra et al.

units as gliders, glider-guns, and glider-eaters. Any recursive function can be build
using those elementary building units, see Fig. 1.5.

The occurrence of real complex structures within a randomly initiated simulation
of the Game of Life is very likely. It is shown that the Game of Life has the univer-
sality of a Turing machine. Surprisingly, even such a simple model motivated by the
behavior of living matter displays self-organization and emergent behavior. These
two fundamental processes operate within many complex systems.

There is no efficient way to “simulate” the game of life through a set of equations.
In this case the efficiency of the cellular automata is much higher than any classical
method, since the use of cellular automata decreases the level of dissipation of local
information within the system. This is equivalent to the well-known Church-Turing
hypothesis, stating that the final configuration can only be obtained through explicit
simulation.

1.7 Advanced Cellular Automata

Classical cellular automata can be generalized in many ways. The best known and
the most important generalizations, like the lattice Boltzmann method, networked
automata, complex automata, asynchronous automata, quantum cellular automata,
wetware, and real valued cellular automata are briefly introduced.

The lattice Boltzmann method was developed to simulate fluid flow as an alterna-
tive to the Navier–Stokes equations. It is based on the use of a discrete Boltzmann
equation operating on a lattice of edges where virtual particles are moving. Particles
have a distribution of velocities at each lattice point. They move along those edges
and undergo collisions. Collisions are designed in a such way that time-averaged
motion of particles is consistent with the Navier-Stokes equations. The lattice Boltz-
mann method is discussed in more detail in the chapter by Kusumaatmaja and Yeo-
mans in this book. The lattice Boltzmann method is used to model a wide range of
applications for single- and multiphase flows within complex geometries including
porous media [5].

Networked automata appeared on the scene along with understanding that the
lattice itself on which a particular cellular automaton operates can be understood
as a network. The question is how a change of a regular lattice (i.e. a regular net-
work) to more general types of networks influence the overall behavior of a specific
cellular automaton under study. The answer is in many cases surprising. Such com-
plicated networks as scale-free and small-world networks have in most cases a large,
positive impact on the efficiency and robustness of the computation. What is even
more important, such networks more precisely reflect natural phenomena which are
described by cellular automata (e.g. social networks, gene regulatory networks, the
Internet, etc.).

Complex automata (CxA) employ the idea that a multi-scale system can be
decomposed into a number of single-scale automata, which are mutually interact-
ing. The evolution of the system is driven by evolution at single-scale levels which
are influenced by evolution at the other scale levels. There is a whole number of

1 Introduction to Modeling of Complex Systems 13

possible implementations of multi-scale models using cellular automata. Updating
of the multi-scale model could be done in a variety of ways. This new type of cellular
automata are introduced in this book by Hoekstra et al.

For a long time it was assumed that synchronous updating of the whole lattice of
cells is fundamental for computations employing cellular automata. This assumption
is proven to be too strict and can be weakened to asynchronous automata. Simply
said, it is possible to develop asynchronous cellular automata rules, which perform
the same tasks as synchronous cellular automata. The asynchronous updating mode
of computation occurs in many real applications. It is known that an asynchronous
CA for a particular task is more robust and error resistant than a synchronous
equivalent.

Quantum cellular automata (QCA) proposed by Richard P. Feynman employ
quantum mechanical phenomena in the design of computational models. They rep-
resents the quantum mechanical analogy of classical cellular automata. In many
cases, they employ completely different computational principles.

Wetware represents one of the prospective media to implement cellular automata.
This area of research remains mostly open for future discoveries. Employing chem-
ical and/or biochemical reactions (going even up to the level of cells and tissues)
may bring new computational tools (called wetware) potentially having a tremen-
dous computational capacity (e.g. DNA computing). The term wetware stands for an
abstraction used for hardware and software. Wetware is build on completely differ-
ent computational principles compared to the ones currently used in silico circuits.

Some authors are using the notion of a cellular automaton even when the asso-
ciated variables have real values. This is valuable in many models of naturally
observed phenomena (e.g. recrystallization in solid state physics). Cellular automata
using real values are often referred to as coupled map lattices (especially in physics).

1.8 Book Organization

The book is organized in three parts: (1) Theory of Cellular Automata; (2) Appli-
cations of Cellular Automata; and (3) Cellular Automata Software. The theory part
contains fundamental chapters on different aspects of modeling complex systems
with cellular automata. The applications part presents a number of representative
examples of applications of Cellular Automata in a large range of scientific disci-
plines. The part on software highlights the important work that has been done to
create high quality software environments that allow to quickly and relatively easily
implement a Cellular Automata model and run simulations.

The first part on theory contains eight chapters, discussing fundamental issues
related to complex systems modeling with Cellular Automata. An important class
of complex systems are multi-level systems, where interactions between multiple
levels to a large extend dictate their properties. In three chapters different aspects
of this class of Cellular Automata Models are discussed. In Chap. 2 Hogeweg
introduces multilevel Cellular Automata, where the states and rules of lower lev-
els, that produce patterns on higher levels, can by adjusted by those very patterns

14 A.G. Hoekstra et al.

in a feedback loop. Applications in Bioinformatic systems are reviewed. Hoekstra
et al., in Chap. 3, propose Complex Automata as a formalism to model multi-scale
complex systems. The idea is to decompose a multi-scale system into a set of single
scale models, where each single scale model is represented by a CA. While Complex
Automata assume a form of scale separation, Dunn in Chap. 4 introduces a strongly
coupled hierarchical Cellular Automata to model multiscale, multiresolution sys-
tems, with special projection operators to formalize the coupling between the levels
in the hierarchy. Applications in landscape ecology serve as an example.

Bandman, in Chap. 5, introduces a formalism for Cellular Automata as a model
of spatially extended dynamical systems, focussing on composition techniques to
develop and formally analyze advanced Cellular Automata models for such dynam-
ical systems.

The great asset of Cellular Automata has always been to use them as minimal
models capturing the main features of the dynamics of a system under study. In two
chapters examples of such minimal Cellular Automata models are further explored.
Chapter 6, by Umeo, discusses in detail 1-bit communication Cellular Automata,
where inter-cell communication per step is restricted to one bit, applied to a number
of applications. Adamatzky and Grube consider minimal Cellular Automata mod-
els for population dynamics, introducing only six very basic types of interaction
between two species, and then exploring the behavior of their models as a function
of these interactions.

Tomassini, in Chap. 8, introduces Cellular Evolutionary Algorithms, a class of
probabilistic Cellular Automata that can be used to solve complex optimization
problems, of which a number of examples are shown. Finally, in Chap. 9, Pan and
Reggia continue the line of research that actually started of the field of Cellular
Automata, that is, Cellular Automata for self-replicating structures. They give a his-
torical overview, and discuss novel results using evolutionary algorithms to discover
new self-replicating structures.

Part II contains 5 chapters showing impressive examples of applications of Cel-
lular Automata to model complex systems in a large range of different scientific dis-
ciplines. Yu and Helbing discuss in Chap. 10 applications in Sociology, introducing
migration games and studying in detail their behavior under a range of assumptions
and parameters. On a quite different stance, Kusumaatmaja and Yeomans introduce
in Chap. 11 the Lattice Boltzmann Method and its application to modeling complex
fluids, specifically dynamics of drops and wetting dynamics.

Chowdhury, Nishinari, Schadschneider introduce in Chap. 12 single-and two-
lane CA models for ant trails, and their validation against empirical data. Next, in
Chap. 13, Hatzikirou and Deutsch discuss how the Lattice Gas Cellular Automaton
can be applied as a model for interacting biological cells. They study pattern forma-
tion of growing cellular populations, and apply their models to simulate growth of
solid tumors.

Gürdal and Zakhma show how Cellular Automata can be applied in an engineer-
ing context. In Chap. 14 they discuss in detail how Cellular Automata can be applied
to topology design optimization and provide three challenging examples.

1 Introduction to Modeling of Complex Systems 15

Finally Part III contains one chapter, by Talia and Naumov, on Cellular Automata
software. They review a range of problem solving environments for Cellular
Automata modeling and simulation, and discuss in some detail systems that facili-
tate parallel cellular programming.

1.9 Additional Resources

A wide number of high quality sources providing necessary starting information
about cellular automata, their implementation, and their use in modeling of complex
systems exist; among others there are [10, 23, 22, 25, 27, 18, 21, 12]. In the case
you have no prior experience with cellular automata, it might be good to start with
reading of the book of Mitchel Resnick [17] and use the StarLogo programable mod-
eling environment [18], which is suitable for description of decentralized systems
(e.g. ant colonies and market economies).

It is also recommended to study the book of Toffoli and Margolus [23] which
presents a wide number of cellular automata models implemented in their specially
dedicated computer with a computational environment called Cellular Automata
Machine (CAM). Many more cellular automata software packages are available. We
suggest to visit the web page of the IFIP Working Group 1.5 on Cellular Automata
and Machines [11] and consult the review provided in Chap. 15 of this book.

A series of bi-annual cellular automata conferences [28, 20, 2] named ACRI
presents every second year a wide number a valuable, up-to-date overview of cel-
lular automata models. If you intend to use cellular automata to model a naturally
observed phenomenon then this source – beside this book – might be a good starting
point of your search for cellular automata models that are solving the same or similar
problems.

References

1. P. Bak, How Nature Works: The Science of Self-Organized Criticality. (Springer, New York,
NY, 1996)

2. S. Bandini, B. Chopard, M. Tomassini (eds.), Cellular Automata, 5th International Conference
on Cellular Automata for Research and Industry, ACRI 2002, Geneva, Switzerland, October
9–11, 2002, Proceedings Lecture Notes in Computer Science, vol. 2493 (Springer, Heidelberg,
2002)

3. L. Berec, Techniques of spatially explicit individual-based models: Construction, simulation
and mean-field analysis. Ecol. Model. 150, 55–81 (2002)

4. N. Boccara, Modeling Complex Systems (Springer, Heidelberg, 2004)
5. B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems, (Cambridge Univer-

sity Press, Cambridge, 2005)
6. K. Christensen, N. Moloney, Complexity and Criticality (Imperial College Press, London,

2005)
7. A. Deutch, S. Dormann, Cellular Automaton Modeling of Biological Pattern Formation

(Birkhauser, Basel, 2004)

16 A.G. Hoekstra et al.

8. M. Gardner, The fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am.
223, 120–123 (1970)

9. B. Hölldobler, E. Wilson, Journey to the Ants: A Story of Scientific Exploration, 3rd edn.
(Harvard University Press, Cambridge, MA, 1995)

10. A. Ilachinski, Cellular Automata: A Discrete Universe (World Scientific Publishing Co. Pte.
Ltd., London, 2001)

11. International Federation for Information Processing (IFIP), Working Group 1.5 on Cellular
Automata and Machines, http://liinwww.ira.uka.de/ca/software/index.html: A list of software
packages for Cellular Automata, http://liinwww.ira.uka.de/ca/software/index.html

12. J. Kroc, Special issue on modelling of complex systems by cellular automata 2007: Guest
editors’ introduction. Adv. Compl. Syst. 10(1 supp), 1–3 (2007)

13. C. Langton, Computation at the edge of chaos: Phase transitions and emergent computation.
Physica D 42, 12–27 (1990)

14. M. Mitchell, Nonstandard Computation, chap. Computation in cellular automata: a selected
review (VCH, Weinheim Verlagsgesellschaft, 1998) pp. 95–140

15. A. Nathan, V. Barbosa, V-like formations in flocks of artificial birds. ArXiv Computer Science
e-prints (2006), http://arxiv.org/abs/cs/0611032

16. J. von Neumann, A. Burks, Theory of Self-Reproducing Automata (University of Illinois Press,
Urbana, IL 1966)

17. M. Resnick, Turtles, Termites, and Traffic Jams – Explorations in Massively Parallel
Microworlds (The MIT Press, Cambridge, MA, 1997)

18. M. Resnick, StarLogo – programmable environment for exploring decentralized systems
flocks, traffic jams, termite and ant colonies. Tech. rep., MIT (2006), http://education.
mit.edu/starlogo/

19. P.M.A. Sloot, B.J. Overeinder, A. Schoneveld, Self organized criticality in simulated corre-
lated systems. Comput. Phys. Comm. 142, 66–81 (2001)

20. P. Sloot, B. Chopard, A. Hoekstra (eds.), Cellular Automata, 6th International Conference
on Cellular Automata for Research and Industry, ACRI 2004, Amsterdam, The Netherlands,
October 25–28, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3305 (Springer,
Heidelberg, 2004)

21. P.M.A. Sloot, A.G. Hoekstra, Modeling dynamic systems with cellular automata, ed. by
P.A. Fishwick Handbook of Dynamic System Modelling chapter 21 (Chapman and Hall
London, 2007)

22. T. Toffoli, Cellular automata as an alternative to (rather than an approximation of) differential
equations in modelling physics. Physica D17, 117–127 (1984)

23. T. Toffoli, N. Margolus, Cellular Automata Machines: A New Environment for Modeling (MIT
Press, Cambridge, MA 1987)

24. A.M. Turing, The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Arti-
ficial Intelligence, and Artificial Life plus The Secrets of Enigma (Oxford University Press,
New York, NY, 2004)

25. G. Vichniac, Simulating physics with cellular automata. Physica D17, 96–116 (1984)
26. S. Wolfram, Universality and complexity in cellular automata. Physica D 1–35 (1984)
27. S. Wolfram, A New Kind of Science (Wolfram Media Inc., Champaign, II 2002)
28. S.E. Yacoubi, B. Chopard, S. Bandini, (eds.) Cellular Automata, 7th International Con-

ference on Cellular Automata, for Research and Industry, ACRI 2006, Perpignan, France,
September 20–23, 2006, Proceedings Lecture Notes in Computer Science, vol. 4173 (Springer,
Heidelberg, 2006)

Part I
Theory of Cellular Automata

Chapter 2
Multilevel Cellular Automata as a Tool
for Studying Bioinformatic Processes

Paulien Hogeweg

2.1 Introduction: “one more soul”

The signature feature of Cellular Automata is the realization that “simple rules can
give rise to complex behavior”. In particular how fixed “rock-bottom” simple rules
can give rise to multiple levels of organization. Here we describe Multilevel Cel-
lular Automata, in which the microscopic entities (states) and their transition rules
themselves are adjusted by the mesoscale patterns that they themselves generate.
Thus we study the feedback of higher levels of organization on the lower levels.
Such an approach is preeminently important for studying bioinformatic systems. We
will here focus on an evolutionary approach to formalize such Multilevel Cellular
Automata, and review examples of studies that use them.

At the 2004 meeting on which the current book is based, Toffoli nicely discussed
how science has annihilated one by one the “souls” around us, by bringing the phe-
nomena they represent, which were deemed to lie outside the scientific realm, into
the scientific discourse. Cellular Automata (CA) have played their part in this pursuit
e.g. by von Neumann’s existence proof on self-reproduction [19]. More generally
CA have been the preeminent environment to demonstrate that simple local inter-
actions can lead to complex “emergent” behavior at different scales of observation.
Therewith it has not only eliminated “souls” but also many more mundane but too
complex explanations of complex behavior. It may be argued, however, that CA
have left one “soul” in tact: the rules themselves as an externally given rock-bottom.
In this paper I will describe approaches to eliminate (or at least soften) this last
“soul” in CA-like models. Moreover I will argue that for understanding biological
complexity it is essential to allow not only for higher level emergent properties, but
also to allow the lower level “entities” to become emergent properties of the system.

P. Hogeweg (B)
Theoretical Biology & Bioinformatics Group, Utrecht University, Padualaan 8,
3584 CH, Utrecht, The Netherlands
e-mail: p.hogeweg@bio.uu.nl

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_2,
C© Springer-Verlag Berlin Heidelberg 2010

19

20 P. Hogeweg

2.2 Modeling Bioinformatic Systems

A pre-eminent feature of biological systems is the intertwining of many levels of
organization, spanning many orders of magnitude. For example changes of one
nucleotide can change the shape of a leaf, which means a blow-up in scale of 1010,
as Enrico Coen recently1 vividly reminded his audience by arguing that a human
cannot have such a large effect, even by exploding a nuclear bomb. The percolation
of effects through different scales is even more impressive when combined with
the robustness the system exhibits. To understand the interactions between differ-
ent scales, at whatever level, is a pre-eminent goal of bioinformatic research. As
mentioned above, CA play an important role to understand how apparent complex
phenomena at multiple scales can result form simple local interactions. The multiple
scale nature of even the simplest CA has been beautifully demonstrated by Crutch-
field and his collaborators ([9] and Crutchfield, this meeting) in his tour the force
analysis of the elementary CA in terms of higher level “virtual particles” and their
(reaction kinetic like) interactions, where the particles are the “defects” in the most
frequent patterns formed by the CA. This illustrates the power of CA in “bottom up”
studies (from lower level to higher level behavior) which make them an important
tool in bioinformatic research. However for bioinformatic research we have to go
beyond this because we can neither work only “bottom up” nor “top down” but
have to work “middle out”. This is because when we start at an intermediate scale
the lower level entities cannot be treated simply as new rock-bottom micro entities
for the following reasons.

• The micro entities we deal with are often not invariant, e.g. when we take cells as
our micro level, their properties change through transcription regulation or muta-
tion, and also directly through stress and strain caused by differential adhesion
between cells.

• The micro entities, and the “rules” that govern their behavior, are not necessarily
as simple as possible. As Zhou et al. [23] formulated it, living systems have a high
“design degrees of freedom (DDOF)” and therefore may “choose” a solution that
is quite different than the simple solution that many of us would stipulate. A
great challenge is therefore to design modeling approaches that enable us to get
insight not only in simple to complex mappings but also in complex to complex
mappings.

• The “rules” that govern the behavior of the entities are neither “arbitrary” nor
“some universal invariants” but are evolved. An evolutionary perspective is essen-
tial for understanding present day organisms. But also the ultimate aim of bioin-
formatic research is not only to understand the information transmission from
genetic information to higher levels but also how the genetic information itself
was generated over evolutionary time, and therewith “why it is as it is”.

1 BSDB autumn meeting 2007, Sheffield, UK.

2 Multilevel Cellular Automata 21

Therefore we need a “middle-out” approach that allows for the feedback from
mesoscale entities to the microscale entities which generate them so that both
become emergent properties of the system. Here we take an evolutionary approach
to the challenging problem of defining multilevel CA. Note however that several
other multilevel CA have been formulated. For example in urban planning stud-
ies where different features of the landscape are modeled in different layers of the
CA, and the rules include inter-level interactions and also may include rules for
modifying the rules on the basis of the dynamics of other layers, e.g. [4]. Another
interesting example is the so-called CPM formalism, used in e.g. foam physics and
biological development. In CPM the mesoscale entities (cells) are priory defined and
the feedback to the microscale is indirectly defined through an energy minimization
process [8, 7, 17]; the interaction between micro and mesoscale entities generates
very rich behavior and many scales (e.g [18]) and, it can be combined with an
evolutionary approach (e.g. [14]).

The evolutionary approach I discuss here, allows the coupling the CA paradigm
of “simple rules gives rise to complex behavior” to the famous observation of
Dobzhansky “Nothing in biology makes sense except in the light of evolution”[6].

2.3 Multiscale Processes in Standard CA Models:
Examples from Ecology

Ecology studies interactions between various species. Classical ecological models
do this by defining interactions between populations, where all individuals of the
population are assumed to be the same (or at least in an equilibrium distribution
of variants) and not changing over time. Using CA as a paradigm, ecological mod-
eling can instead take individuals as basic units. In such models the state of one
automaton (cell2) in the CA represents the presence of an individual of a certain
species at the corresponding location, whereas state 0 means that no individual is
present (this encoding assumes that only one individual can be present at such a
location). The (probabilistic) CA rules encode the interactions between individuals.
Such interactions are thus assumed to be local as they necessarily are in real ecosys-
tems, making CA an important tool in ecological research [11]. Modeling ecological
interactions in this way will lead in many cases to a patterned distribution of the
species over space. For example predator-prey or host-parasite interactions will for
large parameter ranges lead to large scale wave-like patterns, whereas (interference)
competition leads to static large scale patterns similar to those of voting rules. The
formation of such mesoscale patterns (i.e. patterns at some scale in between the
micro scale on which the rules of the CA operate and the CA as a whole) may
influence the dynamics and persistence of the ecosystem as a whole as in als well as
of each of the species. Within this framework we can study the fate of mutants, i.e.

2 In biological context I will avoid to use the word cell for the automaton to prevent confusion with
biological cells.

22 P. Hogeweg

new individuals created by a mutation event (modeled as new states with slightly
modified transition rules). by studying whether they can invade and/or persist in the
ecosystem. In this way Boerlijst and Hogeweg [2, 3], showed clearly that mesoscale
patterns drastically alter generally held expectations about invasions and persistence
of mutants. They showed, for example, that a mutant with higher death rate, but
equal in all other aspects to the resident population can invade and even replace the
resident population. The explanation of this counter-intuitive phenomenon is that the
competition shifts from the level of individuals to the level of mesoscale patterns. In
the case mentioned these mesoscale patterns are spiral waves. The spiral waves with
the species with the higher death rate rotate faster and therefore take over the domain
of those with the species of the lower death rate, which rotate slower. All this fits
in the classical CA formalism. It indeed exemplifies the “simple rules to complex
phenomena” paradigm in a very nice way: not only do “emergent phenomena” arise,
but they do, in fact, influence the dynamics of the system at both the microlevel
and the level of the entire automaton, i.e. on macroscopic variables as which states
(species) are present in equilibrium. These features of CA models have contributed
to our understanding of ecological and invasion dynamics.

However, individuals within population are not genetically, or developmentally
invariant, and the distribution of these variations is not invariant over time. Many
strikingly fast changes in the properties have been reported, over time-frames shorter
than equilibration of the ecological dynamics (see also [16]). In other words in order
to understand ecological systems we should widen our scope to include evolutionary
processes, i.e. we should shift from studying ecological dynamics sensu strictu to
studying eco-evolutionary dynamics and eco-informatics [15]. This can be done by
extending CAs to allow for expansion and/or change of the prior defined set of states
and their transition rules, generating new “states” “on the fly”, as described below.

2.4 Emergent Microscale Entities in Evolutionary
CA Models: An Example

As an example of pattern generation (emergent properties) at multiple scales, includ-
ing the scale of micro entities, I review here our work on “Evolution of Complexity
in RNA-like replicators” [22]. The biological setting is pre-biotic evolution, and
the question is how in early evolution the so-called information threshold could be
circumvented. Here I emphasize the “middle-out” aspect of this work in the sense
explained above.

A prerequisite for generating new microscale entities on the fly, is that their struc-
ture allows interaction to be computed.3 Thus we have to switch from micro states

3 One could argue, however, that strictly speaking our evolutionary CAs are normal CAs except
with a huge number of states for each automaton where mesoscale pattern select a subset of those.
Such an argument is however equivalent to saying that we do not need the concept to CA itself,
because we can reformulate every (finite) CA as a single finite state machine with a huge number
of states as CA are just a restricted subset of such huge finite state machines.

2 Multilevel Cellular Automata 23

to micro entities, terms we used intermingled above. In the middle out approach
these do not have to be very simple.

Here we use RNA sequences, i.e. strings of four bases, A,C,G,U, of length 50
as our microscale entities. Binding strength between the 4 bases are defined. From
this follows a minimum energy secondary structure (folding). The generalized inter-
action rules are defined in terms of the secondary structure and the binding of the
so-called 5′ and 3′ (open) ends (i.e. the left and right ends) of two of “molecules”.
A specific secondary structure (which can be realized by many, but a small subset
of the sequences) defines a catalyst. Binding to the 5′ end a catalyst can lead to the
replication: i.e. an automaton in state 0 can get the state of the complementary string
of the replicating sequence. (so two rounds of “replication” are needed to produce
the same sequence again). Binding to a non-catalyst has no effect (except implicitly
by not being available for binding to a catalyst). Thus, a sequence (genotype),
to structure (phenotype), to interaction mapping is defined (Fig. 2.1) In addition
“mutations” can take place, i.e. a base of a sequence changes into another base
(several mutations can occur at one replication step). Thus, new micro-entities are
generated, and their interactions with other (present) micro-entities can be computed
from the genotype-phenotype-interaction mapping. Finally any non-zero state has a
certain probability to change into a zero state (i.e. decay of the molecules). For more
details see [22]. Note that in this evolutionary model no external fitness criterion
is defined: as in biological evolution only survival matters. The questions studied
by this approach are therefore not how can we mimic some predefined (observed)
behavior, but how/when does such a non-supervised evolutionary process give rise
to complexity at various levels.

The upper part of Fig. 2.1 shows the feedback of the mesoscale to the microscale
in such a system. Through mutations a single initial starting sequence gener-
ates a polymorphic so-called “quasi-species”, i.e. a set of strings in its muta-
tional neighborhood. Through the differential interaction between the different
sequence/structures spatial patterns emerge, in this case mostly chaotic waves. Bind-
ing probabilities and chaotic waves together determine which sequences can “sur-
vive” (i.e. which sequences (states) occur). This process can lead to “speciation”, the
emergence of several lineages of replicators. The (long-term) occurrence of these
lineages is not because of the mutational process (as is the case for quasi-species
polymorphism) but because of their separate “functions” in the ecosystem.

These processes are shown in Fig. 2.2. The upper left panel shows the absence
of any spatial structure in the initial, non-evolutionary CA: One particular replicator
consisting of a catalytic sequence and its complement (colored the same) maintains

Fig. 2.1 Scheme of feedback
of mesoscale patterns to
microscale entities

24 P. Hogeweg

A. initia phyl.tree

..............(((.(....)..(....).)))..............

..............(((.....((((((.......))))))......)))

0

1

2

b
it

s

U
A
C

A
U
C

A
U
C

A

U

CAUCU

C
U

C
U

C
U

CAUCU

A

C
A

U

C
G

A
U
C

U
A

CGGC
U

CAUGUAGAC

AACAACG
C

A

U
U

G
AAAUGCGUAGCC

G

AUACUA

G
A

U
U

C
A
G

C

A
U

U

A
C
G

C
A
U
G

C
U
G
A

A
U

A

GCC
..............(((.(....)..(....).))).....).)).....
..............(((.....((((((.......)))))).))...)))

B. mut.rate=.004 phyl.tree

..............(((.(....)..(....).)))..............

..............(((.....((((((.......))))))......)))
..............(((.(....)..(....).)))..............
..............(((.....((((((.......))))))......)))

.............((...(....)..(....)..))..............

.................................((((.........))))

0

1

2

b
it

s

U
C
A

C

G
U
A

U

C
G
A

U

G
C
A

U
G
A

C

G
A

U

C
G
A

U

G
A

U
G
AG

A
U

G
A

G
A

U

G
A

C
G
A

C
A
G

C
G
U

U
C

U
G
AGG

C

G

AG
AACU

C
A

G
U
ACG

A
C
G

G
A

G

AG
U
C
A
GG

A
G

C
C

G
A

A

G
C
U

C

G
U
ACGAUG

A
U

G
A
C
U

U
A
G

C
G
A
U

G

U
G
A
U

U
G
A

A

G
U

C

A
G
UCGAUU

G

C
..............(((.(....)..(....))))...............
..............((...((((((((((((..((())))))))))))))

(((((...((..................))..))))).............
.................................(((...........)))

0

1

2

b
it

s

U

C
A
GGG

UCAGUG
U
A
C

U
G
A

G
A
C

G
U
A

G
A
C

G
U
A

G

A
U
C

G
U
A

G

A
U
C

G
U
A

U
A
C

U

G
C
A

A
U
CGUAG

U
A
C

U
C
G
AUGACG

U
C
A

A

C
G

C

U
G
A

G

C
U
A

C

A
G
UA

C

U
G
A

U

C
A
G

U
G
A

C

G
U
A

A

U
C
GG

A
A

C
GC

U

C
U
C
A
G

U

A
G

A
G

U

A
G

U
A
G

U
A
GUAGCUAGA

G
A
U
G

C

U
A
G

A

GU
G

G

C
(((((((.(.................).))))))))..............
.................................(((...........)))

((((......................))))....................
.........................(((((.(((........))))))))

0

1

2

b
it

s

A

C

G
G
U
C

U
G
C

A
U
C

A

G
C
U

G

U
C
A

G

C
U
A

U
G
A

C

G
U
A

G
U
C
A

G
C
U
A

C
U
G
A

G
U
C
A

G
C
U
A

C
G
U
A

G
U
A

G

C
U
A

U
G
C
AGCUAG

U
A

U

A

U

C

A
G

U
A
C
G

U

C
A
G

U
C
G

G
A
U
C

A
C
G

A

G
U
CGUA

C
U

C

G
A
U

G

C
A
U

G

A
C
U

A
C
G
U

C
A
U

C
G
A
U

A

G
C
U

G
A

C
U

C

G
A
U

G
A
C
U

G
A
C
U

G
C
U

C
A
U

G

C

A
U

U
A
C

A

U
G
C

G

C
A

A
G
C

G
A
C

A

U
G
C

(((((((((.........))))))))))......................
....................((((((((((........)...))))))))

ut.rate=.015l m

Fig. 2.2 Multilevel evolutionary CA: mutually dependent patterns and mesoscale and microscale.
(a) Initial ecosystem (mutation rate 0), and eco-evolutionary system (mutation rate 0.015) with
phylogenetic tree, showing one quasi-species. (b) Evolved ecosystem and eco-evolutionary system
(mutation rate 0.004) with phylogenetic tree showing 4 quasi-species. Below the snapshots of the
CA are the Sequence(logo): the larger the letter the more conserved that position is in the system.
Below the sequence logo is the consensus secondary structure for each (quasi) species in bracket
notation: corresponding open and closing parentheses indicate a 5′ to 3′ end base-pairing, dots are
unbound bases. For a colored version of this figure see: http://www-binf.bio.uu.nl/ph/figacri.pdf

2 Multilevel Cellular Automata 25

itself in the system, with empty places because of decay. At high mutation rates
(upper right panel) a high degree of polymorphism emerges leading to spatial pat-
tern formation, i.e. chaotic waves of non-zero and zero states. The polymorphism
is “non-structured” as seen in the phylogenetic tree (clustering) on the right and
consist of relatively close mutants of the initial sequence. In other words no speci-
ation occurs. Nevertheless these close mutants may fold differently, and may bind
stronger (with both complementary strands) to the catalyst, locally out-competing
it. This process leads to the spatial pattern formation. When mutation rate is set
to 0, the system as initially defined is recovered, with identical sequences and no
spatial pattern formation. Survival of the system including mutations depends on
the spatial pattern formation: when spatial pattern formation is prevented by mixing
the entities(states) between every reproduction step, the system quickly dies out
(all 0 state) because the catalysts goes extinct due to competition with mutants. This
extinction happens in well mixed system for any mutation rate. We further only
consider the non-mixed system.

In contrast to the results at high mutations rates, at somewhat lower mutation
rates, speciation does occur in the full system. This can be clearly seen from the
phylogenetic tree on the right: there are 4 quasi-species. Moreover, if mutation is
stopped 4 mono-morphic species (i.e. 2 × 4 sequences because of the complemen-
tarity) survive indefinitely. There are 2 catalytic species (cyan, corresponding to
the initial sequence, and magenta) and 2 non-catalytic species (parasites) (red and
green). The binding probabilities are given in the Table 2.1

Table 2.1 Complex formation happens with a probability p as indicated in table when the two
types of “molecules” are neighbors and interact. Complexes dissociate with a probability (1 − p)
Replication happens when a complex and an empty spot (state==0) interact; the complement of the
string binding to the catalyst is produced and occupies the empty spot; the complex dissociates if
replication happens. All non-zero states have a decay probability of 0.03, i.e. to become state 0

initial 1 species ecosystem
2 states and transition rules

C-catalyst
catal.str. comp.

C-cat 0.528 0.878

structure of catalyst and its compl. string

evolved 4 species ecosystem
8 states and transition rules

C-catalyst A-catalyst G-parasite U-parasite
CYAN MAGENTA RED GREEN

catal.str. comp. catal.str. comp. logostr. comp. logostr. comp.
C-cat 0.528 0.878 0.362 0.451 0.808 0.650 0.259 0.362
A-cat 0.393 0.049 0.503 0.765 0.139 0.478 0.632 0.551

G
G

CAUC
C

A
C
A

C
A

A
U

GG
C

U
C U U

A
C

G
U

U
G

U U U C
C
G

G
C

C G G G
G

G
G
G

G
GGGG

G
G

CCC
C

C
C
C
C
C
C

C
C

C C G
G
C

C

G
G
A A

A
CA AC

G
U A

A
G

A
G
C
C A U

U
G

U
G
U
G
G

A
U

GCC

26 P. Hogeweg

The red parasite is strongly catalyzed by the cyan catalyst, the green one by the
magenta one. Accordingly the emergent mesocale patterns in space show a suc-
cession of cyan, red, magenta and green waves, as red out-competes cyan, while
the weaker catalyst (magenta), which catalyzes itself more than red succeeds it, but
is itself out-competed by green, after which cyan invades again. In the full eco-
evolutionary system the same succession of quasi-species can be seen. The different
levels are tightly interwoven: the sequence, the folding structure and the spatial
patterns can only be understood in terms of each other. Repeated runs converge
to a similar organization: 2 catalysts and 2 parasites with similar relative binding
strength, with the catalysts having many C or A’s in the 5′ end and the parasites
having many G’s or U‘s in a very long 3′ end. The emerging folding structure of
parasites and complementary strands can in hindsight be understood in terms of
interaction avoidance.

In conclusion, in the evolutionary CA described above micro-scale and mesoscale
patterns emerge in mutual dependence. The emerging interaction topology was very
surprising: despite the fact that many interaction structures have been studied in
ecology in general and prebiotic evolution in particular, no-one has ever proposed
the one that emerged in the present study. All interaction topologies which were
proposed proved to be vulnerable to high mutation rates and invasion of parasites,
leading to extinction of the entire system by extinction of catalysts. The remarkable
robustness of the systems depends on this topology, but not on the topology alone:
also on the chosen coding structure of the sequences and folding structure which
shape the mutational landscape, as well as the spatial patterns. Neither arbitrary nor
“designed” microscale interaction are likely to exhibit the robustness of the system
that emerged in our experiments. However rare the robustness may be in possibility
space, it is repeatedly found in independent runs, i.e. they are both rare and likely
to occur. It is very satisfying to find that the simple multiscale evolutionary CA
approach allows us to investigate such rare but likely cases as indeed biological
systems seem to belong to that category!

2.5 Evolutionary CA and Evolutionary Computation

In the field of evolutionary computation, CA have been combined with evolution in
mainly three different ways, i.e.

(1) The evolution of a CA with specific properties, e.g. density classification [5] or
diversity in replicator systems [12].

(2) The evolution of micro-scale entities that solve problems by co-evolution of
solvers and problems in a CA setting (e.g the evolution of sorting algorithms
[10] or function approximation [20, 1]).

(3) Both approaches can also be combined as we showed by evolving density clas-
sifiers in a co-evolutionary manner, improving performance as well as altering
the type of solutions found: from mostly majority based solutions to the more
intricate particle based solutions [21].

2 Multilevel Cellular Automata 27

These approaches differ from the one described above in that there is an exter-
nally imposed fitness criterion. Thus what comes out has been much more prede-
termined. Nevertheless such systems, especially when the fitness criterion is very
general (e.g. diversity) or high fitness can we attained in many different ways (given
the basic building blocks), can share to a large extend the mutual multilevel prop-
erties described above. For example, although in the co-evolutionary CAs two dif-
ferent “species” are defined (host parasitoids) with predefined types of interactions,
further speciation within the host and parasitoid populations occurs through indirect
interactions and pattern formation. Indeed these mutual multilevel properties are
essential for attaining the global performance fitness [1]. Recently we have shown
that through a speciation process ecosystem based problem solving can be obtained.
In this case the eco-evolutionary process automatically decomposes each of the
problems in sub problems that are solved by different species (de Boer and Hogeweg
submitted). I conjecture that designing such systems so as to maximize the degrees
of freedom of the multilevel interactions may improve the performance.

2.6 Conclusion

We have defined evolutionary multilevel CA and we have shown how microscale
and mesoscale entities emerge in consort. In doing so we deviate from the usual
CA approach in which the microscale is the rock-bottom on which only higher level
entities emerge. We have seen that through this approach we can zoom on “rare but
likely” cases with, in some sense, superior properties (e.g. robustness). Moreover it
allows us to go beyond the “simple rules give complex behavior” to begin studying
in a meaningful and relatively simple way “how complex rules give rise to complex
behavior” (and vice versa) (see also [13]) . Doing so is necessary for studying bioin-
formatic processes keeping in mind Einsteins famous dictum “Everything should be
made as simple as possible, but no simpler”.

Acknowledgments I thank Nobuto Takeuchi for advancing the modeling methodology described
here, for providing the figures and for critical discussions on the manuscript.

References

1. F. de Boer, P. Hogeweg, The role of speciation in spatial coevolutionary function approxima-
tion. In Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary
Computation, http://doi.acm.org/10.1145/1274000.1274007 (2007) pp. 2437–2441

2. M.C. Boerlijst, P. Hogeweg, Selfstructuring and selection: Spiral waves as a substrate for pre-
biotic evolution, ed. by C.G. Langton, C. Taylor, J.D. Farmer, S. Rasmussen, Artificial Life II
(Addison Wesley, 1991), pp. 255–276

3. M.C. Boerlijst, P. Hogeweg, Spiral wave structure in pre-biotic evolution: Hypercycles stable
against parasites. Physica D, 48(1), 17–28 (1991)

4. K.C. Clarke, S. Hoppen, L. Gaydos, A self-modifying cellular automaton model of historical
urbanization in the San Francisco Bay area. Environ. Plann. B 24, 247–262 (1997)

28 P. Hogeweg

5. J.P. Crutchfield, M. Mitchell, The evolution of emergent computation. Proc. Natl. Acad. Sci.
92(23), 10742–10746 (1995)

6. T. Dobzhansky, Nothing in biology makes sense except in the light of evolution. Am. Biol.
Teach., 35, 125–129 (1973)

7. J.A. Glazier, A. Balter, N.J. Poplawski, II. 1 Magnetization to morphogenesis: A brief history
of the Glazier-Graner-Hogeweg Model. Single-Cell-Based Models in Biology and Medicine
(Birkhauser Verlag, Basel/Switzerland, 2007), p. 79

8. J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of bio-
logical cells. Phy. Rev. E 47(3), 2128–2154 (1993)

9. J.E. Hanson, J.P. Crutchfield, Computational mechanics of cellular automata: An example.
Physica D, 103(1–4), 169–189 (1997)

10. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D 42(1–3), 228–234 (1990)

11. P. Hogeweg, Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput.
27(1), 81–100, 1988

12. P. Hogeweg, Multilevel evolution: replicators and the evolution of diversity. Physica D
75(1–3), 275–291 (1994)

13. P. Hogeweg, On searching generic properties of non generic phenomena: An approach to
bioinformatic theory formation. In Artificial Life VI: Proceedings of the Sixth International
Conference on Artificial Life, MIT Press, Cambridge, MA (1998), p. 286

14. P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential
adhesion and cell differentiation. J. Theor. Biol. 203, 317–333 (2000)

15. P. Hogeweg, From population dynamics to ecoinformatics: Ecosystems as multilevel informa-
tion processing systems. Ecol. Inform. 2(2), 103–111 (2007)

16. J.D. van der Laan, P. Hogeweg, Predator-prey coevolution: Interactions across different
timescales. In Proceedings: Biological Sciences, (1995) pp. 35–42

17. A.F.M. Marée, V.A. Grieneisen, P. Hogeweg, II. 2 The cellular potts model and biophysical
properties of cells, tissues and morphogenesis. Single-Cell-Based Models in Biology and
Medicine, (Birkhauser Verlag, Basel/Switzerland, 2007), p. 107

18. A.F.M. Marée, P. Hogeweg, How amoeboids self-organize into a fruiting body: Multicellular
coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. 98(7), 3879 (2001)

19. J. von Neumann, A.W. Burks Theory of Self-Reproducing Automata (University of Illinois
Press, Urbana, IL, 1966)

20. L. Pagie, P. Hogeweg, Evolutionary consequences of coevolving targets. Evol. Comput.
5(4):401–418 (1997)

21. L. Pagie, P. Hogeweg, Information integration and red queen dynamics in coevolutionary opti-
mization. In Proceedings of the 2000 Congress on Evolutionary Computation, CEC, IEEE
Press, (2000), http://ieeexplore.ieee.org/xpl/tocresult.jsp? pp. 1260–1267

22. N. Takeuchi, P. Hogeweg, Evolution of complexity in RNA-like replicator systems. Biol.
Direct 3, 11 (2008)

23. T. Zhou, J.M. Carlson, J. Doyle, Mutation, specialization, and hypersensitivity in highly
optimized tolerance. Proc. Natl. Acad. Sci. 99(4), 2049 (2002)

Chapter 3
Complex Automata: Multi-scale Modeling
with Coupled Cellular Automata

Alfons G. Hoekstra, Alfonso Caiazzo, Eric Lorenz, Jean-Luc Falcone,
and Bastien Chopard

3.1 Multi-scale Modeling

3.1.1 Introduction

Cellular Automata (CA) are generally acknowledged to be a powerful way to
describe and model natural phenomena [1–3]. There are even tempting claims that
nature itself is one big (quantum) information processing system, e.g. [4], and that
CA may actually be nature’s way to do this processing [5–7]. We will not embark
on this philosophical road, but ask ourselves a more mundane question. Can we use
CA to model the inherently multi-scale processes in nature and use these models for
efficient simulations on digital computers?

The ever increasing availability of experimental data on every scale, from “atom
to material” or from “gene to health”, in combination with the likewise ever increas-
ing computational power [8, 9], facilitate the modeling and simulation of natural
phenomena taking into account all the required spatial and temporal scales (see e.g.
[10]). Multi-scale modeling and simulation, as a paradigm in Computational Sci-
ence, is becoming more and more important, as witnessed by e.g. dedicated special
issues [11] and thematic journals [12, 13].

Consider for example the field of physiology. The sequence from the genome,
proteome, metabolome, physiome to health comprises multi-scale, multi-science
systems [14, 15]. Studying biological sub-systems, their organization, and their
mutual interactions, through an interplay between laboratory experiments and mod-
eling and simulation, should lead to an understanding of biological function and to
a prediction of the effects of perturbations (e.g. genetic mutations or presence of
drugs) [16]. The concept “from genes to health” is the vision of the Physiome [17]
and ViroLab [18] projects, where multi-scale modeling and simulation of aspects
of human physiology is the ultimate goal. Modeling such systems is a challenging

A.G. Hoekstra (B)
Computational Science, Faculty of Science, University of Amsterdam,
Science Park 107, 1098 XG, Amsterdam, The Netherlands
e-mail: a.g.hoekstra@uva.nl

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_3,
C© Springer-Verlag Berlin Heidelberg 2010

29

30 A.G. Hoekstra et al.

problem but has the potential to improve our understanding of key interactions.
The inherent complexity of biomedical systems is now beginning to be appreciated
fully; they are multi-scale, multi-science systems, covering a range of phenomena
from molecular and cellular biology, via physics and medicine, to engineering and
crossing many orders of magnitude with regard to temporal and spatial scales [19].

Despite the widely acknowledged need for multi-scale modeling and simulation,
there is a scarcity of underpinning literature on methodology and generic description
of the process. There are many excellent papers that present multi-scale models,
but few methodological papers on multi-scale modeling (such as [20, 21]) have
appeared.

When using Cellular Automata to model a natural process, the lattice spacing
and time step have a clear meaning in relation to the corresponding physical space
and time of the process. We denote by A(�x,�t, L , T) the spatio-temporal domain
of a CA, whose spatial domain is made of cells of size �x and it spans a region of
size L , while the quantity �t is the time step and T is the end of the simulated time
interval. Therefore, processes with time scales between�t and T can be represented
and spatial scales ranging from �x to L can be resolved. When executing such CA
on a digital computer we note that the execution time Tex scales as

Tex ∼ T

�t

(
L

�x

)D

, (3.1)

where D is the spatial dimension of the simulated domain. Trying to model a multi-
scale system with a single CA would require to choose �x and �t in such a way
that the smallest microscopic details and fastest dynamical response of the system
are captured, yet the overall system size (L) and slowest dynamical time scale (T)
need to be covered. For instance, in modeling human physiology the relevant range
of spatial scales is from nanometer to meter (i.e. a factor 109) whereas temporal
scale is from microseconds to human lifetime (i.e. a factor 1015). These numbers,
in combination with Eq. (3.1) immediately show that one will probably never be
able to simulate multi-scale systems with a single CA spanning such a wide range
of scales.

The literature on using Cellular Automata to model multi-scale phenomena is
relatively small, maybe with the exception of using CA to model land usage and
geographical systems (e.g. [22]). Furthermore, many papers exist that use CA in
multi-scale modeling, but there CA is typically coupled to other types of models
(e.g. [23]). The bulk of CA multi-scale attempts are grid refinement methods, also
termed multi-blocks. The idea is to adapt the local grid size to the local process scale,
i.e. using a fine grid in regions where small scale processes occur and a coarse grid
where larger scales are sufficient. A common approach is to couple grids of different
scales with an overlap region [24].

Other ways of coupling multi-scale CA come from two theoretical frameworks.
The first one is based on higher-order CA [25]. In this framework, the CA rules are
not only able to change the cell state, but also the rules themselves, the neighbor-
hood and the topology. Moreover, these models are also able to take into account

3 Complex Automata for Multi-scale Modeling 31

hierarchical CA where higher level cells are connected to one or more lower level
cells. The second one results from the work of Israeli and Goldenfeld [26] who
have shown that it is possible to coarse-grain 1D nearest-neighbor CA, by defining
a macroscopic CA whose behavior is similar to a microscopic CA. That is an impor-
tant result because the authors have achieved the coarse-graining of CA known to
be irreducible.

We developed a multi-scale, multi-science framework, coined Complex Automata
(CxA), for modeling and simulation of multi-scale complex systems [27–29]. The
key idea is that a multi-scale system can be decomposed into N single-scale CA that
mutually interact across the scales.1 Decomposition is facilitated by building a Scale
Separation Map (SSM) on which each single-scale system can be represented as an
area according to its spatial and temporal scales. Processes having well-separated
scales are easily identified as the components of the multi-scale model. We validate
the CxA approach by building a large set of exemplary applications, and applying
it to the challenging clinical problem of in-stent restenosis (ISR) [30]. The CxA
approach was developed within the context of the COAST project [31].

In this chapter we will review the current state of development of Complex
Automata and explore the possibilities that are offered by Cellular Automata (CA)
for multi-scale Modeling and Simulation.

3.2 Complex Automata

3.2.1 A Definition

Formally, we shall define a CA as a tuple

C = {A(�x, L ,�t, T),F, Φ, finit ∈ F,u,O}. (3.2)

A is the domain, made of spatial cells of size �x and spanning a region of size L ,
while the quantity �t is the time step and T/�t is the number of iterations during
which the CA will be run. Therefore, processes with time scales between �t and
T can be represented and spatial scales ranging from �x to L can be resolved. The
state of the CA is described by an element of F (space of states) and it evolves
according to the update rule Φ : F → F (note that formally both F and Φ depend
on the discretizations (�x,�t)). Additionally, we constrain the update rule to be
in the form of collision+propagation, such that the operator Φ can be decomposed
as a

Φ = PCB, (3.3)

1 Note that our approach is not limited to CA but also includes extensions such as lattice Boltz-
mann models and agent based models, because they can all be described by a generic update rule
discussed in Sect. 3.2.3.

32 A.G. Hoekstra et al.

i.e. into a boundary condition, a propagation, and a collision operator, each depend-
ing, possibly, on the field u (see also Sect. 3.2.3 for more details). The terminology
collision-propagation is borrowed from the lattice gas automata framework (see
e.g. [1]). This is equivalent to the more classical Gather-Update CA paradigm, as
was formally demonstrated recently [32]. The initial condition (finit) is a particular
element of the space of states. At the spatial boundaries of A, additional information
is needed (boundary conditions).

In definition 3.2, we introduced additional elements. The field u collects the
external information exchanged at each iteration between the CA and its environ-
ment. The functional O : F → R

d , the observable, specifies the quantity we are
interested in.

A CxA can be viewed as a collection of interacting CA. Definition 3.2 suggests
that a CxA can be represented as a graph X = (V, E) where V is the set of vertexes
and E the set of edges with the following properties

• Each vertex is a CA Ci = {Ai (�xi , Li ,�ti , Ti),Fi , Φi , finit,i ∈ Fi ,ui ,Oi }
• each edge Ei j is a coupling procedure describing the interaction between Ci and

C j . In practice, Ei j will define how and when information is exchanged between
the two subsystems.

During the initialization phase, this problem-dependent graph is built according to
the modeler’s specifications.

3.2.2 The Scale Separation Map

A key idea behind CxA is that a multi-scale system can be decomposed into N
single-scale Cellular Automata that mutually interact across the scales. The decom-
position is achieved by building a Scale Separation Map (SSM) on which each
system can be represented as an area according to its spatial and temporal scales.
Processes having well separated scales are easily identified as the components of
the multi-scale model.

Figure 3.1 shows a SSM, where the horizontal axis represents the temporal scales
and the vertical axis the spatial scales. On the left a CA with spatio-temporal domain
A(�x,�t, L , T) is represented on the SSM. Assuming that the process to be sim-
ulated is really multi-scale in the sense that it contains relevant sub-processes on a
wide range of scales, simulations based on the finest discretizations are not really
feasible (recall Eq. (3.1)), the approach we propose in CxA modeling is to try to
split the original CA into a number of single-scale CA and let these CA exchange
information in such a way that the dynamical behavior of the multi-scale process
is mimicked as accurately as possible. This is shown schematically in the right part
in Fig. 3.1. The subsystem in the lower left part operates on small spatial scales,
and short time scales, the one at the upper right part operates at large scales, and
the other three at intermediate scales. This could e.g. be processes operating at the
micro-, meso-, and macro scale.

3 Complex Automata for Multi-scale Modeling 33

Fig. 3.1 The scale separation map with left a single CA and right a hypothetical CxA with 5 single
scale CA modeling the same process

After identifying all subsystems and placing them on the scale map, coupling
between subsystems is then represented by edges on the map. For instance, a pro-
cess can be coupled with another through a lumped parameter or through detailed
spatially and temporally resolved signals, in which case they would typically share
a boundary and synchronously exchange information. The distance between subsys-
tems on the map indicates which model embedding method to use to simulate the
overall system. In the worst case, one is forced to use the smallest scales everywhere,
probably resulting in intractable simulations. On the other hand, if the subsystems
are well separated and the smallest scale subsystems are in quasi-equilibrium, then
they can be solved separately, although infrequent (possibly event-driven) feedback
between the subsystems will still be required.

Consider two processes A and B with their own specific spatial – and temporal
scale, denoted by ξi and τi respectively (i ∈ {A, B}). Assume that A has the largest
spatial scale. In case the spatial scales are the same, A has the largest temporal scale.
In other words, (ξB < ξA) OR (ξB = ξA AND τB < τA). We can now place
A on the scale map and then investigate the different possibilities of placing B on the
map relative to A. This will lead to a classification of types of multi-scale coupling,
as in Fig. 3.2.

temporal scale

spatial Scale

A
01

23.1 3.2

Fig. 3.2 Interaction regions on the scale map

34 A.G. Hoekstra et al.

Depending on where B is, we find the following regions:

Region 0: A and B overlap, so we do not have a scale separation, we are dealing here with
a single-scale multi-science model.

Region 1: Here ξB = ξA AND τB < τA, so we observe a separation of time scales at
the same spatial scale.

Region 2: Here ξB < ξA AND τB = τA, so we observe a separation in spatial scales,
like coarse and fine structures on the same temporal scale.

Region 3: Separation in time – and spatial scales. Region 3.1 is the well-known micro ⇔
macro coupling, so fast processes on a small spatial scale coupled to slow processes on a
large spatial scale. This type of multi-scale model has received most attention in the liter-
ature. In region 3.2 we have the reversed situation, a slow process on small spatial scales
coupled to a fast process on large spatial scales. We believe that this region is very relevant
in for instance coupling of biological with physical processes, where the biological process
is e.g. the slow response of cells to a faster physical process on a larger scale (e.g. blood
flow in arteries).

Note that we do not have to consider other regions of the scale map, because then
the role of A and B just reverses, and we fall back to one of the five cases identified
above.

Next we address the question of the area that processes A and B occupy on the
SSM. As discussed earlier, a 1D CA is characterized by a spatial discretization �x
and a system size L . We assume that �x and L have been chosen such that the
spatial scale of the process is well represented on this CA, so at least we will have
�x < ξ < L . We define N (x) as the number of CA cells that extend the full domain,
i.e. N (x) = L/�x . Next assume that the discretization has been chosen such that
the spatial scale is represented by 10δ

(x)
cells (i.e. �x = ξ/10δ

(x)
) and the spatial

extension of the CA is 10η
(x)

times the spatial scale, i.e. L = ξ10η
(x)

, and therefore
N (x) = 10η

(x)+δ(x) . Likewise for the temporal domain, i.e. a single scale CA has a
time step�t and the CA is simulated over a time span T , and we have�t < τ < T .
The number of time steps N (t) = T/�t . The discretization has been chosen such
that the temporal scale is represented by 10δ

(t)
time steps (i.e. �t = τ/10δ

(t)
) and

that simulation time of the CA is 10η
(t)

times the temporal scale, i.e. T = τ10η
(t)

and
N (t) = 10η

(t)+δ(t) .
A process position on the scale map is now fully determined by the tuple

{ξ, δ(x), η(x); τ, δ(t), η(t)}, and is drawn in Fig. 3.3, where the axes are now on
a logarithmic scale. On such logarithmic SSM the process is rectangular with an
area (δ(t) + η(t)) × (δ(x) + η(x)) asymmetrically centered around the point
(log(τ), log(ξ)). In the special case that δ(x) = η(x) = δ(t) = η(t) = 1 (a reasonable
first order assumption) we see that the process is symmetrically centered around
(log(τ), log(ξ)) and that the size of the box extends 2 decades in each dimension.

In Fig. 3.3 we show the extension of Fig. 3.2, where regions 1− 3 now have well
defined positions and size. Depending on the location of process B, that is the point
(log(τB), log(ξB)) on the SSM, and with all information on the spatial and temporal
extensions of processes A and B, we can unambiguously find in which region of the
scale map they are located with respect to each other. The scale separation between

3 Complex Automata for Multi-scale Modeling 35

Log(T)

Log(xΑ)

Log(ξΑ)

Log(τΑ)

Process A

1 0

23.1 3.2

Log(spatialscale)

Log(temporal scale)Log(ΔtΑ)

Log(L)

(t)
Aη(t)

Aδ (t)
Bδ(t)

Bη

)(x
Aδ

)(x
Bη

Fig. 3.3 Position of a process A with parameters {ξ, δ(x), η(x); τ, δ(t), η(t)} and the interaction
regions on the logarithmic scale map

two processes can now clearly be defined in terms of a distance on the SSM, and
this can then become an important measure to determine errors that are induced by
scale splitting procedures. This is further elaborated in Sect. 3.3.

Consider once more region 3, where there is a separation in time and length
scales. In region 3.1 we find that L B < �xA and TB < �tA. As said earlier,
this is the classical micro ⇔ macro coupling, and in our language this means
the full spatio-temporal extend TB × L B of process B is smaller than one sin-
gle spatio-temporal step �tA × �xA of process A. A number of modeling and
simulation paradigms have been developed for this type of multi-scale systems
(see e.g. [21]).

Region 3.2 also exhibits separation of time and length scales, but now the situa-
tion is quite different. We find that, just like in region 3.1, L B < �xA. So, the spatial
extend of process B is smaller than the grid spacing of process A. However, now
we find that TA < �tB . In other words, the full time scale of process A is smaller
then the time step in process B. This will result in other modeling and simulation
paradigms than in region 3.1. Typically, the coupling between A and B will involve
time averages of the dynamics of the fast process A.

Let us now turn our attention to the regions where there is overlap on the tempo-
ral – or spatial scales, or both (regions 0, 1, and 2, in Fig. 3.3). In all these cases we
can argue that we have partial or full overlap of the scales, giving rise to different
types of (multi-scale) modeling and simulation. We say that the scales fully overlap
if the point (log(τB), log(ξB)) falls within (one of) the scales spanned by process A.
On the other hand, there is partial overlap if (log(τB), log(ξB)) falls outside (one of)
the scales spanned by process A, but the rectangular area of process B still overlaps
with (one of) the scales spanned by process A. The region of partial scale overlap
can also be considered as a region of gradual scale separation, a boundary region

36 A.G. Hoekstra et al.

between the scale separated regions 1, 2 and 3 and region 0. Simulations of this kind
of multi-scale system would typically involve CxA’s with local grid refinements, or
multiple time stepping approaches, or a combination of both.

3.2.3 The Sub-Model Execution Loop

A second important ingredient of the CxA formalism is the observation that each
CA (i.e. vertex of the CxA) can be expressed with a common instruction flow. This
gives a way to identify generic coupling templates and achieve a precise execu-
tion model (see also Sect. 3.2.6). Using the specific collision+propagation form
of the update rule, as introduced in Sect. 3.2.1, we represent the workflow with a
pseudo-code abstraction, termed the Sub-model Execution Loop (SEL), as shown
below.

D := Dinit /* initialization of the domain */
f := finit /* initialization of state variables */
t := 0 /* initialization of time */

While Not EC
t += �t /* increase time with one timestep t */
D := U(D) /* update the domain */
f := B(f) /* apply boundary conditions */
f := C(f) /* collision, update state of cells */
f := P(f) /* propagation, send information to neighbors */
Oi(f) /* compute observables from new state */

End
O f (f) /* compute observables from final state */

Note that in the SEL, operators are written in bold and (state) variables as plain
characters. The CA operates on a computing domain D, being the lattice of cells and
the boundaries. Each cell in a CA has a set of state variables f. At the start of the
SEL the domain and the state variables are initialized by the operators Dinit and finit
respectively. The simulation time t is set to an initial value (0 in this case). After
initialization the CA enters into an iteration loop, whose termination is controlled by
an end condition computed by EC. The end condition can simply be a fixed number
of iterations, but could also be some convergence criterion depending upon the state
variables. Within the main iteration loop, the time is first increased with a time step
�t. Next the domain is updated by the operator U. If the domain is static, this oper-
ator is just the identity operator I. However, in many models the domain is dynamic.
For instance, new cells can be created or existing cells removed (e.g. due to the
movement of the boundary). In all these cases U will execute these domain updates.
Next, the sequence PCB(f) is executed. First, the operator B applies the boundary
conditions. This means that missing information is constructed that is needed for the

3 Complex Automata for Multi-scale Modeling 37

actual state updates by C (see below) of the cells lying at the boundary of the domain
D. For instance, if the state variables represent a concentration of some species,
the boundary condition could specify a flux of those species into the domain, and
from that missing information on the domain boundary cells is computed. Next the
actual state change of all cells is computed by the Collision operator C. Finally,
information is sent to neighboring cells or agents by the Propagation operator P.
The CA is now updated for the current time step, and the simulation can proceed
to the next iteration. However, before doing so an intermediate observation operator
Oi computes observables from the state variables f. After termination of the main
iteration loop a final observation is done of the state variables with the O f operator.

3.2.4 CxA Multi-scale Coupling

Despite the growing literature there is not a well accepted generic methodology, nor
a well-defined nomenclature of multi-scale modeling. A few authors have proposed
different typologies of multi-scale models. Weinan E et al. [21] have proposed 4
types of multi-scale problems and 4 general strategies. Despite the many examples
given by them the relevance of their classification is not always clear, because they
single out, in all their examples, one specific item from their classification, and
do not further discuss the relevance or completeness of the other classes. Another
proposition for a multi-scale modeling methodology is that of Ingram. Working
on chemical engineering simulations, Ingram et al. [20] have defined five types of
macro-micro scale coupling. Ingram et al. present simulation examples for three
types of coupling, showing that different strategies may be used to solve the same
problem. The choice of coupling has an influence on both computational efficiency
and accuracy. The fact that it is not always easy or possible to make the correspon-
dence between the approaches by Ingram et al. and Weinan et al. indicates that the
topic of multi-scale modeling lacks consensus. This lack of consensus on terminol-
ogy and methodology can be attributed to the fact that actual coupling methodolo-
gies were mixed with classifications of the computational domain and/or with the
type of scale separation (temporal, spatial, or both).

In the following discussion we try to clarify the situation, in the framework of
the CxA formalism. However, we believe that this is also relevant to multi-scale
modeling in general. Based on the discussion on the SSM in Sect. 3.2.2, we identi-
fied 5 different types of scale separation. We call them Interaction Regions on the
SSM, and they are shown in Fig. 3.4. Another important parameter to distinguish
multi-scale models is the Domain type. We distinguish between single Domain (sD)
and multi-Domain (mD) types. In case of sD processes A and B can access the whole
simulated domain and communication can occur everywhere, whereas in case of mD
each process is restricted to a different physical region and communication can only
occur across an interface or small overlap region.

For each combination of interaction region and domain type we can now try to
identify a multi-scale coupling. We will base our approach on the SEL discussed
in Sect. 3.2.3, and show which operators from the SEL are coupled to each other.

38 A.G. Hoekstra et al.

Time Overlap Time Separation

Sp
ac

e
O

ve
rl

ap
Sp

ac
e

Se
pa

ra
ti

on

Fig. 3.4 Interaction regions on the SSM

We call this Coupling Templates. As an example consider Weinan E’s Heteroge-
neous Multi-scale Method [21]. On close inspection we must conclude that this
is a Coupling Template for single Domain processes in interaction region 3.1. In
terms of the SEL of the macroscopic process A and the microscopic process B we
find as Coupling Template OB

f → CA; OA
i → fB

init (see also Fig. 3.8). At each
time step of the macroscopic process B a microscopic process A is initialized using
macroscopic information. The microscopic model then runs to completion and sends
final information to the collision operator of the macroscopic process.

We are currently investigating many examples of multi-scale models, their map-
ping to a CxA model, and resulting coupling templates. A detailed discussion of
the results will be reported later. As a summary, some of the examples are indicated
in Fig. 3.5. At this stage we can extract two observations:

� In the case of time scale overlap, the coupling will occur inside the inner iteration
loop. In contrast, in the case of time scale separation, coupling is realized out-
side the inner loop through the initialization operators and the final observation
operator.

� Single-domain models are coupled through the collision operator. Multi-domain
models are coupled through the domain update or the boundary operators.

Based on our current set of examples, we hypothesize that for each type of multi-
scale model, classified in terms of domain type and interaction region, only a very
small set of coupling templates exists. If this is true, this would lead the way to a
powerful CxA multi-scale modeling and simulation strategy, including a multi-scale
modeling language, generic simulation software and a mathematical framework to
analyze errors involved in CxA modeling. In what follows we will further elaborate
on these ideas, sketching the contours of such a generic CxA based multi-scale
modeling approach.

3 Complex Automata for Multi-scale Modeling 39

Fig. 3.5 Our classification of multiscale problems, for systems that can be reduced to two single-
scale processes. This classification is based on the five interaction regions given by the SSM, and
the domain type (sD or mD). For each class, the generic coupling template is indicated, in terms
of the CxA operators. Examples of specific applications belonging to the given categories are
indicated in italic

3.2.5 Multiscale Modeling Strategies

A key question when dealing with a multiscale system is how to decompose it in sev-
eral coupled single-scale sub-processes. This decomposition is certainly not unique
and a good knowledge of the system may be required. Once the sub-processes are
chosen, this specifies the relation between the computational domains and the inter-
action regions on the SSM. Then, our classification scheme indicates the expected
coupling templates.

We have observed several strategies that can be used to deal with systems having
a broad range of scales and to reduce their area on the scale separation map. They
are briefly discussed below.

3.2.5.1 Time Splitting

This approach is appropriate when two processes act at different time scales. Let
us assume we have a sD problem described with a propagation operator P and a
collision operator C that is the product of two operators

P�t C�t = P�t C
(1)
�t C (2)

�t

where �t specifies the finer scale of the process. Then, if C (1)
�t acts at a longer time

scale than C (2)
�t we can approximate M iterations of the dynamics as

40 A.G. Hoekstra et al.

[P�t C�t]M ≈ PM�t C
(1)
M�t [C (2)

�t]M

We will illustrate this time-splitting strategy in detail in Sect. 3.3.

3.2.5.2 Coarse Graining

The goal of coarse graining is to express the dynamic of a given system at a larger
temporal and/or spatial scale in some part of the computational domain where less
accuracy is needed. After coarse graining we obtain a new process, specified by
new collision and propagation operators and occupying a reduced area on the SSM.
Within our formalism, a space-time coarse graining of a factor 2 can be expressed as

[P�x C�x]n ≈ Γ −1[P2�x C2�x]n/2Γ
where Γ is a projection operator,�x the fine scale, and n is the number of iterations
needed to simulate the problem.

3.2.5.3 Amplification

This strategy can be used to reduce the larger time scale of a process. For instance,
we can consider a process acting with low intensity but for a long time, in a time
periodic environment, such as a growth process in a pulsatile flow.

Within our formalism, let us consider two coupled (mD) processes which are
iterated n >> 1 times

[P(1)C (1)]n and [P(2)C (2)(k)]n

where k expresses the intensity of the coupling of process 1 to process 2.
If the C (1) is periodic with period m << n, we can approximate the above

evolution as

[P(1)C (1)]m and [P(2)C (2)(k′)]m

with k′ the new effective intensity of the coupling. For a linear coupling we would
have k′ = (n/m)k.

3.2.6 Execution Model

Coupling several sub-models, using coupling templates raises implementation issues.
A typical situation is shown in Fig. 3.6 for the problem of coral growth. The growth
of branching corals is modeled with the aim to understand the influence of abiotic
factors (transport of nutrients by flow and diffusion) on the morphology. This is
work performed under the supervision of Dr. Jaap Kaandorp, and for biological
context and background we refer to his recent book [33] and to [34, 35]. In short, this
model works as follows: the fluid flow is transporting nutrients that are needed by
the coral to grow. There is a clear time scale separation that can be exploited. Fluid
flow establishes at a few seconds whereas the coral grows at a much slower pace.

3 Complex Automata for Multi-scale Modeling 41

Fig. 3.6 Coupling template for the so-called coral growth model. Numbers corresponds to the
communication operation described in Fig. 3.7

According to the coupling template shown in Fig. 3.6, the fluid solver is run until
steady state and the resulting flow field is passed to the coral solver for calculating
the growth rate. The new geometry of the coral is then used to build a new initial
condition for the flow solver. The process stops when enough iterations of the coral
solver have been performed.

Using this example we will explain the main concepts of our proposed execution
model for CxA, which is compatible with the asynchronous channel actor-model
framework [36]. A computer implementation for a CxA simulation environment,
implementing this execution model, has been realized [37] and a public domain
release is available.2

3.2.6.1 CxA Components

For the sake of the present discussion, CxA can be described as directed bipartite
graphs whose edges represent a single direction communication channel and the ver-
texes are either kernels or conduits. The kernels are the main computational units of
a CxA. Generally, kernels are the single-scale sub-model solvers as described above.
However, when needed, they can also execute other tasks such as measurements
or complex data mappings. The conduits are s̈mart c̈ommunication channels. Each
conduit connects a pair of kernels together in an oriented fashion and, in principle,
only one quantity is transported per conduit. These conduits are composed of three
parts:

(1) an incoming buffer (the entrance)
(2) an outgoing buffer (the exit)
(3) (optional) one or several data filters between different scales (to perform inter-

polation, restriction, discretization, etc.)

2 see http://www.complex-automata.org

42 A.G. Hoekstra et al.

Conduits work in a purely reactive way: when data is copied at the entrance, the
conduit applies the filters and moves the resulting data into the outgoing buffer. Each
conduit is connected to only two kernels, but kernels can be connected to an arbitrary
number of conduits. Each component is either a full process or a thread depending
on the implementation. They can reside in the same machine or be distributed across
a network.

3.2.6.2 CxA Communication

In CxA, kernels communicate exclusively via conduits, using a message passing
paradigm. Only two communication primitives are defined to interact with con-
duits:

1. send(data): this primitive sends a data vector from a kernel to a conduit
entrance. It is non-blocking, since it returns as soon as the data is sent to the con-
duit, whether or not the destination process has read the data. This corresponds
to a push communication.

2. receive(): this primitive allows a kernel to receive data from a conduit exit.
This primitive is blocking, it will return only when the desired data exist in
the conduit. The receiving kernel will then simply wait until the data is avail-
able before resuming its computations. This corresponds to a pull communica-
tion.

Conduits entrances and exits are supposed to have large buffers, able to store
several large data structures. These buffers act as FIFO (“first in, first out”) where
each entry is a reference to a date-structure. So, if the sending kernel is faster than
the receiving one, several data vectors will be stored in the exit buffer, waiting for
a receive() call from the destination kernel. The FIFO nature of the buffer ensures
that the data are always read in the correct time order. The actual communication
can be either a memory copy if the kernel and conduit reside in the same processor,
or a network communication if both components reside on different machines. Note
that the conduit could also be used to implement a mutex coordination primitive in
case of shared memory execution.

Let us consider again the example of the coral growth. The coral SEL represented
in Fig. 3.6, can be rewritten as follows, to include the two communication primitives
explicitly:

While Not EC
D := U(D)
DomainConduit.send(D)
f := B(f)
velocityMap := VelocityConduit.receive()
f := C(f,velocityMap)
f := P(f)

End

3 Complex Automata for Multi-scale Modeling 43

3.2.6.3 CxA Initialization and Start

CxA initialization occurs in a semi-decentralized way. First, each conduit and kernel
is spawned (possibly on several machines). Then a special process, termed plumber,
is responsible for connecting each kernel with the entrances and exits of the relevant
conduits. The plumber terminates as soon as this basic task is finished. The rest of
the initialization process is then fully decentralized:

1. As soon as a kernel is fully connected with the required conduits, it starts its
computations. If it is sending data to a yet unconnected kernel, the data will be
kept in the conduit until the receiver is active and reading. On the other hand, if a
conduit tries to receive data originating from an unconnected kernel, it will hang
on until the sending kernel connects and transmits data.

2. For conduits the situation is even simpler. Since they are purely reactive
components, nothing will happen in an unconnected conduit. Similarly, if only
the conduit exit is connected, the conduit will do nothing. In contrast, if only
the conduit entrance is connected, the conduit will simply process incoming
data which will be accumulated in the exit buffer. Therefore, the conduit is
always in a valid state (assuming it has enough internal memory).

3.2.6.4 CxA Synchronization

CxA graphs are usually cyclic. Even the basic examples with just two single-scale
models (see Fig. 3.6) will display a communication cycle if both models can influ-
ence one another. Moreover CxA are multiscale systems and kernels can thus func-
tion at different time scales, maybe in an adaptive way. These properties make a
central scheduler approach impractical. However, the fact that the receive primitive
is blocking and the send is non-blocking, allows a data-driven synchronization to
occur naturally. Indeed, kernels will just wait until information is available before
continuing their computation. An example of such synchronization is shown in
Fig. 3.7 for the coral model.

The main problem with this method are possible deadlock situations. However,
such issues can be easily prevented with the CxA execution model. In the coral
example, deadlock is avoided by having a model (the coral) which sends before
receiving. This allows the flow model to continue its computations to produce the
data that will unlock the coral, etc. In contrast, the situation presented in Fig. 3.8
will produce a deadlock because both models try to receive before sending any-
thing. This problem is easily solved by moving the observation Oi at the beginning
to the inner loop, or adding initial send instructions before entering the submodel
execution loop.

Furthermore, the fact that communication is pairwise and that the conduits use
buffers, makes race conditions impossible. Data are meant to be read by only one
process, data sent in a conduit entrance will be processed only by that conduit and
data moved to conduit exits will concern only a single kernel.

44 A.G. Hoekstra et al.

Fig. 3.7 UML sequence diagram of the CxA shown in Fig. 3.6. The vertical lines represent the
“life-line” of the process: the kernels are represented by rectangles and the conduits by ovals. When
a process is active, the gray life line is replaced by a vertical white rectangle. The arrows represent
interaction. Solid arrows with triangular heads are blocking interactions and solid arrows with
thin heads represent non-blocking interactions. The return values are indicated by dashed arrows.
The circled numbers correspond to Fig. 3.6

Fig. 3.8 Micro-macro coupling example. Left: SSM. Right: coupling template

3.2.6.5 CxA Termination

The termination of the whole CxA is also designed to be fully decentralized: when a
kernel finishes its computations (because of e.g. a preset maximum time or a steady
state condition), it first notifies all its conduits and then it terminates itself. Similarly,
when a conduit receives termination notifications from all connected kernels, it can
terminate itself. While the conduit termination rule is always safe (a conduit stops
when no kernel is connected anymore), the kernel termination rule needs an extra
mechanism. Otherwise, a problem occurs if a kernel is waiting for information from
an already terminated kernel.

3 Complex Automata for Multi-scale Modeling 45

For instance, in the coral example (Fig. 3.6) the flow model will hang on for
the domain update, even after the coral model termination. To solve this issue a
stop signal is introduced which is able to release a kernel blocked in the receive
primitive. This signal is propagated by a kernel through the existing conduits, using
a third primitive: stop(): this primitive sends the stop signal through a conduit. The
receive primitive is then modified slightly. It works exactly as seen above but can
return either the expected data or the stop signal.

Therefore a kernel waiting for data can be released by a stop signal. Kernels
are then responsible to send, process and propagate stop signals. Generally a kernel
receiving a stop signal should:

1. Abort the submodel execution loop.
2. Send some final data, if required.
3. Propagate the stop signal to each connected conduit entrances.
4. Notify each connected entrance and exit.
5. Terminate itself gracefully.

With this termination scheme, all kernels which need data from the rest of the CxA
will thus stop. The stop signal can originate from any kernel, and this approach also
works if two (or more) kernels reach a stop condition at the same time.

As an illustration we can add a stop mechanism to the example of Fig. 3.6, as
follows:

1. Coral submodel

While Not EC
D := U(D)
DomainConduit.send(D)
f := B(f)
velocityMap :=

VelocityConduit.receive()
f := C(f,velocityMap)
f := P(f)

End
DomainConduit.stop()
myStop()

2. Flow submodel

While True
domain :=

DomainConduit.receive()
If domain == STOP_SIGNAL

myStop()
D := domain
f := finit
While Not Steady_State

[SEL]
End

End

where myStop() is a user-defined function which terminates the kernel. But, before,
if needed, it: (i) saves results, (ii) propagates the stop signal, (iii) notifies the con-
nected conduits.

3.2.6.6 Parallelization

With the execution model described above, our framework is compatible with a
distributed or GRID computing approach, in which each submodel could run on a
different core or, alternatively, as a different threads on the same core. The actual
support for parallelization depends on the chosen implementation of our framework.

46 A.G. Hoekstra et al.

For instance, the MUSCLE library3 offers an easy but manual parallelization. On the
other hand the CxA-lite library4 only allows a multithread execution in which all the
submodels share the same memory space.

So far, we did not address the question of load balancing. This is clearly a sepa-
rate issue and no tools have been yet developed to assist the user in distributing the
computation in equal pieces over several processor.

3.2.7 Formalism

The concept of a CxA as a set of coupled CA’s, where the coupling is expressed in
terms of input–output relations between operators of the SEL of the coupled CA’s
is not just a concept that allows us to classify multi-scale models, as discussed in
Sect. 3.2.4, or a powerful concept to built CxA simulation software, see Sect. 3.2.6,
but it is also amenable to mathematical formalism and analysis. This section will
introduce some of the formalism, which will be further used in one of the examples
of Sect. 3.3.

Recalling (3.2), the state of a CA at a certain time t is described by a f t ∈ F,
denoting the numerical solution at the time step t , which evolves according to

f 0 = finit[u0], initialcondition

f t+�t = Φ[u; f t] (3.4)

where u0 is an external field connected to the initial condition. As previously dis-
cussed, we constrain the update rule Φ to the form

Φ[u; f] = (B[uB] ◦ P ◦ C[uC]) [f], (3.5)

i.e. written as a composition of three operators: collision C[uC], depending on exter-
nal parameters uC , propagation P, depending on the topology of the domain, and
boundary condition B[uB], depending on external parameters denoted by uB .

More precisely, the space of the states F and the update rule Φ depend in general
on the discretization parameters �x and �t . For simplicity, in what follows, we
let the definition of CA depend also on a (small) parameter h, related to spatial
and temporal discretizations (for example �xh = h, �th = αh). Accordingly,
considering the CA Ch , the evolution space and the update rule can be denoted as:
Φh : Fh → Fh . Shortly, we will call fh the numerical outcome of the CA Ch .

To begin with, as in the left diagram in Fig. 3.1, we consider a multi-scale system
represented as a single Ch defined as in (3.2). Building a CxA, instead of describing
the system with a single fh , we lower the dimension of the problem and the compu-
tational complexity, introducing coarser temporal and/or spatial discretizations

H = (h1, . . . , hM) (3.6)

3 http://developer.berlios.de/projects/muscle
4 http://github.com/paradigmatic/CxALite/

3 Complex Automata for Multi-scale Modeling 47

and building a corresponding Complex Automaton

CxAH = (Ch1, . . . , ChM), (3.7)

where each Chm is an object as in (3.2).
Formally, the definition of a CxA can be summarized in two steps. First, a pro-

jection of the space of states F on a product of spaces is considered

ΠHh : Fh → Fh1 × · · · × FhM , (3.8)

each describing the evolution of a single scale model (on different discretizations).
Second, a rescaling of the update rule is performed, according to the new discretiza-
tions hi , on each space Fhi , for i = 1, . . . , M , depending on the multiscale tech-
nique used. Due to the form of the execution model of each CA, the rescaling can be
easily expressed in terms of operations on the operators P, C, B. Note that the spaces
Fhi are not necessarily disjoint, i.e. part of a single scale evolution space could be
shared by several CA, in case of space overlap and single domain coupling.

Let us denote with fCxA the numerical outcome of the complex automata simula-
tion and with fhm (or fm) the state variable of the single CAs. To be able to compare
the results of the CxA versus the original multiscale algorithm, we associate an
observable OCxA to the Complex Automata, which projects the result fH on the
space of O(fh). A sketch of the relevant spaces and operators is drawn below.

fh ∈ Fh fCxA ∈ Fh1 × . . .× FhM

fh ∈ Fh fCxA ∈ Fh1 × . . .× FhM

R
D

�

Φh

�

ΦCxA=
(
Φh1 ,...,ΦhM

)

�ΠHh

�
�

�
�

���

OCA
�

�
�

�
���

OCxA

For the sake of simplicity, in what follows we describe the formalism restricting
ourselves to the evolution of two coupled single scale models. From Eqs. (3.4) and
(3.5), we have the following general representation

f t0
1 = finit,1[f2]

f
t+�th1
1 = (Bh1 [f2] ◦ Ph1 ◦ Ch1 [f2]

) [f t
1],

f t0
2 = finit,2[f1]

f
t+�th2
2 = (Bh2 [f1] ◦ Ph2 ◦ Ch2 [f1]

) [f t
2],

(3.9)

48 A.G. Hoekstra et al.

where two CAs are fully coupled in all the components. In detail,

• finit,1[f2] denotes a coupling through initial conditions (i.e. the initial condition
of 1 depends on the results of 2)

• Bi [f j] expresses coupling through boundary conditions,
• Ci [f j] expresses the coupling through collision operator.

In general, for different situations (multidomain/singledomain, time/space sep-
aration/overlap) we can restrict the set of possible couplings to a well-specified
coupling template. Consider the example of a microscopic fast process coupled
to a macroscopic slow process (micro-macro coupling), as introduced earlier in
Sect. 3.2.4. The macroscopic process takes input from explicit simulations of micro-
scopic processes at each time step and on each lattice site of the macroscopic pro-
cess. The microscopic processes run to completion, assuming that they are much
faster than the macroscopic process and therefore are in quasi-equilibrium on the
macroscopic time scales (this approach is known in the literature as the Heteroge-
neous Multi-scale Method, see [21]). The macroscopic process could e.g. be a fluid
flow with takes its viscosity from an underlying microscopic process (e.g. explicit
suspension model).

In Fig. 3.8 we show for this example of micro-macro coupling the SSM (left)
and the coupling template (right). The later is defined in [27] and shows how the
operators as defined in (3.5) are coupled to each other. A close inspection of this
coupling template shows indeed that, upon each iteration of the macroscopic pro-
cess, the microscopic process executes a complete simulation, taking input from the
macroscopic process. In turn, the output from the microscopic process is fed into
the collision operator of the macroscopic process.

We can formulate the CxA dynamics as follows (based on Eq. (3.9))

f t0
1 = finit,1[f2]

f t1+�t1
1 = (B1 ◦ P1 ◦ C1) [f t1

1],
f t0
2 = finit,2

f t2+�t2
2 = (B2 ◦ P2 ◦ C2[f1]) [f t2

2] ,

(3.10)

where 1 refers to the micro-scale and 2 to the macro-scale. The micro-scale model
1 is run until completion (i.e. until the final time T1), then a single time step �th2 is
performed for the macro-scale model.

We can now compare an estimation of the execution time of the CxA model of
Fig. 3.8 with that of using a single CA for the same system, as in the left part of

Fig. 3.1. For the single CA the execution time would be TC A = kC A
T2
�t1

(
L2
�x1

)D
,

which is (3.1) using the subscripts as introduced in Fig. 3.8. For the CxA, the exe-
cution time becomes

TCxA = T2

�t2

(
L2

�x2

)D
(

k2 + k1
T1

�t1

(
L1

�x1

)D
)

. (3.11)

3 Complex Automata for Multi-scale Modeling 49

where kC A, k1 and k2 are the CPU times to update one spatial cell for one time step,
respectively for the full scale CA, the micro and the macro submodels.

Next one can compute a speedup, comparing the single scale CA formulation
and the CxA formulation as S = TCA/TCxA. After some algebra we find

S =
(

kC A
�t2
�t1

(
�x2

�x1

)D
)/(

k2 + k1
T1

�t1

(
L1

�x1

)D
)

. (3.12)

Under the reasonable assumption that the execution time for a full micro scale sim-
ulation needs much more time than a single iteration of the macro scale model,

i.e. when k1
T1
�t1

(
L1
�x1

)D
>> k2, Eq. (3.12) reduces to S = kC A

k1

�t2
T1

(
�x2
L1

)D
. Note

that �t2
T1

> 1 and �x2
L1

> 1, and can be interpreted as the distance on the SSM
(Fig. 3.8). So, if the scale separation is large enough, the obtained speedups can be
huge, principally rendering a CxA simulation feasible.

3.2.8 Scale-Splitting Error

The above arguments demonstrate the improvements in computational efficiency
offered by the CxA formulation. On the other hand, replacing the original multi-
scale model with many coupled single-scale algorithms, we face a partial loss of
precision. A possible measure of this lowering in accuracy can be obtained con-
sidering the difference in the numerical results of the original Ch and the Complex
Automaton CxAH , which we call scale-splitting error.

This error is measured according to the observables, i.e. the quantity of interest,
formally resulting from the observable operators:

ECh→CxA = ‖OCA(fh)− OCxA(fH)‖ (3.13)

in an opportune norm. The scale-splitting error has a direct interpretation in terms of
accuracy. In fact, calling ECxA,EX the absolute error of the CxA model with respect
to an exact reference solution, and ECh ,EX the error of the model itself, we have

∥
∥ECxA,EX

∥
∥ ≤ ∥∥ECh ,EX

∥
∥+ ∥∥ECh→CxA

∥
∥. (3.14)

If we heuristically assume that the original fine-scale algorithm has a high accuracy,
the scale splitting error is a measure of the error of the CxA model.

In general, a detailed and rigorous investigation of the scale-splitting error
requires a good base knowledge of the single scale CA and of the full multiscale
algorithm. Case by case, error estimates can be derived using the properties of the
algorithms, the operators involved in the update rule and in the coarse-graining pro-
cedure. An example of error investigation using the formalism for a simple CxA
model can be found in Sect. 3.3.

50 A.G. Hoekstra et al.

3.3 Examples

3.3.1 Reaction Diffusion

Let us consider a reaction-diffusion process for a concentration field ρ = ρ(t, x)
described by the equation

∂tρ = d∂xxρ + κ(ρλ − ρ), t ∈ (0, Tend], x ∈ (0, L]
ρ(0, x) = ρ0(x)

(3.15)

with periodic boundary conditions in x , ρ0 being the initial condition and ρλ(x)
a given function. To consider a multiscale model, we assume the reaction to be
characterized by a typical time scale faster than the diffusion., i.e. ‖k‖ ‖d‖.

Numerically, problem (3.15) can be solved employing a lattice Boltzmann method
(LBM) (see for example [1, 10, 38, 39] and the references therein, as well as the
chapter by Kusumaatmaja and Yeomans of the present book), discretizing the space
interval with a regular grid Gh = {0, . . . , Nx − 1} of step size �xh = h and asso-
ciating each node j ∈ Gh with two variables, f1 and f−1 representing the density
of probabilities of populations traveling with discrete velocities ci ∈ {−1, 1}. The
collision+propagation update has the form

f tn+�t
i (j + ci) = f tn

i (j)+ 1

τ

(
ρ̂tn

2
− f tn

i (j)

)

+�th
1

2
R(ρ̂tn (j)). (3.16)

here R(ρ̂(j)) = κ(ρλ(j)− ρ̂(j)), and ρ̂ = ρ(f) = f1 + f−1 is the numerical solu-
tion for the concentration field. The time step is related to the grid size according to

�th
�x2

h

= const. ∀h, (3.17)

and the parameter τ is chosen according to the diffusion constant in (3.15)
(see [39, 1])

τ = 1

2
+ d

�th
�x2

h

. (3.18)

Observe that τ is independent from h in virtue of (3.17). It can be shown that the
above described algorithm leads a second order accurate approximation of the solu-
tion of (3.15) [39]. Equivalently, we can rewrite (3.16) in the form [40]

f tn+1
h = Ph(Ih +ΩDh (τ))(Ih +ΩRh) f tn

h = Φh f tn
h , (3.19)

highlighting the scale h and omitting the subscript i . The update Φh = Ph(Ih +
ΩDh (τ))(Ih +ΩRh), has been decomposed into a diffusion part and a reaction part.

3 Complex Automata for Multi-scale Modeling 51

The space of states is the set Fh = {
φ : Gh → IR2Nx

}
, of the real functions

defined on the grid Gh . The subscript h for the operators denotes functions acting
from Fh to itself. In detail, Ih is simply the identity on Fh , Ph acts on a grid function
shifting the value on the grid according to ci

(Ph fh)i (j) = fi,h(j − ci),

while ΩDh and ΩRh are the operations defined in the right hand side of (3.16):

(
ΩDh fh

)
i =

1

τ
(f eq

i (ρ(fh))− fi,h),
(
ΩRh fh

)
i (j) = h2 1

2
R(ρ(fh))

The SSM for this example is shown in Fig. 3.9. To define the CxA, we set�tR =
�th = h2 for the reaction and �tD = Mh2 for the diffusion. Focusing on the
case shown in Fig. 3.9b, the reaction is run up to a time TR , then re-initialized
after a diffusion time step. If TR = �tD , the two processes are not completely
separated. Figure 3.9c sketches the case when reaction leads very quickly to an
equilibrium state in a typical time which is even smaller than the discrete time step
of the diffusion.

We focus on the case of time-coarsening, i.e. choosing

�xD = �xR = h, �tD = M�tR = Mh2 . (3.20)

Introducing reaction and diffusion operators Rs , Ds , where s = R, D specifies
the dependence of the discrete operators on the space-time discretization of reaction
and (resp.) diffusion, the evolution of the system can be described with the state
variable fH = (fR, fD), whose components are updated according to

(CAR) (CAD)

fR |t0=tD = f tD
D ,

f tR+�tR
R = RR f tR

R

f 0
D = f init

D (ρ0),

f tD+�tD
D = DD f tD+M�tR

D .

(3.21)

(a) (b) (c)

Δth

(RD)

Tend
Δth Tend

(R) (D)

ΔtD=TR Δth Tend

(R) (D)

ΔtDTR

Fig. 3.9 SSM for the reaction-diffusion LBM. In (a) reaction (dashed line) and diffusion (solid
line) are considered as a single multiscale algorithm. In (b) we assume to use different schemes,
where the diffusion time step�tD is larger than the original�th . (c) Represents the situation where
the two processes are time separated, with a very fast reaction yielding an equilibrium state in a
time TR � �tD

52 A.G. Hoekstra et al.

Equation (3.21) expresses that the algorithm CAR , which is coupled to CAD

through the initial condition (by setting at the initial time t0 = tD (equal to a certain
time of CAD) the initial condition equal to the one obtained from CAD , and evolves
for M steps according to an update rule depending only on the reaction process.
On the right, the diffusion part CAD is coupled to the reaction through the collision
operator, since the new state of fD is locally computed starting from the output
state of CAR . With f init

D (ρ0) we denoted the original initial condition, function of
the initial concentration in (3.15).

In this case, the observable is represented by the concentration ρ, obtained from
the numerical solution by a simple average over the particle distributions.

Following Sect. 3.2.8 we now consider the scale-splitting error E(M) resulting
from using a diffusion time step �tD M times larger than the reaction time step
�tR . The reference solution is here the solution obtained when both reaction and
diffusion act at the smallest time scale, i.e. when M = 1. To estimate E(M) we
consider M reaction steps at scale h (defined by �tR) followed by one diffusion
step at the coarser scale h′ (defined by �tD = M�tR) and we compare the results
with M reaction-diffusion steps both at the fine scale h. In terms of the reaction and
diffusion operators, E(M) can be expressed as

E(M) = ∥∥(DhRh)
M −D′

hRM
h

∥
∥

≤ ∥∥(DhRh)
M −DM

h RM
h

∥
∥+ ∥∥[DM

h −D′
h]RM

h

∥
∥

= E1(M)+ E2(M) (3.22)

Contribution E1 can be computed from the commutator [DhRh − RhDh] and E2
follows from the time coarse-graining of the original LB model. After some calcu-
lations we obtain (see [41])

E(M) ≤ O(M2κ)+O(M2 D3) (3.23)

3.3.1.1 Numerical Validation

We consider the problem

∂tρ = d∂xxρ − κ(ρ − sin (λx)), t ∈ (0, Tend], x ∈ (0, 1]
ρ(0, x) = ρ0(x)

(3.24)

with λ
2π ∈ Z, and periodic boundary conditions in x-direction.

By selecting different values of the parameters regulating (3.24) we can tune the
relevance of different time scales. Additionally, we introduce the non dimensional
parameter

σ = κ

λ2d

3 Complex Automata for Multi-scale Modeling 53

(c)(b)(a)

1 10 25 50 75 100
0

0.1

0.2

0.3

0.4

0.5

M

E
(M

)

E
(M

)

σ = 1
σ = 2

100 150 200 250 300 400
0

0.5

1

1.5

M

0.5 1 1.5 2 2.5
−3

−2.5

−2

–1.5

−1

−0.5

0

0.5

logM

lo
gE

(M
)

σ = 0.4
σ = 0.2

Fig. 3.10 Scale-splitting error as a function of M for a time-coarsened CxA. The different
curves represent different values of σ . Simulation parameters: h = 0.02, λ = 4π , κ = 10,
d ∈ {0.05, 0.1, 0.25, 0.5}. (a): 1 < M < 100. (b): M > 100. The size of the scale-splitting
error becomes relatively large, except for the case σ = 0.2. (c): Order plot (Fig. (a)-(b) in double
logarithmic scale) of maximum scale-splitting error versus M . The dashed lines of slope 1 (bottom)
and 2 (top) indicate that E ∼ Mα , with 1 < α < 2

to “measure” the scale separation of the simulation. In the numerical tests, we run
both the original fine scale LBM and the CxA model, measuring explicitly the scale-
splitting error as the difference in the resulting concentrations. Figure 3.10 shows the
results of scale-splitting error for different values of M . The order plot in Fig. 3.10c
confirms estimate in Eq. (3.23).

Results of a further test to link together scale separation and scale-splitting error
are shown in Fig. 3.11. Namely, for each simulation drawn in Fig. 3.10, we select
the first M such that the scale splitting error lies below a certain prefixed threshold
error Ē(h, H). These values Mth are plotted then as function of σ , validating the
idea that better scale separation allows more efficient CxA formulations.

(a)

11025 50 75 100 125 150 175
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M

E
(M

)

σ = 0.04

Ē(h,H)

−1.5 −1 −0.5 0 0.5
1

1.5

2

2.5

3

lo
gM

th

logσ

slope∼0.6

(b)

Fig. 3.11 (a) Zoom of the previous Fig. 3.10a, including a threshold error Ē(h, H) = 0.05 (results
with σ = 0.04 are also shown). (b) Values of Mth such that the scale-splitting error equates

a threshold error Ē(h, H), versus the measure of scale separation σ = κ
(
λ2 D
)−1

(in double
logarithmic scale)

54 A.G. Hoekstra et al.

Detailed analysis and investigation of this example can be found in [41].
We can also compute the speedup resulting from the above time-splitting. Let

us call a and b the CPU times of one iteration of respectively the reaction and the
diffusion processes. If we run the full system at the finer scale �tR for a time T ,
the total CPU time will be proportional to (a + b)(T/δtR). With the time-splitting
method, the CPU time reduces to (Ma + b)T/(M�tR) and the speedup is (a +
b)/(a + b/M). For large M , the speedup tends to 1+ b/a. This might not be a very
big gain, unless a << b. However, if we would have coarse grained the spatial scale
for the diffusion processes, we would get a more interesting speedup value.

3.3.2 In Stent Restenosis

A challenging application to validate the CxA methodology is represented by the
in-stent restenosis, a coronary artery disease appearing when an arterial occlusion
(stenosis), cured by deploying a small metal mesh (stent), reappears later in time,
due to the maladaptive biological response of the organism. This process involves a
wide range of spatial and temporal scales, spanning from micrometers to millime-
ters and from seconds (typical time of the cardiac cycle) to weeks (typical time
of appearance of a restenosis). Details on in-stent restenosis and a formulation in
terms of Complex Automata can be found in [30]. In this section, we briefly outline
the methodology to construct a CxA model for the in-stent restenosis. All details
of single scale models, coupling templates and simulation results will be presented
elsewhere.

3.3.2.1 Single Scale Models

The SSM for a simplified in-stent restenosis model is shown in Fig. 3.12. We include
the following subprocesses:

Fig. 3.12 Left: simplified SSM for the in-stent restenosis, including three single scale models
separated in time. Right: the connection scheme. Respect to the SSM, it shows also the initial
condition agents, and mapper agents, used when combination of multiple input or multiple output
is needed

3 Complex Automata for Multi-scale Modeling 55

• Bulk Flow (BF): a lattice Boltzmann model for the hemodynamics, simulated on
a spatial grid fine enough to resolve the flow lines near to the stent

• Smooth Muscle Cells (SMC) Hyperplasia: an Agent Based Model, where each
agent represents an SMC, reacting, structurally and biologically according to the
state of the neighboring cells and the flow

• Drug Diffusion (DD): a Finite Difference scheme to simulate drug eluting stents,
which approximates the drug concentrations within the tissue, assuming the stent
to be a source and the vessel to be a sink (since drugs are constantly flushed away
by the flow).

Additionally, the computational model makes use of an initial condition (INIT)
agent, which creates the cell configuration after the stent deployment, and two geo-
metrical mappers, which convert the output of BF and DD (based on a lattice) into
input for SMC (based on an off-grid domain). The graph driving the CxA model
(connection scheme) is shown in Fig. 3.12.

3.3.2.2 Coupling Templates

The interaction between the single scale models can be described in the following
way:

• BF to SMC: after a cardiac cycle has been completed, averaged wall shear
stresses (WSS) are computed along the boundary, and distributed to the SMC
in direct contact with the flow

• SMC to BF: the cells configurations (described, in case of spherical cells, by
positions and radii) is filtered, generating the domain for the flow simulation

• SMC to DD: similarly, the space occupied by SMC is converted in domain for
the DD model

• DD to SMC: after the drug concentration relaxes to steady state, the values are
distributed to the cells.

Fig. 3.13 Two-dimensional benchmark geometry (left), sketching a vessel of length 1.55 mm,
width 1 mm, where two square struts of side 90 µm have been deployed into the cellular tissue.
Smooth Muscle Cells, are depicted as circles with (mean) radius of 15 µm. Resulting restenosis
after 16 days, with a bare metal stent (middle) and a drug eluting stent (right)

56 A.G. Hoekstra et al.

This model has been implemented using the CxA simulation software as devel-
oped in the Coast project [31] and described in detail in [37].

Figure 3.13 shows an example of a two-dimensional version of the model, show-
ing the initial conditions after stent deployment, as well as the resulting restenosis
for bare metal stents and drug eluting stents. The inhibitory effect of the drugs on
the restenosis is clearly visible. Currently we are working on validating these simu-
lations against detailed experimental data, which will be reported elsewhere [42].

3.4 Concluding Remarks

This chapter briefly described a possible approach towards multi-scale modeling
and simulation using Cellular Automata. The concept of Complex Automata should
allow the modeling of a large range of multi-scale systems, and the related Complex
Automata simulation software provides a framework to quickly develop Complex
Automata simulations. The ideas behind Complex Automata have a broader sig-
nificance than Cellular Automata modeling alone and, in the near future, we will
explore the possibility to enlarge the CxA idea to other modeling paradigms. More-
over, we are developing a growing set of CxA models and simulations, and we invite
our readers to start doing the same.

References

1. B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge Univer-
sity Press, Cambridge, 1998)

2. A. Deutsch, S. Dormann, Cellular Automaton Modeling of Biological Pattern Formation:
Characterization, Applications, and Analysis (Birkhäuser, Basel, 2005)

3. P. Sloot, A. Hoekstra, Modeling dynamic systems with cellular automata, ed. by P. Fishwick
Handbook of Dynamic System Modeling, Chapter 21 (Chapman & Hall/CRC, London/Boca
Rabin, FL, 2007)

4. S. Lloyd, Phys. Rev. Lett. 23, 237901 (2002)
5. K. Zuse, Int. J. Theor. Phys. 21, 580–600 (1982)
6. K. Zuse, Rechnender Raum, http://www.idsia.ch/∼juergen/digitalphysics.html
7. S. Wolfram, A New Kind of Science (Wolfram Media, Inc., Champaign, IL, 2002)
8. D. Bader, Petascale Computing: Algorithms and Applications (Chapman & Hall/CRC, Lon-

don/Boca Rabin, FL, 2008)
9. A. Hoekstra, S. Portegies Zwart, M. Bubak, P. Sloot, Towards distributed petascale computing,

ed. by D. Bader, Petascale Computing: Algorithms and Applications, Chapter 8 (Chapman &
Hall/CRC, London/Boca Rabin, FL, 2008)

10. P. Sloot, D. Frenkel, H. van der Vorst et al., White paper on computational e-science, studying
complex systems in silico, a national research invitiative (2007), http://www.science.uva.nl/
research/pscs/papers/archive/Sloot2007a.pdf

11. Special Issue on Multiphysics modeling, IEEE Comput. Sci. Eng. 7 14–53, (2005)
12. SIAM Multiscale Model Simul, http://epubs.siam.org/sam-bin/dbq/toclist/MMS
13. Int J Multiscale Comput Eng, http://www.edata-center.com/journals/61fd1b191cf7e96f.html
14. A. Finkelstein, J. Hetherington, O. Margoninski, P. Saffrey, R. Seymour, A. Warner, IEEE

Comput. 37, 26–33 (2004)
15. D. Noble, Science 295, 1678–1682 (2002)
16. B. Di Ventura, C. Lemerle, K. Michalodimitrakis, L. Serrano, Nature 443, 527–533 (2006)

3 Complex Automata for Multi-scale Modeling 57

17. P. Hunter, W. Li, A. McCulloch, D. Noble, IEEE Comput. 39, 48–54 (2006)
18. P. Sloot, A. Tirado-Ramos, I. Altintas, M. Bubak, C. Boucher, IEEE Comput. 39, 40–46 (2006)
19. S. Smye, R. Clayton, Med. Eng. Phys. 24, 565–574 (2002)
20. G. Ingram, I. Cameron, K. Hangos, Chem. Eng. Sci., 59, 2171–2187 (2004)
21. E. Weinan, X. Li, W. Ren, E. Vanden-Eijnden, Commun. Comput. Phys. 2, 367–450 (2007)
22. R. White, Modeling multi-scale processes in a cellular automata framework, ed. by

J. Portugali, Complex Artificial Environments, Simulation, Cognition and VR in the Study and
Planning of Cities, (Springer, New York, NY, 2006) pp. 165–177

23. B. Ribba, T. Alarcón, K. Marron, P. Maini, Z. Agur, The use of hybrid cellular automata mod-
els for improving cancer therapy, ed. by P. Sloot, B. Chopard, A. Hoekstra: Cellular Automata,
6th International Conference on Cellular Automata, ACRI 2004, LNCS, vol. 3305 (Springer,
Heidelberg, 2004), pp. 444–453

24. C. Lin, Y. Lai, Phys. Rev. E. 62, 2219–2225 (2000)
25. N. Baas, T. Helvik, Adv. Compl. Syst. 8, 169–192 (2005)
26. N. Israeli, N. Goldenfeld, Phys. Rev. Let. 92, 074105 (2004)
27. A. Hoekstra, E. Lorenz, J.L. Falcone, B. Chopard, Towards a complex automata framework for

multi-scale modeling: Formalism and the scale separation map, ed. by Y. Shi, D. van Albada,
J. Dongarra, P. Sloot, ICCS 2007, Part I, Lecture Notes in Computer Science, vol. 4487
(Springer, Heidelberg, 2007), pp. 922–930

28. A. Hoekstra, E. Lorenz, J. Falcone, B. Chopard, Int. J. Multiscale Comp. Eng. 5, 491–502
(2007)

29. A.G. Hoekstra, J-L. Falcone, A. Caiazzo, B. Chopard, Multi-scale modeling with cel-
lular automata: The complex automata approach, ed. by H. Umeo et al., ACRI 2008,
Lecture Notes in Computer Science, vol. 5191, (Springer, Berlin-Heidelberg, 2008),
pp. 192–199

30. D. Evans, P. Lawford, J. Gunn, D. Walker, R. Hose, R. Smallwood, B. Chopard, M. Krafczyk,
J. Bernsdorf, A. Hoekstra, Phil. Trans. Roy. Soc. A 366, 3343–3360 (2008)

31. The Coast project, http://www.complex-automata.org
32. B. Chopard, J-L. Falcone, R. Razakanirina, A.G. Hoekstra, A. Caiazzo, On the collision-

propagation and gather-update formulations of a cellular automata rule, ed. by H. Umeo
et al., ACRI 2008, Lecture Notes in Computer Science vol. 5191, (Springer, Berlin Heidelberg,
2008), pp. 144–251

33. J.A. Kaandorp, J.E. Kübler, The Algorithmic Beauty of Seaweeds, Sponges and Corals
(Springer, Heidelberg, New York, 2001)

34. R.M.H. Merks, A.G. Hoekstra, J.A. Kaandorp, P.M.A. Sloot, J. Theor. Biol. 224, 153–166
(2003)

35. R.M.H. Merks, A.G. Hoekstra, J.A. Kaandorp, P.M.A. Sloot, J. Theor. Biol. 228, 559–576
(2004)

36. G. Agha Actors: A Model of Concurrent Computation in Distributed Systems (MIT Press,
Cambridge, MA, 1986)

37. J. Hegewald, M. Krafczyk, J. Tölke, A. Hoekstra, B. Chopard, An agent-based coupling
platform for complex automata ICCS 2008, Krakow. Lecture Notes in Computer Science,
vol. 5102, doi:10.1007/978-3-540-69387-1 (Springer, Berlin Heidelberg, 2008), pp. 227–233

38. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University
Press, Oxford, 2001)

39. D. Alemani, B. Chopard, J. Galceran, J. Buffle, Phys. Chem. Chem. Phys. 7, 1–11 (2005)
40. A. Caiazzo, J-L. Falcone, B. Chopard, A.G. Hoekstra, Error investigations in complex

automata models for reaction-diffusion systems, ed. by H. Umeo et al., ACRI 2008, Lecture
Notes in Computer Science, vol. 5191, (Springer, Berlin Heidelberg, 2008), pp. 260–267

41. A. Caiazzo, J-L. Falcone, B. Chopard, A.G. Hoekstra, Asymptotic analysis of complex
automata models for reaction-diffusion systems. Appl. Num. Maths 59, 2023–2034 (2009)

42. A. Caiazzo, D. Evans, J.L. Falcone, J. Hegewald, E. Lorenz, B. Stahl, D. Wang, J. Bernsdorff,
B. Chopard, J. Gunn, R. Hose, M. Krafczyk, P. Lawford, R. Smallwood, D. Walker, A.G.
Hoekstra, Towards a complex automata multiscale model of in-stent restenosis, submitted to
J. Comput. Sci.

Chapter 4
Hierarchical Cellular Automata Methods

Adam Dunn

Many real-world spatial systems involve interacting processes that operate over
more than scale. Whilst there has been a strong growth in knowledge about multi-
scale systems in many disciplines, the advent of coupled, multiresolution, multiscale
and hierarchical cellular automata has been recent in comparison. Here, the struc-
tural definition of a cellular automaton is augmented with an abstraction operator,
which transforms the cellular automaton into a hierarchy of cellular spaces. Simple
propagation is used as a familiar and common behavioural phenomenon in several
examples of behavioural specification. The purpose of this chapter is to provide the
basics of a general framework, from which hierarchical cellular automata may be
constructed for specific applications. Simple examples from landscape ecology are
used to elucidate the methods.

4.1 Introduction

Classical cellular automata (CA) are used as an analog of complex systems because
they are fundamentally similar in operation to the self-organised systems seen in
nature and the man-made world. However, there are many complex systems for
which a single scale will not capture the fine-scale dynamics that influence their
global behaviour, and yet others for which a single scale is intractable for practical
simulation. These include complex systems in disciplines such as landscape ecology
or sociology, about which we would like to make real predictions in order to guide
and influence policy.

Hierarchical CA, as defined in this chapter, are capable of modelling processes
that operate at different spatial scales within the same system. The approach has
a lineage in coupled CA [33] and the paradigm of hierarchical patch dynam-

A. Dunn (B)
Centre for Health Informatics, University of New South Wales UNSW,
Sydney NSW 2052, Australia; Alcoa Research Centre for Stronger Communities,
Curtin University of Technology, PO Box U1985, Perth WA 6845, Australia
e-mail: A.Dunn@unsw.edu.au; A.Dunn@curtin.edu.au

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_4,
C© Springer-Verlag Berlin Heidelberg 2010

59

60 A. Dunn

ics [36, 35]. The approach grew out of the need for tractable, real-time models
of wildfire spread [10] and has been implemented for a model of invasive plant
spread [9, 8], where humans and frugivores are responsible for the spread of inva-
sive weeds at widely separate spatial scales. By the nature of their construction,
the hierarchical CA is of practical benefit to modelling complex systems where the
empirical information feeding simulations is provided at multiple scales.

The practical issues relating to hierarchical CA are discussed in this chapter.
These CA fit into the categories of complex (multiscale) automata and network
automata, but also use probabilistic updates. The first part of this chapter deals
primarily with building the structure of a hierarchical CA and discusses the reasons
behind modelling choices. In the second half of the chapter, the implementation of
behaviour is discussed for both homogeneous and heterogeneous examples. The
guide is by no means a complete set of potential constructions for hierarchical
CA; rather, the aim is to provide enough information for any reader to replicate
the approach in a range of application domains.

There are other ways in which multiresolution and multiscale processes may be
modelled. A popular form using wavelets, is explored elsewhere [4]. Another exam-
ple of complex CA, also presented in another chapter of this book, is discussed by
Hoekstra et al. [14]. Some classes of problems are better suited to different methods,
but here, examples are addressed for problems that are well-suited to the discrete and
heterogeneous structure of the hierarchical CA.

4.2 Structure of Hierarchical CA

Classically, a two dimensional cellular space L, is defined by a regular lattice of
cells. Each cell’s state, σ = {0, 1} (for a binary-state CA), is determined by the
current state of the cell and the state of a set of cells within close vicinity. A neigh-
bourhood N (of size N) is defined by a function of rectilinear coordinates that
produces a set of states {σ1, σ2, . . . , σN }. All cells in the cellular space are updated
synchronously to produce the new, collective state of the cellular space in each time
step.

However, the definition is not immutable. Nearly every part of the above defi-
nition may be removed, modified or augmented. Asynchronous, heterogeneous or
irregular CA may be of value for defining a model of a real system. What is fun-
damental to CA is the discrete structure, local connectivity and exchange of infor-
mation between neighbours. As an early pioneer of CA, Burks [5] recognised the
fundamental characterisation of a CA as follows:

“Its features are a quantised time and space, a finite number of possible states for each point
of space-time, and a computable local transition function or law (not necessarily determin-
istic or uniform over space) governing the equations of the system through time.”

Burks explicitly mentions non-determinism and heterogeneity, which are tools that
CA practitioners routinely use to model physical systems. Practitioners do so in
order to answer questions about the real world via simulation, when it is infeasible
to observe the real world directly.

4 Hierarchical Cellular Automata Methods 61

4.2.1 Isotropic Propagation and CA

Before describing the structure and behaviour of a hierarchical CA, it is worth
first describing how the choice of structure influences the behaviour of a model.
The difference between regular and irregular structures may be explained using
propagation as an example of an often-modelled behaviour, and isotropy as a mea-
sure of the model’s accuracy. For one example comparing deterministic and non-
deterministic update rules, it can be shown that an irregular lattice structure will
eventually produce a closer approximation to isotropic propagation than a regu-
lar lattice, given the same finite number of cells. This result has consequences
for modellers attempting to choose representations for the structure of a physical
system.

The process of propagation is central to many complex system phenomena. One
can intuitively think of many examples, but the scales and domains on which this
chapter focuses includes the scales associated with the spread of bushfire, the spatial
perspective of an invasive species outbreak, or the spread of infection through a
population. Isotropic propagation is fundamental to many tasks where a spatially
discrete model is built for a continuous space system. Imagine the spread of fire
over a landscape in two dimensions, or the diffusion of a gas from a point source
in three dimensions. When the environment is homogeneous, isotropic propagation
is the expected behaviour. Isotropic propagation in homogeneous conditions is an
important precursor to building a realistic model in heterogeneous conditions.

There are several ways in which isotropic propagation may be modelled using
CA. Schönfisch [27] demonstrates that stochasticity is necessary for good estimates
of isotropic propagation in CA. Similar findings are reported independently [25, 15],
but none are widely cited. Schönfisch draws the conclusion that stochasticity may
be implemented either in the structure of the CA via irregular grids, or in the
behaviour of the CA via probabilistic updates or stochastically distributed asyn-
chronous updates. The best estimate of isotropy in this work is achieved using an
irregular grid that is constructed with a minimum distance between cell centres. In
another example of modelling isotropy in a quantised space, Holland et al. [15] test
both probabilistic updates and irregular spatial structures using a random walk to
describe propagation through homogeneous regions.

Some examples of unusual choices for implementing isotropic propagation
include a model of lava flow (Spataro et al. [28]), a model of disease spread (Pfeifer
et al. [26]), and several models of wildfire spread (Sullivan and Knight [30], Trunfio
[31], and Alexandridis et al. [2]). Trunfio’s implementation of a CA model of wild-
fire uses hexagonal grids with side length approximately 20 m. It is stated explicitly
that the hexagonal lattice is used to avoid the problems associated with directional
bias [31]. A demonstration of the model for a homogeneous landscape is not pro-
vided. Alexandridis et al. [2] use a regular lattice and describe a set of probabilities
to define a stochastic update mechanism. The probabilities are optimised to match
the empirical data for one wildfire scenario and then a comparison is made to the
same scenario to judge the success of the model. The homogeneous case is not
presented and anisotropy is not discussed. The results of Pfeifer et al. [26] show

62 A. Dunn

distinct quadrilateral patterns over spatial data that do not appear to reflect such
patterns.

Vicari et al. [32] more recently implemented a randomised distribution of cell
centres (in the same manner as Schönfisch [27]) and a maximum radius approach,
which was shown to remove the anisotropy caused by both hexagonal and square
lattices. This is a simple example of an irregular lattice, since the cell shape is only
used to constrain the initial placement of points rather than influence the selection
of neighbourhood and evolution of the CA.

Sullivan and Knight [30] implement a two-dimensional, square-lattice CA to
model wildfire. Their approach is to construct a model of convective forces into
the behaviour of a wildfire model. The model’s update rule allows each cell to draw
information from every cell in the cellular space at each time step, breaking the local
characteristic of CA. This appears to be an attempt to capture forces at multiple
temporal and spatial scales – through the landscape as local heat transfer, and the
much faster and larger scale forces in the atmosphere.

A regular grid is often a convenient way to quantise space because it has a pedi-
gree that stretches at least as far back as Descartes, it corresponds to the way humans
collect observations (as raster images amongst others), and it fits neatly into a com-
puter. However, a regular grid and a probabilistic update rule may, in many cases,
not be the appropriate approximation of a physical system. This is particularly true
when a modeller attempts to account for structural noise (or structural heterogeneity
below the level of abstraction in the model) by applying non-determinism to the
behaviour.

Whilst Descartes may have been partially responsible for the grid representation
of space, he may have also been responsible for the first recorded example of a
Voronoi decomposition (see Okabe et al. [24]). A Voronoi decomposition is a con-
venient way to represent an irregular distribution of cell centres and the Delaunay
triangulation associated with the spatial decomposition may be used to provide the
links that define the neighbourhood. Voronoi decomposition is used to construct the
spatial structure for many of the CA described in this chapter.

Each of the structures that follow comprise 4 × 104 interacting cells, either as a
regular lattice (with a Moore neighbourhood, radius 1) or a Voronoi decomposition
over a set of Halton points [12], with a neighbourhood defined by the Delaunay
triangulation. Using Halton points ensures that the minimum distance between cell
centres is maximised whilst maintaining the apparent randomness of the locations.
This approach is slightly different to that of Schönfisch [27], but achieves a similar
result. All examples here use a binary state set, notionally inactivate or active. All
cells except for one (closest to the centre of the structure) are initially set as inactive.
In the deterministic case, a cell becomes active in the first time step for which one
of its neighbours is active and it remains in the active state for the duration of the
simulation (Eq. (4.1)). In the non-deterministic case (Eq. (4.2)) a cell is probabilis-
tically updated to active with probability 1 on the principal axes and probability
0.25 on the diagonal axes (as per the best approximation by Schönfisch [27] using
these rules). The function P(N) returns a cell’s new state (either 0 or 1) based on
a random test against the closest active cell in the neighbourhood. Here, Σ implies

4 Hierarchical Cellular Automata Methods 63

the sum of states for the neighbourhood (from 0 to N , the number of cells in the
neighbourhood), as usual.

σ t+1
α =

⎧
⎪⎨

⎪⎩

0 , if
∑N

i=0 σN (α) = 0;
1 , if

∑N
i=0 σN (α) > 0;

1 , if σ t
α = 1.

(4.1)

σ t+1
α =

⎧
⎪⎨

⎪⎩

0 , if
∑N

i=0 σN (α) = 0;
P(N) , if

∑N
i=0 σN (α) > 0;

1 , if σ t
α = 1.

(4.2)

For the regular grid, the shape of the CA using a deterministic update rule
produces a square shape, with the residuals demonstrating a characteristic shape,
showing a grid-induced bias (Fig. 4.1). In the figure, residual distances are calcu-
lated by measuring the distance from the centre of the most distant activated cell
to the closest point on a circle of radius equal to the number of time steps. Using
a von Neumann neighbourhood produces a diamond and using a hexagonal grid
produces a hexagon. The reason for the grid-induced bias is because propagation is
slower in directions away from the axes of the lattice that correspond to the neigh-
bourhood. Increasing the radius of the neighbourhood (see O’Regan et al. [25])
results in an increase in the number of sides of the polygon produced, thereby
shifting the resulting propagation front closer to that of isotropic spread. For the
non-deterministic example (Fig. 4.2), the rate of spread in the diagonal directions
is reduced by the probabilistic update on the diagonal axes and it produces a closer
approximation to isotropic propagation.

In examples of a CA whose structure is described by the Voronoi decomposi-
tion of a set of Halton points (see earlier in this section), the results show a closer

Fig. 4.1 An approximation of isotropy using a regular grid and a deterministic update rule shown
as (a) the average distance residual during the evolution of state, (b) the average distance residual
by angle for a given time, and (c) an image of the CA shaded by activation time (from light to
dark)

64 A. Dunn

Fig. 4.2 An approximation of isotropy using a regular grid and a non-deterministic update rule
(probability ∈ {0.25, 1}), shown as (a) the average distance residual during the evolution of state,
(b) the average distance residual by angle for a given time, and (c) an image of the CA shaded by
activation time (from light to dark). Arrows indicate the emerging anisotropy

approximation to isotropy as the number of cells activated increases. In the deter-
ministic case, where cells are activated in the time step immediately following any
one neighbour’s activation, the rate of spread increases because some neighbours
are at distances greater than 1 (Fig. 4.3). In the non-deterministic case, where the
probability of activation is based on the inverse of minimum distance to an active
neighbour, the rate is slower (Fig. 4.4). Since the underlying structure is determined
by a stochastic process, repeated simulation yields different results. The mean prop-
agation distance of repeated simulations produces an increasingly accurate approx-
imation to isotropy, insofar as the residual distance curve becomes increasingly flat.
This is not the case with regular grids in which the anisotropy deterministically
appears in the same locations.

Fig. 4.3 An approximation of isotropy using an irregular structure and a deterministic update rule
shown as (a) the average distance residual during the evolution of state, (b) the average distance
residual by angle for a given time, and (c) an image of the CA shaded by activation time (from
light to dark). There is no emerging pattern in the residuals

4 Hierarchical Cellular Automata Methods 65

Fig. 4.4 An approximation of isotropy using an irregular structure and a non-deterministic update
rule (governed by the inverse of the distance between cell centres) shown as (a) the average distance
residual during the evolution of state, (b) the average distance residual by angle for a given time,
and (c) an image of the CA shaded by activation time (from light to dark). There is no emerging
pattern in the residuals

The results of the above demonstration produce a simple comparison between
regular and irregular spatial quantisation, and between deterministic and non-
deterministic update mechanisms. If a modeller is given a finite number of cells
with which to represent the spatial structure of a physical system and the physical
system may be modelled as a homogeneous example of propagation over a con-
tinuous two-dimensional space, then Voronoi decomposition eventually produces a
closer approximation to isotropic propagation. In addition, a probabilistic update
(based on distance between cell centres) produces a better approximation than a
deterministic update. Note that all examples use synchronous updates.

Each of these examples above provides an approximation to isotropic propaga-
tion, but some become better than the others during the evolution of state or after
averaging multiple simulation instances. In problems where we are attempting to
answer questions about aggregate properties of the system or where the behaviour
is homogeneous over the entire space, a simple approximation may be sufficient.
Irregular grids may be more appropriate than regular grids where spatial hetero-
geneity is important to the behaviour, since the grid-induced bias changes the shape
of propagation-diffusion models. Additionally, irregular grids may be better suited
to problems in which the number of elements is relatively large, since grid-induced
bias in regular grids becomes more pronounced as the evolution of state continues
through a larger spatial domain, as opposed to irregular grids where the approxima-
tion improves.

The above demonstrations provide two basic structures from which a hierarchical
CA may be built. Firstly, a regular lattice decomposition of a continuous physical
space (the classical form of a CA) using either square or hexagonal cells. This struc-
ture may be further augmented by translating the cell centres and using minimum
distances to construct irregular neighbourhoods. Secondly, an irregular structure,
which sometimes provides a closer approximation to spatially explicit propagation

66 A. Dunn

phenomena. The second of these structures is used as a basis for the structures
described in the following sections.

4.2.2 Structural Definitions

Imagine an example of a physical system in which two processes are acting at dif-
ferent scales and with different governing rules. In landscape ecology, this system
is found in the process of seed dispersal, where multiple vectors (in the biological
sense of the word) act at different scales. In models describing the spatial expansion
of cities, forces relating to population growth act at different scales to forces relating
to the location of resources and transport networks. Feedback exists in these exam-
ples where the propagation that results from one force influences the propagation
resulting from other forces.

Weimar [33] provides what is arguably the first example of a multi-resolution
CA. However, the theory of system hierarchy [1] and multi-scale phenomena outside
of the CA domain have a rich theoretical history stretching through several decades
of research. Others have contributed to the multiscale representation of CA models
in deeply theoretical ways [17]. Yet others have described approaches for building
hierarchical structures [36, 35] for specific application domains, without invoking
the CA paradigm.

An abstraction operator may be defined as a function that transforms a cellular
space into a new cellular space with fewer cells, and represents a physical system
with fewer components. The definition is constrained such that the number of input
cells is constant and all the input cells form a contiguous patch in the continuous
space (i.e. they all belong to each others’ neighbourhoods). The general form of the
abstraction operator may be defined as follows:

LT = L− {α1, α2, . . . αk} + {αn+1}, (4.3)

where LT is the newly transformed cellular space that does not include cells α1
through αk , and includes a new call αn+1.

The link between the original cellular space and the transformed cellular space
is the interlevel neighbourhood, denoted N ∗, a neighbourhood between levels
of abstraction. Compare this to the intralevel connections defined by the neigh-
bourhood of a cell within a single level of abstraction. An interlevel connection,
N ∗(αn+1), may be defined as a subset of L + LT , where αn+1 belongs to LT and
takes the index n+1 as an indication that it is a new cell in the overall cellular space
structure.

The general form of the abstraction operator alone does not provide enough infor-
mation to implement a hierarchical CA, but this information may be specified for
a given purpose. Further consideration must be given to the groups of cells to be
abstracted, as well as the order. The following is a description of a specific imple-
mentation of the abstraction operator for a CA whose structure is defined as an
irregularly distributed set of cells, and whose intralevel neighbourhoods are defined
by a Delaunay triangulation [24].

4 Hierarchical Cellular Automata Methods 67

Using the Delaunay triangulation to define a ternary abstraction operator is con-
venient for the irregular cellular space of the previous section, because it guaran-
tees that each group of three cells forming a triangle are contiguous. The interlevel
neighbourhood for this cellular space may be defined as follows:

N ∗(αn+1) = {α1, α2, α3, αn+1}; α1, α2, α3 ∈ L, αn+1 ∈ LT (4.4)

In this example, the abstraction operator necessarily produces larger cells from
smaller ones. The transformation, L → LT, creates a new cellular space where three
cells (whose centres form a triangle in the Delaunay triangulation) are abstracted to
form a single new cell (see Fig. 4.5). The size of the cell in LT that is not in L
is always larger than each of cells in L that are not in LT . The neighbourhood of
the new cell is always a subset of the aggregate of its childrens’ neighbourhoods
(N (αn+1) ⊆ N (α1) ∪N (α2) ∪N (α3)).

In the process of repeated transformations via the abstraction operator, the aver-
age size of cells in a cellular space increases and the hierarchy linking smaller cells
to larger cells is constructed as a series of inter-level connections (see Fig. 4.6). In
the example given in the figure, the irregular and hierarchical cellular space is built
over a homogeneous environment. In this case, a series of abstractions are performed
as follows:

1. set all cells as potentially abstractable;
2. while there are still abstractable triangles in the current Delaunay triangulation,

select an abstractable triangle at random;
3. perform the single transformation from L → LT over the selected set of three

cells;
4. set the triangles that include the cells that are no longer in LT as no longer

abstractable in this iteration;

Fig. 4.5 An example of a single abstraction using a ternary abstraction operator over an irregular
distribution of cells. The three darker cells on the left are abstracted to produce the single dark
cell on the right. The union of the three cells’ neighbourhoods are given in light grey and links
are shown as dotted lines (on the left). The same scheme is used for the neighbourhood of the
abstracted cell (on the right)

68 A. Dunn

Fig. 4.6 The cellular structure for a homogeneous system using a ternary abstraction operator. The
cell boundaries are delineated by black lines. The three cellular spaces presented here are linked
through a series of abstractions that produce the cellular spaces from left to right

5. recalculate the Delaunay triangulation and repeat the abstraction process (steps
3–5) using the modified list of abstractable triangles until there are no more
viable triangles; and

6. rebuild the list of abstractable cells and repeat the entire process until the average
size of cells reaches some desired level (or there are less than three cells left).

In the example above, cells in the iteratively transformed cellular space become
larger with relative consistency. However, a consistent increase in cell size across the
cellular space may not be as useful for systems in which there is heterogeneity in the
empirical information used to create the cellular space state and update rules. In the
following section, the cellular space construction is modified to maintain boundaries
of heterogeneous empirical data.

4.2.3 Building Structures with Heterogeneous Data

The value of implementing the hierarchical structure is evident when introducing
spatial heterogeneity. In hierarchical patch dynamics [36, 35], landscape ecologists
see the need to link together several scales of disparate information that is heteroge-
neous, spatially explicit, and may differ significantly between scales. The purpose of
linking scales is to include feedback between processes that must otherwise be mod-
elled separately. In the example that follows, a ternary abstraction operator is used
to build a hierarchical cellular space for a series of three scales of binary landscape
information.

In the earliest example of multiresolution CA [33], Weimar implements a coupled
CA that was designed to model one process (the oxidisation of carbon monoxide on
platinum) at both a microscopic and macroscopic level. The purpose for modelling
both levels in the same structure is to manage a trade-off between computational
costs and the need to model microscopic irregularities on a two-dimensional surface
from which macroscopic patterns emerge.

In a example of CA modelling in landscape ecology, Chen and Ye [7] develop
a CA that uses an irregular triangular grid and couples two specific models – the
growth and development of vegetation and a hydrodynamic model. Whilst the issue

4 Hierarchical Cellular Automata Methods 69

of grid-based bias in regular structures is avoided by the irregular structure of the
CA, the model appears to use the same scale in order to achieve the particular cou-
pling required. In this example, there is no report of any disparity between the scale
of empirical data relating to flow and the empirical data relating to the growing pat-
tern of plant species. However, one may imagine any number of coupled processes
in which the empirical data is disparate in granularity and therefore well-suited to a
hierarchical CA construction.

With landscape models of ecological phenomena, it is often the boundaries
between heterogeneous regions that are of specific importance. In existing studies,
boundaries between heterogeneous regions of habitat are found to be significant to
the behaviour of the system [3, 16, 6]. Besides affecting the dynamics of an ecolog-
ical system, discrete boundaries are also formed as the result natural forces [11], not
necessarily due to anthropogenic effects.

A synthesis of the general problem may be posed as follows:

A method is required to allow for the coupling of models whose empirical inputs vary in
both spatial pattern and granularity.

In the solution offered by hierarchical CA, spatially heterogeneous information is
captured in the form of a hierarchy of cells. This is achieved efficiently through
the use of an irregular structure where boundaries between internally homogeneous
patches are captured at a finer granularity than their homogeneous counterparts. In
turn, this is achieved by making specific choices about where and when to apply
the abstraction operator during construction of the hierarchy. The resulting structure
captures the pattern of heterogeneity more accurately than a grid of single granular-
ity, given the same total number of cells.

Habitat fragmentation is an important problem in landscape ecology, but there are
challenges in describing fragmentation. The first problem is that habitat is species
specific, season specific, and not necessarily binary [21]. The second major prob-
lem is disparity of scale [19]. Conflicting approaches are used to represent species
habitat [20, 8] and scale features strongly in the arguments for each approach.

Below, a fictional example of binary spatial information is used as a simple
example of separate layers of spatial information contributing to the structure of a
hierarchical CA. As above, the ternary abstraction operator is used, but the process
is augmented with rules about where and when the operator is applied.

For each layer of empirical data, the cellular space is abstracted according to
the location of boundaries between homogeneous patches, a minimum area and
a maximum area. To begin with, triangles from the Delaunay triangulation [24]
are chosen at random (as in the previous section). However, if the neighbourhood
includes a cell with an area above the maximum area size, then the abstraction is not
performed. Additionally, providing the cell areas are all greater than the minimum
area, if a triangle includes cells whose neighbourhoods span separate patches (i.e.
cross a boundary), then they are not abstracted. The result is that cells are bounded
by a minimum and maximum area, as well as efficiently capturing the shape of
boundaries between internally homogeneous regions.

70 A. Dunn

The construction of a complete hierarchy involves more than one application of
the above process. The method begins with a fine-scale distribution of points using
a two-dimensional Halton distribution [12]. From this first cellular space, a series
of abstractions are applied until the first layer of empirical data is captured (see
Fig. 4.7, left). Using this second cellular space as the initial structure, another series
of abstractions is applied until the third cellular space is achieved (see Fig. 4.7,
middle). This process is repeated one more time to produce the final cellular space,
which is the coarsest cellular space of the three results and represents the final layer
of empirical data (see Fig. 4.7, right).

A grain-extent window [34] is described as the perception of an organism in
terms of the processes in which it engages. For example, whilst ants and humans
share the same space, ants have much smaller ranges than humans and perceive their
space with a different concept of what makes a particular location habitable. In addi-
tion, ants and humans utilise resources within their habitat in different ways. This
difference in grain-extent window causes problems when attempting to understand
ecological processes they share, which in turn is a problem for the development of
policy, the implementation of change or the valuation of specific places.

Hierarchical patch dynamics [36, 35] is an example of a method that may poten-
tially solve the problem of varying grain-extent windows in landscape ecology. By
linking separate levels of habitat information, each with a characteristic scale (or
range of scales), it is possible to couple models of individual processes. In the
example above (as in Fig. 4.7), the difference in scale is apparent (see Fig. 4.8).
The three levels of information are captured as cellular spaces, whose cells vary
in area by orders of magnitude. In this example, cell areas are measured in terms
of pixels, but these pixels may represent any real-world area that is observable and
recordable.

Fig. 4.7 The cellular structure for a non-homogeneous system using a ternary abstraction operator
and a boundary protection rule. The cell boundaries are delineated by black lines and the grey/white
areas denote different information (i.e. habitat and non-habitat). The system’s spatial information
is different for the three levels in the hierarchy but is linked through the series of abstractions that
produces the cellular spaces iteratively, from left to right

4 Hierarchical Cellular Automata Methods 71

Fig. 4.8 Cell area distributions for both a homogeneous and non-homogeneous cellular space
structure, using the same initial parameters. The cell areas for three levels in the hierarchy are
given as black dots. The median is given as an open circle and the interquartile ranges are given as
grey rectangles

4.3 Behaviour of Hierarchical CA

Given the structure of a hierarchical CA, as described in the previous section, the
next aim is to reproduce the behaviour of a propagation phenomenon using this
structure. Both homogeneous and spatially-dependent update rules are demonstrated
in this section. The update rules introduced here are essentially the hierarchical
version of a probabilistic CA. Before continuing to the heterogeneous examples,
a homogeneous instantiation of the hierarchical CA is shown to be capable of pro-
ducing an approximation to isotropic propagation. Then, a spatially heterogeneous
example is shown as an analogy for the multiple-vector seed dispersal of an invasive
plant.

Two types of information flow are present in a hierarchical CA model of propaga-
tion. Intralevel neighbourhoods, N (α), are used for the information flow at specific
scales in the hierarchy. For example, in a model of invasive species, the propagation
of seeds via a single seed dispersal vector (such as frugivore-mediated dispersal)
may be modelled using information flow via intralevel neighbourhoods. Intralevel
neighbourhoods comprise a set of cells within a single cellular space, Lk (the kth
transform of the original cellular space L0). Interlevel neighbourhoods, N ∗(α) are
used to transfer state information up and down the hierarchy, between Lk and Lk+1.

72 A. Dunn

For example, in a model of disease spread through a social network, the presence
of one additional infected person at the finest scale might modify the state at some
higher level (family, school/workplace, community) from susceptible to infected.

In the general case, the update rule potentially modifies the state (σk) of a cell
(αk). The rule is defined over the set of states produced by the intralevel neigh-
bourhood function (N (αk)) or over the set of states from the cells produced by the
interlevel neighbourhood function (N ∗(αk)). The corresponding update rules φ and
φ∗ are defined as per Eqs. (4.5) and (4.6).

φ :
N

︷ ︸︸ ︷
Σ ×Σ × · · · ×Σ → Σ,

where � = {0, 1} for a binary state CA and
N is the number of cells in N

(4.5)

φ∗ :
N∗

︷ ︸︸ ︷
Σ ×Σ × · · · ×Σ →

N∗
︷ ︸︸ ︷
Σ ×Σ × · · · ×Σ

where � = {0, 1} for a binary state CA and
N is the number of cells in N ∗

(4.6)

This means that the intralevel function, φ, is the same as the classical definition
of a CA. In φ∗, the states of the children cells and the parent cell are used to define
the new state of both the children and the parent. In this manner, information may
flow in both directions (up the hierarchy through parents and down through children)
under the same state transition function.

4.3.1 A Probabilistic Update Method

The general rule may be implemented using probabilistic functions, to produce the
simple propagation phenomenon detailed in previous sections. The state transition
function for every cell is the same, implying a homogeneous behavioural model.
Firstly, the functions are demonstrated for a spatially homogeneous system, in which
cells are evenly distributed at all levels. Secondly, the functions are demonstrated
for a heterogeneous system where empirical information is used to create an uneven
distribution of cell centres (but the rules are still applied homogeneously). In both
cases, isotropic propagation is the expected behaviour because the update rules are
consistent over the whole of the cellular space at each level in the hierarchy.

The hierarchical CA is constructed as per the previous section, using three levels
of data. In the first example, the absence of data produces an even distribution of
cells over the space for each of the three levels. In the second example, fictional
spatial data is used to create an uneven distribution of cells over the space for each
of the three levels. The two structures used in the two simulations pictured below
are exactly as given in Figs. 4.6 and 4.7.

4 Hierarchical Cellular Automata Methods 73

Intralevel propagation is modelled using the inverse of the minimum distance
as a likelihood of activation, as in the single scale example pictured in Fig. 4.4.
Propagation occurs at each of the three levels in the hierarchical CA. The state of
each cell, σ ∈ Σ ≡ {0, 1} is 0 when unactivated and 1 when activated. Once a
cell becomes activated, it remains activated indefinitely and potentially causes the
further activation of cells in its neighbourhood.

Cells transmit information up and down through the hierarchy using the interlevel
neighbourhoods. As per Eq. (4.7) below, φ∗ takes the state information of the three
children and the parent when determining the new state of the children and the
parent. The intralevel and interlevel rules are applied in turn for each time step in
the simulation.

φ∗ : Σ ×Σ1 ×Σ2 ×Σ3 → Σ ×Σ1 ×Σ2 ×Σ3
where Σ1,Σ2,Σ3 are the state sets of the children.

(4.7)

In the simulations presented below, the transfer of information up through the
hierarchy (σ t+1 = f (σ t , σ t

1, σ
t
2, σ

t
3) ∈ {0, 1}) uses a majority-based rule (perhaps

the most intuitive interlevel information exchange model appropriate to propaga-
tion). The state table for both directions (up and down) is given as Table 4.1. The
function P is defined here to produce either 0 or 1 depending on the outcome of
a random test against the input value. In simple terms, if two cells of the three
children are activated, and the parent is not, then the parent will be activated in the
next step deterministically. In the reverse direction, children cells are activated with
probability 0.5 if the parent is activated and the child is not.

Results of a single simulation for homogeneous data layers (Fig. 4.9), and
for heterogeneous and varying data layers (Fig. 4.10) demonstrate a reasonable

Table 4.1 The update rule,
φ∗ for the interlevel transfer
of information in the
majority-rule hierarchical CA

Input Output

σ1 σ2 σ3 σ σ1 σ2 σ3 σ

0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 0 0 1 1 1
1 0 0 0 1 0 0 0
1 0 1 0 1 0 1 1
1 1 0 0 1 1 0 1
1 1 1 0 1 1 1 1
0 0 0 1 P(0.5) P(0.5) P(0.5) 1
0 0 1 1 P(0.5) P(0.5) 1 1
0 1 0 1 P(0.5) 1 P(0.5) 1
0 1 1 1 P(0.5) 1 1 1
1 0 0 1 1 P(0.5) P(0.5) 1
1 0 1 1 1 P(0.5) 1 1
1 1 0 1 1 1 P(0.5) 1
1 1 1 1 1 1 1 1

74 A. Dunn

Fig. 4.9 Activation times for a single simulation of a homogeneous propagation rule over three
levels of a homogeneous cellular structure. The time to activation is represented by the difference
in shading (from light to dark). The cellular structure is as given in Fig. 4.6. Isotropic propagation
is expected

approximation to isotropy. As with the simulations depicted in Figs. 2.2 and 4.4, the
aggregation of repeated simulation yields closer approximations to isotropic propa-
gation through all levels. Both types of simulation (homogeneous and heterogeneous
data layers) produce similar results using the single rule across all cells. Over multi-
ple simulations using the same two structures, the results produce identical results,
showing that the difference in structure (between an absence of data and the fictional
empirical data) does not influence the isotropy of propagation.

In the single simulations presented in Figs. 4.9 and 4.10, anisotropy is more
apparent than in Fig. 4.4. The effect of propagation through the coarsest scale
(a scale that produces the poorest approximation to isotropic propagation) fil-
ters through to the propagation at the finest scale via the interlevel mechanism.
Whilst the effect might seem to be undesirable in the homogeneous case, the
effect highlights the nature of coupled propagation processes – propagation at
different scales contribute to the overall pattern of behaviour. The advantage of
this particular feature of the hierarchical CA is demonstrated in the following
section.

Fig. 4.10 Activation times for a single simulation of a homogeneous propagation rule over three
levels of a heterogeneous cellular structure. The time to activation is represented by the difference
in shading (from light to dark). The cellular structure is as given in Fig. 4.7. Isotropic propagation
is expected

4 Hierarchical Cellular Automata Methods 75

4.3.2 Processes with Heterogeneous Behaviour

The spatially dependent update rules demonstrate how forms of propagation that
act at different scales (and according to different information) may be implemented
within the same structure. Here, using invasive plants as an example, simulations
of multiscale propagation through patchy habitats are demonstrated. The propa-
gation rule discussed in the previous section is augmented by a second case that
does not permit any propagation, to simulate the effect of disconnected patches of
propagation across multiple scales. The demonstration shows that disconnections in
habitat at one scale may be countered by connected habitat at a separate scale, in
turn demonstrating the effect that multiple dispersal vectors may have on the spread
of an invasive plant.

Humans and other fauna share their landscape in unusual ways. As described in a
previous section, the manner in which different entities perceive their environment is
different (see Dunn and Majer [8]). For example, in a patchy landscape as depicted
in Fig. 4.11, humans exist in different densities and move through constructed trans-
port networks. Conversely, seed-eating birds such as Zosterops lateralis prefer to
live and move through degraded vegetation close to watercourses. In Fig. 4.11, the
habitats of humans and seed-eating birds are pictured together, highlighting their
differences and overlaps.

In landscape ecology, seed dispersal for many species is understood to be as a
result of more than one dispersal vector and each vector may contribute a different
frequency and range [23, 18]. A single vector’s contribution (for example, a seed-
eating bird with a specified gut-passage-time) may be defined for a homogeneous
landscape pattern by a one-dimensional curve that specifies a probability of seed
dispersal distance. Even if a seed-eating bird’s typical range is less than 200 m,
it may still disperse seeds beyond this distance with a small probability [29]. As
more dispersal vectors are incorporated into a model, the volume of seeds dispersed
at different distances is augmented. Traditionally, the set of dispersal “curves” are
aggregated to produce a one-dimensional model of seed dispersal. These models

Fig. 4.11 Frugivore habitat
and human population
density information at two
scales are superimposed.
Irregular, darker coloured
patches represent various
levels of degraded vegetation
(frugivore habitat) and the
transparent, typically
polygonal overlays denote
human population densities
greater than zero. Dark grey
lines represent watercourses

76 A. Dunn

struggle to deal with landscape heterogeneity, specifically for the different percep-
tion of habitat by the individual dispersal vectors.

A useful model of invasive species might therefore be designed to capture the
individual dynamics of different seed dispersal mechanisms in the same structure.
This allows a modeller to model the separate mechanisms together, allowing one
mechanism’s propagation to be reinforced by the other mechanism.

In the simple model depicted in Fig. 4.12, a hierarchical CA is used to simulate
two mechanisms that operate in mutually exclusive spatial scales. Firstly, habitat
for a seed-eating bird is associated with watercourses and remnant vegetation. The
seed-eating birds distribute seeds by consumption and defecation, which means that
the gut-passage time for the bird is a good estimate of potential dispersal distances.
Secondly humans, who are located in both urban and exurban regions, mainly dis-
perse seeds via transport networks within their habitat. Humans have a propensity to
disperse seeds at a greater distance than seed-eating birds. For this model, humans
are associated with dispersal distances that are one order of magnitude greater than
the seed-eating birds.

Fig. 4.12 Cell structure and activation times for two levels of structure in the hierarchy formed
by a ternary abstraction operator. The spatial information is as given in Fig. 4.11, where (a) is
from frugivore habitat and (b) is from human population density. In the upper sub-figures, the cells
are delineated by black lines. In the lower sub-figures, the time to activation is given by shading,
from light to dark, at two levels in the hierarchy with different granularities. The lines depict the
vegetation (c) and human population (d)

4 Hierarchical Cellular Automata Methods 77

The intralevel behaviour of the model is a simple constrained propagation and
the interlevel behaviour is given by the majority-rule. Each cell belongs to one of
two groups, either habitat or non-habitat. For cells that are considered to be habitat,
the state transition function is specified as in the original definition above – activity
in a cell defines the potential for seed dispersal to have reached the location at a
given time. For cells that are not considered habitat, the propagation is constrained
to zero – the cell is perpetually unable to propagate (see Eq. (4.8)). Recall that P(N)

is a probability function related to the inverse of the distance to the closest active
cell in the neighbourhood. This means that greater the distance to the closest active
cell, the lower the probability that the cell will become active in the next time step.
Equation (4.8) gives the intralevel state transition rules as follows:

σ t+1
αhab

=

⎧
⎪⎨

⎪⎩

0 , if ΣN
i=0σN (α) = 0;

P(N) , if ΣN
i=0σN (α) > 0;

1 , if σ t
α = 1.

σ t+1
αnon

= σ t
αnon

(4.8)

In the simulation depicted in Fig. 4.12, seed dispersal begins at a point (see the
centre-right of the lower sub-figures) and propagates through both the urban regions
associated with humans, and the remnant vegetation regions associated with seed-
eating birds. Whilst disconnections may stop dispersal at one level in the hierarchy,
they may not necessarily provide a barrier to dispersal at the other level in the hierar-
chy. This is a simple demonstration of the manner in which multiple seed dispersal
vectors may individually contribute to a larger picture of invasive plant spread.

4.4 Discussion and Summary

This chapter serves as a practical guide for the construction of hierarchical CA.
The examples described here are set in the context of landscape ecology – a disci-
pline in which the concept of hierarchy is firmly established and well understood.
However, the implementation of practical hierarchical models in these areas may be
considered novel because a practical construction framework has never before been
detailed. The CA paradigm offers a useful setting for the construction of hierarchical
models because a CA reflects the nature of real-world systems in which no central
control exists and interactions are local along a series of dimensions.

Despite having been demonstrated many times in different disciplines, mod-
ellers are still modelling continuous propagation phenomena with CA that include
unwanted grid-induced bias. This bias is found in deterministic CA with regular
grids, including hexagonal grids. In this chapter, some specific examples of incor-
porating stochasticity are shown to reduce anisotropy in homogeneous cases, using
the same total number of cells. Whilst none of these propagation methods are
novel, their inclusion in this chapter may form a timely reminder of the necessity to
first test a model under homogeneous conditions. By ensuring that the underlying

78 A. Dunn

propagation is consistent with expectations for homogeneous conditions, a modeller
may have more confidence in constraining the model for heterogeneous conditions.

Whilst the presentation here is shallow and broad, it provides a basis from which
hierarchical models may be constructed using the CA paradigm. Some examples of
the basic construction of hierarchical CA are described in this chapter, including the
following:

• homogeneous systems that are abstracted uniformly (using a ternary abstraction
operator) to produce an approximation to isotropic propagation; and

• heterogeneous spatial systems that are abstracted to efficiently capture bound-
aries (using a ternary abstraction operator) and are used to demonstrate coupled
propagation processes.

The examples presented here are simplistic versions of CA that one might expect of
a calibrated simulation of real-world processes. However, the intention is that they
serve as examples from which a modeller may implement their own hierarchical
CA.

Theories of hierarchy, and associated paradigms in landscape ecology and soci-
ology, are well-established in their respective disciplines. Theories of hierarchy in
CA-based simulation methods for real-world systems are recent by comparison.

The advantages of a hierarchical CA over a classical implementation of the same
system, is as follows:

• that empirical information of different granularity may be incorporated into the
structure of a CA;

• processes that are best modelled at separate scales may be simulated together and
within the same structure; and

• otherwise intractable simulations may be performed on more abstract structures
(with fewer components), under the assumption that the abstraction is rigorous.

When building a CA for the purpose of simulating a real-world system, there
is value in the process of conscious abstraction. A conscious abstraction is one in
which the modeller is aware of the mapping between the structure of the real-world
system and the choices that influence the structure of the CA, and the mapping
between the processes of the real-world system and the choices that influence the
neighbourhood and state transition functions of the CA. An especially significant
component of the modelling process relates to the introduction of non-determinism
in a model – the reasoning for which is often poorly discussed in existing litera-
ture. A more deliberate construction of a CA in this manner relates to the notion of
structural validity [37], in which validity comes not only from a model’s predictive
capacity, but also from the reflection of the real-world’s constituent entities in the
entities that compose a CA model.

The abstraction operator discussed in detail in this chapter does not provide a
failsafe mechanism for ensuring conscious abstraction. Rather, it provides one way
of linking cellular structures of higher complexity (by number of components) with
cellular structures of lower complexity. What is not considered in this chapter, is
a rigorous method of process abstraction. Examples of process abstraction exist in

4 Hierarchical Cellular Automata Methods 79

the form of process algebras (see Hoare [13] and Milner [22] for original descrip-
tions), however, this type of approach is intractable for the purpose of large-scale
simulation of physical systems.

The inclusion of empirical data is fundamental to the modelling of real physical
systems. Empirical data is required for statistical validation of a CA model and
without explicit information about the heterogeneity of habitat, geography, demo-
graphics (amongst many others), a simulation is only an interesting game, at best.
Landscape ecology and biosecurity encompass only a handful of potential applica-
tions for hierarchical CA. Hierarchical CA are designed to be used in the practical
modelling of real-world systems for which predictions of the future may be used
to guide policy and decision-making. For this reason, it is suggested that further
investigations into the utility of hierarchical CA be centred on application-based
developments for which empirical data is used to calibrate models and validate the
methodology.

References

1. V. Ahl, T. F. H. Allen, Hierarchy Theory: A Vision, Vocabulary and Epistemology (Colombia
University Press, New York, NY, 1996)

2. A. Alexandridis, D. Vakalis, C.I. Siettos, G.V. Bafas, A cellular automata model for forest fire
spread prediction: The case of the wildfire that swept through Spetses Island in 1990. Appl.
Math. Comput. 204(1), 191–201 (2008)

3. H. Andrén, Effects of landscape composition on predation rates at habitat edges, Mosaic
Landscapes and Ecological Processes (Chapman & Hall, London 1995), pp. 225–255

4. A. Brandt, Multiscale scientific computation: Review 2001. Multiscale and Multiresolution
Methods: Theory and Applications, vol. 20 (Springer, Heidelberg, 2001), pp. 1–95

5. A.W. Burks, Essays on Cellular Automata (University of Illinois Press, Champaign, IL 1970)
6. M.L. Cadenasso, S.T.A. Pickett, K.C. Weathers, C.G. Jones, A framework for a theory of

ecological boundaries. BioScience 53(8), 750–758 (2003)
7. Q.W. Chen, F. Ye, Unstructured cellular automata and the application to model river riparian

vegetation dynamics. Lecture Notes in Computer Science, ACRI 2008, vol. 5191 (Springer,
Heidelberg, 2008), pp. 337–344

8. A.G. Dunn, J.D. Majer, In response to the continuum model for fauna research: A hierarchical,
patch-based model of spatial landscape patterns. Oikos 116(8), 1413–1418 (2007)

9. A.G. Dunn, J.D. Majer, Simulating weed propagation via hierarchical, patch-based cellular
automata. Lecture Notes in Computer Science, ICCS 2007, vol. 4487 (Springer, Heidelberg
2007), pp. 762–769

10. A.G. Dunn, G.J. Milne, Modelling wildfire dynamics via interacting automata. Lecture Notes
in Computer Science, ACRI 2004, vol. 3305 (Springer, Heidelberg 2004), pp. 395–404

11. D.G. Green, N. Klomp, G. Rimmington, S. Sadedin, Complexity in Landscape Ecology, Land-
scape Series (Springer, Heidelberg 2006)

12. J. Halton, G. B. Smith, Algorithm 247: Radical-inverse quasi-random point sequence. Comm
ACM 7(12), 701–702 (1964)

13. C.A.R. Hoare, Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)
14. A. Hoekstra, E. Lorenz, J.-L. Falcone, B. Chopard, Towards a complex automata framework

for multi-scale modeling: Formalism and the scale separation map. Computational Science
ICCS 2007 (Springer LNCS, Heidelberg 2007), pp. 922–930

15. E.P. Holland, J.N. Aegerter, C. Dytham, G.C. Smith, Landscape as a model: The importance
of geometry. PLoS Comput Biol 3(10), e200 (2007)

80 A. Dunn

16. R.A. Ims, Movement patterns related to spatial structures. Mosaic Landscapes and Ecological
Processes (Chapman & Hall, London, 1995), pp. 85–109

17. N. Israeli, N. Goldenfeld, Coarse-graining of cellular automata, emergence, and the pre-
dictability of complex systems. Phys. Rev. E 73(2), 026203 (2006)

18. P. Jordano, C. Garcia, J.A. Godoy, J.L. Garcia-Castaño, Differential contribution of frugivores
to complex seed dispersal patterns. Proc. Natl. Acad. Sci. USA 104(9), 3278–3282 (2007)

19. S. Levin, The problem of pattern and scale in ecology: The Robert H. MacArthur award
lecture. Ecology 73, 1943–1967 (1992)

20. D.B. Lindenmayer, J. Fischer, R. Hobbs, The need for pluralism in landscape models: A reply
to Dunn and Majer. Oikos 116(8), 1419–1421 (2007)

21. D.B. Lindenmayer, S. McIntyre, J. Fischer, Birds in eucalypt and pine forests: landscape
alteration and its implications for research models of faunal habitat use. Biol. Conserv. 110,
45–53 (2003)

22. R. Milner, Communication and Concurrency (Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989)

23. R. Nathan, Long-distance dispersal of plants. Science 313, 786–788 (2006)
24. A. Okabe, B. Boots, K Sugihara, Spatial Tessellations – Concepts and Applications of Voronoi

Diagrams (Wiley, New York, 2000)
25. W.G. O’Regan, P.H. Kourtz, and S. Nozaki, Bias in the contagion analog to fire spread. Forest

Sci. 22(1), 61–68 (1976)
26. B. Pfeifer, K. Kugler, M.M. Tejada, C. Baumgartner, M. Seger, M. Osl, M. Netzer, M. Handler,

A. Dander, M. Wurz, A. Graber, and B. Tilg, A cellular automaton framework for infectious
disease spread simulation. Open Med Inform J 2, 70–81 (2008)

27. B. Schönfisch, Anisotropy in cellular automata. Biosystems 41(1), 29–41 (1997)
28. W. Spataro, D. DŠAmbrosio, R. Rongo, G. A. Trunfio, An evolutionary approach for mod-

elling lava flows through cellular automata. In Lecture Notes in Computer Science, ACRI 2004,
vol. 3305. (Springer, Heidelberg 2004), pp. 725–734

29. C. D. Stansbury, Dispersal of the environmental weed Bridal Creeper, Asparagus asparagoides,
by Silvereyes, Zosterops lateralis in south-western Australia. Emu 101, 39–45 (2001)

30. A.L. Sullivan, I.K. Knight, A hybrid cellular automata/semi-physical model of fire growth.
Asia-Pacific Conference on Complex Systems, Complex 09 (Cairns, Australia, 2004)

31. G.A. Trunfio, Predicting wildfire spreading through a hexagonal cellular automata model.
Cellular Automata, LNCS (Springer, Heidelberg 2004), pp. 385–394

32. A. Vicari, H. Alexis, C. Del Negro, M. Coltelli, M. Marsella, C. Proietti, Modeling of the 2001
lava flow at Etna volcano by a cellular automata approach. Environ Model. Softw. 22(10),
1465–1471 (2007)

33. J.R. Weimar, Coupling microscopic and macroscopic cellular automata. Parallel Comput.
27(5), 601–611 (2001). 375183

34. J.A. Wiens, N.C. Stenseth, B. Van Horne, R.A. Ims, Ecological mechanisms and landscape
ecology. Oikos 66, 369–380 (1993)

35. J. Wu, J.L. David, A spatially explicit hierarchical approach to modeling complex ecological
systems: Theory and applications. Ecol. Modell. 153(1–2), 7–26 (2002)

36. J. Wu, O. Loucks, From balance-of-nature to hierarchical patch dynamics: A paradigm shift
in ecology. Q. Rev. Biol. 70, 439–466 (1995)

37. B.P. Zeigler, Theory of Modeling and Simulation (Krieger Publishing, Melbourne, FL, USA,
1984)

Chapter 5
Cellular Automata Composition Techniques
for Spatial Dynamics Simulation

Olga Bandman

5.1 Introduction

A Cellular Automaton (CA) is nowadays an object of growing interest as a mathe-
matical model for spatial dynamics simulation. Due to its ability to simulate nonlin-
ear and discontinuous processes, CA is expected [1, 2] to become a complement to
partial differential equations (PDE). Particularly, CA may be helpful when there is
no other mathematical model of a phenomenon which is to be investigated. By now,
a great variety of CA are known, whose evolution simulates certain kinds of spatial
dynamics. The most known are CA-models of physical processes, such as diffusion
[1, 3, 4], wave propagation [5], phase transition [2, 6], spatial self-organization [7],
etc. More complicated CA called Gas–Lattice models [8, 9] are used in hydrody-
namics, some of them [10, 11] dealing with a real alphabet. In chemistry and micro-
electronics asynchronous probabilistic CA are used, being sometimes called Kinetic
Monte-Carlo methods, they are helpful for studying surface reaction on catalysts
[12, 13] and processes of epitaxial growth of crystals [14]. Biology and medicine
also present a wide field of phenomena to be simulated by CA-models, genetics
[15], myxobacteria swarming [16], growth of tumor [17] being the examples. In
solving ecological problems, CA are used more and more frequently to simulate
the propagation of diseases [18] and of fire in the forests, evolution of populations,
etc. Moreover, CA-simulation has now gone beyond the scope of scientific research,
being used, for example, to simulate the process of cement hardening [19].

Among the above CA-models there are those, which have the PDE counter-
parts [4, 8], but computer implementation (especially on multiprocessors) occurs
to be more efficient when based on CA-models, soliton propagation model [5]
being a good illustration. However, a vast majority of natural phenomena cannot
be described in continuous terms due to their inherent discreteness. For them CA
are the only possible mathematical models.

O. Bandman (B)
Supercomputer Software Department, ICM&MG,
Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
e-mail: bandman@ssd.sscc.ru

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_5,
C© Springer-Verlag Berlin Heidelberg 2010

81

82 O. Bandman

The diversity of processes being simulated by CA caused the necessity to extend
the cellular automaton concept by allowing it to have any kind of alphabet (Boolean,
integer, real, symbolic), any kind of transition functions (deterministic, probabilis-
tic), and any mode of functioning (synchronous, asynchronous). Although, two
imperative properties of classical CA are preserved:

(1) CA consists of many identical simple processing units (cells).
(2) Interactions between cells are constrained by a small (relatively to the total

amount of cells) neighborhood.

Such an extended concept of CA is sometimes referred to as fine-grained paral-
lelism [20]. A wide class of CA exhibiting the properties of self-organization and
emergency are considered also as models of complex systems [21]. Nevertheless,
hereafter the term CA or CA-model is used as the most habitual one. In Fig. 5.1,
CA-models of natural processes are collected and allocated according to their prop-
erties. It is worth noting that Cellular Neural Networks (CNN) [22] and explicit form
of discrete representation of Partial Differential Equations (PDE) are also regarded
as special cases of CA-models because two above properties are inherent in them.

A fast increase of the variety of CA-models and the growing necessity of simu-
lating complicated processes require a general formal approach to CA composition,
which is to be valid for any type of CA and any type of their interaction. It is pre-
cisely the object of the chapter, which aims to present a theoretical foundation, and
based on it, the CA composition techniques in a generalized and systematic form.
The necessity of such a techniques is motivated by the fact, that there is no formal
procedure to construct a CA-model according to a given qualitative or quantitative
specification of a space-time process. All known CA-models are the result of a
trial and error work based on high level of experience in CA modeling, as well
as a sophisticated understanding of the phenomenon to be simulated. However now,
when a bank of CA-models is relatively large and advantages of CA simulation are

Fig. 5.1 Properties of CA simulation models: lines connecting the rectangles show the sets of
properties, characterizing certain types of CA-models

5 Cellular Automata Composition 83

known, methods for combining several simple CA into a single model for simulat-
ing complicated processes seem to be essential. The problem is similar to that in
mathematical physics where a PDE is represented as a set of interacting differential
operators and functions, each having its own physical meaning. But, as distinct from
continuous mathematics, composition of interacting CA meets some essential prob-
lems. The solution of these problems should result in creating methods and tools
for organizing common work of several CA in such a way that the evolution of a
composed CA represents the required spatial process.

Complications in developing such a techniques are associated with the Boolean
alphabet, because the overall impact of several Boolean CA may not be obtained
by means of conventional arithmetical summation. Even more difficult is to com-
pose CA-models having different alphabets and/or different modes of operation
which is the case in reaction–diffusion and prey–predatory processes, where dif-
fusion is given as a Boolean CA, and reaction – as a real function. For example, the
snowflakes formation is usually simulated by a Boolean CA, while if it proceeds
in active medium, a chemical component should be added, which may be given as
a nonlinear real function. The first prototype of such a composition is proposed in
[23], where a nonlinear reaction function is combined with a Boolean diffusion.
A more general probabilistic variant is given in [24]. The latter is developed here
in appropriate techniques for performing algebraic operations on CA configurations
with all admissible numerical alphabets (Boolean, real and integer) to make compat-
ible the CA-models with different alphabets. Based on such operations a special CA
configurations algebra is constructed, which allows us to combine the functioning
of several CA-models in a single complex process [25].

To capture all features of essential diversity of CA-models, the more general for-
malism for CA-algorithms representation, namely, Parallel Substitution Algorithm
(PSA) [26], is chosen as a mathematical tool.

Recently, CA-models have aroused considerable interest in simulating the crowds
behavior [27, 28]. The paper does not deal with this class of CA, concentrating on
CA composition for simulation only natural phenomena.

The chapter combines author’s results that are scattered about the papers. It
consists of the following sections. In the next section, main concepts and formal
definitions are given in terms of PSA, and operations on cellular arrays are defined.
The third section presents a sequential composition (superposition) of CA-models
on local and global levels. In the fourth section a parallel and a mixed composition
methods are given. The fifth section concerns computational properties of composed
CA, namely, accuracy, stability and complexity. All composition methods are illus-
trated by the original simulation results.

5.2 Main Concepts and Formal Problem Statement

For simulation of spatial dynamics, an extended concept of CA-model is further
considered, whose expressive power is sufficient for simulating natural phenomena
of several kinds. The concept is based on the PSA formalism [26], which seems to

84 O. Bandman

be the most suitable for modeling composite processes, because it is provided by
an effective means (context) for interactions with external agency. Moreover, due
to its flexibility, PSA allows the strict formulation of most important requirements
imposed on CA composition techniques: (1) provision of behavioral correctness,
and (2) compatibility of several CA with different alphabets.

5.2.1 Formal Definition of a CA-model

Simulation of a natural phenomenon comprises the determination of a suitable math-
ematical model, the development of an appropriate algorithm and a computer pro-
gram, using the latter for computing desirable functions of time and space. If CA
is chosen as a mathematical model, then time is a discrete sequence of nonnegative
integers, space is a discrete set referred to as a naming set, function values are from
an appropriate alphabet.

A finite naming set M = {mk : k = 0, . . . , |M |} is further taken for the space.
Its elements mk ∈ M in simulation tasks are usually represented by the integer
vectors of coordinates of a Cartesian space of finite size. For example, in 2D case
M = {(i, j) : i = 0, 1, . . . , I, j = 0, 1, . . . , J }. A notation m is used instead of
(i, j) for making the general expressions shorter and for indicating, that it is valid
for any other kind of discrete space points.

No constraint is imposed on the alphabet A. The following cases are further used:
AS = {a, b, ..., n} – a finite set of symbols, AB = {0, 1} – the Boolean alphabet,
AR = [0, 1] – a set of real numbers in a closed continuous interval. Symbols from
the second part of the Latin alphabet {v, u, x, y, . . . , z} are used to denote the vari-
ables defined on A. Appealing to the above extended concept of alphabet is dictated
by the aim of the study: to combine several CA of different types into a single one
for simulating composite phenomena. A pair (a,m) is called a cell, a ∈ A being a
cell–state and m ∈ M – a cell–name. To indicate the state of a cell named by m both
notations u(m) and um are further used.

The set of cells

� = {(u,m) : u ∈ A,m ∈ M}, (5.1)

such that there are no cells with identical names, is called a cellular array, or, some-
times, a global configuration of a CA.

On the naming set M, a mapping φ : M → M is defined, referred to as a naming
function. It determines a neighboring cell location φ(m) of a cell named m. In the
naming set of Cartesian coordinates M = {(i, j)}, the naming functions are usually
given in the form of shifts φk = (i+a, j+b), a, b being integers. The set of naming
functions determines a template

T (m) = {φ0(m), φ1(m), . . . , φn(m)}, (5.2)

5 Cellular Automata Composition 85

which associates a number of cell names to each name m ∈ M . The cell named as
φ0(m) is called an active cell of a template, where n � |M |, and φ0(m) = m by
condition.

A subset of cells

S(m) = {(u0,m), (u1, φ1(m)), . . . , (un, φn(m))}, (5.3)

with the names from T (m) is called a local configuration, T (m) being its underlying
template . The set

US(m) = (u0, u1, . . . , un)

forms a local configuration state vector .
A cell (uk,m) changes its state uk to the next-state u′

k under the action of a local
operator, which is expressed in the form of a substitution [26] as follows

θ(m) : S(m) � S′′(m)→ S′(m), (5.4)

where

S(m) = {(v0,m), (v1, φ1(m)), . . . , (vn, φn(m))},
S′(m) = {(u′

0,m), (u′
1, φ1(m)), . . . , (u

′
n, φn(m))},

S′′(m) = {(vn+1, φn+1(m), . . . , (vn+h, φn+h(m))}. (5.5)

In (5.5) S(m), S′(m) and S′′(m) are local configurations, the first two having the
same underlying template, and the third one comprises h additional cells. The next-
states u′

k , k = 0, 1, . . . , n, of the cells from S′(m) are values of the transition
functions fk of the cell states from S(m) ∪ S′′(m), i.e.

u′
k = fk(v0, . . . , vn, . . . , vn+h), ∀k = 0, 1, . . . n. (5.6)

A union of the left-hand side local configurations S(m)∪S′′(m) in (5.4) is called a
cell–neighborhood where S′′(m) is a context, S(m) is a base of θ(m). The right-hand
side S′(m) is the next-state base of the local operator.

The underlying templates T (m), T ′(m), and T ′′(m) of the local configuration in
(5.5) are in the following relation:

T ′(m) = T (m),

T (m) ∩ T ′′(m) = ∅, (5.7)

T (m) being referred to as a basic template of θ .
A local operator θ(m) is said to be applicable to a cell named m ∈ M if S(m) ∪

S′′(m) ⊆ �. Otherwise, it is not applicable. Application of θ(m) to a certain cell

86 O. Bandman

(v,m) (a single-shot application) means execution of the following actions. For all
k = 0, . . . , n

(1) the next-states u′
k are computed according to (5.6),

(2) the cells (vk, φk(m)) ∈ S(m) are updated by replacing the cell states uk by u′
k .

The cells (vn+l , φn+l(m)), l = 0, . . . , h, from the context remain unchanged.
They play a role of an application condition, the states being used as variables in the
transition functions (Fig. 5.2).

A subset M̂ ⊆ M , referred to as the active naming set is defined, such that it com-
prises the names of active cells, i.e., the cells to which the local operator is applied.
Application of θ to all active cells m ∈ M̂ comprises an iteration performing a
global transition,

�(M̂) : �(t)→ �(t + 1), (5.8)

A sequence of global transition results

Σ(�) = (�,�(1), . . . , �(t),�(t + 1), . . . , �(t̂)) (5.9)

is called a CA evolution.
The CA evolution is the result of a simulation task, representing the process under

simulation. If the process converges to a stable global state, then CA evolution has
a termination, i.e., there exists such a t = t̂ , that

�(t̂) = �(t̂ + 1) = �(t̂ + 2) = · · · = �(t̂ + ξ), (5.10)

where ξ is an a priori given number. If it not so, then the evolution is infinite, i.e.,
exhibits an oscillatory or chaotic behavior [2].

There are different modes of ordering local operator application in space and
time to perform a global transition from �(t) to �(t + 1). The following are the
most important ones.

Synchronous mode provides for transition functions (5.6) being computed using
the current state values of all their variables, i.e.

S(m) ∪ S′′(m) ∈ �(t). (5.11)

Fig. 5.2 Graphical
representation of a local
operator

5 Cellular Automata Composition 87

The transition to the next cell–state values occurs after all the transition functions
in cells from S(m) for all m ∈ M̂ are computed. Theoretically, it may be done in
all cells simultaneously or in any order, which manifests the cellular parallelism. In
fact, when a conventional sequential computer is used, such a cellular parallelism is
imitated by delaying cell updating until all next states are obtained. So, the cellular
parallelism is a virtual parallelism, which cannot be for the benefit when CA-model
is run on conventional computers.

Asynchronous mode of operation suggests no simultaneous operations (neither
real nor virtual). Intrinsic parallelism of CA-models is exhibited by the arbitrary
order of cells to be chosen for application of θ(m), the updating of cell states of
S′(m) being done immediately after θ(m) is applied. The time of such an application
is referred to as a time-step and denoted as τ . So, each global transition �(t) →
�(t +1) consists of |M̂ | sequential time steps, forming a sequence of cellular arrays

γα(�(t)) = �(t),�(t + τ), . . . , �(t + |M̂ |τ), (5.12)

which is referred to as global state transition sequence. The important property of
asynchronous mode of operation is that the state values used by transition functions
(5.4) may belong both to �(t) and to �(t + 1), i.e.,

S(m) ∪ S′′(m) ⊂ �(t) ∪�(t + 1). (5.13)

It is the reason why two CA-models with equal 〈A, M, M̂, θ〉 starting from the same
�may have quite different evolutions when operating in different modes. Although,
some exotic “very good” CA-models are known, whose evolutions and attractors are
invariant whatever mode of operation is used [26].

Multi-stage synchronous mode is also frequently used. It is a mixed mode of
operation, which may be regarded both as a synchronised asynchronous mode, and
as an asynchronised synchronous one. The mode suggests the whole cellular array
of the CA to be partitioned into nonintersecting blocks each containing b cells. The
block partition induces a dual of partition {M ′

1, . . . , M ′
b}, whose subsets are further

called stage naming subsets . They contain representative names of all blocks (one
out of each block), so that M̂ = M ′

1 ∪ . . . ∪ M ′
b. Respectively, the iteration is

divided into b stages. At each kth stage the local operator is applied to the cells of
Mk synchronously, the stages being processed in asynchronous manner. Naturally,
cellular parallelism is here limited by the subset cardinality.

No matter what is the mode of operation, a global operator is the result of appli-
cation of θ(m) to all cells m ∈ M̂ .

From the above it follows that a CA-model, denoted as ℵ is identified by five
notions:

ℵ = 〈A, M, M̂, θ, ρ〉

where ρ indicates the mode of operation, ρ = σ stands for the synchronous mode,
ρ = β – for multistage synchronous mode, and ρ = α – for asynchronous mode

88 O. Bandman

of local operator application. When the indication of operation mode is essential,
the corresponding symbol is placed as an subindex, e.g., ℵα denotes an asyn-
chronous CA.

5.2.2 Correctness of CA Simulation Process

A CA-model ℵ = 〈A, M, M̂, θ, ρ〉 is said to be correct (in computational sense) if
its operation satisfies the following correctness conditions.

1. Non-contradictoriness. At any moment of time, a cell is allowed to be updated
by only one local operator application. Non-contradictoriness provides absence of
conflicts, which are such a situations when a local operator being applied to the cells
m and φk(m) simultaneously is attempting to update one and the same cell by writ-
ing in it different state values. Formally, non-contradictoriness sufficient condition
is formulated as follows [26]: simultaneous application of a local operator to mk and
ml is allowed only if

T ′(mk) ∩ T ′(ml) = ∅ ∀(mk,ml) ∈ M. (5.14)

It is quite clear, that the non-contradictoriness condition is always satisfied
for classical synchronous CA whose local operator has a single–cell base, i.e.,
|S′(m)| = 1. It is not so if |S′(m)| > 1, because the local operator has to change
several cells simultaneously. To avoid the above conflict situation, one has to sac-
rifice a bit of cellular parallelism to non-contradictoriness. It may be done either
by constructing an asynchronous CA, simulating the same process, or by replac-
ing the synchronous CA ℵσ = 〈A, M, M̂, θ, σ 〉 by an equivalent multi-stage CA
ℵβ = 〈A, M, M̂1, . . . , M̂b, θ, β〉. Such a sequalisation is done according to the
following algorithm.

1. The naming set M is partitioned into |M |/b blocks, a block being defined by the
underlying template B(m) = {ψ0(m), ψ1(m), . . . , ψl(m), . . . , ψb(m)} in such a
way, that

B(m j) ⊇ T ′(m j), ∀ j = 1, . . . , |M |/b.
|M|/b⋃

j=1

B(m j) = M, ∀ j = 1, . . . , |M |/b.

B(mh)
⋂

B(mg) = ∅, ∀mh,mg ∈ M̂k, ∀k = 1, . . . , b, (5.15)

where T ′(m) is the basic template in θ .
2. On the active naming set M̂ a stage partition {M̂1, . . . , M̂k, . . . , M̂b} is defined,

i.e.,

M̂k = {ψk(m j) : k = 1, . . . , b; j = 1, . . . , |M |/b.} (5.16)

m j = ψ0(m j) being the active cell of a block B(m j) ∈ M .

5 Cellular Automata Composition 89

3. Each iteration�(t)→ �(t+1) is divided into b sequential stages (t1, t2, . . . , tb),
tb = t + 1, the resulting arrays forming a sequence:

γβ(t) = �(t), . . . , �(t + tk),�(t + tk+1), . . . , �(t + 1), tk = τk

b
, (5.17)

referred to as a stage transition sequence. On the k-th stage, k = 1, . . . , b, θ(m)
is applied synchronously to all cells from M̂k .

4. The subsets M̂k , k = 1, . . . , b, are processed sequentially in arbitrary order,
hence, the total number of possible stage transition sequences is |{γβ}| = b!
The CA-model obtained by the above algorithm satisfies the non-contradictoryness

condition (5.14). Moreover, its evolution although differing from the incorrect initial
one, should simulate the wanted process. As for asynchronous CA, they always
satisfy non-contradictoriness conditions, because at each step only one application
of θ(m) is allowed.

Fairness. At each iteration, θ(m) should be applied to all cells m ∈ M̂, being
applied to each cell m ∈ M̂ only once. Fairness ensures that all cells have equal
rights to participate in the CA operation process, therefore, it is sometimes referred
to as equality in rights of cells activity [29]. Synchronous classical CA satisfy this
property according to the definition of synchronicity. When multi-stage synchronous
mode is used, fairness is provided by conditions (5.14) and (5.15). In asynchronous
CA-models the property is the consequence of binomial probability distribution of
cells chosen for local operator application.

5.2.3 Operations on Cellular Arrays

When a phenomenon under simulation consists of several interacting processes, its
CA-model should be composed of a number of CA which have to interact, executing
some operations on the intermediate results both on the local and global level. The
problem in performing such an operation emerges when it turns to be incompatible
with the alphabet of the CA-models under composition. For example, Boolean cellu-
lar arrays are incompatible with arithmetic addition. To provide such a compatibility
a number of transformations on cellular arrays should be introduced, allowing to
construct a kind of algebra on CA configurations [25]. Like in any algebraic system,
unary and binary operations are defined in this algebra.

5.2.3.1 Unary Operators on Cellular Arrays

Two unary operators are defined: (1) averaging which transforms Boolean cellular
arrays into the equivalent real ones, and (2) state discretisation which performs the
inverse operation.

Averaging of the Boolean cellular array Av(�B) is a unary global operator which
comprises the application of a local operator Av(m) to all cells of the cellular array,

90 O. Bandman

i.e., Av(�B) ∈ AR × M, where �B = {(v,m) : v ∈ {0, 1},m ∈ M} , �R =
{(u,m) : u ∈ [0, 1],m ∈ M}.

The local operator Av(m) computes the average value of a cell state in the aver-
aging area,

SAv(m) = {(u0,m), (u1, ϕ1(m)), . . . , (uq , ϕq(m))}, (5.18)

In case of 2D Cartesian cellular array, its underlying template is TAv(i, j) = {(i, j),
(i + k, j + l) : k, l = −r, . . . , r}, r being referred to as averaging radius Averaging
may be regarded as a local operator

Av(m) : (v, (i, j)) � SAv(m)→ (u,m), u(m) = 〈v〉 = 1

q

q∑

k=0

vk, (5.19)

where SAv(m) is the averaging context. Angle brackets in (5.19) and further denote
the averaged state values.

Discretisation of a real cellular array Dis(�R) is a unary global operator Dis(�R)

∈ AB × M, resulting from the application of a local operator Dis(m) to all cells of
the cellular array. Dis(m) is a single-cell local operator which replaces a real state
value u ∈ [0, 1] by 1 with probability p = u.

Dis(m) : (u,m)→ (v,m), v = Bool(u) =
{

1, if u < rand,
0 otherwise,

(5.20)

where rand is a random number in the interval [0, 1], Bool(u) means a discre-
tised value of u ∈ [0, 1]. The above two unary operations are in the following
relationship:

Dis(�B) = �B,

Av(�R) = �R,

Dis(Av(�B)) = �B,

Av(Dis(�R)) = �R .
(5.21)

5.2.3.2 Binary Operators on Cellular Arrays

Binary operators are defined on cellular arrays� ∈ AB ×M1∪ AR ×M2, if between
M1 = {(mi)1}, and M2 = {(mi)2} there exists an one-to-one correspondence ξ :
M1 → M2,

(mi)2 = ξ((mi)1), ∀(mi)2 ∈ M2,

(mi)1 = ξ−1((mi)2), ∀(mi)1 ∈ M1.
(5.22)

The cells (v, ((mi)1)) ∈ �1 and (u, ((mi)2)) ∈ �2 are further denoted as (vi ,m1)

and (ui ,m2), respectively, which means that vi and ui are states in the corresponding
cells of �1 and �2.

Binary operations are based on the following principle: ordinary arithmetic rules
should be valid for the averaged forms of the operands, i.e.,

5 Cellular Automata Composition 91

�1♦�2 ⇔ Av(�1) � Av(�2), (5.23)

where ♦ stands for cellular array addition ⊕, cellular array subtraction � or cellular
array multiplication ⊗, and � stands for arithmetical +, −, and ×, respectively.

Condition (5.23) may also be given for the cell states as follows.

vi ((mi)1)♦ui ((mi)2)⇔ 〈vi ((mi)1)〉 � 〈ui ((mi)2)〉 ∀i ∈ 1, . . . , |M |. (5.24)

The reason for taking averaged state values as a generalized alphabet is twofold:
(1) to allow ordinary arithmetics to be used for modeling spatial functions interac-
tions, and (2) to make the results more comprehensive from the physical point of
view.

From (5.23) and (5.24) it follows that when all operands have real alphabets, the
cellular array arithmetic coincides with the corresponding real cell-by-cell arith-
metical rules. Otherwise, the rules depend on the operands alphabets.

Let �1 = {(vi ,m1) : vi ∈ A1,m1 ∈ M1} and �2 = {(ui ,m2) : ui ∈ A2,m2 ∈
M2} be the operands and �3 = {(wi ,m3) : wi ∈ A3,m3 ∈ M3} be a result, then
binary operations are as follows.

Cellular array addition: �1 ⊕�2 = �3. For different alphabets of the operands
the cellular addition looks somewhat different. The following cases are of main
importance.

1. Both operands �1 and �2 are Boolean cellular arrays, and the resulting �3
should have a real alphabet. Then according to (5.23)�3 is computed as follows:

�3 = Av(�1)
⊕

Av(�2),

wi = 〈vi 〉 + 〈ui 〉 ∀i = 1 . . . , |M |.
2. Both operands are Boolean and the resulting cellular array is wanted to have

Boolean alphabet. Then

�3 = Dis(Av(�1)⊕ Av(�2)),

wi =
{

1 if rand < (〈ui 〉 + 〈vi 〉)
0 otherwise

∀i = 1, . . . , |M |. (5.25)

3. Both operands and their sum are Boolean, the latter being used as an intermediate
result. Then, it is convenient to update one of the operands, say �2, so, that it be
equal to the resulting array, i.e.,

�2(t + 1) = �1(t)⊕�2(t).

In that case it suffices to invert a number of zero-states in the cells (0,m2) ∈ �2.
It should be done in such a way, that in every cell of �2 its averaged state value
be increased by 〈vi 〉. According to (5.20) the probability of such an inversion is
the relation of the averaged amount of “ones” to be added to the averaged amount
of “zeros” in the averaging area of each cell of �2.

92 O. Bandman

u′
i =
⎧
⎨

⎩

1, if ui = 0 & rand <
〈vi 〉

1 − 〈ui 〉
ui otherwise,

∀i = 1, . . . , |M |. (5.26)

4. The operands have different alphabets. Let �1 be a Boolean cellular array, �2 –
a real one, and �3 is wanted to have the real alphabet. Then

�3 = Av(�1)⊕�2,

wi = 〈vi 〉 + ui ,
∀i = 1, . . . , |M |.

5. �1 has Boolean alphabet, �2 has a real one, and �3 is wanted to be a Boolean
cellular array. Two ways are possible: (1) to discretise �3, obtained by (5.28),
and (2) to update �1 by using the following operation

wi =
{

1 if vi = 0 & rand <
ui

1 − 〈vi 〉 ,
vi otherwise,

∀i = 1, . . . , |M |. (5.27)

Cellular array subtraction �3 = �1 � �2. The following cases are of main
importance.

1. Both operands are Boolean, the result is wanted to be real or Boolean. The oper-
ations are similar to those of the cellular addition. It is merely needed to replace
“+” by “−” in (5.25) or (5.26).

2. Both operands are Boolean, and �2 is to be updated to obtain �2 = �1 � �2.
In that case some cell states (1,m2) ∈ �2 should be inverted with probability
equal to the relation of the amount of “ones” to be removed, to the total amount
of “ones” in the averaging area.

u′
i =
⎧
⎨

⎩

0 if ui = 1 & rand <
〈ui 〉
〈vi 〉

ui otherwise
∀i = 1, . . . , |M |. (5.28)

3. �1 has Boolean alphabet, �2 has a real one, and �3 is wanted to be a Boolean
cellular array. Two ways are possible: (1) to discretise�3, obtained by arithmetic
subtraction, i.e.,

�3 = Dis(Av(�1)−�2), (5.29)

or (2) to update �1 as follows

v′i =
{

0 if ui = 1 & rand <
ui

〈vi 〉
ui otherwise,

∀i = 1, . . . , |M |. (5.30)

Cellular array multiplication�3 = �1⊗�2. The operation is defined on real cel-
lular arrays. The cell states are computed according (5.25) with “×” instead of “+”.
If any or both of the operands are Boolean, they should be averaged beforehand. The

5 Cellular Automata Composition 93

operation is used in those cases when one of the two operands is a constant cellular
array, i.e., such one where all cell states have the same value. This is helpful when
subsets of cells have to be masked or scaled.

Since addition and subtraction are defined on cellular arrays with the alphabet
restricted by the interval [0,1], the same condition should be satisfied for all cells in
the resulting cellular arrays. If it is not so, the alphabet is to be renormalised.

Having the set of operation on cellular arrays in hands, it is possible to formulate
CA composition techniques. General composition principles prescribe to distinguish
sequential, parallel, and intermixed cases. Sequential composition represents several
CA processing one and the same cellular array by alternating their application at
each iteration. Parallel composition suggests each CA to process its own cellular
array, albeit having neighborhoods in the others.

5.3 The Sequential Composition Techniques

Sequential composition, further referred to as superposition, represents a common
functioning of several CA, referred to as components. Their local operators are
applied in a certain order to one and the same cellular array. It comprises a number
of techniques differing in ordering component operators application forming two
groups: global and local superposition techniques.

Global superposition suggests the synchronous alternation of global operators
application to the component CA. When those operators use different alphabets,
their compatibility should be provided by transforming a Boolean cellular array into
a real one or vice versa. Apart of the general case of global superposition, two par-
ticular cases are distinguished: (1) self-superposition, which is in fact a multistage
mode of a CA operation, and (2) a so-called trivial CA superposition [20].

Local superposition is the composition when at each iteration the local opera-
tors of all components involved in the composition, are applied in any order or in
random. Naturally, the components should be asynchronous CA.

5.3.1 Global Superposition

A number of CA form a global superposition ℵ = �Gl(ℵ1, . . . ,ℵn), ℵ = 〈Ak, M,

M̂k, θk, ρk〉, if its global operator �(�) is the result of sequential application of the
global operators �k to �k = �k−1(�k−1), k = 1, . . . , n, providing compatibility
of Ak and Ak−1, i.e.,

�(�) = �′
n(�

′
n−1(. . . �

′
1(�1))), (5.31)

each �′
k being itself a superposition of �k and a unary operator, i.e.,

�′
k = �k(Un(�k)), (5.32)

94 O. Bandman

where

Un(�k) =
{

Av(�k), if Ak = [0, 1] & Ak−1 = {0, 1},
Dis(�k), if Ak = {0, 1} & Ak−1 = [0, 1].

Components of the superposition may differ in alphabets, local operators and modes
of operating, but the same naming set should be used.

The following particular cases of global superposition are of especial importance:
self-superposition, trivial superposition, and the general type of superposition of CA
with different types of alphabets.

5.3.1.1 Global Self-Superposition

This type of composition is the most simple one, being defined only for synchronous
CA. A CA ℵ = 〈A, M, M̂, θ, σ 〉 is a self-superposition ℵ = �SS(ℵ1, . . . ,ℵn),
ℵk = 〈A, M, M̂k, θ, σ 〉, if its components differ only in active subsets M̂k . Since
the same local operator is applied at all stages of the superposition, there is no need
to take care about their compatibility, so, �(�) = �n(�n−1(. . . (�1(�)))).

Self-superposition is usually obtained by modifying a synchronous CA-model of
a process which requires several neighboring cells to be updated at once. In that case
non-contradictoryness condition (5.14) may be violated, hence, conflicts and data
loss are possible. To avoid such a situations some amount of cellular parallelism
should be sacrificed by performing the global transition in several stages. It is done
as follows.

1. Each t th iteration is divided into n stages t1(t), . . . , tn(t), the results of kth stage
being �(tk).

2. At the tk(t)th stage, θ(m) is applied to all cells named mk ∈ M̂k of �(tk(t)).

Example 1 Diffusion is a random wandering of particles aiming to even distribution.
The process may be simulated by the exchange of cell states in any pair of adjacent
cells. Since synchronous simulation of such a process is contradictory, as it is shown
in Sect. 5.2.2, self–superposition of two CA [1, 3, 4]: ℵ1 = 〈A, M, M̂1, θ, σ 〉
and ℵ2 = 〈A, M, M̂2, θ, σ 〉, is used, where A = {0, 1}, M = {(i, j) : i, j =
0, 1, . . . , N },

M̂1 = {(i, j) : imod2 = 0, jmod2 = 0},
M̂2 = {(i, j) : imod2 = 1, jmod2 = 1}, (5.33)

M̂1 and M̂2 being referred to as even active subset and odd active subset, respec-
tively. The local operator is as follows:

θ(i, j) : {(v0, (i, j)), (v1, (i, j + 1)), (v2, (i, j + 1)), (v3, (i, j + 1))} (5.34)

→ {(u0, (i, j)), (u1, (i, j + 1)), (u2, (i, j + 1)), (u3, (i, j + 1))},

5 Cellular Automata Composition 95

t = 0 t = 4 t = 8

Fig. 5.3 Three snapshots of diffusion process, simulated by the CA-model with a local operator
(5.34). Black pixels stand for 〈v〉 = 1, white pixels – for 〈u〉 = 0

uk =
{
v(k+1)(mod4) if rand < p,
v(k−1)(mod4) if rand > (1 − p),

k = 0, 1, 2, 3,

the probability p depending on the diffusion coefficient.
Each iteration of a composed CA is divided into two stages: even stage and odd

stage. At the odd stage θ(m) is applied to all cells from M̂1, at the even stage θ(m)
is applied to all cells from M̂2.

In Fig. 5.3 three snapshots are shown of the CA evolution simulating the diffusion
of a black dye slopped onto the water surface.

5.3.1.2 Global Trivial Superposition

Trivial superposition ℵ = �T r (ℵ1, . . . ,ℵn), where ℵk = 〈Ak, M, M̂k, θk, ρk〉, sug-
gests the evolution of ℵ be a sequential composition of the evolutions �ℵk (�

′
k(t̂k))

of its components, �′
k(t̂k) being a result of a unary operator (5.34) application to

�k(t̂k), if Ak and Ak+1 are incompatible. The alphabets, local operators, modes of
operation, and active naming subsets in the components may be different. But the
order of component application is essential.

Example 2 Pattern formation process starts in the cellular array which has been
obtained by a short-time application of a diffusion CA to a cellular array with two
areas of high concentration (black bands along vertical borders) and empty (white)
background (Fig. 5.4a). Diffusion is simulated by an asynchronous probabilistic
CA, called in [1] a naive diffusion ℵ1 = 〈A, M, M̂, θ1, α〉. Pattern formation is
simulated by synchronous CA ℵ2 = 〈A, M, M̂, θ2, σ 〉. Both CA have a Boolean
alphabet A = {0, 1}, their naming sets are identical as well as active naming subsets,
M = M̂ = {(i, j) : i, j = 0, . . . , 300}. The local operators θ1(m) and θ2(m) are as
follows:

θ1(m) : {(v0, (i, j)), (v1, (i−1, j)), (v2, (i, j+1)), (v3, (i+1, j)), (v4, (i−1, j))}→
{(u0, (i, j)), (u1, (i−1, j)), (u2, (i, j+1)), (u3, (i+1, j)), (u4, (i−1, j))}

(5.35)

96 O. Bandman

a) b) c)

Fig. 5.4 Three snapshots of the process, simulated by trivial superposition of an asynchronous
diffusion CA and a synchronous pattern formation CA: (a) initial array, (b) t̂1 = 10, (c) t̂2 = 12

with the transition functions

u0 = vk, if 0.25k < rand < 0.25(k + 1),

uk =
{
v0 if 0.25k < rand < 0.25(k + 1),
vk otherwise.

k = 1, . . . , 4. (5.36)

θ2(m) : (u0, (i, j)) � {(ugh, φgh(i, j)) : g, h = −3,−2,−1, 1, 2, 3} → (v0, (i, j)),
(5.37)

has a transition function

v0 =
{

1, if Sw > 0,
0, otherwise,

(5.38)

where the weighted sum

Sw =
3∑

g=−3

3∑

h=−3

(wgh · v(i+g, j+h)) with wgh =
{

1, if g ≤ 1 & h ≤ 1
−0.2, otherwise.

In Fig. 5.4 three snapshots of trivial composition of two CA (ℵ1 simulating diffusion
and ℵ2 simulating pattern formation) are shown. Cellular array size is 300 × 300,
t̂1 = 10, t̂2 = 12. The obtained pattern is a stable one, further application of θ2 to
�2(t̂2) implies no change in it.

5.3.1.3 Global Superposition of Arbitrary CA

Global superposition of arbitrary CA is a technique for obtaining a CA ℵGl = �Gl

(ℵ1, . . . ,ℵn), which combines operation of several CA ℵk = 〈Ak, M, M̂k, θk, ρ〉,
k = 1, .., n, whose alphabets and local operators are allowed to be incompatible,
and modes of operation may be different. The operation of the composed CA is as
follows.

5 Cellular Automata Composition 97

1. Each t th iteration of the composed CA consists of n stages t1(t), . . . , tn(t), the
results of tk th stage being �(tk(t)) = �k−1(tk−1(t)).

2. At the tk(t)th stage θk is applied to all cells m ∈ M̂k of �′(tk(t)). The latter
should be obtained by transforming �(tk(t)) according to (5.34), if needed.

Example 3 Simulation of the alga spreading over the water is considered to com-
bine three elementary processes: (1) agglomeration of randomly distributed alga,
(2) diffusion of alga into water, and (3) procreation of alga.

The first process is represented by a Boolean CA ℵ1 sometimes called a phase-
separation CA [20, 30], the second – by the two-stage diffusion CA ℵ2 given in
Sect. 5.3.1(Example 1), the third – by ℵ3 computing a nonlinear logistic function
[31]. Accordingly, each t th iteration of the composed CA has three stages. At the
first stage t1, the transition �(t)→ �(t1) is performed by a synchronous CA ℵ1 =
〈A1, M, M̂1, θ1, σ 〉 with A1 = {0, 1}, M = {(i, j) : i, j = 0, . . . , N }, M̂ = M , and
a single-cell updating local operator

θ1(i, j)) : (v, (i, j)) � S′′(i, j)→ {(v′, (i, j))} ∀(i, j) ∈ M, (5.39)

where

S′′(i, j) = {(vk, φk(i, j)) : φk(i, j) = (i + g, j + h)},
g, h ∈ {−3,−2,−1, 1, 2, 3},

v′ =
{

1, if s < 24 or s = 25,
0, if s > 25 or s = 24.

where s =
2∑

g=−2

2∑

h=−2

vi+g, j+h .

At the second stage ℵ2 given in Sect. 5.3.1(Example 1) performs a transition
�(t1) → �(t2) by application θ2 (5.36) to all cells of �(t1)), the value of the
probability in (5.36) being p = 0.5. As the alphabet A2 is compatible with A1, θ2 is
applied directly to the cells of �1 resulting in a Boolean array �(t2) = {(u, (i, j))}.

At the third stage alga procreation CA ℵ3 = 〈A3, M, M̂k, θ3, σ 〉 is applied to
�(t2). But since A3 = [0, 1] and, hence, θ3 is incompatible with �2, the latter is
transformed into �(t2)′ by averaging, i.e. the operator Av(i, j) is applied to �(t2)
replacing each cell state u(i, j) by 〈u(i, j)〉. The latter is computed according to
(5.19) with the averaging template TAv(i, j) = {(i + k, j + l) : k, l = −8, . . . , 8}.
The local operator

θ3(i, j) : (〈u(i, j)〉, (i, j))→ (F(〈u(i, j)〉), (i, j)) (5.40)

is applied to�(t2)′ replacing a cell state 〈u(i, j)〉 by the value of a nonlinear logistic
function F(〈u(i, j)〉) = 0.5〈u(i, j)〉(1−〈u(i, j)〉). The resulting cellular array hav-
ing real states should be discretized according to (20) to obtain �(t3)′ = �(t + 1).

The composition has been applied to an initial Boolean cellular array �(0) with
v = 1 randomly distributed with probability p = 0.5, so that 〈v(i, j)〉 ≈ 0.5 for all
(i, j) ∈ M , the border conditions being periodic.

98 O. Bandman

t = 5 t = 25 t = 70

Fig. 5.5 Three snapshots of alga spreading in water, simulated by synchronous global superposi-
tion of ℵ1 with θ1 (5.39), ℵ2 with θ2 (5.34) and ℵ3 with θ3 (5.40). Black pixels stand for maximal
concentration of alga, white pixels – for clear water

In Fig. 5.5, three snapshots of the simulation process are shown, cellular arrays
being averaged for making the observation more comprehensive. Black pixels stand
for maximum concentration of alga, white ones represent clear water. It is seen that
on the first iterations, the total amount of alga decreases, but if some compact spots
remain large enough, the procreation activeness enhances their growth up to the
saturation.

5.3.2 Local Superposition

Asynchronous local superposition is mainly used in simulating biological pro-
cesses and nano-kinetics, i.e., the processes on micro- or nano-levels, which are
considered to be completely stochastic by nature [13]. This technique aims at
obtaining a CA-model ℵ = �Loc(ℵ1, . . . ,ℵn} composed of n asynchronous CA
ℵk = 〈A, M, M̂k, θk, α〉, k = 1, . . . , n, which differ only in local operators and
(perhaps) in active subsets. The way of their common functioning is as follows. An
iteration �(t) → �(t + 1) consists of |M | cycles, a cycle being a sequence of
single-shot applications of θk(m), k = 1, . . . , n, to a randomly chosen cell from
�(t). Each θk(m) is executed immediately after the application. There is no con-
straints neither on the order of choosing a cell during an iteration, nor on the order
of choosing θk(m) for application during a cycle.

Example 4 A chemical reaction of CO oxidation over platinum catalysts, well
known in surface chemistry as Ziff-Guilari-Barshod model [32], is represented by a
local superposition of four simple local operators, mimicking elementary actions of
adsorption, reaction, oxidation, and diffusion. The cellular array � corresponds to a
catalysts plate, each site on it being named as (i, j) ∈ M , |M | = N × N , M̂ = M .
The alphabet contains three symbols A = {a, b, 0}, so that (a, (i, j)), (b, (i, j)),
and (0, (i, j)) are cells corresponding to the sites occupied by the molecules of CO,
O, or being empty, respectively. In the initial array, all cells are empty. The CO
oxidation process consists of the following four elementary molecular actions in
any cell named (i, j) (Fig. 5.6).

5 Cellular Automata Composition 99

Fig. 5.6 Graphical representation of local operators involved in an asynchronous local superposi-
tion simulating chemical oxidation of CO on platinum

(1) Adsorption of CO from the gas: if the cell (i, j) is empty, it becomes occupied
by a CO molecule with probability p1.

(2) Adsorption of the oxygen O2 from the gas: if the cell (i, j) is empty and has an
empty adjacent cell, both become occupied by an atom of oxygen with prob-
ability p2. One out of h < 4 adjacent cells of the cell (i, j) is chosen with
probability pn = 1/h.

(3) Reaction of oxidation of CO (CO+O → CO2): if the cell (i, j) occurs to be in
a CO state and its adjacent cell is in O state, then the molecule CO2, formed by
the reaction, transits to the gas and both cells become empty. One out of h < 4
adjacent cells occupied by oxygen is chosen with probability pn = 1/h.

(4) Diffusion of CO over the plate: if the cell (i, j) occurs to be in a CO state
when one of its adjacent cells is empty, the cell (i, j) becomes empty, and the
empty cell gets the state CO. This occurs with probability p3. One out of h < 4
adjacent cells of the cell (i, j) is chosen with probability pn = 1/h.

Formally, local operators of the above actions are represented as follows.

θ1(i, j) : {(0, (i, j))} → {(a, (i, j))}, if p1 > rand,
θ2(i, j) : {(0, (i, j))(0, φk(i, j))} → {(b, (i, j)), (b, φk(i, j))},

if (k − 1)pn < rand < kpn & p2 > rand
θ3(i, j) : {(a, (i, j))(b, φk(i, j))} → {(0, (i, j)), (0, φk(i, j))},

if (k − 1)pn < rand < kpn

θ4(i, j) : {(a, (i, j))(0, φk(i, j))} → {(0, (i, j)), (a, φk(i, j))},
if (k − 1)pn < rand < kpn) & p3 > rand,

for k = 1, . . . , 4.
In Fig. 5.7 three snapshots of the simulation process are shown, the initial cellular

array �(0) = {(0, (i, j)) : ∀(i, j) ∈ M}, |M | = 200 × 200.
In the general case local superposition is not a commutative operation, i.e., if

θ1 = θ2, then

θ1(θ2(m)) = θ2(θ1(m)). (5.41)

100 O. Bandman

t = 2 t = 40 t = 80

Fig. 5.7 Three snapshots of the oxidation reaction simulation by an asynchronous superposition of
local operators shown in Fig. 5.6. Black pixels stand for CO, gray pixels – for O, and white pixels –
for empty sites

The above property is very important, because the results of the simulation may
differ essentially if the order of superpositions is changed. Although in case of
long evolution, the repetitive sequence of superpositions, for example, such as
θ1(θ2(θ1(θ2(m) . . .))), makes the composition insensitive of the substitution being
the first. If it is not the case, the only way to make the result independent of the order
of substitutions in the composition is their random choice at any step of application
(the Monte-Carlo method).

5.4 The Parallel Composition Techniques

Parallel composition suggests functioning of n interacting CA, each processing its
own cellular array. Taking into account that the number of possible interactions in
the composition exponentially increases with n, and for clearness of presentation,
the composition ℵ = ϒ(ℵ1,ℵ2) of not more than two CA is further considered.
The components ℵk = 〈Ak, Mk, M̂k, θk, ρk〉, k = 1, 2, are allowed to have differ-
ent alphabets, different modes of operation, different local operators, and between
M1 = {(mi)1}, and M2 = {(mi)2}, i = 1, 2 . . . , |M |, the condition (5.22) is satis-
fied.

Since θ1((m)1) and θ2((m)2) are to be executed simultaneously, the computation
is dangerous from the point of view of non-contradictoryness condition (5.14), and
at the same time the transition function in θ1((m)1) and θ2((m)2) should interact.
Hence, with respect to (5.11) and (5.13), the left-hand sides of the operators should
have nonempty intersection, i.e.

(S1((mi)1) ∪ S′′
1 ((mi)1)) ∩ (S2((mi)2) ∪ S′′

2 ((mi)2)) = ∅.

Combining this statement with (5.14) the correctness condition yields:

Tk((mi)k) ⊆ Mk, (5.42)

T ′′
k ((mi)k) ⊆ (M1 ∪ M2) ∀k ∈ {1, 2}. (5.43)

5 Cellular Automata Composition 101

From (5.45) it follows that θ1((mi)1) and θ2((mi)2)may update cells only from their
own cellular arrays, whereas from (5.46) they are allowed to use cell states of the
both. It means, that the neighborhoods of cells (mi)1 and (mi)2, may intersect only
by their contexts.

The above conditions are valid both for local and global composition techniques,
as well as both for CA with synchronous and asynchronous modes of operation.

5.4.1 Global Parallel Composition

5.4.1.1 Trivial Parallel Composition

Trivial parallel composition ℵ = ϒT r (ℵ1,ℵ2), ℵk = 〈Ak, Mk, M̂k, θk, ρk〉, k =
1, 2, is a degenerate particular case of parallel composition, when the components
are completely independent, i.e.,

(S1((mi)1) ∪ S′′
1 ((mi)1)) ∩ (S2((mi)2) ∪ S′′

2 ((mi)2)) = ∅. (5.44)

Nonetheless, after both components have terminated, a binary operation on the
resulting cellular arrays may be performed. So,

�(t̂) = �1(t̂1) ♦ �2(t̂2), (5.45)

where ♦ is any binary operator given in Sect. 5.2.3.2.

Example 5 Two phase separation models are to be compared by computing the dif-
ference of two resulting cellular arrays:

(1) �1(t̂1) obtained by the evolution of a totalistic CA ℵ1 = 〈A1, M1, M̂1, σ 〉,
which is described in Sect. 5.3.1(Example 1) with θ1(i, j), given as (5.41), and

(2) �2(t̂2) obtained by solving a PDE proposed in [33] which describes the same
process,

ut ′ = 0.2(uxx + uyy − 0.2(u − 1)(u − 0.5)(u − 0.9). (5.46)

Let us consider the finite-difference representation of (5.49) as a synchronous
CA ℵ2 = 〈A2, M2, M̂2, θ2, σ 〉, where A2 = [0, 1], M2 = M̂2 = {(i, j)2 : i =
x/h; j = y/h; i, j = 0, . . . , N }, h being a space step, t = t ′/(�t),

θ2(i, j) : (u0, (i, j)2) � {(u1, (i − 1, j)2), (u2, (i, j + 1)2), (u3, (i + 1, j)2),
(u4, i, j − 1)2)} → (u′

0, (i, j)2),
u′

0 = (u1 + u2 + u3 + u4 − 4u0)/h2.

(5.47)

The initial cellular arrays �1(0) and �2(0) for ℵ1 and ℵ2 are identical, so that
〈v(i, j)1〉 = u(i, j)2 = 0.5 for all (i, j)1 ∈ M1 and all (i, j)2 ∈ M2.

102 O. Bandman

a b c

Fig. 5.8 Three snapshots of parallel trivial composition of two CA simulating phase separation:
(a) resulting cellular array obtained by a totalistic CA (5.39), (b) resulting cellular array obtained
by a CA based on PDE (5.46), and (c) their difference. Black pixels stand for 1, white for 0, gray
scale intensity corresponds to values from [0, 1]

The comparison of the results of both components evolutions �1(t̂1) and �2(t̂2),
is done by computing the absolute value of their cellular arrays subtraction
(Sect. 5.2.3). Since �1(t̂1) and �2(t̂2) are incompatible the first is to be averaged
according to (5.19). The final result is obtained as �′

2(t̂) = {(u′
2, (i, j)2)}, where

u′
2((i, j)2) = |〈v1((i, j)1)〉 − u((i, j)2)|. (5.48)

The three resulting cellular arrays: �1(t̂1), �2(t̂2), and �′
2(t̂) are shown in Fig. 5.8.

5.4.1.2 Nontrivial Parallel Composition

Nontrivial parallel composition ℵ = �(ℵ1,ℵ2) suggests that both components ℵ1
and ℵ2 interact at each iteration. Two types of interaction between them determine
two types of parallel composition techniques: unidirectional parallel composition
and bidirectional parallel composition [20].

In unidirectional parallel composition, one of the components, say ℵ1, functions
independently. But, the transition functions of ℵ2 depend on states of both cellular
arrays. Hence, condition (5.43) takes the following form.

T ′′
1 ((mi)1) ⊆ M1, ∀(mi)1 ∈ M1, (5.49)

T ′′
2 ((mi)2) ⊆ (M1 ∪ M2) ∀(mi)2 ∈ M2. (5.50)

Such a kind of composition is frequently used when simulating a certain process
by ℵ1, and using auxiliary CA ℵ2 for transforming simulation results of ℵ1 into a
proper form for analyzing or visualizing its evolution. For example, ℵ1 is a Boolean
CA, and observation of its evolution requires it to be real numbers. Then, ℵ1 works
independently, and ℵ2 performs the averaging of �1(t) at each iteration using cell
states of �1 in its transition functions.

In bidirectional parallel composition transition functions of both components
depend on states of cells from both cellular arrays, i.e.

5 Cellular Automata Composition 103

T ′′
1 ((mi)1) ⊆ (M1 ∪ M2) ∀(mi)1 ∈ M1,

T ′′
2 ((mi)2) ⊆ (M1 ∪ M2) ∀(mi)2 ∈ M2, (5.51)

(5.42) being preserved as well. If the alphabets of ℵ1 and ℵ2 are incompatible, then a
suitable unary transformations of�1(t) or�2(t) should be done after each iteration.

Example 6 A 2D reaction–diffusion process of autocatalytic reaction propagation
in a domain with obstacles is simulated by bidirectional parallel composition of
two CA: (1) a two-stage synchronous diffusion CA ℵ1 = 〈A1, M1, M̂1, θ1, σ 〉
given in Sect. 5.3.1(Example 1), and (2) a single cell synchronous CA ℵ2 =
〈A2, M2, M̂2, θ2, σ 〉 which computes a real nonlinear function of the cell state.

Since A1 and A2 are incompatible, unary operators Dis(i, j) and Av(i, j) should
be added, which is done by means of incorporating them into the local operators
θ1((i, j)1) and θ2((i, j)2), respectively. In θ1((i, j)1) the operator Dis(u(i, j)1) is
included in the transition function as follows:

θ1((i, j)1) : {(v0, (i, j)1), (v1, (i, j + 1)1), (v2, (i + 1, j)1), (v3, (i, j − 1)1)}
� {(u0, (i, j)2), (u1, (i, j + 1)2), (u2, (i + 1, j)2), (u3, (i, j − 1)2)}

→ {(v′0, (i, j)1), (v′1, (i, j + 1)1), (v′2, (i + 1, j)1), (v′3, (i, j − 1)1)},
v′k =

{
Bool(u(k+1)mod4) if rand < p,
Bool(u(k−1)mod4) if rand > (1 − p),

(5.52)

The local operator θ2((i, j)2) is combined with Av((i, j)1) which results in the
following.

θ2((i, j)2) : (u, (i, j)2) � {SAv((i, j)1)} → f (〈v((i, j)1)〉, (i, j)2), (5.53)

f (〈v((i, j)1)〉) = 0.5〈v((i, j)1)〉(1 − 〈v((i, j)1)〉),

〈v((i, j)1)〉 being obtained according to (5.19).
The process is simulated on a square area 300 × 300 cells with a number of

rectangular obstacles (Fig. 5.9).

5.4.2 Local Parallel Composition

Like in sequential case this type of composition aims at obtaining an asynchronous
CA-model ℵα = ϒLoc(ℵ1,ℵ2) composed of two asynchronous CA ℵk = {Ak, Mk,

M̂k, θk, α}, k = 1, 2. The components may differ in alphabets and in local operators,
naming sets M1 and M2 being in the relation (5.22). The way of the composed
CA functioning is as follows. Both components operate in parallel in asynchronous
mode: at each t th iteration the local operator θk(m) is applied to all cells of M̂k , the
cells being selected in any order and updated immediately after selection.

104 O. Bandman

t = 0 t = 10 t = 26

t = 40 t = 55 t = 75

Fig. 5.9 Six snapshots of ℵ2 evolution of a parallel bidirectional composition simulating the front
propagation of autocatalytic reaction. Black pixels stand for obstacles, grey pixels – for maximal
concentration of the reactant, white – for reactant absence

Example 7 A soliton-like 1D process is simulated by a parity totalistic CA [5]
ℵ1 = {A1, M1, M̂1, θ1, α}. Since A1 is a Boolean alphabet the process is difficult to
recognize as two moving waves passing one through the other. So, to make the
process observable in a habitual form, ℵ1 is combined with another CA ℵ2 =
{A2, M2, M̂2, θ2, α} which performs averaging of any cell state in �1 just after its
updating. The naming sets M1 = M̂1 = {i1 : i = 0, . . . , N }, and M2 = M̂2 = {i2 :
i = 0, . . . , N }, are in one-to one correspondence (5.22).

θ1(i1) : (v0, i1) � {(v j , i1 + j) : j = −r, . . . ,−1, 1, . . . , r} → (v′0, i1), (5.54)

v′0(i1) =
{

1, if w = 0 & w = 0mod2
0, otherwise,

, w =
r∑

j=−r

v j . (5.55)

The mode of ℵ1 operation is an ordered asynchronous one: θ1(i1) is applied sequen-
tially according to the cell numbers i1 = 0, 1, . . . N , each cell (v, i1) being imme-
diately updated, so, that the cell states situated leftwards of i1, are already in the
next state, while the rightward cells are yet in the current state. Border conditions
are periodic. The initial global cellular state �1(0) has certain patterns referred
to as “particles” [5]. Here, the two following particles are used: P1 = 1101, and
P2 = 10001001 with r = 4. All others cells are in zero states. The evolution of ℵ1
shows that P1 appears in �1(t) any 2 iterations being displaced by d1 = 7 cells to
the left. And P2 appears in �1(t) any 6 iteration being displaced by d2 = 12 cells
also to the left. So, each 6 iterations the distance between the particles diminishes
by 9 cells. After the start (t = 0) during the period from t = 12 till t = 24 the
particles are superimposed, and after t = 30 the first particle is ahead, as it is shown
in the following global states.

5 Cellular Automata Composition 105

t = 5 t = 25 t = 70

Fig. 5.10 Three snapshots of the soliton propagation obtained by simulating the process using
local parallel composition of two CA with local operators given by (5.54) and (5.55)

t = 0 : 0000 . . . 000000000000010001001000000000000000000000001101100
t = 6 : 0000 . . . 001000100100000000000000110110000000000000000000000
t = 30 : 000000000000000000000001101100001000100100 . . . 0000000000000
t = 36 : 001101100000000000000001000100100000 . . . 0000000000000000000

The second CA ℵ2 performs an asynchronous averaging of �1, in order to trans-
form patterns displacement into waves propagation. The steps of ℵ2 are synchro-
nized with those of ℵ1 and the order of cell selection is the same (Fig. 5.10).

θ2(i2) : (v0, i2) � {(v j , i1 + j) : j = −r, . . . ,−1, 1, . . . , r} → (〈v0〉, i2), (5.56)

〈v0〉 = 1

(2r + 1)

r∑

j=−r

v j .

5.4.3 Mixed Composition

In practice, complex phenomena simulation requires a number of CA-models to be
included in a composition forming a complicated scheme of different composition
techniques. The main principle for constructing such a mixed composition is that
any component may be itself a composed CA. Hence, mixed composition is a hier-
archical structure, any level of hierarchy being a composed CA.

Example 8 A simplified process of vapor nucleation in binary system (vapor, gas–
carrier) is simulated using a mixed CA composition. The process has been studied
in a number of investigations on self-organizing reaction–diffusion systems. For
example, in [34] an attempt is made to solve the PDE system which describes the
process as follows.

vt = 0.025(vxx + vyy)+ 0.2v − v3 − 1.5u,

ut = 0.0025(vxx + vyy)+ v − u. (5.57)

Since two species are involved in the process, a bidirectional parallel compo-
sition should be used. The resulting CA ℵ = ϒ(ℵ1,ℵ2) has two components,

106 O. Bandman

each simulating a reaction–diffusion process in �1 = {(v, (i j)1)} (vapor) and in
�2 = {(u, (i j)2)} (gas), respectively. Each component ℵk = �Gl(ℵDk,ℵRk), in its
turn, is a sequential composition of ℵDk = 〈AD, Mk, M̂k, θDk, β〉 which represents
the diffusion, and ℵRk = 〈AR, Mk, M̂k, θRk, σ 〉, which represents the reaction. The
two diffusion CA, ℵD1 and ℵD2, operate each in its own cellular array indepen-
dently. Their results are used by the reaction CA ℵR1 or ℵR2, which are in the
bidirectional parallel composition with each other. Since the alphabets AD and AR

are incompatible, the diffusion global operator result �Dk(�Dk (t)) is averaged, and
that of the reaction �Rk(�Rk (t)) is discretized, which yields the following superpo-
sition of global operations.

�k(�k(t)) = Dis(�Rk(Av(�Dk(�k(t − 1))))), k = 1, 2. (5.58)

Diffusion is simulated by the two-stage synchronous CA given in Sect. 5.3.1
(Example 1) with θDk(i j)1 given as (5.34). The difference between ℵD1 and ℵD2
is in the values of probabilities used in the transition function. They are: pv = 0.5,
pu = 0.05, which corresponds to the diffusion coefficients in (5.57), provided the
time step �t = 0.6 s and space step h = 0.1 cm.

Reaction is simulated by a single cell context-free CA with the following local
operators.

θR1(i, j)1) : (〈v〉, (i, j)1)→ (fv(〈v((i, j)1)〉, 〈u((i, j)2)〉), (i, j)1),

θR2(i, j)2) : (〈u〉, (i, j)2)→ (fu(〈v((i, j)1)〉, 〈u((i, j)2)〉), (i, j)2), (5.59)

where

fv = 0.2〈v((i, j)1)〉 − 〈v((i, j)1)〉3 − 1.5〈u(i, j)2)〉,
fu = 〈v((i, j)1)〉 − 〈u((i, j)2)〉,

The size of both cellular arrays is 300 × 300 cells with periodic border conditions.
The initial conditions are Boolean cellular arrays with the following evenly dis-
tributed concentrations of vapor and gas: 〈v(i, j)1〉 = 0.1, 〈v(i, j)2〉 = 0.9.

Ω1 (0) Ω1 (12) Ω1 (40)

Fig. 5.11 Three snapshots of vapor nucleation process obtained by simulating it as a parallel com-
position of two superpositions or diffusion and reaction. Black pixels stand for vapor particles

5 Cellular Automata Composition 107

The evolutions of ℵ1 and ℵ2 show the processes of vapor and gas space-time dis-
tribution, respectively. In Fig. 5.11 three snapshots are shown for vapor nucleation
process. Emergency of small vapor bubbles from a fog is observed. The bubbles
grow in size exhibiting oscillations of vapor density inside them.

5.5 Computational Properties of Composed CA

In real simulation tasks when dealing with large CA size and large amount of iter-
ations, the computational properties, such as accuracy, stability, and complexity are
of main importance. Hence, the impact of above composition techniques on these
properties should be assessed. As for the accuracy, the study of this property is
focused on the procedures which are beyond the conventional cellular automata
theory, namely, cellular array transformations for providing compatibility, since it
is precisely these operations that may contribute some errors. Stability assessment
of the composition directly depends on the stability of its components, which may
exhibit different kind of behavior [2], their evolutions tending to a stable state or
never reaching it, or being chaotic. So, the attention is focused on stability con-
servation, provided the components of CA composition are stable. The property
of complexity is concerned with the additional operations inserted for eliminating
incompatibility between the interacting components.

It should be noticed that contemporary mathematics has no well-established con-
cepts of CA computational properties, as well as no methods for their quantitative
assessment. So, the subsections below may be regarded as some considerations for
the problem, indicating the points for further investigation.

5.5.1 Accuracy of the Composed CA

One of Boolean CA advantages is that they are absolutely accurate from the compu-
tational standpoint, i.e. no errors are incorporated by rounding off. But, once averag-
ing Av(�) or discretisation Dis(�) is used and, hence, real numbers are processed,
the errors may be brought in.

In trivial compositions, both sequential and parallel ones, the two above opera-
tions are performed only once at the start and at the end of the simulation process,
bringing in inessential approximation error. But in nontrivial compositions, when
Av(�) and Dis(�) are used at each iteration, their impact on the result may be
significant. So, just this pair of operations are further considered from the point of
view of the accuracy problem.

Let �B be the t th iteration result of a composed CA, and �R = Av(�B) should
be obtained to make next operation compatible. Then according to (5.19) Boolean
states (v,m) ∈ �B are replaced by real ones from the finite set of numbers Q =
{0, 1/q, . . . , 1} , where q = |Av(m)|. Hence, the error EAv(m) incorporated by
approximating a Boolean representation of a spatial function by discrete values from
a finite set Q is constrained by

108 O. Bandman

EAv ≤ 1

|Av(m)| =
1

q
. (5.60)

Boolean discretisation of �R = {(u,m)} performed according to (5.20) and
resulting in �B = {(v,m)} also brings in some errors. Probabilistic formula (5.20)
provides that the obtained �B in its averaged form is equal to the averaged state
value 〈v(m)〉 ∈ Av(�B), which yields the following condition of the discretisation
accuracy.

�R = Av(�B), u(m) = 〈v(m)〉 ∀m ∈ M, (5.61)

discretisation error EDis(m) being the difference

EDis(m) = |u(m)− 〈v(m)〉|. (5.62)

The error vanishes in those cells where

u(m) = 〈v(m)〉 = 1

q

q−1∑

k=0

v(φk(m)), (5.63)

which happens very rarely, for example, when a fragments of a linear function or
a parabola of odd degree is discretised. The error is most serious at the cells where
u(m) has extremes.

The most correct representation of discretisation error is a function EDis(m, t),
which shows possible deviations of u(m, t) in all cells during the evolution. But,
sometimes in the particular cases error values in a certain part of �, or maximal
error in extremes of the spatial function at a certain time is of interest. For a general
assessment of CA composition the mean discretisation error at a given t = t̂

EDis(t̂) = 1

|M |
∑

m∈M

|u(m, t̂)− 〈v(m, t̂, 〉|, (5.64)

is also used.
From (5.65) and (5.64) it follows that discretisation errors depend on the aver-

aging area size q = |Av(m)| and on the smoothness of u(m) on TAv(m). Both
these parameters are conditioned by the discretisation step h, which should be taken
small, allowing q to be chosen large enough to smooth the extremes. The following
experiment gives a quantitative insight to the accuracy problem.

Example 9 A half-wave of a sinusoid u = sin x , 0 < x < π , is chosen for exper-
imental assessment of discretisation error dependence of EDis(t̂) on |M | and on
Av(m). The cellular array representation of a given continuous function is as follows

� = {(u(m),m)}, u(m) = sin

(
π

|M |m
)

, m = 0, 1, 2, . . . , |M |. (5.65)

5 Cellular Automata Composition 109

Fig. 5.12 Mean discretisation
error dependence on the
naming set size |M | with
|Av(m)| = 0.2|M | for
cellular array (5.64)

Fig. 5.13 Mean discretisation
error dependence on the
naming set size of averaging
area |Av(m)| with |M | = 360
for cellular array (5.64)

To obtain the dependence EDis(|M |), 30 discretisations {Disk(�) : k = 1, 2, . . . ,
30} of the function given as (5.65) have been obtained with |Mk | = 60 × k, that
corresponds to the argument domain of the cellular array equal to 60 < |Mk | <
1800, or to the sinus’ argument domain in angular form equal to 2◦ > h > 0.1◦.
Each Disk(�) has been averaged with |Avk(m)| = 0.2|Mk |, and the mean errors
EDis(|Mk |) have been computed according to (5.67) (Fig. 5.12).

To obtain the dependence EDis(q), for the same � given as (5.65) 30 discretisa-
tions {Dis j (�) : j = 1, 2, . . . , 30} have been obtained with fixed |M | = 360 but
different q j = |Av j |, where q j = 5 × j . Each Dis j (�) has been averaged with
Av j (m), and the mean errors EDis(q j) have been computed according to (5.64)
(Fig. 5.13).

From Figs. 5.12 and 5.13 it may be concluded that

(1) the mean error EDis(|m|) decreases with the increase of |M | and does not exceed
1% with |M | > 360 which correspond to h < 0.5◦;

(2) the mean error E2(|Av(m)|) has a minimum when |Av(m)| ≈ 36◦, i.e.
|Av(m)|EDis=min = 0.2|M |.

From this example it follows, that regulating the smoothness of the extremes by
appropriate choice of the CA size, the needed accuracy of CA composition may
be achieved. Of course, the complexity of simulation increases linearly with the
increase of |M |.

5.5.2 CA Composition Stability

There are two aspects of stability regarding CA composition. The first aspect con-
cerns behavioral stability, which determines whether the CA evolution tends to a
stable state or to a periodic cycling. The property is studied for simple Boolean

110 O. Bandman

CA-models in [2], but no method is known to check behavioral stability for an arbi-
trary CA. As for CA with real alphabets and nonlinear functions, their behavioral
stability is a subject of nonlinear dynamic system theory and may be checked using
its methods, as it is usually done in continuous mathematics (see for example, [35]).
The second stability aspect is computational stability. This property is associated
with the round-off errors, which are inevitable when float point arithmetics is used.
This aspect of stability is more effectual for study because there are at least two
particular cases of composition methods for which computational stability may be
quantitatively assessed.

The first case comprises local and global sequential composition of Boolean CA-
models. Since all alphabets are Boolean, there is no round-off errors, and since
cellular arrays under processing have finite size, the resulting averaged values are
bounded and stable.

The second case includes sequential or parallel global composition techniques
of Boolean and real CA-models, where cellular array transformations Av(�R) and
Dis(�B) are used at each iteration. In this case the following assertion is true: if ℵR

is stable, and, hence, its state values may be made bounded by the real closed interval
[0, 1], then the composition is computationally stable. This assertion is evident, at
the same time it is of considerable importance for widely used diffusion–reaction
processes, because it asserts, that composition of Boolean diffusion and real reaction
is free of the so called Courant constraint imposed on the PDE counterpart of the
process. The Courant constraint in PDE explicit solution is associated with second
order partial derivatives of spatial coordinates (Laplace operator), representing a
diffusive part in the PDE. For example, for 2D case, it forbids the value CPDE = τd

h2

to exceed 0.25, where h is a space step, d is a diffusion coefficient. From the above

it follows that the time step τ < 1
2

h2

d , should be small enough, which results in
significant increase of computation time. Meanwhile, simulating the diffusion part
by a CA, no care should be taken about the stability, the constraint being imposed by
the dimensionless diffusion coefficient, which is the characteristic of a CA-model.

Example 10 A diffusion–reaction process called a propagating front is simulated by
two models: (1) explicit finite-difference method of PDE solution and (2) composi-
tion of a Boolean diffusion CA and a real reaction CA. The PDE is as follows. The
process is initiated by a dense square 80×80 of propagating substance in the center
of an area 639 × 639. The border conditions are periodic.

ut = d(uxx + uyy)+ 0.5u(1 − u), (5.66)

where d = 0.33 cm2/s. The discretized 2D space is M = {(i, j) : i, j =
0, 1, . . . , i, . . . , 639}. Initial state for PDE solution is

u(0)(i, j) =
{

1, if 280 < i, j < 360,
0, otherwise,

5 Cellular Automata Composition 111

The finite difference representation of the diffusion part of (5.69) is as follows

u(t+1)(i, j) = u(t)(i, j)+ 0.33(u(t)(i − 1, j)+ u(t)(i + 1, j)+ u(t)(i, j + 1)
+u(t)(i, j − 1)− 4u(t)(i, j)).

(5.67)

With the time-step τ = 1 s and the space step h = 1 cm, the Courant value
CPDE = td/h2 = 0.33, which is out of Courant constraint. So, the function
u(t)(i, j) obtained by (5.70) is not stable.

The same process may be simulated by a superposition ℵ = �(ℵdiff,ℵreac).
The first component ℵdiff = 〈A, M, M̂, θdiff, σ 〉 is in its turn a superposition of
the two-stage synchronous CA from Sect. 5.3.1(Example 1) with θdiff(i, j) given as
(5.34), and the operator of averaging, i.e.

θdiff(i, j) = Av(θ(i, j)), (5.68)

resulting in a global configuration �diff(t) = {(u, (i, j)) : u ∈ [0, 1]}
The second component ℵreac = 〈A, M, M̂, θreac, σ 〉 is a context-free CA com-

puting in each cell a reaction function f (u) = 0.5u(1 − u) with subsequent
discretisation, where A, M, M̂, σ are equal to those of ℵdiff, the local operator
being

θreac : (u, (i, j))→ (v, (i, j)), v = Dis(f (u), (i, j)). (5.69)

Snapshots of both processes (PDE solution) and (CA superposition) after 20
iterations are shown in Fig. 5.14. It is seen, that evolution of CA superposition is
absolutely stable, while finite-difference solution of (5.67) exhibits a divergence.

Fig. 5.14 Simulation of 2D propagation front initiated by a dense square in the central part of
cellular space, a profile u(i, 319) is given obtained by : (a) CA superposition of ℵdiff with θ1 (5.71)
and ℵreac with θ2 (5.72), (b) solution of finite-difference equation (5.70)

112 O. Bandman

5.5.3 Composition Complexity

Here, an attempt is made to assess how much of additional work a composed CA
has to do, as compared with the total complexity of the components. Such an
assessment cannot be precisely done. There are many reasons for that. The most
significant are the following: (1) complexity relations between different arithmetic
operations strongly depend on hardware architecture; (2) the same is true for com-
paring Boolean and real operations; (3) complexity of performing CA transition
functions range from O(n) to O(2n), n being the cardinality of the neighborhood in
the local operator. Nonetheless, an insight may be given on the relation between the
complexity of transition function computation and that of transformations needed
for providing compatibility.

In case when sequential local asynchronous composition and global synchronous
composition techniques contain no averaging and discretisation operations, no addi-
tional time is needed and the total number of elementary operations is equal to the
sum of those of the component CA.

When global synchronous composition, no matter sequential or parallel, is used,
transformations of Boolean cellular array into a real one and vice versa are to be per-
formed at each iteration. In such a case, iteration time is increased by tadd additional
elementary operations.

tadd = |M | × (tAv + tDis), (5.70)

where tAv and tDis are numbers of elementary operations which have to be executed
by a cell while performing averaging according to (5.19), or discretisation according
to (5.20), respectively. As for tAv, it is clearly seen from (5.19), that the time needed
to compute Av(vm) may be assessed as tAv = CAv × |Av(m)| × τ where CAv ≈ 1
is a constant, τ – the time of elementary function execution. The discrertisation
time tDis = Crand, so, according to (5.20) it depends only on the random number
generator time, which may be taken Crand < 5. Since the transformation is used in
the composition techniques where both Boolean and real components are included,
the time tadd should be compared with Boolean and real transition functions com-
putation time tcomp = tB + tR , where tB = CB × τ and tR = CR × τ . The
coefficients CB and CR essentially depend on the character of the transition func-
tions but, usually, both functions require to execute not more than 100 elementary
operations.

Comparison of tadd with tcomp yields:

tadd

tcomp
= CAv + CDis

CB + CR
,

which enables us to conclude that tadd and tcomp have identical order of com-
plexity, hence, Boolean–real transformations increase the computation time about
twice.

5 Cellular Automata Composition 113

5.6 Conclusion

Till now, no mathematical method and no promising approach is known to CA
synthesis from a given description of its evolution. Nevertheless, some way out
should be found. A simple one is to follow a well known approach used in PDE
theory which implies composing PDE systems out of a set of differential oper-
ators and functions. Such an approach seems to be expedient when considering
the following similarities between CA composition and PDE system construction.
For example, first order and second order differential operators in PDEs over the
space have their CA counterparts in the form of shift and diffusion local operators,
respectively. And in both cases for obtaining a mathematical model of reaction–
diffusion process those operators are composed with nonlinear reaction functions.
Unfortunately, the above similarities are only particular cases. In general, there is
no formal procedure to obtain a CA simulating space-time nonlinear behavior. It is
just the fact that has provoked the development of compatible algebraic operations
on cellular arrays, allowing to integrate continuous functions into a CA composition
techniques.

But the most important destination of CA composition is not in presenting
another way of simulating processes which may be described in terms of PDE, but
in obtaining capability of constructing mathematical models for those phenomena,
for whom no other mathematical description is known. Such a processes are mostly
associated with the fields of science which are in the initial stage of development.
For example, plant growth mechanisms, embryo fetation, cellular division, mor-
phogenesis – from biology; surface oxidation, chemical reaction on catalyst, dis-
sociation, adsorption – from chemistry; epitaxial growth, crack formation, rubber
deformation, robotics – from engineering; tumor growth – from medicine, etc. Of
course, the available experience in science and engineering is not sufficient to fore-
cast the future of CA simulation methodology. Anyway, now it is clear that only a
small part of the huge amount of CA-models have evolutions which resemble natural
phenomena, and, hence, may be used for simulation. Moreover, those, which occur
to be helpful, ought to be enriched by some additional properties, such as probability
in transition functions, complicated modes of operations, composite alphabet, non-
homogeneous cellular space, etc. All these, being oriented to obtain CA-models
of complex phenomena, require a unique formalism for composing complex CA-
models from a number of more simple ones. The above considerations allow to hope
that the presented attempt to construct a systematic approach to CA composition is
not futile.

References

1. T. Toffolli, N. Margolus, Cellular Automata Machines (MIT Press, Cambridge, MA, 1987)
2. S. Wolfram, A New Kind of Science (Wolfram Media Inc., Champaign, IL, 2002)
3. O. Bandman, Comparative study of cellular automata diffusion models, ed. by V. Malyshkin,

PaCT-1999, LNCS vol. 1662 (Springer, Berlin, 1999), pp. 395–404

114 O. Bandman

4. G.G. Malinetski, M.E. Stepantsov, Modeling diffusive processes by cellular automata with
Margolus neighborhood. Zhurnal Vychislitelnoy Matematiki i Mathematicheskoy Phisiki
36(6), 1017–1021 (1998)

5. J.K. Park, K. Steiglitz, W.P. Thurston, Soliton-like behavior in automata. Physica D 19,
423–432 (1986)

6. C. Vannozzi, D. Fiorentino, M. D’Amore et al., Cellular automata model of phase transition
in binary mixtures. Ind. Eng. Chem. Res. 45(4), 2892–2896 (2006)

7. M. Creutz, Celllular automata and self-organized criticality, ed. by G. Bannot, P. Seiden, Some
New Directions in Science on Computers (World Scientific, Singapore), pp. 147–169

8. U. Frish, D. d’Humieres, B. Hasslacher et al., Lattice-gas hydrodynamics in two and three
dimensions. Compl. Syst. 1, 649–707 (1987)

9. D.H. Rothman, S. Zalesky, Lattice-Gas Cellular Automata. Simple Model of Complex Hydro-
dynamics (Cambridge University Press, Cambridge, UK, 1997)

10. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University
Press, New York, NY, 2001)

11. L. Axner, A.G. Hoekstra, P.M.A. Sloot, Simulating time harmonic flows with the lattice Boltz-
mann method. Phys. Rev. E 75, 036709 (2007)

12. V.I. Elokhin, E.I. Latkin, A.V. Matveev, V.V. Gorodetskii, Application of statistical lattice
models to the analysis of oscillatory and autowave processes in the reaction of carbon monox-
ide oxidation over platinum and palladium surfaces. Kinet. Catal. 44(5), 672–700 (2003)

13. A.P.J. Jansen, An Introduction to Monte-Carlo Simulation of Surface Reactions. ArXiv:
cond-mat/0303028 v1 (2003)

14. I.G. Neizvestny, N.L. Shwartz, Z.Sh. Yanovitskaya, A.V. Zverev, 3D-model of epitaxial
growth on porous 111 and 100 Si Surfacex. Comput. Phys. Commun. 147, 272–275 (2002)

15. M.A. Saum, S. Gavrilets, CA simulation of biological evolution in genetic hyperspace, ed. by
S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006. LNCS vol. 4176 (Springer, Berlin, 2006),
pp. 3–13

16. Y. Wu, N. Chen, M. Rissler, Y. Jiang et al., CA models of myxobacteria sworming ed. by
S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006),
pp. 192–203

17. M. Ghaemi, A. Shahrokhi, Combination of the cellular potts model and lattice gas cellu-
lar automata for simulating the avascular cancer growth, ed. by S. El Yacoubi, B. Chopard,
S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006), pp. 297–303

18. R. Slimi, S. El Yacoubi, Spreadable probabilistic cellular automata models, ed. by
S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006),
pp. 330–336

19. F. Biondini, F. Bontempi, D.M. Frangopol, P.G. Malerba, Cellular automata approach to
durability analysis of concrete structures in aggressive environments. J. Struct. Eng. 130(11),
1724–1737

20. O. Bandman, Composing fine-grained parallel algorithms for spatial dynamics simulation, ed.
by V. Malyshkin, PaCT-2005, LNCS Vol. 3606 (Springer, Berlin, 2005), pp. 99–113

21. S. Wolfram, Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)
22. L.O. Chua, CNN: A Paradigm for Complexity (World Scientific, Singapore, 2002)
23. L.R. Weimar, J.P. Boon, Class of cellular automata for reaction-diffusion systems. Phys Rev

E 49, 1749–1752 (1994)
24. O. Bandman, Simulating spatial dynamics by probabilistic cellular automata, ed. by

S. Bandini, B. Chopard, M. Tomassini, ACRI-2002, LNCS vol. 2493 (Springer, Berlin, 2002),
pp. 10–20

25. O. Bandman, Spatial functions approximation by boolean arrays. Bulletin of Novosibirsk
Computer Center, series Computer Science 19. ICMMG, Novosibirsk:10–19 (2003)

26. S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel Substitution Algorithm. Theory
and Application (World Scientific, Singapore, 1994)

5 Cellular Automata Composition 115

27. S. Bandini, S. Manzoni, G. Vizzari, SCA: A model to simulate crowding dynamics. IEICE
Trans. Inf. Syst. E87-D, 669–676 (2004)

28. A. Adamatsky, Dynamics of Crowd-Minds. in Series on Nonlinear Science, vol. 54 (World
Scientific, Singapore, 2005)

29. O. Bandman, Coarse-grained parallelisation of cellular-automata simulation algorithms, ed.
by V. Malyshkin, PaCT-2007 LNCS vol. 4671 (Springer, Berlin, 2007), pp. 370–384

30. G. Vichniac, Simulating physics by cellular automata. Physica D 10, 86–112 (1984)
31. Y. Svirezhev, Nonlinear Waves, Dissipative Structures and Catastrophes in Ecology (Nauka,

Moscow, 1987)
32. R.M. Ziff, E. Gulari, Y. Barshad, Kinetic phase transitions in an irreversible surface-reaction

model. Phys. Rev. Lett. 56, 2553 (1986)
33. F. Schlogl, Chemical reaction models for non-equilibrium phase transitions. Z. Physik 253

147–161 (1972)
34. C.P. Schrenk, P. Schutz, M. Bode, H.-G. Purwins, Interaction of selforganised quaziparticles

in two-dimensional reaction diffusion system: the formation of molecules. Phys. Rev. E 5 (6),
6481–5486 (1918)

35. A.N. Michel, K. Wang, B. Hu, Qualitative Theory of Dynamics Systems: The Role of Stability
Preserving. (CRC Press, New York, NY, 2001).

Chapter 6
Problem Solving on One-Bit-Communication
Cellular Automata

Hiroshi Umeo

6.1 Introduction

In recent years, interest in cellular automata (CA) has been increasing in the field
of modeling real phenomena that occur in biology, chemistry, ecology, economy,
geology, mechanical engineering, medicine, physics, sociology, and public trans-
portation. Cellular automata are considered to provide a good model of complex
systems in which an infinite array of finite state machines (cells) updates itself in
a synchronous manner according to a uniform local rule. In the present paper, we
study a problem solving on a special subclass of cellular automata: one-bit inter-cell
communication cellular automaton. The problems dealt with are a firing squad syn-
chronization problem, an integer sequence generation problem, an early bird prob-
lem, and a connectivity recognition problem for two-dimensional binary images, all
of which are classical, fundamental problems that have been studied extensively on
O(1)-bit communication models of cellular automata. The O(1)-bit communication
model is a conventional CA in which the number of communication bits exchanged
in one step between neighboring cells is assumed to be O(1) bits. However, such bit
information exchanged between inter-cells is hidden behind the definition of con-
ventional automata-theoretic finite state descriptions. On the other hand, the 1-bit
inter-cell communication model studied in the present paper is a new subclass of
CAs, in which inter-cell communication is restricted to 1-bit communication. We
refer to this model as the 1-bit CA and denote the model as CA1-bit. The number
of internal states of the CA1-bit is assumed to be finite as in a usual sense. The next
state of each cell is determined based on the present state of the cell and two binary
1-bit inputs from its left and right neighbor cells. Thus, the CA1-bit is one of the
weakest and simplest models among the variants of the CAs. A main question in
this paper is whether the CA1-bit can solve problems solved by conventional cellular
automata without any overhead in time complexities.

H. Umeo (B)
University of Osaka Electro-Communication, Neyagawa-shi, Hatsu-cho, 18-8,
Osaka, 572-8530, Japan
e-mail: umeo@cyt.osakac.ac.jp

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_6,
C© Springer-Verlag Berlin Heidelberg 2010

117

118 H. Umeo

In Sect. 6.2, we define the 1-bit communication cellular automaton and review
a computational relation between the conventional O(1)-bit-communication CA
and the CA1-bit. In Sect. 6.3, a firing squad synchronization problem is studied
and several state-efficient 1-bit implementations of synchronization algorithms for
one-dimensional cellular arrays are presented. In Sect. 6.4 we consider an integer
sequence generation problem on the CA1-bit and present a real-time prime gener-
ator with 34 states. In Sect. 6.5, we study an early bird problem and its 37-state
implementation operating in twice real-time will be given. In Sects. 6.6 and 6.7, a
two-dimensional (2-D) version of the CA1-bit is introduced and the firing squad syn-
chronization problem is studied again on the 2-D CA1-bit. In Sect. 6.7, a connectivity
recognition algorithm for two-dimensional binary images will be presented.

6.2 One-Bit-Communication Cellular Automata

A one-dimensional 1-bit inter-cell communication cellular automaton (CA1-bit)
consists of a finite array of identical finite state automata, each located at a positive
integer point. Each automaton is referred to as a cell. The cell at point i is denoted
by Ci where i ≥ 1. Each Ci , except for C1 and Cn , is connected with its left and
right neighbor cells via a left or right one-way communication link, where those
communication links are indicated by right- and left-going arrows, respectively, as
shown in Fig. 6.1. Each one-way communication link can transmit only one bit at
each step in each direction.

A cellular automaton with 1-bit inter-cell communication (abbreviated as CA1-bit)
consists of a finite array of finite state automaton A = (Q, δ), where

1. Q is a finite set of internal states.
2. δ is a function that defines the next state of any cell and its binary outputs to its

left and right neighbor cells such that δ: Q×{0, 1}×{0, 1} → Q×{0, 1}×{0, 1}
where δ(p, x, y) = (q, x ′, y′), p, q ∈ Q, x, x ′, y, y′ ∈ {0, 1}, has the following
meaning: We assume that, at step t, the cell Ci is in state p and receives binary
inputs x and y from its left and right communication links, respectively. Then,
at the next step t+1, Ci takes a state q and outputs x ′ and y′ to its left and right
communication links, respectively. Note that binary inputs to Ci at step t are also
outputs of Ci−1 and Ci+1 at step t. A quiescent state q ∈ Q has a property such
that δ(q, 0, 0) = (q, 0, 0).

Thus, the CA1-bit is a special subclass of normal (i.e., conventional) cellular
automata. Let N be any normal cellular automaton with a set of states Q and a
transition function δ : Q3 → Q. The state of each cell on N depends on the

C1 C2 C3 C4 Cn

Fig. 6.1 One-dimensional cellular automaton connected with 1-bit inter-cell communication links

6 Problem Solving on One-Bit-Communication Cellular Automata 119

cell’s previous state and states on its nearest neighbor cells. This means that the
total information exchanged per step between neighboring cells is O(1) bits. Each
state in Q can be encoded with a binary sequence of length #log2 |Q|$ and then
sending the binary sequences sequentially bit-by-bit in each direction via each one-
way communication link. The sequences are then received bit-by-bit and decoded
into their corresponding states in Q. Thus, the CA1-bit can simulate one step of
N in #log2 |Q|$ steps. This observation gives the following computational relation
between the normal CA and CA1-bit.

Theorem 1 (Mazoyer [21], Umeo and Kamikawa [37]) Let N be any normal cellu-
lar automaton operating in T (n) steps with internal state set Q. Then, there exists
a CA1-bit that can simulate N in kT (n) steps, where k is a positive constant integer
such that k = #log2 |Q|$.

A question is whether the CA1-bit can solve problems solved by conventional
cellular automata without any overhead in time complexities. In some cases, the
answer is yes.

6.3 Firing Squad Synchronization Problem

Section 6.3 studies the firing squad synchronization problem (FSSP) on CA1-bit, the
solution of which yields a finite-state protocol for large-scale synchronization of
cellular automata. This problem was originally proposed by J. Myhill in Moore [23]
to synchronize all parts of self-reproducing cellular automata. The firing squad syn-
chronization problem has been studied extensively for more than 50 years. Recent
developments in the FSSP algorithms are given in Umeo [33] and Umeo et al.
[35]. An optimum-time (i.e., (2n − 2)-step for n cells) synchronization algorithm
for one-dimensional array was devised first by Goto [10]. The algorithm needed
many thousands of internal states for its realization. Afterwards, Waksman [45],
Balzer [4], Gerken [9] and Mazoyer [19] developed an optimum-time algorithm and
reduced the number of states realizing the algorithm, each with 16, 8, 7 and 6 states
on the conventional O(1)-bit communication model.

The FSSP is defined as follows: At time t = 0, the left end cell C1 is in the
fire-when-ready state, which is the initiation signal for the array. The FSSP is to
determine a description (state set and next-state function) for cells that ensures all
cells enter the fire state at exactly the same time and for the first time. The set of
states and the next-state function must be independent of n.

6.3.1 FSSP with a General at One End

Here we briefly sketch the design scheme for the firing squad synchronization algo-
rithm according to Waksman [45] in which the first transition rule set was presented.
It is quoted from Waksman [45].

120 H. Umeo

The code book of the state transitions of machines is so arranged to cause the array to pro-
gressively divide itself into 2k equal parts, where k is an integer and an increasing function
of time. The end machines in each partition assume a special state so that when the last
partition occurs, all the machines have for both neighbors machines at this state. This is
made the only condition for any machine to assume terminal state.

Figure 6.2 (left) is a space-time diagram for the Waksman’s optimum-step firing
squad synchronization algorithm. The general at time t = 0 emits an infinite number
of signals which propagate at 1/(2k+1 −1) speed, where k is positive integer. These
signals meet with a reflected signal at half point, quarter points, . . . , etc., denoted
by % in Fig. 6.2 (left). It is noted that these cells indicated by % are synchronized.
By increasing the number of synchronized cells exponentially, eventually all of the
cells are synchronized.

Most of the implementations for the optimum-time synchronization algorithms
developed so far on CA1-bit are based on the space-time diagram shown in Fig. 6.2
(left). Mazoyer [21] developed an optimum-time synchronization algorithm for the
CA1-bit based on Balzer [4]. Each cell of the constructed CA1-bit had 58 internal
states. The original set of transition rules constructed in Mazoyer [21] included a
small error. Here we show a reconstructed version in Table 6.1. Figure 6.3 shows
some snapshots of the synchronization processes on 21 cells, each for Balzer’s

n

Time

Cellular Space

t = 2n−2

Quarter Quarter

Half

1 2 3 . . .

1/1

1/3

1/7

1/15

1/1

1/3

1/7

t = 0

Reflected
signal

Reflected
signal

Reflected
signal

t = n−2+

t = 2k−2

t = k−1

t = 0

Ck Cn

1/1

1/1

1/11/1

1/1

1/1

1/31/3

1/7

1/15

1/3

1/3

1/7

max(k, n-k+1)

C1

Time

Cellular Space

Fig. 6.2 Space-time diagram for optimum-time synchronization algorithms with a general at the
left end (left) and a generalized case where a general at an arbitrary point (right)

6 Problem Solving on One-Bit-Communication Cellular Automata 121

Table 6.1 Reconstructed transition table for Mazoyer’s 1-bit implementation (Mazoyer [21])

1 R = 0 R = 1

L = 0

L = 1

0

(0,0,0) --

(ir,0,1) --

2 R = 0 R = 1

L = 0

L = 1

ir

(kr,1,0) (kr,1,0)

(2ar,0,0) (2ar,0,0)

3 R = 0 R = 1

L = 0

L = 1

F

-- --

-- --

4 R = 0 R = 1

L = 0

L = 1

kr

(Exl,0,1) (il,1,0)

(Oddr,0,0) (Ex!r,1,0)

5 R = 0 R = 1

L = 0

L = 1

pF

(pF,0,0) (F,0,0)

(F,0,0) (F,0,0)

6 R = 0 R = 1

L = 0

L = 1

2ar

(2b,0,1) (pF,1,1)

-- --

7 R = 0 R = 1

L = 0

L = 1

2b

-- (2c,0,1)

(2c,1,0) --

8 R = 0 R = 1

L = 0

L = 1

2c

(2c,0,0) (pF,1,1)

(pF,1,1) --

9 R = 0 R = 1

L = 0

L = 1

Oddr

-- (Oor,1,0)

-- (3m,0,1)

10 R = 0 R = 1

L = 0

L = 1

Oor

(Oo*r,0,0) (il,1,0)

-- --

11 R = 0 R = 1

L = 0

L = 1

Oo*r

(Oor,0,0) (Oe,1,0)

(Op,0,0) (Orl,1,0)

12 R = 0 R = 1

L = 0

L = 1

Oe

(Oe*,0,0) (Exr,1,0)

(Exl,0,1) --

13 R = 0 R = 1

L = 0

L = 1

Oe*

(Oe,0,0) (Oor,1,0)

(Ool,0,1) --

14 R = 0 R = 1

L = 0

L = 1

Op

(Op*,0,0) (il,1,0)

(ir,0,1) --

15 R = 0 R = 1

L = 0

L = 1

Op*

(Op,0,0) (Orl,1,0)

(Orr,0,1) --

16 R = 0 R = 1

L = 0

L = 1

Orr

(Or*r,0,0) (Rr,1,0)

(pLl,0,1) --

17 R = 0 R = 1

L = 0

L = 1

Or*r

(Orr,0,0) (Oe,1,0)

(Om,1,1) --

18 R = 0 R = 1

L = 0

L = 1

Om

(Om*,0,0) (M,1,1)

(M,1,1) --

19 R = 0 R = 1

L = 0

L = 1

Om*

(Om,0,0) (Orr,0,0)

(Orl,0,0) --

20 R = 0 R = 1

L = 0

L = 1

Exr

(il,0,0) (Ex!l,0,0)

(Ee,0,1) (Err,0,1)

21 R = 0 R = 1

L = 0

L = 1

Ex!r

(2ar,0,0) (Ex!l,0,0)

-- (pF,1,1)

22 R = 0 R = 1

L = 0

L = 1

3m

(3m*,0,0) (M,1,1)

(M,1,1) --

23 R = 0 R = 1

L = 0

L = 1

3m*

(3m,0,0) (3r,0,0)

(3r,0,0) --

24 R = 0 R = 1

L = 0

L = 1

3l

(3l*,0,0) (pLr,1,0)

(pLl,0,1) --

25 R = 0 R = 1

L = 0

L = 1

3l*

(3l,0,0) (3m,0,1)

(3m,1,0) --

26 R = 0 R = 1

L = 0

L = 1

Err

(Er*r,0,0) (Rr,1,0)

(pLl,0,1) --

27 R = 0 R = 1

L = 0

L = 1

Er*r

(Err,0,0) (Eor,1,0)

(Em,1,1) --

28 R = 0 R = 1

L = 0

L = 1

Ep

(Ep*,0,0) (il,1,0)

(ir,0,1) --

29 R = 0 R = 1

L = 0

L = 1

Ep*

(Ep,0,0) (Erl,1,0)

(Err,0,1) --

30 R = 0 R = 1

L = 0

L = 1

Eor

(Eo*r,0,0) (il,1,0)

-- --

31 R = 0 R = 1

L = 0

L = 1

Eo*r

(Eor,0,0) (Ee,1,0)

(Ep,0,0) (Erl,1,0)

32 R = 0 R = 1

L = 0

L = 1

Em

(Em*,0,0) (M,1,1)

(M,1,1) --

33 R = 0 R = 1

L = 0

L = 1

Em*

(Em,0,0) (Err,0,0)

(Erl,0,0) --

34 R = 0 R = 1

L = 0

L = 1

Rr

-- (pF,1,0)

-- --

35 R = 0 R = 1

L = 0

L = 1

M

(pF,1,1) --

-- --

36 R = 0 R = 1

L = 0

L = 1

pLr

(Lr,1,1) (Lr,1,1)

-- --

37 R = 0 R = 1

L = 0

L = 1

Lr

(pF,0,1) --

(F,0,0) --

38 R = 0 R = 1

L = 0

L = 1

irW

(pF,0,1) --

-- --

39 R = 0 R = 1

L = 0

L = 1

0W

(0W,0,0) --

(ilW,1,0) --

40 R = 0 R = 1

L = 0

L = 1

3r

(3r*,0,0) (Rr,1,0)

(Rl,0,1) --

41 R = 0 R = 1

L = 0

L = 1

3r*

(3r,0,0) (3l,0,0)

(3l,0,0) --

42 R = 0 R = 1

L = 0

L = 1

Ee

(Ee*,0,0) (Exr,1,0)

(Exl,0,1) --

43 R = 0 R = 1

L = 0

L = 1

Ee*

(Ee,0,0) (Eor,1,0)

(Eol,0,1) --

44 R = 0 R = 1

L = 0

L = 1

ilW

(pF,1,0) --

(F,0,0) --

45 R = 0 R = 1

L = 0

L = 1

2al

(2b,1,0) --

(pF,1,1) --

46 R = 0 R = 1

L = 0

L = 1

Oddl

-- --

(Ool,0,1) (3m,1,0)

47 R = 0 R = 1

L = 0

L = 1

Ool

(Oo*l,0,0) --

(ir,0,1) --

48 R = 0 R = 1

L = 0

L = 1

Oo*l

(Ool,0,0) (Op,0,0)

(Oe,0,1) (Orr,0,1)

49 R = 0 R = 1

L = 0

L = 1

Orl

(Or*l,0,0) (pLr,1,0)

(Rl,0,1) --

50 R = 0 R = 1

L = 0

L = 1

Or*l

(Orl,0,0) (Om,1,1)

(Oe,0,1) --

51 R = 0 R = 1

L = 0

L = 1

Exl

(ir,0,0) (Ee,1,0)

(Ex!r,0,0) (Erl,1,0)

52 R = 0 R = 1

L = 0

L = 1

Ex!l

(2al,0,0) --

(Ex!r,0,0) (pF,1,1)

53 R = 0 R = 1

L = 0

L = 1

Erl

(Er*l,0,0) (pLr,1,0)

(Rl,0,1) --

54 R = 0 R = 1

L = 0

L = 1

Er*l

(Erl,0,0) (Em,1,1)

(Eol,0,1) --

55 R = 0 R = 1

L = 0

L = 1

Eol

(Eo*l,0,0) --

(ir,0,1) --

56 R = 0 R = 1

L = 0

L = 1

Eo*l

(Eol,0,0) (Ep,0,0)

(Ee,0,1) (Err,0,1)

57 R = 0 R = 1

L = 0

L = 1

Rl

-- --

(pF,0,1) --

58 R = 0 R = 1

L = 0

L = 1

pLl

(Ll,1,1) --

(Ll,1,1) --

59 R = 0 R = 1

L = 0

L = 1

Ll

(pF,1,0) (F,0,0)

-- --

60 R = 0 R = 1

L = 0

L = 1

il

(kl,0,1) (2al,0,0)

(kl,0,1) (2al,0,0)

61 R = 0 R = 1

L = 0

L = 1

kl

(Exr,1,0) (Oddl,0,0)

(ir,0,1) (Ex!l,0,1)

122 H. Umeo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 irW 0W

1 pF ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

2 pF 2ar ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

3 pF 2b kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

4 pF 2c Oddr kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

5 pF 2c 3m Exl kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

6 pF 2c 3m* Erl Oddr kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

7 pF 2c 3r Er*l Oor Exl kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0W

8 pF 2c 3r* Em Oo*r Ee Oddr kr ir 0 0 0 0 0 0 0 0 0 0 0 0W

9 pF 2c 3l Em* Orl Ee* Oor Exl kr ir 0 0 0 0 0 0 0 0 0 0 0W

10 pF 2c 3l* Err Or*l Eor Oo*r Ee Oddr kr ir 0 0 0 0 0 0 0 0 0 0W

11 pF 2c 3l Er*r Om Eo*r Oe Ee* Oor Exl kr ir 0 0 0 0 0 0 0 0 0W

12 pF 2c 3l* Eor Om* Erl Oe* Eor Oo*r Ee Oddr kr ir 0 0 0 0 0 0 0 0W

13 pF 2c 3m Eo*r Orr Er*l Oor Eo*r Oe Ee* Oor Exl kr ir 0 0 0 0 0 0 0W

14 pF 2c 3m* Ep Or*r Em Oo*r Ee Oe* Eor Oo*r Ee Oddr kr ir 0 0 0 0 0 0W

15 pF 2c 3m Ep* Oe Em* Orl Ee* Oor Eo*r Oe Ee* Oor Exl kr ir 0 0 0 0 0W

16 pF 2c 3m* Erl Oe* Err Or*l Eor Oo*r Ee Oe* Eor Oo*r Ee Oddr kr ir 0 0 0 0W

17 pF 2c 3r Er*l Oe Er*r Om Eo*r Oe Ee* Oor Eo*r Oe Ee* Oor Exl kr ir 0 0 0W

18 pF 2c 3r* Erl Oe* Eor Om* Erl Oe* Eor Oo*r Ee Oe* Eor Oo*r Ee Oddr kr ir 0 0W

19 pF 2c 3r Er*l Oor Eo*r Orr Er*l Oor Eo*r Oe Ee* Oor Eo*r Oe Ee* Oor Exl kr ir 0W

20 pF 2c 3r* Em Oo*r Eor Or*r Em Oo*r Ee Oe* Eor Oo*r Ee Oe* Eor Oo*r Ee Oddr kr ilW

21 pF 2c 3l Em* Op Eo*r Oe Em* Orl Ee* Oor Eo*r Oe Ee* Oor Eo*r Oe Ee* Oor il pF

22 pF 2c 3l* Em Op* Ee Oe* Err Or*l Eor Oo*r Ee Oe* Eor Oo*r Ee Oe* Eor il 2al pF

23 pF 2c 3l Em* Orl Ee* Oe Er*r Om Eo*r Oe Ee* Oor Eo*r Oe Ee* Oor il kl 2b pF

24 pF 2c 3l* Err Or*l Ee Oe* Eor Om* Erl Oe* Eor Oo*r Ee Oe* Eor il kl Oddl 2c pF

25 pF 2c 3l Er*r Orl Ee* Oor Eo*r Orr Er*l Oor Eo*r Oe Ee* Oor il kl Exr 3m 2c pF

26 pF 2c 3l* Err Or*l Eor Oo*r Eor Or*r Em Oo*r Ee Oe* Eor il kl Oddl Err 3m* 2c pF

27 pF 2c 3l Er*r Om Eo*r Oor Eo*r Oe Em* Orl Ee* Oor il kl Exr Ool Er*r 3r 2c pF

28 pF 2c 3l* Eor Om* Ep Oo*r Ee Oe* Err Or*l Eor il kl Oddl Ee Oo*l Em 3r* 2c pF

29 pF 2c 3m Eo*r Om Ep* Oe Ee* Oe Er*r Om il kl Exr Ool Ee* Orr Em* 3l 2c pF

30 pF 2c 3m* Ep Om* Erl Oe* Ee Oe* Eor M kl Oddl Ee Oo*l Eol Or*r Erl 3l* 2c pF

31 pF 2c 3m Ep* Orr Er*l Oe Ee* Oor il pF ir Ool Ee* Oe Eo*l Om Er*l 3l 2c pF

32 pF 2c 3m* Ep Or*r Erl Oe* Eor il 2al pF 2ar ir Eol Oe* Err Om* Eol 3l* 2c pF

33 pF 2c 3m Ep* Orr Er*l Oor il kl 2b pF 2b kr ir Ool Er*r Orl Eo*l 3m 2c pF

34 pF 2c 3m* Ep Or*r Em il kl Oddl 2c pF 2c Oddr kr ir Em Or*l Ep 3m* 2c pF

35 pF 2c 3m Ep* Oe M kl Exr 3m 2c pF 2c 3m Exl kr M Oe Ep* 3m 2c pF

36 pF 2c 3m* Erl Exr pF Ex!l Err 3m* 2c pF 2c 3m* Erl Ex!r pF Exl Err 3m* 2c pF

37 pF 2c 3r pLr Ex!l pF Ex!r pLl 3r 2c pF 2c 3r pLr Ex!l pF Ex!r pLl 3r 2c pF

38 pF 2c Rr Lr 2al pF 2ar Ll Rl 2c pF 2c Rr Lr 2al pF 2ar Ll Rl 2c pF

39 pF

40 F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 M L

1 M C L L L L L L L L L L L L L L L L L L L

2 M C C L L L L L L L L L L L L L L L L L L

3 M C R C L L L L L L L L L L L L L L L L L

4 M C R B C L L L L L L L L L L L L L L L L

5 M C C B R C L L L L L L L L L L L L L L L

6 M C C R R B C L L L L L L L L L L L L L L

7 M C C R B B R C L L L L L L L L L L L L L

8 M C C C B R R B C L L L L L L L L L L L L

9 M C R C R R B B R C L L L L L L L L L L L

10 M C R C R B B R R B C L L L L L L L L L L

11 M C R C C B R R B B R C L L L L L L L L L

12 M C R B C R R B B R R B C L L L L L L L L

13 M C C B C R B B R R B B R C L L L L L L L

14 M C C B C C B R R B B R R B C L L L L L L

15 M C C B R C R R B B R R B B R C L L L L L

16 M C C R R C R B B R R B B R R B C L L L L

17 M C C R R C C B R R B B R R B B R C L L L

18 M C C R R B C R R B B R R B B R R B C L L

19 M C C R B B C R B B R R B B R R B B R C L

20 M C C C B B C C B R R B B R R B B R R B M

21 M C R C B B R C R R B B R R B B R R B A M

22 M C R C B R R C R B B R R B B R R B Q R M

23 M C R C R R R C C B R R B B R R B Q R Q M

24 M C R C R R R B C R R B B R R B Q R L Q M

25 M C R C R R B B C R B B R R B Q R A Q Q M

26 M C R C R B B B C C B R R B Q R L L Q Q M

27 M C R C C B B B R C R R B Q R A A L Q Q M

28 M C R B C B B R R C R B Q R L L A Q Q Q M

29 M C C B C B R R R C C Q R A A L L Q L Q M

30 M C C B C R R R R B M R L L A A L Q L Q M

31 M C C B C R R R B A M B A L L A Q Q L Q M

32 M C C B C R R B Q R M L C A L L Q A L Q M

33 M C C B C R B Q R Q M C L C A L Q A Q Q M

34 M C C B C C Q R L Q M C R L C Q Q A Q Q M

35 M C C B R M R A Q Q M C C B L M L A Q Q M

36 M C C R Q M C L Q Q M C C R Q M C L Q Q M

37 M C C Q Q M C C Q Q M C C Q Q M C C Q Q M

38 M C M M Q M C M M Q M C M M Q M C M M Q M

39 M

40 F

Fig. 6.3 Snapshots for synchronization processes on 21 cells, each for Balzer’s algorithm [4] on
the O(1)-bit-communication model (left) and the reconstructed 1-bit implementation on the CA1-bit
(right)

algorithm [4] on the O(1)-bit-communication model (left) and the reconstructed
1-bit implementation on the CA1-bit (right). The small right- and left-facing black
triangles, � and �, in the figure, indicate a 1-bit signal transfer in the right or left
direction between neighbor cells. The symbol in each cell shows its internal state.
Nishimura et al. [25] also constructed an optimum-time synchronization algorithm
(NSU algorithm for short) based on Waksman’s algorithm [45]. Each cell had 78
internal states and 208 transition rules. Figure 6.4 shows snapshots for synchro-
nization processes on 21 cells, each for Waksman’s algorithm [45] on O(1)-bit-
communication model (left) and NSU algorithm [25] on CA1-bit (right).

Theorem 2 (Mazoyer [21], Nishimura, Sogabe and Umeo [25]) There exists a
CA1-bit that can synchronize n cells with the general at a left end in 2n − 2 steps.

Umeo et al. [42] developed a non-optimum-step synchronization algorithm for
CA1-bit based on Mazoyer’s 6-state algorithm [19] for the O(1)-bit model. The

6 Problem Solving on One-Bit-Communication Cellular Automata 123

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 PW Q Q Q Q Q Q Q Q Q Q Q Q Q QW

1 PW AR’ Q Q Q Q Q Q Q Q Q Q Q Q QW

2 PW AR’ Q Q Q Q Q Q Q Q Q Q Q QW

3 PW sub AR’ Q Q Q Q Q Q Q Q Q Q QW

4 PW odd sub AR’ Q Q Q Q Q Q Q Q Q QW

5 PW QR0S QRB sub AR’ Q Q Q Q Q Q Q Q QW

6 PW QRC odd sub AR’ Q Q Q Q Q Q Q QW

7 PW QRD QRC QRB sub AR’ Q Q Q Q Q Q QW

8 PW QR10 QRD QRC odd sub AR’ Q Q Q Q Q QW

9 PW QR11 QRA QRD QRC QRB sub AR’ Q Q Q Q QW

10 PW QR10 QRB QRA QRD QRC odd sub AR’ Q Q Q QW

11 PW RL1 QR00 QRB QRA QRD QRC QRB sub AR’ Q Q QW

12 PW QR1S QR01 QRC QRB QRA QRD QRC odd sub AR’ Q QW

13 PW QR0S QR00 QRD QRC QRB QRA QRD QRC QRB sub AR’ QW

14 PW RL0 QR10 QRD QRC QRB QRA QRD QRC odd sub PW

15 PW QR0S QR11 QRA QRD QRC QRB QRA QRD QRC AL0 PW

16 PW QR01 QR10 QRB QRA QRD QRC QRB QRA AL PW

17 PW QR00 RL1 QR00 QRB QRA QRD QRC AL QLA PW

18 PW RL0 QR1S QR01 QRC QRB QRA AL QLA QLB PW

19 PW QR0S QR11 QR00 QRD QRC AL QLA QLB QL0S PW

20 PW QR10 QR10 RL0 QR10 AL QLA QLB QLC PW

21 PW QR11 RL1 QR0S QR11 P1s QLA QLB QLC QLD PW

22 PW QR10 QR1S QR01 AL P1 AR QLC QLD QL10 PW

23 PW QR11 QR11 AL QLA P1 QRA AR QLA QL11 PW

24 PW QR10 AL QLA P1 QRA AR QL10 PW

25 PW QR11 P1d PA QLB P1 QRB PA P1d RR1 PW

26 PW AL P1 P1 AR P1 AL P1 P1 AR PW

27 PW P1 PA P1 P1 PA P1 P1 P1 PA P1 P1 PA P1 PW

28 T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 P0 Q

1 P0A010Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 P0 B0A011Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 P0 B0 Q A010Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 P0 B0 R0 Q A011Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 P0 R0 B1 Q Q A010Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 P0 B0 B1 Q R0 Q A011Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 P0 B0 B1 R0 Q Q Q A010Q Q Q Q Q Q Q Q Q Q Q Q Q

8 P0 B0 Q B0 Q Q R0 Q A011Q Q Q Q Q Q Q Q Q Q Q Q

9 P0 B0 Q B0 Q R0 Q Q Q A010Q Q Q Q Q Q Q Q Q Q Q

10 P0 B0 Q B0 R0 Q Q Q R0 Q A011Q Q Q Q Q Q Q Q Q Q

11 P0 B0 Q R0 B1 Q Q R0 Q Q Q A010Q Q Q Q Q Q Q Q Q

12 P0 B0 R0 Q B1 Q R0 Q Q Q R0 Q A011Q Q Q Q Q Q Q Q

13 P0 R0 B1 Q B1 R0 Q Q Q R0 Q Q Q A010Q Q Q Q Q Q Q

14 P0 B0 B1 Q Q B0 Q Q R0 Q Q Q R0 Q A011Q Q Q Q Q Q

15 P0 B0 B1 Q Q B0 Q R0 Q Q Q R0 Q Q Q A010Q Q Q Q Q

16 P0 B0 B1 Q Q B0 R0 Q Q Q R0 Q Q Q R0 Q A011Q Q Q Q

17 P0 B0 B1 Q Q R0 B1 Q Q R0 Q Q Q R0 Q Q Q A010Q Q Q

18 P0 B0 B1 Q R0 Q B1 Q R0 Q Q Q R0 Q Q Q R0 Q A011Q Q

19 P0 B0 B1 R0 Q Q B1 R0 Q Q Q R0 Q Q Q R0 Q Q Q A010Q

20 P0 B0 Q B0 Q Q Q B0 Q Q R0 Q Q Q R0 Q Q Q R0 Q P0

21 P0 B0 Q B0 Q Q Q B0 Q R0 Q Q Q R0 Q Q Q R0 Q A000P0

22 P0 B0 Q B0 Q Q Q B0 R0 Q Q Q R0 Q Q Q R0 Q A001B0 P0

23 P0 B0 Q B0 Q Q Q R0 B1 Q Q R0 Q Q Q R0 Q A000Q B0 P0

24 P0 B0 Q B0 Q Q R0 Q B1 Q R0 Q Q Q R0 Q A001Q R1 B0 P0

25 P0 B0 Q B0 Q R0 Q Q B1 R0 Q Q Q R0 Q A000Q Q B1 R1 P0

26 P0 B0 Q B0 R0 Q Q Q Q B0 Q Q R0 Q A001Q R1 Q B1 B0 P0

27 P0 B0 Q R0 B1 Q Q Q Q B0 Q R0 Q A000Q Q Q R1 B1 B0 P0

28 P0 B0 R0 Q B1 Q Q Q Q B0 R0 Q A001Q R1 Q Q B0 Q B0 P0

29 P0 R0 B1 Q B1 Q Q Q Q R0 B1A000Q Q Q R1 Q B0 Q B0 P0

30 P0 B0 B1 Q B1 Q Q Q R0 Q P0 Q R1 Q Q Q R1 B0 Q B0 P0

31 P0 B0 B1 Q B1 Q Q R0 Q A000P0A010Q R1 Q Q B1 R1 Q B0 P0

32 P0 B0 B1 Q B1 Q R0 Q A001B0 P0 B0A011Q R1 Q B1 Q R1 B0 P0

33 P0 B0 B1 Q B1 R0 Q A000Q B0 P0 B0 Q A010Q R1 B1 Q B1 R1 P0

34 P0 B0 B1 Q Q B0A001Q R1 B0 P0 B0 R0 Q A011B0 Q Q B1 B0 P0

35 P0 B0 B1 Q Q P1 Q Q B1 R1 P0 R0 B1 Q Q P1 Q Q B1 B0 P0

36 P0 B0 B1 Q A100P1A110Q B1 B0 P0 B0 B1 Q A100P1A110Q B1 B0 P0

37 P0 B0 B1A101R1 P1 R0A111B1 B0 P0 B0 B1A101R1 P1 R0A111B1 B0 P0

38 P0 B0 P0 P0 B0 P1 B0 P0 P0 B0 P0 B0 P0 P0 B0 P1 B0 P0 P0 B0 P0

39 P0 P0 P0 P0 P0 P1 P0 P0 P0 P0 P0 P0 P0 P0 P0 P1 P0 P0 P0 P0 P0

40 T

Fig. 6.4 Snapshots for synchronization processes on 21 cells, each for Waksman’s algorithm [45]
on O(1)-bit-communication model (left) and NSU implementation [25] on CA1-bit (right)

constructed CA1-bit synchronizes n cell in 2n − 1 steps and each cell has 54 states
and 207 transition rules.

Theorem 3 (Umeo, Yanagihara and Kanazawa [42]) There exists a 54-state CA1-bit
that can synchronize any n cells in 2n − 1 non-optimum-step.

Umeo and Yanagihara [41] also constructed a smaller optimum-time implemen-
tation based on Gerken’s synchronization algorithm [9] on the O(1)-bit-
communication model. The constructed CA1-bit has 35 internal states and 114 tran-
sition rules. Table 6.2 presents its transition rule set for the 35-state synchronization
protocol and Figure 6.5 shows snapshots for synchronization processes on 17 cells,
each for Gerken’s algorithm [9] on O(1)-bit-communication model (left) and our
35-state algorithm [41] on the CA1-bit (right).

Theorem 4 (Umeo and Yanagihara [41]) There exists a 35-state CA1-bit that can
synchronize n cells with the general on the left end in 2n − 2 steps.

124 H. Umeo

Table 6.2 Transition table for a 35-state implementation of the optimum-time synchronization
algorithm (Umeo and Yanagihara [41])

1 R = 0 R = 1

L = 0

L = 1

Q

(Q,0,0) (Q,0,0)

(RA,0,1) (LGW,1,1)

2 R = 0 R = 1

L = 0

L = 1

RGW

(RGW,0,1) (F,0,0)

(RGW,1,1) (F,0,0)

3 R = 0 R = 1

L = 0

L = 1

RPW

(RPW,0,1) (LGW,1,1)

-- --

4 R = 0 R = 1

L = 0

L = 1

RA

(RQoS,0,0) --

(RP,0,0) --

5 R = 0 R = 1

L = 0

L = 1

RQoS

(RQ0A,0,1) (LP’,1,0)

(RQeS,0,0) (LP,1,0)

6 R = 0 R = 1

L = 0

L = 1

RQeS

(RQ1B,1,0) --

(RG1,0,1) --

7 R = 0 R = 1

L = 0

L = 1

RQ1A

(RQ0A,0,0) (LG,1,0)

-- --

8 R = 0 R = 1

L = 0

L = 1

RQ0A

(RQ1A,0,0) (RQ1A,1,0)

(RQ1A,0,0) (RP1,1,1)

9 R = 0 R = 1

L = 0

L = 1

RQ1B

(RQ0B,0,0) (LP,1,0)

-- --

10 R = 0 R = 1

L = 0

L = 1

RQ0B

(RQ1B,0,0) (RQ1B,1,0)

(RQ1B,0,0) (RG1,1,1)

11 R = 0 R = 1

L = 0

L = 1

RQ1C

(LQ1B,0,0) (LQ1C,0,0)

(RQ0C,0,0) (LP,1,0)

12 R = 0 R = 1

L = 0

L = 1

RQ0C

(LQ1A,0,1) --

(RQ1C,0,0) (RG1,0,1)

13 R = 0 R = 1

L = 0

L = 1

RG1

(RG0,0,0) (LPW,1,0)

(RG0,0,0) (LPW,1,0)

14 R = 0 R = 1

L = 0

L = 1

RG0

(RG1,0,1) (RQ1B,0,0)

(RG1,0,1) (RQ1C,0,0)

15 R = 0 R = 1

L = 0

L = 1

RP1

(RP0,0,0) (LGW,1,1)

-- --

16 R = 0 R = 1

L = 0

L = 1

RP0

(RP1,0,1) (RQ1A,1,0)

-- --

17 R = 0 R = 1

L = 0

L = 1

RG

(LQ1C,0,0) (LPW,1,0)

(LQ1C,0,0) (LPW,1,0)

18 R = 0 R = 1

L = 0

L = 1

RP

(LQ0C,0,0) (LGW,1,1)

(RP,0,1) (LGW,1,1)

19 R = 0 R = 1

L = 0

L = 1

LGW

(LGW,1,0) (LGW,1,1)

(F,0,0) (F,0,0)

20 R = 0 R = 1

L = 0

L = 1

LPW

(LPW,1,0) --

(RGW,1,1) --

21 R = 0 R = 1

L = 0

L = 1

LQ1A

(LQ0A,0,0) (LQ1B,0,0)

(RG,0,1) (LP1,1,0)

22 R = 0 R = 1

L = 0

L = 1

LQ1B

(LQ0B,0,0) (LQ1A,0,0)

(RP,0,1) (RP,0,0)

23 R = 0 R = 1

L = 0

L = 1

LQ0A

(LQ1A,0,0) (LQ1A,0,0)

(LQ1A,0,1) (LP1,1,1)

24 R = 0 R = 1

L = 0

L = 1

LQ0B

(LQ1B,0,0) (LQ1B,0,0)

(LQ1B,0,1) (LG1,1,1)

25 R = 0 R = 1

L = 0

L = 1

LQ1C

(RQ1B,0,0) (LQ0C,0,0)

(RQ1C,0,0) (RP,0,1)

26 R = 0 R = 1

L = 0

L = 1

LQ0C

(RQ1A,1,0) (LQ1C,0,0)

-- (LG1,1,0)

27 R = 0 R = 1

L = 0

L = 1

LG1

(LG0,0,0) (LG0,0,0)

(RPW,0,1) (RPW,0,1)

28 R = 0 R = 1

L = 0

L = 1

LG0

(LG1,1,0) (LG1,1,0)

(LQ1B,0,0) (LQ1C,0,0)

29 R = 0 R = 1

L = 0

L = 1

LP1

(LP0,0,0) (LP0,0,0)

(RGW,1,1) (RPW,0,0)

30 R = 0 R = 1

L = 0

L = 1

LP0

(LP1,1,0) (LP1,1,0)

(LQ1A,0,1) (LQ1B,0,0)

31 R = 0 R = 1

L = 0

L = 1

LG

(RQ1C,0,0) (RQ1C,0,0)

(RPW,0,1) (RPW,0,1)

32 R = 0 R = 1

L = 0

L = 1

LP

(RQ0C,0,0) (LP,1,0)

(RGW,1,1) (RGW,1,1)

33 R = 0 R = 1

L = 0

L = 1

LP’

-- (LQ1A,0,0)

-- (RPW,0,0)

34 R = 0 R = 1

L = 0

L = 1

F

-- --

-- --

35 R = 0 R = 1

L = 0

L = 1

QW

(QW,0,0) --

(LGW,1,0) --

6.3.2 Generalized FSSP with a General at an Arbitrary Point

Section 6.3.2 considers a generalized firing squad synchronization problem which
allows the initial general to be located anywhere on the array. It has been shown to be
impossible to synchronize any array of length n less than n − 2+max(k, n − k + 1)
steps, where the general is located on Ck , 1 ≤ k ≤ n. Moore and Langdon [24],
Szwerinski [30] and Varshavsky et al. [43] developed a generalized optimum-time
synchronization algorithm for O(1)-bit cellular automaton each with 17, 10 and 10
internal states, respectively, that can synchronize any array of length n at exactly
n − 2+max(k, n − k + 1) steps. Recently, Settle and Simon [28] and Umeo et al.
[34] have also proposed a 9-state generalized synchronization algorithm operating
in optimum-step for the O(1)-bit model.

Umeo et al. [34] developed a generalized synchronization algorithm on the
CA1-bit model operating in non-optimum steps. The implementation for the CA1-bit

6 Problem Solving on One-Bit-Communication Cellular Automata 125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 RGW Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 RGW RA Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 RGW RP RA Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 RGW RP RQoSRA Q Q Q Q Q Q Q Q Q Q Q Q Q

4 RGW RP RQeSRQoSRA Q Q Q Q Q Q Q Q Q Q Q Q

5 RGW RP RG1RQ0ARQoSRA Q Q Q Q Q Q Q Q Q Q Q

6 RGW RP RG0RQ1ARQeSRQoSRA Q Q Q Q Q Q Q Q Q Q

7 RGW RP RG1RQ0ARQ1BRQ0ARQoSRA Q Q Q Q Q Q Q Q Q

8 RGW RP RG0 RP1RQ0BRQ1ARQeSRQoSRA Q Q Q Q Q Q Q Q

9 RGW RP RQ1CRP0RQ1BRQ0ARQ1BRQ0ARQoSRA Q Q Q Q Q Q Q

10 RGW RP RQ0CRP1RQ0BRQ1ARQ0BRQ1ARQeSRQoSRA Q Q Q Q Q Q

11 RGW RP RQ1CRP0 RG1RQ0ARQ1BRQ0ARQ1BRQ0ARQoSRA Q Q Q Q Q

12 RGW RP RQ0CRQ1ARG0RQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoSRA Q Q Q Q

13 RGW RP RG1RQ0ARG1RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQoSRA Q Q Q

14 RGW RP RG0RQ1ARG0 RP1RQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoSRA Q Q

15 RGW RP RG1RQ0ARQ1BRP0RQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQoSRA Q

16 RGW RP RG0RQ1ARQ0BRP1RQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoSLGW

17 RGW RP RG1RQ0ARQ1BRP0 RG1RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRA LGW

18 RGW RP RG0RQ1ARQ0BRQ1ARG0RQ1ARQ0BRQ1ARQ0BRQ1ARQ0BRQ1A LP LQ1ALGW

19 RGW RP RG1RQ0ARQ1BRQ0ARG1RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BLG LQ1CLQ1BLGW

20 RGW RP RG0 RP1RQ0BRQ1ARG0 RP1RQ0BRQ1ARQ0BRQ1A LP LQ0CLQ1ALQ1ALGW

21 RGW RP RQ1CRP0RQ1BRQ0ARQ1BRP0RQ1BRQ0ARQ1BLG LQ1CLQ1BLQ0ALP1 LGW

22 RGW RP RQ0CRP1RQ0BRQ1ARQ0BRP1RQ0BRQ1A LP LQ0CLQ1ALQ0BLQ1ALP0 LGW

23 RGW RP RQ1CRP0RQ1BRQ0ARQ1BRP0 RG1 LG LQ1CLQ1BLQ0ALQ1BLQ0ALP1 LGW

24 RGW RP RQ0CRP1RQ0BRQ1ARQ0BRQ1ALGWRGWLQ1ALQ0BLQ1ALQ0BLP1 LP0 LGW

25 RGW RP RQ1CRP0RQ1BRQ0ARQ1BLG LGWRGW RG LQ1BLQ0ALQ1BLP0LQ1BLGW

26 RGW RP RQ0CRP1RQ0BRQ1A LP LQ0CLGWRGWRQ0CRP LQ1ALQ0BLP1LQ1ALGW

27 RGW RP RQ1CRP0 RG1 LG LQ1CLQ1CLGWRGWRQ1CRQ1CRG LG1 LP0LQ1BLGW

28 RGW RP RQ0CRQ1ALGWRGWLQ1ALQ0CLGWRGWRQ0CRQ1ALGWRGWLQ1ALQ1ALGW

29 RGW RP RG1 LG LGWRGW RG LG1 LGWRGWRG1 LG LGWRGW RG LP1 LGW

30 RGW RP LGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGW

31 RGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWLGW

32 F F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 > / / / / / / / / / / / / / / / /
1 >] / / / / / / / / / / / / / / /
2 >] > / / / / / / / / / / / / / /
3 >] ^] / / / / / / / / / / / / /
4 >] ^ / > / / / / / / / / / / / /
5 >] > ^ ^] / / / / / / / / / / /
6 >] > ^ ^ / > / / / / / / / / / /
7 >] > ^ / ^ ^] / / / / / / / / /
8 >] >] ^ ^ ^ / > / / / / / / / /
9 >] ^] ^ ^ / ^ ^] / / / / / / /

10 >] ^] ^ / ^ ^ ^ / > / / / / / /
11 >] ^] > ^ ^ ^ / ^ ^] / / / / /
12 >] ^ / > ^ ^ / ^ ^ ^ / > / / / /
13 >] > ^ > ^ / ^ ^ ^ / ^ ^] / / /
14 >] > ^ >] ^ ^ ^ / ^ ^ ^ / > / /
15 >] > ^ ^] ^ ^ / ^ ^ ^ / ^ ^] /
16 >] > ^ ^] ^ / ^ ^ ^ / ^ ^ ^ / [
17 >] > ^ ^] > ^ ^ ^ / ^ ^ ^ / < [
18 >] > ^ ^ / > ^ ^ / ^ ^ ^ / [< [
19 >] > ^ / ^ > ^ / ^ ^ ^ / < [/ [
20 >] >] ^ ^ >] ^ ^ ^ / [< ^ / [
21 >] ^] ^ ^ ^] ^ ^ / < [/ / < [
22 >] ^] ^ ^ ^] ^ / [< ^ / / < [
23 >] ^] ^ ^ ^] > < [/ / ^ / < [
24 >] ^] ^ ^ ^ / [] ^ / / / [< [
25 >] ^] ^ ^ / < [] > ^ / / [/ [
26 >] ^] ^ / [< [] >] ^ / [/ [
27 >] ^] > < [/ [] ^] > < [/ [
28 >] ^ / [] ^ / [] ^ / [] ^ / [
29 >] > < [] > < [] > < [] > < [
30 >] [] [] [] [] [] [] [] [
31 > < > < > < > < > < > < > < > < >
32 F F F F F F F F F F F F F F F F F

Fig. 6.5 Snapshots for synchronization processes on 17 cells, each for Gerken’s algorithm [9] on
O(1)-bit-communication model (left) and the 35-state implementation (Umeo and Yanagihara [41])
on CA1-bit (right)

has 282-state and 721 transition rules. Kamikawa and Umeo [12] also devel-
oped a generalized synchronization algorithm on the CA1-bit model operating in
n+max(k, n − k + 1) steps, which is one-step larger than optimum-step. The total
numbers of internal states and transition rules of the constructed CA1-bit are 219 and
488, respectively. Figure 6.2 (right) shows a space-time diagram for the optimum-
time generalized firing squad synchronization algorithm. We also show some snap-
shots for the synchronization processes on 21 cells with a general at C7 on CA1-bit
in Fig. 6.6. We present Table 6.3 that shows a quantitative comparison of synchro-
nization algorithms and their implementations proposed so far with respect to the
number of internal states of each finite state automaton, the number of transition
rules realizing the synchronization and time complexity.

Theorem 5 (Kamikawa and Umeo [12]) There exists a 219-state, 488-transition-
rule CA1-bit that can synchronize n cells in n − 1+max(k, n − k + 1) steps, where k
is any integer such that 1 ≤ k ≤ n and a general is located on the kth cell from the
left end of the array.

126 H. Umeo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 SW S S S S S M S S S S S S S S S S S S S SW

1 SW S S S S AL Mp1 AR S S S S S S S S S S S S SW

2 SW S S S AL RL Mp2 RR AR S S S S S S S S S S S SW

3 SW S S AL RL QLC Mp3 QRC RR AR S S S S S S S S S S SW

4 SW S AL RL QLa BLo Ms1 BRo QRa RR AR S S S S S S S S S SW

5 SW AL RL QLC QLb QLA Ms2 QRA QRb QRC RR AR S S S S S S S S SW

6 MW RL QLa BLo QLc QLB Ms3 QRB QRc BRo QRa RR AR S S S S S S S SW

7 MW ECo QLb QLA BLe QLC Ms1 QRC BRe QRA QRb QRC RR AR S S S S S S SW

8 MW Cp0 ECe QLB QLa BLo Ms1 BRo QRa QRB QRc BRo QRa RR AR S S S S S SW

9 MW Cp1 pRE0 ECo QLb QLA Ms2 QRA QRb QRC BRe QRA QRb QRC RR AR S S S S SW

10 MW Cp2 pRE1 pBO0 ECe QLB Ms3 QRB QRc BRo QRa QRB QRc BRo QRa RR AR S S S SW

11 MW Cp1 pRE2 pBO1 pRE0 ECo Ms1 QRC BRe QRA QRb QRC BRe QRA QRb QRC RR AR S S SW

12 MW Cp2 Ct1 pBO2 pRE1 pBO0 sFL1 BRo QRa QRB QRc BRo QRa QRB QRc BRo QRa RR AR S SW

13 MW Cp1 Ct2 RO1 pRE2 BO1 sFL2 QRAx QRb QRC BRe QRA QRb QRC BRe QRA QRb QRC RR AR SW

14 MW Cp2 Ct1 RO2 BE1 BO2 sFLx Fl1 QRc BRo QRa QRB QRc BRo QRa QRB QRc BRo QRa RR MW

15 MW Cp1 Ct2 CO1 BE2 RO1 sFLx Fl2 BRe QRA QRb QRC BRe QRA QRb QRC BRe QRA QRb EQo MW

16 MW Cp2 Rt1 CO2 RE1 RO2 RE1 Fl3 QRa QRB QRc BRo QRa QRB QRc BRo QRa QRB EQe Qp0 MW

17 MW Cp1 Rt2 CO1 RE2 RO1 RE2 RO1 FL1 QRC BRe QRA QRb QRC BRe QRA QRb EQo pLE0 Qp1 MW

18 MW Cp2 Rt1 CO2 RE1 RO2 RE1 RO2 FL2 BRo QRa QRB QRc BRo QRa QRB EQe pAO0 pLE1 Qp2 MW

19 MW Cp1 Rt2 CO1 RE2 RO1 RE2 BO1 FL3 QRAx QRb QRC BRe QRA QRb EQo pLE0 pAO1 pLE2 Qp1 MW

20 MW Cp2 Rt1 CO2 RE1 RO2 BE1 BO2 BE1 Fl1 QRc BRo QRa QRB EQe pAO0 pLE1 pAO2 Qt1 Qp2 MW

21 MW Cp1 Rt2 CO1 RE2 BO1 BE2 BO1 BE2 Fl2 BRe QRA QRb EQo pLE0 pAO1 pLE2 LO1 Qt2 Qp1 MW

22 MW Cp2 Rt1 CO2 CE1 BO2 BE1 BO2 RE1 Fl3 QRa QRB EQe pAO0 pLE1 pAO2 AE1 LO2 Qt1 Qp2 MW

23 MW Cp1 Rt2 BO1 CE2 BO1 BE2 RO1 RE2 RO1 FL1 EQo pLE0 pAO1 pLE2 LO1 AE2 QO1 Qt2 Qp1 MW

24 MW Cp2 Ct1 BO2 CE1 BO2 RE1 RO2 RE1 RO2 MC pAO0 pLE1 pAO2 AE1 LO2 LE1 QO2 Lt1 Qp2 MW

25 MW Cp1 Ct2 BO1 CE2 RO1 RE2 RO1 RE2 BO1 MC pAO1 pLE2 LO1 AE2 AO1 LE2 QO1 Lt2 Qp1 MW

26 MW Cp2 Ct1 BO2 CE1 RO2 RE1 RO2 BE1 eQo MC eCo AE1 LO2 LE1 AO2 QE1 QO2 Lt1 Qp2 MW

27 MW Cp1 Ct2 BO1 CE2 RO1 RE2 BO1 eQe Qp1 MC Cp1 eCe AO1 LE2 LO1 QE2 AO1 Lt2 Qp1 MW

28 MW Cp2 Ct1 BO2 CE1 RO2 BE1 eQo pLE1 Qp2 MC Cp2 pRE1 eCo AE1 LO2 QE1 AO2 Qt1 Qp2 MW

29 MW Cp1 Ct2 BO1 CE2 CO1 eQe pAO1 pLE2 Qp1 MC Cp1 pRE2 pBO1 eCe QO1 QE2 AO1 Qt2 Qp1 MW

30 MW Cp2 Ct1 BO2 RE1 MC pLE1 pAO2 Qt1 Qp2 MC Cp2 Ct1 pBO2 pRE1 MC LE1 AO2 Qt1 Qp2 MW

31 MW Cp1 Ct2 RO1 OQe MC OCe LO1 Qt2 Qp1 MC Cp1 Ct2 RO1 OQe MC OCe LO1 Qt2 Qp1 MW

32 MW Cp2 Ct1 OQo Qp0 MC Cp0 OCo Qt1 Qp2 MC Cp2 Ct1 OQo Qp0 MC Cp0 OCo Qt1 Qp2 MW

33 MW Cp1 pMC MC Qp1 MC Cp1 MC pMC Qp1 MC Cp1 pMC MC Qp1 MC Cp1 MC pMC Qp1 MW

34 MW MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MW

35 F

Fig. 6.6 Snapshots for the generalized synchronization processes on 21 cells with a general at C7
on CA1-bit

6 Problem Solving on One-Bit-Communication Cellular Automata 127

Table 6.3 A list of firing squad synchronization algorithms for CA1-bit. A symbol “∗” indicates
the reconstructed rule set given in Table 6.1

Implementations
No. of
states

No. of
rules Time complexity

Prototype
algorithms

Mazoyer [21] 61∗(58) 167∗ 2n − 2 Balzer [4]
Nishimura et al. [25] 78 208 2n − 2 Waksmann [45]
Umeo et al. [42] 54 207 2n − 1 Mazoyer [19]
Umeo and Yanagihara [41] 35 114 2n − 2 Gerken [9]
Umeo et al. [34] 282 721 n + max(k, n − k + 1) –
Kamikawa and Umeo [12] 219 488 n − 1 + max(k, n − k + 1) –

6.4 Prime Sequence Generation Problem

Sequence generation is an important, fundamental problem in cellular automata.
Arisawa [3], Fischer [8], Korec [4] and Mazoyer and Terrier [20] have considered
the sequence generation problem on the conventional O(1)-bit cellular automata
model. Fischer [8] showed that the prime sequence can be generated in real-time
on the O(1)-bit cellular automata with 11 states for C1 and 37 states for Ci (i ≥ 2).
Arisawa [3] also developed a real-time prime generator and decreased the number
of states of each cell to 22. Korec [14] reported a real-time prime generator having
11 states on the same model.

Here we study a real-time prime generator on CA1-bit. The sequence generation
problem on CA1-bit can be defined as follows: Let M be a CA1-bit, and {tn| n =
1, 2, 3, . . .} be an infinite monotonically increasing positive integer sequence defined
on natural numbers such that tn ≥ n for any n ≥ 1. We then have a semi-infinite
array of cells, and all cells, except for C1, are in the quiescent state at time t = 0.
The communication cell C1 assumes a special state r in Q and outputs 1 to its right
communication link at time t = 0 for initiation of the sequence generator. We say
that M generates a sequence {tn| n = 1, 2, 3, . . .} in k linear-time if and only if
the leftmost end cell of M falls into a special state in F ⊆ Q and outputs 1 to its
leftmost communication link at time t = ktn , where k is a positive integer. We call
M a real-time generator when k = 1.

In this section, we present a real-time prime generation algorithm on CA1-bit.
The algorithm is implemented on a CA1-bit using 34 internal states and 71 transition
rules. Our real-time prime generation algorithm is based on the well-known sieve
of Eratosthenes. Details can be found in Umeo and Kamikawa [37]. Figure 6.7 is a
space-time diagram for the real-time prime generation algorithm. We have imple-
mented the algorithm on a computer. Each cell has 34 internal states and 71 transi-
tion rules. The transition rule set is given in Table 6.4. We have tested the validity
of the rule set from t = 0 to t = 20000 steps. In Fig. 6.8, we show a number of
snapshots of the configuration from t = 0 to 40. The readers can see that the first 11
primes can be generated in real-time by the left end cell. Now we have:

Theorem 6 (Umeo and Kamikawa [37]) Prime sequence can be generated by a
CA1-bit in real-time.

Table 6.5 is a list of typical non-regular sequences generated by CA1-bit in real-
time.

128 H. Umeo

C4 C9 C25C16
t = 0

t = 2
t = 3

t = 5

t = 7

t = 11

t = 13

t = 17

t = 19

t = 23

t = 29

t = 37

t = 31

t = 41

t = 43

t = 47

t = 53

t = 59

t = 61

t = 67

t = 71

t = 73

4 steps

4 steps

4 steps

C1

Cell Space

Time

Fig. 6.7 Space-time diagram for real-time prime generation

6 Problem Solving on One-Bit-Communication Cellular Automata 129

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 P0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 P1 A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 P2 A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 So R A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 dd R A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 So B R A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 N0 U2 B A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 So U3 P WV A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 N0 C Z WT Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 N1 Z Z WT A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 N0 C Z WT A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

11 So Z C WT R A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

12 N0 Z Z WX R A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

13 So Z C wx R R A0 Q Q Q Q Q Q Q Q Q Q Q Q Q

14 N0 C Z J0 R R A1 Q Q Q Q Q Q Q Q Q Q Q Q Q

15 N1 Z Z J1 B R R A0 Q Q Q Q Q Q Q Q Q Q Q Q

16 N0 C Z WZ S C R A1 Q Q Q Q Q Q Q Q Q Q Q Q

17 So Z C WZ U0 Z B R A0 Q Q Q Q Q Q Q Q Q Q Q

18 N0 Z Z WC U1 C P B A1 Q Q Q Q Q Q Q Q Q Q Q

19 So Z C WZ U2 Z D1 S WV A0 Q Q Q Q Q Q Q Q Q Q

20 N0 C Z WZ U3 Z D2 U0 WY Q Q Q Q Q Q Q Q Q Q Q

21 N1 Z Z WZ C Z Z Z WT Q Q Q Q Q Q Q Q Q Q Q

22 N0 C Z WC Z Z Z Z WT A0 Q Q Q Q Q Q Q Q Q Q

23 So Z H0 WZ C Z Z Z WT A1 Q Q Q Q Q Q Q Q Q Q

24 N0 C H1 WC Z C Z Z WT R A0 Q Q Q Q Q Q Q Q Q

25 N1 H1 C WZ Z Z C Z WT R A1 Q Q Q Q Q Q Q Q Q

26 N0 C Z WZ Z Z Z C WT R R A0 Q Q Q Q Q Q Q Q

27 N1 Z Z WZ Z Z Z Z WX R R A1 Q Q Q Q Q Q Q Q

28 N0 C Z WZ Z Z Z C wx R R R A0 Q Q Q Q Q Q Q

29 So Z C WZ Z Z C Z J0 R R R A1 Q Q Q Q Q Q Q

30 N0 Z Z WC Z C Z Z J1 B R R R A0 Q Q Q Q Q Q

31 So Z C WZ C Z Z Z WZ S B R R A1 Q Q Q Q Q Q

32 N0 C Z WC Z Z Z Z WZ D0 S B R R A0 Q Q Q Q Q

33 N1 Z C WZ C Z Z Z WZ D1 S S C R A1 Q Q Q Q Q

34 N0 H0 Z WZ Z C Z Z WZ D2 S C Z B R A0 Q Q Q Q

35 N1 H1 C WZ Z Z C Z WZ Z U0 Z Z P B A1 Q Q Q Q

36 N0 Z Z WC Z Z Z C WZ Z U1 C Z P S WV A0 Q Q Q

37 So Z C WZ Z Z Z Z WC Z U2 Z C P C WY Q Q Q Q

38 N0 C Z WZ Z Z Z C WZ Z U3 Z Z C Z WY Q Q Q Q

39 N1 Z Z WZ Z Z C Z WZ Z C Z Z Z C WY Q Q Q Q

40 N0 C Z WZ Z C Z Z WZ C Z Z Z Z Z WT Q Q Q Q

Fig. 6.8 A configuration of real-time generation of prime sequences on the CA1-bit with 34 states

130 H. Umeo

Table 6.4 Transition rule set for real-time prime generator

Internal states : {Q, P0, P1, P2, R, S, Z,
So, N0, N1, A0, A1, B, C, D0, D1, D2,
U0, U1, U2, U3, WV, WY, WX, wx, WT,
WZ, WC, dd, P, J0, J1, H0, H1}

Current
state Input from right lin k

Input
from

left link

(next state ,
left output ,

right output)

1
R = 0 R = 1

L = 0

L = 1

Q

(Q,0,0) --

(A0,0,0) --

2
R = 0 R = 1

L = 0

L = 1

P0

(P1,0,0) --

-- --

3
R = 0 R = 1

L = 0

L = 1

P1

(P2,1,0) --

-- --

4
R = 0 R = 1

L = 0

L = 1

P2

(So,1,0) --

-- --

5
R = 0 R = 1

L = 0

L = 1

R

(R,0,0) (R,0,0)

(B,0,1) (C,1,1)

6
R = 0 R = 1

L = 0

L = 1

S

(S,0,0) (C,1,0)

(D0,0,0) (U0,0,1)

7
R = 0 R = 1

L = 0

L = 1

Z

(Z,0,0) (C,1,0)

(C,0,1) (H0,1,1)

8
R = 0 R = 1

L = 0

L = 1

So

(N0,0,0) (dd,0,1)

-- --

9
R = 0 R = 1

L = 0

L = 1

N0

(So,1,0) (N1,0,1)

-- --

10
R = 0 R = 1

L = 0

L = 1

N1

(N0,0,0) (N0,0,0)

-- --

11
R = 0 R = 1

L = 0

L = 1

A0

(A1,0,1) --

(Q,0,0) --

12
R = 0 R = 1

L = 0

L = 1

A1

(R,1,0) --

(WV,1,1) --

13
R = 0 R = 1

L = 0

L = 1

B

(S,0,0) (P,0,0)

(P,0,1) (U2,0,1)

14
R = 0 R = 1

L = 0

L = 1

C

(Z,0,0) (H1,1,0)

-- --

15
R = 0 R = 1

L = 0

L = 1

D0

(D1,0,0) --

-- --

16
R = 0 R = 1

L = 0

L = 1

D1

(D2,0,1) --

-- --

17
R = 0 R = 1

L = 0

L = 1

D2

(Z,0,0) --

-- --

18
R = 0 R = 1

L = 0

L = 1

U0

(U1,0,0) --

(Z,0,0) --

19
R = 0 R = 1

L = 0

L = 1

U1

(U2,0,0) --

-- --

20
R = 0 R = 1

L = 0

L = 1

U2

(U3,0,0) --

-- --

21
R = 0 R = 1

L = 0

L = 1

U3

(C,1,0) --

-- --

22
R = 0 R = 1

L = 0

L = 1

WV

(WY,0,0) --

(WT,0,1) --

23
R = 0 R = 1

L = 0

L = 1

WY

(WY,0,0) (WY,0,0)

(WT,0,1) (WX,0,0)

24
R = 0 R = 1

L = 0

L = 1

WX

(wx,0,0) --

-- --

25
R = 0 R = 1

L = 0

L = 1

wx

(J0,0,1) --

-- --

26
R = 0 R = 1

L = 0

L = 1

WT

(WT,0,0) (WT,0,0)

(WX,1,0) (WX,1,0)

27
R = 0 R = 1

L = 0

L = 1

WZ

(WZ,0,0) (WC,1,1)

(WC,1,0) (WC,1,1)

28
R = 0 R = 1

L = 0

L = 1

WC

(WZ,0,0) (WZ,0,0)

-- --

29
R = 0 R = 1

L = 0

L = 1

dd

(So,1,1) --

-- --

30
R = 0 R = 1

L = 0

L = 1

P

(P,0,0) (Z,0,0)

(D1,0,1) (C,0,1)

31
R = 0 R = 1

L = 0

L = 1

J0

(J1,0,0) --

-- --

32
R = 0 R = 1

L = 0

L = 1

J1

(WZ,0,1) --

-- --

33
R = 0 R = 1

L = 0

L = 1

H0

(H1,1,0) --

-- --

34
R = 0 R = 1

L = 0

L = 1

H1

(Z,0,0) (C,1,0)

(Z,0,0) (C,1,0)

Table 6.5 A list of non-regular sequences generated by CA1-bit in real-time

Sequences No. of states No. of rules Time complexity References

{2n | n = 1, 2, 3, . . .} 4 12 Real-time Umeo and Kamikawa [36]
{n2| n = 1, 2, 3, . . .} 3 7 Real-time Umeo and Kamikawa [36]
Fibonacci 9 26 Real-time Umeo and Kamikawa [36]
Prime 34 71 Real-time Umeo and Kamikawa [37]

6.5 Early Bird Problem

In this section, we study an early bird problem on CA1-bit. Consider a one-
dimensional CA1-bit consisting of n cells in which any cell initially in a quiescent
state may be excited from outside world. The problem is to describe the automata

6 Problem Solving on One-Bit-Communication Cellular Automata 131

(state set and next state function) so that the first excitation(s) can be distinguished
from the later excitations. This problem was originally devised by Rosenstiehl et al.
[27] to design some graph-theoretic algorithms operating on networks of finite state
automata with O(1)-bit communication. Rosenstiehl et al. [27] presented a 2n-step
solution on a condition that at most one excitation occurs at each step. Vollmar [44]
extended the problem allowing more than one cell to be excited at a given step.
Legendi and Katona [16] gave a 5-state solution with multiple excitations operating
in 3n+O(1) steps on a conventional CA of length n. Kleine-Büning [13] showed that
the 5-state solution developed by Legendi and Katona [16] is the optimal solution
with regard to the number of internal states of each cell on the O(1)-bit communi-
cation model.

Based on the 5-state solution given by Legendi and Katona [16], Umeo et al. [40]
have given a 37-state implementation on CA1-bit of size n operating in 6n+O(1)
steps. In our implementation, multiple birds are allowed to appear at only even
steps. Two steps are required for the simulation of each one step of Legendi and
Katona’s solution. Thus the time complexity for the implemented algorithm is twice.
An improvement in the time complexity seems to be difficult. Figure 6.9 shows some
snapshots of the 37-state implementation. An appearance of the early bird is repre-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 QW Q B Q Q Q Q Q Q Q Q B Q Q Q Q B Q Q QW

1 QW q B_ q Q Q Q Q Q Q q B_ q Q Q q B_ q Q QW

2 QW La B_ Ra Q Q Q Q B Q La B_ Ra Q Q La B_ Ra Q QW

3 QW_ Lb B_ Rb q Q Q q B_ q Lb B_ Rb q q Lb B_ Rb q QW

4 QW_ L3a B_ R3a Ra B Q La B_ q L3a B_ R3a Ra La L3a B_ R3a Ra QW

5 LRW L3b B_ R3b Rb’ B10 q Lb B_ N L3b B_ R3b Rb’ Lb’ L3b B_ R3b Rb QW_

6 Nl L3a B_ R3a Nr R4a q L3a B01 L2a Nl B_ R3a Nr Nl L3a B_ R3a R2aQW_

7 Nlb L3b B_ R3b Nrb R3b N L3b B01 L2b Nlb B_ R3b Nrb Nlb L3b B_ R3b R2b LRW

8 L2a Nl B_ Nr R4a Nr N Nl L4a Nla N B10 Nr R2a L2a Nl B_ R3a R2a Nr

9 L2b Nlb B_ Nrb R3b Nrb N Nlb L3b Nlb N B10 Nrb R2b L2b Nlb B_ R3b R2b Nrb

10 Nla N B11 Nr2 Nr R2a N L2a Nl Nl2 N B11 N Nra Nla N B10 R3a Nr R2a

11 Nlb N B11 Nr2 Nrb R2b N L2b Nlb Nl2 N B11 N Nrb Nlb N B10 R3b Nrb R2b

12 N N B11 N N Nra N Nla N N N B11 N N N N B10 Nr R2a Nra

13 N N B11 N N Nrb N Nlb N N N B11 N N N N B10 Nrb R2b Nrb

14 N N B11 N N N N N N N N B11 N N N N B11 N Nra R2a

15 N N B11 N N N N N N N N B11 N N N N B11 N Nrb R2b

16 N N B11 N N N N N N N N B11 N N N N B11 N N Nra

17 N N B11 N N N N N N N N B11 N N N N B11 N N Nrb

18 N N B11 N N N N N N N N B11 N N N N B11 N N N

Fig. 6.9 Snapshots of a 37-state implementation of the early bird problem on CA1-bit

132 H. Umeo

sented by an internal state “B” with output signal “1” to both neighbors. In Fig. 6.9,
three birds appear on C3, C12 and C17 at time t = 0 and one bird appear on C9 at
time t = 2 and on C6 at time t = 4, respectively. The first three birds can survive
and the last two birds will be killed. The transition rule set is given in Table 6.6.

Theorem 7 (Umeo, Michisaka, Kamikawa, and Kanazawa [40]) There exists a
37-state CA1-bit that can solve the early bird problem in 6n+O(1) steps under
an assumption such that multiple excitations are allowed to appear at only even
steps.

Table 6.6 Transition rule set for early bird generator

Internal state : {Q, q, QW, QW, B, B_, BW, BW, B01, B10, B11, Ra, Rb, R2a,
 R2b, R3a, R3b, R4a, La, Lb, L2a, L2b, L3a, L3b, L4a, LRW, Nr,
 Nra, Nrb, Nr2, Nl, Nla, Nlb, Nl2, N, Lb’, Rb’}

Current
state Input from right lin k

Input
from

left link

(next state ,
left output ,

right output)

1
R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0 R = 1

L = 0

L = 1

Q

(Q,0,0) (q,0,0)

(q,0,0) (q,0,0)

2

L = 0

L = 1

q

(N,1,1) (La,1,0)

(Ra,0,1) (q,0,0)

3

L = 0

L = 1

QW

(QW,0,0) (QW_,0,0)

(QW_,0,0) --

4

L = 0

L = 1

QW_

(LRW,0,0) (QW_,0,0)

(QW_,0,0) --

5

L = 0

L = 1

B

(B_,1,1) (B01,1,0)

(B10,0,1) (B11,0,0)

6

L = 0

L = 1

B_

(B_,0,0) (B01,0,0)

(B10,0,0) (B11,0,0)

7

L = 0

L = 1

BW

(BW_,1,1) (B11,0,0)

(B11,0,0) --

8

L = 0

L = 1

BW_

(BW_,0,0) (B11,0,0)

(B11,0,0) --

9

L = 0

L = 1

B01

(B01,0,0) (L4a,0,0)

(B11,0,0) (L2a,0,0)

10

L = 0

L = 1

B10

(B10,0,0) (B11,0,0)

(R4a,0,0) (R2a,0,0)

11

L = 0

L = 1

B11

(B11,0,0) (L2a,0,0)

(R2a,0,0) (N,0,0)

12

L = 0

L = 1

Ra

(Rb,0,1) (Rb’,0,1)

-- --

13

L = 0

L = 1

Rb

(R3a,0,0) (Nr,0,0)

(R2a,0,0) (Nr,0,0)

(R3a,0,0) (Nr,0,0)

(R2a,0,0) (Nr,0,0)

14

L = 0

L = 1

R2a

(R2b,0,1) --

-- --

15

L = 0

L = 1

R2b

(Nra,0,0) (Nra,0,0)

(R2a,0,0) (Nr,0,0)

16

L = 0

L = 1

R3a

(R3b,0,1) --

-- --

17

L = 0

L = 1

R3b
18

L = 0

L = 1

R4a

(R3b,1,1) --

-- --

19

L = 0

L = 1

La

(Lb,1,0) --

(Lb’,1,0) --

20

L = 0

L = 1

Lb

(L3a,0,0) (L2a,0,0)

(Nl,0,0) (Nl,0,0)

21

L = 0

L = 1

L2a

(L2b,1,0) --

-- --

22

L = 0

L = 1

L2b

(Nla,0,0) (L2a,0,0)

(Nla,0,0) (Nl,0,0)

23

L = 0

L = 1

L3a

(L3b,1,0) --

-- --

24

L = 0

L = 1

L3b

(L3a,0,0) (L3a,0,0)

(Nl,0,0) (Nl,0,0)

25

L = 0

L = 1

L4a

(L3b,1,1) --

-- --

26

L = 0

L = 1

LRW

(q,0,0) (Nl,0,0)

(Nr,0,0) --

27

L = 0

L = 1

Nr

(Nrb,1,0) --

-- --

28

L = 0

L = 1

Nra

(Nrb,0,0) --

-- --

29

L = 0

L = 1

Nrb

(N,0,0) (Nr2,0,0)

(R2a,0,0) (R4a,0,0)

30

L = 0

L = 1

Nr2

(Nr2,0,0) (N,0,0)

(R4a,0,0) (R2a,0,0)

31

L = 0

L = 1

Nl

(Nlb,0,1) --

-- --

32

L = 0

L = 1

Nla

(Nlb,0,0) --

-- --

33

L = 0

L = 1

Nlb

(N,0,0) (L2a,0,0)

(Nl2,0,0) (L4a,0,0)

34

L = 0

L = 1

Nl2

(Nl2,0,0) (L4a,0,0)

(N,0,0) (L2a,0,0)

35

L = 0

L = 1

N

(N,0,0) (L2a,0,0)

(R2a,0,0) (N,0,0)

36

L = 0

L = 1

Lb'

(Nl,0,0) (Nl,0,0)

(Nl,0,0) (Nl,0,0)

37

L = 0

L = 1

Rb'

(Nr,0,0) (Nr,0,0)

(Nr,0,0) (Nr,0,0)

6 Problem Solving on One-Bit-Communication Cellular Automata 133

6.6 Firing Squad Synchronization Problem on 2-D CA1-bit

Here we consider the FSSP again on two-dimensional arrays. The FSSP on 2-D
arrays for O(1)-bit communication model is studied in Umeo et al. [38]. Figure 6.10
shows a finite two-dimensional (2-D) cellular array consisting of m × n cells. A
cell on (i, j) is denoted by Ci, j . Each cell is an identical (except the border cells)
finite state automaton. The array operates in lock-step mode in such a way that the
next state of each cell (except border cells) is determined by both its own present
state and the present binary inputs from its north, south, east and west neighbors.
The cell also outputs four binary values to its north, west, south and east neighbors,
depending on both its own present state and the present binary inputs from its north,
south, east and west neighbors. Thus we assume a von Neumann-like neighborhood
with the 1-bit communication. All cells except for the general cell are initially in the
quiescent state and have a property such that the next state of a quiescent cell with
four 0 inputs is the quiescent state and outputs 0 to its four neighbors.

The FSSP on 2-D CA1-bit is defined as follows: Given an array of m×n identical
cells, including a General on C1,1 cell that is activated at time t = 0, we want to
describe (state set and next-state function) the automata such that, at some future
time, all of the cells will simultaneously and for the first time enter a special firing
state. The set of states and transition rules must be independent of m and n. The
difficult part of this problem is that the same types of cells with a fixed number of
states must be synchronized, regardless of the size m and n of the array. The firing
squad synchronization problem on 2-D 1-bit communication cellular automata has
been studied by Torre et al. [31], Gruska et al. [11], and Umeo et al. [40]. This
section presents two 1-bit implementations for square and rectangular arrays.

1 2 n43

1

2

m

C11 C12 C13 C14 C1n

C21 C22 C23 C24 C2n

Cm1 Cm2 Cm3 Cm4 Cmn

Fig. 6.10 Two-dimensional cellular automaton

6.6.1 Synchronization Algorithm on Square Arrays

The first one is for square arrays given in Umeo et al. [40]. It runs in (2n − 1)
steps on n × n square arrays. The proposed implementation is one step slower than

134 H. Umeo

1 2 3 4 5 6 7 8

P W LT Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

1

2

3

4

5

6

7

8 Q W Q W Q W Q W Q W Q W Q W Q W

step 0
1 2 3 4 5 6 7 8

PWLT xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 1
1 2 3 4 5 6 7 8

PWLT AR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 2
1 2 3 4 5 6 7 8

PWLT BR01 AR’ xPWLT Q Q Q QW

bR01 PWLT xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 3

1 2 3 4 5 6 7 8

PWLT BR00 subH AR’ xPWLT Q Q QW

bR00 PWLT AR’ xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 4
1 2 3 4 5 6 7 8

PWLT BR0S odd subH AR’ xPWLT Q QW

bR0S PWLT BR01 AR’ xPWLT Q Q QW

odd bR01 PWLT xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 5
1 2 3 4 5 6 7 8

PWLT QR0S BR11 QRB subH AR’ xPWLT QW

QR0S PWLT BR00 subH AR’ xPWLT Q QW

bR11 bR00 PWLT AR’ xPWLT Q Q QW

QRB subV aR’ xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 6
1 2 3 4 5 6 7 8

PWLT BR0u1 BR10 QRC odd subH AR’ xPWRB

bR0u1 PWLT BR0S odd subH AR’ xPWLT QW

bR10 bR0S PWLT BR01 AR’ xPWLT Q QW

QRC odd bR01 PWLT xPWLT Q Q QW

odd subV aR’ xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

1

2

3

4

5

6

7

8 xPWRB QW QW QW QW QW QW QW

step 7

1 2 3 4 5 6 7 8

PWLT BR0u0 BR1S QRD QRC QRB subH PWRB

bR0u0 PWLT QR0S BR11 QRB subH AR’ xPWRB

bR1S QR0S PWLT BR00 subH AR’ xPWLT QW

QRD bR11 bR00 PWLT AR’ xPWLT Q QW

QRC QRB subV aR’ xPWLT Q Q QW

QRB subV aR’ xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

1

2

3

4

5

6

7

8 PWRB xPWRB QW QW QW QW QW QW

step 8
1 2 3 4 5 6 7 8

PWLT BR0uS QR10 BR01 QRD QRC AL1 PWRB

bR0uS PWLT BR0u1 BR10 QRC odd subH PWRB

QR10 bR0u1 PWLT BR0S odd subH AR’ xPWRB

bR01 bR10 bR0S PWLT BR01 AR’ xPWLT QW

QRD QRC odd bR01 PWLT xPWLT Q QW

QRC odd subV aR’ xPWLT Q Q QW

AL1 subV aR’ xPWLT Q Q Q QW

1

2

3

4

5

6

7

8 PWRB PWRB xPWRB QW QW QW QW QW

step 9
1 2 3 4 5 6 7 8

PWLT BR0v0 QR11 BR00 QRA AL QLA PWRB

bR0v0 PWLT BR0u0 BR1S QRD QRC AL0 PWRB

QR11 bR0u0 PWLT QR0S BR11 QRB subH PWRB

bR00 bR1S QR0S PWLT BR00 subH AR’ xPWRB

QRA QRD bR11 bR00 PWLT AR’ xPWLT QW

AL QRC QRB subV aR’ xPWLT Q QW

QLA AL0 subV aR’ xPWLT Q Q QW

1

2

3

4

5

6

7

8 PWRB PWRB PWRB xPWRB QW QW QW QW

step 10
1 2 3 4 5 6 7 8

PWLT BR0v1 QR10 BR0S AL QLA BL01 PWRB

bR0v1 PWLT BR0uS QR10 BR01 AL BL01 PWRB

QR10 bR0uS PWLT BR0u1 BR10 QRC AL1 PWRB

bR0S QR10 bR0u1 PWLT BR0S odd subH PWRB

AL bR01 bR10 bR0S PWLT BR01 AR’ xPWRB

QLA AL QRC odd bR01 PWLT xPWLT QW

bL01 bL01 AL1 subV aR’ xPWLT Q QW

1

2

3

4

5

6

7

8 PWRB PWRB PWRB PWRB xPWRB QW QW QW

step 11

1 2 3 4 5 6 7 8

PWLT BR0v0 RL1 P1d PA QLB BL00 PWRB

bR0v0 PWLT BR0v0 QR11 P1s QLA BL00 PWRB

RL1 bR0v0 PWLT BR0u0 BR1S AL QLA PWRB

p1d QR11 bR0u0 PWLT QR0S BR11 AL0 PWRB

pA p1s bR1S QR0S PWLT BR00 subH PWRB

QLB QLA AL bR11 bR00 PWLT AR’ xPWRB

bL00 bL00 QLA AL0 subV aR’ xPWLT QW

1

2

3

4

5

6

7

8 PWRB PWRB PWRB PWRB PWRB xPWRB QW QW

step 12
1 2 3 4 5 6 7 8

PWLT BR0vS AL P1 P1 AR BL0S PWRB

bR0vS PWLT BR0v1 AL P1 AR BL0S PWRB

AL bR0v1 PWLT BR0uS P0d PA BL01 PWRB

p1 AL bR0uS PWLT BR0u1 P0s BL01 PWRB

p1 p1 p0d bR0u1 PWLT BR0S AL1 PWRB

AR AR pA p0s bR0S PWLT BR01 PWRB

bL0S bL0S bL01 bL01 AL1 bR01 PWLT xPWRB

1

2

3

4

5

6

7

8 PWRB PWRB PWRB PWRB PWRB PWRB xPWRB QW

step 13
1 2 3 4 5 6 7 8

PWLT P1 PA P1 P1 PA P1 PWRB

p1 PWLT P1 PA P1 PA P1 PWRB

pA p1 PWLT P0 P0 P0 P0 PWRB

p1 pA p0 PWLT P0 P0 P0 PWRB

p1 p1 p0 p0 PWLT P1 P1 PWRB

pA pA p0 p0 p1 PWLT P0 PWRB

p1 p1 p0 p0 p1 p0 PWLT PWRB

1

2

3

4

5

6

7

8 PWRB PWRB PWRB PWRB PWRB PWRB PWRB xPWRB

step 14
1 2 3 4 5 6 7 8

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

1

2

3

4

5

6

7

8 T T T T T T T T

step 15

Fig. 6.11 Snapshots of the (2n − 1)-step square synchronization algorithm with the general on the
northwest corner

optimum-time for the O(1)-bit communication model. The total numbers of internal
states and transition rules of the CA1-bit are 127 and 405, respectively. Figure 6.11
shows snapshots of configurations of the 127-state implementation running on a
square of size 8 × 8. Gruska, Torre, and Parente [11] presented an optimum-time
algorithm.

Theorem 8 (Gruska, Torre, and Parente [11]) There exists a 2-D CA1-bit that can
synchronize any n × n square arrays in 2n − 2 steps.

6.6.2 Synchronization Algorithm on Rectangle Arrays

The generalized firing squad synchronization algorithm for 1-D arrays presented in
Sect. 6.3.2 can be applied to the problem of synchronizing rectangular arrays with

6 Problem Solving on One-Bit-Communication Cellular Automata 135

the general at the northwest corner. The rectangular array is regarded as min(m, n)
L-shaped 1-D arrays that are synchronized independently using the generalized fir-
ing squad synchronization algorithm. Configurations of the generalized synchro-
nization on 1-D CA1-bit can be embedded on 2-D array. The original embedding
scheme for O(1)-bit communication model was presented in Beyer [5] and Shinahr
[29] in order to synchronize any m × n arrays in optimum m + n + max(m, n)− 3
steps. Umeo et al. [40] have implemented the rectangular synchronization algorithm
for 2-D CA1-bit. The total numbers of internal states and transition rules of the
CA1-bit are 862 and 2217, respectively. Figure 6.12 shows snapshots of the syn-
chronization process on a 5 × 8 rectangular array. Thus we have:

Theorem 9 (Umeo, Michisaka, Kamikawa, and Kanazawa [40]) There exists a 2-D
CA1-bit that can synchronize any m × n rectangular arrays in m + n + max(m, n)
steps.

1 2 3 4 5 6 7 8

JK0 HK1 HK1 HK0 HK0 HK0 HK0 HKX

VK0 JK0 HK0 HK0 HK0 HK0 HK0 HKX

VK0 VK0 JKA HK1 HK1 HKA HK1 HKX

VK0 VK0 VK1 JK0 HK0 HK0 HK0 HKX

1

2

3

4

5 VKX VKX VKX VKX HKX HK1 HKA HKX

step 20
1 2 3 4 5 6 7 8

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

1

2

3

4

5 T T T T T T T T

step 21

1 2 3 4 5 6 7 8

JQLa HK1 HK1 HQRa HI HBl3 HALb HKX

VG JG HK0 HK0 HI HBl1 HQLe0 HKX

VBRf VBRc JRo HK1d HKA HQLb HAl2 HKX

VARb VARb VARe JARb HBr3 HG HQLa HKX

1

2

3

4

5 VKX VKX VKX VKX HKX HAr2 Hsubr HKX

step 18
1 2 3 4 5 6 7 8

JAl1 HK1 HK1 HAr1 HKA HK0d HALc HKX

VKA JAl1 HK0 HK0 HAr1 HK0s HALa HKX

VK0d VK0s JG HK1 HK1 HI HAl3 HKX

VARc VARa VARf JARc HK0d HKA HAl1 HKX

1

2

3

4

5 VKX VKX VKX VKX HKX HAr3 HGOx HKX

step 19

1 2 3 4 5 6 7 8

JBr3 HQRd HFW HGW HQLA HQLB HAL3 HKX

VQRe1 JAr2 HFW HW HQR1 HG0 HAL1 HKX

VBRa VQRo2 JFXB HW HQR1 HQR2 HQRS HKXs

VfARAVSARDVSARA JX HQRS HS xH xHQX1

1

2

3

4

5 VKX VKX VKX VKX xH xVQX1 xVQX1 JQX

step 12
1 2 3 4 5 6 7 8

JQRo1 HAr1 HQRd HFGW HB> HBL1 HQLE0 HKX

VRe JAr3 HQRb HFW HGW HQLA HAL2 HKX

VBRb VQRo1 JBr2 HFW HW HQR1 HGX HKX

VARa VARd VARa JFXA HW HQRS HS xCQX

1

2

3

4

5 VKX VKX VKX VKX HPX xH xVQX1 JQX

step 13

1 2 3 4 5 6 7 8

JRo HK1d HKA HQLb HQLc HBl1 HFALA HKX

VQRe1 JQRe1 HBr3 HG HQLa HQLb HFAL3 HKX

VBRd VBRa JQRo2 HAr2 HQRa HG HFAL1 HKX

VARb VQRe0 VARe JQRe0 HBr1 HQRb HFGOX HKX

1

2

3

4

5 VKX VKX VKX VKX HKX HTSX HtSX HKXs

step 16
1 2 3 4 5 6 7 8

1

2

3

4

5

JG HK1 HK1 HI HQLd HBl2 HALa HKX

VRe JR e HK0d HKA HQLb HQLc HAl3 HKX

VBRe VBRb JQRo 1 HAr3 HG HQLa HAl1 HKX

VARa VARa VARd JARa HBr2 HQRc HGOx HKX

VKX VKX VKX VKX HKX HAr1 HTSX HKX

step 17

1 2 3 4 5 6 7 8

JQRo2 HAr2 HQRa HG HFB> HfBL1 HALA HKX

VQRe0 JQRe1 HBr1 HQRb HFGW HB> HAL3 HKX

VBRc VRo JBr3 HQRd HFW HGW HAL1 HKX

VARb VARe VARb JAr2 HFW HW HQRS HKXs

1

2

3

4

5 VKX VKX VKX VKX HfPX HS xH JQX

step 14
1 2 3 4 5 6 7 8

JQRo1 HAr3 HG HQLa HQLb HFBL1 HfALA HKX

VQRe2 JQRe2 HBr2 HQRc HG HFB> HfAL3 HKX

VBRe VQRo0 JQRo1 HAr1 HQRd HFGW HfAL1 HKX

VARa VARf VARc JAr3 HQRb HFW HGXX HKX

1

2

3

4

5 VKX VKX VKX VKX HFPX HtSX HS xJQX

step 15

1 2 3 4 5 6 7 8

JD1 HQR2 HQR1 HQR2 HQR1 HQR2 HQRS HKXs

VI0 JD2 HQR1 HQR2 HQRS HS xH xHQX1

VQRA VQL1 JD1 HS xH xJ2 xJ2 HQX

VAR2 VIX VL xJ2 xJ2 xJ2 Q HQX

1

2

3

4

5 VKX VKX xCQX xVQX1 xVQX1 VQX VQX JQX

step 8
1 2 3 4 5 6 7 8

JX HQR1 HQR2 HQR1 HQR2 HQR1 HGX HKX

V<S JD1 HQR2 HQR1 HQR2 HQRS HS xCQX

VQRB VI0 JD2 HQRS HS xH xJ2 xHQX1

VAR3 VAR1 VQLS xJ xJ2 xJ2 xJ2 HQX

1

2

3

4

5 VKX VKX VKXs xVQX1 xVQX1 xVQX1 VQX JQX

step 9
1 2 3 4 5 6 7 8

JFXB HW HQR1 HQR2 HQR1 HG0 HAL1 HKX

V<FS JX HQR1 HQR2 HQR1 HQR2 HQRS HKXs

VsBRA V<S JD1 HQR2 HQRS HS xH xHQX1

VQRE0 VAR2 VIX JP xH xJ2 xJ2 xHQX1

1

2

3

4

5 VKX VKX VKX xCQX xVQX1 xVQX1 xVQX1 JQX

step 10
1 2 3 4 5 6 7 8

JBr2 HFW HW HQR1 HG0 HQLA HAL2 HKX

VQRe2 JFXA HW HQR1 HQR2 HQR1 HGX HKX

VSBRA V<FS JX HQR1 HQR2 HQRS HS xCQX

VARA VsARD VsARA JD1 HS xH xJ2 xHQX1

1

2

3

4

5 VKX VKX VKX VKXs xVQX1 xVQX1 xVQX1 JQX

step 11

1 2 3 4 5 6 7 8

JD1 HQR2 HQRS HS xH Q Q CQX

VQL2 JP xH xJ2 Q Q Q HQX

VQLS xV xJ2 Q Q Q Q HQX

VL xJ2 Q Q Q Q Q HQX

1

2

3

4

5 xCQX VQX VQX VQX VQX VQX VQX JQX

step 4
1 2 3 4 5 6 7 8

JD2 HQR1 HQR2 HQRS HS xH Q CQX

VQL1 JD1 HS xH xJ2 Q Q HQX

VQL2 VL xJ2 xJ2 Q Q Q HQX

VQLS xV xJ2 Q Q Q Q HQX

1

2

3

4

5 VKXs xVQX1 VQX VQX VQX VQX VQX JQX

step 5 1 2 3 4 5 6 7 8

JD1 HQR2 HQR1 HQR2 HQRS HS xH CQX

VQL2 JD2 HQRS HS xH xJ2 Q HQX

VQL1 VQLS xJ xJ2 xJ2 Q Q HQX

VIX VL xJ2 xJ2 Q Q Q HQX

1

2

3

4

5 VKX xCQX xVQX1 VQX VQX VQX VQX JQX

step 6
1 2 3 4 5 6 7 8

JD2 HQR1 HQR2 HQR1 HQR2 HQRS HS xCQX

VQL1 JD1 HQR2 HQRS HS xH xJ2 HQX

VI0 VQL2 JP xH xJ2 xJ2 Q HQX

VAR1 VQLS xV xJ2 xJ2 Q Q HQX

1

2

3

4

5 VKX VKXs xVQX1 xVQX1 VQX VQX VQX JQX

step 7

1 2 3 4 5 6 7 8

xJ Q Q Q Q Q Q CQX

Q Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

1

2

3

4

5 CQX VQX VQX VQX VQX VQX VQX JQX

step 0
1 2 3 4 5 6 7 8

JP xH Q Q Q Q Q CQX

xV Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

1

2

3

4

5 CQX VQX VQX VQX VQX VQX VQX JQX

step 1
1 2 3 4 5 6 7 8

JD1 HS xH Q Q Q Q CQX

VL xJ2 Q Q Q Q Q HQX

xV Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

1

2

3

4

5 CQX VQX VQX VQX VQX VQX VQX JQX

step 2
1 2 3 4 5 6 7 8

JD2 HQRS HS xH Q Q Q CQX

VQLS xJ xJ2 Q Q Q Q HQX

VL xJ2 Q Q Q Q Q HQX

xV Q Q Q Q Q Q HQX

1

2

3

4

5 CQX VQX VQX VQX VQX VQX VQX JQX

step 3

Fig. 6.12 Snapshots of the proposed rectangular firing squad synchronization algorithm with the
general at the northwest corner

136 H. Umeo

6.7 Connectivity Recognition Problem

Recognizing and labeling connected regions of images are important problems
in image processing and machine vision, and many parallel algorithms for them
have been developed on a rich variety of parallel architectures. See Alnuweiri and
Prasanna [1, 2], Cypher et al. [6], Cypher and Sanz [7], Leighton [15], Manohar
and Ramapriyan [18], and Miller and Stout [22]. In this section, we consider a
connectivity recognition problem on a 2-D CA1-bit. The connectivity recognition
problem of binary images on cellular automata has been investigated by Beyer [5]
and Levialdi [17]. We present a linear-time connectivity recognition algorithm for
two-dimensional binary images. Precisely, it is shown that a set of two-dimensional
connected binary images of size m × n can be recognized in 2(m + n)+ O(1) steps
by a 2-D CA1-bit.

6.7.1 Connectivity

Before describing the connectivity recognition algorithm, we need some definitions
of the connectivity for binary images. We assume that the given image is of size
m × n where a pixel (i, j) denotes the pixel in row i and column j of the image for
every 1 ≤ i ≤ m and 1 ≤ j ≤ n. We put an input of size m × n on the 2-D CA1-bit
of the same size in such a way that the cell (i, j) receives the pixel (i, j) as its initial
input. We are concerned with black and white binary images where the black pixel
has 1-value and white one has 0-value, respectively. We regard black components
as objects and white ones as a background of the objects. Due to technical reasons,
we attach a boundary consisting of white pixels to the input image. Note that those
boundary pixels are not counted as the size of the image. Connectivity among pixels
can be defined in terms of adjacency. Two black pixels (i1, j1) and (i2, j2) are 4-
adjacent and they are said to be in 4-neighbor, if | i1 − i2 | + | j1 − j2 |≤ 1.
Two black pixels (i1, j1) and (ik, jk) are said to be 4-connected, if there exists a
sequence of black pixels (i p, jp), 2 ≤ p ≤ k such that each pair of (i p−1, jp−1) and
(i p, jp) are in 4-neighbor. A maximum connected region of black pixels is called a
4-connected component. A 4-connected component is isolated if it consists of only
one black pixel. A pattern is said to be 4-connected if it has exactly one 4-connected
component. Thus we employ the 4-connectivity for black pixels. The readers can
define 8-connectivity, similarly. See Rosenfeld [26] and Umeo and Mauri [39] for
details.

6.7.2 Parallel Shrinking Transformation

Beyer [5] proposed an interesting parallel shrinking transformation which trims all
4-connected components of binary images simultaneously, preserving the connec-
tivity of binary images. The transformation was implemented on a conventional
O(1)-bit communication model of cellular automaton. The recognition algorithm

6 Problem Solving on One-Bit-Communication Cellular Automata 137

we develop here is based on the parallel shrinking algorithm proposed by Beyer [5].
We first review the Beyer’s algorithm. The algorithm is based on a connectivity-
preserving operation which trims all connected components simultaneously in the
diagonal (from south-east to north-west) direction of each component. Figure 6.13
shows the Beyer’s connectivity-preserving operation consisting of two rules R1 for
black pixels and R2 for white pixels. If a black pixel has a white pixel in its south and
east neighbors, then the rule R1 is applied to the black pixel and the pixel becomes
white at the next step. If a white pixel has three black pixels in its south, east, and
south-east (diagonal) neighbors, respectively, then the rule R2 is applied to the white
pixel and it becomes black at the next step. The symbols x and y denote any value
in {white, black}. When we apply the above operations repeatedly to all pixels of
an image simultaneously, we observe that each connected component of the image
is reduced to one isolated black pixel and then vanishes after one application of the
rule R1. What is important is that, all the while, every distinct connected compo-
nent remains distinct and either vanishes at each different position or in the same
position at different time. This is the reason why the Beyer’s shrinking rule is called
connectivity preserving operation.

Precisely, the above statement is described as follows: Let c be a non-isolated
connected component and n(c), w(c), and se(c) be positive integers defined as fol-
lows:

n(c) = min{i | cell Ci,k is in c for some k},
w(c) = min{k | cell Ci,k is in c for some i},
se(c) = max{i + k | cell Ci,k is in c}.

The connected component c is within the triangle consisting of the row n(c),
column w(c), and the 45◦ diagonal line containing the farthest cells from the cell
Cn(c),w(c), shown in Fig. 6.14. Let ψ denote the Beyer’s transformation and c be an

wx

y

w

w wRule R1

Rule R2

y

x

Fig. 6.13 Beyer’s 4-connectivity preserving operation

138 H. Umeo

Cn(c), w(c)

Row n(c)

Column w(c)

Diagonal line se(c)

Connected component

Fig. 6.14 Beyer’s parallel shrinking transformation

image. A function ψ t+1(c) is defined as follows:

ψ0(c) = c,

ψ t+1(c) = ψ(ψ t (c)), t ≥ 0.

Then, the following lemmas are given in Beyer [5].

Lemma 10 (Beyer [5]) For any non-isolated component c, we have n(ψ(c)) =
N (c), w(ψ(c)) = w(c), and se(ψ(c)) = se(c)− 1.

Lemma 11 (Beyer [5]) For any non-isolated component c, let k be an integer such
that k = se(c) − n(c) − w(c). Then, ψk(c) is an isolated component located at
Cn(c),w(c).

Lemma 10 assures the exact shrinking to the north-west corner of the connected
component. From Lemma 11, we can know the number of applications of the ψ
operation necessary to shrink the original connected component to an isolated black
pixel. It is shown that, for any image of size m ×n, all of the connected components
will vanish within (m+n−1)-time applications of ψ . In Fig. 6.15, we show several
snapshots obtained after consecutive applications of ψ to a binary image. Note that
T means the application times.

6.7.3 One-Bit Implementation of Connectivity-Preserving
Transformation

Here we show that the Beyer’s connectivity-preserving transformation can be imple-
mented on 2-D CA1-bit. We construct a two-dimensional CA1-bit M that can simu-
late the Beyer’s transformation in 2(m + n)− 1 steps for any given binary image x
of size m × n. Each cell has two auxiliary registers X and Y . The register X holds a
binary pixel value during the transformation and Y acts as a temporary register for
storing a pixel value in the south neighbor cell. Any operation of each cell at step

6 Problem Solving on One-Bit-Communication Cellular Automata 139

T = 0

T = 1

T = 2

T = 3

T = 4

T = 5

T = 6

T = 7

T = 8

T = 9

T = 10

T = 11

T= 12

T = 13

T = 14

T = 15

T = 16

T = 17

T = 18

T = 19

T = 20

T = 21

T = 22

T = 23

Fig. 6.15 Beyer’s connectivity-preserving transformation on O(1)-bit communication model

t (≥ 1) is classified into two categories according to the parity of global clock step
t such that t ≡ 1 (mod 2) or t ≡ 0 (mod 2). We refer to the former operation as
A-phase operation and the latter B-phase operation, respectively. Each cell repeats
an A- and B-phase operation alternatively, that is, it repeats two operations, one in
A-phase followed by the other in B-phase.

140 H. Umeo

The 1-bit implementation is as follows: At time t = 1, each register X in Ci, j

holds an initial pixel value (i, j) of x and the register Y has been set empty. At
the beginning of the A-phase, each cell outputs a 0 or 1 signal to its north and
west output communication links depending on the pixel value 0 or 1 in the X
register, and the signals are received at that step by its north and west neighbor cells
through their input communication links. In the shrinking transformation shown
in Fig. 6.13, one step is sufficient for the execution of the Rule R1, however, it
takes two steps for the execution of the Rule R2. To get the pixel value in the east
and south neighbor cells, each cell uses its east and south input communication
links in the A-phase operation. In order to get south-east (diagonal) pixel value,
which is necessary for the execution of the rule R2, each cell uses its east input
communication link in the B-phase operation. For this purpose, the diagonal pixel
value has been stored in the Y register in its east neighbor cell in the latest A-phase.
Thus, with those two steps of the A- and B-phases, each cell can get all pixel values
that are necessary to perform one application of the transformation. At odd step t
of M where t = 2k + 1, for any k such that 0 ≤ k ≤ m + n − 1, we can see the
values of ψ0(x), ψ1(x), .., ψk(x), .., ψm+n−1(x) in the X registers of each cell on
the array. It is observed that, in the construction above, both east-to-west horizontal

Table 6.7 Transition rule set for 1-bit shrinking transformation

Internal State : {B, W, B/B, R, BR, W/B-B}

Current
State Input from Right and Left Link

(Next State,
Left Output, Right Output,

Upper Output, Lower Output)

1

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

B

(R,1,0,1,0) (BR,1,1,0,0) -- --

(R,1,0,1,0) (BR,1,1,0,0) -- --

(B/B,0,1,1,1) (B/B,0,1,1,1) -- --

(B/B,0,1,1,1) (B/B,0,1,0,1) -- --

2

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

W

(W,0,0,0,0) (W,0,0,0,0) (W,0,0,0,0) (W,0,0,0,0)

(W,0,0,0,0) - - -- --

(W,0,0,0,0) (W/B-B,0,0,0,0) (W,0,0,0,0) --

-- (W/B-B,0,0,0,0) -- --

3

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

B/B

(B,1,0,1,0) -- (B,1,0,1,0) --

(B,1,0,1,0) -- (B,1,0,1,0) --

(B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0)

(B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0)

4

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

R

(W,0,0,0,0) -- (W,0,0,0,0) --

(W,0,0,0,0) -- (W,0,0,0,0) --

-- -- -- --

-- -- -- --

5

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

BR

(B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0)

(B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0)

-- -- -- --

-- -- -- --

6

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

W/B-B

(B,1,0,1,0) -- (B,1,0,1,0) --

-- -- -- --

(B,1,0,1,0) (W,0,0,0,0) (B,1,0,1,0) (W,0,0,0,0)

-- -- -- --

Input
from
Upper
and
Lower
Link

6 Problem Solving on One-Bit-Communication Cellular Automata 141

and south-to-north vertical one-way communication links are utilized in the A-phase
operation, however, in the B-phase operation, only an east-to-west horizontal link is
used in each cell. Thus we have:

Theorem 12 (Umeo [32]) For any binary image of size m × n, the Beyer’s
connectivity-preserving transformation can be performed on a 2-D CA1-bit in
2(m + n)− 1 steps.

We have implemented the 1-bit shrinking transformation algorithm on a 2-D
CA1-bit with 6 internal states. Table 6.7 gives the transition rule set for the shrinking
operation and Fig. 6.16 shows some snapshots of the shrinking process on a binary
image of size 14 × 14.

B B B B B B B B B B B B B B

W W W W W W W W W W W W W B

B B B B B B B B B B B B W B

B W W W W W W W W W W B W B

B W B B B B B B B B W B W B

B W B W W W W W W B W B W B

B W B W B B B B W B W B W B

B W B W B W W B W B W B W B

B W B W B W W W W B W B W B

B W B W B B B B B B W B W B

B W B W W W W W W W W B W B

B W B B B B B B B B B B W B

B W W W W W W W W W W W W B

B B B B B B B B B B B B B B

t = 0

BR BR BR BR BR BR BR BR BR BR BR BR BR B/B

W W W W W W W W W W W W W B/B

B/B BR BR BR BR BR BR BR BR BR BR B/B W B/B

B/B W W W W W W W W W W B/B W B/B

B/B W B/B BR BR BR BR BR BR B/B W B/B W B/B

B/B W B/B W W W W W W B/B W B/B W B/B

B/B W B/B W B/B BR BR B/B W B/B W B/B W B/B

B/B W B/B W B/B W W R W B/B W B/B W B/B

B/B W B/B W B/B W W W W/B-B B/B W B/B W B/B

B/B W B/B W BR BR BR BR BR R W B/B W B/B

B/B W B/B W W W W W W W W/B-B B/B W B/B

B/B W BR BR BR BR BR BR BR BR BR R W B/B

B/B W W W W W W W W W W W W/B-B B/B

BR BR BR BR BR BR BR BR BR BR BR BR BR R

t = 1

B B B B B B B B B B B B B B

W W W W W W W W W W W W W B

B B B B B B B B B B B B W B

B W W W W W W W W W W B W B

B W B B B B B B B B W B W B

B W B W W W W W W B W B W B

B W B W B B B B W B W B W B

B W B W B W W W W B W B W B

B W B W B W W W B B W B W B

B W B W B B B B B W W B W B

B W B W W W W W W W B B W B

B W B B B B B B B B B W W B

B W W W W W W W W W W W B B

B B B B B B B B B B B B B W

t = 2

BR BR BR BR BR BR BR BR BR BR BR BR BR B/B

W W W W W W W W W W W W W B/B

B/B BR BR BR BR BR BR BR BR BR BR B/B W B/B

B/B W W W W W W W W W W B/B W B/B

B/B W B/B BR BR BR BR BR BR B/B W B/B W B/B

B/B W B/B W W W W W W B/B W B/B W B/B

B/B W B/B W B/B BR BR R W B/B W B/B W B/B

B/B W B/B W B/B W W W W/B-B B/B W B/B W B/B

B/B W B/B W B/B W W W/B-B B/B R W B/B W B/B

B/B W B/B W BR BR BR BR R W W/B-B B/B W B/B

B/B W B/B W W W W W W W/B-B B/B R W B/B

B/B W BR BR BR BR BR BR BR BR R W W/B-B B/B

B/B W W W W W W W W W W W/B-B B/B R

BR BR BR BR BR BR BR BR BR BR BR BR R W

t = 3

B B B B B B B B B B B B B B

W W W W W W W W W W W W W B

B B B B B B B B B B B B W B

B W W W W W W W W W W B W B

B W B B B B B B B B W B W B

B W B W W W W W W B W B W B

B W B W B B B W W B W B W B

B W B W B W W W B B W B W B

B W B W B W W B B W W B W B

B W B W B B B B W W B B W B

B W B W W W W W W B B W W B

B W B B B B B B B B W W B B

B W W W W W W W W W W B B W

B B B B B B B B B B B B W W

t = 4

BR BR BR BR BR BR BR BR BR BR BR BR BR B/B

W W W W W W W W W W W W W B/B

B/B BR BR BR BR BR BR BR BR BR BR B/B W B/B

B/B W W W W W W W W W W B/B W B/B

B/B W B/B BR BR BR BR BR BR B/B W B/B W B/B

B/B W B/B W W W W W W B/B W B/B W B/B

B/B W B/B W B/B BR R W W/B-B B/B W B/B W B/B

B/B W B/B W B/B W W W/B-B B/B R W B/B W B/B

B/B W B/B W B/B W W/B-B B/B R W W/B-B B/B W B/B

B/B W B/B W BR BR BR R W W/B-B B/B R W B/B

B/B W B/B W W W W W W/B-B B/B R W W/B-B B/B

B/B W BR BR BR BR BR BR BR R W W/B-B B/B R

B/B W W W W W W W W W W/B-B B/B R W

BR BR BR BR BR BR BR BR BR BR BR R W W

t = 5

B B B B B B B B B B B B B B

W W W W W W W W W W W W B B

B B B B B B B B B W W B B W

B W W W W W B B W W B B W W

B W B W W B B W W B B W W W

B W B W B B W W B B W W W W

B W B B B W W B B W W W W W

B W B B W W B B W W W W W W

B W B W W B B W W W W W W W

B W W W B B W W W W W W W W

B W W B B W W W W W W W W W

B W B B W W W W W W W W W W

B B B W W W W W W W W W W W

B B W W W W W W W W W W W W

t = 24

BR BR BR BR BR BR BR BR BR BR B/B B/B R W

W W W W W W W W W W/B-B B/B R W W

B/B BR BR BR B/B B/B R W W/B-B B/B R W W W

B/B W W W/B-B B/B R W W/B-B B/B R W W W W

B/B W B/B B/B R W W/B-B B/B R W W W W W

B/B W B/B R W W/B-B B/B R W W W W W W

B/B W R W W/B-B B/B R W W W W W W W

B/B W W W/B-B B/B R W W W W W W W W

B/B W W/B-B B/B R W W W W W W W W W

B/B W/B-B B/B R W W W W W W W W W W

B/B B/B R W W W W W W W W W W W

B/B R W W W W W W W W W W W W

R W W W W W W W W W W W W W

W W W W W W W W W W W W W W

t = 29

B B B B B B B B B B B B B W

W W W W W W W W W W B B W W

B B B B B B B W W B B W W W

B W W W B B W W B B W W W W

B W B B B W W B B W W W W W

B W B B W W B B W W W W W W

B W B W W B B W W W W W W W

B W W W B B W W W W W W W W

B W W B B W W W W W W W W W

B W B B W W W W W W W W W W

B B B W W W W W W W W W W W

B B W W W W W W W W W W W W

B W W W W W W W W W W W W W

W W W W W W W W W W W W W W

t = 28

BR BR BR BR BR BR BR BR BR BR BR B/B B/B R

W W W W W W W W W W W/B-B B/B R W

B/B BR BR BR BR B/B B/B R W W/B-B B/B R W W

B/B W W W W/B-B B/B R W W/B-B B/B R W W W

B/B W B/B W/B-B B/B R W W/B-B B/B R W W W W

B/B W B/B B/B R W W/B-B B/B R W W W W W

B/B W B/B R W W/B-B B/B R W W W W W W

B/B W R W W/B-B B/B R W W W W W W W

B/B W W W/B-B B/B R W W W W W W W W

B/B W W/B-B B/B R W W W W W W W W W

B/B W/B-B B/B R W W W W W W W W W W

B/B B/B R W W W W W W W W W W W

B/B R W W W W W W W W W W W W

R W W W W W W W W W W W W W

t = 27

B B B B B B B B B B B B B B

W W W W W W W W W W W B B W

B B B B B B B B W W B B W W

B W W W W B B W W B B W W W

B W B W B B W W B B W W W W

B W B B B W W B B W W W W W

B W B B W W B B W W W W W W

B W B W W B B W W W W W W W

B W W W B B W W W W W W W W

B W W B B W W W W W W W W W

B W B B W W W W W W W W W W

B B B W W W W W W W W W W W

B B W W W W W W W W W W W W

B W W W W W W W W W W W W W

t = 26

BR BR BR BR BR BR BR BR BR BR BR BR B/B B/B

W W W W W W W W W W W W/B-B B/B R

B/B BR BR BR BR BR B/B B/B R W W/B-B B/B R W

B/B W W W W W/B-B B/B R W W/B-B B/B R W W

B/B W B/B W W/B-B B/B R W W/B-B B/B R W W W

B/B W B/B W/B-B B/B R W W/B-B B/B R W W W W

B/B W B/B B/B R W W/B-B B/B R W W W W W

B/B W B/B R W W/B-B B/B R W W W W W W

B/B W R W W/B-B B/B R W W W W W W W

B/B W W W/B-B B/B R W W W W W W W W

B/B W W/B-B B/B R W W W W W W W W W

B/B W/B-B B/B R W W W W W W W W W W

B/B B/B R W W W W W W W W W W W

BR R W W W W W W W W W W W W

t = 25

.

.

.

Fig. 6.16 Snapshots for connectivity-preserving shrinking transformation on 1-bit communication
model

142 H. Umeo

It is shown that the connectivity of any binary images can be also detected in
linear-time by a 2-D CA1-bit. The algorithm is based on our previous 1-bit imple-
mentation of the shrinking transformation. The detection of the connectivity of
binary images can be done by counting up the number of vanished isolated black
pixels by the accept cell located in the north-west corner of the array. The array
accepts the input if and only if the count is exactly one. Every cell works not only for
the transformation of images into isolated black pixels but also for the transmission
of the vanished isolated black pixels toward the accept cell. Both of the operations
can be simultaneously implemented on a CA1-bit. See Umeo [32] for details.

Thus it has been shown that the CA1-bit can recognize the connectivity of any
binary images of size m × n in 2(m + n) + O(1) steps. We have implemented
our algorithm on a computer program, which simulates a CA1-bit with 61 states,
recognizing 2-D connectivity. For typical binary images of size from 4×4 to 45×47,
the program recognizes them correctly. Thus we have:

Theorem 13 (Umeo [32]) There exists a 2-D CA1-bit that can recognize a set of 2-D
4-connected binary images of size m × n in 2(m + n)+ O(1) steps.

6.8 Summary and Further Works

A 1-bit inter-cell communication cellular automaton model (CA1-bit) studied in this
paper is a subclass of cellular automata (CA) whose inter-cell communication at one
step is restricted to 1-bit. We have investigated a problem solving on the CA1-bit. The
problems treated are a firing squad synchronization problem, an integer sequence
generation problem, a connectivity recognition problem for two-dimensional binary
images, an early bird problem, and a connectivity recognition problem for two-
dimensional binary images, all of which are known as the classical, fundamental
problems in cellular automata. We presented several state-efficient implementations
on the 1-bit inter-cell communication cellular automata for those classical cellular
automata problems. Those implementations presented are not optimum ones in the
number of states required. The class of CA1-bit is confirmed to be an interesting
computational subclass of CAs that merits further study.

Acknowledgements A part of this work has been supported by the Kayamori Foundation of Infor-
mational Science Advancement. The author would like to express his thanks to N. Kamikawa,
T. Yanagihara, M. Kanazawa, K. Michisaka, and T. Fujiwara who helped to develop several imple-
mentations on CA1-bit.

References

1. H.M. Alnuweiri, V.K. Prasanna, Fast image labeling using local operators on mesh-connected
computers. IEEE Trans. PAMI. 13(2), 202–207 (1991)

2. H.M. Alnuweiri, V.K. Prasanna, Parallel architectures and algorithms for image component
labeling. IEEE Trans. PAMI. 14(10), 1014–1034 (1992)

6 Problem Solving on One-Bit-Communication Cellular Automata 143

3. M. Arisawa, On the generation of integer series by the one-dimensional iterative arrays of
finite state machines (in Japanese). The Trans. IECE. 71/8 54-C(8), 759–766 (1971)

4. R. Balzer, An 8-state minimal time solution to the firing squad synchronization problem. Inf.
Control, 10, 22–42 (1967)

5. W.T. Beyer, Recognition of Topological Invariants by Iterative Arrays. Ph.D. Thesis, (MIT,
Massachusetts, 1969)

6. R.E. Cypher, J.L.C. Sanz, L. Snyder, Algorithms for image component labeling on SIMD
mesh-connected computers. IEEE Trans. Comput. 39(2), 276–281 (1990)

7. R.E. Cypher, J.L.C. Sanz, The SIMD Models of Parallel Computation. (Springer-Verlag,
Heidelberg, 1994)

8. P.C. Fischer, Generation of primes by a one-dimensional real-time iterative array. J. ACM.
12(3), 388–394 (1965)

9. H.D. Gerken, Über Synchronisations – Probleme bei Zellularautomaten. Diplomarbeit (Insti-
tut für Theoretische Informatik, Technische Universität Braunschweig, Braunschweig, 1987)

10. E. Goto, A minimal time solution of the firing squad problem. Dittoed course notes for Applied
Mathematics 298, Harvard University (1982)

11. J. Gruska, S.L. Torre, M. Parente, The firing squad synchronization problem on squares,
toruses and rings. Intern. J. Found. Comput. Sci. 18(3), 637–654 (2007)

12. N. Kamikawa, H. Umeo, A generalized FSSP algorithm on one-bit communication cellular
automata. (draft version) (2008)

13. H. Kleine-Büning, The early bird problem is unsolvable in a one-dimensional cellular space
with 4 states. Acta Cybernetica, 6, 23–31 (1983)

14. I. Korec, Real-time generation of primes by a one-dimensional cellular automaton with 11
states. Proc. 22nd Int. Symp. MFCS ’97. LNCS 1295, 358–367 (1997)

15. F.T. Leighton, Introduction to parallel algorithms and architectures: arrays, trees, hypercubes.
(Morgan Kaufmann, San Fransisco, CA, 1992)

16. T. Legendi, E. Katona, A 5-state solution of the early bird problem in a one-dimensional
cellular space. Acta Cybernetica. 5(2), 173–179 (1981)

17. S. Levialdi, On shrinking binary picture patterns. Commun. ACM. 15(1), 7–10 (1972)
18. M. Manohar, H.K. Ramapriyan, Connected component labeling of binary images on a mesh

connected massively parallel processor. Comput. Visi. Graph. Image Process. 45, 133–149
(1989)

19. J. Mazoyer, A six-state minimal time solution to the firing squad synchronization problem.
Theore. Comput. Sci. 50, 183–238 (1987)

20. J. Mazoyer, V. Terrier, Signals in one-dimensional cellular automata. Theor. Comput. Sci.,
217, 53–80 (1999)

21. J. Mazoyer, On optimal solutions to the firing squad synchronization problem. Theor. Comput.
Sci. 168, 367–404 (1996)

22. R. Miller, Q.F. Stout, Parallel algorithms for regular architectures: meshes and pyramids. (The
MIT Press, Massachusetts, 1996)

23. E.F. Moore, The firing squad synchronization problem, ed. by E.F. Moore, Sequential
Machines, Selected Papers (Addison-Wesley, Reading MA, 1964)

24. F.R. Moore, G.G. Langdon, A generalized firing squad problem. Information and Control. 12,
212–220 (1968)

25. J. Nishimura, T. Sogabe, H. Umeo, A design of optimum-time firing squad synchronization
algorithm on 1-bit cellular automaton. Proceedings of The 8th International Symposium on
Artificial Life and Robotics, 381–386 (2003)

26. A. Rosenfeld, Connectivity in digital pictures. J. ACM. 17(1), 146–160 (1970)
27. P. Rosenstiehl, J.R. Fiksel, A. Holliger, Intelligent graphs: Networks of finite automata capable

of solving graph problems, ed. by R.C. Reed. Graph Theory and Computing (Academic, New
York, NY, 1973)

28. A. Settle, J. Simon, Smaller solutions for the firing squad. Theoretical Computer Science. 276,
83–109 (2002)

144 H. Umeo

29. I. Shinahr, Two- and three-dimensional firing squad synchronization problems. Inf. Control.
24, 163–180 (1974)

30. H. Szwerinski, Time-optimum solution of the firing-squad-synchronization-problem for
n-dimensional rectangles with the general at an arbitrary position. Theor. Comput. Sci. 19,
305–320 (1982)

31. S.L. Torre, M. Napoli, M. Parente, Firing squad synchronization problem on bidimensional
cellular automata with communication constraints. Proc. MCU 2001. LNCS 2055, 264–275
(2001)

32. H. Umeo, Linear-time recognition of connectivity of binary images on 1-bit inter-cell commu-
nication cellular automaton. Parallel Comput. 27, 587–599 (2001)

33. H. Umeo, Firing squad synchronization problem in cellular automata. ed. by R.A. Meyers,
Encyclopedia of Complexity and Systems Science (Springer, Heidelberg, 2009)

34. H. Umeo, M. Hisaoka, K. Michisaka, N. Nishioka, M. Maeda, Some new generalized synchro-
nization algorithms and their implementations for large scale cellular automata. LNCS 2509,
276–286 (2002)

35. H. Umeo, M. Hisaoka, T. Sogabe, A survey on optimum-time firing squad synchronization
algorithms for one-dimensional cellular automata. Int. J. Unconventional Comput. 1, 403–426
(2005)

36. H. Umeo, N. Kamikawa, A design of real-time non-regular sequence generation algorithms
and their implementations on cellular automata with 1-bit inter-cell communications. Funda-
menta Inf. 52, 255–275 (2002)

37. H. Umeo, N. Kamikawa, Real-time generation of primes by a 1-bit-communication cellular
automaton. Fundamenta Inf. 58(3, 4), 421–435 (2003)

38. H. Umeo, M. Maeda, M. Hisaoka, M. Teraoka, A state-efficient mapping scheme for designing
two-dimensional firing squad synchronization algorithms. Fundamenta Inf. 74(4), 603–623
(2006)

39. H. Umeo, G. Mauri, A duality in two topology-preserving parallel shrinking algorithms -
Between Beyer’s and Levialdi’s algorithms –. Future Generation Comput. Syst. 18 931–937
(2001)

40. H. Umeo, K. Michisaka, N. Kamikawa, M. Kanazawa, State-efficient one-bit communica-
tion solutions for some classical cellular automata problems. Fundamenta Inf. 78(3), 449–465
(2007)

41. H. Umeo, T. Yanagihara, State-efficient optimum-time implementations of synchronization
algorithms on CA1-bit. (draft version) (2008)

42. H. Umeo, T. Yanagihara, M. Kanazawa, State-efficient firing squad synchronization protocols
for communication-restricted cellular automata. LNCS 4173, 169–181 (2006)

43. V.I. Varshavsky, V.B. Marakhovsky, V.A. Peschansky, Synchronization of interacting
automata. Mathematical Systems Theory. 4(3), 212–230 (1970)

44. R. Vollmar, On two modified problems of synchronization in cellular automata. Acta Cyber-
netica. 3(4), 293–300 (1978)

45. A. Waksman, An optimum solution to the firing squad synchronization problem. Inf. Control.
9, 66–78 (1996)

Chapter 7
Minimal Cellular Automaton Model of
Inter-species Interactions: Phenomenology,
Complexity and Interpretations

Andrew Adamatzky and Martin Grube

7.1 Introduction

Cellular automata have been used to simulate population dynamics for over 20
years. A “mass-usage” of automata to imitate space-time dynamics of species has
started with the popular article by Dewdney [20], supported by scientific publica-
tions on lattice-gas automata [9] and automata models of host-parasite interaction
[29, 17], see a brief overview in [24] and discussion on advantages of cellular
automata models of population dynamics in [18].

Quickly automata models became uncontested models of pattern formation in
population dynamics [19], pattern-oriented ecological modeling [28], spatial ecol-
ogy [7, 51, 50, 21], and the geomorphology-ecology interface [12].

Cellular automata “substrates” are proved to be successful in imitating and sim-
ulating propagation of species [10], developments of plant populations [6], predic-
tion of epidemics dynamics in spatially heterogeneous environments [23], compet-
itive interactions [15], hierarchical ecological systems [54], stochastic species inva-
sion [11, 35], predation chains [38] and competition in complex landscapes [14],
and prey–predator systems [16].

Most cellular automata models of population dynamics aimed to simulate real-
world phenomena. They are tied therefore to some particular species, landscapes or
development scenarios, which leads to increasing number of parameters and char-
acteristics. Any attempt to bring a model closer to reality blurs skeletal features
of the model, and prevents, due to complicated designs, complete classification of
space-time dynamics. In the present paper we decided to strip automata models of
inter-species interactions to bare bones and consider the most primitive model of
two-species population without resources. We utilize basic ideas previously devel-
oped in the context of using automaton-based population dynamics to generate com-
plex patterns [3] and our designs of cell-state transition rules covering all types of
inter-species interactions [2].

A. Adamatzky (B)
University of the West of England, Bristol, UK
e-mail: andrew.adamatzky@uwe.ac.uk

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_7,
C© Springer-Verlag Berlin Heidelberg 2010

145

146 A. Adamatzky and M. Grube

Given two species a and b we can depict their relationships by tuples (γa, γb),
where γa (γb) shows how much species a (b) benefits or suffers from interaction
with species b (a) [45]. The following interactions are considered in the paper:

• Mutualism (++): Both species benefit from inter-species interaction. Previously
indirect mutualism was discussed in [1], in models where increase of one species
in numbers leads to saturation of predators and thus indirectly allows another
species (also preyed by the same predator) to prosper.

• Commensalism (+0): One species benefits while another is not affected, e.g.
mixed cultures of milk-fermenting bacteria [27, 5], relationships between hermit
crab and its associated species [53], commensalims between predators [30].

• Parasitism (predation, herbivory) (+−): One species benefits while another
species suffers. Positive and negative features of parasitism have been studied
via cellular automaton simulation in [36], cellular automaton models of starfish
predation in corral reef developed in [37], cellular automata equivalents of Lotka-
Volterra model discussed in [55, 22], automaton models reflecting distribution
of individual characteristics of predating species and influence of predation on
mimicry are studied in [31] and [34].

• Amensalim (0−): One species is not affected while the other species suffers.
Examples include mixed cultures of easts [47], relationships between surface
and subsurface feeding polechaeta, where ragworms took advantage from the
absence of lugworms [52], and “apparent” amensalism: wildcats in nature parks
of central Spain are negatively affected by red deers and wild boards (due to
direct competition between these hoofed animals and rodents which are preys of
the wildcats) [41].

• Neutralism (00): None of the species is affected by interaction. In two-state cel-
lular automaton neutralism-rule means that cells never change their states and
any initial configuration becomes the fixed one immediately. Therefore we will
not discuss neutralism further.

• Competition (−−): Both species are badly affected by the interaction. Com-
petition was simulated in cellular automata in the context of spatially explicit
models of competition [13], analysis of propagation in population of competing
species (as a function of the species’ competing abilities) [4], emergence of rare
species [26], and competition between plants [42, 10].

These six types of interactions are clearly idealistic and hardly realized in this
clarity in nature. Naturally occurring interaction rather locate a continuum between
beneficial (mutualistic) and pathogenic (parasitic) poles. In certain cases, the con-
text of ecological conditions, such as habitat conditions can modify the behaviour
of interacting species [33]. Moreover, some classic cases are hard to place in these
anthropocentrical categories. The lichen symbiosis, for example, is widely consid-
ered as a mutualism of fungi and algae, but the original view of lichens as fungi that
enslaved algae cannot be rejected [49].

The paper is structured as follows. In Sect. 7.2 we introduce cellular automata
models of two-species interactions and define global characteristics of their

7 CA Model of Inter-species Interactions 147

space-time dynamics. We present and analyze space-time dynamics of the cellular
automata models in Sects. 7.3, 7.4, 7.5 and 7.6, and discuss the results in Sect. 7.7.

7.2 Cellular Automaton Model

We study a two-dimensional hexagonal cellular automaton, every cell of which takes
two states: species a and species b, and updates its state in discrete time depending
on its own state and just the numbers of a and b cell-states of its six neighbors.

Let σ t
a(x) and σ t

b(x) be sums of cell x’s neighbors in state a and b, respectively,
at time step t . Then the cell-state transition function will be as follows:

xt+1 = f (xt , σ t
a(x), σ

t
b(x)). (7.1)

A cell in state a updates its state depending on a number of neighbors in state
b, a cell in state b updates its state depending on a number of neighbors in state a.
We represent the rule (7.1) by threshold conditions for a cell to keep its state, i.e.
we consider only conditions of the transitions xt = a → xt+1 = a and xt = b →
xt+1 = b. The conditions of the cell-state transitions a → a and b → b are as
follows:

Transition
Interaction a → a b → b
Mutualism σb > θ σa > δ

Commensalism σb > θ

Parasitism σb < θ σa > δ

Amensalism σb < θ

Neutralism
Competition σb < θ σa < δ

where 0 ≤ θ, δ ≤ 6. If no conditions are attached to a transition, the transition takes
place by default (unconditionally).

Values of parameters θ and δ indicate a strength of an influence of one species to
another. Smaller values correspond to higher strength because they imply that less
amount of one species is required to influence another species. Higher values of the
parameters mean weaker strength of inter-species interactions.

For example, consider a parasitic interaction with parameters θ = 3 and δ = 1.
A cell in state a at time step t takes the same state a at time step t + 1 if it has at
least three neighbors in state b, otherwise the cell takes state b. A cell in state b at
time step t takes the same state b if it has at least one neighbor in state a.

In case of amensalism, a cell in state a at time step t will remain in state a at time
step t + 1 if not more than θ of its neighbors are in state b; otherwise the cell takes
state b. A cell in state b will remain in the state b indefinitely.

148 A. Adamatzky and M. Grube

We employ the two following integral parameters to characterize space-time
dynamics of studied cellular automata: neighborhood frequency and cell-update
frequency.

Let ν(u) be a frequency of occurrence of neighborhood configuration u ∈ {0, 1}7

(the neighborhood includes central cell) in configuration of a cellular automata, and
η be an average distance of each frequency from the frequency of neighborhood
configurations in a random configuration, η = √

(
∑

u∈{0,1}7 ν(u)− 1
128). For a

random configuration, where each cell-state occurs with probability 1
2 , the value

of η is 0; configuration where cells are in the same state is characterized by η = 1.
The parameter η characterizes a completeness of local representation in the system.
When η = 0 all possible configurations of neighborhood are presented in the sin-
gle configuration, and thus the configuration is locally complete. A configuration
becomes more and more incomplete when η tends to 1.

The parameter φ is an average cell-state update frequency, the value measured
in t steps indicates a probability for a cell to change its state during any given step
of evolution. The parameter φ may be thought of as a degree of local visible activ-
ity: the higher φ the more often cells change their states. We stress that this only
applies to the visible activity because each cell of a cellular automaton updates its
state at every step of the automaton development, the cell might not change its state
however.

To compare morphological characteristics of configurations emerged in develop-
ment of the cellular automata models, we initiated the systems with random pattern
of species a and b and then recorded configurations after a transient period. The
transient period is assumed to be completed when the automaton reaches its global
fixed point of evolution (still configuration) or a cycle (when succession of config-
uration is looped). Exemplar configurations, recorded after the transient period are
shown in Figs. 7.1 – 7.16.

7.3 Mutualism

Spatial dynamics of cellular automata imitating mutualistic interactions, in scenar-
ios when both species are equally represented in initial configurations, is character-
ized by still or switching patters (Fig. 7.1). The size of the same species domains
increases when dependency of one species increases relatively to dependency of
other species, see e.g. increase of θ while δ is fixed in Fig. 7.1. When dependencies
of both species increase simultaneously (e.g. the same increases in values of θ and
δ, Fig. 7.1) then spatial configurations of the automata change their morphological
characteristics from fine-granular (see θ = 1 and δ = 1, Fig. 7.1) to pronounced
switching clusters (see θ = 3 and δ = 3, Fig. 7.1) and then return back to fine-
granular configurations (see θ = 5 and δ = 5, Fig. 7.1).

Typical examples of switching configuration for parameters δ = 2, θ = 3 are
shown in Fig. 7.2a and b. One can observe compact clusters of one species on the
lattice homogeneously filled with other species (Fig. 7.2a), and strips of elongated

7 CA Model of Inter-species Interactions 149

1

1

0 1 2 3 4 5

0

1

2

3

4

5

Fig. 7.1 Configurations of cellular automaton imitating mutualistic interactions for different values
of dependency parameters θ and δ. In each case automaton started evolution in a configuration
where states a and b assigned to cells with the same probability 0.5. States a shown by white
pixels, states b by black pixels

domains (Fig. 7.2a). Mechanics of the switching is attributed to the absence of a
no-species states: when cell in state a lacks enough neighbors in state b, the cell
switches to state b.

In a cellular automaton imitating mutualism, a small concentration of one species,
e.g. a, gives rise to traveling target waves on the lattice filled with another species
b, see example in Fig. 7.3a–e. Cells not occupied by propagating wave patterns
switch synchronously between b and a states. When wave-fronts of propagating
patterns collide they stop their propagation and a quasi-stationary structure is formed
(Fig. 7.3f).

As to integral characteristics of cellular automaton dynamics we can see
(Fig. 7.4a) that local representation becomes incomplete and less and less rich
when influence of one species to another decreases while influence of other species
remains unchanged. There is just slight decrease in completeness when influences
of both species decrease simultaneously, see Fig. 7.4aη. Activity of the cellular
automata simulating the interacting systems increases with decrease of influences
between species, see Fig. 7.4aφ.

150 A. Adamatzky and M. Grube

Fig. 7.2 Examples
of switching patterns
in mutualistic model,
δ = 2, θ = 3

(a) t (b) t + 1

(c) t + 2 (d) t + 3

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5 (f) t = 22

Fig. 7.3 Propagating patterns in cellular automaton imitating mutualistic interactions: (a)–(f)
δ = 0, θ = 0, filled with a, with few, probability 0.001, cells in state b at initial stage of wave
propagation

7 CA Model of Inter-species Interactions 151

ηmutualism θ
0 1 2 3 4 5

0 0.02 0.04 0.1 0.2 0.45 0.85
1 0.06 0.11 0.7 0.93 0.95

δ 2 0.27 0.69 0.88 0.95
3 0.37 0.48 0.54
4 0.16 0.16
5 0.03

φmutualism θ
0 1 2 3 4 5

0 0 0 0 0.03 0.62 0.9
1 0 0.02 0.82 0.98 0.99

δ 2 0.67 0.95 0.98 0.99
3 0.99 0.99 0.99
4 0.99 0.99
5 0.99

(a) mutualism

ηcommensalism θ
0 1 2 3 4 5

0.01 0.04 0.09 0.29 0.66 0.93

φcommensalism θ
0 1 2 3 4 5
0 0 0 0 0 0

(b) commensalism

ηparasitism θ
1 2 3 4 5 6

0 0.26 0.24 0.20 0.14 0.03 0.01
1 0.18 0.15 0.11 0.09 0.05 0.04

δ 2 0.13 0.11 0.07 0.15 0.1 0.09
3 0.1 0.07 0.48 0.21 0.2 0.26
4 0.04 0.03 0.59 0.3 0.43 0.62
5 0.016 0.07 0.73 0.49 0.64 0.87

φparasitism θ
1 2 3 4 5 6

0 0.47 0.45 0.37 0.07 0.03 0.01
1 0.66 0.57 0.47 0.05 0.02 0.002

δ 2 0.77 0.66 0.42 0.01 0.005 0.001
3 0.85 0.74 0.004 0.008 0.002 0.004
4 0.97 0.89 0.008 0.002 0.003 0.001
5 0.99 1 0.008 0.002 0.001 0.001

(c) parasitism

ηamensalism θ
1 2 3 4 5 6
1 1 1 0.84 0.13 0.02

φamensalism θ
1 2 3 4 5 6
0 0 0 0 0.0 0

(d) amensalisms

ηcompetition θ
1 2 3 4 5 6

1 0.02 0.06 1 1 1 1
2 0.06 1 1 1 1

δ 3 0.3 1 1 1
4 0.38 0.55 0.78
5 0.16 0.13
6 0.03

φcompetition θ
1 2 3 4 5 6

1 1 1 0 0 0 0
2 1 0 0 0 0

δ 3 0.3 0 0 0
4 0 0 0
5 0 0
6 0

(e) competition

Fig. 7.4 Integral characteristics of cellular automata imitating two-species interactions η is a com-
pleteness of local representation in configurations and φ is a cell-update frequency

1

0 1 2 3 4 5

(a)

2

1 2 3 4 5 6

(b)

Fig. 7.5 Configurations of cellular automaton imitating (a) commensalism, different values of
dependency parameter θ , (b) amensalism, different values of dependency parameter θ . In each
case automaton starts its development in a random configuration where states a and b assigned to
cells with the same probability 0.5. States a are shown by white pixels, states b by black pixels

152 A. Adamatzky and M. Grube

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4 (e) t = 5

(f) t = 6 (g) t = 7 (h) t = 8 (i) t = 9

(j) t = 10 (k) t = 11 (l) t = 12

Fig. 7.6 Propagation of parasites in a lattice filled with hosts, parasitism δ = 1 and θ = 1, initial
density of parasites is 0.001

7.4 Commensalism and Amensalism

Cell-state transition functions related to commensalism – we consider the case when
species a benefits from presence of species b, but species b are not affected by
species a – do not support any propagating patterns. This is because once a cell
takes a state b it stays in the state b forever. As a consequence of this, an amount
of cells in state a can either decrease or remain unchanged in the development of
commensalistic cellular automaton. With increase of parameter θ the number of
cells in state a decreases, as illustrated in Fig. 7.5.

In amensalistic interactions species a suffers, up to a degree θ , from the presence
of species b. When value θ is small (Fig. 7.5b) then species a quickly extinct and
species b propagate on the lattice till the wholes space becomes filled with b. With
increasing θ localized domains of a emerge and then dominate the space (Fig. 7.5b).

By weakening links between species one can control morphology. Thus, a
decrease of influence of one species to another leads to increase of incompleteness
of configuration morphology in models of commensalism but increase of complete-
ness of morphology in cellular automata imitating amensalism Fig. 7.4b and d.

7.5 Parasitism

In parasitic interaction, particularly for strong dependencies between host species a
and parasite species b, parasites propagate on the lattice filled with hosts, see e.g.
Fig. 7.6.

When dependencies between species become weaker propagation of parasites
gets less trivial. Thus for δ = 2 and θ = 2 and an initial configuration of lattice
filled with hosts a and just few parasites b, small domains of parasites stay still

7 CA Model of Inter-species Interactions 153

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

(g) t = 7 (h) t = 14

(i) t = 18

Fig. 7.7 Propagation of parasites in a space filled with hosts for minimal dependencies between
hosts and parasites: δ = 2 and θ = 2, initially cells were assigned parasite states with probability
0.01, the rest are hosts

154 A. Adamatzky and M. Grube

(a) t = 2 (b) t = 3

(c) t = 4 (d) t = 5

(e) t = 29 (f) t = 30

Fig. 7.8 Example of spatio-temporal dynamics in parasite-host cellular automaton for weak depen-
dencies between host a and parasite b, δ = 2 and θ = 3; initial density of parasites is 0.1

while bigger domains give rise to spreading patterns (Fig. 7.7). The propagating
patterns exhibit distinctive wave fronts, which is due to parasites’ need to have a
“comfortable” concentration of hosts around them.

By weakening further dependency parameters δ and θ we shift character of a
spatio-temporal dynamic towards formation of slowly expanding irregular clusters
of parasites with short-living mobile localizations of parasitic activity propagating
between them (Fig. 7.8).

7 CA Model of Inter-species Interactions 155

2

1

1 2 3 4 5 6

0

1

2

3

4

5

Fig. 7.9 Configurations of cellular automaton imitating parasitic interactions for different values
of dependency parameters θ and δ. In each case the automaton starts its development in a configu-
ration where states a and b assigned to cells with the same probability 0.5. States a shown by white
pixels, states b by black pixels

(a) t = 2 (b) t = 2

Fig. 7.10 Examples of structures formed in parasite-host systems (a) δ = 1 and θ = 1; (b) δ = 2
and θ = 3; initial density of parasites is 0.5. Left configuration represent automaton configuration
at time step t , right configuration at time step t + 1

156 A. Adamatzky and M. Grube

(a) t = 2 (b) t = 2

Fig. 7.11 Examples of structures formed in parasite-host systems (a) δ = 0 and θ = 4; (b) δ = 3
and θ = 2. initial density of parasites is 0.5. Left configuration represent automaton configuration
at time step t , right configuration at time step t + 1

In parametric portrait Fig. 7.9 we observe that the increase in dependency param-
eters is reflected by the following transitions in spatio-temporal dynamics: from
waves of parasites to still patterns of parasites, exchanging with each other mobile
localizations, to still patterns.

In situations of equal densities of hosts and parasites in initial configuration one
can observe the following:

• small domains switching between few-site groups of parasites to domains of par-
asites spanning significant part of the lattice, see Fig. 7.10a;

• branching clusters of parasites, “generating” singletons of parasites, Fig. 7.10b;
• networks of parasites penetrating hosts (each network consists of relatively

ordered domains of parasites, nodes of the network exhibits dynamical links with
their closest neighbors), Fig. 7.11a;

• combination of disordered clusters of parasites and loci of highly ordered groups
of parasites, Fig. 7.11b.

In parasitic interactions, when the influence of one species stay fixed while the
influence of the other species decreases, we observe increase of local complete-
ness of morphological representation (Fig. 7.4cη). Simultaneous decrease in species
influences first leads to increase of local completeness, followed by decrease of
the completeness. The turning point is at mid-range influence, degrees of influence
between two and three.

The activity φ decreases with decreasing influence of the parasite species on host
species. The activity increasing with decreasing of the benefits the parasites species
receive from the host species (Fig. 7.4cφ). Simultaneous decrease of influences of
both host and parasite species leads to decrease in the activity.

7 CA Model of Inter-species Interactions 157

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 6

(e) t = 9 (f) t = 15

Fig. 7.12 Propagation and interaction of wave-patterns on the lattice with competing species a and
b, θ = 1 and δ = 1, initially almost every cell takes state b and few (probability 0.001) cells take
state a

7.6 Competition

Cellular automata imitating competition interaction exhibit wave patterns, similar
to that observed in excitable media. If competition between species is strong, e.g.
θ = 1 and δ = 1 (Fig. 7.12), and one of the species is sparsely distributed in
the automaton initial configuration then target waves are formed and propagate
(Fig. 7.12).

158 A. Adamatzky and M. Grube

(a) t = 1 (b) t = 2

(c) t = 11 (d) t = 12

(e) t = 49 (f) t = 50

(g) t = 51

Fig. 7.13 Formation of growing domains of species a during interaction of waves, θ = 1 and
δ = 3, initially almost every cell takes state b and few (probability 0.3) cells take state a

7 CA Model of Inter-species Interactions 159

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4 (e) t = 5 (f) t = 6 (g) t = 7

(h) t = 8

Fig. 7.14 Another way for stationary domains of species a to form: the still and “solid” domain of
a states grows from a tiny cluster of cells in the state a, θ = 5 and δ = 2

In scenario of dissimilar dependencies between species, e.g. δ = 1 and θ = 2,
propagating target waves give rise to stationary domains when waves collide with
each other (Fig. 7.13). The still domains are filled with the species which is lesser
affected by other species, and thus eventually wins competition.

Propagating “solid” (filled with one species) domains is yet another feature of the
cellular automata imitating competition. This is typical for scenarios where there is
a significant difference between dependencies of each species, e.g. θ = 5 and δ = 2
(Fig. 7.14). There we can see that certain configurations of one species in the lattice
filled with another species form domains which increase in size and ultimately fill
the whole lattice.

When almost all cells of automaton lattice take the same state apart of few cells
which take different state, then breathing, oscillating and switching patterns can be
observed (Fig. 7.15). This is particularly visible for the following values of depen-
dencies: δ = 2 and θ > 1 or δ > 1 and θ = 2. The structures formed are similar
to switching patters in Conway’s Game of Life and to stationary waves in cellular
automaton models of reaction-diffusion systems.

Momentary configurations, recorded after a transient period, of cellular automata
imitating competing species are shown in Fig. 7.16. The automata developed from
initial random configurations, where both species have been represented equally.
Multiplicity of wave sources makes target waves almost unrecognizable. Therefore
we can only concentrate on general characteristics of the configurations morphology.

(a) t = 1 (b) t = 2

Fig. 7.15 Typical oscillators in competing systems for θ = 2 and δ = 5. Similar oscillators can be
for the parameters θ = 3 and δ = 2; θ = 3 and δ = 2; θ = 5 and δ = 2

160 A. Adamatzky and M. Grube

2

2

1 2 3 4 5 6

1

2

3

4

5

6

Fig. 7.16 Configurations of cellular automaton imitating competition interactions for different val-
ues of dependency parameters θ and δ. In each case automaton started evolution in a configuration
where states a and b assigned to cells with the same probability 0.5. States a shown by white pixels,
states b by black pixels

We see that the increase in competing dependencies lead to multiplication of large
one-species domains into many smaller domains, which further multiply to single-
tons (one or two cells in one state in the “ocean” of other states).

In cellular automata imitating competition activity level is high (almost every cell
changes its state every time step) only when degrees of influence between species
are high, namely for θ, δ ∈ {1, 2} and also when θ = δ = 3 (Fig. 7.4e). The activity
deceases for weak influences between species.

Morphologies of configurations representing competition are only complete
when degrees of inter-species influences have relatively similar values, see diagonal
θ = δ in Fig. 7.4eη. In this case with decrease of influences (corresponding to
simultaneous growth of θ and δ) completeness decreases till θ = δ = 4 and then
start to increase.

7.7 Discussion

We aimed to study a minimal model of inter-species interactions, therefore we
did not include an empty space or a substrate (which would be a third cell-state)
in the cellular automaton model. Because the model is reduced to the minimal

7 CA Model of Inter-species Interactions 161

number of parameters, it is actually difficult to find similar configurations in
natural interactions. For example, the consequence of the lack of an “empty” space
in the model implies instantaneous occupation of space by species a (b) if species
b (a) “dies”. This may lead to somewhat paradoxical interpretation of interaction
rules, e.g. in case of mutualism we have the following: species a and b benefit from
presence of each other in their vicinities, however they also benefit from extinction
of other species. Such a shift in interpretation of results is not entirely nonsense. In
real-world the relationships can be combined, channeled via different routes, and
transformed when applied in a complex networks of interaction species. Even the
most simple cases of bacterial interactions are certainly more complex, as they do
not restrict on two dimensions and frequently involve additional mechanisms, such
as diffusive quorum-sensing signals. Symbioses among organisms with different
level of organisation can be much more complex. Ant gardens are among the best
examples: there one can find commensalism (relationships between ants and bacte-
ria), amensalim (between bacteria and parasitic fungi) and one more commensalism
(between bacteria and cultivated fungi) [48]. The leaf-cutter ant symbiotis is simi-
larly complex with five recognized members [39], including a parasitism between
fungi, amensalism between bacteria and parasitic fungi, and mutualism between ants
and fungi. The strength of one interaction may here also vary with the abundance of
a partner influencing another interaction [40]. Another example – a transformation
of preying to mutualism is provided in [25, 8]. They discuss that preys of Ameri-
can Alligator do actually benefit not suffer from the alligators’ predation because
for any particular species A, alligators not only consume organisms of the species
A but also other species, which involved in competitive relationships with the
species A.

The complexity of these systems show that a full biological understanding of
symbiotic associations requires examining the direct and indirect interactions of
symbionts in their ecological community context. In other cases, however, such
as the human gut microbial community (with a long-tailed rarefaction curve of
involved species), it is difficult to assess the number of symbiotic partners and their
interaction strengths. Basic spatial processes of symbiotic interaction, as assessed
by our model, are necessarily blurred in excessively complex natural systems, which
usually involve more than two partners. Yet, the simple model of interactive excita-
tion could serve as a primer to investigate more complex systems. The knowledge
of basic configurations of symbiotic excitation might also help to design nature-
inspired and massively parallel computing approaches based on (variable numbers
of) symbiotic/interacting agents.

What is a complexity hierarchy of inter-species interactions? Neutralism is out
of question in our setup because cells do not change their states from the begin-
ning of the systems’ development. Amensalism and commensalism have lowest
complexities: cell-state update frequencies are minimal, transient periods are short,
no non-trivial propagating patterns observed. Competition occupies the next above
bottom level of complexity. Cellular automata models of competing species do
exhibit target waves and growing domains however they are characterized by low
values of local completeness and minimal frequency of cell-state updates.

162 A. Adamatzky and M. Grube

Parasitism and mutualism are top candidates for the most complex inter-species
interactions. Cell-state update frequencies and local completeness of spatial
configurations are in the whole higher in automaton models of mutualistic inter-
actions than in parasitic ones. Both types of interaction support formation and prop-
agation of wave patterns, domains and switching patterns. Cellular automata imitat-
ing mutualism exhibit wider spectrum of breathing domains than automata imitating
parasitism. These findings persuade us to conclude that mutualistic interactions are
more complex than parasitic interactions.

The proposed hierarchy of complexity of two-species interactions, as inferred
from analysis of cellular automata models, will be as follows:

{commensalism, amensalism} ≺ competition ≺ parasitism ≺ mutualism.

It will now be interesting to proceed with our model of simple symbiotic exci-
tation to trace the consequences when interaction strength or the transition function
are allowed to evolve. Facing the ubiquity of mutualistic (or cooperative) interac-
tions in nature, the question could be raised whether evolution will also promote the
more complex mutualism even in simple models. Evolution has favored more com-
plex networks of interactions via supporting the aggregation of positively interacting
organisms. In a long run this apparently also evolved towards mutual dependence,
e.g. when metabolic processes are sorted among the community members. The
mutual dependence on metabolic capacities is quite common in microbial systems
(such as the phototrophic consortium of Chlorochromatium aggregatum [46]) or in
bacteria-insect symbioses, where insects rely on their gut bacteria for production of
essential nutrients and where bacteria with their reduced genomes can only survive
in the host [43]. More generally, the low number of culturable bacteria detected
by microbial ecologists in most habitats is a clear sign for the ubiquity of obli-
gate symbiotic interactions in nature and it’s evolutionary success. But how did the
evolutionary success of cooperation [44] evolve actually. Often the biological inter-
actions resemble more a bargaining relationship, where one organism exchanges
easily produced good for others that require more own effort. In this context, fast-
exploiting parasites would fail in a long run, as they would just overexploit their
victims (it could be the same in economy). Natural selection towards slowing down
the exploitation rate is perhaps the first step towards mutualistic behaviour. That a
parasitic relationship can evolve into a mutualistic one by minimizing damage to the
host, was shown some time ago by a long term experiment. In 1966, K. W. Jeon dis-
covered a culture of amoebas that had become infected by large numbers of bacteria
(up to 150,000 per cell). The infection slowed their rate of amoebal growth and made
the amoeba more fragile. But 5 years later, the amoebas still were infected but with-
out pathogenic effects and the amoeba had apparently become dependent on the bac-
teria [32]. It appears that synchronization with the host biology and low exploitation
(weak interaction strength) are key factors for transforming from parasitism towards
mutualism.

7 CA Model of Inter-species Interactions 163

References

1. P.A. Abrams, H. Matsuda, Positive indirect effects between prey species that share predators.
Ecology 77, 610–616 (1996)

2. A. Adamatzky, Identification of Cellular Automata (Taylor & Francis, London 1994)
3. A. Adamatzky, Cellular automaton labyrinths and solution finding. Comput. Graph. 21,

519–522 (1997)
4. K. Arii, L. Parrott, Examining the colonization process of exotic species varying in competitive

abilities using a cellular automaton model. Ecolo. Model. 199, 219–228 (2006)
5. M. Aziza, A. Amrane, Commensalism during submerged mixed culture of Geotrichum

candidum and Penicillium camembertii on glutamate and lactate. Process Biochem. 41,
2452–2457 (2006)

6. H. Balzter, P.W. Braun, P. Köhler, Cellular automata models for vegetation dynamics. Ecol.
Model. 107, 113–125 (1998)

7. N. Boccara, Automata network models of interacting population, ed. by E. Goles, S. Martinez,
Cellular Automata, Dynamical Systems and Neural Networks (Springer, Heidelberg, 1994)

8. C. Bondavalli, R.E. Ulanowicz, Unexpected effects of predators upon their prey: The case of
the American Alligator. Ecosystems 2, 49–63 (1999)

9. S. Camazine, Self-organizing pattern formation on the combs of honey bee colonies. Beh.
Ecol. Sociobiol. 28, 61–76 (1991)

10. S.A. Cannas, S.A. Páez, D.E. Marco, Modeling plant spread in forest ecology using cellular
automata. Comput. Phys Commun. 121/122, 131–135 (1999)

11. S.A. Cannas, D.E. Marco, S.A. Páez, Modelling biological invasions: species traits, species
interactions, and habitat heterogeneity. Mathe. Biosci. 183, 93–110 (2003)

12. Q. Chen, A.E. Mynett, Modelling algal blooms in the Dutch coastal waters by integrated
numerical and fuzzy cellular automata approaches. Ecol. Model. 199, 73–81 (2006)

13. G. de Cardozo, D. de Silvestre, A. Colato, Periodical cicadas: A minimal automaton model.
Physica A 382, 439–444 (2007)

14. H. Caswell, R. Etter, Cellular automaton models for competition in patchy environments:
Facilitation, inhibition, and tolerance. Bull Math Biol 61, 625–649 (1999)

15. Q. Chen, A. E. Mynett, A.W. Minns, Application of cellular automata to modelling compet-
itive growths of two underwater species Chara aspera and Potamogeton pectinatus in Lake
Veluwe. Ecol Modell 147, 253–265 (2002)

16. Q. Chen, A.E. Mynett, Effects of cell size and configuration in cellular automata based prey-
predator modelling. Simulation Model. Pract. Theory 11, 609–625 (2003)

17. H.N. Comins, M.P. Hassell, R.M. May, The spatial dynamics of host-parasitoid systems.
J. Anim. Ecol. 61, 735–748 (1992)

18. P.J. Darwen, D.G. Green, Viability of populations in a landscape. Ecol. Model. 85, 165–171
(1996)

19. A. Deutsch, S. Dormann, Cellular Automaton Modeling of Biological Pattern Formation
(Birkhäuser, Basel, 2006)

20. A.K. Dewdney, Armchair Universe: An Exploration of Computer Worlds (Freeman and Co,
New York, 1988).

21. U. Dieckmann, R. Law, J.A.J. Metz, The Geometry of Ecological Interactions: Simplifying
Spatial Complexity (Cambridge University Press, Cambridge 2000)

22. M. Droz, A. Pekalski, Dynamics of populations in extended systems, ed. by S. Bandini,
B. Chopard, M. Tomassini, Cellular Automata: 5th International Conference on Cellular
Automata for Research and Industry, Springer, Berlin 2002

23. M. Duryea, T. Caraco, G. Gardner, W. Maniatty, B.K. Szymanski, Population dispersion and
equilibrium infection frequency in a spatial epidemic. Physica D 132, 511–519 (1999)

24. G.B. Ermentrout, L. Edelstein-Keshet, Cellular automata approaches to biological modeling.
J. Theor. Biol. 160, 97–133 (1993)

164 A. Adamatzky and M. Grube

25. B.D. Fath, Network mutualism: Positive community-level relations in ecosystems. Ecol.
Model. 208, 56–67 (2007)

26. S. Galam, B. Chopard, M. Droz, Killer geometries in competing species dynamics. Physica A
314, 256–263 (2002)

27. F. Grattepanche, P. Audet, C. Lacroi, Milk fermentation by functional mixed culture producing
nisin Z and exopolysaccharides in a fresh cheese model. Int. Dairy J. 17, 123–132 (2007)

28. V. Grimm, K. Frank, F. Jeltsch, R. Brandl, J. Uchmanski, C. Wissel, Pattern-oriented mod-
elling in population ecology. Sci Total Environ 183, 151–166 (1996)

29. M.P. Hassell, S.W. Pacala, R.M. May, P.L. Chesson, The persistence of host-parasitoid
associations in patchy environments. I. A general criterion. Ameri Nat. 138, 568–583
(1991)

30. S.B. Heard, Pitcher-plant midges and mosquitoes: A processing chain commensalism. Ecol-
ogy 75, 1647–1660 (1994)

31. C. Hui, M.A. McGeoch, Evolution of body size, range size, and food composition in a
predator-prey metapopulation. Ecol. Complex. 3, 148–159 (2006)

32. K.W. Jeon, Development of cellular dependence on infective organisms: Micrurgical studies
in amoebas. Science 176, 1122–1123 (1972)

33. J. Karst, L. Marczak, M.D. Jones, R. Turkington, The mutualism-parasitism continuum in
ectomycorrhizas: A quantitative assessment using meta-analysis. Ecology 89, 1032–1042
(2008)

34. I. Kawaguchi, A. Sasaki, The wave speed of intergradation zone in two-species lattice Mülle-
rian mimicry model. J. Theor. Biol. 243, 594–603 (2006)

35. S. Kizaki, M. Katori, A stochastic lattice model for locust outbreak. Physica A 266, 339–342
(1999)

36. C.-H. Kuo, V. Corby-Harris, D.E.L. Promislow, The unavoidable costs and unexpected bene-
fits of parasitism: Population and metapopulation models of parasite-mediated competition. J.
Theor. Biol. 250, 244–256 (2008)

37. J.D. van der Laan, R.H. Bradbury, Futures for the Great Barrier Reef ecosystem. Mathe. Com-
put. Model. 14, 705–709 (1990)

38. J.D. van der Laan, L. Lhotka, P. Hogeweg, Sequential predation: A multi-model study. J.
Theor. Biol. 174, 149–167 (1995)

39. A.E.M. Little, C.R. Currie, Symbiotic complexity: Discovery of a fifth symbiont in the attine
ant-microbe symbiosis. Biol. Lett. 3, 501–504 (2007)

40. A.E.M. Little, C.R. Currie, Black yeast symbionts compromise the efficiency of antibiotic
defenses in fungus-growing ants. Ecology 89, 1216–1222 (2008)

41. J. Lozano, E. Virgós, S. Cabezas-Díaz, J.G. Mangas, Increase of large game species in
Mediterranean areas: Is the European wildcat (Felis silvestris) facing a new threat? Biol.
Conser. 138, 321–329 (2007)

42. Y.G. Matsinos, A.Y. Troumbis, Modeling competition, dispersal and effects of disturbance in
the dynamics of a grassland community using a cellular automaton model. Ecol. Model. 149,
71–83 (2002)

43. N. Moran, Symbiosis. Curr. Biol. 16, R866–R871 (2006)
44. M.A. Nowak, Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)
45. E.P. Odum, Basic Ecology (Harcourt Brace College Publisher, Fortworth, TX 1983)
46. J. Overmann, Phototrophic consortia. A tight cooperation between non-related eubacteria,

ed. by J. Seckbach, Symbiosis. Mechanisms and Model Systems. (Kluwer, Dordrecht, 2001),
239–255

47. S. Pommier, P. Strehaiano, M.L. Délia, Modelling the growth dynamics of interacting mixed
cultures: A case of amensalism. Int. J. Food Microbiol. 100, 131–139 (2005)

48. P. Salles, B. Bredeweg, N. Bensusan, The ants garden: Qualitative models of complex interac-
tions between populations. Ecol. Model. 194, 90–101 (2006)

49. S. Schwendener, Die Algentypen der Flechtengonidien. Programm für die Rectorsfeier der
Universität Basel 4 (1869) 1–42.

7 CA Model of Inter-species Interactions 165

50. T. Szaran, Spatiotemporal Models of Population and Community Dynamics (Springer, Heidel-
berg 1997)

51. D. Tilman, P. Kareiva, Spatial Ecology (Princeton University Press, Princeton, NJ, 1997)
52. N. Volkenborn, K. Reise, Lugworm exclusion experiment: Responses by deposit feed-

ing worms to biogenic habitat transformations. J. Exp. Marine Biol. Ecol. 330, 169–179
(2006)

53. J.D. Williams, J.J. McDermott, Hermit crab biocoenoses: A worldwide review of the diversity
and natural history of hermit crab associates. J. Exp. Marine Biol. Ecol. 305, 1–128 (2004)

54. J. Wu, J.L. David, A spatially explicit hierarchical approach to modeling complex ecological
systems: Theory and applications. Ecol. Model. 153, 7–26 (2002)

55. M. He, J. Lin, H. Jiang, X. Liu, The two populations cellular automata model with predation
based on the Penna model. Physica A 312, 243–250 (2002)

Chapter 8
Cellular Evolutionary Algorithms

Marco Tomassini

8.1 What Are Evolutionary Algorithms?

Evolutionary algorithms (EAs) are a family of heuristic search methods that are
often used nowadays to find satisfactory solutions to difficult optimization and
machine learning problems. EAs are loosely based on a few fundamental evolution-
ary ideas introduced by Darwin in the nineteenth century. These concepts revolve
around the notion of populations of organisms adapting to their environment through
genetic inheritance and survival of the fittest. Innovation is provided by various
biological recombination and mutation mechanisms. EAs make use of a metaphor
whereby an optimization problem takes the place of the environment; feasible solu-
tions are viewed as individuals living in that environment and an individual’s degree
of adaptation to its surrounding environment is the counterpart of the objective func-
tion evaluated on a feasible solution. In the same way, a set of feasible solutions
takes the place of a population of organisms.

Each individual may be viewed as a representation, according to an appropriate
encoding, of a particular solution to an algorithmic problem, of a strategy to play
a game, or even of a simple computer program that solves a given problem. To
implement an EA for solving a given problem, at least approximately, the user must
provide the following pieces of information:

8.1.1 Representation

Individuals in the population represent solutions to a problem and must be encoded
in some way to be manipulated by the EA processes. They may be just strings of
binary digits, which is a widespread and universal representation, or they may be
any other data structure that is suitable for the problem at hand such as strings of

M. Tomassini (B)
Information Systems Department, HEC, University of Lausanne, Lausanne, Switzerland
e-mail: marco.tomassini@unil.ch

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_8,
C© Springer-Verlag Berlin Heidelberg 2010

167

168 M. Tomassini

integers, alphabetic characters, strings of real numbers, and even trees or graphs. In
this chapter individuals will be represented either by strings of binary digits or of
real numbers.

8.1.2 Genetic Operators

The first operator to be applied to the population is selection. Its aim is to simulate
the Darwinian law of “survival of the fittest”. One often used selection method is the
so-called fitness proportionate selection. In order to create a new intermediate pop-
ulation of n “parents”, n independent extractions of an individual from the old pop-
ulation are performed, where the probability of each individual being extracted is
linearly proportional to its fitness. Therefore, above average individuals will expect-
edly have more copies in the new population, while below average individuals will
risk extinction.

Once the population of parents, that is of individuals that have been selected
for reproduction, has been extracted, the individuals for the next generation will
be produced through the application of a number of reproduction operators, which
can involve just one parent (thus simulating asexual reproduction) in which case we
speak of mutation, or more parents (thus simulating sexual) reproduction in which
case we speak of recombination.

Crossover is a standard recombination in which two parent individuals recom-
bine to form one or two offspring. To apply crossover, couples are formed with
all parent individuals; then, with a certain probability, called crossover rate pc, each
couple actually undergoes crossover: if the individuals are represented by bit strings,
the two bit strings are cut at the same random position and the second halves are
swapped between the two individuals, thus yielding two novel individuals, each
containing characters from both parents.

After crossover, all individuals undergo mutation. The purpose of mutation is to
simulate the effect of transcription errors that can happen with low probability (pm)
when a chromosome is duplicated. This is accomplished by flipping each bit in every
individual with a very small probability, called mutation rate. This is the typical
mutation found in Genetic Algorithms; the mutation operator is more complicated,
and more important, in an EA family called Evolution Strategies.

8.1.3 The Evolutionary Cycle

An evolutionary algorithm starts with a population of randomly generated individu-
als, although it is also possible to use a previously saved population, or a population
of individuals encoding for solutions provided by a human expert or by another
heuristic algorithm. Once an initial population has been created, an evolutionary
algorithm enters a loop. At the end of each iteration a new population will have
been created by applying the previously described genetic stochastic operators to

8 Cellular Evolutionary Algorithms 169

the previous population. One such iteration is referred to as a generation. The evo-
lutionary cycle can be summarized by the following pseudo-code:

generation = 0
Seed Population
while not termination condition do

generation = generation + 1
Evaluate fitness of individuals
Selection
Crossover(pc)
Mutation(pm)

end while

The stopping condition is given either by finding a globally optimal individual
(if known), a satisfactory solution, or simply after a pre-determined number of gen-
erations. This points out that EAs are just heuristics and not exact algorithms. They
cannot give any guarantee of finding the optimum, although they usually find good
enough solutions quickly. Indeed it can be shown that, under mild conditions, EAs
do converge to the globally optimal solution but only do so with probability 1 when
time increases without bound [1], which can hardly be considered a useful result for
practitioners.

This introductory section has been necessarily brief. Readers wishing to know
more about EAs can consult good standard textbooks such as [1].

8.2 Cellular Evolutionary Algorithms

The previous section provided the basics of EAs but the reader should be aware that
there exist many variations on this common theme. For example, EAs may differ
by the kind of representation they are using, or by the kind of genetic operators, or
both, and there may be other differences as well. One possible source of difference
is the assumed population structure and we shall focus on this particular aspect in
this chapter. Usually EAs assume that the structure of the population is panmictic,
which means that any individual may interact with any other individual in the pop-
ulation. However, this need not be always the case: we often see populations in the
biological and social world in which individuals only interact with a subset of the
rest of the population. This situation can usefully be depicted by using the concept
of a population graph. In this undirected graph, vertices correspond to individuals,
while edges correspond to interactions between pairs of individuals. From this point
of view, the standard panmictic, also called mixing, population would be represented
by a complete graph in which there are edges between any individual and all the
others. Not all conceivable graph structures make sense to describe real populations
but for EAs, which are just computer algorithms, any suitable graph structure can be
used in principle. Among the many possibilities, regular graphs in which any vertex

170 M. Tomassini

Fig. 8.1 A ring cellular structure (a), and a grid cellular structure with a von Neumann neighbor-
hood highlighted (b)

(individual) has the same number of edges (links to other individuals) have emerged
early as an easy and useful graph topology, examples of which are given in Fig. 8.1.

Comparing these regular grids of low dimension with those described in Chap. 1,
Sect. 1.5, it is clear that they are isomorphic with cellular automata (CAs). This also
holds for the commonly used neighborhoods, which are the same as those in CAs
namely, essentially regular radius 1 or radius 2 von Neumann or Moore neighbor-
hoods (see Chap. 1, Sect. 1.5). We shall pursue the analogy further in a moment. For
the time being, the important thing to note is that individuals now interact locally,
instead of globally as in the customary mixing population. We shall call the EAs
based on these particular population structures Cellular Evolutionary Algorithms
(CEAs). A CEA starts with the cells in a random state and proceeds by successively
updating them using evolutionary operators, until a termination condition is satis-
fied. Updating a cell in a CEA means selecting parents in the individual’s neighbor-
hood, applying genetic operators to them, and finally replacing the individual if the
offspring obtained has a better fitness (other replacement policies can be used). Note
that each individual step in the algorithm takes place in lockstep for a synchronous
CEA. As a result, the general EA pseudo-code of the previous section takes the
following form for a synchronous CEA:

for each cell i in the grid do
generate a random individual i

end for
while not termination condition do

for each cell i in the grid do
Evaluate individual i
Select individual(s) in the neighborhood of i
Produce offspring
Evaluate offspring
assign one of the offspring to cell i according to a given criterion

end for
end while

8 Cellular Evolutionary Algorithms 171

8.2.1 CEAs and CAs

While the analogy between CAs and CEAs is quite clear as far as the agents’ pop-
ulation structure is concerned, the relationship between a CA transition function
and the local evolution mechanism of a CEA needs some explanation. First of all,
what is the finite set of states Σ in the case of a CEA? A simple example should be
useful to introduce the general idea. Suppose that the individuals that compose the
evolutionary population are coded as binary strings. We have seen that this does not
imply a loss of generality as any other finite data structure can be encoded in this
way. Further assume that the length of the strings is, for instance, equal to 8. Thus
there are 28 = 256 possible strings. Remembering that an individual in this context
represents a possible solution in the configuration space of the problem, we can
conclude that the cardinality of the set Σ is equal to the number of configurations in
the search space. This number can be quite large in practice, but it is always finite.

Now let’s see how CEAs evolve in time. Equation (1.3) in Chap. 1 is repeated
here for the sake of convenience. It describes the calculation of the state
σi, j (t + 1) of individual at position {i, j} in a two-dimensional grid at the next
time step from the states of the same individual and the state of the neighbors at the
current time step:

σi, j (t + 1) = φ(σk,l(t) | σk,l(t) ∈ N).

The function φ(.) is the transition rule. For a CEA, φ is in general the composition
of three functions: the selection function s(.) that selects two individuals in the
neighborhood N of individual {i, j} including the latter, the crossover function c(.)
which recombines the selected individuals, and the mutation function m(.) which
makes random variations to the individual that will replace the original one. Now,
knowing that at least mutation and crossover, and most often also selection, are
stochastic operators, it follows that the transition function φ(.) is a stochastic one in
a CEA and thus CEAs are probabilistic cellular automata. If we now call C(t) =
{σ1(t), σ2(t), . . . , σn(t)} the ensemble of states of all the cells in the grid at time
t (this is also called a global configuration of the corresponding CA), the global
evolution of the automaton will be given by the following symbolic equation:

C(t + 1) = m(c (s (C(t))).

This description assumes that cells change their state simultaneously, i.e. in a syn-
chronous manner. Other update policies in which cells change state in some, perhaps
random, order can also be used and will be described later.

8.2.2 Brief Historical Background

Influenced by biological and ecological approaches in which the structure of the
population plays an important role, evolutionary computation researchers have been
quick in adapting structured populations ideas and, in particular, the decentralized

172 M. Tomassini

grid population structure model seems to have occurred to several people in the
mid-eighties. Among those early papers, we mention here Gorges-Schleuter’s [2]
and Manderick’s works [3]. Other early contributors were [4–6]. The relationship
between the CEAs and CA models was explicitly recognized independently by
Tomassini [7] and Whitley [8]. The field has been a little bit “dormant” for several
years but today there is a regain of interest as witnessed by two new books which
are totally or partly devoted to CEAs [9, 10].

8.3 Selection Pressure

Selection is the driving force behind any evolutionary algorithm. It is the filter
that ensures that better than average individuals will have more chances to repro-
duce with respect to the worse ones. In other words, the purpose of selection in
evolutionary algorithms is to concentrate the use of the available computational
resources in promising regions of the search space. There is a relationship of reci-
procity between the aspects of exploration and exploitation of the search space and,
clearly, the stronger the pressure exerted by selection toward a concentration of
the computational effort, the smaller the fraction of resources utilized to explore
other possibilities. Selection pressure is thus a key parameter in the operation of
an EA: with high selection pressure, diversity in the population is quickly lost,
and the search stagnates, unless a large population is used or a lot of disruption
is caused by the variation operators. On the other hand, if the selection pressure is
weak, convergence slows down and the search may wander in the problem space
without focusing on very good solutions. An effective search thus requires a care-
ful trade-off between the selection method, the variation operators, and other EA
parameters such as the population size. Thus, as a first fundamental step toward an
understanding of the workings of a CEA, in this section I shall present a theoretical
and empirical study of the effects of selection alone, without the use of variation
operators.

In standard EAs the selection pool, i.e. the set of individuals that undergo selec-
tion is the whole population. However, we have seen that CEAs introduce locality
into the population structure and the selection pool in CEAs is formed only by the
individuals belonging to the neighborhood. In this case two selection methods are
particularly useful and easy to implement: linear ranking selection and binary tour-
nament selection. In linear ranking selection the individuals in the neighborhood of
a given cell are ranked according to their fitness: each individual then has a prob-
ability 2(s − i)/(s(s − 1)) of being selected for the replacement phase, where s is
the number of cells in the neighborhood and i is its rank in the neighborhood. In
binary tournament selection two individuals are randomly chosen with replacement
in the neighborhood of a given cell, and the one with the better fitness is selected for
the replacement phase. In what follows, the selected individual replaces the original
individual only if it has better fitness.

8 Cellular Evolutionary Algorithms 173

8.3.1 Takeover Time

Selection methods are characterized by their takeover time. The takeover time is
the time it takes for a single, best individual to take over the entire population. In
other words, it represents the speed at which the best solution in the initial popu-
lation propagates and conquers the whole population under the application of the
selection operator alone. It can also be seen as a simplified epidemic process, in
which infection means being replaced by the best individual and in which infected
individuals remain infected forever. These simple epidemic models are well known
in the CA community. The takeover time can be estimated experimentally by mea-
suring the proportion of the best individual as a function of time, under the effect
of selection only, without any variation operator. A shorter takeover time indicates
a higher selection pressure, and thus a more exploitative algorithm. If the selection
intensity is lowered, the algorithm becomes more explorative.

In the study described here, we consider cEAs defined on a one-dimensional
lattice of size n or a square lattice of size n = m × m. Both the linear cEA and
the two-dimensional case have periodic boundary conditions, i.e. the structures are
a ring and a torus respectively.

The main neighborhoods that we consider are the radius-1 neighborhood in the
one-dimensional case, which comprises the cell itself and its first right and left
neighbors and, in the two-dimensional case, the radius-1 von Neumann neighbor-
hood, which is constituted by the central cell and the four first-neighbor cells in the
directions north, east, south, and west (see also Chap. 1, Sect. 1.5).

8.3.2 Asynchronous Updating

In addition to the customary synchronous updating, we shall also use a few sequen-
tial update schemes. Synchronous update, with its idealization of a global clock, is
customary in cellular automata. However, perfect synchronicity is only an abstrac-
tion. In fact, in any spatially extended system, signals require a finite time to propa-
gate. Of course, this “unphysicality” is not a problem in artificial evolutionary algo-
rithms, where we are free to use any solution that makes sense computationally; but
there are other reasons that make asynchronous cEAs potentially useful as problem
solvers, as we shall see.

In the asynchronous case, cells are updated one at a time in some order. There
are thus many ways for sequentially updating the cells of a cEA, including “mixed”
ones in which whole blocks of cells are updated asynchronously with respect to each
other, while cells belonging to the block are updated in parallel. Here I consider four
commonly used asynchronous update methods for cellular automata in which cells
are updated one by one [11]:

• In fixed line sweep (LS), the n cells are updated sequentially from left to right for
rings, and line by line, starting from the upper left corner cell, for grids.

174 M. Tomassini

• In fixed random sweep (FRS), the next cell to be updated is chosen with uniform
probability without replacement; this will produce a certain update sequence
(c j

1 , ck
2, . . . , cm

n), where cp
q means that cell number p is updated at time q and

(j, k, . . . ,m) is a permutation of the n cells. The same permutation is then used
for all update cycles.

• The method of new random sweep (NRS) works like FRS, except that a new
random cell permutation is used for each sweep through the array.

• In uniform choice (UC), the next cell to be updated is chosen at random with
uniform probability and with replacement.

A time step is defined as the process of updating n times sequentially, which corre-
sponds to updating all the n cells in the grid for LS, FRS, and NRS, and possibly
fewer than n different cells in the uniform-choice method, since some cells might
be updated more than once. Fixed line sweep is a rather degenerate updating policy,
always imposing a one-by-one sequential scan of the array. In spite of this, it can be
useful at times, and is also an interesting bounding asynchronous case to consider.

8.3.3 Mathematical Models

In this section I shall present a synthesis of the mathematical considerations that
allow one to set up evolution equations in recurrent form for the expected growth of
the number of best individuals in the population as a function of (discrete) time. For
more details, the reader is referred to [12] and references therein.

Let us consider the random variables Vi (t) ∈ {0, 1} indicating the presence in
cell i (1 ≤ i ≤ n) of a copy of the current best individual (Vi (t) = 1) or of a worse
one (Vi (t) = 0) at time step t , where n is the population size. The random variable

N (t) =
n∑

i=1

Vi (t) (8.1)

denotes the number of copies of the best individual in the population at time step t .
Initially Vi (1) = 1 for some individual i , and Vj (1) = 0 for all j = i .

If the extinction probability is 0, which is guaranteed with the selection methods
used here, then the expectation E[T], where T = min{t ≥ 1 : N (t) = n}, is
called the takeover time of the selection method. In the case of spatially structured
populations the quantity Ei [T], denoting the takeover time if cell i contains the best
individual at time step 1, is termed the takeover time with initial cell i . Assuming a
uniformly distributed initial position of the best individual over all cells, the takeover
time is therefore given by

E[T] = 1

n

n∑

i=1

Ei [T]. (8.2)

8 Cellular Evolutionary Algorithms 175

The above expression is valid for arbitrary undirected connected graphs. For rings
and toruses, which are vertex-transitive (i.e. any vertex has a successor in the graph)
the takeover time does not depend on the initial vertex.

In what follows, recurrences are given that describe the growth of the random
variable N (t) in CEAs with different regular lattice topologies for synchronous and
asynchronous update policies.

8.3.3.1 Upper Bounds on the Takeover Time for One- and Two-Dimensional
Systems

It can easily be shown [13] that in finite panmictic populations the speed of growth
of the best individual follows the well known logistic behavior: there is an initial
exponential increase, followed by an exponential decrease after an inflexion point,
followed by saturation when the finite prefixed population size is reached.

However, in the artificial evolution of locally interacting, spatially structured pop-
ulations, the assumption of logistic growth does not hold anymore. Instead, in these
locally interacting structures, although the curves have the familiar “S shape” denot-
ing growth followed by saturation, they are not exponential but rather polynomial,
with a time dependence ∝ td , where d is the lattice dimension. In fact, in the case
of a ring or a torus structure we have a linear or a subquadratic growth, respectively.

To see this, let us consider the limiting case for a structured population, which
represents an upper bound on the growth rate, in which the selection mechanism is
deterministic, i.e. a cell always chooses its best neighbor for updating with prob-
ability 1. If we consider a population of size n with a ring structure, and consider
a neighborhood radius of r (i.e. the neighborhood of a cell contains 2r + 1 cells),
the following recurrence describes the growth of the number of copies of the best
individual:

{
N (0) = 1,
N (t) = N (t − 1)+ 2r.

This recurrence can be described by the closed equation N (t) = 1 + 2r t , which
clearly shows the linear character of the growth rate.

In the case of a population of size n on a toroidal grid of size
√

n ×√
n (assum-

ing
√

n odd) and a von Neumann generalized neighborhood structure of radius r ,
the growth of the number of copies of the best individual can be described by the
following recurrence:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N (0) = 1,

N (t) = N (t − 1)+ 4
r−1∑

i=0

(r t − i) , 0 ≤ t ≤ (
√

n − 1)/2,

N (t) = N (t − 1)+ 4
r−1∑

i=0

(
√

n − r t − i) , t ≥ (
√

n − 1)/2.

176 M. Tomassini

which reduces to the following:

⎧
⎨

⎩

N (0) = 1,
N (t) = N (t − 1)+ 4r2t − 2r(r + 1) , 0 ≤ t ≤ (

√
n − 1)/2,

N (t) = N (t − 1)− 4r2t + 4r
√

n − 2r(r + 1) , t ≥ (
√

n − 1)/2.

This growth is described by a convex quadratic equation followed by a concave
one, as the two closed forms of the recurrence clearly show:

{
N (t) = 2r2t2 + 2r(2r + 1)t + 1 , 0 ≤ t ≤ (

√
n − 1)/2,

N (t) = −2r2t2 + 2r(2
√

n − 3r − 1)t + 1 , t ≥ (
√

n − 1)/2.

Figure 8.2 depicts graphically the growth described by the above equations for a
population of 81 individuals on a 9×9 torus structure using a radius-1 von Neumann
neighborhood.

Thus, we conclude that a more accurate fit should take into account the nonex-
ponential growth followed by saturation.

Fig. 8.2 Example of deterministic growth of N (t) for a population structured as a torus with a von
Neumann neighborhood

8.3.3.2 Takeover Times in Rings

Here we calculate the theoretical takeover times for rings. For simplicity, only the
synchronous case is shown, the interested reader will find more details of the asyn-
chronous cases in [12].

Since we are assuming neighborhoods of radius 1 and N (0) = 1, the set of
cells containing a copy of the best individual will always be a connected region
of the ring. Therefore, at each time step, only two more cells (the two adjacent to
the connected region of the ring) will contain a copy of the best individual, with
probability p. The growth of the quantity N (t) can be described by the following
recurrence:

⎧
⎪⎨

⎪⎩

N (0) = 1,

E[N (t)] =
n∑

j=1

P[N (t − 1) = j](j + 2p),

where P[N (t − 1) = j] is the probability that the random variable N takes the
value j at time step t − 1. Since

∑n
j=1 P[N (t − 1) = j] = 1, and the expected

8 Cellular Evolutionary Algorithms 177

number E[N (t−1)] of copies of the best individual at time step t−1 is by definition∑n
j=1 P[N (t − 1) = j] j , the above recurrence is equivalent to

{
N (0) = 1,
E[N (t)] = E[N (t − 1)] + 2p.

The closed form of this recurrence is trivially E[N (t)] = 2pt + 1, and therefore the
expected takeover time E[T] for a synchronous ring cEA with n cells is

E[T] = 1

2p
(n − 1).

8.3.3.3 Takeover Times in Two-Dimensional Grids

We consider CEAs defined on a square lattice of finite size
√

n × √
n and radius-

1 von Neumann neighborhood. Because of the wrapping properties of the torus,
at each time step t the expected number of copies N (t) of the best individual is
independent of its initial position. Therefore, the expected takeover time is E[T] =
Ei [T],∀i .

We have seen above the limiting case of growth with deterministic selection (i.e.
a mechanism that selects the best individual in the neighborhood with probability
p = 1). In that case, the time variable t in the equations determines the half-diagonal
of a square rotated by 45◦ (see Fig. 8.2). When a probabilistic selection method is
modeled, the exact recurrences, corresponding to those derived for the ring topology
in the previous subsection, become very complicated. In fact, as can be seen in
Fig. 8.3, the phenomenon that has to be modeled implies different selection proba-
bilities at different locations in the grid.

To keep the models simple and easily interpretable, the geometry of the propa-
gation is approximated as the growth of a rotated square in the torus (see Fig. 8.4).

Fig. 8.3 Example of growth of N (t) with probabilistic selection for a population of 81 individuals
on a 9 × 9 torus structure

Fig. 8.4 Geometric approximation of growth with probabilistic selection in a torus-structured pop-
ulation: a rotated square grows as a function of time; there is unrestricted growth until the square
reaches the edges of the grid, and then the population saturates

178 M. Tomassini

Using this geometric growth, the side length s and the half-diagonal d of the rotated
square can be approximated by

s = √N (t), d =
√

N (t)√
2

.

With these quantities, we shall now focus on synchronous takeover times, using
the relevant probabilities in each case. The asynchronous cases are more difficult
and the analytical expressions can be found in [12].

Let us consider the growth of such a region with a selection mechanism that has
probabilities p1, p2, p3, p4, and p5 of selecting the best individual when there are
respectively 1, 2, 3, 4 and 5 copies of it in the neighborhood. Assuming that the
region containing the copies of the best individual expands such that it maintains
the shape of a square rotated by 45◦, we can model the growth of N (t) with the
following recurrence

⎧
⎨

⎩

N (0) = 1,
N (t) = N (t − 1)+ 4p2

√
N (t − 1)/

√
2 , N (t) ≤ n/2,

N (t) = N (t − 1)+ 4p2
√

n − N (t − 1) , N (t) > n/2.

As it is extremely difficult to find a closed analytic form of this recurrence, as
well of those corresponding to the asynchronous cases, we shall made use of the
explicit recurrences.

8.3.4 Experimental Validation

In this section we see how extensive numerical simulation confirms that the previ-
ously described models are sufficiently accurate ones. Furthermore, it will become
clear that the cell update policy has a rather marked influence on the global induced
selection pressure in the population, and thus on the exploitation/exploration char-
acteristic of the CEA.

8.3.4.1 The Ring Structure

Figure 8.5a shows the experimental growth curves of the best individual for the syn-
chronous and four asynchronous update methods using binary tournament selection
and a population of size n = 1024. We may notice that the mean curves for the
two asynchronous methods fixed and new random sweep show a very similar beha-
vior while synchronous and uniform choice asynchronous overlap. The graph also
shows that the asynchronous update methods give an emergent selection pressure
greater than or equal to that in the synchronous case, increasing from the case of
uniform choice to that of line sweep, with fixed and new random sweep in between.
Figure 8.5b shows the predicted and experimental curves for the synchronous case
and the mean square error between them. It is clear that the model faithfully predicts

8 Cellular Evolutionary Algorithms 179

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

(a) (b)

B
es

t I
nd

iv
id

ua
l C

op
ie

s

synchronous
uniform choice
new random sweep
fixed random sweep
line sweep

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

B
es

t I
nd

iv
id

ua
l C

op
ie

s

error = 4.1832

experimental curve
predicted curve

Fig. 8.5 (a) Takeover times with binary tournament selection: mean values over 100 runs. The
vertical axis represents the number of copies N (t) of the best individual in each population as
a function of the time step t . (b) Comparison between calculated and theoretical curves for the
synchronous case

the observed takeover time. Similar comparisons for the other update schemes are
similarly good and can be found in [12].

Numerical values of the mean takeover times for the five update methods, along
with their standard deviations, are shown in Table 8.1, where it can be seen that the
fixed-random-sweep and new-random-sweep methods give results that are statisti-
cally indistinguishable, and can therefore be described by a single model. The same
can be said for the synchronous and uniform-choice methods.

Similar results are obtained when using the linear ranking selection methods. To
save space they are not reported here but the interested reader can consult [12].

Table 8.1 Mean takeover time and standard deviation for binary tournament selection and the five
update methods in rings. Mean values over 100 independent runs

Synchro LS FRS NRS UC

Mean takeover time 925.03 569.82 666.18 689.29 920.04
Standard deviation 20.36 24.85 17.38 20.27 26.68

8.3.4.2 The Grid Structure

Figure 8.6a shows the growth curves of the best individual for the panmictic, syn-
chronous, and three asynchronous update methods for binary tournament selection.
The mean curves for the two asynchronous methods, i. e. fixed and new random
sweep, show a very similar behavior, and thus only the results for new random
sweep are plotted. The graphics shows that the asynchronous update methods give
an emergent selection pressure greater than in the synchronous case, increasing from
the case of uniform choice to that of line sweep, with fixed and new random sweep
in between (similarly to our findings for the ring topology). The logistic curve

180 M. Tomassini

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

B
es

t I
nd

iv
id

ua
l P

ro
po

rt
io

n

synchronous
uniform choice
new random sweep
line sweep
panmictic

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

B
es

t I
nd

iv
id

ua
l C

op
ie

s

experimental curve
predicted curve

(a) (b)

Fig. 8.6 (a) Takeover times with binary tournament selection. Mean values over 100 runs. The
vertical axis represents the fraction of the best individual in each population as a function of
the time step t . (b) Comparison of experimental takeover time curves (full line) with the model
(dashed) for the synchronous update case

corresponding to a mixing (panmictic) population is also shown for comparison.
Figure 8.6b shows the predicted and experimental curves for the synchronous update
method. It can be observed that the agreement between theory and experiment is
very good, in spite of the approximations made in the models, and this is also true
for the asynchronous update methods [12].

The numerical values of the mean takeover times for the five update methods,
together with their standard deviations, are shown in Table 8.2, where it can be
seen that the fixed-random-sweep, and new-random-sweep methods give results that
are statistically indistinguishable. However, this time the differences between the
uniform-choice and synchronous update are meaningful in the case of torus. Results
for binary tournament selection are analogous [12].

Table 8.2 Mean takeover time and standard deviation for the binary tournament selection and the
five update methods in grids. Mean values over 100 independent runs

Synchro LS FRS NRS UC

Mean takeover time 44.06 21.8 27.21 28.26 35.73
Standard deviation 1.6746 1.7581 1.5654 1.8996 2.4489

8.3.4.3 The Influence of Neighborhood Size and Grid Shape

Sarma and De Jong have empirically shown that the neighborhood’s size and
shape have an important influence on the induced global selection pressure in grid-
structured populations [14, 15]. Theoretical models similar to those of Sect. 8.3.3
confirm that this is indeed the case [12]. Figure 8.7 depicts the behavior of takeover
time for increasing values of the radius for generalized von Neumann neighbor-
hoods. It is clear that both in rings and in two-dimensional grids selection intensity

8 Cellular Evolutionary Algorithms 181

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

B
es

t I
nd

iv
id

ua
l P

ro
po

rt
io

n

(a) (b)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

B
es

t I
nd

iv
id

ua
l P

ro
po

rt
io

n

Fig. 8.7 (a) Growth curves for rings with neighborhoods of increasing radius with binary tourna-
ment selection. From right to left the radii are 2, 4, 8, 16, 32, 64, and 128. (b) Growth curves for
tori with neighborhoods of radius 1, 2, 3, 4, 5, 6, and 7, increasing from right to left. The dashed
curves in (a) and (b) represents the case of a panmictic population

grows with increasing neighborhood size. In the limit of a neighborhood size equal
to the population size one obviously recovers the panmictic case, which is shown as
a dashed line in the figures.

It is also possible to influence the takeover times, and thus the selection pressure,
by changing the shape of a two-dimensional grid [16]. Starting from a square grid,
selection pressure tends to decrease when the grid becomes rectangular. In the limit
when the linear dimension becomes equal to the number of cells one recovers the
ring case. Figure 8.8 is an example of the numerical behavior, which is in agreement
with the model described in [12].

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

B
es

t I
nd

iv
id

ua
l C

op
ie

s

torus 32×32
rectangular 64×16
rectangular 128×8

Fig. 8.8 Growth curves for synchronous evolution on toroidal structures with different ratios of
axes using linear ranking selection. Mean values over 100 independent runs

182 M. Tomassini

8.3.4.4 Concluding Remarks on Selection Pressure

To wrap-up the study of the effects of selection in CEAs, the following observations
can be made.

• Takeover times are larger in rings and grids than in mixing populations. Speeds
vary by a large amount and go from linear in rings, to quadratic at most in grids,
to exponential in mixing populations (see Figs. 8.5 and 8.6).

• In lattices (rings and grids) all asynchronous update methods are faster than syn-
chronous update or at least of equal speed.

• In lattices there is a hierarchy of takeover times among the asynchronous update
methods: line sweep is the faster while uniform choice is the slower.

• Selection pressure can also be controlled by using different neighborhood sizes
and different grid shapes.

In standard EAs there are several ways for influencing the selection pressure;
however, they all require either changing the selection method or parameterizing
it in an ad hoc manner. We have just seen that in CEAs this is easier to achieve,
for example, by just using a grid or a ring-structured population or by changing
the cell update scheme. The selection pressure in a given structured population
can also be varied at will by using flatter grids or by working with larger neigh-
borhoods, even dynamically, i.e. during the CEA’s execution. From this point of
view, lattice-structured populations appear to offer a high degree of flexibility in
problem-solving.

8.4 Benchmarking CEAs

Now that we understand how lattice structured populations provide us with new
degrees of freedom to work with, we add variation operators in order to probe the
workings of CEAs on actual optimization problems. Before describing some real-
world problems to which CEAs have been successfully applied, we first study their
behavior on a number of benchmark problems. However, before jumping to the
empirical results, a few cautionary comments are in order. In the first place, choosing
a set of test problems for benchmarking purposes is always a risky exercise for no
test suite can represent all the kinds of problems that are likely to arise in practice.
Thus, any test problem suite will be necessarily biased and incomplete. Furthermore,
a general result, known as no free lunch theorem [17] tells us that, averaged over all
problems and problem instances, the performance of all search algorithms is the
same. In spite of this, people normally want to solve specific problems for which
there is extra information available. This problem-specific knowledge can thus be
used to improve the search, since the no free lunch theorem does not prevent one
from finding an excellent searcher for a given problem or problem family; all that
it says is that this same algorithm will necessarily perform badly on some other

8 Cellular Evolutionary Algorithms 183

problems. Therefore, although no algorithm can be said to be superior in all cases,
there is still scope for algorithms that behave well on particular problems or problem
classes. With these limitations in mind, we now describe the standard CEA and the
test suite used for performance evaluation purposes. This section draws from [18].

8.4.1 The Algorithm

The CEA is actually a cellular genetic algorithm (CGA) since it uses binary rep-
resentation of solutions, double point crossover, and standard single bit mutation,
mutation rates being much lower than crossover rates. However, it would be easy
to transform the CGA into a CEA that uses, for instance, strings of reals and dif-
ferent recombination and mutation operators; the changes would be limited to these
aspects while the global evolutionary process would remain the same, as described
in the pseudo-code of Sect. 8.2. Another important consideration is that the tests
have only an illustrative purpose. The CEA used, a straightforward genetic cellular
algorithm, has not been tuned, nor does it include local search capabilities or prob-
lem knowledge other than what is contained in the individual representation and the
fitness function. Of course, such improvements would be needed if the algorithms
were intended to compete with the best solvers for a given problem or problem class.
Here we are mainly interested in comparing CEAs among themselves as a function
of two important parameters that have been dealt with at length before: operation
timing and grid shape.

The configuration of the algorithm is detailed in Table 8.3. Besides the syn-
chronous CGA, the four asynchronous models were also used. In the case of rect-
angular grids, the shapes of the grids used are shown in Table 8.4. The CGAs based
on the rectangular grids were synchronous.

Table 8.3 Parameterization used in the algorithm

Population size 400 individuals
Selection of parents Binary tournament
Recombination Double-point crossover, pc = 1.0
Bit mutation Bit-flip, pm = 1/L
Length of individual L
Replacement Replace if better

Table 8.4 Grid shapes studied

Name (Shape of population)

Square (20 × 20 individuals)
Rectangular (10 × 40 individuals)
Narrow (4 × 100 individuals)

184 M. Tomassini

8.4.2 Test Suite: Discrete Optimization Problems

The full test suite comprises combinatorial optimization problems and continuous
optimization problems. Here I only show the results on the combinatorial problems.
Full results and a more detailed description can be found in [18, 9] and references
therein.
The problems used are:

1. the massively multimodal deceptive problem (MMDP),
2. the multimodal problem generator (P-PEAKS)
3. the error-correcting-code (ECC) design problem,
4. the problem of maximum cut of a graph (MAXCUT).

Although there cannot be an optimal choice, as explained above, this set of prob-
lems seems at least to be rather representative of different degrees of difficulty and
of various important application domains. Given the computational limitations that
any experiment must face, this should be enough for us to obtain a good level of con-
fidence in the results. What follows is a brief description of each problem, original
references are in [18].

Massively Multimodal Deceptive Problem (MMDP)

The MMDP is a problem that has been specifically designed to be difficult for an
EA. It is made up of k deceptive subproblems (si) of 6 bits each, whose values
depend on the number of ones (unitation) in a binary string (see Fig. 8.9). It is easy
to see that these subfunctions have two global maxima and a deceptive attractor at
the midpoint.

In the MMDP, each subproblem si contributes to the fitness value according to
its unitation (Fig. 8.9). The global optimum has a value of k and is attained when
every subproblem is composed of zeros or six ones. The number of local optima
is quite large (22k), while there are only 2k global solutions. Therefore, the degree
of multimodality is regulated by the parameter k. We use here a considerably large
problem instance with k = 40 subproblems. The instance we try to maximize for

Fig. 8.9 Basic deceptive bipolar function (si) for MMDP

8 Cellular Evolutionary Algorithms 185

solving the problem is shown in the following equation, and its maximum value is
equal to k:

fMMDP(s) =
k∑

i=1

fitnesssi .

Multimodal Problem Generator (P-PEAKS)

The P-PEAKS problem is a multimodal problem generator. A problem generator is
an easily parameterizable task which has a tunable degree of epistasis, thus allow-
ing one to derive instances of increasing difficulty at will. Also, using a problem
generator removes the opportunity to hand-tune algorithms to a particular problem,
therefore allowing more fairness when comparing algorithms. With a problem gen-
erator, the algorithms are run on a high number of random problem instances, since
a different instance is solved each time the algorithm runs, the predictive power of
the results for the problem class as a whole is increased.

The idea of P-PEAKS is to generate P random N -bit strings that represent the
location of P peaks in the search space. The fitness value of a string is the number
of bits that the string has in common with the nearest peak in that space, divided
by N (as shown in 8.3). By using a small/large number of peaks we can obtain
weakly/strongly epistatic problems. In the work described here we have used an
instance of P = 100 peaks of length N = 100 bits each, which represents a medium
to high epistasis level. The maximum fitness value for this problem is 1.0. The
fitness value is given by

fP-PEAKS(x) = 1

N
max

1≤i≤p
{N − HammingD(x,Peaki)}. (8.3)

Error-Correcting-Code Design Problem (ECC)

We shall consider a three-tuple (n, M, d), where n is the length of each codeword
(number of bits), M is the number of codewords, and d is the minimum Hamming
distance between any pair of codewords. The objective is to find a code which has
a value of d as large as possible (reflecting greater tolerance to noise and errors),
given previously fixed values of n and M . Here we search half of the codewords
(M/2) that will make up the code, and the other half is made up by the complement
of the codewords computed by the algorithm.

The fitness function to be maximized is

fECC = 1
M∑

i=1

M∑

j=1,i = j

d−2
i j

,

186 M. Tomassini

where di j represents the Hamming distance between codewords i and j in the code
C (made up of M codewords, each of length n). We consider here an instance where

M = 24 and n = 12. The search space is of size

(
4096

24

)

, which is approximately

1087. The optimum solution for M = 24 and n = 12 has a fitness value of 0.0674.

Maximum Cut of a Graph (MAXCUT)

The MAXCUT problem looks for a partition of the set of vertices (V) of a weighted
graph G = (V, E) into two disjoint subsets V0 and V1 such that the sum of the
weights of the edges with one endpoint in V0 and the other one in V1 is maximized.
Individuals are encoded as binary strings (x1, x2, . . . , xn) of length n, where each
digit corresponds to a vertex. If a digit is 1 then the corresponding vertex is in the
set V1; if it is 0 then the corresponding vertex is in the set V0. The function to be
maximized is

fMAXCUT(x)=
n−1∑

i=1

n∑

j=i+1

wi j ·
[
xi · (1 − x j)+ x j · (1 − xi)

]

Note that wi j contributes to the sum only if nodes i and j are in different parti-
tions. While one can generate random instances of a graph to test the algorithm, here
we have used the case “cut20.09”, with 20 vertices and a probability 0.9 of having
an edge between any two randomly chosen vertices. The maximum fitness value for
this instance is 56.740064.

8.4.2.1 Experimental Results

The following tables show the results for the problem suite: MMDP, Table 8.5;
P-PEAKS, Table 8.6; ECC, Table 8.7; and MAXCUT, Table 8.8. One hundred inde-
pendent runs were performed for each algorithm and for every problem in the test
suite. Note that only the synchronous version of the CGA was run on square, narrow,
and rectangular grids, the asynchronous versions results are all for the square grid.

The tables report the average of the final best fitness over all runs, the average
number of time steps needed to obtain the optimum value (if obtained), and the hit
rate (percentage of successful runs). Therefore, the final distance from the optimum

Table 8.5 MMDP problem with a maximum of 1000 generations

Algorithm Avg. solution (best=20) Avg. generations Hit rate (%)

Square 19.813 214.18 57
Rectangular 19.824 236.10 58
Narrow 19.842 299.67 61

LS 19.518 343.52 23
FRS 19.601 209.94 31
NRS 19.536 152.93 28
UC 19.615 295.72 36

8 Cellular Evolutionary Algorithms 187

Table 8.6 P-PEAKS problem with a maximum of 100 generations

Algorithm Avg. solution (best=1) Avg. generations Hit rate (%)

Square 1.0 51.84 100
Rectangular 1.0 50.43 100
Narrow 1.0 53.94 100

LS 1.0 34.75 100
FRS 1.0 38.39 100
NRS 1.0 38.78 100
UC 1.0 40.14 100

Table 8.7 ECC problem with a maximum of 500 generations

Algorithm Avg. solution (best=0.0674) Avg. generations Hit rate (%)

Square 0.0670 93.92 85
Rectangular 0.0671 93.35 88
Narrow 0.0673 104.16 94

LS 0.0672 79.66 89
FRS 0.0672 82.38 90
NRS 0.0672 79.46 89
UC 0.0671 87.27 86

Table 8.8 MAXCUT problem with a maximum of 100 generations

Algorithm Avg. solution (best=56.74) Avg. generations Hit rate (%)

Square 56.74 11.26 100
Rectangular 56.74 11.03 100
Narrow 56.74 11.88 100

LS 56.74 9.46 100
FRS 56.74 9.69 100
NRS 56.74 9.55 100
UC 56.74 9.58 100

(especially interesting when the optimum is not found), the effort expended by the
algorithm, and its expected efficacy, respectively, are reported.

From inspection of these tables some conclusions can be drawn. First, the asyn-
chronous algorithms tend to need a smaller number of generations to locate an
optimum than do the synchronous ones, except in the case of the MMDP prob-
lem. Statistical tests not shown here (see [18]) confirm that the differences between
the asynchronous and synchronous algorithms are significant. This indicates that
the asynchronous versions perform more efficiently with respect to CGAs with dif-
ferent grid shapes, a result that confirms the influence of the stronger selection of
asynchronous CGAs.

With regard to the grid shape influence on synchronous CEAs, one can see that
the flatter the grid, the slower the algorithm, which is in line with takeover time
results, taking into account that here recombination and mutation are active as well.
On the other hand, the grid shape does not seem to have an influence on the solution
quality.

Conversely, if we pay attention to the success (hit) rate, it can be concluded
that the synchronous policies with various rectangular shapes outperform the

188 M. Tomassini

asynchronous algorithms (except for the ECC problems): slightly in terms of the
average final fitness, and clearly in terms of the probability of finding a solution (i.e.
the frequency of location of the optimum).

Another interesting result is the fact that we can define two classes of problems:
those solved by all methods to optimality (100% hit rate) and those in which no
100% rate is achieved at all. The former seem to be suitable for straight CGAs,
while the latter would need some help, for example by including local search.

In order to summarize the large set of results and draw some useful conclusions,
a final ranking of the algorithms following three different metrics is presented:
average best final solution, average number of generations for success, and hit rate.
Table 8.9 shows the three rankings, which go from 1 (best) to 7 (worst) according
to the three criteria.

As one would expect after the previous comments, synchronous algorithms with
“narrow” and “rectangular” shapes are in general more accurate than all the asyn-
chronous algorithms, according to the criteria of average best final fitness and of
hit ratio, at least for the test problems used here, with a special leading position for
narrow population grids. On the other hand, the asynchronous versions clearly out-
perform any of the synchronous algorithms in terms of the average number of gener-
ations, with a trend towards NRS as the best-ranked flavor of CGA for the test suite.

In conclusion, asynchronous algorithms seem to be numerically faster than syn-
chronous ones for the P-PEAKS, ECC, and MAXCUT problems, but not for the
MMDP. On the other hand, synchronous algorithms outperform asynchronous ones
in terms of the hit rate for these benchmarks, which could be an important issue
for many applications. In particular, the more explorative character of the narrow
population structure seems to allow a more accurate search in most cases. Again,
it has to be pointed out that the results cannot be immediately generalized to other
problems or problem types. However, the picture that emerges from this empirical
investigation is a coherent one, and it essentially confirms the importance of selec-
tion intensity considerations.

Table 8.9 Ranking of the algorithms

Avg. solution Avg. generations Hit rate

1 Narrow 4 1 NRS 8 1 Narrow 4
2 Rectangular 9 2 LS 10 2 Rectangular 9
2 FRS 9 3 FRS 11 2 FRS 9
4 NRS 10 4 UC 16 4 NRS 11
5 UC 11 5 Rectangular 19 5 Square 12
5 LS 11 6 Square 21 5 UC 12
7 Square 12 7 Narrow 27 5 LS 12

8.5 CEAs and Real-World Problem Solving

Although less popular than other kinds of EAs, CEAs have been successfully used
for solving difficult real-life optimization problems. However, the bare-bones CEAs
presented in the previous Sects. would not be efficient enough to compete with well

8 Cellular Evolutionary Algorithms 189

established problem solving techniques. Plain CEAs have the advantage of being
easy to apply to almost any problem once a representation for individuals has been
found. However, one needs to put more knowledge into the algorithm to hope to
be able to successfully tackle hard engineering problems. There are several ways in
which a CEA, or a standard panmictic EA for that matter, can be enhanced. In order
to convey the main ideas, here I list some modifications that would make a CEA
perform better on a given problem or problem class (the list is not exhaustive, as
several other possibilities have been left out):

• Memetic and Hybrid algorithms
• Metaheuristics
• Multi-Objective optimization

Memetic and hybrid algorithms are heuristic techniques that combine, for
instance, population based methods with local search approaches or, in general, add
problem-specific knowledge to the heuristic search. In the case of CEAs, the evolu-
tionary scenario would typically be supplemented with a technique that searches for
locally optimal solutions among the best members of the population.

Metaheuristics are generic problem-solving techniques in which a higher-level
heuristic guides or controls an underlying problem-specific heuristic method. These
techniques overlap to some extent with memetic algorithms and there isn’t a gener-
ally accepted definition.

In multi-objective optimization one is interested in optimizing under the con-
straint that several objectives must be taken care of, not only one such as maximiza-
tion or minimization of a specific fitness function. As these objectives are usually
incompatible, one is led to consider tradeoffs in the way in which resources are
allocated. Actually, many real-world problems are of this kind.

Evidently, a description of the techniques and achievements in this vast inter-
disciplinary field would be impossible in a short space. I thus briefly describe a
couple of problems for which these enhanced CEAs have been successful to give the
flavor of present-day research and applications. For more information, the reader is
referred to the original articles and to the book [10] which presents the state of the
art in the field.

8.5.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) includes a large set of problems that can be
seen as multiple traveling salesperson problems. The problems are obviously NP-
hard and they are very important in practice as they represent the framework that
is found in many industrial applications in which finding better solutions means
large savings of resources. This kind of problems has been studied for years and
good solutions have been found. Recently, a CEA-based approach has been able to
outperform previous results [19]. In combination with the standard CEA framework,

190 M. Tomassini

the authors have used a specialized representation for the routes and the deliver-
ies, together with crossover and mutation operators that were tailored to this same
representation. Furthermore, a local search phase was added after the application
of variation operators in which special tour operators were applied (2-opt and 1-
exchange) in order to further improve good solutions. The method was applied to
many instances of the VRP and a number of best-so-far solutions were found. On
the other hand, the solutions found in the other cases were equal or very close to the
best solutions known.

8.5.2 Diffusion in Mobile Ad-Hoc Networks

A mobile ad-hoc network (MANET) is a kind of wireless network, and is a self-
configuring network of mobile routers (and associated hosts) connected by wireless
links, the union of which form an arbitrary topology since there is no need of a pre-
viously existing infrastructure. The routers are free to move randomly and organize
themselves arbitrarily; thus, the network’s wireless topology may change rapidly
and unpredictably. In [20] the authors apply a multi-objective CEA to the problem
of finding good strategies for information transmission and diffusion to MANETS
that are situated in metropolitan areas. The objectives typically are: minimizing the
duration of the diffusion process, maximizing the network coverage, and minimizing
the network usage. Results were very good and competitive with other established
multi-objective optimization methods.

8.6 Conclusions

I have described a particular class of probabilistic cellular automata called cellular
evolutionary algorithms. They are formally CAs but they also belong to the large
family of evolutionary algorithms. From that point of view, I have presented math-
ematical models that correctly describe the behavior of local selection methods on
lattice-structured evolutionary populations. These models are useful in themselves
in the field of probabilistic CAs but, in conjunction with genetic operators such as
mutation and crossover, they also help explain the observed behavior of evolving
populations of solutions to a given problem. This has been complemented with an
empirical analysis of CEAs on a test suite of discrete optimization problems and,
finally, with a discussion of two hard real-life problems for which CEAs have proven
their usefulness with respect to other heuristic methods. Cellular evolutionary algo-
rithms are easy to implement and to deal with. When complemented with problem
knowledge and local search methods they are competitive with other search heuristic
and thus definitely belong to the toolkit of the modern engineering and scientific
problem solver.

8 Cellular Evolutionary Algorithms 191

References

1. A.E. Eiben, J.E. Smith. Introduction to Evolutionary Computing. (Springer Heidelberg, 2003)
2. M. Gorges-Schleuter. ASPARAGOS an asynchronous parallel genetic optimisation strategy,

ed. by J.D. Schaffer, Proceedings of the Third International Conference on Genetic Algo-
rithms, Morgan Kaufmann, San Fransisco, CA, pp. 422–427 1989

3. B. Manderick, P. Spiessens, Fine-grained parallel genetic algorithms, ed. by J.D. Schaffer,
Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann,
San Fransisco, CA, pp. 428–433 1989

4. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D 42, 228–234 (1990)

5. R.J. Collins, D.R. Jefferson, Selection in massively parallel genetic algorithms, ed. by R.K.
Belew, L.B. Booker, Proceedings of the Fourth International Conference on Genetic Algo-
rithms, Morgan Kaufmann, San Francisco, CA, pp. 249–256 1991

6. Y. Davidor, A naturally occurring niche & species phenomenon: The model and first results,
ed. by R.K. Belew, L.B. Booker, Proceedings of the Fourth International Conference on
Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, pp. 257–263 1991

7. M. Tomassini, The parallel genetic cellular automata: Application to global function opti-
mization, ed. by R.F. Albrecht, C.R. Reeves, N.C. Steele, Proceedings of the International
Conference on Artificial Neural Networks and Genetic Algorithms, Wien, New York, NY,
pp. 385–391 1993

8. D. Whitley, Cellular genetic algorithms ed. by S. Forrest, Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA,
p. 658 1993

9. M. Tomassini, Spatially Structured Evolutionary Algorithms (Springer, Heidelberg, 2005)
10. E. Alba, B. Dorronsoro, Cellular Genetic Algorithms (Springer, Heidelberg, 2008)
11. B. Schönfisch, A. de Roos, Synchronous and asynchronous updating in cellular automata.

BioSystems 51, 123–143 (1999)
12. M. Giacobini, M. Tomassini, A. Tettamanzi, E. Alba. Selection intensity for cellular evolu-

tionary algorithms for regular lattices. IEEE Trans. Evol. Comput. 9, 489–505 (2005)
13. D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algo-

rithms, ed. by G.J.E. Rawlins, Foundations of Genetic Algorithms 1, Morgan Kaufmann, San
Francisco, CA, pp. 69–93 1991

14. J. Sarma, K.A. De Jong, An analysis of the effect of the neighborhood size and shape on local
selection algorithms, ed. by H.M. Voigt et al., Parallel Problem Solving from Nature (PPSN
IV), Lecture Notes in Computer Science, (Springer Heidelberg, 1996), pp. 236–244

15. J. Sarma, K.A. De Jong, An analysis of local selection algorithms in a spatially structured
evolutionary algorithm ed. by T. Bäck, Proceedings of the Seventh International Conference
on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, pp. 181–186 1997

16. E. Alba, J.M. Troya, Cellular evolutionary algorithms: Evaluating the influence of ratio ed.
by M. Schoenauer et al., Parallel Problem Solving from Nature (PPSN VI), Lecture Notes in
Computer Science, vol. 1917 (Springer Heidelberg, 2000), pp. 29–38

17. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.
Comput., 1(1), 67–82 (1997)

18. B. Dorronsoro, E. Alba, M. Giacobini, M. Tomassini, The influence of grid shape and asyn-
chronicity on cellular evolutionary algorithms. In 2004 Congress on Evolutionary Computa-
tion (CEC 2004), IEEE Press, Piscataway, NJ, pages 2152–2158, 2004

19. E. Alba, B. Dorronsoro, Computing nine new best-so-far solutions for capacitated VRP with
a cellular GA. Inform. Process. Lett. 98, 225–230 (2006)

20. E. Alba, B. Dorronsoro, F. Luna, A. J. Nebro, P. Bouvry, L. Hogie, A cellular multi-objective
genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. Comput. Com-
mun. 30, 685–697 (2007)

Chapter 9
Artificial Evolution of Arbitrary
Self-Replicating Structures in Cellular Spaces

Zhijian Pan and James A. Reggia

Self-replicating systems are systems that are capable of producing copies of them-
selves. The terms replication and reproduction are often considered synonymous,
but in actuality there is a distinction [36]. Replication is a developmental process,
involving no genetic operators and resulting in an exact duplicate of the parent
organism. Reproduction, on the other hand, is an evolutionary process, involving
genetic operators such as crossover and mutation, thereby contributing to the varia-
tion that is an important aspect of evolution.

The mathematician John von Neumann is credited with being the first to conduct
a formal investigation of artificial self-replicating machines [19, 20]. He believed
that self-replicating biological organisms could be viewed as very sophisticated
machines. He argued that the important thing about a replicating organism was not
the matter from which it is made, but rather the information and the complexity
of the interactions between parts of the organism. In particular he asked whether
we can use purely mathematical-logical considerations to discover the specific fea-
tures of biological automata that make them self-replicating. Much subsequent work
on artificial self-replicating machines has continued in this spirit, being motivated
by the desire to understand the fundamental information processing principles and
algorithms involved in self-replication, independent of how they might be physically
realized. It has also been argued that a better understanding of these principles could
be useful in atomic-scale manufacturing (nanotechnology), in creating robust elec-
tronic systems, in facilitating future planetary exploration, and in gaining a better
understanding of the origins of life.

In the following, we give an overview of past work and recent developments
involving artificial self-replication implemented as cellular automata (CA). Sections
9.1, 9.2, and 9.3 of this chapter summarize some key results and historical trends,
such as the drive to produce progressively simpler replicators while at the same time
giving them an added ability to carry out functions as they reproduce. The remaining

Z. Pan (B)
IBM Pervasive Computing Lab, 1997 Annapolis Exchange Pkwy, Annapolis,
MD 21401, USA
e-mail: edzpan@yahoo.com

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_9,
C© Springer-Verlag Berlin Heidelberg 2010

193

194 Z. Pan and J.A. Reggia

Sects. 9.4 and 9.5 of the chapter describe recent progress using evolutionary
computation methods to automatically discover novel self-replicating structures in
cellular spaces.

9.1 Self-Replicating Systems in Cellular Automata

While a variety of approaches have been taken in the past to studying self-replicating
systems, including mechanical [7] and biochemical [29] systems, a central and
enduring approach has focused on embedding abstract self-replicating structures
in cellular spaces. In CA, a structure can simply be viewed as a configuration of
contiguous active cells. Note that such a structure can also enclose empty (quiescent)
cells, as long as all of the active cells in the structure remain contiguous. The number
of active cells in the structure is called its size. An active cell in a structure is also
called a component in the structure. A structure is called an isolated structure if no
active cells which are not in it are adjacent, i.e., no active cells are in the immediate
neighborhood of any active cell in the structure.

An isolated structure at time t = 0 is called a seed. A structure at time t ≥ 1
is called a seed replica, or just replica, if the structure inherits all properties of the
seed, that is, (1) it has the same configuration as the seed; (2) all of its active cells are
contiguous with one another; and (3) it is isolated from other active cells. Note that,
since a CA space is considered to be isotropic, meaning that the absolute directions
of east, south, west, and north are indistinguishable, the replica can be displaced and
perhaps rotated relative to the original.

Defining a self-replicating system embedded in a CA consists of specifying all
of the following: (1) a seed and its environment; (2) a rule table; and (3) a time
t ≥ 1, such that after the rule table has been applied to the seed and recursively to
subsequent configurations, n replicas are constructed in the infinite cellular space,
for some positive integer n. Note that a seed itself is not a self-replicating system. A
seed is only a structure, which is a static part of the self-replicating system. It is the
rule table that makes the seed replicate in the given CA space.

Below, we suggest that past work on self-replicating systems in CA is best
viewed as having involved two main approaches: universal constructors, and much
simpler non-universal structures such as replicating loops. We then present the argu-
ment that recent work using evolutionary methods to automatically discover new
types of replicating structures is likely to be a useful direction for future research,
and we provide some examples supporting this hypothesis.

9.2 Universal Constructors in CA Spaces

To embed a hypothetical self-replicating machine in a CA space, von Neumann [20]
envisioned that the following characteristics should be present in a self-replicating
system model: (1) constructional universality, that is the ability to construct any kind

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 195

of configuration in the CA space from a given description (self-replication is then
only a particular case of universal construction); and (2) computational universality,
that is the ability to operate as a universal Turing machine, and thus to execute any
computational task.

To implement this idea, von Neumann developed his theoretical model in a CA
space with tens of thousands of components in 29-state cells and using a 5-cell
neighborhood [20]. His model consists of a configuration whose numerous compo-
nents (non-quiescent cells) can be grouped into two functional units: a constructing
unit, which constructs the new automaton, and a tape unit, which stores and reads
the information needed to construct the automaton. The tape unit consists of a “tape”
and a tape control, where the tape is a linear array of cells that contains a specifica-
tion of the automaton to be constructed. The construction of the automaton is carried
out by sending signals (in the form of propagating cell states) between the tape unit
and the construction unit. The construction unit consists of a construction arm and
construction control. The construction arm is an array of cells through which cell
states to be constructed can be sent from the construction control to the designated
places in the construction area.

Von Neumann’s universal constructor model employs a complex transition rule
set, with the total number of cells composing the universal constructor estimated
to range from 50,000 to 200,000 [36]. In the late 1960s Codd demonstrated that if
the component or cell states meet certain symmetry requirements, von Neumann’s
model could be reduced to a simpler 4000 component structure embedded in an
8-state, 5-neighbor 2-D cellular space [6]. Vitanyi described a sexually reproducing
cellular automata model and showed that the recombination of the parents’ char-
acteristics in the offspring conforms to recombination in nature. Similarities and
differences with biological systems have been discussed [38, 39].

A number of researchers also have subsequently considered the implementation
of a universal constructor. Signorini discussed the implementation of the 29-state
transition rule and three organs (pulser, decoder, and periodic pulser) on a SIMD
(single-instruction multiple-data) computer [35]. Pesavento provided a close simu-
lation of von Neumann’s model, but self-replication is not demonstrated since the
tape required to describe the universal constructor is too large to simulate [27].
Beuchat and Haenni implemented a hardware module of a 25-cell pulser using
field-programmable gate arrays (FPGAs) [3]. Buckley and Mukherjee described
the constructibility of signal-crossing solutions in von Neumann’s 29-state cellular
automata [23].

9.3 Self-Replicating Loops

In 1984, Langton observed that biological self-replicating systems are not capable
of universal construction, and concluded that universal construction may be a suf-
ficient condition for self-replication, but is not a necessity. He successfully took
a loop structure from Codd’s self-replicating model involving only 86 cells, in a

196 Z. Pan and J.A. Reggia

2-dimensional, 8-state, von Neumann neighborhood CA space, and showed that it
could be modified to replicate [11, 12]. The resulting self-replicating structure is
essentially a square loop, with internal and external sheaths, where the data encod-
ing the instructions to construct a duplicated loop circulate counterclockwise. A
duplicated loop is formed after 151 time steps.

Langton’s self-replicating loop is strikingly simple, and can be easily simulated
on computers. Further, Byl eliminated the internal sheath of Langton’s loop and
discovered a smaller loop, which composed of only 12 cells embedded in a six
state cellular space [4]. Reggia et al. removed the external sheath, and constructed
a family of yet smaller self-replicating loops, with the smallest comprising only 5
cells, embedded in a 6 state cellular space [30]. An unsheathed loop that is capable
of replicating, given an appropriate set of rules, is shown in Fig. 9.1. The self-
replication process is illustrated in Fig. 9.2. Loops without sheaths can be made
very small, replicating in less than a dozen steps, as illustrated in Fig. 9.3.

The self-replicating models described up to this point all involved a manual
design process and a trend toward producing smaller and simpler structures: from
von Neumann’s model which has the power of universal computation and universal
construction to the simplest self-replicating loops which can do nothing but self
replicate [36]. However, it was realized that a system capable of self-replication but
not much else would not be very useful. In 1995, Tempesti asked whether it is pos-
sible to add additional computation capabilities to the simple self-replicating loops,
and hence attain more complex replicating machines that are nevertheless com-
pletely realizable. He devised a self-replicating loop which resembles Langton’s, but
with the added capability of attaching an executable program that writes out the let-
ters LSL, acronym of the Logic Systems Laboratory, while it replicates [37]. Perrier
et al. further extended this approach, demonstrating the capability of constructing
a self-replicating loop that could implement any program, written in a simple yet
universal language [26]. This self-replicating machine includes three parts: loop,
program, and data, all of which are collectively self replicating, followed by the
execution of the program on the given data. In the models of Tempesti and Perrier
et al., the program embedded in each loop is copied from parent to child unchanged,

Fig. 9.1 A self-replicating loop in a 2D cellular automata space. Read clockwise starting at the
lower right, there are a series of signals (+−) embedded in the loop structure, each indicating that
the arm on the bottom right should grow out one step. These are followed by two signals indicating
a left turn (L− L−). These signals circulate counterclockwise around the loop, advancing one cell
per time step. As they do, copies of the signals pass out the arm at the lower right, causing it to
extend and turn so that a second “child” loop is constructed

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 197

Fig. 9.2 Successive states of a self-replicating loop that started at time t = 0 as illustrated in
the proceeding figure. The instruction sequence repeatedly circulates counterclockwise around the
loop with a copy periodically passing onto the construction arm. At t = 3 (a) the sequence of
instructions has circulated three positions counterclockwise with a copy also entering the con-
struction arm. At t = 6 (b) the arrival of the first + state at the end of the construction arm
produces a growth cap of X’s. This growth cap, which is carried forward as the arm subsequently
extends to produce the replica, is what makes a sheath unnecessary by enabling directional growth
and right-left discrimination. Successive arrival at the growth tip of +’s extends the emerging
structure and arrival of paired L’s causes left turns, resulting in eventual formation of a new loop.
Intermediate states are shown at t = 80 (c) and t = 115 (d). By t = 150 (e) a duplicate of the
initial loop has formed and separated (on the right); the original loop (on the left, construction arm
having moved to the top) is beginning another cycle of self-directed replication

Fig. 9.3 A self-replicating loop using only five unique components. Shown here are 11 immedi-
ately successive configurations. Starting at t = 0, the initial state (shown at the upper left) passes
through a sequence of steps until at t = 10 (last structure shown) an identical but rotated replica
has been created

so that all replicating loops carry out the same program. Chou and Reggia reported
a different approach in which each replica receives a distinct partial solution that
is modified during replication [5]. Replicas with failed solutions are not allowed to
continue replicating while the replicas with promising solutions will further repli-
cate and explore finer solutions of an NP-complete problem known as SAT. These
works demonstrated that simple, manually designed self-replicating loops are capa-
ble of providing some limited “secondary” function beyond simple self replication.
However, such secondary constructional or computational capability is all imple-
mented as a pre-written executable program, which is attached to the loop itself,
increasing the complexity of the seed structure itself.

198 Z. Pan and J.A. Reggia

The discovered structures outlined above in this section all share the same
property of being based on a self-replicating loop, a simple square shape that
enables their replication [34]. The structures differ in size more than complex-
ity. Morita and Imai showed that the replication of simple non-loop structures
could be realized within a “reversible” cellular space [16, 17]. A reversible cel-
lular automaton is a special, backward-deterministic type of CA in which every
grid configuration of states has at most one predecessor. As a result, they cre-
ated self-replicating structures like worms as well as loops. Sayama further cre-
ated self-replicating worms that are capable of increasing structure complexity in
terms of the length and branching frequency of the worm [34]. Chou and Reg-
gia took a new direction and demonstrated that self-replicating loops can come
about spontaneously and emerge from an initial random configuration of non-
replicating components. Replication occurs in a milieu of free-floating compo-
nents, replicas grow or change their sizes over time, and the transition function
is based on a functional division of data fields [30]. Salzberg et al. further stud-
ied the evolutionary dynamics and diversity in a model called Evo-loops [32], a
modified version of structurally dissolvable self-replicating loops [33]. Nehaniv
implemented the Evo-loop model, and studied its evolution and self-replication
in asynchronous cellular automata where each cell can be updated randomly and
asynchronously [18].

9.4 Evolution of CA Rules

Given the local concurrent computations in CA, it is difficult to program their tran-
sition functions when the desired computation requires global communication and
global integration of information across great distances in the cellular space. Thus
it is extremely difficult, in general, to design local state-transition rules that, when
they operate in each cell of the cellular space, produce a desired global behavior.
This difficulty has contributed to limiting the number of self-replicating structures
designed and studied to date.

Evolutionary computation algorithms, both genetic algorithms and genetic pro-
gramming (GP), have been used to automatically evolve cellular automata rules for
non-self-replication problems in cellular automata spaces [2, 8–10]. For example,
various human-written algorithms have appeared for the difficult majority classifi-
cation task in one-dimensional two-state cellular automata, prior to the introduction
of genetic programming to evolve a rule for this task [1]. It was demonstrated that
the CA rules for majority classification evolved by genetic programming achieved
an accuracy exceeding all known human written rules, and that GP produced rules
that are qualitatively different from all previous rules in that they employ a larger
and more intricate repertoire of domains and particles to represent and communicate
information across the cellular space. On the other hand, Richards et al. outline a
method for extracting two-dimensional cellular automaton rules directly from exper-
imental data [31]. This method employs genetic algorithms, to search efficiently

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 199

through a space of probabilistic CA rules for rules that best reproduce the observed
behavior of the data.

Inspired by the successful use of evolutionary computation methods to discover
novel rule sets for other types of CA problems, Lohn et al. used a genetic algorithm
to evolve rules that would support self-replication [13, 14]. This study showed that,
given small but arbitrary initial configurations of non-quiescent cells (“seed struc-
tures”) in a two-dimensional CA space, it is possible to automatically discover a
set of rules that make the given structure replicate, and in ways quite different from
self-replicating structures manually designed by investigators in the past. A rule
table was generated using a genetic algorithm. When it is used to guide each cell in
the cellular automata to transit its state for certain number of time steps, multiple
instances of the seed structures have formed.

The evolving of rules for self-replicating CA structures using a genetic algorithm
adopted a linear encoding of the rules [14]. The essential idea is that the rule table
took the form of a linear listing of the entire rule set. Each rule was conceptually
encoded as a string CTRBL → C

′
, where each letter specifies respectively the cur-

rent states of the Center, Top, Right, Bottom, and Left cells, and the next state C
′

of
the center cell. In general, a very large rule table is needed for this, although since
all possible rules are represented in a canonical order, for each rule CTRBL → C′
only the single state C′ needs to be recorded explicitly.

The effectiveness of this approach to discovering state-change rules for self-
replication proved to be quite limited. To accommodate the use of a genetic algo-
rithm, the rules governing state changes were linearly encoded, forming a large
chromosome that led to very large computational costs during the evolutionary
process. This created the problem that when the size of the seed structure was
moderately increased, the computation cost became prohibitive for the rule table to
be effectively evolved, and the yield (fraction of evolutionary runs that successfully
discover self-replication) decreased dramatically. As a result, it only proved possible
to evolve rule sets for self-replicating structures having no more than 4 components,
even with the use of a 40-processor high performance computer, leading to some
pessimism about the viability of evolutionary discovery of novel self-replicating
structures.

9.5 Evolution of Self-Replicating Structure Using
Genetic Programming

To resolve the computational barrier incurred in previous work, we recently explored
the use of a more efficient and compact encoding of a CA’s configuration and
rules as tree structures. We examined whether such tree structures, combined
with genetic programming (GP) methods, could dramatically improve the com-
putational efficiency of automatic discovery of new self-replicating CA structures
[25, 21, 24, 22, 23].

200 Z. Pan and J.A. Reggia

9.5.1 S-tree Encoding and General Structure Representation

A tree encoding provides an effective and efficient mechanism for representing arbi-
trary structures in a CA space that can be used by the GP model. While the approach
is quite general (arbitrary neighborhoods and space dimensions), for concreteness it
is developed for two-dimensional CA’s and uses the 8-cell Moore neighborhood to
define structure isolation. We refer to the tree used to represent a seed structure as
its structure tree or S-tree.

Recall that an arbitrary structure can be viewed as a configuration of active cells
in a CA space, with the conditions that the active cells inside the configuration are
contiguous and isolated from all active cells outside of the configuration. Such a
structure can be modeled as a connected, undirected graph, as follows.

The problem of structure encoding is converted to searching for a minimum
spanning tree (MST) in order to most efficiently traverse the graph and encode its
vertices (components). Figure 9.4a shows a simple seed structure in a 2-D CA space,
composed of 4 oriented components. This structure is initially converted into a graph
simply by adding an edge between each component and its 8 Moore neighbors, as
shown in Fig. 9.4b. The quiescent cells, shown empty in Fig. 9.4a, are visualized
with the symbol ∗ in Fig. 9.4b. From this example we can see such a graph has the
following properties: (1) it connects every component in the structure; (2) it also
includes every quiescent cell immediately adjacent to the structure (which isolates
the structure from its environment); and (3) no other cells are included in the graph.
We call such a graph the Moore graph.

(a) The structure (b) The Moore graph

(c) The S-tree graph

Fig. 9.4 An example structure, its Moore graph, and its S-tree graph

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 201

The Moore graph for an arbitrary structure can be converted into a minimal span-
ning tree which is the S-tree. The essential idea is as follows. After assigning a
distance of 1 to every edge on the Moore graph, pick an arbitrary component of the
structure as the root, and perform a breadth-first-search of the graph. The resultant
S-tree for the structure shown in Fig. 9.4a is depicted in Fig. 9.4c. Starting from
the root (A, in this example), explore all vertices of distance 1 (immediate Moore
neighbors of the root itself); mark every vertex visited; then explore all vertices of
distance 2; and so on, until all vertices are marked. The S-tree is therefore essentially
a sub-graph of the initial Moore graph. It has the following desirable properties as a
structural encoding mechanism: (1) it is acyclic and unambiguous, since each node
has a unique path to the root; (2) it is efficient, since each node appears on the
tree precisely once, and involves the shortest path from the root; (3) it is universal,
since it works for arbitrary Moore graphs and arbitrary CA spaces; (4) quiescent
cells can only be leaf nodes; (5) active cells may have a maximum of 8 child nodes,
which can be another active cell or a quiescent cell (note the root always has 8 child
nodes); and (6) its size (defined as the total number of nodes in the tree) has an upper
limit which can be calculated from the size of the encoded structure. With a specific
component selected as the root, is the S-tree unique for a given structure? The MST
algorithm only guarantees the vertices of distance d to the root will be explored
earlier than those of distance d+1. However, each Moore neighbor of a visited
component lies the same distance from the root (such as B and D in Fig. 9.4b),
which may potentially be explored by the MST algorithm in any order and therefore
generate different trees. This problem may be resolved by regulating the way each
active cell explores its Moore neighbors, without loss of generality. For instance, let
the exploration be always in a clock-wise order starting at a specific position (for
instance, the left). As a result, it is guaranteed that a specific structure always yields
the same S-tree (see [24] for further details).

The S-tree representation provides an unambiguous, efficient, and universal
mechanism for encoding the structural information of an arbitrary artificial machine
in CA space. This makes it possible to represent arbitrary CA structures with a
uniform data structure, and more importantly, enable an evolutionary model or rule
learning system to be built and function without having knowledge of any details
of the involved structures a priori [24]. When it is desired, an S-tree can be used to
fully reconstruct the structure it represents by recursively reconstructing each Moore
neighbor from the root component as guided by the S-tree. In the CA space, a struc-
ture may re-appear in a translated, rotated, and/or permuted condition. The S-tree
encoding can be used to identify each of these conditions, as detailed in subsequent
sections.

9.5.2 R-tree Encoding and Rule Set Representation

Just as the seed structure can be represented by an S-tree, the rules that govern state
transitions of individual cells can be represented as a rule tree or R-tree. This section
introduces R-tree encoding, which is much more efficient and largely resolves the

202 Z. Pan and J.A. Reggia

limitations of an exhaustive (all rule) linear encoding previously used with genetic
algorithms. In contrast to the S-tree, the R-tree formulation considered here is based
on the 5-neighborhood (or von Neumann neighborhood). In other words, just as with
the case of evolving self-replication with a genetic algorithm, the rules evolved are
of the form CTRBL → C′.

9.5.2.1 R-tree Encoding

An R-tree is essentially a rooted and ordered tree that encodes every rule needed
to direct the state transition of a given structure, and only those rules. The root is a
dummy node. Each node at level 1 represents the state of a cell at time t (i.e., C in
CTRBL → C′). Each node at level 2, 3, 4, and 5 respectively, represents the state
of each von Neumann neighbor of the cell (without specifying which is top, left,
bottom, and right). Each node at level 6 (the leaf nodes) represents the state of the
cells at time t+1 (i.e., state C ′). Therefore, the R-tree may also be viewed as similar
to a decision tree, where each cell can find a unique path to a leaf by selecting each
sub-branch based on the states of itself and its von Neumann neighbors. An example
R-tree encoding 16 rules is shown in Fig. 9.5. Each path from the root to a leaf node
corresponds to one rule. For example, the leftmost path indicates that a quiescent cell
surrounded by all quiescent cells stays quiescent. In the R-tree, the actual symbol

Fig. 9.5 An example R-tree representing 16 rules. Each path from the root node to a leaf represents
a rule of the form CTRBLC’

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 203

in correct orientation is displayed for each state (e.g., 0; A, A,

A

,

A

and B, B,

B

,
B

indicate oriented components A and B in their four possible relative orientations).
Each rule in the R-tree is actually applicable in four situations depending on the
orientation of the state of the center cell C at level 1 in the R-tree.

The R-tree has the following properties: (1) it is a height balanced and parsimo-
nious tree, since each branch has precisely a depth of 6; (2) taking Ns = number of
possible cell states, the root and each node at level 1, 2, 3, and 4 may have a max-
imum of Ns child nodes, which are distinct and sorted by the state index; (3) each
node at level 5 has precisely one child, which is a leaf; (4) it handles arbitrarily
rotated cells with a single branch and therefore guarantees that there always exists
at most one path that applies to any cell at any time, even after rotating and or
permuting its orientation. Due to the R-tree properties described above, the worst
search cost for a single state transition is reduced to 5ln(Ns) (5 nodes on each path
to leaf, each has maximum Ns child nodes, ordered for quicksort search).

9.5.2.2 R-tree Genetic Operators

R-trees also allow efficient genetic operations that manipulate sub-trees. As with
regular genetic programming, the R-tree crossover operator, for instance, swaps sub-
trees between the parents to form two new R-trees. However, the challenge is to
ensure that the crossover operator results in new trees that remain valid R-trees.
If one simply picks an arbitrary edge E1 from R-tree1 and edge E2 from R-tree2,
randomly, and then swap the sub-trees under E1 and E2, the resulting trees may no
longer be height balanced.

This problem can be resolved by restricting R-tree crossover to be a version of
homologous one-point crossover, an alternative to the “standard” crossover opera-
tor in GP [28]. The essential idea is as follows. After selecting the parent R-trees,
traverse both trees (in a breadth first order) jointly in parallel. Compare the states
of each visited node in the two different trees. If the states match, mark the edge
above that node as a potential crossover point. As soon as a mismatch is seen, stop
the traversal. Next, pick an edge from the ones marked as potential crossover points,
with uniform probability, and swap the sub-trees under that edge between both par-
ent R-trees. An example is shown in Fig. 9.6.

R-tree crossover as defined above has clear advantages over linear representation
crossover. First, R-tree crossover is potentially equivalent to a large set of linear
crossovers. Second, linear crossover randomly selects the crossover point and hence
is not context preserving. R-tree crossover selects a crossover point only in the
common upper part of the trees. This means that until a common upper structure
emerges, R-tree crossover is effectively searching a much smaller space and there-
fore the algorithm quickly converges toward a common (and good) upper part of the
tree, which cannot be modified again without the mutation operator. Search incre-
mentally concentrates on a slightly lower part of the tree, until level after level the
entire set of trees converges.

The R-tree mutation operator simply picks an edge from the entire tree with
uniform probability, and then eliminates the sub-tree below the edge. An example

204 Z. Pan and J.A. Reggia

Fig. 9.6 One-point homologous crossover between parent R-trees. A crossover point is selected at
the same location in both parent trees, ensuring that the child trees are valid R-trees. The children
R-trees are formed by swapping the shaded sub-trees

is shown in Fig. 9.7. The R-tree pruning operator is an explicit mutation operator
that is applied when the R-tree is used to run the CA to assess the R-trees fitness.
The CA monitors the R-tree and marks inactive edges (through which no rules has
been activated by any CA cell), and then the entire sub-trees below the inactive

Fig. 9.7 The R-tree point mutation simply deletes a sub-tree (here, the one indicated by shading),
allowing the CA simulation to fill it in with a new randomly-generated subtree when needed

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 205

edges will be eliminated. This helps to always keep each R-tree as parsimonious as
possible. New paths in the R-tree are generated as needed, as explained in the next
section. The R-tree encoding and genetic operators used allow CA rules to be con-
structed and evolved under a non-standard schema theorem similar to one proposed
for genetic programming [28], even though R-trees do not represent conventional
sequential programs.

9.5.3 Genetic Programming with S-tree and R-tree Encoding

The introduction of S-tree/R-tree encodings, with their capability for representing
arbitrary structures and rules with a universal, uniform data structure, makes it pos-
sible to build a genetic programming system that can program a CA to support self-
replication. To do that, the seed structure is first encoded with an S-tree. Then, an
R-tree population is initialized randomly and starts to evolve as guided by a fitness
function. The fitness function evaluates how well structures produced at intermedi-
ate evaluation time steps by each R-tree match the S-tree. The R-tree reproduction
focuses on high fitness individuals, thus exploiting the available fitness information.
This process repeats, from generation to generation, until an R-tree forms which
produces a desired number of isolated structures that perfectly match the S-tree
encoding, i.e., that are copies of the seed structure.

9.5.3.1 R-tree Initialization and CA Simulation with R-tree

To evaluate the fitness of each R-tree in the evolving population, first one needs
to simulate the R-tree in the CA space in order to measure how well it produces
self-replication. In the beginning, a population of R-trees is initialized, with each
having only one default branch. Therefore, at GP generation g = 0, every R-tree in
the population is identical, each only containing one trivial rule (00000→0). Before
a simulation starts (t=0), every cell in the entire CA space is quiescent, except those
cells containing the active components of a single seed structure. At each subsequent
time step, t ∈ T s , each cell c attempts to transit its state ct to the next time step ct+1
by identifying and firing a specific rule in the R-tree based on the states of its von
Neumann neighbors. If such a rule is not found from the current R-tree, a new rule is
inserted into the R-tree with its target state (the leaf node) randomly generated. This
operation is referred as R-tree expansion. On the other hand, at the end of current
simulation, those branches in the R-tree which represent a rule or rules that were
never fired by any cells at any time step are explicitly removed. This operation is
referred as R-tree pruning. In a parallel computation platform, each R-tree could be
simulated and evaluated concurrently.

The range of the time steps during which a simulation is performed is referred
as the Simulation Time Steps (T s), such as T s = (1,2,...,12). The collection of
time steps during which the configurations are considered for fitness evaluation is
referred as the Evaluation Time Steps (T v), which can be equal, or a subset of T s . It
is undesirable for T s to be either too small or too large. If it is too small, it may be

206 Z. Pan and J.A. Reggia

insufficient for capturing the self-replication phenomenon. If it is too big, it may lead
to a significant decrease in evolution efficiency due to over-sized R-trees with initial
random rules. The question that follows is how to determine an appropriate T s . Our
strategy is to let the simulation start with a small number of time steps, and thus
the evolution and searching for an optimal R-tree runs fast initially. Only when evo-
lution has made sufficient progress is it allowed to adaptively add more simulation
time steps and progressively improve R-trees. This keeps the R-trees parsimonious,
avoiding the GP bloating problem, and maintains effective evolutionary searching
for optimal rules in a paced fashion.

9.5.3.2 S-tree Probing and R-tree Fitness Evaluation

The purpose of an R-tree’s simulation is to evaluate its fitness in terms of produc-
ing duplicated seed structures. However, since every R-tree in the initial population
is randomly generated, it is extremely unlikely any of them will directly lead to
self-replication. When evolution begins, randomly generated R-trees produce a set
of configurations during the given simulation time steps. These configurations very
likely lack any clear patterns (see a sample configuration in Fig. 9.8). An essen-
tial part of any evolutionary algorithm is to reproduce more promising candidates
and discard less promising candidates, as indicated by the fitness measures. It is
critical to discover a universal and consistent mechanism that works with arbitrary
structures and produces precise fitness measures which reflect the subtle differences
leading to future self-replication. Otherwise, R-tree evolution may act as random
searching, which is very unlikely to ever produce any R-tree that supports self-
replication.

The introduction of the S-tree as a universal encoding mechanism of arbitrary
structures gives us an unprecedented ability to perform precise fitness assignment

Fig. 9.8 The same cell can be probed by the same S-tree in 4 phases, to evaluate a potential match
in 4 different orientations. Note such probing can be done with any cell in the configuration

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 207

for full or partial matching structures at any GP stage. This is because S-tree encod-
ing can be exploited to retrieve complete structural information. By retrieving such
information from the S-tree, and comparing it to the configuration produced by R-
tree simulation, we can precisely tell how well they are matched. Figure 9.8 illus-
trates conceptually how this can be done. From a given configuration produced at
any time step simulating a candidate R-tree, pick any active cell as the root cell (such
as the cell circled in purple in Fig. 9.8). Conceptually, we use the S-tree to recover
the entire encoded structure by recursively recovering every Moore neighborhood
of every component from the root (see the structure shown on the top in Fig. 9.8).
The state of every component in the structure is compared to the state of the corre-
sponding cell in the current configuration, and the total number of components that
matches is counted. If we then divide this result by the total number of components
in the structure, we get a precise scalar measure in the range of [0, 1], indicating
a complete mis-match, partial match, or a perfect match. In a real implementation,
we do not actually need to recover the encoded structure as conceptually illustrated
above. We only need, starting from the root cell, to recursively traverse the needed
number of neighboring cells as guided by the S-tree, and compare the state in a
traversed neighbor cell to the state in a corresponding node in the S-tree. Since the
S-tree is a minimum spanning tree, it allows traversing every component precisely
once after traveling the shortest distance. This process is hereafter referred as S-tree
probing. Thus, S-tree probing is a process that can be used to test every cell in a
given configuration, and measure how much a structure can be matched if we align
the structure with that cell.

Each cell in the current configuration can be probed in 4 different ways with the
same S-tree, and thus help to detect possible structures located from that cell in 4
orientations. Figure 9.8 shows an example each of these 4 probes from the same
cell. Further, an S-tree contains not only the active components from a structure,
but also the immediate quiescent cells surrounding the active cells. Therefore, an
actual probing also traverses those surrounding cells, and can determine how many
of these surrounding cells also match the states of corresponding nodes in the S-tree
(which are all quiescent). This measures whether the currently probed structure is
completely non-isolated, partially isolated, or fully isolated from its surrounding.

At any time step during a simulation with a candidate R-tree, we probe every
possible root cell and every possible orientation with the given S-tree, return the
best matching result. Let r represent a simulated (evaluated) R-tree, s an S-tree for
a given structure, λ(s) the number of nodes of s, p an infinite cellular space, c̄ ∈ p
a root cell being probed, h ∈ (1, 2, 3, 4) the phase of the current probe, t a time step
applying r on s in p. Define function κ(r, s, p, t, c̄, h) to be, after applying r on s
in p for t time steps, and then probing s from c̄ in phase h, the number of traversed
cells which match the state of the corresponding node (active or quiescent) as guided
by s. We can define a probing function as follows:

fκ(r, s, p, t) = max
c∈p

(

max
h∈(1,2,3,4)

κ(r, s, p, t, c, h)

λ(s)

)

. (9.1)

208 Z. Pan and J.A. Reggia

However, our goal is not just to produce one instance of the seed structure, but
to allow self-replication to carry on sustainably. Thus, ultimately we will want to
reward those R-trees which are more likely to generate a maximum number of
replicas. We can use the probing function above repeatedly to identify multiple
best matches, being careful to mark all of the active cells traversed by an accepted
probe as “UNAVAILABLE”, so that these active cells will not be counted again by
subsequent probes.

The question that immediately follows is, how to determine how many probes we
shall accept at each time step? One might ask, why don’t we accept as many probes
as possible? The answer is that, if we accept too many probes in a given time, it
may have the effect of promoting the trend of forming many partially matching
structures, but few would have enough room and potential to grow into full replicas,
and ultimately degrade the performance of the evolution. This problem is referred
as over-probing. To address this over-probing problem, our strategy is that, when
evolution starts, each R-tree is automatically allowed to accept two probes at each
time step. After some R-trees become more and more successful at generating two
perfect probes, with likely higher number of simulation time steps, we can allow
these R-trees to incrementally increase the number of acceptable probes (and so
become more aggressive in working on additional replicas). Denote the number of
acceptable probes at evaluation time t ∈ T v for R-tree r as π t (r). We adopt a
strategy in which an evolving R-tree starts with a basic goal of programming itself to
find a minimum CA space just to produce two isolated seed structures. Not until this
is achieved can it accept more probes. On the other hand, once this goal is achieved,
it gradually raises its goal by adaptively adjusting the number of acceptable probes
(π t) at a controlled and adaptive pace.

9.5.3.3 Overall Fitness Function

Based on the above, an R-tree r at evaluation time t is allowed to accept π t (r)
probes. Each accepted probe identifies a best probe from the cells not yet marked as
“UNAVAILABLE” by previously accepted probes. Hence, we can write an overall
fitness function for R-tree r :

f (r) =
∑

t∈T v

n=π t (r)∑

n=1

max
c∈p, c¬∈⋃m=n−1

m=1 p̆m

max
h∈(1,2,3,4)

κ(r, s, p, t, c, h)

λ(s)
. (9.2)

Equation (9.2) indicates the overall fitness measure for a candidate R-tree at a
given GP generation as its accumulated result of every accepted probe at every
evaluation time step. Every accepted probe finds a best probe among tested probes
at every location and every orientation. The number of evaluated time steps at a
given generation, T v , is common to all R-trees in the population, but at any specific
evaluation time step, the allowable number of accepted probes varies from R-tree
to R-tree. An R-tree can gain higher fitness by either earning a higher number of
accepted probes, or from better individual accepted probes, or both.

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 209

9.5.4 The Replicator Factory Model and Experimental Results

The schematic view of the resulting S-tree/R-tree based GP model toward self-
replication is illustrated in Fig. 9.9. First, an S-tree s is derived from the pre-
specified seed structure. Then, an R-tree population of size M is initialized. Each R-
tree is simulated in the given cellular space within the current T s , while each R-tree

Fig. 9.9 A schematic view of the S-tree/R-tree based GP model toward self-replication

210 Z. Pan and J.A. Reggia

may potentially expand or prune itself as needed. Next, based on the simulation
results, fitness is measured for each R-tree. If the desired fitness level is reached,
the algorithm has produced the best R-tree and stops. Otherwise, the fitness values
are adjusted due to fitness sharing. R-tree elitism is performed so that it is ensured
that the elite R-tree in the new population will be at least as good as before. The
entire population is fully ordered based on the final fitness value of each R-tree.
Tournament selection is performed and M/2 pairs of parents are selected. Each
pair may perform an R-tree crossover before entering the mating pool, and each
R-tree in the mating pool may be further mutated. If current hesitation (number of
generations passed since last increase in fitness) has exceeded a specified ξmax, T s

is incrementally increased. Then, the R-tree population enters a new GP generation,
and the same process repeats.

The model described above has been tested in a number of experiments, and two
examples are presented here. Typically, model parameters like the following are
chosen: Population Size = 100, R-tree Mutate Probability = 0.45, R-tree Crossover
Probability = 0.85, R-tree GP Tournament Size = 2, and Max Hesitation = 200.
Success was achieved with structures of arbitrary shape and varying numbers of
components. The largest CA seed structure for which it was previously possible to
evolve rules has 4 components [14]. Figure 9.10 (t = 0) shows one of the seed struc-
tures, consisting of 7 oriented components (29 states), for which our approach using
GP finds a rule set that allowed the structure to self-replicate. With the resultant
R-tree based on the von Neumann neighborhood, shown in Fig. 9.11, at time t = 1
(Fig. 9.10), the structure starts splitting (the original seed structure translates to the
left while a rotated replica is being born to the right). At time t = 2 (Fig. 9.10), the
splitting completes and the original and replica structures become isolated. Thus, the
seed structure has replicated after only 2 time steps, a remarkably fast replication
time that has not been reported before.

Fig. 9.10 Example replicator
using the von Neumann
neighborhood. The seed, a
7-oriented-component
structure, evolved to
self-replicate in only 2 time
steps. In subsequent time
steps, each replica attempts to
repeat the same action, and
when enough space is
reached, more replicas can be
isolated from each other

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 211

Fig. 9.11 Example R-tree evolved for the replicator in Fig. 9.10

Fig. 9.12 Another example of self-replication, using a 6-oriented-component seed structure, from
t = 0 to t = 6, based on the Moore neighborhood. For illustrative purpose, non-isolated seed struc-
tures are marked in lighter shade than isolated seed structures. Also, to provide location correlation,
the cells covered by the initial seed structure are always highlighted by thicker edges

212 Z. Pan and J.A. Reggia

Another example, a structure of 6 oriented components (25 states), shown in
Fig. 9.12 (t = 0), evolves using the Moore neighborhood. To make it easy to visu-
alize the produced structures at each evaluation time step, color codes are used in
these figures. A non-isolated seed structure is marked in yellow and isolated seed
structure in blue. Also, to provide location correlation, the cells covered by the initial
seed structure are always highlighted by red edges at any time step. As illustrated
in Fig. 9.12, at t = 1, the seed expands to the right, top, and bottom, at light speed
(1 cell/each time step), but not to the left. Two contiguous seed replicas are formed.
At t = 2, the replicas move apart and get isolated. At t = 3, each of these isolated
replicas repeats the same self-replication, but the middle ones collide, so that only
two replicas are found at t = 4, which are now further apart than at t = 2, making

Fig. 9.13 Continuation of Fig. 9.12 from t = 11 to t = 14

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 213

more rooms to form four isolated replicas at t = 6. In subsequent time steps, this
replication process continues indefinitely, so that, for example, by t = 14 there are
eight distinct replicators present (see Fig. 9.13).

Figure 9.14 shows that it is possible for the same seed structure to self-replicate in
different ways. A different R-tree is evolved for the same seed structure in a separate
GP run. Here, very surprisingly, the evolutionary algorithm found a way to replicate
the seed in only one (1) time step. The seed structure is rotated before translation,
so that the space originally occupied by the seed itself can be more efficiently used,
yielding enough space to form a pair of replicas within only one time step.

Fig. 9.14 The same seed structure as in Fig. 9.12 can evolve to replicate in a different way, as
illustrated here

9.6 Discussion

Cellular automata models of self-replication have been studied for almost 50 years.
In this chapter we have presented the view that past work on this topic has involved
at least two different approaches. The earliest work examined large, complex univer-
sal computer-constructors that are marginally realizable. This work established the
feasibility of artificial self-replication, examined many important theoretical issues,

214 Z. Pan and J.A. Reggia

and gradually created progressively simpler self-replicating universal systems. A
second and more recent approach has focused on the design of self-replicating loops
and related small structures. Self-replicating loops are so small and simple that they
have been readily realizable, and significant progress has been made in extending
them to perform additional tasks as they replicate. This can be achieved either by
attaching a set of instructions (signals) to those directing replication, or by encoding
a tentative problem solution that systematically evolves into a final solution. Imple-
mentations have shown that programmed replicators are clearly capable of solving
non-trivial problems. These programmed self-replicating structures are intriguing
in part because they provide a novel approach to computation. This approach is
characterized by massive parallelism (each cell in the underlying cellular automata
space is simultaneously computing), and by the fact that both self-replication and
problem-solving by replicators appear as emergent properties of solely local inter-
actions. However, past systems have been designed manually, a difficult and time-
consuming task.

We believe that a third approach merits investigation: the evolution of self-
replicators from arbitrary, initially non-replicating systems. Initial work using
genetic algorithms and a linear encoding of transition rules showed the potential
value of this approach by discovering a new class of replicators that moved and
essentially deposited replicas of themselves while doing so [14]. However, this
approach only worked with structures having up to four components. Our most
recent studies with GP show that larger structures can be evolved to replicate in
less time steps and require much more reasonable computational times [24, 25],
as compared in Table 9.1. Some exhibit replication that occurs very quickly in a
fission-like and/or rotational process.

Among the many issues that might be examined in the future, several appear to be
of particular importance. These include the further development of programmable
self-replicators for real applications, and a better theoretical understanding of the
principles of self-replication in cellular automata spaces. More general and flex-
ible cellular automata environments, such as those having non-uniform transition
functions or novel interpretations of transition functions, merit exploration. It has
already proved possible, for example, to create simple self-replicating structures
in which a cell can change the state of neighboring cells directly [13]. Also, from
the perspective of realizing physically self-replicating devices, exchange of infor-

Table 9.1 Comparison between the initial and current approaches

Previous approach New approach

Structural encoding None S-tree
Rule encoding Linear table R-tree
Evolutionary algorithm GA GP
Fitness evaluation Structure-specific, heuristic Universal, precise probing
Reachable structure size only 4 components 56+ components
No. of rules needed 1,419,857 rules 128 rules
Computation time One week (supercomputer) 40 min (laptop)

9 Artificial Evolution of Arbitrary Self-Replicating Structures in Cellular Spaces 215

mation between the modeling work described here and ongoing work to develop
self-replicating molecules/nanotechnology is important. Closely related to this issue
is ongoing investigation of the feasibility of electronic hardware directly support-
ing self-replication [7, 15]. If these developments occur and progress is made, we
foresee a productive future for the development of a technology of self-replicating
systems.

Acknowledgment This work was supported by NSF award ITS-0325089.

References

1. D. Andre, F. Bennett, J. Koza, Discovery by genetic programming of a cellular automata rule.
Proceedings First Annual Conference on Genetic Programming, MIT Press, Cambridge 1996,
pp. 3–11

2. W. Banzhaf, P. Nording, R.E. Keller, F.D. Francone, Genetic Programming: An Introduction:
On the Automatic Evolution of Computer Programs and Its Applications (Morgan Kaufmann,
San Fransisco, CA, 1997)

3. J. Beuchat, J. Haenni von Neumann’s 29-state cellular automaton: A hardware implementa-
tion. IEEE Trans. Educ. 43(3), 300–308 (August 2000)

4. J. Byl, Self-reproduction in small cellular automata. Physica D 34, 295–299 (1989)
5. H. Chou, J. Reggia, Problem solving during artificial selection of self-replicating loops.

Physica D 115, 293–312 (1998)
6. E. Codd, Cellular Automata (Academic Press, New York, NY 1968)
7. R. Freitas, R. Merkle, Kinematic Self-Replicating Machines (Landes, Austin, TX 2004)
8. H. Haken, Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and

Devices (Springer, Heidelberg, 1983)
9. J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection (MIT Press, Cambridge, MA 1992)
10. W. Langdon, R. Poli, Foundations of Genetic Programming (Springer, Heidelberg 2001)
11. C. Langton, Self-reproduction in cellular automata. Physica D 10, 135–144 (1984)
12. C. Langton, Studying artificial life with cellular automata. Physica D 22, 120–149 (1986)
13. J. Lohn, J. Reggia, Discovery of self-replicating structures using a genetic algorithm.

Proceedings IEEE International Conference on Evolutionary Computation, Perth, 678–683
(1995)

14. J. Lohn, J. Reggia, Automated discovery of self-replicating structures in cellular automata.
IEEE Trans. Evol. Comp., 1, 165–178 (1997)

15. D. Mange, M. Goeke, D. Madon, et al., Embryonics. Towards Evolvable Hardware (Springer,
Heidelberg 1996) pp. 197–200

16. K. Morita, K. Imai, Self-reproduction in a reversible cellular space. Theor. Comp. Sci. 168,
337–366 (1996)

17. K. Morita, K. Imai, Simple self-reproducing cellular automata with shape-encoding mecha-
nism, ed. by Langton C, Shimohara K, Proceedings of the Fifth International Workshop on
Synthesis and Simul. Living System, MIT Press, Cambridge, MA, pp. 450–457, 1997

18. C. L. Nehaniv, Evolution in asynchronous cellular automata, ed. by R.K. Standish,
M.A. Bedau, H.A. Abbass, Proceedings of the Eighth International Conference on Artificial
Life, MIT Press, Cambridge, MA, 65–78, 2002

19. J. von Neumann, General and logical theory of automata, ed. by A. Tanb, John von Neumann–
Collected Works, 5 (Macmillan, New York, NY 1961), pp. 288–328

20. J. von Neumann, in Theory of Self-Reproducing Automata, ed. and completed by A.W. Burks
(University of Illinois Press, Champaign, IL, 1966)

216 Z. Pan and J.A. Reggia

21. Z. Pan, Artificial evolution of arbitrary self-replicating cellular automata, Department of
Computer Science Tech. Report, http://hdl.handle.net/1903/7404, University of Maryland at
College Park, August 2007

22. Z. Pan, J. Reggia, in Evolutionary Discovery of Arbitrary Self-Replicating Structures, ed. by
V. Sundaram et al., Lecture Notes in Computer Science, Vol. 3515, (2005) pp. 404–411

23. Z. Pan, J. Reggia, Evolutionary Discovery of Arbitrary Self-Replicating Structures. Pro-
ceedings of the 5th International Conference in Computational Science, Atlanta, GA, USA
404–411, 2005

24. Z. Pan, J. Reggia, Artificial evolution of arbitrary self-replicating structures. J. Cell Automata,
1(2), 105–123 (2006)

25. Z. Pan, J. Reggia, Properties of self-replicating cellular automata systems discovered using
genetic programming. Adv Compl Syst., 10 (supp01), 61–84 (August 2007)

26. J. Perrier, M. Sipper, J. Zahnd, Toward a viable self-reproducing universal computer. Physica
D 97, 335–352 (1996)

27. U. Pesavento, An implementation of von Neumann’s self-reproducing machine. Artif. Life 2,
337–354 (1995)

28. R. Poli, W. Langdon, Schema theory for genetic programming with one-point crossover and
point mutation. Evol. Comput. 6, 231–252 (1998)

29. J. Rebek, Synthetic self-replicating molecules. Sci. Am. 271(1), 48–55 (July 1994)
30. J. Reggia, S. Armentrout, H. Chou, Y. Peng, Simple systems that exhibit self-directed replica-

tion. Science 259, 1282–1288 (1993)
31. F. Richards, T. Meyer, N. Packard, Extracting cellular automaton rules directly from experi-

mental data. Physica D 45, 189–202 (1990)
32. C. Salzberg, A. Antony, H. Sayama, Complex genetic evolution of self-replicating loops.

Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and
Synthesis of Living Systems, MIT Press Cambridge, MA, pp. 262–267, 2004

33. H. Sayama, Introduction of structural dissolution into Langton’s self-reproducing loop,
C. Adami, R.K. Belew, H. Kitano, C.E. Taylor, Artificial Life VI: Proceedings of the Sixth
International Conference on Artificial Life, Los Angeles, CA, 1998, pp. 114–122

34. H. Sayama, Self-replicating worms that increase structural complexity through gene transmis-
sion, M. Bedau, J. McCaskill, N. Packard, S. Rasmussen, Proceedings of Seventh International
Conference on Artificial Life, MIT Press, Cambridge, MA, pp. 21–30, 2000

35. J. Signorini, How a SIMD machine can implement a complex cellular automaton? A case
study: von Neumann’s 29-state cellular automaton. Proceedings of the 1989 ACM/IEEE Con-
ference on Supercomputing, 1989 pp. 175–186

36. M. Sipper, Fifty years of research on Self-Reproduction: An overview. Artif. Life 4, 237–257
(1998)

37. G. Tempesti, A new self-reproducing cellular automaton capable of construction and
computation, ed. by F. Morn, A. Moreno, J. Merelo, P. Chacn, Third European Conference
on Artificial Life, Lecture Notes in Computer Science, vol. 929, (Springer, Heidelberg 1995),
pp. 555–563

38. P. Vitanyi, Sexually reproducing cellular automata. Math. Biosci. 18, 23–54 (1973)
39. P. Vitanyi, Genetics of reproducing automata. In Proceedings 1974 Conference on Biologically

Motivated Automata Theory, IEEE, New York, 1974, pp. 166–171

Part II
Applications of Cellular Automata

Chapter 10
Game Theoretical Interactions
of Moving Agents

Wenjian Yu and Dirk Helbing

10.1 Introduction

Macroscopic outcomes in a social system resulting from interactions between indi-
viduals can be quite different from anyone’s intent. For instance, empirical investi-
gations [1] have shown that most colored people prefer multi-racial neighborhoods,
and many white people find a certain fraction of other races in their neighborhood
acceptable. So one could think that integrated neighborhoods should be widely
observed, but empirically this is not true. One rather finds segregated neighbor-
hoods, i.e. separate urban quarters, which also applies to people with different social
and economic backgrounds.

This problem is scientifically addressed by mainly two streams of segregation
theory [2]: the urban ecological “social distance” tradition in sociology [3, 4] and
the “individual preferences” tradition in economics [5, 6]. The main idea of “social
distance” theory is that the differences in culture and interests between social groups
are reflected by a separation of their residential areas.

Yet, the role of social distance and individual preferences is questioned by studies
of the American urban housing market, which suggest that racial discrimination
and prejudices are the primary factors of residential segregation and concentration
of poverty [7]. There are three stages in a housing market transaction: first, infor-
mation about available housing units, second, terms and conditions of sales and
financing assistance, and third, the access to units other than the advertised unit [8].
In each stage, the housing agent may behave in a discriminatory way, e.g. withhold
information from customers and discourage them. Therefore, the access of minority
customers to housing is severely constrained, while the theory of preference-based
dynamics assumes that people can relocate freely according to their own prefer-
ences, which fails to reflect the real relocation dynamics.

W. Yu (B)
ETH Zurich, CLU C4, Clausiusstr. 50, 8092 Zurich, Switzerland
e-mail: yuwen@ethz.ch

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_10,
C© Springer-Verlag Berlin Heidelberg 2010

219

220 W. Yu and D. Helbing

Recent studies [2, 9] point out that the effect of discrimination in racial residential
segregation was important in the past, but nowadays, the nature and magnitude of
housing discrimination has changed. Minority households who seek to move into
integrated or predominantly white areas usually will be able to do so. But the inte-
gration of ethnic groups is not widely observed and quite unstable. This is partly
because, when people move to a neighborhood, where they constitute an ethnic
minority, the previous inhabitants may choose to leave, while some people may be
reluctant to enter integrated neighborhoods in which minorities are increasing in
number, e.g. because of a decrease in the housing prices. Such migration dynam-
ics, based on seeking preferred neighborhoods, does not necessarily presuppose the
discrimination of other people, as we will shortly see.

Assuming that individuals have just a slight preference for neighborhoods, in
which the same ethnic background prevails, Schelling has reproduced residential
segregation by a simple model [5, 6]. Imagine that two groups of people are dis-
tributed over a one-dimensional lattice, and assume that everyone defines his/her
relevant neighborhood by the four nearest neighbors on either side of him/her. More-
over, assume that each individual prefers at least four of his/her eight nearest neigh-
bors to belong to same ethnic group as he/she does. Considering himself/herself,
this implies a small majority of five out nine people in the considered neighbor-
hood. If the condition is not met, he or she is assumed to move to the nearest
site/cell that satisfies his or her desire. Hence, the model does not assume optimiz-
ing location choice, just satisficing behavior. Nevertheless, it produces segregation
patterns.

10.1.1 Migration, Game Theory, and Cooperation

In game theoretical terms, this movement to a more favorable neighborhood could
be reflected by a higher payoff to persons who moved, called “migrants” in the
following. Migratory behavior aiming at higher payoffs is called “success-driven
motion” [10–13]. As we will show in later sections, success-driven motion can
reproduce residential segregation and some other observed phenomena of popula-
tion dynamics as well, like population succession (i.e. cycles of changing habitation)
[14]. We will also study how a change of the spatial population structure can affect
the level and evolution of cooperation in a population.

It could be thought that natural selection, implying competition between indi-
viduals, would result in selfish rather than cooperative behavior [15]. Nevertheless,
cooperation is widely observed also in competitive settings, from bacteria, over ani-
mals to humans [16, 17]. Game theory [18–21] has been regarded as a powerful
framework to investigate this problem, as it can be used to quantify the interactions
between individuals.

The mathematical description of tendencially selfish behavior is often based
on the prisoner’s dilemma game, in which the “reward” R represents the payoff
for mutual cooperation, while the payoff for defection (cheating) on both sides is

10 Game Theoretical Interactions of Moving Agents 221

reflected by the “punishment” P . Unilateral cooperation will incur the so-called
“sucker’s payoff” S, while the defector gains T, the “temptation”. Given the inequal-
ities T > R > P > S and 2R > T + S, defection is tempting and cooperation is
risky, so that defection is expected to be dominating, although mutual cooperation
improves the average payoff.

In a well-mixed population, where an individual interacts with all the others, a
defector’s payoff is always higher than the average payoff, which leads to a prosper-
ity of defectors. In an evolutionary setting as it is described by the replicator dynam-
ics [22], only those strategies that generate above-average payoffs have the chance
to spread. Therefore, from an evolutionary perspective, there will be no cooperators
in the end, which contradicts the observed cooperation in reality.

A variety of mechanisms has been proposed to explain the considerable level
of cooperation observed under certain circumstances. These include kin selection,
direct reciprocity, indirect reciprocity, group selection and network reciprocity [15].
In particular, it is interesting that the spatial population structure can significantly
change the level of cooperation in a population [23, 24]. While there could be a co-
evolution of social structure and cooperation due to migratory behavior, this subject
has not been well studied in the past.

10.1.2 Co-evolution of Social Structure and Cooperation

In order to model such intentional movement of individuals, spatial effects must be
explicitly considered. Spatial games based on lattices [23] would allow one to study
such effects. In conventional spatial games, individuals are uniformly distributed in
the simulation area, and change or repeat their strategies, following a certain updat-
ing rule. For instance, an individual is assumed to unconditionally adopt the most
successful strategy within the neighborhood. On the one hand, this creates typical
spatio-temporal pattern. On the other hand, spatial structures play an important role
in the maintenance of cooperation. In the iterative prisoner’s dilemma, for example,
clusters of cooperators are beneficial to cooperators [12, 13], while the evolving
spatial structure in the snowdrift game [24], may inhibit cooperation. Conventional
spatial games, however, neglect the possibility of individuals to move or migrate,
although mobility is a well-known fact of daily social interactions. We will see
that the movement of individuals, e.g. population succession, can change the spatial
structure of a population significantly, and influence the evolution of cooperation
dramatically.

The above mentioned social processes that are related to the migratory behavior
of people, can be well integrated into the framework of spatial games. Focusing on
success-driven motion, we will in the following, study the combination of migration,
strategic interactions and learning (specifically imitation). Numerical simulations
show that success-driven motion is a mechanism that can promote cooperation via
self-organized social structures. Moreover, very surprisingly, a certain degree of
fluctuations (“noise”) can even enhance the level of cooperation.

222 W. Yu and D. Helbing

10.2 Spatial Games with Mobility

10.2.1 Classification

Spatial games with mobility (“mobility games”) could be classified as follows:

1. Mobility may occur in physical (geographic) space with one, two or three dimen-
sions, or in abstract space (e.g. opinion space). It may take place in a continuous
space or in a discrete space such as a grid. Rather than a regular grid, one may
use an irregular grid [21], or a (fixed or dynamically changing) network structure
(e.g. friendship network).

2. One may distinguish between games with continuous and with discrete motion.
The first ones may be considered as particular cases of differential games [25]
and shall be called “motion games”. The second ones will be named “migra-
tory games” and can be implemented, for example, in terms of cellular automata
(particularly, if a parallel update is performed).

3. The mobility game may be deterministic or “noisy”, i.e. influenced by fluctua-
tions. Such “noise” may be introduced by stochastic update rules, e.g. a random
sequential update or the Fermi rule [24].

4. Multiple occupation of a certain location may be possible, allowing for the
agglomeration of individuals, or it may be prohibited. In the latter case, spatial
exclusion requires spatial capacity constraints and/or the respect or protection of
some “private territory”.

5. In mobility games with spatial exclusion, empty sites are needed. Therefore, the
density of free locations (“sites”) is a relevant model parameter.

6. The frequency, rate, or speed of mobility may be relevant as well and should be
compared with other time scales, such as the frequency of strategy changes, or
the average lifetime of a spatial cluster of individuals. Depending on the specifi-
cation of the game, after a transient time one may find everything from chaotic
patterns [23] upto frozen patterns [26, 27]. This may be expressed by a viscosity
parameter [28].

7. Mobility may be random or directed (e.g. “success-driven”). Directed mobility
may depend on the expected payoff in a certain time point (iteration), or it may
depend on the cumulative payoff (i.e. the accumulation of wealth by individuals).

8. If age, birth and death are considered, one speaks of “demographic games” [29].
9. One can also study different update rules such as a random sequential update, a

sublattice-parallel update, or a ordered-sequential update [30]. In this contribu-
tion, we have applied a random sequential update rule, which appears to be more
realistic than, for example, a parallel update [31]. Moreover, a parallel update
would create conflicts regarding the occupation of empty sites in the migration
step.

In the following, we will primarily focus on games with success-driven migration in
two-dimensional geographic space. Furthermore, we will assume simple strategies
(such as all-cooperate or all-defect), no memory and no forecasting abilities.

10 Game Theoretical Interactions of Moving Agents 223

10.2.2 Individual Decision Making and Migration

In “migration games”, each individual I is located at the position XI of a discrete
grid and applies a certain strategy i = i(I,X, t) when interacting with individ-
uals J at locations XJ in the neighborhood N = N (XI), who apply strategies
j = j (J,X′, t) (see Fig. 10.1). The interactions at time t are quantified by the
payoffs Pi j . The overall payoff for individual I resulting from interactions with all
individuals J in the neighborhood N (XI) at time t is

PI (t) = PI (XI, t) =
∑

J :XJ∈N (XI)

Pi j (J). (10.1)

We assume that all individuals prefer places that can provide higher payoff. How-
ever, their movements are restricted by their mobilities and the number of free loca-
tions, as one can only move to empty places. In our model, the mobility is reflected
by the migration range M , which could be assumed constant (see Fig. 10.2) or as a
function of cumulative payoffs

CI (t) =
t∑

t ′=0

[PI (t
′)− cI (t

′)]. (10.2)

Here, the cost of each movement cI (t) may be specified proportionally to the
distance dI (t) ≤ M moved:

cI (t) = β dI (t). (10.3)

β is a constant.

Fig. 10.1 The focal individual I is represented by the empty circle. It can, for example, interact
with the k = 4 nearest individuals (gray) or with k = 8 neighbors, which includes four next-nearest
neighbors (black)

224 W. Yu and D. Helbing

M = 2

M = 1

2 cells1 cell

A B

Fig. 10.2 (a) When M = 1, the focal individual (black circle) can migrate within the black square
(Moore neighborhood of range 1). (b) Here, the migration neighborhood is chosen as Moore neigh-
borhood of range M = 2

When the migration range M is restricted by the cumulative payoff, one may set

M(t) = *α CI (t),, (10.4)

where * , rounds down to the next integer ≤ αCI (t) and α is a constant, which is
set to 1

β
in the following.

The expected payoff for individual I applying strategy i at a free location X′
within the migration range can be calculated as

PI (X′, t) =
∑

J ′:XJ′∈N (X′)
Pi j ′(J

′), (10.5)

where j ′ = j ′(J ′,X′, t) are the strategies of the individuals J ′ located within
the neighborhood N ′ = N (X′) centered at X′. Here, we implicitly assume that
individual I can figure out the strategies j ′ of the neighbors J ′ in a considered
neighborhood N ′ by test interactions (just imagine, they visit a new neighborhood
and talk to people, before they more there). When such test interactions are “cheap”
as compared to the payoffs resulting after relocating, the costs of this “neighborhood
testing” may be neglected, as has been done here.

We assume that individuals prefer the place X′ which promises the highest pay-
off. Consequently, if A represents the area within the migration range M around XI,
the maximum expected payoff that individual I can reach by relocating is

Pe
I (t + 1) = max

X′∈A
PI (X′, t) . (10.6)

In our model, individuals decide to move, if the expected payoff Pe
I (t + 1) at the

new location would be higher than the current one, i.e. if the short-term cost-benefit
condition

Pe
I (t + 1)− PI (t) > cI (t) (10.7)

10 Game Theoretical Interactions of Moving Agents 225

is fulfilled. If the cost of relocating is small compared to the cumulative payoff that
an individual can earn over the average time period an individual stays at the same
place, the cost of movement can be neglected. In cases where two or more places
promise the same maximum payoff, we assume that an individual prefers the closest
one. If both, the payoff and distance are the same, individuals in our simulation
choose randomly among equivalent locations.

Note that all the other individuals seek better places as well. Therefore, neighbor-
hoods may change quickly, and the resulting payoff may fall below the expectations.

10.2.3 Learning

Learning allows individuals to adapt their behaviors in response to other people’s
behaviors in an interactive decision making setting. Basic learning mechanisms are,
for example, unconditional imitation, best reply, and reinforcement learning [32].

Unconditional imitation means that people copy the behaviors of others. For
instance, we can assume that, when i reaches a new place, it imitates the most
successful strategy within the neighborhood (if it is more successful than the own
strategy), or the most frequently used strategy in past interactions. It should be
underlined, that it is not easy to identify the future strategy of another individual
from its displayed past behavior. However, in the simplified context of a prisoner’s
dilemma, where individuals are assumed to play either all-defect or all-cooperate,
one’s behavior reveals the strategy directly. It may nevertheless change before the
next iteration due to learning of the neighbors.

Reinforcement learning is a kind of backward-looking learning behavior, i.e. peo-
ple tend to take the actions that yielded high payoffs in the past. Assuming that an
individual has a set of strategies, among which he or she chooses with a certain prob-
ability, this probability is increased, if the gained payoff exceeds a certain threshold
value (“aspiration level”) [33, 34].

Best reply is a sophisticated learning model as well. According to it, people
choose their strategies based on the expectation of what the others will do in a
way that maximizes their expected payoff. The ability to forecast depends on one’s
belief about the behaviors of the others. For instance, one can try to determine the
distribution of the neighbors’ previous actions, and select the own strategy, which
replies to it in the best way.

For simplicity, players in our model only interact with the k = 4 nearest neigh-
bors and adapt their strategies by unconditional imitation. Assuming that the updat-
ing rules of all the individuals are the same, we can specify a simple migration game
as follows:

1. An individual moves to a new position that is located inside the migration range
M and maximizes the expected payoff.

2. The individual imitates the most successful strategy within the interaction neigh-
borhood N , if it is more successful than the own strategy.

226 W. Yu and D. Helbing

Note that changing the sequence leads to a different dynamics, and the imple-
mentation of migration and learning can be varied in many ways. Therefore, spatial
games with mobility promise to be a rich research field. In the following, we will
restrict ourselves to some of the simplest specifications.

The above mentioned framework of spatial games with migration specifies a kind
of cellular automata (CA) model, in which space and time are discrete. Furthermore,
the set of actions performed in CA models usually depends on the last time step only,
which allows for high-performance computing of large-scale scenarios. CA models
have been successfully applied to describe a variety of social and physical systems
[29, 35, 36]. The outcomes of social and physical interactions can be very well
integrated into them, which can create many interesting dynamics, like the “game
of life” [37].

10.3 Simulation Results and Discussion

In the following, we perform a random sequential update of the individual (i.e. their
migration and learning steps), which is to be distinguished from the parallel update
assumed in [23, 26]. For a discussion of some related advantages, see [31]. Our
numerical simulations are performed on 49×49 grids with 40% empty sites, i.e. a
density of 0.6 and periodic boundary conditions. 49×49 grids were chosen for better
visibility, while the statistical evaluations (see Figs. 10.6 and 10.7) were done with
99×99 grids for comparability with Nowak’s and May’s spatial games [23]. In the
prisoner’s dilemma, the color code is chosen as follows: gray = cooperator, black =
defector. In other games, gray = player of group 1, black = player of group 2. White
always corresponds to an empty site.

10.3.1 Spontaneous Pattern Formation and Population Structure

In the migration game, individual preferences are reflected by the payoff matrix,
which quantifies the possible outcomes of social interactions. Figure 10.3 shows
a variety of patterns formed when the payoff matrix is modified. The outcomes
from interactions between individuals are the driving forces changing the popula-
tion structure in space. In the following, we will call all the individuals, who apply
the same strategy, a “group” g. Group 1 is represented in gray, group 2 in black.
The size Ng of group g is constant in true only in the migration-only case with-
out learning. Otherwise, strategy changes imply changes of individuals between
groups and changes in group size. We will distinguish the three social relations
between groups: (i) both groups (or, more exactly speaking, their individuals) like
each other (P12 = P21 = 1), (ii) group 1 is neutral with respect to group 2, but
group 2 dislikes group 1 (P12 = 0, P21 = −1), and (iii) intra-group interactions
are more favored than inter-group interactions (P11 = P22 = 1, P12 = P21 = 0.5).
Intra-group affiliation is always preferred or at least neutral (P11 = P22 = 1 or
P11 = P22 = 0). As people are allowed to move, when they like each other, a strong

10 Game Theoretical Interactions of Moving Agents 227

Migration Only
 M = 5

Imitation Only
 M = 0

Migration and Imitation
 M = 5

(A)

(B)

(C)

Fig. 10.3 Simulation results for 49×49 grids with a density of 0.6 for the migration-only case
(left), the imitation-only case of conventional spatial games (middle) and the combination of imi-
tation with migration (right). The color code is chosen as follows: gray = player of group 1,
black = player of group 2, white = empty site. (a) P11 = P22 = 0, P12 = P21 = 1. Inter-
group interaction is encouraged, which causes the integration of two populations. The combination
of migration and imitation results in the co-existence of both groups and the formation of clus-
ters. (b) P11 = P22 = P12 = 1, P21 = −1. When affinity is unilateral, one population keeps
approaching the other one, which tends to evade. The combination of migration and imitation
leads to the spreading of the chasing group. Co-existence is not observed. (c) P11 = P22 = 1,
P21 = P21 = 0.5. When interactions between groups are less profitable than in the same group,
residential segregation occurs as well, but in contrast to (b), it stabilizes

integration of populations can be observed. However, if the affinity is unilateral, then
one population tends to evade the invasion of the other. Assuming the same mobility
in both populations, in the current setting of our simulations the chasing population
gains the majority in the end, if unconditional imitation is considered.

Residential segregation emerges through the interactions of individuals, not only
when they dislike each other, but also if individuals within the same group like each
other more than individual from other groups. When inter-group interactions result
in smaller payoffs, people attempt to maximize their payoff by agglomerating with
the same kind of people, which eventually results in the segregation of different
groups as a side effect.

228 W. Yu and D. Helbing

Some theoretical analysis can be useful to understand the micro-macro link. Let
ng1 and ng2 be the average number of individuals of group 1 and 2, respectively,
in the interaction neighborhood of an individual using strategy i , i.e. belonging to
group g = i . Then, the payoff of an individual belonging to group g ∈ {1, 2} is

Pg = ng1 Pg1 + ng2 Pg2, (10.8)

where Pgi is the payoff of an individual of group g when meeting an individual
using strategy i .

The total payoffs for individuals of group g is Ng Pg , while the total payoff of
both groups is

T ′ = N1 P1 + N2 P2, (10.9)

where Ng is the number of individuals of group g, i.e. pursuing strategy g = i .
According to success-driven migration, the change of an individual’s payoff in

the noiseless case is always positive, i.e.

�Pg = �ng1 Pg1 +�ng2 Pg2 > 0 (10.10)

with �ng1 = ng1(t + 1)− ng1(t) and �ng2 = ng2(t + 1)− ng2(t).
Assuming P12 P11 and P12 > 0, we will usually have �P1 ≈ �n12 P12 > 0

and �n12 > 0, which leads to a monotonous increase in the number of neighbors
of individuals of group 1. Giving the inequality P11 P12 and P11 > 0, we anal-
ogously obtain �P1 ≈ �n11 P11 > 0 and �n11 > 0. Therefore, when intra-group
interactions of group 1 are much stronger than inter-group interactions, and positive,
clusters of group 1 will expand, as each migration step will increase the average
number of neighbors within group 1. However, when P11 < 0, the formation of
clusters of individuals belonging to group 1 by intra-group interactions is unlikely.
When P12 < 0, an individual of group 1 tends to evade members of group 2, which
can be regarded as a repulsive effect attempting to keep a certain distance between
individuals of different groups [38].

The total change of payoff is given by

�T ′ = N1(�n11 P11 +�n12 P12)+ N2(�n21 P21 +�n22 P22) > 0, (10.11)

as long as success-driven migration is applied by all the individuals, and changes
�N1 and �N2 in the group sizes are negligible.

Let us now consider a simple example, where P11 = P22 = 0. Then, we have

�T ′ = N1�n12 P12 + N2�n21 P21, (10.12)

which reflects the combined effects of interactions between members of group
1 and 2. Furthermore, if �T ′ > 0, we expect that the number of neighborships
between individuals of both groups will monotonously increase. The corresponding

10 Game Theoretical Interactions of Moving Agents 229

macroscopic phenomenon is the spatial integration (mixture) of both groups. How-
ever, if (P12 + P21) < 0, the reduction of inter-group links is likely and will result
in residential segregation (see Fig. 10.3).

Here we have examined how individual preferences can change the spatial pop-
ulation structure in a very simple social system considering migratory behavior.
The revealed social process can, to some extent, reflect the dynamics of population
succession [14] in urban areas. This corresponds to case b in Fig. 10.3. Consider the
payoff matrix in Fig. 10.3b, and imagine that an individual of group 1 happens to
be located in the neighborhood of group 2. For the previous residents, this may not
change a lot. However, it attracts other members of group 1, who are not yet living
in a neighborhood of group 1 individuals. This can trigger collective migration of
other group 1 members. Since interactions between members of group 1 and 2 bring
positive payoffs only for members of group 1, group 2 will finally leave for new
places.

One may notice that, here, we do not differentiate the intention to migrate and
the actual migratory behavior. In daily life, however, the movement of people is
restricted by much more factors such as wealth and time, so people do not migrate
often, even if they are motivated to move. But in our simulations as well, migration
activity after a few iterations is small: Starting with high migration rate, due to the
artificial choice of a random initial distribution, the migration rate quickly drops to
a low level [12]. Of course, other factors determining migration can be easily added
to the above proposed framework of migration games.

10.3.2 Promotion of Cooperation in the Prisoner’s Dilemma

The prisoner’s dilemma is an important paradigm for studying the emergence
of cooperation among selfish individuals. Nevertheless, studies of the prisoner’s
dilemma on lattices have not fully explored the effect of mobility. It would be
logical, of course, for people to evade areas with a high level of defection, and
to settle down in areas dominated by cooperators. But would cooperative areas be
able to survive invasion attempts by defectors or even to spread in space? To answer
these questions, we will now focus on the effects of success-driven migration on the
spatial population structure and the level of cooperation.

Figure 10.4 compares the migration-only case with M = 5 (left) with the imi-
tation only case corresponding to M = 0 (center) and the combined imitation-and-
migration case with M = 5 (right). In the imitation-only case, the proportion of
cooperators is greatly reduced. However, the combination of migration and imi-
tation strikingly promotes the level of cooperation. Our explanation is that, when
individuals have mobility, cooperative clusters are more likely to be promoted in
the presence of invasion attempts of defectors. We can see that, in the migration-
only case, cooperators manage to aggregate and to form clusters. Although defec-
tors attempt to enter cooperative clusters, they finally end up at the boundaries of
cooperative clusters, as cooperators split to evade defectors and re-aggregate in new

230 W. Yu and D. Helbing

Migration Only
M = 5 M = 0 M = 5

Imitation Only Migration and Imitation

(A)

(B)

(C)

(D)

Fig. 10.4 Simulation results for 49×49 grids with a density of 0.6 for the migration-only case
(left), the imitation-only case of conventional spatial games (middle) and the combination of imita-
tion with migration (right). The color code is chosen as follows: gray = player of group 1, black =
player of group 2, white = empty site. (a) P11 = R = 1, P12 = S = −0.2, P21 = T = 1.4,
P22 = P = 0. The payoff matrix corresponds to a prisoner’s dilemma. (b) P11 = R = 1,
P12 = S = 0, P21 = T = 1.4, P22 = P = 0. The sucker’s payoff is set to zero to be com-
patible with the payoff matrix studied by Nowak and May. (c) P11 = R = 1, P12 = S = 0,
P21 = T = 1.4, P22 = P = 0. The migration and imitation step are inverted here, i.e. an
individual first imitates, then migrates. (d) P11 = 0.59, P12 = 0.18, P21 = 1, P22 = 0. In the
snow-drift game, similar structures are found in the migration-only and imitation-only case. Giving
the possibility to move, frequent switches of strategies are observed. See main text for details

10 Game Theoretical Interactions of Moving Agents 231

places, where defectors are excluded. In the prisoner’s dilemma, it is guaranteed
that 2R > T + S, which means that the “attractive force” between cooperators
is mutual and strong, while the interaction between a cooperator and a defector
leads to a unilateral attractive force (T > 0). When S < 0, a cooperator replies to
defectors even in a repulsive way. Therefore, defectors are less successful in joining
or entering cooperative clusters than cooperators are.

Configurational analysis [12] (see Fig. 10.5), indicates that, when P = S = 0,
and an individual only interacts with k = 4 nearest neighbors, a cooperative clus-
ter can turn a defector into cooperator by unconditional imitation for T < 1.5R,
when the defector is surrounded with one or two cooperators. When a defector is
surrounded with three cooperators, cooperators can resist the invasion of a defector,
even if the temptation value T is as high as 4

3 R. A defector can invade one of the
nearby cooperators, if its neighborhood is fully occupied by cooperators. Therefore,
the formation of compact clusters is important to support the spreading of coopera-
tion. If k > 4, the spreading of cooperation occurs even for higher value of T .

AA B

C D

Fig. 10.5 Analysis of the invasion of a cluster of cooperators (black circles) by a single defector
(cross). For the simplicity of analysis, we assume S = P = 0 here, but one can easily generalize
the analysis to the situations with P > S > 0. (a) Scenario 1: The payoff for the defector is
T , while its neighboring cooperator obtains a payoff of 3R. Since 3R > T , the defector will
become a cooperator. (b) Scenario 2: The payoff for the defector is 2T , while the maximal payoff
among neighboring cooperators is 3R. In order to make the defector become a cooperator, we need
3R > 2T , i.e. T < 1.5R. (c) Scenario 3: The defector obtains 3T , while the maximal payoff
of neighboring cooperators is 3R. In order to turn the defector into a cooperator, the inequality
3R > 3T must be satisfied, i.e. T < R. This condition can never be met in the prisoner’s dilemma.
In order that cooperators do not copy the defector, 4R > 3T must be satisfied, i.e. T < 4

3 R. (d)
Scenario 4: The payoff for the defector is 4T , the maximal payoff of cooperators in the whole
community is 4R. Because of T > R, the defector can invade the cooperators nearby. Once a
cooperator becomes a defector however, the payoff for the defectors will be reduced from 4T to
3T , which may stop the further invasion of defectors

232 W. Yu and D. Helbing

In spatial games without mobility, the occurrence of a compact cooperative clus-
ters mainly depends on the initial distribution. Giving mobilities, the migratory
behavior can significantly accelerate the formation of compact clusters, and promote
the level of cooperation.

Quantitative studies of how migration can promote the level of cooperation have
to compare the fraction of cooperators in situations with mobility and without.
Figure 10.6 shows the amplification factor, defined as

δ(T, M) = f T
M

f T
0

. (10.13)

f T
M is the fraction of cooperators, given the mobility range M and a temptation value

of T . We can see that the level of cooperation in the prisoner’s dilemma is promoted
in a large parameter area, if the punishment P and the sucker’s payoff are roughly
comparable in size.

However, we have not yet studied the robustness of the migration mechanism
so far. One may imagine that, once a defector would manage to invade a cooper-
ative cluster, it may turn neighboring cooperators into defectors as well, thereby
eliminating cooperation eventually. While in a noiseless environment, a defector
cannot enter the center of a compact cooperative cluster, “noise” could make it
happen with a certain probability. As defectors in a cooperative cluster can spread
(see Fig. 10.5d), noise could therefore be thought to destroy the enhancement of
cooperation by success-driven migration. Very surprisingly, this is not the case!

0
0.5

1

0.
5

1

0

1
0

2

4

6

P

S

A
m

p
lif

ic
at

io
n

 F
ac

to
r

Fig. 10.6 Amplification factor of the level of cooperation by migration (M = 5) as a function of
the sucker’s payoff P12 = S and the punishment P22 = P in the prisoner’s dilemma (S < P) and
the snow drift game (S > P). The simulation was performed for 99×99 grids with a density of
0.6. P and S were varied between −1 and 1, the payoffs R = 1 and T = 1.3 were left fix

10 Game Theoretical Interactions of Moving Agents 233

In order to verify that success-driven migration robustly promotes cooperation,
we have implemented 3 kinds of noises. In each time step, a certain proportion y
of individuals was selected to perform the following operations after the respective
migration and imitation steps:

Noise 1: The selected players’ locations were exchanged with a randomly cho-
sen neighboring site (“neighborhood flipping”).

Noise 2: The selected players’ strategies were flipped, i.e. cooperation was
replaced by defection and vice versa (“strategy flipping”).

Noise 3: The selected players were removed from the grid, and an equal num-
ber of players was created at randomly chosen free sites, in order to mimic
birth and death processes. The newly born players had a 50% chance to be
cooperators and a 50% chance to be defectors.

Figure 10.7 shows the time evolution of the number of cooperators with noise
strength y = 2% and y = 10% respectively. Without mobility (M = 0), noise
reduces the number of cooperators greatly. For a mobility range M = 5, however,
we surprisingly find that the level of cooperation can be still maintained at a high
level. With 2% noise, noises 1 and 3 can even increase the number of cooperators
compared to the no-noise case!

Therefore, in contrast to what one may expect, noise does not just simply destroy
spatial structures and the level of cooperation. It may also overcome metastable con-
figurations of the system, but naturally, it depends on the kind of noise, what noise
levels are beneficial [10]. In order to illustrate how noise can promote cooperation to

0 100 200 300
0

1000

2000

3000

4000

5000

6000

Iteration t

N
um

be
r

of
 C

oo
pe

ra
to

rs

Noise 1, M = 5

No noise, M = 5

Noise 2, M = 5

Noise 3, M = 5

No noise, M = 0

Noise 1, M = 0

Noise 2, M = 0
Noise 3, M = 0

0 100 200 300
0

1000

2000

3000

4000

5000

6000

Iteration t

N
um

be
r

of
 C

oo
pe

ra
to

rs

No noise, M = 5

Noise 1, M = 5

Noise 3, M = 5

Noise 2, M = 5

No noise, M = 0

Noise 3, M = 0

Noise 2, M= 0
Noise 1, M= 0

(A) 2% noise (B) 10% noise

Fig. 10.7 Time evolution of the number of cooperators. Here, the simulation is performed on
99×99 grids with a density of 0.6 and payoffs P11 = R = 1, P12 = S = 0, P21 = T = 1.3, and
P22 = P = 0

234 W. Yu and D. Helbing

a level higher than the level in a noiseless system, one may define a kind of potential
energy function of the system by the negative total payoff:

E = −T ′. (10.14)

In a noiseless system, each individual’s migration step will increase T , and reduce
the potential energy of the system, [see Eq. (10.11)]. Then an individual will adopt
the most successful strategy within its neighborhood. The imitation step and noise
can flip the strategies and increase the energy of the system. Just as for the energy
functions in spin glass models [39], recurrent neural networks [40] and Boltzmann
machines [41], there are many local minima of E in the migration game, one of
which is reached within a few iterations. Afterwards, the noiseless system behaves
stationary, but it is most likely stuck in a meta-stable state, which depends on the
initial condition. Moderate noise can perturb these meta-stable states and thereby
support the evolution of the system towards better configurations (see Fig. 10.8).
Only if the noise level is too strong, the system behaves pretty much in a random
way. In summary, randomness does not necessarily destroy a high level of coop-
eration. Moderate noise strengths can even support it (at least for some kinds of
noise).

Our results for the conventional prisoner’s dilemma with P > S confirm the
robustness of migration as a mechanism to promote cooperation (see Fig. 10.9). One
can easily see that, without mobility, the proportion of cooperators is close to zero,
while there is still a certain small number of cooperators in the environment without
noise. However, when individuals can move, cooperation is significantly increased
due to the spontaneous formation of clusters. Imagine that a defector is located in
the center of a cooperators’ cluster. In the beginning, defection can invade cooper-
ation due to the higher payoff (see Fig. 10.5d). But once a neighboring cooperator
becomes a defector, a defector’s payoff is reduced from 4T to 3T , if P = 0. If more
cooperators turn into defectors, the payoff will be further reduced. Therefore, the
exploitation of cooperators by defectors is self-inhibitory, if individuals copy better
performing neighbors. Furthermore, a splitting of a cooperative cluster can occur,

Fig. 10.8 Noise can make the system leave a sub-optimal state and reach the globally optimal state

10 Game Theoretical Interactions of Moving Agents 235

Migration Only
M = 5

Imitation Only
M = 0

Migration and Imitation
M = 5

(A)

(B)

(C)

(D)

Fig. 10.9 Effect of different kinds of noises on the outcome of the spatial prisoner’s dilemma
with migration but no imitation (left), with imitation, but no migration (center), and with both,
migration and imitation (right). The simulation is performed on 49×49 grids with a density of 0.6.
The color code is chosen as follows: black = defector, gray = cooperator, white = empty site. While
the resulting level of cooperation is very small in the conventional imitation-only case (center), the
additional consideration of migration results in large levels of cooperation even in the presence of
different kinds of noise. (a) No noise. (b) Noise 1 (neighborhood flipping). (c) Noise 2 (strategy
flipping). (d) Noise 3 (birth and death). The payoffs were T = 1.3, R = 1, P = 0.1, and S = 0 in
all cases. See main text for details

since cooperators try to move to more favorable neighborhood as soon as defec-
tors are approaching them. The migration of those cooperators can encourage other
cooperators, whose payoff depends on the mutual interactions, to move as well.
That is, defectors may trigger a collective movement of cooperators. Of course, the

236 W. Yu and D. Helbing

newly formed cooperative clusters are also likely to be invaded by neighborhood
or strategy flipping, or birth and death process. However, this will just repeat the
above mentioned migration process. Therefore, cooperators can survive and spread
even in a noisy world. Such a dynamical change of the population structure through
invasion and succession reflects various features of the migratory behavior observed
in reality (see Sect. 10.1.2).

In the migration rule studied above, we assume that a favorable neighborhood
can be determined by fictitious play, i.e. some low-cost interactions with the people
in that neighborhood (“neighborhood testing”). One may think that this is difficult
in reality as it requires to reveal people’s strategies. However, one may also argue
that people tend to migrate to high-quality residential areas, which provide better
education for children, a low crime rate, and other social welfare. In fact, neighbor-
hoods are often “labeled”, and it may be assumed that this label (the appearance and
character of a neighborhood) depends on the total cumulative payoffs (the accumu-
lated wealth) of the residents in the neighborhood. Therefore, one could assume that
individuals try to move to the neighborhood with the highest cumulative payoff. The
success-driven migration based on such a wealth-based “neighborhood tagging” is
examined in Fig. 10.10. Again, we find that migration promotes the formation of
cooperative clusters and an enhanced level of cooperation.

Migration Only
M = 5 M = 0 M = 5

Imitation Only Migration and Imitation

(A)

(B)

Fig. 10.10 Migratory prisoner’s dilemma with wealth-based neighborhood-tagging rather than
neighborhood testing as before. The simulation is performed on 49×49 grids with a density of
0.6. The color code is chosen as follows: black = defector, gray = cooperator, white = empty
site. (a) P11 = R = 1, P12 = S = 0, P21 = T = 1.4, P22 = P = 0. (b) P11 = R = 1,
P12 = S = 0, P21 = T = 1.4, P22 = P = 0, as in (a), but the update rule is inverted, i.e.
an individual, first imitates, then migrates. In both cases, one can see that, without mobility, the
proportion of cooperators becomes very low. However, when success-driven migration is possible,
cooperation can spread, even if the sequence of the migration step and the unconditional imitation
step is inverted

10 Game Theoretical Interactions of Moving Agents 237

10.4 Conclusions

We have introduced the concept of migration games by considering success-driven
motion. Migration games can easily reproduce macroscopic stylized facts of various
social phenomena based on individual actions and interactions. Typical examples
are population succession and residential segregation. These aggregate outcomes
emerge from the interactions between individuals in a non-trivial way, and a the-
oretical analysis allows one to qualitatively understand the relation between the
microscopic interactions and the emerging macroscopic phenomena. Nevertheless,
further studies are required to fully elaborate the micro-macro link in a quantitative
way.

For the prisoner’s dilemma, we have shown that self-organized cooperative struc-
tures can promote the level of cooperation. Moreover, we have verified that the
enhancement of cooperation by success-driven motion is robust to different kinds
of noise. Surprisingly, we even find that moderate noise levels can promote the
cooperation level further. The underlying mechanism is that, in the migration game,
success-driven motion will monotonously increase the total payoff in the noiseless
system, which however can lead the system into a locally optimal state. The effect
of noise can drive the system out of local optima towards the globally optimal state.

The observation of pattern formation in migratory games is robust with respect to
changes in the order of update steps, the initial level of cooperation, and moderate
levels of randomness. It is also found for different specifications of the migration
rules, but diffusive kinds of migration may destroy spatial patterns. Furthermore,
our findings are robust with respect to reasonable variations in the payoffs and many
other changes in the model (such as migration costs, etc.). For further details see
Refs. [12, 13, 42–45]. The framework of migratory games can be easily extended.
For example, one may integrate other kinds of interactions to study further social
processes.

The spatial structure assumed in our simulation is very simple, and the neigh-
borhood depends only on an individual’s position. Real cities are more complex
and show a co-evolutionary dynamics. For example, the city structure can reflect
the distribution of social status groups. Early models like the Burgess concentric
zone model [46] divides the city into specific areas separated by status rings. The
city center is located in the middle of the circle, around which newer, higher-quality
housing stocks tend to emerge at the perimeter of the city. Therefore, the growth of
the city center will expand adjacent residential zones outwards.

Status segregation is quite obvious in such an idealized model of city structure.
Poor people or new immigrants may only afford low quality housing. Middle class
people live in less compacted neighborhoods. Rich people tend to accumulate in
particular quarters.

Burgess’s model is based on the bid rent curve. Recognizing that some poor
people prefer to live near the main transportation arteries and commercial estab-
lishments, Hoyt [47] modified the concentric zone model to take this into account.
In Hoyt’s model, cities tend to grow in wedge-shaped patterns or sectors. Major
transportation routes are emanating from the central business district (CBD). The

238 W. Yu and D. Helbing

residential areas for lower income people are located adjacent to the industrial quar-
ters, while upper class neighborhoods are far away from industrial pollution and
noise.

It would be natural to extend migration games in order to study the co-evolutionary
dynamics of population structure and urban growth. On the long run, we hope this
will contribute to a better understanding and planning of the population dynamics
in a city.

Further research work can also study conflicts related with migratory behavior,
as has been revealed by the empirical research [48, 49].

References

1. W.A. Clark, M. Fossett, Understanding the social context of the Schelling segregation model.
Proc. Natl. Acad. Sci. 105, 4109–4114 (2008)

2. M. Fossett, Ethnic preferences, social distance dynamics, and residential segregation: theoret-
ical explorations using simulation analysis. J. Math. Socio. 30, 185–274 (2006)

3. O.D. Duncan, B. Duncan, Residential distribution and occupational stratefication. Am. J.
Sociol. 60, 493–503 (1955)

4. S.F. Reardon, G. Firebaugh, Response: Segregation and social distance – a generalized
approach to segregation measurement. Sociol. Methodol. 32, 85–101 (2002)

5. T.C. Schelling, Dynamic models of segregation. J. Math. Socio. 1, 143–186 (1971)
6. T.C. Schelling, Micromotives and Macrobehavior. (Norton, New York, 1978)
7. D.S. Massey, American apartheid: segregation and the making of the underclass. Am. J.

Sociol. 96, 329–357 (1990)
8. J. Yinger, Closed Doors, Opportunities Lost: The Continuing Costs of Housing Discrimina-

tion. (Russell Sage Found, New York 1995).
9. M. Macy, A.V.D. Rijt, Ethnic preferences and residential segregation: Theoretical explorations

beyond Detroit. J. Math. Socio. 30, 275–288 (2006)
10. D. Helbing, T. Platkowski, Drift- or fluctuation-induced ordering and self-organization in

driven many-particle systems. Europhys. Lett. 60, 227–233 (2002)
11. D. Helbing, T. Vicsek, Optimal self-organization. N. J. Phys. 1, 13.1–13.17 (1999)
12. D. Helbing, W. Yu, Migration as a mechanism to promote cooperation. Adv. Compl. Syst. 11,

641–652 (2008)
13. D. Helbing, W. Yu, The outbreak of cooperation among success-driven individuals under noisy

conditions. Proc. Natl. Acad. Sci. 106, 3680–3685 (2009), and Supplementary Information to
this paper.

14. P.F. Cressey, Population succession in Chicago: 1898–1930. Am. J. Sociol. 44, 59–69 (1938)
15. M.A. Nowak, Five rules for the evolution of cooperation. Science 314, 1560 (2006)
16. A. Axelrod, The Evolution of Cooperation. (Basic Books, New York 1984)
17. A.S. Griffin, S.A. West, A. Buckling, Cooperation and competition in pathogenic bacteria.

Nature 430, 1024–1027 (2004)
18. J. Von Neumann, O. Morgenstern, The Theory of Games and Economic Behavior. (Princeton

University Press, Princeton 1944)
19. D. Fudenberg, J. Tirole, Game Theory. (MIT Press, Cambridge 1991)
20. A. Diekmann, Volunteer’s dilemma. J. Confl. Resolut. 29, 605–610 (1985)
21. A. Flache, R. Hegselmann, Do irregular grids make a difference? Relaxing the spatial regular-

ity assumption in cellular models of social dynamics. J. Artif. Soc. Soc. Simul. 4(6) (2001)
22. P. Schuster, K. Sigmund, Replicator dynamics. J. Theor. Biol. 100, 533–538 (1983)
23. M.A. Nowak, R.M. May, Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

10 Game Theoretical Interactions of Moving Agents 239

24. C. Hauert, M. Doebell, Spatial structure often inhibits the evolution of cooperation in the
snowdrift game. Nature 428, 643–646 (2004)

25. S. Hoogendoorn, P.H.L. Bovy, Simulation of pedestrian flows by optimal control and differ-
ential games. Opim. Control Appl. Mech. 24, 153–172 (2003)

26. M.H. Vainstein, J.J. Arenzon, Disordered environments in spatial games. Phys. Rev. E 64,
051905 (2001)

27. M.H. Vainstein, A.T.C. Silva, J.J. Arenzon, Does mobility decrease cooperation? J. Theor.
Biol. 244, 722–728 (2006)

28. E.A. Sicardi, H. Fort, M.H. Vainstein, J.J. Arenzon, Random mobility and spatial structure
often enhance cooperation. J. Theor. Biol. 256, 240–246 (2009)

29. J.M. Epstein, Generative Social Science. (Princeton University Press, Princeton 2006)
30. N. Rajewsky, L. Santen, A. Schadschneider, M. Schreckenberg, The asymmetric exclusion

process: Comparision of update procedures. J. Statist. Phys. 92, 151 (1998)
31. B.A. Huberman, N.S. Glance, Evolutionary games and computer simulations. Proc. Natl.

Acad. Sci. 90, 7716–7718 (1993)
32. H.P. Young, Individual Strategy and Social Structure. (Princeton University Press, Princeton,

1998)
33. M.W. Macy, Learning to cooperate: stochastic and tacit collusion in social exchange. Am. J.

Sociol. 97, 808–843 (1991)
34. M.W. Macy, A. Flache, Learning dynamics in social dilemmas. Proc. Natl. Acad. Sci. 99,

7229–7236 (2002)
35. S. Wolfram, Theory and Applications of Cellular Automata. (World Scientific Publication,

Singapore 1986)
36. B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems. (Cambridge Univer-

sity Press, Cambridge, 1998)
37. E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays.

Academic Press, New York, (1982)
38. D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407,

487–490 (2000)
39. S. Kirkpatrick, D. Sherrington, Infinite-ranged models of spin-glasses. Phys. Rev. B 17,

4384–4403 (1978)
40. J.J. Hopfield, Neural networks and physical systems with emergent collective computational

abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)
41. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann machines.

Cogn. Sci. 9, 147–169 (1985)
42. D. Helbing, Pattern formation, social forces, and diffusion instability in games with success-

driven motion. Eur. Phys. J. B 67, 345–356 (2009)
43. D. Helbing, A mathematical model for the behavior of individuals in a social field. J. Math.

Sociol. 19, 189–219 (1994)
44. S. Meloni, et al., Effects of mobility in a population of Prisoner’s Dilemma players.

arXiv::0905.3189
45. C. Roca, Cooperation in Evolutionary Game Theory: Effects of Time and Structure. Ph.D.

thesis, (Universidad Carlos III de Madrid, Department of Mathematics) (2009)
46. E.W. Burgess, Residential segregation in American cities. Ann Am Acad Polit Soc Sci 140,

105–115 (1928)
47. H. Hoyt, The Structure and Growth of Residential Neighborhoods in American Cities Wash-

ington. Federal Housing Administration (Washion DC, 1939)
48. M. Lim, R. Metzler, Y.B. Yam, Global pattern formation and ethnic/cultural violence. Science

317, 1540–1544 (2007)
49. N.B. Weidmann, D. Kuse, WarViews: Visualizing and animating geographic data on civil war.

International Studies Perspectives 10, 36–48 (2009)

Chapter 11
Lattice Boltzmann Simulations of Wetting
and Drop Dynamics

Halim Kusumaatmaja and Julia M. Yeomans

11.1 Introduction

Recently there has been a huge effort in the scientific community to miniaturise
fluidic operations to micron and nanoscales [1]. This has changed the way scientists
think about fluids, and it potentially has far-reaching technological implications,
analogous to the miniaturization of electronics. The goal is to engineer “lab on a
chip” devices, where numerous biological and chemical experiments can be per-
formed rapidly, and in parallel, while consuming little reagent.

An important aspect of the physics of fluids at micron and nanoscales is the
increasing relevance of surface effects. Surface slip will dominate flow in nanochan-
nels, and the movement of small drops across a substrate will be strongly affected
by the interactions between the fluid and the surface. This has been exploited in
the functional adaptation of many biological systems, for example lotus leaves [2],
desert beetles [3] and butterfly wings [4]. Moreover, the wetting and spreading of
fluids over surfaces is key to numerous technological processes, for example in oil
recovery, painting, and inkjet printing.

Small liquid drops are spherical when they are in air, to minimise the surface
energy. When placed on a solid the degree to which a drop spreads depends on the
balance of interfacial energies between the solid, liquid, and gas phases. In equilib-
rium the liquid–gas interface maintains a spherical cap profile, and the liquid drop
joins the solid at a contact angle θe, where

cos θe = σGS − σLS

σLG
(11.1)

and σGS, σLS, and σLG are the gas–solid, liquid–solid and liquid–gas surface ten-
sions. Equation (11.1) is Young’s equation and the equilibrium contact angle is

H. Kusumaatmaja (B)
Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
e-mail: kusumaatmaja@gmail.com

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_11,
C© Springer-Verlag Berlin Heidelberg 2010

241

242 H. Kusumaatmaja and J.M. Yeomans

(b) neutral wetting: θe = 90°(a) hydrophilic: θe < 90°

θe θe θe

(c) hydrophobic: θe > 90°

Fig. 11.1 Profile of a liquid drop on (a) a hydrophilic, (b) a neutrally wetting and (c) a hydrophobic
surface

often called the Young angle. A solid surface is termed hydrophilic1 when θe < 90◦,
neutrally wetting when θe = 90◦ and hydrophobic when θe > 90◦. This is illustrated
in Fig. 11.1. For reviews of wetting and spreading see [5–8].

Wetting phenomena are often further complicated by the fact that the solid sur-
faces are never perfectly homogeneous. For micron and nanometer drops, the typical
length scale of surface heterogeneities can be comparable to the size of the drop
itself. Random disorder on a surface is notoriously difficult to describe theoretically
or numerically. However, as a result of recent and rapid developments in microfab-
rication techniques, it is now possible to manufacture surfaces with well controlled
patterning on micron, and even nanometer, length scales. The patterning can be
either chemical, with the contact angle varying from place to place, or topographi-
cal, where the relief of the surface changes. Patterning surfaces leads to a rich range
of drop thermodynamics and hydrodynamics which, because the surfaces are well
characterised, can now be investigated experimentally.

Analytical solutions describing the behaviour of drops on surfaces are possible
in some special cases, but in general they are not tractable when the surface hetero-
geneities are taken into account. Therefore there is a need for powerful numerical
techniques that are able to both solve the hydrodynamic equations of motion of
the fluids, and to take into account the effect of surface patterning, with relative
ease. To this end, in this chapter, we introduce a mesoscale numerical algorithm, the
lattice Boltzmann method, and show how it may be used to investigate the physics
of wetting and spreading.

Writing down an algorithm which solves the Navier-Stokes equations is rather
easy. This is because these equations are based on local conservation of mass and
momentum and, as long as the conservation laws are represented correctly, (and
space is discretised in a sufficiently symmetric way) the hydrodynamic equations
will be recovered in the continuum limit. This was pointed out by Frisch et al. [9]
who wrote down the first mesoscale algorithm for the Navier-Stokes equation. This
was a lattice-gas cellular automaton: particles move on a lattice and collide at the
nodes according to rules which impose mass and momentum conservation. As long
as the lattice has sufficient symmetry it is possible to choose collision rules that
reproduce the Navier-Stokes equation in the continuum limit.

1 Strictly, the terms hydrophilic and hydrophobic are appropriate only when the liquid is water.
Nonetheless, they are often used more generally.

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 243

Cellular automata models of hydrodynamics have proved important in many con-
texts but can be difficult to use because of large fluctuations in macroscopic quan-
tities such as the density and the velocity. The need to average over the fluctuations
can cancel out the advantage of an algorithm which is easy to parallelise. However
many other mesoscale methods have evolved from the ideas of cellular automata,
and one of these is the lattice Boltzmann approach [10–13]. The discrete variables
used in cellular automata are replaced by a set of distribution functions that represent
the average population of fluid particles. This removes the difficulty of fluctuations:
lattice Boltzmann can be viewed as a mean-field version of the cellular automata
models.

Lattice Boltzmann algorithms can be extended to multiphase and complex fluids
[14–16]. The algorithm solves the Navier-Stokes equations and, as we shall describe
below, the thermodynamic properties of a given fluid and its interactions with a
surface can be modelled rather easily by introducing a free energy functional that is
minimised in equilibrium. Moreover, lattice Boltzmann algorithms are well able to
handle flow in complex geometries and hence represent an efficient numerical way
of treating surfaces with topographic patterning.

The chapter comprises two parts. First, in Sects. 11.2, 11.3, and 11.4 we explain
the physical model and the lattice Boltzmann algorithm used to solve it. We intro-
duce a free energy functional for a binary fluid [17, 18] and explain how it handles
the essential ingredients needed to describe wetting phenomena; phase separation,
surface tension and contact angles. The generalisation of the Navier-Stokes equa-
tions appropriate for the two-phase system are summarised. We then describe lat-
tice Boltzmann algorithms that will solve the hydrodynamic equations, commenting
particularly on the thermodynamic and hydrodynamic boundary conditions needed
to model wetting. Next, in Sects. 11.5, 11.6, and 11.7, we illustrate the efficacy of
the algorithm by describing several applications to the physics of drops on smooth
and patterned surfaces. These include capillary filling, viscous fingering, control-
ling drop motion using chemical patterning, slip in patterned microchannels and
superhydrophobic surfaces.

11.2 The Binary Model

11.2.1 Thermodynamics of the Fluid

To model drops of fluid on a surface we need first to describe their equilibrium
properties, such as binary fluid coexistence, surface tension and contact angle. As we
are working on micron-length scales we can use a continuum, Landau free energy
[17], which is minimised in equilibrium,

� =
∫

V

(
ψb + κ

2
(∂αφ)

2
)

dV +
∫

S
ψs d S, (11.2)

244 H. Kusumaatmaja and J.M. Yeomans

where the bulk free energy density ψb is taken to have the form

ψb = c2

3
n ln n + A

(
− 1

2φ
2 + 1

4φ
4
)
. (11.3)

n is the fluid density which is chosen to be 1 everywhere, φ is the order parameter
and c = �x/�t , where �x and �t represent the discretisation in space and time
respectively. This choice of ψb gives binary phase separation into two phases with
φα = 1 and φβ = −1, where α and β label the two coexisting bulk phases.

The second and third terms in Eq. (11.2) are needed to account for the fluid–fluid
and fluid–solid surface tensions. Let us first consider the fluid–fluid surface tension
and for simplicity, restrict ourselves to one dimension. Minimising the volume terms
in the free energy functional with respect to φ leads to the condition for equilibrium

μ ≡ −Aφ + Aφ3 − κ
d2

dx2
φ = 0 (11.4)

where μ is the chemical potential. Equation (11.4) allows an interface solution of
the form

φ = tanh

(
x√
2ξ

)

(11.5)

where ξ = √
κ/A is defined as the interface width. Since this must typically be

chosen of order a few lattice spacings in a simulation, models of this type are often
called diffuse interface models [19, 20].

Using Noether’s theorem, we find that

ψb − κ

2

(
dφ

dx

)2

= constant = ψb|φ=±1 . (11.6)

We can therefore define the excess bulk free energy density as

W = ψb − ψb|φ=±1 = A
2

(
φ2 − 1

)2 = κ

2

(
dφ

dx

)2

. (11.7)

The surface tension, γ , of the liquid–liquid interface can be calculated by integrating
the sum of the excess bulk free energy density and the second (κ) term in Eq. (11.2)

γ =
∫ φα

φβ

(

W + κ

2

(
dφ

dx

)2
)

dx =
∫ φα

φβ

κ

(
dφ

dx

)2

dx = √8κA/9. (11.8)

The second integral in Eq. (11.2) is over the system’s solid surface and is used to
describe the interactions between the fluid and the surface. Following Cahn [21], the
surface energy density is taken to be ψs = −hφs , where φs is the value of the order

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 245

parameter at the surface. Minimisation of the free energy shows that the gradient in
φ at the solid boundary is

κ
dφ

dx
= −dψs

dφs
= −h . (11.9)

Equation (11.9) can be used together with Eq. (11.7) to determine φs .
The fluid–solid surface tensions can be calculated in a similar way to the fluid–

fluid surface tension, except that now we also have to take into account the contri-
butions from the surface energy term.

γsα = −hφsα +
∫ φα

φsα

κ

(
dφ

dx

)2

dx = γ

2
− γ

2
(1 +Ω)3/2 , (11.10)

γsβ = −hφsβ +
∫ φβ

φsβ

κ

(
dφ

dx

)2

dx = γ

2
− γ

2
(1 −Ω)3/2 , (11.11)

where Ω =
√

2
κA h. The notations φsα and φsβ stand for the values of the order

parameter at the surface for phases α and β respectively.
The contact angle follows from substituting the values of the surface tensions

into Young’s law, Eq. (11.1), to give (with θe defined as the contact angle of the
α-phase)

cos θe = γsβ − γsα

γ
= (1 +Ω)3/2 − (1 −Ω)3/2

2
. (11.12)

Equation (11.12) can be inverted to give a relation between the phenomenological
parameter h and the equilibrium contact angle θe [17]

h = √
2κA sign

(π

2
−θe

)√

cos
(α

3

) {
1−cos

(α

3

)}
, (11.13)

where α = cos−1
(
sin2 θe

)
and the function sign returns the sign of its argument.

Lattice Boltzmann simulation results for the equilibrium contact angle of a liquid
drop on a smooth solid surface are shown in Fig. 11.2. The exact result, given by
Eq. (11.13), is also shown for comparison. Deviation is only noticeable at small
contact angles. This discrepancy is mainly because the finite width of the interface,
which is neglected when assuming that the drop is a spherical cap, becomes compa-
rable to the height of the drop.

246 H. Kusumaatmaja and J.M. Yeomans

Fig. 11.2 The equilibrium contact angle as a function of the gradient in φ at the boundary.
Crosses are lattice Boltzmann simulation results, while the solid curve is the theoretical expression,
Eq. (11.13). We have used A = 0.04 and κ = 0.04 Reprinted figure with permission from Pooley
et al. [18]. Copyright (2008) by the American Physical Society

11.3 Hydrodynamics of the Fluid

The hydrodynamic equations of motion for the binary fluid are the continuity equa-
tion (11.14), the Navier-Stokes equation (11.15) and the convection-diffusion equa-
tion (11.16)

∂t n + ∂α(nvα) = 0 , (11.14)

∂t (nvα)+ ∂β(nvαvβ) = −∂β Pαβ + ∂β [nν(∂βvα + ∂αvβ)

+ (nλδαβ∂γ vγ
)] + naα , (11.15)

∂tφ + ∂α (φvα) = M∇2μ (11.16)

where v, P, ν, a and M are the local velocity, pressure tensor, shear kinematic vis-
cosity, acceleration provided by the body force and mobility respectively. The bulk
kinematic viscosity is λ+ d

2 ν, where d is the dimension of the system.
The equilibrium properties of the fluid appear in the equations of motion through

the chemical potential defined in Eq. (11.4) while the pressure can be derived from
the free energy

∂β Pαβ = n∂α
(
δψb
δn

)
+ φ∂α

(
δψb
δφ

)
. (11.17)

Using the definition of ψb in Eq. (11.3), it follows that [17]

Pαβ =
(

pb − κ

2
(∂γ φ)

2 − κφ∂γγ φ
)
δαβ + κ(∂αφ)(∂βφ) , (11.18)

pb = c2

3 n + A
(
− 1

2φ
2 + 3

4φ
4
)
. (11.19)

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 247

pb is the bulk pressure term which is related to the speed of sound in the model via

c2
s = dpb

dn = c2

3 . Equilibrium corresponds to ∂β Pαβ = 0.
It is also important to note that the finite interface width allows slip to be gen-

erated close to the contact line by diffusive transport across the interface [17–20].
Slip is needed to remove the stress singularity at the moving contact line (see e.g.
[22–24]). In this model it is controlled by the mobility parameter M .

11.4 The Lattice Boltzmann Algorithm

We now define a lattice Boltmann algorithm which solves Eqs. (11.14), (11.15),
and (11.16). The basic idea behind lattice Boltzmann algorithms is to associate
distribution functions, discrete in time and space, to a set of velocity directions ei .
For example, for a three-dimensional, 19-velocity model, the lattice velocities are
chosen to be

⎛

⎝
ex0-6
ey0-6
ez0-6

⎞

⎠ =
⎡

⎣
0 c −c 0 0 0 0
0 0 0 c −c 0 0
0 0 0 0 0 c −c

⎤

⎦ , (11.20)

⎛

⎝
ex7-18
ey7-18
ez7-18

⎞

⎠ =
⎡

⎣
c −c c −c 0 0 0 0 c −c c −c
c c −c −c c −c c −c 0 0 0 0
0 0 0 0 c c −c −c c c −c −c

⎤

⎦.

c, the lattice velocity, is defined by c = �x/�t . The directions of the velocity
vectors are shown in Fig. 11.3.

Fig. 11.3 The directions of the lattice velocity vectors in the 19-velocity lattice Boltzmann model

248 H. Kusumaatmaja and J.M. Yeomans

We need to define two distribution functions, fi (r, t) and gi (r, t), to describe a
binary fluid. The physical variables are related to the distribution functions by

n =
∑

i

fi , nuα =
∑

i

fi eiα, φ =
∑

i

gi , (11.21)

where u is defined as u = v − a�t/2, and a is the acceleration associated with any
applied body force. (This distinction between u and v is required so that the lat-
tice Boltzmann equation recovers the continuity (11.14) and Navier-Stokes (11.15)
equations in the continuum limit in a system with an applied force. In practice, the
value of v is typically two to three order of magnitudes larger than a�t in most
simulations. Hence the distinction between u and v can usually be neglected.)

The time evolution equations for the particle distribution functions, using the
standard BGK approximation [25], can be broken down into two steps

Collision step : f ′i (r, t) = fi (r, t)− 1
τ

[
fi (r, t)− f eq

i (r, t)
]+ Fi (r, t) ,

g′
i (r, t) = gi (r, t)− 1

τφ

[
gi (r, t)− geq

i (r, t)
]
,

Propagation step : fi (r + ei�t, t +�t) = f ′i (r, t) ,

gi (r + ei�t, t +�t) = g′
i (r, t) (11.22)

where f eq
i and geq

i are local equilibrium distribution functions, defined as a power
series in the velocity, τ and τφ are the relaxation times and Fi is a term that cor-
responds to an external body force. It can be shown, using a Taylor expansion,
that Eqs. (11.22) reproduce Eqs. (11.14), (11.15) and (11.16) in the continuum
limit if the correct thermodynamic and hydrodynamic information is input to the
simulation by a suitable choice of local equilibrium functions and forcing terms.
Details of the derivation can be found in e.g. [10–14]. The constraints that need to be
satisfied are

∑

i

f eq
i = n ,

∑

i

f eq
i eiα = nvα , (11.23)

∑

i

f eq
i eiαeiβ = Pαβ + nvαvβ , (11.24)

∑

i

f eq
i eiαeiβeiγ = nc2

3
[vαδβγ + vβδγα + vγ δαβ] , (11.25)

∑

i

geq
i = φ ,

∑

i

geq
i eiα = φvα , (11.26)

∑

i

geq
i eiαeiβ = μδαβ + φvαvβ . (11.27)

∑

i

Fi = 0 ,
∑

i

Fi eiα = �t

(

1 − 1

2τ

)

naα , (11.28)

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 249

∑

i

Fi eiαeiβ = �t

(

1 − 1

2τ

)

(nvαaβ + nvβaα). (11.29)

Note that Eqs. (11.23) and the first equation in (11.26) correspond to conservation
of mass, momentum and concentration.

A possible choice for f eq
i , geq

i and Fi that satisfies the constraints (11.23),
(11.24), (11.25), (11.26), (11.27), (11.28) and (11.29) is a power series expansion
in the velocity [26, 27]

f eq
i = wi

c2

(
pb − κφ∇2φ + eiαnvα + 3

2c2

[
eiαeiβ − c2

3 δαβ

]

×
(

nvαvβ + λ
[
vα∂βn + vβ∂αn + δαβvγ ∂γ n

]))

+ κ

c2

(
wxx

i ∂xφ∂xφ + w
yy
i ∂yφ∂yφ + wzz

i ∂zφ∂zφ)

+ κ

c2

(
w

xy
i ∂xφ∂yφ + w

yz
i ∂yφ∂zφ + wzx

i ∂zφ∂xφ
)
, (11.30)

geq
i = wi

c2

(
 μ+eiαφvα+ 3

2c2

[
eiαeiβ − c2

3 δαβ

]
φvαvβ

)
,

Fi = �t
wi

c2

(

1 − 1

2τ

) [

eiαnaα + 3

2c2

(

eiαeiβ − c2

3
δαβ

)

(nvαaβ + nvβaα)

]

.

where a choice for the wi aimed at minimising spurious velocities2 is [26]

w1-6 = 1
6 , w7-18 = 1

12 ,

wxx
1,2 = w

yy
3,4 = wzz

5,6 = 5
12 ,

wxx
3-6 = w

yy
1,2,5,6 = wzz

1-4 = − 1
3 ,

wxx
7-10 = wxx

15-18 = w
yy
7-14 = wzz

11-18 = − 1
24 ,

wxx
11-14 = w

yy
15-18 = wzz

7-10 = 1
12 ,

w
xy
1-6 = w

yz
1-6 = wzx

1-6 = 0,

w
xy
7,10 = w

yz
11,14 = wzx

15,18 = 1
4 ,

w
xy
8,9 = w

yz
12,13 = wzx

16,17 = − 1
4 ,

w
xy
11-18 = w

yz
7-10 = w

yz
15-18 = wzx

7-14 = 0

2 These are small velocities which remain in equilibrium. They are a consequence of discretisation
errors, see Sect. 4.1.

250 H. Kusumaatmaja and J.M. Yeomans

The relaxation parameters τ and τφ in the lattice Boltzmann algorithm are related
to the parameters in the hydrodynamic equations ν, λ and M through

ν = (c2�t (τ − 1/2))/3 , (11.31)

λ = ν(1 − 3c2
s /c

2) , (11.32)

M = �t
(
τφ − 1

2

)
, (11.33)

where is a tunable parameter that appears in the equilibrium distribution. Since ν,
λ and M are positive quantities, the values of the relaxation times τ and τφ have to
be larger than 1/2.

In a typical binary lattice Boltzmann simulation, there are four important param-
eters controlling the physics: the length scale of the system L , the viscosity η, the
surface tension γ , and the body force na. To match these to physical values we can
choose only three quantities; a length scale Lo, a time scale To, and a mass scale
Mo which are further constrained by the stability of the simulations. Therefore the
simulation parameters cannot be arbitrarily matched to an experiment. In practice,
a useful approach can be to determine Lo, To, and Mo by matching L , η and γ

between simulations and experiments, and then to use these scales to determine the
appropriate value of na. (A simulation parameter with dimensions [L]n1[T]n2[M]n3

is multiplied by Ln1
o T n2

o Mn3
o to give the physical value.)

11.4.1 The Multiple Relaxation Time Algorithm

Figure 11.2 shows that there is excellent agreement between the theoretical value
of the contact angle for a given surface field and that calculated numerically. How-
ever, these results were obtained using a relaxation time τ = 1. For values of τ
significantly different to unity the agreement is less good [18]. This discrepancy
is caused by strong spurious velocities near the contact point which continuously
push the system out of equilibrium and result in the deformation of the interface.
The spurious velocities, which are a result of discretisation errors, are common to
all lattice-based solutions of the Navier-Stokes equations, but are particularly pro-
nounced near interfaces and surfaces. Taking τ = 1 damps out many of the spurious
contributions [18].

Since, in wetting problems, the two fluids generally have different viscosities (for
example, the viscosities of water and air differ by a factor of 1000), restriction to
τ = 1 imposes a serious limitation. However the problem can be remedied by using
a multiple relaxation time lattice Boltzmann algorithm [18].

The idea behind the multiple relaxation time lattice Boltzmann method [28–30]
is that different relaxation parameters are used for different linear combinations of
the distribution functions. The relaxation term 1

τ

[
fi − f eq

i

]
on the right hand side

of the lattice Boltzmann equation for fi (11.22) is replaced by

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 251

M−1SM
[
f − f eq] , (11.34)

where the particle distributions fi and f eq
i are written as column vectors and M is

the matrix [28]

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1

0 −4 4 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1

0 0 0 1 −1 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0

0 0 0 −4 4 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 2 −1 −1 −1 −1 1 1 1 1 −2 −2 −2 −2 1 1 1 1

0 −4 −4 2 2 2 2 1 1 1 1 −2 −2 −2 −2 1 1 1 1

0 0 0 1 1 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1

0 0 0 −2 −2 2 2 1 1 1 1 0 0 0 0 −1 −1 −1 −1

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 −1 1 −1 1

0 0 0 0 0 0 0 −1 −1 1 1 1 −1 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 1 1 −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Each of the rows in M is mutually orthogonal so the inverse follows easily as

M−1
i j = 1

∑
k M2

jk

M j i . (11.35)

The matrix M performs a change of basis. The new basis is designed to con-
tain more physically relevant variables. For example the first row corresponds to
the density n. Similarly, the fourth, sixth and eighth lines calculate the momentum
densities nux , nuy and nuz respectively. These are the conserved moments. The
10th, 12th, 14th, 15th, 16th lines correspond to the components of the symmetric,
traceless, viscous stress tensor 3σxx , σyy − σzz , σxy , σyz and σxz . The other terms
do not contain any real physical meaning and they are often called the ghost modes.

The matrix S in Eq. (11.34) is diagonal and contains the information about how
fast each variable relaxes at each time step. A useful choice is [28]

S = diag (0, 1, 1, 0, 1, 0, 1, 0, 1, ω, 1, ω, 1, ω, ω, ω, 1, 1, 1) , (11.36)

252 H. Kusumaatmaja and J.M. Yeomans

where ω = 1/τ now determines the fluid viscosities ν and λ. Note that some of the
elements of S are zero. This choice is arbitrary as these modes correspond to the
conserved moments, for which M ji

[
fi − f eq

i

] = 0 (j = 0, 3, 5, 7). Using unity for
the remaining, ghost, modes minimises the spurious velocities. This is an acceptable
choice because these modes do not correspond to physical variables.

For a system with variable viscosity it would seem necessary to recalculate the
collision matrix C = M−1SM at each lattice node and at each time-step. This is very
demanding computationally. One practical approach to overcome this difficulty is to
create a lookup table for various values of the viscosity.

11.4.2 Boundary Conditions

In a typical lattice Boltzmann simulation of a wetting problem there are two impor-
tant boundary conditions: the wetting boundary condition, given by Eq. (11.9), and
the no-slip boundary condition on the fluid velocity. While these boundary con-
ditions are simple conceptually, their implementation can be tricky for complex
geometries.

One way to implement the no-slip condition is a linear interpolation bounce back
rule proposed by Bouzidi et al. [31]. A schematic diagram illustrating this approach,
for the one dimensional case and the fi (r, t) distribution function, is shown in
Fig. 11.4a. In one dimension, there are two distribution functions, f1[k] and f2[k],
for a given lattice node k. When the node k is located to the right of a wall, as
shown in Fig. 11.4a, the function f ∗1 [k] is undetermined after the propagation step.
(To clarify notation we use ∗ to denotes distribution functions after propagation.)
To determine f ∗1 [k], Bouzidi et al. consider two cases. If the distance of the wall
from the fluid node, dwall, is less than half of a lattice spacing, f ∗1 [k] is chosen to be
a weighted average of f2[k] and f2[k+1]. If, however, dwall is more than half of a
lattice spacing f ∗1 [k] is interpolated from f2[k] and f1[k]:

dwall < 0.5 : f ∗1 [k] = f2[k] × 2dwall + f2[k + 1] × (1 − 2dwall) , (11.37)

dwall > 0.5 : f ∗1 [k] = f2[k]/(2dwall)+ f1[k] × (1 − 1/(2dwall)) .

The bounce back rules for the other lattice directions in higher dimensions, and for
the gi (r, t) distribution function, are applied in exactly the same way (with dwall
normalised to the lattice spacing in the relevant direction). This ensures that there
is no momentum flux parallel to the wall and that the no-slip boundary condition is
satisfied at the position of the wall. It was shown by Ginzburg and d’Humières [32]
that this no-slip boundary is accurate to the second order.

When the velocity of the wall is non-zero, for example when one wants to inves-
tigate a shear flow, the bounce back rule should be modified by adding the following
terms [31]:

dwall < 0.5 : � f = −2 nwi (ei · vwall)

�g = −2φ wi (ei · vwall)

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 253

f2 [k+2]?

Step 2: Propagate [k] for one lattice spacingf1*

Step 1: Propagate [k] for one lattice spacingf2

Step 2: Interpolate the value of f

f f f
1

2 1 1

* [k]

from [k] and [k+1]= [k]*

Fig. 11.4 Schematic diagram of the no-slip and wetting boundary conditions. (a) Link bounce
back rule. (b) Implementations of the wetting boundary condition

dwall > 0.5 :� f = −nwi/dwall (ei · vwall)

�g = −φ wi/dwall (ei · vwall)

where wi and ei are the weight coefficient and the lattice velocity direction of the
distribution functions before being bounced off the wall (e.g. in Eq. (11.37), this
would correspond to w2 and e2).

We next describe two ways to implement the wetting boundary condition. Equa-
tion (11.9) sets the value of the first derivative ∂φ/∂z |0 at the surface, but an esti-
mate of the second derivative is also required to calculate the equilibrium distri-
bution function (11.30). Our explanations refer to the labelling of lattice nodes in
Fig. 11.4b, for an interface perpendicular to the z-axis.

254 H. Kusumaatmaja and J.M. Yeomans

In a first method, ∂φ/∂z is set to take the value given by Eq. (11.9) at the φ0
lattice node and ∂2φ/∂z2 is calculated by Taylor expanding φ5 with respect to φ0
and neglecting third and higher derivatives in φ,

∂2φ/∂z2|0= 2 × (φ5 − φ0 − ∂φ/∂z|0) . (11.38)

The main advantage of this implementation is it is not necessary to simulate any
solid nodes.

An alternative implentation of the wetting boundary condition is to assign appro-
priate density values to the solid nodes neighbouring the boundary, so that Eq. (11.9)
is satisfied. In the schematic diagram shown in Fig. 11.4c, this corresponds to assign-
ing3

φ6 = φ5 − 2 ∂φ/∂z|0 . (11.39)

The main advantage of this approach is that ∇2φ can be calculated in exactly the
same way at the surface as in the bulk. Furthermore, since all the nearest and next
nearest neighbour nodes of any surface site have appropriate density values, better
accuracy can be achieved by choosing the best stencil to calculate derivatives [26].

For more complex geometries, for example surfaces which do not follow a lattice
axis or corners, the wetting boundary conditions can be implemented in a similar
way. This typically gives a set of linear equations that must be solved simultane-
ously.

Finally we summarise an algorithm that we have found to work well for sim-
ulating the dynamics of the contact line in fluids where the two components have
different viscosities [18]:

Step 1: Calculate the density, concentration and velocity using the moments
described in Eqs. (11.21).

Step 2: Set the velocity of the boundary nodes to zero, or more generally to
the velocity of the wall. This reduces spurious velocities introduced by the
bounce-back boundary conditions.

Step 3: Implement the wetting boundary condition by setting the first and sec-
ond derivatives of the order parameter.

Step 4: Calculate the equilibrium distribution function and use the multiple
relaxation time lattice Boltzmann method to perform the collision step.

Step 5: Perform the streaming step with the bounce back rule at the boundaries
(Eq. (11.37)).

3 If the wall is located at the mid-link between φ5 and φ0, appropriate wetting boundary conditions
can be implemented by setting φ0 = φ5 − ∂φ/∂z|0.

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 255

11.4.3 Other Lattice Boltzmann Algorithms

The lattice Boltzmann implementations we have described in this section are not
unique, and many authors have proposed alternative approaches to solve the equa-
tions of motion of multiphase fluids. For example:

1. Phase ordering can be imposed by using an effective interaction, rather than a
free energy [15, 33].

2. The thermodynamics leading to phase ordering can be included in the lattice
Boltzmann scheme as a forcing term, rather than as a correction to the pressure
in the second moment of the equilibrium distribution function [33, 34].

3. Different sets of velocity vectors can be defined [35, 36].
4. The forms of f eq, geq, and F that satisfy the hydrodynamic equations of motion

in the continuum limit are not unique [27, 35, 36]. It is useful to exploit this to
minimise spurious currents [26].

5. There are many ways of implementing the hydrodynamic boundary conditions
[32, 37–39].

11.5 Smooth Walls

In the next three sections, we shall describe a number of examples where lattice
Boltzmann simulations have proved successful in providing insights to wetting phe-
nomena. We start with two problems where the solid boundaries are assumed to
be flat and homogeneous. Firstly, we discuss the capillary penetration of a wetting
fluid [40], and secondly, we look at the classical problem of fingering instabilities
in narrow channels [41]. These are both relevant in many industrial and biolog-
ical systems, and they play an increasingly important role in many microfluidic
devices. We then explain, in Sects. 11.6 and 11.7 how chemical and topographical
heterogeneities on a surface may lead to complex drop morphologies that depend
sensitively on the details of the surface patterning, as well as the path by which the
system is prepared4.

11.5.1 Capillary Filling

When a liquid is brought into contact with a small capillary tube, it will penetrate
the capillary provided that this lowers its surface energy i.e. when the capillary is
hydrophilic with respect to the liquid. The classical analysis of the dynamics of

4 Some of the results in Sects. 11.5, 11.6, and 11.7 were obtained using a lattice Boltzmann algo-
rithm for a one-component, liquid–gas system rather than a two-component fluid. Details of this
algorithm are given in [39, 42]. In the one-component model contact line slip occurs because of
evaporation and condensation, which is rapid because of the unphysically wide interface. This can
lead to unphysical dynamics [43–45].

256 H. Kusumaatmaja and J.M. Yeomans

capillary filling is due to Lucas [46] and Washburn [47]. Consider a capillary of
height h with an infinite reservoir of liquid of dynamic viscosity η = nν at one
end. Assuming that the penetrating liquid adopts a parabolic profile, it will fill the
capillary with a mean velocity

v̄ = − h2

12η

dp

dx
(11.40)

where dp
dx is the pressure gradient that sets up the flow. The driving force for the

filling is provided by the decrease in free energy as the fluid wets the walls or,
equivalently, by the Laplace pressure across the curved liquid–gas interface. Hence

dp

dx
= − γ

Rl
(11.41)

where R = h/2 cos θa is the radius of curvature of the interface and l is the length
of liquid in the tube. Eliminating dp

dx from Eqs. (11.40) and (11.41) and identifying
v̄ = dl/dt gives the Lucas-Washburn law

l = (σLGh cos θa/3η
)1/2

(t + t0)
1/2 (11.42)

where t0 is an integration constant.
In Eq. (11.42) it is appropriate to use, not the static, but the advancing contact

angle θa , as this controls the curvature of the interface and hence the Laplace pres-
sure. The Lucas-Washburn law assumes that there is no resistance to motion from
any fluid already in the capillary. Therefore it applies only if the dynamic viscosity
of the invading phase ηA is large compared to that of the displaced fluid ηB . If the
dissipation in the displaced fluid is taken into account the modified Lucas-Washburn
law becomes

ηA
l2

2
+ ηB

(

Ll − l2

2

)

= σLGh cos θa

6
(t + t0) (11.43)

where L is the total length of the capillary.
Numerical results showing capillary filling of a smooth channel are presented in

Fig. 11.5. The plot is for a channel of length L = 640, infinite width and height
h = 50. Reservoirs (480 × 200) of components A and B are attached at each end
of the capillary. The two reservoirs are connected to ensure that they have the same
pressure. The parameters of the model are chosen so that θe = 60◦, γ = 0.0188,
ηA = 0.83, ηB = 0.03 and M = 0.05. The solid line in Fig. 11.5a is a fit to the
Lucas-Washburn law using the measured value of the advancing contact angle and
correcting for the small viscosity of the displaced B-component. The fit is excellent,
except very close to the beginning of the simulation, where deviations due to inertial
effects and a non-Poiseuille flow profile are expected.

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 257

(a)

l

time

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

M = 0.25
M = 0.05

M = 0.50

(b)

0.1

0.2

0.4

0.5

0.3

Ca

C
os

 (
θa)

Fig. 11.5 (a) Distance a fluid–fluid interface moves along a capillary as a function of time. Circles
are the lattice Boltzmann simulation results. The solid line is a fit to the Lucas-Washburn law
using the measured advancing contact angle and correcting for the small viscosity of the displaced
component. (b) The advancing contact angle of the liquid–liquid interface as a function of the
capillary number. The crosses are simulation results and the solid lines are linear fits of cos θa to
the capillary number [48]. Reprinted figures with permission from Kusumaatmaja, [40] and Pooley,
[18]. Copyright (2008) by the American Physical Society

To lowest order in the capillary number, Ca= v I ν/γLG where v I is the interface
velocity, the advancing contact angle is related to the equilibrium angle and the
capillary number by [48]

cos θa = cos θeq − Ca log(K L/ ls) (11.44)

where K is a constant, L is the length scale of the system and ls is the effective slip
length at the three phase contact line. Figure 11.5b shows the expected linear depen-
dence, and that the advancing contact angle tends to the correct value as Ca → 0;
We obtain θa |Ca→0 = 58◦, 60◦ and 60◦ for M = 0.05, 0.1 and 0.5 respectively.

258 H. Kusumaatmaja and J.M. Yeomans

Note that the slope of the graph, and hence the slip length, depend on the mobility
M . This occurs because in diffuse interface models of binary fluids the contact line
singularity is relieved by inter-diffusion of the two fluid components [17].

11.5.2 Viscous Fingering

We have just considered the rate at which a viscous fluid displaces a liquid of low
viscosity when the driving force is the hydrophilic nature of the channel walls.
In such a case, the fluid–fluid interface is stable and has the form of a meniscus.
The situation is, however, more complicated when a less viscous fluid is driven
to displace a more viscous one, as the interface can now be unstable. If the fluids
are moving in the narrow gap between two parallel plates this instability gives rise
to the well-known Saffman-Taylor [49] fingers. A typical experiment showing the
development of a finger is shown in Fig. 11.6 [50].

Usually the Saffman-Taylor instability is treated as a two dimensional problem,
taking an average over the distance between the bounding plates. However the third
dimension can affect the way in which the finger forms. Ledesma-Aguilar et al. [41]
studied the three dimensional motion, using binary lattice Boltzmann simulations,
and found that there are two distinct regimes. If the contact line is able to keep up
with the leading interface of the finger (which will happen, at higher Peclet numbers,
if the diffusion is sufficiently strong [51]), the fluid-fluid interface retains the form
of a meniscus in the direction, z say, between the plates and it is possible to treat

Fig. 11.6 Time evolution of a Saffman-Taylor finger. Reprinted with permission from Tabeling
et al. [50, pp. 67–82]. Copyright 1987 Cambridge University Press

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 259

(b)

(a)
x

y
z

x

y
z

Fig. 11.7 Saffman-Taylor instabilities in the (a) meniscus and (b) surface film regimes. (a) When
diffusion is sufficiently strong (high Peclet number), the fluid–fluid interface retains the form of a
meniscus in the direction between the plates and the problem is essentially two-dimensional. (b) At
low Peclet number, the contact line falls behind and a layer of the displaced phase is formed close
to the plates. This means that the advancing fluid forms a finger-like structure in both the x-y and
the x-z planes (We thank Ioannis Zacharoudiou for these figures.)

the problem two-dimensionally. At low Peclet numbers the contact line falls behind
and a layer of the displaced phase is formed close to the plates. This means that
the advancing fluid forms a finger-like structure in both the x-y and the x-z planes.
Simulation results showing the shape of the interface in the meniscus and surface
film regime are shown in Fig. 11.7.

11.6 Chemical Patterning

We now describe examples where a lattice Boltzmann approach has been used to
model drops spreading on chemically patterned surfaces. This is particularly excit-
ing at present because it is becoming increasingly feasible to fabricate surfaces with
heterogeneities in a controlled and reproducible manner, allowing surface patterning
to be used as a part of a designer toolbox to control the shapes and dynamics of
small liquid drops [8, 52, 53]. Variation in the surface wettability can be imple-
mented easily in the lattice Boltzmann simulations by applying different values of
the phenomenological parameter h in Eq. (11.13) at different surface lattice sites.
However, it is important to note that the typical length scale of the variation in h has
to be larger than the interface width of the model.

We first look at a drop spreading on a chemically patterned surface. For a homo-
geneous surface, the final state is a spherical cap with a contact angle equals to the
Young angle. This is not the case for heterogeneous surfaces. Depending on the

260 H. Kusumaatmaja and J.M. Yeomans

initial conditions of the system, the drop can take several metastable states, with
shapes that may vary considerably from spherical [8, 52–54].

We then consider two examples where simulations suggest how chemical pat-
terning might be applied to solve industrial problems. In the first [55], we show
how a (relatively) hydrophobic grid can be used to alleviate mottle [56] in ink-jet
printing. In the second example, we demonstrate that chemical patterning can be
used to control drop size and polydispersity [57].

11.6.1 Spreading on a Chemically Striped Surface

Figure 11.8 compares experiments and simulations of drops on a chemically pat-
terned substrate. The surface is lined with relatively hydrophilic and hydropho-
bic stripes with contact angles 5◦ and 64◦ and widths 26 and 47 µm respectively.
Figure 11.8a shows the final state of drops jetted onto the surface. The drops’
volumes were chosen so that their final diameters were comparable to the stripe
width. It is apparent from the figure that the drops can take two final configurations,
“diamond”-like and “butterfly”-like.

Figure 11.8b shows simulations of the same system, with parameters chosen so
that length scales, surface tension, contact angles, fluid viscosity and liquid density
correspond to those of the experiment. Again the diamond and butterfly configura-
tions are observed at long times. The simulations allowed us to follow the dynamics
of the liquid drops’ motion in detail. In particular, we found that the final drop
shape is selected by the initial impact position and velocity. If the drop can touch
two neighbouring hydrophilic stripes as it spreads, it will reach the butterfly config-
uration; if not it will retract back to the diamond pattern, spanning a single stripe.

(a)
(b)

Fig. 11.8 Drops spreading on a chemically striped surface. (a) Scanning electron micrographs of
ink-jetted drops. (b) Numerical simulations of drops hitting the surface at various impact points,
indicated by encircled crosses. For each drop the faint lines represent the extent of the base of the
drop as it evolves and the bold line depicts its final shape. Relatively hydrophilic and hydrophobic
stripes appear dark and pale, respectively. Reprinted with permission from Léopoldès et al. [54,
pp. 9818–9822]. Copyright 2003 American Chemical Society

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 261

This can be seen in Fig. 11.8b, where the faint lines show the time evolution of
the base of the drop and the solid lines its final shape. Both states are free energy
minima but one of the two is a metastable minimum: which one is sensitive to the
exact choice of the physical parameters.

11.6.2 Using Chemical Patterning to Control Drop Positioning

An inkjet printed image is produced by jetting an array of micron-scale liquid drops
onto a surface. To achieve a solid colour the aim is that the drops, which are jetted
at a distance apart comparable to their diameter, should coalesce to form a uniform
covering of ink. However, in practice, irregular coalescence due to surface imperfec-
tions and randomness in the positions of the jetted drops can dominate. This leads
to the formation of large, irregular drops with areas of bare substrate between them
as shown in the upper part of Fig. 11.9b. Such configurations lead to poor image
quality, called mottle [56].

Figure 11.9a shows that irregular coalescence can be overcome by using a grid
of (relatively) hydrophobic chemical stripes. Here the drop has an initial radius of
15 µm and the substrate has contact angle 5◦. The hydrophobic grid has stripes of
width 6 µm, separated by 66 µm, and contact angle 65◦. The simulation shows that
the drop is confined even when its initial point of impact is close to the corner of a
square.

Results from an experiment demonstrating a similar effect are shown in Fig. 11.9b.
The ink drops have a radius R = 30 µm and they are jetted in a 50 µm × 50 µm
array. In the upper part of the figure there is no hydrophobic grid and a mottled final
configuration is observed. The lower part of Fig. 11.9b carries hydrophobic stripes
of 5 µm width forming squares of side 40 µm. The drops now form a more regular
pattern determined by the grid.

(a)
(b)

Fig. 11.9 Control of drop position using chemical patterning. (a) Time evolution of a drop jetted
onto a substrate patterned by a grid. Relatively hydrophobic and hydrophilic areas are light grey
stripes (65◦) and dark grey areas (5◦) respectively. (b) Inkjet drops jetted onto a substrate and
cured: (top) homogeneous surface and (bottom) surface patterned by a relatively hydrophobic grid.
Reprinted with permission from Dupuis et al. [55]. Copyright 2005 American Institute of Physics

262 H. Kusumaatmaja and J.M. Yeomans

11.6.3 Using Chemical Patterning to Sort Drop by Size

It is often desirable in microfluidic devices to be able to manipulate and control the
motion of liquid drops (see [1] and the references therein). Here we demonstrate a
particular example where chemical patterning may be used to sort drops according
to their size. The schematic diagram of the system is shown in Fig. 11.10. The sur-
face is patterned with a rectangular grid of hydrophilic (relative to the background)
stripes, and a drop is input to the device at A and subject to a body force at an
angle < 45◦ to the x-axis.

The path taken by the drop through the device depends on the drop contact angles
with the substrate and on the strength of the body force. It also, of particular rele-
vance to us here, depends on the width of the stripes relative to the drop radius.
Figure 11.11a–c show simulations of the paths of drops of initial radius R = 25, 26
and 29 moving through such a device. In cases where the drops are confined in the
δ1 stripe, they will move in the x-direction from A to the cross-junction B, where
their paths may diverge. In order for a drop to move in the y-direction, the capillary
force in this direction must be large enough to overcome the sum of the capillary
force and the excess external body force in the x-direction (recall ax > ay). This is
where the asymmetry of the drop shape comes into play. As the volume of the drop
is increased, a larger fraction of it overhangs the stripes and hence a larger fraction
will interact with the hydrophilic stripe along the y-direction at the junction. This
increases the capillary force along y and means that larger drops (e.g. R > 26)
will move in the y-direction to point C , whereas smaller drops (e.g. R = 25) will
continue to move along x . By choosing the stripes along the y direction to be of
equal widths, but those along x to increase in width with increasing y, it is possible
to move the larger drops further along y. As one can see from Fig. 11.11, the drops

Fig. 11.10 Schematic diagram of a drop sorter. The grey stripes on the surface are hydrophilic
with respect to the background. δ labels the widths of the stripes and a the imposed acceleration.
The arrows show possible paths of a drop through the device. Reprinted with permission from
Kusumaatmaja and Yeomans [57, pp. 956–959]. Copyright 2007 American Chemical Society

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 263

v v v v v

(c)

v v

(a) (b)

v v

Fig. 11.11 Paths taken by drops of radius (a) R = 25, (b) R = 26, and (c) R = 29 through the drop
sorter. δ1 = 20, δ2 = 30, δ3 = 40, and δV = 20. Reprinted with permission from Kusumaatmaja
and Yeomans [57, pp. 956–959]. Copyright 2007 American Chemical Society

of initial radius R = 26 and R = 29 are finally confined in the second and third
stripe respectively.

These simulations suggest that by increasing the number of stripes and carefully
controlling their widths it may be possible to sort polydisperse drops into collec-
tions of monodisperse drops. Two other parameters, the wettability contrast and the
external body force, could also be adjusted to fine-tune the device.

11.7 Topographical Patterning: Superhydrophobic Surfaces

Superhydrophobic surfaces are a prime example of how heterogeneities can alter the
wettability of a surface. On a smooth hydrophobic surface, the highest contact angle
that can be achieved is of order 120–130◦ [6, 58] attainable for, for example, a water
drop spreading on fluorinated solids. When the hydrophobic surface is made rough,
however, higher contact angles are possible. Several natural materials exhibit this,
so-called, superhydrophobicity. Examples include the leaves of the lotus plant [2],
butterfly wings [4], water strider legs [59] and duck feathers [60]. Many research
groups have now fabricated superhydrophobic surfaces by patterning hydrophobic
surfaces with regular posts [58, 61, 62] or with nano-hairs [63]. Indeed superhy-
drophobicity is a surprisingly robust phenomenon, which requires neither careful
patterning nor intrinsic hydrophobicity of the surface material [64, 65].

264 H. Kusumaatmaja and J.M. Yeomans

It is possible to distinguish two ways in which a drop can behave on a super-
hydrophobic surface. When the drop is suspended on top of the surface roughness,
as shown in Fig. 11.12b, the substrate is effectively a composite of liquid–solid
and liquid–gas areas. We shall use Φ to denote the area fraction of the liquid–solid
contact. If the length scale of the patterning is much smaller than the drop size, the
effective liquid–solid surface tension is then Φ γL S + (1−Φ) γLG , while the effec-
tive gas–solid surface tension is Φ γGS . Substituting these into the Young equation
(11.1), gives the Cassie-Baxter formula [60]

cos θCB = Φ cos θe − (1 −Φ) . (11.45)

This configuration is called the suspended or Cassie-Baxter state.
If, on the other hand, the liquid drop fills the space between the posts, as shown

in Fig. 11.12b, the drop is said to lie in the collapsed or Wenzel state. Both the

Fig. 11.12 Final states of a spreading drop on (a) a hydrophobic surface (b) a superhydrophobic
surface with the drop suspended (c) a superhydrophobic surface with the drop collapsed. Reprinted
with permission from Dupuis and Yeomans [39, pp. 2624–2629]. Copyright 2005 American Chem-
ical Society

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 265

liquid–solid and gas–solid contact areas are increased by a roughness factor r and
the macroscopic contact angle is therefore given by the Wenzel equation [66]

cos θW = r cos θe . (11.46)

Figure 11.12 shows simulation results for the final state of a drop of radius
R = 30 which has spread on a smooth (Fig. 11.12a) and a superhydrophobic surface
(Fig. 11.12b and c). A contact angle θe = 110◦ is set on every surface site. The
resultant macroscopic contact angles in the simulations are 110◦, 156◦ and 130◦
for the flat surface, suspended drop and collapsed drop respectively. The values
for the suspended and collapsed drop are compatible with the ones obtained from
the Cassie-Baxter and Wenzel formulae, but they are not exactly the same. There
are two reasons for this. Firstly, the drop only covers a small number of posts in
the simulations. Secondly, the surface inhomogeneities result in the existence of
multiple local free energy minima, not just that prescribed by the Cassie-Baxter or
Wenzel formulae. This can cause pinning of the contact line and lead to values of
contact angles which depend not only on the thermodynamic variables describing
the state of the drop, but also on the path by which that state was achieved. This
phenomenon, contact angle hysteresis, is well known [5, 67–70], but has suprising
consequence for drops on superhydrophobic substrates. We now describe these in
more detail.

11.7.1 Contact Line Pinning and Contact Angle Hysteresis

Both chemical and topographical surface patterning may pin the contact line. This
can results in variation in the value of the contact angle around a drop. It can also
lead to hysteresis, a dependence of the drop shape on its dynamical history. A useful
approach to quantify contact angle hysteresis is to slowly increase the volume of
a drop until it starts to spread. The contact angle at this moment is termed the
advancing angle. Similarly, if the drop volume is slowly reduced, it will start to
retreat across the surface at the receding contact angle. The difference between the
advancing and receding angles is termed the contact angle hysteresis. However, it
should be cautioned that this is not a unique definition; the advancing and receding
angles will depend on the direction, relative to the surface patterning, in which they
are measured. Moreover the difference in contact angles between the advancing
and receding edge of a moving drop will not necessarily be the same as the value
measured quasistatically.

This concept of pinning, and of the resulting advancing and receding contact
angles, is illustrated in Fig. 11.13 for a drop crossing a ridge. For the contact line
to advance, it has to wet the sides of the grooves (Fig. 11.13a) which, according
to the Gibb’s criterion [71], occurs when the contact angle is locally equal to the
Young angle. Therefore the advancing angle (measured with respect to the surface)
is θa = θe + 90◦ for rectangular ridges and, more generally θa = θe + α [70–72]
for a surface of maximum inclination α. Similarly, for the contact line to recede,

266 H. Kusumaatmaja and J.M. Yeomans

Fig. 11.13 Graphical illustration of the pinning of an (a) advancing and (b) receding contact line
on a surface patterned with square ridges

the drop has to dewet the sides of the posts (Fig. 11.13b). This is possible when
θr = θe − 90◦ for rectangular ridges and θr = θe − α [70–72] in general.

Applying these criteria in the context of a two-dimensional drop on a super-
hydrophobic surface patterned with square posts gives surprising results. For the
suspended state θa = 180◦, the upper limit for the value of the contact angle, and
θr = θe. For the collapsed drop θa = 180◦ and θr = θe − 90◦. In three dimensions
we obtain the same qualitative behaviour, though there may be a decrease in the
value for the advancing angle and an increase in that for the receding angle because
of curvature contributions to the free energy [73].

We now consider Boltzmann simulations [73], showing that they are able to cap-
ture contact line pinning and hysteresis. Figure 11.14a and b show the simulation
results for a cylindrical (two-dimensional) suspended drop on a superhydrophobic
surface comprising regularly spaced posts. In this set of simulations, we used post
width = 7, post separation = 13, and an equilibrium contact angle θe = 120◦. Even
after the drop volume was increased quasistatically by a factor ∼ 4, and the drop
contact angle had reached 162◦, no interface depinning transition was observed.
After this point, it was no longer possible to continue running the simulations, as
the drop filled the simulation box. As the drop volume was slowly decreased, how-
ever, the contact line depinned and jumped back across the posts at θr = 120◦ as
predicted analytically.

We now discuss hysteresis for a cylindrical collapsed drop, where the gaps
between the posts are filled with liquid. When the drop volume is increased, the
drop behaves in the same way as for the suspended state and no contact line motion
between posts is observed during the simulation. This is because locally, in the
vicinity of the contact line, the drop has no information as to whether it is in the
collapsed or suspended state. Typical behavior as the drop volume is decreased is
shown in Fig. 11.14c. As for the suspended drop, the contact line is pinned at the
outer edge of a post until θ = θe. It then retreats smoothly across the post. However,
unlike the suspended case, the contact line is pinned again, at the inner edge of the
posts. At this point, the drop is found to recede at 32◦, consistent with the expected
analytical result θe − 90◦ = 30◦.

Even in this simple two-dimensional model, the contact angle hysteresis is much
larger for the collapsed state than for the suspended state. This result has an impor-
tant consequence that, although the static contact angle is increased in both the
Wenzel and the Cassie-Baxter states, their dynamical behaviors are very different.

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 267

Fig. 11.14 Drop shape as a function of time from lattice Boltzmann simulations of a cylindrical
drop (a-b) suspended and (c) collapsed on a topographically patterned surface. (a) The advancing
contact line remains pinned during the simulation. (b) The receding contact line is pinned until
θr ∼ 120◦. (c) In the collapsed state, the receding contact line is pinned strongly at the inner edge
of the posts. The position of the contact lines can be seen more clearly in the insets. Reprinted with
permission from Kusumaatmaja and Yeomans [73, pp. 6019–6032]. Copyright 2007 American
Chemical Society

A liquid drop in the suspended state is very mobile, while that in the collapsed state
is very immobile [6, 58].

11.7.2 The Slip Length of Superhydrophobic Surfaces

Another aspect where the dynamics of fluids moving across superhydrophobic sur-
faces differs between the suspended and the collapsed states is in the value of the slip
length. Consider a single phase moving across a solid surface: the slip length, which
is defined as the ratio of slip velocity to shear rate at the wall, is a measure of the
drag of the surface on the fluid. Slip lengths are typically of order a few nanometers
and therefore can be taken as zero in a macroscopic channel (the no-slip boundary
condition). However the degree of slip becomes increasingly important as chan-

268 H. Kusumaatmaja and J.M. Yeomans

nels are miniaturised. Recall that the average velocity of a liquid flowing through a
channel v ∝ h2∇P , where h is the height of the channel and ∇P is the pressure
gradient that sets up the flow. As channel sizes are reduced an increasingly large
pressure gradient is needed for a given throughput velocity. This can be alleviated
by increasing the slip length at the channel walls.

For a smooth solid surface, the slip length increases as the wettability of the
surface decreases [74]. However, its magnitude remains of order nanometers and
therefore is of no real significance except for tiny channels. In this subsection, we

Fig. 11.15 (a) The geometry used to simulate flow over a superhydrophobic surface. The simula-
tion parameters were: h = 14, L y = 45, Lx = 90, and θe = 160◦. (b) Mass flow rate (normalised
to the collapsed state) as a function of the effective roughness a/(Lx − a). inset: Momentum
profile for a suspended and a collapsed state. Both momentum profiles are shown for x/Lx = 0.1
and normalised to their center channel values. The straight lines correspond to extrapolations of
the profiles to beyond the boundaries. Adapted figures with permission from Sbragaglia, et al. [77].
Copyright (2006) by the American Physical Society

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 269

will present results that show that a slip length of the order of microns might be
induced by trapping the flowing fluid in the suspended state [75, 76]. The crucial
idea is that the substrate acts as a composite of liquid–gas (perfect slip) and liquid–
solid (no slip) areas and hence, the larger the liquid–gas section, the larger the slip
length.

Results from simulations by Sbragaglia et al. [77] are shown in Fig. 11.15. They
found that there is a critical roughness above which the mass flow rate through a
microchannel increases significantly. This is because the fluid is in the suspended
or collapsed state, above or below the critical roughness. The inset in Fig. 11.15
depicts the typical velocity profiles in the two states.

Further research [78, 79], however, has found that the shape of the liquid–gas
interface plays an important role in determining the value of the slip length. The
curvature of this interface leads to extra viscous dissipation which negates any
advantage it might provide in the first place. Designing surface geometries where
the slip length can be increased remains a major challenge.

11.7.3 The Transition from the Suspended to the Collapsed
State on Superhydrophobic Surfaces

Given that the suspended and collapsed states have different dynamical behaviours,
it is important to understand how and when the collapsed and suspended states are
metastable or stable and to describe mechanisms for transitions between them.

For a given drop volume, the drop free energy increases with contact angle. This
implies that the Cassie-Baxter state has the lowest energy when θCB < θW and,
similarly, that the Wenzel state is the ground state for θW < θCB. However, in many
cases, both states are local minima of the free energy and there is a finite energy
barrier opposing the transition between them. The origin of the energy barrier is
pinning of the contact line, similar to that discussed in Sect. 11.7.1. For a transition
from the suspended to the collapsed state to occur, the contact angle formed by the
liquid drop on the sides of the posts has to become equal to the advancing contact
angle.

There are several ways in which the collapse transition can be induced. Firstly,
one can apply an external pressure or force [39]. Alternatively, the work required to
overcome the energy barrier may be provided by a finite impact velocity of the drop
[80, 81].

The collapse transition can also be initiated by reducing the volume of the drop
by, for example, evaporation. This increases the Laplace pressure inside the drop
(recall that ΔP ∝ 1/R where R is the drop radius) and hence the curvature of the
interface beneath it. For short posts the interface then touches the surface beneath
the posts and the transition can take place. For longer posts collapse occurs when
the interface curvature becomes sufficiently large that the interface reaches the equi-
librium contact angle on the post sides, and hence depins [82, 83].

270 H. Kusumaatmaja and J.M. Yeomans

Fig. 11.16 Evolution of a cylindrical drop on a square array of posts of width a = 3, spacing b = 9
and height l = 15. (a–c) Evolution before collapse showing depinning of the receding contact line
(note the scale change between (b) and (c)). (d–f) Motion of the collapsing drop: (d) cross sections
in the plane bisecting the posts. (e) Same times as (d), but in the plane bisecting the gap between
the posts. (f) Cross sections in the plane bisecting the gap, but with l = 45 to enable the collapse
to be followed to later times. Adapted figures with permission from Kusumaatmaja et al. [82]

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 271

Figure 11.16 shows simulations indicating how the collapse transition proceeds
for long posts as the liquid evaporates slowly. As the drop volume decreases it pen-
etrates further into the gaps between the posts. However, movement down the posts
is preempted by movement across the surface. The drop depins to lie on less posts,
and the penetration is reduced. This continues until the drop lies on only three posts,
when it eventually collapses.

It is useful to note that, to obtain the results in Fig. 11.16, we simulated a cylin-
drical drop on a square array of posts rather than a full, three dimensional, spherical
drop. This allowed us to exploit the translational symmetry to reduce the system
size to the repeat distance of the lattice in the third dimension, while preserving
the important physics, in particular a two dimensional curvature of the interface
between the posts.

11.8 Discussion

In this chapter we have concentrated on the use of lattice Boltzmann algorithms to
study wetting and spreading. There are many other applications and areas for future
research. We give some examples, inevitably selective, of interesting problems:

1. Different choices for the free energy can allow for new physics. A fruitful exten-
sions is to include curvature terms which give lamellar phases [84] and vesicles5

[85, 86].
2. Algorithmic advances, in particular those aimed at greater stability and the reduc-

tion of spurious velocities, will improve the ease of implementation of lattice
Boltzmann codes. For example, hybrid algorithms, where the Navier-Stokes
equation for the velocity field is solved using a lattice Boltzmann approach,
but the convection-diffusion equation is treated using conventional finite differ-
ence techniques, are being developed. There has been work to develop the use
of non-uniform grids [87, 88]. Entropic lattice Boltzmann models, which are
unconditionally stable, are also possible [89, 90].

3. The lattice Boltzmann evolution equation can be viewed as the discretisation of
a simplified Boltzmann equation and there is discussion as to whether it includes
physics beyond that of the Navier Stokes equations [91–93]. Recent work has
been successful in matching lattice Boltzmann and molecular dynamics simula-
tions of simple fluids [94].

4. Including thermal fluctuations in a multiphase lattice Boltzmann method is still a
major challenge [95, 96]. A simple approach is to include momentum-conserving
random noise in the stress tensor. However, it was recently pointed out [95] that
this method breaks down on small length scales.

5 This work is in the context of phase field models, but the same free energy could be used within
a binary lattice Boltzmann simulation.

272 H. Kusumaatmaja and J.M. Yeomans

5. The wetting and bounce back boundary conditions can be extended to cases
where the solid surfaces themselves are mobile [31, 37]. The algorithm can
then be used to study the dynamics of colloids in single- and multi-phase fluids
[37, 97, 98].

6. A recent algorithm, coupling a lattice Boltzmann solvent to a molecular dynam-
ics simulation of polymers is proving an exciting new tool for polymer hydrody-
namics [99, 100]. Lattice Boltzmann has also been coupled to elastic filaments
and membranes [101, 102]

7. Because lattice Boltzmann can handle tortuous boundaries it is particularly
suited to simulating flow in porous materials [103–105] and to solving realistic
models of blood flow [106, 107].

8. Lattice Boltzmann algorithms can be used to solve the equations of motion of
more complex fluids, such as liquid crystals [108] and biologically active mate-
rials [109]. They provide a natural way of incorporating viscoelasticity.

The hydrodynamic equations of motion, together with an equilibrium corre-
sponding to the minimum of a free energy, provide a realistic and elegant model
of the wetting and spreading properties of multiphase fluids. Lattice Boltzmann
algorithms are an effective tool to solve the continuum equations, helping us to
understand wetting problems too complicated to be tractable analytically, and to
motivate and interpret experiments.

References

1. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)
2. W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)
3. A.R. Parker, C.R. Lawrence, Nature 414, 33 (2001)
4. Y.M. Zheng, X.F. Gao, L. Jiang, Soft Matter 3, 178 (2007)
5. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)
6. D. Quéré, Annu. Rev. Fluid Mech. 38, 71 (2008)
7. S. Herminghaus, M. Brinkmann, R. Seemann, Annu. Rev. Fluid Mech. 38, 101 (2008)
8. R. Lipowsky, M. Brinkmann, R. Dimova, T. Franke, J. Kierfeld, X. Zhang, J. Phys.: Condens.

Matter 17, S537 (2005)
9. U. Frisch, B. Hasslacher, P. Pomeau, Phys. Rev. Lett. 56, 1505 (1986)

10. S. Succi, The Lattice Boltzmann Equation; for Fluid Dynamics and Beyond (Oxford Univer-
sity Press, Oxford, 2001)

11. S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)
12. R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222, 145 (1992)
13. J.M. Yeomans, Physica A 369, 159 (2006)
14. M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)
15. X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)
16. A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Phys. Rev. A 43, 4320 (1991)
17. A.J. Briant, J.M. Yeomans, Phys. Rev. E 69, 031603 (2004)
18. C.M. Pooley, H. Kusumaatmaja, J.M. Yeomans, Phys. Rev. E 78, 056709 (2008)
19. D. Jacqmin, J. Fluid Mech. 402, 57 (2000)
20. P. Seppecher, Int. J. Eng. Sci. 34, 977 (1996)
21. J. Cahn, J. Chem. Phys. 66, 3667 (1977)
22. R. Cox, J. Fluid Mech. 168, 169 (1986)

11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics 273

23. C. Huh, L. Scriven, J. Colloid Interf. Sci. 35, 85 (1971)
24. T. Qian, X. Wang, P. Sheng, J. Fluid Mech. 564, 333 (2006)
25. P. Bhatnagar, E. Gross, M. Krook, Phys. Rev. 94, 511 (1954)
26. C. Pooley, K. Furtado, Phys. Rev. E 77, 046702 (2008)
27. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 046308 (2002)
28. D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, L. Luo, Philos. Trans. R. Soc. A

360, 437 (2002)
29. K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)
30. R. Du, B. Shi, X. Chen, Phys. Lett. A 359, 564 (2006)
31. M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluid 13, 3452 (2001)
32. I. Ginzburg, D. d’Humieres, Phys. Rev. E 68, 066614 (2003)
33. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Phys. Rev. E 74, 021509 (2006)
34. A. Wagner, Q. Li, Physica A 362, 105 (2006)
35. D. Wolf-Gladrow, Lecture Notes in Mathematics, vol. 1725, chapter 5 (Springer-Verlag,

Berlin, 2000)
36. S.S. Chikatamarla, I.V. Karlin, Comp. Phys. Comm. 179, 140 (2008)
37. A. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001)
38. J. Latt, B. Chopard, Phys. Rev. E 77, 056703 (2008)
39. A. Dupuis, J.M. Yeomans, Langmuir 21, 2624 (2005)
40. H. Kusumaatmaja, C.M. Pooley, J.M. Yeomans, Phys. Rev. E. 77, 067301 (2008)
41. R. Ledesma-Aguilar, I. Pagonabarraga, A. Hernández-Machado, Phys. Fluid 19, 102113

(2007)
42. A.J. Briant, A.J. Wagner, J.M. Yeomans, Phys. Rev. E 69, 031602 (2004)
43. F. Diotallevi, L. Biferale, S. Chibbaro, G. Pontrelli, F. Toschi, S. Succi, Eur. Phys. J. Special

Topics 171, 237 (2009)
44. H. Kusumaatmaja, D.Phil. Thesis, University of Oxford, (2008)
45. H. Kusumaatmaja, A. Dupuis, J.M. Yeomans Europhys. Lett. 73, 740 (2006)
46. R. Lucas, Kolloid-Z 23, 15 (1918)
47. E. Washburn, Phys. Rev. 17, 273 (1921)
48. M. Latva-Kokko, D.H. Rothman, Phys. Rev. Lett. 98, 254503 (2007)
49. P. Saffman, G. Taylor, Proc. R. Soc. London Ser. A 245, 312 (1958)
50. P. Tabeling, G. Zocchi, A. Libchaber, J. Fluid Mech. 177, 67 (1987)
51. R. Ledesma-Aguilar, A. Hernández-Machado, I. Pagonabarraga, Phys. Fluid 19, 102112

(2007)
52. H. Gau, S. Hermingaus, P. Lenz, R. Lipowsky, Science 283, 46 (1999)
53. A.A. Darhuber, S.M. Troian, S.M. Miller, S. Wagner, J. Appl. Phys. 87, 7768 (2000)
54. J. Léopoldès, A. Dupuis, D.G. Bucknall, J.M. Yeomans, Langmuir 19, 9818 (2003)
55. A. Dupuis, J. Léopoldès, J.M. Yeomans, Appl. Phys. Lett. 87, 024103 (2005)
56. N.P. Sandreuter, Tappi J. 77, 173 (1994)
57. H. Kusumaatmaja, J.M. Yeomans Langmuir 23, 956 (2007)
58. D. Quéré, Rep. Prog. Phys. 68, 2495 (2005)
59. X. Gao, L. Jiang, Nature 432, 36 (2004)
60. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)
61. D. Öner, T.J. McCarthy, Langmuir 16, 7777 (2000)
62. J. Bico, C. Marzolin, D. Quéré, Europhys. Lett. 47, 220 (1999)
63. U. Mock, R. Förster, W. Menz, R. Jürgen, J. Phys.: Condens. Matter 17, S639 (2005)
64. A. Tuteja, W. Choi, M. Ma, J. Mabry, S. Mazzella, G. Rutledge, G. McKinley, R. Cohen,

Science 318, 1618 (2007)
65. L. Cao, T. Price, M. Weiss, D. Gao, Langmuir 24, 1640 (2008)
66. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)
67. J.F. Joanny, P.G. de Gennes, J. Chem. Phys. 81, 552 (1984)
68. R.E. Johnson, R.H. Dettre, Adv. Chem. Ser. 43, 112 (1964)
69. C. Huh, S.G. Mason, J. Coll. Int. Sci. 60, 11 (1977)

274 H. Kusumaatmaja and J.M. Yeomans

70. J.F. Oliver, C. Huh, S.G. Mason, J. Coll. Int. Sci. 59, 568 (1977)
71. J.W. Gibbs, Scientific Papers 1906. Dover reprint, Dover, NewYork (1961)
72. R. Shuttleworth, G.L.J. Bailey, Discuss. Faraday Soc. 3, 16. (1948)
73. H. Kusumaatmaja, J.M. Yeomans, Langmuir 23, 6019 (2007)
74. J.-L. Barrat, L. Bocquet, Faraday Discuss 112, 119 (1999)
75. C. Cottin-Bizonne, E. Charlaix, L. Bocquet, J.-L. Barrat, Nature Mat. 2, 237 (2003)
76. J. Ou, J.B. Perot, J.P. Rothstein, Phys. Fluids 17, 103606 (2005)
77. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, F. Toschi, Phys. Rev. Lett. 97, 204503 (2006)
78. J. Hyväluoma, J. Harting, Phys. Rev. Lett. 100, 246001 (2008)
79. A. Steinberger, C. Cottin-Bizonne, P. Kleimann, E. Charlaix, Nature Mater. 6, 665 (2007)
80. J. Hyväluoma, J. Timonen, Europhys. Lett. 83, 64002 (2008)
81. D. Bartolo, F. Bouamrirene, É. Verneuil, A. Buguin, P. Silberzan, S. Moulinet, Europhys.

Lett. 74, 299 (2006)
82. H. Kusumaatmaja, M.L. Blow, A. Dupuis, J.M. Yeomans, Europhys. Lett. 81, 36003 (2008)
83. M. Reyssat, J.M. Yeomans, D. Quéré, Europhys. Lett. 81, 26006 (2008)
84. G. Gonnella, E. Orlandini, J.M. Yeomans, Phys. Rev. E 58, 480 (1998)
85. D. Jamet, C. Misbah, Phys. Rev. E 76, 051907 (2007)
86. D. Jamet, C. Misbah, Phys. Rev. E 78, 031902 (2008)
87. X.Y. He, L.S. Luo, M. Dembo, J. Comp. Phys. 129, 357 (1996)
88. O. Filippova, D. Hanel, J. Comp. Phys. 147, 219 (1998)
89. B.M. Boghosian, J. Yepez, P.V. Coveney, A. Wagner, Proc. R. Soc. Lond. A 457, 717 (2001)
90. S. Chikatamarla, S. Ansumali, I.V. Karlin, Phys. Rev. Lett. 97, 010201 (2006)
91. X.B. Nie, G.D. Doolen, S.Y. Chen, J. Stat. Phys. 107, 279 (2002)
92. F. Toschi, S. Succi, Europhys. Lett. 69, 549 (2005)
93. Y.H. Zhang, R.S. Qin, D.R. Emerson, Phys. Rev. E 71, 047702 (2005)
94. J. Horbach, S. Succi, Phys. Rev. Lett. 96, 224503 (2006)
95. R. Adhikari, K. Stratford, M.E. Cates, A.J. Wagner, Europhys. Lett. 71, 473 (2005)
96. B. Dünweg, U.D. Schiller, A.J.C. Ladd, Phys. Rev. E 76, 036704 (2007)
97. K. Stratford, R. Adhikari, I. Pagonabarraga, J.C. Desplat, M.E. Cates, Science 2198, 30

(2005)
98. M.E. Cates, J.C. Desplat, P. Stansell, A.J. Wagner, K. Stratford, R. Adhikari, I. Pagonabar-

raga, Phil. Trans. R. Soc. A 363, 1917 (2005)
99. O.B. Usta, A.J.C. Ladd, J.E. Butler, J. Chem. Phys. 122, 094902 (2005)

100. P. Ahlrichs, B. Dunweg, J. Chem. Phys. 111, 8225 (1999)
101. A. Alexeev, R. Verberg, A.C. Balazs, Macromolecules 38, 10244 (2005)
102. G.A. Buxton, R. Verberg, D. Jasnow, A.C. Balazs, Phys. Rev. E 71, 056707 (2005)
103. B. Ferréol, D.H. Rothman, Transport in Porous Media 20, 3 (1995)
104. R.J. Hill, D.L. Koch, A.J.C. Ladd, J. Fluid Mech. 448, 243 (2001)
105. A. Koponen, D. Kandhai, E. Hellén, M. Alava, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot,

J. Timonen, Phys. Rev. Lett. 80, 716 (1998)
106. B. Chopard, R. Ouared, Int. J. Mod. Phys. C 18, 712 (2007)
107. A.M. Artoli, A.G. Hoekstra, P.M.A. Sloot, J. Biomech. 39, 873 (2006)
108. C. Denniston, D. Marenduzzo, E. Orlandini, J.M. Yeomans, Philos. Trans. R. Soc. A 362,

1745 (2004)
109. D. Marenduzzo, E. Orlandini, J.M. Yeomans, Phys. Rev. Lett. 98, 118102 (2007)

Chapter 12
CA Modeling of Ant-Traffic on Trails

Debashish Chowdhury, Katsuhiro Nishinari, and Andreas Schadschneider

12.1 Introduction

There has been significant progress in modelling complex systems by using cellular
automata (CA) [1, 2]; such complex systems include, for example vehicular traffic
[3] and biological systems [4, 5]. In most cases, particle-hopping CA models have
been used to study the spatio-temporal organization in systems of interacting parti-
cles driven far from equilibrium [2, 3]. In traffic systems, vehicles are represented by
particles while their mutual influence is captured by the inter-particle interactions.
Generically, these inter-particle interactions tend to hinder their motions which leads
a monotonic decrease of the average speed as function of the particle density [6, 7].

Physicists, applied mathematicians, statisticians and traffic engineers have devel-
oped a variety of models which can reproduce the empirically observed properties of
vehicular traffic rather accurately [3, 8, 9]. Here we describe an extension of a par-
ticularly successful approach based on CA to a seemingly different problem, namely
the traffic-like collective movements of ants on trails [10, 11] (see Fig. 12.1). Fol-
lowing this approach, we develop a model which predicts a counter-intuitive result
[6]. More specifically, the model predicts a non-monotonic variation of the average
speed of ants with their density on the trail. Some of the predictions of this model
of ant-traffic have been tested in recent empirical investigation [12]. Most of this
chapter is a review of our earlier papers published elsewhere. However, we present
this critical overview from our current perspective in the light of the developments
over the last few years.

The similarity between ant traffic and vehicular traffic on highways has also been
noted by biologists. Burd et al. [13] were the first to measure the average speed of
ants on a trail as a function of density. In traffic engineering this corresponds to
the so-called fundamental diagram which is – as indicated by the name – the most
important characteristics of traffic dynamics.

D. Chowdhury (B)
Department of Physics, Indian Institute of Technology, Kanpur 208016, India
e-mail: debch@iitk.ac.in

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_12,
C© Springer-Verlag Berlin Heidelberg 2010

275

276 D. Chowdhury et al.

Fig. 12.1 Examples for ant trails

This chapter is organized as follows: First, in Sect. 12.2, we define the basic
model for uni-directional traffic on an existing single-lane ant trail. In Sect. 12.4,
we extend this model to capture bi-directional traffic on a two-lane ant-trail. We
discuss a model of bi-directional traffic on a single-lane ant-trail in Sect. 12.5.
Then, in Sect. 12.6 we report results from a recent empirical study and compare
with the predictions of the model. Finally, in Sect. 12.7 we summarize the main
conclusions.

12.2 A Model of Unidirectional Traffic on a Single-Lane Ant Trail

The models which will be described in the following assume the existence of a fully
developed ant trail on which a steady flow takes place. The formation of the trail
itself is a problem of self organization which has been studied quite extensively in
the past (see e.g. [14] for an overview).

Let us first define the ant trail model (ATM) which is a simple model for a
unidirectional collective movement of ants on a pre-existing single-lane ant trail.
The ants communicate with each other by dropping a chemical (generically called
pheromone) on the substrate as they move forward [15, 16]. The pheromone sticks
to the substrate long enough for the other following ants to pick up the chemical
signal and follow the trail. This mechanism is captured in the ATM by extending the
asymmetric simple exclusion process (ASEP) [17–20], the simplest and most studied
model for driven diffusive systems.

ASEP can be interpreted as a cellular automaton model. It describes the directed
motion of particles on a discrete one-dimensional lattice of sites each of which
represents the center of a cell. Each cell can be occupied by at most one particle
at a time. Identifying the particles in the ASEP with ants we need to incorporate
pheromone-mediated interactions among the ants. This leads to an ASEP-like model
where the hopping probability of a particle depends on the state of the target cell (see
Fig. 12.2).

The cells are labelled by the index i (i = 1, 2, . . . , L) where L is the length of
the lattice. One associates two binary variables Si and σi with each site i where Si

takes the value 0 or 1 depending on whether the cell is empty or occupied by an
ant. Similarly, σi = 1 if the cell i contains pheromone; otherwise, σi = 0. The

12 CA Modeling of Ant-Traffic on Trails 277

σ(t)

q q

σ(t)

f f

ants

pheromone

ff

S(t+1)

ants

pheromone

Q

S(t)

ants

pheromone

S(t+1)

σ(t+1)

Fig. 12.2 Illustration of the update procedure in the ATM. Top: Configuration at time t , i.e. before
stage I of the update. The non-vanishing hopping probabilities of the ants are shown explicitly.
Middle: Configuration after one possible realisation of stage I. Also indicated are the pheromones
that may evaporate in stage II of the update scheme. Bottom: Configuration after one possible
realization of stage II. Two pheromones have evaporated and one pheromone has been created due
to the motion of an ant

instantaneous state (i.e., the configuration) of the system at any time is specified
completely by the set ({S}, {σ }).

Since a unidirectional motion is assumed, ants do not move backward. Their
forward-hopping probability is higher if there is pheromone ahead of it. The state
of the system is updated at each time step in two stages. In stage I ants are allowed
to move. Here the subset {S(t + 1)} at the time step t + 1 is obtained using the full
information ({S(t)}, {σ(t)}) at time t . Stage II corresponds to the evaporation of
pheromone. Here only the subset {σ(t)} is updated so that at the end of stage II the
new configuration ({S(t + 1)}, {σ(t + 1)}) at time t + 1 is obtained. In each stage
the dynamical rules are applied in parallel to all ants and pheromones, respectively.

Stage I: Motion of ants

An ant in cell i that has an empty cell in front of it, i.e., Si (t) = 1 and Si+1(t) = 0,
hops forward with

probability =
{

Q if σi+1(t) = 1,
q if σi+1(t) = 0,

(12.1)

where, to be consistent with real ant-trails, we assume q < Q.

Stage II: Evaporation of pheromones

At each cell i occupied by an ant after stage I a pheromone will be created:

σi (t + 1) = 1 if Si (t + 1) = 1. (12.2)

278 D. Chowdhury et al.

In addition, any “free” pheromone at a site i , which is not occupied by an ant, will
evaporate with the probability f per unit time, i.e., if Si (t + 1) = 0, σi (t) = 1, then

σi (t + 1) =
{

0 with probability f,
1 with probability 1 − f.

(12.3)

The dynamics conserves the number N of ants, but not the number of pheromones.
We first discuss the case of periodic boundary conditions which simplifies the the-
oretical analysis. An extension to the case of the open boundary conditions [21],
which is more relevant for the application to real trails, is briefly discussed later.

Formally, the rules can be written in compact form as the coupled equations

S j (t + 1) = S j (t)+ min(η j−1(t), S j−1(t), 1 − S j (t))

−min(η j (t), S j (t), 1 − S j+1(t)), (12.4)

σ j (t + 1) = max(S j (t + 1),min(σ j (t), ξ j (t))), (12.5)

where ξ and η are stochastic variables defined by

ξ j (t) =
{

0 with probability f
1 with probability 1 − f

, (12.6)

η j (t) =
{

1 with probability p = q + (Q − q)σ j+1(t)
0 with probability 1 − p

. (12.7)

In the limits f = 0 and f = 1 the model reduces to the ASEP. For f = 0 a
pheromone, once created, will never evaporate. So in the stationary state all cells
are occupied by pheromone and the ants will always move with rate Q. For f = 1,
on the other hand, each pheromone will evaporate immediately. Therefore, in the
stationary state, the ants will always move with rate q.

This is reflected in Eqs. (12.4) and (12.5) which reduce to the ASEP if we choose
p as a constant, i.e., p does not depend on σ . If we further consider the deterministic
limit p = 1, then this model reduces to the Burgers CA [22], which is also known as
an exactly solvable CA. It should also be mentioned that the ATM is closely related
to the bus-route models [23, 24].

12.2.1 Computer Simulation Results

The ASEP [17–20] with parallel updating has been used often as an extremely sim-
ple model of vehicular traffic on single-lane highways. The most important quantity
of interest in the context of flow properties of the traffic models is the fundamental
diagram, i.e., the flow-versus-density relation, where flow J is the product of the
density ρ and the average speed v. It is especially relevant if one wants to compare
the properties of ant traffic with those of vehicular traffic. The flow (or current)
J and the average speed v of vehicles are related by the hydrodynamic relation

12 CA Modeling of Ant-Traffic on Trails 279

0 0.2 0.4 0.6 0.8 1
Density

0

0.05

0.1

0.15

0.2

0.25
F

lo
w

f = 0

f=1

0 0.2 0.4 0.6 0.8 1
Density

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 s
pe

ed

f=0

f=1

Fig. 12.3 The average flow (left) and speed (right) of the ants, extracted from computer simula-
tion data, are plotted against their densities for the parameters Q = 0.75, q = 0.25, L = 500
and evaporation probabilities f = 0.0005(♦), 0.001(◦), 0.005(•), 0.01(.), 0.05(�), 0.10(×),
0.25(+), 0.50(∗). The lines connecting these data points merely serve as the guide to the eye. The
cases f = 0 and f = 1 are also displayed, which are identical to the ASEP corresponding to the
effective hopping probabilities Q and q, respectively. The analytical curve corresponds to f → 0
in the thermodynamic limit, which is discussed in Sect. 12.2.2 is also depicted (the thick red curve
without ornaments)

J = ρv and, therefore, either of the functions J (ρ) and v(ρ) can be used to express
the effects of interactions of the ants on the flow.

Fundamental diagrams of the ATM obtained by computer simulations are shown
in Fig. 12.3. In the ASEP the flow remains invariant under the interchange of ρ
and 1 − ρ0; this particle-hole symmetry leads to a fundamental diagram that is
symmetrical about ρ = 1

2 . In the ATM, a particle-hole symmetry is only observed
in the special cases f = 0 and f = 1 where it reduces to the ASEP.

However, the most surprising observation is that over a range of small values
of f , the fundamental diagram exhibits an anomalous behaviour. Unlike common
vehicular traffic, v is not a monotonically decreasing function of the density ρ

(Fig. 12.3). Instead, a relatively sharp crossover can be observed where the speed
increases with the density. In the usual form J (ρ) of the fundamental diagram this
transition leads to the existence of an inflection point (Fig. 12.3).

By a detailed analysis of the spatio-temporal organizations in the steady-state, we
were able to distinguish three different regimes of density. At low densities a loosely
assembled cluster is formed (Fig. 12.4) that propagates with the probability q. These
clusters are rather different from jam clusters encountered in highway traffic which
have a density close to the maximal density and move in a direction opposite to the
direction of motion of the particles (cars). In contrast, a loose cluster has a typical
density ρ#c which is larger than the average density ρ, but smaller than the maximal
density ρ = 1, i.e. ρ < ρ#c < 1. It moves in the same direction as the ants. The
leading ant in the cluster which typically hops with probability q will determine the
velocity of the cluster.

In the intermediate density regime, the leading ant occasionally hops with proba-
bility Q instead of q , because sometimes it feels the pheromone dropped by the last
ant in the cluster. This arises from the fact that, because of the periodic boundary
conditions, the gap size between the last and leading ant becomes shorter as the

280 D. Chowdhury et al.

x

t

Fig. 12.4 Spatial-temporal behaviour of loose clusters in the low density case (ρ = 0.16). Param-
eters are Q = 0.75, q = 0.25, f = 0.005). Loose clusters emerge from the random initial config-
uration and will eventually merge into one big loose cluster after sufficiently long time

cluster becomes larger, so that the leading ant is likely to find the pheromone in
front of it. This increase of the average speed in the intermediate-density region
(Fig. 12.3) leads to the anomalous fundamental diagram.

Finally, at high densities, the mutual hindrance against the movements of the
ants dominates the flow behaviour. This leads to a homogeneous state similar to that
of the ASEP. In this regime loose clusters no longer exist and ants are uniformly
distributed after a long time. Thus homogeneous mean-field theories can account
for the qualitative features of the fundamental diagram only in this regime.

12.2.2 Analytical Results

So far, an exact solution for the stationary state of the ATM has not been achieved.
However, it is possible to describe the dynamics rather well using approximate ana-
lytical theories.

First, mean-field type approaches have been suggested [6, 7]. However, homo-
geneous mean-field theories fail in the intermediate density regime. Here the loose
cluster dominates the dynamics which can not be described properly by the mean-
field theories which assume a uniform distribution of the ants.

12.2.2.1 ZRP and ATM

A better theoretical treatment of ATM can be formulated by realizing [7, 21] that
the ATM is closely related to the zero-range process (ZRP), which is one of the
exactly solvable models of interacting Markov processes [25–27]. The ZRP consists
of the moving particles of the exclusion process, but in contrast, these particles do

12 CA Modeling of Ant-Traffic on Trails 281

a)

b)

Fig. 12.5 Illustration of the mapping between (a) the ASEP and (b) a ZRP. Particles of the ASEP
become lattice sites in the ZRP. The number of particles at a site in the ZRP corresponds to the
headway in ASEP picture. Particles in the ZRP representation move in the opposite direction than
in the ASEP representation

not obey an exclusion principle. Therefore each lattice site can be occupied by an
arbitrary number of particles. A distinct characteristic of the ZRP is the special form
of the transition probabilities. The hopping probability of a particle to its nearest
neighbour site depends only on the number of the starting site, not that at the target
site.

The ASEP can be interpreted as a special ZRP where the particles in the ASEP
are identified with the sites in the ZRP [26, 27]. The number of particles present at a
site j is then given by the number of empty cells in front of particle j in the ASEP,
also known as headway in traffic engineering. This mapping is shown in Fig. 12.5.

In ATM representation, the hopping probability u can be expressed as

u = q(1 − g)+ Qg, (12.8)

where g is the probability that there is a surviving pheromone on the first site of
a gap. Assume that the gap size is x and the average velocity of ants is v. Since
g(t + 1) = (1 − f)g(t) holds at each time step, we obtain g(x) = (1 − f)x/v

after iterating it by x/v times, which is the time interval of between the passage
of successive ants through any arbitrary site. Note that in this argument we have
implicitly used a mean field approximation: that the ants move with the mean veloc-
ity v maintaining equal spacing x . Thus, in the ATM the hopping probability u is
related to gaps x by [6]

u(x) = q + (Q − q)(1 − f)x/v. (12.9)

Using the formal mapping between the ZRP and ASEP we conclude that the steady
state of the ATM can be well described by that of the ZRP with parallel dynamics.
This allows one to translate the known exact results of the stationary state of the
ZRP to the ATM case.

The average velocity v of ants is calculated by

v =
L−N∑

x=1

u(x)p(x) (12.10)

282 D. Chowdhury et al.

0 0.2 0.4 0.6 0.8 1
Density

0.05

0.1

0.15

0.2

F
lo

w

0 0.2 0.4 0.6 0.8 1
Density

0

0.05

0.1

0.15

0.2

F
lo

w

Fig. 12.6 The fundamental diagram of the ATM for system sizes L = 100 (left) and L = 200
(right). The dynamical parameters are Q = 0.75, q = 0.25, f = 0.005. The smooth red curve has
been obtained from the ZRP description while the zigzaged black one is the numerical data

since the number of particles in the ZRP picture is L − N . p(x) is the probability of
finding a gap of size x , which is given by

p(x) = h(x)
Z(L − x − 1, N − 1)

Z(L , N)
, (12.11)

where Z(L , N) is usually called partition function since it appears as normalization
factor in the probability distribution of headway configurations [21].

Since the ATM is formulated with parallel update, the form of h(x), as calculated
in (12.11), is given by [28]

h(x) =

⎧
⎪⎨

⎪⎩

1 − u(1) for x = 0
1 − u(1)

1 − u(x)

x∏

y=1

1 − u(y)

u(y)
for x > 0 . (12.12)

The partition function Z is obtained by the recurrence relation

Z(L , N) =
L−N∑

x=0

Z(L − x − 1, N − 1)h(x), (12.13)

with Z(x, 1) = h(x − 1) and Z(x, x) = h(0), which is easily obtained by (12.11)
with the normalization

∑
p(x) = 1.

The fundamental diagram of the ATM can be derived by using (12.10) with
changing ρ from 0 to 1. The velocity v in (12.9) can be set to v = q, which
is known to be a good approximation for v [23]. Strictly speaking, v should be
determined self-consistently by (12.9) and (12.10). Figure 12.6 shows results for
L = 100 and L = 200. The good agreement with the simulation data confirms that
the ZRP provides an accurate description of the steady state of the ATM.

12 CA Modeling of Ant-Traffic on Trails 283

12.2.2.2 Thermodynamic Limit of ATM

Next we discuss the thermodynamic limit of the ATM, that is, the case L → ∞ with
ρ = N/L fixed. From Fig. 12.3 we see that the curve shows sharp increase near the
density region 0.4 < ρ < 0.5, and the tendency is expected to be even stronger with
the increase of L . This indicates the possibility of a phase transition in the thermo-
dynamic limit. The mapping to the ZRP is exploited to explore this possibility in an
analytic way by determining the behaviour of Z(L , N) in the thermodynamic limit.
First Z(L , N) is represented as an integral which can be evaluated by the saddle
point method [28]. A central role is played by the generating function G(s) of h
defined by

G(s) =
∞∑

x=0

h(x)sx . (12.14)

It can be shown [21] that G converges in the range

0 < z < zc = q

1 − q
, (12.15)

where z is defined by

1

ρ
− 1 = z

∂ ln G(z)

∂z
. (12.16)

In the case f > 0, G(zc) diverges which implies that there is no phase transition.
This is because from (12.16), we have ρ = 1 when z = 0, and ρ = 0 at z = zc if
G(zc) diverges. Thus, in the entire density region 0 ≤ ρ ≤ 1 there is no singularity
in G and, hence, no phase transition in the ATM.

The situation drastically changes in the limit f → 0 since then G(zc) becomes
finite. Thus there is a phase transition in the case f = 0 at a critical density

ρc = Q − q

Q − q2
(12.17)

obtained from (12.16). The corresponding average velocity at z = zc is found as

vc = q . (12.18)

It should be noted [7] that (12.17) is also obtained by the intersection point of the
line J = vcρ and the ASEP curve [3]

J = 1

2

(
1 −√1 − 4Qρ(1 − ρ)

)
(12.19)

284 D. Chowdhury et al.

in the flow-density diagram. Note that the limits L → ∞ and f → 0 do not com-
mute [23]. If one takes f → 0 before L → ∞, then the flow is given by the ASEP
result (12.19). This order is relevant for the case of numerical simulations. On the
other hand, if f → 0 is taken after L → ∞, one obtains the thick curve in Fig. 12.3
and the anomalous variation of the average velocity with density disappears.

12.2.2.3 Open Boundary Conditions

So far we have considered the ATM with only periodic boundary conditions. How-
ever, for ant trails the open boundary conditions are more realistic.

Suppose α and β denote the probabilities of incoming and outgoing particles at
the open boundaries per unit time. The phase diagram of the ASEP in the α−β-plane
is well understood [19]. Here we summarize the effects of varying the pheromone
evaporation probability f on this phase diagram.

Just as in the case of the ASEP, for all f one finds three different phases, namely,
the high-density phase, the low-density phase and the maximal current phase (see
Fig. 12.7). In the low-density phase the current is limited by the low input prob-
ability α and is therefore independent of β. In contrast, in the high-density phase
the particle removal at the end of the chain is the current-limiting factor and thus
the current is independent of α. Finally, in the maximal current phase the current is
limited by the bulk transport capacity. Here J is independent of both α and β.

α

β

1.00.50.0

0.5
f = 0.0

 f = 0.01

f = 0.1

1.0

f = 1.0
High density phase

Low
density
phase

Maximal current phase

Fig. 12.7 The phase diagram of the ATM with open boundary conditions in the α − β-plane for
several values of the pheromone evaporation probability f (0 ≤ f ≤ 1). The values of the hopping
parameters are Q = 0.75, q = 0.25

12 CA Modeling of Ant-Traffic on Trails 285

The location αc(f) and βc(f) of the phase transition lines in the ATM depends
on the evaporation rate f . A more quantitative understanding of the phase diagram
[21] can be obtained by extending the domain wall theory [29, 30] developed for
driven diffusive systems with open boundaries to the ATM case. Many properties
of the open system can be extracted from those of the corresponding system under
periodic boundary conditions.

12.3 The Multi Robots Implementation

An alternative to the cellular automaton computer simulation is the implementation
of the ant trail model as a robotic system [31]. Here social insects are used as a
source of inspiration. Aggregation patterns for example are the basis for collective
action or collaboration.

12.3.1 Experimental Setup

Here we will focus on the unidirectional case where all robots move on a circular
track. The ant-pheromone interaction is incorporated by a virtual pheromone system
(V-DEAR). A virtual pheromone field is projected onto the circular track and per-
ceived and modified by the robots (see Fig. 12.8). The concentration of pheromones
p(x, t) ∈ [0, P0] is indicated by the color and brightness of the projected field.
Depending on the concentration, two velocities can be assumed by the robots:

v(x) =
{

VQ for p(x, t) ≥ pth
Vq for p(x, t) < pth

(12.20)

Fig. 12.8 Experimental setup for the multiple robots experiment: Robots serving as ants move
on a circular track (left). Their positions are traced by a CCD camera. An artificial pheromone
field is projected on the track. The robots (right) are equipped with sensors to detect its color and
brightness

286 D. Chowdhury et al.

Table 12.1 The parameters for the experimental setup are shown here. For a better comparison
with cellular automaton models lengths are additionally given in units of the body-length (bl)
of one single robot. At ρ = 1 the circular track is occupied by 22 robots. The dimensionless
pheromone concentration ranges from 0 to 250

VQ (cm/s) Vq (cm/s) L (robot) pth P0

7 (0.94 bl/sec) 1.4 (0.19 bl/sec) 22 (22 bl) 127 250

Unlike in the ATM, the gradient of the pheromone concentration does not lead to a
corresponding gradient of velocity depending on the distance to the preceding ant.
Therefore only the difference to the threshold value pth is of importance.

The dynamics of the virtual pheromone field is very much the same as in the
ATM. The positions of the robots are detected by a CCD camera and the pheromone
field is modified accordingly. A robot occupying site x leads to the maximal
pheromone concentration P0 at that site. An unoccupied site is described by a decay-
ing pheromone concentration:

p(x, t) =
{

P0 if x is occupied
P0 exp(−λ f t) else

. (12.21)

For λ f = 0 the pheromone concentration always exceeds pth < P0 once a site
has been occupied by a robot leading to VQ . Unlike in the undirectional model
λ f = 1 does not lead to an instantaneous evaporation. For the corresponding case
λ f −→ ∞ or at least λ f 1 is needed.

For the experiment two different intrinsic velocities Vq and VQ were used (see
Table 12.1). The threshold value for the pheromone concentration pth was chosen
such that the pheromone trace is of finite length. For our system this means that
the pheromone trace following each robot reaches a concentration p < pth before it
assumes p = P0 due to the presence of a succeeding robot. Blocking is incorporated
in the same way as in the unidirectional ATM. A robot which has caught up with
the preceding one has to stop for one second. Due to this mechanism no overtaking
is possible. In analogy with the ATM, this mechanism ensures the simple exclusion
principle.

12.3.2 Observations

The observed behaviour in the experimental setup qualitatively agrees with that of
the ATM. Initially the robots are distributed homogeneously on the circle (Fig. 12.9).
Each robot is followed by a trace of light which is the equivalent of the pheromone
trace. The trace is of finite length which is set by the evaporation constant λ f .
Although the robots in principle behave deterministically, fluctuations are induced
by various perturbations, e.g., noise arising from friction. As a result the distances
between two robots might accidently reduce in such a way that the succeeding robot
is affected by the pheromone trace of the preceding one. Generally some robots

12 CA Modeling of Ant-Traffic on Trails 287

Fig. 12.9 Platoon formation
in the robot experiment: (1)
In the initial state the robots
are placed homogeneously on
the circular track. (2) Each
robot is followed by a
pheromone trace of finite
length. Robots perceiving this
trace move with VQ and with
Vq < VQ otherwise. As a
result a platoon is formed as
robots tend to collect behind
a slow robot moving with Vq .
(3) Robots within a platoon
catch up with VQ . (4) At later
times only one platoon
moving with Vq is left

1

Vq

2

Vq

VQ
Vq

3

Vq VQ

Vq

4

Vq
VQ

will move with VQ whereas others move with Vq . In the final stage a stable platoon
moving with a velocity Vq is formed (Fig. 12.9).

Flow is measured directly by the number of robots passing a fixed point on the
track in a certain time interval. From this the average velocity is calculated using
the hydrodynamic relation. For f = 0 the behaviour of the system is roughly
identical to that of the ASEP (Fig. 12.10). At low densities, flow increases almost
linearly. For densities larger than ρ = 1

2 flow finally decreases. Overall this shows
that effects arising from mutual blocking are also present in the robot experiment.
Unlike in the ATM, λ f = 1 does not correspond to an instantaneous evaporation of
the pheromones. Therefore the ASEP-case is not recovered in this limit and a nearly
constant average velocity is observed (Fig. 12.10). Furthermore, similar to the ATM,
non-monotonic behaviour of the velocity is observed for small values of λ f .

0
0.2 0.4 0.6 0.8 1

Density ρ

0

50

100

150

200

A
ve

ra
ge

 V
el

oc
ity

 V
(ρ

)

0 0.2 0.4 0.6 0.8 1
Density ρ

0

20

40

60

80

100

Fl
ow

 F
(ρ

)

Fig. 12.10 Fundamental diagrams for the robot implementation of the ATM: VQ = 7 cm/s,
Vq = 1.4 cm/s and λ f = 0(◦), 0.03(∗), 0.05(0), 1(•). For λ f = 0.03 and λ f = 0.05 the
same non-monotonic behaviour as for the computer simulation of the ATM is observed in the
density-dependence of the average velocity (left)

288 D. Chowdhury et al.

12.4 A model of Bidirectional Traffic on a Two-Lane Ant Trail

Real ant trails are often not unidirectional. Instead the trail is shared by ants mov-
ing in opposite directions. Therefore an extension of the ATM as described in
Sect. 12.2.1 to bidirectional ant traffic is required. We will discuss two different
approaches. In this section a two-lane model is introduced with separate lanes for
the opposite directions. In Sect. 12.5 a simpler single-lane model is discussed where
ants moving in opposite direction share the same lane.

12.4.1 Extensions of the Uni-Directional Model

In this model of bidirectional ant traffic [32] the trail consists of two lanes of cells
(see Fig. 12.11). These two lanes need not be physically separate rigid lanes in real
space; these are, however, convenient for describing the movements of ants in two
opposite directions. In the initial configuration, under periodic boundary conditions,
a randomly selected subset of the ants move in the clockwise direction in one lane
while the others move counterclockwise in the other lane. However, ants are allowed
neither to take U-turn [33] nor to change lane. Thus, the ratio of the populations
of clockwise-moving and anti-clockwise moving ants remains unchanged as the
system evolves with time. All results discussed in the following correspond to the
symmetric case where equal number of ants move in the two directions. Therefore,
the average flux of outbound and nestbound ants are identical.

The rules governing the dropping and evaporation of pheromone in the model of
bidirectional ant traffic are identical to those in the model of uni-directional traffic.
The common pheromone trail is created and reinforced by both the outbound and
nestbound ants. The probabilities of forward movement of the ants in the model of
bidirectional ant traffic are also natural extensions of the similar situations in the
unidirectional traffic. When an ant (in either of the two lanes) does not face any
other ant approaching it from the opposite direction the likelihood of its forward
movement onto the ant-free cell immediately in front of it is Q or q, respectively,
depending on whether or not it finds pheromone ahead. Finally, if an ant finds
another oncoming ant just in front of it, as shown in Fig. 12.11, it moves forward
onto the next cell with probability K .

Fig. 12.11 A typical head-on
encounter of two oppositely
moving ants in the model of
bidirectional ant traffic

K

K

12 CA Modeling of Ant-Traffic on Trails 289

Since ants do not segregate in perfectly well defined lanes, head-on encounters
of oppositely moving individuals occur quite often although the frequency of such
encounters and the lane discipline varies from one species of ants to another. In
reality, two ants approaching each other feel the hindrance, turn by a small angle to
avoid head-on collision [34] and, eventually, pass each other. At first sight, it may
appear that the ants in the model follow perfect lane discipline. However, that is
not true. In the model, the violation of lane discipline and head-on encounters of
oppositely moving ants is captured, effectively, in an indirect manner by assuming
K < Q. But, a left-moving (right-moving) ant cannot overtake another left-moving
(right-moving) ant immediately in front of it in the same lane. Even in the special
limit K = Q the traffic dynamics on two lanes would remain coupled because the
pheromone dropped by the outbound ants also influence the nestbound ants and vice
versa.

Since for realistic model one has q < Q and K < Q, this leaves two interesting
parameter regions, namely q < K < Q and K < q < Q.

12.4.1.1 Results and Physical Interpretations

The variations of flux with density of ants, for a set of biologically relevant values
of the parameters, are shown in Figs. 12.12a and 12.13a; the corresponding average
speeds are plotted against density in Figs. 12.12b and 12.13b, respectively. In the
Fig. 12.12, the non-monotonic variation of the average speed with density gives rise
to the unusual shape of the flux-versus-density diagram over a range of values of f .
This feature of the model of bidirectional traffic is similar to that of the unidirec-
tional ant traffic.

An additional feature of the density-dependence of the flux in the bidirectional
ant traffic model is the occurrence of a plateau region. This plateau is more pro-
nounced in Fig. 12.13a than in Fig. 12.12a. Such plateaus in the flux-versus-density
diagram have been observed earlier [35, 36] in models related to vehicular traffic
where randomly placed bottlenecks slow down the traffic in certain locations along

0 0.2 0.4 0.6 0.8 1

Density

0

0.05

0.1

0.15

0.2

Fl
ux

0 0.2 0.4 0.6 0.8 1

Density

0

0.2

0.4

0.6

0.8

A
ve

ra
ge

 s
pe

ed

Fig. 12.12 Typical fundamental diagrams for the bidirectional 2-lane model in the case
q < K < Q. The parameters are Q = 0.75, q = 0.25 and K = 0.5. The symbols ◦, •, �, ., ∗, +,
1, ♦ and 2 correspond, respectively, to f = 0, 0.0005, 0.005, 0.05, 0.075, 0.10, 0.25, 0.5 and 1

290 D. Chowdhury et al.

0 0.2 0.4 0.6 0.8 1
Density

0

0.02

0.04

0.06

0.08

0.1
Fl

ux

0.04 0.08 0.12
0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1

Density

0

0.2

0.4

0.6

0.8

A
ve

ra
ge

 s
pe

ed

Fig. 12.13 Typical fundamental diagrams for the bidirectional 2-lane model in the case
K < q < Q. The parameters are Q = 0.75, q = 0.50 and K = 0.25 The symbols ◦, �, �,
., 2 and 1 correspond, respectively, to f = 0, 0.0005, 0.005, 0.05, 0.5 and 1. The inset in (a) is a
magnified re-plot of the same data to emphasize the fact that the unusual trend of variation of flux
with density in this case is similar to that observed in unidirectional model

the route. Note that in Fig. 12.12a the plateaus appear only in the two limits f → 0
and f → 1 but not for an intermediate range of values of f . In the limit f → 0,
most often the likelihood of the forward movement of the ants is Q = 0.75 whereas
they are forced to move with a smaller probability K = 0.5 at those locations where
they face another ant immediately in front approaching from the opposite direc-
tion (like the situations depicted in Fig. 12.11). Thus, such encounters of oppositely
moving ants have the same effect on ant traffic as bottlenecks on vehicular traffic.

But why do the plateaus re-appear in the Fig. 12.12a also in the limit f → 1?
At sufficiently high densities, oppositely moving ants facing each other move with
probability K = 0.5 rather than q = 0.25. In this case, locations where the ants
have to move with the lower probability q will be, effectively bottlenecks and hence
the re-appearance of the plateau. As f approaches unity there will be larger number
of such locations and, hence, the wider will be the plateau. This is consistent with
our observation in Fig. 12.12a.

12.5 A Model of Bidirectional Traffic on a Single-Lane Ant Trail

In the following we discuss a model, known as PRL model [37], where oppositely
moving ants share the same trail.

In this model the right-moving (left-moving) particles, represented by R (L),
are never allowed to move towards left (right); these two groups of particles are
the analogs of the outbound and nest-bound ants in a bidirectional traffic on the
same trail. Thus, no U-turn is allowed. In addition to the ASEP-like hopping of the
particles onto the neighboring vacant sites in the respective directions of motion, the
R and L particles on nearest-neighbour sites and facing each other are allowed to

exchange their positions, i.e., the transition RL
K→ L R takes place, with the prob-

ability K . This might be considered as a minimal model for the motion of ants on

12 CA Modeling of Ant-Traffic on Trails 291

a hanging cable as shown in Fig. 12.1. When a outbound ant and a nest-bound ant
face each other on the upper side of the cable, they slow down and, eventually, pass
each other after one of them, at least temporarily, switches over to the lower side
of the cable. Similar observations have been made for normal ant-trails where ants
pass each other after turning by a small angle to avoid head-on collision [34, 38]. In
our model, as commonly observed in most real ant trails, none of the ants is allowed
to overtake another moving in the same direction.

One then introduces a third species of particles, labelled by P , corresponding
to the pheromone. The P particles are deposited on the lattice by the R and L
particles when the latter hop out of a site; an existing P particle at a site disappears
when a R or L particle arrives at the same location. The P particles cannot hop
but can evaporate, with a probability f per unit time. None of the lattice sites can
accomodate more than one particle at a time.

The state of the system is updated in a random-sequential manner. Using periodic
boundary conditions, the densities of the R and the L particles are conserved. In
contrast, the density of the P particles is a non-conserved variable. The distinct
initial states and the corresponding final states for pairs of nearest-neighbor sites are
shown in Fig. 12.14 together with the respective transition probabilties.

Suppose N+ and N− = N − N+ are the total numbers of R and L particles,
respectively. For a system of length L the corresponding densities are ρ± = N±/L
with the total density ρ = ρ+ + ρ− = N/L . Of the N particles, a fraction φ =
N+/N = ρ+/ρ are of the type R while the remaining fraction 1−φ are L particles.
The corresponding fluxes are denoted by J±. In both the limits φ = 1 and φ = 0
this model reduces to the ATM model [6, 7].

One unusual feature of this PRL model is that the flux does not vanish in the
dense-packing limit ρ → 1. In fact, in the full-filling limit ρ = 1, the exact non-
vanishing flux J+ = Kρ+ρ− = J− at ρ+ + ρ− = ρ = 1 arises only from the
exchange of the R and L particles, irrespective of the magnitudes of f, Q and q.

In the special case Q = q =: qh the hopping of the ants become independent of
pheromone. This special case of the PRL model is identical to the AHR model [39]
with q− = 0 = κ . A simple mean-field approximation yields the estimates

J± 3 ρ±
[
qh(1 − ρ)+ K c∓

]
(12.22)

Fig. 12.14 Nontrivial
transitions and their transition
rates. Transitions from initial
states P L , 0L and 0P are not
listed. They can be obtained
from those for L P , L0 and
P0, respectively, by replacing
R ↔ L and, then, taking the
mirror image

initial final rate
RL RL 1− K

LR K
RP RP (1− f)(1− Q)

R0 f (1− Q)
0R fQ
PR (1− f)Q

R0 R0 1− q
0R fq
PR (1− f)q

initial final rate
PR PR 1− f

0R f
P0 P0 1− f

00 f

PP PP (1−f)2

P0 f (1− f)
0P f (1− f)
00 f2

292 D. Chowdhury et al.

0.0 0.2 0.4 0.6 0.8 1.0
Density

0.00

0.05

0.10

0.15

0.20

Fl
ux

 (
F +

)

φ = 0.00
φ = 0.20
φ = 0.30
φ = 0.50
φ = 0.70
φ = 0.80
φ = 1.00

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Density

0.00

0.05

0.10

0.15
Fl

ux
 (

F +
)

f=0.001
f=0.005
f=0.01
f=0.05
f=0.10
f=0.25

(a)

Fig. 12.15 The fundamental diagrams in the steady-state of the PRL model for several different
values of (left) f (for φ = 0.5) and (right) φ (for f = 0.001). The other common parameters are
Q = 0.75, q = 0.25, K = 0.5 and L = 1000

irrespective of f , for the fluxes J± at any arbitrary ρ. These results agree reasonably
well with the exact values of the flux [40] for all qh ≥ 1/2 but deviate more from
the exact values for qh < 1/2, indicating the presence of stronger correlations at
smaller values of qh .

For the generic case q = Q, the flux in the PRL model depends on the evapora-
tion rate f of the P particles. Figure 12.15 shows fundamental diagrams for wide
ranges of values of f (in Fig. 12.15a) and φ (in Fig. 12.15b). The data in Fig. 12.15
are consistent with the physically expected value of J±(ρ = 1) = Kρ+ρ−, because
in the dense packing limit only the exchange of the oppositely moving particles
contributes to the flux. Moreover, the sharp rise of the flux over a narrow range of
ρ observed in both Fig. 12.15a and b arise from the nonmonotonic variation of the
average s peed with density observed in the unidirectional ATM [6, 7].

As we have seen earlier in Sect. 12.2.1, in the special limits φ = 0 and φ = 1,
over a certain regime of density (especially at small f), the particles form loose (i.e.,
non-compact) clusters [7]. If the system evolves from a random initial condition at
t = 0, then during coarsening of the cluster, its size R(t) at time t is given by
R(t) ∼ t1/2 [23, 24] see Fig. 12.16. Therefore, in the absence of encounter with
oppositely moving particles, τ±, the coarsening time for the right-moving and left-
moving particles would grow with system size as τ+ ∼ φ2L2 and τ− ∼ (1−φ)2L2.

In the PRL model with periodic boundary conditions, the oppositely moving
loose clusters “collide” against each other periodically where the time gap τg

between the successive collisions increases linearly with the system size (τg ∼ L).
During a collision each loose cluster “shreds” the oppositely moving cluster; both
clusters shred the other equally if φ = 1/2 (Fig. 12.17a). However, for all φ = 1/2,
the minority cluster suffers more severe shredding than that suffered by the majority
cluster (Fig. 12.17b) because each member of a cluster contributes in the shred-
ding of the oppositely moving cluster. In small systems the “shredded” clusters get
opportunity for significant re-coarsening before getting shredded again in the next
encounter with the oppositely moving particles. But, in sufficiently large systems,
shredded appearance of the clusters persists as demonstrated by the space-time plots
for two different system sizes in Fig. 12.18.

12 CA Modeling of Ant-Traffic on Trails 293

102100

101

102

103

103 104 105 106 107

t

R

φ = 1.0
φ = 0.5(R)
φ = 0.5 (L)

Fig. 12.16 Average size of the cluster R plotted against time t for φ = 1.0, and φ = 0.5, both
for the same total density ρ = 0.2; the other common parameters being Q = 0.75, q = 0.25,
K = 0.50, f = 0.005, L = 4000

Fig. 12.17 Space-time plot of the PRL model for Q = 0.75, q = 0.25, f = 0.005, L = 4000,
ρ = 0.2 and (a) φ = 0.5, K = 0.2, (b) φ = 0.3, K = 0.2, (c) φ = 0.3, K = 0.5. The red and
green dots represent the right-moving and left-moving ants, respectively

294 D. Chowdhury et al.

Fig. 12.18 Space-time plot of the PRL model for Q = 0.50, q = 0.25, f = 0.005, ρ = 0.2,
φ = 0.3, K = 1.0 and (a) L = 1000, (b) L = 4000. The red and green dots represent the
right-moving and left-moving ants, respectively

Thus, coarsening and shredding phenomena compete against each other [37] and
this competition determines the overall spatio-temporal pattern. Therefore, in the
late stage of evolution, the system settles to a state where, because of alternate occur-
rence of shredding and coarsening, the typical size of the clusters varies periodically.

12.6 Empirical Results

The pioneering experiments on ant traffic [13] and all the subsequent related works
[34, 38, 41–43] used bidirectional trails where the nature of flow is dominated by the
head-on encounters of the ants coming from opposite directions [38, 34, 43]. But, in
vehicular traffic, where flows in opposite directions are normally well separated and
head-on collisions can occur only accidentally, the spatio-temporal organization of
the vehicles in each direction is determined by the interactions of the vehicles mov-
ing in the same direction. Therefore, to allow for a better comparison between the
two traffic systems, in [12] data from unidirectional traffic of ants on natural trails
have been collected and analyzed using methods adapted from traffic engineering.

The experimental data were collected using video recordings of natural trails
[44] where the natural situation was maintained focussing on sections of trails which
had neither crossings nor branching and which remained unaltered for several hours.
During the observation time the flow could be considered to be stationary and undis-
turbed by external factors. Data recorded at different trails of the same type basically
revealed the same behaviour [44].

One of the distinct behavioral characteristics of individual ants observed in the
course of recording is the absence of overtaking. Although some ants (temporarily)
left the trail and were passed by succeeding ones, it was never observed any incident
where an ant would speed up simply to overtake some other ant in front.

Since no overtaking takes place, ants can be uniquely identified by the ordered
sequence in which they enter the observed section of the trail. Suppose, the nth
ant enters the section at A at time t+(n) and leaves the section at B at time t−(n)
(see Fig. 12.1). An efficient tool for analyzing such data is the cumulative plot
(Fig. 12.19) [45]; it shows the numbers n+(t) and n−(t) of ants which have passed

12 CA Modeling of Ant-Traffic on Trails 295

the point A and B, respectively, up to time t . The two resulting curves, which are
sometimes called arrival function and departure function can be obtained by invert-
ing t+(n) and t−(n), respectively.

Using this strategy, the data could be analyzed very efficiently. The travel time
ΔT (n) of the nth ant in the section between the points A and B is given by

ΔT (n) = t−(n)− t+(n) (12.23)

and the time-averaged speed of the nth ant during the period �T (n) is

v(n) = L

�T (n)
(12.24)

The time-headway of two succeeding ants can be obtained easily at the entrance and
exit points A and B (Fig. 12.19, left inset). Since v(n) is, by definition (Eq. (12.24)),
the time-averaged velocity v(n) of the n-th ant, the distance-headway between the
n-th ant and the ant in front of it is given by

�d(n) = �t+(n) v(n − 1) ,

�t+(n) = t+(n)− t+(n − 1) . (12.25)

Entry and exit of each ant changes the instantaneous number N (t) of the ants in
the trail section between A and B by one unit (Fig. 12.19, right inset). Therefore

0 100 200 300 400 500 600 700 800

Time t [sec]

0

100

200

300

400

500

600

700

800

C
um

ul
at

iv
e

co
un

t n
 [

an
t]

8 12
10

15

20

25
308

384

386

388

390

392

0 20 40
0

40

80

entering ants

leaving ants

Δt
+
(390)

t+(22) t–(22)

ΔT(22)

N(t)

Fig. 12.19 Figure illustrating the technique employed for data extraction. The cumulative count of
the ants which have entered n+(t) (•) and left n−(t) (�) the trail section between A and B. The
right inset shows the travel time �T for the 22th ant. On the left inset the time-headway �t+ of
the 390th ant is shown

296 D. Chowdhury et al.

N (t) fluctuates, but stays constant in between two events of entry or exit. Sorting
the counts of these events by time one obtains a chronological list {ti } = {t±(n)} of
the changes of the instantaneous particle number

N (t) = n+(t)− n−(t) = const. while t ∈ [ti , ti+1[. (12.26)

Next we estimate the effective local density experienced by the n-th ant at a given
instant of time. During the time interval �T (n) it spends within the observed trail
section, the average number of ants in the same section is given by

〈N 〉t (n) = 1

�T (n)

ti<t−(n)∑

ti=t+(n)
N (ti)(ti+1 − ti) (12.27)

During the same time interval, the (dimensionless) density ρ(n) affecting the move-
ment of the n-th ant is given by

ρ(n) = 〈N 〉t (n)

Nmax
= ρ̃(n)

ρ̃max
with ρ̃(n) = 〈N 〉t (n)

L
, (12.28)

where Nmax = 17 = L/(1 bl) and ρ̃max = Nmax/L; bl being the body length of an
ant (1bl ≈ 18 mm). The instantaneous particle numbers and the single-ant velocity
are averaged over the same time-interval �T (n).

Figure 12.20 shows the fundamental diagram obtained from this analysis. The
most unusual feature is that, unlike vehicular traffic, there is no significant decrease
of the average velocity with increasing density. Consequently, the flux increases
approximately linearly over the entire regime ρ ∈ [0, 0.8] of observed density. The
jammed branch of the fundamental diagram, which is commonly observed in vehic-
ular traffic and which is characterized by a monotonic decrease of flow with increas-

Fig. 12.20 Average velocity
(solid line) and single-ant
velocities (dots) for
unidirectional single-lane
trail section of length
L = 17 bl. The
corresponding flux-velocity
relation is plotted in the inset.
Mutual blocking is obviously
suppressed as the average
velocity is almost
independent of the density.
Consequently, the flux
increases almost linearly with
the density in the
fundamental diagram (see
inset)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density ρ(n)

0

2

4

6

8

10

12

14

16

V
el

oc
ity

 v
(n

)
[b

l/s
ec

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Density ρ(n)

0

1

2

3

4

Fl
ux

 f
(n

)
[a

nt
/s

ec
]

f(n) = ρv(n)

12 CA Modeling of Ant-Traffic on Trails 297

ing density, is completely missing. Obviously effects of mutual blocking, which are
normally expected to become dominant at high densities are strongly suppressed in
ant traffic.

From the time-series of the single-ant velocities also their distributions in differ-
ent density regimes can be determined. The most striking feature is that it becomes
much sharper with increasing global density whereas the most probable velocity
decreases only slighty [12].

Another important quantity that characterizes the spatial distribution of the ants
on the trail is the distance-headway distribution [12]. Time-series show clustering
of small distance-headways whereas larger headways are much more scattered. The
distribution of these headways becomes much sharper with increasing density while
the maximum shifts only slightly to smaller headways. At low densities, predomi-
nantly large distance-headways are found; the corresponding distribution for suffi-
ciently long distance-headways is well described by a negative-exponential distribu-
tion which is characteristic of the so-called random-headway state [46]. In contrast,
at very high densities mostly very short distance-headways are found; in this regime,
the log-normal distribution appears to provide the best fit to the empirical data.

The absence of a jammed phase in the fundamental diagram is closely related to
the characteristic features of the distributions of the distance-headways of the ants
along the observed section of the trail. The dominant, and directly observable, fea-
ture of this spatial distribution is the platoons formed by the ants, as predicted by the
models discussed before. Ants inside a platoon move with almost identical velocities
maintaining small distance-headways. These intra-platoon distance-headways are
responsible for the clustering of data observed in the corresponding time-series [12].
In contrast, larger distance-headways are inter-platoon separations. The full distri-
bution of distance-headways has an average of D = 2.59 bl which is quite close to
the value D = 1.66 bl found for very high densities. This indicates the existence of
a density-independent distance-headway for the ants moving inside platoons.

The interpretations of the observed trends of variations of the flux, average veloc-
ity and distance-headway distribution with increasing density is consistent with the
corresponding variation of the distribution of the velocities of the ants. Ants within
a platoon move at a slower average velocity whereas solitary ants can move faster
if they detect a strong pheromone trace created by a preceeding platoon. Moreover,
since fluctuations of velocities of different platoons are larger than the intra-platoon
fluctuations, the distribution becomes sharper at higher densities because the pla-
toons merge thereby reducing their number and increasing the length of the longest
one. The maximum of the velocity distribution is almost independent of the den-
sity. Its position at sufficiently large densities can be interpreted as platoon velocity,
vp ≈ 4.6 bl/s.

It is worth pointing out that physical origin of the occurrence of the nearly con-
stant average velocity of the vehicles in highway traffic is very different from the
constant velocity of ants in ant traffic. In vehicular traffic, the average velocity of the
vehicles remains practically unaffected by increasing density, provided the density
is sufficiently low, because at those densities the vehicles are well separated from
each other and, therefore, can move practically unhindered in the so-called free-flow

298 D. Chowdhury et al.

state. On the other hand, in ant traffic, this constant velocity regime is a reflection
of the fact that ants march together collectively forming platoons which reduce the
effective density.

Thus, in spite of some superficial similarities, the characteristic features of ant
traffic seem to be rather different from those of vehicular traffic. Perhaps, ant traffic
is analogous to human pedestrian traffic [47, 42, 43], as was conjectured beautifully
by Hölldobler and Wilson in their classic book [10].

12.7 Concluding Discussions

Several theoretical investigations have been carried out earlier, in terms of CA, to
study the emergence of the trail patterns in ant colonies [4]. However, to our knowl-
edge, our work is the first attempt to understand the traffic-like flow of ants on well
formed trails using the language of CA. Here we have reviewed, in some detail, the
stochastic cellular automaton model of an ant trail introduced in [6] and some of
its generalizations. The model is characterized by two coupled dynamical variables,
representing the ants and the pheromone. Under periodic boundary conditions, one
of the variables (ants) is conserved, whereas the other variable (pheromone) is
always a non-conserved variable. The dynamics of these two variables are coupled
to each other. This coupling leads to surprising results, especially an anomalous
fundamental diagram which arises from an unusual non-monotonic variation of the
average speed of the ants with their density on the trail in the intermediate regime
of the ant density. We would like to emphasize that this surprising result could not
be anticipated as a trivial consequence of the dynamical prescriptions of the model.
It is only over a range of pheromone-evaporation rate that the surprising increase of
average velocity of ants with increasing density was observed.

Our experimental investigations on real ant trails have, indeed, exposed some
unusual features of the fundamental diagram. The average velocity is practically
independent of density. This, in turn, leads to the complete absence of a jammed
branch in the fundamental diagram. In order to test the possibility of the non-
monotonic variation of the average velocity with density, our experiment should
be repeated with a circular trail which would mimic the trail under period boundary
conditions. Our first set of experiments have already unveiled a totally unexpected
feature of the fundamental diagram of the ant trafic. Clearly there is a need for
extension of our model to account for the observed features of the fundamental
diagram. At present we are actively considering several possible realistic extensions
of our model. These include (a) different levels of concentration of pheromone at
each site, (b) diffusional spread of pheromone, (iii) tendency of persistent movement
of ants, etc.

Acknowledgements We thank our collaborators V. Guttal, A. Kunwar, K. Sugawara, T. Kazama
and especially Alexander John for many discussions. Research of the group of one of the authors
(DC) is supported by CSIR (India). DC also thanks Alexander von Humboldt Foundation for
re-invitation, under the Humboldt Alumni program, to the university of Köln where part of this
work was completed.

12 CA Modeling of Ant-Traffic on Trails 299

References

1. S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, Singapore,
1986)

2. B. Chopard, M. Droz, Cellular Automata Modelling of Physical Systems (Cambridge Univer-
sity Press, 1998)

3. D. Chowdhury, L. Santen, A. Schadschneider, Statistical physics of vehicular traffic and some
related systems. Phys. Rep. 329, 199–329 (2000)

4. D. Chowdhury, K. Nishinari, A. Schadschneider, Self-organized patterns and traffic flow in
colonies of organisms: From bacteria and social insects to vertebrates. Phase Transit. 77, 601–
624 (2004)

5. D. Chowdhury, K. Nishinari, A. Schadschneider, Physics of transport and traffic phenomena
in biology: From molecular motors and cells to organisms. Phys. Life Rev. 2, 318 (2005)

6. D. Chowdhury, V. Guttal, K. Nishinari, A. Schadschneider, A cellular-automata model of flow
in ant trails: Non-monotonic variation of speed with density. J. Phys. A: Math. Gen. 35, L573–
L577 (2002)

7. K. Nishinari, D. Chowdhury, A. Schadschneider, Cluster formation and anomalous fundamen-
tal diagram in an ant trail model. Phys. Rev. E 67, 036120 (2003)

8. D. Helbing, Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067
(2001)

9. B. Kerner: The Physics of Traffic (Springer, Heidelberg, 2004)
10. B. Hölldobler, E.O. Wilson, The Ants (Belknap, Cambridge, 1990)
11. B. Hölldobler, E.O. Wilson: The Superorganism: The Beauty, Elegance, and Strangeness of

Insect Societies (W.W. Norton, New York, 2008)
12. A. John, A. Schadschneider, D. Chowdhury, K. Nishinari, Trafficlike collective movement of

ants on trails: Absence of jammed phase. Phys. Rev. Lett. 102, 108001 (2009)
13. M. Burd, D. Archer, N. Aranwela, D.J. Stradling, Traffic dynamics of the leaf cutting ant.

American Natur. 159, 283 (2002)
14. F. Schweitzer, Brownian Agents and Active Particles, Springer Series in Synergetics (Springer,

Heidelberg, 2003)
15. S. Camazine, J.L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau, Self-

organization in Biological Systems (Princeton University Press, Princeton, 2001)
16. A.S. Mikhailov, V. Calenbuhr, From Cells to Societies (Springer, Berlin, 2002)
17. B. Derrida, An exactly soluble non-equilibrium system: The asymmetric simple exclusion

process. Phys. Rep. 301, 65 (1998)
18. B. Derrida, M.R. Evans, in: Nonequilibrium Statistical Mechanics in One Dimension, ed. by

V. Privman (Cambridge University Press, Cambridge, 1997)
19. G.M. Schütz, Exactly solvable models for many-body systems far from equilibrium, ed. by

C. Domb, J.L. Lebowitz, Phase Transitions and Critical Phenomena, Vol. 19, (Academic
Press, London, UK, 2000)

20. R.A. Blythe, M.R. Evans, Nonequilibrium steady states of matrix product form: a solver’s
guide. J. Phys. A 40, R333 (2007)

21. A. Kunwar, A. John, K. Nishinari, A. Schadschneider, D. Chowdhury, Collective traffic-like
movement of ants on a trail – dynamical phases and phase transitions. J. Phys. Soc. Jpn. 73,
2979 (2004)

22. K. Nishinari, D. Takahashi, Analytical properties of ultradiscrete Burgers equation and rule-
184 cellular automaton. J. Phys. A: Math. Gen. 31, 5439 (1998)

23. O.J. O’Loan, M.R. Evans, M.E. Cates, Jamming transition in a homogeneous one-dimensional
system: The bus route model. Phys. Rev. E 58, 1404 (1998)

24. D. Chowdhury, R.C. Desai, Steady-states and kinetics of ordering in bus-route models: Con-
nection with the Nagel-Schreckenberg model. Eur. Phys. J. B 15, 375 (2000)

25. F. Spitzer, Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)
26. M.R. Evans, Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30,

42 (2000)

300 D. Chowdhury et al.

27. M.R. Evans, T. Hanney, Nonequilibrium statistical mechanics of the zero-range process and
related models. J. Phys. A 38, R195 (2005)

28. M.R. Evans, Exact steady states of disordered hopping particle models with parallel and
ordered sequential dynamics. J. Phys. A 30, 5669 (1997)

29. A.B. Kolomeisky, G. Schütz, E.B. Kolomeisky, J.P. Straley, Phase diagram of one-dimensional
driven lattice gases with open boundaries. J. Phys. A 31, 6911 (1998)

30. V. Popkov, G. Schütz, Steady-state selection in driven diffusive systems with open boundaries.
Europhys. Lett. 48, 257 (1999)

31. K. Nishinari, K. Sugawara, T. Kazama, A. Schadschneider, D. Chowdhury, Modelling of self-
driven particles: Foraging ants and pedestrians. Physica A 372, 132 (2006)

32. A. John, A. Schadschneider, D. Chowdhury, K. Nishinari, Collective effects in traffic on bi-
directional ant trails. J. Theor. Biol. 231, 279 (2004)

33. R. Beckers, J.L. Deneubourg, S. Goss, Trails and U-turns in the selection of a path by the ant
Lasius niger. J. Theor. Biol. 159, 397 (1992)

34. I.D. Couzin, N.R. Franks, Self-organized lane formation and optimized traffic flow in army
ants. Proc. Roy Soc. London B 270, 139 (2003)

35. S.A. Janowsky, J.L. Lebowitz, Finite-size effects and shock fluctuations in the asymmetric
simple-exclusion process. Phys. Rev. A 45, 618 (1992)

36. G. Tripathy, M. Barma, Steady state and dynamics of driven diffusive systems with quenched
disorder. Phys. Rev. Lett. 78, 3039 (1997)

37. A. Kunwar, D. Chowdhury, A. Schadschneider, K. Nishinari, Competition of coarsening and
shredding of clusters in a driven diffusive lattice gas. J. Stat. Mech. (2006) P06012

38. M. Burd, N. Aranwela, Head-on encounter rates and walking speed of foragers in leaf-cutting
ant traffic. Insect. Sociaux 50, 3 (2003)

39. P. F. Arndt, T. Heinzel, V. Rittenberg, Spontaneous breaking of translational invariance in
one-dimensional stationary states on a ring. J. Phys. A 31, L45 (1998); J. Stat. Phys. 97, 1
(1999)

40. N. Rajewsky, T. Sasamoto, E.R. Speer, Spatial particle condensation for an exclusion process
on a ring. Physica A 279, 123 (2000)

41. K. Johnson, L.F. Rossi, A mathematical and experimental study of ant foraging trail dynamics.
J. Theor. Biol. 241, 360 (2006)

42. A. Dussutour, J.L. Deneubourg, V. Fourcassié, Temporal organization of bi-directional traffic
in the ant Lasius niger (L.), Jrl. Exp. Biol. 208, 2903 (2005)

43. A. John, A. Schadschneider, D. Chowdhury, K. Nishinari, Characteristics of ant-inspired traf-
fic flow – Applying the social insect metaphor to traffic models. Swarm Intelligence 3, 199
(2008)

44. A. John, Physics of Traffic on Ant Trails and Related Systems, Doctoral Thesis, (Universität
zu Köln, Cologne, Germany, 2006)

45. P. Chakroborty, A. Das, Principles of Transportation Engineering (Prentice Hall of India,
Englewood Cliffs, NJ, 2003)

46. A.D. May, Traffic Flow Fundamentals (Prentice Hall Englewood Cliffs, NJ, 1990)
47. C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Simulation of pedestrian dynamics

using a 2-dimensional cellular automaton. Physica A 295, 507 (2001)

Chapter 13
Lattice-Gas Cellular Automaton Modeling
of Emergent Behavior in Interacting Cell
Populations

Haralambos Hatzikirou and Andreas Deutsch

13.1 Introduction

Biological organisms are complex systems characterized by collective behavior
emerging out of the interaction of a large number of components (molecules and
cells). In complex systems, even if the basic and local interactions are perfectly
known, it is possible that the global (collective) behavior obeys new laws that are
not obviously extrapolated from the individual properties. Only an understanding
of the dynamics of collective effects at the molecular, and cellular scale allows
answers to biological key questions such as: what enables ensembles of molecules
to organize themselves into cells? How do ensembles of cells create tissues and
whole organisms? Key to solving these problems is the design and analysis of appro-
priate mathematical models for spatio-temporal pattern formation. Early models of
spatio-temporal pattern formation focused on the dynamics of diffusible morphogen
signals and have been formulated as partial differential equations (e.g. [25]). Today,
it is realized that, in addition to diffusible signals, the role of cells in morphogenesis
can not be neglected. Living cells possess migration strategies that go far beyond
the merely random displacements of non-living molecules (diffusion). More and
more evidence has been collected how populations of interacting and migrating cells
can in a self-organized manner contribute to the formation of order in a developing
organism. It has been realized, that both the particular type of cell interaction and
migration are crucial and suitable combinations allow for a wide range of patterns.
The question is: What are appropriate mathematical models for analyzing organiza-
tion principles of moving and interacting discrete cells? It has turned out that cellular
automata (CA), in particular lattice-gas cellular automata (LGCA) can model the
interplay of cells with themselves and their heterogeneous environment [15]. These
models describe interaction at a cell-based (microscopic) scale. Cell-based models
(for a review see [18]) are required if one is attempting to extract the organization

H. Hatzikirou (B)
Center for Information Services and High Performance Computing, Technische Universität
Dresden, Nöthnitzerstr. 46, 01069 Dresden, Germany
e-mail: haralambos.hatzikirou@tu-dresden.de

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_13,
C© Springer-Verlag Berlin Heidelberg 2010

301

302 H. Hatzikirou and A. Deutsch

principles of interacting cell systems down to length scales of the order of a cell
diameter in order to link the individual (microscopic) cell dynamics with a particular
collective (macroscopic) phenomenon.

Cellular automata (CA) are discrete dynamical systems. They were introduced
by J. von Neumann and S. Ulam in the 1950s in an attempt to model biological
self-reproduction [31]. Since then, it has become clear that CA have a much broader
potential as models for physical, chemical and biological self-organization. In par-
ticular, CA models have been proposed for a large number of biological applications
for studying the emergence of collective macroscopic behavior emerging from the
microscopic interaction of individual components, such as molecules, cells or organ-
isms [15]. However, currently there exists a huge jungle of different rules for often
the same or similar processes (e.g. for random walk or proliferation). Therefore,
there is need for a specification and classification of CA rules. Such a classification
approach has comprehensively been performed for one-dimensional automata [33].
Furthermore, examples of successful analysis of CA models beyond purely visual
inspection of simulation outcomes are still rare.

Here, we introduce lattice-gas cellular automata (LGCA) as models for collective
behavior emerging from microscopic migration and interaction processes [15, 20].
LGCA represent a class of CA whose structure facilitates mathematical analysis.
Implementing movement of individuals in traditional cellular automaton models is
not straightforward, as one site in a lattice can typically only contain one individual,
and consequently movement of individuals cause collisions when two individuals
move to the same empty site. In a lattice-gas model this problem is avoided by
having separate channels for each direction of movement and imposing an exclusion
principle. Furthermore, the update rule is split into two parts which are called inter-
action and propagation, respectively. The interaction rule of LGCA can be compared
with the update rule for CA in that it assigns new states to each particle based on
the states of the sites in a local neighborhood. After the interaction/collision step
the state of each node is propagated to a neighboring node. This split of the update
rule allows for transport of particles while keeping the rules simple. The emergent
collective behavior, e.g. spatio-temporal pattern formation in a LGCA shows up in
the macroscopic limit which can be derived from a theory of statistical mechanics
on a lattice. In place of discrete particles, Lattice Boltzmann (LB) models deal with
continuous distribution functions which interact locally and which propagate after
collision to the next neighbor node. LB models can be interpreted as mean-field
approximations of LGCA. LGCA and LB models have been originally introduced as
models of fluid flow [20]. Meanwhile, LGCA and LB models have found numerous
applications in physics, chemistry and more recently biology [13, 15, 17, 28, 32].

In particular, we present two examples for LGCA models. The first example
focuses on the collective behavior of moving and proliferating cells which is charac-
terized by the emergence of a traveling wavefront. We derive a macroscopic descrip-
tion and, by means of a cut-off mean-field analysis, we calculate the wavefront
speed. This analysis enables us to estimate (macroscopic) cell population spreading
based on established microscopic cell properties, such as cell motility and prolifer-
ation rate. The second example addresses the precise interplay of moving cells with
their typically heterogeneous environment which is crucial for central biological

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 303

processes as embryonic morphogenesis, wound healing, immune reactions or tumor
growth. We introduce a LGCA model of cell migration in different biological envi-
ronments. Then we analyze the emergent migration features of the cell population
under specific environmental constraints.

13.2 Lattice-Gas Cellular Automata

We define a d-dimensional regular lattice L = L1 × · · · × Ld ⊂ Z
d , where

L1, ..., Ld are the numbers of nodes in each lattice dimension. Here, we will refer
to two-dimensional models (d = 2). Particles move on the discrete lattice with
discrete velocities, i.e. they hop at discrete time steps k ∈ N from a given node to a
neighboring one. A set of velocity channels (r, ci), i = 1, . . . , b, is associated with
each node r ∈ L ⊂ Z

d of the lattice. The parameter b is the coordination number,
i.e. the number of velocity channels on a node which coincides with the number of
nearest neighbors on a given lattice. In particular, the set of velocity channels for
the square lattice as considered here, is represented by the two-dimensional channel

velocity vectors c1 =
(

1
0

)

, c2 =
(

0
1

)

, c3 =
(−1

0

)

, c4 =
(

0
−1

)

(see Fig. 13.1).

In addition, there is a variable number β ∈ N0 = N ∪ {0} of rest channels (zero-
velocity channels), (r, ci), b < i ≤ b + β. Furthermore, an exclusion principle
is imposed. This requires, that not more than one particle can be at the same node
within the same channel. As a consequence, each node r can host up to b̃ = b + β

particles, which are distributed in different channels (r, ci) with at most one particle
per channel. Accordingly, node state η(r) is given by

η(r) := (η1 (r), . . . , ηb̃ (r)
)
,

where η(r) is called node configuration and the quantities ηi (r) ∈ {0, 1}, i =
1, . . . , b̃ are called occupation numbers, which are Boolean variables that indicate
the presence (ηi (r) = 1) or absence (ηi (r) = 0) of a particle in the respective
channel (r, ci). Therefore, the set of elementary states E of a single node is given by

E = {0, 1}b̃.

Fig. 13.1 Node configuration: channels of node r in a two-dimensional square lattice (b = 4) with
one rest channel (β = 1). Filled dots denote the presence of a particle in the respective channel

304 H. Hatzikirou and A. Deutsch

The node density is the total number of particles present at a node r and time
k ∈ N denoted by

n(r, k) :=
b̃∑

i=1

ηi (r, k).

For any node r ∈ L, the nearest lattice neighborhood Nb(r) is a finite list of
neighboring nodes and is defined as

Nb(r) := {r + ci : ci ∈ Nb , i = 1, . . . , b} .
Figure 13.1 gives an example of the representation of a node on a two-dimensional

lattice with b = 4 and β = 1, i.e. b̃ = 5.

13.2.1 Dynamics in Lattice-Gas Cellular Automata

The dynamics of a LGCA arises from the application of superpositions of local
(probabilistic) interaction and deterministic propagation (transport) steps applied
simultaneously to all lattice nodes and at each discrete time step. The definitions of
these steps have to satisfy the exclusion principle, i.e. two or more particles are not
allowed to occupy the same channel.

According to a model-specific interaction rule (RC), particles can change chan-
nels (see Fig. 13.2) and/or are created or destroyed. The temporal evolution of a state
η(r, k) ∈ {0, 1}b̃ in a LGCA is determined by the temporal evolution of the occu-
pation numbers ηi (r, k) for each i ∈ {1, . . . , b̃} at node r and time k. Accordingly,
the pre-interaction state ηi (r, k) is replaced by the post-interaction state ηC

i (r, k)
determined by

ηC
i (r, k) = RC

i

({η(r, k)|r ∈ Nb(r)}
)
, (13.1)

ηC(r, k) = RC({η(r, k)|r ∈ Nb(r)}
) =
(
RC

i

({η(r, k)|r ∈ Nb(r)}
))b̃

i=1
,

realized with probability P
(
η → ηC

)
and ηC ∈ (0, 1)b̃, which is the time-

independent probability for transition from the pre-interaction to the post-interaction
node state.

In the deterministic propagation or streaming step (P), all particles are moved
simultaneously to nodes in the direction of their velocity, i.e. a particle residing
in channel (r, ci) at time k is moved to another channel (r + mci , ci) during one
time step (Fig. 13.3). Here, m ∈ N0 determines the single particle speed and mci

the translocation of the particle. Because all particles residing at the same veloc-
ity channel move the same number m of lattice units, the exclusion principle is
maintained. Particles occupying rest channels do not move since they have “zero

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 305

Fig. 13.2 Example of a possible interaction of particles at a node r; filled dots denote the presence
of a particle in the respective channel. Arrows indicate channel directions

Fig. 13.3 Propagation in a two-dimensional square lattice with speed m = 1; lattice configurations
before and after the propagation step; filled dots denote the presence of a particle in the respective
channel

velocity”. In terms of occupation numbers, the state of channel (r + mci , ci) after
propagation is given by

ηi (r + mci , k + τ) = ηP
i (r, k), (13.2)

where τ ∈ N is the automaton’s time-step. We note that the propagation operator is
mass and momentum conserving. Hence, if only the propagation step was applied
then particles would simply move along straight lines in directions corresponding to
particle velocities.

Combining interactive dynamics (C), Eq. (13.1) with propagation (P), Eq. (13.2)
implies that

ηi (r + mci , k + τ) = ηCP
i (r, k) . (13.3)

This can be rewritten as the microdynamical difference equations

ηi (r+mci , k + τ)−ηi (r, k) = ηCP
i (r, k)−ηi (r, k) =: Ci (ηN (r)(k)), i = 1, . . . , b̃,

(13.4)

where we define Ci as the change in the occupation number due to interaction. It is
given by

306 H. Hatzikirou and A. Deutsch

Ci (ηN (r)(k)) =
⎧
⎨

⎩

1, creation of a particle in channel (r, ci)

0, no change in channel (r, ci)

−1, annihilation of a particle in channel (r, ci).
(13.5)

13.3 A LGCA Model for Growing Cell Populations

Growth processes can be found in almost any scientific field, such as physics, ecol-
ogy, sociology, epidemiology, biology etc. In particular in biology, growth processes
play a central role in phenomena related to embryonic development or diseases such
as tumor growth. Here, we introduce a microscopic birth/death cell process which
results in a traveling front behavior at the macroscopic level.

13.3.1 Definition of the LGCA Model

Automaton dynamics arise from the repetition of three rules (operators): Propaga-
tion (P), reorientation (O) and growth (R). In particular, cell motion is defined by
the combination of the reorientation and the propagation operators while the growth
operator controls the change of the local number of cells at a node.

The reorientation operator is responsible for the redistribution of cells within
the velocity channels of a node, providing a new node velocity distribution (see
Fig. 13.4). Here, we assume that individual cells perform random walks. The corre-
sponding transition probabilities are

P(η → ηO)(r, ·) = 1

Z
δ
(
n(r, ·), nO(r, ·)), (13.6)

Fig. 13.4 Reorientation rule of random motion: The left column corresponds to the possible node
densities n(r, ·), with node capacity b̃ = 4. The central column provides all possible node config-
urations, while the right column indicates the respective transition probabilities (Eq. (13.6))

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 307

where the normalization factor Z = ∑ηO(r,·) δ
(
n(r, ·), nO(r, ·)) corresponds to the

equivalence class defined by the value of the pre-interaction node density n(r, ·).

13.3.1.1 Growth (R)

We define a stochastic birth/death process for the cells as follows:

• Birth: We assume that the proliferation rule depends on the node capacity b̃,
which is interpreted as a microscopic volume exclusion. For the creation of a
new cell on a node, the existence of at least one cell and at least one free channel
are required, i.e.:

Ri (r, ·) = ξi (r, ·)(1 − ηi (r, ·)), (13.7)

where ξi (r, ·)’s are random Boolean variables, with
∑b̃

i=1 ξi (r, ·) = 1, and the
corresponding probabilities are:

P(ξi (r, ·) = 1) = rM

∑b̃
i=1 ηi (r, ·)

b̃
. (13.8)

Here, rM is the probability of occupying a channel, if at least one cell exists on
the node. The growth law, as defined above, is also known as carrying capacity-
limited or contact-inhibited growth.

• Death: We assume that a certain nutrient availability implies a maximum node
occupancy C , i.e. the node nutrient supply cannot support more than C ≤ b̃ living
cells. Thus, we define a death rate for each cell that ensures the existence of at
most C cells per node:

rd = b̃ − C

b̃
rM , (13.9)

where the factor b̃−C
b̃

is a dimensionless quantity.

13.3.2 Microdynamical Equations

The above defined dynamics is fully specified by the following microdynamical
equations:

ηR
i (r, k) = ηi (r, k)+Ri (r, k), (13.10)

ηi (r + mci , k + τ) =
b̃∑

j=1

μ j (r, k)ηR
j (r, k). (13.11)

Equation (13.10) refers to the application of the growth operator (R), which assigns
a new occupation number for a given channel through a stochastic growth process.
The second equation (13.11) refers to the redistribution of cells on the velocity

308 H. Hatzikirou and A. Deutsch

channels and the propagation to the neighboring nodes, corresponding to the ran-
dom walk as introduced in the previous chapter.

The μ j (r, k) ∈ {0, 1} are Boolean random variables which select only one of
the b̃ terms of the rhs of Eq. (13.11). Therefore, they should satisfy the relation
∑b̃

j=1 μ j (r, k) = 1. As stated above, we implement the random walk as a simple
reshuffling of the cells within the node channels that leads to the probability of
choosing a channel: 〈μ j 〉 = 1/b̃, for j = 1, ..., b̃. The terms Ri (r, k) ∈ {0, 1}, for
i = 0, . . . b̃ (Eq. (13.7)) represent birth/death processes, i.e. creation/annihilation
of cells in channel i defined by the growth rule, which are applied to each channel
independently.

13.3.3 Simulations

We have simulated our LGCA model on a two-dimensional 100×100 lattice for 150
time steps. In Fig. 13.5, we show simulations for different times, for fixed maximum

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
t = 50

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
t = 100

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
t = 150

Fig. 13.5 Typical simulations of the spatio-temporal evolution of the LGCA growth process start-
ing from an initial fully occupied cluster of nodes in the center of the lattice. The three figures
show snapshots of the same simulation at different times. The different grey levels encode the node
density

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 309

occupancy C = b̃ and for fixed proliferation rate rM = 0.01. The initial condition
is just a small disc. From the simulations, we conclude the following:

(01) The pattern evolving in simulations from a localized initial occupation is
an isotropically growing disc.

(02) Furthermore, simulations indicate a moving front along which the occu-
pancy of the initially empty nodes is increasing from zero particles to the
maximum occupancy C .

In order to get further insight into the macroscopic behavior of the growth
process, we use a different simulation setup. We consider a “tube”, especially
a 2000×10 lattice with periodic boundary condition on the L2-axis, and a thin
stripe of cells as initial condition (Fig. 13.6). A typical simulation time lasts for
2000 time steps. The result of our simulations is a propagating 2D traveling front
along the L1-axis, mimicking a “growing tube”. This setting has the following
advantages:

• One can project the system to one dimension by averaging the concentration
profile along the L2-axis, i.e. n(rx , k) = 1

|L2|
∑

ry∈|L2| n(r, k).
• The front is well-defined as the mean position of the foremost cells.

1
1.5
2
2.5
3
3.5
4
4.5
5

1400 1450 1500 1550 1600 1650

2
4
6
8

Fig. 13.6 Typical simulation on a “tubular” lattice, i.e. with periodic boundary condition along the
y-axis. The different grey levels denote the node density. In the central region of the figure, the
white part denotes nodes with maximum density

500 520 540 560 580 600 620 640 660
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n C
(r

,k
)

rx

0 500 1000 1500
500

520

540

560

580

600

620

640

660

Time

F
ro

nt
 p

os
iti

on

Simulation
Fit

Simulation
Fit

Fig. 13.7 Left: Snapshot of the average concentration profile along the L1-axis, i.e. nx (k) =
n(rx , k) = 1

|L2|
∑

ry∈|L2| n(r, k). Here, the maximum occupancy is considered as C = 3. Right:
Linear growth of the front distance from its initial position, denoted as front position. The slope of
the line defines the speed of the invasion

310 H. Hatzikirou and A. Deutsch

• The diffusive dynamics of the front relaxes faster than the discoidal 2D evolution.
• The front profile relaxes to an almost steady state shape, which moves almost

uniformly along the L1-axis.

The goal is to predict the front velocity. In the following section, we provide the
details of the front analysis. Finally, we observe that the front evolves linearly in
time, as shown in Fig. 13.7 (right).

13.4 Analysis

In this section, we analyze the behavior of our growth LGCA model. By means of
a mean-field approximation, we derive a partial differential equation that describes
the automaton’s macroscopic behavior. Subsequently, we introduce a cut-off in the
mean-field description and we calculate the speed of the invasive front.

13.4.1 Mean-Field Approximation

As seen above, our LGCA is governed by the microdynamical equations (13.10)
and (13.11). By averaging Eqs. (13.10) and (13.11) and by using the mean-field
approximation, we can obtain the lattice Boltzmann equation (LBE)

fi (r+mci , k+τ)− fi (r, k) =
b̃∑

j=1

�i j f j (r, k)+
b̃∑

j=1

(δi j +�i j)R̃ j (r, k), (13.12)

where the matrix�i j = 1/b̃−δi j is the transition matrix of the underlying shuffling
process. Moreover, we assume that the mean-field reaction term is independent of
the particle direction, i.e. R̃i = F(ρ)/b̃, where F(ρ) is the mean-field cell reaction
term for a single node. Using the mean-field approximation, we obtain the reaction
term R̃i :

R̃i (r, k) = rM fi (r, k)
(

1 − rD

rM
− fi (r, k)

)
. (13.13)

13.4.2 Macroscopic Dynamics

In order to derive a macroscopic description, we use the Chapman-Enskog method-
ology. Here, we assume diffusive scaling as

x = εr and t = ε2k, (13.14)

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 311

where (x, t) are the continuous variables as ε → 0. Using the spatio-temporal scal-
ing relation Eq. (13.14) and replacing the first part of Eq. (13.12) by its Taylor
expansion leads to:

fi (r + mci , k + τ)− fi (r, k) = (ε2τ∂t + ε4 τ
2

2
∂t t + εm(ci · ∇) (13.15)

+ε2 m2

2
(ci · ∇)2 + ε3τm∂t (ci · ∇)

)
fi (r, k).

Furthermore, we assume an asymptotic expansion of fi :

fi = f (0)i + ε f (1)i + ε2 f (2)i +O(ε3). (13.16)

An important aspect is the scaling of the growth term. We argue that the birth
of cells is taking place at a much slower time scale than the motion. The idea is
that growth can be considered as a perturbation of cell motion. That means that the
dominant process is random cell motion (as it is shown below). The growth rate is
assumed to be scaled according to the macroscopic time scaling, i.e.

R̄i → ε2R̃i . (13.17)

Equation (13.17) implies that the macroscopic rate should be scaled as rM =
ε2r̃M � 1, where r̃M = O(1). Therefore, our approximation is valid only for very
low growth rates.

Collecting the equal O(ε) terms, we can formally derive a spatio-temporal mean-
field macroscopic approximation (for detail see [13]):

∂tρ = m2

b̃τ
∇2ρ + 1

τ
F(ρ), (13.18)

where the term F(ρ(r, k)) = ∑b̃
i R̃i (r, k) is the macroscopic reaction law and

using the definitions (13.7) and (13.9) we obtain:

F(ρ) = rMρ(C − ρ), (13.19)

Accordingly, Eq. (13.19) is a kind of Fisher-Kolmogorov equation.

13.4.2.1 Cut-off Mean-Field Approximation

The spatio-temporal mean-field approximation (13.18) agrees qualitatively with the
system’s linearized macroscopic dynamics. However, it fails to provide satisfactory
quantitative predictions because it neglects the correlations arising from the local
fluctuating dynamics. Studies on chemical fronts have shown that these fluctuations
may significantly affect the propagation velocity of the wave front [7, 30].

312 H. Hatzikirou and A. Deutsch

In order to improve the mean-field approximation (here we characterize it as
“naive”), we introduce the cut-off mean-field approach [9, 14]. The idea is that the
mean-field continuous equation (13.18) fails to describe the behavior of individual
cells due to their strong fluctuations at the tip of the front [7]. Therefore, we intro-
duce the cut-off continuous approach which describes the system up to a threshold
density δ of the order of magnitude of one cell, i.e. δ ∼ O(1/b̃). Let’s assume that
the full non-linear reactive dynamics can be described by a term F(ρ). Then, the
fully non-linear cut-off MF equation reads

∂tρ = D∇2ρ + F(ρ)%(ρ − δ), (13.20)

where %(·) is a Heaviside function. Obviously, if we set δ = 0 then the cut-off PDE
will coincide with the naive mean-field approximation.

The cut-off macroscopic description (13.20) adds an extra fixed point, i.e. ρ(xi) =
{0, δ,C}, i = 0, δ,C which breaks the front into three well-defined regions (see
Fig. 13.8).

In order to characterize the linearized growth dynamics at the front, we modify
the LBE for the cells:

fi (r + ci , k + 1)− fi (r, k) =
b̃∑

j=1

(
1

b̃
− δi j

)

f j (r, k) (13.21)

+1

b̃

b̃∑

j=1

[〈ηR
j (r, k)〉 − f j (r, k)

]
%(ρ − δ),

Fig. 13.8 A sketch of the wavefront as shown in Fig. 13.7 (left). We distinguish three regions: (i)
x ∈ [xδ, x0], where 0 < ρ(x) < δ: this region represents a highly fluctuating zone, where the
cells perform a random walk with almost no proliferation, (ii) x ∈ [xC , xδ], where δ < ρ(x) < C :
this region is a result of non-linear proliferation and cell diffusion and (iii) x ∈ [0, xC], where
ρ(x) 3 C : this regime represents the bulk of the front (saturated lattice) where no significant
changes are observed

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 313

where the first summation of the rhs accounts for the reorientation dynamics and
the second term is the reactive term of the LBE. Intuitively, the % function “cuts
off” the reaction term for local densities lower than the threshold δ. Therefore, for
ρ < δ the cells are influenced only by the random walk dynamics. Moreover from
Eq. (13.21), we can easily deduce the nonlinear reaction term of Eq. (13.20):

F(ρ) =
b̃∑

j=1

[〈ηR
j (r, k)〉 − f j (r, k)

]
. (13.22)

13.4.3 Traveling Front Analysis

In this subsection our goal is to analyze and characterize analytically the observed
traveling front behavior. We assume that our system evolves in a “tube”, as in
Fig. 13.6. Moreover, we make the following assumptions:

(A1) the isotropic evolution of the system allows for the dimension reduction of
the analysis to one dimension,

(A2) the system evolves for asymptotically long times, and
(A3) the initial front is sufficiently steep.

Under the assumptions (A1)–(A3), we can conclude that the front relaxes to a time
invariant profile. Thus, assuming the translational invariance of the system along the
front propagation axis L1, we investigate the steady-state front solutions. The main
observable is the average density profile along the axis L1, i.e.

ρ(x, t) = 1

|L2|
∫ |L2|

0
ρ(x, y, t) dy ∈ [0, b̃]. (13.23)

Plugging the traveling front solution, ρ(x, t) = U (x − vt), where x ∈ L1 and v the
front velocity into Eq. (13.18), we obtain:

DU ′′ + vU ′ + d F̃

dU

∣
∣
∣
U=0

= 0, lim
ξ→−∞ u = U max, lim

ξ→+∞U = 0,U ′ < 0, (13.24)

in terms of the comoving coordinate ξ = x−vt and the prime denotes the derivative
with respect to the variable ξ . The term F̃ represents the reaction terms in the naive
MF approximation expressed in terms of U . The front speed for the naive MF can
be calculated following the classical methodology [5, 26], i.e.

vn = 2
√

Drm . (13.25)

314 H. Hatzikirou and A. Deutsch

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Mitotice rate (rM)

F
ro

nt
 s

pe
ed

Naive MF
Simulations
Cut−off MF

Fig. 13.9 Comparison of the calculated front speed for the naive and the cut-off MF, i.e. vn and vc
respectively, against simulations. We observe that the cut-off MF predicts closely the front speed
calculated from the simulations for K 3 0.85

The above speed estimation overestimates the actual front speed found in the sim-
ulations. In particular, it is the maximum asymptotic value that the discrete front
speed can acquire [9] (see also Fig. 13.9).

The calculation of the front speed under the cut-off MF approximation is more
challenging. Following the results proposed by Brunet et al. [9], we can obtain an
estimate for the cut-off front speed

vc = 2
√

DrM

(
1 − K

ln2(δ)

)
. (13.26)

The cut-off front speed estimation includes a correction factor 1 − K
ln2(δ)

, which

allows for a better approximation of the actual front speed calculated from the
LGCA simulations. The above equation provides a satisfactory description of the
system up to the resolution of δ, i.e. to the order of one cell. A reasonable choice of
the cut-off would be δ = 1/b̃. The parameter K is fitted to match quantitatively the
simulation results. Several studies have attempted to find an analytical estimate of
K but till now this remains an open problem [10]. The cut-off mean-field approx-
imation is a heuristic-phenomenological approach which mimics the leading-order
effect of finite population number fluctuations by introducing a cut-off in the MF
equation. In Fig. 13.9, we show a comparison of the front speed for varying pro-
liferation rates rM calculated by the naive MF and the cut-off MF against the front
speed obtained from simulations. We observe that for an appropriate choice of K
the cut-off MF predicts quantitatively the simulated front speed for all parameter
values.

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 315

13.5 Modelling the Influence of the Microenvironment
on Cell Migration

Active migration of tissue cells is essential for a number of biological processes
such as inflammation, wound healing, embryogenesis and tumor cell metastasis [6].
Both in natural tissues and artificial environments, such as in vitro tissue cultures,
cells can exhibit migratory behavior. In particular, the cellular microenvironment
provides the substrate for cell migration. In the following, we provide more details
about different cell migration strategies in various environments. Environmental
heterogeneity contributes to the complexity of the resulting cellular behaviors. In
particular, the cellular microenvironment can either enhance collective motion of
cells or direct cell dispersion. Subsequently, we show how a suitable microscopical
mathematical model (a LGCA) can contribute to understand the interplay of moving
cells with their heterogeneous environment.

13.5.1 Cell Migration Strategies

The cellular microenvironment is a highly heterogeneous medium including the
extracellular matrix (ECM) composed of fibrillar structures, collagen matrices, dif-
fusible chemical signals as well as other mobile and immobile cells. Cells move
within their environment by responding to their surrounding’s stimuli. In addition,
cells change their environment locally by producing or absorbing chemicals and/or
by degrading the neighboring tissue. This feedback establishes a dynamic relation-
ship between individual cells and the surrounding substrate.

One can distinguish two distinct strategies of cells responding to environmental
stimuli: either the cells are following a certain direction and/or the environment
imposes only an orientational preference. For example the graded spatial distribu-
tion of adhesion ligands along the ECM is thought to influence the direction of cell
migration [24], a phenomenon known as haptotaxis [12]. Chemotaxis mediated by
diffusible chemotactic signals provides a further example of directed cell motion in a
dynamically changing environment. On the other hand, amoeboid and mesenchymal
strategies imply an alignment of cells to fibrillar structures. Mesenchymal cells use
additionally proteolysis to facilitate their movement and remodel the neighboring
tissue (dynamic environment). Table 13.1 summarizes the different cell migration
strategies.

Table 13.1 In this table, we relate the environmental effects to different cell migration strategies.
One can distinguish static and dynamic environments. In addition, we identify environments that
impart directional or only orientational information for migrating cells (see text for explanations)

Static Dynamic

Direction Haptotaxis Chemotaxis
Orientation Amoeboid Mesenchymal

316 H. Hatzikirou and A. Deutsch

13.5.2 LGCA Models of Cell Motion in a Static Environment

In this subsection, we define two LGCA models that describe cell motion in different
environments. The mathematical entity that allows for the modeling of such envi-
ronments is a tensor field, which is a collection of different tensors distributed over
a spatial domain (for details see [22]). To model cell motion in a given tensor field
(environment), we use a special kind of interaction rule for the LGCA dynamics,
firstly introduced by Alexander et al. [1]. We consider biological cells as random
walkers that are reoriented by maximizing a potential-like term. Assuming that the
cell motion is affected by cell–cell and cell–environment interactions, we can define
the potential as the sum of these two interactions.:

G(r, ·) =
∑

j

G j (r, ·) = Gcc(r, ·)+ Gce(r, ·), (13.27)

where Gj (r, ·), j = cc, ce is the sub-potential that is related to cell–cell and cell–
environment interactions, respectively.

Interaction rules are formulated in such a way that cells preferably reorient into
directions which maximize (or minimize) the potential, that is according to the gra-
dients of the potential G′(r, ·) = ∇G(r, ·).

Consider a lattice-gas cellular automaton defined on a two-dimensional lattice
with b velocity channels (b = 4 or b = 6). Let the flux be denoted by

J(η(r, ·)) =
b∑

i=1

ciηi (r, ·).

The probability that ηC is the outcome of an interaction at node r is defined by

P(η → ηC|G(r, ·)) = 1

Z
exp
[
αF
(
G′(r, ·), J(ηC(r, ·)))

]
δ
(
n(r, ·), nC(r, ·)),

(13.28)
where η is the pre-interaction state at r and the Kronecker’s δ assumes the mass

conservation of this operator. The sensitivity is tuned by the positive, real parameter
α. The normalization factor is given by

Z = Z(η(r, ·)) =
∑

ηC∈E
exp
[
αF
(
G′(r, ·), J(ηC)

)]
δ
(
n(r, ·), nC(r, ·)).

F(·) is a functional that defines the effect of the G′ gradients on the new config-
uration. A common choice of F(·) is the inner product < ·, · >, which favors
(or penalizes) the configurations that tend to have the same (or inverse) direction
of the gradient G′. Accordingly, the dynamics is fully specified by the following
microdynamical equation (for more details see the previous section)

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 317

ηi (r + ci , k + 1) = ηC
i (r, k).

In the following, we present two stochastic potential-based interaction rules that
correspond to the motion of cells in a vector field (i.e. rank 1 tensor field) and a
rank 2 tensor field, respectively. We exclude any other cell-cell interactions and
we consider that the population consists of a fixed number of cells (mass break
conservation).

13.5.3 Model I

This model describes cell motion in a static environment that carries directional
information expressed by a vector field E. Biologically relevant examples are the
motion of cells that respond to fixed integrin1 concentrations along the ECM (hapto-
taxis). The spatial concentration differences of integrin proteins constitute a gradient
field that creates a kind of “drift” E [16]. We choose a two dimensional LGCA
without rest channels and the stochastic interaction rule of the automaton follows
the definition of the potential-based rules (Eq. (13.27) with α = 1):

P(η → ηC)(r, ·) = 1

Z
exp
(〈E(r), J(ηC(r, ·))〉)δ(n(r, ·), nC(r, ·)), (13.29)

where the vector field G′(r) = E(r) is independent of time, and the functional F is
defined as:

F
(
G′(r), J(ηC(r, ·))) = 〈E(r), J(ηC(r, ·))〉. (13.30)

We simulate our LGCA for spatially homogeneous E for various intensities and
directions. In Fig. 13.10, we observe the time evolution of a cell cluster under the
influence of a given field. We see that the cells collectively move towards the gradi-
ent direction and they roughly keep the shape of the initial cluster. The simulations
in Fig. 13.11 show the evolution of the system for different fields. It is evident that
the “cells” follow the direction of the field and their speed responds positively to an
increase of the field intensity.

13.5.4 Model II

We now focus on cell migration in environments that promote alignment (orienta-
tional changes). Examples of such motion are provided by neutrophil or leukocyte
movement through the pores of the ECM, the motion of cells along fibrillar tissues

1 Integrins are receptors that mediate attachment between a cell and the tissues surrounding it,
which may be other cells or the extracellular matrix (ECM).

318 H. Hatzikirou and A. Deutsch

Time = 0

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time = 20

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time = 60

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time = 80

Fig. 13.10 Time evolution of a cell population under the effect of a field E = (1,0). One can observe
that the environmental drive moves all the cells of the cluster into the direction of the vector field.
Different grey levels represent different cell densities

or the motion of glioma cells along fiber tracts. Such an environment can be modeled
by a second rank tensor field representing a spatial anisotropy along the tissue. In
each point, a tensor (i.e. a matrix) informs the cells about the local orientation and
strength of the anisotropy and proposes a principle (local) axis of movement. For
instance, the brain’s fibre tracts impose a spatial anisotropy and their strength of
alignment affects the strength of anisotropy.

Here, we use the information of the principal eigenvector of the tensor (that
encodes the environmental influence) which defines the local principle axis of cell
movement. Thus, we end up again with a vector field but in this case we exploit
only the orientational information of the vector. The new rule for cell movement in
an “oriented environment” is:

P(η → ηC)(r, ·) = 1

Z
exp
(∣
∣〈E(r), J(ηC(r, ·))〉∣∣)δ(n(r, ·), nC(r, ·)). (13.31)

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 319

20 40 60 80 100 120 140 160 180 200

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

50

60

70

80

90

100

110

120

130

140

150

50

60

70

80

90

100

110

120

130

140

150

E = (1,0)

50

60

70

80

90

100

110

120

130

140

150

E = (1,1)

E = (2,0)

E = (2,2)

Fig. 13.11 Time evolution of the cell population under the influence of different fields (after 100
time steps). Increasing the strength of the field, we observe that the cell cluster is moving faster in
the direction of the field. This behavior is characteristic of a haptotactically moving cell population.
The initial condition is a small cluster of cells in the center of the lattice. Different grey levels
indicate different cell densities (as in Fig. 13.10)

where the vector field G′(r) = E(r), is independent of time, and the functional F is
defined as:

F
(
G′(r), J(ηC(r, ·))) = ∣∣〈E(r), J(ηC(r, ·))〉∣∣. (13.32)

In Fig. 13.12, we show the time evolution of a simulation of model II for a given
field. Figure 13.13 displays the typical resulting patterns for different choices of
tensor fields. We observe that the anisotropy leads to the creation of an ellipsoidal

320 H. Hatzikirou and A. Deutsch

Time = 0

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time = 25

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time = 75

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time =1 00

Fig. 13.12 Time evolution of a cell population under the effect of a tensor field with principal
eigenvector (principal orientation axis) E= (2,2). We observe cell alignment along the orientation
of the axis defined by E, as time evolves. Moreover, the initial rectangular shape of the cell cluster
is transformed into an ellipsoidal pattern with principal axis along the field E. Different grey levels
indicate different cell densities (as in Fig. 13.10)

pattern, where the length of the main ellipsoid’s axis correlates positively with the
anisotropy strength.

This rule can be used to model the migration of glioma cells within the brain.
Glioma cells tend to spread faster along fiber tracts. Diffusion Tensor Imaging
(DTI) is a Magnetic Resonance Imaging (MRI) based method that provides the local
anisotropy information in terms of diffusion tensors. High anisotropy points belong
to the brain’s white matter, which consists of fiber tracks. A preprocessing of the dif-
fusion tensor field allows the extraction of the principle eigenvectors of the diffusion
tensors, that provides us with the local principle axis of motion. By considering a
proliferative cell population, as in [21], and using the resulting eigenvector field we
can model and simulate glioma cell invasion. In Fig. 13.14, we simulate an example

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 321

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

E = (1,0)

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

E = (3,0)

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

E = (1,1)

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

E = (3,3)

Fig. 13.13 Time evolution of the pattern for four different tensor fields (after 100 time steps). We
observe the elongation of the ellipsoidal cell cluster when the field strength is increased. Above
each figure the principal eigenvector of the tensor field is denoted. The initial conditions consist
always of a small cluster of cells in the center of the lattice. Different grey levels indicate different
cell densities (as in Fig. 13.10)

of brain tumor growth and show the effect of fiber tracts on tumor growth using the
DTI information.

13.6 Analysis of the LGCA Models for Motion
in Static Environments

In this section, we provide a theoretical analysis of the proposed LGCA models. Our
aim is to calculate the equilibrium cell distribution and to estimate the speed of cell
dispersion under different environments. Finally, we compare our theoretical results
with the computer simulations.

322 H. Hatzikirou and A. Deutsch

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Fig. 13.14 The effect of the brain’s fiber tracts on brain tumor growth: We use a LGCA model of a
proliferating (glioma) cancer cell population (for definition see [21]) moving in a tensor field pro-
vided by clinical DTI (Diffusion Tensor Imaging) data, representing the brain’s fiber tracts. Top: the
left figure shows a simulation without any environmental bias of the cell motion (i.e. cells perform
random walks). In the top right figure, DTI information is incorporated; the simulation exhibits the
anisotropy of a brain tumor due to the effect of the fiber tracts. Bottom: Magnifications of the tumor
region in the simulations above. Simulations indicate how environmental heterogeneities can affect
cell migration and invasion

13.6.1 Model I

In this subsection, we analyze model I and we derive an estimate of the cell spread-
ing speed in dependence of the environmental field strength. The first idea is to
choose a macroscopically accessible observable that can be measured experimen-
tally. A reasonable choice is the mean lattice flux 〈J(ηC)〉E, which characterizes the
mean motion of the cells, with respect to changes of the field’s strength |E|:

〈J(ηC)〉E =
∑

i

ci f eq
i , (13.33)

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 323

where f eq
i , i = 1, ..., b is the equilibrium density distribution of each channel

which, in this case, depends on E. Mathematically, this is the mean flux response to
changes of the external vector field E. The quantity that measures the linear response
of the system to the environmental stimuli is called susceptibility:

χ = ∂〈J〉E

∂E
. (13.34)

We expand the mean flux in terms of small fields as:

〈J〉E = 〈J〉E=0 + ∂〈J〉E

∂E
E + O(E2). (13.35)

For the zero-field case, the mean flux is zero since the cells are moving randomly

within the medium (diffusion). Accordingly, for small fields E =
(

e1
e2

)

the linear

approximation reads

〈J〉E = ∂〈J〉E

∂E
E.

The general linear response relation is

〈J(ηC)〉E = χαβeβ = χeα, (13.36)

where the second rank tensor χαβ is assumed to be isotropic, i.e. χαβ = χδαβ .
Note that we have used Einstein’s notation for the sums (summation is implied for
repetitive indices) and tensors.

The aim is to estimate the stationary mean flux for fields E. At first, we have
to calculate the equilibrium distribution that depends on the external field. The
external drive destroys the detailed balance (DB) conditions2 that would lead to a
Gibbs equilibrium distribution. In the case of non-zero external field, the system
is out of equilibrium. The external field (environment) induces a breakdown of
the spatial symmetry which leads to non-trivial equilibrium distributions depend-
ing on the details of the transition probabilities. The (Fermi) exclusion principle
allows us to assume that the equilibrium distribution follows a kind of Fermi-Dirac
distribution [20]:

2 The detailed balance (DB) and the semi-detailed balance (SDB) impose the following condition
for the microscopic transition probabilities: P(η → ηC) = P(ηC → η) and ∀ηC ∈ E :∑η P(η →
ηC) = 1. Intuitively, the DB condition means that the system jumps to a new micro-configuration
and comes back to the old one with the same probability (micro-reversibility). The relaxed SDB
does not imply this symmetry. However, the SDB guarantees the existence of steady states and the
sole dependence of the Gibbs steady state distribution on the invariants of the system (conserved
quantities).

324 H. Hatzikirou and A. Deutsch

f eq
i = 1

1 + ex(E) , (13.37)

where x(E) is a quantity that depends on the field E and the mass of the system
(if the DB conditions were fulfilled, the argument of the exponential would depend
only on the invariants of the system). Moreover, the sigmoidal form of Eq. (13.37)
ensures the positivity of the probabilities f eq

i ≥ 0, ∀x(E) ∈ R. Thus, one can write
the following ansatz:

x(E) = h0 + h1ci E + h2E2. (13.38)

After some algebra (the details can be found in [22]), for small fields E, one finds
that the equilibrium distribution looks like:

f eq
i = d+d(d−1)h1ci E+ 1

2
d(d−1)(2d−1)h2

1

∑

α

c2
iαe2

α+d(d−1)h2E2, (13.39)

where d = ρ/b and ρ = ∑b
i=1 f eq

i is the mean node density (which coincides
with the macroscopic cell density) and the parameters h1, h2 have to be deter-
mined. Using the mass conservation condition, we find a relation between the two
parameters:

h2 = 1 − 2d

4
h2

1. (13.40)

Finally, the equilibrium distribution can be explicitly calculated for small driving
fields:

f eq
i = d + d(d − 1)h1ci E + 1

2
d(d − 1)(2d − 1)h2

1 Qαβeαeβ, (13.41)

where Qαβ = ciαciβ − 1
2δαβ is a second order tensor.

If we calculate the mean flux, using the equilibrium distribution up to first order
terms of E, we obtain from Eq. (13.33) the linear response relation:

〈J(ηC)〉 =
∑

i

ciα f eq
i = b

2
d(d − 1)h1E. (13.42)

Thus, the susceptibility reads:

χ = 1

2
bd(d − 1)h1 = −1

2
bgeqh1, (13.43)

where geq = f eq
i (1 − f eq

i) is the equilibrium single particle fluctuation. In [11], the
equilibrium distribution is directly calculated from the non-linear lattice Boltzmann
equation corresponding to a LGCA with the same rule for small external fields. In

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 325

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

|E|

|J
|

Theory
Simulations
Linear regime

Fig. 13.15 This figure shows the variation of the normalized measure of the total lattice flux |J|
against the field intensity |E|, where E = (e1, e2). We compare the simulated values with the
theoretical calculations (for the linear and non-linear theory). We observe that the linear theory
predicts the flux strength for low field intensities. Using the full distribution, the theoretical flux is
close to the simulated values also for larger field strengths

the same work, the corresponding susceptibility is determined and this result coin-
cides with ours for h1 = −1. Accordingly, we consider h1 = −1 in the following.

Our method allows us to proceed beyond the linear case, since we have explicitly
calculated the equilibrium distribution of our LGCA:

f eq
i = 1

1 + exp (ln(1−d
d)− ci E + 1−2d

4 E2)
. (13.44)

Using the definition of the mean lattice flux Eq. (13.33), we can obtain a good
theoretical estimation for larger values of the field. Figure 13.15 shows the behavior
of the system’s normalized flux obtained by simulations and a comparison with our
theoretical findings. For small values of the field intensity |E| the linear approxi-
mation performs rather well and for larger values the agreement of our non-linear
estimate with the simulated values is more than satisfactory. One observes that the
flux response to large fields saturates. This is a biologically plausible result, since
the cell speed is finite and an infinite increase of the field intensity cannot lead to
infinite fluxes (the mean flux is proportional to the mean velocity). Experimental
findings in systems of cell migration mediated by adhesion receptors, such as ECM
integrins, support the model’s behavior [27, 34].

13.6.2 Model II

In the following section, our analysis characterizes cell motion by a different mea-
surable macroscopic variable and provides an estimate of the cell dispersion for

326 H. Hatzikirou and A. Deutsch

model II. In this case, it is obvious that the average flux, defined in Eq. (13.33),
is zero (due to the symmetry of the interaction rule). In order to measure the
anisotropy, we introduce the flux difference between v1 and v2, where the vi ’s are
eigenvectors of the anisotropy matrix (they are linear combinations of the ci ’s). For
simplicity of the calculations, we consider b = 4 and X-Y anisotropy. We define:

|〈Jv1〉 − 〈Jv2〉| = |〈Jx+〉 − 〈Jy+〉| = |c11 f eq
1 − c22 f eq

2 |. (13.45)

As before, we expand the equilibrium distribution around the field E = 0 and we
obtain equation

fi = fi (E = 0)+ (∇E) fi E + 1

2
ET (∇2

E) fi E. (13.46)

With similar arguments as for the previous model I, we can assume that the
equilibrium distribution follows a kind of Fermi-Dirac distribution (compare with
Eq. (13.37)). This time our ansatz has the following form,

x(E) = h0 + h1|ci E| + h2E2, (13.47)

because the rule is symmetric under the inversion ci → −ci . Conducting similar
calculations as in the previous subsection, one can derive the following expression
for the equilibrium distribution:

f eq
i = d + d(d − 1)h1|ci E|

+1

2
d(d − 1)(2d − 1)h2

1

∑

α

c2
iαe2

α

+d(d − 1)(2d − 1)h2
1|ciαciβ |eαeβ

+d(d − 1)h2E2. (13.48)

Here, we identify a relation between h1 and h2 using the microscopic mass
conservation law. To simplify the calculations we assume a square lattice (simi-
lar calculations can also be carried out for the hexagonal lattice case) and using
c11 = c22 = 1, we derive the difference of fluxes along the X-Y axes (we restrict
ourselves here to the linear approximation):

| f eq
1 − f eq

2 | = d(d−1)h1

∣
∣
∣
∑

α

|c1α|eα−
∑

α

|c2α|eα
∣
∣
∣ = d(d−1)h1|e1−e2|. (13.49)

We observe that the parameter h1 is still free and we should find a way to calculate it.
Using a method similar to the work of [11] and we find that h1 = −1/2. Substituting
this value into the last relation and comparing with simulations (Fig. 13.16), we
observe again a very good agreement between the linear approximation and the
simulations.

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 327

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

|e1−e2|

|J
x+

−
J y+

| =
 g

eq
|e

1−
e 2|

|/2

Theory
Simulations

x 10−3

Fig. 13.16 The figure shows the variation of the X-Y flux difference against the anisotropy strength
(according to Model II). We compare the simulated values with the linear theory and observe a good
agreement for low anisotropy strength (|e1 − e2| ≤ 3). We observe that the range of agreement, in
the linear theory, is larger than in the case of model I

13.7 Discussion

In this chapter, we focus on the collective behavior emerging in interacting cell pop-
ulations. The analysis of collective behavior of interacting cell systems is important
for the understanding of phenomena such as morphogenesis, wound healing, tissue
growth, tumor invasion etc. We are interested in finding appropriate mathematical
models that allow for the description and the analysis of populations composed
of discrete, interacting cells. Cellular automata, and particularly LGCA, provide
a discrete modeling approach, where a micro-scale investigation is allowed through
a stochastic description of the dynamics at the cellular level [15]. In this chapter,
we have provided two examples of LGCA models: (i) the collective dynamics of
a growing cell population and (ii) the macroscopic behavior of a cell population
interacting with its microenvironment.

The first example addresses the collective behavior of a proliferating cell popu-
lation. Simulations show that growing populations trigger a traveling invasion front,
i.e. the growing cell population can be viewed as a wavefront that propagates into its
surrounding environment. Via the cut-off mean-field analysis of the discrete LBE,
we derive a reaction-diffusion equation that describes our system macroscopically.
This cut-off reaction-diffusion equation enables us to calculate accurately the speed
of the wavefront. We predict the front velocity to scale with the square root of the
product of rates for mitosis and migration. This means that we are able to derive
the expansion speed of growing cell populations by incorporating experimentally
accessible parameters, as the mitotic and cell motility rates, respectively.

328 H. Hatzikirou and A. Deutsch

To study and analyze the effects of the microenvironment on cell migration, we
have introduced a further LGCA model. We have identified and modeled the two
main effects of static environments on cell migration:

• Model I addresses motion in an environment providing directional information.
Such environments can be mediated by integrin (adhesive ECM molecules) den-
sity gradient fields or diffusible chemical signals leading to haptotactical or
chemotactical movement, respectively. We have carried out simulations for dif-
ferent static fields, in order to understand the environmental effect on pattern
formation. The main conclusion is that such an environment favors the collective
motion of the cells in the direction of the gradients. Interestingly, we observe in
Fig. 13.10 that the cell population approximately keeps the shape of the initial
cluster and moves in the same direction. This suggests that collective motion is
not necessary an alternative cell migration strategy, as described in [19]. Collec-
tive motion can be interpreted as emergent behavior in a population of amoe-
boidly moving cells in a directed environment. Finally, we have calculated theo-
retically an estimator of the cell spreading speed, i.e. the mean flux for variations
of the gradient field strength. The results exhibit a positive response of the cell
flux to an increasing field strength. The saturation of the response for large stimuli
emphasizes the biological relevance of the model.

• Model II describes cell migration in an environment that influences the orienta-
tion of the cells (e.g. alignment). Fibrillar ECMs induce cell alignment and can
be considered as an example of an environment that affects cell orientation. Sim-
ulations show that such motion produces alignment along a principal orientation
(i.e. fiber) and the cells tend to disperse along it (Fig. 13.12). We have calculated
the cell response to variations of the field strength, in terms of the flux difference
between the principal axis of motion and its perpendicular axis. This difference
gives us an estimate of the speed and the direction of cell dispersion. Finally, we
observe a similar saturation plateau for large fields, as in model I. Moreover, we
gave an application of the second model for the case of brain tumor growth using
DTI data (Fig. 13.14).

• The microenvironment plays also a crucial role in the evolutionary dynamics (as
a kind of selective pressure) of evolving cellular systems, in particular cancer
[2–4].

In the above examples we have seen that LGCA provide an appropriate modeling
framework for the analysis of emergent behavior since they allow for:

• The LGCA rules can mimic the microscopic processes at the cellular level
(coarse-grained sub-cellular dynamics). Here we focused on the analysis of two
selected microscopic interaction rules. Moreover, we showed that with the help
of methods motivated by statistical mechanics, we can estimate the macroscopic
behavior of the whole population (e.g. mean flux).

• Cell motion through heterogeneous media involves phenomena at various spatial
and temporal scales. These cannot be captured in a purely macroscopic modeling
approach. In macroscopic models of heterogeneous media diffusion is treated by

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 329

using powerful methods that homogenize the environment by the definition of
an effective diffusion coefficient (the homogenization process can be perceived
as an intelligent averaging of the environment in terms of diffusion coefficients).
Continuous limits and effective descriptions require characteristic scales to be
bounded and their validity lies far above these bounds [23]. In particular, it is
found that in motion through heterogeneous media, anomalous diffusion (sub-
diffusion) describes the particles’ movement over relevant experimental time
scales, particularly if the environment is fractal [29]; existing macroscopic con-
tinuum equations can not describe such phenomena. On the other hand, discrete
microscopic models, like LGCA, can capture different spatio-temporal scales and
they are well-suited for simulating such phenomena.

• Moreover, the discrete structure of the LGCA facilitates the implementation of
complicated environments (in the form of tensor fields) without any of the com-
putational problems characterizing continuous models.

• LGCA are examples of parallel algorithms. This fact makes them computation-
ally very efficient.

The mean-field (Boltzmann) equation characterizing a given LGCA model arises
under the assumption that the probability of finding two cells at specific positions
is given by the product of corresponding single particle distribution functions, i.e.
any correlations are neglected and distributions fully factorize. It is a challenge to
include two-, three-, etc. particle distribution functions which will allow a system-
atic study of correlation effects. This analysis could particularly improve our under-
standing of short and long time behavior. In particular, in the case of a traveling
front expansion (see above) we have indicated the importance of such correlations
at the tip of the front.

The need for discrete models, especially cellular automata, goes beyond the anal-
ysis of collective behavior in interacting cell populations. A discrete cell-oriented
approach is also required if the dynamic system behavior depends on fluctuations at
the individual cell level. This is, for example, the case at the front of invading tumors
and crucial for the formation of metastases. Lately, experimental findings of Bru
et al. [8] indicate that many tumors share the same surface dynamics. This finding
motivated the analysis of the tumor interface by means of a fractal scaling analysis.
Obviously, corresponding cancer models have also to be of a discrete nature and
CA models are promising candidates to identify growth mechanisms that lead to a
particular scaling.

Based on the variability in the local dynamics, an “interaction-module oriented”
cellular automaton modeling provides an intuitive and powerful approach to cap-
ture essential aspects of complex phenomena at various scales [15]. In conclusion,
there are both challenging future perspectives with regards to interesting biological
applications of the lattice-gas cellular automaton idea and possible refinements of
analytical tools for the investigation of lattice-gas cellular automata. The potential
of cellular automata for modeling essential aspects of biological systems will be
further exploited in the future.

330 H. Hatzikirou and A. Deutsch

References

1. F.J. Alexander, I.Edrei, P.L. Garrido, J.L. Lebowitz, Phase transitions in a probabilistic cellular
automaton: growth kinetics and critical properties. J. Statist. Phys. 68(3/4), 497–514, (1992)

2. A.R. Anderson, A.M. Weaver, P.T. Cummings, V. Quaranta, Tumor morphology and pheno-
typic evolution driven by selective pressure from the microenvironment. Cell 127(5), 905–915,
(2006)

3. D. Basanta, H. Hatzikirou, A. Deutsch, The emergence of invasiveness in tumours: A game
theoretic approach. Eur. Phys. J. B 63, 393–397, (2008)

4. D. Basanta, M. Simon, H. Hatzikirou, A. Deutsch, An evolutionary game theory perspective
elucidates the role of glycolysis in tumour invasion. Cell Prolif. 41, 980–987, (2008)

5. R.D. Benguria, M.C. Depassier, V. Mendez, Propagation of fronts of a reaction-convection-
diffusion equation. Phys. Rev. E 69, 031106, (2004)

6. D. Bray, Cell Movements (Garland Publishing, New York, 1992)
7. H.P. Breuer, W. Huber, F. Petruccione, Fluctuation effects on wave propagation in a reaction-

diffusion process. Phys. D 73, 259, (1994)
8. A. Bru, S. Albertos, J.L. Subiza, J. Lopez Garcia-Asenjo, I. Bru, The universal dynamics of

tumor growth. Bioph. J. 85, 2948–2961, (2003)
9. I. Brunet, B. Derrida Shift in the velocity of a front due to a cutoff. Phys. Rev. E 56(3),

2597–2604, (1997)
10. I. Brunet, B. Derrida Effect of microscopic noise in front propagation. J. Stat. Phys. 103(1/2),

269–282, (2001)
11. H. Bussemaker, Analysis of a pattern forming lattice gas automaton: Mean field theory and

beyond. Phys. Rev. E 53(4), 1644–1661, (1996)
12. S.B. Carter, Principles of cell motility: the direction of cell movement and cancer invasion.

Nature 208(5016), 1183–1187, (1965)
13. B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge Univer-

sity Press, Cambridge, 1998)
14. E. Cohen, D. Kessler, H. Levine, Fluctuation-regularized front propagation dynamics in

reaction-diffusion systems. Phys. Rev. Lett. 94, 158302, (2005)
15. A. Deutsch, S. Dormann, Cellular Automaton Modeling of Biological Pattern Formation

(Birkhäuser, Basel 2005)
16. R.B. Dickinson, R.T. Tranquillo, A stochastic model for cell random motility and haptotaxis

based on adhesion receptor fuctuations. J. Math. Biol. 31, 563–600, (1993).
17. G.D. Doolen, Lattice Gas Methods for Partial Differential Equations (Addison-Wesley, New

York, 1990)
18. D. Drasdo, S. Höhme, Individual-based approaches to birth and death in avascular tumors.

Math. Comp. Model. 37, 1163–1175, (2003)
19. P. Friedl, Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin.

Cell. Biol. 16(1), 14–23, (2004)
20. U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.P. Rivet, Lattice gas

hydrodynamics in two and three dimensions. Compl. Syst. 1, 649–707, (1987)
21. H. Hatzikirou, L. Brusch, C. Schaller, M. Simon, A. Deutsch, Prediction of traveling front

behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl.
59, 2326–2339, (2010)

22. H. Hatzikirou, A. Deutsch, Cellular automata as microscopic models of cell migration in
heterogeneous environments. Curr. Top. Dev. Biol. 81, 401–434, (2008)

23. A. Lesne, Discrete vs continuous controversy in physics. Math. Struct. Comp. Sc. 17(2),
185–223, (2007)

24. J.B. McCarthy, L.T. Furcht, Laminin and fibronectin promote the haptotactic migration of b16
mouse melanoma cells. J. Cell Biol. 98(4), 1474–1480, (1984)

25. H. Meinhardt, Models of Biological Pattern Formation (Academic New York, 1982)
26. J. Murray, Mathematical Biology I: An Introduction (Springer, Heidelberg 2001)

13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 331

27. S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A. F. Horwitz, Integrin-ligand
binding governs cell-substratum adhesiveness. Nature 388(6638), 210, (1997)

28. D.H. Rothman, S. Zaleski, Lattice-gas models of phase separation: interfaces, phase transi-
tions, and multiphase flow. Rev. Mod. Phys. 66(4), 1417–1479, (1994)

29. M. Saxton, Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66,
394–401, (1994)

30. M.V. Velikanov, R. Kapral, Fluctuation effects on quadratic autocatalysis fronts. J. Chem.
Phys. 110, 109–115, (1999)

31. J. von Neumann, Theory of Self-Reproducing Automata (University of Illinois Press, Urbana,
IL, 1966)

32. D.A. Wolf-Gladrow, Lattice-gas Cellular Automata and Lattice Boltzmann Models: An Intro-
duction (Springer, Heidelberg 2005)

33. S. Wolfram, A New Kind of Science (Wolfram Media, Inc., Champaign, IL 2002)
34. M.H. Zaman, P. Matsudaira, D.A. Lauffenburger, Understanding effects of matrix protease and

matrix organization on directional persistence and translational speed in three-dimensional cell
migration. Ann. Biomed. Eng. 35(1), 91–100, (2006)

Chapter 14
Cellular Automata for Simultaneous Analysis
and Optimal Structural Topology Design

Zafer Gürdal and Ramzi Zakhama

14.1 Introduction

The Cellular Automata (CA) paradigm has been finding more and more applications
in engineering and sciences in the past decade, but nevertheless its use for engineer-
ing design has not been widely popular. The proposed chapter is a special and unique
implementation of the paradigm for combined analysis and design of continuum
structures made of isotropic and fiber reinforced orthotropic materials. In particular,
the use of a computational approach for topology design of the structural domain
together with its local field and design variables is discussed.

Topology design of load carrying engineering structures has been one of the areas
that have gaining popularity in the design engineering community. Current state of
the art design tools enable engineers to define the boundaries of solid domains, pro-
viding them with useful tools for preliminary design. However, such boundaries are
still rather course, even for two-dimensional domains let alone three-dimensional
parts, due to computational efficiency of such tools. Of course the need and the
drive for future development of these tools is to achieve a high level of resolution
in part details, and be able to address not only structural load carrying functionality
during design but also address other features, be it response to other non-mechanical
and multidisciplinary loads (wind loads and thermal, magnetic and electric fields)
or manufacturability.

The lack of computational efficiency mentioned above can be attributed to two
restrictive features of most currently used design tools. The first is the inherently
serial nature of both the analysis and the design algorithms. Most available topol-
ogy optimization algorithms do not benefit from the computational efficiency that
can be achieved from massively parallel implementations. This is primarily due to
the difficulties associated with parallelizing the analysis routines that need to be
executed after design changes. Developers of the optimization tools typically rely on
off-the-shelf finite element analyses that either cannot be parallelized due to restricts

Z. Gürdal (B)
Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
e-mail: z.gurdal@tudelft.nl

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_14,
C© Springer-Verlag Berlin Heidelberg 2010

333

334 Z. Gürdal and R. Zakhama

access to their solvers, or simply do not scale well in terms of parallelization. More-
over, the number of design variables increases as the domain is discretized into
smaller and smaller parts to achieve higher design resolution. The immediate out-
come of this restriction makes the design optimization extremely computationally
demanding due to what is commonly referred to as the curse of dimensionality. The
second limitations is the perceived notion that a design process is simply performing
repetitive analyses and monitoring the performance of the design while maintaining
constraint satisfaction during the process. Of course engineers currently have very
fast analysis tools that can evaluate the performance of a design to a large degree
of precision. Nevertheless, even though they are fast, it is probably not justified to
perform an engineering analysis of a part to such high precisions if one is going to
toss away the result as soon as the design is modified to improve it. It can be argued
that an efficient engineering design requires its own computational paradigm that
enables computation of topologies without the use of time consuming high precision
analyses.

The growing interest in solving complex problems using CA has recently found
its implementation in complex structural design problems. The paradigm appears to
address most of the limitations described above based on features well described
in the earlier chapters of this book. Kita and Toyoda [1] were among the first
to use the cellular automata paradigm for solving topology optimization prob-
lems. They constructed CA design rules to obtain two-dimensional topologies
based on an Evolutionary Structural Optimization (ESO) approach [2, 3]. In their
approach the analysis of the structure however is performed using the Finite Element
method.

Another pioneering work is attributed to Gürdal and Tatting [4] who used the
CA paradigm to perform an integrated analysis and design. They solved the topol-
ogy and sizing design of trusses that exhibit linear and geometrically nonlinear
responses. The analysis rules are derived from local neighborhood equilibrium,
while a simple design rule that is based on fully stressed design (a Stress Ratio
(SR) method) [5] is used to size the truss members, in which the cross sec-
tional areas of the members that connect the neighboring cells were the design
variables.

The concept was later extended to preliminary implementation of the design of
two-dimensional continuum structures by Tatting and Gürdal [6]. At the cell level
the two-dimensional continuum is modeled by a truss layout that is equivalent to the
continuum cell according to an energy criterion. The relationship between the thick-
ness of the continuum structure and the cross sectional areas of the truss members
is established by equating the strain energy of the continuum cell and that of the
truss cell for given nodal displacements. The local analysis rules are again derived
from the equilibrium condition of the cell, and a fully stressed material condition is
selected to construct the local design rule. Numerical examples are carried out and
results compared to an iterative Finite Element Analysis based design scheme that
used GENESIS software to demonstrate the efficiency of the combined CA analysis
and design.

14 Cellular Automata for Structural Topology 335

Encouraged by the success of applying the CA paradigm to structural design,
Abdalla and Gürdal [7] extended CA to the design of an Euler-Bernoulli column
for minimum weight under buckling constraint, which is an eigenvalue problem.
Global nature of eigenvalue problems, and its reduction to local analysis and design
rules were the principal contribution of the work. The analysis rule is derived by
minimization of the total potential energy in a cell neighborhood and the design rule
is formulated as a local mini-optimization problem involving force resultants. The
proposed CA algorithm is shown to converge correctly to an analytical optima for a
number of classical test cases.

A more formed treatment of the problem of topology optimization of an elastic
two-dimensional plate appeared first in Abdalla and Gürdal [8]. In their work, CA
design rule is formulated for the first time using rigorous optimality criteria based
on SIMP material [9–13] approach. The CA analysis rule was derived from the
principle of minimal total potential energy. An extension of this work was made by
Setoodeh et al. [14] to combine fiber angle and topology design of an anisotropic
fiber reinforced laminae. Fibre angles and density measures at each cell of a domain
are updated based on the optimality criteria for the minimum compliance. Topol-
ogy optimization of 2-D elastic continuum structures subject to in plane loads and
exhibiting geometric nonlinearities was performed by Zakhama et al. [15].

The cellular automata paradigm is also well known to be an inherently massively
parallel algorithm. Slotta et al. [16] have implemented Gürdal and Tatting’s [4] work
using standard programming languages and parallelization libraries. The domain is
decomposed into different groups of cells. Each group is assigned to a processor
and the same local rules are applied for all the processors. Results demonstrate that
the CA method is perfectly suited for parallel computation. Setoodeh et al. [17]
proposed solving topology optimization for a continuum structure using a pipeline
parallel implementation of cellular automata on distributed memory architecture.
Numerical results show that the pipeline implementation converges successfully and
generates optimal designs.

For the above mentioned structural analysis and design studies it has been
observed that the CA convergence rate deteriorates considerably as the cell density
is refined. This is due to the slow propagation of cell level field variables across the
structural domain governed by elliptic partial differential equations. Additionally
when a CA algorithm is implemented on a serial machine it looses its most attrac-
tive feature- parallelism [16, 17]. A methodology based on the Multigrid scheme
can be used to accelerate the CA convergence process on serial machines. It has
been demonstrated that the CA method takes advantage of the acceleration effect of
multigrid schemes [18, 19]. The main idea in the multigrid concept is to use different
discretization levels of cell grids, where the iterations of a classical iterative method
on the finer grid are coupled with the iterations for the correction of the solution on
the coarser grids. This concept is illustrated in depth by Wesseling [20].

Tovar et al. [21] have proposed another alternative to accelerate the CA conver-
gence. The authors proposed a scheme based on Finite Element method to accelerate
the analysis process followed by CA design rule. This type of strategy is often called

336 Z. Gürdal and R. Zakhama

Hybrid Cellular Automata (HCA). In their paper, the CA local design rules are based
on control theory, which minimizes the error between a local Strain Energy Density
(SED) and the averaged SED value. More recently, Tovar et al. [22] have derived
the CA local design rules based on optimality criteria interpreted as Kuhn-Tucker
conditions of a multi-objective problem in addition to the control theory defined
earlier in [21].

In the following basic elements of the definitions that are specific to topology
design optimization of structural domains is described. In particular, sections on
local rules that will ensure local equilibrium for analysis purposes and optimality for
design purposes are described. Numerical implementation for the cellular automata
paradigm for different type of structures are presented. Examples describing engi-
neering applications are provided starting with two- and three-dimensional isotropic
domains with local density design variables, followed by anisotropic medium in
which local design variables in the form of fiber orientation angles is used in addi-
tion to the density variables.

14.2 Modeling for Structural Analysis and Design

For structural analysis and design local cell state will include physical and geometric
properties of a solid domain. Principal response quantities (i.e., unknown field vari-
ables) of the analysis effort of a solid domain is typically the displacements. Local
geometry of the cell are typically cross-sectional areas, cell densities, fiber-angle
orientation, etc., which represent the design variables associated with the cell. In
addition, local tractions applied to the cell and material properties of the solid may
be needed for computations, and constitute part of the cell state, even if they may
not be changing during the calculations.

A structural domain can be 1-,2- or 3-Dimensional, In the present chapter the
trivial 1-D structures such as beams and columns [7, 18] are ignored, putting the
emphasis on 2- and 3-D domains. Such domains can be of discrete nature, such
as a truss type structure [4, 16, 23, 24], or a continuum type [6, 8, 14, 15, 17,
19, 25], such as plate and shell type structures. In the following basic descrip-
tion of the CA representation of these different kinds of structural domains are
provided.

14.2.1 Truss Domain

Following the basic elements of the CA methodology described in Chap. 1, the cell
representation of a simple 2-D discrete structural domain is a ground truss struc-
ture shown in Fig. 14.1a. In this representation, each cell is made up of eight truss
members extending from the cell center at every 45◦ orientation. The Moore neigh-
borhood with radius r = 1 is selected as shown in Fig. 14.1b. This neighborhood
is composed of the eight adjacent cells which are marked by NW, N, NE, W, E,
SW, S, and SE (see Fig. 14.1b) following the traditional compass representation

14 Cellular Automata for Structural Topology 337

NW

SW

N

W

S SE

E

NE

Fig. 14.1 CA ground structure and Moore neighborhood for trusses

of directions. For 2-D structural analysis the primary field variables are the nodal
displacement components at truss junctions. The cell state also depends on the geo-
metric and material properties of the truss members as well as the applied external
loads at the truss nodes. Hence the cell state in the present application consists of two
displacement components in mutually orthogonal directions, cross sectional areas of
eight bars attached to the cell, and external loads in the two primary direction of the
domain. In the present example the material type of the members is assumed to be
fixed and kept outside the state of the cell that will change iteratively. Following
the notation introduced in Chap. 1, the definition of the cell state at a given time
iteration can be defined as

Σ(i) =
{
(ui , vi),

(
f x
i , f y

i

)
,
(

ANW
i , AN

i , ANE
i , AW

i , AE
i , ASW

i , AS
i , ASE

i

)}
,

(14.1)

where ui and vi are the horizontal and vertical displacements, respectively. The
reaction forces are denoted by f x

i and f y
i in the x and y directions respectively, and

the member areas are represented by ANW
i , AN

i , . . . , ASE
i .

The boundary condition mentioned in Chap. 1 is chosen as fixed for this example.
To accomplish that, for cells at the boundary, cross sectional areas of the members
which lie outside the structural domain are set to zero, which removes those truss
members and provides a finite boundary for the truss ground structure. For the cell
locations where the structure is physically restrained to prevent rigid body motion
or restrained because of functional requirements, the appropriate displacement com-
ponents are set to be zero and unchanging.

14.2.2 Isotropic Continuum Domain

In this section, the CA discretization of two and three dimensional structural
domains is considered. The elastic continuum domain is discretized by a lattice of
regular cells which are equally spaced in the x and y directions (see Fig. 14.2a), or

338 Z. Gürdal and R. Zakhama

y

x
(a) 2-D CA lattice.

(c) 2-D Moore neighborhood. (d) 3-D Moore neighborhood.

(b) 3-D CA lattice.

y

x

C
W E

S

NENNW

SW SE

I II

IIIIV

z
y

x

z
y

x

N2NW2

S2SW2

NE

E

E1

SW

NE1

SE1S1SW1

S

NE2

SE2

I II

III

V VI

VII

VIII

SE

W2 C2 E2

Fig. 14.2 CA lattices and Moore neighborhood for continuum structures

x , y and z for a three-dimensional structural domain (see Fig. 14.2b). Traditional
Moore neighborhood is used to define the connectivity of the lattice as shown in
Figs. 14.2c and 14.2d. In this case, the neighborhood includes the entire are, num-
bered by roman numerals, between the cell points again represented by the compass
directions.

Each center cell Ci communicates with its neighbors by a local rule and its state is
denoted asΣ(i)(t) where t is the iteration number. For isotropic continuum topology
structures in two and three dimensions, the state of the i th cell is defined by

Σ(i) =
{(

u(1...m)i

)
,
(

f (1...m)i

)
, ρi

}
, (14.2)

where m corresponds to the dimensionality of the domain, with m = 2 or 3 for two

or three dimensional domains, respectively. The components
(

u(1...m)i

)
are the cell

displacements in the directions (1...m), and
(

f (1...m)i

)
the external forces acting on

the i th cell in the respective (1...m) directions. Each cell of the discretized domain
has its own density measure ρi at the node point independently of the densities of
the elements numbered by roman numerals that define the neighborhood.

14 Cellular Automata for Structural Topology 339

14.2.3 Composite Lamina Continuum Domain

A special case of a 2-D continuum is orthotropic fiber reinforced composite lam-
inates in which the fibers provide stiffness and strength in preferred directions.
Hence, determining the fiber orientation angle is an important part of the design;
activity that is commonly referred to as tailoring. For combined topology and fiber-
angle design, the basic CA elements of the isotropic continuum domain remain
almost the same, however, the state of the i th cell is modified as follows:

Σ(i) =
{(

u(1...m)i

)
,
(

f (1...m)i

)
, (ρi , θi),Qi

}
, (14.3)

where θi is the fiber angle of the i th cell and Qi is the reduced transformed stiffness
in which, due to symmetry, only the upper half diagonal of the matrix is stored.

14.3 Analysis Update Rule

14.3.1 Truss Structures

Local analysis rule is derived from the equilibrium condition of a cell with its neigh-
bors. Within a cell, each truss member of the neighborhood structure (k = 1, ..., 8)
has a Young modulus E , a length Lk

i before deformation, and a cross-sectional area
Ak

i . The total potential energy associated the cell is the sum of the strain energy in
each of the eight truss member of the neighborhood structure, as well as the potential
energy of the external forces applied to the cell:

'i =
8∑

k=1

E Ak
i Lk

i (ε
k
i)

2

2
− f x

i ui − f y
i vi , (14.4)

where εk
i is the truss member strain which depends on the relative displacements of

the neighboring cells. The strain is evaluated using the Green’s strain definition for
a truss members:

εk
i = (ui − uk

i)cosθk − (vi − vk
i)sinθk

Lk
i

, (14.5)

where (uk
i , v

k
i) are the neighboring displacements, and θk is the orientation angle of

the kth truss element member from the cell center.
Thus, the equilibrium equations are obtained by minimizing the total potential

energy with respect to the cell displacements ui and vi :

∂'i

∂ui
= 0,

∂'i

∂vi
= 0. (14.6)

340 Z. Gürdal and R. Zakhama

14.3.2 Isotropic Continuum Structures

The equilibrium of the neighborhood structure (see Figs. 14.2c,d) is again used to
formulate the local analysis update rule. The total potential energy associated with a
cell is the sum of the strain energy in each element of the neighborhood structure and
the potential energy due to the external forces applied directly to the cell. Note that
in this discretization scheme there will only be a few cells in the domain at which
external forces are applied. Most cell equilibrium will only involve interaction of the
local cells through the solid domain between them, which following the terminology
of finite element analysis are referred to as the elements in this chapter:

'i =
Nelement∑

k=1

U k
i − fi · ui , (14.7)

where Nelement is the number of elements surrounding a cell represented by the
roman numerals in the figure, U k

i is the strain energy for the kth element, fi is the
applied force vector and ui is the displacement vector for all the cell’s neighborhood
including the cell itself.

The strain energy of an element is expressed in terms of the strain energy of the
base material as follows:

U k = ρ̄ pŨ , (14.8)

where

Ũ = 1

2

∫

element
 · Q · dxdydz, (14.9)

is the strain energy of the base material, is the small-strain tensor, and Q is the
reduced in-plane stiffness matrix. The symbol p in the equation is called penaliza-
tion parameter and is used for design purposes, its role will be explained later in the
design rules.

The elements densities ρ̄ are obtained by an average density interpolation [8]
given by

1

ρ̄ p
= 1

Ncell

Ncell∑

i=1

1

ρ
p
i

, (14.10)

where ρi ’s are the density measures of the cells surrounding the element, and Ncell
is the number of cells defining the element. For the two-dimensional neighborhood
structure Ncell = 4 and for the three-dimensional neighborhood structure Ncell = 8.

The density interpolation scheme in the previous equation is chosen such that
any node with a density measure below a threshold value would turn off all four

14 Cellular Automata for Structural Topology 341

elements in which the node participates. Using this scheme checkerboard patterns
are suppressed automatically during the optimization process.

Equilibrium equations are obtained by minimizing the total potential energy with
respect to the cell displacements:

min
uC

'i . (14.11)

The resulting equilibrium equations for each cell are written in a residual form:

RC (uC ,uN) =
{

GC (uC ,uN)

GN (uC ,uN)

}

+
{

fC

fN

}

= 0, (14.12)

where uC and uN are the displacement vectors of the cell and the neighborhood,
respectively, GC and GN are the vectors of the internal forces, fC and fN are the
vector of the applied forces relative to the cell and the vector of the internal forces
relative to the neighborhood, respectively.

Differentiating the vector RC with respect to the components of uC , the linear
stiffness matrix can be written as

K = −∂RC

∂uC
(uC ,uN). (14.13)

The stiffness matrix K can also be expressed as the Hessian of the total potential
energy:

Kpq = ∂2'i

∂u p ∂uq
. (14.14)

Thus, the cell displacements are updated as follows:

ut+1
C = ut

C +.uC , (14.15)

.uC = (KC)
−1 ·
(

GC (u
t+1
N)+ fC

)
, (14.16)

where KC is a (2 × 2) or (3 × 3) cell stiffness matrix for two or three dimensional
cases, respectively.

14.3.3 Composite Lamina Continuum Structures

When considering fiber-angle in the topology optimization problem the same formu-
lation described above is used, with the only exception that now the fiber orientation
is allowed to change from cell to cell. This changes the computation of the reduced
in-plane stiffness, which is obtained as follows:

342 Z. Gürdal and R. Zakhama

Q = 1

Ncell

Ncell∑

i=1

Qi , (14.17)

where Qi is the in-plane transformed reduced stiffness of the four nodes of the
element.

Thus, the analysis update rule is performed as described earlier using (14.15).

14.4 Design Update Rule

Structural analysis is based on a fairly well established principles and mathemati-
cal formulation that results in well know partial differential equations. Hence, the
analysis rules described above are derived using the same principles. The design
world on the other hand is much less restrictive, and there are variety of possibilities
that one can implement design changes during an iterative scheme. The possibilities
range from purely heuristic changes to, simple pattern matching, or to formal math-
ematical formulation. In the following, implementation of the design rules for the
the three cases that we are discussing are presented.

14.4.1 Truss Structures

The design update rule in this case is derived from resizing the truss element mem-
bers of the neighborhood structure based on full utilization of load carrying capabil-
ity of the material. The cross sectional update formula is commonly referred to as the
fully stressed design or stress ratio approach [5]. This scheme consists on computing
a new cross sectional area (Ak

i)
(t+1) which is based on the previous cross sectional

area (Ak
i)
(t) and the allowable stress σall chosen by the user as the maximum stress

that the material can carry:

(Ak
i)
(t+1) = (Ak

i)
(t) E |εk

i |
σall

. (14.18)

14.4.2 Continuum Structures

The structural topology design problem is posed according to the minimal compli-
ance formulation. Its aim is to minimize the elastic strain energy of the structure,
or equivalently maximize its total potential energy ' at equilibrium, subject to a
limitation on the material volume. Thus, the design problem is written as

min
ρ

Wc(ρ,u∗) or max
ρ
'(ρ,u∗), (14.19)

14 Cellular Automata for Structural Topology 343

under the constraints:

g(ρ) ≤ 0, (14.20)

and the volume constraint:
∫

�

ρ d� ≤ η · V�, (14.21)

where ρ is the local density distribution of material which is chosen as the design
variable, � is the prescribed design domain, u∗ is the displacement vector at equi-
librium, and g is a vector of local constraints which set bounds on the density dis-
tribution. The volume V of the structure is limited to an available fraction η of
the total volume of the design material domain V�. From the optimality conditions
of the system level design problem (14.19), (14.20), and (14.21), local optimality
conditions are derived which are associated with the cell level optimization prob-
lem. According to the specialization of the SIMP method, the local stiffness of the
structure is expressed as a function of a fictitious local density distribution ρ. The
local optimization problem takes on the form [8, 14]:

min
ρ

�∗

ρ p
+ μ ρ, (14.22)

ε ≤ ρ ≤ 1, (14.23)

where

• ε > 0 is a very small number, set as a lower bound on ρ to avoid numerical
instability that may result from structural discontinuities when zero density is
allowed,

• p ≥ 1 is a penalization parameter that is introduced in order to lead the design
to a black or white topology, by assigning sufficiently high values to p, typically
p = 3,

• �∗ = ρ p �̂, is an approximately invariant local quantity, and �̂ is the comple-
mentary energy density,

• μ is the Lagrange multiplier associated with the global volume constraint (14.21).
It is the only global quantity that is involved in this local problem. It serves in
updating the material densities in the domain. It is updated at the global level by
satisfying the total volume constraint [8, 14].

The update of each cell density of the continuum structure is obtained from the
solution of this one-dimensional convex problem. The analytically solution [8, 14]
of this local optimization problem is as follows:

⎧
⎨

⎩

ρ̂ for ε < ρ̂ < 1
ε for ρ̂ ≤ ε,

1 for ρ̂ ≥ 1
(14.24)

344 Z. Gürdal and R. Zakhama

where

ρ̂ =
(
�∗

μ̄

) 1
1+p

, μ̄ = μ

p
. (14.25)

The energy density �∗ for each cell of the domain can be written as an average
among the Nelement elements of the Moore neighborhood structure:

�∗ = 1

n v

Nelement∑

i=1

ρ̄
2 p
i Ũi , (14.26)

where n is the number of non-shadow elements with nonzero density, v is the vol-
ume of a cell, which is v = h2 or h3 for two or three dimensional cases, respectively,
and h is the distance between two immediate neighbor cells.

14.4.3 Composite Lamina Continuum Structures

By considering θ and ρ to be the design variables, we can convert the problem of
combined topology and fibre-angle design to a local optimization problem through
the general formulation (14.19), (14.20), and (14.21) as

min
ρ,θ

�(θ)

ρ p
+ μ ρ, (14.27)

ε ≤ ρ ≤ 1. (14.28)

The value of �(θ) is evaluated based on the current value of the cell density ρ
and the strain vector , and then used to update the local density through the solution
of (14.27) and (14.28). Due to its special mathematical form, this local optimization
problem can be easily split into two subproblems:
one for fibre-angle design,

�∗ = min
θ
�(θ), (14.29)

�∗ = 1

n v

Nelement∑

i=1

ρ̄
2 p
i Ũi (θ), (14.30)

and the second one for topology,

min
ρ

�∗

ρ p
+ μ ρ, (14.31)

ε ≤ ρ ≤ 1. (14.32)

14 Cellular Automata for Structural Topology 345

It is well known that the optimal fiber-angle orientation for “shear weak” materi-
als coincides with the principal stress direction [26, 27]. For “shear strong” materials
there exists a closed form solution for which, depending on the principal strain ratio
and material properties, the orientation might again coincide with principal stress
direction or be different from the principal stress direction [26, 27].

In addition to the mathematical formulation of the fiber orientation angle update,
it is also possible to use schemes that are less formal. For example, it is known
that more than often incorporation of manufacturing requirements into mathematical
formulations is not possible or will result in computationally expensive schemes that
will be unaffordable. One such consideration is the continuity of the fiber orientation
angle from one cell to another. In real life, fibers are continuous strands and abrupt
change in orientation angle from one cell to another is not feasible. To account for
such a requirement Setoodeh et al. [25] implemented a pattern matching technique,
which re-updated the fiber orientation computed using the mathematical expressions
with orientation angle patterns of the neighboring cells forming uniform orientation
angle in the neighborhoods, with only well defined boundaries in the domain with
different fiber orientation angles.

14.5 Cellular Automata Implementation Schemes

The update of the cells for trusses and continuum structures can be done simultane-
ously, which corresponds to the Jacobi scheme, as follows:

Σ(i)(t+1) = φ
(
�(i)(t), Σ(N M)(t)

)
, (14.33)

or sequentially, which corresponds to Gauss-Seidel scheme:

Σ(i)(t+1) = φ
(
Σ(i)(t), Σ(M)(t+1), Σ(N M)(t)

)
, (14.34)

where M is the set of neighboring cells whose states have been modified in the
current iteration and N M is the set of remaining cells, which have not yet been
modified.

The Gauss-Seidel method is used for the analysis update. For the design update,
the Jacobi method is found to be the appropriate one to use to preserve the symmetry
of the solution [8].

14.5.1 Truss Structures

The ground truss structure algorithm is based on the repeats of the analysis and
design update rules for each cell of a domain. The algorithm starts from updat-
ing the displacement for a given structure until the norm of the force imbalance
(residual) reaches a pre-specified tolerance εr . Then, the cross sectional areas are

346 Z. Gürdal and R. Zakhama

updated using the design update rule. The algorithm has deemed to converge when
the structural design no longer changes.

14.5.2 Continuum Structures

For the topology of continuum structures, the analysis and design iterations are
nested. A flowchart of the CA design algorithm is presented in Fig. 14.3. Starting
from a structure with zero displacements and from densities set to volume fraction η,
analysis updates are performed repeatedly until the norm of the force imbalance
(residual) reaches a pre-specified tolerance εr . Next, the design is updated over the
whole domain, then the volume constraint is checked. If the volume constraint is
not satisfied, the Lagrange multipliers are updated and so is the design. The process
continues until the relative difference between five successive compliance values is
less than a pre-specified tolerance εc and the variation in cell densities is less than a
tolerance εd .

From a computational perspective, the attractive feature of CA is its inherent par-
allelism. This feature appears to be particulary effective with regard to the analysis
update. When it is not fully exploited, CA algorithms can be quite slow to converge.
This is because communication between cells is limited only to immediate neigh-
bors. The information from the cells where the loads are applied has to travel by
neighbor-to-neighbor interaction throughout the domain. As the lattice is refined,
the number of lattice updates needed to reach equilibrium significantly increases
manifesting the deterioration in the rate of convergence alluded to above. Thus,

Fig. 14.3 CA continuum design algorithm

14 Cellular Automata for Structural Topology 347

when CA is implemented on a serial machine it loses its most attractive feature as
far as the analysis update is concerned. The design features of CA, though, remain
effective.

An alternative methodology based on multigrid scheme [18–20] is used to accel-
erate the CA design algorithm on a serial machine. The multigrid acceleration
scheme uses different discretization levels of grids. The CA iterations on the finest
grid are coupled with the iterations of the correction solution on the coarse grids.
The multigrid accelerated CA algorithm is demonstrated to be a powerful tool for
solving topology optimization problems compared to other algorithms based on tra-
ditional finite element analysis [19]. The computational cost using this scheme is
numerically found to be proportional to the number of cells.

14.6 Numerical Examples

In this section, some examples of topology optimization of continuum structures
are considered to illustrate the robustness of the CA based combined analysis and
design algorithm. As mentioned earlier the CA-based analysis is computationally
expensive compared to an analysis using modern tools on a serial machine. There-
fore, it is essential to implement CA in a parallel environment to exploit the true
merits of a CA-based structural analysis and design. However, massively parallel
computing machines that are most suited to this kind of computations are not as
easily accessible as serial ones. To accelerate the convergence of CA iterations, two
schemes are used in the present chapter. The first scheme is based on multigrid
accelerated CA [19]. The second scheme is based on HCA, which uses a global
finite element analysis instead of iterative updates of cell displacements followed
by local update rules used for the design.

14.6.1 Example 1: 2-D Plate Topology Design

To demonstrate the performance and efficiency of the multigrid accelerated CA
algorithm in solving the topology optimization problem, its results are compared
with an existing method that is based on iterative finite element analysis solutions.
Since the same CA design update rule is used in all tested algorithms, the compar-
ison concerns design algorithms based on different analysis processes, namely the
multigrid scheme and the commercial NASTRAN finite element code. The example
studied is a symmetric cantilever (see Fig. 14.4) plate which is 1,000 mm long,
250 mm high, and 1 mm thick. The penalization parameter p is set to 3, the volume
fraction is set to 0.5, the Poisson ratio is 0.4 and the Young modulus E is 1,000
N/mm2. The tip load considered is P = 100 N acting at the center point of the free
end of the cantilever.

Different discretization levels are used for the comparison; the results are gen-
erated for 11 grid levels, starting from the coarsest grid level of 9 × 3 cells, up to

348 Z. Gürdal and R. Zakhama

Fig. 14.4 Geometry and loading

the finest grid level of 4,097 × 1,025 cells. Convergence time for the HCA solu-
tion using the commercial NASTRAN code and for the multigrid accelerated CA
algorithm are illustrated in Fig. 14.5. The vertical and horizontal axes represent the
convergence time and the number of cells, respectively, on a log-log scale. First, it is
observed that the commercial NASTRAN code showed a higher convergence time
than the other algorithm. Moreover, the commercial NASTRAN code suffers lack
of memory while running the grid level of 2,049 × 513 cells. On the contrary, the
cellular automata paradigm can handle large problems because of its local nature
which makes the storage of the global stiffness matrix unnecessary. The run time
to convergence relative to the multigrid algorithm appears to be nearly proportional
to the number of cells, which reveals a computational effort in the order of O(N).
As for the optimal topologies, it can be seen from Table 14.1 that those obtained
by the multigrid algorithm and by the use of NASTRAN for analysis are practically
the same with a slightly (0.005%–0.03%) but persistently lower compliance in the
multigrid results.

101 102 103 104 105 106 107
100

105

104

103

102

101

Number of cells

C
on

ve
rg

en
ce

 ti
m

e
(s

)

NASTRAN

MG accelerated CA

Fig. 14.5 Convergence time using NASTRAN and Multigrid accelerated CA

14 Cellular Automata for Structural Topology 349

Table 14.1 Optimal
topologies and compliances Cell number

Optimal topology
using NASTRAN

Optimal topology
using Multigrid

129 × 33
4,273.6 4,258.7

257 × 65
4,064.1 4,062.7

513 × 129
3,985.7 3,984.2

1,025 × 257
3,983 3,980.9

2,049 × 513
3,994 3,992

4,097 × 1,025 Lack of memory
3,998.4

14.6.2 Example 2: 2- and 3-D Compression Bridge

In this example, the objective is to find an optimal topology for a bridge which
crosses a river and supports a uniformly distributed traffic loading. The design
domain, the loading and the boundary conditions of the bridge problem are rep-
resented in Fig. 14.6. Requirements of waterway traffic underneath and road traffic
on the bridge translate into the definition of imposed zones: empty (void) zones for
the waterway and vehicle traffic through the bridge, and a dense (black) one for the
deck and supports, as represented in Fig. 14.6. The design domain is discretized
with 257 × 65 cells for the two-dimensional case and with 257 × 65 × 33 for the
three-dimensional case including the empty zone. The penalization parameter p is
set to 3, the volume fraction is set to 0.1 and the Poisson ratio to 0.3.

The final topology for the two-dimensional case performed by the multigrid
design algorithm is represented in Fig. 14.7. It corresponds to a compression arch
which holds a three span deck. The first and the third spans are cantilevers which

Fig. 14.6 Compression bridge domain

350 Z. Gürdal and R. Zakhama

Fig. 14.7 Optimal 2-D topology of compression bridge

Z

Y X

(a) XZ view.

Z

X Y

(b) YZ view

Z

Y

X

(c) XYZ view.

Fig. 14.8 Optimal 3-D topology of compression bridge

are supported each by a compression member, whereas the central span is suspended
via a series of tension members. Different views for the three-dimensional version
of the topology of the bridge are shown in Fig. 14.8. The topology obtained with the
three-dimensional model presents some similarly, in the XZ plane, with the topology
generated by the two-dimensional model (see Figs. 14.8(a) and 14.7) and with the
design of the compression arch bridge reported in [28].

14.6.3 Example 3: Fiber Reinforce Cantilever Plate

To demonstrate the inclusion of the fibre-angle orientation in combined topology
optimization environment, the in-plane design of cantilever plates with different
material volume fractions is studied. The continuation method [29] is used in this

14 Cellular Automata for Structural Topology 351

Fig. 14.9 Optimal topology
of symmetric cantilever plate
(325 × 82 cells) from [14]

(a) 100% Volume fraction.

(b) 70% Volume fraction.

(c) 50% Volume fraction.

(d) 30% Volume fraction.

–90° 90°Fiber angle

study, with the penalization parameter p increasing gradually from 1.0 to 3.0 to
avoid local minima. The following material are used:

E1 = 135.2 GPa, E2 = 9.241 GPa,
G12 = 6.276 GPa, ν12 = 0.318.

The symmetric cantilever plate in Fig. 14.4 with an aspect ratio of 4 is mod-
eled with a regular lattice of 325 × 82 cells. The topology optimization problem
is solved using HCA scheme. Figures 14.9a through 14.9d show the topology of
the optimal designs along with the color-coded fiber orientation angles for different
volume fractions (for color version of this figure refer to [14]). These designs, as
expected, are quite similar to classical optimal topologies of isotropic material (see
example 1).

Corresponding to the designs shown in the figure, normalized compliances with
respect to a 0◦ fiber design are tabulated in Table 14.2. These figures show that with
the present choice of density interpolation scheme checkerboards are readily sup-
pressed. Besides, for lower volume fractions, fibers are aligned with thin members
similar to Mitchell type of structures.

352 Z. Gürdal and R. Zakhama

Table 14.2 Normalized
compliance of the symmetric
cantilever for different
volume fractions

Volume
fraction

Normalized
compliance

100% 0.74
70% 0.88
50% 1.14
30% 2.22

14.7 Concluding Remarks

Topology optimization of structures has matured enough to be often applied in
industry, and continues to attract the attention of researchers and software com-
panies in various engineering fields. Traditionally, most available algorithms for
solving topology optimization problems are based on the global solution approach
and require a large number of costly analyses. The CA paradigm offers a highly
novel computational environment not only solving the topology design optimiza-
tion problem efficiently, but also in terms of providing a flexible platform for design
implementation of various practical constraints easily, which would otherwise ren-
der the traditional design approaches computationally infeasible. The main advan-
tages of using the CA paradigm in structural design are the local analysis and design
resolutions, and their massively parallel nature. The CA methodology can also take
advantage of modern computational tools such as the multigrid acceleration method
to improve their efficiency.

In this chapter, some applications of CA paradigm for structural design have been
presented. The CA methodology was successfully applied to truss type and contin-
uum structures. Some examples have been treated that illustrate the successes of the
CA technique in solving topology optimization problems. Moreover, the multigrid
accelerated CA scheme was shown to be an interesting candidate for solving topol-
ogy optimization for continuum structures in a computationally efficient manner.

References

1. E. Kita, T. Toyoda, Structural design using cellular automata. Struct. Multidiscip. Optim. 19,
64–73 (2000)

2. Y.M. Xie, G.P. Steven, A simple evolutionary procedure for structural optimization. Comput.
Struct. 49, 885–896 (1993)

3. C. Zhao, G.P. Steven, Y.M. Xie, Effect of initial non-design domain on optimal topologies of
structures during natural frequency optimization. Comput. Struct. 62, 119–131 (1997)

4. Z. Gürdal, B. Tatting, Cellular automata for design of truss structures with linear and non
linear response. In 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference, Atlanta, GA, 2000

5. R.T. Haftka, Z. Gürdal, Elements of Structural Optimization. (Kluwer, Dordrecht, 1993)
6. B. Tatting, Z. Gürdal, Cellular automata for design of two-dimensional continuum structures.

In 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Long Beach, CA, 2003

7. M.M. Abdalla, Z. Gürdal, Structural design using cellular automata for eigenvalue problems.
Struct. Multidiscip. Optim. 26, 200–208 (2004)

14 Cellular Automata for Structural Topology 353

8. M.M. Abdalla, Z. Gürdal, Structural design using optimality based cellular automata. In 43th
AIAA/ASME/ AHS/ASC Structures, Structural Dynamics and material Conference, Denver,
Co, April 2002

9. M. P. Bendsøe. Optimal shape design as a material distribution problem. Struct. Multidiscip.
Optimi. 1, 193–200 (1989)

10. M. Zhou, G.I.N. Rozvany, The COC algorithm, part II: Topological, geometry and general-
ized shape optimization. Comput. Meth. Appl. Mechan. Eng. 89, 197–224 (1991)

11. G.I.N. Rozvany, M. Zhou, T. Birker, Generalized shape optimization without homogenization.
Struct. Multidiscip. Optim. 4, 250–252 (1992)

12. G.I.N. Rozvany, Aims, scope, methods, history and unified terminology of computer-aided
topology optimization in structural mechanics. Struct. Multidiscip. Optim. 21, 90–108 (2001)

13. O. Sigmund, A 99 line topology optimization code written in matlab. Struct. Multidiscip.
Optim. 21, 120–127 (2001)

14. S. Setoodeh, M.M. Abdalla, Z. Gürdal, Combined topology and fiber path design of composite
layers using cellular automata. Struct. Multidiscip. Optim. 30, 413–421 (2005)

15. R. Zakhama, M.M. Abdalla, H. Smaoui, Z. Gürdal, Topology design of geometrically non-
linear 2D elastic continua using CA and an equivalent truss model. In 11th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Portsmouth, VA 2006

16. D.J. Slotta, B. Tatting, L.T. Watson, Z. Gürdal, S. Missoum, Convergence analysis for cellular
automata applied to truss design. Eng. Comput. 19, 953–969 (2002)

17. S. Setoodeh, D.B. Adams, Z. Gürdal, L.T. Watson, Pipeline implementation of cellular
automata for structural design on message-passing multiprocessors. Math. Comput. Model.
43, 966–975 (2006)

18. S. Kim, M.M. Abdalla, Z. Gürdal, M. Jones, Multigrid accelerated cellular automata for
structural design optimization: A 1-D implementation. In 45th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, 2004

19. R. Zakhama, M.M. Abdalla, H. Smaoui, Z. Gürdal, Multigrid implementation of cellular
automata for topology optimization of continuum structures. CMES: Computer Modeling in
Engineering and Sciences, to appear, 2010

20. P. Wesseling, An introduction to multigrid methods. (Wiley, Chichester, 1992)
21. A. Tovar, N.M. Patel, G.L. Niebur, M. Sen, J.E. Renaud. Topology optimization using a hybrid

cellular automaton method with local control rules. J. Mechan. Des. 128(6), 1205–1216 (2006)
22. A. Tovar, N.M. Patel, A.K. Kaushik, J.E. Renaud, Optimality conditions of the hybrid cellular

automata for structural optimization. AIAA J. 45(3), 673–683 (2007)
23. S. Missoum, M.M. Abdalla, Z. Gürdal, Nonlinear topology design of trusses using cellular

automata. In 44th AIAA/ASME/AHS/ASC Symposium on Structural Dynamics and Material
Conference, Norfolk, VA, 2003

24. S. Missoum, M.M. Abdalla, Z. Gürdal, Nonlinear design of trusses under multiple loads using
cellular automata. In 5th World Congress in Structural and Multidisciplinary Optimization,
Lido diJesolo, Italy, 2003

25. S. Setoodeh, Z. Gürdal, L.T. Watson. Design of variable-stiffness composite layers using
cellular automata. Comput. Meth. Appl. Mechan. Eng. 195, 836–851 (2006)

26. N.V. Banichuk, Optimization of anisotropic properties of deformable media in plane problems
of elasticity. Mesh Solids, 14, 63–68 (1979)

27. P. Pedersen. Bounds on elastic energy in solids of orthotropic materials. Struct. Optim. 2,
55–63 (1990)

28. M. Beckers, Topology optimization using a dual method with discrete variables. Struct. Optim.
17, 14–24 (1999)

29. M.P. Bendsøe, O. Sigmund, Topology Optimization, Theory, Methods and Applications
(Springer-Verlag, 2003)

Part III
Cellular Automata Software

Chapter 15
Parallel Cellular Programming
for Emergent Computation

Domenico Talia and Lev Naumov

15.1 Introduction

In complex systems, global and collective properties cannot be deduced from its
simpler components. In fact, global or collective behavior in a complex system
emerges from evolution and interaction of many elements. Therefore programming
emergent systems needs models, paradigms, and operations that allow for express-
ing the behavior and interaction of a very large number of single elements.

Because of their inherent parallelism, cellular automata (CA) can be exploited
to model large scale emergent systems on parallel computers. In this scenario par-
allel cellular models and languages provide useful tools for programming emergent
computations that model complex phenomena in many application domains from
science and engineering to economics and social sciences.

The programming of emergent phenomena and systems based on traditional pro-
gramming tools and languages is hard and it results in long and complex code.
This occurs because these programming approaches are based on the design of a
system as a whole. Design and programming do not start from basic elements or
system components, but represent a system by modeling its general features. On the
contrary, it is better to design emergent and complex systems by means of paradigms
that allow for expressing the behavior of the single basic elements and their inter-
actions. The global behavior of these systems then emerges from the evolution and
interaction of a massive number of simple elements; hence it does not need to be
explicitly coded.

Parallel architectures such as multicore, clusters, and multicomputers are well
suited for implementing inherently parallel computing abstract models such as cellu-
lar automata, neural networks, and genetic algorithms that represent new mathemati-
cal models for describing complex scientific phenomena and systems with emergent
properties. All cells of a cellular automaton are updated in parallel. Thus the state
of the entire automaton advances in discrete time-steps and the global behavior of

D. Talia (B)
DEIS, University of Calabria, Rende, Italy
e-mail: talia@deis.unical.it

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_15,
C© Springer-Verlag Berlin Heidelberg 2010

357

358 D. Talia and L. Naumov

the system is determined by the evolution of the states of each cell as a result of
multiple local interactions. Cellular automata provide a global framework for the
implementation of parallel applications that represent natural solvers of dynamic
complex phenomena and systems based on the use of discrete time and discrete
space.

CA are intrinsically parallel and they can be efficiently mapped onto parallel
machines because the communication flow between processors can be kept low,
communication patterns are regular and involve only neighbor cells. Inherent paral-
lelism and restricted communication are two key points for the efficient use of CA
for high performance simulation [36].

The cellular automata theory was invented half a century ago. The exact author of
this area cannot be named definitely. In 1948 John von Neumann [1] gave a lecture
entitled “The General and Logical Theory of Automata”, where he presented his
ideas of universal and self-reproducing machines. According to his own statement,
his work was inspired by Stanislaw Ulam [2]. Konrad Zuse [3] also suggested that
the universe could be a cellular automaton. Zuse used this idea for developing com-
puting machines. At the same time, some members of the scientific society regard
the paper by Wiener and Rosenblueth [4], or the mathematical work that was done
in early 1930s in Russia as the start of the field [5].

However more recently CA emerged as a significant tool for modeling and sim-
ulation of complex systems. This occurred thanks to the implementation of cellular
automata on high-performance parallel computers. Parallel cellular automata mod-
els are successfully used in fluid dynamics, molecular dynamics, biology, genetics,
chemistry, road traffic flow, cryptography, image processing, environment model-
ing, and finance. To explain this approach, we discuss the main features of cellular
automata parallel software environments and how those features can support the
solution of large-scale problems.

To describe in detail how the marriage of the cellular automata theory with par-
allel computing is very fruitful, we will discuss some leading examples of high-
performance cellular programming tools and environments such as CAMELot and
CAME&L. Moreover we will discuss programming of complex systems in CA lan-
guages such as CARPET. Those parallel cellular automata environments have been
used to solve complex problems in several areas of science, engineering, computer
science, and economy. They offer a well structured way to facilitate the development
of cellular automata applications, providing transparent parallelism and reducing
duplication of effort by implementing a programming environment once and making
it available to developers. We discuss the basic principles of parallel CA languages
and describe some practical programming examples in different areas designed by
means of those parallel CA systems.

15.2 Cellular Automata Systems

In the past decade, several cellular automata environments have been implemented
on current desktop computers. For large size two or three dimensional cellular

15 Parallel Cellular Programming for Emergent Computation 359

automata the computational load can be enormous. There are two main alternatives
that allow to achieve high performance in the implementation of CA. The first one is
the design of special hardware devoted to the execution of CA. The second alterna-
tive is based on the use of commercially-available parallel computers for developing
parallel CA software tools and environments.

CA software and hardware systems belong to the class of problem-solving envi-
ronments (PSE). The community has formulated the following common recommen-
dations for a general PSE:

1. It should reduce the difficulty of the simulation [6].
2. It should reduce costs and time of complex solutions development [6].
3. It should allow to perform experiments reliably [6].
4. It should have a long lifetime without getting obsolete [6].
5. It should support the plug-and-play paradigm [6].
6. It should exploit the paradigm of the multilevel abstractions and complex

properties of science [6].
7. User should be able to use the environment without any specialized knowl-

edge of the underlying computer hardware or software [7].
8. It should be pointed at the wide scope of problems [7].
9. It should be able to coordinate mighty computational power to solve a

problem [7].
10. It should be complete, containing and providing all computational facilities for

solving a problem in a target domain [8].
11. Extensibility of the environment will provide the ability to enlarge the target

problem domain, to enrich the set of supported tools and provided features.
This can be achieved with the help of a component-based design. A component
approach also complies with the trend that modern distributed problem-solving
facilities should be based on web and grid services [6] or Common Object
Request Broker Architecture (CORBA) objects [9].

Basing on common considerations, the software or hardware facility, which
allows to perform experiments using CA should have the following attributes:

1. It should hide the complexity of used computational architecture, operating sys-
tem or networking mechanism. The language which a researcher should use to
control the environment has to be related to basic cellular automata concepts and
to the target problem domain.

2. It should allow to setup and tune a cellular automaton for the computational
experiment. The degree of freedom which is granted to a user here may play the
key role.

3. It should give an opportunity to run and control a computational experiment. A
good solver should use all the benefits provided by the computational architec-
ture and utilize as much parallelizable aspects of the experiment’s iteration as it
is possible to improve the throughput.

4. It should support visualization, because this feature plays one of the key roles
in understanding the phenomenon, especially, when modeling spatial-distributed
systems.

360 D. Talia and L. Naumov

5. It should provide a set of tools to analyze the computational experiment’s intrin-
sic characteristics and their tendencies, current state of the automaton’s grid or
any other data, which is possible to obtain.

6. It should provide the reproducibility and allow to share the description of the
way one have done the certain computational experiment. Donald Knuth have
declared this feature as a required one for a scientific method [10].

The following list unites two previous ones and consists of concrete required
features for a CA-based PSE. At the end of each statement there are references
to attributes stated above, given in italics. References to the first list are preceded
by “PSE:”, whereas references to the second one are preceded by “CA:”. Moreover,
the “Workshop on Research Directions in Integrating Numerical Analysis, Symbolic
Computing, Computational Geometry, and Artificial Intelligence for Computational
Science” [7, 11] have produced “Findings” and “Recommendations” for PSEs. They
will not be listed here, but will be referenced in the “PSE:” section as “Fn” or “Rn”
respectively, where n is the number of distinct finding or recommendation stated
in [7].

1. The environment should be as universal and customizable as possible. The
support of miscellaneous grids, types of neighborhoods and boundary conditions
is desirable or even necessary. Environment should allow to choose the type of
the automaton to be modeled and the parameters of the experiment from the
widest possible spectrum of variants (PSE: 2, 8, 10; CA: 2).

2. Extensibility is a contemporary and actively used property of software and hard-
ware systems. The ability to incorporate novel functionalities and algorithms
may be one of the most advantageous for the PSE (PSE: 2, 4, 5, 6, 8, 9, 10, 11,
F6, R1; CA: 1).

3. The environment should support modern parallel or distributed computa-
tional technologies. For software CA system this means that it should involve
cluster or Grid computing, Message Passing Interface (MPI), Parallel Virtual
Machine (PVM), OpenMP or other technologies. Hence the software has to emu-
late homogeneous parallel architecture of cellular automaton, but not counterfeit
it. Nevertheless without the use of high-performance parallel hardware the CA
model would be of no practical use for solving real world problems (PSE: 1, 2,
3, 9, 10, F1, F2, F3; CA: 1, 3).

4. The environment should provide a visually attractive, handy and clear user inter-
face. It has to preserve the interactivity even when performing long experiments,
preserving the reliable control (PSE: 1, 2, 7, F2, F4, F7, R7; CA: 1, 2, 3).

5. The experiment’s description language has to be close to the language of the
target problem domain and as far from the implementation as possible. Descrip-
tion should be independent of the computational architecture, level of resources,
and operating system. The ability to involve such dependencies is definitely con-
sidered as a powerful option (PSE: 1, 2, 6, 7, 10, F1, F4, R7; CA: 1, 2).

6. Grid state visualization is a most straightforward way of experiment’s represen-
tation. Nowadays the scientific visualization seems to be a separate industry [12].
So there is no need for the CA-based PSE to be concurrent with top-level tools in

15 Parallel Cellular Programming for Emergent Computation 361

this area. Nevertheless the environment should contain the basic set of features
and preferably be compatible with the specialized visualization software on the
level of data-files (PSE: 2, 10, R7; CA: 4).

7. The environment should support analysis functionality to monitor the quality of
the experiment, study the progress and the final results for making conclusions
and producing new scientific knowledge (PSE: 2, 6, 10, R7; CA: 5).

8. The environment should allow to reproduce experiment made once on the same
or another computational system. This will give an opportunity to share the
knowledge and the experience between researchers, eliminate ambiguous com-
putations, postpone the simulation, reanalyze, and revisualize or generally reuse
the data. This can be achieved by providing the ability to store/restore full com-
putational experiment setup and automaton’s grid state to/from a file (PSE: 1, 2,
4, 10, F1, F4, R6; CA: 6).

Such tight connection of properties listed above with general recommendations
for the PSEs design and features list for CA modeling facilities allows to con-
clude that these eight properties are close to be common requirements for cellular
automata based modeling environments.

The number of the software created for cellular automata modeling is impressive
[13, 14]. The apogee of this boom was at the 1990s. Many projects have been already
outdated, but some new successful prototypes appeared.

The comparative survey of the existing software and hardware facilities is sum-
marized in Table 15.1. The first column contains the name of the project with ref-
erences. The second one presents the target platform and the third – the year of the
latest known release or of the last publication devoted to the instrument. Further
eight columns contain pluses if project satisfies the requirement with corresponding
number (see the previous list) and minuses otherwise.

It is impossible and useless to overview all the existing projects, which were
created ever. Those of them which last known version had been released in the

Table 15.1 The comparative survey of existing cellular automata modeling environments. The
first raw contains project’s name with references, the second is used for the information about the
target platform, the third stores the year of current release. The rest raws contain pluses or minuses
depending on the conformance to the corresponding requirements (see the previous list)

Name Platform Release 1 2 3 4 5 6 7 8

CAGE [15] Windows 2004 + − − + + + − +
CAM [16, 17] iX86 or Sun 1994 + + + + + + − +
CAMEL [18–20] UNIX/Linux 1996 + − + + + + − +
CAME&L [14, 21, 23] Windows 2010 + + + + + + + +
CAMELot [24] UNIX/Linux 2001 + − + + + + + +
Cellular [25] UNIX/Linux, CygWin 1999 + + − + + + − +
JCASim [26] Java 2001 + + + + + + + +
MCell [27] Windows 2001 + + − + + + − +
ParCeL-6 [28, 29] UNIX/Linux, Windows 2004 + + + − + − + +
SIMP/STEP [30, 31] UNIX/Linux, Windows 2003 + + + + + + + +
Trend [32] UNIX/Linux, Java 2002 + − − + + + − +

362 D. Talia and L. Naumov

twentieth century were mostly excluded from the study. Only several of them are
listed, because of their significant historical value. Also some relatively new projects
are deliberately not presented if they are deemed to be unsuitable for the research
and scientific modeling.

Projects are listed in the alphabetical order. In the following there are short, one-
paragraph reviews, which briefly describe each project in more detail. The name of
the project which is subjected to the review is shown with bold when it appears for
the first time.

The name CAGE stands for “Cellular Automata General Environment”. The tool
does not support any parallel or distributed computational technology, but this is
compensated by the universality. Authors have generalized the notion of the “cellu-
lar automaton” and used their vision of it for the software design. The environment
supports multilayered grids, rich means for the neighborhoods’ formation (includ-
ing the query-based one) and an ability to use irregular grids. The spectrum of the
functionality is extremely rich. Transition rules are to be defined using the C-like
language with the help of built-in visual programming means. Written rules are
being translated to C++ sources and compiled into the executable code for better
computational throughput. Despite of the functional richness, all grid’s layers seem
to be 2D only.

CAM means “Cellular Automata Machine” and represents a single instruc-
tion multiple data (SIMD) hardware implementation of the modeling environment.
CAM-6 [16] is a PCI-device which should be plugged into iX86 workstation gov-
erned by PC-DOS operating system. It supports 256×256 2D grids with Moore,
von Neumann and Margolus neighborhoods. CAM-8 [17] is a device which works
in tandem with Sun workstations via CBus and should be controlled by the accom-
panying STEP software (a predecessor of SIMP/STEP project which is also present
in this survey). Eighth version of the machine supports 3D grids. There is an ability
to extend the grid by using multiple device specimens. Visualization is performed
by the XCAM utility. Transition rules are to be programmed using a dialect of Forth
language supplemented with necessary routines. For each transitions function the
machine compiles the full lookup table. However, multiple instruction multiple data
(MIMD) architectures are more flexible than SIMD machines for implementing CA,
as they allow to deal with irregularities on a microscopic level of the algorithm
asynchronously and to efficiently simulate also heterogeneous systems. On a higher
level of abstraction it is possible to synchronize the parallel components of a MIMD
system explicitly as this is the only way to maintain global invariance of CA.

The project’s name CAMEL stands for “Cellular Automata environMent for
systEms modeLing”. This software was designed to perform computations on the
net of transputers or using MPI. It supports grids of up to three dimensions and
complex neighborhoods. The cell’s state can be represented by the instance of a
data structure composed of basic types. For the CA definition it uses a specialized
language CARPET (“CellulAR Programming EnvironmenT”) [19] which will be
discussed in Sects. 15.3 and 15.4. The program written using this language tradi-
tionally consists of the declarative part and the statements. The language is clear
and successfully hides implementation issues coming from a parallel computer’s

15 Parallel Cellular Programming for Emergent Computation 363

architecture complexity, allowing to describe automata and rules in general terms.
The additional program IVT (comes from “Interactive Visualization Tool”) has been
added to CAMEL software to improve the data visualization. In twenty-first century
the same group has switched to the development of CAMELot project [24].

By coincidence the name of the project CAME&L is very similar to the previous
one. Nevertheless in this case it stands for “Cellular Automata Modeling Environ-
ment & Library”. The ampersand in the abbreviation appeared exactly for it to be
distinguishable from the CAMEL. This project will be discussed in more detail in
Sect. 15.5, but will be reviewed briefly. The key idea was to create a universal and
extensible facility, which supports parallel and distributed computing without any
target problem domain specialization. This was achieved by usage of the CA based
computational experiment decomposition (see Sect. 15.5.1). The software allows
synchronous, asynchronous, probabilistic, inhomogeneous, and any other kind of
CA with arbitrary grids, neighborhoods or type of cells’ state. Even if the particular
functionality or distinct automata type implementation is not included into the stan-
dard software package, one may add it and make new solution immediately available
for the community. So CAME&L users can be divided into two interconnected and
mixed groups: researchers who are just building solutions from the bricks they have,
and developers who enhance the set of bricks for themselves and everyone. Ideal sit-
uation will be reached when anyone will get the ability to perform arbitrary cellular
automata based experiments without the need to create new bricks.

As a descendant of CAMEL, CAMELot (“CAMEL Open Technology”) also
uses CARPET language [19] for the experiment description and MPI for the sim-
ulation execution. This project will be discussed in Sect. 15.4 and here it will be
overviewed briefly. The software represents the environment for programming and
seamlessly parallel execution of cellular automata. It has a graphical user interface
for experiment setup, control and visualization. It also includes the customizable
tool to produce traces of the simulation in a specified format thus allowing to post-
process the output of the experiment by means of the external utilities. Moreover it
supports profiling capabilities. The simulator is flexible with regard to cellular space
size and dimension (form 1D to 3D), cell’s state structure, neighborhood and rules.
The program, written using CARPET is translated and compiled into UNIX/Linux
executable file. The experiment setup preparation consists of editing of a text file.

Cellular software consists of the programming language (Cellang 2.0), associ-
ated compiler (cellc), virtual machine for the execution (pe-scam) and the viewer
(cellview). A program written with Cellang 2.0 consists of two parts: the descrip-
tion and the set of statements. The description determines dimensionality of a grid,
data-fields, which are contained in each cell, and ranges of acceptable values for
each field. There are two possible statements: an assignment and a conditional test.
The only possible data type is integer. The viewer is independent of the Cellang 2.0
language and the compiler. The input format for the viewer is identical to the output
format of Cellang 2.0 programs. The software supports different grids of arbitrary
dimensionality, non-trivial neighborhoods, several kinds of boundary conditions.

JCASim represents a general-purpose system for simulating CA on Java plat-
form. It includes the standalone application and the applet for web presentations.

364 D. Talia and L. Naumov

The cellular automaton can be specified in Java, CDL [33] or using the interactive
dialogue. It supports 1D, 2D (square, hexagonal, or triangular) and 3D grids, differ-
ent neighborhoods, boundary conditions (periodic, reflective or constant), and can
display cells using colors, text, or icons. Initially CDL was designed to describe
the hardware, which simulates homogeneous structures, but it can also be applied
in software as a powerful and expressive tool. JCASim allows any constructions
acceptable in CDL. For example, like in CDL, cell’s state can be represented with
theoretically unlimited amount of integer and floating-point variables. With the
package CAComb the software allows to simulate CA on several machines in parallel.
CAAnalysis package incorporates automatic analysis (the mean-fields and similar
approximations will be calculated automatically).

MCell or “Mirek’s Cellebration” is a very small and simple Windows application
which supports 2D grids and no parallel or distributed computing. But despite of this
its effort is great, because it can easily show the simplicity, beauty and power of a
cellular automata to people who are far from this field of science. This is possible
due to successful graphical user interface which is clear for non-specialists and a
wide library of examples. Transition rules can be defined using the interface means
or by creation of external dynamic-link library.

Project ParCeL-6 represents the multi-layer cellular computing library for mul-
tiprocessor computers, clusters and Grids. The goal of its creation was to decrease
the development time for the fine-grained applications. It is implemented in C lan-
guage and can be linked to C and C++ programs. There are two subversions of the
software: ParCeL-6.1 for architectures supporting the memory sharing paradigm
and ParCeL-6.2 for architectures supporting the message passing approach. The
cluster version of ParCeL-6 was developed in the framework of the Grid-eXplorer
project. High level generic and parallel neural model of computations allows smart
programming for numerous computing units. ParCeL offers the extended cellular
programming model and maps “small” computing units on the “big” processors of
parallel machines. When a cell is created, host processor is pointed out and unique
registration number is associated with the cell. This number allows to identify it in
a cellular network. Finally the cell is created directly on its host processor and exe-
cutes the computing cycle on it. The software is also able to perform the automatic
parallelization of the source code for the multiprocessor machines.

SIMP/STEP is a general-purpose software platform, which includes the lan-
guage for cellular automata, lattice gases, and a “programmable matter” definitions.
It is based on the Python programming language and suites for the wide range of
problems. The software consists of two parts: SIMP is the user environment built on
STEP, the applications programming interface, which separates conceptual compo-
nents from implementation details, optimization routines etc. The software supports
parallel computing technologies, has visualization and analysis capabilities. SIMP
supports 2D rendering, but there are some experimental hooks for the 3D rendering,
using VTK [12].

Trend is the 2D cellular automata programming environment with the integrated
simulator and the compiler, which produces the virtual machine code for the evalu-
ation module (under UNIX/Linux only) or Java machine. It has several interesting

15 Parallel Cellular Programming for Emergent Computation 365

features: the simulation backtracking, conflicts catching, flexible template design
and others. The Trend language allows user-defined terms, symmetrically rotatable
statements and other constructions specific for the cellular automata programming.
The software supports arbitrary neighborhoods within 11×11 region around the cen-
ter cell. Each cell can be in the state which is coded by unsigned integer variable.
The project does not support any parallel computing technologies.

15.3 Parallel CA Languages

For developing cellular automata on parallel computers two main approaches can
be used. One is to write programs that encode the CA rules in a general-purpose
parallel programming language such as HPF, Erlang, Java, Linda or CILK or still
using a high-level sequential language like C++, Fortran or Phyton with one of the
low-level toolkits/libraries currently used to implement parallel applications such as
MPI, PVM, or OpenMP. This approach does not require a parallel programmer to
learn a new language syntax and programming techniques for cellular programming.
However, it is not simple to be used by programmers that are not experts in parallel
programming and code consists of a large number of instructions even if simple
cellular models must be implemented.

The other possibility is to use a high-level language specifically designed for
CA, in which it is possible to directly express the features and the rules of CA,
and then use a compiler to translate the CA code into a program executable on
parallel computers. This second approach has the advantage that it offers a program-
ming paradigm that is very close to the CA abstract model and that the same CA
description could possibly also be compiled into different code for various parallel
machines. Furthermore, in this approach parallelism is transparent from the user, so
programmers can concentrate on the specification of the model without worrying
about architecture related issues. In summary, it leads to the writing of software that
does express in a natural manner the cellular paradigm, and thus programs are sim-
pler to read, change, and maintain. On the other hand, the regularity of computation
and locality of communication allow CA programs to achieve good performance
and scalability on parallel architectures.

In recent years, several cellular automata environments have been implemented
on current desktop computers as well (see Sect. 15.2). Sequential CA-based systems
can be used for educational purposes and very simple simulations, but real world
phenomena simulations generally take very long time, or in some cases cannot be
executed, on this class of systems because of memory or computing power limits.
Therefore, massively parallel computers are the appropriate computing platform for
the execution of CA models when real life problems must be solved. In fact, for
two and three dimensional cellular automata of large size the computational load
can be enormous. Thus, if CA are to be used for investigating large complex phe-
nomena, their implementation on high performance computers composed of several
processors is a must.

366 D. Talia and L. Naumov

In particular, general-purpose distributed-memory parallel computers offer a very
useful architecture for a scalable CA machine both in terms speed-up, programma-
bility, and portability. These systems are based on a large number of intercon-
nected processing elements (PE) which perform a task in parallel. According to this
approach, in the recent years several parallel cellular software environments have
been developed.

The main issues that influence the way in which CA languages support the design
of applications on high performance architectures are

• The programming approach: the unit of programming is the single cell of the
automaton.

• The cellular lattice declaration: it is based on definition of the lattice dimension
and the lattice size.

• The cell state definition and operations: cell state is defined as single variable or
a record of typed variables; cell state access and update operations are needed.

• The neighborhood declaration and use: neighborhood concept is used to define
interaction among cells in the lattice.

• The parallelism exploitation: the unit of parallelism is the cell and parallelism,
like communication, is implicit.

• The cellular automata mapping: data partitioning and process-to-processor map-
ping is implicit at the language level.

• The output visualization: automaton global state, as the collection of the cell
states, is showed as it evolves.

By addressing these issues we illustrate how this class of languages can be effec-
tively used to implement high-performance applications in science and engineering
using the massively parallel cellular approach.

15.3.1 Programming Approach

When a programmer starts to design a parallel cellular program she/he must define
the structure of the lattice that represents the abstract model of a computation in
terms of cell-to-cell interaction patterns. Then she/he must concentrate on the unit
of computation that is a single cell of the automaton. The computation that is to
be performed must be specified as the transition function of the cells that compose
the lattice. Therefore, differently form other approaches, a user does not specify a
global algorithm that contains the program structure in an explicit form.

The global algorithm consists of all the transition functions of all cells that are
executed in parallel for a certain number of iterations (steps). It is worth to notice
that in some CA languages it is possible to define transition functions that change in
time and space to implement inhomogeneous CA computations. Thus, after defining
the dimension (e.g., 1D, 2D, 3D) and the size of the CA lattice, she/he needs to spec-
ify, by the conventional and the CA statements, the transition function of the CA that
will be executed by all the cells. Then the global execution of the cellular program

15 Parallel Cellular Programming for Emergent Computation 367

is performed as a massively parallel computation in which implicit communication
occurs only among neighbor cells that access each other state.

15.3.2 Cellular Lattice Declaration

As was mentioned above, the lattice declaration defines the lattice dimension and the
lattice size. Most languages support two-dimensional rectangular lattices only (e.g.,
CANL and CDL). However, some of them, such as CARPET and Cellang, allow
the definition of 1D, 2D, and 3D lattices. Some languages allow also the explicit
definition of boundary conditions such as CANL that allows adiabatic boundary
conditions where absent neighbor cells are assumed to have the same state as the
center cell. Others implement re f lecting conditions that are based on mirroring
the lattice at its borders. Most languages use standard boundary conditions such as
f i xed and toroidal conditions.

15.3.3 Cell State

The cell state contains the values of data on which the cellular program works. Thus
the global state of an automaton is defined by the collection of the state values of all
the cells. While low-level implementations of CA allow to define the cell state as a
small number of bits (typically 8 or 16 bits), cellular languages such as CARPET,
CANL, DEVS-C++ and CDL allows a user to define cell states as a record of typed
variables as follows:

cell = (direction :int ;
mass : float;
speed : float);

where three substates are declared for the cell state. According to this approach, the
cell state can be composed of a set of sub-states that are of integer , real, char or
boolean type and in some case (e.g., CARPET) arrays of those basic types can also
be used. Together with the constructs for cell state definition, CA languages define
statements for state addressing and updating that address the sub-states by using
their identifiers, e.g. cell.speed.

15.3.4 Neighborhood

An important feature of CA languages that differentiate them from array-based lan-
guages and standard data-parallel languages is that they do not use explicit array
indexing. Thus, cells are addressed with a name or the name of the cells belonging
to the neighborhood. In fact, the neighborhood concept is used in the CA setting to
define interaction among cells in the lattice.

368 D. Talia and L. Naumov

In CA languages the neighborhood defines the set of cells whose state can be
used in the evolution rules of the central one. For example, if we use a simple
neighborhood composed of four cells we can declare it as follows

neigh cross = (up, down, left, right);

and address the neighbor cell states by the identifiers used in the above declaration
(e.g., down.speed, left.direction). The neighborhood abstraction is used to
define the communication pattern among cells. It means that at each time step, a cell
send to and receive from the neighbor cells the state values. In this way implicit com-
munication and synchronization are realized in cellular computing. The neighbor
mechanism is a concept similar to the region construct that is used in the ZPL lan-
guage [37] where regions replace explicit array indexing making the programming
of vector- or matrix-based computations simpler and more concise. Furthermore,
this way of addressing the lattice elements (cells) does not require compile-time
sophisticated analysis and complex run-time checks to detect communication pat-
terns among elements.

15.3.5 Parallelism Exploitation

CA languages do not provide statements to express parallelism at the language
level. It turns out that a user does not need to specify what portion of code must
be executed in parallel. In fact, in parallel CA languages the unit of parallelism is
a single cell and parallelism, like communication and synchronization, is implicit.
This means that in principle the transaction function of every cell is executed in
parallel with the transaction functions of the other cells.

In practice, when coarse grained parallel machines, like clusters or multi-core,
are used, the number of cells N is greater than the number of available processors
P , so each processor executes a block of N/P cells that can be assigned to it using
a domain decomposition approach.

15.3.6 CA Mapping

Like parallelism and communication, also data partitioning and process-to-processor
mapping is implicit in CA languages. The mapping of cells (or blocks of them)
onto the physical processors that compose a parallel machine is generally done by
the run-time system of each particular language and the user usually intervenes in
selecting the number of processors or some other simple parameter.

Some systems that run on multicomputers (MIMD machines) use load balanc-
ing techniques that assign at run-time the execution of cell transition functions to
processors that are unloaded or use greedy mapping techniques that avoid some
processor to become unloaded or free during the CA execution for a long period.

15 Parallel Cellular Programming for Emergent Computation 369

15.3.7 Output Visualization and Monitoring

A computational science application is not just an algorithm. Therefore it is not suf-
ficient to have a programming paradigm for implementing a complete application. It
is also as much significant to dispose of environments and tools that help a user in all
the phases of the application development and execution. Most of the CA languages
we are discussing here provide a development environment that allows a user not
only to edit and compile the CA programs. They also allow to monitor the program
behavior during its execution on a parallel machine, by visualizing the output as
composed of the states of all cells. This is done by displaying the numerical values
or by associating colors to those values. Examples of these parallel environments
are CAMEL for CARPET, PECANS for CANL, and DEVS for DEVS-C++.

Some of these environments provide dynamical visualization of simulations
together with monitoring and tuning facilities. Users can interact with the CA envi-
ronment to change values of cell states, simulation parameters and output visualiza-
tion features. These facilities are very helpful in the development of complex scien-
tific applications and make possible to use those CA environments as real problem
solving environments (PSEs).

Many of these issues are taken into account in parallel CA systems and simi-
lar or different solutions are provided by parallel CA languages. In Sect. 15.4 we
outline some of the listed issues by discussing the main features of CAMELot, a
general-purpose system that can be easily used for programming emergent systems
using the CARPET cellular programming language according to a massively paral-
lel paradigm and some related parallel CA environments and/or languages.

15.4 Cellular Automata Based Problem-Solving Environment
Case Study: CAMELot and CARPET

CAMELot (CAMEL open technology) is a parallel software system designed to
support the parallel execution of cellular algorithms, the visualization of the results,
and the monitoring of cellular program execution [38]. CAMELot is an MPI-based
portable version of the CAMEL system based on the CARPET language. CARPET
offers a high-level cellular paradigm that offers to a user the main CA features to
assist her/him in the design of parallel cellular algorithms without apparent paral-
lelism [20].

A CARPET programmer can develop cellular programs describing the actions of
many simple active elements (implemented by cells) interacting locally. Then, the
CAMELot system executes in parallel cells evolution and allows a user to observe
the global complex evolution that arises from all the local interactions. CARPET
uses a C-based grammar with additional constructs to describe the rules of the tran-
sition function of a single cell. In a CARPET program, a user can define the basic
rules of the system to be simulated (by the cell transition function), but she/he does
not need to specify details about the parallel execution. The language includes

370 D. Talia and L. Naumov

• a declaration part (cadef) that allows to specify:
• the dimension of the automaton (dimension);
• the radius of the neighborhood (radius);
• the type of the neighborhood (neighbor);
• the state of a cell as a record of substates (state);
• a set of global parameters to describe the global characteristics of the system

(parameter).
• a set of constructs for addressing and updating the cell states (e.g., update, GetX,

GetY, GetZ).

In a two-dimensional automaton, a very simple neighborhood composed of four
cells can be defined as follows:

neighbor Stencil[2] ([-1,0]Left, [1,0]Right, [0,1]Up,
[0,-1]Down);

As mentioned before, the state (state) of a cell is defined as a set of typed
substates that can be shorts, integers, floats, char, and doubles or arrays of these
basic types. In the following example, the state consists of three substates.

state(float speedx, speedy, energy);

The mass substate of the current cell can be referenced by the predefined variable
cell_mass. The neighbor declaration assigns a name to specified neighboring cells
of the current cell and allows such to refer to the value of the substates of these
identified cells by their name (e.g., Left_mass). Furthermore, the name of a vector
that has as dimension the number of elements composing the logic neighborhood it
must be associated to neighbor (e.g., Stencil). The name of the vector can be used
as an alias in referring to the neighbor cell. Through the vector, a substate can be
referred as Stencil[i]_mass.

To guarantee the semantics of cell updating in cellular automata the value of one
substate of a cell can be modified only by the update operation, for example

update(cell_speedx, 12.9);.

After an update statement, the value of the substate, in the current iteration,
is unchangeable. The new value takes effect at the beginning of the next iteration.
Furthermore, a set of global parameters (parameter) describes the global character-
istics of the system (e.g., the permeability of a soil). CARPET allows to define cells
with different transition functions (inhomogeneous CA) by means of the GetX,
GetY, GetZ functions that return the value of the coordinate X, Y, and Z of the
cell in the automaton. Varying only a coordinate it is possible to associate the same
transition function to all cells belonging to a plane in a three dimensional automaton.

The language does not provide statements to configure the automata, to visualize
the cell values or to define data channels that can connect the cells according to

15 Parallel Cellular Programming for Emergent Computation 371

different topologies. The configuration of a cellular automaton is defined by the
graphical user interface (UI) of the CAMELot environment. The UI allows, by menu
pops, to define the size of the cellular automata, the number of the processors onto
which the automata must be executed, and to choose the colors to be assigned to
the cell substates to support the graphical visualization of their values. The exclu-
sion from the language of constructs for configuration and visualization of the data
allows executing the same CARPET program with different configurations. Further,
it is possible to change from time to time the size of the automaton and/or the num-
ber of the nodes onto which the automaton must be executed. Finally, this approach
allows selecting the more suitable range of the colors for the visualization of data.

15.4.1 Examples of Cellular Programming

In this section we describe two examples of emergent systems expressed through
cellular programming using the CARPET language. The first example is a typical
CA application that simulates excitable systems. The second program is the clas-
sical Jacobi relaxation that shows how it is possible to use CA languages not only
for simulate complex systems and artificial life models, but that they can be used
to implement parallel programs in the area of fine grained applications such as
finite elements methods, partial differential equations and systolic algorithms that
are traditionally developed using array or data-parallel languages.

15.4.1.1 The Greenberg-Hastings Model

A classical model of excitable media was introduced 1978 by Greenberg and Hast-
ings [39]. This model considers a two-dimensional square grid. The cells are in one
of a resting (0), refractory (1), or excited (2) state. Neighbors are the eight nearest
cells. A cell in the resting state with at least s excited neighbors (in the program we
use s = 1) becomes excited itself, runs through all excited and resting states and
returns finally to the resting state. A resting cell with less than s excited neighbors
stays in the resting state.

Excitable media appear in several different situations. One example is nerve or
muscle tissue, which can be in a resting state or in an excited state followed by
a refractory (or recovering) state. This sequence appears for example in the heart
muscle, where a wave of excitation travels through the heart at each heartbeat.
Another example is a forest fire or an epidemic model where one looks at the cells
as infectious, immune, or susceptible.

Figure 15.1 shows the CARPET program that implements the two-dimensional
Greenberg-Hastings model. It appears concise and simple because the programming
level is very close to the model specification. If a Fortran+MPI or C+MPI solution
is adopted the source code is extremely longer with respect to this one and, although
it might be a little more efficient, it is very difficult to program, read and debug.

372 D. Talia and L. Naumov

#define resting 0
#define refractory 1
#define excited 2

cadef
{

dimension 2;
radius 1;
state (short value);
neighbor Moore[8] ([0,-1]North, [1,-1]NorthEast,[1,0]East,

[1,1]SouthEast,[0,1]South,[-1,1]SouthWest,
[-1,0]West, [-1,-1]NorthWest);

}
int i, exc_neigh=0;

{
for (i=0; (i<8) && (exc_neigh==0); i++)

if (Moore[i]_value == excited) exc_neigh = 1;
switch (cell_value)
{

case excited : update(cell_value, recovering); break;
case recovering : update(cell_value, resting); break;
default : /* cell is in the resting state */

if (exc_neigh == 1)
update(cell_value, excited);

}
}

Fig. 15.1 The Greenberg-Hastings model written in CARPET

15.4.1.2 The Jacobi Relaxation

As a second example, we describe the four-point Jacobi relaxation on a n×n lattice
in which the value of each element is to be replaced by the average value of its
four neighbor elements. The Jacobi relaxation is an iterative algorithm that is used
to solve differential equation systems. It can be used, for example, to compute the
heat transfer in a metallic plate on which boundaries there is a given temperature. At
each step of the relaxation the heat of each plate point (cell) is updated by comput-
ing the average of its four nearest neighbor points. Figure 15.2 shows a CARPET
implementation. The initial if statement is used to set the initial values of cells that
are taken to be 0.0 except for the western edge where boundary values are 1.0.

The Jacobi program, although it is a simple algorithm, is another example of how
a CA language can be effectively used to implement scientific programs that are
not properly in the original area of cellular automata. This simple case illustrates
the high-level features of the CA languages that can be also used for implement
applications that are based on the manipulation of arrays such as systolic algorithms
and finite elements methods.

For the Jacobi algorithm we present some performance benchmarks that have
been obtained by executing the CARPET program using different grid sizes and
processor numbers. Table 15.2 shows the execution times for 100 relaxation steps
for three different grid sizes (100×200, 200×200 and 200×400) on 1, 2, 4, 8 and

15 Parallel Cellular Programming for Emergent Computation 373

cadef
{
dimension 2;
radius 1;
state (float elem);
neighbor Neum[4]([0,-1]North,[-1,0]West,[0,1]South,[1,0]East);

}
int sum;

{
if (step == 1)

if (GetY == 1)
update (cell_elem, 1.0);

else
update (cell_elem, 0.0);

else
{
sum = North_elem+South_elem+East_elem+West_elem;
update (cell_elem, sum/4);

}
}

Fig. 15.2 The Jacobi iteration program written in CARPET

Table 15.2 Execution time (in) of 100 iterations for the Jacobi algorithm

Grid sizes 1 Proc 2 Procs 4 Procs 8 Procs 10 Procs

100×200 1.21 0.65 0.37 0.25
200×200 3.62 1.25 0.67 0.42 0.37
200×400 8.22 3.65 1.26 0.74 0.62

10 processors of a multicomputer. From the figure we can see that as the number of
used processors increases, there is a corresponding decrease of the execution time.
This trend is more evident when larger grids are used; while smaller CA do not
use efficiently the processors. This means that, because of the algorithm simplicity,
when we run an automaton with a small number of cells we do not need to use
several processing elements. On the contrary, when the number of cells in the lat-
tice is high, the algorithm benefits from the use of a higher number of computing
resources. This can be also deduced from Table 15.3 that shows the relative speed
up results for the three different grids. In particular, we can observe that when a
200×400 lattice of cells is used we obtain a superlinear speed up in comparison
to the sequential execution mainly because of memory allocation and management
problems that occur when all the 80,000 cells are allocated on one single processing
element.

Table 15.3 Relative speed up of the Jacobi algorithm

Grid Sizes 1 Proc 2 Procs 4 Procs 8 Procs 10 Procs

100×200 1 1.86 3.27 4.84
200×200 1 2.89 5.40 8.62 9.78
200×400 1 2.25 6.52 11.10 13.25

374 D. Talia and L. Naumov

15.5 Cellular Automata Based Problem-Solving Environment
Case Study: CAME&L

The environment CAME&L [14, 21, 23] resulted from a collaboration between
the Saint-Petersburg State University of Information Technologies, Mechanics and
Optics (Russian Federation) and the Section Computational Science of the Univer-
sity of Amsterdam (The Netherlands).

15.5.1 Cellular Automata Based Computational Experiment
Decomposition

The initial idea of “CAME&L” was to distribute the implementation of a computa-
tional experiment among the functional parts. Any simulation should be assembled
as a set of interacting components of definite types. A researcher will be able to use
them in miscellaneous combinations to add arbitrary functionality to the experiment.
Components could be taken from the standard set or created by a user to fulfil the
target problem requirements.

Consequently the CA based computational experiment decomposition [14, 21]
was offered. It was decided to distinguish five types of components. Names of these
types are shown with bold in the following list.

• The grid implements the visualization of automaton’s state and the navigation
among cells. It does not actually store cells states. This component’s main task
should be drawing and interacting with user.

• The datum provides cells states storage, exchange and some aspects of the data
visualization. Namely it can define

– the association of cells’ states with colors, which will be used for their dis-
playing;

– the custom single cell drawing routine.

• The metrics provides the relationship of neighborhood, coordinates for each cell
and distance measurement functions. Implementation of metrics as a separate
component instead of entrusting its functions to the grid or the datum allows, for
example, to use non-standard coordinate systems, like generalized coordinates
[34].

• The rules describes computations and controls the iteration. In the introduced
ideology terms “rules” and “transition function” are not synonyms. Components
of this type define much more: the method of parallelization, methods of com-
putations’ optimization (if any are used), many other aspects and the transition
function among the rest. This component also should allow

– to handle experiment’s start up (proceed the initialization);
– to determine and check the criteria of experiment’s completion;
– to handle experiments finish (proceed the finalization);

15 Parallel Cellular Programming for Emergent Computation 375

– to define special tools for checking, changing, pre- and postprocessing;
– to define important experiment’s properties for further studying with the help

of analyzer components (see below).

• The analyzer allows to keep an eye on definite properties of the experiment, draw
graphs, create reports, monitor values and all of this kind.

The union of compatible components of first three types totally define a “func-
tionless” cellular automaton. Addition of a component of the fourth type will form
a cellular automaton that can perform the computational experiment. Only single
instances of the grid, the datum, the metrics and the rules are able to participate in
the simulation, but it can involve arbitrary amount of analyzers (even none).

Components are continuously interacting during the whole computational exper-
iment to do the work together. Obviously, each component cannot cooperate with
arbitrary another component, but only with one, which is suitable for this. Such
compatibility conditions for analyzers are trivially based on the examination of the
analyzable parameter’s variable data type. For the rest four types there should be
a special language of logical expressions to describe their properties and require-
ments. In this case requirements should represent conditions imposed on properties.

Each component should have specific user interface: the declared set of available
parameters, which allow to setup the component for the particular problem and for
the accordance to user’s needs and preferences.

15.5.2 Software Design

Taking everything, said in Sect. 15.5.1 into account it was decided to implement the
software using C++ language. All basic statements, listed above, can be provided
with the help of the object-oriented programming paradigm. Windows was chosen
as a target operating system. Consequently each component should be represented as
a dynamic-link library, developed in the framework of the predefined programming
interface. The component’s library have to contain the class, which implements the
functionality corresponding to one of five types, listed in Sect. 15.5.1.

As a result, CAME&L software consists of three conceptually and functionally
interconnected parts:

• CADLib or “Cellular Automata Development Library” is the C++ class library,
which is designed to present an easy-to-use and rich set of instruments for imple-
menting computational experiments according to given regulations and using
definite abstractions. It provides basic classes for all types of components, param-
eters and for other concepts.

• Standard components are most common building blocks of computational
experiments, which can be considered as both: ready-made solutions and exam-
ples for studying when one is going to create his own component. They also can
be reused and extended to fulfil the needs of the researcher.

376 D. Talia and L. Naumov

• The environment is the application with rich user interface for simulations and
research with the help of cellular automata. It provides the access to tools for
the simulation control, studying and analysis, cluster arrangement, workstations
management and many other purposes. Important note is that the environment
itself contains no computational functionality, but allows to execute components’
libraries in the definite software surrounding.

One may say that the ability to use C++ is a too complicated skill to demand
it from the researcher. This is true, but at the same time this is totally in the ideol-
ogy of the extensible environment: the scope of the rules basic class is much wider
than just the transition function definition. So one can create a rules component,
which represents the parser for the automaton’s iteration description from the spe-
cific language. This means that one rules component is able to implement not just
the single transition function, but the class of such functions. This ideology allows
to incorporate arbitrary amount of specific computations description languages into
one software and provide specialists from distinct field of the research with the
component, which supports necessary abstractions from the given subject field. The
code snippets, the rich set examples, scripts and the CADLib itself are provided to
make the components creation simpler.

15.5.3 Usage Example. Tumor Growth Modeling

Now CAME&L is intensively used for the 3D tumor growth modeling. In this sec-
tion a very schematic example will illustrate the common approach to using this
software for a simulation. The example is related to the tumor growth simulation,
but is free of plunging into the biological background. Computational Oncology
is an active area of research with many promosing results. For instance, Sottoriva
et al. [22] report on extensive simulations to reveal Cancer’s stem cell driven tumor
growth using such models.

To implement the cellular automaton, which will perform modeling, one should
select the set of at least four components (grid, datum, metrics and rules), which
will arrange the experiment. If particular component is not presented in the set of
standard components then it should be created.

Usually, there is no need to create user analyzers, because they are much less
problem domain dependant than any others. That is why only grid, datum, metrics
and rules components are considered in the list below. The component type’s name
is shown with bold.

• For performing the computational experiment of 3D tumor growth, the standard
grid component “Basic 3D Grid” will be suitable. It supports many functions,
which are extremely useful for the model of such solid clot: drawing sections,
stubs and slices to take a look inside the tumor.

• In the experiment, each automaton’s cell is to represent single biological cell,
which should be described with distinct user developed data structure. Let’s

15 Parallel Cellular Programming for Emergent Computation 377

assume that it is called BioCell (there is no need to discuss what it consists
of). There is no standard datum component implementing 3D storage for cells
which contains instances of the BioCell structure. This component should be
created with the help of CADLib as a descendant of the CADatum class. Library
makes it extremely easy, providing CABasicCrts3DDatum class template, which
automatically implements the majority of needed functions. Primitive, but func-
tional class declaration should look like shown of Fig. 15.3. Numbers, given in
brackets at the left, are used for further referring to appropriate lines or sections
(sets of lines from one number to another) of the code and have no attitude to the
source.

On line (1) and following one the parent class template is used with the spe-
cific values of parameters: first one is the data type to be stored in each cell,
second – the class of the user interface dialog (may be none), used to edit the
values of a stored data type, third – the resource identifier of the dialog template.
Section, started from line (2) contains constructor and destructor declarations.
The main task, which is entrusted to the constructor, is the initialization of com-
ponent’s parameters. Section, started from line (3) presents component’s self-
introduction functions, treating macrodefinitions, provided by CADLib. These
declarations contains (in the same order) components short name, longer descrip-
tion, resource identifier of the corresponding icon, requirements for the properties
of other components to be compliant to this one and properties, implemented by
this components.

Last two statements worth special discussion. Attributes and requirements
specifications are formulated using the trivial language of consequently adjustable
properties. The self-characteristics, given on the last line of section (3) should
be understood as the declaration of the fact that the component implements the
property “Data”. Then it is refined: data is “composite”. Moreover, compos-
ite data is attributed as “biocell”. In the same manner requirements represent

class CACrtsCell3DDatum:public
(1) CABasicCrts3DDatum

<BioCell, CBioCellDlg, IDD_BIOCELL> {
public:

(2) CACrtsCell3DDatum();
virtual ~CACrtsCell3DDatum();

(3) COMPONENT_NAME(BioCells for Cartesians 3D)
COMPONENT_INFO(3D storage for cellular (biological)

data for cartesian metrics)
COMPONENT_ICON(IDI_ICON)
COMPONENT_REQUIRES(Metrics.3D.cartesian.*)
COMPONENT_REALIZES(Data.composite.biocell)

(4) virtual inline COLORREF GetCellColor(CACell c); (5)
(5) virtual inline void SetDefValue(CACell c);

};

Fig. 15.3 The declaration of the datum component for the tumor growth modeling in CAME&L

378 D. Talia and L. Naumov

the conditions over properties, allowing wildcards and logical operations. This
component needs to collaborate with another one, which should implement the
property “Metrics”. The property should be attributed as “3D” and, moreover,
“cartesian”. The asterisk means that any amount of deeper refining subproperties
will fit. There is no strict rule for properties naming. The properties conformance
checkup is case-insensitive. The union of components will not form a proper
cellular automaton if at least one component has unsatisfied requirements.

There is no need to overload any additional members of the CADatum
class, because all the required functionality is basically implemented by the
CABasicCrts3DDatum class template. Nevertheless most likely one will decide
to overload two functions, shown on lines (4) and (5).

First of all, note that CACell class represents the universal cell identifier,
which allows to refer any given cell in the arbitrary metrics. From the technical
point of view, it represents the 64 bits integer value. For example, when dealing
with standard 2D cartesian metrics the universal cell identifier stores cell’s absciss
in first 32 bits and the ordinate in rest 32 bits. For standard 3D cartesian metrics
the universal cell identifier is divided into three unequal parts: 22 bits for absciss,
21 for ordinate and 21 for applicate. When using generalized coordinates [34]
as, for example, Peano-curve-based metrics [35], the universal cell identifier is
interpretted as a solid unsigned integer number. So, CAME&L can govern the
cellular automaton of up to 264 cells.

The function, overloaded on line (4), is to return the color, which should be
used to visualize the value, stored in the cell c. The function on line (5) should put
the “default value” to the cell c. This value will be used for the grid initialization
and as the out-of-bounds value for constant boundary conditions.

Finally, the component’s library should contain the class declaration, the
implementation (in the case of this component, four functions should be imple-
mented: constructor, destructor and two, declared on lines (4) and (5)) and com-
ponent’s library access functions, which can be easily created with following two
lines of code:

COMPATIBLE_DATUM(1.1)
DATUM_COMPONENT(CACrtsCell3DDatum)

First one implements the authentication function for the library, which says that
the component was built to be compatible with CADLib version 1.1. Second one
adds the creation and the destruction functions for the component, implemented
by the CACrtsCell3DDatum class.

• It is logical to perform modeling in Cartesian metrics, which is implemented by
one of the standard components. The name of this component is “Cartesians 3D”.

• Each rules component should be implemented by the descendant of the CARules
class. This type of components was designed to allow the full control over the
simulation and to support a lot of features. Nevertheless for the plain imple-
mentation of algorithm in most cases it’s enough to overload its SubCompute
function only. This function represents the transitions’ laws, which are applied
to some zone of the grid. The description of the zone is given by the object of

15 Parallel Cellular Programming for Emergent Computation 379

bool CATG3DRules::SubCompute(Zone& z)
{

(1) *** Prestep ***

(2) int i,j,k;
for(i=(int)z.a1; i<=(int)z.b1; i++) {

(3) pEnv->SetProgress(((double)i-z.a1)/(z.b1-z.a1+1))
for(j=(int)z.a2; j<=(int)z.b2; j++)

for(k=(int)z.a3; k<=(int)z.b3; k++) {
(4) *** Transition for the cell (i;j;k) ***

*** Compute the analyzable values ***
}

}

(5) *** Poststep ***

(6) *** Compute the analyzable values ***
*** Assign the values to the analyzable parameters ***

(7) pEnv->SetProgress(1.0);

(8) return (*** Criteria of the completion ***); }

Fig. 15.4 The schematic representation of the tumor growth modeling algorithm implemented
in CAME&L

CADLib’s Zone class passed as the parameter to the function. If a variable z
describes the zone, then z.a1 and z.b1 are the lower and the higher boundaries
of the zone along a first axis, z.a2 and z.b2 – along a second one and z.a3 and
z.b3 – along a third one. All boundaries should be included. Axes are just enu-
merated, but not named here as the “absciss”, the “ordinate” and the “applicate”,
because zonal mechanism is to be metrics independent and in general situation
the meaning of the particular axis is unknown. So, it would be wrong to conclude
that the object of the Zone class always describes the parallelepiped.
The environment will call the SubCompute function with the correct value of the
zone description. In most cases, and in the case of tumor growth modeling also,
the main structure of the implementation of this function should look like shown
in Fig. 15.4 (verbal descriptions of the functionality which replace the code are
given between three asterisks, bracketed numbers are used for referencing, as
above).

This function will be called once for each timestep. So its beginning (line (1))
is the appropriate place for the prestep routines (initialization of variables, pre-
computing values, which will be used later, etc.). On the line (2) three variables,
which will run over three Cartesian coordinated are declared. The running is
provided by the following loop operators. Inside the loop (line (4) and the next
one) the main part of an algorithm should be placed: for each cell its new state
should be determined. Moreover, values of the analyzable parameters, which can
be influenced by each single cell, should be updated. It is strongly recommended

380 D. Talia and L. Naumov

not to reassign the values to such parameters many times, but to deal with the
temporary variables until step will be finished. Line (5) is the appropriate place
for postprocessing step results. On line (6), after the analyzable values, which are
influenced by the simulation step in general (not by any single cell) were calcu-
lated, the parameters can get their values for the current iteration (line after (6)).

Member variable pEnv allows the rules component to exchange the informa-
tion with the environment. Its member function SetProgress is used to declare
which part of the time-consuming process have been accomplished (from 0.0
(nothing have been done) to 1.0 (the process is finished)). The line (3) is the
suitable place to report about the progress not excessively often, but adequately.
Before finishing the iteration progress should be set to 100% (line (7)).

The value returned by SubCompute function (line (8)) plays the role of the
computational experiment’s completion criterium. Simulation will go on while
function returns true.

In all the rest a rules component’s library should contain the same principal
parts as a datum component’s library, considered above. Necessary component’s
library access functions can be also created by two lines of the code.

The situation, which has been considered is quite typical: in the overwhelming
majority of cases, excluding purely educational purposes, a user has to create the
rules component. In some cases, but not so often she/he has to implement the datum
component also. The chance that one will need the non-standard metrics is very low
and most likely attitudes to the special metrics-related research. A necessity of new
grids or analyzers creation may rise even more rare. Standard analyzers can treat
all basic types (boolean, integer and floating-point variables) and standard grids are
suitable for 1D, 2D and 3D modeling. Moreover, the visualization can be slightly
influenced or customized on the level of datum components (see the description
of the DrawCell, GetCellColor, and GetPlaceColor member functions of the
CADatum class [14, 23]).

From the opposite side, lets sort types of components in the order from the most
simple to the most complicated one from the developers point of view. In this case
the creation of new datum components will be the simplest. Then rules components
follow. It looks not so simple, but in most cases the only thing, which researcher
has to do is overloading the SubCompute member function. The rest three types
are to be created form scratch and number of functions have to be overloaded. The
next from the simplicity point of view are analyzer components. Their idea is quite
clear and general, it contains less specifics and can be implemented easier than the
next type – grid components. Metrics components are the most complex and hard to
debug, because they make no visual output, but with the help of CADLib even this
can be done without getting stuck.

To run the tumor growth simulation a researcher has to install two created com-
ponents with the help of the “components manager” built into the environment
(“Tools” | “Components Manager...” in the main menu). Then new document should
be created (“File” | “New” in the main menu) and four components mentioned above

15 Parallel Cellular Programming for Emergent Computation 381

Fig. 15.5 Screenshot of CAME&L, running tumor growth computational experiment, being stud-
ied with the help of two analyzers

(two standard and two created) should be chosen. After this the simulation can be
executed with the help of “Go” button (“Modeling” | “Go” in the main menu). The
screenshot of the environment, running the tumor growth computational experiment
is shown on Fig. 15.5.

The experiment’s window is divided into two parts. The left one displays the
components tree. All components except analyzers are presented there and grouped
by types. Tree’s leaves of the first level are types’ names, on the second level there
are the components, and their parameters are on the third one. This tree is handy for
fast switching between the components. Those of them, which were selected, are
marked out with the small circle in the beginning of the name. Components, which
are compatible with the currently chosen instances, are shown with bold font.

In the right part of the experiment’s window the grid component is visualizing
the simulation. In the shown case the multicellular tumor spheroid is represented as
a “stub”. This means that cells with positive values of all three coordinates are not
drawn, to allow looking inside the formation.

At the bottom and at the upper-right corner there are two analyzer graphs: the
performance one and the plot of key tumor growth characteristics (volume, amounts
of proliferating, quiescent and dead cells).

382 D. Talia and L. Naumov

15.6 Conclusions

The main goal of programming languages and tools has always been to make the
programmer more productive and the programming task more effective. Appropriate
programming languages and tools may drastically reduce the costs for building new
applications as well as for maintaining existing ones.

It is well known that programming languages can greatly increase programmer’s
productivity by allowing the programmer to write high-scalable, generic, readable
and maintainable code. Also, new domain specific languages, such as CA languages,
can be used to enhance different aspects of software engineering.

The development of these languages is itself a significant software engineering
task, requiring a considerable investment of time and resources. Domain-specific
languages have been used in various domains and the outcomes have clearly illus-
trated the advantages of domain specific-languages over general purpose languages
in areas such as productivity, reliability, and flexibility.

The main goal of the paper is answering the following question: How does one
program emergent systems through cellular automata on parallel computers? We
think that it is very important for an effective use of cellular automata for compu-
tational science on parallel machines to develop and use high-level programming
languages and tools that are based on the cellular computation paradigm. These
languages may provide a powerful tool for researchers and engineers that need to
implement real-life applications on parallel machines using a fine-grain approach.
This approach allows designers to concentrate on “how to model a problem” rather
than on architectural details as occurs when people use low-level languages that have
not been specifically designed to express fine-grained parallel cellular computations.

In a sense, parallel cellular languages provide a high-level paradigm for fine-
grain computer modeling and simulation. While efforts in sequential computer lan-
guages design focused on how to express sequential data, objects and operations,
here the focus is on finding out what parallel cellular objects and operations are the
ones we should want to define. Parallel cellular programming emerged as a response
to these needs.

References

1. J. von Neumann, Theory of Self-Reproducing Automata, ed. by A. W. Burks (University of
Illinois Press, Urbana, IL, 1966)

2. S. Ulam, Random Processes and Transformations / Proceedings of the International Congress
of Mathematicians, vol. 2 (American Mathematical Society Providence, RI 1952).

3. K. Zuse, Calculating Space. (Massachusetts Institute of Technology Technical Translation
AZT-70-164-GEMIT (Project MAC)). (MIT Cambridge, MA, 1970)

4. N. Wiener, A. Rosenbleuth, The mathematical formulation of the problem of conduction of
impulses in a network of connected excitable elements, specifically in cardiac muscle. Archi.
Insti. Cardiol. Mex. 16, 202–265 (1946)

5. P.M.A. Sloot, A.G. Hoekstra, Modeling Dynamic Systems with Cellular Automata, Chapter
21. ed. by P.A. Fishwick, Handbook of Dynamic System Modeling. (Chapman & Hall/CRC,
London/Boca Raton, FL, 2007)

15 Parallel Cellular Programming for Emergent Computation 383

6. E. Houstis, E. Gallopoulos, J. Bramley, J.R. Rice, Problem-solving environments for compu-
tational science. IEEE Comput. Sci. Eng. 4, 18–21 (1997)

7. E. Gallopoulos, E. Houstis, J.R. Rice, Computer as Thinker/Doer: Problem-solving environ-
ments for computational science. IEEE Comput. Sci. Eng. 1, 11–23 (1994)

8. M. Abrams, D. Allison, D. Kafura, C. Ribbens, M.B. Rosson, C. Shaffer, L. Watson, PSE
Research at Virginia Tech: An Overview. Technical Report: TR-98-21. (Virginia Polytechnic
Institute & State University, Blacksburg, VA, 1998)

9. D.W. Walker, M. Li, O.F. Rana, M.S. Shields, Y. Huang, The software architecture of a dis-
tributed problem-solving environment. Concur. Pract. Exp. 12, 1455–1480 (2000)

10. D.E. Knuth, Literate programming. Center of the Study of Language and Information.
(Stanford, CA 1992)

11. E. Gallopoulos, E.N. Houstis, J.R. Rice, Future Research Directions in Problem Solving Envi-
ronments for Computational Science: Report of a Workshop on Research Directions in Inte-
grating Numerical Analysis, Symbolic Computing, Computational Geometry, and Artificial
Intelligence for Computational Science. Technical Report 1259. Center for Supercomputing
Research and Development. (University of Illinois, Urbana-Champaign, IL, 1992)

12. W. Schroeder, K. Martin, B. Lorensen, Visualization Toolkit: An Object-Oriented Approach to
3D Graphics, 4th edn. (Kitware, New York, NY, 2006)

13. T. Worsch, Programming Environments for Cellular Automata. Proceedings of 2nd Confer-
ence on CA in Research and Industry (ACRI 96) (Springer, Heidelberg, 1996)

14. L. Naumov, Generalized coordinates introduction method and a tool for computational exper-
iments software design automation, based on cellular automata. PhD Thesis, SPbSU ITMO,
Saint-Petersburg, 2007

15. I. Blecic, A. Cecchini, G. Trunfio, A generalized rapid development environment for cellular
automata based simulations. Cellular Automata: 6th International Conference on Cellular
Automata for Research and Industry (ACRI-2004). (Springer, Heidelberg, 2004) pp. 851–860

16. T. Toffoli, N. Margolus, Cellular Automata Machines: A New Environment For Modeling.
(MIT Press, Cambridge, MA, 1987)

17. N. Margolus, CAM-8: A Computer Architecture Based on Celluar Automata. Physics of Com-
putation Seminar (MIT, Cambridge, MA, 1993)

18. M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, D. Talia, A parallel cellular
automata environment on multicomputers for computational science. Parallel Comput. 21,
803–823 (1995)

19. G. Spezzano, D. Talia, CARPET: a programming language for parallel cellular processing.
Proceedings 2nd European School on PPE for HPC. (Alpe d’Huez, France, 1996) pp. 71–74

20. G. Spezzano, D. Talia, A high-level cellular programming model for massively parallel pro-
cessing. 2nd International Workshop on High-Level Programming Models and Supportive
Environments (HIPS97). IEEE Computer Society Press, LOS Alamitos, CA, pp. 55–63

21. L. Naumov, CAME&L – Cellular Automata Modeling Environment & Library. Cellular
Automata: 6th International Conference on Cellular Automata for Research and Industry
(ACRI-2004). (Springer, Heidelberg, 2004) pp. 735–744

22. A. Sottoriva, J.J.C. Verhoeff, T. Borowski, S.K. McWeeney, P.M.A. Sloot, L. Vermeulen,
Modelling cancer stem cell driven tumor growth reveals invasive morphology and increased
phenotypical heterogeneity. Cancer Res. 70, 46–56

23. CAMEL Laboratory – http://camellab.spb.ru/. Accessed date 23 Feb 2005
24. G. Spezzano, D. Talia CAMELot: A parallel cellular environment for modelling complexity.

AI*IA Notizie 2, 9–15 (2001)
25. J.D. Eckart, A cellular automata simulation system: Version 2.0. ACM SIGPLAN Notices

27(8), 99–106 (1992)
26. U. Freiwald, J.R. Weimar, JCASim a Java system for simulating cellular automata. Theoret-

ical and Proctical Issues on Cellular Automata (ACRI 2000). (Springer, Heidelberg, 2001)
pp. 47–54

27. Mirek’s Cellebration – http://www.mirekw.com/ca/. Accessed date 27 Apr 2010
28. M. Ifrim, Contribution to ParCeL-6 Project: Design of Algorithms Mixing Memory Sharing

and Message Passing Paradigms for DSM and Cluster Programming, 2005

384 D. Talia and L. Naumov

29. O. Menard, S. Vialle, H. Frezza-Buet, Making cortically-inspired sensorimotor control realis-
tic for robotics: Design of an extended parallel cellular programming model. In International
Conference on Advances in Intelligent Systems - Theory and Applications. (IEEE Computer
Society, Luxembourg, 2004)

30. T. Bach, T. Toffoli, SIMP, a laboratory for cellular automata and lattice gas experiments. Inter-
national Conference on Complex Systems, (Boston, MA, 2004)

31. T. Toffoli, T. Bach, A common language for “Programmable Matter” (Cellular Automata and
All That). Bull. Ital. Assoc. Artif. Intell., 2, 23–31 (2001)

32. H. Chou, W. Huang, J.A. Reggia, The trend cellular automata programming environment.
Simulation 78(2), 59–75 (2002)

33. C. Hochberger, R. Hoffmann, CDL – a language for cellular processing. Proceedings of
the 2nd International Conference on Massively Parallel Computing Systems, IEEE, Ischia.
pp. 41–46 (1996)

34. L. Naumov, Generalized Coordinates for Cellular Automata Grids. Computational Science –
ICCS 2003. Part 2. (Springer, Heidelberg, 2003) pp. 869–878

35. H. Sagan, Space-Filling Curves. (Springer, Heidelberg, 1994)
36. D. Talia, Cellular processing tools for high-performance simulation. Computer 33(9), 44–52

(2000)
37. B.L. Chamberlain, S-E. Choi, S.J. Deitz, L. Snyder, The high-level parallel language ZPL

improves productivity and performance. In: Proceedings of the IEEE International Workshop
on Productivity and Performance in High-End Computing (2004), Madrid

38. G. Spezzano, D. Talia, Programming cellular automata for computational science on parallel
computers. Future Gen. Comput. Syst. 16(2–3), 203–216 (1999)

39. J.M. Greenberg, S.P. Hastings, Spatial patterns for discrete models of diffusion in excitable
media. SIAM J. Appl. Math. 34, 515–523 (1978)

	Cover
	Foreword
	Preface
	Acknowledgements
	Contents
	Contributors
	to 1 Introduction to Modeling of Complex SystemsUsing Cellular Automata
	Alfons G. Hoekstra, Jirí Kroc, and Peter M.A. Sloot
	1.1 The Computational Paradigm
	1.2 Modeling
	1.3 Complex Systems
	1.4 Cellular Automata
	1.5 Classical Cellular Automata
	1.6 The Game of Life
	1.7 Advanced Cellular Automata
	1.8 Book Organization
	1.9 Additional Resources
	References

	Part I Theory of Cellular Automata
	to 2 Multilevel Cellular Automata as a Tool for StudyingBioinformatic Processes
	Paulien Hogeweg
	2.1 Introduction: ``one more soul''
	2.2 Modeling Bioinformatic Systems
	2.3 Multiscale Processes in Standard CA Models: Examples from Ecology
	2.4 Emergent Microscale Entities in Evolutionary CA Models: An Example
	2.5 Evolutionary CA and Evolutionary Computation
	2.6 Conclusion
	References

	to 3 Complex Automata: Multi-scale Modeling with CoupledCellular Automata
	Alfons G. Hoekstra, Alfonso Caiazzo, Eric Lorenz, Jean-Luc Falcone, and Bastien Chopard
	3.1 Multi-scale Modeling
	3.1.1 Introduction

	3.2 Complex Automata
	3.2.1 A Definition
	3.2.2 The Scale Separation Map
	3.2.3 The Sub-Model Execution Loop
	3.2.4 CxA Multi-scale Coupling
	3.2.5 Multiscale Modeling Strategies
	3.2.6 Execution Model
	3.2.7 Formalism
	3.2.8 Scale-Splitting Error

	3.3 Examples
	3.3.1 Reaction Diffusion
	3.3.2 In Stent Restenosis

	3.4 Concluding Remarks
	References

	to 4 Hierarchical Cellular Automata Methods
	Adam Dunn
	4.1 Introduction
	4.2 Structure of Hierarchical CA
	4.2.1 Isotropic Propagation and CA
	4.2.2 Structural Definitions
	4.2.3 Building Structures with Heterogeneous Data

	4.3 Behaviour of Hierarchical CA
	4.3.1 A Probabilistic Update Method
	4.3.2 Processes with Heterogeneous Behaviour

	4.4 Discussion and Summary
	References

	to 5 Cellular Automata Composition Techniques for SpatialDynamics Simulation
	Olga Bandman
	5.1 Introduction
	5.2 Main Concepts and Formal Problem Statement
	5.2.1 Formal Definition of a CA-model
	5.2.2 Correctness of CA Simulation Process
	5.2.3 Operations on Cellular Arrays

	5.3 The Sequential Composition Techniques
	5.3.1 Global Superposition
	5.3.2 Local Superposition

	5.4 The Parallel Composition Techniques
	5.4.1 Global Parallel Composition
	5.4.2 Local Parallel Composition
	5.4.3 Mixed Composition

	5.5 Computational Properties of Composed CA
	5.5.1 Accuracy of the Composed CA
	5.5.2 CA Composition Stability
	5.5.3 Composition Complexity

	5.6 Conclusion
	References

	to 6 Problem Solving on One-Bit-Communication Cellular Automata
	Hiroshi Umeo
	6.1 Introduction
	6.2 One-Bit-Communication Cellular Automata
	6.3 Firing Squad Synchronization Problem
	6.3.1 FSSP with a General at One End
	6.3.2 Generalized FSSP with a General at an Arbitrary Point

	6.4 Prime Sequence Generation Problem
	6.5 Early Bird Problem
	6.6 Firing Squad Synchronization Problem on 2-D CA1-bit
	6.6.1 Synchronization Algorithm on Square Arrays
	6.6.2 Synchronization Algorithm on Rectangle Arrays

	6.7 Connectivity Recognition Problem
	6.7.1 Connectivity
	6.7.2 Parallel Shrinking Transformation
	6.7.3 One-Bit Implementation of Connectivity-Preserving Transformation

	6.8 Summary and Further Works
	References

	to 7 Minimal Cellular Automaton Model of Inter-species Interactions: Phenomenology, Complexity and Interpretations
	Andrew Adamatzky and Martin Grube
	7.1 Introduction
	7.2 Cellular Automaton Model
	7.3 Mutualism
	7.4 Commensalism and Amensalism
	7.5 Parasitism
	7.6 Competition
	7.7 Discussion
	References

	to 8 Cellular Evolutionary Algorithms
	Marco Tomassini
	8.1 What Are Evolutionary Algorithms?
	8.1.1 Representation
	8.1.2 Genetic Operators
	8.1.3 The Evolutionary Cycle

	8.2 Cellular Evolutionary Algorithms
	8.2.1 CEAs and CAs
	8.2.2 Brief Historical Background

	8.3 Selection Pressure
	8.3.1 Takeover Time
	8.3.2 Asynchronous Updating
	8.3.3 Mathematical Models
	8.3.4 Experimental Validation

	8.4 Benchmarking CEAs
	8.4.1 The Algorithm
	8.4.2 Test Suite: Discrete Optimization Problems

	8.5 CEAs and Real-World Problem Solving
	8.5.1 Vehicle Routing Problem
	8.5.2 Diffusion in Mobile Ad-Hoc Networks

	8.6 Conclusions
	References

	to 9 Artificial Evolution of Arbitrary Self-Replicating Structuresin Cellular Spaces
	Zhijian Pan and James A. Reggia
	9.1 Self-Replicating Systems in Cellular Automata
	9.2 Universal Constructors in CA Spaces
	9.3 Self-Replicating Loops
	9.4 Evolution of CA Rules
	9.5 Evolution of Self-Replicating Structure Using Genetic Programming
	9.5.1 S-tree Encoding and General Structure Representation
	9.5.2 R-tree Encoding and Rule Set Representation
	9.5.3 Genetic Programming with S-tree and R-tree Encoding
	9.5.4 The Replicator Factory Model and Experimental Results

	9.6 Discussion
	References

	Part II Applications of Cellular Automata
	to 10 Game Theoretical Interactions of Moving Agents
	Wenjian Yu and Dirk Helbing
	10.1 Introduction
	10.1.1 Migration, Game Theory, and Cooperation
	10.1.2 Co-evolution of Social Structure and Cooperation

	10.2 Spatial Games with Mobility
	10.2.1 Classification
	10.2.2 Individual Decision Making and Migration
	10.2.3 Learning

	10.3 Simulation Results and Discussion
	10.3.1 Spontaneous Pattern Formation and Population Structure
	10.3.2 Promotion of Cooperation in the Prisoner's Dilemma

	10.4 Conclusions
	References

	to 11 Lattice Boltzmann Simulations of Wetting and Drop Dynamics
	Halim Kusumaatmaja and Julia M. Yeomans
	11.1 Introduction
	11.2 The Binary Model
	11.2.1 Thermodynamics of the Fluid

	11.3 Hydrodynamics of the Fluid
	11.4 The Lattice Boltzmann Algorithm
	11.4.1 The Multiple Relaxation Time Algorithm
	11.4.2 Boundary Conditions
	11.4.3 Other Lattice Boltzmann Algorithms

	11.5 Smooth Walls
	11.5.1 Capillary Filling
	11.5.2 Viscous Fingering

	11.6 Chemical Patterning
	11.6.1 Spreading on a Chemically Striped Surface
	11.6.2 Using Chemical Patterning to Control Drop Positioning
	11.6.3 Using Chemical Patterning to Sort Drop by Size

	11.7 Topographical Patterning: Superhydrophobic Surfaces
	11.7.1 Contact Line Pinning and Contact Angle Hysteresis
	11.7.2 The Slip Length of Superhydrophobic Surfaces
	11.7.3 The Transition from the Suspended to the Collapsed State on Superhydrophobic Surfaces

	11.8 Discussion
	References

	to 12 CA Modeling of Ant-Traffic on Trails
	Debashish Chowdhury, Katsuhiro Nishinari,and Andreas Schadschneider
	12.1 Introduction
	12.2 A Model of Unidirectional Traffic on a Single-Lane Ant Trail
	12.2.1 Computer Simulation Results
	12.2.2 Analytical Results

	12.3 The Multi Robots Implementation
	12.3.1 Experimental Setup
	12.3.2 Observations

	12.4 A model of Bidirectional Traffic on a Two-Lane Ant Trail
	12.4.1 Extensions of the Uni-Directional Model

	12.5 A Model of Bidirectional Traffic on a Single-Lane Ant Trail
	12.6 Empirical Results
	12.7 Concluding Discussions
	References

	to 13 Lattice-Gas Cellular Automaton Modeling of Emergent Behavior in Interacting Cell Populations
	Haralambos Hatzikirou and Andreas Deutsch
	13.1 Introduction
	13.2 Lattice-Gas Cellular Automata
	13.2.1 Dynamics in Lattice-Gas Cellular Automata

	13.3 A LGCA Model for Growing Cell Populations
	13.3.1 Definition of the LGCA Model
	13.3.2 Microdynamical Equations
	13.3.3 Simulations

	13.4 Analysis
	13.4.1 Mean-Field Approximation
	13.4.2 Macroscopic Dynamics
	13.4.3 Traveling Front Analysis

	13.5 Modelling the Influence of the Microenvironmenton Cell Migration
	13.5.1 Cell Migration Strategies
	13.5.2 LGCA Models of Cell Motion in a Static Environment
	13.5.3 Model I
	13.5.4 Model II

	13.6 Analysis of the LGCA Models for Motion in Static Environments
	13.6.1 Model I
	13.6.2 Model II

	13.7 Discussion
	References

	to 14 Cellular Automata for Simultaneous Analysis and OptimalStructural Topology Design
	Zafer Gürdal and Ramzi Zakhama
	14.1 Introduction
	14.2 Modeling for Structural Analysis and Design
	14.2.1 Truss Domain
	14.2.2 Isotropic Continuum Domain
	14.2.3 Composite Lamina Continuum Domain

	14.3 Analysis Update Rule
	14.3.1 Truss Structures
	14.3.2 Isotropic Continuum Structures
	14.3.3 Composite Lamina Continuum Structures

	14.4 Design Update Rule
	14.4.1 Truss Structures
	14.4.2 Continuum Structures
	14.4.3 Composite Lamina Continuum Structures

	14.5 Cellular Automata Implementation Schemes
	14.5.1 Truss Structures
	14.5.2 Continuum Structures

	14.6 Numerical Examples
	14.6.1 Example 1: 2-D Plate Topology Design
	14.6.2 Example 2: 2- and 3-D Compression Bridge
	14.6.3 Example 3: Fiber Reinforce Cantilever Plate

	14.7 Concluding Remarks
	References

	Part III Cellular Automata Software
	to 15 Parallel Cellular Programming for Emergent Computation
	Domenico Talia and Lev Naumov
	15.1 Introduction
	15.2 Cellular Automata Systems
	15.3 Parallel CA Languages
	15.3.1 Programming Approach
	15.3.2 Cellular Lattice Declaration
	15.3.3 Cell State
	15.3.4 Neighborhood
	15.3.5 Parallelism Exploitation
	15.3.6 CA Mapping
	15.3.7 Output Visualization and Monitoring

	15.4 Cellular Automata Based Problem-Solving Environment Case Study: CAMELot and CARPET
	15.4.1 Examples of Cellular Programming

	15.5 Cellular Automata Based Problem-Solving Environment Case Study: CAME&L
	15.5.1 Cellular Automata Based Computational Experiment Decomposition
	15.5.2 Software Design
	15.5.3 Usage Example. Tumor Growth Modeling

	15.6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

