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Preface

In 2003 we published Positron Emission Tomography: Basic Science and Clinical Practice.
The aim of that book was to address what we perceived of as a lack, at the time, of a
comprehensive contemporary reference work on the rapidly expanding area of positron
emission imaging. The scope was intentionally wide. The original proposal for a 350 page
book turned into a nearly 900 page volume.

This book, Positron Emission Tomography: Basic Sciences, is a selected and updated
version of the non-clinical chapters from the original book. In addition, a number of
new chapters have been added which address the role of PET today for the scientist
currently working in or entering this rapidly expanding area. The audience that this is
intended for is the scientist, engineer, medical graduate or student who wants to learn
more about the science of PET. Many of the chapters have been updated from the origi-
nal to reflect how rapidly the technology underpinning PET is changing.

The following diagram encapsulates much of what is required in understanding the
science of PET. It is taken from an introduction by Professor Terry Jones to a book of the
proceedings from a PET neuroscience conference in the mid-1990s. It is the intention of
this book to deal with the majority of these topics and to produce a comprehensive
“science of PET” textbook which is more focussed and manageable than the original
volume. We hope this book will be of use to you.

Finally, we are sad to report that the principal editor of the original work, Peter E Valk,
MB, BS, FRACP, passed away in December 2003. Peter was a great friend and outstanding
advocate for, and practitioner of, nuclear medicine and PET. He will be greatly missed by
his many colleagues and friends everywhere. We are indeed fortunate that Peter left us
with a truly wonderful book on PET to preserve his memory and not let us forget the
debt that we owe him for the leading role he played in bringing PET into clinical patient
care.

Dale L Bailey
David W Townsend
Michael N Maisey

Sydney, Knoxville, London
March 2004
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Figure 1. Jones' view of the science of PET (adapted from Myers R. Cunningham VJ, Bailey DL, Jones T (Eds): Quantification of Brain Function with PET.
Academic Press; 1996 and used with Professor Jones’ permission).
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1 Positron Emission Tomography in Clinical Medicine

Michael N Maisey

Introduction

Positron emission tomography (PET) imaging is set to
change the whole impact and role of Nuclear Medicine,
not because it does everything better than conven-
tional single photon imaging (planar and single
photon emission computed tomography (SPECT)), but
because it also has the impact and public relations of
the fastest growing diagnostic speciality. PET is a pow-
erful metabolic imaging technique utilising possibly
the best radiopharmaceutical we have ever used ['®F]-
fluorodeoxyglucose (FDG). However, in addition, it
yields excellent quality images, the importance of
which can be appreciated by non-nuclear medicine
clinicians, and has an enormous clinical impact, as
demonstrated in many well-conducted studies. Any on-
cologist exposed to a good PET imaging service very
quickly appreciates its value. Sitting in on routine clini-
cal PET reporting sessions, it is easy to appreciate how
patient after patient is having their management
changed in a very significant way as a direct result of
the new information provided by the PET scan.

There is now an impressive body of data evaluating
the impact of PET on patient management. These
studies are showing that PET results alter management
in a significant way in more than 25% of patients, with
some as high as 40%[1]. Examples include changing de-
cisions on surgical treatment for non-small cell lung
cancer (both avoiding inappropriate surgery and en-
abling potentially curative resection), the staging and
treatment of lymphoma, decisions on surgical resections
for metastatic colo-rectal cancer, referral for revasculari-
sation of high-risk coronary artery disease (CAD) pa-

tients and many others. This is a level of impact on
patient care for common and life-threatening diseases
not previously achieved by Nuclear Medicine. Nuclear
Medicine has always improved patient care, but usually
marginally, such that it has sometimes been difficult to
argue that good medicine could not be practised
without it. This has often resulted in limitations on the
manpower and other resources being put into Nuclear
Medicine, particularly in health care systems function-
ing at the lower end of gross national product (GNP)
percentage investment, such as the National Health
Service (NHS) in the United Kingdom. This is not true
of PET. It is no longer possible to practice the highest
standard of clinical oncology without access to PET, and
it is clear that without it many patients are needlessly
undergoing major surgical procedures and many are
being denied potentially curative treatments. If PET and
X-ray computed tomography (CT) were to be intro-
duced simultaneously now for oncology staging, follow-
up, assessment of tumour recurrence, evaluation of
treatment response, efc, there would be no competition
with PET proving vastly superior in these areas of
cancer patient management.

We therefore have in clinical PET a new imaging tool
as part of Nuclear Medicine which has brought the
speciality to the very heart of patient management,
especially for Oncology, but also in Cardiology and
Neuropsychiatry. Nuclear Medicine has always been
excited by the potential for new ligands for clinical ap-
plication and the study of patho-physiology. Although
for many reasons the potential has not been fully deliv-
ered, it may be that the future role of PET ligands will
be huge, especially as we are on the brink of molecular
and genetic imaging. Furthermore, for PET to be the



future of Nuclear Medicine we do not need to argue on
the grounds of the potential, as, with FDG, we have the
most effective and powerful radiopharmaceutical of all
time. Nuclear Medicine has never had a single tracer
which could study brain metabolism, cardiac function,
image sites of infection, and detect cancer as FDG does
in thousands of scans world-wide every day.

Technical developments will also drive the widespread
introduction of PET as the main developing area
of Nuclear Medicine. PET scanners are becoming
significantly more sensitive leading to considerably
faster patient throughput, as long scanning times were
one of the weaknesses of early scanners. “Fusion
imaging”, always a promising “new” methodology, has
been kick-started by the combined PET/CT concept (see
chapters 8 and 9). However, the greatest benefits of
fusion imaging may eventually come from software,
rather than hardware, fusion because of the flexibility of
fusing multiple imaging modalities with PET (e.g., mag-
netic resonance imaging (MRI)) as well as image fusion
of sequential PET images over time, which will be of in-
creasing importance for PET-based molecular and meta-
bolic imaging when used for following the response to
treatment. The spatial resolution of PET images is also
improving, so that metabolic images with millimetre res-
olution are increasingly probable. The power derived
from quantification will be revealed as measurement of
early tumour responses becomes routine practice. Many
of these benefits are because of the investment of time
and money that industry is putting into PET as it is per-
ceived as a major area of expansion.

With increased patient throughput and a greater
number of PET scanners and imaging resources, there
are opportunities for PET methodologies to be used for
studies such as bone scans (with ['®F]-F or FDG, or
even a combination of the two), all cardiac perfusion
and myocardial viability studies, and many other
current SPECT-based studies (e.g. imaging neuro-
endocrine tumours using ['''In]-octreotide or [**'I]-
mIBG) could be performed by PET. A lot will depend
on the inventiveness and will of the cyclotron opera-
tors and radiochemists who will be responding to the
clinical agenda.

Current Clinical Applications of PET

Clinical PET imaging, almost exclusively with FDG at
present, is being used in three important areas of clini-
cal diagnosis and management:

e Cancer diagnosis and management

Positron Emission Tomography

e Cardiology and cardiac surgery
e Neurology and psychiatry.

Each of these areas will be examined in more detail.

Cancer Diagnosis and Management

Although FDG is by far the most important radiophar-
maceutical at present others such as !'C-labelled
methionine and choline and fluorine labelled DNA
proliferation markers such as fluoro-L-tyrosine (FLT)
will have an increasing role in the years ahead. The ap-
plications can be classified according to the generic use
for which the PET scan is applied, that is detection,
staging tumour response, efc or by tumour types. Both
are important to understand although the tumour type
approach will be the method chosen for agencies re-
sponsible for agreeing reimbursements.

e Diagnosis of malignancy: examples will include dif-
ferentiating malignant from benign pulmonary
nodules, and differentiating brain scarring after
treatment (surgery, chemotherapy and radiation
therapy) from tumour recurrence.

e Grading Malignancy: as the uptake of FDG and other
metabolic tracers is related to the degree of malig-
nancy (the principle established by Warburg in the
early part of the 20" century[2]) the PET scan can
be used to grade tumours and therefore indirectly
provide information on prognosis (the so-called
“metabolic biopsy”).

e Staging disease: staging is documenting how wide-
spread the cancer is in the patient. The PET scan has
been show to be superior to anatomical methods of
staging disease and therefore planning therapy.
Examples include non-small cell lung cancer, lym-
phoma and oesophageal tumours.

e Residual disease: because purely anatomical
methods for deciding on the viability of residual
masses after treatment has been poor, metabolic
imaging is proving extremely useful e.g., post-
treatment mediastinal lymphoma masses and testic-
ular abdominal masses.

e Detection of recurrences: good examples include the
confirmation and site of recurrent colo-rectal cancer
after surveillance blood testing has detected a rise in
circulating tumour (CEA) markers.

e Measuring the response to therapy: it is often impor-
tant to know how effective initial treatment has been
in order to plan future therapeutic strategies. The
best example is assessing response following the
initial course of treatment of Hodgkin’s lymphoma,
when poor early response indicates that supplemen-
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tary neo-adjuvant therapy may be necessary for the
desired effect.

e To identify the site of disease: identifying the site of
disease may be important to plan surgery e.g., for
squamous cell cancers of the head and neck, to
direct biopsy when the disease is heterogeneous, in
soft tissue sarcomas, and to find the site of disease
when the only sign may be a raised circulating
tumour marker such as in thyroid cancer or ter-
atomas.

e To identify the primary tumour when secondary
cancers are present: it may be critical to discover the
primary cancer when a patient presents with an en-
larged lymph node, as in head and neck cancers
where the primary tumour may be small, or alterna-
tively when the presentation raises suspicion of a
para-neoplastic syndrome.

Cardiology and Cardiac Surgery

At present there are three major indications for PET
scans using two physiological measurements in clini-
cal practice. The two measurements are (i) to measure
the myocardial perfusion using [*’N]-ammonia (or

82Rb from an on-site generator) and (ii) to measure
myocardial viability (using ['®*F]-FDG). There is in-
creasing interest in a third measurement, cardiac in-
nervation by studying myocardial receptors, which
may have a greater role in the future. The three applica-
tions of these measurements are:

in the diagnosis and assessment of the functional
significance of coronary artery disease (CAD)
usually when the SPECT scan is not definitive.
However with the increasing use of medical therapy
for treating CAD the quantification of myocardial
blood flow and changes will become more important
in the near future.

in the assessment of the viability of ischaemic or
jeopardised myocardium. This is important because
the risks and benefits of medical treatments in ad-
vanced CAD are closely related to the presence and
extent of viable but hibernating myocardium versus
non-viable infarcted/scar tissue.

during the work-up of patients who are being con-
sidered for cardiac transplantation (although this
may be regarded as a subset of viability assessment).
It is of such importance it is often considered sepa-
rately from assessing viability. Due to the procedural

Table 1.1.  US Centers for Medicaid and Medicare Services Indications and Limitations for PET scans[3].

Indication Date Approved Purpose

Solitary Pulmonary Nodules (SPNs) Jan 1, 1998 Characterisation

Lung Cancer (Non Small Cell) Jan1,1998 Initial staging

Lung Cancer (Non Small Cell) July 1, 2001 Diagnosis, staging and restaging

Esophageal Cancer July 1,2001 Diagnosis, staging and restaging

Colo-rectal Cancer July 1, 1999 Determining location of tumours if rising CEA level suggests recurrence
Colo-rectal Cancer July 1, 2001 Diagnosis, staging and restaging

Lymphoma July 1,1999 Staging and restaging only when used as an alternative to Gallium scan
Lymphoma July 1,2001 Diagnosis, staging and restaging

Melanoma July 1, 1999 Evaluating recurrence prior to surgery as an alternative to a ’Ga scan
Melanoma July 1, 2001 Diagnosis, staging and restaging; Non-covered for evaluating regional nodes
Breast Cancer Oct 1,2002 As an adjunct to standard imaging modalities for staging patients with distant

metastasis or restaging patients with loco-regional recurrence or metastasis; as
an adjunct to standard imaging modalities for monitoring tumour response to
treatment for women with locally advanced and metastatic breast cancer when
a change in therapy is anticipated.

Head and Neck Cancers (excluding July 1,2001 Diagnosis, staging and restaging
CNS and thyroid)
Thyroid Cancer Oct 1,2003 Restaging of recurrent or residual thyroid cancers of follicular cell origin that

have been previously treated by thyroidectomy and radioiodine ablation and
have a serum thyroglobulin >10ng/ml and negative "'l whole body scan

performed
Myocardial Viability July 1,2001 to Covered only following inconclusive SPECT
Sep 30, 2002
Myocardial Viability Oct 1,2001 Primary or initial diagnosis, or following an inconclusive SPECT prior to
revascularisation. SPECT may not be used following an inconclusive PET scan.
Refractory Seizures July 1, 2001 Covered for pre-surgical evaluation only
Perfusion of the heart using 3?Rb Mar 14, 1995 Covered for non-invasive imaging of the perfusion of the heart

Perfusion of the heart using ['>N]-NH; ~ Oct 1, 2003 Covered for non-invasive imaging of the perfusion of the heart
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Table 1.2. UK Intercollegiate Committee on Positron Emission Tomography Recommended Indications for Clinical PET Studies[4]. The evidence sup-
porting this is classified as (A) Randomised controlled clinical trials, meta-analyses, systematic reviews, (B) Robust experimental or observational
studies, or (C) other evidence where the advice relies on expert opinion and has the endorsement of respected authorities.
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Table 1.2. Continued.




Table 1.2. Continued.

Positron Emission Tomography

Oncology Applications

Indicated

Not indicated routinely (but may
be helpful)

Not indicated

Musculo-skeletal tumours

Skin tumours

Metastases from
unknown primary

eSoft tissue primary mass assessment
to distinguish high grade malignancy
from low or benign disease. (B)
eStaging of primary soft tissue
malignancy to assess non-skeletal
metastases. (B)

eAssessment of recurrent abnormalities
in operative sites. (B)

eAssessment of osteogenic sarcomas
for metastatic disease. (C)

eFollow up to detect recurrence or
metastases. (B)

elMalignant melanoma with known
dissemination to assess extent of
disease. (B)

elMalignant melanoma in whom a
sentinel node biopsy was not or can
not be performed in stage 1. (AJCC
updated classification). (C)

eDetermining the site of an unknown
primary when this influences
management. (C)

elmage registration of the primary mass
to identify optimum biopsy site. (C)

eStaging of skin lymphomas. (C)

elMalignant melanoma with
negative sentinel node
biopsy. (B)

eWidespread metastatic disease
when the determination of the
site is only of interest. (C)

Cardiac Applications Indicated Not indicated routinely (but may Not indicated
be helpful)
eDiagnosis of hibernating myocardium  eDiagnosis of coronary artery disease or ~ ePatients with confirmed

in patients with poor left ventricular
function prior to revascularisation
procedure. (A)

ePatients with a fixed SPECT deficit who
might benefit from revascularisation. (B)
ePrior to referral for cardiac
transplantation. (B)

assessment of known coronary stenosis
where other investigations (SPECT,

ECG), etc) remain equivocal. (B)
eDifferential diagnosis of cardiomyopathy
(ischaemic versus other types of dilated
cardiomyopathy). (C)

eMedical treatment of ischaemic heart
disease in high risk hyperlipidemic
patients. (C)

coronary artery disease in whom
revascularisation is not
contemplated or indicated. (C)
eRoutine screening for coronary
artery disease. (C)

Neuropsychiatry
Applications

Indicated

Not indicated routinely (but may
be helpful)

Not indicated

ePre-surgical evaluation of epilepsy. (B)
eSuspected recurrence or failed primary
treatment of primary malignant brain
tumours. (Most of these patients will
have had MRI and CT with equivocal
results). (B)

eEarly diagnosis of dementia (especially
younger patients and Alzheimer's
disease) when MRI or CT is either normal,
marginally abnormal or equivocally
abnormal. (B)

eThe grading of primary brain
tumour. (B)

elocalisation of optimal biopsy site
(either primary or recurrent brain
tumour). (C)

eDifferentiating malignancy from
infection in HIV subjects where MRI is
equivocal. (C)

eDiagnosis of dementia where
MRl is clearly abnormal (C)
eMost instances of stroke. (C)
elMost psychiatric disorders
other than early dementia. (C)
ePre-symptomatic or at risk
Huntingdon’s disease. (C)
eDiagnosis of epilepsy. (C)
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Table 1.2. Continued.

Miscellaneous Indicated

Application

Not indicated routinely (but may Not indicated

be helpful)

Disease assessment in
HIV and other immuno-
suppressed patients

eldentification of sites to biopsy in
patients with pyrexia. (C)
eDifferentiating benign from
malignant cerebral pathology. (B)

Assessment of bone
infection

Assessment of bone
metastases

Assessment of tumour
recurrence in the pituitary

Fever of unknown origin

eRoutine assessment of weight loss
where malignancy is suspected. (C)

eAssessment of bone infection
associated with prostheses. (C)
eAssessment of spinal infection or
problematic cases of infection. (C)

eWhen bone scan or other imaging is
equivocal. (C)

eldentifying recurrent functional
pituitary tumours when anatomical
imaging has not been successful. (C)

eldentifying source of the fever of
unknown origin. (C)

risks of heart transplantation, costs and limitation of
donors it is vital to select only those patients who,
because of the lack of viable myocardium, cannot
benefit from revascularisation procedures.

Neurology and Psychiatry

Applications in these medical disciplines include the
management of brain tumours, the pre-surgical work-
up of patients with epilepsy (complex partial seizures)
resistant to medical therapies, and the identification of
tumours causing para-neoplastic syndromes. Further,
PET has been shown to precede all other methods for
the early diagnosis and differential diagnosis of
dementias. While there clearly is a role for this in man-
agement of patients it is only with the introduction of
effective treatments that it will prove to be important
and could become the most important clinical use of
PET with time.

Currently Approved Indications

Tables 1.1 and 1.2 from the United States and the UK il-
lustrate the current indications for clinical PET studies.
While the tables use different criteria, they form a
useful basis for an understanding of the present day
role of PET in clinical management.

FDG-PET Cost Effectiveness
Studies

In addition to being subjected to careful scrutiny,
more than any other diagnostic technology, PET
imaging has been required to demonstrate that it
delivers cost effective diagnoses. Cost effectiveness
studies in Nuclear Medicine including FDG PET
studies have been reviewed by Dietlein (1999) [5] and
by Gambhir (2000) [6]. These reviews also provide a
detailed critique of the individual studies and in the
review by Gambhir only six studies in the nuclear
medicine literature were found which met all ten of
their quality criteria for cost effectiveness studies and
only one of these [7] was an FDG PET study. The fol-
lowing is not a comprehensive or detailed analysis of
every cost effectiveness study in the literature but a
review of FDG PET related to the more important
studies in the literature including some published
since the two reviews mentioned above and some that
have been completed and will be published shortly.
Table 1.3 shows the clinical conditions that have been
analysed to date with a moderate degree of rigour
which include solitary pulmonary nodules, staging
non-small cell lung cancer, recurrent colo-rectal
cancer, metastatic melanoma, lymphoma staging, and
coronary artery disease.



Table 1.3.  Reports of moderately rigorous PET cost-effectiveness studies.

Target Population Evaluation Method (references)

Coronary artery disease
Solitary Pulmonary Nodule

Decision Analysis Model [7], [8], [9]
Decision Analysis Model [10], [11],
[12]

Decision Analysis Model [13], [14],
[15]

Decision Analysis Model [16]
Retrospective costing [17], [18]
Adenosine vs Dipyridamole Cost minimisation [19]

General oncology Retrospective costing [20]
Neuropsychiatric [21]

Staging NSCLC

Re-staging colo-rectal cancer
Lymphoma staging

The economic modelling has been performed in dif-
ferent health care settings and suggests that PET is
cost-effective, or even cost-saving, based on the as-
sumptions made. Whether PET affects long term
outcome remains to be fully tested in malignant condi-
tions, but what is clear is that it can affect the short
term management of patients with cancer (Table 1.4).
Outcome effects may take up to 20 years to evaluate, for
example, whether changes in chemotherapy or radio-
therapy regimens early in the course of disease treat-
ment will reduce second cancers. If an imaging
modality is superior to another imaging modality and
provides different information allowing management
changes we should not wait a further 5 to 10 years to
show long term outcome effects — these changes have
been modelled and prospective studies are showing
these models to be true. Furthermore the human costs
of delay in the introduction of this modality may be
large, since the management changes demonstrated
suggest that unnecessary surgery can be avoided and
necessary surgery expedited. There is therefore the po-
tential to enable the appropriate treatment pathway.

Conclusion

The following examples will serve to illustrate the
power of clinical PET in substantially altering patient

Table 1.4.  Comparison of costs per life-year saved in different clinical
procedures.

Procedure Cost/Life-Year Saved ($US)
Liver transplant $43,000-250,000
Mammography (<50 years) $160,000
Renal dialysis $116,000
Chemotherapy (Breast) $46,200
Cardiac transplant $27,200
CABG $13,000
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management, thereby avoiding futile aggressive
therapy and improving cost effectiveness. In Figure 1.1,
the ability of PET to detect more extensive disease, as
in this case, changed management by avoiding a futile
thoracotomy and treating the patient appropriately
with chemotherapy and palliative radiotherapy. As
illustrated in Figure 1.2, although metastasis resection
is clinically effective, this is only when the lesion is
solitary. PET-FDG is now becoming routine before this
surgery and avoiding, as in this case, many un-
necessary resections. Staging of breast cancer both
influences treatment and is the best guide to prognosis.
Figure 1.3 very well demonstrates how the accuracy of
staging is improved by the routine use of the PET scan,
in this case by upstaging the disease. PET is now rou-
tinely used in certain scenarios for the initial assess-
ment of patients with malignant melanoma. It is also
valuable as in this case, Figure 1.4, as an effective
means of follow-up when there is suspicion of recur-
rence in order that appropriate treatment can be
instituted without delay. Finally, PET scanning is in-
creasingly used because of its sensitivity for assessing
early metabolic changes when early detection of
tumour response, or evaluation of the success of
chemotherapy, is critical. Figure 1.5 dramatically
demonstrates this effect with complete resolution in a
case of non-Hodgkin’s lymphoma when tailoring of
chemotherapy and prognosis are both a direct result of
the outcome of the PET scan.
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Figure 1.1. A central right non-small cell lung cancer with extensive ipsilateral mediastinal metastasis (a) in a 61-year-old man who was otherwise well.

Staging by abdominal CT and bone scan showed 1.5 cm enlargement of the right adrenal gland and no other evidence of distant metastasis, and neoadjuvant
therapy and resection were being considered. PET scan showed metastasis in the right adrenal gland(—) (b), left upper quadrant of the abdomen (=) (a) and
the liver () () (arrows) and management was changed to palliative radiation and chemotherapy. (Reproduced from Valk PE, Bailey DL, Townsend DW,
Maisey MN. Positron Emission Tomography: Basic Science and Clinical Practice. Springer-Verlag London Ltd 2003, p. 527.)
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Figure 1.2.  Coronal (right) and sagittal (left) FDG PET images in a 51-year-old man with a history of resection of rectal cancer three years earlier. CT demon-
strated a lesion in the lower zone of the right lung and biopsy confirmed recurrent rectal cancer. CT imaging showed no other abnormality and PET study was
performed for pre-operative staging. PET showed high uptake in the lung metastasis (left) and also showed metastasis in a thoracic vertebra, thereby excluding
surgical resection of the lung lesion. The patient was treated by chemotherapy and irradiation. (Reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN.
Positron Emission Tomography: Basic Science and Clinical Practice. Springer-Verlag London Ltd 2003, p. 565.)

Figure 1.3. Coronal FDG PET image sections showing uptake in (a) right breast cancer (b) palpable right axillary lymph nodes (c) right supraclavicular and high
axillary lymph nodes that were not clinically apparent. (Reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic
Science and Clinical Practice. Springer-Verlag London Ltd 2003, p. 599.)
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Figure 1.4. Coronal whole-body PET image section
obtained in a 65-year-old man, one month after resection of
a Clark’s level Il melanoma from the right thigh, showing a
focus of increased uptake in the left pelvis (a). A similar focus
was seen in the right pelvis. The patient was asymptomatic
and CT scan of the pelvis was negative. A follow-up CT five
montbhs later also showed no pelvic abnormality. One year
after the PET study, the patient presented with Gl bleeding
and was found to have a mass in the gastric mucosa, which
proved to be recurrent melanoma on biopsy. Repeat PET
scan after the biopsy showed multiple tumor masses in the
abdomen and pelvis (b). (Reproduced from Valk PE, Bailey
DL, Townsend DW, Maisey MN. Positron Emission
Tomography: Basic Science and Clinical Practice.

b Springer-Verlag London Ltd 2003, p. 630.)
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Figure 1.5. Response to treatment in a patient with non-Hodgkin’s disease. The pre-treatment scan (a) shows extensive tumor above and below the
diaphragm, whereas the post-treatment scan (b) shows no abnormal tracer localization, indicating complete response to therapy. (Reproduced from Valk PE,
Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and Clinical Practice. Springer-Verlag London Ltd 2003, p. 701.)
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2 Physics and Instrumentation in PET

Dale L Bailey, Joel S Karp and Suleman Surti

Introduction

In 1928 Paul AM Dirac postulated that a subatomic
particle existed which was equivalent in mass to an
electron but carried a positive charge. Carl Anderson
experimentally observed these particles, which he
called positrons, in cosmic ray research using cloud
chambers in 1932. Both received Nobel Prizes in
physics for their contributions. The positrons ob-
served by Anderson were produced naturally in the
upper atmosphere by the conversion of high-energy
cosmic radiation into an electron-positron pair. Soon
after this it was shown that when positrons interact
with matter they give rise to two photons which, in
general, are emitted simultaneously in almost exactly
opposed directions. This sequence of events touches
on many of the momentous developments in physics
that occurred in the first 50 years of the twentieth
century: radioactivity, Einstein’s special relativity
(energy-mass equivalence famously described by E =
mc?), quantum mechanics, de Broglie’s wave-particle
duality, and the laws of conservation of physical
properties.

Today we produce positron-emitting radionuclides
under controlled laboratory conditions in particle
accelerators in the hospital setting for use
in positron emission tomography (PET). In this
chapter we will examine the basic physics of radio-
activity and positrons and their detection as it relates
to PET.

Models of the Atom

We use models, or representations, constantly in our
lives. A painting, for example, is one individual’s repre-
sentation of a particular scene or feeling. It is clearly
not the scene itself, but it is a model, or an attempt, to
capture some expression of the reality as perceived by
the artist. Likewise, scientists use models to describe
various concepts about very-large-scale phenomena
such as the universe, and very-small-scale phenomena
such as the constituent components of all matter. One
important feature of a model is that it usually has a re-
stricted range over which it applies. Thus, we employ
different models to account for different observations
of the same entity, the classical example being the
wave—-particle duality of radiation: sometimes it is con-
venient to picture radiation as small discrete “packets”
of energy that we can count individually, and at other
times radiation appears to behave like a continuous
entity or wave. The latter is evidenced by phenomena
such as the diffraction of coherent light sources in a
double-slit experiment. This could present a problem if
we were to confuse the model and reality, but we em-
phasize again that the model is a representation of the
underlying reality that we observe.

Amongst the ancient Greeks, Aristotle favored a con-
tinuous matter model composed of air, earth, fire, and
water, where one could go on dividing matter infinitely
into smaller and smaller portions. Others, though, such
as Democritus, preferred a model in which matter was

* Chapter reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and

Clinical Practice. Springer-Verlag London Ltd 2003, 41-67.
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corpuscular. By the nineteenth century it was clear that
chemicals combined in set proportions, thus support-
ing a corpuscular, or discrete, model of matter. At the
turn of the twentieth century evidence was mounting
that there were basic building blocks of matter called
atoms (Greek: indivisible), but the question remained
as to what, if anything, the atoms themselves were
composed of. It was shown by J] Thomson and, later,
Ernest (Lord) Rutherford, that atoms could be broken
down into smaller units in experiments using cathode
ray tubes. Thomson proposed a model of the atom that
was composed of a large, uniform and positively
charged sphere with smaller negative charges embed-
ded in it to form an electrostatically neutral mixture.
His model of the atom is known as the “plum pudding”
atom. Rutherford showed, however, that alpha particles
(doubly ionized helium nuclei emitted from some un-
stable atoms such as radium) could pass through
sheets of aluminum, and that this was at odds with the
Thomson model. He proposed a model similar to that
used to describe the orbit of the planets of the solar
system about the sun (the “planetary” model). The
Rutherford model had a central positive core - the
nucleus - about which a cloud of electrons circulated.
It predicted that most of the space in matter was unoc-
cupied (thus allowing particles and electromagnetic
radiation to pass through). The Rutherford model,
however, presented a problem because classical physics
predicted that the revolving electrons would emit
energy, resulting in a spiralling of the electrons into the
nucleus. In 1913, Bohr introduced the constraint that
electrons could only orbit at certain discrete radii, or
energy levels, and that in turn only a small, finite
number of electrons could exist in each energy level.
Most of what was required to understand the sub-
atomic behavior of particles was now known. This is
the Bohr (planetary) model of the atom. Later, the
neutron was proposed by Chadwick (1932) as a large
particle roughly equivalent to the mass of a proton, but
without any charge, that also existed in the nucleus of
the atom.

We shall continue to use the planetary model of the
atom for much of our discussion. The model breaks
down in the realm of quantum mechanics, where
Newtonian physics and the laws of motion no longer
apply, and as particles approach relativistic speeds (i.e.,
approaching the speed of light). Also, there are times
when we must invoke a non-particulate model of the
atom where the particles need to be viewed as waves
(or, more correctly, wave functions). Electrons, for
example, can be considered at times to be waves. This
helps to explain how an electron can pass through a
“forbidden” zone between energy levels and appear in
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Figure 2.1. Atomic “planetary” model of radioactive fluorine-18 ('¥F).
The nucleus contains 9 protons (@) and 9 neutrons (O) and there are
9 electrons circulating in defined orbits. Stable fluorine would contain
10 neutrons.

the next level without apparently having passed
through the forbidden area, defined as a region of
space where there is zero probability of the existence
of an electron. It can do so if its wave function is zero
in this region. For a periodic wave with positive and
negative components this occurs when the wave func-
tion takes a value of zero. Likewise, electromagnetic ra-
diation can be viewed as particulate at times and as a
wave function at other times. The planetary model of
the atom is composed of nucleons (protons and neu-
trons in the nucleus of the atom) and circulating elec-
trons. It is now known that these particles are not the
fundamental building blocks of matter but are them-
selves composed of smaller particles called quarks. A
deeper understanding of the elementary particles, and
the frequently peculiar world of quantum physics, is
beyond the scope of this book.

The simple planetary model of the atom is illustrated
in Fig. 2.1 for the case of radioactive fluorine-18 ('$ F) .
Nine orbital electrons circulate in defined energy levels
about a central nucleus containing nine neutrons and
nine protons. Stable fluorine is '§ F i.e., the nucleus con-
tains one more neutron than protons and this produces
a stable configuration. In all non-ionized atoms the
number of electrons equals the number of protons,
with the difference between the atomic number (Z)
and mass number (A) being accounted for by the neu-
trons. In practice we usually omit the atomic number
when writing radionuclide species (e.g., '°F) as it is im-
plicit in the element’s symbol.

Mass and Energy

In 1900 Max Planck demonstrated that the energy (E)
of electromagnetic radiation was simply related to the
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frequency of the radiation (v) by a constant (Planck’s
constant, h):

E=hv (1)

In addition, experiments indicated that the radiation
was only released in discrete “bursts”. This was a star-
tling result as it departed from the classical assumption
of continuous energy to one in which electromagnetic
radiation could only exist in integral multiples of the
product of hv. The radiation was said to be quantized,
and the discrete quanta became known as photons.
Each photon contained an amount of energy that was
an integer multiple of hv. The unit for energy is the
joule (J), and we can calculate the energy of the radia-
tion contained in a photon of wavelength of, for
example, 450 nm as:
he  6.63x107%*].s x 3 x 103m.s™!

E=hv="5= 450 X 10°m @)

=4.42%x107°]

This radiation (450 nm) corresponds to the portion of
the visible spectrum towards the ultraviolet end. Each
photon of light at 450 nm contains the equivalent of
4.42 x 107] of energy in a discrete burst. We shall see
the significance of this result later in this chapter when
we discuss the emission of photons from scintillators.

The joule is the Systeme International d’Unites (ab-
breviated SI) unit of energy, however, a derived unit
used frequently in discussions of the energy of electro-
magnetic and particulate radiation is the electron volt
(eV). The electron volt is defined as the energy ac-
quired when a unit charge is moved through a poten-
tial difference of one volt. Energy in joules can be
converted to energy in electron volts (eV) by dividing
by the conversion factor 1.6 x 107'? J.eV'. Thus, the
energy in eV for photons of 450 nm would be:

" 4.42 x 1071
E=442x%x10" JE 1.6 X 10_19].CV_1 (3)

=2.76 eV

X rays and gamma rays have energies of thousands to
millions of electron volts per photon (Fig. 2.2).
Einstein’s Special Theory of Relativity, published in
1905 while he was working in the patent office in
Zurich, turned the physical sciences on its head. It pre-
dicted, amongst other things, that the speed of light
was constant for all observers independent of their
frame of reference (and therefore that time was no
longer constant), and that mass and energy were equiv-
alent. This means that we can talk about the rest-mass
equivalent energy of a particle, which is the energy that
would be liberated if all of the mass were to be con-
verted to energy. By rest mass we mean that the particle
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Figure 2.2. The electromagnetic spectrum showing the relationship
between wavelength, frequency, and energy measured in electron volts
(eV).

is considered to be at rest, i.e., it has no kinetic energy.
Consider the electron, which has a rest mass of 9.11 x
107" kg; we can calculate the amount of energy this
mass is equivalent to from:

E = mc?
=9.11 x 1073'kg X (3 x 10%)? m.s~!
—82x101] (4)
_82X1074
=16x107]evV
=511 keV

The reader may recognize this as the energy of the
photons emitted in positron-electron annihilation.

Conservation Laws

The principle of the conservation of fundamental
properties comes from classical Newtonian physics.
The concepts of conservation of mass and conserva-
tion of energy arose independently, but we now see
that, because of the theory of relativity, they are merely
two expressions of the same fundamental quantity. In
the last 20-30 years the conservation laws have taken
on slightly different interpretations from the classical
ones: previously they were considered to be inviolate
and equally applicable to all situations. Now, however,
there are more conservation laws, and they have
specific domains in which they apply as well as situa-
tions in which they break down. To classify these we
must mention the four fundamental forces of nature.
They are called the gravitational, electromagnetic,
strong, and weak forces. It is believed that these forces
are the only mechanisms which can act on the various



Figure 2.3. The spin quantum number for a particle can be pictured as a
vector in the direction of the axis about which a particle is rotating. In this
example, spin can be either “up” or “down”.

properties of fundamental particles which make up all
matter. These properties are electrostatic charge,
energy and mass, momentum, spin and iso-spin, parity,
strangeness and hypercharge (a quantity derived from
strangeness and baryon numbers).

Charge is the electrostatic charge on a particle or
atom and occurs in integer multiples of 1.6 x 107%.

Energy and mass conservation are well known from
classical theory and are unified under special relativity.

Angular and linear momentum are the product of
the mass (or moment of inertia) and the linear (or
angular) velocity of a particle or atom.

Spin (s) and Isospin (i): Spin is the intrinsic angular
momentum of a particle. It can be thought of by using
the model of a ball rotating about its axis (Fig. 2.3).
Associated with this rotation will be angular momen-
tum which can take values in an arbitrary direction (la-
belled z) between —s to +s. The universe can be divided
into two groups of particles on the basis of spin: those
with spin 3, and those with integer spin of 0, 1, or 2.

The particles with spin j are the mass-containing

particles of the universe (fermions); the spin 0, 1, and 2
particles are the “force-carrying” particles (bosons).
Some bosons, such as the pion, which serve as ex-
change particles for the strong nuclear force, are
“virtual” particles that are very short-lived. Only spin 3
particles are subject to the Pauli exclusion principle,
which states that no two particles can have exactly the
same angular momentum, spin, and other quantum
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mechanical physical properties. It was the concept of
spin that led Dirac to suggest that the electron had an
antimatter equivalent, the positron. Iso-spin is another
quantum mechanical property used to describe the
symmetry between different particles that behave
almost identically under the influence of the strong
force. In particular, the isospin relates the symmetry
between a particle and its anti-particle as well as nucle-
ons such as protons and neutrons that behave identi-
cally when subjected to the strong nuclear force.
Similar to the spin, the isospin, i, can have half integer
as well as integer values together with a special z direc-
tion which ranges in magnitude from -i to +i. We shall
see later that under certain conditions a high-energy
photon (which has zero charge and isospin) can spon-
taneously materialize into an electron-positron pair. In
this case both charge and isospin are conserved, as the
electron has charge -1 and spin +3, and the positron

has charge +1 and spin -1. Dirac possessed an over
whelming sense of the symmetry in the universe, and
this encouraged him to postulate the existence of the
positron. Table 2.1 shows physical properties of some
subatomic particles.

Parity is concerned with the symmetry properties of
the particle. If all of the coordinates of a particle are
reversed, the result may either be identical to the origi-
nal particle, in which case it would be said to have even
parity, or the mirror image of the original, in which
case the parity is odd. Examples illustrating odd and
even functions are shown in Fig. 2.4. Parity is con-
served in all but weak interactions, such as beta decay.

The main interactions that we are concerned with
are summarized in Table 2.2.

These are believed to be the only forces which exist
in nature, and the search has been ongoing since the
time of Einstein to unify these in to one all-encompass-
ing law, often referred to as the Grand Unified Theory.
To date, however, all attempts to find a grand unifying
theory have been unsuccessful.

The fundamental properties and forces described
here are referred to as the “Standard Model”. This is
the most widely accepted theory of elementary parti-

Table 2.1. Physical properties of some subatomic particles.
Particle Symbol Rest Mass (kg) Charge Spin Isospin Parity
Electron e 9.11x 107 -1 1 +1 Even
Positron et 9.11x 107 +1 3 -1 Even
Proton p* 1,673 x 1077 +1 3 +3 Even
Neutron n° 1.675%x 1077 0 - - Even
Photon Q 0 0 1 - 0dd
Neutrino n ~0 0 17 % Even
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Examples of even (left) and odd (right) functions, to illustrate parity. In the even example (y = cos(x)) the positive and negative values of x have

the same y-values; for the odd function (y = sin(x)) the negative x-values have opposite sign to the positive x-values.

Table 2.2. The table indicates whether the property listed is conserved
under each of the fundamental interactions shown (gravity is omitted).

Property Electromagnetic  Strong Weak
Charge Yes Yes Yes
Energy/mass Yes Yes Yes
Angular momentum Yes Yes Yes
Linear momentum Yes Yes Yes
Iso-spin No Yes No
Parity Yes Yes No
Strangeness Yes Yes No

cles and their interactions, which applies for all forces
but gravity. The Standard Model remains a model
though, and does not explain all observed phenomena,
and work continues to find a grand unifying theory.

Radiation

Radiation can be classified into electromagnetic or
particulate. Ionising radiation is radiation that has
sufficient energy associated with it to remove electrons
from atoms, thus causing ionisation. This is restricted
to high-energy electromagnetic radiation (x and y radi-
ation) and charged particles (o, B, B*). Examples of
non-ionising electromagnetic radiation include light,
radio, and microwaves. We will concern ourselves
specifically with ionising radiation as this is of most in-
terest in nuclear medicine and radiological imaging.

Electromagnetic Radiation

Electromagnetic radiation is pure energy. The amount
of energy associated with each “bundle”, or quantum,
of energy is determined by the wavelength (A) of the

radiation. Human senses are capable of detecting some
forms of electromagnetic radiation, for example,
thermal radiation, or heat, (A = 10°m), and visible light
(A = 1077m). The energy of the radiation can be ab-
sorbed to differing degrees by different materials: light
can be stopped (absorbed) by paper, whereas radiation
with longer wavelength (e.g., radio waves) or higher
energy (yrays) can penetrate the same paper.

We commenced our discussion at the beginning of
this chapter with the comment that we are dealing with
models of reality, rather than an accurate description
of the reality itself; we likened this to dealing with
paintings of landscapes rather than viewing the land-
scapes themselves. This is certainly the case when we
discuss electromagnetic and particulate radiation. It
had long been known that light acted like a wave, most
notably because it caused interference patterns from
which the wavelength of the light could be determined.
Radiation was thought to emanate from its point of
origin like ripples on the surface of a pond after a stone
is dropped into it. This concept was not without its
difficulties, most notably, the nature of the medium
through which the energy was transmitted. This pro-
posed medium was known as the “ether”, and many ex-
periments sought to produce evidence of its existence
to no avail. Einstein, however, interpreted some experi-
ments performed at the turn of the twentieth century
where light shone on a photocathode could induce an
electric current (known as the photoelectric effect) as
showing that light acted as a particle. Einstein pro-
posed that radiant energy was quantized into discrete
packets, called photons. Thus, electromagnetic radia-
tion could be viewed as having wave-like and particle-
like properties. This view persists to this day and is
known as the wave-particle duality. In 1924, Louis
Victor, the Duc de Broglie, proposed that if wave—parti-
cle duality could apply to electromagnetic radiation, it
could also apply to matter. It is now known that this is
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true: electrons, for example, can exhibit particle-like
properties such as when they interact like small billiard
balls, or wave-like properties as when they undergo dif-
fraction. Electrons can pass from one position in space
to another, separated by a “forbidden zone” in which
they cannot exist, and one way to interpret this is that
the electron is a wave that has zero amplitude within
the forbidden zone. The electrons could not pass
through these forbidden zones if viewed strictly as
particles.

An important postulate proposed by Neils Bohr was
that De Broglie’s principle of wave-particle duality was
complementary. He stated that either the wave or the
particle view can be taken to explain physical phenom-
ena, but not both at the same time.

Electromagnetic radiation has different properties
depending on the wavelength, or energy, of the quanta.
Only higher-energy radiation has the ability to ionize
atoms, due to the energy required to remove electrons
from atoms. Electromagnetic ionising radiation is re-
stricted to x and vy rays, which are discussed in the fol-
lowing sections.

X rays: X rays are electromagnetic radiation pro-
duced within an atom, but outside of the nucleus.
Characteristic X rays are produced when orbital elec-
trons drop down to fill vacancies in the atom after an
inner shell electron is displaced, usually by firing elec-
trons at a target in a discharge tube. As the outer shell
electron drops down to the vacancy it gives off energy
and this is known as a characteristic X ray as the
energy of the X ray is determined by the difference in
the binding energies between the electron levels
(Fig. 2.5).
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As any orbital electron can fill the vacancy, the
quanta emitted in this process can take a number of
energies. The spectrum is characteristic, however, for
the target metal and this forms the basis of quantitative
X-ray spectroscopy for sample analysis. The spectrum
of energies emerging in X-ray emission displays a
continuous nature, however, and this is due to a
second process for X-ray production known as
Bremsstrahlung (German: “braking radiation”).

Bremsstrahlung radiation is produced after a free
electron with kinetic energy is decelerated by the
influence of a heavy target nucleus. The electron and
the nucleus interact via a Coulomb (electrostatic
charge) interaction, the nucleus being positively
charged and the electron carrying a single negative
charge. The process is illustrated in Fig. 2.6. The elec-
tron loses kinetic energy after its deceleration under
the influence of the target nucleus, which is given off as
electromagnetic radiation. There will be a continuum
of quantized energies possible in this process depend-
ing on the energy of the electron, the size of the
nucleus, and other physical factors, and this gives the
continuous component of the X-ray spectrum. The
efficiency of Bremsstrahlung radiation production is
highly dependent on the atomic number of the
nucleus, with the fraction of positron energy converted
to electromagnetic radiation being approximately
equal to ZE/3000, where Z is the atomic number of the
absorber and E is the positron energy in MeV. For this
reason, low Z materials such as perspex are preferred
for shielding positron emitters.

X rays generally have energies in the range of
~10°-10° eV.

U]

(ii)

Figure 2.5. The characteristic X-ray production process is shown. In (i) an electron(A) accelerated in a vacuum tube by an electric field gradient strikes the
metal target and causes ionization of the atom; in this case in the k-shell. The electron (B) is ejected from the atom (C). Subsequently (ii), a less tightly bound
outer orbital electron fills the vacancy (D) and in doing so gives up some energy (X), which comes off at a characteristic energy equal to the difference in
binding energy between the two energy levels. The radiation produced is an X ray.
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Electron
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Figure 2.6. The Bremsstrahlung process is responsible for the continuous
spectrum of X rays.

Gamma Radiation

Gamma rays are electromagnetic radiation emitted
from the nucleus after a spontaneous nuclear decay.
This is usually associated with the emission of an alpha
or beta particle although there are alternative decay
schemes. X and 7y rays are indistinguishable after they
are emitted from the atom and only differ in their site
of origin. After the emission of a particle in a radioac-
tive decay the nucleus can be left in an excited state
and this excess energy is given off as a y ray, thus con-
serving energy.

Gamma ray emission is characteristic, and it is de-
termined by the difference in energy levels between the
initial and final state of the energy level transitions
within the nucleus.

Annihilation Radiation

As this book is primarily concerned with positrons and
their applications, we include a further classification
for electromagnetic radiation which is neither x nor v.
Annihilation radiation is the energy produced by the
positron-electron annihilation process. The energy of
the radiation is equivalent to the rest mass of the elec-
tron and positron, as we saw in the section on Mass
and Energy, above. The mechanism of positron decay is
discussed in depth in the next section.

Annihilation radiation, arising from positron-elec-
tron annihilation, is produced outside of the nucleus,
and often outside of the positron-emitting atom.
There are two photons produced by each positron
decay and annihilation. Each photon has energy of
0.511 MeV, and the photons are given off at close to
180° opposed directions. It is this property of
collinearity that we exploit in PET, allowing us to
define the line-of-sight of the event without the need
for physical collimation.
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Particulate Radiation

Particle emission from natural radioactive decay was
the first observation of radioactivity. Wilhelm Réntgen
had produced X rays in 1896, and a year later Henri
Becquerel showed that naturally occurring uranium
produced radiation spontaneously. While the radiation
was thought initially to be similar to Rontgen’s x rays,
Rutherford showed that some types of radiation were
more penetrating than others. He called the less pene-
trating radiation alpha (o) rays and the more penetrat-
ing ones beta () rays. Soon after, it was shown that
these radiations could be deflected by a magnetic field,
i.e., they carried charge. It was clear that these were not
electromagnetic rays and were, in fact, particles.

Radioactive Decay

The rate at which nuclei spontaneously undergo ra-
dioactive decay is characterized by the parameter
called the half-life of the radionuclide. The half-life is
the time it takes for half of the unstable nuclei present
to decay (Fig. 2.7). It takes the form of an exponential
function where the number of atoms decaying at any
particular instant in time is determined by the number
of unstable nuclei present and the decay constant (A) of
the nuclide. The rate of decay of unstable nuclei at any
instant in time is called the activity of the radionuclide.
The activity of the nuclide after a time ¢ is given by

A, =A™ (5)

where A, is the amount of activity present initially, 4, is
the amount present after a time interval ¢, and A is the
decay constant. The decay constant is found from

1
- Og;(z) ©)

and the units for A are time™. The SI unit for radioac-
tivity is the becquerel (Bq). One becquerel (1 Bq)
equals one disintegration per second.

Example: calculate the radioactivity of a 100 MBq
sample of '8F (t1=109.5 mins) 45 minutes after calibra-
tion and from this deduce the number of atoms and
mass of the radionuclide present:

_0.6931 3.1

A= 1095 = 6.330 X 107 min

At =100 X e—6.330>< 103 x 45 (7)
=75.2MBq

The total number of F atoms present, N, can be
calculated from the activity and the decay constant
using:
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Figure 2.7. The decay of a radionuclide follows an exponential form seen in
the top graph, which gives a straight line in the log-linear plot on the
bottom. The dashed lines indicate the amount remaining after each half-life.

= A

= (8)
In this example the total number of '*F nuclei present
would be:
_ 752%10° o
~ 1.055x 107* (sec™!) ©)

=7.13 X 10" nuclei

N

We can determine the mass of this number of nuclei
using Avogadro’s number (N, = 6.023 X 10* mole™')
and the mass of a mole of *F (18 g) to be

Positron Emission Tomography

N 7.13x10"
N, = 6.023x 107 X188

2.13x10™Mg (21.3 pg) (10)

m

There are two other terms related to radioactivity that
are useful. Specific Activity is the ratio of radioactivity
to total mass of the species present. It has units of
TBq/gm or TBq/mole. Branching ratio is the fraction of
atoms that decay by the emission of a particular radia-
tion. For example, !!C is a pure positron emitter and
therefore has a branching ratio of 1.00 (or 100%). '*F,
however, decays to '*0 by positron emission only 96.9%
of the time, the remaining time being by electron
capture (EC) which does not emit a positron. Its
branching ratio is 0.969 (or 96.9%). Note that the
radioactivity of a nuclide is the number of atoms
decaying per second, not the number of radiation par-
ticles given off. Thus, to calculate the radioactivity
from a measurement of the emitted rate of particles or
photons, a correction is required to account for the
non-radiative disintegrations.

Correcting for decay is often required in calculations
involving radioactivity. The decay correction factor can
be calculated from the point in time of an instanta-
neous measurement to a reference time. The decay cor-
rection factor (F) is given by:

F =M (11)

where t is the time of the measurement and ¢, is the
reference time. It is often necessary to account for
decay within the interval of the counting period, espe-
cially with short-lived tracers as are used in positron
imaging. The correction factor (F,) to account for
decay during a measurement is:

F At

int — 1_6—/11‘

(12)

although taking the time ¢ from the mid-point of the
counting interval (rather than the time at the start of
the measurement) to the reference time in the calcula-
tion of F introduces an error of typically less than 1%
for counting intervals <0.75%L.

Alpha Decay

Alpha particles are helium nuclei (3He?*). They are
typically emitted from high Z-number atoms and form
the components of many naturally occurring radioac-
tive decay series. Due to their large mass, alpha parti-
cles deposit large amounts of energy in a very small
distance in matter. Therefore, as a radiation hazard
they represent a very large problem if ingested,
however, conversely, as they are relatively easy to stop,
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they are easily shielded. An example of alpha decay is
shown in the following:

U SETh+io+y (13)

The half-life for this particular process is 4.5 x 10° years.

Beta Decay

Beta particles are negatively charged electrons that are
emitted from the nucleus as part of a radioactive disin-
tegration. The beta particles emitted have a continuous
range of energies up to a maximum. This appeared at
first to be a violation of the conservation of energy. To
overcome this problem, in 1931 Wolfgang Pauli pro-
posed that another particle was emitted which he
called the neutrino (v). He suggested that this particle
had a very small mass and zero charge. It could carry
away the excess momentum to account for the differ-
ence between the maximum beta energy and the spec-
trum of energies that the emitted beta particles
displayed. In fact, we now refer to the neutrino emitted
in beta-minus decay as the antineutrino, indicated by
the -~ over the symbol v. B~ decay is an example of a
weak interaction, and is different to most other funda-
mental decays as parity is not conserved.

The following shows an example of a beta decay
scheme for ’'I:

BII 58 Xe+ 8-+ y+v (14)

The half-life for '*'I decay is 8.02 days. The most abun-
dant B particle emitted from "'I has a maximum
energy of 0.606 MeV and there are many associated 7y
rays, the most abundant (branching ratio = 0.81)
having an energy of 0.364 MeV.

Positron Decay

There are two methods of production of positrons: by
pair production, and by nuclear transmutation. Pair
production will be discussed in the following section.
Positron emission from the nucleus is secondary to the
conversion of a proton into a neutron as in:

pToin+ Bt +v (15)

with in this case a neutrino is emitted. The positron is
the antimatter conjugate of the electron emitted in 3-
decay.

The general equation for positron decay from an

atom is:
AX - AY+ BT+ v+ Q(+e) (16)

where Q is energy. The atom X is proton-rich and
achieves stability by converting a proton to a neutron.
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The positive charge is carried away with the positron.
As the daughter nucleus has an atomic number one less
than the parent, one of the orbital electrons must be
ejected from the atom to balance charge. This is often
achieved by a process known as internal conversion,
where the nucleus supplies energy to an orbital elec-
tron to overcome the binding energy and leave it with
residual kinetic energy to leave the atom. As both a
positron and an electron are emitted in positron decay
the daughter nucleus must be at least two electron
masses lighter than the parent.

The positron will have an initial energy after emis-
sion, which, similar to the case of B~ decay, can take a
continuum of values up to a maximum. After emission
from the nucleus, the positron loses kinetic energy by
interactions with the surrounding matter. The positron
interacts with other nuclei as it is deflected from its
original path by one of four types of interaction:

(i) Inelastic collisions with atomic electrons, which is
the predominant mechanism of loss of kinetic
energy,

(ii) Elastic scattering with atomic electrons, where the
positron is deflected but energy and momentum
are conserved,

(iii) Inelastic scattering with a nucleus, with deflection
of the positron and often with the corresponding
emission of Bremsstrahlung radiation,

(iv) Elastic scattering with a nucleus where the
positron is deflected but does not radiate any
energy or transfer any energy to the nucleus.

As the positron passes through matter it loses energy
constantly in ionisation events with other atoms or by
radiation after an inelastic scattering. Both of these sit-
uations will induce a deflection in the positron path,
and thus the positron takes an extremely tortuous
passage through matter. Due to this, it is difficult to es-
timate the range of positrons based on their energy
alone, and empirical measurements are usually made
to determine the mean positron range in a specific
material.

The positron eventually combines with an electron
when both are essentially at rest. A metastable interme-
diate species called positronium may be formed by the
positron and electron combining. Positronium is a
non-nuclear, hydrogen-like element composed of the
positron and electron that revolve around their com-
bined centre of mass. It has a mean life of around 1077
seconds. As expected, positronium displays similar
properties to the hydrogen atom with its spectral lines
having approximately half the frequency of those of
hydrogen due to the much smaller mass ratio.
Positronium formation occurs with a high probability
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Table 2.3. Properties of some positron-emitting nuclides of interest in PET compiled from a variety of sources.

Nuclide E nax Ernode t Range in Water (mm) Use in PET
(MeV) (MeV) (mins) Max Mean
nc 0.959 0.326 20.4 4.1 1.1 Labelling of organic molecules
BN 1.197 0.432 9.96 5.1 1.5 1B3NH,
150 1.738 0.696 2.03 7.3 25 150,, H,'%0, 150, €50,
LR 0.633 0.202 109.8 24 0.6 ["®F]-DG, "8F
%Ga 1.898 0.783 68.3 8.2 29 [®Ga]-EDTA, [*3Ga]-PTSM
82ph 3.40 1.385 1.25 14.1 5.9 Generator-produced perfusion tracer
e 2.44 t 52 i : [*-emitting version of *™Tc
] 2.13 T 6.0 103 F : lodinated molecules
*Not reported to date.

*Many-positron decay scheme hence no E,,q. value given.

in gases and metals, but only in about one-third of
cases in water or human tissue where direct annihila-
tion of the electron and the positron is more favorable.
Positronium can exist in either of two states, para-
positronium (spin = +31) or orthopositronium
(spin = +2). Approximately three-quarters of the
positronium formed is orthopositronium.

Positron emission from the nucleus, with subsequent
annihilation, means that the photon-producing event
(the annihilation) occurs outside the radioactive
nucleus. The finite distance that positrons travel after
emission contributes uncertainty to the localisation of
the decaying nucleus (the nucleus is the species that we
wish to determine the location of in positron tomogra-
phy, not where the positron eventually annihilates).
The uncertainty due to positron range is a function
that increases with increasing initial energy of the

positron. For a high-energy positron such as *Rb (E,,,,
= 3.4 MeV), the mean range in water is around 5.9 mm.
Table 3.3 shows some commonly used positron emit-
ting nuclides and associated properties.

When the positron and electron eventually combine
and annihilate electromagnetic radiation is given off.
The most probable form that this radiation takes is of
two photons of 0.511 MeV (the rest-mass equivalent of
each particle) emitted at 180° to each other, however,
three photons can be emitted (<1% probability). The
photons are emitted in opposed directions to conserve
momentum, which is close to zero before the
annihilation.

Many photon pairs are not emitted strictly at 180°,
however, due to non-zero momentum when the
positron and electron annihilate. This fraction has
been estimated to be as high as 65% in water. This con-

18
g0

Figure 2.8. Annihilation radiation is produced subsequent to a positron being ejected from the nucleus. The positron travels a finite distance, losing energy by
interaction with other electrons and nuclei as it does, until it comes to rest and combines (annihilates) with an electron to give rise to two photons, each equiv-
alent to the rest-mass energy of the particles. The two photons are approximately anti-collinear and it is this property that is used to localize events in PET.
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tributes a further uncertainty to the localisation of the
nuclear decay event of 0.5° FWHM from strictly 180°,
which can degrade resolution by a further 1.5 mm (de-
pendent on the distance between the two coincidence
detectors). This effect, and the finite distance travelled
by the positron before annihilation, places a funda-
mental lower limit of the spatial resolution that can be
achieved in positron emission tomography.

Interaction of Radiation with Matter

When high-energy radiation interacts with matter
energy can be transferred to the material. A number of
effects may follow, but a common outcome is the ionisa-
tion or excitation of the atoms in the absorbing material.

In general, the larger the mass of the particle the
greater the chance of being absorbed by the material.
Large particles such as alpha particles have a relatively
short range in matter, whereas beta particles are more
penetrating. The extremely small mass of the neutrino,
and the fact that it has no charge, means that it inter-
acts poorly with material, and is very hard to stop or
detect. High-energy photons, being massless, are highly
penetrating.

Interaction of Particulate Radiation with Matter

When higher energy particles such as alphas, betas,
protons, or deuterons interact with atoms in an absorb-
ing material the predominant site of interaction is with
the orbital electrons of the absorber atoms. This leads
to ionisation of the atom, and liberation of excited elec-
trons by the transfer of energy in the interaction. The
liberated electrons themselves may have sufficient
energy to cause further ionisation of neighboring
atoms and the electrons liberated from these subse-
quent interactions are referred to as delta rays.

Positron annihilation is an example of a particulate
radiation interacting with matter. We have already ex-
amined this process in detail.

Interaction of Photons with Matter

High-energy photons interact with matter by three
main mechanisms, depending on the energy of the
electromagnetic radiation. These are (i) the photoelec-
tric effect, (ii) the Compton effect, and (iii) pair pro-
duction. In addition, there are other mechanisms such
as coherent (Rayleigh) scattering, an interaction
between a photon and a whole atom which predomi-
nates at energies less than 50 keV; triplet production
and photonuclear reactions, where high energy gamma
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rays induce decay in the nucleus, and which require en-
ergies of greater than ~10 MeV. We will focus on the
three main mechanisms which dominate in the ener-
gies of interest in imaging in nuclear medicine.

Photoelectric Effect

The photoelectric effect occupies a special place in the
development of the theory of radiation. During the
course of experiments which demonstrated that light
acted as a wave, Hertz and his student Hallwachs
showed that the effect of an electric spark being
induced in a circuit due to changes in a nearby circuit
could be enhanced if light was shone upon the gap
between the two coil ends. They went on to show that a
negatively charged sheet of zinc could eject negative
charges if light was shone upon the plate. Philipp
Lenard demonstrated in 1899 that the light caused the
metal to emit electrons. This phenomenon was called
the photoelectric effect. These experiments showed
that the electric current induced by the ejected elec-
trons was directly proportional to the intensity of the
light. The interesting aspect of this phenomenon was
that there appeared to be a light intensity threshold
below which no current was produced. This was
difficult to explain based on a continuous wave theory
of light. It was these observations that led Einstein to
propose the quantized theory of the electromagnetic
radiation in 1905, for which he received the Nobel
Prize.

The photoelectric effect is an interaction of photons
with orbital electrons in an atom. This is shown in
Fig. 2.9. The photon transfers all of its energy to the
electron. Some of the energy is used to overcome the

o

Figure 2.9. The photoelectric effect involves all of the energy from a
photon being transferred to an inner shell electron, causing ionization of the
atom.
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binding energy of the electron, and the remaining
energy is transferred to the electron in the form of
kinetic energy. The photoelectric effect usually occurs
with an inner shell electron. As the electron is ejected
from the atom (causing ionisation of the atom) a more
loosely bound outer orbital electron drops down to
occupy the vacancy. In doing so it will emit radiation
itself due to the differences in the binding energy for
the different electron levels. This is a characteristic X
ray. The ejected electron is known as a photoelectron.
Alternately, instead of emitting an X ray, the atom may
emit a second electron to remove the energy and this
electron is known as an Auger electron. This leaves the
atom doubly charged. Characteristic X rays and Auger
electrons are used to identify materials using spectro-
scopic methods based on the properties of the emitted
particles.

The photoelectric effect dominates in human tissue
at energies less than approximately 100 keV. It is of par-
ticular significance for X-ray imaging, and for imaging
with low-energy radionuclides. It has little impact at
the energy of annihilation radiation (511 keV), but
with the development of combined PET/CT systems,
where the CT system is used for attenuation correction
of the PET data, knowledge of the physics of interac-
tion via the photoelectric effect is extremely important
when adjusting the attenuation factors from the X-ray
CT to the values appropriate for 511 keV radiation.

Compton Scattering

Compton scattering is the interaction between a
photon and a loosely bound orbital electron. The elec-
tron is so loosely connected to the atom that it can be
considered to be essentially free. This effect dominates
in human tissue at energies above approximately 100
keV and less than ~2 MeV. The binding potential of the
electron to the atom is extremely small compared with
the energy of the photon, such that it can be consid-
ered to be negligible in the calculation. After the inter-
action, the photon undergoes a change in direction and
the electron is ejected from the atom. The energy loss
by the photon is divided between the small binding
energy of the energy level and the kinetic energy im-
parted to the Compton recoil electron. The energy
transferred does not depend on the properties of the
material or its electron density (Fig. 2.10).

The energy of the photon after the Compton scatter-
ing can be calculated from the Compton equation:

E
B, =——F L (17)
1+ y2 (I-cos(8,))
myc
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Figure 2.10.
photon is transferred to an atomic electron. This electron is known as the
recoil electron. The photon is deflected through an angle proportional to the
amount of energy lost.

In Compton scattering, part of the energy of the incoming

e.g., What is the energy of an annihilation photon after
a single scatter through 60°?

E, =511keV (18)
0. =60°% cos[0.]=0.5 19)
myc® =9.11x107" kg x (3.0x10® m-s™')?
=511keV (20)
511
Ej=— (1)
511
1+>——(1-0.5)
511
=341 keV

From consideration of the Compton equation it can be
seen that the maximum energy loss occurs when the
scattering angle is 180° (cos (180°) = -1), i.e., the
photon is back-scattered. A 180° back-scattered annihi-
lation photon will have an energy of 170 keV.

Compton scattering is not equally probable at all en-
ergies or scattering angles. The probability of scatter-
ing is given by the Klein-Nishina equation [1]:

do 5 1 1+cos’0
— =71
dQ 1+a(l—cos6.) 2

201 _ 2
[1+ o“(1-cosb;)

(22)

(1+cos?6.)(1+0{1—cosO.})

where do/dQQ is the differential scattering cross-section,
Z is the atomic number of the scattering material, r, is
the classical electron radius, and o = Ey/mocz. For
positron annihilation radiation (where o = 1) in tissue,
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this equation can be reduced for first-order scattered
events to give the relative probability of scatter as:

2
d_O': 1 - (1—cosf,)>
dQ | 2-cos6,

(2—cosB.)(1+cos*6,)

(23)
Figure 2.11 shows the form that this function takes in
the range 0-180°. A number of Monte Carlo computer
simulation studies of the interaction of annihilation ra-
diation with tissue-equivalent material in PET have
shown that the vast majority (>80%) of scattered
events that are detected have only undergone a single
scattering interaction.

Pair production: The final main mechanism for
photons to interact with matter is by pair production.
When photons with energy greater than 1.022 MeV
(twice the energy equivalent to the rest mass of an elec-
tron) pass in the vicinity of a nucleus it is possible that
they will spontaneously convert to two electrons with
opposed signs to conserve charge. This direct electron
pair production in the Coulomb field of a nucleus is
the dominant interaction mechanism at high energies
(Fig.2.12). Above the threshold of 1.022 MeV, the prob-
ability of pair production increases as energy in-
creases. At 10 MeV, this probability is about 60%. Any
energy left over after the production of the
electron-positron pair is shared between the particles
as kinetic energy, with the positron having slightly
higher kinetic energy than the electron as the interac-
tion of the particles with the nucleus causes an acceler-
ation of the positron and a deceleration of the
electron.

Scattering Angle GC (degrees)

Pair production was first observed by Anderson
using cloud chambers in the upper atmosphere, where
high-energy cosmic radiation produced tracks of di-
verging ionisation left by the electron-positron pair.

The process of pair production demonstrates a
number of conservation laws. Energy is conserved in
the process as any residual energy from the photon left
over after the electron pair is produced (given by
E,-2m,c’) is carried away by the particles as kinetic
energy; charge is conserved as the incoming photon

e+

Figure 2.12.  The pair production process is illustrated. As a photon passes
in the vicinity of a nucleus spontaneous formation of positive and negatively
charged electrons can occur. The threshold energy required for this is equal
to the sum of the rest masses for the two particles (1.022 MeV).
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has zero charge and the outgoing positive and negative
electrons have equal and opposite charge; and momen-
tum is conserved as the relatively massive nucleus
absorbs momentum without appreciably changing its
energy balance.

Electron-positron pair production offered the first
experimental evidence of Dirac’s postulated “antimat-
ter”, i.e., that for every particle in the universe there
exists a “mirror image” version of it. Other particles
can produce matter/antimatter pairs, such as protons,
but, as the mass of the electron is much less than a
proton, a photon of lower energy is required for elec-
tron-positron pair production, thus making the
process more probable. The particles produced will
behave like any other free electron and positron,
causing ionisation of other atoms, and the positron will
annihilate with an orbital electron, producing annihila-
tion radiation as a result.

At energies above four rest-mass equivalents of the
electron, pair production can take place in the vicinity
of an electron. In this case it is referred to as “triplet
production” as there is a third member of the interac-
tion, the recoiling electron.

Attenuation and Scattering of Photons

In the previous section we have seen how radiation in-
teracts with matter at an atomic level. In this section
we will examine the bulk “macroscopic” aspects of the
interaction of radiation with matter, with particular
reference to positron emission and detection.

Calculations of photon interactions are given in
terms of atomic cross sections (o) with units of
cm?/atom. An alternative unit, often employed, is to
quote the cross section for interaction in barns/atom
(b/atom) where 1 barn = 10"2*cm? The total atomic
cross section is given by the sum of the cross sections
for all of the individual processes [2],i.e.,

ot = Gpe + Gincon + Ocon + Gpair + Gtripl + anh (24)

where the cross sections are for the photoelectric effect
(pe), incoherent Compton scattering (incoh), coherent
(Rayleigh) scattering (coh), pair production (pair),
triplet production (¢ripl), and nuclear photoabsorption
(nph). Values for attenuation coefficient are often given
as mass attenuation coefficients (u/p) with units of
cm?.g™. The reason for this is that this value can be
converted into a linear attenuation coefficient () for
any material simply by multiplying by the density (p)
of the material:

Wi (em™) = ulp (cm*.g™) p(g.cm™) (25)
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Figure 2.13. Total atomic cross-section as a function of photon energy for
lead. The scattering cross-sections (G) are given for coherent (COH), inco-
herent (INCOH) or Compton scattering, photonuclear absorption (PH.N.),
atomic photoelectric effect (t), nuclear field pair production (i), electron
field pair production (triplet) (x.), and the overall total cross section (TOT).
(Reproduced with permission of the Institute of Physics Publishing from:
Hubbell JH. Review of photon interaction cross section data in the medical
and biological context. Phys Med Biol 1999;44(1):R1-22).

The mass attenuation coefficient is related to the total
cross section by

Gtot

ulp (cm*g™t) = u(@)A

(26)

where u(g) = 1.661 x 107**g is the atomic mass unit
(1/N, where N, is Avogadro’s number) defined as
1/12% of the mass of an atom of 2C, and A is the rela-
tive atomic mass of the target element [2].

An example of the total cross section as a function of
energy is shown in Fig. 2.13.

Photon Attenuation

We have seen that the primary mechanism for photon
interaction with matter at energies around 0.5 MeV is
by a Compton interaction. The result of this form of in-
teraction is that the primary photon changes direction
(i.e., is “scattered”) and loses energy. In addition, the
atom where the interaction occurred is ionized.

For a well-collimated source of photons and detec-
tor, attenuation takes the form of a mono-exponential
function, i.e.,

I =Ie™ (27)
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Table 2.4. Narrow-beam (scatter-free) linear attenuation coefficients
for some common materials at 140 keV (the energy of *™Tc photons) and
511 keV (annihilation radiation).

Material Density (p) 1 (140 keV) p (511 keV)
[g.cm™3] [em™] [em™]
Adipose tissue* 0.95 0.142 0.090
Water 1.0 0.150 0.095
Lung* 1.05¢ ~0.04-0.06°  ~0.025-0.04°
Smooth muscle 1.05 0.155 0.101
Perspex (lucite) 1.19 0.173 0.112
Cortical bone* 1.92 0.284 0.178
Pyrex glass 2.23 0.307 0.194
Nal(TI) 3.67 2.23 0.34
Bismuth germanate ~ 7.13 ~55 0.95
(BGO)
Lead 11.35 40.8 1.75

(Tabulated from Hubbell [3] and *ICRU Report 44 [4]).
%This is the density of non-inflated lung.
SMeasured experimentally.

where I represents the photon beam intensity, the
subscripts “0” and “x” refer respectively to the unat-
tenuated beam intensity and the intensity measured
through a thickness of material of thickness x, and m
refers to the attenuation coefficient of the material
(units: cm™'). Attenuation is a function of the photon
energy and the electron density (Z number) of the at-
tenuator. The attenuation coefficient is a measure of
the probability that a photon will be attenuated by a
unit length of the medium. The situation of a well-
collimated source and detector are referred to as
narrow-beam conditions. The narrow-beam linear at-
tenuation coefficients for some common materials at
140 keV and 511 keV are shown in Table 2.4 and
Fig. 2.14.

However, when dealing with in vivo imaging we do
not have a well-collimated source, but rather a source

Detector

Figure 2.15. Broad-beam geometry
(left) combines an uncollimated source
of photons and an uncollimated detec-
tor, allowing scattered photons to be
detected. The narrow-beam case
(right) first constrains the photon flux
to the direction towards the detector,
and second, excludes scattered
photons by collimation of the detector.
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Figure 2.14. Narrow-beam transmission factors for 511 keV photons in
smooth muscle, bone, Nal(Tl) and BGO as a function of the thickness of the
material.

emitting photons in all directions. Under these uncolli-
mated, broad-beam conditions, photons whose original
emission direction would have taken them out of the
acceptance angle of the detector may be scattered such
that they are counted. The geometry of narrow and
broad beam detection are illustrated in Fig. 2.15.

In the broad-beam case, an uncollimated source
emitting photons in all directions contributes both un-
scattered and scattered events to the measurement by
the detector. In this case the detector “sees” more
photons than would be expected if unscattered events
were excluded, and thus the transmission rate is higher
than anticipated (or, conversely, attenuation appears
lower). In the narrow-beam case, scattered photons are
precluded from the measurement and thus the trans-
mission measured reflects the bulk attenuating proper-
ties of the object alone.

Detector

(MMM Collimator

Single slit
collimator
Photon Source
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Figure 2.16. Scattered photons in SPECT and PET are shown. In SPECT, the recorded scatter is constrained within the object boundaries as there is low proba-
bility for scattering in air. In PET, as two photons are utilized, the line of response connecting the detectors may not intersect the object at all. This fact can be
used to infer the underlying scatter distribution within the object by interpolation of the projections (see Ch. 6).

The geometry of scattered events is very different for
PET and single photon emission computed tomography
(SPECT). As PET uses coincidence detection, the line-of-
sight ascribed to an event is determined by the paths
taken by both annihilation photons. In this case, events
can be assigned to lines of response outside of the object.
This is not true in the single-photon case where, assum-
ing negligible scattering in air, the events scattered
within the object will be contained within the object
boundaries. The difference in illustrated in Fig. 2.16.

Positron emission possesses an important distinc-
tion from single-photon measurements in terms of at-
tenuation. Consider the count rate from a single
photon emitting point source of radioactivity at a
depth, a, in an attenuating medium of total thickness, D
(see Fig. 2.17). The count rate C observed by an exter-
nal detector A would be:

C,=Cypea (28)

where C, represents the unattenuatted count rate from
the source, and p is the attenuation coefficient of the
medium (assumed to be a constant here). Clearly the
count rate changes with the depth a. If measurements
were made of the source from the 180° opposed direc-
tion the count rate observed by detector B would be:

Cp = Cpe -2 (29)

where the depth b is given by (D - a). The count rate
observed by the detectors will be equivalent when a = b.

Now consider the same case for a positron-emitting
source, where detectors A and B are measuring coinci-
dent photons. The count rate is given by the product of
the probability of counting both photons and will be:

C = (Cye %) x (CyeH(P-9)
= C, (e™He g H(D-a)
— CO e—,u(a + (D-a))

=C, e (30)
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Figure 2.17. Detectors A and B record attenuated count rates arising from
the source (@) located a distance a from detector A and b from detector B.
For each positron annihilation, the probability of detecting both photons is
the product of the individual photon detection probabilities. Therefore, the
combined count rate observed is independent of the position of the source
emitter along the line of response. The total attenuation id determined by
the total thickness (D) alone.
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which shows that the count rate observed in an object
only depends on the total thickness of the object, D;
i.e., the count rate observed is independent of the posi-
tion of the source in the object. Therefore, to correct
for attenuation of coincidence detection from annihila-
tion radiation one measurement, the total attenuation
path length (-uD), is all that is required. In single-
photon measurements the depth of the source in the
object, in principle, must be known as well.

Radiation Detection

The interactions of ionising radiation with matter form
the basis upon which radiation detectors are devel-
oped. The inherent idea in these detectors is to
measure the total energy lost or deposited by radiation
upon passage through the detector. Typically, radiation
detectors convert the deposited energy into a measur-
able electrical signal or charge. The integral of this
signal is then proportional to the total energy de-
posited in the detector by the radiation. For mono-en-
ergetic incident radiation, there will be fluctuations as
well as large variations in the total charge collected by
the detector (see energy spectrum in Fig. 2.18). The
large variations represent incomplete deposition of
energy by the incident radiation. For example, in PET
some of the incident 511 keV photons may undergo
one or more Compton scatter, deposit a portion of
their energy and then exit the detector. Multiple
Compton scatter could eventually lead to deposition of
almost the entire energy by the photon, thereby
pushing the event into the photopeak of the energy
spectrum. The continuous portion of the energy spec-
trum (Fig. 2.18) shows the Compton region for this
measured energy spectrum with partial deposition of
energy. The small fluctuations in the energy spectrum,
however, arise due to several processes. The most dom-
inant are the statistical fluctuations in the conversion
process of the deposited energy into measurable
charge or signal. In Fig. 2.18, the peak position marks
the mean energy of the incident radiation (after com-
plete deposition in the detector). The width of this
peak (called the photopeak) shows the effect of fluctua-
tions in the measured charge for complete deposition
of energy by the mono-energetic photons. The ability
of the radiation detector to accurately measure the de-
posited energy is of paramount importance for most of
its uses. This accuracy is characterized by the width of
the photopeak in the energy spectrum, and is referred
to as the energy resolution of the detector. The energy
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Figure 2.18. Photon energy spectrum measured by a scintillation detector.

resolution is a dimensionless number and is defined as
the ratio of the full width at half maximum (FWHM) of
the photopeak to its centroid position.

Radiation Detectors

Radiation detectors can generally be divided into three
broad categories: proportional (gas) chambers, semi-
conductor detectors, and scintillation detectors.

The proportional chamber works on the principle of
detecting the ionisation produced by radiation as it
passes through a gas chamber. A high electric field is
applied within this chamber that results in an accelera-
tion of the ionisation electrons produced by the radia-
tion. Subsequently, these highly energetic electrons
collide with the neutral gas atoms resulting in sec-
ondary ionisations. Hence, a cascade of electrons is
eventually collected at the cathode after some energy
deposition by the incident radiation. Typically, inert
gases such as xenon are used for detecting photons.
The cathode normally consists of a single thin wire, but
a fine grid of wires can be utilized to measure energy
deposition as a function of position within the detec-
tor. Such position-sensitive Multi-wire Proportional
Chambers (MWPC) have been used in high-energy
physics for a long time, and PET scanners have been
developed based upon such a detector [5, 6]. However,
the disadvantage of these detectors for use in PET is
the low density of the gas, leading to a reduced stop-
ping efficiency for 511 keV photons, as well as poor
energy resolution.

Another class of radiation detectors is the semicon-
ductor or solid-state detectors. In these detectors, inci-
dent radiation causes excitation of tightly bound
(valence band) electrons such that they are free to
migrate within the crystal (conduction band). An
applied electric field will then result in a flow of charge
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through the detector after the initial energy deposition
by the photons. Semiconductor detectors have excellent
energy resolution but because of their production
process, the stopping efficiency for 511 keV photons is
low.

The third category of radiation detectors, which are
of most interest to us, are the scintillation detectors.
These detectors consist of an inorganic crystal (scintil-
lator) which emits visible (scintillation) light photons
after the interaction of photons within the detector. A
photo-detector is used to detect and measure the
number of scintillation photons emitted by an interac-
tion. The number of scintillation photons (or intensity
of light) is generally proportional to the energy de-
posited within the crystal. Due to their high atomic
numbers and therefore density, scintillation detectors
provide the highest stopping efficiency for 511 keV
photons. The energy resolution, though much better
than the proportional chambers, is not as good as that
attained with the semiconductor detectors. This is due
to the inefficient process of converting deposited
energy into scintillation photons, as well as the subse-
quent detection by the photo-detectors. However, for
PET, where both high stopping efficiency as well as
good energy resolution are desired, scintillation detec-
tors are most commonly used. For a more thorough
treatment of radiation detection and measurement the
reader is referred to Knoll (1988) [7].

Scintillation Detectors in PET

As mentioned above, scintillation detectors are the
most common and successful mode for detection of
511 keV photons in PET imaging due to their good
stopping efficiency and energy resolution. These detec-
tors consist of an appropriate choice of crystal (scintil-
lator) coupled to a photo-detector for detection of the
visible light. This process is outlined in further detail in
the next two sections.

Scintillation Process and Crystals Used in PET

The electronic energy states of an isolated atom consist
of discrete levels as given by the Schrédinger equation.
In a crystal lattice, the outer levels are perturbed by
mutual interactions between the atoms or ions, and so
the levels become broadened into a series of allowed
bands. The bands within this series are separated from
each other by the forbidden bands. Electrons are not
allowed to fill any of these forbidden bands. The last
filled band is labelled the valence band, while the first
unfilled band is called the conduction band. The energy
gap, E, between these two bands is a few electron volts
in magnitude (Fig. 2.19).
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Figure 2.19. Schematic diagram of the energy levels in a scintillation

crystal and the mechanism of light production after energy is absorbed. The
photon energy is sufficient to move a valence band electron to the conduc-
tion band. In returning to the ground state, light photons are emitted.

Electrons in the valence band can absorb energy by
the interaction of the photoelectron or the Compton
scatter electron with an atom, and get excited into the
conduction band. Since this is not the ground state, the
electron de-excites by releasing scintillation photons
and returns to its ground state. Normally, the value of
E, is such that the scintillation is in the ultraviolet
range. By adding impurities to a pure crystal, such as
adding thallium to pure Nal (at a concentration of
~1%), the band structure can be modified to produce
energy levels in the prior forbidden region. Adding an
impurity or an activator raises the ground state of the
electrons present at the impurity sites to slightly above
the valence band, and also produces excited states that
are slightly lower than the conduction band. Keeping
the amount of activator low also minimizes the self-ab-
sorption of the scintillation photons. The scintillation
process now results in the emission of visible light that
can be detected by an appropriate photo-detector at
room temperature. Such a scintillation process is often
referred to as luminescence. The scintillation photons
produced by luminescence are emitted isotropically
from the point of interaction. For thallium-activated
sodium iodide (NaI(Tl)), the wavelength of the
maximum scintillation emission is 415 nm, and the
photon emission rate has an exponential distribution
with a decay time of 230 ns. Sometimes the excited
electron may undergo a radiation-less transition to the
ground state. No scintillation photons are emitted here
and the process is called quenching.

There are four main properties of a scintillator
which are crucial for its application in a PET detector.
They are: the stopping power for 511 keV photons,
signal decay time, light output, and the intrinsic energy
resolution. The stopping power of a scintillator is char-
acterized by the mean distance (attenuation length =
1/u) travelled by the photon before it deposits its
energy within the crystal. For a PET scanner with high
sensitivity, it is desirable to maximize the number of
photons which interact and deposit energy in the de-
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Table2.5. Physical properties of commonly used scintillators in PET. The energy resolution and attenuation coefficients (linear (u) and mass (p/p)) are

measured at 511 keV

Property Nal(Tl) BGO LSO YSO GSO BaF,
Density (g/cm?) 3.67 7.3 74 4.53 6.71 4.89
Effective Z 50.6 74.2 65.5 34.2 58.6 52.2
Attenuation length 2.88 1.05 1.16 2.58 1.43 2.2
Decay constant (ns) 230 300 40 70 60 0.6
Light output (photons/keV) 38 6 29 46 10 2
Relative light output 100% 15% 75% 118% 25% 5%
Wavelength A(nm) 410 480 420 420 440 220
Intrinsic AE/E (%) 5.8 3.1 9.1 7.5 4.6 43
AE/E (%) 6.6 10.2 10 12.5 8.5 11.4
Index of refraction 1.85 2.15 1.82 1.8 1.91 1.56
Hygroscopic? Yes No No No No No
Rugged? No Yes Yes Yes No Yes
f(cm™) 0.3411 0.9496 0.8658 0.3875 0.6978 0.4545
p/p(cm?/gm) 0.0948 0.1332 0.117 0853 0.104 0.0929

tector. Thus, a scintillator with a short attenuation
length will provide maximum efficiency in stopping
the 511 keV photons. The attenuation length of a scin-
tillator depends upon its density (p) and the effective
atomic number (Z.q). The decay constant affects the
timing characteristics of the scanner. A short decay
time is desirable to process each pulse individually at
high counting rates, as well as to reduce the number of
random coincidence events occurring within the
scanner geometry (see Ch. 6). A high light-output scin-
tillator affects a PET detector design in two ways: it
helps achieve good spatial resolution with a high en-
coding ratio (ratio of number of resolution elements,
or crystals, to number of photo-detectors) and attain
good energy resolution. Good energy resolution is
needed to efficiently reject events which may Compton
scatter in the patient before entering the detector. The
energy resolution (AE/E) achieved by a PET detector is
dependent not only upon the scintillator light output
but also the intrinsic energy resolution of the scintilla-
tor. The intrinsic energy resolution of a scintillator
arises due to inhomegeneities in the crystal growth
process as well as non-uniform light output for interac-
tions within it. Table 2.5 shows the properties of scintil-
lators that have application in PET. They are:

(i) sodium iodide doped with thallium (NaI(Tl)),

(ii) bismuth germanate Bi,Ge;0,, (BGO),

(iii) lutetium oxyorthosilicate doped with cerium
Lu,SiO4:Ce (LSO),

(iv) yttrium oxyorthosilicate doped with cerium
Y,Si04:Ce (YSO),

(v) gadolinium oxyorthosilicate doped with cerium
Gd,Si05:Ce (GSO), and

(vi) barium fluoride (BaF,).

The energy resolution values given in this table are
for single crystals. In a full PET system, variations
between crystals and other factors such as light read-
out due to block geometry contribute to a significant
worsening of the energy resolution. Typically, NaI(Tl)
detectors in a PET scanner achieve a 10% energy reso-
lution for 511 keV photons, while the BGO scanners
have system energy resolution of more than 20%.

Nal(Tl) provides very high light output leading to
good energy and spatial resolution with a high encod-
ing ratio. The slow decay time leads to increased detec-
tor dead time and high random coincidences (see
Energy Resolution and Scatter, below). It suffers from
lower stopping power than BGO, GSO or LSO due to its
lower density. BGO, on the other hand, has slightly
worse timing properties than NaI(Tl) in addition to
lower light output. However, the excellent stopping
power of BGO gives it high sensitivity for photon de-
tection in PET scanners. Currently, commercially pro-
duced whole-body scanners have developed along the
lines of advantages and disadvantages of these two in-
dividual scintillators. The majority of scanners employ
BGO and, when operating in 2D mode, use tungsten
septa to limit the amount of scatter by physically re-
stricting the axial field-of-view imaged by a detector
area. This results in a reduction of the scanner sensitiv-
ity due to absorption of some photons in the septa. The
low light output of BGO also requires the use of small
photo-multiplier tubes to achieve good spatial resolu-
tion, thereby increasing system complexity and cost.
The NalI(Tl)-based scanners [8] compromise on high
count-rate performance by imaging in 3D mode in
order to achieve acceptable scanner sensitivity.

LSO, a relatively new crystal, appears to have an ideal
combination of the advantages of the high light output
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of NaI(Tl) and the high stopping power of BGO in one
crystal [9]. In spite of its high light output (~75% of
NalI(Tl)), the overall energy resolution of LSO is not as
good as NalI(Tl). This is due to intrinsic properties of
the crystal. Another disadvantage for general applica-
tions of this scintillator is that one of the naturally oc-
curring isotopes present ('’°Lu, 2.6% abundance), is
itself radioactive. It has a half-life of 3.8 x 10 years
and decays by B~ emission and the subsequent release
of y photons with energies from 88-400 keV. The in-
trinsic radioactivity concentration of LSO is approxi-
mately ~280 Bq/cc; approximately 12 counts per sec
per gram would be emitted that would be detected
within a 126-154 keV energy window. Thus its use in
low-energy applications is restricted. This background
has less impact in PET measurements due to the higher
energy windows set for the annihilation radiation and
the use of coincidence counting.

GSO is another scintillator with useful physical prop-
erties for PET detectors. One advantage of GSO over
LSO, in spite of a lower stopping power and light
output, is its better energy resolution and more
uniform light output. Commercial systems are now
being developed with GSO detectors.

Finally, the extremely short decay time of BaF, (600
psec) makes it ideal for use in time-of-flight scanners
(see Time-of-flight Measurement, below), which helps
to partially compensate for the low sensitivity arising
due to the reduced stopping power of this scintillator.

Positron Emission Tomography

In addition to these scintillators, which have all been
used in PET tomographs already, new inorganic scintil-
lators continue to be developed. Many of the newer
scintillators are based on cerium doping of lanthanide
and transition metal elements. Examples include
LuAP:Ce, Y,SiOs (YSO), LuBO,:Ce, and others based on
lead (Pb), tungsten (W) and gadolinium (Gd).

Photo-detectors and Detector Designs Used
in PET

Generally, the photo-detectors used in scintillation de-
tectors for PET can be divided into two categories, the
photo-multiplier tubes (PMTs) and the semiconductor-
based photodiodes. Photo-multiplier tubes (Fig. 2.20)
represent the oldest and most reliable technique to
measure and detect low levels of scintillation light.
They consist of a vacuum enclosure with a thin photo-
cathode layer at the entrance window. An incoming
scintillation photon deposits its energy at the photo-
cathode and triggers the release of a photo-electron.
Depending upon its energy, the photo-electron can
escape the surface potential of the photo-cathode and
in the presence of an applied electric field accelerate to
a nearby dynode which is at a positive potential with
respect to the photo-cathode. Upon impact with the
dynode, the electron, with its increased energy, will
result in the emission of multiple secondary electrons.
The process of acceleration and emission is then re-
peated through several dynode structures lying at in-

— Dynode

stages

Light collection region4»

Vacuum |

To pre-amplifier

~N TN TN TN N
N0 N Y

= ?;/Photoelectron paths
57_‘ ~~% " J~Semi-transparent photocathode
Light fr:};%

scintillator

Figure 2.20. Schematic diagram of a photomultiplier tube and a photograph of a hexagonal 6 cm-diameter tube (inset). Light entering the PMT displaces a
photoelectron which is electrostatically focused to the first-stage dynode. Each dynode has a positive voltage bias relative to the previous one, and so electrons
are accelerated from one dynode to the next. The increase in kinetic energy acquired by this process is sufficient to displace a number of electrons at the next
dynode, and so on, causing large amplification by the end-stage dynode (usually tenth or twelfth).
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creasing potentials, leading to a gain of more than a
million at the final dynode (anode). This high gain ob-
tained from a photo-multiplier tube leads to a very
good signal-to-noise ratio (SNR) for low light levels
and is the primary reason for the success and applica-
bility of photo-multiplier tubes for use in scintillation
detectors. The only drawback of a photo-multiplier
tube is the low efficiency in the emission and escape of
a photo-electron from the cathode after the deposition
of energy by a single scintillation photon. This prop-
erty is called the Quantum Efficiency (QE) of the
photo-multiplier tube and it is typically 25% for most
of the photo-multiplier tubes. Different, complex
arrangements of the dynode structure have been de-
veloped over the years in order to maximize the gain,
reduce the travel time of the electrons from the
cathode to the anode, as well as reduce the variation in
the travel times of individual electrons. In particular, a
fine grid dynode structure has been developed which
restricts the spread of photoelectrons while in trajec-
tory, thereby providing a position-sensitive energy
measurement within a single photo-multiplier tube en-
closure (Position Sensitive PMT or PS-PMT). More re-
cently, a multi-channel capability has been developed
which essentially reduces a single photo-multiplier
tube enclosure into several very small channels. It uses
a 2D array of glass capillary dynodes each of which is a
few microns wide. Additionally, a multi-anode struc-
ture is used for electron collection, thereby providing a
dramatically improved position-sensitive energy mea-
surement with very little cross-talk between adjacent
channels (Multi-Channel PMT, MC-PMT).
Photodiodes, on the other hand, are based upon
semiconductors which, unlike the situation for detect-
ing the photons, have high sensitivity for detecting the
significantly lower energy scintillation photons. These
detectors typically are in the form of PIN diodes (PIN
refers to the three zones of the diode: P-type, Intrinsic,
N-type). Manufacturing a PIN photodiode involves
drifting an alkali metal such as lithium onto a p-type
semiconductor such as doped silicon. Incident scintil-
lation photons produce electron-hole pairs in the de-
tector and an applied electric field then results in a
flow of charge that can be measured through an exter-
nal circuit. A significant disadvantage of the photodi-
odes is the low SNR achieved due to the presence of
thermally activated charge flow and very low intrinsic
signal amplification. In recent years, a new type of
photodiode, called the Avalanche Photo Diode (APD),
has been developed which provides an internal
amplification of the signal, thereby improving the SNR.
These gains are typically in the range of a few hundred
and are still several orders of magnitude lower than the
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photo-multiplier tubes. More importantly, APD gains
are sensitive to small temperature variations as well as
changes in the applied bias voltage.

In general, there are three ways of arranging the
scintillation crystals and coupling them to photo-de-
tectors for signal readout in a PET detector. The first is
the so-called one-to-one coupling, where a single
crystal is glued to an individual photo-detector. A
close-packed array of small discrete detectors can then
be used as a large detector that is needed for PET
imaging. The spatial resolution of such a detector is
limited by the size of the discrete crystals making up
the detector. In order to achieve spatial resolution
better than 4 mm in one-to-one coupling, very small
photo-detectors are needed. However, individual
photo-multiplier tubes of this size are not currently
manufactured. One solution is the use of photodiodes,
or APDs instead of photo-multiplier tubes. The APDs
are normally developed either as individual compo-
nents or in an array, and so are ideal for use in such a
detector design [10, 11]. However, as mentioned earlier,
the APD gain is sensitive to variations in temperature
and bias voltage that can lead to practical problems of
stability in their implementation for a complete PET
scanner. Another option is the coupling of individual
channels of a PS-PMT or a MC-PMT to the small crys-
tals [12]. Due to the large package size of these photo-
multiplier tubes, however, clever techniques are needed
to achieve a close-packed arrangement of the crystals
in the scanner design. Despite the very good spatial
resolution and minimal dead time achieved by the one-
to-one coupling design, the inherent complexity
(number of electronic channels) and cost of such PET
detectors limits their use at present to research tomo-
graphs; in particular, small animal systems.

The next two detector schemes are attempts at re-
ducing these disadvantages by increasing the encoding
for the detector. Both the designs involve the use of
larger photo-multiplier tubes without intrinsic posi-
tion-sensing capabilities. The Anger detector, originally
developed by Hal Anger in the 1950s, uses a large (e.g.,
1 cm thick X 30-50 cm in diameter) NaI(Tl) crystal
glued to an array of photo-multiplier tubes via a light
guide. This camera is normally used with a collimator
to detect low-energy single photons in SPECT imaging.
An application of the Anger technique to a PET detec-
tor, on the other hand, uses 2.5 cm-thick Nal(TI) scin-
tillators. An array of 6.5 cm-diameter photo-multiplier
tubes can be used to achieve a spatial resolution of
about 5 mm [8]. A weighted centroid positioning algo-
rithm is used for estimation of the interaction position
within the detector. This algorithm uses a weighted
sum of the individual photo-multiplier tube signals
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Figure 2.21. A block detector from a Siemens-CTI ECAT 951 PET scanner is
shown. The sectioned (8 x 8 elements) block of BGO is in the bottom left
corner, with the four square PMTs attached in the center, and the final pack-
aged module in the top right corner. The scanner would contain 128 such
modules in total, or 8192 individual detector elements. (Figure courtesy of
Dr Ron Nutt, CTI PET Systems, Knoxville, TN, USA).

and normalizes it with the total signal obtained from
all the photo-multiplier tubes. The weights for the
photo-multiplier tube signals depend exclusively upon
the photo-multiplier tube position within the array.
Since these detectors involve significant light sharing
between photo-multiplier tubes, a high light-output
scintillator such as NaI(Tl) is needed to obtain good
spatial resolution. The use of large photo-multiplier
tubes produces a very high encoding ratio, leading to a
simple and cost-effective design. However, a disadvan-

L] BGO Crystals
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tage of this detector, independent of the use of NaI(Tl)
as a scintillator, is the spread of scintillation light
within the crystal which leads to significant detector
dead time at high count rates.

The block detector design uses Anger positioning in
a restricted manner to achieve good spatial resolution
and reduced dead time at the expense of a lower en-
coding ratio. The initial design used an 8 x 4 array of
6 X 14 x 30 mm® BGO crystals glued to a slotted light
guide [13]. The slots in the light guide are cut to
varying depths with the deepest slots cut at the detec-
tor’s edge (see Fig.2.21, left and centre).

The read-out in this block design is performed by
four 25 mm-square photo-multiplier tubes. The slotted
light guide allows the scintillation light to be shared to
varying degrees between the four photo-multiplier
tubes depending upon the position of the crystal in
which the interaction takes place. The centroid calcula-
tion is performed here as well to identify the crystal of
interaction. An improved design of this detector allows
the identification of smaller, 4 X 4 x 30 mm?, leading to
an improved spatial resolution but with smaller 19 mm
photo-multiplier tubes. Besides the advantages and dis-
advantages of BGO as a scintillator, the block detector
design has the benefit of reduced detector dead time
compared to the large-area Anger detector due to the
restricted light spread. This, however, is achieved by
increasing the number of detector channels (lower
encoding ratio), thus leading to increased cost. A
modification of the block design, called the quadrant-
sharing block design [14], can distinguish smaller (half
the size in either direction) crystals by straddling the
19 mm photo-multiplier tube over four block quad-
rants (see Fig. 2.22, right). This design, in comparison
to the standard block, results in a better spatial resolu-
tion with almost double the encoding ratio, but in-
creased detector dead time due to the use of nine
photo-multiplier tubes (not four) for signal readout
from an event.

PMT — gtV

Slotted Lightguide

<l pmrs—"""

BGO blocks H

Figure 2.22. The standard block detector design from the side (left) and looking down through the crystals (middle). The quad-sharing block design as seen
from the top through the crystals is shown on the right. Figures are not drawn to scale.
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Figure 2.23. Schematic representation

of detecting coincidence events in two SIGNAL B

detectors. Signal A results in a trigger

pulse T which marks the start of the COINCIDENCE ?I
coincidence window of width At. WINDOW

Similarly, signal B results in a trigger pulse
2. A coincidence (AND) circuit then checks
for coincidence between the pulse 2 and
the coincidence window.

Timing Resolution and Coincidence
Detection

The timing resolution of a PET detector describes the
uncertainty in the timing characteristics of the scintil-
lation detector on an event-by-event basis due to statis-
tical fluctuations. With a fast signal (or short decay
time), the timing resolution is small as well. The timing
resolution of a PET detector is important because it in-
volves the detection of two photons originating from a
single coincident event. Since the timing resolution
represents the variability in the signal arrival times for
different events, it needs to be properly accounted for
when detecting coincident events. Figure 2.23 gives a
schematic representation of two detectors set up to
measure coincident photons being emitted from a
point equidistant from the two detectors.

The amplitude of the signal from the two detectors
(V, and V, in Fig. 2.23) may be different owing to in-
complete deposition of energies or varying gains of the
photo-detectors in the two detectors. The coincidence
circuitry, however, generates a narrow trigger pulse
when the detector signals cross a certain fixed fraction
of their individual amplitudes. At time t,, signal A trig-
gers pulse 1 which also produces a coincidence time
window of a predetermined width, 27. Signal B, de-
pending upon the timing resolution of the detector,
will trigger at a later time, t,. Depending upon the dif-
ference t, - t,, the start of pulse 2 may or may not
overlap with the coincidence window. For detectors
with poor timing resolution, a large value for 27 needs
to be used in order to detect most of the valid coinci-
dence events.

In a PET scanner, the two coincident photons will be
emitted from anywhere within the scanner field-of-

SIGNAL A —l_l

view (FOV), and so the distance travelled by each of
them before interaction in the detectors will be differ-
ent. For a typical whole-body scanner, this distance can
be as large as the scanner diameter (about 100 cm).
Using the value of speed of light (c = 3 x 10® m/s), one
can calculate an additional maximum timing differ-
ence of about 3-4 ns between the two signals (the
photons travel 1 m in 3.3 ns). As a result, the coinci-
dence timing window (27) of a PET detector needs to
be increased even more than the requirements of the
timing resolution. For an extremely fast scintillator
such as BaF,, the timing resolution is very small.
However, the coincidence timing window cannot be
reduced to less than 3-4 ns (in a whole-body scanner
geometry) due to the difference in arrival times of two
photons emitted at the edge of the scanner field of
view, as this would restrict the transverse field of view.

Random Coincidences

Random coincidences are a direct consequence of
having a large coincidence timing window. They arise
when two unrelated photons enter the opposing detec-
tors and are temporally close enough to be recorded
within the coincidence timing window. For such
events, the system produces a false coincident event.
Due to the random nature of such events, they are la-
belled as random or accidental coincidences. Random
coincidences add uncorrelated background counts to
an acquired PET image and hence decrease image con-
trast if no corrections are applied to the acquired data.
In Fig. 2.23, if signal A and signal B are unrelated, then
a large coincidence timing window will result in an in-
creased number of such events being registered as co-
incident events (random coincidences). The random
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1m = 3.33ns

c=3x108m.s1 Figure 2.24. Time-of-flight measurement. P marks the

annihilation point from where the two photons originate and are
recorded in detectors A and B.

coincidence rate in a PET scanner is proportional to
21A?, where A is the activity present in the scanner
field of view. The true coincident rate, on the other
hand, increases linearly with a given activity level in
the scanner. Hence, at high activity levels, the random
coincidences will overwhelm the true coincidences.
The random coincidence rate can be estimated
during data collection and a correction applied to the
projected data. These techniques will be outlined in
further detail in the following chapters. However, it is
important to point out that the random correction
techniques result in a propagation of noise through the
data set and so the image signal-to-noise ratio suffers.
Thus, the best way to improve image contrast without
reducing its signal-to-noise ratio is to minimize the
collection of random coincidences. Since random co-
incidences are proportional to the coincidence timing
window, a narrow window helps in reducing their oc-
currence within the detector. Hence, for PET imaging a
fast scintillator with good timing resolution is desir-
able for reducing the number of random coincidences.

Time-of-flight Measurement

Good timing resolution of a PET detector, besides
helping reduce the number of random coincidences,
can also be use to estimate the annihilation point
between the two detectors by looking at the difference
in arrival times of the two photons. For this, an ex-
tremely fast scintillator, such as BaF,, is needed.

In Fig. 2.24, point P marks an annihilation point
which is located a distance d, from the point which is
exactly halfway (distance d) between the two detectors.
A photon moving along PA will travel a distance d - d,,
while the coincident photon travels a total distance
d + d, along PB before entering detector B. Thus, one
photon will travel an extra distance (d + d,) - (d - d,)
= 2d, relative to the other. The coincident detectors can
be used to measure the difference in arrival times (t)
of the two photons. Using the speed of light, c, for the
speed of the photons, d; can be calculated from 2d, =
cdt. In order to obtain a good estimation of d,,
however, an accurate measurement of ot is needed,

which in turn requires a fast scintillator with a timing
resolution of less than 0.8 ns. Thus, the timing resolu-
tion of a PET detector introduces a blurring in the esti-
mation of d;. It can be shown from the above
calculation that for BaF, with 8t = 0.8 ns, a blurring of
about +6 mm is introduced in the d; estimation. Slow
scintillators will increase this blurring significantly.
Presently, only BaF, is feasible for use as a scintillator in
time-of-flight measuring PET scanners, and such
scanner designs have been successfully implemented.
The advantage of estimating the location of the annihi-
lation point is the improved signal-to-noise ratio ob-
tained in the acquired image, arising due to a reduction
in noise propagation during the image reconstruction
process. However, since BaF, also has a very low stop-
ping power, time-of-flight scanners have a reduced sen-
sitivity leading to lower signal-to-noise ratios. Hence,
the overall design of such scanners requires a careful
trade-off between the scanner sensitivity and the time-
of-flight measurement so that the overall SNR for the
scanner remains high.

Energy Resolution and Scatter

The energy resolution of a radiation detector charac-
terizes its ability to distinguish between radiation at
different energies. In scintillation detectors the energy
resolution is a function of the relative light output of
the scintillator, as well as its intrinsic energy resolu-
tion. The intrinsic energy resolution accounts for other
non-statistical effects that arise in the energy measure-
ment process. Good energy resolution is necessary for
a PET detector (especially in 3D volume imaging
mode) in order to achieve good image contrast and
reduce background counts in the image.

A PET scanner acquires three different kinds of co-
incident events: true, random, and scatter coincidences.
True coincidences are emissions from single annihila-
tion points that enter the PET detector without under-
going any significant interactions within the imaging
field of view. Random coincidences, as we have already
seen, arise due to the accidental detection of two unre-



Physics and Instrumentation in PET

Figure 2.25. Scattered and random coincidences in a PET scanner. Event 1
shows a coincident event where one of the yrays is scattered leading to an
incorrectly assigned line-of-response (LOR, dotted) for image reconstruction
(scatter coincidence). Events 2 and 3 represent two unrelated events with
only one photon being detected (singles events). If they occur within the co-
incidence timing window, then an incorrect LOR (dotted) gets assigned
(random coincidence).

lated, single events within the coincidence timing
window. These coincidences add to the image back-
ground and so reduce its contrast. Finally, scatter coin-
cidences are true coincidence events from single
annihilation points, but where one or both the photons
undergo Compton scatter within the imaging FOV
before entering the PET detector (see Fig. 2.25). Since
scattered coincidences lead to mis-positioned lines-of-
response, and therefore misrepresent the true activity
distribution within the FOV, the image contrast
worsens.

The density of tissue in human body is approxi-
mately the same as that of water, and so the mean free
path of a 511 keV photon is about 7 cm in human
tissue. Since the cross-section of a human body is
much greater than 7 cm, many of the photons originat-
ing inside the human body are Compton scattered
before they enter the PET detectors. Since scatter in-
volves loss of energy, in principle some of these scat-
tered coincidences can be rejected using an
energy-gating technique around the photopeak in the
energy spectrum. Good energy resolution for the de-
tector allows the application of a very narrow energy
gate, and thus a more extensive and accurate rejection
of scatter coincidences can be performed. However,
some scattered events may be indistinguishable from
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true coincidences based upon the energy if they lie
within the photopeak. For example, in NaI(Tl)-based
detectors the good energy resolution allows the use of
about 450 keV as the lower energy gate on the photo-
peak. Assuming only single scatter within the object, this
implies that the maximum deviation from true line-of-
response for scattered events within the photopeak will
be about 30°. In comparison, for the BGO-based detec-
tors, the lower energy gate is set at 300-400 keV, leading
to a maximum deviation of more than 70° from the true
line-of-response. Hence, additional scatter-correction
techniques which estimate the distribution of scattered
radiation are then employed in order to remove them
from the image and improve image contrast.

Sensitivity and Depth of Interaction

The sensitivity of a PET scanner represents its ability
to detect the coincident photons emitted from inside
the scanner FOV. It is determined by two parameters of
the scanner design; its geometry and the stopping
efficiency of the detectors for 511 keV photons.
Scanner geometry defines the fraction of the total solid
angle covered by it over the imaging field. Small-diam-
eter and large axial FOV typically leads to high-sensi-
tivity scanners. The stopping efficiency of the PET
detector is related to the type of detector being used.
As we have seen, scintillation detectors provide the
highest stopping power for PET imaging with good
energy resolution. The stopping power of the scintilla-
tion detector is in turn dependent upon the density
and Z of the crystal used. Hence, a majority of com-
mercially produced PET scanners today use BGO as the
scintillator due to its high stopping power (see Table
2.4). A high-sensitivity scanner collects more coinci-
dent events in a fixed amount of time and with a fixed
amount of radioactivity present in the scanner FOV.
This generally translates into improved SNR for the re-
constructed image due to a reduction in the effect of
statistical fluctuations.

A high stopping power for the crystal is also desir-
able for the reduction of parallax error in the acquired
images. After a photon enters a detector, it travels a
short distance (determined by the mean attenuation
length of the crystal) before depositing all its energy.
Typically, PET detectors do not measure this point,
known as the depth of interaction (DOI) within the
crystal. As a result, the measured position of energy de-
position is projected to the entrance surface of the de-
tector (Fig. 2.26). For photons that enter the detector at
oblique angles, this projected position can produce
significant deviations from the real position, leading to a
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blurring of the reconstructed image. Typically, annihila-
tion points located at large radial distances from the
scanner’s central axis suffer from this parallax blurring.
For a BGO whole-body scanner, measurements show that
the spatial resolution worsens from 4.5 mm near the
centre of the scanner to about 8.9 mm at a radial distance
of 20 cm [15]. A thin crystal with high stopping power
will help reduce the distance travelled by the photon in
the detector and so reduce parallax effects. However, a
thin crystal reduces the scanner sensitivity. Thus, to sep-
arate this inter-dependence of sensitivity and parallax
error, an accurate measurement of the photon depth-of-
interaction within the crystal is required.

Development of PET detectors with depth-of-inter-
action measurement capabilities is an ongoing re-
search interest. Currently there are two practically
feasible techniques that can be used for depth-of-inter-
action measurement. The first is the phoswich detector
[16] method that involves stacking thin layers of differ-
ent scintillators on top of each other, instead of using a
thick layer of one crystal type. The depth-of-interac-
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Figure 2.26. Schematic representation of parallax
error introduced in the measured position due to
the unknown depth-of-interaction of the photons
within the detectors for a flat detector (left) and
ring-based system (right).

tion measurement in a phoswich detector depends on
the identification of interaction layer through an exam-
ination of the different signal decay times for the scin-
tillators. As a result, the scintillators used in a phoswich
detector need to have significantly different decay
times in order to successfully distinguish them via
pulse shape discrimination techniques. Another poten-
tial problem in its implementation is the optical cou-
pling between the individual layers of crystals. Good
optical coupling is necessary for the successful trans-
mission of scintillation photons from the crystals into
the photo-detectors, thereby achieving good spatial
and energy resolution as well.

Another technique for determining the depth of inter-
action involves the use of photo-detectors at both the
ends of a thick (or long) scintillator. This technique is
based upon the physical principle according to which the
relative number of scintillation photons reaching either
of the end photo-detectors is a function of the photons
depth of interaction in the crystal. Figure 2.27 shows a
single-channel implementation of this technique. For a

Figure 2.27. A single channel of one layer detector
for DOI determination through the use of two
photo-detectors at the crystal ends. In this
schematic conventional light collection by PMTs are
used at one end and an array of avalanche
photodiodes are used on the incident face of the
detector.
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practical implementation in a scanner design, the use of
regular photo-multiplier tubes at both ends is not
feasible. As result, at least one such detector design has
considered using a different type of photo-detector, such
as PIN photodiodes or Avalanche photodiodes, on the
crystal end that enters the scanner field of view [17].

Concluding Remarks

PET detectors and instrumentation have developed into
sophisticated clinical tools, but further scope exists to
develop higher-sensitivity, higher-resolution devices.
There are now a number of scintillator crystals employed
in commercial scanners, each with their own unique
characteristics, including price. The range of scintillators
may expand even further, especially if time-of-flight
machines are developed. Light-collection technology
may move away from photomultiplier tubes to solid-state
devices (photodiodes) which will improve coupling and
increase the bandwidth for data collection and pro-
cessing by reducing the multiplexing of the signals.

Scanner design will continue to evolve and provide
challenges in terms of photon detection, discrimina-
tion, and performance. Developments in basic physics
will underpin many of these enhancements.
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3 Data Acquisition and Performance Characterization in

PET’

Dale L Bailey

Introduction

Positron emission detection systems have developed
since their first use in the 1950s to the high-resolution,
high-sensitivity tomographic devices that we have today.
Configurations differ far more than for a gamma
camera, with such variables as the choice of scintillation
crystal, 2D or 3D acquisition mode capability, continu-
ous or discrete detectors, full or partial surrounding of
the patient, and a variety of transmission scanning
arrangements and radioactive sources. In addition, PET
instrumentation is an area that has continued to evolve
rapidly, especially over the last decade, with the em-
phases on increasing sensitivity, improving resolution,
and decreasing patient scanning times. This chapter dis-
cusses the issues that are determinants of PET system
performance. Much of the discussion is based on circu-
lar tomographs with discrete detectors, however, the
principles are applicable also to flat detector systems
and rotating gamma camera PET systems.

Detected Events in Positron Tomography

Event detection in PET relies on electronic collimation.
An event is regarded as valid if:

(i) two photons are detected within a predefined
electronic time window known as the coincidence
window,

(ii) the subsequent line-of-response formed between
them is within a valid acceptance angle of the to-
mograph, and,

(iii) the energy deposited in the crystal by both
photons is within the selected energy window.

Such coincident events are often referred to as prompt
events (or “prompts”).

However, a number of prompt events registered as
having met the above criteria are, in fact, unwanted
events as one or both of the photons has been scat-
tered or the coincidence is the result of the “acciden-
tal” detection of two photons from unrelated positron
annihilations (Fig. 3.1). The terminology commonly
used to describe the various events in PET detection
are:

(i) A single event is, as the name suggests, a single
photon counted by a detector. A PET scanner typ-
ically converts between 1% and 10% of single
events into paired coincidence events;

(i) A true coincidence is an event that derives from a
single positron-electron annihilation. The two an-
nihilation photons both reach detectors on oppos-
ing sides of the tomograph without interacting
significantly with the surrounding atoms and are
recorded within the coincidence timing window;

(iii) A random (or accidental) coincidence occurs when
two nuclei decay at approximately the same time.
After annihilation of both positrons, four photons
are emitted. Two of these photons from different
annihilations are counted within the timing
window and are considered to have come from
the same positron, while the other two are lost.
These events are initially regarded as valid,
prompt events, but are spatially uncorrelated with
the distribution of tracer. This is clearly a func-
tion of the number of disintegrations per second,

* Chapter reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and

Clinical Practice. Springer-Verlag London Ltd 2003, 69-90.
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True

Random

and the random event count rate (R,,) between
two detectors g and b is given by:
RabZZTNaNb (1)
where N is the single event rate incident upon the
detectors a and b, and 27 is the coincidence
window width. Usually N, = N, so that the random
event rate increases approximately proportionally
to N2 There are two common methods for remov-
ing random events: (i) estimating the random
event rate from measurements of the single event
rates using the above equation, or (ii) employing a
delayed coincidence timing window. These
methods are discussed in detail in Ch. 6.

(iv) Multiple (or triple) events are similar to random
events, except that three events from two annihi-
lations are detected within the coincidence timing
window. Due to the ambiguity in deciding which
pair of events arises from the same annihilation,
the event is disregarded. Again, multiple event de-
tection rate is a function of count rate;

(v) Scattered events arise when one or both of the
photons from a single positron annihilation de-
tected within the coincidence timing window have
undergone a Compton interaction. Compton scat-
tering causes a loss in energy of the photon and

Scatter

Figure 3.1.  The various coincidence events
that can be recorded in PET are shown dia-
grammatically for a full-ring PET system. The
black circle indicates the site of positron anni-
hilation. From top left clockwise the events
shown are: a true coincidence, a scattered
event where one or both of the photons

n undergo a Compton interaction (indicated by
the open arrow), a multiple coincidence
arising from two positron annihilations in
which three events are counted, and a random
or accidental coincidence arising from two
positrons in which one of the photons from
each positron annihilation is counted. In the
case of the scattered event and the random
event, the mis-assigned line of response is in-

Multiple  dicated by the dashed line.

change in direction of the photon. Due to the rela-
tively poor energy resolution of most PET detec-
tors, many photons scattered within the emitting
volume cannot be discriminated against on the
basis of their loss in energy. The consequence of
counting a scattered event is that the line-of-re-
sponse assigned to the event is uncorrelated with
the origin of the annihilation event. This causes in-
consistencies in the projection data, and leads to
decreased contrast and inaccurate quantification in
the final image. This discussion refers primarily to
photons scattered within the object containing the
radiotracer, however, scattering also arises from ra-
diotracer in the subject but outside the coincidence
field of view of the detector, as well as scattering off
other objects such as the gantry of the tomograph,
the lead shields in place at either end of the camera
to shield the detectors from the rest of the body, the
floor and walls in the room, the septa, and also
within the detector. The fraction of scattered events
is not a function of count rate, but is constant for a
particular object and radioactivity distribution.

The prompt count rate is given by the sum of the true
plus random plus scattered event rates, as all of these
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events have satisfied the pulse height energy criteria
for further processing. The corrections employed for
random and scattered events are discussed in Ch. 6.

The sensitivity of a tomograph is determined by a
combination of the radius of the detector ring, the axial
length of the active volume for acquisition, the total
axial length of the tomograph, the stopping power of
the scintillation detector elements, packing fraction of
detectors, and other operator-dependent settings (e.g.,
energy window). However, in general terms the overall
sensitivity for true (T), scattered (S), and random (R)
events are given by [1-3]:

(2

where Z is the axial length of the acquisition volume, D
is the radius of the ring, and L is the length of the
septa. For a multi-ring tomograph in 2D each plane
needs to be considered individually and the overall
sensitivity is given by the sum of the individual planes.

Image Formation in PET

Historically, PET systems have generally developed as
circular “rings”. The earliest tomographs consisted of
few detectors that rotated and translated to obtain a
complete set of projection data, but soon full ring
systems were developed. As PET uses coincidence de-
tection, the detectors have to encompass 360° for com-
plete sampling, unlike SPECT (single photon emission
computed tomography) where 180° is sufficient. Today,
PET systems use either full ring circular (or partial
ring) configurations or multiple flat detector arrange-
ments. In the case of gamma camera PET (GC-PET)
systems, two or three large-area flat detectors that
rotate are employed. Various configurations for PET
detector systems are shown in Fig. 3.2.

Radial Sampling

The geometry and coordinate system that will be used
to describe the PET systems in this section are shown
in Fig. 3.3. The angle that the transaxial (x-y) plane
makes with the z-axis is referred to as the polar angle,
0, and the rotated x-y plane forms an azimuthal angle,
0, around the object. In 2D PET, data are acquired for
0 = 0°, while in 3D PET, the polar angle can be opened
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Figure 3.2. Various configurations of PET tomographs are shown in this
figure. The solid lines show coincidence lines-of-response (LORs).
Configurations (a) and (c) are stationary fixed systems, while (b) and (d)
both need to rotate to acquire a complete data set. Configuration (a) is a
full-ring circular system, (b) is a partial-ring circular system with continuous
rotation, (c) consists of a number (typically 6-8) of flat detectors (LORs not
measured indicated by the dashed line), and (d) is the geometry used for
gamma camera PET and some other prototype systems using multi-wire
proportional counters, where the detectors typically exhibit “step-and-
shoot” acquisition protocols to obtain a complete data set.
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Figure 3.3. A diagram of a full-ring camera is shown with the coordinate
system that describes the orientation of the camera. The azimuthal angle
(¢) is measured around the ring, while the polar angle (6) measures the
angle between rings.
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up to the desired acceptance to strike a trade-off
between sensitivity gain and scatter increase.

Individual detector elements form coincidence pairs
with opposing detectors (both in-plane and axially)
and are mapped to the sinogram space as indicated in
Fig. 3.4. Sinograms consist of approximately parallel
projections; they are approximately parallel because in-
creased sampling can be achieved by interpolation to
form quasi-parallel projections between the detectors
that contribute the truly parallel lines of response.

Instead of forming projections between detectors
thus:

(Da : Db)) (Da+1 : Db+1)’ (Da+2 : Db+2) (3)

etc., in effect “double sampling” is achieved with the
scheme:

(Da : Db)) (Da+1 :D)) (Da+1 : Db+1))

(Da+2 ; Db+1)) (Da+2 : Db+2) (4)

etc., where the detector combinations in italics are
formed between detectors with an offset of one detec-
tor between them, but assumed to be parallel to the ad-
jacent projection formed between directly opposed
detectors (Fig. 3.5).

The transaxial field of view of a PET tomograph is
defined by the acceptance angle in the plane. This is de-

V(DGL%(max))

Figure3.4. The mapping from sampling
projections to sinograms is shown. The fan angle of
acceptance in the ring in the top left corner maps
to a diagonal line in the sinogram.

p(s.0)

Figure 3.5. Sampling of the projections is doubled by forming coincidences
between “opposite-but-one” detectors (dashed lines) as well as with the di-
rectly opposed detectors (solid lines). The azimuthal angle assumed for
these interpolated lines of response is the same as for the direct lines-of-re-
sponse. This effectively doubles the sampling in the projections.
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Figure3.6. The transverse field of view of a PET tomograph is determined by the length of the chord defined by the acceptance angle of the electronics along

the central axis of the system.

termined by the electronics, which permit an individ-
ual detector to be in coincidence with a finite number
of detectors in the opposing side of the ring; the
greater the acceptance angle the larger the number of
detectors which form the “fan”. The width of the fan
along the diameter of the tomograph determines the
width of the field of view (Fig. 3.6).

The fact that a circular ring is the geometry often
used leads to a number of distortions in the sampling
which require correction prior to (or as part of) the re-
construction process. The two main effects are:

(i) the distance between the opposing detectors de-
creases towards the edges of the sampling space
(maximum distance from the central line of re-
sponse). This causes an opening of the acceptance
angle and effectively makes these lines of response
more sensitive. However, this is offset to some
extent by the decreasing surface area of the face of
the detector exposed at this increasingly oblique
angle, and,

(ii) the lines of response are not evenly spaced in the
projection; they get closer together for the lines of
response farthest from the central axis of the
scanner (see Fig. 3.2(a)). This has the effect of de-
creasing the inter-detector spacing. Corrections
for both effects are discussed in the following
chapters.

Axial Sampling

The sinograms formed in PET are composed of projec-
tions p (s, 0, 6, z). In the 2D case all data are sampled
(or assumed to be sampled) with polar angle 6 = 0°. In
the 3D case this is extended to measuring projections
at polar angles 6 > 0°. According to Orlov’s criteria, the
data acquired in 2D are sufficient for reconstructing
the entire volume [4, 5]. However, in the 3D case all
projections formed from angles with 6 # 0° are redun-
dant, as the object can be completely described by the
2D projections. The 0 # 0° data are useful, however, as
they contribute an increase in sensitivity and hence
improve the signal-to-noise ratio of the reconstructed
data. The redundancy of the oblique lines of response
was exploited in the 3D reprojection algorithm [6, 7].
This is discussed further in the next chapter.

A convenient graphical representation was intro-
duced by the Belgian scientist Christian Michel to il-
lustrate the plane definitions used in a large multi-ring
PET system, showing how the planes can be combined
to optimize storage space and data-handling require-
ments. They have become known as “Michelogram”
representations. Different modes of acquisition are
shown in the Michelograms in Fig. 3.7 for a simple
eight-ring tomograph.

The situation gets far more complicated for a larger
number of rings, and when operating in 3D mode.
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Figure 3.7. The graphical Michelogam is shown for three different acquisition modes on a simple eight-ring tomograph. Each point in the graph represents a
plane of response defined between two sets of opposed detectors (a sinogram). In the graph on the left (a simple 2D acquisition with no “inter-planes”), the
first plane defined is ring 0 in coincidence with the opposing detectors in the same ring, 0; ring 1 in coincidence with ring 1; etc, for all rings, resulting in a total
of eight sinograms. In the middle graph, the same planes are acquired with the addition of a set of “inter-planes” formed between the rings with a ring differ-
ence of +1 ring (ring 0 with ring 1, ring 1 with ring 0, etc). These planes are added together to form a single plane, indicated by the line joining them. This
would lead to approximately twice the count rate in this plane compared with the adjacent plane which contains data from one ring only. Physically, this plane
is positioned half way between detector rings 0 and 1. While the data come from adjacent rings they are assumed to be acquired with a polar angle of 0° for the
purposes of reconstruction. This pattern is repeated for the rest of the rings. This results in 15 (i.e., 2N — 1) sinograms. This is a conventional 2D acquisition
mode, resulting in almost twice the number of planes as the previous mode, improving axial sampling, and contributing over 2.5 times as many acquired
events. In the graph on the right, a fully 3D acquisition is shown with each plane of data being stored separately (64 in total). The 3D mode would require a fully
3D reconstruction or some treatment of the data, such as a rebinning algorithm, to form 2D projections prior to reconstruction (see Ch. 4).

Examples are shown in Fig. 3.8 for the case of a 48-ring
scanner in one particular 2D configuration, with planes
added up to a maximum ring difference of * 4 rings,
and in a 3D acquisition configuration, where there are
48? (= 2,304) possible planes of response, but in this
case the maximum acceptance angle between rings in
limited to a ring difference of 40, with up to five axial
lines of response being combined into a single plane.
The entire motivation for 3D PET is to increase sen-
sitivity. While radionuclide emission imaging tech-
niques in general use minute tracer amounts (usually

micrograms or less), the proportion of the available
signal detected is still relatively poor. A radiotracer in
most cases distributes throughout the body with only a
small fraction localizing in the target organ (if one
exists), and collimation, attenuation, and scattering
preclude many emitted photons from being detected. A
conventional PET camera with interplane septa in 2D
mode detects around 4,000-5,000 coincidence events
per 10° (~0.5%) positron emissions with approximately
uniform sensitivity over the axial profile, apart from
the less sensitive end planes (Fig. 3.9). A gamma

Crystal Rings:
048

Span:
o9
Maximum Acceplance:

L] |

Maximum Acceptance:

e

Figure 3.8. Michelograms representing the plane combinations for a 48-ring scanner are shown for the 2D case (left) and the 3D case (right). The x and y axes
represent ring numbers on opposing sides of the scanner. Each point on the graph defines a unique plane of response (e.g., all lines-of-response in ring 1 in
combination with ring 2).The diagonal lines joining individual dots indicate that the planes of response are combined (added together) thus losing information
about each individual point’s polar acquisition angle. This form of combination of data from different planes represents a “lossy” compression scheme.
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Figure 3.9. The 2D axial sensitivity profile for
a line source in air on a 16-ring tomograph
(CTI ECAT 951R) demonstrates both the
bimodal pattern resulting from the two blocks
used in this camera and the sinogram-to-
sinogram variation arising from the
combination of either three (odd-numbered 0.2
sinograms) or four (even-numbered

sinograms) axial lines-of-response in forming
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contain only one axial line-of-response, are 0
only 20% as efficient as the sinograms formed
in the center of the block detector.

camera, with its inefficient lead collimator, detects only
around 200 of every 10° photons emitted. In spite of
this modest efficiency, PET remains the most sensitive
emission tomographic modality.

Constraining the allowed coincidences to a narrow
plane orthogonal to the z axis of the PET camera se-
verely restricts the overall sensitivity of the technique.
Historically, the reasons for this restriction were
twofold: the lack of appropriate 3D reconstruction
software, and to keep the scatter fraction low. When the
interplane septa are removed and all possible lines-of-
response within the field-of-view are acquired in 3D,
sensitivity is increased by two factors:

(i) the increased number of lines-of-response that it
is now possible to acquire without the septa in
place, and,

(ii) the amount by which the detector crystals are
“shadowed” by the septa when they are in place
[7-9]. The 3D acquisition mode leads to a non-
uniform axial sensitivity profile, though, as shown
in Fig. 3.10 for a 16-ring scanner and a distributed
source.

In a 16-ring tomograph the sensitivity gain can be
up to around thirty times greater in the center of the
scanner compared to the end planes. The “average”
gain over the entire axial feld-of-view is around five- to
sevenfold. It is possible to separate the contributions of
the two factors indicated above by scanning the same
source in 2D mode both with and without the inter-
plane septa using the usual 2D configurations of plane-
defining lines-of-response. This demonstrates the
effect due to septal shadowing alone, seen in Fig. 3.11.

10 15 20 25 30
Sinogram

The shadowing effect of the septa is greater when the
plane definition utilizes cross-planes as is usually done
in a conventional 2D acquisition, as would be expected.
The average sensitivity improvement due to shadowing
is a factor of approximately 2.2. In the studies with a
maximum ring difference (d,,,,) of zero, the compo-
nent of sensitivity lost due to the thickness of the septa
themselves (1 mm), and the amount of the detector
that this covers is seen in isolation. The second compo-
nent of the increase in sensitivity is the greater number
of lines-of-response that can be accepted in 3D. When
the 16 direct rings only are used (d,,,, = 0), this corre-
sponds to 16 planes-of-response accepted; with the
usual 31 plane definition for 2D acquisitions (ring dif-
ference d = 0, £2 for odd-numbered planes (apart from
the end detectors) and d = 1, +3 for even-numbered
planes) this becomes a total of 100 planes-of-response.
In a full 3D acquisition this would become 16 x 16 for
this tomograph, i.e., 256 planes-of-response, as now
each ring is in coincidence with every other ring on the
opposing fan. This gives a factor of 256/100 = 2.56 in-
crease in sensitivity due to the increased numbers of
planes accepted compared with conventional 2D mode.
However, there is a concomitant increase in the
acceptance of scattered events axially as well.

A further effect produces a gain in coincidence count
rates in 3D PET compared with 2D in addition to septal
shadowing and acquiring more lines-of-response at
greater polar acceptance angle. It has been shown that
the 3D mode of acquisition is more efficient at convert-
ing single events into an annihilation pair which are
both detected [9]. Measurements on a first-generation
2D/3D PET system have shown that the conversion rate
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from single events to coincidences for a line source
measured in air (i.e., no scatter) was 6.7% in 2D and
10.2% in 3D. For the same source measured in a 20 cm-
diameter water-filled cylinder, the conversion rate in
2D was 2.4% and 4.8% in 3D. The ratio of these results
show that, without scatter, the increase in conversion
from single photons to coincidences for 3D compared
to 2D is over 50% (10.2/6.7) higher, and in a scattering
medium approaches 100% (4.8/2.4), although many of
these events will be scattered events. The explanation is
simple: more single photons can now form coincidence
pairs in 3D where, in 2D, one or both would have been

more uniform sampling in the central
axial region of the scanner.

lost to the system by virtue of the flight angle (outside
the allowed maximum ring difference) or by attenua-
tion by the septa.

The non-uniform axial sampling in 3D, however,
causes truncation of the projections, which is poten-
tially a far greater problem for reconstruction than an
axial variation in sensitivity (Fig. 3.12). This problem
was solved, however, in 1989 with the development of
the “reprojection” algorithm [6, 7]. This method ex-
ploits the fact that the data contains redundancy and
the volume can be adequately reconstructed from the
direct ring data (d,,, = 0). The first step in this algo-
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Projections

In the 3D acquisition case truncation of the projections occurs for those polar angles > 0°. At the top (d = 0) the entire field of view is sampled —

this is the usual 2D case. When the ring difference is increased there is truncation of the axial field of view resulting in loss of data corresponding to the ends of
the tomograph (center). In the limiting case (bottom) it results in severe truncation of the object.

rithm is to reconstruct the volume from the conven-
tional 2D data sinograms. The unmeasured, or missing,
data are then synthesized by forward projection
through this volume. After this the data are complete
and shift-invariant, and a fully 3D reconstruction algo-
rithm can be used. This algorithm is discussed in depth
in the next chapter.

From Projections to Reconstructed Images

Finally in this section, a brief description of how the
data discussed are used to reconstruct images in
positron tomography is included. The theory of recon-
struction is dealt with in detail in the next chapter.
The steps involved and the different data sets re-
quired for producing accurate reconstructed images in
2D PET are shown in Fig. 3.13. All data (apart from the
reconstructions) are shown as sinograms (i.e., the co-
ordinates are (s,)). The usual data required are:

(i) the emission scan which is to be reconstructed,

(ii) a set of normalization sinograms (one per plane in
2D) to correct for differential detector efficiencies
and geometric effects related to the ring detector,

or a series of individual components from which
such a normalization can be constructed (see
Ch.6),and,

(iii) a set of sinograms of attenuation correction
factors to correct for photon attenuation (self-
absorption or scattering) by the object.

The normalization factor singrams can include a
global scaling component to account for the plane-to-
plane variations seen in Fig. 3.9. The attenuation
factor sinograms are derived from a “transmission”
scan of the object and a transmission scan without
the object in place (often called a “blank” or reference
scan); the ratio of blank to transmission gives the at-
tenuation correction factors. The most common
method for acquiring the transmission and blank
scans is with either a ring or rotating rod(s) of a
long-lived positron emitter such as ®*Ge/*®Ga, with
which the object is irradiated [10]. The emission
sinograms are first corrected for attenuation and
normalized for different crystal efficiencies, and then
reconstructed using the filtered back-projection
process. During the final step, scalar corrections for
dead time and decay may also be applied.
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Figure 3.13. The steps involved in producing a 2D PET image are shown using filtered back-projection. Typically 31-95 planes of data are reconstructed in
transverse section.

Development of Modern Tomographs of 3D PET on BGO ring detector systems was only rela-

tively recent, it is instructive to briefly trace the devel-
To understand the current state of commercial PET  opment of full ring PET systems. One of the first widely
camera design, and why, for example, the development  implemented commercial PET cameras was the Ortec
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Figure 3.14. A schematic diagram of the block detector system, shown
here as an 8 % 8 array of detectors, and the four PMTs which view the light
produced is shown. The light shared between the PMTs is used to calculate
the xand y position signals, with the equations shown.

ECAT (EG&G Ortec, Oak Ridge, Tennessee, USA) [11].
This single-slice machine used NaI(Tl) and had a
hexagonal arrangement of multiple crystals with rota-
tional and axial motion during a scan. Its axial resolu-
tion could be varied by changing the width of the
slice-defining lead side shields, thereby altering the
exposed detector area. This not only changed the reso-
lution, but also the scatter and random event accep-
tance rates as well. In their paper of 1979, the
developers of this system even demonstrated that in
going from their “high-resolution” mode to “low-reso-
lution” mode, they measured a threefold increase in
scatter within the object (0.9%-2.7%), although total
scatter accepted accounted for only around 15% of the
overall signal [12]. In this and other early work on
single-slice scanners, the relationship between increas-
ing axial field-of-view and scatter fraction was recog-
nized [1]. Various scintillation detectors have been
used in PET since the early Nal(Tl) devices, but
bismuth germanate (BGO) has been the crystal of
choice for more than a decade now for non time-of-
flight machines [13, 14]. BGO has the highest stopping
power of any inorganic scintillator found to date.

After the adoption of BGO, the next major develop-
ment in PET technology was the introduction of the
“block” detector [15]. The block detector (shown
schematically in Fig. 3.14) consists of a rectangular
parallelepiped of scintillator, sectioned by partial saw
cuts into discrete detector elements to which a number
(usually four) of photomultiplier tubes are attached.
An ingenious scheme of varying the depth of the cuts
permits each of the four photomultiplier tubes to “see”
a differential amount of the light released after a
photon has interacted within the block, and from this
the point where the photon deposited its energy can be
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localized to one of the detectors in the array. The aim
of this development was to reduce crystal size (thereby
improving resolution while still retaining the good-
pulse-height-energy spectroscopy offered by a large
scintillation detector), modularize detector design, and
reduce detector cost. Small individual detectors with
one-to-one coupling to photomultiplier tubes is im-
practical commercially due to packaging limitations
and the cost of the large number of components re-
quired. The block detector opened the way for large,
multi-ring PET camera development at the expense of
some multiplexing of the signals. However, a station-
ary, full ring of small discrete detectors encompassing
the subject meant that rapid temporal sequences could
be recorded with high resolution, as the gantry no
longer needed to rotate to acquire the full set of projec-
tions. The evolution and continuously decreasing
detector and block size is shown in Fig. 3.15.

The major drawback for the block detector is count-
rate performance, as the module can only process a
single event from one individual detector in a particu-

Figure 3.15.  The evolution of PET detectors from CTl is shown. In the top
right corner is the original ECAT 911 detector, then the first true block detec-
tor, the ECAT 93x block (8x4 detectors) with four PMTs attached, the 95x
series block, which had double the number of axial saw-cuts, thus doubling
the axial sampling compared with the 93x, and the high-resolution ECAT
HR+ series block in the bottom left corner, where each detector element
measures approximately 4 mm x 4mm x 30 mm. For scale, US25c¢ coins are
shown. (Photo courtesy of Dr Ron Nutt, CTI PET Systems).
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lar block in a given time interval. Individual detectors
with one-to-one coupling to the opto-electronic device
would be a lot faster, however, at far greater expense
and with a problem of packaging and stability of the
great number of devices that would be required.

In a conventional 2D PET camera each effective
“ring” in the block is separated by lead or tungsten
shields known as septa. The aim was to keep the multi-
ring tomograph essentially as a series of separate rings
with little cross-talk between rings. This helped keep
scatter and random coincidence event rates low, reduce
single-photon flux from outside the field of view, and
allowed conventional single-slice 2D reconstruction al-
gorithms to be used. However, it limited the sensitivity
of the camera.

Alternative systems to block-detector ring-based
systems exist. Work commenced in the mid-1970s
using large-area, continuous NalI(Tl) flat (or more re-
cently curved) detectors in a hexagonal array around
the subject and has resulted in commercially viable
systems (GE Quest, ADAC C-PET) [16-19]. These
systems have necessarily operated in 3D acquisition
mode due to the lower stopping power of NalI(TI)
compared with BGO. The Nal(Tl) detectors, with their
improved energy resolution, also provide better
energy discrimination for improved scatter rejection
based on pulse height spectroscopy. Larger detectors
will always be susceptible to dead time problems,
however, even when the number of photo-multiplier
tubes involved in localizing the event in the crystal is
restricted, and hence the optimal counting rates for
these systems is lower than one with small, discrete
detector elements. This affects clinical protocols by
restricting the amount of radiotracer than can be
injected.

PET Camera Performance

PET systems exhibit many variations in design. At the
most fundamental level, different scintillators are used.
The configuration of the system also varies greatly
from restricted axial field of view, discrete (block-de-
tector) systems to large, open, 3D designs. With such a
range of variables, assessing performance for the pur-
poses of comparing the capabilities of different scan-
ners is a challenging task.

In this section, a number of the determinants of PET
performance are discussed. New standards for PET
performance have been published which may help to
define standard tests to make the comparison of differ-
ent systems more meaningful [27].

Positron Emission Tomography

Measuring Performance of PET Systems
Spatial Resolution

Spatial resolution refers to the minimum limit of the
system’s spatial representation of an object due to the
measurement process. It is the limiting distance in dis-
tinguishing juxtaposed point sources. Spatial resolu-
tion is usually characterized by measuring the width of
the profile obtained when an object much smaller than
the anticipated resolution of the system (less than half)
is imaged. This blurring is referred to as the spread
function. Common methods to measure this in emis-
sion tomography are to image a point source (giving a
point spread function (PSF)), or, more usually, a line
source (line spread function (LSF)) of radioactivity.
The resolution is usually expressed as the full width at
half maximum (FWHM) of the profile. A Gaussian
function is often used as an approximation to this
profile. The standard deviation is related to the FWHM
by the following relationship:

FWHM = 4/8log, 26 (5)

where o is the standard deviation of the fitted Gaussian
function. There are many factors that influence the res-
olution in a PET reconstruction. These include:

(i) non-zero positron range after radionuclide decay,

(ii) non-collinearity of the annihilation photons due
to residual momentum of the positron,

(iii) distance between the detectors,

(iv) width of the detectors,

(v) stopping power of the scintillation detector,

(vi) incident angle of the photon on the detector,

(vii) the depth of interaction of the photon in the de-
tector,

(viii) number of angular samples, and

(ix) reconstruction parameters (matrix size, window-
ing of the reconstruction filter, etc.).

Resolution in PET is usually specified separately in
transaxial and axial directions, as the sampling is not
necessarily the same in some PET systems. In general,
ring PET systems are highly oversampled transaxially,
while the axial sampling is only sufficient to realize the
intrinsic resolution of the detectors. The in-plane over-
sampling is advantageous because it partially offsets
the low photon flux from the center of the emitting
object due to attenuation. Transaxial resolution is often
subdivided into radial (FWHM,) and tangential
(FWHM,) components for measurements offset from
the central axis of the camera, as these vary in a ring
tomograph due to differential detector penetration at
different locations in the x-y plane (see Fig. 3.16). Due
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Figure3.16. Transaxial resolution is separated into
tangential and radial components. As the source of
radioactivity is moved off-axis there is a greater chance
that the energy absorbed in the scintillator will be spread
over a number of detector elements. This uncertainty in
localizing the photon interaction to one discrete detector
degrades the spatial resolution in this direction.

to the limited, discrete sampling in the axial direction
with block detector tomographs (one sample per
plane), it is inappropriate to measure axial resolution
(FWHM,) on such systems from profiles of recon-
structed data as there are insufficient sampling points
with which it can be accurately estimated (only one
point per plane). However, measurement of axial slice
sensitivity of a point source as it passes in small steps
through a single slice can be shown to be equivalent to
2D axial resolution, and thus can be utilized to over-
come the limited axial sampling to measure the axial
resolution.

Energy Resolution

Energy resolution is the precision with which the
system can measure the energy of incident photons.
For a source of 511 keV photons the ideal system
would demonstrate a well-defined peak equivalent to
511 keV. BGO has low light yield (six light photons per
keV absorbed) and this introduces statistical uncer-
tainty in determining the exact amount of energy de-
posited. There are two possible ways to define the
energy resolution for a PET scanner: the single event
energy resolution, or the “coincidence” (i.e., both
events) energy resolution.

Energy resolution is usually measured by stepping a
narrow energy window, or a single lower-level discrimi-
nator, in small increments over the energy range of in-
terest while a source is irradiating the detector(s). The
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count rate in each narrow window is then plotted to give
the full spectrum. The data in Fig. 3.17 show the system
energy resolution for single photons for a BGO tomo-
graph for three different source geometries. An increase
is seen in lower energy events in the scattering medium
compared with the scatter-free air measurement.

Energy resolution is a straightforward measurement
for single events, but less so for coincidence events. A
method often used in coincidence measurements is to
step a small window in tandem over the energy range.
However, this is not the situation that is encountered in
practice as it shows the spectrum when both events fall
within the narrow energy band. It is more useful is to
examine the result when the window for one coinci-
dence of the pair is set to accept a wide range of ener-
gies (e.g., 100-850 keV) while the other coincidence
channel is narrow and stepped in small increments
over the energy range. This allows detection of, for
example, a 511 keV event and a 300 keV event as a co-
incidence (as happens in practice). This is the method
used in Fig. 3.18. It demonstrates energy resolution for
a line source of ®®*Ge/%*Ga in air of approximately 20%
at 511 keV for a BGO scanner, similar to that obtained
for the single photon counting spectrum.

Count Rate Performance
Count rate performance refers to the finite time it

takes the system to process detected photons. After a
photon is detected in the crystal, a series of optical



54

100000 ]

80000

60000

Normalized count rate

20000 ]

40000 ]

Positron Emission Tomography

Distributed
Source

Scatter

100 200 300 400 500 600 700 800

Figure 3.17. The energy spectra for single photons for a BGO PET system. The air and scatter measurements are of a %Ge line source in air and in a 20 cm-di-
ameter water-filled cylinder respectively, while the distributed source is for a solution of 8F in water in the same cylinder, to demonstrate the effect on energy
spectrum of a distribution of activity. The respective energy resolutions are: air — 16.4%, line source in scatter — 19.6%, and distributed source — 21.6%.
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Figure 3.18. The “true” coincidence energy spectrum of a BGO full-ring scanner is shown for a %Ge line source measured in air. The spectrum is obtained by
having one photon energy window set from 100-850 keV and the opposing detector window stepped in small increments of 25 keV to yield an integral coinci-
dence spectrum. The derivative of the integral spectrum results in the above graph.

and electronic processing steps results, each of which ~ this section we will restrict ourselves to the
requires a finite amount of time. As these combine in  determination of count rate losses for PET systems
series, a slow component in the chain can introducea  for the purposes of comparing performance.

significant delay. Correction for counting losses The most common method employed in PET for
due to dead time are discussed in detail in Ch. 6. In  count rate and dead time determinations is to use a



Data Acquisition and Performance Characterization in PET 55
200000 [
~Expected
150000 [~
- | .
g: ‘
5 ,
Q
@
5 Randoms
2 100000
5:‘; L
!
Figure 3.19. Count rate curves are shown for 8
the measured parameters of true (unscattered
plus scattered) coincidences, random 50000
coincidences, and multiple coincidences (three
events within the time window), and the
derived curves for expected (no counting
losses) and noise equivalent count rate (NEC).
The data were recorded on a CTI ECAT 953B 0 /
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PET camera using a 20 cm-diameter water-
filled cylinder filled with "'Cin water.

source of a relatively short-lived tracer (e.g., '°F, ''C) in
a multi-frame dynamic acquisition protocol and record
a number of frames of data of suitably short duration
over a number of half-lives of the source. Often, a
cylinder containing a solution of '®F in water is used.
From this, count rates are determined for true,
random, and multiple events. The count rates recorded
at low activity, where dead time effects and random
event rates should approach zero, can then be used to
extrapolate an “ideal” response curve with minimal
losses (observed = expected count rates). An example
of the counting rates achieved for a BGO-based
scanner in 2D mode is shown in Fig. 3.19.

It is possible to apply appropriate models to calculate
dead time parameters. The data in Fig. 3.19 were charac-
terized by modelling as a cascaded non-paralysable/
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Figure3.20. The true coincidence count rate for a 16-ring

BGO scanner modelled as a combined paralysable and non-
paralysable system produces the above fit to the data. From
this, estimates of the dead time components can be derived.

0

Activity (kBg/cc)

paralysable system (Fig. 3.20) [20]. From this analysis,
the non-paralysable dead-time component (t,,) and the
paralysable dead-time component (t,) were found to be
approximately 3us and 2us respectively. Clearly, this is
very different to the coincidence timing window dura-
tion (in this case 2T = 12ns). The purposes of such para-
meter determinations might be to derive a dead-time
correction factor from the observed counting rates.

The purpose of defining count rate performance is
motivated by the desire to assess the impact of increas-
ing count rates on image quality. Much of the theory
behind measuring image quality derives from the
seminal work of Dainty and Shaw with photographic
film [21] and has been applied in a general theory of
quality of medical imaging devices to measure detector
quantum efficiency [22]. In PET an early suggestion for
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Figure 3.21. Log-linear count rate profiles from sinograms of a line source of ®Ge in air (left) and centered in a 20 cm-diameter water-filled cylinder (right)
demonstrate the additive scatter component outside of the central peak in the measurement in the cylinder. Interpolation of this section permits an estimate of

the scatter fraction to be made. Both measurements were in 2D mode.

the use of such a figure of merit defined an ““effective”
image event rate, Q to be:
Q=D,(d;/ dr); dr=d;+ds+d, (6)

where d;, dg, and d, are the count rates per cm from the
center of a uniform cylinder containing radioactivity
for the unscattered, scattered, and accidental (random)
coincidences respectively, Dy is the total unscattered co-
incidence rate and (d;/d;) is the contrast. It was sug-
gested that “... Q may also be called an ‘effective’ image
event rate, since the same signal-to-noise ratio would be
obtained in an ideal tomograph... ” [2].

This has been further developed in recent years.
Comparison of the count rate performance of different
tomographs, or of the same scanner operating under
different conditions (e.g., 2D and 3D acquisition mode)
have been difficult to make because of the vastly differ-
ent physical components of the measured data (e.g.,
scatter, randoms) and the strategies for dealing with
these. These effects necessitate a comparison which can
take account of these differences. The noise equivalent
count (NEC) rate [23] provides a means for making
meaningful inter-comparisons that incorporate these
effects. The noise equivalent count rate is that count rate
which would have resulted in the same signal-to-noise
ratio in the data in the absence of scatter and random
events. It is always less than the observed count rate.

The noise equivalent count rate is defined as:

T 2
T o
|: totul(S+T]}
NEC=———~——~+—

T @)

where T, is the observed count rate (including scat-
tered events), T and S are the unscattered and scattered

event rates respectively, f is the “random event field
fraction”, the ratio of the source diameter to the tomo-
graph’s transaxial field-of-view, and R is the random
coincidence event rate. This calculation assumes that
the random events are being corrected by direct mea-
surement and subtraction from the prompt event rate
and that both measurements contain noise, hence the
factor of 2 in the denominator (see Ch. 6). The NEC
rate is shown, along with the data from which it was
derived, in Fig. 3.19.

Some caution is required when comparing NECs from
various systems, namely what scatter fraction was used
and how it was determined, how the randoms fraction
(R) was determined and how randoms subtraction was
applied (delay-line method, estimation from single
event rates, etc). However, the NEC does provide a para-
meter which can permit comparisons of count rate, and
therefore an index of image quality, between systems.

Scatter Fraction

Scatter fraction is defined as that fraction of the total
coincidences recorded in the photopeak window which
have been scattered. The scattering may be of either, or
both, of the annihilation photons, but it is predomi-
nantly scattering of one photon only. Scattering arises
from a number of sources:

(i) scattering within the object containing the
radionuclide,

(ii) scattering off the gantry components such as lead
septa and side shields,

(iii) scattering within the detectors.

A number of methods for measuring scatter have been
utilized. Perhaps the simplest method is to acquire data
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Figure 3.22.  One of the earliest demonstrations of scattered radiation in coincidence PET measurements was by Jones and Burnham in 1973 on the first to-
mographic positron system, the PC-1, developed at the Massachusetts General Hospital in Boston. The process involved measuring a line source suspended ver-
tically in air (left) and then immersing the source in a bucket of water (right) and repeating the measurement. The plots shown here are from the personal

notebook of Terry Jones and are reproduced with his permission.

from a line source containing a suitably long-lived
tracer in a scattering medium (typically a 20 cm-
diameter water-filled cylinder) and produce profiles in
the s dimension. Interpolation under the peak of the
profile recorded outside the known location of the
source permits an estimate of the scatter contribution,
as used in the previous standard defined by the
National Electrical Manufacturers’ Association
(NEMA) [24]. One criticism of this approach, however,
is the assumption about the shape of the “wings”
extending into the central section of the profile under
the peak, and whether or not it be included in the
scatter or non-scattered term (Fig. 3.21).

Scatter in 2D PET is usually relatively small and typi-
cally less than 15% of the total photopeak events. Thus
it has been a small correction in the final image and
often ignored with little impact on quantitative accu-
racy. The first scatter correction régimes for emission
tomography were in fact developed for 2D PET [25].

The largest single difference between 2D and 3D PET
after the increase in sensitivity is the greatly increased
scatter that is included in the 3D measurements. Septa
were originally included in PET camera designs for two
reasons: (i) 3D reconstruction algorithms did not exist
at the time, and (ii) to restrict random, scattered, and
out of field-of-view events. One of the earliest demon-
strations of scattered radiation in an open PET geome-
try was measured on the first positron tomograph PC-1
[26] in Boston in November 1973 shown in Fig. 3.22.
Data were taken on this system which comprised two

planar opposed arrays of NaI(Tl) detectors. This demon-
strates clearly the increase in scatter in the profiles.

Scatter constitutes 20-50%+ of the measured signal
in 3D PET. The scatter is dependent on object size,
density, acceptance angle, energy discriminator set-
tings, radiopharmaceutical distribution, and the
method by which it is defined. The scatter fraction and
distribution will vary for distributed versus localized
sources of activity, and as such, the method for mea-
suring and defining scatter as well as the acquisition
parameters (axial acceptance angle, energy thresholds,
etc) need to be quoted with the value for the measure-
ment. In the updated NEMA testing procedures [27] a
line source of ®F positioned 45 mm radially from the
center of a 20 cm diameter by 70 cm long water-filled
cylinder is used to measure the scatter fraction. The
scatter is measured on the projections by considering
the events detected in the region outside of the cylin-
der boundary +20 mm on each side, which is interpo-
lated to estimate the scattered events within the peak of
the line source location. As mentioned in Ch. 2, scatter
in PET is not strongly correlated spatially with the
object boundary as it is in SPECT as the line of re-
sponse from two photons is used. This is dramatically
demonstrated in Fig. 3.23, which shows diagrams of the
profiles of count rate obtained when a line source is
moved laterally in a fixed-position water-filled cylin-
der. Even when the line source is centered within the
object, the profile does not show any discontinuity at
the boundary of the cylinder.
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Figure 3.23. Demonstration of the spatial nature of scatter in 3D PET. The
graphs show the profile from a line source in a water-filled cylinder in three
different positions, with cylinder (grey circle) and line source (black dot) lo-
cations superimposed (to scale). The scatter profiles clearly demonstrate
that the distribution of the scattered lines of response are only poorly corre-
lated with the object, and can extend a large distance outside of the object.
This is not true for SPECT where all scatter is constrained within the object
boundaries. The reason for this is that two photons detected are ascribed a
line of response joining the detectors in which they deposited their energy,
and this can occur well beyond the object boundary.

Positron Emission Tomography

Chapter 6 covers scatter correction techniques in
detail.

Sensitivity of Positron Tomographs

The most commonly used mode for PET scanning at
present is the 2D mode, with performance attributes as
described in this chapter. Many of the corrections re-
quired (such as for dead time and crystal efficiency
normalization) are well understood, making quantita-
tive measurements accurate and precise. This has
allowed PET to be used routinely as a highly sensitive
tool for in vivo functional studies in spite of the 0.5%
overall efficiency. However, while the sensitivity of 2D
PET is unquestionably high compared with other
modalities, the absolute sensitivity remains low com-
pared with the potential signal available from the ra-
diotracer, and consequently there remains room for
improvement not only in detection efficiency, but in
improving the spatial resolution of the technique as
well. As Hoffman has shown, resolution improvements
must be accompanied by an approximately third-
power increase in sensitivity to maintain equivalent
signal-to-noise ratio to realize the improvement in
image quality [28]. This is intuitively seen by consider-
ing a twofold improvement in resolution: this decreases
the effective resolution volume by two in each of the x,
y,and z directions and therefore a 2’ increase in sensi-
tivity would be required to maintain equivalent signal-
to-noise ratio per voxel. This is partially offset, though,
by an effect known as signal amplification [29], which
has guided PET detector designs for over a decade now.
Signal amplification essentially means that an improve-
ment in resolution per se will lead to an improvement
in signal-to-noise in the reconstructed image as the
higher resolution means that the reconstructed values
will be “spread” over a smaller region, due purely to the
higher resolution. This is turn means a higher recon-
structed count within the region containing the activ-
ity, and hence better noise properties. However,
increasing sensitivity still remains the main focus for
improving the quality of PET data, and for these
reasons the challenge in recent years has focussed on
improving sensitivity.

The purpose of a sensitivity measurement on a
positron tomograph is primarily to facilitate compar-
isons between different systems, as, in general, the
higher the sensitivity the better signal-to-noise ratio in
the reconstructed image (neglecting dead time effects).
The sensitivity of positron tomographs has tradition-
ally been measured using a distributed source of a
relatively long-lived tracer, such as '®F, in water. The
value was quoted in units of counts per second per
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microCurie per millilitre (cts.sec’’.uCi"*.ml™") in non-
SI units, without correction for attenuation or scattered
radiation. This measurement was adequate to compare
systems of similar design, e.g., 2D scanners with
limited axial field of view. However, with the advent of
vastly different designs emerging, and, especially, the
use of 3D acquisition methods, this approach is limited
for making meaningful comparisons. In 3D, scatter
may constitute 20-50% or more of the recorded events
and this needs to be allowed for in the sensitivity cal-
culation. In addition, comparison of the true sensitivity
compared to SPECT would be meaningless due to the
differing attenuation at the different photon energies
used. Thus, an absolute sensitivity measurement that is
not affected by scatter and attenuation is desirable. A
simple source of a suitable positron emitter could be
used, however, a significant amount of surrounding
medium is required for capture of the positrons within
the source, which in itself causes attenuation of the an-
nihilation photons.

A method has been developed to make absolute sensi-
tivity measurements in PET [30], and has been adopted
in the new updated NEMA testing procedures [27]. It
employs the measurement of a known amount of **F (or
9mTc for SPECT) in a small source holder made from
aluminum. The thickness of the aluminum wall of the
source holder used is sufficient to stop all of the
positrons, causing annihilation radiation to be produced,
but which also causes some attenuation. The count rate
for this source is found by measuring it for a defined
period in the camera. Next, another tube of aluminum of
known thickness is added to the holder, causing further
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Figure 3.24. Effective sensitivity (cps/MBq)
is shown as a function of activity
concentration for two different elliptical
phantoms (ellipse = 20.5x16.5 cm in cross-
section and 20 cm axially approximating an
average head size, and a 20 cm-diameter
circular cylinder). The system used was a first- r
generation 2D/3D tomograph (ECAT 953B, L
CTI) operated in 3D mode. The curves
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attenuation, and this is counted again. This is done for a
number of extra tubes of aluminum, all of known thick-
ness, and an attenuation curve is produced. The extrapo-
lated y-intercept from this curve gives the “sensitivity in
air” for the camera. The units of this measurement are
ct.sec’.MBq. This provides an absolute measure of sen-
sitivity. The method can also be used for PET system cal-
ibration of reconstructed counts without requiring
scatter or attenuation correction [31].

In spite of the improvements in sensitivity with 3D
PET, however, much of the available signal still goes
undetected. Due to scatter, dead time, and random
event rates, the effective sensitivity is far less than is
measurable in an “absolute” sense. In an attempt to
quantify this, a parameter combining the NEC with the
absolute sensitivity measurements has been proposed
[32]. At extremely low count rates where detector dead
time and random events are negligible, the effective
sensitivity (as it relates to the image variance) in a dis-
tributed object is simply the absolute sensitivity level
with a correction for the scatter in the measurement.
As the count rate increases, this effective sensitivity de-
creases due to the increased dead time and random
events while scatter remains constant. Therefore, the
effective sensitivity as a function of count rate can be
expressed as the quotient of the noise equivalent rate
divided by the ideal trues count rate with no scatter,
dead time or random events, multiplied by the absolute
sensitivity. The effective sensitivity, Cgla), is defined
as:

NEC
Cop (@) = o & xC )

Absolute Sensitivity in air
-28000 cps/MBq

Ellipse

demonstrate the loss of the ability to process 0
events as activity concentration increases.

10 20 30 40 50
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where C,, is the absolute sensitivity and NEC(a) and
T14ea(a) are the noise equivalent and ideal (no count
rate losses or random events) trues rates, respectively,
which are functions of the activity concentration in the
object. The effective sensitivity is a function of the ac-
tivity in the object. This effective sensitivity is shown
for 3D measurements using a small elliptical cylinder
and a 20 cm cylinder in Fig. 3.24. The effective sensitiv-
ity demonstrates that the increase in solid angle from
3D acquisition is only one aspect of improving the sen-
sitivity of PET, and that increasing detector perfor-
mance by keeping the detectors available for signal
detection for a longer proportion of the time can be
thought of in a similar manner to increasing the solid
angle as both improve the sensitivity of the device.

Other Performance Measures

In addition to the parameters described above (resolu-
tion, count rate, scatter, sensitivity), a number of other
parameters are specified by bodies such as NEMA to
assess PET scanner performance. These include accu-
racy of corrections for attenuation, scatter, randoms
and dead time, and image quality assessments.
Uniformity is another parameter that has been found
to be useful to test. Energy resolution, though a major
determinant of PET performance, has not been in-
cluded in the latest NEMA PET tests [27]. No explicit
tests for assessing transmission scan quality are
specified, although a need exists with the variety of
systems now available.

A difficulty in extrapolating from performance in
standards test to the clinical situation is the highly un-
realistic (clinically relevant) nature of the objects
scanned. This has been recognized and attempts to
address this have been made by employing long test
objects (70 cm cylinder, NEMA) and objects which re-
semble the body in cross-section (EEC phantom [33]).

Impact of Radioactivity Outside the Field
of View

Scanner design has traditionally included significant
lead end-shields to restrict the majority of single
photons emitted from outside the axial field of view of
the scanner from having direct line-of-sight trajecto-
ries to the detectors. Single photons from outside the
field of view will not form a true coincidence, but will
increase the number of events the detector has to
process leading to increased dead time and random co-
incidences. Some true coincidences from scattered
photons may be included if the positron annihilation

Positron Emission Tomography

was just outside the axial field of view, but in general,
the photons from outside the field of view will be un-
paired events.

Single photons from outside the field of view were
not a large problem with 2D tomographs that used in-
terplane septa, as the septa added extra shielding for
the detectors for photons from outside the field of view
as well as inside. However, a number of developments
over the past decade have exacerbated this situation:

(i) the move to acquire data in high-sensitivity 3D
mode, thereby removing the interplane septa,

(ii) the increase in length of the axial field of view,
which has the effect of increasing the acceptance
angle for single photons from outside the field of
view, and,

(iii) decreasing the length of the end shielding to ac-
commodate large subjects. This has the effect of
“opening up” the acceptance angle even further.

Examples illustrating this effect are shown in Fig. 3.25.
It is a particular issue when using detectors such as
BGO or Nal(TI), which are not fast scintillators, and co-
incidence timing windows that are relatively long, of
the order of 10 nsec or greater.

A number of solutions have been proposed, includ-
ing “staggered” partial septa to restrict the out-of-field-
of-view component without greatly decreasing the
axial acceptance angle for true coincidences, shielding
the subject (rather than the detectors) by placing or
wrapping some form of flexible lead over the part of
the body outside the field of view, and decreasing the
coincidence window width. As the random coincidence
rate varies linearly with window width (recall
R,, = 27N,Ny where 27 is the width of the coincidence
timing window), a decrease by a factor of two from
12 nsec to 6 nsec would be expected to halve the
random event rate. However, this would be at the
expense of energy and positioning information due to
the need to truncate the pulses from the detectors. One
simple solution that has been widely employed in brain
studies is to add a removable lead shield to the end of
the tomograph on the patient side, effectively extend-
ing the end shielding [34]. Unfortunately this is only
applicable for brain studies. Nevertheless, it is very
effective in this application [35].

The solution would appear to be to use a fast scintil-
lator, such as LSO, YSO, or GSO, and a shorter coinci-
dence window. However, a time window of 4 nsec or
less would require the use of time-of-flight electronics
as the time window duration is now approaching the
time it would take for an annihilation photon produced
at the edge of the transaxial field of view (perhaps
from a transmission source) to travel to the opposing
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Figure 3.25. The field of view for single photons is shown schematically for
three different scanner configurations in 3D. In (a), the first purpose-built
2D/3D tomograph (CTI ECAT 953B), which was designed for brain studies
only, is shown. It had a 76 cm ring diameter, 10.8 cm axial field of view, and
end shielding that restricted the subject aperture to 38 cm. In (b), the first
purpose-built 3D-only full ring BGO tomograph (CTI EXACT3D) is shown. It
had a 23.4 ¢m axial field of view and 82 cm ring diameter. However, as it
was intended for whole-body scanning, the end shields were limited in
extent to allow a large subject aperture (64 cm). This produced an enormous
single-photon field of view which impacted on performance. A modification
to the same tomograph, with removable lead end shields for use in brain
studies (c), improved performance dramatically by restricting the single-
photon field of view. The broken lines show the single-photon field of view
without the shields in place.

detector, a distance close to one metre away. If non-
time-of-flight electronics are employed the width of
the transaxial field of view will be restricted.

There will also be an increase in true coincidences
arising from outside the field of view in which one or
both photons are scattered. This poses a problem for
scatter-correction algorithms that use estimation
methods, rather than direct measurements, to define
the scatter contribution. Some algorithms combine

61

both approaches by using the measured event rate
outside the object being imaged, which must be due to

scatter, to scale the estimated scatter within the object.
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4 Image Reconstruction Algorithms in PET’

Michel Defrise, Paul E Kinahan and Christian ] Michel

Introduction

This chapter describes the 2D and 3D image recon-
struction algorithms used in PET and the most impor-
tant evolutions in the last ten years: the introduction of
3D acquisition and reconstruction and the increasing
role of iterative algorithms. As will be seen, iterative al-
gorithms improve image quality by allowing more ac-
curate modeling of the data acquisition. This model
includes the detection, the photon transport in the
tissues, and the statistical distribution of the acquired
data, i.e. the noise properties. The popularity of itera-
tive methods dates back to the seminal paper of Shepp
and Vardi on the maximum-likelihood (ML) estima-
tion of the tracer distribution. Practical implementa-
tion of this algorithm has long been hindered by the
size of the collected data, which has increased more
rapidly than the speed of computers. Thanks to the in-
troduction of fast iterative algorithms in the nineties,
such as the popular Ordered Subset Expectation
Maximization (OSEM) algorithm, iterative reconstruc-
tion has become practical. Reconstruction time with it-
erative methods nevertheless remains an issue for very
large 3D data sets, especially when multiple data sets
are acquired in whole-body or dynamic studies. Speed,
however, is not the only reason why filtered-back-
projection (FBP) remains important: analytic algo-
rithms are linear and thereby allow an easier control of
the spatial resolution and noise correlations in the re-
construction, a control which is mandatory for quanti-
tative data analysis.

The chapter is organized as follows. First, the organi-
zation of the data acquired in 2D mode is described,
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and the reconstruction problem is defined. The third
section reviews the classical analytic reconstruction of
2D tomographic data and describes the FBP method,
which remains a workhorse of tomography. Iterative
reconstruction is presented in the following section,
where the accent is set on the key concepts and on their
practical implications. Owing to the wide variety of
iterative methods, only the popular ML-EM and OSEM
methods are described in detail, though this does not
entail any claim that these algorithms are optimal. The
last sections concern the reconstruction of data
acquired in 3D mode. Three-dimensional FBP is
described, as well as fast rebinning algorithms, which
reduce the redundant 3D data set to synthetic 2D data
that can be processed by analytic or iterative 2D algo-
rithms. Hybrid algorithms combining rebinning with a
2D iterative algorithm are introduced, and the chapter
concludes with a discussion of the practical aspects of
fully 3D iterative reconstruction.

Presented here as a separate chapter, image recon-
struction cannot be understood independently of the
other steps of the data-processing chain, including data
acquisition, data corrections (described in chapters 2,
3, 5), as well as the quantitative or qualitative analysis
of the reconstructed images. The variety of algorithms
for PET reconstruction arises from the fact that there is
no such thing as an optimal reconstruction algorithm.
Different algorithms may be preferred depending on
factors such as the signal-to-noise ratio (number of
collected coincident events in the emission and trans-
mission scans), the static or dynamic character of the
tracer distribution, the practical constraints on the
processing time, and, most importantly, the specific
clinical task for which the image is reconstructed. It is

* Figures 4.1-4.11 are reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic
Science and Clinical Practice. Springer-Verlag London Ltd 2003, 91-114.
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important to keep this observation in mind when dis-
cussing reconstruction as an isolated topic.

2D Data Organization

Line of Responses

A PET scanner counts coincident events between pairs
of detectors. The straight line connecting the centers of
two detectors is called a line of response (LOR).
Unscattered photon pairs recorded for a specific LOR
arise from annihilation events located within a thin
volume centered around the LOR. This volume typi-
cally has the shape of an elongated parallelipiped and
is referred to as a tube of response.

To each pair of detectors d,,d,, is associated an LOR
L, 4 and a sensitivity function y; , (7 = (x, y,2)) such
that the number of coincident events detected is a
Poisson variable with a mean value

<Paya, > = Tlrov dif(F) Wy, 4, (7) (1)

where 7 is the acquisition time and f(7) denotes the
tracer concentration. We assume that the tracer
concentration is stationary and that f(7) = 0 when
V(x% + y?) > R,, where R; denotes the radius of the
field-of-view (FOV). The reconstruction problem con-
sists of recovering f(7) from the acquired data p, ,,
{d, d,} =1---,Nior, Where Ny, the number of detec-
tor pairs in coincidence, can exceed 10° with modern
scanners.

The model defined by Eq. (1) is linear and hence
implies that nonlinear effects due to random coinci-
dences and dead time be pre-corrected. In the absence
of photon scattering in the tissues, the sensitivity func-
tion vanishes outside the tube of response centered on
the LOR. In such a case, the accuracy of the spatial lo-
calization of the annihilation events is determined by
the size of the tube of response, which in turn depends
on the geometrical size of the detectors and on other
factors such as the photon scattering in the detectors,
or the variable depth of interaction of the gamma rays
within the crystal (parallax error, figure 2.26).

We have so far considered a scanner comprising
multiple small detectors. Scanners based on large-area,
position-sensitive detectors such as Anger cameras can
be described similarly if viewed as consisting of a large
number of very small virtual detectors.
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Analytic reconstruction algorithms assume that the
data have been pre-corrected for various effects such
as randoms, scatter and attenuation. In addition, these
algorithms model each tube of response as a mathe-
matical line joining the center of the front face of the
two crystals"). This means that the sensitivity function
Va4, (7) is zero except when 7 € L, , . With this ap-
proximation, the data are modeled as line integrals of
the tracer distribution:

(Pa,a,)= [ drf(r) (2)

dg,dp

Sinogram Data and Sampling

The natural parameterization of PET data uses the
indices (d,, d,) of the two detectors in coincidence, as
in Eq. (1). However, there are several reasons to modify
this parameterization:

e The natural parameterization is often poorly
adapted to analytic algorithms. This is why raw data
are usually interpolated into an alternative sinogram
parameterization described below.

e The number of recorded coincidences N,y in a
given scan may be too small to take full advantage of
the nominal spatial resolution of the scanner. In such
a case, undersampling by grouping neighboring
LORs reduces the data storage requirements and the
reconstruction time without significantly affecting
the reconstructed spatial resolution, which is primar-
ily limited by the low count density.

Another approach to reduce data storage and process-
ing time when Njgr » Neyens consists of recording the
coordinates (d,d,) of each coincident event in a se-
quential data stream called a list-mode data set.
Additional information such as the time or the energy
of each detected photon can also be stored. In contrast
to undersampling, list-mode acquisition does not com-
promise the accuracy of the spatial localization of each
event. But the fact remains that the number of mea-
sured coincidences may be too low to exploit the full
resolution of the scanner.

Let us define the standard parameterization of 2D
PET data into sinograms. Consider a transaxial section
z = z, measured using a ring of detectors. Figure 4.1
defines the variables s and ¢ used to parameterize a
straight line (an LOR) with respect to a Cartesian coor-
dinate system (x, y) in the plane. The radial variable s is

! When the depth of interaction is accounted for, LORs are defined by connecting photon interaction points projected on the long

axis of the crystals [1].
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1

Figure 4.1. Schematic representation of a ring scanner. A tube of response
between two detectors d,and dj, is represented in grey with the correspond-
ing LOR, which connects the center of the front face of the two detectors.
The sinogram variables s and ¢ define the location and orientation of the
LOR.

the signed distance between the LOR and the center of
the coordinate system (usually the center of the detec-
tor ring). The angular variable ¢ specifies the orien-
tation of the LOR. Line integrals of the tracer
distribution are then defined as

pls,0,20)=]7 dt f(= scos  tam
y=ssing tco$ = zy) 3)

where t, the integration variable, is the coordinate
along the line. In the presentation of the 2D recon-
struction problem below, we will omit the z arguments
in the functions p and f.

The next section describes how a function f(x, y) can
be reconstructed from its line integrals measured for |s|
< Rz and 0 £ ¢ < 7 The mathematical operator
mapping a function f(x, y) onto its line integrals p(s, ¢)
is called the x-ray transform®, and this operator will
be denoted X, so that p(s, §) = (Xf)(s, ¢). The function
p(s, @) is referred to as a sinogram, and the variables (s,
@) are called sinogram variables. This name was coined
in 1975 by the Swedish scientist Paul Edholm because
the set of LORs containing a fixed point (x,, y,) are
located along a sinusoid s = x, cos ¢ + y, sin ¢ in the (s,
¢) plane, as can be seen from Eq. (3). For a fixed angle ¢
= ¢, the set of parallel line integrals p(s, ¢,) is a 1D
parallel projection of f.

At the line integral approximation, and after data
pre-correction, the PET data provide estimates of the
x-ray transform for all LORs connecting two detectors,
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ie, pg a, = p(s, §), where the parameters (s, ¢) corre-
spond to the radial position and angle of £, ;. Thus,
the geometrical arrangement of discrete detectors in a
scanner determines a set of samples (s, ¢) in sinogram
space. The most common arrangement is a ring
scanner: an even number N, of detectors uniformly
spaced along a circle of radius R, > R;®). Each detector,
in coincidence with an arc of detectors on the opposite
side of the ring, defines a fan of LORs (figure 3.6), and
the corresponding sampling of the sinogram is:

Six = Rgcos((2k- j)m IN) ke 0,.., Ny 1
q)j:ﬂ" I N, F 0,.,N,; 1

where the pair of indices j, k corresponds to the coinci-
dences between the two detectors with indices d, =
j - k and d, = k. Due to the curvature of the ring, each
parallel projection j is sampled non-uniformly in the
radial variable, with a sampling distance As = 27R /N,
near the center of the FOV (i.e. for s = 0). The radial
samples of two adjacent parallel projections j and j +1
are shifted by approximately As/2, as can be seen by
shifting only one end of a LOR (Fig. 4.2).

For practical and historical reasons, it is customary
in PET to reorganize the data on a rectangular
sampling grid

(4)

Sk =kAs k= Ns""’NS (5)
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Figure 4.2. Representation of the sinogram sampling for a ring scanner
with 20 detectors. The interleaved pattern provided by the LORs connect-
ing detector pairs is shown by +'s. Note the decrease of the radial sam-
pling distance at large values of s, which is exaggerated here because the
plot extends to 90% of the ring radius. PET acquisition systems reorganize
these data into the rectangular sampling pattern (see equation (5)) shown
by xs.

2 In 2D, the x-ray transform coincides with the Radon transform, see [2].
3 If the depth of interaction is not measured, an effective value of R, is used that accounts for the mean penetration of the 511 keV

gamma rays into the crystal.
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with A¢ = 27/N;, Ny = Ny/2, and a uniform radial sam-
pling interval As = R ;m/N; equal to half the spacing
between adjacent detectors in the ring. The parallel-
beam sampling defined by Eq. (5) will be used in the rest
of the chapter. In this scheme the line defined by a
sample (j, k) no longer coincides with a measured LOR
connecting two detectors. The reorganization into paral-
lel-beam data therefore requires an interpolation
(usually linear interpolation) to redistribute the counts
on the rectangular sampling grid (Eq. (5)). This interpo-
lation entails a loss of resolution, which is usually negli-
gible owing to the relatively low SNR in PET®. In
addition, the geometry of some scanners is not circular,
but hexagonal or octagonal. Resampling is then needed
anyway if standard analytic algorithms are to be used.
When the average number of detected coincidences
per sinogram sample is small, undersampling is often
applied to reduce the storage and computing require-
ments. Angular undersampling (increasing A¢) is
called transaxial mashing in the PET jargon. The
mashing factor defined by m = AgN,/(2x) is usually an
integer so that undersampling simply amounts to
summing groups of m consecutive rows (j’s) in the
sinogram. Angular undersampling results in a loss of
resolution, which is smallest at the center of the FOV
and maximum at its edge. Therefore, the maximum
allowed mashing factor depends not only on the SNR
but also on the radius R of the reconstructed FOV: for
a fixed SNR, we can allow more mashing for a brain
scan than for a whole-body study. Radial undersam-
pling (increasing As) tends to generate more severe ar-
tifacts, and is rarely used. A rule of thumb to match the
radial and angular sampling is the relation A¢ = As/Rp,
which is derived using Shannon’s sampling theory [2].

Multi-slice 2D Data

So far we have discussed data sampling for a single
ring scanner located in the plane z = z,. Multi-ring
scanners are stacks of Ny rings of detectors spaced
axially by Az and indexed as r =0, - - , N — 1 [3]. The
coincidences between two detectors belonging to the
same ring r are organized in a direct sinogram p(s, ¢, z
= rAz) as described in the previous section. This is the
sinogram of the function f(x, y, z = rAz) (Fig. 4.3).
Multi-ring scanners also collect coincidences between
detectors located in a few adjacent rings, i.e. between
one detector in some ring r and another detector in
one of the rings r + d, with d = -dp 00 * * * > dopmax- The
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LORs connecting such detector pairs are not trans-
axial, but the maximum ring difference d,p, 1, is chosen
to be small enough (typically 5) that the angle between
these oblique LORs and the transaxial planes
(6 = dypmex AZ/(2R,)) can be neglected®.

Consider first the LORs between detectors in adja-
cent rings r and r + 1. These data are assembled in a 2D
sinogram p(s, ¢, z = (r +1/2)Az) and used to recon-
struct a transaxial slice that is approximated as lying
midway, axially, between the two detector rings. Each
sample in this cross-plane sinogram is the average of
two LORs: on the one hand the LOR connecting a de-
tector d, in ring r to a detector d, in ring r + 1, and on
the other hand the LOR connecting detectors d,, in ring
r+ 1 and d,, in ring r. Indeed, these two LORs coincide
if we neglect the small angles £8 they form with the
transaxial plane. One effect of the introduction of the
cross-plane sinograms is to increase the sampling rate
in the axial direction so that instead of reconstructing
N, image planes of thickness Az, we end up with 2N, - 1
image planes separated by Az/2.

More generally, the LORs between rings r - j and
r+j,withj=0, 1, 2,.. < dyp /2 are added to form the
direct sinogram of slice z = rAz, and the LORs between
ringsr-j+landr+j,withj=0,1,2,. < (dyppmax +
1)/2 are added to form the cross-plane sinogram of
slice z = (r + 1/2)Az. There are an odd number of ring
pairs contributing to the direct plane sinograms and
an even number of ring pairs contributing to the cross-
plane sinograms (Fig. 4.3). For small values of d,p, .0

Z
A

7 7
o B ]
5 5
4 4
3 3
2 2
1 v 1
0 Az| 0
A
Figure4.3. Longitudinal view of a multi-ring scanner with N, = 8 rings, op-

erated in 2D mode, illustrating the formation of sinograms for two transaxial
slices (in grey), with dp . = 2. The sinogram for the cross slice at
z=13Az/2 (top) is obtained by averaging the coincidences between two
rings pairs (r,, r,) = (6, 7) and (7, 6). The sinogram for the direct slice at z=
8/ z/2 (bottom) is obtained by averaging the coincidences between three
rings pairs (r,, r,) = (3,5), (5, 3) and (4, 4).

* Parallel-beam resampling is used by some CT scanners despite more severe requirements in terms of spatial resolution.
> For d = *1 this approximation is of the same order as when resampling the sinogram to parallel beam.
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there is thus a significant difference in the number of
LORs contributing to the different types of sinograms,
and therefore also a difference in the corresponding
SNRs (see also figure 3.9). As d,p .., increases, the SNR
of both types of sinograms increases and the differ-
ences diminish; however, there is a degradation in the
image resolution as we will see later in the single-slice
rebinning algorithm. In practice, the value of dyp ., is
chosen to balance these trade-offs, with typical values
ranging from 3 to 11.

Analytic 2D Reconstruction

Properties of the X-ray Transform

In this section, we solve the inverse 2D x-ray transform.
A closed-form solution of the integral equation, Eq. (3)
is first derived assuming a continuous sampling of the
sinogram variables over (s, ¢) € [-RpRp ] X [0, 7]. An
approximation to this exact solution will then be written
in terms of the discrete data samples (defined by
Eq. (5)), leading to the standard filtered-backprojection
algorithm (FBP). We refer for this section to the com-
prehensive books by Natterer [2, 4], Kak and Slaney [5],
Barrett and Swindell [6], and Barrett and Myers [7].
First, two properties of Eq. (3) should be stressed:

e The problem is invariant for translations in the sense
that the x-ray transform of a translated image f,(x, y)
=flx -ty y-t,)is (Xf)(s, 9) = (Xf)(s - £, cos ¢ - t,sin
@, ¢). Translating the image simply shifts each sino-
gram row.

e The problem is invariant for rotations in the sense
that the x-ray transform of a rotated image fy(x, y) =
flx cos 6 - y sin 6, x sin 6 + y cos 0) is (Xfy)(s, ) =
(XN (s, 9+ 0).

These two invariances, and also the algorithms de-
scribed in the next sections, are valid only when the
scanner measures all line integrals crossing the
support of the image (the disc of radius Rj), so that the
sinogram is sampled over the complete range (s, ¢) €
[- Rp Rg] X [0, m]. When this condition is not satisfied,
the problem is called an incomplete data problem
(among many references, see [2] Ch. VI, [4, 8, 9]). This
happens in particular with hexagonal or octagonal
scanners such as the Siemens/CPS HHRT, where the
gaps between adjacent flat panel detectors cause un-
measured diagonal bands in the sinogram [10]. Before
applying the FBP algorithm presented below, the in-
completely measured sinograms must first be com-
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pleted by estimating the missing LOR data. When the
gaps in the sinogram are not too wide, simple interpo-
lation can be used, but more sophisticated techniques
have been proposed [11, 12]. An alternative is to apply
iterative reconstruction techniques, which are less sen-
sitive to the specific geometry. We note, however, that
the use of iterative methods does not provide a solu-
tion for the missing data problem. Rather it simplifies
the introduction of prior knowledge which can par-
tially compensate for the missing data.

The Cornerstone of Tomographic
Reconstruction: The Central Section
Theorem

Tomographic reconstruction relies on Fourier analysis.
Recall that the Fourier transform of a function f(x, y) is
defined by

(FNWsV,))=F(v,,v,)
= [ dxdy f(x, y)exp(=2mi(xv, + yv,)) (6)
RZ

and is inverted by changing the sign of the argument of
the complex exponential

(FF)(x,p)=f(x,y)

= Rjz dv,dv, F(v,,v,)exp(2mi(xv, + yv,)) 7)
We use v, and v, to denote the frequencies associated
to x and y respectively, and denote the Fourier trans-
form of a function, e.g., f, by the corresponding upper
case character, e.g., F. These definitions are extended in
the obvious way to N dimensions.

A key property of the Fourier transform is the convo-

lution theorem, which states that the Fourier transform
of the convolution of two functions fand h,

(fXm)(x,y)= | dx'dy’f(x',y)h(x—x",y = y")  (8)
RZ

is the product of their Fourier transforms:

(F(f* W)V, v,) = (FHV,V,)- (FV,v,)  (9)

In signal- or image-processing terms, convolving f with
h amounts to filtering f with a shift-invariant (i.e. in-
variant for translations) point spread function k. The
convolution theorem simplifies convolution by reduc-
ing it to a product in frequency space. In general, the
Fourier transform is useful for all problems that are in-
variant for translation, and therefore also for tomo-
graphic reconstruction as will now be shown.

The central section theorem, also called the projection
slice theorem, states that the 1D Fourier transform of the
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x-ray transform Xf with respect to the radial variable s is
related to the 2D Fourier transform of the image f by

P(v,¢)=F(v,=vcos¢, V,=V sin@) (10)
where
P(v,9) = (Fp)(v,9) = ﬂdeS p(s,0) exp(—2misv)  (11)

and v is the frequency associated to the radial variable s.
This theorem is easily proven by replacing the x-ray
transform p(s, ¢) = (Xf)(s, ¢) in the right hand side of
Eq. (11) by its definition (Eq. (3)) as a line integral of f.
Thus the 1D Fourier transform of a parallel projection
of an image f at an angle ¢ determines the 2D Fourier
transform of that image along the radial line in fre-
quency plane (v,, v,) that forms an angle ¢ with the v,
axis. The implication for reconstruction is the follow-
ing: if we measure all projections ¢ € [0, 7], the radial
line sweeps over the whole frequency plane and
thereby allows the recovery of F(v,, v,) for all frequen-
cies (v, v,) € R% The image f can then be recon-
structed by inverse 2D Fourier transform (Eq. (7)).
The discrete implementation of the inversion
formula combining Eqgs. (11), (10) and (7) is referred to
as the direct Fourier reconstruction. This algorithm is
numerically efficient because the discretized 2D
Fourier transform (Eq. (7)) can be calculated with the
FFT algorithm. The 2D FFT requires as input the values

f(x,y)

p(s,0)
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of F on a square grid (v, = kA, v, = IA), (k, ) € Z2,
which does not coincide with the polar grid of samples
provided by the data (see the right hand side of Eq. 10).
Direct Fourier reconstruction therefore involves a 2D
interpolation to map the polar grid onto the square
grid. This interpolation is often based on gridding
techniques similar to those used for magnetic reso-
nance imaging [13, 14, 15].

The Filtered Backprojection Algorithm

The FBP algorithm is the standard algorithm of tomog-
raphy. It is equivalent to the direct Fourier reconstruc-
tion in the limit of continuous sampling, but its
discrete implementation differs.

The FBP inversion explicitly combines Egs. (11), (10)
and (7). Straight-forward manipulations involving
changing from Cartesian (Vv,, V,) to polar (v, ¢) coordi-
nates lead to a two-step inversion formula (Fig. 4.4):

fley)=(X"pF)(xy) =

] (12)
[dopF(s=x cos ¢+ ysin ¢,9)
0
where the filtered projections are
Rp
pF(s,9)= | ds'p(s’,@)h(s —s") (13)
—-Rp
X*
Figure4.4. lllustration of 2D filtered backprojection. The

top row shows a brain section and its sinogram p= Xf. The
backprojection X*p of the sinogram (bottom right) is the 2D
convolution of fwith the point spread function 1/Y( + 2
and illustrates the blurring effect of line integration. The
filtered sinogram p’ obtained by 1D convolution with the
ramp filter kernel has enhanced high frequencies, and
when backprojected, yields the original image £, up to noise
and discretization errors.
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and the ramp filter kernel is defined as

h(s)= | dv|v| exp(2nisv) (14)

Three remarks are in order.

(i) The operator X* mapping p” onto f in Eq. (12) is
called the backprojection and is the dual of the x-
ray transform. Geometrically, (X*pf )(x, y) is the
sum of the filtered data p* for all lines that contain
the point (x, ).

(ii) The convolution (Eq. (13)) can be expressed using
the convolution theorem as PF (v, ¢) = |V| P(v, ¢).

(iii) The integral (Eq. (14)) defines the kernel & as the
inverse 1D Fourier transform of the ramp filter
function |v|. This integral does not converge in the
usual sense, and / is only defined as a generalized
function (see chapter 2 in [7]).

Discrete Implementation of the FBP

The discrete implementation of Eqs. (12) and (13)
using the measured samples of p(s, ¢) described in the
section on sinogram data and sampling, above
(Eq. (5)), involves four approximations:

(i) The approximation of the kernel h(s) by an
apodized kernel

h,(s)= | dv|v| w(v) exp(2misv) (15)

where w(Vv) is a low-pass filter which suppresses
the high spatial frequencies, and will be discussed
later in the section on the ill-posedness of the
inverse X-ray transform.

(ii) The approximation of the convolution integral by
a discrete quadrature. Usually standard trape-
zoidal quadrature is used:

NS
pF(kAs,9,)=As 3 p(k'As,¢;)h, ((k —k")As)
k'=-N (16)
k=-N,,..,N

The calculation of this discrete convolution can be
accelerated using the discrete Fourier transform
(FFT) (see [16] section 13.1). In this case, some
care is needed when defining the discrete filter: to
avoid bias, this filter must be calculated as the FFT
of the sampled convolution kernel #,,(kAs), k = 0,
*1, %2, ..., and not by simply sampling the contin-
uous filter function |V|w(Vv).

s
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(iii) The approximation of the backprojection by a dis-
crete quadrature

Nyl
flx,y)=A¢ 3 pF(s=xcos¢;+ysin¢;,¢;) (17)
=0

for a set of image points (x, y) (usually a square
pixel grid)®©.

(iv) The estimation of p* (s = x cos ¢; + y sin ¢, ¢) in
Eq. (17) from the available samples pf (kAs, ).
This is usually done using linear interpolation:

Y (5,0,) = (k+1-—)p" (kAs,0,)+

. As (18)
(S-—k)p" ((k+1)As,0;)

As

where k is the integer index such that kAs <s < (k
+ 1)As. Instead of linear interpolation some imple-
mentations apply a faster nearest-neighbor inter-
polation to filtered projections which have first
been linearly interpolated on a finer grid (typically
sampled at a rate As/4).

Remarkably, most FBP implementations only use
simple tools of numerical analysis, such as linear in-
terpolation and trapezoidal quadrature, despite many
attempts to demonstrate the benefits of more sophisti-
cated techniques.

The lll-posedness of the Inverse X-ray
Transform

Like many problems in applied physics, the inversion
of the x-ray transform is an ill-posed problem: the solu-
tion f defined by Eqgs. (11), (10) and (7) does not
depend continuously on the data p(s, ¢). Concretely,
this means that an arbitrarily small perturbation of p
due to measurement noise can cause an arbitrarily
large error on the reconstructed image f. We refer to
Bertero and Boccacci [20] and Barrett and Myers [7]
for an introduction to the concept of ill-posedness and
its implication in tomography. Intuitively, ill-posedness
can be understood by noting that the ramp filter |v|
amplifies the high frequencies during the filtering step
P(v, ¢) = PF (v, ¢) = |V|P(v, ¢). The power spectrum of
a typical image decreases rapidly with increasing fre-
quencies, whereas the noise power spectrum decreases
in general slowly”). Consider a hypothetical perturba-
tion of the data p(s, ¢) — p(s, ¢) + cos(27rvos)/\/v0 for
some V, > 0. This perturbation becomes arbitrarily
small when v, tends to o, but the corresponding

¢ Alternative and faster implementations of the backprojection have been proposed [17, 18, 19].
7 In the so-called white noise limit, the noise power spectrum is constant.
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perturbation of the filtered projection is easily seen to
be pF (s, ¢) — p* (s, ¢) + Vv, cos(27V,s) and is arbitrar-
ily large for large v,. This artificial example illustrates
the fact that the ill-posedness of the inverse x-ray
transform (and of most inverse problems) arises from
high-frequency perturbations.

This discussion suggests that the reconstruction can
be stabilized by filtering out the high frequencies. This
is achieved by introducing a low-pass apodizing
window w(v) as in Eq. (15). A window frequently used
in tomography is the Hamming window

<V,
19
o (19)

Wiam (V)= +cos(nv/v,)) /2 |v]
=0 [v]

where v, is some cut-off frequency. The rectangular
window

W,e(V)=1

v]<v,
~0 V]2V, (20)

vV A

results in a better spatial resolution, but introduces
ringing artifacts near sharp boundaries. Figure 4.5 il-
lustrates the apodized window and the convolution

hrec(s)

hham(s)
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kernel A, (s). The choice of the cut-off frequency must
take two factors into account:

e Given the radial sampling distance As in the sino-
gram, Shannon’s sampling theory states that the
maximum frequency that can be recovered without
aliasing is 1/2As. The cut-off frequency is therefore
constrained by v, < 1/2As.

e As we have seen, stabilization requires suppressing
high frequencies. Therefore, lower values of v, are
selected when the signal-to-noise ratio (i.e. the
number of detected coincidences) is low.

The stability of the discrete FBP can be analyzed as-
suming a Poisson distribution for the measurement
noise. Consider the reconstruction of a disc of radius R
containing a uniform tracer distribution, from 2D PET
data comprising N, coincident events. Neglecting
attenuation, scatter and random, the relative variance
of the reconstructed image at the center of the disc can
be shown [21] to be

71_3(R/As)3

variance f(x=0, y=0) = N

21)

events

v

Figure 4.5. The convolution kernels corresponding to the rectangular window in equation (20) (top), and to the Hamming window (19) (bottom) are shown
with arbitrary vertical scales. The smaller width of the central lobe of h(s) results in higher spatial resolution in the reconstruction, while the larger side lobes,
compared to hy,,(s) indicate a higher sensitivity to noise. A transaxial slice of an FDG brain scan reconstructed using FBP with these two windows is shown on

the right.
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where As is the radial sampling and a rectangular
window with v, = 1/2As has been used. This result
means that the number of detected events, hence the
scanner sensitivity, should be multiplied by a factor
of 8 when the spatial resolution As is halved. This is
to be compared with the factor 4 increase that
suffices in the absence of tomographic reconstruc-
tion, e.g. if perfect time-of-flight information is avail-
able, or if fis obtained from planar scintigraphy as in
single photon imaging. The supplementary factor of
2 reflects the ill-posed character of the inverse x-ray
transform. For a multi-slice 2D reconstruction, an ad-
ditional factor of 2 must be included if the axial reso-
lution is also halved, leading to a 16 fold increase of
the number of counts when the isotropic resolution is
halved. When an improvement in detector resolution
is not matched by an increase in sensitivity, a cut-off
frequency v, smaller than the Nyquist frequency
1/2As must be used to limit noise. In such a case, the
improvement in detector resolution is not fully trans-
lated in the reconstructed image resolution. The im-
provement nevertheless remains beneficial because
the modulation transfer function is enlarged at the
lower frequencies |v| < v,, allowing better recovery
coefficients for small structures.

Iterative Reconstruction

This section introduces the major concepts of the it-
erative reconstruction algorithms, which play an in-
creasingly important role in clinical PET. These
algorithms rely on a discrete representation of both
the data and the reconstructed image, in contrast
with the analytic algorithms, which are derived as-
suming a continuous data sampling and introduce
the discrete character of the data a posteriori. We
begin this section with a general discussion of the in-
gredients of an iterative algorithm: the data model,
the image model, the objective function, and the opti-
mization algorithm. We refer to [22, 23] for more
details. The various possible choices for each of these
ingredients explains the wide variety of iterative al-
gorithms in the literature. One specific algorithm will
be described in detail in the section on ML-EM and
OSEM (below).

One of the strengths of iterative algorithms is that
they are largely independent of the acquisition geome-
try. Therefore, the concepts presented below apply
equally to 2D and to 3D PET data.
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The General Ingredients of Iterative
Reconstruction Algorithms: Data Model

The data are represented using Eq. (1). To simplify no-
tations, a single index j is used to denote the detector
pair (d,, d,), and the mean number of events detected
for one LOR is then rewritten as

B =Up=1 | dif(I¥,(F)j=1rNyop} (22)
FOV

Any linear physical effect can be modeled in the sensi-
tivity function ', : attenuation and scatter (assuming a
known density map), gaps in the detectors, non-uniform
resolution of the detectors, etc. The accuracy of the
physical model ultimately determines the accuracy of
the reconstruction. Nevertheless, approximate models
are often used to limit the computational burden, and
these approximations are justified for low-count studies
where image quality is primarily limited by noise. Many
approaches can be found, ranging from a simple line in-
tegral model (as for FBP) up to a highly accurate model
required for high SNR studies with small-animal scan-
ners. A clever exploitation of the symmetries of the
scanner and the use of lookup tables, as described in Qi
et al. [24], allows the computational costs of such a
complex modeling to be kept to a reasonable level.

Eq. (22) represents the mean value of the data. The
statistical distribution of each LOR data p; around its
mean value < p; > must also be modeled. An inaccu-
rate statistical model results not only in a sub-optimal
variance, but also in a bias. Usually, the “raw data” p;are
counted numbers of detected photon pairs and are dis-
tributed as independent Poisson variables. The likeli-
hood function then has the form

NLOR
Pr{p| f}= 1 exp(<(p)p ;)" I p;! (23)
=
Due to the various forms of data pre-processing, the
actual distribution of the data presented to the algo-
rithm often deviates from the Poisson model. If the
number of counts per bin is high enough, the distribu-
tion is approximately Gaussian

- Nior 1 (PJ _<P1>)2
Pr(p| f1= 11 -
r{p| f} M N2 o, exp( 20_12. ) (24)

and the variance o} of each LOR can be estimated
knowing the data pre-processing steps. A more general
Gaussian model with a non-diagonal covariance
matrix may be needed if the pre-processing introduces
correlations between LORs.
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Another variant has been proposed to model data
pre-corrected for random coincidences®. When this is
done by subtracting delayed coincidences, the sub-
tracted data (the “prompts” minus the “delayed”) are
no longer Poisson variables. An approximate model,
the shifted Poisson model, for the distribution of such
pre-corrected data has been proposed in [25, 26].

We conclude this section on data modeling with a
few words on the reconstruction of transmission data
acquired with monoenergetic photons of energy E.
Typically, E = 511 keV if a positron source such as
8Ge/*®Ga is used or E = 662 keV for a '*’Cs single
photon source. These data are also distributed as
Poisson variables but with mean values

(BY={p,)=p" exp(= [ du(,E)¥ ()

, rov (25)

j=L..,Nor}
instead of Eq. (22). Here, p]‘-’ is the mean number of co-
incident events in the reference (blank) scan, '¥7is the
sensitivity function for the transmission data, and u(7,
E) is the attenuation coefficient to be reconstructed.
The difference between this model and Eq. (22) shows
that specific iterative algorithms are needed for trans-
mission data [27, 28, 29, 30]. An alternative is to apply
algorithms developed for emission data to the loga-
rithm log(p} / p;), but this approach introduces
significant biases because the logarithm of the data is
not a Poisson variable any more. Examples of these
biases are given in [31].

The Image Model: Basis Functions and
Prior Distribution

Iterative algorithms model the image as a linear combi-
nation of basis functions

Flxy) = z Fb(x,y) (26)

Most algorithms use contiguous and non-overlapping
pixel basis functions, which partition the field of view:

bi(x,y)=1 |x—x;|<Ax/2and |y—y;|<Ax/2
=0 |x—x;|2Ax/20r |y—-y;|2Ax/2
(27)
with i = (i,, i,) and the center of the i pixel is
(x; = i,Ax, y; = i,Ax). The pixel size is Ax = As/Z, where
Z is the zoom factor.
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The pixel basis function is not band-limited: its
Fourier transform ([]:bi)(vx,vy) decreases slowly at
large frequencies due to the discontinuity at the
boundary of the pixel. This property is at odds with the
fact that the frequencies larger than v, = 1/2As cannot
be recovered from sampled data (see The Ill-posedness
of the Inverse X-ray Transform, above). An alternative
proposed by Lewitt [32] consists of using smooth
basis functions which are essentially band-limited.
Significant improvements in image quality have been
demonstrated using truncated Kaiser-Bessel functions,
dubbed blobs [33]. These radially symmetrical basis
functions have a compact support, but they do overlap,
which increases the processing time unless the spacing
and size of the basis functions are carefully chosen. At
the time of writing, most iterative algorithms are still
based on discontinuous basis functions, but at least one
clinical scanner implements blobs.

In principle, the choice of the basis functions deter-
mines the image model and reduces image reconstruc-
tion to the estimation of a vector {f, i =1, - - -, P},
usually with the constraint f; > 0. The constraint im-
plicit in this discrete representation® helps to stabilize
the reconstruction, but may be insufficient. In such a
case, a small perturbation of the data vector j still
causes an unacceptably large perturbation of the re-
construction f. The set of admissible images must then
be further restricted. Several techniques can be used
for this purpose, we focus here on the popular
Bayesian scheme (see, for example, [34, 35,7]).

In the Bayesian scheme, regularization is achieved
by considering the image as a random vector with a
prescribed probability distribution Pr(f). This distrib-
ution is called the prior distribution (or simply “the
prior”). Typically, the prior enforces smoothness by as-
signing a low probability to images having large dif-
ferences |f; ;, - fi, +1,i,+ 1| between neighboring pixels.
One says that large differences between neighboring
pixels are penalized by the prior. In practice, priors are
defined empirically because the clinically relevant
prior information is usually too complex to be ex-
pressed mathematically. We will see in the section on
the cost function (below) how the prior is incorporated
in the reconstruction.

Priors based on a Gaussian distribution with a
uniform (i.e. shift-invariant) covariance are in essence
equivalent to the linear smoothness constraint intro-
duced in the FBP algorithm by low pass windows w(Vv)
discussed earlier. More sophisticated priors can

8 In contrast with the randoms, the contribution of scattered coincidences is linearly related to true coincidences and hence can in
principle be included in the model ‘Pj(?).However, the scatter background is more often subtracted from the data prior to recon-

struction for the sake of numerical efficiency. See chapter 5.

° Mathematically we constrain f(x, y) to belong to the P-th dimensional space of functions spanned by the b;.
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improve image quality, especially sharpness, in specific
situations and for specific tasks, but may introduce
subtle nonlinear biases and noise correlations.

An attractive class of prior distributions exploits a
registered anatomic, MR or CT, image of the patient [36,
37, 38, 39, 40]. This image defines likely boundaries
between regions in which uniform tracer concentration
is expected. These boundaries can be incorporated in a
prior that enforces smoothness only between pixels be-
longing to the same anatomical region. Despite promis-
ing results, that approach still needs further validation
and comparison with the alternative approach in which
the MR or CT prior information is exploited visually
using, for example, image fusion techniques.

Let us finally stress that the 2D or 3D nature of the
image model is independent of the fact that the data are
acquired in 2D or 3D mode. Indeed, true 3D image
models based, for example, on 3D blobs and on 3D
smoothness constraints are useful even when the data
are collected independently for each slice (or rebinned,
see section on 3D analytic reconstruction by rebinning
(below)) [41]. For dynamic or gated PET studies, mixed
basis functions depending on both the time and the
spatial coordinates can be defined to model the ex-
pected behavior of the tracer kinetics [42, 43].

The System Matrix

We can now summarize the assumptions in the two
previous sections. Putting the image model (Eq. (26))
into the data model (Eq. (22)) reduces the problem to a
set of linear equations:

P
(pj)= giaj,ifi J=1..sNop (28)

where the elements of the system matrix are

a;; =7 [ dib,(F)¥;(F)

Fov

j=1,...,N opsi=1,...,P
(29)

A line integral model including only attenuation cor-
rection and normalization generates a sparse system
matrix a with elements simple enough to be calculated
on the fly. More accurate models that include scatter
lead to densely populated matrices, which are complex
to calculate. A practical algorithm then requires a com-
promise between accuracy, required storage, and
speed. A useful approach is to factor a as a product of
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matrices, each of which models a specific aspect of the
data acquisition [24].

A direct inversion of the linear system (Eq. (28))
with the < p; > replaced by the measured data p; is im-
practical for two reasons:

e The discrete system is ill-conditioned: the condition
number of a is large!!?). Consequently, the solution?
of Eq. (28) is unstable for small perturbations
pj~ < p; > of the data. Ill-conditioning is the discrete
equivalent of the ill-posedness of the inverse x-ray
transform discussed in the section on the ill-
posedness of the inverse X-ray transform (above).

e Numerically, the inversion of matrix a is hindered by
its very large size (typically P = 10° unknowns and
Nyox = 106 up to Nyog = 10°in 3D PET).

The first problem is solved by incorporating prior
knowledge in a cost function. The second, numerical
problem, is solved by optimizing the cost function by
successive approximations.

The Cost Function

The key ingredient of an iterative algorithm is a cost
function Q(f = (f;, - - s f,)» P), which depends on the
unknown image coefficients and on the measured data.
Q(f, B) is also called the objective function. The recon-
structed image estimate f* is defined as one that maxi-
mizes Q:

f~ =arg max Q(f, p) (30)
f

with usually the constraint f; > 0. The role of the cost
function is to enforce (i) a good fit with the data, i.e.,
Eq. (28) should be approximately satisfied, (ii) the prior
conditions on the image model.

In the Bayesian framework, the cost function is the
posterior probability distribution

Pr{p | fIPr{f}

Pr{f | p} = =

(31)

The first factor in the numerator of the right hand side
is the data likelihood (given, for example, by the
Poisson model (Eq. (23)), and the second factor is the
prior probability discussed above in the section on
the image model. The denominator is independent of f
and can be dropped. Maximizing the posterior proba-

10 The condition number of a matrix is the ratio between its largest and smallest singular values.
1 Or the generalized Moore-Penrose solution if a is singular or § ¢ range 4, see [20].
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bility is equivalent to maximizing its logarithm, and
the cost function becomes

Q(f | p) =log Pr{p | f} +log Pr{f} (32)

The first term penalizes images which do not well fit
the data, whereas the second one stabilizes the inver-
sion by penalizing images which are deemed a priori
“unlikely”. An image maximizing Q(f, p) is called a
maximum a posteriori (MAP) estimator. When the
log-likelihood is Gaussian (Eq. (24)), the first term in
Eq. (32) is a quadratic function and the algorithm max-
imizing Q(f, p) is called a penalized weighted least-
square method [44, 45].

Ideally, the maximum of Q should be unique.
Uniqueness is guaranteed when the cost function is
convex, i.e., when the Hessian matrix

9°Q(f,p) .
H,,=——  ij=1,..,P (33)
TV

is negative definite for all feasible f. Non-convex cost
functions may still have an unique global maximum,
but they can also have local maxima, which complicate
the optimization.

Optimization Algorithms

The cost function (assuming it has an unique global
maximum) defines the looked-for estimate f* of the
tracer distribution. To actually calculate f*, an opti-
mization algorithm is needed. Such an algorithm is a
prescription to produce a sequence of image estimates
f ""n=0,1,2, -, which should converge asymptoti-
cally to the solution:

limf"=f" (34)

fn—oco

Asymptotic convergence is not the only requirement:
the optimization algorithm should be stable, efficient
numerically, and ensure fast convergence indepen-
dently of the choice of the starting image f°. A further
property is that of monotonic convergence, which
guarantees that Q(f"*!, §) = Q(f", p) at each iteration.
Though not strictly needed, monotonic convergence is
useful in practice and is often the key property used to
prove asymptotic convergence.

In principle, the choice of the optimization algorithm
should not influence the solution, which is defined by
Eq. (30). In practice, however, the image that will be
used is produced by a necessarily finite number of iter-
ations and thereby does depend on the algorithm.

Positron Emission Tomography

When the cost function is differentiable and a non-
negative solution is required, the solution f  must
satisfy the Karush-Kuhn-Tucker conditions:

VQ(f',p)); = 1>0,j=1,..,P
Va5, =0 ;>0 65)
<0 fi=0

where the gradient of the cost function is the vector
with components

9Q(f,p)

7 [ (36)

v .p); =

When positivity is not enforced, the Karush-
Kuhn-Tucker condition reduces to the first line of Eq.
(35). If in addition the cost function is quadratic (e.g.,
with a Gaussian log-likelihood), optimization reduces
to a set of P linear equations in P unknowns. With a
Gaussian likelihood without prior, these equations are
the so-called normal equations corresponding to Eq. 28
[7,20].

There is a considerable literature on optimization,
and even within the field of tomography a wide
variety of methods have been proposed. A detailed
overview (see [7, 16, 22, 46]) is beyond the scope of
this chapter, but it may be useful to briefly list a few
basic tools that can be used to develop iterative
methods. The major difficulty is that the system of
equations (Eq. (35)) is large, strongly coupled, and
often non-linear. Many algorithms are based on the
replacement at each iteration of the original
optimization problem (Eq. (30)) by an alternative
problem which is easier to solve because

e it has a much smaller dimensionality, and/or

e the modified cost function is quadratic in its un-
knowns, or even better separable in the sense that its
gradient is a sum of functions each depending on a
single unknown parameter f;.

Standard examples include:

(i) Gradient-based methods. The prototype is the
steepest-ascent method, which reduces the
problem to a one-dimensional optimization along
the direction defined by the gradient. The n'" itera-
tion is defined by:

-}:n"—l :-}:n +aan(_.}:n ,p) - (37)
a, =argmaxQ(f"+oVQ(f",p),p)

(1
The step length ¢, maximizes the cost function
along the gradient direction, taking into account
possible constraints such as positivity.
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(ii) Methods using subsets of the image vector. Only a
subset of the components of the unknown image
vector (i.e.,a subset of voxels) is allowed to vary at
each iteration, while the value of the other compo-
nents is kept constant. A different subset of voxels
is allowed to vary at each iteration. In the coordi-
nate ascent algorithm, a single voxel is varied at
each iteration, according to:

fjn+1 — fjn j;,g ](Tl)
=argfmaXQ((f1n)- j- 1)f ]+1""’f;)’i)) ]:](11)
J (38)

where J(n) defines the order in which voxels are ac-
cessed in successive iterations, e.g., J(n) = n mod P.

(iii) Methods based on surrogate cost functions. The
original cost function Q(f, p) is replaced at each
step by a modified objective function Q(f, ", p)
that satisfies the following conditions [47]:

e Q(f, f", p) can easily be maximized with
respect to f, e.g., it is quadratic or separable,

. Q1P =00.P)

o Qf.f"P)<Qf,p)

The two last conditions ensure that the next image

estimate

™ =arg maxQ(f,f",p) (39)

f

monotonically increases the value of the cost func-

tion: Q(f"*1 p) = Q(f” p). The ML-EM algorithm

(next section), the least-square ISRA algorithm

[48, 49], and Bayesian variants [50] can be derived

using surrogate functions.

(iv) Block-iterative methods use at each iteration only a
subset of the data. They are called row-action
methods when a single datum is used at each itera-
tion as in the ART algorithm. The OSEM method
(see next section) and its variants are also block-
iterative methods. While allowing significant accel-
eration of the optimization, these methods do not
guarantee a monotonic increase of the cost func-
tion. In addition, the iterated image estimates tend
asymptotically to cycle between S slightly different
solutions, where S is the number of subsets.
Appropriate under-relaxation can be used to alle-
viate the problem.

ML-EM and OSEM

The most widely used iterative algorithms in PET are
the ML-EM (maximum-likelihood expectation maxi-
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mization) algorithm and its accelerated version
OSEM (Ordered Subset EM). The ML-EM method
was introduced by Dempster et al in 1977 [51] and
first applied to PET by Shepp and Vardi [52] and
Lange and Carsson [27]. The algorithm is akin to the
Richardson-Lucy algorithm developed for image
restoration in astronomy (see, for example, [20]). The
OSEM variation of the ML-EM algorithm, proposed
in 1994 by Hudson and Larkin was the first iterative
algorithm sufficiently fast for clinical applications.

The cost function in the ML-EM and OSEM algo-
rithms is the Poisson likelihood (Eq. (23)). Putting
Eq. (28) into Eq. (23), taking the logarithm, and drop-
ping the terms that do not depend on the unknowns f;,
we get

Nior
Qf.p)= X {- zaﬂf, +p; log(za,,f,)} (40)
1 i=1

If the matrix a is non-singular, this cost function is
convex and defines a unique image.

The EM iteration is a mapping of the current image
estimate f " onto the next estimate f L

n 1 Nior : i
=g Y aj b i=1,..,P

N . ) P
2] Jior aj, = zi’:laj,z”fir'l

f

(41)

Usually, the first estimate is a uniform distribution f! = 1,
i=1,...,P. The sum over i in the denominator of the
second factor in the right hand side is a forward pro-
jection and corresponds to Eq. (28): therefore the de-
nominator is the average value <p!> that would be
measured if f” was the true image. The sum over j in
the numerator is a multiplication with the transposed
system matrix and represents the backprojection of the
ratio between the measured and estimated data.
Finally, the denominator in the first factor is equal to
the sensitivity of the scanner for pixel i.

The ML-EM iteration has several remarkable prop-
erties:

e The cost function increases monotonically at each it-
eration, Q(f’“r1 B) = Q(f", p),

o The iterates f" converge for n — oo to an image f
that maximizes the loglikelihood,

e All image estimates are non-negative if the first one is,

e The algorithm can easily be implemented with list-
mode data [53, 54, 55, 56] because the only LORs that
contribute to the backprojection sum over j in
Eq. 41 are those for which at least one event has been
detected (p; > 1).



76
Noise-free data
2.44e+7 12000
Log likelihood

- 10000
2.42e+7

- 8000
2.40e+71

- 6000
2.38e+71

- 4000
2.36e+7" square error L 2000
2.34e+7 4 0

] 10 100

iteration

phantom

Positron Emission Tomography

Noisy data
2.44e+7 12000
Log likelihood
- 10000
2.42e+7
- 8000
2.40e+7-
F 6000
2.38e+71
F 4000
2.36e+7 2000
square error
2.34e+7 T 0
1 0 100
iteration

Figure 4.6. 2D reconstruction of a mathematical phantom with the ML-EM algorithm (N, = 128,N,, = 256,N, = N, = 256). The Poisson log-likelihood (left scale)
and the square reconstruction error with regard to the reference image (right scale) are plotted versus the iteration number. The left plot is for ideal noise-free
data. For the right plot, pseudo-random Poisson noise has been added for a total of 400,000 coincidences. The cost function increases monotonically in contrast
with the error, which reaches a minimum around 10 iterations. The 13th and 64th image estimates obtained from noisy data are shown.

What about stability? The ML-EM cost function does
not include any prior. The algorithm converges there-
fore to the image that “best” fits the data (“best” in the
sense defined by the Poisson likelihood). But fitting too
closely the noisy data of an ill-conditioned problem
induces instabilities (Fig. 4.6). In practice, this instabil-
ity corrupts the image estimates " by high-frequency
“checkerboard-like” artifacts when the number of iter-
ations exceeds some threshold [57, 58]. Various methods
can remedy this problem:

e Introduce a Bayesian prior term into the cost func-
tion (see [59] and references therein),

e apply a post-reconstruction filter, typically a 3D
Gaussian filter with a FWHM related to the spatial
resolution that is deemed achievable given the SNR,

o filter the data before applying the ML-EM algorithm,

o stop the algorithm after 7,,, steps, and use f™ as
solution estimate. Methods to automatically estimate
an appropriate number of iterations have been pro-
posed [60, 61] though all clinical implementations
determine n,,,, empirically.

The Ordered Subset Expectation Maximization algo-
rithm [62] is based on a simple modification of
Eq. (41), which has a significant impact on clinical PET
imaging by making iterative reconstruction practical.
The LOR data are partitioned in S disjoint subsets
Jo -5 Js C[1, -+ +Nyogp]. For 2D sinogram data (see
Eq. (5)), one usually assigns the 1D parallel projections
m,m + S,m + 28, - - - ,< N, to the subset J,,., .
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Figure 4.7. Comparison between the FBP and the OSEM reconstruction of a 2D FDG whole-body study, showing a frontal section. The algorithms used for the
reconstruction of the transmission scan and of the emission scan are FBP-FBP (left), OSEM-FBP (center), OSEM-OSEM (right).

The ML-EM iteration (Eq. (41)) is then applied in-
corporating the data from one subset only. Each
subset is processed in a well-defined order, usually in
a periodic pattern where subset ], .45 is used at
iteration n?:

1 S 4 p;

. Ji P n
Zj’e]nmodsaj’,i €T mods Zi'zlaj,i*fi'

fin+1 — fin

i=1,..,P (42)

Empirically, the convergence is accelerated by a factor
= § with respect to ML-EM. But the asymptotic con-
vergence to the maximum-likelihood estimator is no
longer guaranteed. In fact, OSEM tends to cycle
between S slightly different image estimates. To mini-
mize the adverse effects of this behavior it is recom-
mended to keep the number of 1D parallel
projections in each subset equal to at least 4. In addi-
tion, several authors suggest progressively decreasing
the number of subsets during iteration. Finally, we
only mention here the row action maximum likeli-
hood (RAMLA) algorithm [63] and the rescaled
block-iterative ML-EM algorithm [64]. These two al-
gorithms for maximume-likelihood estimation with a

Poisson distribution are closely related to OSEM, but
guarantee asymptotic convergence under certain
conditions.

Compared to FBP reconstructions, some qualitative
characteristics of images reconstructed from Poisson
data using ML-EM or OSEM are:

e Reduced streak artifacts

e A better SNR in regions of low tracer uptake, result-
ing in particular in a better visibility of the contours
of the body

e Some non-isotropy and non-uniformity of the
spatial resolution, especially when the range of
values of the attenuation correction factor is large, as
e.g.in the chest

e A slower convergence for regions of low tracer
uptake than for regions of high tracer uptake.

Figure 4.7 illustrates some of these properties.

Finally, some comments are in order about data cor-
rections prior to reconstruction with ML-EM or OSEM.
Physical effects such as detector efficiency variations,
attenuation, scattered and random coincidences, etc.,
must be accounted for to obtain quantitatively correct

12 In the OSEM jargon, such an iteration is called a sub-iteration, and an iteration denotes a set of S consecutive sub-iterations, cor-

responding to one pass through the whole data set.
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images. With analytical algorithms such as FBP the
data are corrected before reconstruction to comply
with the line integral model. With the ML-EM algo-
rithm, on the contrary, pre-correction must be avoided
because it would destroy the Poisson character of the
data and thereby could bias the reconstruction. This
means that the ML-EM algorithm should be applied to
the raw data, and that all physical effects should be in-
cluded in the system matrix as described in the section
on the system matrix (above). A full modeling,
however, can be impractical when the system matrix is
too large to be pre-computed. A faster, approximate,
procedure consists of including only the most
significant effect - attenuation - in the system matrix.
Corrections for scattered and random coincidences can
be of the order of 50%, but are often less. Attenuation
correction, however, involves multiplication by factors
ranging from 5 to more than 100 ! The attenuation cor-
rection is multiplicative and can easily be incorporated
in the ML-EM iteration as shown by Hebert and Leahy
[65],

fn+l f 1 NLORa p]
! N Joi P n
i‘;R a]-,)l- /Oljr j=1 =19 Ji’ .fl

i=1,...,P (43)

where the p; are the data corrected for all effects except
attenuation, ¢ is the pre-computed attenuation correc-
tion factor™ for LOR j, and the system matrix a does
not include the effect of attenuation. This attenuation-
weighting (AW) of the ML-EM algorithm is easily
extended to the attenuation-weighted OSEM algorithm
(AW-OSEM). The AW-OSEM approach has been shown
to perform almost as well as algorithms that model all
physical effects, with only modest increases in compu-
tation time over OSEM applied to pre-corrected sino-
gram data [66].

The previous approach can also be applied to other
multiplicative corrections such as the normalization
for detector efficiency variations. For more complex,
e.g., non-linear, relations between the raw data p; and
the corrected data p§, an approximate statistical mod-
eling can be achieved by applying the ML-EM algo-
rithm to scaled data p; = B;p5, where f3; = <p¢>/var(p5) is
a low-variance (smoothed) estimate of the ratio
between the mean and the variance of the corrected
data. With this choice of ; the scaled data satisfy the
same relation <p;> = var(p;) as data obeying Poisson
statistics, and it is therefore reasonable to reconstruct

13 The ratio between the blank and transmission scans.
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them using the ML-EM algorithm [30]. This yields the
following iteration:

s
fn+1 fn I—NLOR a: - Pj
R
ZNLOR =R Y Y il
i=1,.,P (44)
In the case of the attenuation correction, P = 0p;»
and one easily checks that ;= 1/ay, and p; = p;, so that

Eqgs. (44) and (43) coincide.

When the data are acquired in true mode as the dif-
ference between the prompt and delayed coincidences,
the shifted Poisson model (described earlier) leads to
the following modified ML-EM algorithm [26],

fn+1 f 1 Noor
' ﬁ"u{kaj,,i/a]., = 2ji Zp_laﬂfl”+a (27, +5)
i=1,..,P (45)

pj+21;+5;

where the p; are the data corrected for random and
scatter (but not attenuation), o and a;; are as in equa-
tion (43), and 7; and §; are low-variance estimates of the
random and scatter background in LOR j. The mean
random 7; is generally estimated using variance reduc-
tion techniques or from the single photon data (see
sections Randoms Variance Reduction and Estimation
from Single Rates in next chapter). The mean scatter ~
§; is estimated using a model based scatter model (see
section Simulation-based Scatter Correction in next
chapter).

Variance and resolution with
non-linear reconstruction
algorithms

Predicting and controling the statistical properties and
the resolution of reconstructed PET images is of para-
mount importance for quantitative applications of PET
and for task oriented performance studies using nu-
merical observers. For clinical PET, a good awareness
of these properties helps minimizing the probability of
erroneous image interpretations.

Denote the “true” image by f, the measured data
vector by p, and the mean data by < p >= Af, where A
is the system matrix (see Eq. (28)). Consider any
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specific algorithm denoted by 7T (for example 100 ML-
EM iterations with a uniform initial image estimate).
The reconstruction is then f* = 7 (§), and the recon-
struction error is

F-F=(T@E-<TE>+<TE>-f) (6)
where < T (p) > denotes the mean value of the recon-
structed image, which could be estimated by averaging
a large number of images reconstructed by applying the
algorithm 7 to statistically independent realizations of
the random data vector p. The first term in the RHS of
Eq. (46) is the statistical error due to the fluctuations of
data p around its mean value < § >. The statistical error
is characterized by the covariance matrix

Viy=<(T@);-<T@);>) (TE)y-<T @)y >) >
jof =L.,P 47)

the diagonal elements of which give the variance of
each reconstructed pixel value. The second term in the
RHS of Eq. (46) is the systematic error or bias: even the
mean value of the reconstructed image is not exact
because of sampling, apodization, finite number of
iterations, etc.

For a linear reconstruction algorithm the image co-
variance can easily be determined once we know the
statistical (e.g. Poisson) properties of the data. In addi-
tion, with a linear algorithm, the systematic error is
fully characterized by the point response defined as the
reconstruction of the mean data of a point source
located in a voxel j, € [1, ..., P]. While the point re-
sponse depends in general on the position of the voxel
jo relative to the scanner, it does not depend on the
strength of the point source, or on whether that source
is sitting or not over some background. This allows an
unambiguous definition of the resolution, using para-
meters such as the FWHM of the point response. For
the FBP algorithm, in particular, the statistical error
and the bias are determined by the apodized ramp
filter, and the trade-off between these two errors is well
understood (see the section Ill-posedness of the
Inverse X-ray Transform).

For non-linear algorithms such as ML-EM, the de-
rivation of analytical expressions for the covariance
matrix is complex. More importantly, the point re-
sponse becomes object dependent. To understand this
important point, consider any data set §, measured e.g.
as a “normal” whole-body tracer distribution. Consider
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also some additional point source Af located in voxel
Jo: Af; = &, and denote the corresponding mean con-
tribution to the data by Ap = AAf. Then the non-lin-
earity of the algorithm 7 means that, in general,

T +Ap) =T () + T (Ap) (48)
A concrete consequence of this non-linearity can be ob-
served when the ML-EM algorithm is used with the
small number of iterations typical of clinical practice:
the reconstruction of a unit “point source” sitting on top
of a uniform background broadens when the strength of
the background is increased. Similarly, the anisotropy of
the attenuation correction factors for an elongated
object such as the chest at the level of the shoulders is
translated by ML-EM into an anisotropy of the point re-
sponse: if the point source is located in an ellipsoidal at-
tenuating medium with long axis along the x-axis, the
point response takes an ellipsoidal shape with long axis
along the y-axis. One should therefore interpret with
care results on the “reconstructed resolution of ML-EM”
obtained for isolated point or line sources. Similar ob-
servations hold for MAP or other non-linear algorithms.

A local infinitesimal point response function, de-
pending both on the data p and on the position at voxel
jo» can be defined as the image

85, ~tim~(TG+e0p)-T() =22 cre (a9

e—0 € 8fj0

Approximate expressions and efficient numerical tech-
niques have been developed [67] to calculate this point
response, as well as methods to design a penalty term
log Pr{f} in Eq. (32)" that guarantee homogeneous res-
olution [68]. An alternative approach to improve the
homogeneity of the resolution consists in pursuing the
ML-EM iteration beyond the point where the image is
deemed acceptable, and in post-filtering this image
with an appropriate filter [69].

The image covariance (Eq. (47)) can be estimated
numerically by reconstructing a large number of
data sets simulated with statistically independent
pseudorandom noise realizations. An alternative for
maximum-likelihood algorithms is to calculate the
Fisher information matrix, the inverse of which is
related by the Cramer-Rao theorem to the covariance of
the ML estimator (see e.g. [7]). An approximate expres-
sion of the covariance, for the more relevant case where
ML-EM iteration is stopped well before convergence,
was derived in [57], and validated numerically in [58].

4 This penalty depends on the data and can no longer be interpreted as a real Bayesian prior.The algorithm is then better referred to

as a penalized likelihood method.



80

The major conclusion is that the variance of the ML-
EM reconstruction is roughly proportional to the
image itself, i.e.

Vy=C<f> j=1,.,P (50)
for some constant C depending on the object and on
the number of iterations. Thus, the ML-EM reconstruc-
tions have lower variance in regions of low tracer
uptake, thereby allowing good detectability in these
regions. This is in contrast with FBP reconstructions,
in which the noise arising from the high uptake regions
spreads more uniformly over the whole FOV, resulting

in particular in the well-known streak artefacts.

3D Data Organization

Two-dimensional Parallel Projections

We have seen in the previous section that 2D data ac-
quired with a ring scanner can be stored in a sinogram
p(s, ¢). If the data are modeled as line integrals, as for
analytic algorithms, the sinogram is a set of 1D parallel
projections of f(x, y) for a set of orientations ¢ € [0, 7].
Similarly, the LORs measured by a volume PET scanner
can be grouped into sets of lines parallel to a direction
specified by a unit vector 7 = (n,, ny, n,) = (-cos @sin ¢,
cos 6 cos ¢, sin ) € S* where S? denotes the unit
sphere. The angle 6 is the angle between the LOR and
the transaxial plane, so that the data acquired in a 2D
acquisition therefore correspond to 6 = 0. The set of
line integrals parallel to 7 is a 2D parallel projection of
the tracer distribution:

p(s,n)=[dt (5 +1tn) (51)
R

where the position of the line is specified by the vector
$ € 7i*, which belongs to the projection plane #i* orthog-
onal to 7.

Consider a cylindrical scanner with N, rings of
radius Rj, extending axially over 0 < z < L, where L =
N,Az. Assuming continuous sampling, this scanner
measures all LORs such that the line defined by (5, 1)
has two intersections with the lateral surface of the
cylinder (these intersections are the positions of the
two detectors in coincidence). The set of measured ori-
entations is

Q(0,,,0x) =171 = (0,0)| ¢ €[0,7),0 € [0, ,+6

max]}

(52)

max ?

with tan 6, =L/2R] —R} ,where R;is the radius
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of the transaxial FOV. However, for each 6 # 0, not all
LORs parallel to 7 and crossing the FOV of the scanner
are measured. That is, the parallel projection p(5, 1) is
measured only for some subset of LORs § € M(ri) C 7.
One says that this projection is truncated.

Two important properties of the 3D data can already
be stressed:

(i) 3D data are redundant since four variables are re-
quired to parameterize p(s, 77) (two for the orienta-
tion 77 and two for the vector §) whereas the image
only depends on three variables (x, y, z).

(ii) 3D data are not invariant for translation as in the
2D case because the cylindrical detector has a finite
length and the measured projections are truncated.

The vector § can be defined by its components (s, #) on
two orthonormal basis vectors in 71+,

5 =s(cos ¢,sin ¢,0) + u(sinBsing,—sinBcos@,cosb)
(53)

The variable s coincides with the 2D radial sinogram
variable of Eq. (3). We will thus write p(s, 1) = p(s, u, ¢,
0). The subset p(s, u, ¢, 0) is the 2D sinogram of the
slice z = u.

The LORs measured by a PET scanner do not uni-
formly sample the variables (s, u, ¢, 8), and therefore in-
terpolation is needed to reorganize the raw data into
parallel projections. This holds both for multi-ring
scanners and for scanners based on flat panel detectors.

Oblique Sinograms

Some analytic algorithms use an alternative parame-
terization of the parallel projections, where the vari-

y X
NY

_/db f

Figure 4.8. A transverse and a longitudinal view of a multi-ring scanner.
An LOR connecting a detector d, in ring r, to a detector dj in ring r, is shown,
with the four variables (s, ¢, £, 6) used for the oblique sinogram parameteri-
zation. The particular LOR represented has ¢ = 0.
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able u in Eq. (53) is replaced by the axial coordinate
{ = u/ cos 6, the average of the axial coordinates of the
two detectors in coincidence. One defines weighted
parallel projections

P:(5,0,5,0) = p(s,¢ cosO,¢,0)cosO
= [dt'f(s cos ¢ —t’ sing,s sing +
R

t’cosp,{ +t'tan0) (54)

The domain of the variables is |s| < R;, ¢ € [0, 7),
|0|< arctan (L/Zw/R(fl—s2 J,and Je htan@h}Ré—sz,

L—|tan®|+/R; —SZJ (Fig. 4.8). For each pair ¢, 0 the

function py(., ., { 0) is called an oblique sinogram by
analogy with Eq. (3). The similarity with the 2D format
makes this oblique sinogram format suited to the ana-
lytic rebinning algorithms, which reduce the 3D data to
2D data.

Consider now the discrete sampling of the oblique
sinograms. The measured LORs connecting detector d,,
in ring r, to detector d, in ring r, corresponds to para-
meters (s, ¢, { 6) in Eq. (48), where s and ¢ are deter-
mined as in the 2D case (Eq. (4)), and the axial
variables are determined by

tan @ =(r, —7,)Az / (zq/Rj —s )

§=(r,+1,)Az/2 (55)

9 10 11 12 13 14 15

1 2 34 5 6 7 8

AN
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If the radius of the FOV is small, 8 in Eq. (55) is ap-
proximately independent of s. With this approximation,
the coincidences between two rings r, and r, can be
used to build an oblique sinogram p(., ., {, 6) with
{=(r, + r,)Az/2 and tan 0 = (r,-r,)Az/(2R,).

To save storage and computation, some volume scan-
ners use axial angular undersampling by averaging sets
of sinograms with adjacent values of 6. The degree of
undersampling is characterized by an odd integer pa-
rameter S, called the span. The resulting sampling is
non-interleaved:

tan 0 =i,SAz / (2R;) iy = —ipaye s> Himax (56)
§=i,Az/2 Zoin(g)<i, <2N, =2—2z . (iy)

where z,,;,(ig) = max(0, |ig|]S - S/2). Each sample
(ip i,) is obtained by averaging data from all pairs of
rings such that

1,S—S/2<n —1, <iyS+5/2
i,=n+r, (57)

The sampling scheme is often illustrated on a 2D
diagram, the “Michelogram”, in which each grid point
represents one ring pair and each sampled oblique
sinogram (i, i,) is represented by a line segment con-
necting the contributing pairs r,, r, (Fig. 4.9). Just as for
the azimuthal undersampling (“mashing”, see end of
sinogram data and sampling section, above), a good

® Figure4.9. A Michelogram for a 16-ring
scanner, illustrating the axial sampling with
aspan S=5 and a maximum ring difference
defined by i,,,,= 2. Each grid point
corresponds to a ring pair, and each
diagonal line segment links the ring pairs (2
or 3 except at the edge of the FOV) that are
averaged to form one oblique sinogram.

234 5 6 7 8 910 11

2 13 14 15

» 1, The samples located outside the square
(dots) are the unmeasured oblique
sinograms needed to obtain a shift-
invariant response. In the 3DRP algorithm,
these missing sinograms are estimated by
forward-projecting an initial 2D
reconstruction of the direct segment
ip=0.



82

choice of the span S depends both on the SNR and on
the radius of the FOV. Values between 3 (for high-sta-
tistics brain studies) and 9 (for low-count, whole-body
studies) are standard.

When the radius of the FOV is large, more accurate
interpolation is needed to reorganize the raw data into
parallel projections according to Eq. (55), but the sam-
pling pattern (Eq. (56)) can be kept.

3D Analytic Reconstruction by
Filtered-backprojection

The Central Section Theorem

The central section theorem (Eq. 10) can be general-
ized to 3D, and states that

P(v,i) = F(¥) & nt (58)
where
P(v,n) = | dsp(s,n)exp(-27is V) (59)

is the 2D Fourier transform of a parallel projection and
F is the 3D Fourier transform of the image. Note that as
the integral in Eq. (59) is over the whole projection
plane 7, the central section theorem is only valid for
non-truncated parallel projections.

Geometrically, this theorem means that a projection
of direction 7i allows the recovery of the Fourier trans-
form of the image on the central plane orthogonal to 7
in 3D frequency space. A corollary is that the image can
be reconstructed in a stable way from a set of non-
truncated projections 77 € C §? if and only if the set
Q has an intersection with any equatorial circle on the
unit sphere S This condition is due to Orlov [70]. The
equatorial band Q(6,,,,) in Eq. (52) satisfies Orlov’s
condition for any 6,,,, > 0.

The direct 3D Fourier reconstruction algorithm is a
direct implementation of Eq. (58) [71]. This technique
involves a complex interpolation in frequency space,
and has not so far been used in practice. However,
Matej [15] recently demonstrated a significant gain of
reconstruction time compared to the standard FBP.

3D Filtered Backprojection

Following the same lines as for the 2D FBP inversion,
Eq. (58) leads to a two-step inversion formula for a set
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of non-truncated 2D projections with orientations 7 €
Q, where Q is a subset of the unit sphere that satisfies
Orlov’s condition. The reconstructed image is a 3D
backprojection

fF) =[dnp" =% (F n)i,n) (60)
Q

which, as in 2D, is the sum of the filtered projections p*
for all lines containing the point 7. The filtered projec-
tions are given by

prG,n)= [ ds'p(s ,iihe (5 -57,1) (61)
In this equation, the 2D convolution kernel A (5) is the

2D inverse Fourier transform of the filter function due
to Colsher [72]:

vert
(62)

H.(v,n)={[dn’6(v-n")}" =
Q

where d1is the Dirac delta function, and L, (V) is the arc
length of the intersection between Q and the great
circle normal to V (Fig. 4.10). Orlov’s condition ensures
that Ly(V) > 0. An expression of this filter in terms of
the variables v, v,, ¢, 6 can be found in [72]. Like the
ramp filter, Colsher’s filter is proportional to the
modulus of the frequency. In contrast to the 2D case,
however, the filter depends on the angular part of the

<y

~/

Figure 4.10. Each vector 71 on the unit sphere & is the direction of one 2D
parallel projection p(S ,77). The set of directions £(8,,,,) measured by a
cylindrical scanner (equation (52)) is shown as a grey subset. The Fourier
transform F( V') can be recovered from any projection along the measured
(thick line) segment of the great circle orthogonal to V. The
reciprocal I/Lq, of the length of this segment is the angular part of the
reconstruction filter.
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frequency. Another specificity of 3D reconstruction,
due to the redundancy of the 3D data, is that the recon-
struction filter is not unique [73]. Colsher’s filter,
however, yields the reconstructed image with the
minimal variance under fairly general assumption on
the data statistics [74].

The discretization of the 3D FBP algorithm is based
as in 2D on replacing integrals by trapezoidal quadra-
tures and on linear interpolation in § for the 3D
backprojection. The 3D backprojection is the most
time-consuming step in the algorithm and various
techniques have been proposed to accelerate this pro-
cedure (see [17] and references therein). The 2D convo-
lution is implemented in frequency space as:

PpFGoi)= [,dV he (v,71) w(P) P(5,7i) exp(2mis¥) (63)

where P(V, 1) is the 2D Fourier transform of the non-
truncated projection and w(V) is an apodizing window,
which plays the same stabilizing role as in 2D (see the
remark below Eq. (16) and reference [75] for details on
the discrete implementation using the 2D FFT).

The Reprojection Algorithm

The 3D FBP algorithm is valid only for non-truncated
parallel projections. In almost all PET studies, the
tracer distribution extends axially over the whole FOV
of the scanner, and the only non-truncated parallel
projections are those with 6 = 0. For sampled data, the
equality 6 = 0 is replaced by 8 < 6, for some small
maximum oblicity angle 6,, which corresponds typi-
cally to the maximum ring difference d,j,,,,, incorpo-
rated in a 2D acquisition.

The standard analytic reconstruction algorithm for
volume PET scanners is the 3D reprojection algorithm
(3DRP) [76], which consists of four steps:

(i) Reconstruct a first image estimate f,,(7) by apply-
ing the 2D FBP algorithm to the non-truncated
data subset 6 < 0,.

(ii) Forward project f,p(7) to estimate the unmeasured
parts p( s ¢ M(1), 1) of a set of 2D parallel projec-
tions 77 € Q(6,,.4),

(iii) Merge the measured and estimated data to form
non-truncated projections,

(iv) Reconstruct these merged data with the 3D FBP al-
gorithm described in the previous section.

In general, a value of 6,,,, smaller than the scanner
maximum axial acceptance angle is used to limit the
amount of missing data, which must be estimated and
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backprojected. With a 24-ring scanner, using d,,,, = 19
instead of the maximum value N, - 1 = 23 still incorpo-
rates 95% of the data.

Images reconstructed with the 3DRP algorithm
share many features with 2D FBP reconstructions, in-
cluding linearity (the reconstructed FWHM in a given
point is the same for a cold and for a hot spot) and the
prevalence of streak artifacts in low-count studies. One
difference with 2D reconstructions is the axial depen-
dence of the spatial resolution, due to the increasing
contribution of the estimated data near the edges of
the axial FOV (see Fig. 4.9). This property of 3DRP
reflects the non-uniform sensitivity of the volume PET
scanner. Clearly, any analytic or iterative algorithm has
to somehow reflect this property in the reconstruction.
With the rebinning algorithms described below, the
lower sensitivity in the edge slices is translated in an
increased variance rather than in a degraded spatial
resolution.

3D Analytic Reconstruction by
Rebinning

The high sensitivity of a PET scanner operated in 3D
mode is directly related to the large number of
sampled LORs, which is much larger than the number
of reconstructed pixels: N,,; >> P (by a factor propor-
tional to N,). We have already mentioned in the previ-
ous section that this data redundancy results in the
non-uniqueness of the reconstruction filter. From the
practical point of view, redundancy increases the data
storage requirements and the computational load for
reconstruction and data correction.

This observation has motivated the development of
rebinning algorithms. A rebinning algorithm is an al-
gorithm that estimates the ordinary sinogram (Eq. (3))
of each sampled transaxial section z € [0, L], i.e.

Drep (5:0,2) = T dt f(x =scos¢ —tsing,y =ssin ¢
- +t cos@,z) (64)

from the measured oblique sinograms p.(s, ¢, {, 6)
defined by Eq. (54). Each rebinned sinogram is then re-
constructed separately using a 2D reconstruction algo-
rithm. This procedure is illustrated in Fig. 4.11.

Rebinning would be trivial for noise-free data
because one easily checks by comparing Eqs. (54) and
(3) that

Prep (5:052) = p(5:0,§ = 2,6 =0) (65)
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Figure 4.11.  Schematic representation of the principle of a rebinning algorithm for 3D PET data.

In the presence of noise, however, an efficient rebin-
ning method should optimize the SNR by exploiting
the whole set of oblique sinograms to estimate p,,,.

Several approximate [77, 78,79, 80, 81] and exact [82,
83] rebinning methods have been published. We only
summarize the two algorithms that have been most
used in practice.

The Single-slice Rebinning Algorithm
(SSRB)

This approximate algorithm [77] is based on the as-
sumption that each measured oblique LOR only tra-
verses a single transaxial section within the support of
the tracer distribution. Referring to the third argument
of fin Eq. (54), this assumption amounts to neglecting
the product R; tan 6, where R;, the radius of the FOV,

is the maximum value of the variable ¢”. Using this ap-
proximation, Eq. (65) can be extended to

preb(s’¢’z) :ps(s’¢’C= Z,9= 0)

and by averaging all available estimates, SSRB defines
the rebinned sinograms by

(66)

l emax (s,2)

Dssry (S,¢,Z) =4 N .[

zemax (S’Z) —Omax (S,Z)

dop,(s,¢,¢ =z,0)
(67)

where 0, (s, z) = arctan (min[z,L —z]/«/Rﬁ - 52) is

the maximum axial aperture for an LOR at a distance s
from the axis in slice z. The algorithm is exact for
tracer distributions which are linear in z, of the type
flx, y, 2) = a(x, y) + zb(x, ). For realistic distributions,
the accuracy of the approximation will decrease with
increasing Ry and 6,,,. Axial blurring and transaxial
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distortions increasing with the distance from the axis
of the scanner are the main symptoms of the SSRB ap-
proximation.

The discrete implementation of the SSRB algorithm
is simply the extension of the technique described in
the multi-slice 2D data section (above) to build 2D data
with a multi-ring scanner operated in 2D mode, with
dypmax Yeplaced by a larger value d,,,,. The choice of d,,,,
entails a compromise between the systematic errors
(which increase with d,,,,) and the reconstructed image
variance (which increases with decreasing d...,,).

The Fourier Rebinning Algorithm (FORE)

The approximate Fourier rebinning algorithm [81] is
more accurate than the SSRB algorithm and extends
the range of 3D PET studies that can be processed
using rebinning algorithms. The main characteristics
of FORE is that it proceeds via the 2D Fourier trans-
form of each oblique sinogram, defined as

P.(v,k,£,0) = j do exp(—lkq))fds exp(-27isv) X
ps(sqﬁCG) keZve[F\R (68)

where k is the azimuthal Fourier index. Rebinning is
based on the following relation between the Fourier
transforms of oblique and direct sinograms:

P (v,k,z,0)= P,(v,k,{ =z+ktan0/(27v),0)  (69)
For each 8 such that the oblique sinogram ¢, 0 is
measured (see Eq. (54)), the RHS yields an indepen-
dent estimate of the direct data 8 = 0. FORE then av-
erages all these estimates to optimize the SNR. The
accuracy of the approximation (Eq. (69)) breaks
down at low frequencies v. Therefore, for all frequen-
cies below some small threshold, the Fourier trans-
form of the rebinned data is estimated using the
SSRB approximation.

The main steps of the FORE algorithm are:

(i) Initialize a stack of Fourier transformed sino-
grams Py, (V, k, 2),

(ii) For each oblique sinogram ¢, 6
a. Calculate the 2D Fourier transform P(v, k, ¢, 6),
b. For each frequency component (V, k), increment

Ppore(Vs k, {~k tan 6/(27v)) by P(v, k, ¢, 6),

(iii) Normalize Py, (V, k, z) for the varying number of
contributions it has received,

(iv) Take the 2D inverse Fourier transform to get the
rebinned data py,..(s, ¢, 2).
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Like all analytic algorithms, FORE assumes that the
data p, (s, ¢, {, 0) are line integrals of the tracer dis-
tribution and that each oblique sinogram is sampled
over the whole range (s, ) € [-RpR; ] x [0, 7].
Therefore, the raw data must be corrected for all
effects including detector efficiency variations, atten-
uation, and scattered and random coincidences,
before applying FORE. Also, when the data are in-
complete due to gaps in the detector assembly, the
sinograms must be filled as discussed in the section
on properties of the inverse 2D radon transform
(above). Refer to [81] for a detailed description and
for the derivation of FORE.

In practice, FORE is sufficiently accurate when the
axial aperture 60, is smaller than about 20°, though
the limit depends on the radius of the FOV and on the
type of image. Beyond 20°, artifacts similar to those ob-
served with SSRB (at lower apertures) appear [84]: de-
graded image quality at increasing distance from the
axis. Two variations of FORE, the FORE]J and FOREX
rebinning algorithms [82, 83], are exact in the limit of
continuous sampling, and have been shown to over-
come this loss of axial resolution when reconstructing
high statistics data acquired with a large aperture
scanner [85]. However, the current implementation of
the FORE] algorithm [82] is more sensitive to noise
than FORE since the correction term involves a second
derivative of the data with respect to the axial coordi-
nate {, and the application to low statistics data
remains questionable.

Hybrid Reconstruction Algorithms
for 3D PET

The future evolution of image reconstruction in PET
will most probably lead to the generalized utilization
of iterative algorithms, both for 2D and for 3D data. As
shown in the next section, it is straightforward to
extend iterative methods, such as OSEM, to fully 3D
scanning. These algorithms have the potential to model
accurately the data acquisition, the measurement noise,
and also the prior information on the tracer distribu-
tion. In contrast, analytic algorithms are bound to the
line integral representation of the data. Even though
some physical effects can be incorporated in pre- or
post-processing steps, an accurate modeling of the
Poisson statistics of the data is difficult with analytic
methods. To date, however, the computational burden
of fully 3D iterative algorithms remains a major issue
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for some applications involving multiple acquisitions,
or for research scanners such as the HRRT which
sample a very large number of LORs. The current prac-
tice of undersampling these data (see above) to acceler-
ate reconstruction is contradictory with the aim of
accurate modeling claimed by iterative methods.

This limitation has led to the application of hybrid
algorithms for 3D PET data [41, 66, 91]. These algo-
rithms first rebin the 3D data into a multi-slice set of
ordinary sinogram data, using e.g. the SSRB method,
or, more often, FORE. Each rebinned sinogram is then
reconstructed using some 2D iterative algorithm. This
hybrid approach provides a significant time gain with
respect to fully 3D iterative reconstruction.

The two components of hybrid algorithms, rebinning
and iterative methods, have been discussed in previous
sections. In this section, we briefly discuss the interplay
between these two elements, the main difficulty being
to model the rebinned data that are presented to the 2D
iterative algorithm. We focus on the application of
FORE followed by a 2D OSEM reconstruction but the
same problems would arise with other combinations,
such as SSRB followed by an iterative minimization of
a 2D penalized weighted least-square (PWLS) cost
function [86].

One of the major benefits of iterative reconstruction
arises from a correct modeling of the data statistics,
which allows to weight each LOR according to its vari-
ance. This is the reason why improved image quality is
obtained by reconstructing the raw, uncorrected data
with a system matrix incorporating the effects of atten-
uation, normalisation and scatter, rather than by recon-
structing pre-corrected data with a system matrix
modeling only the detector’s geometric response.
Ideally, therefore, we would like to develop a hybrid al-
gorithm in which un-corrected rebinned data are re-
constructed by means of a 2D iterative algorithm
including the effects of attenuation, etc. This approach
is impossible because the FORE Eq. (69) must be
applied to fully pre-corrected data as discussed at the
end of the previous section. The rebinned data must
then be reconstructed with a 2D iterative algorithm
which does not model the pre-corrected physical
effects.

One solution to improve the statistical model is to
de-correct the data for the physical effects after the re-
binning. This de-correction restores Poisson-like sta-
tistics to the rebinned data, and the physical effects can
then be reintroduced in the system matrix. If we hy-
pothesize that the most important effect is that of at-
tenuation, we can decorrect for attenuation only and
then reconstruct the de-corrected rebinned data with
AW-OSEM (see Eq. (43)). This approach is referred to
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as the FORE+OSEM(AW) algorithm. Note that this al-
gorithm is still approximate: even in the absence of at-
tenuation and scatter, the rebinned sinograms are not
independent Poisson variables because of the complex
linear combination of the 3D data during FORE rebin-
ning. Strictly speaking, it is inappropriate to recon-
struct the rebinned data using the OSEM algorithm
derived for independent Poisson data, and it is prefer-
able to use a weighted least-square method [87] or the
NEC scaling technique [30] (Eq. (44)). In each case, one
needs to estimate the variance of the rebinned data
[88] and also, ideally, the covariance [89].

Finally, modeling the shift-variant detector response
(e.g. due to crystal penetration) has not yet been
attempted with hybrid methods. One approach would
be to apply sinogram restoration prior to rebinning.

A related problem occurs with scanners such as the
Siemens/CPS HRRT [10], which has gaps between adja-
cent flat panel detector heads. Since Fourier rebinning
requires complete sinogram data, these gaps must be
filled before rebinning. Gap filling techniques may
range in complexity from linear interpolation to
forward projection of an image reconstructed from the
2D segment by using a system matrix which accounts
for the missing data [12]. In general, however, a 3D iter-
ative reconstruction is preferable to an hybrid one
because the gap filling procedure followed by the re-
binning is sensitive to noise propagated from regions
with high attenuation.

Despite these difficulties, fast hybrid algorithms such
as FORE+OSEM(AW) have been applied to whole-
body FDG scans, and shown to provide for these
studies an image quality comparable to fully 3D itera-
tive reconstruction (see [90, 92] and the example in
Fig. 4.13 below).

Fully 3D Iterative Reconstruction

Axial and transaxial undersampling techniques were
developed to reduce the data to a manageable size
while hybrid algorithms were developed to achieve
fast reconstruction for clinical PET scanners with
limited computer resources. With sufficient CPU
power and disk capacity these early approaches are
not needed. The application of fully 3D iterative re-
construction methods then allows to overcome the
limitations of the hybrid algorithms discussed in the
previous section.

We have seen that iterative reconstruction methods
are conceptually independent of the 2-D or 3-D nature



Image Reconstruction Algorithms in PET

of the data. Several implementations have been de-
scribed for 3-D data, based on the Space Alternating
Generalized EM [93], on ML-EM and OSEM [94], on
Bayesian estimation [26, 95], and on the row-action
maximum likelihood [90]. All algorithms of the
ML-EM type described above, for instance, can be
readily generalized to 3D PET by replacing the system
matrix a;; describing the acquisition geometry (equa-
tion (29)) by its 3D equivalent, which takes into
account the axial coordinates of the LORs. For block-
iterative methods such as OSEM (see Eq. (42)), the set
of LORs parameterized by the two transaxial sinogram
indices s, ¢; in Eq. (5) and by the two axial coordinates
ig i, in Eq. (56) must be divided into subsets. Most
implementations simply subdivide the azimuthal index
(18 exactly as in the 2D case. Each subset then contains
all axial samples iy, i,.
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The benefit expected from fully 3D iterative recon-
struction is easily demonstrated for scanners with
large polar aperture, particularly in the presence of
gaps. Fig. 4.12, for example, shows a high resolution
phantom measured with the HHRT brain scanner. The
bottom image was reconstructed with FORE+OSEM
(AW), while the top one was reconstructed with
OSEM3D(ANW), where “ANW?” indicates that both the
normalization and attenuation corrections are incor-
porated in the system matrix. The horizontal streak ar-
tifacts in the coronal section of the FORE+OSEM(AW)
image are attributed to the gap filling step prior to
FORE. Blurring can also be observed on the 3 bright-
est rods at the edge of the cylinder. When the polar
angle is smaller, as with many clinical scanners, the
bias introduced by FORE is small, and the benefit of
3D reconstruction is harder to visualize, especially at

Illll m -

o Medlk m W

H%

THFTY

Figure 4.12. High resolution phantom data acquired on the HRRT: comparison of a fully 3D iterative reconstruction using OSEM3D(ANW) (top) and of a hybrid
reconstruction with FORE+OSEM(AW) (bottom). Both images were reconstructed with 4 iterations and 16 subsets. The phantom is oriented vertically in the FOV
of the scanner and the vertical axis on the coronal section is parallel to the axis of the scanner (courtesy K. Wienhard, KéIn).
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low count statistics and when regularization is
achieved by post-reconstruction smoothing. This is
illustrated by Fig. 4.13, which shows whole-body
patient data processed with FORE+OSEM(AW) and
OSEM3D(ANW). Note the similarity between the two
reconstructions, even in regions with high attenuation
(shoulder and neck for this patient with arms up).

In contrast with the algorithms illustrated above,
the fully-3D image reconstruction developed by
Leahy et al. [24, 26, 95, 96] is based on an extensive
system model. The algorithm incorporates a shifted
Poisson model that includes the statistics of true,
scattered and random coincidences, as well as
positron range, annihilation photon acolinearity, at-
tenuation, sinogram sampling, detector dead-time
and efficiency, block detector effects, and the spatially
varying detector resolution due to parallax (depth of
interaction) and Compton scatter in the scintillators
(Chapter 2). Although the size of the system matrix is
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reduced using a factorized model and by taking
advantage of symmetries, the computation time is
necessarily longer than with simplified system
models. This lead us to considerations of the poten-
tial for parallel-processing of image reconstructions
ON Processor arrays.

Parallel Implementation of Iterative
Reconstruction

The need for parallel implementation of the ML-EM al-
gorithm was already recognized in the mid-eighties.
Pioneering work proposed the use of a cluster of com-
modity PCs [97] or dedicated hardware [98]. But as
soon as commercial parallel systems became available,
dedicated algorithms were developed on high-end
computers such as transputers [99, 100], hypercubes
[101], meshes [102], rings [103], fine-grain message-

Figure 4.13.  Whole-body FDG scan on an HR+ tomograph, reconstructed using FORE+OSEM(AW) (top) and OSEM3D(ANW) (bottom), in both cases with 4 it-
erations and 16 subsets. A 3D gaussian filter with FWHM 4 mm was applied after reconstruction. The orthogonal views are passing through the cursor (small

circle in the neck area).
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passing machines [104], linear arrays of DSPs [105] to
cite a few examples. Recent efforts concentrated on
using clusters of multi-processor PCs, sometimes
called component off the shelf (COS), and combine
both shared and distributed memory approaches. This
choice is dictated by the cost/performance ratio of the
hardware, by its flexibility and by the possibility to
upgrade the system with faster and cheaper hardware
in this very competitive market. One key problem in
distributed computing is to optimize the balance
between computation and communication amongst
the nodes. The ultimate goal is to keep individual
processors busy all the time by interleaving I/0O and
computation. A good measure of the performance of a
parallel algorithm is how well the speed-up factor
scales linearly with the number of nodes. In their work,
Shattuck et al [106] describe a parallel implementation
of the MAP-PCG reconstruction [26] using a master-
slave model with 9 dual PC nodes. The work of Vollmar
[107] describes a parallel extension of the OSEM3D re-
construction [92] and is also using a masterslave
model with 7 quad PC nodes. By calculating the system
matrix on the fly and neglecting the physics of the de-
tection system these authors could handle very large
reconstruction problems on the HRRT. The HRRT
scanner acquires generally data in span 3(9) with a
maximum ring difference of 67, which generates 3D
data of 983 MB (326MB). The work of Jones et al [108]
is another parallel extension of the OSEM3D recon-
struction [92]. It uses a single program multiple-data
(SPMD) rather than a master-slave model. These
authors have shown that image space decomposition
(ISD) and projection space decomposition (PSD) were
roughly equivalent since the communication burden
was large at forward projection when using ISD but
was also large at backprojection when using PSD.
However, by developing an efficient I/O subsystem and
reorganizing the data, these authors finally favored the
PSD model [109]. The performance of this parallel
implementation of OSEM3D was shown to scale rela-
tively well up to 16 nodes (32 processors). A commer-
cial implementation of this computing cluster uses
8 nodes of dual Pentium 4 Xeon at 3.0 Ghz, and per-
forms one iteration of OSEM3D in about 20 min for a
3D sinogram set of 983 MB and an image size of
256x256x207 (27 MB). Finally, the PARAPET initiative,
currently known as the STIR project [110], has devel-
oped a generic, multi-platform and multi-scanner, im-
plementation of OSEM3D using an object-oriented
library [111, 112]. The parallel implementation uses a
master-slave model and a PSD scheme. On a 12-node
Parsytec CC system it provides a factor 7 speed-up
compared to serial mode.
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5 Quantitative Techniques in PET’

Steven R Meikle and Ramsey D Badawi

Introduction

PET has long been regarded as a quantitative imaging
tool. That is, the voxel values of reconstructed images
can be calibrated in absolute units of radioactivity con-
centration with reasonable accuracy and precision. The
ability to accurately and precisely map the radiotracer
concentration in the body is important for two reasons.
First, it ensures that the PET images can be interpreted
correctly since they can be assumed to be free of physi-
cal artefacts and to provide a true reflection of the un-
derlying physiology. Second, it enables the use of tracer
kinetic methodology to model the time-varying distri-
bution of a labelled compound in the body and quan-
tify physiological parameters of interest.

The reputation of PET as a quantitative imaging tool
is largely based on the fact that an exact correction for
attenuation of the signal due to absorption of photons
in the body is theoretically achievable. However, accu-
rate attenuation correction is not so easy to achieve in
practice and there are many other factors, apart from
photon attenuation, that potentially impact on the ac-
curacy and precision of PET measurements. These
include count-rate losses due to dead time limitations
of system components, variations in detector efficiency,
acceptance of unwanted scattered and random coinci-
dences and dilution of the signal from small structures
(partial volume effect). The ability to accurately
measure or model these effects and correct for them,
while minimizing the impact on signal-to-noise ratio,
largely determines the accuracy and precision of PET
images.

This chapter discusses the various sources of mea-
surement error in PET. Methodological approaches to
correct for these sources of error are described, and

their relative merits and impact on the quantitative ac-
curacy of PET images are evaluated. The sequence of
the following sections corresponds approximately to
the order in which the various corrections are typically
applied. It should be noted, however, that the particular
sequence of corrections varies from scanner to scanner
and depends on the choice of algorithms.

Randoms Correction

Origin of Random Coincidences

Random coincidences, also known as “accidental” or
“chance” coincidences, arise because of the finite width
of the electronic time window used to detect true coin-
cidences. This finite width allows the possibility that
two uncorrelated single detection events occurring
sufficiently close together in time can be mistakenly
identified as a true coincidence event, arising from one
annihilation. This is shown schematically in Fig. 5.1.
The rate at which random coincidences occur
between a detector pair is related to the rate of single
events on each detector and to the width of the time
window. The exact relationship is dependent upon the
implementation of the counting electronics. Figure 5.2
shows an implementation whereby each timing signal
opens a gate of duration 7; if gates on two channels are
open at the same time, a coincidence is recorded. If there
is a timing signal on channel i at time T, there will be a
coincidence on the relevant line-of-response L; if there
is a timing signal on channel j at any time between T - 7
and T + 7. Therefore, the total time during which a coin-
cidence may be recorded with the event on channel i (a

* Figures 1-3, 5, 6, 12-16 and 19-21 are reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission
Tomography: Basic Science and Clinical Practice. Springer-Verlag London Ltd 2003, 91-114.
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Figure5.2. Figure 5.2 Example coincidence circuitry. Each detector generates a pulse when a photon deposits energy in it; this pulse passes to a time pick-off

unit. Timing signals from the pick-off unit are passed to a gate generator which generates a gate of width t. The logic unit generates a signal if there is a
voltage on both inputs simultaneously. This signal then passes to the sorting circuitry.

parameter known as the resolving time of the circuit, or
the coincidence time window) is 27. So, if the rate of
single events in channel i is r; counts per second, then in
one second the total time during which coincidences can
be accepted on L;; will be 27 7;. If we can assume that the
single events occurring on channel j are uncorrelated
with those on channel i (i.e., there are no true coinci-

dences), then Ci» the number of random coincidences on
L;; per second, will be given by
C;=2tr1; 1)

where 7; is the rate of single events on channel j. While
it is obviously not generally true that there is no corre-
lation between the single events on channel i and the



Quantitative Techniques in PET

Channel i

95

Neighbouring clock cycles

«— 125nsec —»
ﬁﬁﬁﬁﬂ‘/

/ Tomogr aph clock cycle
W

Channel j

Figure 5.3. Detecting coincidences using
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single events on channel j, the number of single events
acquired during a PET acquisition is typically 1 to 2
orders of magnitude greater than the number of coin-
cidences. In such an environment, equation (1) pro-
vides a good estimate of the random coincidence rate.

The timing of commercial tomographs is usually
governed by a system clock. A timing signal on channel
i is thus assigned to a particular clock cycle. If there is
a timing signal on channel j within a certain range of,
say, n neighbouring clock cycles, a coincidence is
recorded on L; (Fig. 5.3). Therefore the randoms rate
on L; would be given by

C; =nt 1, (2)
where ¢, is the duration of a single clock cycle. A typical
BGO tomograph might have a 2.5 nanosecond clock
cycle, and n = 5 clock cycles. Thus, the total coinci-
dence time window nt, (equivalent to 27 for an analog
system) would equal 12.5 nanoseconds.

Equations (1) and (2) indicate that the overall
randoms rate for an acquisition will change at a rate
proportional to the square of the overall singles rate.
Provided dead time is small, this means that for a given
source distribution the randoms will change roughly in
proportion to the square of the activity concentration.

Random coincidences can form a significant fraction
of all recorded coincidences in PET imaging, particu-
larly if large amounts of activity are used or if scans
are performed in 3D mode. The number of randoms
detected may be reduced by shortening the coinci-
dence window. However, the window must be large
enough to prevent loss of true coincidences due to the
difference in arrival times (which may be up to 2 ns for
an annihilation pair originating 30 cm from the centre
of the tomograph) or statistical variations in the trig-
gering of the event timing circuitry. Thus, selection of
the coincidence window is a trade-off between min-
imising acceptance of randoms and loss of sensitivity
to true coincidences. The coincidence window is typi-
cally set to 3 to 4 times the full width half maximum
(FWHM) timing resolution of the tomograph.

_><_

2.5 nsec

The use of fast scintillators such as LSO or GSO
reduces timing uncertainty (compared to that obtain-
able with slower scintillators such as BGO or Nal), but
the window width cannot be less than 3 nsec to 4 nsec
without accounting for time-of-flight effects. Randoms
may also be reduced by shielding the detectors from
activity that lies outside the tomograph field of view-
this reduces the singles rates without adversely affect-
ing sensitivity to true coincidences [1, 2].

Randoms tend to be fairly uniformly distributed
across the field of view. This contrasts with true coinci-
dences, which follow activity concentration and are
reduced in regions of high attenuation. Thus, the frac-
tion of random coincidences in regions of high attenu-
ation can become very large and, if uncorrected,
substantial quantitative errors can arise.

Corrections for Random Coincidences
Tail Fitting

Because the distribution of random coincidences in
sinogram or projection space tends to be a slowly
changing function, it may be possible to estimate the
distribution within the object by fitting a function such
as a paraboloid or Gaussian to the tails falling outside
the object. This method requires that the object
subtend only a fraction of the field of view, so that the
tails are of reasonable length and contain a reasonable
number of counts--otherwise small changes in the tails
will result in large changes in the randoms estimate. In
some systems this method has been used to correct for
both scatter and randoms simultaneously [3].

Estimation from Singles Rates

The total number of randoms on a particular line of re-
sponse L; can, in principle, be determined directly
from the singles rates r; and r; using equation (1) or (2).
Consider an acquisition of duration T. The random co-
incidences R; in the data element corresponding to the
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line of response L; may be found by integrating
equation (1) or (2) over time:

R; = TCij(t)dt = 21'?1;.(t)rj(t)dt (3)
0 0

If r;(t) and r;(t) change in the same way over time, we
can factor out this variation to obtain

T
R; = ZTsisjgf(t)dt =ks;s; (4)

where k is a constant and s; and s; are the single event
rates at, say, the start of the acquisition. For an emis-
sion scan, f(t) is simply the square of the appropriate
exponential decay expression, provided that tracer re-
distribution can be ignored. R;; can then be determined
from the single events accumulated on channels i and j
over the duration of the acquisition. It should be noted
that the randoms total is proportional to the integral of
the product of the singles rates, and not simply the
product of the integrated singles rates. Failure to
account for this leads to an error of about 4% when the
scan duration T is equal to the isotope half-life T1, and
about 15% when T = 2T

For coincidence-based transmission scans, where
positron-emitting sources are rotating in the field of
view, f(t) becomes a complicated function dependent
on position as well as time, and equation (4) is no
longer valid. However, in principle the total number of
randoms could still be obtained by sampling the
singles rates with sufficiently high frequency.

The singles rates used for calculating randoms
should ideally be obtained from data that have already
been qualified by the lower energy level discriminator
- they are not the same as the singles rates that deter-
mine the detector dead-time. Correction schemes have
been implemented which use detector singles rates
prior to LLD qualification [4], but the differences
between the energy spectrum of events giving rise to
randoms and that giving rise to trues and scatter must
be carefully taken into account. These differences are
dependent upon the object being imaged and upon the
count-rate, since pulse pile up can skew the spectra [5].

In its simplest form this method does not account
for the electronics dead-time arising from the coinci-
dence processing circuitry (to which the randoms in
the coincidence data are subject).

Delayed Coincidence Channel Estimation

The most accurate (and currently the most commonly
implemented) method for estimating random coinci-
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dences is the delayed channel method. In this scheme, a
duplicate data stream containing the timing signals
from one channel is delayed for several times the dura-
tion of the coincidence window before being sent to
the coincidence processing circuitry. This delay
removes the correlation between pairs of events arising
from actual annihilations, so that any coincidences de-
tected are random. The resulting coincidences are then
subtracted from the coincidences in the prompt
channel to yield the number of true (and scattered) co-
incidences. The coincidences in the delayed channel
encounter exactly the same dead-time environment as
the coincidences in the prompt channel, and the accu-
racy of the randoms estimate is not affected by the
time-dependence of the activity distribution.

While accurate, this method has two principal
drawbacks. Firstly, the increased time taken to
process the delayed coincidences contributes to the
overall system dead time. Secondly, and more impor-
tantly, the estimates of the randoms on each line-of-
response are individually subject to Poisson counting
statistics. The noise in these estimates propagates di-
rectly back into the data, resulting in an effective dou-
bling of the statistical noise due to randoms. This
compares poorly to the estimation from singles
method, since the singles rates are typically two
orders of magnitude greater than the randoms rates,
so that the fractional noise in the resulting randoms
estimate is effectively negligible. To reduce noise, the
delayed channel can be implemented with a wider co-
incidence time window. However, this will further
increase the contribution of delayed channel coinci-
dences to system dead time.

Randoms Variance Reduction

Where randoms form a significant fraction of the ac-
quired events, as is frequently the case in 3D imaging,
it becomes desirable to obtain randoms estimates that
are accurate but contain less noise than those ob-
tained using the delayed channel method. Most
delayed channel implementations allow the acquisi-
tion of separate datasets from the prompt and delayed
coincidence channels - this allows the possibility of
post-processing the randoms estimate to reduce noise,
prior to subtraction from the prompt coincidence
channel data.

The simplest form of variance reduction is to
smooth the delayed data. The success of this approach
will depend somewhat on the architecture of the
scanner. In full-ring block detector systems, there are
significant differences between the efficiency of adja-
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cent detectors. This information is lost during smooth-
ing, and if unaccounted for, high-frequency circular
artefacts can appear in the reconstructed images [6].
However, in rotating systems, lines of response may be
sampled by many detectors (particularly in the centre
of the field of view), so that efficiency differences
become less important. Caution must still be exercised,
because rotational sampling effects can result in
varying sensitivity to randoms across the field of view
[7]. One solution is to smooth only over lines of re-
sponse which share a common radius.

More accurate methods of variance reduction can be
envisaged. A randoms sinogram consists of noisy esti-
mates of the R;, the randoms in the prompt data. A
typical data acquisition may consist of a few million
such estimates (one for each LOR), but there may only
be a few thousand of the singles values s; (one for each
detector element). There is therefore substantial redun-
dancy in the data, which may be used to reduce the
effects of statistical noise. Let us consider two opposing
groups of N detectors, A and B. Detector i is a member
of group A and j is a member of B (Fig. 5.4).

LORs in real space
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If the singles flux varies in the same way for all de-
tectors for the duration of the acquisition, so that equa-
tion (4) is valid, then Rz, the sum of the randoms on all
the lines of response joining detector i and group B
may be written

N
Ry =ks; Xs; €)
j

similarly, Ris the sum of the randoms on all the lines of
response joining detector j and group A may be written

Ry =ks;Xs; (6)

Now R, the sum of all the randoms over all possible
lines of response between groups A and B is simply the
sum of R, over all possible j:

N N N N
RAB=Z[kstsi}:k[zsi}{ZSj} (7)
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Figure 5.4. Accurate randoms variance reduction. To obtain a variance-reduced estimate of the number of random coincidences in the LOR joining detectors i
and j the product of the mean values of the LORs in each of the two LOR fans shown is calculated, and divided by the mean value of all possible LORs between
detectors in groups Aand B. For ease of implementation, the LOR data from the relevant sinograms can be re-binned into histograms as shown. (From [9], with

kind permission from Kluwer Academic publishers.)
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If we multiply equations (5) and (6) and divide by
equation (7), we get

RijRiB

=ks;s; =R;; (8)
RAB g

)

All of the terms on the left hand side of equation (8)
can be obtained from the data, and we have obtained
another estimate of R;. However, if N is large enough
the variance of this estimate is less than that of the
original estimate, since the line-of-response sums R;,,
Rz and R, are all larger than R;; by factors of approxi-
mately N, N and N? respectively (assuming that there
are roughly the same number of randoms on each line
of response). This method was devised by Casey and
Hoffman [8], who also showed that the ratio Q of the
variance of the noise-reduced estimate and the origi-
nal estimate of R;; is given by

_2N+1

QN2

9)

so that there is an improvement in the noise provided
N, the number of detectors per group, is three or more.

Several related algorithms have been developed and
applied to the problem of randoms variance reduction,
but the one described here has been shown to be the
most accurate [9]. The only significant drawback of
this method (compared to direct subtraction of the
delayed channel data) is that acquiring a separate
randoms sinogram doubles the size of the dataset. This
can be a particular problem for fast dynamic scanning
in 3D mode, where sorter memory and data transfer
time can be a limiting factor.

Normalisation

Lines of response in a PET dataset have differing sensi-
tivity for a variety of reasons including variations in
detector efficiency, solid angle subtended and summa-
tion of neighbouring data elements. Information on
these variations is required for the reconstruction of
quantitative and artefact-free images - indeed, most al-
gorithms require that these variations be removed
prior to reconstruction. The process of correcting for
these effects is known as normalisation, and the indi-
vidual correction factors for each LOR are referred to
as normalisation coefficients.

Positron Emission Tomography

Causes of Sensitivity Variations

Summing of Adjacent Data Elements

It is common practice to sum adjacent data elements
in order to simplify reconstruction or to reduce the
size of the dataset. This is usually performed axially,
but may also be performed radially (a process known
as “mashing”). Summation of data elements axially
cannot be performed uniformly across the entire field
of view and image planes at the ends of the field of
view have substantially reduced sensitivity compared
to those in the centre. This effect is fairly simple to
account for, since the degree of summing is always
known. However, it can complicate the process of cor-
recting for other effects if the summing is performed
prior to normalisation [10, 11].

Rotational Sampling

In a rotating system, LORs at the edge of the field of
view are sampled just once per half-rotation, while
those near the centre are sampled many times (see Fig.
5.5). As a result, sensitivity falls as radius increases.

Detector Efficiency Variations

In a block detector system, detector elements vary in
efficiency because of the position of the element in the
block, physical variations in the crystal and light
guides and variations in the gains of the photomulti-
plier tubes. These variations result in substantial high-
frequency non-uniformities in the raw data. In
particular there is a systematic variation in detector
efficiency with the crystal position within the block
(the “block profile”) which results in significant varia-
tions in the sensitivity of the tomograph in the axial
direction. Radially the effect is not so great, because
any one pixel in the image is viewed by many detectors
and there is a tendency for these effects to cancel out
during reconstruction. Nevertheless, failure to correct
for them leads to radial streaking in the image, and the
systematic block profile effects can reinforce during re-
construction, resulting in circular “saw-tooth” artefacts.
Detector efficiency, and in particular the block profile,
can be affected by count rate. One result of pulse pileup
within a block detector is the shifting of detected
events towards the centre of the block [12]. This is not
really a normalisation effect in the conventional sense,
but since it results in a systematic change in the appar-
ent efficiency of the lines of response with position in
the block it manifests itself in a very similar way. The
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Figure5.5. Rotational sampling. (Left) Lines of response at the edge of the transaxial field of view are sampled once per detector half-rotation. (Right) lines of
response close to the centre of the field of view are sampled many times, as more detector elements are brought to bear.

effect can be reduced by measuring normalisation
coefficients at a similar count-rate to that used during
data acquisition, or by creating a rate-dependent look-
up table of normalization coefficients [13].

If this is not possible, any resulting image artefacts
may be reduced by extracting systematic effects from the
raw data after normalisation but prior to reconstruction.

Geometric and Solid Angle Effects

Figure 5.6 shows that in a system with segmented detec-
tors, such as a block-detector based system, lines of re-
sponse close to the edge of the field of view are
narrower and more closely spaced than those at the
centre. This geometric effect is also apparent axially
and can be significant for large area tomographs oper-
ating in 3D mode. The narrowing of the LORs results in
a tighter acceptance angle and in reduced sensitivity, al-
though in the transaxial plane this effect is partially
compensated by the fact that the separation between
opposing detectors is less towards the edge of the field
of view, so that the acceptance angle is changed in the
opposite direction. The narrowing of LORs also results
in reduced sampling distance. However, this effect is
easily describable analytically and can be corrected for
at reconstruction time - a process known as “arc cor-
rection”. Arc correction may not be an issue for systems
that employ continuous detectors, as it is usually possi-
ble to bin the data directly into LORs of uniform width.

An effect that is relevant for systems employing
either continuous or discrete detectors, and that is not
so easy to describe analytically, is related to the angle
of incidence of the line of response at the detector face.
A photon entering a crystal at an angle will usually
have more material in its path than one entering nor-
mally, thus having an increased probability of interac-
tion. In the case of a ring scanner, this results in
measurable changes in sensitivity as the radial position
of the line of response is increased and is known as the

Figure 5.6. Lines of response narrow as the radial distance increases.
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radial, or transaxial, geometric effect (Fig. 5.7). However,
a photon entering a detector close to its edge and at an
angle may have significantly less material along its path
and may therefore be more likely to escape. For block
detector systems this results in a pattern of sensitivity
change which varies both with radial position and with
the position of the line of response with respect to the
block (Fig. 5.8). This has become known as the “crystal
interference” effect [10]. Again, similar effects can be
found in the axial direction [11].

It should be noted that the photon incidence angle is
most strongly correlated with the line of response for
true coincidences - these geometric effects would be
expected to be much weaker or non-existent for
random and scattered coincidences [14].

Time Window Alignment

For coincidence detection to work efficiently, timing
signals from each detector must be accurately synchro-

‘ rotating transmission sources. The 951 data shows asymmetry
45 due to the fact that the centre of rotation of the transmission
sources is not coincident with the centre of the detector ring.
(From [11], with permission.)

nised. Asynchronicity between detector pairs results in
an offset and effective shortening of the time window
for true and scattered (but not random) coincidences.
This, in turn, results in variations in the sensitivity to
true and scattered coincidences. For block detector
systems, the greatest source of such variations occurs
at the block level. Figure 5.9 shows the variations in
efficiency resulting from time alignment effects in a
block tomograph plotted as a sinogram. Each diamond
corresponds to a different block combination.

Structural Alignment

In a ring tomograph, the accuracy with which the de-
tectors are aligned in the gantry can affect line of re-
sponse efficiency. Such variations will manifest in
different ways depending on the exact design of the to-
mograph, the detectors and any casing in which the de-
tectors are contained. Frequently, block detectors are
mounted in modules or cartridges, each containing

Figure 5.8. Crystal interference factors for the Siemens/CTI ECAT 951.
(From [15], with permission.)

Figure 5.9. Time-window alignment factors for the Siemens/CTI ECAT 951.
The factors range in value from 0.872 to 1.120. (From [15], with permission.)
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several units. Misalignments of these modules can have
noticeable affects on LOR sensitivity [11, 15]. Some
full-ring systems have a “wobble” feature designed to
improve spatial sampling - this feature allows the de-
tectors to describe a small orbit about the mean detec-
tor position. As a result, it is possible that the
transmission sources can rotate about a point which is
not actually the centre of the detector ring, and if they
are used to perform normalisation measurements, er-
roneous asymmetries can be introduced into the nor-
malisation coefficients [11].

Septa

Septa can affect LOR sensitivity in a variety of ways.
They have a significant shadowing effect on the detec-
tors, which can reduce sensitivity by 40% or more [16].
For block detector systems, they also preferentially
shadow the edges of the detectors, which may change
their relative performance. On systems which can
operate either with or without septa, it is therefore
preferable to have a separate normalisation measure-
ment for each case.

Direct Normalisation

The simplest approach to normalisation is to illumi-
nate all possible LORs with a planar or rotating line
positron source (usually ®Ge). Once an analytical cor-
rection for non-uniform radial illumination has been
applied, the normalisation coefficients are assumed to
be proportional to the inverse of the counts in each
LOR. This process is known as “direct normalisation”.
Problems with this approach include:

1. To obtain adequate statistical quality in the normali-
sation dataset, scan times are long, typically several
hours.

2. The sources used must have a very uniform activity
concentration or the resultant normalisation
coefficients will be biased.

3. The amount of scatter and its distribution in the
normalisation acquisition may be substantially dif-
ferent from that encountered in normal imaging,
particularly if the tomograph is operating in 3D
mode. This can result in bias and possibly artefacts.

To reduce normalisation scan times, variance reduc-
tion techniques similar to those devised for randoms
correction can be applied. However, in order to imple-
ment these, the normalisation coefficients must be fac-
tored into a series of components, each reflecting a
particular source of sensitivity variation. A drawback
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of this approach is that the accuracy of the normalisa-
tion is dependent on the accuracy of the model used to
describe the tomograph. However, it has the advantage
that a more intelligent treatment of the different prop-
erties of scattered and true coincidences is possible,
which can be very helpful in 3D imaging.

A Component-based Model for
Normalization

Consider a tomograph where detectors are indexed
using the coordinate system shown in Fig. 5.4. A
general expression for the activity contained in a par-
ticular LOR joining a detector i in ring u and detector j
in ring v can be written as follows:

Auivj oc (P N R 'DTuivj .n;’;}l‘/je (10)

uivj —

uivj — uivj)'ACuivj
where A, is the activity within the LOR, P , S,;,; and
R, are the prompt, scattered and random count rates
respectively, AC,;,; is the attenuation correction factor
for the LOR, DT,;, is the dead time correction factor
for the LOR and 7,;; is the normalization coefficient
for true coincidences. We will assume that R;,, AC,;,;
and DT, can be measured accurately for each LOR.
However, S,;,; cannot be measured directly and must be
calculated. Most algorithms for calculating scatter
result in a smoothly varying function that does not
include normalization effects. Where scatter is only a
small proportion of the signal (e.g., 2D imaging) this is
probably unimportant. In 3D imaging, where scatter
can make up a significant fraction of detected events,
we can modify equation (10) as follows:

S calculated

uivj true
Ayivy | Py === Ryipj | ACyip; - DT, - My (11)
uivj

t . . .
where the 17, are the normalization coefficients for

scattered coincidences.

As a first approximation, we could say that 77" =
n' . However, this leads to bias because some of the
more important normalization effects for true coinci-
dences arise because photons resulting in coincidences
on a particular LOR have a tightly constrained angle of
incidence at the detector face, a condition which is
clearly not met for scatter. Allowing n°®**" to take dif-
ferent values to n'"“* was first proposed by Ollinger
[14]. This is still an approximation, because the distrib-
ution of incidence angles and photon energies for
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scattered photons will be dependent on the source and
attenuation distribution, so that, in general, there will
be no unique value for 1;;,;”". However, at the present
time, errors in this formulation are likely to be small
compared to errors in the scatter estimate itself.

The task of normalization is to obtain values for the
Nuw . and the 1,57, It is clear from the discussion
above that there is no generally applicable model
which will yield the 7,;" and the n,,; for all tomo-
graph designs. We can, however, write down an

example expression for a block detector system:

true _ trptry,axy,ax tr ax
nuivj _guigvjbuibvjbu bv tuinguinguvmuivj (12)
where

e the ¢ are the intrinsic detector efficiency factors,
describing the random variations in detector
efficiency due to effects such as crystal non-
uniformity and variations in PMT gain

e the b" are the transaxial block profile factors, de-
scribing the systematic transaxial variation in detec-
tor efficiency with position in the block detector.
These are frequently incorporated into the &
however, it can be useful to consider them separately
if count-rate dependent effects are to be included in
the normalization process

e the b** are the axial block profile factors - they are
the relative efficiencies of each axial ring of detec-
tors. Again, these are rate dependent to a degree -
however, the primary reason for separating them
from the €1is to simplify the process of measurement
(see section on axial block profile factors below)

e the t are the time-window alignment factors

e the g" are the transaxial geometric factors, describ-
ing the relationship between LOR efficiency, photon
incidence angle and detector position within the
block. In this formulation they include the crystal
interference effect.

o the g™ are the axial geometric factors. There is one
factor for each ring combination. As with the axial block
profile factors, they are separated from their transaxial
counterparts simply for ease of measurement.

e the m are the structural misalignment factors. These
are similar to the geometric factors in that they will
usually vary with photon incidence angle.

The analytically derivable components are missing
from this model since they do not need to be measured.

The normalization coefficients for scatter may be
written as follows:

nz?sjft@r —¢ . 'bl’r.bttjbaxngt

ur-vyourTv T u

(13)
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The geometric components have been removed and the
efficiency components retained. This model makes the
assumption that scattered photons have a random dis-
tribution of incidence angles for any particular LOR
[14], and that the efficiency factors are the same for
trues and scatter. Thus, any dependence of the distribu-
tion of incidence angles for scattered photons on the
source and attenuation distribution is ignored, as are
any changes in detection efficiency with photon
energy.

Measurement of the Components

Although several components must be accounted for
in component-based normalisation, they can be
measured from just two separate scans using a rela-
tively simple protocol. A typical protocol involves
scanning a rotating rod source with nothing in the
field of view and a uniform cylindrical source. Both
scans are performed with low activity concentrations
to minimise dead time effects and the scan times are
quite long, typically several hours, to ensure adequate
counting statistics. The rod scan is used to calculate
the geometric effects while the uniform cylinder scan
is used to calculate the crystal efficiencies. The details
of how the various factors are extracted from each of
these scans are given in the following sections (Fig.
5.10).

Axial Block Profile Factors, b2 and Axial Geometric
Factors, g &

The axial block profile factors may be calculated from
an acquisition of a central uniform right cylinder
source. If scatter is not significant, the calculation is
straightforward - the total counts C, in each of the
direct plane (i.e., ring difference = 0) sinograms are
computed, and the b;* are then given by

3

b = |~ (14)

O

where C,is the mean value of the total counts in each
sinogram. In 3D imaging, the amount of scatter can be
large, and more importantly, the distribution can vary in
the axial direction. The data should therefore be scatter
corrected prior to the calculation of the b;*. A simple al-
gorithm such as fitting a Gaussian to the scatter tails is
usually sufficient for this purpose, but care must be taken
to ensure that high-frequency variations in detector
efficiencies do not bias the results [11].
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Figure 5.10.
in 3D mode on a Siemens/CTI ECAT 951. (From [15], with permission.)

(Upper row) linear grey scale covering entire dynamic range.
(Lower row) linear grey scale, zero-point set to 70% of image maximum.

(a) no scatter correction;
(b) no normalisation;

Effects of normalisation on image uniformity. Images (summed over all axial planes) from a low-variance 20 cm cylinder acquisition, performed

(e) no transaxial block profile correction;
f) no crystal interference correction;

(
(c)no correction for the radial profile; (g9) no time alignment correction;
(h

(d) no crystal efficiency correction;

The axial geometric factors g, are also computed
from cylinder data, after they have been corrected for
scatter and for the axial block profile. If C,, is the sum
of the counts in the sinogram indexed by ring u and
ring v, the corresponding axial geometric factor g, is
obtained simply by dividing C,, by the mean value of
all the C,, and inverting the result.

If the axial acceptance angle is large, it may be neces-
sary to correct for the variation in source attenuation
between sinograms corresponding to large and small
ring differences prior to calculating the g, .

An unfortunate consequence of calculating the
values of the axial components in this way is that errors
in the scatter correction give rise to bias in the normal-
isation coefficients [15].

In some implementations, the axial block profile and
geometric factors are not calculated directly. Instead,
the cylinder data are reconstructed and correction
factors are computed by comparing the counts in each
image plane with the mean for all planes. This works
well in 2D imaging, where the data used to reconstruct
any one image plane is effectively independent of those
used to reconstruct any other. In 3D imaging this is not
the case, and the use of post-reconstruction correction
factors entangles effects due to normalisation, recon-
struction and source distribution.

Intrinsic Detector Efficiencies, £,;, and Transaxial
Block Profile, b

The intrinsic detector efficiencies are again usually
computed from an acquisition of a central uniform
right cylinder source, although planar or rotating line

) fully normalised and scatter corrected.

sources can also be used. Variance reduction may be ef-
fected using the fan-sum algorithm, which is essentially
a simplified version of that used in randoms variance
reduction. In the fan-sum algorithm, the fans of LORs
emanating from each detector and defining a group A
of opposing detectors are summed (see Fig. 5.11). It is
assumed that the activity distribution intersected by
each fan is the same, and that the effect of all normali-
sation components apart from detector efficiency is
also the same for each fan. The total counts in each fan
C,; then obeys the following relation:

Cuioc z zgl/ﬁ vj or CiﬁCE uiZ‘g vj (15)

veA jeA veldg A

Detector i ﬂ

Z

Group 4

“«—

Figure 5.11.  Lines of response in the fan-sum algorithm.
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If A contains a sufficiently large number of detectors, it
can be assumed that the expression Efq%“sw‘ is also a

constant (the fan-sum approximation, attributable to 17).
The €,; are then given by the following expression:

g, ~—u (16)

where C,; is the mean value of all the fan-sums for de-
tector ring u. Note that the efficiencies are not deter-
mined using the mean value of the C,; computed over
all detector rings as the numerator in equation (16).
This avoids potential bias arising from the fact that the
mean angle of incidence of the LORs at the detector
face varies from the axial centre to the front or back of
the tomograph.

If the C,; are calculated by summing only over LORs
lying within detector ring u, the method is known as
the 2D fan-sum algorithm. This method is quite widely
implemented because of its simplicity, and because it
can be used for both 2D and 3D normalization.
However, in the 3D case it is both less accurate and less
precise than utilizing all possible LORs [18]. The accu-
racy of the fan-sum approximation also depends cru-
cially on utilizing an accurately centered source
distribution [19-21]. Other algorithms for calculating
the g,; also exist (see, for example, [17, 18,20-22]).

The ¢,; calculated in this way incorporate the
transaxial block profile factors b.. If required, they can
be extracted from the ¢g,; very simply - they are just the
mean values of the detector efficiencies calculated for
each position in the block detector:

¥

|2 N

bltu‘: Zeu,nDH’modD B (17)
n=0

where N is the number of detectors around the ring
and D is the number of detectors across a detector
block. In practice, the bl are obtained by averaging
data across such a large and evenly sampled propor-
tion of the field of view that they are effectively inde-
pendent of the source distribution. As a result, changes
in the transaxial block profile factors due to count-rate
effects can be computed directly from the emission
data, a process known as self-normalisation [24].

The Transaxial Geometric Factors g ¥

uivj

Rotating transmission sources, planar sources and
scanning line sources have all been used to generate
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data for calculating the transaxial geometric factors
[e.g., 16,22, 25, 26]. Once the data have been collected,
an analytic correction is applied to compensate for
non-uniform illumination of the LORs by the source.
The data are then corrected for variations in detector
efficiency and block profile. For systems where “crystal
interference” is not expected to be a problem, the
transaxial geometric factors can be obtained by averag-
ing the data in each sinogram over all LORs sharing a
common radius. Thus, one “radial profile” describing
the transaxial geometric effect is obtained for each
sinogram. Otherwise, the data are averaged over LORs
which share a common radius and a common position
within block detectors, resulting in D radial profiles
per sinogram, where D is the number of detectors
across a block. Each radial profile is then divided by its
mean and inverted to yield the transaxial geometric
factors.

The Time-Window Alignment Factors t,,;

As with the transaxial geometric factors, time-window
alignment factors can be derived from the data ac-
quired using rotating transmission sources, planar
sources or scanning line sources. Non-uniform illumi-
nation is compensated for, and the data are then cor-
rected for intrinsic detector efficiency, block profile
and all geometric effects. Data elements with common
block detector combinations are summed to produce
an array with one element for each block combination.
This array is then divided by the mean of all its ele-
ments and inverted to yield the ¢,

The Structural Misalignment Factors, m,;;,;

The effects of structural misalignment are not easy to
predict. They can often be determined by examining
data used for calculating the transaxial geometric
factors after normalisation for all other known com-
ponents. On the GE Advance (GE Medical Systems,
Milwaukee,WTI), this process reveals high-frequency
non-uniformities which are consistent in every sino-
gram, regardless of ring difference. These non-unifor-
mities are correlated with rotational misalignments of
the block modules, which extend for the entire length
of the tomograph. However, examination of data from
the Siemens/CTI ECAT 962 tomograph (CTI Inc.,
Knoxville, TN), which also has block modules that
extend for the entire length of the tomograph, does
not reveal these consistent non-uniformities. On the
Advance, the consistency of the non-uniformities can
be exploited in a simple manner to yield the required
correction factors. Data from a rotating line source is
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corrected for all known normalisation effects and
then summed over all ring differences, yielding a
matrix with the same dimensions as a single sino-
gram. Each element in the matrix is then divided by
the mean over all the matrix elements and inverted to
yield the m,;,.

Frequency of Measurement

The geometric factors do not normally change with
time and need only be measured once. Depending on
their nature, the misalignment factors may either be
fixed, or may need to be re-measured as components
are replaced. The time window alignment factors
should be re-measured whenever detector compo-
nents are replaced. The detector efficiency and block
profile components can change with time, as photo-
multiplier tube gains drift, and should be re-measured
routinely (usually monthly or quarterly, but possibly
more often in a less stable environment such as that
found in a mobile PET system). The rate-dependent
component of the transaxial block profile can, if nec-
essary, be determined for each individual scan using
self-normalisation.

Dead Time Correction

Definition of Dead Time

PET scanners may be regarded as a series of sub-
systems, each of which requires a minimum amount
of time to elapse between successive events for them
to be registered as separate. Since radioactive decay is
a random process, there is always a finite probability
that successive events will occur within this minimum
time, and at high count-rates, the fraction of events
falling in this category can become very significant.
The principle effect of this phenomenon is to reduce
the number of coincidence events counted by the PET
scanner, and since the effect becomes stronger as the
photon flux increases, the net result is that the linear
response of the system is compromised at high count-
rates. The parameter that characterises the counting
behaviour of the system at high event rates is known
as the “dead time”. The fractional dead time of a
system at a given count-rate is defined as the ratio of
the measured count-rate and the count-rate that
would have been obtained if the system behaved in a
linear manner.
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Sources of Dead Time

The degree to which a system suffers from dead
time and the sources of dead time within a system
are highly dependent on its design and architecture.
We now describe three sources of dead time typically
found in clinical PET scanners. A more detailed
discussion of this topic can be found in [12] and
[27].

Within a well-designed scintillation detector sub-
system, the primary factor affecting the minimum time
between separable events is the integration time, that
is, the time spent integrating charge from the photo-
multiplier tubes arising from a scintillation flash in the
detector crystal. If a photon deposits energy in the de-
tector crystal while charge is still being integrated from
the previous event (a phenomenon known as “pulse
pileup”), there are two possible outcomes. Either the
total collected charge is sufficiently great that the upper
energy level discriminator threshold is exceeded, in
which case both events will be rejected, or the two
events are treated as one, with incorrect position and
energy (Fig. 5.12). In addition to the integration time,
the detector electronics will usually have a “reset” time,
during which the sub-system is unable to accept
further events. The effects of pulse pileup in block de-
tectors have been investigated by Germano and
Hoffman [28], and in large-area PET detectors by Wear
et al [29]. To reduce the limiting effect of integration
time, several groups have implemented schemes for
fast digitisation of the detector output signal. This
signal can then be post-processed to separate over-
lapped pulses [e.g., 30].

Within the coincidence detection circuitry, there is
the possibility that more than two events might occur
during the coincidence time window. This is known as
a “multiple” coincidence, and since it is impossible to
ascertain which is the correct coincidence pair, all
events comprising the multiple coincidence are
rejected.

Processing a coincidence event also takes time,
during which no further coincidences may be accepted.
Although the number of coincidences is usually small
compared to the number of single events, dead time
arising from coincidence processing can be significant
because of the architecture of the coincidence electron-
ics. There are too many detector pairs in a PET scanner
for each to have its own coincidence circuit. To over-
come this problem, the data channels are multiplexed
into a much smaller number of shared circuits. These
shared circuits have commensurately higher data rates,
and as a result become important contributors to
overall system dead time.



106

Centroid of
energy deposition

Positron Emission Tomography

Incident

— ULD

/,_‘_—— LLD

Integrator

photon k
Scintillation
a detector Detector output
Centroid of

energy deposition

Integrator output

2incident
photons

-— ULD
Integrator [ - LLD

Scintillation

detector

Figure 5.12.

Detector output

Integrator output

Effects of pulse pileup. (a) Single incident photon interacting with scintillation detector. (b) Two photons incident within integration time, re-

sulting in pulse pileup. If the total deposited energy is greater than the upper energy level discriminator (ULD), pileup event is rejected — otherwise it is

assigned incorrect energy and position. In either case at least one event is lost.

Measurement of Dead Time

To measure the dead time behaviour for a PET scanner
as a function of count-rate, a “decaying source” experi-
ment is performed. A uniform source containing a
known quantity of a short-lived positron emitter such
as '8F or ''C is placed in the field of view of the PET
scanner. Repeated measurements of the singles, prompt
and random coincidence rates are then made as the ac-
tivity in the field of view decays. The incident count-
rate for a given level of activity in the field of view is
obtained by linear extrapolation from the count-rate
response measured when most of the activity has
decayed away and dead time effects are small. The ratio
between the incident and measured count-rate then
gives the fractional count-rate loss.

Figure 5.13a shows simulated count-rate curves for a
current generation BGO PET scanner based on a vali-
dated count-rate model [31], including the extrapolated
ideal trues rate. For a scanner operating in 3D mode,
the count losses reach 20% at approximately 10
kBg/ml. Note that the total observed count-rate (trues
+ randoms) plateaus at 2.6 X 106 counts/sec which cor-
responds to the bandwidth limit of the coincidence
electronics on this scanner. Figure 5.13b illustrates the
effect of shortening the integration time on dead time
and the resulting count loss curve. These curves
assume no loss of sensitivity to true coincidences as a

result of shortening the integration time as would be
expected if a faster scintillator, such as LSO, was used
instead of BGO.

Approaches to Dead Time Correction

The simplest method for dead time correction involves
constructing a look-up table of dead time correction
factors derived from decaying source measurements.
However, this approach does not account for spatial
variations in source distribution that may alter the rel-
ative count-rate load in the different sub-systems
within the scanner. In practice more accurate dead
time correction schemes are constructed in which,
where possible, the “live time” (= acquisition time X [1-
fractional dead time]) is measured for each sub-
system. For those sub-systems where it is impractical
to measure the live time, an analytic model incorporat-
ing knowledge of the system architecture is con-
structed and fitted to data obtained from decaying
source experiments. The decay correction scheme then
consists of applying a series of measured and modelled
correction factors to the acquired data.

The live time in a sub-system may be measured in a
variety of ways. One possibility is to implement a
second circuit parallel to the measurement circuit for
which the live time estimate is to be made. Regular
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pulses are sent down the second circuit to a counter.
However, if a signal is being processed on the measure-
ment circuit, a gate is closed on the second circuit for
the duration of the processing, preventing pulses from
reaching the counter. The number of pulses observed by
the counter is then approximately proportional to the
live time of the measurement circuit. Other schemes for
measuring dead time are described in [27].

Dead time models usually treat system dead time as
being separable into two components, described as
“paralysable” and “non-paralysable” [e.g., 31, 32, 33].
The paralysable component describes the situation
where the system is unable to process events for a fixed
amount of time 7 after each event, regardless of
whether or not the system is dead. For example, if an
event arrives while the system is dead due to a preced-

Activity (kBg/ml)

ing event, the system remains dead for a further 7
seconds from the time of arrival of the second event.
Thus, at a sufficiently high count-rate, the system
becomes saturated, and the recorded count-rate will
actually decrease as the incident count-rate increases.
The dead time behaviour of the detector sub-system
has a substantial paralysing component, because every
time a photon interacts with the crystal, more light is
deposited, which must decay away before the detector
can process the next event. If the time-of-arrival distri-
bution of the events obeys Poisson statistics, the rela-
tionship between the measured event rate m, the actual
event rate n, and the dead time resulting from a single
event 7is given by

-ntT

m=ne (18)
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In the non-paralysing case, the system is again ren-
dered “dead” for a time 7 after each event, but while the
system is dead, further events have no effect. The dead
time behaviour of the coincidence processing sub-
system is essentially non-paralysing, because events ar-
riving while a coincidence is being processed are
simply ignored. For such systems, the measured count-
rate tends asymptotically to a limiting value of 7' as
the actual count-rate increases, and the relationship
between m, n and 7is given by

m=—" (19)
1-n7t

A more detailed treatment of this topic may be found
in [34]. The two components can be present in the
system in series and this has been shown to be the case
for PET systems (see Chapter 3).

The corrections discussed so far address factors
mainly related to detector sub-system performance, in-
cluding timing resolution, detector uniformity and
count-rate performance. In the following sections, we
discuss factors whose magnitude is also affected by
aspects of tomograph performance but which arise
from measurement errors, including those due to
photon interactions in the body.

Scatter Correction

Characteristics of Scattered Radiation

When a positron annihilates in the body, there is a rea-
sonable chance that one or both of the annihilation
photons will scatter in the body or in the detector
itself. At the energy of annihilation photons (0.511
MeV), the most likely type of interaction is Compton
scattering in which the photon transfers some of its
energy to loosely bound electrons and deviates from its
initial path [35]. Since the coincidence LOR formed
after one or both photons undergo Compton scattering
is no longer colinear with the site of annihilation (Fig.
5.1), such events degrade the PET measurement.
Furthermore, the Compton equation that relates the
photon energy before (E) and after scattering (E,.) to
the scattering angle (€2) tells us that an annihilation
photon may scatter through as much as 45 degrees and
lose only 115 keV of its energy to the recoil electron:

E, = E (20)

) 1+ (1—cosQ)

2
mec
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where m,c? is the resting energy of the electron before
scattering. Because of the poor energy resolution of PET
scanners, particularly BGO scanners, a coincidence event
involving the scattered photon in this example would
most likely be accepted within the energy window, which
is typically set between 350 and 650 keV. Thus, scattered
coincidences are not easily discriminated from unscat-
tered coincidences based on their energy and may
significantly degrade both image quality (due to loss of
contrast) and quantitative accuracy.

The proportion of accepted coincidences which have
undergone Compton scattering is referred to as the
scatter fraction and its magnitude depends on several
factors, including the size and density of the scattering
medium, the geometry of the PET scanner and the
width of the energy acceptance window (which is
mainly determined by the energy resolution of the de-
tectors). The scatter fraction typically ranges from
about 15% in a ring tomograph with slice-defining
septa (2D mode, or septa extended) to 40% or more for
the same tomograph operated without slice-defining
septa (3D mode, or septa retracted). Indeed, a major
function of slice-defining septa is to minimise scatter
by preventing photons which scatter out of the plane
defined by a ring of detectors from being detected in
an adjacent detector ring and forming an oblique LOR.

Although the underlying physics describing
Compton scattering of annihilation photons is reason-
ably complex, there are several characteristics of the
resultant LORs which can be exploited to estimate their
distribution and potentially correct the measured data.
For example:

e LORs recorded outside the object boundary can
only be explained by scatter in the object (assuming
that randoms have been subtracted) since LORs
arising from unscattered trues must be collinear
with the point of annihilation,

e The scatter distribution is very broad (i.e., it con-
tains mainly low spatial frequencies) and relatively
featureless,

e The portion of the coincidence energy spectrum
below the photopeak has a large (but not exclusive)
contribution from scattered events, and

e Scattered coincidences that fall within the photo-
peak window are mainly due to photons that have
only scattered once (Fig. 5.14).

These various characteristics have given rise to a wide
variety of approaches for estimating and correcting
scattered coincidences in PET data. They can be
broadly divided into four categories: empirical ap-
proaches, methods based on two or more energy
windows, convolution (or, equivalently, deconvolution)
methods and methods which model the scatter distrib-
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ution during forward projection based on knowledge
of tissue densities (or equivalently attenuation
coefficients) in the body and an initial estimate of the
scatter-free image.

Empirical Scatter Corrections
Fitting the Scatter Tails

Perhaps the simplest approach to scatter correction is
to fit an analytical function to the scatter tails outside
the object in projection space. For example, a second
order polynomial [3] and a 1D Gaussian [36] have both
been used to fit the scatter tails. This approach is based
on the observations that coincidences recorded outside
the object boundary are entirely due to scatter (assum-
ing that randoms have previously been subtracted) and
the scatter distribution contains mainly low spatial fre-
quencies.

The method is effective for neurological PET studies
because it guarantees that the scatter recorded outside
the object is reduced to approximately zero and it in-
herently corrects for scatter arising from activity
outside the axial field of view, something some of the
more complex methods are unable to do. It also has the
advantages of being simple to implement and compu-
tationally very efficient. The main drawback of this ap-
proach is that the scatter distribution is not always well
approximated by a smooth analytical function, partic-
ularly in the thorax where tissue density is heteroge-
nous, which may lead to over- or under-subtraction. A
further problem in the thorax is that the body occupies
a large portion of the field of view leaving relatively

Energy (keV)

small scatter tails to fit. This reduces the accuracy of
the fit and may lead to over- or under-subtraction of
scatter in the centre of the body.

A Direct Measurement Technique

Another approach takes advantage of differences
between the scatter distribution with septa extended
and the scatter distribution with septa retracted [37].
This method is only applicable to PET scanners with
retractable septa and it was intended primarily as a
means of characterising scatter in 3D PET by direct
measurement. However, it can also be used as an effec-
tive method of scatter correction. The first step is to
make a measurement of the same object with septa ex-
tended and with septa retracted (in 3D mode). After
scaling the septa extended projections to account for
differences in detection efficiency due to septa shadow-
ing, they are subtracted from the projections corre-
sponding to polar angle 6 = Oco in the 3D dataset to
yield a measurement of the scatter contribution to the
direct plane data. The scatter contribution to oblique
planes is then estimated by interpolation of the direct
plane scatter corresponding to the detector rings from
which the oblique plane was formed. The assumption
in this last step is that the scatter distribution does not
vary markedly with changes in polar angle up to the
maximum polar angle allowed. This assumption may
break down for scanners with a large axial field of view
and a large acceptance angle for oblique sinograms.
This method has the advantages that it makes few as-
sumptions, it is relatively simple to implement and it
inherently corrects for scatter arising from activity
outside the field of view. It also enables direct measure-
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ment of the scatter distribution in complex objects
which may be used to obtain a better understanding of
scattering in 3D PET or to validate other methods of
scatter correction. The main drawbacks are that it re-
quires an additional measurement which may be im-
practical (for example, in dynamic studies where the
scatter distribution may change throughout the study)
and that it is only applicable to PET scanners with re-
tractable septa.

A related scheme has been designed for scanners
with coarse septa - in this method, coincidence data
are acquired for lines of response that intersect the
septa and thus cannot contain trues. These so-called
“shady” lines of response are assumed to provide an
estimate of the scatter that can then be subtracted
from the “sunny” lines of response where the septa
are not intersected [38]. This method has the advan-
tage that the scatter estimate is acquired contempo-
raneously with the data containing the true signal,
but again relies on the assumption that the scatter
distribution does not change significantly with polar
angle.

Multiple Energy Window Techniques

Multiple energy window techniques make use of the
observations that (1) a greater proportion of Compton
scattered events are recorded in the region of the single
photon energy spectrum below the photopeak com-
pared with those recorded near the photopeak and (2)
there exists a critical energy above which only unscat-
tered photons are recorded [39] (Fig. 5.14). Thus, data
recorded in energy windows set below or above the
photopeak window, or both, can be used to derive an
estimate of the scatter contribution within the photo-
peak window. Such techniques have been extensively
employed and investigated for single photon emission
computed tomography (SPECT) (40). Interest in multi-
ple energy window approaches for PET was stimulated
by two advances: the development of energy lookup
tables and threshold setting for individual crystals in
the block detector leading to improved energy resolu-
tion, and improvements in the electronics for NaI(TI)
PET systems that took advantage of the intrinsically
high energy resolution of NaI(TI).

Dual Energy Window Methods

There have been two distinct approaches to the use of
dual energy windows for scatter estimation. The dual
energy window (DEW) method uses an energy window
set below the photopeak and abutting it [41] (Fig.
5.15a) while the estimation of trues method (ETM)
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uses an energy window whose lower level discrimina-
tor is set above 511 keV and which overlaps the upper
portion of the photopeak window [42] (Fig. 5.15b).
These methods both make use of measurements in the
auxiliary energy window to estimate the scatter contri-
bution to the photopeak.

In the DEW method, the unscattered events in the
photopeak energy window, CZ_, are defined in terms
of the total coincidence events recorded in the photo-
peak and lower energy windows, C** and C" respec-
tively, and the ratios R, and R, as follows:

ow _ CPWRSC _ Clw
unsc R _ R

sc unsc

(1)

where R,, is the ratio of scattered events (C" /C?” ) and
R,,. is the ratio of unscattered events (C.Y.. /CE".).
These ratios were determined experimentally using line
and point sources and by Monte Carlo simulation. It was
observed that R,,, was almost constant across the
transaxial field of view, whereas R,. was not and both
R, and R, exhibited nonuniformity in the axial direc-
tion, which could be explained by the block structure of
the detector rings used in their tomograph [41].
Despite the nonuniformity of these ratios, they were
essentially independent of object size and shape in the
limited range of phantoms studied. Using this method,
the activity concentration values in a multicompart-
ment phantom were recovered to within 10% of their
correct levels. However, some studies suggest that this
method may be prone to bias when applied to more
complex source distributions or objects with nonuni-
form density [43, 44].

The ETM assumes that coincidences recorded above
a certain energy threshold include only unscattered
events. This is a reasonable approximation in the case
of a PET scanner with energy resolution of approxi-
mately 20% when the lower energy discriminator is
placed above 511 keV. In the original implementation
of ETM, an auxiliary window was set which accepts
coincidences between 550 and 650 keV. This upper
window overlaps with the main photopeak window
which typically accepts coincidences between 350 and
650 keV. Data recorded in the upper window are
scaled to match the total true coincidences recorded
in the photopeak window. Subtracting the scaled
upper window data from the photopeak data yields
an estimate of the scatter contribution to the photo-
peak. This estimate is smoothed and subtracted from
the measurement made in the photopeak energy
window.

The main advantage of the dual energy window
methods is that they take into account scatter arising
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Energy spectra showing the window settings typically used in four energy window based methods: (a) dual energy window (DEW) method [41],

(b) estimation of trues method (ETM) [42]), (c) triple energy window (TEW) method [45] and (d) multispectral method (indicating energy ranges of first 3

windows) [46].

from activity beyond the axial field of view. These
methods should also be well suited to tomographs with
better energy resolution than is typically achieved with
BGO, such as those based on Nal(T1), LSO and GSO de-
tectors. This was demonstrated in the case of Nal(TI)
volume PET scanners where an adaptation of the ETM
method performed well for a range of source distribu-
tions [44]. The main drawback is that scatter estimates
are based on Poisson measurements which are noisy,
particularly when derived from the early frames of a
dynamic study and other count limited acquisitions.
For this reason, scatter estimates derived from the aux-
iliary energy window are normally smoothed consider-
ably before subtraction from the photopeak data. This
may not be a major drawback since the scatter distrib-
ution typically contains mainly low spatial frequency
components.

Multiple Energy Window Methods

The triple energy window (TEW) method is a straight-
forward extension of DEW which introduces a
modification factor that accounts for source size and dis-
tribution dependencies in R, [45].Under the assumption
that R, >> R, the TEW method can be written

Clw
uw _ cuw _ ot
unsc ( R ]

sC
R,
where M = obj
Rculib

R,y and R, are the ratios of counts in the two lower
energy windows for the object being imaged and a

(22)
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calibration phantom respectively. The parameter b is a
relaxation factor that controls the amount of feedback
of the modification term into the correction and when
b = 0, the TEW technique becomes the DEW tech-
nique. The energy window used in the C"/R, term
may be either of the two lower energy windows (Fig.
5.15c). In the implementation of Shao et al,
the lower energy windows spanned the energies
385-450 keV and 350-450 keV, the calibration
phantom was a 20 cm diameter uniform cylinder and
the relaxation factor was 0.5 [45]. As in the DEW
technique, the ratios R,; and R.;; and the
modification factor M are calculated for each sino-
gram element. The TEW method has many of the
same advantages and drawbacks of the dual energy
methods. However, it improves on the DEW method in
particular by reducing the sensitivty of the scatter cor-
rection to variations in source distribution and size.

In the methods discussed so far, a relatively narrow
energy window is set over the photopeak and events
recorded below the lower energy threshold are
assumed to be unwanted events, mainly due to scatter
in the object being imaged. However, when small dis-
crete detectors are used in high resolution tomographs,
such as those designed for animal imaging studies, a
large proportion of events recorded in the low energy
range are due to scattering in the detectors and these
are potentially useful events.

Bentourkia et al demonstrated that with careful char-
acterisation and correction of scatter in multiple energy
windows, it is possible to extend the useful energy range
for acceptance of coincidences without degrading the
image [46]. Specifically, they showed by Monte Carlo
simulation and measurements on a PET simulator that
up to 80% of events recorded above a threshold of 129
keV are either trues or detector scatters and, therefore,
potentially useful for image formation. The approach de-
veloped was to correct for object scatter using position-
dependent convolution subtraction while detector scatter
is handled by nonstationary restoration. First, they care-
fully characterised the slope and amplitude of scatter
components as a function of energy and position by
measuring coincidence data in 16 X 16 energy window
pairs. They summed the coincidence data into energy
windows which had a common upper energy threshold
of 645 keV and a variable lower energy threshold span-
ning the range 129 keV to 516 keV (Fig. 5.15d). Count
profiles derived from these energy windows were fitted
with multi-exponential functions. During imaging, coin-
cidence data are recorded in the same energy windows
and the scatter subtraction-restoration is effected using:

Puse ={Py, ®(0-F, )| ® R, (23)

unsc
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where P, are the measured projection data, F, is the
nonstationary object scatter kernel and R, is the non-
stationary restoration kernel that corrects for detector
scatter. R; is defined as:

Rd =1 M (24)

fg+%(fd)

where f, and f; are the fractions of geometric and
detector scatter components and S and 3! are the
forward and inverse Fourier transforms respectively.
The multiple energy window approach is not
straightforward to implement as it requires specialised
hardware and extensive measurements to characterise
the scatter components. However, the technique makes
better use of coincidence data measured over a wider
energy range than in conventional imaging, resulting
in an effective increase in sensitivity of approximately
60%. The method is particularly well suited to high
resolution tomographs with small discrete detectors.

Convolution and Deconvolution
Approaches

Whereas the energy based methods derive information
about the scatter distribution from auxiliary measure-
ments, convolution based methods model it with an in-
tegral transformation of the projections recorded in
the photopeak window. Initially, the method was devel-
oped for a ring type PET scanner operated in 2D mode
[47] and the projected scatter distribution in a given
slice took the following analytical form:

P(s)= i P (t)n(s—t,t)dt (25)

where p,,.. is the one dimensional projection of the
true activity distribution and h(s,x) is the scatter con-
tribution to radial position s (along the projection) due
to a source positioned at x. If & is spatially invariant,
equation (26) is a straightforward convolution integral.
In the initial implementation, however, the scatter re-
sponse was assumed to be position dependent and de-
scribed by the following function:

h(s,x) = A(x)e_b(x)‘s‘ + C(x) (26)

The scatter response was measured using a line source
positioned at regular intervals across the scanner’s field
of view and the parameters A, b and C corresponding to
each position were determined by least-squares fitting.
The model described by equation (26) does not
provide a means for affecting scatter correction since
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Punsc cannot be measured. However, we can substitute
the measured projection data, p,,, for p,,... in equation
(26) and the model still holds to a reasonable degree of
accuracy. Thus, the method consists of convolving the
measured projection data, line by line (i.e., view angle
by view angle), with an experimentally determined
scatter function and then subtracting the resulting
scatter estimate from the measured projections.

The method is sufficiently accurate for 2D slice-ori-
ented scanners but does not take into account scatter-
ing between adjacent planes which is a significant
component in 3D PET. The method was extended to
take into account cross-plane scattering for both large
area PET scanners [48] and multi-ring scanners oper-
ated with the septa retracted [49]. This was done by
defining a two dimensional scatter response function
and performing a two dimensional convolution operat-
ing on the projections:

mec(s,z) =P, (s,z) - k{Pu"n’slc (s,z) ® h(s,z)} (27)

Here, the projection data and the scatter response func-
tion are defined in terms of the radial (s) and axial (z)
position variables and ® denotes the two dimensional
convolution operator. The scatter correction described
by equation (28) is written as an iterative improvement
method which was suggested by the developers of both
implementations of the 2D method [49, 49] and is
equally applicable to the 1D case. This overcomes the
problem that the scatter model is defined in terms of
an unobservable quantity, p,,., by substituting it with
the previous estimate of the scatter-free data. As in the
1D method, the parameters that define the scatter re-
sponse function are derived from point or line source
measurements made under carefully controlled scat-
tering conditions.

This approach has been demonstrated to perform
reliably in neurological studies where the scattering
medium is relatively homogeneous, providing results
comparable to energy window based methods [50].
Indeed, it has an advantage in dynamic studies since
the scatter estimate is essentially noise-free and, there-
fore, does not contribute additional noise to the
scatter-corrected projections. However, the assump-
tions break down in both the SPECT and PET cases
when more complex objects are studied, such as the
thorax [37, 51, 52]. Also, the method does not take
account of scatter arising from activity outside the
scanners field of view. The possibility of incorporating
information derived from transmission measurements
to determine object/position dependent scatter frac-
tions has been suggested (49), similar to an approach

113

that was successfully applied in SPECT (53, 54).
However, this has not been fully explored in the PET
case. Alternative and potentially more accurate ap-
proaches that take into account information derived
from both emission and transmission data are de-
scribed in the following sections.

Simulation-based Scatter Correction

Since the physics of photon interactions in matter is
well understood, it is possible to model these processes
and estimate the scatter contribution to projections
given an accurate map of attenuation coefficients in the
scattering medium and an initial estimate of the
scatter-free radioactivity distribution. The scatter can
be estimated analytically or numerically (for example,
using Monte Carlo techniques).

Analytical Simulation

Consider first the analytical approach. If we make the as-
sumption that only one of the annihilation photons
forming a coincidence accepted within the photopeak
undergoes a Compton interaction, the processes involved
in forming such coincidences can be readily modelled.
This assumption has been shown to be reasonable as 75
to 80% of scattered coincidences arise from single scat-
tered events in a ring tomograph with a 10 cm axial field
of view [39, 55]. With reference to Fig. 5.16, the scatter

Figure 5.16. Geometry of the single scattering model used in simulation
based scatter correction.
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contribution to the LOR formed by detectors A and B can
be calculated by considering:

1. Attenuation of the annihilation pair along the un-
scattered path s; which can be determined by ray
tracing through the reconstructed attenuation
volume,

2. The integrated emitter intensity along the path s,
which can be obtained from an initial estimate of
the scatter-free radioactivity distribution,

3. The probability of scattering at point S through
angle Q towards detector B which can be deter-
mined by integrating the Klein-Nishina formula,

4. Attenuation of the scattered photon along the path
s, towards detector B, and

5. The efficiencies of detectors A and B as a function of
incidence angle and photon energy. These should
take into account the solid angle subtended by the
detectors, their stopping power, energy resolution
and discriminator settings.

Using the formulation of Watson et al, the single scatter
coincidence rate at LOR AB due to one of the annihila-
tion photons having scattered at S is calculated by inte-
grating over the volume V, [56, 57]:

0,450 udo, ¢
PAB — dV ASY BS c IA +IB (28)
ar =1, {mR,ﬁngs c.dQ\ )
where
—[?pdﬁ?y'ds] A
I*=¢g,5epe \°  ° ds,
A B §
7[J',u'ds+jyds]B
P =¢)sepe \° ¢ Ads
S

A is the emitter intensity,

U is the attenuation coefficient,

0,5 and Oy are the geometric cross sections for detec-
tors A and B as seen from S,

R,s and Ry, are their respective distances from the
scatter point,

€45 and g are their respective efficiencies for photons
arriving from the point S,

o, is the Compton scattering cross-section calculated
from the Klein-Nishina formula, and

€Q is the scattering solid angle.

The primed variables correspond to the Compton
scattered photon and are evaluated at the scattered
photon's energy, whereas unprimed variables are eval-
uated at 511 keV. Note that the annihilation leading to
the scatter event depicted in Fig. 5.16 could just as
easily have occurred along path SB as along path AS.
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This explains the final term in equation (29) which cal-
culates the attenuated unscattered emitter intensities
for both possibilities (i.e., I* and I®).

Ollinger developed a similar formulation that de-
scribes the single scatter contribution to each LOR
[58]. However, he extended the technique by extrapo-
lating from the distribution of single scattered coinci-
dences to a distribution that includes both single
scatters and multiple scatters. This was done by con-
volving the single scatter distribution with a one di-
mensional Gaussian kernel. Ollinger also took into
account scatter arising from activity outside the axial
field of view in his implementation by extrapolating
the initial scatter-free activity estimate and including
detector side shielding in his forward projection
model.

The methods of Ollinger and Watson et al yield esti-
mates of the scatter distribution that are reasonably ac-
curate under most circumstances (Fig. 5.17), although
there is some evidence that problems can arise in clini-
cal studies of obese patients [59]. However, they are
also computationally demanding if the volume is inte-
grated over every possible scattering point and the
scatter contribution calculated for every LOR. A more
efficient approach, which has been demonstrated to be
practical for clinical PET, is to sample the object
volume on a regular grid of sparsely spaced scattering
points and to calculate the scatter for only a subset of
all LORs [56, 57]. The full scatter distribution is then
interpolated from the calculated LORs. This approach
results in little bias due to the broad scatter distribu-
tion in 3D PET.

The main advantage of the model-based methods of
scatter correction is that they make use of well under-
stood physical principles to produce accurate scatter
estimates. Their main drawbacks are the complexity of
implementation, their computational demand and the
assumptions required to model scatter arising from ac-
tivity outside the axial field of view.

Monte Carlo Simulation

Monte Carlo methods are frequently used to evaluate
scatter correction techniques since this approach
allows separation of the simulated scattered and un-
scattered contributions to the projections which is not
possible using phantom experiments. Furthermore,
many Monte Carlo codes are able to simulate the
scatter distribution for any specified emission and at-
tenuation distribution and several different PET
scanner geometries.

As well as providing a powerful method of evaluat-
ing the accuracy of scatter correction techniques,
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(a) Reconstructed transaxial slice of the Utah phantom after simulation based scatter correction. (b) Count profiles through the image in (a) at the

level indicated. (From [57], with kind permission from Kluwer Academic Publishers).

Monte Carlo simulation can itself be used to perform
scatter correction [60, 61]. Like analytical simulation,
the estimation of scatter by Monte Carlo techniques is
based on well understood physical principles that
govern photon interactions in matter. Where this ap-
proach differs is that, rather than calculating the scatter
contribution to a given LOR, photon pairs are gener-
ated at their point of origin (defined by the initial esti-
mate of the activity distribution) with random
orientation and “tracked” as they traverse through the
scattering medium which may be defined by the atten-
uation map. Tracked photons have a random chance of
interaction in each voxel they traverse, with the type
and likelihood of interaction being determined by the
same equations as those used in analytical scatter sim-
ulation.

Most standard codes take too long to compute the
scatter distribution with sufficient counting statistics
to be practical for routine scatter correction, even
when executed on the most powerful computers cur-
rently available. This is because a large proportion of
tracked photons may never contribute to the projec-
tions either because they undergo photoelectric ab-
sorption in the object or because they emerge from the
object with an energy or a trajectory that does not
permit detection. However, recent work demonstrated
that dramatic improvements can be made in the com-
putational efficiency of Monte Carlo simulation by
making reasonable approximations and using imple-
mentation techniques that don't compromise the accu-

racy of scatter estimation [61, 62]. With such improve-
ments, the Monte Carlo method is potentially a very
accurate and practical approach to scatter correction
in PET.

Implementation of Simulation Based Scatter
Correction

There are five main steps which are common to the
simulation based scatter correction methods, including
analytical and Monte Carlo approaches. These are:

1. Reconstruct the attenuation volume: This is nor-
mally done using conventional 2D reconstruction of
the blank and transmission data. However, any
method that produces an accurate map of linear at-
tenuation coefficients (i, in units cm™) in the body
can be used, including appropriately registered and
scaled CT data if available.

2. Reconstruct an initial estimate of the emission
volume: Different approaches have been adopted for
this step. Watson et al use 3D reconstruction of the
measured projections which include scatter [57],
while Ollinger determines the initial emission esti-
mate iteratively from direct plane data only [58]. He
showed that the process converges rapidly and re-
quires only a small number of iterations. In the
Monte Carlo implementation due to Holdsworth et
al [61], the initial estimate is obtained by perform-
ing the analytical scatter simulation technique (57),
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as implemented on the EXACT HR+ scanner (CTI
PET Systems, Knoxville, TN).

3. Estimate the scatter contribution to projections:
This is the main step which involves estimating the
scatter contributing to direct and oblique emission
sinograms as described above for the various simu-
lation techniques. Each of the implementations de-
scribed includes some means of estimating the
scatter contribution due to activity outside the field
of view.

4. Scale the scatter estimate: Here the scatter distribu-
tion is scaled globally to ensure a good fit between
the estimated scatter and the measured projections
in regions not sampled by the object (i.e., regions
where only scatter is present). Alternatively, if the
detection system is modelled accurately including
detector efficiencies and energy response, it may be
possible to compute a scatter distribution which is
intrinsically scaled relative to the measured projec-
tions as in a more recent implementation by Watson
[56]. In the Monte Carlo approach, the total coinci-
dences in each projection can be simulated as well
as the scatter coincidences. Thus, the scaling step
simply involves determining the scale factor that
yields the same total coincidences in both the esti-
mated and measured projections. This global scale
factor is less prone to noise in low count studies
than the factor calculated using the scatter tails.

5. Correct 3D emission projections for scatter: The
final step is to subtract the estimated scatter from
direct and oblique sinograms. In some cases, the
scatter estimate is smoothed before subtraction
without loss of accuracy since the scatter distribu-
tion contains only low spatial frequency compo-
nents.

Attenuation Correction

Definition of the Problem

A coincidence event requires the simultaneous detec-
tion of both photons arising from the annihilation of a
positron. If either photon is absorbed within the body
or scattered out of the field of view, a coincidence will
not occur. The probability of detection, therefore,
depends on the combined path of both photons. We
saw in Chapter 2 that, since the total path length is the
same for all sources lying on the line that joins two de-
tectors, the probability of attenuation is the same for
all such sources, independent of source position.

Positron Emission Tomography

This is true even if the source is positioned outside
the body. In this case, the probability terms are ¢ and
e*P for the near and far detectors respectively (where D
is the total thickness of the body), and the number of
detected coincidences is:

C=Cye’e "’ =C e P (29)

which is the same as that obtained for an internal
source. Therefore, the problem of correcting for photon
attenuation in the body is that of determining the
probability of attenuation for all sources lying along a
particular line of response.

Measured Attenuation Correction

The probability of attenuation for each line of response
can be determined by comparing the count rate from
an external (transmission) source with the unattenu-
ated count rate from the same source when the patient
is not in the tomograph, referred to as a blank scan.
Transmission measurements are routinely performed
in PET to correct for attenuation of the annihilation
photons within the body. These measurements can be
performed using several different source and detector
configurations and these are discussed in the following
sections.

Attenuation Correction Using Coincidence
Transmission Data

The most common approach has been to use a long-
lived positron emitter, such as *Ge-*3Ga (*®*Ga is the
positron emitter and 68Ge is its parent isotope with a
half-life of 271 days), and measure the annihilation
photons in coincidence as they pass through the body
from an external source. A transmission scan typically
takes 2-10 minutes to acquire and may be performed
before or after the PET tracer is administered.
However, it is not uncommon to perform transmission
scans after tracer administration, nor is it uncommon
to acquire transmission scans of much shorter dura-
tion for certain types of clinical studies.

In early PET scanner designs, the most common
transmission source arrangement was a ring or multi-
ple rings containing positron emitter. The rings sur-
rounded the patient and were retracted behind lead
shielding at the back of the scanner when not in use.
When extended into the field of view, coincidences are
recorded by detecting annihilation photons arising
from anywhere on the ring(s), with one photon being
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detected on the near side and the other being detected
on the far side after traversing the patient's body.
Despite the relatively high energy of annihilation
photons (511 keV), the likelihood of an annihilation
photon passing through the body unattenuated can be
very low. For example, for lines of response which pass
through the long axis of the shoulders, typically only 1
photon in 50 may reach the far detector. As a result,
transmission (and emission) count-rates for these lines
of response are very low. Therefore, transmission mea-
surements with this source-detector geometry are a
major source of noise in reconstructed PET images
[63-66].

In later generation PET scanners of the ring detector
design, a more common transmission source geometry
is the rotating rod source (Fig. 5.18a) [67]. This ap-
proach has the potential to provide improved signal to
noise ratio (SNR) compared with ring sources due to
reduced random and scatter coincidence fractions
[68-70]. With this source geometry, the contribution of
random and scattered coincidences to the transmission
measurement can be further reduced using sinogram
windowing [68, 71]. This is a technique in which the
acquisition sinogram is electronically masked to dis-
tinguish those lines of response that are approximately
collinear with the rod source at a given moment during
its orbit from those that are not. The events recorded
by lines of response that are not collinear with the rod
source are rejected, as these mostly comprise scattered
and random coincidences.

To maintain reasonable counting statistics in the
transmission measurement, radioactivity in the rods
must be more concentrated than in a ring source. This
produces very high single event rates in the detectors
nearest to the source, resulting in large dead time
losses [12]. Therefore, the radioactivity is normally dis-
tributed among more than one rod source - typically
two or three are used. Sinogram windowing (or “rod
windowing”) can be applied to one or more rotating
rods, provided the exact location of each rod source is
known at all times.

Sinogram windowing also has the potential to enable
the transmission study to be performed after tracer ad-
ministration [72-75]. The transmission scan may be
performed either before the emission study (during the
tracer uptake period) or after the emission scan. In
either case, the time the patient spends on the scanning
bed is reduced compared with the typical pre-injection
transmission protocol, and patient throughput may be
increased.

Furthermore, the feasibility of performing simulta-
neous emission and transmission scans using sino-
gram windowing has been demonstrated. For example,
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Thompson et al [76,77] used two point sources of ®Ge,
one for each detector ring, encapsulated in lead sub-
collimators. The lead collimators were designed to
shape the photon beams into a fan within the imaging
plane, corresponding to the edge of the transaxial field
of view. Sinogram windowing was applied to separate
those lines of response which are collinear with the
transmission source (primarily transmission events)
from those that are far from collinear (primarily emis-
sion events). A rejection band on either side of the
transmission window was also applied, in which
neither emission nor transmission coincidences were
recorded. This combination of physical and electronic
collimation is similar to the approach used with the
scanning line source in SPECT [78]. An alternative ap-
proach uses conventional sinogram windowing of ro-
tating rod sources, but with a substantially reduced
amount of radioactivity in the rod sources [79, 80]. The
reduced source activity is to minimise their impact on
dead time and the randoms contribution to the emis-
sion data. It was demonstrated using this approach,
that the noise equivalent count-rate (NEC) of the emis-
sion data acquired at the same time as transmission
data is only 10 to 15% lower than that of an equivalent
emission source imaged using a separate emission-
transmission scan protocol [79].

The use of simultaneous emission and transmission
scanning has been applied to whole body PET imaging
and, when combined with segmentation of attenuation
images and iterative reconstruction, yields high quality
diagnostic scans in a practical time frame [79].
However, the impact of transmission sources on the
emission data is not negligible and results in bias
which may not be acceptable for quantitative analyses,
particularly when estimating tracer uptake in small
tumours [81]. A more common approach in this clini-
cal setting is to interleave short duration (2-4 minutes)
emission and transmission scans as the patient couch
is translated through the PET scanner gantry in dis-
crete increments. Both approaches result in transmis-
sion data with poor SNR and some form of post
reconstruction image processing, such as segmenta-
tion, is required to produce acceptable data for attenua-
tion correction. Such post-processing methods are
discussed below.

Attenuation Correction Using Singles
Transmission Data

In tomographs with a dual 2D to 3D imaging capabil-
ity, the slice-defining septa can be extended during
transmission scanning and the acquisition performed
in 2D mode using one of the coincidence detection ap-
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scanner.
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proaches described above. However, in a scanner with
3D capability only, coincidence transmission scanning
is impractical. This is because in 3D the near detector
is exposed to an extremely high single photon flux
arising from the transmission source. The source activ-
ity can not be reduced sufficiently without compromis-
ing the quality of the transmission data acquired on
the far detector. The exception to this is when a fast de-
tector with dedicated electronics is used as the near
side transmission detector and rotates with the source
[82, 83]. This promising approach is currently under
development.

An alternative approach is to employ a point trans-
mission source and shield the near detector from it, as
suggested by Derenzo et al (Fig. 5.18b) [84]. Data are
acquired with the far detector in “singles” rather than
coincidence mode [85-87]. The shielded point source
can be rotated around the patient and translated along
the axial length of the scanner (or rotated along a
spiral path) and, provided that the source location is
known at all times, LORs can be formed between the
source position and the position of the single photon
event on the far detector. As with coincidence trans-
mission studies, a separate blank scan is performed
and the event rates compared with those recorded
during the transmission scan along common LORs to
determine the attenuation factors.

Use of single photon imaging results in better count-
ing statistics in the transmission data than does coinci-
dence imaging for two reasons. First, single photon
counting is inherently more efficient than coincidence
counting since the count-rate is dependent only on the
efficiency of a single detector, whereas the count-rate
in coincidence counting is dependent on the combined
efficiencies of two detectors which are multiplied, re-
sulting in an overall decrease in efficiency. Second,
since the near detector is shielded from the point
source, the activity can be substantially increased
without severely impacting on dead time.

However, there are also drawbacks with the use of
single photon transmission scanning. In coincidence
transmission scanning, rod windowing substantially
reduces the scatter contribution to the measurement
and the resulting attenuation coefficients are very close
to those expected for a narrow beam geometry. In the
singles case, windowing cannot be employed since any
detected photon could have originated from the
source. Therefore, a significant scatter component may
be included in the measured data and the attenuation
coefficients are considered broad beam. In the case of
Nal(TIl) volume PET scanners, this problem is offset by
the relatively good energy resolution of NaI(Tl) com-
pared with BGO PET scanners, which allows for better
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scatter rejection by energy discrimination. However, a
further problem is that the transmission source nor-
mally emits photons at a different energy than the
energy of annihilation photons. In the case of '*’Cs, the
photon energy is 662 keV.

The problems of scaling the attenuation coefficients
to those corresponding to 511 keV photons and a
narrow beam geometry are normally addressed by seg-
menting the reconstructed attenuation image into a
small number of tissues and assigning coefficients that
are assumed to be known a priori (Fig. 5.19).
Uncertainties associated with such assumptions are
discussed below.

Attenuation Correction Using CT Data

With the advent of dual modality scanners capable of
acquiring PET and CT data during the same imaging
session, there has been considerable effort put into de-
veloping methods to make use of CT data for PET at-
tenuation correction (Fig. 5.18c). The potential
advantages of this approach arise because the statisti-
cal quality and spatial resolution of CT data is far supe-
rior to conventional transmission data used in PET,
and because a whole body CT can be acquired in less
than 1 minute using current generation multi-slice
spiral scanners (compared to approximately 20
minutes for conventional transmission scanning), re-
sulting in a significant reduction in scan time [88].

However, the fact that CT scanning is so much faster
than PET scanning is also a potential pitfall, because in
CT a snapshot of respiratory motion is obtained, rather
than a time-averaged image. Without due care, this can
lead to substantial artefacts in the reconstructed
images [89]. A further problem arises because the
transaxial field of view for CT scanners may be
insufficient to accommodate the arms of the patient (if
they are held by the sides), resulting in missing data.
Artefacts are also caused by misregistration between
the CT and PET data when the patient moves between
scans - for example, positioning the arms above the
head is not well tolerated by many patients and dis-
comfort increases the likelihood of movement.

More minor problems include the fact that u values
do not scale linearly from the low energy of X-rays (ap-
proximately 60 keV) to the relatively high energy of an-
nihilation photons (511 keV) - an issue which may be
further complicated when contrast agents are used as
an adjunct to the CT study. Finally, CT images are nor-
mally calibrated in Hounsfield units and must first be
converted to u values. The last two challenges can be
addressed by segmenting the CT images into a discrete
set of tissue types (see Chapter 8 and [90]). Once the
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Figure 5.19. Transmission images of an anthropomorphic thorax phantom obtained using: (left) a singles transmission source in 3D mode; (middle) a singles
transmission source with segmentation applied to the reconstruction; and (right) a coincidence transmission source in 2D mode with segmentation applied.
The profiles of 1 values below each image indicate the reduction in apparent attenuation observed with the singles source due to the greater photon energy
and increased contribution of scatter compared with the coincidence measurement. This problem is overcome by segmentation. (These data were kindly pro-
vided by Dr Lefteris Livieratos, MRC Cyclotron Unit, Hammersmith Hospital, London.)

images are classified in this way, each discrete tissue
type can be treated separately by applying an empirical
scale factor that scales the corresponding voxels to a u
value appropriate for 511 keV imaging. The segmenta-
tion algorithm should ideally be sufficiently general to
be able to identify tissue types in the presence of con-
trast agents and metallic prosthetic implants. However,
most current implementations ignore these effects.
After segmenting and scaling the CT data, the images
are normally smoothed to a resolution that matches
the PET data before forward projecting and calculating
the attenuation correction factors.

Calculated Attenuation Correction

Since a transmission scan adds significantly to the time
it takes to perform a PET study, alternative methods of
attenuation correction have been investigated. One
method, which assumes a regular geometric body
outline and constant tissue density, is commonly re-
ferred to as calculated (as opposed to measured) atten-
uation correction. This may be valid for brain studies,
particularly if the skull is taken into account as well as
the soft tissue of the brain. The attenuation factors are
calculated for each coincidence line, based on the con-

stant attenuation along a chord through the object. The
chord is typically calculated from an ellipse selected by
the operator to fit the body outline. An improvement
on this method is to define the body outline automati-
cally using edge detection methods operating on the
emission sinogram [91, 92].

While calculated attenuation correction produces ac-
curate noise-free attenuation factors when imaging
regularly shaped phantoms of uniform density, it is
prone to bias when applied to most regions of the
body, even the brain where it is often considered ap-
plicable. In particular, this approach leads to system-
atic underestimation of attenuation by up to 20% in
the parietal and occipital lobes due to thickening of the
adjacent skull bones, and overestimation by up to 12%
in the gyrus recti due to the close proximity of the
frontal sinuses [75].

Segmented Attenuation Correction

Conventionally, 2D smoothing is applied to transmis-
sion sinograms before dividing into the blank scan to
determine attenuation correction factors (ACF) [65,
93]. However, this method of processing has the unde-
sirable effect of causing a mismatch between the reso-
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lution of the emission and transmission data and is not
completely effective in controlling noise propagation
[66]. An alternative approach is to reconstruct attenua-
tion coefficient images derived from the transmission
and blank data and then segment the images into a
small number of tissue types with a priori known at-
tenuation coefficients. For example, Huang et al [94]
described a method where the operator manually
defines the body and lung outlines on the attenuation
images. After assigning attenuation coefficients to
these regions, noiseless attenuation correction factors
are then calculated by forward projection. This method
was shown to provide equivalent results to measured
attenuation correction using a transmission scan ac-
quired for approximately one quarter of the time.

This approach has been extended by several investi-
gators by automating the determination of lung and
body outlines using various morphological operators
and heuristics. For example, Xu et al used a simple
thresholding method to segment attenuation images
into three discrete regions: air, lung and soft tissue
[95]. Unsupervised image segmentation is more prac-
tical than the manual approach, particularly for large
data sets such as those encountered in whole body
PET.

The main problem with segmented attenuation cor-
rection is that there is a large degree of variability in
tissue densities from patient to patient, particularly in
the lungs. Assigning the same population average value
to the lung regions of each patient may lead to
significant bias. An alternative approach is to calculate
the histogram of u values for each patient study and
assign values based on an assumed probability distrib-
ution for the lung and soft tissue components of the
histogram [66]. More recently, Bettinardi et al de-
scribed an adaptive segmentation method based on a
fuzzy clustering algorithm [96]. This method is also
based on the histogram of u values but it automatically
determines both the number of tissue classes that can
be supported by the data (based on the variance in the
images) and their centroids. The method is sufficiently
general that it can be applied to any region of the body
and is able to distinguish bony structures from soft
tissue given adequate counting statistics (Fig. 5.20).

As segmentation is a non-linear, non-stationary
process, the various sources of error discussed are
difficult to predict. Therefore, not only is the accuracy
of the method slightly inferior to measured attenuation
correction, but it is also less predictable. This may be a
serious drawback in studies where reliable estimates of
quantitative values, including physiological variables,
are required. However, given the improvement in SNR
that segmentation provides compared with conven-
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tional transmission processing, these disadvantages
may not be important in many clinical applications.

Partial Volume Correction

The Partial Volume Effect

In quantitative PET, the reconstructed image should
map the radiotracer concentration with uniform accu-
racy and precision throughout the field of view.
However, due to the partial volume effect, the bias in
reconstructed pixel values may vary depending on the
size of the structure being sampled and its radioactiv-
ity concentration relative to surrounding structures.
The partial volume effect may be described as follows.
When the object or structure being imaged only par-
tially occupies the sensitive volume of the PET scanner,
its signal amplitude becomes diluted with signals from
surrounding structures. The sensitive volume has di-
mensions approximately equal to twice the FWHM res-
olution of the reconstructed image. For example, if a
tomograph has isotropic reconstructed resolution of 6
mm FWHM, then a structure which has any dimension
less than 12 mm will have its signal diluted and the
degree of underestimation of radioactivity concentra-
tion will depend not only on its size but also on the rel-
ative concentration in surrounding structures.

There are several possible approaches to correcting
or minimising the partial volume effect. These include
methods that attempt to recover resolution losses
before or during image reconstruction and methods
that use side information from anatomical imaging
modalities such as CT and MRI.

Resolution Recovery

One can attempt to improve the resolution of the re-
constructed images either by applying resolution re-
covery techniques to the data before reconstruction,
through the use of inverse filtering for example, or by
extending the imaging model during image recon-
struction to include resolution effects. The latter is
done within an iterative reconstruction framework
using a Bayesian approach where the additional infor-
mation is treated as a prior [97, 98]. This approach is
discussed in detail in Chapter 4 but the general outline
is as follows. Projection data are estimated based on a
model of the imaging system, which may include reso-
lution effects, and an initial estimate of the radiophar-
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Figure 5.20. Histograms of attenuation
coefficients obtained from a 3-minute
transmission scan (a) and a 16-minute
transmission scan (b) of an anthropomorphic
thorax phantom (Data Spectrum, Chapel Hill,
NC). The original (first column) and segmented
images of the same phantom are shown in (c).
The 3-minute scan is on the top row and the
16-minute scan is on the bottom row. The
images in the middle column were segmented
using a histogram-based technique [66], while
the images in the 3™ column were segmented
using an adaptive classification technique [96].
Note that the adaptive technique correctly
classifies the more highly attenuating spine
insert.

maceutical distribution in the body. The estimated pro-
jections are compared with the measured projections
and the errors are back projected and used to improve
the image estimate. The process is repeated iteratively
until a very close match between the estimated and
measured projections is achieved. Clearly, if the model
of the imaging system is a good one, the image esti-
mate after convergence will closely resemble the un-
derlying radiopharmaceutical distribution in the body
and if the model includes resolution effects, the impact
of the partial volume effect should also be minimised.

The method has the potential to account for a
number of factors affecting the spatially varying reso-
lution of PET images, including geometric effects and
physical effects such as positron range and non-
collinearity of the annihilation photons. Therefore, it is
potentially more accurate than simple inverse filtering
but the accuracy depends on the quality of information
incorporated into the imaging model.
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Use of Anatomical Imaging Data

An example of how anatomical information can be
used to effect partial volume correction is illustrated in
Fig. 5.21 using the method described by Miiller-
Gartner et al [99]. This method, like most others based
on post reconstruction image analysis, only applies to
brain imaging. The PET image volume is first spatially
coregistered to the corresponding MR image of the
same subject. Then, the MR image is segmented into
grey and white matter regions of the brain. Separate
images representing grey and white matter regions are
convolved with a smoothing kernel which is derived
from the point spread function (PSF) of the PET
scanner. The smoothed white matter image is nor-
malised to the counts in a white matter region of inter-
est on the PET image and then subtracted from the
PET image to remove spill over of white matter signal
into grey matter regions. The final step is to divide the
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Figure 5.21.

An FDG PET study of a patient with AIDS dementia illustrating the application of partial volume correction. The images in order of processing

steps applied (clockwise from top left) are: (a) original uncorrected PET image, (b) coregistered MR image of the same patient, (c) segmented grey matter
image, (d) segmented white matter image, (e) blurred white matter image, (f) blurred grey matter image, (g) PET grey matter image obtained by subtracting e

from a, and (h) corrected PET image obtained by dividing g by f.

resulting image by the smoothed grey matter image.
The effect of this final step is to preferentially enhance
the signal in regions where the smoothing step resulted
in greatest dilution of the signal (i.e., small and/or thin
structures).

Other methods which are also based on high resolu-
tion anatomical imaging data and a model of the PET
scanner PSF have been described. For example, the
geometric transfer matrix (GTM) method assumes that
the PET image can be divided into a discrete number
of tissue domains or ROIs, each of which has uniform
radiotracer concentration [100]. The ROIs are defined
on an anatomical atlas or a MR image coregistered
with the PET image and the mean value within the ROI
is modelled as the weighted sum of the true activity
values in surrounding voxels belonging to the same
domain. The weights are independent of the radio-
tracer concentration and can be determined from
knowledge of the position dependent PSF. The correc-
tion is applied by inverting the matrix of weights to
recover the voxel values of the true radioactivity
concentration.

An alternative approach to that of modelling the PET
scanner PSF is to incorporate information from
anatomical imaging into the reconstruction model
[101, 102]. As in the case of resolution recovery, the in-
corporation of side information from anatomical
imaging data is normally done in a Bayesian context
where the additional information is treated as a prior.
This method requires that the anatomical and func-

tional images are spatially coregistered [103] and nor-
mally involves segmenting the MRI or CT image into a
small number of tissue classes. The segmented image is
then used to constrain the reconstruction such that
smoothing is allowed within boundaries defined on the
segmented image but not across boundaries [101, 104,
105]. This has the effect of controlling noise in the
image while at the same time preserving high resolu-
tion information at functional/anatomical boundaries.
While this approach does not directly address the
partial volume effect, it has the potential to minimise
its impact on signal recovery from small structures
and, hence, quantitative accuracy. Problems with this
approach may potentially arise if there is mismatch
between the functional and anatomic characteristics of
the tissue in question.

PET Scanner Calibration

Once the corrections for the various sources of bias de-
scribed in this chapter have been applied to PET data,
images can be reconstructed which are free of artefacts
and which reflect the regional concentration of radio-
tracer in the body. In most clinical applications of PET
this is sufficient as the images are interpreted visually
without reference to the absolute voxel values. Indeed,
this degree of “quantification” is sufficient in some
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types of kinetic research study also. For example,
methods which take a reference tissue as the input
function for the kinetic model do not require the PET
images to be calibrated in absolute units of tracer con-
centration. However, for most kinetic study protocols
PET image values must be related to the tracer concen-
tration in blood samples withdrawn during the study.
These blood samples are normally counted in a well
counter. Thus, it is essential in these studies to have an
accurate calibration between the PET scanner and the
well counter. This is usually achieved by scanning a
phantom with uniform radioactivity concentration and
then counting an aliquot taken from the phantom in
the well counter. The phantom images are recon-
structed using the same corrections as are applied in
research studies and the voxel values directly com-
pared with the counted aliquot to determine a calibra-
tion factor.

Note that the above procedure still does not neces-
sarily provide a reading in absolute units of radioactiv-
ity concentration for the PET image voxels unless the
radioactivity concentration in the aliquot is accurately
known. Once again, this is not usually necessary for
quantitative tracer kinetic studies. It is usually
sufficient to have an accurate calibration factor that
relates PET image values to well counter measure-
ments. If absolute units of radioactivity concentration
are required, a procedure is available which results in a
measurement of the detection efficiency of the tomo-
graph in air [106]. When PET images are corrected for
all the effects described above, the image values (in
units of counts/sec/voxel) can be divided by the tomo-
graph efficiency (in units of counts/sec/kBq) and then
divided by the voxel volume to yield images calibrated
in units of kBq/ml.
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6 Tracer Kinetic Modeling in PET

Richard E Carson

Introduction

The use of radiopharmaceuticals and the imaging of
their biodistribution and kinetics with modern instru-
mentation are key components to successful develop-
ments in PET. Clever design and synthesis of sensitive
and specific radiopharmaceuticals is the necessary first
step. Each tracer must be targeted to measure a physio-
logical parameter of interest such as blood flow, metabo-
lism, receptor content, etc., in one or more organs or
regions. State-of-the-art PET instrumentation produces
high-quality 3-dimensional images after injection of
tracer into a patient, normal volunteer, or research
animal. With an appropriate reconstruction algorithm
and with proper corrections for the physical effects such
as attenuation and scatter, quantitatively accurate mea-
surements of regional radioactivity concentration can be
obtained. These images of tracer distribution can be use-
fully applied to answer clinical and scientific questions.

With the additional use of tracer kinetic modeling
techniques, however, there is the potential for a sub-
stantial improvement in the kind and quality of infor-
mation that can be extracted from these biological
data. The purpose of a mathematical model is to define
the relationship between the measurable data and the
physiological parameters that affect the uptake and
metabolism of the tracer.

In this chapter, the concepts of mathematical model-
ing as applied to PET are presented. Many of these con-
cepts can be applied to radioactivity measurements from
small animals made by tissue sampling or quantitative
autoradiography. The primary focus in this chapter will
be on methods applicable to data that can be acquired

with PET imaging technology. The advantages and dis-
advantages of various modeling approaches are pre-
sented. Then, classes of models are introduced, followed
by a detailed description of compartment modeling and
of the process of model development and application.
Finally, the factors to be considered in choosing and
using various model-based methods are presented.

Overview of Modeling

PET imaging produces quantitative radioactivity mea-
surements throughout a target structure or organ. A
single static image may be collected at a single specific
time post-injection or the full time-course of radioactiv-
ity can be measured. Data from multiple studies under
different biological conditions may also be obtained. If
the appropriate tracer is selected and suitable imaging
conditions are used, the activity values measured in a
region of interest (ROI) in the image should be most
heavily influenced by the physiological characteristic of
interest, be it blood flow, receptor concentration, etc. A
model attempts to describe in an exact fashion this rela-
tionship between the measurements and the parameters
of interest. In other words, an appropriate tracer kinetic
model can account for all the biological factors that con-
tribute to the tissue radioactivity signal.

The concentration of radioactivity in a given tissue
region at a particular time post-injection primarily
depends upon two factors. First, and of most interest, is
the local tissue physiology, for example, the blood flow
or metabolism in that region. Second is the input func-
tion, i.e., the time-course of tracer radioactivity concen-
tration in the blood or plasma, which defines the

* Chapter reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and

Clinical Practice. Springer-Verlag London Ltd 2003, 147-179.
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availability of tracer to the target organ. A model is a
mathematical description (i.e., one or more equations) of
the relationship between tissue concentration and these
controlling factors. A full model can predict the time-
course of radioactivity concentration in a tissue region
from knowledge of the local physiological variables and
the input function. A simpler model might predict only
certain aspects of the tissue concentration curve, such as
the initial slope, the area under the curve, or the relative
activity concentration between the target organ and a
reference region.

The development of a model is not a simple task. The
studies that are necessary to develop and validate a
model can be quite complex. There are no absolute rules
defining the essential components of a model. A success-
ful model-based method must account for the limita-
tions imposed by instrumentation, statistics, and patient
logistics. To determine the ultimate form of a useful
model, many factors must be considered and compro-
mises must be made. The complexity of a “100%-accu-
rate” model will usually make it impractical to use or
may produce statistically unreliable results. A simpler,
“less accurate” model tends to be more useful.

A model can predict the tissue radioactivity measure-
ments given knowledge of the underlying physiology. At
first, this does not appear to be useful, since it requires
knowledge of exactly the information that we seek to de-
termine. However, the model can be made useful by in-
verting its equations. In this way, measurements of tissue
and blood concentration can be used to estimate
regional physiological parameters on a regional or even
pixel-by-pixel basis. There are many ways to invert the
model equations and solve for these parameters. Such
techniques are called model-based methods. They may
be very complex, requiring multiple scans and blood
samples and using iterative parameter-estimation tech-
niques. Alternatively, a model-based method may be a
simple clinically oriented procedure. With the knowledge
of the behavior of the tracer provided by the model,
straight-forward study conditions (tracer administration
scheme, scanning and blood data collection, and data
processing) can be defined to measure one or more
physiological parameters.

This chapter provides an overview of the wide as-
sortment of ways to develop a useful model and to use
the models to obtain absolute or relative values of
physiological parameters.

The Modeling Process

Once a radioactive tracer has been selected for evalua-
tion, there are a number of steps involved in developing a

Positron Emission Tomography

useful model and a model-based method. Figure 6.1
gives an overview of this process. Based on prior infor-
mation of the expected in vivo behavior of the tracer, a
“complete” model can be specified. Such a model is
usually overly complex and will have many more para-
meters than can be determined from PET data due to the
presence of statistical noise. Based on initial modeling
studies, a simpler model whose parameters can be deter-
mined (identified) can be developed. Then, validation
studies can be performed to refine the model and verify
that its assumptions are correct and that the estimates of
physiological parameters are accurate. Finally, based on
the understanding of the tracer provided by these mod-
eling studies, a simpler protocol can be defined and
applied for routine patient use. This method may involve
limited or no blood measurements and simpler data
analysis procedures. Under many conditions, such a pro-
tocol may produce physiological estimates of compara-
ble precision and accuracy as those determined from the
more complex modeling studies.

A prioriinformation

v

“Complete” Model

‘ Initial Modeling Studies

Identifiable Model

‘ Validation Studies

Practical Model

¢ Optimization

Model-based Method

v

Quantitative Physiological Assay

Figure 6.1. Steps in developing a model. A priori information concerning
the expected biochemical behavior of the tracer is used to specify a com-
plete model. Initial modeling studies will define an identifiable model, i.e., a
model with parameters that can be determined from the measurable data.
Validation studies are used to refine the model, verify its assumptions, and
test the accuracy of its estimates. After optimization procedures and error
analysis and accounting for patient logistical considerations, a model-based
method can be developed that is both practical and produces reliable, accu-
rate physiological measurements.
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Many factors will affect the ultimate form of a useful
model. In addition to the biological characteristics of
the tracer, the characteristics of the instrumentation
are important. It is essential to understand the accu-
racy of the reconstruction algorithm and its correc-
tions, as well as the noise level in the measurements,
which depends on the injected dose, camera sensitivity,
reconstruction parameters, scan time, and ROI size. It
may be of little use to develop a sophisticated model if
there are significant inaccuracies in the radioactivity
measurements due to improper corrections for attenu-
ation or scatter. The noise level in the data also affects
the number of parameters that may be estimated.
It also is the primary determinant of the precision
(variability) in the estimated parameters.

Tracers and Models

In this chapter, the labeled compounds will be referred to
as tracer, radiotracer, or radiopharmaceutical. The term
tracer implies that the injected compound, including
both labeled and unlabelled molecules, is present in the
tissue at negligible mass concentrations, so that little or
no change in the saturation of relevant enzymes or re-
ceptors occurs. For this discussion, we assume that tracer
levels are appropriate, except where explicitly noted.

Figure 6.2 provides an overview of the various paths
that a tracer X may follow after delivery by intravenous
injection. Arterial inflow delivers X to the region of in-
terest and venous outflow carries it away. The tracer
may cross the capillary membrane and enter the tissue.
From the tissue, it may be bound irreversibly or re-
versibly to intra- or extracellular sites, or may be me-
tabolized into one or more chemical forms. The
original labeled tracer or the metabolites may exit the
tissue to the blood.

Characteristics of Radiotracers

Before discussing models, it is important to consider the
basic characteristics of radioactive tracers. A tracer is de-
signed to provide information about a particular physio-
logical function of interest, such as blood flow, blood
volume, a metabolic process, a transport step, a binding
process, etc. However, since any given tracer will likely
have many biochemical fates following injection, great
care and judgment are required to choose an appropriate
compound. Ideally, the only factor controlling the uptake
and distribution of the tracer will be the physiological
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Figure 6.2. Overview of processes associated with delivery, uptake,
binding, and clearance of a radioactive tracer X. Arterial inflow delivers X to
the region of interest and venous outflow carries it away. The tracer may
cross the capillary membrane and enter the tissue. From the tissue, it may be
bound irreversibly or reversibly to intra- or extracellular sites, or may be me-
tabolized (XP) into one or more chemical forms. The original labeled tracer
or the metabolites may exit the tissue to the blood.

process under study. Realistically, other factors will
always affect a tracer’s distribution and kinetics. For
example, for a receptor-binding radiotracer, regional ra-
dioactivity concentration data are affected by regional
blood flow, plasma protein binding, capillary permeabil-
ity, nonspecific tissue binding, receptor association and
dissociation rates, free receptor concentration, tracer
clearance from blood (controlled by whole-body
uptake), tracer metabolism (throughout the body), and
regional uptake of any radioactive metabolites. For a
well-designed tracer, the net effect of these extraneous
factors is minor.

A tracer may either be a direct radiolabeled version of
a naturally occurring compound, an analog of a natural
compound, or a unique compound, perhaps a radiola-
beled drug. An analog is a compound whose chemical
properties are slightly different from the natural com-
pound to which it is related. For example, [''C]glucose is
identical to glucose except for the replacement of a '2C
atom with ''C. Analogs of glucose are deoxyglucose [1]
and fluorodeoxyglucose (FDG) [2-4], which are chemi-
cally different from glucose. Often, because the naturally
occurring compound has a very complex biochemical
fate, a model describing the tissue radioactivity data of a
directly labeled compound may need to be quite
complex. A carefully designed analog can dramatically
simplify the modeling and improve the sensitivity of the
model to the parameter of interest. Deoxyglucose and
FDG are good examples. Deoxyglucose and glucose enter
cells by the same transport enzyme and are both phos-
phorylated by the enzyme hexokinase. However, de-
oxyglucose is not a substrate for the next enzyme in the
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glycolytic pathway, so deoxyglucose-6-phosphate accu-
mulates in tissue. In this way, the tissue signal directly
reflects the rate of metabolism, since there is little clear-
ance of metabolized tracer. One important disadvantage
of using an analog is that the measured kinetic parame-
ters are those of the analog itself, not of the natural com-
pound of interest. To correct for this, the relationship
between the native compound and the radioactive
analog must be determined. For deoxyglucose and FDG,
this relationship is summarized by the lumped constant
[1, 5]. To make the analog approach widely applicable, it
is necessary to test if this constant changes over a wide
range of pathological conditions [5-9].

Ideally, the parameter of interest is the primary de-
terminant of the uptake and retention of a tracer, i.e.,
the tissue uptake after an appropriate period is di-
rectly (i.e., linearly) proportional to this parameter.
This is the case for radioactive microspheres [10].
Many other compounds are substantially trapped in
tissue shortly after uptake and are called chemical mi-
crospheres [11, 12]. For this class of compounds, a
single scan at an appropriate time post-injection can
give sufficient information about the parameter of in-
terest. For other tracers, which both enter and exit
tissue, scanning at multiple time points post-injection
may be necessary to extract useful physiological in-
formation.

It is obvious that another important attribute of a
tracer is that there be sufficient uptake in the organ of
interest, i.e., the radioactivity concentration must
provide sufficient counting statistics in a scan of rea-
sonable length after injection of an allowable dose.
Thus, the size of the structure of interest and the char-
acteristics of the imaging equipment can also affect the
choice of an appropriate tracer.

Types of Models

There are a wide variety of approaches to extract mean-
ingful physiological data from PET tissue radioactivity
measurements. All modeling approaches share some
basic assumptions, in particular the principle of conser-
vation of mass. A number of sources provide a compre-
hensive presentation of modeling alternatives [13-18].
Some approaches are termed stochastic or non-compart-
mental, and require minimal assumptions concerning
the underlying physiology of the tracer’s uptake and me-
tabolism [19]. These methods permit the measurement
of certain physiological parameters, such as mean transit
time and volume of distribution, without an explicit de-
scription of all of the specific pools or compartments
that a tracer molecule may enter.
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Alternatively, there are distributed models that try to
achieve a precise description of the fate of the radio-
tracer. These models not only specify the possible
physical locations and biochemical forms of the tracer,
but also include the concentration gradients that exist
within different physiological domains. In particular,
distributed models for capillary-tissue exchange of
tracer have been extensively developed [20-26]. Since
this is the first step in the uptake of any tracer into
tissue, a precise model for delivery of tracer at the cap-
illary is important. Distributed models are also used to
account for processes, such as diffusion, where concen-
tration gradients are present [27].

A class of models whose complexity lies between
stochastic and distributed is the compartmental
models. These models define some of the details of the
underlying physiology, but do not include concentra-
tion gradients present in distributed models. The de-
velopment and application of these models is the
principal focus of this chapter. The most common ap-
plication of compartmental modeling is the mathemat-
ical description of the distribution of a tracer
throughout the body [28, 29]. Here, different body
organs or groups of organs are assigned to individual
compartments, and the model defines the kinetics into
and out of each compartment. This type of model is
useful when the primary measurable data is the time-
concentration curve of the tracer in blood and urine. If
there are many measurements with good accuracy,
fairly complex models with many compartments and
parameters can be used.

In PET, compartmental modeling is applied in a dif-
ferent manner. Here, scanners provide one or more
measurements of radioactivity levels in a specific
organ, region, or even pixel. If the tracer enters and
leaves the organ via the blood, the tracer kinetics in
other body regions need not be considered to evaluate
the physiological traits of the organ of interest. In this
way, each region or pixel can be analyzed indepen-
dently. Generally, there must be some knowledge of the
time-course of blood radio activity. Since each region
can be evaluated separately, the models can be rela-
tively simple, and can therefore be usefully applied to
determine regional physiological parameters from PET
data.

Compartmental Modeling

Compartmental modeling is the most commonly used
method for describing the uptake and clearance of ra-



Tracer Kinetic Modeling in PET

dioactive tracers in tissue [28, 30, 31]. These models
specify that all molecules of tracer delivered to the
system (i.e., injected) will at any given time exist in one
of many compartments. Each compartment defines
one possible state of the tracer, specifically its physical
location (for example, intravascular space, extracellu-
lar space, intracellular space, synapse) and its chemical
state (i.e., its current metabolic form or its binding
state to different tissue elements, such as plasma pro-
teins, receptors, etc.). Often, a single compartment rep-
resents a number of these states lumped together.
Compartments are typically numbered for mathemati-
cal notation.

The compartmental model also describes the possi-
ble transformations that can occur to the tracer, allow-
ing it to “move” between compartments. For example, a
molecule of tracer in the vascular space may enter the
extracellular space, or a molecule of receptor-binding
tracer that is free in the synapse may become bound to
its receptor. The model defines the fraction or propor-
tion of tracer molecules that will “move” to a different
compartment within a specified time. This fractional
rate of change of the tracer concentration in one com-
partment is called a rate constant, usually expressed as
“k”, and has units of inverse time, e.g., min~'. The
inverse minute unit reflects the fraction per minute,
i.e., the proportion of tracer molecules in a given com-
partment that will “move” to another compartment in
one minute. To distinguish the various rate constants
in a given model, subscripts are used to define the
source and destination compartment numbers. In
much of the compartmental modeling literature, k,,,
for example, reflects the rate of tracer movement to
compartment 1 from 2. This nomenclature is especially
convenient for large models and is motivated by the
nature of matrix algebra notation. In PET applications,
the number of compartments is small (1-3), as is the
number of rate constants (1-6), so it is typical to use a
notation with one subscript (e.g., k;) where the source
and destination compartments associated with each
constant are explicitly defined.

The physiological interpretation of the source and
destination compartments defines the meaning of the
rate constants for movement of tracer between them.
For example, the rate constant describing tracer move-
ment from a receptor-bound compartment to the
unbound compartment will reflect the receptor disso-
ciation rate. For a freely diffusible inert tracer, the rate
constant of transfer from arterial blood to the tissue
compartment will define local blood flow. By determin-
ing these rate constants (or some algebraic combina-
tion of them), quantitative estimates or indices of local
physiological parameters can be obtained. The under-
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lying goal of all modeling methods is the estimation of
one or more of these rate constants from tissue ra-
dioactivity measurements.

Examples of Compartmental Models

Figure 6.3 shows examples of compartmental model
configurations. In many depictions of models, a rectan-
gular box is drawn for each compartment, with arrows
labeled with the rate constants placed between the
boxes. In most whole-body compartmental models,
the blood is usually counted as a compartment.
Measurements from blood are often the primary set of
data used to estimate the model rate constants. In the
PET applications described here, we are most inter-
ested in the model constants associated with the tissue
regions that are being imaged. Typically, measurements
will be made from the blood to define the “input func-
tion” to the first tissue compartment (see Input
Functions and Convolution, below). In this presenta-
tion, we will treat these blood input measurements as
known values, not as concentration values to be pre-
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Figure 6.3. Examples of compartmental models. G, is the concentration of
tracer in arterial blood, G, G, and G are the tracer concentrations in com-
partments 1-3, and K;, k,, etc., are the rate constants that define the rate of
tracer movement between compartments. A the simplest compartmental
model having one tissue compartment with irreversible uptake of tracer,
e.g., microspheres. B a model with one tissue compartment appropriate for a
tracer that exhibits reversible tissue uptake, e.g., a diffusible blood flow
tracer. Ca model with two tissue compartments, e.g., FDG. D a three tissue-
compartment model for a receptor-binding ligand where the three compart-
ments represent 1) free tracer, 2) tracer specifically bound to receptor, and
3) tracer nonspecifically bound to other tissue elements
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dicted by the model. Thus, blood will not be counted
as a compartment.

Figure 6.3A shows the simplest model having one
tissue compartment with irreversible uptake of tracer.
This irreversible uptake is shown by the presence of a rate
constant K, for tracer moving from the blood to com-
partment 1, but with no rate constant for exit of tracer
back to blood. Such a model is appropriate for radioac-
tive microspheres [10] or for a tracer that is irreversibly
trapped in tissue. This model is often used as an approxi-
mation when tissue trapping is nearly irreversible [11].
Figure 6.3B shows a one-tissue-compartment model, ap-
propriate for a tracer that exhibits reversible tissue
uptake. This is a common model for inert tracers used to
measure local blood flow [13]. Here, the rate at which the
tracer exits the tissue compartment and returns to the
blood is denoted k,. Figure 6.3C shows a model with two
tissue compartments. This model may be appropriate for
a tracer that enters tissue from blood, and then is either
metabolized to a form that is trapped in the tissue (at a
rate defined by k;) or returns to blood (at a rate defined
by k,), such as deoxyglucose [1]. Compartment 1 repre-
sents the unmetabolized tracer and compartment 2 the
metabolized tracer. Figure 6.3D shows a three-tissue-
compartment model for a receptor-binding ligand where
the three compartments represent free tracer, tracer
specifically bound to receptor, and tracer nonspecifically
bound to other tissue elements [32].

Compartmental Modeling Assumptions

The successful application of simple compartmental
models to a complex biological system requires that
many assumptions be true. These assumptions are typ-
ically not completely valid, so that successful use of
these models depends upon whether errors in these as-
sumptions produce acceptable errors in model mea-
surements (see Error Analysis, below). Compartmental
models, by their nature, assume that each compart-
ment is well mixed, i.e., there are no concentration gra-
dients within a single compartment. Therefore, all
tracer molecules in a given compartment have equal
probability of exchange into other compartments. This
well-mixed assumption has the great advantage of pro-
ducing relatively simple mathematical relationships.
However, it limits the ability of compartmental models
to provide an accurate description of some biological
structures. For example, a compartmental model
cannot include the change of activity concentration in
a capillary from arterial to venous ends, or the hetero-
geneous distribution of receptors in a patch of tissue.
Often, in PET applications, the “well-mixed” assump-
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tion is also violated by the nature of the imaging
process. Due to low resolution, even single-pixel data
from reconstructed images represent a mixture of un-
derlying tissues. When larger ROIs are used to improve
the statistical precision of the measurements, hetero-
geneity in the measurements increases.

A primary assumption of most compartmental
models is that the underlying physiological processes
are in steady state. Mathematically, this means that the
rate constants of the system do not change with time
during a study, and causes the mathematics of the
model to be linear differential equations (see Model
Implementation). If these rate constants reflect local
blood flow or the rate of a metabolic or binding
process, then the rate at which these processes occur
should remain constant during a study. Since the rates
of many biological processes are regulated by substrate
and product concentrations, maintaining processes in
steady state usually requires constant concentrations of
these regulating molecules. In practice, this require-
ment is never precisely met. However, these assump-
tions are adequately met so long as any changes in the
underlying rates of flow, metabolism, receptor binding,
etc., are slow with respect to the time scale of the data
being analyzed. Note that the concentrations of the in-
jected radiopharmaceuticals may change dramatically
during a study; however, this does not violate the
steady-state assumption so long as the radioactive
species exists at a negligible (tracer) concentration
with respect to the non-radioactive natural biological
substrates (see Biochemical Reactions and Receptor-
Ligand Binding). For studies using injections of radio-
pharmaceuticals with low specific activity, saturation
of receptors or enzymes can be significant, and non-
linear modeling techniques are required.

To generate the equations of a model, the magnitude
of tracer movement from compartment A to compart-
ment B per unit of time must be defined. This is called
the flux (J,p). If tracer concentration is expressed in
units of kBq per mL, then flux has units of kBq per mL
per min (or another appropriate time unit). The as-
sumptions of well-mixed compartments and physio-
logical processes in steady state lead to the
mathematical relationship that the flux J,; is a linear
multiple of the amount, or concentration, of tracer in
the source compartment A (C,), i.e.,

Jap zkcA 1)

where k is a rate constant with units of inverse minute
and which is independent of the concentration in any
compartment. This simple equation is the basis of the
differential equations that describe compartmental
models (see Model Implementation).
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Interpretation of Model Rate Constants

The physiological interpretations of the rate constants
(such as k in Eq. 1) depend upon the definition of the
source and destination compartments. A single com-
partment of a model may often lump a number of
physiological entities together, for example, tracer in
extracellular and intracellular spaces or tracer that is
free in tissue and nonspecifically bound. This section
discusses the physiological meaning of model rate
constants.

Blood Flow and Extraction

The first step in most in vivo models is the delivery of
tracer to the target region from the blood. The flux of
tracer into the first tissue compartment from the blood
is governed by the local blood flow and the rate of ex-
traction of the tracer from the capillary into the tissue.
Conventional fluid flow describes the volume of liquid
passing a given point per unit of time and has units of
mL per min. A more useful physiological measure is
perfusion flow, the volume of blood passing in and out
of a given volume (or weight) of tissue per unit of time,
which has units of mL per min per mL of tissue or mL
per min per gram of tissue. In the physiological litera-
ture, the term blood flow usually means perfusion flow.
Determining blood flow and extraction information
from model parameters begins with the Fick Principle
(see, for example, Lassen and Perl [15]). The net flux (J)
of tracer into or out of a tissue element equals the dif-
ference between the influx (J;,,) and outflux (J,,,), i.e.,

]=]in_]out=Fca_FCV (2)

where the influx is the product of the blood flow (F)
and the arterial concentration (C,), and the outflux is
the product of the blood flow and the venous concen-
tration (C,). The unidirectional (or first-pass) extrac-
tion fraction E is the fraction of tracer that exits the
blood and enters the tissue on one capillary pass, or
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A tracer with low extraction has a small
arterial-venous difference on first pass. Equation 2 can
then be rewritten as

J=(F-E)C, =kC, (4)

Equation 4 describes the unidirectional delivery of
tracer from blood to tissue. The rate constant k
defining this uptake process is the product of blood
flow and unidirectional extraction fraction. The inter-
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pretation of the extraction fraction was further devel-
oped by Kety [13], Renkin [33], and Crone [34] by con-
sidering the capillary as a cylinder to produce the
following relationship:

_ps
E=1-¢ F (5)

where P is the permeability of the tracer across the
capillary surface (cm per min), S is the capillary
surface area per gram of tissue (cm? per gram), and F
is the blood flow (mL per min per gram). For highly
permeable tracers, the product PS is much greater
than the flow F, so the exponential term in Eq. 5 is
small, and the extraction fraction is nearly 1.0. In this
case, the rate constant for delivery is approximately
equal to flow. Such tracers are therefore useful to
measure regional blood flow and not useful to
measure permeability, i.e., they are flow-limited. For
tracers with permeability much lower than flow, the
relationship in Eq. 5 can be approximated as

_ps
F

E (6)
and the rate constant k (F-E) becomes PS. Such tracers
are useful to measure permeability and not useful to
measure flow. Most tracers lie between these two ex-
tremes, so that the rate constant for delivery from arte-
rial blood to tissue is affected by both blood flow and
permeability. These relationships are directly applica-
ble to tracers that enter and leave tissue by passive dif-
fusion. For tracers transported into and out of tissue
by facilitated or active transport, the PS product is
mathematically equivalent to the transport rate, which
depends upon the concentration and reaction rate of
the transport enzymes (See Biochemical Reactions).

The interpretation of a delivery rate constant k as the
product of flow and extraction fraction may depend
upon whether the blood activity concentration C, is
measured in whole blood or in plasma. If there is very
rapid equilibration between plasma and red blood
cells, then the whole blood and plasma concentrations
will be identical. However, if equilibrium is slow with
respect to tracer uptake rates into tissue, or if there is
trapping or metabolism of the tracer in red blood cells,
than the plasma concentration should be used. In the
extreme of no uptake of tracer into red cells, then the
delivery rate constant k is the product of extraction
fraction and plasma flow, where plasma flow is related
to whole blood flow based on the hematocrit. If
binding of tracer to plasma proteins is significant,
similar changes in interpretation of the rate constants
may also be required.
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Diffusible Tracers and Volume of Distribution

One of the simplest classes of tracers is those that enter
tissue from blood and then later return to blood. The
net flux of tracer into a tissue compartment can be ex-
pressed as follows:

J=K,C,—k,C (7)

K, is the rate of entry of tracer from blood to tissue
and is equal to the product of extraction fraction and
blood flow, and C, is the concentration of tracer in arte-
rial blood. The rate constant k, describes the rate of
return of tracer from tissue to blood, where C is the
concentration of tracer in tissue. The physiological in-
terpretation of k, can best be defined by introducing
the concept of the volume of distribution. Suppose the
concentration of tracer in the blood remained con-
stant. Ultimately, the concentration of the diffusible
tracer in the tissue compartment would also become
constant and equilibrium would be achieved. The ratio
of the tissue concentration to the blood concentration
at equilibrium is called the volume of distribution (or
alternatively the partition coefficient). It is termed a
volume because it can be thought of as the volume of
blood that contains the same quantity of radioactivity
as 1 mL (or 1 gram) of tissue. Once the blood and
tissue tracer concentrations have reached constant
levels, i.e., equilibrium, the net flux J into the tissue
compartment is 0, so the volume of distribution V}, can
be expressed as

_C_K
P,k

a
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where the last equality is derived by setting the flux J in
Eq. 7 to 0. Therefore, the physiological definition for
the rate constant k, is the ratio of K, to V.. Thus, k, has
information concerning flow, tracer extraction, and
partition coefficient.

Biochemical Reactions

Often, two compartments of a model represent the sub-
strate and product of a chemical reaction. In that case,
the rate constant describing the “exchange” between
these compartments is indicative of the reaction rate. For
enzyme-catalyzed reactions [35], the flux from substrate
to product compartments is the reaction velocity v:

V,C

V= 9
K, +C ©)

V., is the maximal rate of the reaction, C is the concen-
tration of substrate, and K,, is the concentration of sub-
strate that produces half-maximum velocity. This is the
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classic Michaelis-Menten relationship. It shows that
the velocity is not a linear function of the substrate
concentration, as in Eq. 1. However, when using tracer
concentrations of a radioactive species and if the con-
centrations of the native substrates are in steady state
(see Compartmental Modeling Assumptions), the
linear form of Eq. 1 still holds. In the presence of a
native substrate with concentration C, and the radioac-
tive analog with concentration C’, the reaction rate for
the generation of radioactive product v" is as follows:

« v, C"*

V - *
K, 1+—C + ¢
K, K

m

(10)

V,, and K,, are the maximal velocity and half-maximal
substrate concentration for the radioactive analog. If
the radioactive species has high specific activity (the
concentration ratio of labeled to unlabelled compound
in the injectate) so that its total concentration (labeled
and unlabelled) is small compared to the native sub-
strate, i.e., C'/K,, « C/K,,, then Eq. (6.10) reduces to

= ——1 _ |C"=kC" (11)
K;(1+C]
Km

The term in large brackets in Eq. 11 is composed of
terms that are assumed to be constant throughout a
tracer experiment. Therefore, when using radiophar-
maceuticals at tracer concentrations, enzyme-catalyzed
reactions can be described with a linear relationship as
the product of a rate constant k and the radioactive
substrate concentration C'. The rate constant k includes
information about the transport enzyme and the con-
centration of unlabelled substrate.

Receptor-ligand Binding

For radiotracers that bind to receptors in the tissue
(see, for example, Eckelman [36]), the rate of binding,
i.e., the rate of passage of tracer from the free com-
partment to the bound compartment, can also be de-
scribed by the linear form of Eq. 1 under tracer
concentration assumptions. For many receptor
systems, the binding rate is proportional to the
product of the concentrations of free ligand and free
receptor. This classical bi-molecular association can
be described mathematically as

¥ =Ky (Buex — B) F (12)
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where k,, is the bi-molecular association rate
(nM™'min™), B,,,, is the total concentration of recep-
tors (nM), B is the concentration of receptors currently
bound (either by the injected ligand or by endogenous
molecules), and F is the concentration of free ligand.
When a radioactive species is added and competes
with endogenous compound for receptor binding, the
radiopharmaceutical binding velocity is

v =k, (Bmax ~B-B )F (13)

where k,,, is the association rate of the radiopharmaceu-
tical and B is the mass concentration of the bound ra-
diopharmaceutical. If the radioactive compound has
high specific activity, then B” « B,and Eq. 13 becomes

v' =k, B!

on~~max

F* = kF* (14)

where B;,,, is the free receptor concentration (B,,, - B).
Thus, using a high specific activity receptor-binding
ligand, measurement of the reaction rate constant k
provides information about the product of k,, and Bj,,,,
but cannot separate these parameters. Since B;,, is sen-
sitive to change in total receptor and occupancy by en-
dogenous or exogenous drugs, receptor-binding ligands
can be extremely useful to measure receptor occupancy
or dynamic changes in neurotransmitter levels [37].
Note that the description of receptor-binding radioli-
gands is mathematically identical to that for enzyme-
catalyzed reactions, although the conventional
nomenclature is different.

Model Implementation

This section presents an overview of the mathematics
associated with compartmental modeling. This in-
cludes the mathematical formulation of these models
into differential equations, the solution equations to a
few simple models, and a summary of parameter esti-
mation techniques used to determine model rate con-
stants from measured data. Here, we concentrate on
applications where we have made measurements in an
organ or region of interest which we wish to use to as-
certain estimates of the underlying physiological rates
of this region.

Mathematics of Compartmental Models

This section describes the process of converting a com-
partmental model into its mathematical form and de-
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termining its solution. For a more complete discussion
of these topics, consult basic texts on differential equa-
tions [38] as well as a number of specialized texts on
mathematical modeling of biological systems [16, 28].

First, we start with a particular model configuration
like those in Fig. 6.3. The compartments are numbered
1, 2,..., and the radioactivity concentration in each
compartment is designated C;, C,, .... Radioactivity
measurements in tissue are typically of a form such as
counts per mL or kBq per gram. The volume or weight
unit in the denominator reflects the full tissue volume.
However, the tracer may exist only in portions of the
tissue; for example, just the extracellular space. In this
case, the concentration of the tracer within its distribu-
tion space will be higher than its apparent concentra-
tion per gram of tissue. When these concentration
values are used to define reaction rates, instead of the
true local concentration, the interpretation of the rele-
vant rate constant should include a correction for the
fraction of total tissue volume in which the tracer
distributes.

Differential Equations

The net flux into each compartment can be defined as
the sum of all the inflows minus the sum of all the
outflows. Each of these components is symbolized by
an arrow into or out of the compartment, and the mag-
nitude of each flux is the product of the rate constant
and the concentration in the source compartment. The
net flux into a compartment has units of concentration
(C) per unit time and is equal to the rate of change
(d/dt) of the compartment concentration, or dC/dt.
Consider the simple one-tissue-compartment model in
Fig. 6.3B. The differential equation describing the rate
of change of the tissue concentration C, is

dc,

=K, (£) kG () (15)
Here, C,(t) is the time course of tracer in the arterial
blood, also called the input function. K| is the rate con-
stant for entry of tracer from blood to tissue, and k, is
the rate constant for return of tracer to blood. The cap-
italization of the rate constant K; is not a typographical
error. K, is capitalized because it has different units
than other rate constants. The blood radiotracer mea-
surements are typically made per mL of blood or
plasma. In non-imaging studies in animals, tissue con-
centration measurements are made per gram of tissue.
Thus, C, had units of kBq per gram, and C, had units of
kBq per mL. Therefore, K; must have units of mL blood
per min per gram tissue (usually written as mL/min/g).
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The other rate constants have units of inverse minute.
PET scanners actually acquire tissue radioactivity
measurements per mL of tissue. Thus, to present
results in comparable units to earlier work, corrections
for the density of tissue must be applied to convert kBq
per mL tissue to kBq per gram tissue.

Before solving Eq. 15 for a general input function
C,(1), first consider the case of an ideal bolus input, i.e.,
the tracer passes through the tissue capillaries in one
brief instant at time ¢ = 0, and there is no recirculation.
If C, is the magnitude of this bolus, the model solution
for the time-concentration curve for compartment 1 is
as follows:

C, (t) =C,K, exp(—kzt) (16)

Thus, at time zero, the tissue activity jumps from 0 to
a level K,C, and then drops towards zero exponen-
tially with a rate k, per min or a half-life of 0.693/k,
min.

Now consider the two tissue-compartment model in
Fig. 6.3C. For this model there will be two differential
equations, one per compartment:

o kef)-kal)-ka()rhel) @)
L2 ke, (1)-kicalo) (18)

Note that there is a term on the right side of Eqs. 17, and
18 for each of the connections between compartments in
Fig. 6.3C. An outflux term in Eq. 17 [e.g., -k;C,(f)] has a
corresponding influx term in Eq. 18 [+k;C,(#)]. The solu-
tion to these coupled differential equations, again for the
case of an ideal bolus input, is as follows:

C, (t) =C, [Au exp(—alt) +A, exp(—azt)] (19)

C, (t) =C,A,, [exp(—alt) - exp(—(xzt)] (20)

A, Ay Ay, 0, and o, are algebraic functions of the
model rate constants K}, k,, k;and k, [4]. Here, the time
course of each compartment is the sum of two expo-
nentials. One special case of interest is when the tracer
is irreversibly bound in tissue so that the rate of return
of tracer from compartment 2 to compartment 1, k,, is
zero. In this case, the solution becomes

Cy(t)=C.K, exp|~(k; +k; )] (21)
c(f)=c, %(1 —expl(k, + k3)t]) (22)
2 3
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Note that in most cases, the measured tissue activity
will be the total in both compartments, so that the
model prediction will be the sum C,(#) + C,(¢).

These solutions for tissue concentration are linearly
proportional to the magnitude of the input, C,.
Doubling the magnitude of the input (injecting more)
will double the resultant tissue concentration. The
equations are non-linear with respect to many of the
model rate constants (those that appear in the expo-
nents) but is linear in K.

Input Functions and Convolution

In the previous section, mathematical solutions were
presented for simple models under the condition of an
ideal bolus, i.e., the tracer appears for one capillary
transit with no recirculation. In reality, the input to the
tissue is the continuous blood time-activity curve. The
equations above are linear with respect to the input
function C,. This permits a direct extension of these
bolus equations to be applied to solve the case of a con-
tinuous input function. Fig. 6.4 illustrates this concept.
Figure 6.4a and 6.4c show ideal bolus input functions
of different magnitudes at different times. Figure 6.4b
and 6.4d show the corresponding tissue responses for
the model with one tissue compartment (Fig. 6.3b).
Suppose, as in Fig. 6.4e, the combination of the two
inputs is given, i.e., there is a bolus input of magnitude
A at time ¢t = T}, and a second bolus of magnitude B at ¢
= T,. The resulting tissue activity curve is:

C() = K Aexp[k;(t-T3)] for T, <t<T, (23)

C (t) =K/A exp[—k2 (t -T )] +K,B exp[—k2 (t -T, )]
fort>T, (24)

In other words, the tissue response is a sum of the indi-
vidual responses to each bolus input. The responses are
scaled in magnitude and shifted in time to match each
bolus input.

Suppose now there is a series of bolus administra-
tions at times T}, i = 1,..., each of magnitude C,(T;) as
depicted by the square waves in Fig. 6.4g. The total
tissue response (Fig. 6.4h) can be written as the
summation:

c(t)= 3¢, (T, )K, exp|—ky (£~ T (25)

where the exponentials are defined to have zero value
for negative arguments (i.e., t<T;). If we now consider
the continuous input function C,(t) (bold line in Fig.
6.4g) as an infinite summation of individual boluses,
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Figure 6.4. Convolution. 3, ¢, e, and g show the input functions that produce the tissue responses in b, d, f, and h, respectively. a an ideal bolus input at time
T,. b the corresponding tissue response to the one-compartment model of Fig. 6.3b, i.e., exponential clearance following Eq. (16). ¢ a single bolus of half the
magnitude in a at time 7,. d the tissue response to ¢, which is altered in time and magnitude in a corresponding manner from that in b. e combination of inputs
in a and c. fthe tissue response to e, which is the sum of the tissue responses from each bolus administered separately (b+d). This demonstrates the linearity of
the model equations. g a continuous input function (bold line) which can be interpreted as a series of bolus injections of varying magnitudes (fine lines). h the
tissue activity response to g (bold line) which can be interpreted as the sum of the responses to each bolus (fine lines).
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the summation in Eq. 25 becomes an integral, and the
tissue response (bold line in Fig. 6.4h) is:

C, (t) = ica (s)l(l exp[—k2 (t - s)]ds

Here, s is the integration variable. This is called a con-
volution integral, and is often written as

C, (t) =C, (t) ®K, exp(—kzt)

(26)

(27)

with the symbol ® denoting convolution. This presen-
tation corresponds to the one-compartment model of
Fig. 6.3B and extends the bolus solution (Eq. 16) to the
case of a general input function (Eq. 27). However, con-
volution applies to any compartmental model whose
solution has a linear relationship to its input function.
Let hi(t) be the impulse response function for compart-
ment i, i.e., the time course of tissue response from a
bolus input of magnitude 1 [K,exp(-k,t) for the one-
compartment model]. Then the tissue activity result-
ing from the general input function C,(¢) is written as

c(t)=c,(t)®nt)

Thus, for linear compartmental models, the tissue
time-activity curve is the convolution of the input
function with the impulse response function. For com-
partmental models, the latter is a sum of exponentials,
typically one exponential per compartment. A number
of approaches have been used to implement and solve
Eq. 28 on a computer if the arterial input function is
determined from serial samples. One approach is to fit
the measured input function data to a suitable model
[39] and then solve the convolution integral by stan-
dard mathematical methods. Alternatively, a continu-
ous input function can be approximated by linear
interpolation between the sample data values, and then

(28)
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Eq. 28 can be solved by analytical integration over each
time period between blood samples.

Figure 6.5 shows the effects that variations in the
input function can produce on the resulting tissue re-
sponse. Figure 6.5a shows three input functions. The
solid line is a measured arterial input function. The
other two input curves were calculated based on the
measured data so that the area under all curves is a
constant. The tissue concentration curves produced in
response to each input function are shown as the cor-
responding curves in Fig. 6.5b. In all cases, the tissue
response is calculated from the one-compartment
model, Eq. 27, using the same parameters (K, = 0.1
mL/min/mL and k, = 0.1 min™'). The difference in
shape between the input functions produces compara-
ble differences in the tissue concentration curves.
These differences in shape do not reflect differences in
the local physiological parameters of the tissue, since
the rate constants were the same in all cases. Thus, the
main point of Fig. 6.5 is that a time-activity curve in a
tissue region cannot be interpreted without knowledge
of the input function.

The linear compartmental models discussed to this
point have the tremendous advantage of providing
exact mathematical solutions, predicting the tissue re-
sponse in the form of Eq. 28. In some cases, the flux
between compartments cannot be described mathe-
matically as the product of a rate constant times the
concentration of tracer in the source compartment
(J = kC). For example, in modeling receptor-binding
ligands, the linear flux assumption holds if the radio-
pharmaceutical is administered at tracer levels and
does not produce detectable saturation of the receptor
sites (Eq. 14). If such a ligand is administered in low
specific activity so that it produces a change in recep-
tor occupancy during the data collection period, the
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Effect of the input functions on tissue time—activity curves. a three input functions. The solid line is a measured arterial input function. The dashed

and dotted lines represent other input functions derived from the first curve, so that the area under these curves is the same. b the tissue response curves from
the three input functions in a calculated with a model with one tissue compartment and the fixed rate constants (see text for details).
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differential equations governing the model are no
longer linear. This can be seen in Eq. 13 where the flux
from the free to the bound compartments v* cannot be
described as a constant multiplied by F" since the
bound concentration B* also appears in the relation-
ship. To solve the model in this and most other non-
linear cases requires techniques of numerical
integration of differential equations [40, 41]. The basic
idea to numerically estimate the activity in each com-
partment is to take small steps in time and use the dif-
ferential equations to determine how much each
compartment’s concentration should change over each
time step. The most commonly used method for nu-
merical integration is called Runge-Kutta, which pro-
vides increased accuracy with longer time steps by
averaging multiple estimates of the derivative dC/dt.

In implementing models, it is important that the
model formulation matches the nature of PET scan data.
The models presented above predict the tissue concen-
tration at an instant in time. Image values represent the
average tissue activity collected over each scan interval.
The instantaneous model value can be used to determine
the integrated scan value. For example, for the one-com-
partment model (Eq. 15 and Eq. 27), the integrated scan
value from time T, to T, is as follows:

i K, ] (1t -(c,(r,) - ,(1;)
f C,(t)dt =— p (29)

Another practical issue is radioactive decay. This can
be handled either by explicit decay correction of both
the tissue and blood data or by incorporating decay
into the model formulation. The latter approach can be
accomplished by adding an additional rate constant
corresponding to the decay rate (0.693/half life) to each
compartment. This method is slightly more accurate
than explicit decay correction for short-lived tracers,
since decay correction does not account for biological
change in tracer concentration within one scan
interval.

Parameter Estimation

The previous sections presented the mathematical
techniques necessary to solve the model equations.
Thus, with knowledge of the input function C,(¢), the
model configuration, and its rate constants, the tissue
concentration curve can be predicted mathematically.
This section provides an overview of the inverse
problem, i.e., given measurements of the tissue activity
and the input function and a proposed model configu-
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ration, one can produce estimates of the underlying
rate constants. Many references are available on the
topic of parameter estimation [42-44].

There are many ways to accomplish the estimation
of model parameters. The choices available and the
success of any given method depend upon the form of
the model and the sampling and statistical quality of
the measured data. If only a single measurement of
tissue radioactivity is made, obviously only a single pa-
rameter can be determined. Collection of multiple time
points permits the estimation of some or all of the pa-
rameters of a model. Since measured data always have
some associated noise, the estimates of model parame-
ters from such data will also be noisy. It is often the
goal of a statistical estimation method to minimize the
variability of the resulting parameter estimates. Note
also that the values of the parameters will affect the
statistical quality of the results. For example, blood
flow estimates produced by a particular method may
be reliable for high-flow regions but unreliable for low-
flow regions.

When many tissue measurements are collected after
radionuclide administration, the most commonly used
method of parameter estimation is called least-squares
estimation. Qualitatively, the goal of this technique is to
find values for the model rate constants that, when in-
serted into the model equations, produce the “best” fit to
the tissue measurements. Quantitatively, the goal is to
minimize an optimization function, specifically the sum
of the squared differences between the measured tissue
concentration data and the model prediction, i.e.,

N 2

x(c-c(r)) 60
i=

where there are N tissue measurements, C, i=1,...,N, at
times T; and C(T;) is the model prediction of tissue ac-
tivity at each of these times. This particular form is
used because of the nature of the noise in the mea-
sured data. Parameter estimates produced by minimiz-
ing the sum of squared differences have minimum
variability if the noise in each scan measurement is sta-
tistically independent, additive, Gaussian, and of equal
magnitude. Additive and independent statistical noise
is usually a good assumption for PET image data,
however, often the variance of the measurements will
not be constant across different scans in one multiple-
scan acquisition, particularly for short-lived isotopes
such as O or MC. In this case, the least-squares func-
tion can be modified to accommodate variable noise
levels as follows:

S w,(c; —c(r,))’ (31)

i=1
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where w; is a weight assigned to data point i. This
method is called weighted least-squares estimation, and
the optimal weight for each sample is the inverse of the
variance of the data [43]. For simple count data, the
variance of the data can be estimated from the count
data itself based on its Poisson distribution [45]. For
reconstructed data, many algorithms have been pro-
posed to calculate or approximate the noise in pixel or
region-of-interest data [46-52].

It is important to recognize that there are many non-
random or deterministic error sources in the modeling
process that cause inconsistencies between the model
and the measured data (see section on random and de-
terministic errors). When fitting data to a model, the
parameter estimation procedure is naive in that it be-
lieves that the specified model is absolutely correct.
The algorithm will do its best to minimize the opti-
mization function. Therefore, if there are deterministic
errors in the model or the input function, the estima-
tion algorithm can produce unsuitable results. It may
be appropriate in some situations to adjust the weights
of some data points (e.g., early time points where
errors in the model due to intravascular activity are
most significant) to reduce the sensitivity of the model
to the presence of deterministic errors.

Once an optimization function (Eq. 30 and Eq. 31)
has been defined, there are many algorithms available
to determine the values of the model parameters that
minimize it [41, 43]. Unfortunately, in most cases with
compartmental models, there are no direct solutions
for the parameters. This is true because, although the
models themselves are linear (i.e., all fluxes between
compartments are linear multiples of the concentra-
tion in the source compartment), the solutions to
these models are functions that are non-linear in at
least one of the model parameters. For example,
Eq. 27, the solution to the one-compartment model
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(Fig. 6.3B) is linear with respect to the parameter K,
but is non-linear with respect to the parameter k,. To
solve for the parameters, iterative algorithms are re-
quired. First, an initial guess is made for the parameter
values. Then the algorithm repeatedly modifies the pa-
rameters, at each step reducing the value of the opti-
mization function. Convergence is reached when
changes to the parameters from one iteration to the
next become exceedingly small. Great care is required
in the use of iterative algorithms, because incorrect so-
lutions can be obtained, particularly if the initial guess
is not appropriate.

Figure 6.6 provides an example of the process of pa-
rameter estimation applied to time-activity data col-
lected after a bolus injection of fluorodeoxyglucose
(FDG) [53]. Figure 6.6a shows a plot of region-of-inter-
est values (occipital cortex) taken from reconstructed
PET images. The solid line through the data points is
the best fit obtained by minimizing the weighted sum
of squared differences between the data and the two-
compartment model (Figure 6.3c). Figure 6.6b shows a
plot of the weighted residuals versus time. The residual
is the difference between each data point and the
model prediction. When weighted least squares is used,
the residuals are scaled by the square root of each
weight, w;, so that the sum-of-squares optimization
function equals the sum of squared residuals. Ideally
the residuals would be random, have zero mean, and
uniform variance. If a good estimate of the noise level
in the data is known, the weighted residuals should
have a standard deviation of approximately 1. Thus,
when plotting the residuals versus time or versus con-
centration, the residuals would appear as a uniform
band centered on zero. The residuals in Fig. 6.6b rea-
sonably satisfy these expectations.

Many parameter estimation algorithms provide esti-
mates of the uncertainties of the parameter estimates
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Figure 6.6. Examples of parameter estimation results from PET data after bolus injection of FDG. a: tissue time—activity curve from region of interest in occip-
ital cortex. Symbols are measured data points. Solid line is fitted function for the two-compartment model (Fig. 6.3C) based on weighted least-squares para-
meter estimation. b Plot of weighted residuals (difference between data and fitted value scaled by regression weight) versus time.
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called standard errors. These values can be used as es-
timates of the minimum random uncertainty in the es-
timate. The algorithm determines these standard
errors based on the structure of the model, the para-
meter estimates, and the magnitude of the residual
sum of squares. However, this measure is an underesti-
mate of the true uncertainty of the parameters, since
there are usually many sources of “real-world” errors
that are not explicitly included.

It is often useful to calculate functions of the rate
constants which provide different physiological infor-
mation. For example, in the one-compartment model
(Fig. 6.3B), a parameter estimation problem may be
posed to estimate the rate constants K; and k,. From
these parameters, the distribution volume (V = K/k,)
can be calculated. To determine the uncertainty in the
distribution volume estimate, information about the
individual standard errors in K, and k, is required
along with the correlation between them. The parame-
ter estimates will be correlated since both values are
determined simultaneously from the same noisy data.
The coefficient of variation (CV, the ratio of the stan-
dard error to the parameter value) of the distribution
volume can be calculated by propagation of errors
calculations:

CV*(V) = CV3(k,)+CV*(k,) - 2p,,CV(K,)CV(k,) (32)

where p;, is the estimated correlation coefficient
between the parameter estimates K, and k,

Least squares is the best optimization criterion for
estimating parameters when a large number of as-
sumptions are met. If any of these assumptions are not
true, better estimates may be obtained by other
methods (see section on error analysis). A better esti-
mate is one that may be more accurate (less biased) or
more precise (less variable). In addition, iterative least-
squares algorithms may be very computationally inten-
sive, particularly if it must be carried out individually
for every pixel in an imaging volume. Often, iterative
least-squares procedures are used only for a small
number of regions of interest. However, it is often more
useful if the data analysis procedure produces func-
tional images where each pixel represents a physiologi-
cal parameter of interest. To do this, rapid computation
schemes are required. Rapid implementations of itera-
tive least-squares procedures have been developed for
the simplest non-linear models with just one non-
linear parameter, e.g., the one-compartment model
with solution in Eq. 27. These techniques have been
applied to the measurement of cerebral blood flow [54,
55] and total volume of distribution of receptors
[56-58]. In addition, a number of methods have been
derived that allow direct non-iterative calculation of
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the parameter estimates by reformulating the problem
in terms of integrals of the tissue and blood data
[59-66]. These methods do not minimize the sum-of-
squares optimization function, but in many cases have
been shown to have comparable statistical quality to
the least-squares techniques and often have less sensi-
tivity to deterministic errors in the model. Another in-
teresting approach for parameter estimation from non-
linear models is called spectral analysis and uses the
methods of linear programming with the knowledge
that all the exponential clearance terms (o, in Eq. 19
and Eq. 20, for example) are positive [67].

As shown above, the measured tissue activity is the
convolution of the input function with the under-
lying impulse-response function (Eq. 28). This
impulse-response function has a much simpler math-
ematical form (usually a sum of exponentials) and is
therefore more easily analyzed. Some investigators
have used the approach of deconvolution, whereby an
estimate of the impulse-response function is deter-
mined from measurements of the tissue response and
the input function [68]. However, because the process
of deconvolution greatly amplifies noise in the tissue
measurements and is often mathematically unstable,
great care is required in the application of these
techniques.

Development of Mathematical
Models

The primary factor affecting the form of a model is the
nature of the tracer itself. Usually, a priori information
can be used to predict all of the relevant metabolic
paths of the tracer in tissue, i.e., a complete model.
However, technical and statistical limitations of the
available data will prevent the use of such a compre-
hensive model, which includes all steps in the physio-
logical uptake, metabolism, and clearance of a tracer.
Figure 6.1 shows the process of development and ap-
plication of a model in PET [69, 70]. This section pre-
sents the steps starting with a complete model, then
generating an identifiable model, and ultimately a prac-
tical model. An identifiable model is one which can be
applied to regional kinetic data and used to extract esti-
mates of model parameters. Such a model is a simplified
version of a comprehensive description of the interac-
tions of a radiotracer in tissue. However, this model may
not be workable if its parameter estimates are too vari-
able or inaccurate. A useful model may be derived by
further simplification of the identifiable model. The
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useful model provides reproducible and accurate esti-
mates of model parameters. Validation studies are nec-
essary to demonstrate these characteristics.

Model Identifiability

The first step in defining a model is to determine
identifiability, meaning that the parameters of a model
can be uniquely determined from measurable data.
There is an extensive literature on this topic [16, 19,
71-77], including studies with particular attention to
PET applications [78-80]. In some cases, the structure of
the model itself does not permit the unique definition of
parameter values, even with noise-free data. One
example of this is the case of high specific-activity
studies with receptor-binding ligands. Here, the associa-
tion rate k,, and the free receptor concentration B,
appear as a product in the model differential equations
(Eq. 14) and therefore can not be separated [32, 81].

A more significant problem in many applications is
that of numerical identifiability. Here, parameter esti-
mation can be successfully performed with low-noise
data, but, with realistic noise levels the uncertainties in
the resulting parameter estimates are large. This issue
can be complicated by the fact that the values of the
model parameters themselves may affect the ability to
distinguish kinetic compartments. This is a common
problem in brain neuroreceptor studies where the
same model cannot be applied to brain regions with
varying concentrations of receptor [82]. In addition,
small deterministic errors in the model or in tissue ra-
dioactivity quantification can produce large changes in
the parameter estimates. Thus, while an identifiable
model is essential, it is not necessarily a useful model.

A common approach resulting from this form of
model instability is to determine those parameters
which are common to a set of models and are esti-
mated with good precision, no matter what the model
form. For example, in a complete receptor model, the
free receptor concentration By, appears in the rate
constant describing the movement of tracer from a free
to a bound compartment. Ideally, therefore, receptor
information can be obtained from this rate constant,
but, in fact, functions that include this rate constant are
also sensitive to B,,,. One example of a useful lumped
parameter is the total volume of distribution V de-
scribed above for diffusible tracers (Eq. 8). For recep-
tor-binding radiotracers, V represents the ratio at
equilibrium between total tracer in tissue to that in
plasma. Instead of trying to use individual parameter
estimates, the total volume of distribution, which can
be derived from the model rate constants, has been
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found to be a particularly useful and reliable measure
for receptor quantification [56, 83, 84]. V'is an algebraic
function of the rate constants and has smaller uncer-
tainty due to the positive correlation between esti-
mated model parameters (Eq. 32). For a model with
one tissue compartment, V can be calculated by setting
the derivative in the differential equation (Eq. 15) to 0,
resulting in V = K,/k, (Eq. 8). For a model with two
tissue compartments, setting the derivatives in Eq. 17
and Eq. 18 to zero yields, V = K /k,(1 + ks/k,). In addi-
tion, if V becomes the primary parameter of interest,
simpler methods to directly estimate this parameter
can be developed (see Model-based Methods).

The process of model selection proceeds as follows:
Tissue measurements after injection of the radiophar-
maceutical are collected. Then, a number of possible
model configurations are proposed. Usually, the
number of compartments covers a range from very
complex to very simple, and there is a range of differ-
ent numbers of parameters to be estimated in these
models. Parameter estimation procedures are per-
formed with the measured data using each model. The
goodness-of-fit of each model to the data is assessed
from the residual sum of squares (Eq. 31) using statisti-
cal tests such as the F-test, the Akaike information cri-
terion [85], or the Schwarz criterion [86] to determine
which model is most appropriate. In general, the use of
a more complex model with additional parameters will
produce a better fit to the data and a smaller residual
sum of squares. However, this will be the case even if
the additional parameters added by the more complex
model are only providing a better fit to the noise in the
data and have no relationship to the underlying true
tissue model. The statistical tests used for model com-
parison determine whether the residual sum of squares
has been reduced using the more complex model by an
amount that is significantly greater than what is ex-
pected by random chance.

Another very useful approach for model comparison
is the examination of the pattern of residuals as in
Fig. 6.6b [43]. If the residuals from a fit of one model
configuration do not appear as randomly distributed
around zero, then a more complex model may be ap-
propriate. However, given all the error sources (see
section on random and deterministic errors), no model
will ever be perfect. It will therefore often be the case
that an overly complex model will still provide a statis-
tically significant improvement in the fit compared to a
simpler model. The modeler must have a good under-
standing of the degree of accuracy in the data in order
to avoid an unduly complicated model.

To simplify models, pairs of compartments can be
combined together. Two compartments can be collapsed
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into one by assuming that the rate constants “connect-
ing” them are large enough so that the two compart-
ments remain in continuous equilibrium. When this
occurs, the physiological interpretation of the remaining
rate constants in the reduced model must be changed. In
this way, a set of “nested” models can be defined. Figure
6.3 shows some examples of nested models. Here, a
simple model with a few rate constants can be consid-
ered to be a special case of a more complex model with
more parameters. For example, the model in Fig.6.3Bis a
simplified version of Fig. 6.3C which is itself a simplified
version of Fig. 6.3D.

It is good practice to test a set of nested models to
determine which one best characterizes a set of mea-
sured data [56]. An example of this process is shown
for the opiate receptor antagonist ['®F]cyclofoxy [84,
87-89]. Figure 6.7a shows a typical time-activity
curve measured in the thalamus with PET after bolus
injection. The symbols are measured data points. The
solid line is the best-weighted least squares fit using a
model with two tissue compartments (Fig. 6.3¢c). The
dashed line is the best fit using a model with one
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Figure 6.7. Comparison of model fits. a PET tissue concentration data
from the thalamus acquired after bolus injection of the opiate antagonist
["®F]cyclofoxy. Symbols are measured data points. Solid line is weighted
least-squares fit using a model with two compartments and five parame-
ters (Ki, ky, ks, k,, and blood volume fraction). Dashed line is best fit using

a model with one compartment and three parameters (K;, k,, and blood
volume fraction). b plot of weighted residuals versus time for the three-pa-
rameter model. ¢ plot of weighted residuals versus time for the five-para-
meter model. The residuals for the three-parameter model show a
non-random pattern that is reduced with the five-parameter model.
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tissue compartment (Fig. 6.3B). Both models also in-
cluded an additional parameter to account for ra-
dioactivity present in the tissue vascular space, so
five and three parameters were estimated, respec-
tively. The plots of weighted residuals versus time
from these fits are shown in Fig. 6.7b (one compart-
ment) and Fig. 6.7c (two compartment). The one-
compartment results show a deterministic pattern of
residuals. The residual points are not randomly dis-
tributed about zero, but instead show runs of sequen-
tial values that are all positive or all negative. The
residual pattern is more random when using the two-
compartment model. In this case, the more complex
model was found to have produced a statistically
significant reduction in the residual sum of squares.
However, this improvement was not large and was
not found uniformly for all patients or for all brain
regions.

The absolute magnitude of the residual noise can
also be useful in determining if a particular model
configuration is appropriate. If the model is exactly
correct and the magnitude of data noise is known,
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the weighted sum of squares (Eq. 31) will be approxi-
mately equal to N - n,, where N is the number of data
points and 7, is the number of model parameters
being estimated. If the actual sum of squares from
data fits are close to this value, the modeler gains ad-
ditional confidence that the chosen model configura-
tion is appropriate.

Model Constraints

A typical situation in PET modeling problems is that
a simple model with few parameters is often not ade-
quate to describe the tissue concentration curve.
However, a more complex model that does adequately
describe the data frequently produces parameter esti-
mates that have large uncertainties (standard errors).
Specifically, a simple one-compartment, two-parame-
ter model is often insufficient, whereas a two-com-
partment, four-parameter model is “better” by
various statistically significant measures. A number
of authors have dealt with this conflict by applying
constraints. These entail specifying exact values for
certain parameters or defining relationships between
the parameters that must be met. In either case, the
effect is to reduce the number of parameters that
must be determined from the model. If the con-
straints are accurate (or reasonably so), then the sen-
sitivity of the model data to the remaining
parameters is increased and the uncertainty in their
estimation is reduced. Often the constraint equations
use a priori values for physiological constants based
on the presumed interpretation of the model para-
meters in terms of Michaelis-Menten parameters
[90-92]. Alternatively, some parameters may be con-
strained based on measurements made in other
regions [93]. For example, a common approach for
receptor-binding tracers is first to analyze a reference
region known to have little or no specific binding to
determine parameters associated with the magnitude
of nonspecific binding. Then, regions with specific
binding are analyzed with nonspecific-binding rate
constants constrained to equal those estimated in the
reference region [81, 94]. Alternatively, additional
studies can be performed to aid the estimation
process by constraining parameters to be common to
the analysis of both studies. For receptor-binding
tracers, a study with an inactive enantiomer can be
used to determine parameters of nonspecific binding
[95,96]. In addition, paired studies with high and low
specific activity injections and/or displacement can
be performed and analyzed simultaneously with
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some parameters shared in the models for the two
studies [97, 98].

Validation of Physiological Measures

In the process of developing and selecting a suitable
model formulation and methodology, it is important
to perform validation studies which prove that the
parameter estimates produced by a model are
correct. These studies determine the precision and
accuracy of model estimates, verify the legitimacy of
the model assumptions, and help choose between
various approaches. Such an evaluation invariably
must be done in animals because of constraints on
experimental design, scan duration, and radiation
dosimetry in humans. Practical limits on animal
studies include limitations on total blood sampling
for input function measurements and the effects of
anesthesia.

Although much of the work of model development
and validation is performed using small or large
animals, it is important to realize that there are
considerable differences between PET image data and
autoradiographic or tissue-sampling measurements,
as well as the species differences among rodents,
large animals, and humans, which may limit the ap-
plicability of the information obtained in the animal
experiments. For example, measurement of tissue
concentration data at multiple time points in rodents
requires multiple animals. PET studies allow acquisi-
tion of multiple time points in a single study, avoid-
ing inter-individual variability. However, the spatial
resolution and statistical reliability of scan data are
substantially worse than measurements from tissue
samples in rats. Therefore, kinetic parameters that
can be reliably determined from rat data may not be
numerically identifiable from human scan data.
Therefore, many validation studies should be re-
peated wherever practical with human subjects.

The simplest test of a model is reproducibility, i.e.,
the variability of the model parameters under identi-
cal conditions, either on the same day or different
days [99]. Repeating studies on the same day will
generally produce smaller differences in scan data
results, since there will be less variation in subject
positioning and scanner calibration. Measurements
of population variability of model estimates provide
information concerning the most useful model
configurations. Clearly, model parameters with large
coefficients of variation will not generally be useful.
Also, models should provide physiologically reason-
able values. Although in vivo measurements can cer-
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tainly produce different results than in vitro tests, it
is up to the investigator to demonstrate the accuracy
of a model that produces parameter estimates incon-
sistent with previous results in the literature.
Additionally, one can compare parameters from one
tracer to another when there is reason to believe they
should be similar, e.g., comparing the K, values of
two tracers with high extraction, in which case both
K, values should approximate flow [58].

The next steps in validation of a model are interven-
tion studies. Here, one or more of the physiological
parameters that affect tracer uptake are altered, and
the model is tested to verify that the parameters
change in the proper direction and by an appropriate
magnitude in response to a variety of biological
stimuli. For example, brain blood flow can be altered
by changing arterial pCO,, or free receptor concentra-
tion can be reduced by administration of a cold
ligand. It is also useful to test whether the parameters
of interest do not change in response to a perturbation
in a different factor, e.g., does an estimate of receptor
number remain unchanged when blood flow is in-
creased [100]? Alternatively, changing the form of the
input function should ideally have no effect on the
model parameters [84, 101-103]. Model assumptions,
e.g., parameters whose values have been constrained,
should be tested. At a minimum, computer simulations
of the effects of errors in various assumptions upon
model results can be performed (see section on error
analysis). The limitation of these simulations is that
they are only as good as the models on which they are
based. Therefore, experimental validation of model as-
sumptions should be performed where possible.

Finally, the absolute accuracy of model parameters
can be tested by direct comparison with a “gold stan-
dard.” To test the accuracy of regional measurements,
such a validation study can only be carried out with
animals. While this validation step is very appealing, it
is often very difficult to achieve. There is often no gold
standard available for the measurement of interest.
Even if such a standard is available, the comparison
will require careful matching of scan data with tissue
sample data. If the regions being compared are small,
the effects of inaccurate registration and scanner reso-
lution can make evaluation of the model’s accuracy
difficult at best. Even without a gold standard, other
validations of the model can be performed. For
example, model predictions of concentrations in sepa-
rate compartments can be compared to biochemical
measurements of tissue samples [104]. Also, microdial-
ysis provides a method to assess extracellular tracer
concentration directly for comparison with model
predictions [105].
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Model-based Methods

To this point, the design, development, and validation
of a tracer kinetic model have been presented. Ideally,
the modeling effort generates a complete, validated
model that describes the relationship between tissue
measurements and the underlying physiological para-
meters. With this knowledge, we can design a method
of data acquisition and processing suitable for human
studies. This section concerns this final step in the
modeling process shown in Fig. 6.1: the adaptation of
such a useful model to produce a practical patient pro-
tocol [69, 106]. It is often the case that the original
modeling studies are complex and may not be suitable
for human subjects, particularly certain patient popu-
lations. For example, arterial blood sampling may not
be feasible, or a long data acquisition period may not
be practical, or the statistical quality of data in humans
may limit the number of parameters that can be reli-
ably estimated. From the understanding of the charac-
teristics of the tracer and with knowledge of the
limitations imposed by instrumentation and logistical
considerations, a model-based method can be devel-
oped that can achieve a useful level of physiological
accuracy and reliability.

Many questions must be considered in converting a
model into a model-based method. To what extent are
the extra complexities of a full modeling study neces-
sary or useful? What are the best trade-offs to maintain
an adequate signal-to-noise ratio in the data? Can an
appropriate input function be measured less invasively
than from arterial samples, e.g., from direct scan mea-
surements, from venous samples, or from a reference
region? What is a practical data collection period that
is compatible with the time availability on the scanner,
the statistical requirements of the collected images,
and the characteristics of the patients? Which parame-
ters are of prime importance? Can parameter estimates
be calculated on a pixel-by-pixel basis to generate func-
tional images or must time-consuming iterative non-
linear methods be applied to region-of-interest data?
What reasonable assumptions can be incorporated into
the model to reduce the number of parameters to a
workable set that can be determined with reasonable
precision? Is the method overly sensitive to measure-
ment errors or to inaccuracies in model assumptions,
particularly in patient groups? If the method is
simplified too much, could differences between pa-
tients and controls be exaggerated or hidden because
physiological factors properly included in the original
model are now ignored?
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This section presents some approaches that have
been used to produce model-based methods. These
methods are generally simpler than the full parameter
estimation studies, use additional assumptions, and
typically allow production of functional images of the
physiological estimates. In addition, sources of error in
model approaches are discussed along with error
analysis methodology. Finally, the trade-offs between
using model-based techniques and simple empirical
methods are examined.

Graphical Analysis

One increasingly common method applied to tracer
kinetic data is that of graphical analysis [90, 107-112].
The basic concept of this method is that after appro-
priate mathematical transformation, the measured data
can be converted into a straight-line plot whose slope
and/or intercept has physiological meaning. This ap-
proach has advantages, since it is simple to verify visu-
ally the linearity of the data and it is simple to
determine the slope and intercept by non-iterative
linear regression methods. It is also generally easy to
determine these values on a pixel-by-pixel basis, thus
producing a functional image of the parameter [113].
For many models, the simplified equations of graphical
analysis will not apply for all times post-injection, e.g.,
at early times when the blood activity is changing
rapidly and some tissue compartments have not yet
reached equilibrium with the blood. Therefore, care
must be taken in selecting the time period for determi-
nation of the slope and intercept. However, it is also
true that avoiding the time periods where the kinetics
are rapid also makes the method less sensitive to errors
introduced by oversimplifications in the model, partic-
ularly those dealing with tracer exchange between cap-
illary, extracellular space, and intracellular space.

The most widely used graphical analysis technique is
the Patlak plot [107-109]. This approach is appropriate
when there is an irreversible or nearly irreversible trap-
ping step in the model. Conceptually, the transforma-
tions of the Patlak plot convert a bolus injection
experiment to a constant infusion. A simple example of
this model is the two-compartment model (Fig. 6.3C), in
which the rate constant for return of tracer from com-
partment 2 to compartment 1, k,, is zero or is small, i.e.,
irreversible trapping. In this case, the model solution
(from Egs. 21, 22 and 28) for the total tissue tracer con-
centration C(f) for an arbitrary input function C,(¢) is

_ Kk, Kk
C(t)—Ca(t)®(k Tk exp| (k2+k3)t]+k n J(33)

2 3 2 k3
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If the arterial input function were held constant (C,),
the solution to Eq. 33 would be

C(t)=Ca( Kk, —(1—exp[~(k, +k;)t]) + Kk, tj

(kz + k3) kz + k3
(34)

After an appropriate time, t', after which the exponen-
tial term in Eq. 34 becomes sufficiently small, the ratio
of tissue to blood activity becomes

_ Kk gy (35)
C,  (ky+k;)

which is a linear equation. The slope of this equation,
K,is

K= Kik, (36)
k, +k,

The term K is the net uptake rate of tracer into the irre-
versibly bound compartment 2. It is the product of two
terms: K, the rate of entry into the tissue from the
blood, and k;/(k, + k;), the fraction of the tracer in the
tissue that reaches the irreversible compartment
(Fig. 6.3C).

For the case when the input function is not a con-
stant, the Patlak transformation is as follows:

t d
C(t) _V 4K {C“(S) ’

c,t ° C,(t)

(37)

The term in brackets in Eq. 37 is often called
stretched time or normalized time, since it has units
of time and it distorts time based on the shape of
the input function. If the ratio of tissue to blood ac-
tivity, which is called the apparent volume of distri-
bution, is plotted versus stretched time, under the
appropriate conditions a linear plot is obtained with
slope K and intercept V, (the initial volume of dis-
tribution). Note that in the case of a constant arter-
ial input, stretched time becomes exactly equal to
true time.

In applying this graphical method, it is important to
verify that the Patlak plot is in fact linear over the
range of time used, an assumption that can often be
evaluated in animal studies, where longer experiments
can be performed [114]. For purposes of fitting data to
estimate K, instead of fitting Eq. 37, it is equivalent to
use multiple linear regression to fit the measured tissue
data directly:
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C(6)=V,C, () + K[C, (s)ds (38)

This approach is better if the later values of the input
function are noisy (e.g., due to metabolite correction),
and more easily allows regression weights based di-
rectly on image noise estimates to be added to the esti-
mation process.

Figure 6.8 provides an example of the use of a Patlak
plot as applied to brain PET data after the injection of
FDG [53]. In this study, subjects were studied on two
occasions, approximately one week apart. For one scan,
the subjects underwent a hyperinsulinemic euglycemic
clamp, whereby high levels of insulin were infused, and
simultaneously blood glucose levels were maintained
at a constant level, thus maintaining the steady-state
assumption of the tracer kinetic model. On the second
occasion, a sham clamp was performed, i.e., a control
study. The high insulin levels in the clamp study caused
a dramatic change in the plasma input function, i.e.,
the rate of FDG clearance from plasma was much
higher. Figure 6.8a shows the tissue curves for an
average of gray matter regions in one individual. There
is clearly a dramatic difference in the two curves. The
Patlak transformation of Eq. 37 was applied to these
data and is shown in Fig. 6.8b with a plot of the appar-
ent volume of distribution versus stretched time. The
two plots nearly overlay each other, demonstrating that
most of the difference between the two tissue time-
activity curves of Fig. 6.8a can be accounted for by the
differences in the input function, not by differences in
the tissue kinetic parameters. Note that the hyperinsu-
linemic study covers a longer period in stretched time
than the control study.
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A second graphical approach is that developed for
measurement of parameters for reversible neurorecep-
tor ligands, i.e., those that approach equilibrium during
the time period of the experiment. As described above,
the total volume of distribution V is the most com-
monly estimated parameter for these types of tracers.
The Logan graphical relationship [111] allows the esti-
mation of V from the slope of a plot produced by a
transformation of the data, like the Patlak plot de-
scribed above. The Logan relationship can be derived
exactly from the one tissue compartment model, Eq.
15, and integrating:

t t
C(t)=K,[C,(s)ds—k,[C(s)ds (39)
0 0
Dividing Eq. 39 by k, and C(#), and rearranging
yields:

jC(s)ds

0

C(t)

iCa(s)ds
—yo

Vi _E (40)

where the slope of this relationship V is the volume of
distribution for the one tissue compartment model
(Ki/k,). In cases where the data are not consistent with
a one-compartment model, the graph becomes linear
after an appropriate time, and the linear regression is
performed for those later data. In that case, the slope is
the estimate of the total volume of distribution. Figure
6.9 shows an example of Logan graphical analysis [111]
as applied to PET time-activity data for the 5-HT,, an-
tagonist ['*F]JFCWAY [115] as measured in the rhesus
monkey. The three curves show regions with different
receptor levels, with the highest slope (frontal cortex)
corresponding to a region with high specific binding

Distribution Volume (mL/mL)

0 1 1 1 1 1 )
0 100 200 300 400 500 600

Stretched Time (min)

Example of graphical analysis (Patlak plot) from FDG PET data. The study involved a control scan on one day and a hyperinsulinemic euglycemic

clamp on another day. a Average tissue time concentration curves in cortical gray matter. Filled and open symbols are scan data values from the control and
clamp studies, respectively. b Patlak plots from the control (filled symbols and solid line) and clamp (open symbols and dashed line) studies computed from the
datain A and B using Eq. 37. Despite the large differences in tissue data between the two studies, the tissue kinetics in both cases, as shown by graphical analy-
sis, are very similar, i.e., there is at most a small effect of insulin on gray matter metabolism of FDG.
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Figure 6.9. Logan graphical analysis of regional PET data acquired from the

5-HT,, antagonist ['*FIFCWAY in rhesus monkey in frontal cortex (e), thala-
mus (), and cerebellum (a). Data are transformed as specified in Eq. 40.
Following a certain time, the graphs become straight lines with slopes equal
to the volumes of distribution for each region. Regions with greater specific
binding have higher slopes.

and a high value of V. Note that the time to achieve lin-
earity of these plots differs between regions due to dif-
ferent receptor levels/kinetic parameters.

Reference Region Methods

The emphasis in this chapter has been the determina-
tion of kinetic rate constants using the relationship
between tissue data measured with the PET scanner
and the input function, usually derived from arterial
blood samples. For studies in the chest with tracers
that do not metabolize, the input function can be mea-
sured from the imaging data in the left ventricle,
atrium, or the aorta [116-119]. Other approaches have
been used where smaller blood vessels can be imaged
but corrections for partial volume effect are required
[120, 121]. However, in a number of other cases, ap-
proaches have been developed to avoid the measure-
ment of the arterial input function and still deduce
kinetic parameter information by comparison of the
time-activity curve in the region of interest to that in a
reference region. The most significant application of
this approach has been in receptor modeling where the
comparison of regions with and without receptors pro-
vides a natural application [122-124], which can often
be extended to pixel-by-pixel analysis [125]. The
general idea of these approaches is to use the mathe-
matics of the model to infer the shape of the arterial
input function based on the time-course measured in
the reference region. This permits a mathematical rela-
tionship to be developed for the region-of-interest con-
centration in terms of the reference region data and the
kinetic parameters of both regions. Usually, the
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number of available parameters is reduced, e.g., in this
situation the uptake constant K; for either the region
of interest or the reference region cannot be deter-
mined, but the ratio between them can be estimated.
In addition, there are reference region methods
adapted for graphical analysis, either for irreversible
[109] or reversible [126, 127] tracer uptake. As with all
the graphical methods, only a subset of the kinetic para-
meters can be determined, and with the use of reference
regions, the estimated parameters are typically ratios of
the original parameters between their values in the
region of interest and that in the reference region.
However, it is often the case that the most sensitive bio-
logical parameter is a normalized model value.
Normalization tends to eliminate certain methodologi-
cal errors which add common variance to both the
region-of-interest and the reference region results [106].
Therefore, these reference-region graphical methods
tend to directly estimate the parameter ratios of interest.

Single-scan Techniques

A common approach to produce simplified model-
based methods is the use of single-scan techniques.
Here, based on a good understanding of the relation-
ship between tissue radioactivity and the underlying
physiological parameters, tissue radioactivity informa-
tion is acquired during one scan interval. This single
measurement permits the estimation of a single
unknown physiological parameter. Since most models
have multiple rate constants, some corrections must be
applied to account for these other unknowns. Careful
design of a single-scan technique ensures that varia-
tion in these nuisance parameters produces only minor
errors in the parameter of interest.

For the measurement of cerebral blood flow with
["O]water or comparable diffusible tracers, two ap-
proaches have been taken to produce single-scan
methods. Some of the earliest studies used continuous
inhalation of [**0]CO, [128], which is rapidly converted
to [*O]water in the lungs. By achieving constant radioac-
tivity levels, the derivative in the differential equation of
uptake of the tracer (Eq. 15 with additional terms for ra-
dioactive decay) can be set to zero, and K, can be deter-
mined from an algebraic formula in terms of tissue and
blood radioactivity. A different approach uses a bolus in-
jection followed by a single short scan [129, 130]. This
autoradiographic method uses the explicit solution of
the model (Eq. 27) to determine K, from the integrated
tissue radioactivity and a measured input function. Both
of these methods treat the estimated K, values as equal to
blood flow, assuming a large permeability-surface (PS)
area product for the tracer (Eq. 5). Both methods also
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require the use of an assumed value for the tracer distri-
bution volume V in order to specify k, as K,/V. As only
one tissue measurement is made, only one unknown pa-
rameter can be determined. The short scan of the autora-
diographic method was designed in part to minimize the
sensitivity of this method to errors in the assumed value
of the distribution volume.

Another example of single-scan, model-based tech-
niques is the autoradiographic method for measure-
ment of glucose metabolism, which was developed in
rats with ['*C]deoxyglucose [1] and extended to PET
using ['®F]2-fluoro-2-deoxy-D-glucose [2-4]. These
methods take advantage of the fact that most of the ra-
dioactivity in the tissue by 45 min post-injection has
been phosphorylated, so that the total tissue radioac-
tivity can be used to estimate the net flux into tissue of
deoxyglucose, K. This is the same rate constant as de-
termined from the slope of the Patlak plot. Effectively,
these methods estimate the slope of a Patlak plot by
using the measured tissue value at one data point and
by using population values of the model rate constants
to estimate the y-intercept of the straight line. A
number of other formulations of this approach have
been developed [131-133], each with different sensitiv-
ities to errors in the assumed rate constants. Finally,
since FDG is an analog of glucose, the metabolic rate of
glucose is estimated from the measured net flux of
FDG using the measured plasma glucose level and an
assumed scaling factor, the lumped constant [1, 5-9].

Equilibrium Methods

Another single-scan technique has been developed for
quantification of receptors by using infusion to
produce true equilibrium [84, 134, 135]. By administer-
ing tracer as a combination of bolus plus continuous
infusion (B/I), constant radioactivity levels can be
reached in blood and in all regions of interest. The
total tissue volume of distribution can be determined
from the ratio of tissue activity to metabolite-corrected
plasma activity. This value will include free, non-
specifically bound, and specifically bound tracer.
Estimates of the nonspecific component, e.g., from a
region with low receptor binding, from measurements
with an inactive enantiomer, or from data acquired
after displacement with excess cold ligand, can be
subtracted to estimate the binding potential, B, /Kp
[136] (Kp is the dissociation equilibrium constant).
Multiple infusions at different specific activities can be
used to determine B,,, [137, 138].

This infusion approach can be extended to provide
receptor-binding data in two states: at baseline and
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post-stimulus (e.g., drug-induced neurotransmitter
changes), with a single administration of tracer.
Without infusion, such data are conventionally
acquired with paired studies, each with a bolus injec-
tion. In the first study, control levels of binding are
measured, for example, by determining V by compart-
ment modeling [56] or graphical analysis [111]. Then,
following the pharmacological intervention, a second
measurement of binding is made with a second injec-
tion of tracer. This approach has been used successfully
with the D, ligand ["'C]raclopride [95, 139] as well as
with a number of other tracers. For example, Dewey et
al. have demonstrated the effects of changes in synap-
tic dopamine by direct effects on the dopamine system
itself [140] and by indirect pharmacological interven-
tions [141, 142]. In humans, this paired-study approach
has been used to measure drug occupancy [143-146].
The alternative study design is to administer the
tracer as a combined bolus plus continuous infusion
(B/I) to measure short-term changes in free receptor
concentration [101, 147, 148]. First, the B/I administra-
tion of tracer is performed to achieve constant radioac-
tivity levels in blood and all brain regions. Once
equilibrium is achieved, control binding levels can be
determined. For example, the volume of distribution V
can be measured directly from the tissue-to-plasma
concentration ratio. Then, a stimulus is administered
while the infusion of radiotracer continues, and the
change in specific binding of the tracer can be moni-
tored. An example of B/I data is shown in Fig. 6.10 as-
sessing the effects of amphetamine-induced dopamine
release with [''C]raclopride. By comparing the pre-
and post-amphetamine levels of specific binding deter-
mined directly from the tissue concentration values
(Basal Ganglia/Cerebellum -1), the change in specific
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Figure 6.10. ROl data from basal ganglia () and cerebellum (m) following
combined bolus plus infusion administration of the D, dopamine ligand
["CIraclopride. At 40 min (arrow), 0.4 mg/kg of amphetamine was adminis-
tered intravenously, producing displacement of raclopride due to competi-
tion with increased synaptic dopamine.
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binding from amphetamine can be measured. This B/I
study design permits the measurement of pre- and
post-intervention binding levels from a single adminis-
tration of tracer. It is particularly well adapted to
tracers with longer half-lives.

Random and Deterministic Errors

In making the choices necessary to implement a tracer
method, it is important to be aware of the many
sources of error that affect the precision and accuracy
of these physiological measurements [106]. A good un-
derstanding of what effects are more or less significant
to a given tracer and to the biological question of inter-
est is essential in designing a sensitive, reliable tech-
nique that is not overly complex.

One aspect to consider is random errors, i.e., the
effects of random statistical noise in the data on model
parameters. The duration of data acquisition, the
amount of smoothing of the images, the use of pixel or
region-of-interest data, the number of parameters in
the model, the mathematical structure of the model,
and the actual parameter values affect the statistical
accuracy of the parameter estimates. Many investiga-
tors have assessed the sensitivity of PET data to model
parameters and methods to optimize the statistical
quality of the model estimates [149-152]. In addition,
noise in measured data can directly introduce bias in
parameter estimates when non-linear methods are
used [66,153].

A primary source of deterministic error is the mea-
surement of regional radioactivity from the PET
scanner. Although the quantitative accuracy of PET
continues to improve, there are still many sources of
inaccuracies. For example, the accuracy of the scatter
correction is limited, particularly for whole-body
imaging and for 3D acquisition. A key effect corrupting
PET imaging data is finite resolution, i.e., the partial
volume effect [154]. The magnitude of bias in concen-
tration measurements depends on the size of the un-
derlying structure, the distribution of radiotracer
within and around the structure, the resolution of the
scanner, the reconstruction algorithm, and the strategy
for extracting regional concentration values. Definition
of the regions of interest using registered anatomical
images (MR or CT) is important, as long as registration
errors are minimized.

The partial volume effect produces heterogeneity,
i.e., the tissue response measured from even a single
pixel will represent a weighted average of the tissue in
the surrounding region, and is thus a combination of
different kinetic responses. This can have minimal to
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large effects on model results depending on the magni-
tude of heterogeneity and how the parameter of inter-
est affects the tissue concentration measurements. This
effect has been studied in great detail for a number of
methods [155-161]. Since finite resolution is unavoid-
able in real imaging data, ideally application of model-
ing techniques will not introduce artifactual changes in
the data. In other words, suppose a heterogeneous
region was composed of two tissue types. Ideally, the
final kinetic estimates from that area would be the
weighted averages of the appropriate values for each
tissue type, weighted by the fraction of the region oc-
cupied by each tissue type. If the parameter is esti-
mated in a linear fashion from the data, this will be the
case. For non-linear methods, heterogeneity will intro-
duce a bias. An important approach to deal with the
partial volume effect is to correct the PET data for this
effect [162-166]. Recently, investigators have begun to
assess the effects of these corrections on kinetic mod-
eling [167] with tendencies toward major increases in
the parameter values and the noise level of the
estimates.

Another source of error in model applications is the
presence of intravascular radioactivity in the tissue
measurements [168-173]. Some fraction of the mea-
sured counts originates from radioactivity in the blood
within the tissue. Since the radioactivity time-course in
blood differs from that in tissue, errors in model mea-
surements will occur unless this effect is properly
handled. In some cases, the fraction of tissue volume
occupied by blood can be measured in a separate
tracer experiment. Alternatively, this vascular fraction
is added as a parameter to account for this effect.
Obviously, these errors are most important in regions
with large blood volumes or in regions near the heart
chambers or large blood vessels. Typically, errors due
to vascular radioactivity are more significant when
data collected immediately after injection are included
in the analysis. However, these early data are often
most sensitive to the parameter of interest, such as in
the case of blood flow tracers where the rate constant
for movement of tracer from blood into tissue (K;) is of
prime importance. Various strategies involving selec-
tion of time intervals for analysis or optimal region-of-
interest placement have been proposed to handle these
effects [171, 174].

A key to successful quantitative methods is the accu-
rate measurement of the input function. Typically, the
blood time-activity curve is measured in a peripheral
blood vessel (usually radial artery) unless the heart
chambers can be imaged directly [116-118]. When in-
dividual blood samples are drawn by hand, they must
be taken at a sufficiently rapid rate to characterize the
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curve accurately. Careful attention is required for accu-
rate sample timing, centrifugation, pipetting or weigh-
ing, radioactivity counting, counting corrections
(background, decay, dead time, etc.), and data han-
dling. Some investigators have developed devices for
automatic withdrawal and measurement of whole-
blood radioactivity [175]. These devices provide con-
sistent data, but they may have increased statistical
noise depending upon their counting geometry. Timing
and dispersion differences between the brain and the
peripheral artery require correction, particularly for
studies of short duration with sharp bolus inputs
[176-179]. A number of studies have been undertaken
to assess the effects of statistical noise in the input
function on estimated parameters and to develop ap-
propriate estimation methodology [180-183]. If there
are radioactive metabolites of the tracer in blood, it is
important to determine the fraction of blood radioac-
tivity that corresponds to the original tracer as well as
the extent to which these metabolites pass into tissue.
Since metabolite determinations are often complex,
particularly for short-lived tracers, metabolite mea-
surements are made at only a small number of
samples. Appropriate interpolation or modeling
schemes are necessary to generate a continuous esti-
mate of the metabolite fraction throughout the study
[101, 184]. Alternatively, other modeling approaches
can be used to infer the metabolite correction [185].

Error Analysis

Error analysis is a useful tool in the development of an
appropriate model-based method. Performance of a
thorough error analysis is a critical step in the assess-
ment of the utility of a given method. Papers dedicated
solely to error analysis are common in the literature
[155, 156, 171, 186-196]. These analyses usually
proceed as follows. Choose a particular source of error.
Select values for the model parameters and use the
model equations to simulate tissue data including this
error effect, usually covering a range of effect magni-
tudes. Then, analyze these simulated measurements
with one or more methods, compare the derived para-
meter estimates to their original values, and determine
the magnitude of error that is produced.

Figure 6.11 provides an example of the results of an
error analysis. Cerebral blood flow (CBF) measure-
ments with the tracer ['°O]water are altered in the
presence of errors in correction for the time delay
between the measured arterial input function and the
actual input to the brain. Using an actual measured
input function, tissue time-activity data were simulated
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Figure 6.11.  Example of error analysis — the effect of errors in time delay

corrections between the brain and peripheral artery on measurement of
cerebral blood flow with ["*O]water. A positive time delay means that the
tissue data has been shifted forward in time with respect to the arterial
input function. The three curves show the percent error in estimated flow,
based on data collection periods of 90 sec, 120 sec, and 240 sec. See text for
additional details.

over a 4-min period using the model of Eq. 27, with a
flow value of 0.5 mL/min/g and a distribution volume
of 0.8 mL/g. CBF (K;) was then calculated by direct es-
timation of the two model parameters for total time in-
tervals of 90, 120, and 240 sec. In each case, the tissue
data were shifted with respect to the arterial input
function by -3 to +3 sec (a positive shift means that the
tissue data have been shifted later in time with respect
to the blood data). The figure shows the percent error
as a function of time delay. Positive time shifts produce
underestimation of blood flow. This error is larger for
shorter total acquisition times. This analysis suggests
that the effect of time shift errors can be reduced by
using longer data-acquisition periods. Even then,
errors as large as 10% occur with time shifts of 3 sec,
so care should be taken to measure or estimate time
delays between tissue and blood data [178, 197].

A careful analysis of all the relevant error sources can
be used to optimize methodology or to choose one ap-
proach over another. For example, various studies have
been performed to choose optimal total scanning times
and scan schedules [170, 198-201]. Unfortunately, it is
difficult to determine the total error of a method based
on the independent error analyses of a number of mea-
surements or assumptions. First, error analyses are only
as good as their ability to simulate biological reality, i.e.,
recognizing and analyzing all potential error sources and
making appropriate choices for the magnitude of each
error term. Even then, many error sources are not inde-
pendent, i.e., errors in one term affect other terms. Thus,
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actual errors may be larger or smaller than those pre-
dicted from independent error analyses. Therefore, it is
best if the ultimate choice of a method can be made by
analyzing many studies with a variety of techniques and
choosing the approach that has the best reproducibility,
the minimum population variability, or the maximum
statistical power to extract a particular physiological
signal.

Selection of Model-based Methods

This chapter has presented an overview of modeling
methods, from the most complex dynamic data acquisi-
tion with iterative parameter estimation to simplified
methods including Patlak and Logan plots or single-scan
techniques. Choosing the best approach is not simple,
and other options are available when selecting a tracer
method. In some studies, investigators normalize the
physiological measurements. Instead of using the ab-
solute values provided by a method, the results are scaled
in some manner by a reference value, such as the average
value in the entire organ or in a particular reference
structure. This procedure may significantly reduce inter-
subject variation introduced by instrumentation, recon-
struction, errors in the measurement of the input
function, as well as variability due to global flow, metabo-
lism, etc. In some cases where the model equations are
linear (or nearly so) with respect to the parameter of in-
terest, investigators can avoid the measurement of the
input function and use normalized tissue concentration
measurements as equivalent to a normalized model-
based method [129, 202, 203]. Interpretation of results
from normalized methods must be performed with care,
however, since changes in ratios may be caused by
changes in the numerator, denominator, or both.
Another example of choosing a normalized measure
is the use of binding potential [136], B,,,,,/Kp, for recep-
tor-binding agents. This measure is usually derived
from the total volumes of distribution V in regions
with and without specific receptor binding. In some
cases, the difference of the V values is used and in
other cases a ratio is used. These different formulations
have different characteristics in terms of biological in-
terpretation as well as within-subject and between-
subject variability. For example, the ratio formulation
is more common because it can be estimated without
measurement of the plasma input function. However,
in that case, the results depend upon the assumption
that the level of nonspecific tracer binding is un-
changed between regions and between subject groups.
An alternative to using a model-based method is to
use a simple empirical approach. Such approaches
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make no explicit attempt to estimate the physiological
parameter(s) of interest. Instead, an index based on
tissue measurements is used and presumed to reflect
the underlying physiology. Empirical indices include
absolute radioactivity values, radioactivity values cor-
rected for dose and/or subject weight, and ratios of ra-
dioactivity values between target and reference regions
(normalized values).

How can an investigator determine the best ap-
proach when using a tracer? Many trade-offs must be
considered in designing a study, and there are no
simple answers [106]. As an example, consider the use
of a receptor-binding radiotracer for measurements in
the brain with PET. Suppose the tracer binds reversibly,
i.e., its dissociation rate from the receptor is sufficiently
fast to approach equilibrium during the study period.
Possible model-based quantification approaches
include the following: 1) complete modeling study with
iterative parameter estimation; 2) use of a simplified
model with estimation of the volume of distribution
[56]; and 3) use of a linearization formula to derive the
volume of distribution from the later portion of the
data [111]. Empirical alternatives to model-based
methods include the following: 1) ratio of tissue region
of interest to (metabolite-corrected) blood (apparent
volume of distribution); or 2) ratio of tissue region of
interest to reference region with few receptors during
the apparent equilibrium phase.

Although the empirical approaches are the sim-
plest, they can provide misleading results. For tracers
that can reversibly bind with receptors, indices
derived from ratios of tissue concentration to refer-
ence regions or to plasma levels can be significantly
distorted due to lack of true equilibrium [84]. This
effect is demonstrated in Fig. 6.12 with a “bolus plus
infusion” protocol using the opiate antagonist
['®F]cyclofoxy (see section on single-scan techniques).
Radioactivity in the tissue regions (Fig. 6.12a)
reached steady levels by ~20 min. At 70 min post-in-
jection (arrow), the infusion was discontinued, and
plasma and tissue concentrations dropped. Figure
6.12b shows the apparent volume of distribution
plotted against time. Discontinuing the infusion
caused a dramatic increase in the values for the re-
ceptor-rich thalamus with smaller increases in
frontal cortex and cerebellum. The magnitude of this
effect depends upon the relative magnitudes of the
rate of tracer clearance from plasma and the receptor
dissociation rate. The change in the apparent distrib-
ution volume value (Fig. 6.12b) is due solely to the
change in clearance of radiotracer from plasma and
demonstrates that this ratio measure can be
significantly affected by the plasma clearance rate.
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Another choice to be made with this type of study is
whether tracer administered by continuous infusion is
a good idea [84, 134]. With infusions, data analysis is
greatly simplified, since the volume of distribution can
be obtained directly from the ratio of tissue radioac-
tivity to metabolite-corrected blood. Scans need only
be collected during the equilibrium period providing
more patient comfort. Fewer measurements in blood
are required. Also, the technique is model-independent
and only relies on equilibrium conditions. However, if
true equilibrium is not obtained, errors that could have
been eliminated by a more complex modeling proce-
dure will occur. Due to normal variation in plasma
clearance rates of the tracer, deviations from equilib-
rium will add variability to the results, although biases
here will be smaller than those following bolus injec-
tions [204]. The time interval corresponding to true
equilibrium must be carefully assessed and ideally
verified in each subject. There are also increased logis-
tical requirements due to a long infusion of radioactiv-
ity compared to a simple bolus injection. It is also not
at all clear whether bolus or infusion approaches
provide better statistical quality in the final physiologi-
cal measurements.

Does the use of model-based methods improve the
signal-to-noise characteristics of data? In other words,
can small biological signals be detected more easily by
using modeling methodology? Use of appropriate
quantification methodology can reduce intersubject
variability by accounting for factors affecting the raw
concentration measurements that are unrelated to the
physiological measure of interest. If inter-subject vari-
ability is decreased, the power of the study to detect
group differences is typically increased. However, if

this extraneous variability is small, then use of a
model-based method may produce little improvement
in the signal-to-noise ratio. In fact, since there are a
large number of potential sources of error in applying
modeling techniques, errors in these corrections or in
the implementation of these procedures can actually
increase variability over simpler, empirical methods.
The net effect of applying a model on measurement
variability thus depends upon the magnitude of physi-
ological variation in the patient groups that can be
removed by the model versus the accuracy of the
model and the reliability of the additional measure-
ments that it requires.

Model-based methods have one important advantage
over empirical approaches. With model-based results, it
is easier to justify the conclusion that any significant
findings are in fact due to real differences in the biologi-
cal function of interest and not due to extraneous physi-
ological factors. When empirical methods detect
significant differences, these other physiological factors
may contribute substantially to the measured differ-
ences. Thus, interpretation of the results is less straight-
forward. This is particularly true when there are known
differences in physiology between subject groups in a
study. For example, if plasma tracer clearance differs
between patients and control subjects, substantial errors
may be made if tissue radioactivity values are directly
interpreted as reflecting the relevant physiological
process. On these grounds, model-based methods, which
usually require a more complicated study procedure, are
superior to empirical approaches. It is important,
however, to remember that model-based methods rely
on many assumptions, which can produce misleading
results when applied inappropriately.
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Summary

This chapter discussed the use of mathematical
models to extract physiological information from
PET studies with radioactive tracers. Modeling
methods offer a number of advantages. Application of
a model can explain to what extent the tissue ra-
dioactivity measurements reflect the physiological
function of interest. It can produce quantitative esti-
mates of one or more physiological parameters. Use
of a model can explain the cause of different levels of
uptake between subjects. It may improve the signal-
to-noise characteristics of the data by removing addi-
tional variation caused by extraneous physiological
factors. The application of modeling methodology
also has disadvantages. Usually, modeling procedures
are more complex, often requiring longer scanning
sessions, blood sampling, metabolite analyses, and
complex data processing. Violations in the assump-
tions made by models can produce misleading
results.

Validation studies can demonstrate that a model-
based method accurately measures the parameter(s) of
interest and is not influenced by other factors. The un-
derstanding provided by a model allows the develop-
ment of study procedures that maximize sensitivity to
key parameters and minimize the effects of violations
in model assumptions. Ideally, the understanding pro-
vided by the model will allow the design of a simple
straightforward study procedure. In that way, the ra-
diopharmaceutical can be applied to the appropriate
patient groups without a complex procedure while still
generating an accurate regional physiological assay.
The final configuration of a model-based method may
be as simple as an empirical technique but as accurate
as a more complex study procedure.

It is essential to have a good understanding of the re-
lationship between the tissue measurements and the
underlying physiology,i.e.,a model. A useful model will
provide a mathematical description that is sufficient to
predict the tracer’s physiology and biochemistry within
the limitations of available instrumentation and the lo-
gistics of a practical patient procedure. In addition, the
assumptions and limitations of the technique must be
clearly delineated. Without a model, it is difficult to
assess how physiological differences between study
populations affect an empirical method. Ideally, use of a
model will significantly improve the physiological
significance of the resulting data and may also improve
the sensitivity of the tracer to the underlying physio-
logical processes under study.

Positron Emission Tomography
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7 Coregistration of Structural and Functional Images
David ] Hawkes, Derek LG Hill, Lucy Hallpike and Dale L Bailey

Introduction — Why Register
Images?

Images are spatial distributions of information.
Accurately relating information from several images
requires image registration. Alignment of a PET image
with a high-resolution image such as a Magnetic
Resonance (MR) image has successfully allowed
anatomical or structural context to be inferred from
the coarser-resolution PET image. PET to MRI regis-
tration was one of the earliest successful examples of
image registration to find widespread application.
Since then, image registration has become a major area
of research in medical imaging, spawning a wide range
of applications and a large number of papers in the
medical and scientific literature. Recent reviews are
provided in Maintz et al. [1] and Hill et al. [2]. Much of
this chapter is a summary of information in the latter
plus a recent textbook on image registration [3].
Further algorithmic and implementation details are
contained in these two sources.

This chapter addresses the software approach
to image registration. The first section classifies
registration applications and outlines the process of
registration. It then discusses some concepts of
correspondence inherent in image registration and
summarises frequently used transformations.
Methods for aligning images based on landmarks or
geometric features and recent advances using the sta-
tistics of image intensities directly to align images -
the so-called “voxel similarity” measures - are
described. Some details are given on image prepara-
tion, optimization, image sampling, common pitfalls
and validation.

A Classification of Registration
Applications

Image registration applications divide into:

(a) Intra-subject registration — those that require regis-
tration of images taken of the same individual, and

(b) Inter-subject registration — those that relate infor-
mation between subjects.

Examples of the former can be classified as follows:

(i) Multi-modality registration, where several medical
images are taken of the same part of the human
anatomy with different imaging technologies or
“modalities” to reveal complementary information.
Figures 7.1 and 7.2 show examples from the head
and pelvis respectively. Image registration is partic-
ularly useful when the PET image contains very little
anatomical information, as is the case in [!!C]-me-
thionine or ['®F]-L-DOPA scans.

(ii) Correcting PET emission data, where aligned ana-
tomical images (usually MRI) or attenuation maps
derived from CT are used to improve the accuracy of
regional uptake, correct for photon attenuation or
improve reconstruction accuracy. Figure 7.3 pro-
vides an example of an aligned MR image improv-
ing spatial resolution of a PET image of the brain.

(iii) Serial image registration or intra-modality registra-
tion, where several images are taken over time in
order to monitor subtle changes. Figure 7.4 shows
aligned whole-body serial ['*F]-FDG images.

(iv) Registration of images to physical space, where
interventional, surgical, or therapeutic techno-
logies rely on images to guide treatment to specific

* Chapter reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and

Clinical Practice. Springer-Verlag London Ltd 2003, 181-197.
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Figure7.1.  Aslice from an MR volume (left) with the
corresponding slice (right) of the PET ['8F]-FDG volume
aligned in 3D and overlaid on the MR using a “hot-body”
intensity scale [3]. This image shows that the suspicious
bright region (lower arrow) is unlikely to be a recurrence of
the astrocytoma that has been surgically removed followed
by radiotherapy. The small bright region (upper arrow)
anterior to this corresponds to normal cortex.

Figure 7.2.  Four consecutive slices through the pelvis from
a (T volume, with aligned ['8F]-FDG PET images overlaid,
showing concentration of FDG both in the bladder and in a
region of dense tissue near the cervix [3]. This indicated that
the dense mass was recurrent tumor rather than fibrotic
changes associated with previous radiotherapy. This was
confirmed at surgery.

Max.Cross-Entropy Max.Cross-Entropy
(no priors) (with priors)

ML-EM

Figure 7.3. One slice of a PET ["F]-FDG scan of the brain is shown, reconstructed (left) with the ML—EM algorithm, (middle) using maximum cross entropy and
(right) using anatomical priors (gray matter, white matter, skull, CSF, and subarachnoid space) from aligned MR images [3] (Images courtesy of Dr Babek
Ardekani, University of Technology, Sydney).
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Figure 7.4.  An example of registration of ['®F]-FDG scans obtained with a gamma camera PET system [3]. The top row shows the original reconstructed data
before alignment and the bottom row shows the studies on days 28 and 56 realigned to the baseline scan (left) by maximizing mutual information [50]. The in-
crease in activity of the lung lesion is clearly seen. Registration was successful despite different fields of view and bladder activities.

targets. The image-derived information must be
aligned with physical space during treatment,
again a process of registration.

Inter-subject registration has two main application areas:

(a) Cohort studies, in which images from a group or
cohort are aligned to improve sensitivity,

(b) Alignment of images to an atlas to help delineate
anatomy of interest.

Both of these require alignment of images from differ-
ent individuals, a process of image registration. An
atlas itself may be created by aligning images from a
large number of individuals, for example, the Montreal
Brain Atlas derived from the MR images of more than
300 normal young individuals [4].

An image registration application comprises a number
of decisions and processes, summarized below:

(i)  Choice of transformation - rigid-body with or
without scaling, affine, non-rigid; if non-rigid,
type and number of parameters,

(ii) Choice of the measure of alignment (or
misalignment) and the method of optimizing
this measure,

(iii) A decision on which will be the target image and
which the source image to be transformed to the
target,

(iv) A pre-processing step to delineate correspon-
ding structures or transform intensities, if
necessary,

(v)  Computation of the transformation by optimiza-
tion of the measure of alignment,

(vi) Transformation of the source image, or discrete
points in the source image, to the coordinate
system of the target image,

(vii) Viewing and manipulation of the results.

This sequence of processes assumes that all images
to be registered are in digital form and are acc-
essible to the computing system performing the
registration.
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The Concept of Spatial
Correspondence

Image registration establishes spatial correspondence.
Almost all of the images that are used in image regis-
tration are digital and three dimensional (3D), consist-
ing of an array of volume elements or voxels. To each
voxel is assigned a number, the image intensity at that
position. The registration transformation is a mapping,
T, that transforms a position x, in image A to a point
xpin image B, or

Tix, > x5 T(x,)=xp 1)

where the two images A and B are mappings of points
in the patient, within their field of view or domain €,
to intensity values:

Aix, €Q, > Ax,) (2)
B:xy € Q> B(xy) (3)

Images A and B represent one object X - the patient.
Image A maps position x ¢ X to x, and image B maps
x to xp. The registration process derives T so that both
A(x,) and B'(x,) represent the same location in the
object (within some error depending on the accuracy
of T). Strictly, T defines a spatial mapping while we
need a mapping that maps an accurate estimate of in-
tensity, not just position, by including interpolation [2].
The registration process recovers T over the domain of
overlap between the two images, Q7 5 , which depends
on the domains of the original images A and B as well
as the spatial transformation T.

Q];,B = {xA €Q, ‘T_l (x4)€ QB} (4)

By spatial correspondence between two images, we
mean that a voxel in one image corresponds to the
same physical location in the patient as the corre-
sponding voxel in an image that has been registered to
it. Although this may seem an obvious definition, prob-
lems can easily arise which may lead to errors in inter-
pretation. For example, a voxel in a PET image will
usually be much larger than one in MRI and the effec-
tive spatial resolution may be up to an order of magni-
tude coarser in PET than in MRI. One PET voxel may
therefore contain information that is spread over many
hundreds of MRI voxels. This is often called the partial
volume effect and registered images must be inter-
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preted with care. Spatial correspondence may not exist
when:

(i) Tissue is gained or lost between source and target
image acquisition, for example, due to tumor
growth or surgical removal.

(ii) Organ contents change (for example, bladder or
bowel filling and emptying).

(iii) One (or both) of the images are corrupted, for
example, by motion artifacts.

(iv) Structure present in one individual is absent in
another (for example, detailed sulcal and gyral
patterns in the cerebral cortex).

In inter-subject registration, correspondence may be
defined structurally (i.e., geometrically), functionally,
or histologically. Current non-rigid registration algo-
rithms implicitly establish correspondence that does
not necessarily conform to any of these definitions.

Transformations

If we can assume that the structure imaged does not
change shape or size between the different images, we
use a rigid body transformation. This has six degrees
of freedom - namely rotations about each of the three
Cartesian axes and translations along them - and the
transformation is described fully by these six values. A
rigid body transformation is usually assumed to be
sufficient when registering head images from the same
individual. It will also be sufficient when registering
images of individual bones, and may even be sufficient
when registering images of soft tissue structures that
are securely attached to bony structure in, for example,
the mandible, neck, or pelvis. The generalization of this
transformation to include shears is called the affine
transformation and has twelve degrees of freedom. An
affine transformation transforms parallel lines to par-
allel lines.

If soft tissue motion is repetitive and reproducible,
for example, cardiac or breathing motion, then gating
techniques may be used to ensure that images of
the same part of the breathing or cardiac cycle are
registered. In this case, the rigid body transformation
may still suffice. If soft tissue deformation is not
constrained then many more parameters or degrees
of freedom are required to describe the trans-
formation. One well-known method uses approx-
imating B-splines on a grid of control points and may
require ~1000 degrees of freedom to describe tissue
deformation [5].
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Transformations describing the mapping of images
between individuals in cohort studies or atlas registra-
tion may also require many degrees of freedom. A
popular way of doing this spatial renormalization is to
use Talairach space, a piecewise rigid body transforma-
tion with scaling in which brains are aligned to an axis,
defined by the intersection of the interhemispheric
fissure with the anterior and posterior commissure,
and scaled to fit within a bounding box [6]. Often, cor-
responding MR images are collected in cohort PET
studies. In this case, MR images can be aligned to a
common reference or atlas, perhaps itself generated
from an alignment of a large number of MR images
[4]. A number of non-rigid registration algorithms
have been proposed for this task [5, 7-11]. Alignment
of the PET images is then achieved by concatenation of
the non-rigid MRI to atlas with the rigid-body, patient-
specific PET to MRI transformation. Each non-rigid al-
gorithm produces slightly different transformations
and validation remains a research task.

Methods for Aligning Images

Image registration algorithms can be categorized by how
much user interaction is required. They can also be
divided into those that use predefined features such as
points or surfaces (feature based) and those that operate
directly on voxel intensities (voxel-similarity based).

Interactive

The simplest conceptual method for aligning two
images is to move the source image interactively with
respect to the target image. Combined with a means of
displaying the two images so as to allow the quality of
the resulting alignment to be judged, this can provide
an effective alignment method. Pietrzyk et al. [12] have
described a method for the alignment of PET and MR
images of the head by interactively aligning contours
derived from PET ['*F]-FDG image with slices of MR
images. While reasonably quick with the appropriate
user interface and fast reslicing of PET contours, the
method is prone to user error and has largely been
superseded by more automated methods.

Interactive alignment remains very useful when align-
ing images that show gross abnormality, when attempt-
ing alignment in applications for which a specific
algorithm is not designed, or when registering images
where registration has failed for whatever reason. The

165

skilled observer will bring into play expert knowledge of
anatomy and radiological appearances that are not cap-
tured by even the most sophisticated computer algo-
rithm. Care must, of course, be taken to verify that the
accuracy of registration is sufficient for the application,
as the purpose of registration is to extract useful and
perhaps surprising information from aligned images.

Even when a fully automated algorithm is used, a
certain amount of user interaction is desirable. Careful
visual inspection of the registration results is always
strongly recommended as no such algorithm will
produce an accurate result one hundred percent of the
time, and, similarly, methods for detecting failure are
never one hundred percent reliable.

Corresponding Point — Point Landmarks
or Fiducials

Point-based registration is one of the earliest successful
examples of image registration for clinical purposes.
Markers that will be visible in both images are attached
to the patient before imaging. Although the use of in-
ternal landmarks such as surgically implanted markers
has been proposed, these are rarely used and markers
are usually attached to the skin surface or, when high
accuracy is required, are attached to posts screwed di-
rectly into bone. One of the earliest examples is the
stereotactic frame, which is screwed into the skull prior
to all imaging and provides a reference between
imaging and subsequent guidance for biopsy and
tightly targeted external beam radiotherapy. Imaging
markers attached to the base ring are used for registra-
tion. The stereotactic frame is large and cumbersome
and extremely uncomfortable for the conscious
patient. Although relocatable frames based on an
acrylic bite block have been devised [13,14], stereotac-
tic frames are usually confined to cases where patients,
under general anesthetic, proceed directly from
imaging to intervention. This is rarely a practical
proposition for PET applications.

More practical are bone screws with imaging caps
containing fluid that is visible in each of the imaging
modalities. One such example is the design in [15], in
which the fluid-filled cap contains a mixture of fluoride
I8E- jodinated contrast material for CT, and dilute Gd-
DTPA for MRI. The accuracy of alignment using this
method is sufficient to provide a “gold standard”
against which other registration methods can be tested
[16]. The imaging marker posts can be left in place for
several days with only minimal risk of infection and
few complications have been reported. The process is,
however, uncomfortable for the patient and is usually
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only justified if the patient is to proceed to surgery or
other high-precision therapy.

An alternative system is the locking acrylic dental
stent (LADS) [17], in which imaging markers are fas-
tened to a patient-specific dental stent attached to
upper teeth. This device has been used in PET, MRI,
and CT scanners. The LADS has a reported accuracy
approaching that of the bone-implanted markers, but
its use is currently limited to applications involving
image-guided interventions due to the expense and in-
convenience in manufacture of the stent. Obviously, it
is also only suitable for the dentate patient, although
accurate stents have been made with as few as four
healthy teeth.

For minimal invasiveness, imaging markers can be
attached to the patient’s skin. These markers must be
in position throughout all acquisitions of the images to
be registered. With the best organization this will take
several hours and often more than a day will elapse
between images. Skin is mobile and can move over the
skull surface by 5-10 mm as the head is positioned in
the different head holders of various scanners. Markers
have been attached to clamps that fix to the nasion and
both external auditory meatus and these have a slightly
higher reported accuracy. A variety of shapes of
marker have been proposed so that a 3D point can be
accurately defined independent of slice orientation and
voxel dimension anisotropy. These include cross and V-
shaped markers [18] but the most widely used are
spherical markers of much larger dimension than the
voxel sizes of MRI or CT. Their coordinates are found
by determining the center of gravity of the image in-
tensities in the vicinity of the marker. Marker design
has developed significantly over the last 10 years,
driven by the requirements of image-guided surgery,
but in imaging of the head accuracy is still limited to
between 3 and 5 mm for skin markers due to skin
movement between acquisitions [19]. While a
minimum of three non-collinear markers are sufficient,
as many markers as possible should be used to reduce
the effect of random marker location errors.
Unfortunately, the presence of markers has the added
complication that small movements of the head during
scanning and reconstruction errors can lead to
significant streak artifacts, to the detriment of image
quality.

All these applications can be termed prospective reg-
istration methods. This means that the decision to reg-
ister the images had to be taken before either of the
images was acquired. This frequently is not possible,
which means that images have to be retaken with
markers, with the concomitant increase in cost and
radiation dose to the patient.
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Point-based retrospective registration is possible
using anatomical landmarks within the images them-
selves. Provided that sufficient landmarks are acquired
in each image and that there is no bias in determining
point correspondence, reasonable accuracy can be
achieved [20]. However, the process is time consuming
and requires a skilled operator. Although it was used at
several sites for many years, it has now largely fallen
into disuse due to the significant advances in more au-
tomated methods of retrospective image registration
described below.

The point-based registration algorithm, however,
remains an important and widely used algorithm, in
particular for image-guided interventions and when
exploring novel image registration applications. The al-
gorithm is derived from the solution to the orthogonal
Procrustes problem. This name derives from Greek
mythology, in which the robber Procrustes would offer
travelers hospitality in his roadside house, promising a
bed that would fit every visitor perfectly. However, this
was achieved by ensuring instead that the travelers
fitted the bed, either by stretching them if they were
too small or by amputation if they were too big, both of
which transformations were invariably fatal. The hero
Theseus put a stop to this bizarre practice by subject-
ing Procrustes to his own treatment. In statistics, the
name Procrustes became an implied criticism of the
practice of forcing one dataset to fit another, but in
shape analysis this practice has now achieved wide-
spread use. The Procrustes problem is an optimal
fitting problem of least squares type. Given two
configurations of the same number of non-coplanar
points the algorithm derives the transformation, which
minimizes the sum of the squared distances between
corresponding points. The algorithm relies on prior es-
tablishment of point correspondence. We can consider
3D rigid body [21,22], rigid body plus scaling [23], and
affine transformations [24].

The solution for 3D rigid body transformations can
be computed directly; no iterative or optimization
scheme is required. The transformation comprises a
translation vector and a rotational matrix. It is straight-
forward to compute the translation vector from the
vector joining the centers of gravity of the two point
distributions. The rotational matrix is calculated using
singular-value decomposition (SVD).

Given two configurations of N non-coplanar points
P = {p;} and Q = {gq;}, we seek the transformation that
minimizes G(T) = ||T(P) - Q|* B Q are the N-by-D ma-
trices whose rows are the coordinates of the points p;
and q; respectively, while T(P) is the matrix of trans-
formed points. ||...|| is a matrix norm, the simplest
being the Frobenius (X]|(T(p;) - g)*)"* . When T is a
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rigid body transformation we replace the values of P
and Q by the difference of each value from the mean:

pi>pi—p ®)
] (6)

Writing P = [p; ,..., py]* as a matrix of row vectors and
similarly for Q, and letting K = ¥; K; where K; := p;q,
we have

K=UDV'=R=VAU' A:=diag(1,1det(VU")) (7)
where K = UDV" is the SVD of K.

Finally, the translation ¢ is given by ¢ = § - Rp.

Corresponding point landmarks can also be used to
define non-rigid transformations. The most widely
used is the thin-plate spline approach of Bookstein
[25] in which the transformation derived is that of a
thin, perfectly elastic plate. As with the rigid body solu-
tion above, the transformation can be calculated
quickly and directly. Non-rigid transformations are
rarely used in intra-subject PET image registration as
there is usually insufficient information content in PET
images to derive such transformations accurately.

Surfaces, Lines and Points

Boundaries or surfaces between organs and between
the skin surface and the surrounding air can provide
strong features for image registration. Automated
image segmentation algorithms - or, failing that,
manual or user-defined segmentation - can be used to
define visible boundaries in the images to be regis-
tered. If these boundaries correspond to the same
physical surface in the images to be registered then
they can be used to derive the registration transforma-
tion. A number of algorithms have been based on reg-
istration between surfaces and lines or between points
demarcated on surfaces. These algorithms are usually
only used to determine rigid body transformations.
Many surfaces in images have a high degree of symme-
try (for example, the outline of the cranial vault has an
almost circular outline in sagittal section) and non-
rigid transformation solutions are likely to be highly
susceptible to noise and hence error prone.

The Head-and-Hat Algorithm

The earliest multi-modality surface-based registration
algorithm was the “head-and-hat” algorithm proposed
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by Pelizzari et al. [26]. This algorithm was used to align
MRI, CT, and PET images of the head. The high-resolu-
tion CT or MR image was represented as a stack of
disks, referred to as the “head”. The second surface was
represented as a list of unconnected 3D points, the
“hat”. The registration transformation was then deter-
mined by iteratively transforming the “hat” points until
the closest fit of hat on head was found. The measure of
closeness of fit was the sum of squared distances
between a point on the hat and the nearest point on the
head, in the direction of the centroid of the head. The
original algorithm used Powell optimization [27],
which involves a sequence of one-dimensional opti-
mizations along each of the six degrees of freedom of
the rigid-body transformation. The algorithm stopped
when it failed to find a solution in any of the degrees of
freedom that improved the measure of fit by more than
a predefined tolerance. The corresponding surfaces
most commonly used were the skin surface from MRI
and PET transmission images or the brain from MRI
and PET emission images. The algorithm proved to be
reasonably robust but was prone to error with convo-
luted surfaces and was particularly susceptible to
errors in cranio-caudal rotation due to the natural
symmetry of the cranium mentioned above. It requires
a reasonably good first guess or “starting estimate” of
the correct registration transformation. In most cases,
the known patient orientations in the scanners will
suffice. The method has also been applied to cardiac
MRI and PET images of the heart [28].

Distance Transform Based Surface Registration

A modification of the head-and-hat algorithm pre-
computes a distance transform of the source image
surface. A distance transform is applied to a binary
image in which voxels inside an object have the value 1
and voxels outside an object have the value 0. The dis-
tance transform labels each voxel in the image with its
distance from the surface. Computation of the transform
proceeds by taking a starting estimate of the transforma-
tion and looking up the distance from the surface in the
distance transform image for each surface point in the
target image. The cost of this transformation is com-
puted as the sum of squares of these distances. A process
of optimization is used to find the transformation that
minimizes this cost. The chamfer filter defined by
Borgefors [29] is widely used and efficient and has been
successfully used in image registration applications
[30-32]. More recently exact distance transforms have
been used in place of the chamfer transform [33].
Surface-based registration is prone to finding local
minima during the optimization process and presenting
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these as the solution rather than the true global
optimum. The physical analogy is that small features on
the surface “lock together” at the incorrect registration.
To partially alleviate the risk of this occurring, multiscale
representations have been used [30].

The Iterative Closest Point (ICP) Algorithm

The ICP algorithm was proposed by Besl and McKay
[34] for the registration of 3D shapes. Although the
authors did not have medical images in mind, the algo-
rithm has been very successful in medical applications
and has largely superseded the other surface-based al-
gorithms due to its robustness to starting estimate and
surface shape. The algorithm is designed to work with
seven different representations of surface data: sets of
points, sets of line segments, implicit curves, paramet-
ric curves, sets of triangles, implicit surfaces, and para-
metric surfaces. For medical imaging the most useful
representations are sets of points and sets of triangles.
The algorithm has two stages and iterates. The first
stage involves identifying the closest point in the target
image surface for each point in the source image
surface. In the second stage a rigid body registration
(such as the Procrustes method described above) is
computed between these two point sets. This is used as
the transformation for re-computing the closest points
and the process continues until convergence, which is
defined to occur when the change in the transforma-
tion after each iteration drops below a predetermined
tolerance. The algorithm is still prone to errors caused
by local minima and the original authors proposed
multiple starts to estimate the global optimum. Again,
multi-resolution techniques could be used to avoid be-
coming trapped in local minima.

Crest Lines and Other Geometric Features

An alternative to using pre-segmented surfaces is to use
distinctive surface features defined by their local geome-
try. Using the tools of differential geometry it is possible
to define two principal curvatures of a surface in 3D
space. A crest line is an indication of a ridge in the
surface and is defined as the loci of points where the
value of the largest curvature is locally maximal in its
principal direction [35]. Registration between two
images proceeds by applying the ICP algorithm to these
crest lines. Gueziec et al. [36] have proposed using hash
tables of geometric invariants for each curve together
with the Hough transform and a modified ICP algo-
rithm. These methods, while useful for intramodality
registration of high-resolution images, are less applica-
ble to lower-resolution PET images.

Positron Emission Tomography

Image Intensity or Voxel Similarity-based
Registration

A measure of image alignment is computed directly
from the voxel intensities and an optimization process
used to search for the transformation that maximizes
this measure. Although the number of computations
required is high, modern computing power means that
reasonably high-resolution image volumes can be reg-
istered sufficiently quickly to be useful. The successful
methods can be fully automatic and recent validation
studies have shown that for the particular case of regis-
tration of images of the head, voxel similarity-based
registration methods can outperform feature-based
methods in terms of accuracy and robustness [16].

As the methods operate directly on voxel intensities,
different methods are required for the alignment
images from the same modality and that of images
from different modalities. In intramodality image reg-
istration we would expect the difference in the images
at alignment to be dominated by image noise and little
structure should be present. This suggests a number of
possible measures of alignment that are outlined in
more detail below. As it is only meaningful to compute
a measure where there is overlap of data and as the
volume of overlap will change with each trial align-
ment, care must be taken to normalize the registration
measures.

Minimizing Intensity Difference

This is one of the simplest voxel similarity measures
involving subtracting the two images and computing
the mean sum of squares of this difference (SSD) image
in the region of overlap. For N voxels in the overlap
domain Q] ; this is given by

sSD=—- 3 |A(x,)-B"(x,)] ®)

erQg,B

It can be shown that this measure is optimal when two
measures differ only by Gaussian noise [37]. Although
we are usually interested in finding differences between
the images, these are often so small that this measure
remains the most effective. Image noise may not have a
Gaussian distribution but this is unlikely to have a
significant effect on performance. The measure is fre-
quently used although it is sensitive to a small number
of voxels having very different intensities — as might
occur, for example, in contrast-enhanced serial MR
imaging or during a dynamic sequence of PET images.
Using the sum of absolute differences (SAD) rather
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than the sum of squared differences can reduce the
effect of outliers.

SAD=— 5 |AGx)-B(x,) ©)

XAEQZ,B

Correlation of Voxel Intensities

A slight relaxation of the assumption that registered
images differ only by noise is that image intensities are
strongly correlated. The correlation coefficient has
been widely used in intramodality registration, for
example [38], and is given by:

Y (A(xA)—Z)(BT(xA)—E)
erQQB

CC=

- (10)

{ S (AG)-A) 3 (BT(xA)—E)Z}

T T
X €Q, 5 X €Q, 5

where A is the mean voxel value in image Alor, , and B
is the mean of B'|gr .

Ratio of Image Uniformity (RIU)

The RIU algorithm was originally introduced by Woods
et al. [39] for the registration of serial PET studies but
has now been applied to serial MR images as well. It is
available in the AIR registration package from UCLA.
The RIU algorithm finds the transformation that mini-
mizes the standard deviation of the ratio of image inten-
sities. This ratio is computed on a voxel-by-voxel basis
from the target image and the transformed source image
that results from the current estimate of the registration
transformation. The RIU measure is most easily thought
of in terms of an intermediate ratio image R comprising
N voxels within the overlap domain Q7 5.

Alag, (a)

= 1
R(x,)= o R =EXA§;£,B R(x,) 11

ay, (%4)

1 2
\/NXAE:,@B(R(}CA)_R)
RIU = '

R

(12)
Multi-modality Registration by Intensity
Re-mapping

With multi-modality registration there is, in general, no
simple relationship between intensities in the two images
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to be registered. One solution is to transform or re-map
the intensities in the image from one modality so that
the two images look similar to each other. This has been
used with some success by re-mapping high intensities
in CT, corresponding to bone, to low intensities [40]. The
resulting image has the approximate appearance of an
MR image and registration proceeds by maximizing
cross correlation. An alternative is to compute differen-
tials of image intensity that should correlate between the
two images. Van den Elsen et al. [41] and Maintz et al.
[42] compute the edgeness of an image from differential
operators applied directly to the image intensities. If the
two images have boundaries at corresponding locations
then cross correlation of the edgeness measure should be
maximal at registration.

Multi-modality Registration by Partitioned
Intensity Uniformity

This was the first purpose-designed, widely used, multi-
modality registration algorithm to use a voxel similarity
measure. It was proposed by Woods et al. [43] for MRI-
PET registration soon after they proposed the RIU algo-
rithm. We refer to this algorithm as partitioned intensity
uniformity (PIU). The algorithm is a remarkably simple
modification to the original RIU algorithm, involving the
change of only a line or two of source code, but with
transformed functionality. The implicit assumption here
is that all voxels with a particular MR image intensity
represent the same tissue type and are therefore likely to
have similar PET image intensities. The algorithm parti-
tions the MRI voxels into 256 separate bins by intensity
and seeks to maximize the uniformity of the PET voxels
within each bin. The uniformity within each bin is mea-
sured from the standard deviation of the corresponding
PET voxel intensities. The alignment measure, PIU, is a
weighted sum of the normalized standard deviations. For
registration of images A and B (MRI and PET respec-
tively) we can write

o(a)

n
piu=ya 13
% N pg(a) (13)
where
n,=x1 (14)
Qf
Hy(@)=—1 3 BT (x,) (15)
na QZ

GBZ(Q)Z\/LZ(BT(XA)_HB(Q))Z (16)

n, Qrf
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and the domain Q7 is the iso-intensity set in image A
with intensity value a within Q, ; defined as:

Qf ={x, € Q} |A(x,)=a] (17)

Although the statistical basis of the algorithm is some-
what tenuous, the algorithm is widely used for regis-
tration of MRI and PET images of the head and
performed very well in the Vanderbilt registration as-
sessment study [16]. For the most reliable results the
bright region of the scalp is usually removed from the
MR image, a procedure known as scalp editing. The
scalp is a bright region in MRI but often corresponds
to lower image intensities in PET, unlike the grey and
white matter in the brain.

Local Correlation for Multi-modality Registration

Recently, Netsch et al. [44] have proposed a new
measure, local correlation. This measure assumes that
for a local region of the image there will be a strong
correlation between image intensities at registration.
The correlation coefficient is computed in a region
local to each voxel in the destination image and the
normalized sum of these local correlations is calcu-
lated for each trial transformation. The transformation
that yields the maximum normalized sum of local cor-
relations should correspond to registration.

This algorithm is reported to have comparable accu-
racy to mutual information (see below) for registration
of CT and MR images of the head, and is well suited for
numerical optimization. Local correlation can be recast
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as a least squares criterion, which allows the use of
dedicated methods. Such an algorithm should be able
to run extremely quickly, especially as it has been
shown to be effective when the similarity is calculated
for only a small fraction of the image voxels.
Application to PET images has yet to be reported.

Information Theoretic Measures for
Multi-modality Registration

Plotting the joint histogram of the two images provides a
useful insight into how voxel similarity measures might
be used for multi-modality registration [45]. Figure 7.5
shows plots of the joint histogram computed for identical
MR images and for an MRI and a PET image of the same
subject. The joint histograms are plotted at registration
and at two levels of mis-registration. A distinctive
pattern emerges at registration of each pair and this
pattern diffuses as mis-registration increases. This sug-
gests certain statistical measures of mis-registration.
Interestingly, the MRI-PET joint histogram also explains
why the PIU measure works and why it works better
when the scalp is edited out of the image. The scalp cor-
responds to the horizontal line in these plots, i.e., a low
PET intensity and a wide range of MRI intensities with
partial voluming up to very bright values. Scalp editing
removes this line and the resulting plot shows a narrow
distribution of PET intensities for each MRI intensity.

It can also be useful to think of image registration as
trying to maximize the amount of shared information
in two images. Qualitatively, the combined image of,
say, two identical images of the head will contain just
two eyes at registration but four eyes at mis-registration.

Figure 7.5. Example 2D image intensity
histograms from Hill et al. [45] for identical
MR images of the head (top row) and MR and
PET images (bottom row, PET intensity
plotted on y-axis and MR intensity on x-axis)
of the same individual at registration and at
alignment (left), mis-registration of 2 mm
(middle) and mis-registration of 5 mm
(right). Although the histograms for different
image pairs have very different appearances,
both sets show a dispersion of the histogram
with increasing mis-registration.
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This suggests the use of a measure of joint information
as a measure of mis-registration. The signal processing
literature contains such a measure of information, the
Shannon-Weiner entropy H(A) and its analog for dual
signals, the joint entropy H(A,B) [46]. These can be
defined over the region of overlap between two images
as follows:

H(A)=-Xp, (@)logpj(a)
VA(x,) =dpx, €QL, 18)

H(B) = —% 5 (b)log p3 (b)

VB (x,) =blx, € 2F, 19)
and
H(4.B)=-1X pias(a,b)log piy(a,b) (20)

where p’(a) is the marginal probability of intensity a
occurring at position x, in image A, p%(b) the marginal
probability of intensity b occurring at position x, in
image B, and pl;(a,b) the joint probability of both in-
tensity a occurring in image A and intensity b occur-
ring in image B. These probabilities are estimated from
the histograms of images A and B (marginal probabili-
ties) and their joint histogram (joint probability) in the
overlap domain with transformation T.

The joint entropy measures the information con-
tained in the combined image. This suggests a registra-
tion metric. Registration should occur when the joint
entropy is a minimum. This measure had been pro-
posed independently by Collignon [47] and Studholme
[48]. Unfortunately, the volume of overlap between the
two images to be registered also changes as they are
transformed relative to one another and because of this
joint entropy was found not to provide a reliable
measure of alignment.

The solution, spotted independently by Collignon
et al. [47] and Wells et al. [49], was to use mutual in-
formation (MI) as the registration metric instead. MI
is the difference between the joint entropy and the
sum of the individual (marginal) entropies of the two
images. According to information theory, this differ-
ence is zero when there is no statistical relationship
between the two images. If there is a statistical rela-
tionship, the mutual information will be greater than
zero, and the stronger the statistical relationship the
larger its value will be. This suggests that it could be
used as a measure of alignment, since registration
should maximize the statistical dependence of one
image on the other. This measure largely overcomes
the problem of volume of overlap changing as the
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transformation is changed. Mutual information is ex-
pressed as

I(A,B)= H(A)+ H(B)— H(A,B) =

T
T (a,b)lo _Pap(@b) 21
%%PAB( ) gpf{(a)p};(b) (21)
This measure has proved to be remarkably robust in a
very wide range of applications. The Vanderbilt study
[16] showed that it performed with comparable accu-
racy to the PIU algorithm for PET-MRI registration
and does not require scalp editing. Studholme et al.
[50] showed that the measure was the most robust and
accurate of a range of different measures tested.
However, mutual information sometimes fails to find
the correct solution when the volume of overlap varies
significantly with alignment or when there is a large
volume of background (i.e., air) in the field of view.
Studholme et al. [51] showed that a simple reformula-
tion of the measure as the ratio of the joint entropy and
the sum of the marginal entropies in the overlapping
region provided a more robust measure of alignment,

H(A)+ H(B)

I(A,B)= H(AB)

(22)

This measure and mutual information have now been
widely adopted and registration software based on
these measures has been extensively validated for rigid
body registration of images of MRI and PET images of
the head [16, 50,51].

While qualitative arguments, such as those outlined
above, have been used to justify mutual information or
its normalized version, there is as yet no firm theoreti-
cal basis for these measures and further research is re-
quired to provide this theoretical underpinning. This
research may lead to measures that outperform the in-
formation theoretic measures outlined above.

Optimisation, Precision, Capture Ranges
and Robustness

All registration algorithms except the Procrustes
method of point registration rely on a process of opti-
mization to compute the transformation that best
aligns the two images. The algorithms require an initial
guess, or “starting estimate”, of the correct transforma-
tion. They then compute image similarity for voxel in-
tensity-based methods or distances for feature-based
methods, and use this to compute a new (and hopefully
better) estimate of the transformation. This process
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repeats until it converges to a solution, usually defined
to be when the similarity or distance change after each
iteration falls below a certain preset tolerance. There is
a large range of different types of optimization
methods available and an excellent review can be
found in [27].

A major limitation of many optimization methods is
that they find “local optima”; that is, they find a solu-
tion that is far from the correct one but fail to improve
it further because all nearby solutions have a similarity
or distance worse than that of the current transforma-
tion. To avoid finding these local optima, multi-
resolution methods are often used [50]. A coarse
representation of the images (or surfaces) is used to
find an initial estimate of the registration, and resolu-
tion is progressively increased to finer levels until the
full resolution of the data is used. These methods have
the effect of blurring out local minima during opti-
mization and have the added advantage that they allow
a significant speed up in computation. However, multi-
resolution methods do not always solve the problem of
local optima and in these cases multi-start techniques
are used. These involve giving multiple starting esti-
mates to the registration algorithm and then selecting
the solution that has the best optimum.

It may be the case that the global optimum is not the
correct registration solution. For example, some algo-
rithms find a global optimum when the images to be
registered are completely separated. However, a good
algorithm will have a range of registration solutions
within which the correct registration is an optimum of
similarity or distance. This region is known as the
“capture range” and the size of it determines the “ro-
bustness” of the algorithm. This is the measure of how
close the starting estimate needs to be for the opti-
mization method to find the correct solution. In prac-
tice, image acquisition protocols allow a reasonable
starting estimate to be defined, i.e., we know whether
the patient was imaged supine, prone, or lateral and a
standard radiographic setup should give a reasonable
idea of where the patient is with respect to the
scanner’s field of view. In order to be clinically useful a
registration algorithm should be able to find the
correct solution if the starting estimate is within about
30 mm and 30 degrees.

There may be multiple optima that are all very close
to the global optimum. In this case the algorithm may
find any number of these solutions if multiple registra-
tions are carried out. If a registration algorithm is
started from multiple starting points the distribution
of these local optima yields the “precision” of the algo-
rithm. If all starts yield the same answer then the preci-
sion is limited by the final step size of the search.
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Image Transformation and Display

Having determined what the transformation is between
the target and source image, we now need to transform
the information in the source image to the target image.
This may be done with a simple user interface that
allows a point located in the target image to be displayed
in the appropriate slice of the source image. This in-
volves a single matrix multiplication of the target image
point by the derived transformation. Usually, however,
we need to transform the source image into the space of
the target image. This is done on a voxel-by-voxel basis.
For each voxel in the target image within the volume of
overlap of the two images, the voxel coordinate is multi-
plied by the transformation matrix and the resulting
voxel coordinate used to find the appropriate intensity
in the source image. This computed coordinate is very
unlikely to be an integer voxel coordinate so the appro-
priate position needs to be computed. The most
straightforward method is “nearest neighbor” interpola-
tion, where the intensity of the nearest voxel to the com-
puted coordinate is found. A slightly more accurate
approach is to use trilinear interpolation. The weighted
sum of the eight nearest voxels is computed, where the
weighting is inversely proportional to the distance of the
required coordinate from each voxel. For the highest ac-
curacy, “sinc” interpolation is used. However, for applica-
tions involving PET, trilinear interpolation or even
nearest neighbor should suffice.

MRI and PET images have very different spatial res-
olutions so a decision has to be made whether to
choose the MRI or PET image as the target image. The
advantage of choosing the latter is that spatial resolu-
tion is conserved in the final registered images, al-
though the transformed PET image will have the same
voxel dimensions as the MR image and a concomitant
increase in storage requirements. This can be avoided
by only resampling the PET image “on-the-fly” when it
is needed for display. Reslicing using nearest neighbor
or trilinear interpolation can be achieved in near real
time with modern PCs.

Having transformed the images to a common coordi-
nate system, the images may be displayed side by side,
with a linked cursor indicating spatial correspondence,
or may be overlaid or fused using a range of widely avail-
able display methods. The most common is the use of
different colors to represent the different modalities as
shown on Figs. 7.1 and 7.2. In a “moving curtains”
display, an interactively controlled vertical or horizontal
line divides the display of one image from the other.

In serial acquisitions for assessing subtle changes,
difference images are often displayed. In neuro-activa-
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tion studies the transformed images might be analyzed
for temporal correlation of intensities with stimuli and
appropriate statistics of significance displayed on a
voxel-by-voxel basis.

Registered PET images can be used in image-guided
surgery. Figure 7.6 shows a view through the operating
microscope of a tumor with the outline of the PET ['*F]-
FDG scan superimposed using the virtual reality display
of the MAGI system (Microscope Assisted Guided
Interventions) developed at Guy’s Hospital [52]. This
image was registered to the corresponding CT scan prior
to surgery and the CT scan was in turn registered to
physical space in the operating room. Registration was
achieved with a modified LADS system [53].

Image Acquisition Pitfalls and
Correction of Scanner Errors for
Image Registration

Image Acquisition

Registration algorithms perform better with images of
approximately isotropic spatial resolution and cubic
voxels. Conventional multislice MR images are not ac-
quired with overlapping slices and the resulting missing
data can cause some data corruption when resampled. As
a result, true 3D MR image acquisition is preferred, in
which Fourier encoding is applied along all three ordi-
nates. MR images should be acquired so as to maximize
contrast between anatomical structures of interest. While
radiation dose to the patient may prohibit CT image ac-
quisition with isotropic voxels, contiguous slices should
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be acquired with conventional CT scanners. Modern
spiral scanners and, in particular, new multislice devices
offer more scope for improving axial resolution while
keeping x-ray dose fixed. This will produce noisier,
lower-contrast images, but it has been shown that voxel
similarity-based registration is remarkably resilient to
image noise [54]. Lower-resolution data can be reformat-
ted later to produce higher-contrast diagnostic scans
with larger slice thickness.

When using dual-headed gamma cameras for PET
acquisition, care must be taken to ensure accurate mea-
surement and correction of center-of-rotation errors.
Full-ring PET systems have a varying distance between
adjacent parallel projections, decreasing towards the
edge of the field of view (see Ch. 3). This would
produce spatial distortions but is usually corrected
prior to reconstruction. Full-ring PET scanners have a
spatial resolution that is radially dependent, being
worse at the periphery. However, this is unlikely to have
a significant effect on image registration accuracy.
Also, non-uniform detector response can give rise to
ring artifacts in both designs of PET scanner. Careful
calibration and quality assurance are required to
ensure their removal.

Great care must be taken to minimize patient move-
ment during image acquisitions. Patient movement pro-
duces different characteristic artifacts in each imaging
modality. These artifacts may take the form of streaks in
PET or CT images produced by filtered back projection
reconstruction, or of wraparound or ghosting effects in
MRI. Motion between slice acquisitions in conventional
CT may not produce visible artifacts in-plane but can
produce significant axial distortions or discontinuities.
Patient movement may produce other geometric distor-
tions in images that are more difficult to identify and
correct. Registration can be used to reduce motion arti-

Figure7.6. A picture of a patient’s jaw immediately prior to excision of a squamous cell carcinoma (left) and with an aligned PET ['®F]-FDG superimposed [53]
using the augmented reality displays of the MAGI system [52] at the beginning of the operation (right).
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facts, for example, by patient tracking using an external
locating device during acquisition [55]. Usually, good
radiographic practice and patient immobilization
suffices, but patient movement will affect the accuracy
and robustness of image registration algorithms because
poor images produce poor registration results.

Geometric Scaling and Distortion

The integrity and accuracy of image registration is de-
pendent on the spatial accuracy of the original images.
Scanners that supply images for image registration must
be calibrated so that their voxel dimensions are known.
Many scanners have a specified spatial accuracy no better
than 1% and errors as high as 5% can occur. A 5% error
on a 250 mm field of view corresponds to an error of
12.5 mm over the field of view, which will be unaccept-
able for most registration applications. Older CT scanners
can have errors in axial dimensions due to inaccuracies in
monitoring bed movement. Also, CT gantry tilt can be
erroneously reported in image headers. A five-degree
error will result in a shear of the data resulting in more
than 20 mm error over a 250 mm field of view.

Scanner distortions can be categorized by those that
distort the spatial integrity of the images and those that
produce intensity shading effects. Geometric distortion
is more likely in MR imaging. Distortion arises from gra-
dient field non-linearity and from magnetic field inho-
mogeneity. The former results from imperfections in
gradient coil design but is static and can be measured
and corrected. In practice, most modern MRI scanners
will incorporate such a correction. Magnetic field inho-
mogeneity arises from imperfections in the high B, field,
eddy currents induced by the switching gradients and
spatial variations in the magnetic susceptibility within
the imaged volume. Metal objects within or close to the
field of view can result in severe distortions making
image registration impossible. Smaller errors can be
reduced by double acquisitions with inverted gradients
[56] or phase unwarping methods [57]. The former re-
portedly reduces errors by 30-40% while the latter
reduced errors from 3.7 mm to 1.1 mm. Ramsey and
Oliver [58] reported, in a recent study on modern MRI
scanners, that linear distortions ranged between 0 and
2 mm. Modern MRI scanners are much less susceptible
to geometric distortion than older machines.

Intensity distortion can arise from RF inhomogeneity
in MRI, in particular with surface coils. Beam hardening
effects in CT can produce intensity shading and photon
scatter and incorrect attenuation correction can produce
shading effects in PET. Highly attenuating objects will
produce significant shading artifacts in PET and CT.
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Objects of very different magnetic susceptibility to tissue
can produce shading effects in MRI, and if made of metal
will usually preclude acquisition of an MR image for reg-
istration. For this reason, patients with prostheses or sur-
gical implants near the region to be imaged may not be
suitable for image registration studies.

Mutual information-based registration has been
shown to be reasonably immune to a gradual drop of
intensity across the field of view. Studholme et al. [59]
presented an adaptation of mutual information-based
registration that improves robustness of MRI-PET reg-
istration of the pelvis based on intensity partitioning
of the MR data, in cases where there is severe shading
across the MRI field of view. Methods that rely on auto-
mated or semi-automated segmentation of surfaces
may produce biased results in the presence of shading.
Shading across an MR image can easily misplace a
boundary by 1 or 2 mm over the field of view.

Ideally, image geometry should be measured during
image acquisition, for example, by using markers in the
patient-immobilization device. Great care must be taken
that these markers do not themselves induce distortion
or intensity artifacts. They are also used to measure geo-
metric distortion on the periphery of the field of view,
where it is most severe, running the risk of over-correc-
tion. Of more practical importance is careful quality as-
surance (QA) of scanners used for image registration. QA
protocols should be similar to those implemented when
images are used for high-precision radiotherapy or
image-guided surgery. One method is to scan a simple
geometric phantom regularly to check for distortions
and scaling. Hill et al. [60] have proposed using an image
registration method based on mutual information to
measure scanner scaling and skew errors. A digital voxel
model of the phantom is created and this is registered to
the image volume using a full 12-degree of freedom
affine transformation. This has been shown to be ex-
tremely robust and accurate and has been applied to
PET, CT, and MRI scanner calibration. Scaling errors may
be deduced in a similar manner by registration of a
patient’s CT scan and MRI scan and using a 9 degree of
freedom registration (6 degrees of freedom rigid body
plus scaling along the three ordinates).

Validation and Quantifying
Registration Accuracy

Registration algorithms, especially automated ones,
involve a large number of computations that may be
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opaque to the user. Registration accuracy is the metric
used to determine the quality of a specific registration.
Any registration method must be sufficiently accurate
for the application envisaged and sufficiently robust to
be clinically useful. No algorithm is 100% robust so any
clinical protocol must have the means to detect failure
with close to 100% reliability.

Registration accuracy is determined quantitatively by
the target registration error (TRE). If we can define a
point in the target image and the same point in the trans-
formed source image, the TRE is the distance in millime-
ters between these two points. TRE can be defined at
anatomically relevant points or can be computed
throughout the volume of interest and the mean, range,
or standard deviation of TRE values can be computed.
TRE can, in certain circumstances, be estimated analyti-
cally for point-based registration. Fitzpatrick et al. [61]
derived a formula that predicts TRE at any position
within a registered volume given the error with which a
point landmark can be located; the so-called fiducial lo-
calization error (FLE). FLE can be estimated by repeat-
edly locating the points in space or by analyzing repeat
scans of the markers. The squared expectation value of
TRE at position x (coordinates (x; ,...,x;) is given by:

(TRE(x)*)=(FLE)* i+l§§x—"2 (23)
N kija A2i+A2j

where k is the number of spatial dimensions (usually
three in medical applications) and A; the singular
values of the configuration matrix of the markers

This formula is only applicable if FLE is isotropic
and the same for each registration point.

In all other cases, TRE can only estimated if there is a
more accurate “gold standard” registration available. This
is very hard to achieve in practice. West et al. [16] under-
took a careful study using patients scanned with bone-
implanted markers in place in the skull prior to
image-guided neurosurgery. This study enabled various
PET, MRI, and CT registration algorithms to be com-
pared and provides conclusive evidence that currently
available voxel-based registration methods generally out-
perform surface-based methods. Normalized mutual in-
formation achieved mean TRE values of between 0.6 mm
and 2.5 mm for CT-MRI registration and between
1.4 mm and 3.9 mm for MRI-PET registration, with one
failure with a mean TRE between 6.2 and 6.5 mm.

Accurate validation for applications outside the head
remains a research task. Consistency measures have been
proposed whereby three (or more) sets of images are reg-
istered and the transformations between all permuta-
tions of pairs of images are compared. This allows
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independent computation of the TRE of, say, image A to
image B by computing the transformation of image A to
Image C and Image C to Image B. If the errors in the
computed transformations are unbiased and uncorre-
lated then an estimate of one application of the algo-
rithm should be 1/\3 times the error for the whole
circuit A to B to C. Unfortunately, registration algorithms
are highly likely to produce both correlated results and
bias so the method is not particularly reliable. It can,
however, give some indication of registration accuracy.

Assessment of a particular registration result could be
estimated by examining the optimal similarity or dis-
tance. This is dangerous as a very small residual distance
may give falsely optimistic estimates of registration accu-
racy. As an extreme example, two surfaces may align per-
fectly if spherical yet the rotations about the center of the
sphere are completely undetermined. Measures delivered
by voxel similarity-based registration are rarely useful
and vary significantly from patient to patient.

Assessment of a particular registration result is best
left to visual inspection. If image quality is good, ob-
servers can be trained to detect very small mis-regis-
tration errors, for example, the study of MRI-CT
registration undertaken by Fitzpatrick et al. [62].
Holden et al. [63] have shown that mis-registration
errors of as little as 0.2 mm can be detected when ex-
amining subtracted, registered serial MR images. It is
strongly recommended that visual assessment is part
of any clinical protocol involving image registration.
Observers must be trained to estimate visually any
residual mis-registration, preferably at predefined
anatomical locations. An acceptable tolerance should
be defined and any registration error outside this toler-
ance should be treated as a registration failure.

Conclusions

Medical image registration technology has developed
at a rapid pace in the last five to ten years and robust
methods are now widely available for applications in
the head. Algorithms based on voxel similarity have
been shown to be sufficiently accurate and robust for
most clinical applications in neuro-imaging. Software
is now widely available in the academic community for
research purposes, for example, from www.image-regis-
tration.com under the free software foundation license
running with the visualization toolkit (vtk)
[www.kitware.com]. These algorithms are likely to be
integrated in commercial medical imaging software in
the next few years.
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Registration technology will allow PET images to be
used to guide sophisticated image-guided interven-
tions and will be a key enabling technology in delivery
and monitoring of new molecularly based therapeu-
tics. Non-rigid algorithms will become more robust for
applications in which soft tissues deform between
imaging procedures. These algorithms will become
more firmly linked to computer models of the biome-
chanics of tissue deformation.

Image registration methodologies are allowing fun-
damental discoveries to be made in cohort studies of
brain function and are helping scientists to untangle
spatio-temporal distributions of cognitive processes.
Provided a definition of correspondence is agreed,
non-rigid registration algorithms provide an accurate
way to combine information across study groups, the
analysis of function across populations and the analy-
sis of differences between study groups.

As we will see in the next chapter, Integrated PET/CT
devices and, in the future PET/MRI devices, will make
image alignment more straight-forward. These tech-
nologies may open up opportunities for time-synchro-
nized analysis of data as well as spatial registration.
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8 Anato-Molecular Imaging: Combining Structure and

Function

David W Townsend and Thomas Beyer

Introduction

Historical Perspectives

Non-invasive technologies that image different aspects
of disease should really be viewed, in almost all cases,
as complementary rather than competing. When the
sensitivity and specificity of one imaging technique for
diagnosing or staging a specific disease is compared to
that of another technique, it is usually to establish the
superiority of one of the two techniques. In practice,
however, such comparisons are of little real value
because anatomical and functional imaging techniques
have different physical specifications of spatial, tempo-
ral and contrast resolution, and the images even reflect
different aspects of the disease process (Fig. 8.1). CT
and MRI are used primarily for imaging anatomical
changes associated with an underlying pathology,
whereas the molecular imaging techniques of PET and

SPECT capture functional or metabolic changes associ-
ated with that pathology. Historically, CT has been the
anatomical imaging modality of choice for the diagno-
sis and staging of malignant disease and monitoring
the effects of therapy. However, more recently, molecu-
lar imaging with whole-body PET has begun assuming
an increasingly important role in the detection and
treatment of cancer [1].

Nevertheless, historically, functional and anatomical
imaging modalities have developed somewhat inde-
pendently, at least from the hardware perspective. For
example, until recently, CT developed as a single-slice
modality, while PET and SPECT have always essentially
been volume imaging modalities even if, for technical
reasons, acquisition and reconstruction has been
limited to two-dimensional transverse planes. CT de-
tectors integrate the incoming photon flux into an
output current whereas PET detectors count individual
photons. Some similarity can be found in the data pro-
cessing as the image reconstruction techniques are

Figure 8.1. Transverse CT (a), PET (b), and MRI (c) image of the abdomen illustrating different aspects of the anatomy and metabolism of the patient as

imaged with the different diagnostic imaging techniques.
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based on common theoretical principles. The imple-
mentation details, however, involve many important
differences that set the various modalities apart.
Consequently, over the past twenty-five years, the de-
velopment of anatomical and molecular imaging tech-
niques has followed distinct, but parallel, paths, each
supporting its own medical speciality of radiology and
nuclear medicine.

Image Fusion: A Hardware Approach
Complementing Anatomy with Function

In clinical practice a PET study, if available, is gener-
ally read in conjunction with the corresponding CT
scan, acquired on a different scanner and usually on a
different day. Adjacent viewing of anatomical and func-
tional images, even without accurate alignment and su-
perposition, can help considerably in the interpretation
of the studies. Using the retrospective software-based
approaches anatomical and molecular images can be
aligned and read as combined, or fused, images.
This can be an advantageous procedure because
identification of a change in function without knowing
accurately where it is localized, or equivalently, knowl-
edge that there is an anatomical change without
understanding the nature of the underlying cause,
compromises the clinical efficacy of both, the anatomi-
cal and functional imaging. More importantly, since a
functional change may precede an anatomical change
early in the disease process, there may be no
identifiable anatomical correlate of the molecular
change, although of course a sufficient number of cells
must first be affected to produce a macroscopic change
that can be imaged with a PET scanner.

Software Approach to Image
Registration

While the superimposition of functional and anatomi-
cal images was occasionally attempted, it was during the
late eighties that the importance of directly combining
anatomy and function began to emerge. The first such
attempts were software based [2, 3]. These software de-
velopments were driven primarily by a demand for ac-
curate localization of cerebral function visualized in
PET studies where the low-resolution morphology is, in
most cases, insufficient to accurately identify specific
cerebral structures. Software fusion techniques were
successful for the brain, a rigid organ fixed within the

Positron Emission Tomography

skull, whereas for other parts of the body, image fusion
was found to be somewhat problematic [4, 5].

In particular, combining complementary whole-
body image data sets retrospectively is not straight-
forward due to the difference in patient set-up and
variable definitions of the axial examination ranges of
the two imaging modalities, which are often acquired
independently by different medical personal. Further,
normal variants of the position and metabolic activity
of bowel and intestines at the time of the two scans, as
well as dissimilar breathing patterns contribute to ad-
ditional systematic difference in the two data sets.
Although some of the positioning errors may be over-
come by non-linear image warping techniques and 3D
elastic transformations [6] these registration algo-
rithms are typically limited to a single anatomical
region like the thorax [5-9] and are often labour-
intensive, thus making them less attractive for routine
clinical use in high-throughput situations.

Hardware Approaches to Combined
Imaging

An alternative to post hoc image fusion by software is,
instead, to fuse the hardware from the two imaging
modalities. While presenting a significant number of
challenges, such an approach overcomes many of the
difficulties of the software fusion methods.

In the early nineties, Hasegawa and co-workers at
the University of San Francisco developed the first
device that could acquire both, anatomical (CT) and
functional (SPECT) images, using a single, high-purity
germanium detector for both modalities [10, 11]. The
CT images were, in addition, used to provide attenua-
tion factors for correction of the SPECT data [12], and
operating the device with two different energy
windows allowed simultaneous emission-transmission
acquisitions to be performed. This pioneering work of
Hasegawa, Lang and co-workers is important because
it was one of the first to take an alternative, hardware-
based approach to image fusion. However, the difficulty
of achieving an adequate level of performance for both
SPECT and CT with the same detector material and
without compromising either modality, led the group
to explore a combination of SPECT and CT using dif-
ferent, dedicated imaging systems for each modality -
a clinical SPECT camera in tandem with a clinical CT
scanner [13]. The CT images are used to correct the
SPECT data for photon attenuation, and the device has
been used clinically for patient studies since around
1996.
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Recognizing the advantages of a hardware solution
to combining anatomy and function, Townsend, Nutt
and co-workers initiated a design for a combined PET
and CT scanner in the early 1990s. The device com-
prised a clinical CT scanner and a dedicated clinical
PET scanner. As with the CT/SPECT scanner of
Hasegawa, the CT images are also used to correct the
emission data for photon attenuation. The device was
completed in early 1998 and underwent an extensive,
three-year clinical evaluation programme at the
University of Pittsburgh.

A third possibility to have anatomy and function
imaged in a single device is to combine PET and MR.
Obviously such a combination is technologically more
challenging than combining PET with CT in view of
the extensive restrictions placed on the imaging envi-
ronment by the strong magnetic field. Nevertheless,
proposals to place PET detectors inside an MR scanner
also date back to the mid-nineties [14, 15]. In 1996, an
MR-compatible PET scanner was developed at UCLA
[16], and then in 1997 a second, larger prototype (5.6
cm diameter ring) was constructed [17] and used in
collaboration with researchers at Kings’ College
London for phantom and animal studies. The studies
clearly demonstrated that simultaneous PET and MR
images could be acquired using a range of pulse se-
quences and at different field strengths [18]. The device
opened up the possibility of simultaneously imaging
['®F]-FDG uptake and measuring MR spectra.
Currently a larger, 11.2 cm PET detector ring is being
developed, designed to fit inside a 20 cm diameter
magnet bore [19]. However, scaling the design up to
human dimensions will present many challenges and is
still a number of years away.

Table 8.1.

181

Design Concept of the Prototype
PET/CT Scanner

Design Concept

The design objective for combined PET/CT imaging, as
a technically straightforward combination of two com-
plementary imaging modalities, was to provide clinical
CT and clinical PET imaging capability within a single,
integrated scanner (Table 8.1). The short CT scan dura-
tion compared with a typical whole-body PET acquisi-
tion time essentially eliminates the requirement for
simultaneous CT and PET acquisition. The integration
of the two modalities within a single gantry is more
straightforward when the simultaneous operation of
the CT and PET imaging systems is not required. The
PET and CT components are mounted on the same alu-
minium support with the CT on the front and the PET
at the back, as shown schematically in Fig. 8.2. The
entire assembly rotates at 30 rpm and is housed within
a single gantry of dimensions 170 cm wide and 168 cm
high. The patient port is 60 cm in diameter with an
overall tunnel length of 110 cm and a 60 cm axial dis-
placement between the center of the CT and the center
of the PET imaging fields. A single patient bed is used
for both modalities with an axial travel sufficient to
cover 100 cm of combined CT and PET imaging. To
simplify the prototype development, the acquisition
and reconstruction paths are not integrated, with CT
and PET scanning controlled from separate consoles,
as shown schematically in Fig. 8.2. Once acquired and
reconstructed, the CT images are transferred to the

A comparison of advantages and disadvantages of software- and hardware-based image fusion.

Software fusion

Hardware fusion

Image retrieval from different archives

Repeated patient positioning

Different scanner bed profiles

Uncontrolled internal organ movement between scans
Disease progression in time between exams

Limited registration accuracy

Less convenient for patient (two exams)
Labour-intensive registration algorithms

Images avilable from one device

Single patient positioning

One bed for both scans

Consecutive scans with little internal organ movement in between
Scans acquired close in time

Improved registration accuracy

Single, integrated exam

No further image alignment required
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PET computer to provide the attenuation correction
factors for the PET emission data. Final PET recon-
struction and CT and PET fused image display is per-
formed on the PET computer console.

CT Scanner

The CT components of the prototype PET/CT is a
Siemens Somatom AR.SP, a single-slice spiral CT
scanner with a 25 kW M-CT 141 tube that produces X-
ray spectra of 110 kV, and 130 kV .. The detector array
comprises 512 xenon gas-filled chambers. A slice thick-
ness of 1, 2, 3, 5 or 10 mm can be selected, with a
maximum rotation speed of 1.3 s. For compatibility with
the PET components mounted on the same support, the
combined assembly is limited to a rotation speed of 30
rpm. The transverse field of view is 45 cm and the
patient port is 60 cm. CT data transfer is over mechani-
cal slip rings, as is the power to the X-ray tube and de-
tectors. The tilting capability of the CT is disabled.

PET Scanner

The PET components mounted on the rear of the
support are those of a standard Siemens ECAT® ART
scanner [20] comprising dual arrays of bismuth ger-
manate (BGO) block detectors. Each array consists of
11 blocks (transverse) by 3 blocks (axial); the blocks
are 54 mm X 54 mm X 20 mm in size, cut into 8 X 8
crystals each of dimension 6.75 mm X 6.75 mm X 20
mm. The transverse field-of-view (FOV) is 60 cm and
the axial FOV is 16.2 cm, subdivided into 24 (partial)
rings of detectors for a plane spacing of 3.375 mm.
Shielding from out-of-field activity is provided by arcs
of lead, 2.5 cm thick, mounted on both sides of the de-
tector assembly and projecting 8.5 cm into the FOV
beyond the front face of the detectors. The PET scanner
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has no septa and the detector arrays rotate continu-
ously at 30 rpm to collect the full set of projections re-
quired for image reconstruction. Power and serial
communications to the rotating assembly are transmit-
ted over mechanical slip rings, while high speed digital
data transfer is by optical transmission.

Physical performance of the prototype PET/CT

The overall physical performance of the combined
scanner is comparable to that of the individual compo-
nents, the Somatom AR.SP and the ECAT ART. The PET
and CT components are mounted on opposite sides of
the aluminium support thus minimizing potential in-
terference between the two imaging systems. Although
the sensitivity of the PET detectors is temperature-de-
pendent, no significant effect from the operation of the
X-ray source has been observed. The PET detectors are
never exposed directly to the X-ray flux and the opera-
tion of the CT has no residual effect on the photomulti-
plier tube gains. The PET components can be operated
immediately after the acquisition of the CT scan
without requiring a recovery time. However, the PET
and CT components cannot acquire data simultane-
ously because of the high flux of scattered CT photons
incident on the PET detectors that results in high levels
of random coincidences and system dead-time (from
pulse pile-up effects). In view of the short time re-
quired for the CT, simultaneous operation of both PET
and CT scanners is not considered necessary. The PET
components are operated with a detector block inte-
gration time of 384 ns [21], a coincidence window of
12 ns, and a lower energy threshold of 350 keV. The
operation of the Somatom AR.SP is in accordance with
standard CT procedures. Complete details of the results
of the performance measurements and relevant para-
meter settings can be found in [22].

CT console

Fused image viewer

<4 PET images ——

Figure 8.2. Design of the prototype PET/CT.
'L The PET components were mounted on the rear
of a common rotating support. The axial
separation of the two imaging fields was 60 cm.
The entire assembly within the gantry rotated
at 30 rpm. The co-scan range for acquiring both
PET and CT was 100 cm (maximum). CT and PET
scans were acquired and reconstructed on
separate consoles but image fusion display was
installed on the PET console alone.

PET console
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Patient setup + topogram

IV contrast injection

Figure 8.3. Whole-body FDG acquisition
protocol for the prototype PET/CT. Note, the Patient FDG CT Whole-body Image
standard transmission is replaced with a multi- preparation uptake phase emission scan processing
bed CT scan (tube cooling is needed in case of an Oral contrast
extended imaging range) and both, IV and oral administration
(T contrast is given to enhance the diagnostic
quality of the transmission images. Attenuation — >
correction factors are calculated on-line but PET | L ! L ,

30 60 90 120 [min]

images are reconstructed post-acquisition. 0

Clinical Protocols and Evaluation

When imaging clinically with the PET/CT, a typical ac-
quisition protocol begins with a 260 MBq injection of
FDG, followed by a 60 min uptake period. The patient
is then positioned in the scanner with the first trans-
verse section to be imaged aligned with the CT field-of-
view. An initial scout scan (topogram) is performed to
determine the appropriate axial range for the study.
The maximum axial extent of a single spiral scan
depends on the defined slice-width and pitch. The total
axial length to be scanned is subdivided into contigu-
ous, overlapping, 15 cm segments. For the Somatom
AR.SP, the spiral scan of each segment typically takes
about 40 s, and the 25 kW X-ray tube may sometimes
require cooling between segments (Fig. 8.3). Patients
are instructed to breathe in a shallow manner during
the CT scan. The time for the complete whole-body CT
scan is about 5 min. Once the spiral CT covering the re-
quired axial length is completed, the patient bed is
moved automatically to the start position of the multi-
bed PET acquisition, and the PET scan is initiated. An
emission scan time of 6-10 min per bed position is se-
lected depending on the number of bed positions, re-
sulting in a total PET scan duration of 45-50 min (Fig.
8.3). An axial overlap of 4 cm is used between bed posi-
tions. The CT images are used for attenuation correc-
tion as will be described below, and the corrected
emission data are reconstructed using Fourier rebin-
ning and attenuation-weighted ordered-subset EM
[23]. In this implementation reconstruction takes over
one hour to complete.

From July 1998 to July 2001, over 300 patients with a
wide variety of different cancers were scanned on the
prototype PET/CT [24, 25]. The main indications, most
suited to anatomical and functional imaging, are head
and neck cancer, and abdominal and pelvic disease,
particularly ovarian and cervical cancer. Combined
PET/CT in the head and neck is important because
normal uptake of FDG in muscles and glands makes
interpretation of the studies especially difficult. PET

applications in the abdomen and pelvis are compli-
cated by benign, non-specific uptake in the stomach,
intestines and bowel that may be difficult to distin-
guish from malignant disease. Combined imaging for
clinical routine allows accurate localization of lesions,
the distinction of normal FDG uptake from pathology,
and the assessment of response to therapy (Fig. 8.4).
Additionally, the use of registered CT and PET images
was envisaged for efficient radiation therapy planning,
traditionally based on CT alone [26].

CT-based Attenuation Correction

Transforming Attenuation Coefficients

In addition to acquiring co-registered anatomical and
functional images, a further advantage of the com-
bined PET/CT scanner is the potential to use the CT
images for attenuation correction of the PET emission
data, eliminating the need for a separate, lengthy PET
transmission scan. The use of the CT scan for attenua-
tion correction not only reduces whole-body scan
times by at least 30% [27], but provides essentially
noiseless attenuation correction factors compared to
those from a standard PET transmission scan. CT-
based attenuation values are, however, energy depen-
dent, and hence the correction factors derived from a
CT scan at a mean photon energy of 70 keV must be
scaled to the PET energy of 511 keV, for which a hybrid
scaling algorithm was developed [28]. This scaling ap-
proach is based on previous work by La Croix and
Tang [29, 30] who have shown that attenuation correc-
tion factors for SPECT emission data can be derived
from complementary CT transmission data. The single
scale-factor approach works well for soft tissues, but
serious overestimation of the attenuation properties of
cortical bone and ribs is observed, especially with in-
creasing difference of the transmission and emission
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Figure 8.4. Male patient with metastatic melanoma before (a) and after (b) chemotherapy in 11/98 and 12/98, respectively. PET/CT images are from the pro-
totype PET/CT. Multiple lesions are depicted as FDG avid and localized accurately within the anatomy of the patient. Each whole-body scan took about 1 h.
PET/CT images before and after therapy are registered by hand and selected axial views are shown to demonstrate multi-variant response to therapy.

photon energies [29]. Nevertheless, the overestimation
of attenuation in bone translated into only a minor
average overestimation of the tracer uptake in the cor-
rected SPECT images due to the low fraction of voxels
containing bone compared to other tissues.

In anticipation of the prototype PET/CT the original
scaling approach was extended to CT-based attenua-
tion correction of PET emission data [28]. A bi-linear
scaling is employed to account for both the photon
energy difference between CT and PET, and the differ-
ent attenuation properties of low-Z (soft tissues) and
high-Z (bone) materials in the range of the lower
energy X-ray photons (Fig. 8.5).

The algorithm is based on the observation that for
water, lung, fat, muscle and other soft tissues, the mass
attenuation coefficient (linear attenuation coefficient
divided by density) at CT and PET energies is approxi-
mately the same. While the actual value is different at
the effective CT energy of 70 keV to that at 511 keV; all
the tissues can be scaled with a single factor: the ratio
of the mass attenuation coefficient at 511 keV to that
at 70 keV. The exception is bone because, at CT ener-
gies, the mass attenuation coefficient is somewhat
higher than that for the other tissues due to the in-
creased photoelectric contribution from calcium. The
ratio of the mass attenuation at 511 keV to that at
70 keV is approximately 0.53 for soft tissues, and 0.44
for bone.

CT-based PET attenuation correction factors are
generated in a 4-step procedure [28]:

1. the CT images are divided into regions of pixels
classified as either non-bone or bone by simple
thresholding. A threshold at 300 Hounsfield Units
(HU) separates spongiosa and cortical bone from
other tissues,

2. the pixel values in the CT image in HU are con-
verted to attenuation coefficients of tissue (l;) at
the effective CT energy (~70 keV) using the expres-
sion: Up = Wyw(HU/1000+1); Wy is the attenuation
coefficient for water,

3. the non-bone classified pixel values are then scaled
with a single factor of 0.53, and bone classified pixel
values are scaled with the smaller scaling factor of
0.44,

4. attenuation correction factors are generated by
integrating (forward projecting) along coincidence
lines-of-response through the segmented and scaled
CT images, with the CT spatial resolution degraded
to match that of the PET. Oblique lines-of-response
are obtained in the same way by integration through
the CT volume.

Today bi-linear scaling methods [28, 31] are widely
accepted for clinical PET/CT imaging, and are, with
minor modifications, used routinely for CT-based at-
tenuation correction of the PET emission data [32, 33].
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Figure 8.5. Mass attenuation coefficients for soft tissue and bone (a) differ significantly for lower photon energies for which the photoelectric effect is the
dominant interaction with matter. The bi-linear scaling and segmentation approach (b) accounts for the different attenuation properties of soft tissue and bone
by, first, segmenting (Se) the CT, and, second, by applying a tissue dependent scale factor (Sc) to these pixels. The greatly increased photon flux used in CT results
in essentially noiseless attenuation maps (c) and in attenuation correction factors compared with those derived from a standard PET transmission scans (d).

The time for the acquisition of the attenuation data for
a whole-body study can be reduced to one minute, or
less, by using a fast CT scan instead of a lengthy PET
transmission measurement. Furthermore CT transmis-
sion data acquired in post-injection scenarios are not
noticeably affected by the emission activity inside the
patient due to the high X-ray photon flux [22].
Therefore corrective data processing as in post-injec-
tion PET transmission imaging [34, 35] is not required.

While, in principle, the CT-based attenuation
coefficients are unbiased and essentially noiseless,
there are a number of practical limitations. These
include respiration effects, truncation of the CT field-
of-view when imaging with the arms down, and the
effect of using CT contrast.

Patient Respiration

Clinical CT scans of the thorax are normally acquired
with breath-hold at full inspiration. The PET image, on
the other hand, represents an average over the scan
duration of several minutes per bed position, during
which the patient breathes normally. Under such a
protocol, exact alignment of the CT and PET images,
particularly in the lower lungs, is not possible.
Typically the movement of the chest wall is suppressed
by breath holding during the CT scan, and, with the
lungs fully inflated, there is a mismatch between the
anterior wall position on CT and the average position
in the PET image, as shown in Fig. 8.6. Incorrect atten-
uation correction factors are then generated by the al-
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Figure 8.6. The effect of patient respiration on the CT-based attenuation procedure (a). A CT scan acquired with inspiration breath-hold (left) is not matched
with the PET image (right) that is acquired with regular breathing. A CT acquired with normal (b) and shallow (c) breathing; the artifacts near the base of the

lung (arrow heads) can be reduced (c).

gorithm described above, since it is based on the as-
sumption that the PET and CT images are accurately
co-registered.

When the patient is allowed to breathe normally
during both the PET and the CT scans, artefacts appear
near the base of the lung and the diaphragm on the CT
image (Fig. 8.6b). An alternative protocol is to allow the
patient to breathe in a shallow manner (tidal breath-
ing) during both the CT and PET scans, a procedure
that minimizes the breathing artefacts on CT (Fig. 8.6¢)
and the mismatch between the PET and CT images.
Nevertheless, a definitive solution to the respiration
problem has yet to emerge.

Truncation of the CT Field-of-View

Clinical CT scans of the thorax and abdomen take a
few minutes to acquire and can generally be performed

with the patient’s arms out of the field-of-view.
However, in PET/CT imaging total examination time is
defined primarily by the time for the emission scan. A
typical whole-body PET scan with the prototype
PET/CT could last for 1 h, and for scan times of this
duration it is difficult for patients to keep their arms
comfortably above their head, out of the field-of-view.
More recently, with the introduction of full-ring PET
components and faster PET detectors into combined
PET/CT designs, total examination time for PET/CT
is reduced to 30 min [36], or less. Despite the dramatic
reduction in total imaging time some patients may still
not tolerate having their their arms raised and sup-
ported for the duration of the PET/CT scan, and there-
fore CT and PET imaging must be performed with the
arms down and close to the body. However, since the
transverse field-of-view of the CT is 50 cm in diameter
(45 cm in the prototype), a small angular range of pro-
jections around the anterior-posterior direction is, for
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many patients, truncated (Fig. 8.7). The artefacts
caused by truncation affect not only the CT images but
also the accuracy of the attenuation correction factors
generated from the CT images. The effect is illustrated
in Fig. 8.7 for a patient who was imaged on the proto-
type PET/CT with arms down. The transverse CT field-
of-view is limited to 45 cm in diameter. As shown in
Fig. 8.7a, truncation leads to ring artefacts around the
arms that affect both the accuracy of the CT images
and the attenuation correction factors. As a result the
tracer distribution in the reconstructed and corrected
emission images appears masked near the arms. Figure
8.7b shows a similar patient study from a second gen-
eration PET/CT system. Although the transverse CT
field-of-view is increased to 50 cm truncation may still
occur when imaging large patients. The theory for an
effective correction of these truncation artefacts exists
today [37, 38], and simplified correction schemes for

— PET fov =—
— CT fov —
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application in the context of PET/CT imaging are cur-
rently being pursued (see Chapter 5).

Effects of CT Contrast Agents

Clinical CT scans are acquired with intravenous con-
trast and/or oral contrast to enhance the visualization
of structures such as the vascular system or the diges-
tive tract. CT contrast media use high atomic number
substances such as iodine to increase the attenuation
of the vessels or the bowel and intestines above
normal, non-enhanced values. Depending on the con-
centration of the contrast agent, enhancements in CT
attenuation values of 1000 HU can be observed. In the
presence of contrast agents the routine CT-based atten-
uation correction algorithm [28] will incorrectly
segment and scale the enhanced structures above

CT
Em
|
- CT
' g% : AC

Figure 8.7. Truncation artifacts on CT occur when patients, particularly large patients, are positioned with arms down. The regions outside the maximum
transverse field-of-view (45 cm for the prototype PET/CT (a), and 50 cm for second generation PET/CT (b)) are truncated, and the resulting attenuation correc-
tion factors for projections traversing the truncated area are underestimated, which yields a “masking effect” of the corrected PET images (CT-AC). The uncor-
rected emission images (Em) are shown in the middle row. The transverse field-of-view (fov) of the CT and the PET is indicated by the set of the vertical lines.
Recently, algorithms have become available that help extrapolate the truncated attenuation information (c), which becomes available for CT-based attenuation
correction. (Data processing courtesy of Otto Sembritzki, Siemens Medical Solutions, Forchheim, Germany)
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0 HU, resulting in a bias in the attenuation factors. Such
biases could potentially generate artefacts in the cor-
rected PET images since the contrast-enhanced CT
scan is acquired before the PET scan and then used to
generate the attenuation coefficients [39, 40].

Intravenous contrast appears in the vessels as focal
regions of elevated attenuation on the CT scan, fre-
quently with attenuation values above 300 HU.
Although these small regions are scaled as bone, once
the CT resolution has been degraded to match that of
the PET (step 4 in the algorithm), there is a significant
reduction in image contrast owing to the effect of
smoothing. Pixels associated with the vessels neverthe-
less do have a slightly enhanced value due to the pres-
ence of contrast even in the resolution-matched CT
images, although the overall effect on the attenuation
correction factors is found to be negligible.

Positive oral contrast is potentially more problem-
atic as it collects in larger-volume structures (e.g., in-

CT image with
oral contrast
enhancement

Pixels per HU

Enhanced CT
values are set to
0 HU

ROI containing only
enhanced values and
no bone values

Pixels per HU

(A) with enhancement
(B) setto 0 HU

Positron Emission Tomography

testines) and in a wider range of concentrations. At
oral administration, the concentration of the solution
will correspond to a pixel value of about 200 HU in the
image. However, as water is absorbed from the solution
during passage from the stomach and through the in-
testines, the concentration increases to corresponding
CT values of up to 800 HU. Despite these high CT
values, phantom studies show only a 2% increase in the
linear attenuation coefficient at 511 keV compared to
the value for water. Structures containing oral contrast
should therefore be transformed, as they would be in
the absence of contrast.

Figure 8.8 shows a transverse CT section through the
pelvic region containing both regions of bone and posi-
tive oral contrast. In Fig. 8.8a, the histogram of CT pixel
values exhibits a plateau, or shoulder, due to both bone
and oral contrast enhancement. When setting the pixels
containing contrast to 0 HU (Fig. 8.8b) a peak at the
origin is generated, and a reduced shoulder that repre-

shoulder due to
enhanced values
and bone values

soft
tissue

250 500 750 1000

peak at 0 HU
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Figure 8.8. Axial CT image in the presence of positive oral contrast (a) and histogram of CT attenuation values (HU). The same image with the contrast en-
hanced pixel values set to 0 HU is shown in (b), and for the rectangular region-of-interest containing no bone pixels in (c). Selected histograms without (A) and
with (B) the enhanced pixels set to 0 HU. (Reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and

Clinical Practice. Springer-Verlag London Ltd 2003, p.206.).
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sents bone pixels only. Conversely, within the rectangu-
lar region-of-interest indicated (Fig. 8.8c) containing
contrast-enhanced pixels and no bone, oral contrast is
present in pixels with values above about 150 HU as de-
termined from anatomy-based segmentation of the en-
hanced colon. Thus, to account for the presence of oral
contrast in varying concentrations, pixel values above
150 HU should be set to 0 HU before scaling. Above
300 HU, however, a more complex segmentation proce-
dure than simple thresholding must be used to distin-
guish contrast enhancement from bone. The presence
of both intravenous and oral contrast in the same CT
section may further complicate this procedure.

Design Concept of a Production
PET/CT Scanner

The somewhat-unanticipated demand for combined
PET/CT imaging technology that was created to a large
extent by the results from the prototype generated a re-
sponse from major vendors of medical imaging equip-
ment. However, given the choices for the CT and PET
components, a number of decisions had to be made
(Table 8.2) that included the appropriate level of CT
and PET performance, the extent of hard- and software
integration, the potential for upgrades, the targeted
users and applications, and of course, the cost [41].
Specifically, the main design questions are:

e what is an appropriate level of CT and PET perfor-
mance?

e should standard PET transmission sources be
provided in addition to CT-based attenuation
correction?

e what is the level of hardware integration that can be
achieved?

e what co-scan range of PET and CT should the
patient handling system offer?

o what level of software integration can be achieved?
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In the following sections we describe the design of
the first commercial PET/CT tomograph that was de-
veloped by CTI PET Systems (CPS Innovations,
Knoxville, TN) and presented at the Society of Nuclear
Medicine Meeting 2000. Since then several other com-
mercial PET/CT tomographs from other manufactur-
ers have emerged and will be discussed towards the
end of this chapter.

The CT and PET Components

The choice of the level of CT and PET performance
depends to some extent on the applications envisaged.
As with the prototype, the design described here is tar-
geted primarily at PET whole-body oncology, although
potential cardiac applications are not excluded.

Since the PET scanner performance is the limiting
factor in terms of statistical image quality, spatial reso-
lution, and scan duration, the highest possible PET per-
formance is obviously indicated. This consideration
influenced the selection of the ECAT EXACT HR+ [42]
as the PET component of choice because of its high
sensitivity and high spatial resolution. The scanner has
32 detector rings of crystals of dimensions 4.05 X 4.39
X 30 mm?, giving an axial plane spacing of 2.43 mm.
The detectors cover an axial field-of-view of 15.5 cm.
The transmission rod sources are removed and all at-
tenuation correction factors are derived from the CT
images, as described in this chapter. The septa are also
removed, resulting in a dedicated 3D PET scanner.

The role of the CT is to provide an anatomical infra-
structure for the functional images and accurate atten-
uation correction factors for the PET emission data.
However, an objective of this design is also to provide a
state-of-the-art CT scan of clinical diagnostic quality,
suggesting that a mid to upper range CT scanner can
satisfy all three design criteria. For these reasons, the
Siemens Somatom Emotion spiral CT scanner (Siemens
Medical Solutions, Forchheim, Germany) was selected
as the CT component. This CT scanner is available with
a single or dual row of Ultra Fast Ceramic (UFC™)

Table 8.2. Design considerations for commercial PET/CT tomographs based on the experiences gained with the prototype PET/CT.

Prototype design Consequence PET/CT design goals
ECAT ART Low-end dedicated PET Highest PET performance
Somatom AR.SP Early 90's technology High-performance CT

30 rpm Not state-of-art CT Sub-second rotation

60 cm patient port Limitation for RTP Increased port diameter
45 cm CT FOV CT truncation artifacts Increased CT FOV

100 cm co-scan Limitation for whole-body Whole-body co-scan

No bed support Bed deflection possible No bed deflection

Limited access Service difficulties

Dual acquisitions

Operation not integrated

Full service access
Integrated acquisition
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detectors, where each detector row comprises 672 indi-
vidual elements. The X-ray tube is a 40 kW Siemens
DURA 352 with flying spot technology. The full rota-
tion time can be selected from 0.8 s,1.0 s,and 1.5 s, and
slice widths of 1,2, 3, 5,8 and 10 mm for the single-slice
and 2x1, 2x1.5, 2x2.5, 2x4, 2x5, 8 and 10 mm for the
dual-slice. The longest acquisition in a single spiral is
100 s without intermittent tube cooling. The useful di-
ameter of the transverse field-of-view is 50 cm, and the
patient port is 70 cm.

Gantry and Patient Handling System

The gantry dimensions of the Somatom Emotion
closely match those of the ECAT EXACT HR+, facilitat-
ing the mechanical integration of the two units. In
comparison to the original prototype design mechani-
cal and thermal isolation is maintained between the
two devices for operational and servicing reasons. A
schematic of the gantry is shown in Fig. 8.9. The gantry
is 188 cm high and 228 cm in width. The overall length
is 158 cm, although with the front and rear contouring,
the effective tunnel length is only 110 cm. The axial
separation of the centres of the CT and PET fields-of-
view is 80 cm. The actual 56 cm patient port of the
HR+ is increased to 70 cm to match that of the CT by
cutting back the side shielding of the PET. The result-
ing patient port diameter is 70 cm throughout the
length of the tunnel, which is essential when position-
ing most patients from radiation therapy, and which
minimizes claustrophobic effects despite the 110 cm
tunnel length.

For servicing, the gantries can be separated by
moving the PET backwards on rails by about 1 m;
access to the rear of the Emotion CT and the front of
the EXACT HR+ is then possible. No service proce-
dures on either device have been significantly modified

gantry

pallet

PHS

CT PET

Positron Emission Tomography

as a consequence of the particular integration into the
PET/CT.

The problem of the increasing vertical bed deflection
with increasing distance into the scanner encountered
with the prototype was resolved by a complete redesign
of the patient handling system (PHS). Support of the
patient bed throughout the scan range is important to
avoid an increasing vertical deflection of the pallet: the
pallet deflects downwards with the patient load, a
deflection which increases as the bed moves into the
tunnel, adversely affecting the CT and PET image reg-
istration accuracy. In the prototype (Fig. 8.10a), the
pallet is not supported beyond the cantilever point and
an approximate correction for the increasing down-
ward deflection is applied in software, based on the
patient weight and the pallet position. In the new
design, shown in Fig. 8.10b, a carbon fibre pallet is sup-
ported at one end by a pedestal that moves horizontally
on floor-mounted rails driven by a linear motor. Since
the cantilever point does not change, the vertical
deflection is limited to a few millimetres once the
patient is aligned on the bed, allowing sub-millimeter
intrinsic registration accuracy to be achieved between
the CT and the PET, independently of the patient
weight. A total length, including the head holder, of
145 cm can be scanned with both CT and PET. A flat
pallet option is available for use with the PHS when
scanning patients undergoing PET/CT for radiation
therapy treatment planning.

Software Integration

A key feature of the production PET/CT scanner com-
pared to the prototype is the integration of the CT and
PET acquisition and reconstruction software on a
single console within a modality-independent software

Figure 8.9. A schematic of the biograph
PET/CT scanner, as a representative example of
the second generation, commercial PET/CT
systems. The axial separation of the CT and PET
imaging field is 80 cm. A common cantilever
design patient handling system (PHS) is
mounted to the front of the combined gantry
for accurate patient positioning across the

145 cm co-scan range.
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Figure 8.10. A vertical offset (arrows) between the CT and PET data of the same exam is introduced when using a patient handling system with a centre of
gravity fixed with respect to the gantry (a). The relative vertical offset between the CT and PET data is eliminated when translating the entire patient handling
system, i.e., the patient is moved together with the support structure into the gantry (b).

environment (syngo®, Siemens Medical Solutions,
Erlangen, Germany). The CT and PET scans can be ac-
quired, reconstructed and viewed on a single console
by selecting the appropriate syngo task card. An
example of the PET/CT examination cards is shown in
Fig. 8.11a. The reconstruction software includes CT-
based attenuation correction, Fourier rebinning and an
attenuation-weighted ordered-subset EM algorithm
[43]. The complete whole-body, attenuation-corrected
PET images are available within a couple of minutes of
the completion of the scan, and all image formats are
DICOM compliant to facilitate transfer to PACS or radi-
ation therapy planning systems.

The routine availability of registered CT and PET
images highlights the importance of a fused image
viewer with a full set of features (Fig. 8.11b). These
include transverse, coronal and sagittal displays of CT,
PET and fused images using an alpha-blending fusion
algorithm. Each modality has the usual set of specific
features, for example preset windows and measure-
ment tools for CT, and region-of-interest (ROI) manip-
ulation and SUV calculations for PET. To take full
advantage of the registered data sets, enhanced viewing
features are required such as linked cursors and
common ROI and measurement tools on both CT and
PET.

Physical Performance

Other than eliminating the tilt option, no major
modifications were required to integrate the Siemens
Emotion CT scanner into the PET/CT. The perfor-
mance characteristics are therefore identical to a stan-
dard Emotion CT scanner. The EXACT HR+, however,
was modified to accommodate a 70 cm patient port by
cutting back the side shielding, and in the absence of
septa, all operation is in 3D mode. The increased
patient port does not have a significant effect on

scanner performance unless there are high levels of ac-
tivity outside the field-of-view, as can be the case with
whole-body imaging. In this situation, with 3D only,
the reduced side-shielding results in an increased level
of single and scattered photons incident on the detec-
tors, increasing the randoms rate and lowering the
peak noise equivalent count rate (NEC). When oper-
ated with a 384 ns integration time, the peak NEC for
the biograph measured with a 70 cm phantom accord-
ing to the NEMA 2001 standards is 20-30% less than
that of a standard EXACT HR+ operated with a 768 ns
block integration time. However, if the random coinci-
dences are smoothed prior to subtraction from the
prompts (see Chapter 6), the peak NEC for the bio-
graph is comparable to that of a standard HR+. Hence,
by using a shorter integration time, and implementing
random coincidence smoothing, the reduced side-
shielding in the biograph results in no appreciable
degradation in the performance of the PET component
compared to a standard EXACT HR+.

State-of-the-Art PET/CT Systems
Second Generation

The first commercial scanners (Table 8.3) that followed
successful clinical imaging with the prototype PET/CT
[24, 25, 44, 45] appeared in early 2001 and consisted of
a CT scanner in tandem with a PET scanner, with little
or no mechanical integration of the two systems
beyond a common gantry cover [46]. This approach,
with the CT and PET scanners kept separate, has been
a characteristic feature of all commercial designs (Fig.
8.12). The advantage of this design is flexibility in that
different levels of CT and PET performance can be
combined as required and upgraded independently. An
upgrade path from CT or PET to PET/CT can, in some
cases, also be envisaged.
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registration topogram CT emission reconstruction

Figure 8.11. (a)State-of-the-art PET/CT tomographs offer joint acquisition and data processing consoles. A single console is used to register patient informa-
tion, select and acquire a pre-defined acquisition protocol, and reconstruct image sets. (b)Selective screenshots of commercial PET/CT fusion display options: (i)
Reveal MVS from CTI Molecular Imaging Inc/Mirada Solutions, (ii) Xeleris by GE Medical Systems, (iii) Syntegra by Philips Medical, and (iv) e.soft 3.0 by Siemens
Medical Solutions.
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Figure 8.12. Prototype (a), second generation (b), and third generation (c) PET/CT tomographs with major distinguishing features regarding CT and PET tech-
nology. Second generation PET/CT employ alternative (LSO- and GSO-based) PET technology for faster whole-body imaging, while ultra-fast and multi-row CT
technology in third generation PET/CT opens the applications for cardiac imaging and gated therapy planning. Systems shown from left to right: prototype,
Discovery LS (GE Medical Systems), biograph-BGO/LSO (Siemens Medical Solutions), Gemini (Philips Medical Systems), Discovery ST (GEMS), biograph Sensation

16 (SMS).

All designs (Table 8.3) incorporate a common
patient couch that is designed to eliminate or minimize
vertical deflection due to the weight of the patient and
to ensure accurate alignment of the CT and PET
images (Fig. 8.10). The actual approach to address this
issue, however, varies among the manufacturers of
PET/CT systems. In one design vertical deflection of
the pallet is eliminated through a pedestal-based
patient handling system (Fig. 8.10b), while in another
design a standard patient bed is mounted on a rail
system in the floor to bridge the distance between the
CT and the PET field-of-view. Alternatively, the bed
support system is fixed with respect to the gantry, and
the pallet moves on rails inside the combined system
where it is supported further by a post. The maximum
co-axial imaging range with any of these patient han-
dling systems is 145 cm to 200 cm.

With the detector and data acquisition sub-systems
kept separate in the second generation commercial
PET/CT systems, attempts have been made to integrate
the acquisition and data processing more closely.

Combined scanners are operated from a single console
with application-specific task cards selected for the CT
and PET acquisition (see Fig. 8.11). While the early
designs involved multiple computers for acquisition,
image reconstruction, and image display (Fig. 8.2),
progress is being made in combining some of these
functions into one computer, thus reducing complexity
and increasing reliability. The most recent PET/CT
systems are simpler to operate, involve fewer computer
systems, and are considerably more reliable. Indeed,
poor reliability would be a major concern for the high
patient throughput attainable with these scanners.

As mentioned, PET/CT designs have taken advantage
of recent advances in both CT and PET technology by
maintaining separation of the imaging sub-systems.
While the CT scanners in the first PET/CT designs
were single or dual-row, more recently 4-, 8- and even
16-row systems have been incorporated into PET/CT
scanners. These CT modules offer sequential as well as
spiral scanning modes with increased X-ray tube heat
capacities to cover large volumes in short scan times
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Table 8.3. Design and performance parameters of PET/CT systems. PET Performance parameters were acquired to the NEMA 2001 standard.
(CPS Innovations is a joint venture of Siemens Medical Solutions, Inc and CTl Molecular Imaging, Inc).

GE Medical Systems Philips Medical

PET/CT PET/CT

2000 2002 2002

Generation 2 Generation 3 Generation 2

208 /203 /205 192/230/140 206/230/590 Height/Width/Depth [cm]

142 cm 100 206 with gap (30) Inner tunnel length [cm]

Tapered, 70 cm—60 cm Uniform, 70 cm 70 cm CT, 63 cm PET Patient port diameter

160 cm 160 cm 195 cm Standard co-scan range

floor-mounted pedestal floor-mounted pedestal floor-mounted, dual pallet PHS

200 kg 200 kg 202 Max patient weight

no yes yes Radiation therapy table attachment

LightSpeed Plus LightSpeed Range Mx8000D System components

yes yes yes Spiral CT

4,8,16 4,8,16 2,16 Max number of active detector rings

Solid state—Lumex Solid state - Lumex Solid State Detector material

pixel array pixel array 2D solid state detector array Detector design

50 cm 51cm 50 cm Measured transverse FOV

0.625 mm-10 mm 0.625 mm-10 mm 0.5,1,2.5,5,8,10, 16 mm Min and Max Slice width [mm]

75 rpm 75 rpm 120 rpm Max rotation speed

8.5Ip/cm 8.5Ip/cm 22 Ip/cm Maximum spatial Resolution

5mm/3HU/na./34mGy/na. 6mm/3HU/na./34mGy/na. 4mm/3HU/[n.a.]/27mGy/[n.a.] Detectability

6.8 mGy (120 kVp) 6.8 mGy (120 kVp) 14-28 mGy (120 kVp) Centre dose (CTDI_100, body
phantom) per 100 mAs

ADVANCE Nxi unique, not available separately  Allegro System components

2D and 3D 2D and 3D 3D PET Acquisition mode

full-ring full-ring full-ring Detector design

yes yes no Septa

BGO BGO GSO Detector material

optional no 137Cs point (740 MBq) Transmission sources

55cm 70 cm 57.6 mm Transverse FOV

15.2cm 15.2cm 18 cm Axial FOV

35 47 90 Transverse images per bed

42 mm 3.2mm 2mm Image plane separation

6.3 mm (2D), 6.4 mm (3D) 5.2mm (2D), 5.8 mm (3D) 5.4 mm Axial resolution

4.8 mm (2D), 4.8 mm (3D) 6.2mm (2D), 6.2 mm (3D) 4.8 mm Transverse Resolution

1.3 cps/kBq (2D), 6.5 cps/kBq (3D) 1.9 cps/kBq (2D), 9 cps/kBq (3D) 3.8 cps/kBq Sensititivity

165 keps at 130 kBg/mL (2D), 82 keps at 46 kBg/mL (2D) 45 keps at 9 kBg/mL Peak NEC

42 keps at 8.5 kBg/mL (3D) 62 keps at 9.5 kBg/mL (3D)

[47, 48], a necessary prerequisite for oncology imaging
when examining patients with only limited breath-hold
capabilities. Alternatively, imaging ranges now can be
scanned with finer axial sampling in similar or less
time than with a single-row CT. Furthermore, when
employing IV contrast agents several organs can be
imaged at peak contrast enhancement during a single
spiral CT, or repeat CT exams can be acquired for a
single IV contrast injection over an individual organ,
such as the liver [49]. The use of spiral CT technology
in combined PET/CT imaging therefore offers high-
quality CT images for a variety of imaging conditions
encountered in clinical oncology.

The recent developments in PET scanner technology
have been primarily oriented towards the introduction
of new scintillators. For over two decades, PET detec-
tors have been based on either thallium-activated
sodium iodide (NaI(Tl)) or bismuth germanate (BGO).
While NaI(TI) has high light output, it has low stopping
power at PET photon energies (511 keV) and a long
decay time. The low stopping power was overcome by
BGO, first introduced for PET in 1977 [50] but at the
expense of considerably reduced light output com-
pared with NaI(Tl); the decay time for BGO is 30%
longer than NaI(Tl). Some physical properties of these
scintillators are compared in Table 8.4. The introduc-
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Table 8.4. Physical properties of different scintillators for PET

Property Nal(T) BGO LSO GSO
Density [g/mL] 3.67 7.13 7.4 6.7
Effective Z 51 74 66 61
Attenuation length [cm-1]  2.88 1.05 1.16 1.43
Decay time [ns] 230 300 35-45  30-60
Photons/MeV 38,000 8200 28,000 10,000
Light yield [% Nal] 100 15 75 25
Hygroscopic Yes No No No

tion of faster scintillators such as gadolinium oxy-
orthosilicate (GSO) [51] and lutetium oxyorthosilicate
(LSO) [52], also compared in Table 8.4, offer enhanced
PET scanner performance. LSO in particular out-
performs BGO in almost every aspect, especially light
output and decay time. The faster scintillators (Table
8.4) have lower dead time and give better count rate
performance, particularly at high activity concentra-
tions. This behaviour is confirmed in Fig. 8.13 where the
Noise Equivalent Count Rate (NEC) [53] is shown as a
function of activity concentration in the NEMA NU-
2001 phantom for 2D and 3D BGO scanners compared
with a 3D LSO scanner. The curves show the expected
behaviour with 3D being superior to 2D and LSO out-
performing BGO even at low activity concentrations.
The new pico-3D electronics, matched to the physical
properties of LSO, show a significant improvement over
the older design with peak NEC exceeding 80 kcps. All
3D measurements are for PET/CT scanners, whereas the
2D data are for the standard ECAT EXACT PET scanner
(CPS Innovations, Knoxville, TN) with septa extended.
These advances in PET detector technology are
reflected in the variety of PET design options in cur-
rently available PET/CT technology, which, depending
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on the manufacturer, employ BGO-, LSO-, or GSO-
based detector technology. In the Discovery LS, for
example, the PET tomograph is based on bismuth ger-
manate (BGO), a scintillator that is the most widely
employed detector material in PET. The ECAT
HR+/Somatom Emotion (Duo) also uses BGO as the
PET detector material of choice. CPS Innovations also
offers a PET/CT model (ACCEL/Somatom Emotion
(Duo)) with the PET detector being based on lutetium
oxyorthosilicate [54]. Accepting the potential for using
faster crystals in PET imaging technology, Philips
Medical Systems offer a combination of the GSO-based
Allegro PET tomograph (GSO: gadolinium oxyorthosil-
icate) with a state-of-the-art CT scanner. Most com-
mercial PET/CT designs favour the use of 3D-only
emission acquisitions by eliminating the septa from the
PET components. Assuming proper data processing, 3D
PET offers a number of advantages over 2D PET, such
as higher sensitivity and higher count rates at lower ac-
tivity concentrations [55]. Further, the sensitivity ad-
vantage of 3D imaging and the fast scintillation
properties of either GSO or LSO can be combined to
result in high-quality PET images at reduced scan
times and increased patient comfort.

Third Generation

By introducing 16-ring CT technology into combined
PET/CT designs the advantages of very fast and high-
resolution volume coverage by CT are translated di-
rectly into the context of anato-metabolic imaging.
Durable CT operation at scan speeds of 0.5 s and less
help reducing respiration-induced artefacts in ex-
tended imaging ranges as well as imaging the anatomy
of multiple organs at peak enhancement after intra-
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Figure 8.13. Noise Equivalent Count Rate (NEC, - 7 __‘__,.-*“"'1#“ ~
k=1) as a function of activity concentration in 30 e Saa 5
the NEMA NU-2001, 70 cm phantom. The curves 20 J o - BGO 3D Sel -
are shown for the standard BGO ECAT EXACT e “ : S~
HR+ both, with septa extended (BGO 2D) and 10 J o \
with septa retracted (BGO) 3D), a BGO PET/CT o
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PET/CT scanner with the new, high count-rate
pico3D electronics (LSO pico3D).
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venous contrast injection. As multi-slice CT pro-
gresses to a greater number of slices and shorter rota-
tion times, a critical review of the actual requirements
of PET/CT for specific applications will be necessary.
The benefit of freezing motion during the acquisition
of the CT and imaging the anatomy of the patient at a
particular point during involuntary periodic motion
cycles (cardiac and respiration), for example, is lost
without adequate acquisition modes for the PET exam
portion. Many of the recent CT improvements are tar-
geted at cardiology, whereas the role of PET/CT in
cardiology has yet to be established. Indeed, oncology
applications may be adequately addressed with a
lower performance CT scanner, such as a 2 or 4-row
system [56].

Current developments in improved acquisition and
data processing software accompany new hardware
developments for updated combined tomograph
designs: the Discovery ST from GE Medical Systems,
and a combined LSO-PET/16-ring CT from CPS
Innovations (Table 8.3). The ST, for example, is based
on a revised full-ring BGO-PET system with 10,080
BGO crystals of 6.3 X 6.3 x 30 mm? being arranged in
280 detector blocks (6 by 6) with a somewhat reduced
detector ring diameter (88.6 cm) compared to the pre-
decessor (Advance Nxi, 92.7 cm ring diameter) for im-
proved sensitivity in whole-body imaging [57]. The ST
is available with a choice of 4-, 8-, or 16-ring CT tech-
nology. The LSO-PET/16-ring CT by CPS Innovations
offers similar-size detector crystals at a reduced coinci-
dence window time (4.5 ns vs 11.5 ns) and a light

. '

Spiral CT

CT images

a) b)

Positron Emission Tomography

output that is five time that of BGO (Table 8.4). This
PET/CT is available exclusively with 16-row CT.

Optimized Protocols for Routine
Clinical Procedures

General Considerations for FDG-PET/CT
Imaging Protocols

For oncology purposes a standard PET/CT acquisition
protocol, in essence, is a modern-day PET oncology
imaging protocol, which consists of three steps: (1)
patient preparation and positioning, (2) transmission
scan, and (3) emission scan. Additional CT scans, such
as, e.g., a 3-phase liver CT, or a high-resolution lung
scan could be requested by the reviewing physician,
but generally these CT scans are not used for attenua-
tion correction. While the clinical acquisition protocols
of the PET/CT systems today are similar to those from
the prototype [58], demands for high diagnostic image
quality increase rapidly, and therefore a number of
general and specific considerations apply to current
PET/CT imaging protocols (Fig. 8.14). These considera-
tions are described in detail for each of the steps of a
combined PET/CT acquisition in [59] and [60]. All
PET/CT tomographs offer the use of the available CT
transmission images for CT-based attenuation correc-

< N

u-image Emission scan

ACF Emission

images

c) d) e)

Figure 8.14. Standard FDG-PET/CT imaging protocol (from left to right). The patient is positioned on a common patient handling system in front of the com-
bined gantry (a). First, a topogram is used to define the co-axial imaging range (a). The spiral CT scan (b) precedes the emission scan (d). The CT images are re-
constructed on-line and used for the purpose of automatic attenuation correction of the acquired emission data (c). CT, PET with and without attenuation
correction, and fused PET/CT images can be used for the clinical image review (e).
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tion. To account for the systematic difference in routine
acquisition protocols for CT and PET, and to avoid
artefacts on the CT transmission data, which may
propagate into the attenuation-corrected emission
data, particular attention must be given to the prepara-
tion of the patient for the CT and to the CT acquisition.

Modifying CT Acquisition Parameters in
PET/CT Imaging

Respiratory Motion

Several PET/CT groups have described respiratory
motion and the resulting discrepancy of the spatial in-
formation from CT and PET as a source of potential
artefacts in corrected emission images after CT-based
attenuation correction [58, 61, 62]. These artefacts
become dominant when standard full-inspiration breath
hold techniques are transferred directly from clinical CT
to combined PET/CT examination protocols scanning
without suitable adaptations (Fig. 8.6a). In the absence
of routinely available respiratory gating options the
anatomy of the patient captured during the CT scan
must be matched to the PET images that are acquired
over the course of multiple breathing cycles. Reasonable
registration accuracy can be obtained, for example, with
the spiral CT scan being acquired during shallow
breathing [61, 63, 64]. Alternatively, a limited breath hold
protocol can be adopted with either a 1- or a 2-row
system, or when dealing with uncooperative patients.
Patients are then required to hold their breath in expira-
tion only for the time that the CT takes to cover the
lower lung and liver, which is typically around 15 s [65].

Breath hold commands (in normal expiration, for
example) can be combined with very fast CT scanning,
and therefore may help reduce respiration mismatches
over the entire whole-body examination range. With
multi-row CT, such as in third generation PET/CT
systems (Table 8.3), it is now possible to scan the entire
chest at high resolution within a single breath hold.
Nevertheless, when respiration commands are not tol-
erated well and significant respiration-induced arte-
facts are suspected [66], it is advisable to reconstruct
the emission data without attenuation correction and
to review the two sets of fused PET/CT images very
carefully.

Use of CT Contrast Agents

Clinical CT examinations are almost routinely per-
formed with contrast enhancement to selectively in-
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crease the visibility of tissues and organs for an easier
and more accurate assessment of disease and existing
alterations of the anatomy of the patient. To achieve a
diagnostic benefit in contrast-enhanced CT a number
of - frequently competing — parameters during the ap-
plication of the contrast agent must be considered [67].
The unmodified transfer of standard CT contrast pro-
tocols into the context of PET/CT has been shown to
yield CT and PET images with contrast-related arte-
facts if attenuation correction is performed based on
the acquired CT data [60]. Depending on the contrast
concentration CT-based attenuation coefficients were
overestimated by 26 % [40] up to 66 % [68]. However,
the resulting overestimation of the standardized
uptake values (SUV) in the corresponding regions on
the corrected PET was only 5 % and thus clinically
insignificant assuming the contrast materials were dis-
tributed evenly [69]. Nevertheless, the concentration of
the oral contrast agent in the colon can vary
significantly as reported by Carney et al. [70] and may
lead to a degradation of the diagnostic accuracy of the
corrected PET data. Therefore, threshold-based seg-
mentation algorithms to segment and replace contigu-
ous areas of high-density contrast enhancement on CT
images prior to the attenuation correction procedure
have been developed [40, 71]. For example, Carney
et al. have shown that a modification can be made to
the original bi-linear scaling algorithm by Kinahan et
al. [28] to separate contrast-enhanced CT pixels from
those of bone, as shown in Fig. 8.15. Pixel enhancement
from positive oral contrast is around 200 HU at inges-
tion through the stomach, increasing to about 800 HU
in the lower GI tract as water is absorbed from the
contrast solution (Fig. 8.15a). Starting with a contrast
enhanced CT scan, cortical bone pixels are identified
with a threshold greater than 1500 HU and a region
growing algorithm used to identify all contiguous
pixels with bone content. The skeleton can then be ex-
tracted from the CT images. Contrast-enhanced pixels
are identified by applying a simple threshold at, for
example, 150 HU, well above any soft tissue value. The
CT image pixels identified as oral contrast can be set
to a tissue-equivalent value thus ensuring accurate at-
tenuation correction factors for the PET data. Since the
presence of contrast material has a negligible effect at
511 keV, the spatial redistribution of the contrast mate-
rial between the CT and PET scans during the total
imaging time does not create a problem; the aim of the
modified algorithm is to remove the effect of contrast
from the CT images and avoid incorrect scaling of con-
trast-enhanced regions. The modified algorithm can, to
a considerable extent, also reduce artefacts due to
catheters and metallic objects in the patient.
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Positive oral contrast
(>150 HU)

Figure 8.15. Positive oral contrast agents may lead to artifacts on PET/CT images, and thus must be accounted for. For example, CT-based attenuation correc-
tion can be modified to account for positive oral contrast agents retrospectively (a). The modified algorithm applies a region-growing technique to the contrast
enhanced CT images (left) to extract the skeleton (middle). The contrast-enhanced pixels (right) can then be identified by a simple threshold at 150 HU since
after removal of the skeleton the only pixels with values above 150 HU will be those with contrast enhancement. Alternatively, a water-based oral contrast may
be used instead of the positive oral contrast (b). Acceptable distention of the bowel and artifact-free fully-diagnostic CT images of the abdomen can be
achieved with water-based oral contrast, as seen from the coronal CT (left), transverse CT (middle) and corrected PET (right).

Unlike segmentation techniques that aim at retro-
spective modifications and corrections of the mea-
sured CT-based attenuation map alternative contrast
application schemes represent a straightforward ap-
proach to avoiding artefacts from high concentrations
of positive oral (and IV) contrast agents prospectively.
Antoch et al. have presented a water-based oral con-
trast agent, resulting from previous developments for
improved MRT contrast enhancement, for PET/CT
imaging [72]. This contrast agent is based on a combi-
nation of water, 2.5% mannitol, and 0.2% of locust
bean gum and allows for good differentiation of bowel
loops from surrounding structures (Fig. 8.15b). Unlike

iodine, or barium, water-equivalent oral contrast
agents do not increase the CT attenuation and thus do
not lead to an overestimation of the PET activity in the
corrected images.

While alternative contrast materials are inadequate
for vascular enhancement, high-density artefacts from
the bolus injection of IV contrast agents [39] can be
avoided by alternative acquisition protocols [73]. For
example, diagnostic quality CT can be achieved and
focal contrast enhancement in the thoracic vein can be
avoided under the condition of the caudo-cranial (i.e.,
reverse CT scanning following a somewhat prolonged
scan delay after the administration of the IV contrast)
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Figure 8.16. Alternative schemes of
application of IV contrasts agents are being
pursued to avoid contrast-induced artifacts on
PET/CT images while providing acceptable
image quality to the radiologists.

(Fig. 8.16). A more general solution would be to acquire
only a non-enhanced CT for attenuation correction
and anatomical labelling. However, additional CT scans
with contrast enhancement might be required then for
accurate delineation of lesions, thus leading to addi-
tional patient exposure and more logistical efforts.

Metal Artefacts

High-density implants, such as dental fillings, pace-
makers, prostheses, or chemotherapy infusion ports
may lead to serious artefacts in CT images [74, 75].
These CT artefacts have been shown to propagate
through CT-based attenuation correction into the cor-
rected PET emission images where artificially in-
creased tracer uptake patterns may then be generated
[76-78]. It is therefore recommended that PET images
from PET/CT are routinely correlated with the comple-
mentary CT, and that these PET data are interpreted
with care when lesions are observed in close proximity
to artefactual structures on CT. Until robust metal arte-
fact correction algorithms [75, 79] become available
routinely in PET/CT the additional evaluation of the
emission data without CT-based attenuation correction
is also recommended [78].

Truncation Artefacts

Spiral CT technology currently offers a transverse
field-of-view of 50 c¢m, and thus falls short 10 cm less
than the corresponding transverse PET field-of-view
(Table 8.3). This difference may lead to truncation arte-
facts in the CT images [80] and to a systematic bias of
the recovered tracer distribution when scanning obese
patients, or when positioning patients with their arms
down (Fig. 8.7). If not corrected for truncation, CT
images appear to mask the reconstructed emission
data with the tracer distribution being only partially
recovered outside the measured CT field of view.

To reduce the amount of truncation on CT and to
minimize the frequency of these artefacts, whole-body
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or thorax patients should be positioned according to
CT practice with their arms raised above their head. By
keeping the arms outside the field-of-view the amount
of scatter [80] and patient exposure are also much
reduced. Given the short acquisition times of a PET/CT
most patients tolerate to be scanned with their arms
raised for the duration of the combined exam.

A number of algorithms have been suggested to
extend the truncated CT projections and to recover the
unmeasured regions of the attenuation map in cases
where truncation is observed. If applied to the CT
images prior to CT-based attenuation correction these
correction algorithms will help to recover completely
the tracer distributions measured with the comple-
mentary emission data [81]. Further work is needed,
however, to make such algorithms routinely available
for clinical diagnostics.

Future Perspectives for PET/CT

The trend of PET/CT scanners is perhaps best illus-
trated by a design in which a 16-slice CT scanner, the
Sensation 16 (Siemens Medical Solutions, Forchheim,
Germany) is combined with the recently-announced
high-resolution, LSO PET scanner (CPS Innovations,
Knoxville, TN). The new PET scanner has unique 13 x
13 LSO block detectors each 4 mm x 4 mm in cross-
section (Fig. 8.17). The pico-3D read-out electronics,
adapted to the speed and light output of LSO, is oper-
ated with a coincidence time window of 4.5 ns and a
lower energy threshold of 425 keV. The significance
of these high-resolution detectors is illustrated in
Fig. 8.17 for a patient with squamous cell carcinoma of
the right tonsil. Following treatment that included a
right tonsillectomy, radical neck dissection and
chemotherapy, the patient was restaged by scanning
first on an ECAT EXACT (CPS Innovations, Knoxville,
TN) with 6.4 mm x 6.4 mm BGO detectors, and then on
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91% Packing Fraction

-
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Standard

the high resolution PET/CT scanner. A coronal section
from the PET scan demonstrates a diffuse band of ac-
tivity in the right neck. The corresponding PET section
from the PET/CT scan (Fig. 8.17) resolves this diffuse
band into individual nodes in the neck of the patient.
The recent introduction of the fast scintillators LSO
and GSO as PET detectors has occurred at just the
right moment for PET/CT where a reduction in the
lengthy PET imaging time is essential to more closely
match that of the CT. These tomographs are aimed
primarily at high throughput with whole-body imaging
times below 30 min. While it is unlikely that whole-
body PET imaging times will be reduced to the 30-60 s
that is required for CT scanning, a scan time less than
10 min is feasible with new high-performance LSO area
detectors currently under development. Such a design
will represent a breakthrough in cancer imaging,
eliminating problems of patient movement and trun-
cated CT field-of-view, and substantially reducing
artefacts due to respiration. Throughput will increase
significantly, as will patient comfort and convenience.
New applications, such as dynamic whole-body scans

Hi-Rez

(13x13), 4 x4 mm
0.03 mm joints
99% Packing Fraction

Figure 8.17. High-resolution PET and PET/CT
imaging using LSO-based detectors (Hi-Rez).
A 52 y/o male patient, 70 kg, diagnosed with
squamous cell tonsillar cancer and a 4 cm
positive node in the neck. The patient
underwent pre-surgical chemotherapy, a right
tonsillectomy and a right radical neck
dissection for removal of the positive node
and 45 additional nodes; all of the additional
nodes had negative pathology. The patient
suffered post-surgical infectious
complications. A follow-up PET scan
(Standard) acquired with arms down showed
a diffuse band of activity in the right neck
(arrow) seen on a coronal section. A PET/CT
scan acquired with arms up and with the new
high-resolution LSO-based detector blocks
(Hi-Rez) clearly resolved this diffuse band of
activity into individual, sub clinical lymph
nodes (arrow).

and the use of short-lived radioisotopes (e.g., ''C with a
20 min half-life) will then be within reach.

Future developments in combined PET/CT scanners
will be exciting, attaining a higher level of integration
of anatomical and functional imaging performance
than before. By fulfilling an important role, not only in
the diagnosis and staging of cancer, but in designing
and monitoring appropriate therapies, the combined
PET/CT scanner will undoubtedly have a significant
impact on patient care strategies, patient survival and
quality of life.
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Introduction

The radiohalogens are particularly attractive to con-
sider as radiolabels for positron emission tomography
(PET) radiophamaceuticals. While positron-emitting
chlorine has not been utilized, there are several ra-
dioiodines and radiobromines and one radiofluorine of
great importance to PET (Table 9.1). The chemistry of
radioiodine and radiobromine are similar in many re-
spects, but the chemistry of radiofluorine (i.e.,
fluorine-18) is sufficiently unique to warrant consider-
able discussion [1]. The emphasis in this chapter is
upon fluorine-18 chemistry and '®F-labeled radiophar-
maceuticals. This is because '*F, in the form of 2-deoxy-
2-['®F]fluoro-D-glucose (FDG), has become the most
utilized PET radionuclide. Several positron-emitting
radiobromines and radioiodines are not included in
Table 9.1, as there is little literature regarding their
routine production and use in PET imaging. While °Br
[2, 3] and '™ [4, 5] are included in Table 9.1, they are

not discussed further in this chapter. The half-life of
7Br is close to that of '*F, and its production and
purification are more complicated. The short half-life
of [ can be an advantage for blood-flow studies, but
production constraints have required the use of a high-
energy cyclotron and this has limited its application as
well.

In general, radioiodines, radiobromines, and
fluorine-18 can react as electrophiles or nucleophiles
involving species that behave formally as positively
charged (X*) or negatively charged (X") ions, respec-
tively (Figs. 9.1 and 9.2). As the names imply, elec-
trophiles are electron-deficient species that seek
electron-rich reactants such as carbon atoms with high
local electron densities, and nucleophiles are electron-
rich species that seek electron-deficient reactants [6].
While free-radical radiohalogen labeling reactions
have been utilized, they tend to be disfavored for PET
radiolabeling applications as a result of the difficulty in
controlling the regioselectivity of this type of reaction.
In contrast, electrophilic and nucleophilic radioiodina-

Table9.1. Cyclotron-produced PET radiohalogens

Radionuclide Half-life Decay Modes (%) Max. 3+ Energy (MeV)  Production Reactions

18F 109.8 min B+ (97) EC(3) 0.635 180(p,n)"8F
2Ne(d,0)'®F

75Br 16.1h B+ (57) EC (43) 3.98 5As(*He,2n)"Br
76Se(p,n)’°Br

5By 98 min B+ (76) EC (24) 1.74 5As(*He,3n)”°Br
78Kr(p,0r)”*Br

28] 42d B+ (25) EC(75) 2.13 124Te(p,n)'4
124Te(d,2n) '

12) 3.6 min B+ (77) EC (23) 3.12 127](p,6n)'22Xe/ 22|
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* Chapter reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and

Clinical Practice. Springer-Verlag London Ltd 2003, 217-236.
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Y=leaving group (halide, NO,, R3N)

Figure 9.1.

tions and radiobrominations are more readily con-
trolled and can be regiospecific in many cases. While
nucleophilic reactions involving ['®F]fluoride can be
regiospecific as well, electrophilic [**F]fluorine is very
reactive, and its reactions are more difficult to control.
Electrophilic fluorinations require special methods, ra-
diolabeling precursors, and “taming” reagents that are
described in this chapter.

Radiohalogen Production

Cyclotrons for PET Radionuclide
Production

Cyclotrons have been utilized for the production of
medical radionuclides since the 1930s, and cyclotron

@
<o D [0

Nucleophilic reactions relevant to ["®Ffluoride.

acceleration of charged particles remains the preferred
method to produce short-lived positron-emitting ra-
dionuclides. While a variety of different size and
energy cyclotrons have been employed for these pur-
poses over the past 70 years, the brief discussion pre-
sented here will be limited to an overview of the most
common PET cyclotrons in operation (Table 9.2). More
complete discussions of cyclotrons that produce ra-
dionuclides can be found in several reviews [7-9]. Over
the past ten years, most PET radionuclide production
sites have installed one of two types of cyclotrons. In
many academic medical settings and dedicated '*F-
production sites (particularly in the USA), the type of
cyclotron most commonly in use is a single-particle
cyclotron that produces protons with kinetic energies
of about 11 MeV. This type of cyclotron allows access to
the four most commonly utilized PET radionuclides
(fluorine-18, carbon-11, nitrogen-13, and oxygen-15).
Improvements in targetry design and increases in

SaTRY

A=electron donating group (OH, OCHj3, NH,, SR, etc.)

Y=leaving group (H, SnR3, HgR, SiR3, etc.)

Figure9.2. Electrophilic reactions relevant to ["®FIfluorine.
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Table9.2. Cyclotron manufacturers and some currently available products

Company Model Maximum Energy of Self-Shielded

Protons(p) and
Deuterons (d)
CTl RDS 111 11 MeV (p) Yes
EBCO TR19 13-19 MeV (p) Option
9 MeV (d) optional
GE PETtrace 16.5 MeV (p) Option
8.4 MeV (d)
GE MINItrace 9.6 MeV (p) Yes
IBA Cyclone 10/5 10 MeV (p) No
5 MeV (d)
IBA Cyclone 18/5 18 MeV (p) No
5 MeV (d)

available beam currents have made these machines
capable of producing multi-Curie (>74 GBq) quantities
of the four common PET radionuclides. Low-energy,
proton-only cyclotrons are commercially available
from several suppliers, and many are available as self-
shielded models. This feature helps to simplify site
selection in existing building space.

The second most utilized cyclotrons (particularly in
larger research-oriented facilities) are dual particle
(proton (p) and deuteron (d)) 18 MeV accelerators.
These machines can produce usable quantities of other
PET radionuclides, such as 7°Br, %I, and ®*Cu, in addi-
tion to the four common PET radionuclides mentioned
above. These cyclotrons also utilize less expensive, nat-
urally abundant ["*N]nitrogen to produce ['*O]oxygen.

Production of Fluorine-18

The most common method utilized to produce nucle-
ophilic ['®F]fluoride is the "*O(p,n)'*F nuclear reaction
(indicating the reaction of an accelerated proton (p)
with oxygen-18 to produce a neutron (n) and fluorine-
18). The oxygen-18 target material most frequently
consists of highly enriched ['®O]water [10-12], but
['®0Joxygen gas has been used successfully for this
purpose as well [13]. Multi-Curie (>74 GBq) quantities
of high-specific-activity [*®F]fluoride can be produced
in a few hours using 11 MeV protons to irradiate
['*O]water targets. In addition, the separation and re-
covery of ['80]water target material from ['*F]fluoride
is possible [14-16]. While the theoretical specific activ-
ity of carrier-free '*F is 1.7 x 10° Ci/mmol (6.3 x 107
GBg/mmol), the no-carrier-added specific activity of
[*®F]fluoride produced from ['®*O]water targets has
been in the range of about 1 x 10* Ci/mmol (3.7 x 10°
GBq/mmol). Other nuclear reaction pathways such
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as 'O(°He,p)'*F, '®*O(*He,pn)'®F, and [°Li(n,0)’H,
160(°*H,n)'®F] have been utilized in the past [17-21] but
are not the current method of choice.

Two processes are currently employed to generate
electrophilic ["*F]fluorine gas (['®F]F,). One method
utilizes deuteron bombardment of neon-20 gas target
material to produce '°F by the *Ne(d,o)'*F reaction. A
passivated nickel target (NiF) is loaded with 0.1%
(cold) F, in neon-20 and irradiated with 8-18 MeV
deuterons. This method produces relatively low specific
activity ["®F]F, (~12 Ci/mmol or ~444 GBg/mmol)
[22], dependent upon total mass of added carrier F,.
The “double-shoot” method also uses a passivated
nickel target; however, the target is loaded with
['*0Joxygen gas. Proton irradiation of the target leads
to adherence of radioactive '®F species on the target
walls. Upon cryogenic removal of the ['*0Joxygen from
the target, (cold) fluorine (1.0%; 30-70 pmol) diluted
in a suitable inert carrier gas (for example, argon) is
added to the target. A second short irradiation leads to
the interaction of the carrier fluorine and surface-
bound "F to yield recoverable ['®F]F, [23,24]. Both of
these methods produce relatively low yields of [**F]F,
(<1 Ci or <37 GBq), and the specific activity of
['®F]F, is low compared to that achievable using
['®0]water/['®F]fluoride target technology.

In general, electrophilic '®F-fluorination reactions
have resulted in low-specific-activity products
(<1 GBg/umol). A multi-step method used to
produce considerably higher-specific-activity ['*F]F,
(>50 GBq/umol) is worthy of note. This method
utilized the (p,n) reaction on [**O]water as the starting
point, as opposed to deuteron irradiation of neon-20 or
proton irradiation of [**O]oxygen gas [24]. Standard
proton irradiation of an ['®0O]water target to yield
['®F]fluoride was followed by azeotropic drying of the
Kryptofix [2.2.2]®/potassium carbonate/['*F]fluoride
mixture. The reactive ['®F]fluoride was then reacted
with methyl iodide in anhydrous acetonitrile to yield
methyl ["®F]fluoride, which was isolated by gas chro-
matography and trapped at liquid nitrogen tempera-
tures. The purified methyl ["*F]fluoride was then
passed through a discharge chamber operating at
20-30 kV and 280 pA, and small amounts of
F, (150 nmoles) and neon carrier gases were added
to yield ['F]F, (7.5 GBq ['F]F, from 37 GBq
["®F]fluoride). This ['®F]fluoride-to-['®F]fluorine
conversion process offers the option of obtaining high-
specific-activity ['®F]F, where the use of standard
electrophilic ['®F]fluorine targetry would lead to un-
acceptably low specific activity products and/or nucle-
ophilic radiolabeling methods utilizing ['*F]fluoride
are not practical.
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Production of 7°Br

Bromine-76 has been produced by the irradiation of
natural arsenic with a beam of 30 MeV helium-3 ions
via the 7>As(*He,2n)”*Br reaction [26,27]. Following
irradiation, the solid target was dissolved in sulfuric
acid and treated with chromic acid. Radioactive
bromine was distilled into an ammonia solution using
a stream of nitrogen, and the resultant ammonium
[7°Br]bromide was dried and used as a source
of ["Br]bromide for subsequent reactions (either
nucleophilic or electrophilic following oxidation).
Another method of bromine-76 production utilized
[7°Se]selenium-enriched (96%) Cu,Se as the target ma-
terial [28]. Irradiation with 17 MeV protons produced
[7*Br]bromine, which was separated from the solid
target by thermal diffusion. Lower energy, 11 MeV
cyclotrons have also been utilized to produce
[*Br]bromide, but to date the yields have been low
[29]. Bromine-76 has a more complex decay scheme
than fluorine-18, and only about 57% of its transitions
result in positron emission (Table 9.1). The positron
emitted from 7°Br has a considerably higher kinetic
energy than that from '°F, resulting in higher patient
dose per positron emission and lower imaging
resolution.

Production of 24|

Iodine-124 has been produced by the irradiation of
96% enriched ['**Te]tellurium (IV) oxide with 15 MeV
deuterons via the '**Te(d,2n)'?*I nuclear reaction
[30-32]. Iodine-124 has also been produced by the irra-
diation of enriched ['**Te]tellurium (IV) oxide with
15 MeV protons via the '**Te(p,n)'**I nuclear reaction
[33]. Some work has been performed utilizing lower
energy 11 MeV proton cyclotrons to produce
['**I]iodide [29,34,35], but the yields have been rela-
tively low. While '** has a relatively long half-life (4.2
days), there are problems associated with its use. Like
7%Br, I has a complex decay scheme with only about
25% of its transitions resulting in positron emission,
and the emitted positron has a relatively high energy
compared to positrons from '®F (Table 9.1). In addi-
tion, several high-energy gamma rays of nuclear origin
are emitted along with the positron. Despite these com-
plications, '*I has been used successfully to label PET
radiopharmaceuticals because its long half-life pro-
vides advantages over '°F for imaging slow pharmaco-
kinetic processes in vivo. In addition, it is possible to
achieve relatively high-specific-activity products using
electrophilic radiolabeling methods with '*I.

Positron Emission Tomography

'8F Radiochemistry

Nucleophilic reactions with ['®F]fluoride
(high specific activity)

The majority of PET radiohalogenations reported in
the literature are nucleophilic fluorinations utilizing
['8F]fluoride. The reasons for this include the availabil-
ity of high amounts of ['®F]fluoride from low- and
medium-energy proton-only cyclotrons utilizing
['®0]water target material and the generally higher
specific activities achievable using ['*F]fluoride. A
variety of chemical reaction types are amenable to ra-
diolabeling using ['®*F]fluoride. These can be divided
into two principal catagories: SN2-type (substitution
nucleophilic bimolecular) reactions with substrates
containing leaving groups such as halides or alkyl sul-
fonate esters, and aromatic nucleophilic substitution
reactions utilizing activated aromatic systems with
leaving groups such as nitro or trimethylammonium.

Radiofluorination via SN2 Reactions

In SN2-type reactions [6], nucleophiles attack the sub-
strates at 180° opposite to the leaving groups resulting
in configurational inversion at the carbon center fol-
lowing substitution (Fig. 9.1). From a kinetic view-
point, the reaction rates are largely determined by the
structures of both the substrates and nucleophiles.
Substrates containing bulky substituents near the reac-
tion center or poor leaving groups for substitution gen-
erally decrease the reaction rate. Nucleophiles react
with substrates as a function of their electron-donat-
ing ability, and the fluoride anion is a poor nucleophile.
As a result, it has only been within the past 15 years
that radiochemists have been able to successfully
produce a wide variety of radiofluorinated compounds
for PET imaging utilizing this type of reaction.

For SN2-type reactions, the best leaving groups are
the weakest bases, which is consistent with the princi-
ple that independently stable species make better
leaving groups. Of the halides, iodide is the best leaving
group and fluoride the worst. The conversion of an
alcohol to a sulfonic ester is a useful way to generate a
good leaving group. The triflate, tosylate, brosylate, no-
sylate, and mesylate groups are all better leaving
groups than halides. Leaving groups that have been uti-
lized the most for nucleophilic radiofluorination reac-
tions include triflate, tosylate, mesylate, bromide, and
iodide [1].
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SN2-type radiofluorination reactions generally take
place under basic or neutral conditions, as these condi-
tions promote the presence of good nucleophiles
(which are often strong bases). The effects of solvents
on SN2-type reactions are variable and depend upon
the charge dispersal of the reactants and subsequent
transition state. An assortment of solvents have sup-
ported high-yield radiofluorination reactions, and the
solubility of the reactants appears to have played a
larger role in solvent choice than their effects on reac-
tion rates. The most common solvent choices (although
by no means the only) are dipolar aprotic solvents in
which both the alkali metal ['®F]fluoride salts (for
example, K['®F] or Cs['®F]) and the organic radiolabel-
ing precursors generally show good solubility.

An important point in the general discussion of SN2-
type radiofluorinations regards the propensity of
fluoride to form tight ion pairs with metal cations.
Non-bound or non-coordinated nucleophiles are more
reactive. Cryptands and polyaminoethers have been
used to coordinate alkali metal cations, for example the
potassium ion of K['®F]. This allows the ['*F]fluoride
anion to be less tightly paired with the cation (termed
the “naked ion” effect) and subsequently more reactive
[36]. Crown ethers, particularly 18-crown-6, have been
used with K['®F] to increase solubility and promote the
nucleophilicity of ['®F]fluoride. Aminopolyethers (such
as Kryptofix [2.2.2]®) have also been used with excel-
lent results in a variety of aliphatic nucleophilic
['8F]fluoride substitution reactions [37-39] Cesium
and rubidium fluoride salts have been used as radiola-
beling sources of reactive ['®F]fluoride employing the
concept that larger mono-valent cations bind less
tightly to ['®F]fluoride [40,41]. A variety of tetraalky-
lammonium ["*F]fluoride salts have been used widely
in nucleophilic labeling reactions [42]. These salts are
very soluble in a variety of organic solvents ranging
from nonpolar to dipolar aprotic.

K['8F/K222
[o]
Br/\/\Br CH3CN, 110 °C .
COOCH;
HN H Br/\/18F
F DMF, 130 °C
H
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The use of alkyl halides as ['®*F]fluoride radiolabel-
ing substrates has been viewed as attractive for a
variety of compounds, particularly the simple di-
halogen substituted alkanes. This approach has been
used to produce '®F-radiolabelled synthons such as 1-
[**F]fluoro-3-bromopropane (Fig. 9.3), which was then
used to radiolabel ['*F]B-CFT-FP (radiochemical yield
2-3% decay-corrected to EOB) for use as a dopamine
transporter radioligand [43]. Other synthons used in
this manner include 1-['®F]fluoro-2-bromoethane and
1-['®F]fluoro-3-iodopropane [44-46].

Another example of the use of a halogen as the
leaving group (Fig. 9.4) made use of an iodo group
located adjacent to a carbonyl to incorporate
['®F]fluoride into 21-[*®F]fluoropregnenolone in a ra-
diochemical yield of 20% [47].

Nucleophilic substitution with ['®F]fluoride is
also possible using benzylic halides as starting
materials (Fig. 9.5), as evidenced by the synthesis of
3B-(4-["*F]fluoromethylphenyl)- and 3B-(2-['*F]fluoro-
methylphenyl) tropane-2B3-carboxylic acid methyl
esters for use as a dopamine transporter system radio-
ligand [48]. The phenyltropane analog was obtained in
22% radiochemical yield (decay corrected to EOB),
with chemical and radiochemical purities >99% of
specific activities ranging from 2-5 Ci/umol.

In those cases where an alkyl alcohol is available,
subsequent activation by the formation of the corre-
sponding alkyl sulfonate ester derivative (tosylate,
mesylate, triflate, 1,2-cyclic sulfate) has proven to
be extremely useful in the preparation of alkyl
['®F]fluorides. This reaction is general in scope and has
been used to synthesize a variety of complex radio-
ligands containing primary and secondary
['®F]fluorides. In a manner analogous to that of the di-
substituted haloalkanes, the displacement of mesylate
[49,50], tosylate [51], and triflate groups [52] led to the
synthesis of substituted ®-['*F]fluoroalkyl synthons.

Br~ "8

18NN COOCH;

Figure 9.3.
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For example, the reaction of 3-bromopropyl triflate
with ['®F]fluoride produced 1-["*F]fluoro-3-bromo-
propane [53].

The synthesis of 1-amino-3-['*F]fluorocyclobutane-
1-carboxylic acid provides an example of a nucle-
ophilic substitution reaction with [F]fluoride
utilizing a triflate derivative, prepared from the corre-
sponding alcohol, as the radiofluorination substrate
[54]. This unnatural, non-metabolized amino acid
(Fig. 9.6) was used to visualize malignant tumors and
was produced in 12% radiochemical yield with a
specific activity >1.5 Ci/umol (>55 GBg/umol).

The high-affinity dopamine D, receptor antagonist,
['®F]fallypride (Fig. 9.7), was synthesized by a nucle-
ophilic [*®*F]fluoride substitution reaction on the cor-
responding tosylate in about 20% radiochemical yield
at EOS [55].

Another example of the use of the tosylate leaving
group to incorporate ['®F]fluoride was the synthesis of
9-(4-['®F]fluoro-3-hydroxymethylbutyl)guanine
(["*F]FHBG) [56]. ['**F]FHBG (Fig. 9.8) was developed
as a potential PET imaging agent to assess gene
therapy. The masking of other reaction sites on the
precursor molecule using trityl protection illustrates
the ability to incorporate protecting group methodol-
ogy into radiosynthetic strategies as a result of both
the relatively long half-life of '*F and the chemical sta-
bility of the alkyl ['*F]fluorides (see also the radiosyn-
thesis of FDG). ["*F]FHBG was prepared in 8-22%
radiochemical yield (decay corrected to EOB) with
specific activities > 450 mCi/umol (16.7 GBg/umol).

In some instances, the activated leaving group used
to incorporate ['®F]fluoride can also act as a protecting
group for other functionalities present in the substrate.



Radiohalogens for PET Imaging 209
0] 18 O
1. K[ °F], K222
HN N HN N
> >~ >
SN N 2. HCI AN
MTrHN" N - H,N~ N
OTrM 18 OH
OTs F
Figure 9.8.
OH
1. K["8F], K222
'//18F
2. H,SO,
HO
Figure 9.9.
0] 0]

)'\f\J\/I[/ 1. K["8F], K222 H/fj/

o N > o’ N
18
F
Figure 9.10.

This was the case for 3-O-methoxymethyl-16[3,173-O-
epiestriol cyclic sulfone (Fig. 9.9), used as the precursor
for the synthesis of 160.-['®F]fluoroestradiol [57]. In
this example, the cyclic sulfone acted as a protecting
group for the 17B-hydroxyl functionality as well as ac-
tivating nucleophilic displacement by ['*F]fluoride at
C-16. The axial methyl group at C-19 prevented attack
from the B-face of the D-ring, and there was no evi-
dence of displacement reactions at the C-17 position.
160.-['*F]fluoroestradiol was prepared in 30-45%
radiochemical yield (decay corrected to EOB) with
specific activities reported to be > 1 Ci/umol
(3.7 GBg/umol).

Another example of a dual-mode leaving and
protecting group can be found in the utilization of
2,3’-anhydro-5"-0-(4,4"-dimethoxytrityl)thymidine to
produce 3’-deoxy-3’-["*F]fluorothymidine (FLT) (Fig.
9.10) for use as a cellular proliferation marker in a
decay-corrected radiochemical yield of approximately

14% [58,59]. The 2,3’-anhydro structure not only acts
as the leaving group for nucleophilic radiofluorination,
but also serves as a protecting group for the 3-N-
position of the pyrimidine ring.

The most frequently used PET radiopharmaceutical,
2-deoxy-2-['"®F]fluoro-D-glucose (FDG), is currently
produced utilizing ['®F]fluoride-for-alkyl sulfonate
ester radiolabeling methodology (Fig. 9.11). The in-
crease in demand for FDG has led to significant effort
directed towards the development of routine produc-
tion methods as well as the design and construction of
remote, automated systems dedicated to the synthesis
of FDG.

FDG is presently synthesized using modifications of
the method developed at the Julich PET Centre [37]. In
the original method, aqueous [**F]fluoride was added
to a solution consisting of Kryptofix [2.2.2]® and
potassium carbonate dissolved in aqueous acetonitrile.
The residual water was removed by repeated azeotropic
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distillations using anhydrous acetonitrile and a stream
of nitrogen. The triflate precursor (1,3,4,6-tetra-O-
acetyl-2-O-trifluoromethanesulfonyl-B-D-mannopyra-
nose) was dissolved in acetonitrile and added to the
dried ['®F]fluoride. The reaction mixture was heated to
reflux for five minutes. The resultant solution was
passed through a C,5 Sep-Pak® cartridge. The residual
aminopolyether was removed by washing the C,g Sep-
Pak® with 0.1 M hydrochloric acid. The radiolabeled
acetylated carbohydrates were eluted into a second re-
action vessel using tetrahydrofuran, and the ether was
removed. Aqueous hydrochloric acid was added to the
acetyl-protected intermediate (2-deoxy-2-['®F]fluoro-
1,3,4,6-tetra-O-acetyl-B-D-glucopyrranose), and the
solution was heated at 130 °C for 15 minutes. The
product was purified by passage through an ion-retar-
dation resin followed by an alumina column. The
method was utilized as the basis of a computer-con-
trolled automated synthesizer for the routine produc-
tion of FDG [60]. Further modifications of the Julich
methodology have led to the development of “one-pot”
syntheses for the production of FDG. These
modifications include the substitution of tetramethy-
lammonium carbonate for Kryptofix [2.2.2]®/potas-
sium carbonate as the phase-transfer reagent and
subsequent elimination of the C,; Sep-Pak® cartridge-
purification step. As a result of these modifications, the
acidic hydrolysis was performed in the same reaction
vessel. The reported radiochemical yield was 52% at
the end-of-synthesis (EOS) with a total synthesis time
of 48 minutes [61]. A similar “one-pot” modification
was reported that retained Kryptofix [2.2.2]® as the
phase-transfer reagent. Several Sep-Pak® cartridges
were added to the system to remove unwanted
Kryptofix [2.2.2]® and to prevent ['*F]fluoride break-
through. These modifications provided a radiochemi-
cal yield of 65-70% decay-corrected to the
end-of-bombardment (EOB) in a total synthesis time
of approximately 50 minutes [62].

Toxicity concerns associated with Kryptofix [2.2.2]®
( LDs, 35 mg/kg in rats) have prompted the use of other
phase-transfer agents, such as tetrabutylammonium
hydroxide or tetrabutylammonium bicarbonate. This

modification has been incorporated into a commer-
cially available synthesizer produced by Nuclear
Interface, Inc. The Nuclear Interface module is flexible
in that it can utilize either tetrabutylammonium bicar-
bonate or Kryptofix [2.2.2]® as the phase-transfer
reagent. In addition, the module can perform the hy-
drolysis of the radiolabeled intermediate, 2-deoxy-2-
['®F]fluoro-1,3,4,6-tetra-O-acetyl-B-D-glucopyrranose,
under either acidic or basic (KOH) conditions. The
module completes the radiosynthesis in less than thirty
minutes with a reported radiochemical yield of ap-
proximately 60% at EOS.

Another variation of the FDG radiolabeling scheme
used an immobilized quaternary 4-aminopyridinium
resin to isolate ['*F]fluoride and subsequently incorpo-
rate it into the !®F-labelled intermediate [63,64]. The
['®F]fluoride solution was passed across the resin
column where ['®F]fluoride was trapped, and the bulk
of the enriched ['®0O]water was recovered downstream.
The resin-bound ['®F]fluoride was dried by passing an-
hydrous acetonitrile across the resin column while
heating the column to approximately 100 “C. A solution
of the mannose triflate precursor in anhydrous ace-
tonitrile was then passed over the heated resin column
in either a slow single-pass or a reciprocating flow
across the resin column. The solution containing the
radiolabeled intermediate was then transferred to a hy-
drolysis vessel where the acetonitrile was removed.
Following acid hydrolysis, FDG was purified in a
manner analogous to the original method described
above. The resin methodology formed the basis of a
commercially available synthesis unit (PETtrace FDG
MicroLab™, GE Medical Systems). This unit utilizes a
disposable cassette system for the reaction column as
well as disposable transfer and addition lines that facil-
itate its set-up. Solid-phase support methodology that
incorporates basic hydrolysis of the radiolabeled inter-
mediate [65,66] has been implemented in the FDG syn-
thesizer marketed by Coincidence Technologies, Inc.
The use of base decreased hydrolysis times to two
minutes at room temperature and resulted in no
epimerization. In addition, there are commercially
available pre-packaged reagent vials and pre-sterilized
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tubing systems for this automated synthesis module.
The module is equipped with a programmable logic
controller that regulates the synthesis process. As a
result, the system can be operated without a computer
controller. The development of high-yield [**O]water
targets for the production of [**F]fluoride, the capabil-
ity of current generation cyclotrons to perform dual-
target irradiations at relatively high beam currents, and
the availability of efficient automated synthesis
modules to produce FDG has made possible the pro-
duction of multi-Curie (>74 GBq) amounts of FDG in a
single cyclotron production run. This capability has
significantly increased the utilization of FDG and has
led to the growth of regional FDG production facilities
that can supply a multitude of off-site users.

Radiofluorination via Aromatic
Nucleophilic Substitution Reactions

While alkyl [*®F]fluoride derivatives have seen frequent
utilization in PET radiopharmaceuticals as noted
above, significant effort also has been invested in radi-
olabeling methods to incorporate ['®F]fluoride into
aromatic systems. These efforts include radiofluorina-
tion methods to incorporate ['®F]fluoride directly onto
the aromatic ring as well as into prosthetic groups con-
taining aromatic rings. Aromatic nucleophilic substitu-
tions include:

(i) reactions in which the leaving group is activated
by the presence of electron-withdrawing groups
ortho and/or para to the leaving group;

(ii) reactions catalyzed by strong bases that proceed
through an aryne (triple bond) intermediate; and

(iii) reactions in which the nitrogen of a diazonium salt
is replaced by the nucleophile.

The first two examples can be classified as SNAr reac-
tions, but the third example is an SN1-type reaction.
The first class of reaction is by far the most commonly
used for aromatic radiofluorinations, wherein a leaving
group is activated by the presence of ortho and/or para
electron-withdrawing groups on the aromatic ring. An

K["®F], K222

DMSO
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approximate ranking of common substituents in
order of decreasing activation ability includes:
NO,>CF,>CN>CHO>COR>COOR>COOH>Br>I>F>
Me>NMe,>0OH>NH, [1,67]. The leaving group will also
have an effect on the reaction rate. The following list
is an approximate order of leaving group ability
in aromatic nucleophilic substitution reactions:
NMe;*>NO,>CN>F>CI,Br,I>0Ar>0OR>SR>NH,.
There have been attempts to correlate the radiochemi-
cal yields in nucleophilic radiofluorination reactions
with the C-13 NMR chemical shifts of the correspond-
ing fluoro-, nitro-, and trialkylammonium-substituted
aryl aldehydes, ketones, and nitriles. While good agree-
ment was found for the displacement of the substituted
fluoro and nitro groups, the trialkylammonium group
did not show the same correlation pattern [68,69].

The radiosynthesis of ['*F]altanserin, a serotonin 5-
HT,, receptor ligand, utilized the corresponding aro-
matic nitro precursor in the nucleophilic substitution
reaction with potassium ['®F]fluoride in the presence
of potassium carbonate and Kryptofix [2.2.2]® and il-
lustrates activation of the nitro group by a carbonyl
group situated para to the leaving group (Fig. 9.12).
The decay-corrected radiochemical yield was reported
to be 20% [70].

As a result of the relatively long half-life of '°F, there
are several examples of multi-step radiosynthetic path-
ways where the radionuclide is incorporated very early
in the process. An example of a multi-step radiosyn-
thetic pathway is the no-carrier added synthesis of 6-
['8F]fluoro-L-DOPA [71]. In this case, ['*F]fluoride was
used as the radiofluorinating agent in the preparation
of 3,4-dimethoxy-2-['®F]fluorobenzaldehyde from the
corresponding nitro-substituted compound (Fig. 9.13).
The resultant *F-labeled product was then reacted in a
enantiomerically pure variant of the 2-phenyl-5-oxa-
zolone procedure to yield '®F-labeled o,p-didehydro
derivatives. Following enatioselective reduction and
deprotection, 6-['®F]fluoro-L-DOPA was isolated in 3%
decay-corrected radiochemical yield with an enan-
tiomeric excess >90%.

There are many examples of the use of aryl trialky-
lammonium salts as alternatives to nitro-substituted

Figure 9.12.
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aryl precursors. Aryl trialkylammonium salts tend to
be more reactive and require milder conditions
for ['®F]fluoride incorporation. An example of this type
of SyAr reaction is the radiosynthesis of
4-['8F]fluorobenzyl iodide (Fig. 9.14) [41]. 4-Trimethyl-
ammoniumbenzaldehyde trifluoromethanesulfonate in
aqueous dimethyl sulfoxide was reacted with Cs['*F].
The resultant substituted ['*F]fluorobenzaldehyde was
reduced to the benzyl alcohol followed by treatment
with hydriodic acid to yield 4-['®*F]fluorobenzyl iodide
in approximately 25% yield (EOS). This prosthetic
group is amenable to incorporation into a variety of
radiopharmaceuticals, including (+)-N-(4-[**F]fluoro-
benzyl)-2B-propanoyl-33-(4-chlorophenyl)tropane
[72].

The synthesis of ['*F]norchlorofluoroepibatidine
provides an example of the use of [**F]fluoride with
trialkylammonium salts as the leaving group from a
heteroaromatic ring [73]. Using the tert-BOC-pro-
tected epibatidine derivative with trimethylammonium
iodide as the leaving group, the desired '*F-labeled
compound was prepared in 70% radiochemical yield
(Fig. 9.15). Subsequent deprotection and N-methyla-
tion afforded overall radiochemical yields of 45-55%
for ['®F]N-methyl-norchlorofluoroepibatidine with a
specific activity of 2-6 Ci/umol at EOS.

An '8F-radiolabeled prosthetic group approach
similar to the use of ['®F]fluorobenzyl iodide has been
used to label oligonucleotides [74]. In this case, the
desired prosthetic group, N-(4-['*F]fluorobenzyl)-2-
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bromoacetamide, was produced in a three-step syn-
thesis that began with the nucleophilic aromatic
radiofluorination of trimethylammonium benzoni-
trile triflate. The resultant 4-['®F]benzonitrile was
reduced to provide the radiolabeled benzyl amine,
which was allowed to react with bromoacetyl bromide
to yield the desired prosthetic group (Fig. 9.16). The
radiochemical yield was approximately 12% and the
specific activity of the resultant labeled oligonu-
cleotide was 1 Ci/umol (3.7 GBq/umol) at EOS.
Similar approaches have been reported by other
groups utilizing N-succinimidyl-4-["*F]fluoroben-
zoate [75] as well as a solid-phase based approach
using 4-['*F]fluorobenzoic acid [76].

Other Nucleophilic ['®F]Fluorination
Reactions

A classic method for the synthesis of aromatic
fluorides, known as the Balz-Schiemann reaction, in-
volves the thermal decomposition of aryl diazonium

tetrafluoroborate salts (Fig. 9.17). While this method-
ology has been applied to the production of aryl
[*®F]fluorides, it suffers several drawbacks [1]. The use
of ['8F]BF,” as the counter anion results in low radio-
chemical yields as well as low specific activity
products.

There has been little utilization of this methodology
for the synthesis of more complex radiofluorinated
compounds. It should be noted that this reaction could
allow the incorporation of ['*F]fluoride into an aro-
matic ring that is not activated to nucleophilic substi-
tution reactions.

R . R
Pyrolysis

l\\ Yoy l\\
= =

18

F

BF;'8FN,"
Figure 9.17.
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Electrophilic Reactions with '8F* (Low
Specific Activity)

Fluorine is the most electronegative of all the elements.
Fluorine exists as a colorless to pale yellow corrosive
gas (F,) that reacts with many organic and inorganic
substances. Fluorine is a powerful oxidizing agent and
attacks both quartz and glass, making its handling
problematic. The use of fluorine gas as a carrier in the
production of ['®F]F, leads to several orders of magni-
tude lower-specific-activity reaction products com-
pared to methods using no-carrier added [**F]fluoride
obtained from ['®0]water targets.

Early synthetic methods for the production of FDG
were based on electrophilic radiofluorination chem-
istry (Fig. 9.18). The reaction of ['®F]F, with 3,4,6-tri-
O-acetyl glucal in fluorotrichloromethane (Freon-11)
was the first synthetic method employed for this im-
portant PET radiopharmaceutical [77,78]. One disad-
vantage of this method, due to the highly reactive
nature of F,, was the production of the protected
fluoromannopyrranosyl leading to the undesired 2-
deoxy-2-['*F]fluoro-D-mannose (FDM) derivative (Fig.
9.18). The use of an alternative fluorinating agent,
acetyl ['®F]hypofluorite, was proposed as a method for
the routine production of FDG [79,80]. The use of

acetyl ['®F]hypofluorite resulted in the regioselective
(95%) synthesis of the desired glucose configuration
under optimal reaction conditions. However, non-
optimal conditions led to the production of undesired
FDM in high yield [81]. In addition to this problem,
electrophilic methods using [**F]F, to produce mono-
fluorinated products also suffer from the loss of 50%
of the radioactivity. The development of high-yield
['®F]fluoride targets and stereospecific nucleophilic
radiofluorination chemistries have replaced elec-
trophilic methods for the production of FDG.

One example of a direct electrophilic radiofluorina-
tion of an activated aromatic substrate is the synthesis
of a series of purine derivatives that have shown
promise for PET imaging of a reporter system to assess
viral gene therapy [82]. Earlier work demonstrated the
capability of direct incorporation of fluorine into the
C-8 position of a series of substituted purine deriva-
tives [83,84]. The analogous radiofluorinations (Fig.
9.19) using ['F]F, led to the production of 8-
['®F]fluoroganciclovir, 8-['®F]fluoropenciclovir, 8-
['®F]fluoroacyclovir, and 8-['®F]fluoroguanosine. While
this method does not require the use of protecting
groups, the radiochemical yields were low (0.9-1.2%
decay-corrected to EOB). Nevertheless, sufficient mate-
rial was produced to allow for the utilization of these
["®*F]fluoropurine derivatives in animal studies [85].
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The direct electrophilic fluorination of aromatic
rings has been accomplished using a variety of
8F-radiolabeled electrophilic fluorinating agents
including ['®F]F,, xenon ['*F]difluoride, and acetyl
['®F]hypofluorite. These types of radiofluorinations are
not generally regioselective. As an example, the reac-
tion of 3,4-dihydroxyphenylalanine with ['*F]F, using
liquid hydrogen fluoride as a solvent (Fig. 9.20) yielded
2-,5-,and 6-['®*F]fluoro-L-DOPA in the ratio of 35:5:59,
respectively [86].

The lack of regiospecificity in direct electrophilic
radiofluorination reactions has resulted in the in-
creased use of demetallation reactions. Regioselective
demetallations have been used to great advantage with
['8F]F,. Examples can be found in the literature for the
use of aryl tin, mercury, silicon, selenium, and germa-
nium compounds as substrates for radiofluorinations
using ['®F]F,. This type of reaction has been utilized to
produce 6-['®F]fluoro-L-DOPA [87,88]. The most
common precursor is an aryl substituted trialkyl tin
derivative (Fig. 9.21). The decay-corrected radiochemi-
cal yield was reported to be 29-37% using a protected
trialkyl tin derivative with trifluorochloromethane as
the reaction solvent, followed by acidic removal of the

phenol and amino acid protecting groups. This
methodology has been utilized for the automated pro-
duction of 6-['*F]fluoro-L-DOPA using a commercially
available computer-controlled synthesis apparatus
(Nuclear Interface, Inc.).

Another example of electrophilic regioselective
fluorodemetallation is the radiosynthesis of ['"*F]WIN
35,428 (['8F]B-CFT) [89]. In this case, ['®F]B-CFT was
prepared by the electrophilic radiofluorination of 2f3-
carbomethoxy-3f3-(4-trimethylstannylphenyl)tropane
using acetyl ['®F]hypofluorite as the fluorination agent
(Fig. 9.22) with a specific activity of 18-25 GBq/mmol
and a yield of 0.9-2.0%.

In a manner analogous to the other halogens,
fluorine will add to double bonds (Fig. 9.23). The ra-
diosynthesis of ['*F]2-(2-nitro-1[H]-imidazol-1-yl)-N-
(2,2,3,3,3-pentafluoropropyl)-acetamide (['*F]EF5), a
radiotracer used to assess tissue hypoxia, took advan-
tage of this reactivity by using ['*F]F, in trifluoroacetic
acid to radiofluorinate the perfluoro alkene in 10-15%
radiochemical yield [90].

The synthesis of 5-['*F]fluoro-2’-deoxyuridine (Fig.
9.24) is another example of the addition of fluorine to
double bonds. In this case, the formal addition of
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“fluorine acetate” to the 5,6-double bond led to an in-
termediate, which upon base catalyzed elimination of
acetic acid yielded the target molecule in a radiochem-
ical yield of 15-25% [91].

Electrophilic fluorination of carbanions using
fluorinating agents such as perchloryl['*F]fluoride,
N-["®F]fluoro-N-alkylsulfonamides, N-['*F]fluoropyri-
dinium triflate has seen some utilization. A series of
N-["*F]fluoro-N-alkyl sulfonamides have been
synthesized using ['*F]F, and shown to be suitable
for use in radiolabeling a variety of structurally
simple aryl lithium and aryl Grignard reagents [92].
However, the methodology has not been widely
utilized to radiolabel more complicated target
compounds.

Radiobromine and Radioiodine for PET

Fluorine-18 is not the only radiohalogen that has
shown utility in the synthesis of PET radiopharmaceu-
ticals. While there are no useful positron-emitting ra-
dionuclides of chlorine or astatine, there are useful

positron-emitting radionuclides of both bromine (“*Br)
and iodine (#!I). These radionuclides have suitable
half-lives ("Br t} = 16.1 hours and I t; = 4.2 days) for
use in PET studies and can be produced in sufficient
quantities to foster the development of a variety of
radiopharmaceuticals.

Over the past 40 years, a great deal of radiochemistry
effort has been devoted to methods for attaching single
photon- and beta-emitting radioiodines, such as '*I,
11, and ', onto large and small molecules for in vitro
and in vivo experimental uses [94-98]. These radiola-
beling methods are also applicable to positron-emit-
ting radioiodines, such as '?!I, and to a large extent to
radiobromines as well [99-102].

As with most halogen chemistry, [*Br]bromide can
be used either as a source of nucleophilic bromide or
as a source of electrophilic bromine upon oxidation.
[7Br]B-CBT, a dopamine transporter radioligand (Fig.
9.25), has been radiolabeled using both nucleophilic
and electrophilic radiobromination chemistry [103].

A variety of dopamine receptor ligands have been
labeled using bromine-76 including [7°Br]FLB 457,
[7°Br]FLB 463, [7°Br]bromolisuride, ["*Br]bromospiper-
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one, and ["*Br]PE2Br [104-107]. The radiolabeling of
["*Br]PE2Br, (E)-N-(3-bromoprop-2-enyl)-2[-car-
bomethoxy-3[3-(4’-tolyl)nortropane illustrates the ca-
pability of incorporating the radiobromine and
radioiodine into vinylic positions (Fig. 9.26). This
moiety offers increased stability for the halides com-
pared to alkyl-substituted analogs. ["*Br]PE2Br was
synthesized in a radiochemical yield of approximately
80% using NH,[”*Br] and peracetic acid with the vinyl
tri-n-butylstannane substituted tropane analog.

The serotonin transporter ligand 5-["°Br]bromo-6-
nitoquipazine also has been synthesized (Fig. 9.27)
[108], as well as a norepinephrine transporter agent
[7*Br]MBBG [109,110].

The electrophilic radiobromination of metaraminol
(Fig. 9.28) yielded a mixture of the 4- and 6-substituted
bromometaraminols (17% and 38% non-decay cor-
rected radiochemical yields, respectively), which were
separable by HPLC. These compounds have shown
promise as radiotracers for the myocardial norepi-
nephrine reuptake system [111].

Bromine-76 has also been utilized to radiolabel
intact monoclonal antibodies where its longer half-life
allows for longer clearance times [112,113]. The syn-
thesis of a radiobrominated thymidine analog
(["*Br]FBAU) for use as a cellular proliferation marker
for PET has also been reported [114]. Ammonium
[7Br]bromide was used in an electrophilic destannyla-
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tion reaction to prepare the 3’,5’-dibenzoyl protected
analog, which yielded the desired [°Br]FBAU follow-
ing base hydrolysis (Fig. 9.29).

Iodine-124 has been used to radiolabel intact mono-
clonal antibodies, where its longer half-life allows for
longer metabolic clearance times [115-117]. In a
manner analogous to the radiobromination chemistry
discussed above, iodine-124 also has been used in both
nucleophilic and electrophilic radiolabeling reactions.
An example of this was the radiosynthesis of ['*I]B-
CIT (Fig. 9.30), which was labeled using both
electrophilic iododestannylation and nucleophilic
substitution via iodo-for-bromo exchange [118].

In addition, insulin has been labeled with **I on the
fourteenth amino acid residue (tyrosine) using electro-
philic radiolabeling conditions [119]. The nucleoside
analog 2’-fluoro-2’-deoxy-1B-D-arabinofuranosyl-5-
iodouracil (FIAU) has also been labeled using Na['*]]
and a stannylated uracil derivative as the precursor
(Fig. 9.31) [120-122]. This radioiodinated derivative
has been reported to result in significantly higher

specific accumulation of radioactivity compared to
['*F]FHPG in tumor-bearing BALB/c mice [123].

Conclusions

Fluorine-18 is currently the most utilized PET radio-
halogen as a result of its relatively facile production in
large quantities, its convenient half-life, and its nearly
optimal decay properties. Efficient incorporation of the
18F-radiolabel into a variety of radiopharmaceuticals is
possible using either nucleophilic routes with high
specific activity ['*F]fluoride or electrophilic routes
with lower specific activity ['"®*F]fluorine. The longer
half-lives of 7°Br and '**I can provide advantages over
8F to image slower physiological processes, but the
production of these radiohalogens is more demanding
and their decay properties are more complex than
those of '®F. Thus, *F has become the radiohalogen of
choice for a variety of PET imaging applications.
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Introduction

The development of detector systems for in vivo
imaging of compounds labeled with the accelerator-
produced short-lived B*-emitting radionuclides ''C,
150, PN, and '®F, applicable in clinical diagnosis, has
been an incentive for the development of new tracer
molecules. The sensitivity of the positron emission to-
mography (PET) technique and the possibility of per-
forming non-invasive studies have thus opened up new
ways of studying in vivo biochemistry and pharmacol-
ogy in man.

In the past several years, commercial networks for
the delivery of tracers such as 2-['*F]fluorodeoxyglu-
cose (FDG) and other '8F-labeled compounds have
increased the clinical usage of PET. However, it is
clear that the PET technology has a wider potential,
and that additional '*F-labeled tracers need to be de-
veloped and to be complemented by compounds
labeled with other radionuclides. Carbon-11 espe-
cially, with a half-life short enough to allow repeated
PET investigations on the same subject within short
time intervals, but long enough to perform multi-step
synthesis, has proven to be a useful alternative. There
are, however, limitations for the development of PET
technology related to tracer production with the
short-lived ''C, '*N and '*O for clinical applications.
Today, tracers containing these radionuclides can be
used only when there is access to in-house produc-
tion facilities, and such sites benefit from the experi-
ence of a research-oriented background. There
is thus a potential for further development of
tracers and technology applicable in the clinical
setting.

There is no doubt in our minds that the great poten-
tial of PET technology lies very much in the develop-
ment of ''C-labeled tracer molecules for routine
applications because of the synthetic versatility of
carbon. In this chapter we will illustrate some ap-
proaches to labeling synthesis and give examples of
1C tracers which have been applied in clinical PET
studies. Many of the ''C compounds used in clinical
research have not been evaluated in clinical trials, and
the future of the clinical use of PET technology will
be dependent to some extent on the development of
organizational structures where such trials can be
performed routinely in an efficient way.

C Labeling Strategies

Biological Considerations

In order to address a given biological, pharmacological
or medical question, the design of labeled tracer mole-
cules need special consideration and there are a few
points which need to be addressed:

(i) The labeling position must be considered since the
metabolic pathway of the compound might have an
impact on the interpretation of the PET data,

(ii) Labeling in different positions in the molecule may
give additional information. An illustration of this is
!1C-labeled L-DOPA and 5-hydroxy-L-tryptophan
where different tissue kinetics are obtained if the
tracers are labeled either in the carboxylic- or B-
positions (Fig. 10.1). With the label in the j3-
position, the products obtained after enzymatic

* Chapter reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and

Clinical Practice. Springer-Verlag London Ltd 2003, 237-250.
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Figure 10.1.

Summation images showing the different fate of "C-labeled L-DOPA depending on the position of the label in monkey brain.

Left image: "'C-label in the B-position gives labeled dopamine as the primary metabolite, which is trapped in the neurons. Right image: same monkey two
hours later but now using DOPA labeled in the carboxylic position yielding ["'Clcarbon dioxide which is not stored in the neurons.

decarboxylation are the labeled neurotransmitters
serotonin or dopamine. Labeling in the carboxylic
position generates ['!C]carbon dioxide [1],

(iii) The prodrug concept: This can be used when tar-
geting specific delivery of a drug or labeled tracer
to the target organ is restricted. The labeling of the
corresponding methyl ester of a prostacyclin re-
ceptor ligand either in the methyl ester group or at
a metabolic stable methyl group on the phenyl ring
is an example of that [2]. The penetration of the
prostacyclin over the blood-brain barrier (BBB) is
very low but the corresponding methyl ester is,
however, transported through the BBB and the
prostacyclin receptor ligand produced inside the
brain by the action of esterases. With the label in
the methyl ester position, ['!C]methanol is formed,
which gives a uniform brain distribution, whereas
with the label in the methyl group on the phenyl
ring, a selective uptake in certain brain areas is
obtained. This can be used as an indication for the
formation of the [''C]prostacyclin receptor ligand
within the brain [3],

(iv) Addition or substitution of structural elements
(functional groups) or atoms in target molecules
can be used to fine-tune the molecular properties
of the tracer,

(v) Kinetic Isotope Effect (KIE): Here, the design
perspectives should be based on experiences in
medicinal chemistry. This means that replacing or
adding a small structural element can change
properties such as lipophilicity (logP) or pKa,
which might have significant impact on the biolog-
ical behavior of the tracer. Another type of fine-
tuning molecular properties is exemplified by

substituting hydrogen with deuterium, exemplified
by L-deprenyl, a selective monoamine oxidase B
(MAO-B) inhibitor used for quantification of re-
gional brain MAO-B activity. The interpretation of
the PET data obtained with L-deprenyl was
difficult because tracer delivery was highly flow-
dependent. A less flow-dependent tracer was ob-
tained by substituting the hydrogens in the
propargyl group in L-deprenyl with deuterium.
The deuterated molecule’s interaction with the
enzyme changed (KIE) since the rate-limiting step
included the abstraction of the protons/deuterons
in the propargyl group. The rate of reaction
between MAO-B and the deuterated deprenyl was
reduced by a factor of three as compared to the
protium compound and the enzyme activity could
be measured [4],

(vi) In some applications the physical half-life of the
radiotracers need to be adjusted to the biological
equivalence.

This is exemplified by the selection of O (1 = 2.03
min) as radionuclide for blood flow measurements
using [°O]-water while '*F-labelled tracers (#1 = 110
min) are preferred in studies of slower biological
processes like protein synthesis and cell proliferation.

Synthetic Considerations

Several aspects apart from those in conventional syn-
thesis have to be considered when planning syntheses
of compounds labeled with short-lived B*-emitting nu-
clides. For example, the time factor, radiation protec-
tion, labeling position and specific radioactivity are
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points which need consideration. Furthermore, in pro-
duction of tracers for in vivo human applications the
final product has to be sterile, endotoxin-free and dis-
solved in an appropriate physiological vehicle. The
whole procedure has to be achieved within the time
frame set by the physical half-life of the radionuclide
used, and a rule of thumb is three half-lives. For ''C
this is approximately 60 min. As a consequence of the
time constraint, synthetic methods are often modified
when applied in tracer production.

The development of methods and techniques for
rapid tracer synthesis is of special importance when
working with short-lived radionuclides such as ''C.
The demand for high specific radioactivity introduces
further constraint on the quality of reagents and tech-
niques used in terms of reducing isotopic dilution. In
!1C-labelling synthesis, the time and the concentrations
of reactants become essential factors to recognize [5].
Access to labeled precursors, available for routine
preparation, is one important feature in the develop-
ment of labeling synthesis. Other aspects to consider
are related to the production of short-lived radionu-
clides with high specific radioactivity, allowing studies
of high-affinity receptors present in very low concen-
trations. Important aspects to consider in this context
are:

(i) the importance of introducing the radionuclide as
late as possible in the synthetic sequence,

(ii) minimizing the synthesis time will increase
both the radiochemical yield and the specific
radioactivity.

Due to the short reaction time, drastic reaction condi-
tions can be used in the synthesis. Provided that the in-
crease in reaction rate is larger that the decomposition
rate, a favorable ratio between product formation and
decomposition is achieved. The choice of protective
groups and the type of techniques used for synthesis
and work-up are all factors that might influence the
time optimization. Examples are the use of one-pot
procedures, ultrasound and microwave technology [6],
in order to reduce production time by simplifying han-
dling and/or increasing reaction rates.

The stoichiometric ratio between substrate and
labeled reagent may be in the order 10° to 1, due to the
small amounts of labeled reagents. A consequence of
this is that the labeled reagent is consumed quickly by
pseudo first-order reaction kinetics. The small
amounts of substance may also be advantageous from
a technical point of view by simplifying technical han-
dling. The convenient application of semi-preparative
high-performance liquid chromatography (HPLC) and
the possibilities of miniaturization of the equipment in
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order to facilitate automation and to speed up the pro-
duction of a tracer are illustrative examples. It is rele-
vant to state that the work on increasing specific
radioactivity and the advent of new precursors and
synthetic methods are very much related to technologi-
cal development. The possibility of using [''C]carbon
monoxide as a labeled precursor has, for example,
significantly increased after recent technical im-
provements. The use of supercritical ammonia in
1C-labelling synthesis is another example where
technological improvement was of crucial importance
for the development of the methodology [7].

The factors discussed above, combined with aspects
on radiation safety, have pushed the need for develop-
ment of synthetic technology that can meet the
demands of routine pharmaceutical production.
Therefore, processor-controlled automated synthetic
devices have been developed [8] and are routinely
applied. This technology is, furthermore, mandatory in
order to meet the increasing demands related to Good
Laboratory Practice (GLP) and Good Manufacturing
Practice (GMP).

Tracer Production with ''C

Radionuclide Production

Two nuclear reactions used to produce ''C are pre-
sented in Table 10.1. The most commonly applied pro-
duction method is the *N(p,0)!'C nuclear reaction.
This nuclear reaction can be performed with low-
energy particles and ''C is obtained with high specific
radioactivity. The recovery of ''C-radioactivity from
the target in the form of [''C]carbon dioxide or
[''C]methane is achieved by automated systems.

Precursor Production

The development of new precursors [9] is important
for the development of new labeled substances. A
number of precursors more or less routinely available
from target-produced ["'C]carbon dioxide are shown
in Fig. 10.2.

The most frequently employed precursor is
["'Clmethyl iodide [10]. There are two synthetic
methods available: converting ['!C]carbon dioxide to
[''C]methoxide followed by reaction with hydroiodic
acid, or by a gas phase reaction where [''C]methane is
reacted with iodine. Methyl iodide is a useful alkylating
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Table 10.1.
Nuclear reaction Threshold energy (MeV) Target produced precursor of practical interest
N(p,o)'"C 3.1 [''C]CO,, ['"CICH,
1B(p,n)"C 3.0 ["cico,

"CH2N2 "cCls4 —— » "cocl2
3 T ! T
|
"CHsCuLi  "'CHaNO2 "CHCls <—— ""CHa ""CNBr

\ /
x H'"'CN
"CHaLi <—""CHsOH 11C02

PhsP''CH> H2''co

Figure 10.2.

agent for nucleophiles such as carbanions and nucle-
ophilic hetero atoms. It can also be used for prepara-
tion of several other valuable precursors such as
[''C]methyl triflate [11], [''C]methyl lithium [12],
[''C]methylcuprates [13], ['!C]nitro methane [14] and
[''C]methyltriphenylphosphorane [15].

Another precursor, routinely applied in labeling syn-
thesis, is hydrogen [''C]cyanide obtained on-line from
[!'C]carbon dioxide or [''C]methane. The labeled ni-
triles obtained from substitution reactions with
[''C]cyanide can be converted to amines, amides and
carboxylic acids.

Recently ['!C]carbon monoxide has proved useful for
synthesis of labeled carbonyl compounds. Some of
these labeled carbonyl compounds (i.e., aldehydes and
ketones) might themselves be valuable precursors. It is
likely that [''C]carbon monoxide in the future will be
as important as [''C]methyl iodide in the routine pro-
duction of PET tracers.

Synthesis of Compounds Labeled with ''C

The labeling synthesis can be divided into two areas of
chemistry, 'C-hetereo (N, O, and S) and ''C-C bond-
forming reactions. The first application of [''C]methyl
iodide was an alkylation on a sulfur nucleophile in the
synthesis of "'L-["'C]methionine [16] as is presented in
Fig. 10.3. Later, the general utilization of [''C]methyl

R"cocl

>

Rx""'cose
X =NR, O

R'"coPdL. — R''COR

Examples of precursors available from ["'C]carbon dioxide.

iodide in alkylation reactions with N-, O- and S-nucle-
ophiles such as amines, amides, phenolates, carboxy-
lates and thiolates became the most common way of
introducing ''C in a molecule. A large number of re-
ceptor ligands and enzyme substrates have been ''C-
labeled using N- or O-nucleophiles.

Although a substantial number of the compounds
used as pharmaceuticals today contain an N-methyl
group, and may thus potentially be labeled by
[''C]methyl iodide, this is not always the preferred po-
sition due to metabolic cleavage. The need for synthetic
strategies that give access to other labeling positions is
obvious. The ability to build up key structural units for
use in further coupling reactions is also important.

In tracer synthesis, the following 'C-C bond-
forming reactions have been applied:

(i) Alkylation on stabilized carbanions using ''C-
labeled alkyl halides [17], as exemplified in
Fig. 10.4, by an asymmetric synthesis of ''C-
amino acids [18],

Cuprate-mediated coupling reactions using an ''C-
labeled alkyl iodide or an ['!C]methyl cuprate [19],
Reactions with the anion of an [!'C]nitroalkane
[20],

Alkene synthesis using [''C]methylenetriph-
enylphosphorane,

Reactions of [''C]cyanide with electrophilic
carbons [21],

(ii)
(iii)
(iv)
v)
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COOH COOH
' Na/NH(
lSCHgCHg?H - HS [CE SCH2CH2CH
CH2 NH, CH,l NH2
Figure 10.3.  Synthesis of L-['"Clmethionine.
|
N COOH
>_< :I/ 1 Bulimup_ j 9M Hel R CHeH
>—< 11
2.R' CHI N— CHR g

Figure 10.4. Asymmetric synthesis of some ""C-amino acids.

(vi) Carbonation of organometallic reagents with
[''C]carbon dioxide.

Palladium has