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Abstract

Land surface evapotranspiration (ET) is a key component of the water and energy
balance over terrestrial ecosystems, quantification of which has long been an
important topic in hydrological, meteorological, agricultural, and ecological studies.
The primary objective of this dissertation is to estimate land surface evapotrans-
piration (ET), with special attention paid to the heterogeneous vegetated surfaces.
Different algorithms with varying temporal and spatial resolutions are developed to
estimate ET using different data inputs. Besides, a novel approach to estimate ET
from remote sensing by exploiting the linkage between water and carbon cycles is
proposed. Finally, the potential of using remote sensing ET model in the real
management of water resources in a large irrigation district is discussed.

First, this dissertation provides a detailed comparison among three dual source
ET models in estimating potential ET and partitioning potential evaporation and
potential transpiration under different hypothetical vegetation distribution condi-
tions. Then, a hybrid dual source ET model (H-D model) is proposed to estimate
actual ET processes, and verified with field observations over four different eco-
systems. The performances of the H-D model are further compared with those from
three other ET models. Results indicate that the H-D model is capable of estimating
ET over a wide range of vegetated surfaces and could provide better evaporation
(E) and transpiration (T) partition results.

By coupling the hybrid dual source scheme with a soil water and heat simulation
model, a soil-plant-atmosphere continuum model (HDS-SPAC) is proposed and
tested in a farmland ecosystem and a natural forest, respectively. For model
application in the natural forest, a simple field experiment is designed to examine
and parameterize the root water uptake models. Moreover, the traditional root water
uptake model has been improved based on field data.

In order to capture ET information over larger geographic extents, a hybrid dual
source scheme and trapezoid framework-based ET model (HTEM) using remote
sensing images is proposed. Data from three validation sites located respectively in
Iowa and Arizona of USA and Weishan irrigation district of China are used to test
the model. Results show that the HTEM could provide good estimates of ET over
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different vegetation coverage conditions, with the root mean square errors ranging
from 30 to 50 W m−2. Besides, it is found that HTEM is able to give accurate E and
T partitioning. Furthermore, HTEM fed with Moderate Resolution Imaging
Spectroradiometer (MODIS) data is applied in Hetao Irrigation District from 2000
to 2010 to examine the spatial and temporal patterns of ET in the region. Results
indicate that during the study period, a reduction in river water diversion for irri-
gation has not reduced the agricultural land ET, suggesting no significant impact on
agricultural production. But ET over the non-irrigated grassland is found to be the
largest contribution of water-saving.

To further explore new method of ET estimation over vegetated surfaces, a
novel approach based solely on remote sensing data is proposed to estimate ET by
exploiting the linkage between water and carbon cycles. The method is validated
with eddy covariance measurements from 20 sites within the Ameriflux network
and compared with MODIS ET product. Results show the new method could
provide accurate and better ET estimates than MODIS ET. This suggests that
routine estimation of ET from satellite remote sensing without using fine-resolution
meteorological field is possible and can be very useful for studying the coupled
water and carbon cycles.

Keywords Land surface evapotranspiration �Vegetation distribution characteristic �
Remote sensing � Hybrid dual source scheme � Carbon-water relations
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Chapter 1
Introduction

1.1 Research Background and Significance

Water servers as a fundamental component for almost all living creatures and plays
a critical role in building a sustainable natural and social environment. However,
with the increase of world population and degradation in water quality, there has
been a significant decline in the availability of safe water resource across the globe.
Studies have shown that nearly 1/3 of the world population lives in the area with per
capital water resource lower than the minimum standard and there are more than
240 million people living in places with high water scarcity (e.g., Oki and Kanae
2006). In addition, intensified climate change and human activities have brought
further threatens to limited water resources, making water crisis in water limited
regions even worse. World Meteorology Organization pointed out in 1996 that
water scarcity is the largest issue for global major cities. By the year of 2050, more
than 2/3 of world population will be living in cities, in which 46 % of them will be
facing serious water shortage problem. To that end, promoting sustainable water
management and improving water use efficiency have become one of the most
critical challenges that our society are facing.

Different from other natural resources, water is unique in its flowing nature. Thus,
evaluation of water resources should focus more on its flowing characteristic rather
than only on the amount of water storage. Water in the atmosphere reaches land
surface via precipitation, in which part of them become runoff and flow into river
bodies (e.g., river and lake) and another part return into the atmosphere through
evapotranspiration (ET). All these processes constitute the terrestrial hydrological
cycle. Among different processes within the terrestrial hydrological cycle, land
surface ET plays an important role in determining the global water balance and
linking the global water and energy cycles. On one hand, it moves a vast amount of
water vapour upwards into the atmosphere to support land surface precipitation.
One the other hand, it controls land-atmosphere feedbacks via modulating the sur-
face energy budget (Rosen 1999). From a water balance’s perspective, land surface
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ET is the second largest water flux (after precipitation) within the terrestrial
hydrological cycle, which accounts for about 65 % of land surface rainfall. This ratio
can be as high as more than 90 % in arid regions (Bonan 2002). In the northern part
of China, agricultural water use accounts for about 70 % of total water consumption
in the area, with more than 90 % of them consumed via ET (Liu et al. 2002). This
highlights the water resource crisis in the area, where owns 65 % agricultural land
but only 20 % water resources of the national totals (Deng et al. 2006).

Land surface ET consists of two main components, i.e., evaporation and tran-
spiration. Evaporation (E) accounts for the movement of water to the air from sources
such as the soil, canopy interception, and water bodies. Transpiration accounts for the
movement of water within a plant and the subsequent loss of water as vapour
through stomata in its leaves. Due to its importance in determining the water and
energy budgets over the land surface, the study of ET has long been an active research
topic in areas such as hydrology, ecology, agriculture and meteorology, which has
led to the development of many ETmodels or algorithms. However, mechanisms that
determine ET processes vary greatly over different surface conditions. Evaporation
can be considered as a pure physical process whereas transpiration is more regarded
as a biological or plant physiological process (Scott et al. 2006). These two processes
are relatively independent but can be strongly coupled in certain circumstances,
which brings further difficulties in accurately quantifying ET over vegetated surfaces,
especially for non-uniform vegetated surfaces. Nevertheless, in most ecosystems,
vegetation covers land surface non-uniformly, such as in forests, shrublands and
savannas. Even for agricultural ecosystemwhere the spatial distribution of vegetation
is relatively uniform, its vegetation cover still shows an obvious temporal variability.
Moreover, the distributions of water and energy in the natural ecosystems are also
spatially and temporally heterogeneous. All these heterogeneities have imposed a big
challenge for successful quantifications of ET in most cases.

This dissertation will focus on ET estimation over vegetated surfaces, particu-
larly over partial and non-uniform vegetated surface, with the aim of gaining a
greater understanding ET processes under different vegetation cover conditions and
therefore to improve ET models. The developed models will be applied to esti-
mating ET in both natural and agricultural ecosystems. The outputs of this study
will potentially provide, on one hand, theory basis for natural ecosystem protection
and restoration, and technique supports for the design of water-saving irrigation and
sustainable water resources management in arid environments.

1.2 Current Research Status

1.2.1 Land Surface Evapotranspiration Models

Accurate quantification of ET and its components can be achieved by using a
combination of in situ measurements, such as the eddy covariance systems, Bowen-
ratio systems, weighing lysimeter, sap-flow meters, and isotope sampling (Baldocchi
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2003; Yang et al. 2013; Zhang et al. 2008). However, such field-based observations
are often costly and can only provide measurements of ET or E and T at the point
scale. As a result, mathematical modelling in combination with more or less mete-
orological and/or remote sensing data becomes a powerful tool to quantify ET over
larger areas and longer periods. Comprehensive reviews of ET quantification can be
found in Wang and Dickinson (2012), for example. Here, we will first categorize
these ET models into two groups (i.e., ground measurement-based models and
remote sensing-based model) and then briefly go through them in terms of their
advantages and disadvantages.

1.2.1.1 Ground Measurement-Based ET Models

Estimation of ET can be dated back to the year of 1802 when Dolton proposed his
first evaporation formula. Afterwards, with the development of ET theories and
advancement of observation skills, hundreds of model for estimating land surface
ET have been proposed by researchers. In summary, these models can be classified
into four types: empirical model, water balance model, micrometeorological model
and soil-vegetation-atmosphere transfer (SVAT) model, among which, microme-
teorological model and SVAT model have been used most often (Table 1.1).

For vegetated surfaces, differences in various micrometeorological models are
characterized by their different parameterizations of vegetation in the models.
Vegetation distributions and canopy structures vary among ecosystems, resulting in
different sources of sensible and latent heat fluxes, which requires different treat-
ments in ET models. With respect to different canopy types, there are currently
three types of ET models which are all based on Prandtl’s mixing-length theory,
including single source model, dual source model and multi-source model.

Table 1.1 Summary of ground measurement-based ET models

Type Model/method References

Empirical model Evaporation pan Snyder (1992)

Temperature-based empirical method Lei et al. (1988)

Radiation-based empirical method Lei et al. (1988)

Dalton aerodynamic equation Dalton (1802)

Hargreaves equation Hargreaves and Allen
(2003)

Micrometeorological
model

Energy balance model (Bowen-ratio
method, Priestley-Taylor equation)

Bowen (1926),
Priestley and Taylor
(1972)

Turbulent diffusion method Yu et al. (2006)

Combined method (Penman model,
Penman-Monteith model,
Complementary method)

Bouchet (1963),
Monteith (1965),
Penman (1948)

SVAT model SVAT model Kang et al. (1994)
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(1) Single source model
Single source model has only one source of sensible and latent heat fluxes, which
considers the land surface as a uniform layer of the combination of soil and veg-
etation components. Penman model and Penman-Monteith (P-M) model are typical
single source models (Penman 1948; Monteith 1965). Penman model assumes a
saturated surface, which has been widely used to estimate potential evaporation.
Monteith introduced the concept of canopy resistance into the Penman model and
proposed the P-M model for calculating actual ET over non-saturated surfaces. The
P-M model has a solid physical basis, which explicitly explains the mechanism of
ET processes and has been used extensively over various surface conditions with
different vegetation cover. In addition, the P-M model has been recommended by
Food and Agriculture Organization of United Nation as the standard method for
quantifying ET in agricultural land (Allen et al. 1998).

Single source model has a simple model structure and few easily-determined
parameters, which guarantee the model to be readily applied. However, single
source model treats the land surface as a uniform layer, which only accounts for
energy and mass exchanges between the bulk soil-vegetation surface and the
atmosphere. As a result, single source model is only suitable for certain canopy
type, i.e., single layer closed canopy. In addition, single source model cannot
distinguish between evaporation from soil and transpiration from canopy.
(2) Dual source model
Considering contributions of energy fluxes from different components (soil vs.
vegetation), dual source ET models have been proposed to more precisely depict
water and heat transfers from sparse or heterogeneous canopies. “Dual source”
indicates fluxes from vegetation canopy and bare soil, respectively. Based on dif-
ferent ways of energy partitioning and various resistance systems, dual source
models can be further categorized into three types, i.e., the layer model, the patch
model and the hybrid model.

Layer model: Layer model is also known as the coupled model in which each
source of water and heat flux is superimposed and coupled, such as the Shuttle-
worth-Wallace dual source model (the S-W model) (Shuttleworth and Wallace
1985). It considers the land surface as two different but interacted layers (i.e., the
vegetation layer and the soil layer). Solar radiation firstly comes onto the vegetation
layer and then penetrates through the canopy onto soil surface following a certain
rule (e.g., the Beer’s law), and soil evaporation and canopy transpiration are cal-
culated from the P-M model, respectively. In such a model, energy fluxes sourced
from soil will be firstly transferred onto the canopy height and interact with those
from canopy and then exchange with the above atmosphere.

The S-W model has been extensively used for estimating ET over a wide range
of vegetated surfaces. Ortega-Farias et al. (2010) successfully applied the S-W
model to estimate ET in a drip-irrigated vineyard in Chili. Zhang et al. (2008) also
reported a good performance of the S-W model in a vineyard in the Northwest
China. Hu et al. (2009) used the S-W model to estimate ET at four grassland sites
and found an error range of 8–15 %.
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Patch model: For patchy vegetated surfaces, the interaction among patches can
often be ignored, particularly when distance between vegetation patches is large.
In a patch model, each patch receives the same radiation loading (i.e., full radiation)
and acts independently of the other (advection effect excepted). The total flux of
sensible or latent heat per unit area of soil is considered as a mean of the component
fluxes weighted by their relative area (e.g., fractional vegetation cover, Fc). For
each patch, ET is calculated from the P-M formulation.

Patch model has a relative simple model structure and low computing require-
ment. Therefore, it has been widely used in large-scale land surface modelling and
coupled with regional climate models. One representative if the N95 model
developed by Norman et al. (1995), which was later implemented with remote
sensing data to map ET at regional scale. In addition, ISBA (Noilhan and Planton
1989) and CLASS (Verseghy 1991) are also typical patch models.

Hybrid model: Previous studies have pointed out that the later model performs
better over uniformly vegetated surfaces with higher vegetation cover, whereas the
patch model is more suitable for more clumped vegetation. In another word, both
two-layer and two-patch models are limited somehow within a certain range of
vegetated surfaces. However, in natural environment, vegetation distribution usually
exhibits large spatial (spatial gradient) and temporal (seasonal change) variations,
which deviates greatly from the ideal vegetation cover conditions required by either
the layer or the patch model. Therefore, use of either model to estimate ET over larger
area with different characteristics of vegetation distribution may result in consider-
able errors. As shown in Fig. 1.1, the ideal vegetation distribution for the layer model
and the patch model is located in two ends: uniform and high vegetation cover and
patchy and low vegetation cover. One challenge is that is there any ways to combine
the two models to better describe the transition between the two extreme ends?

Fig. 1.1 The scope of
application of the layer and
patch models
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To address this challenge, Guan and Wilson (2009) proposed a hybrid dual-
source model (the TVET model) to estimate potential evaporation (PE) and
potential transpiration (PT) by combining the later with the patch approaches. The
TVET model adopts the layer approach to allocate available energy between
components and to estimate aerodynamic resistance, but uses the patch approach to
calculate PE and PT. As a result, both the evaporation from both under- and inter-
canopy soil surfaces are considered and distinguished. Guan and Wilson (2009)
demonstrated that the simple combination of the layer and patch approaches could
provide better PE and PT estimates over a wide range of vegetated surfaces.
A detail description of the TVET model can be found in Guan and Wilson (2009).
(3) Multi-source model
For surfaces with multiple vegetation types, neither the single source nor dual
source model can truly capture energy flux from the surface due to different canopy
resistances and structures among different vegetation types. To estimate ET over
such surface, based on the layer model, Dolman (1993) distinguished the vegetation
layer into upper-canopy and understory layers and estimated energy fluxes from
each layer respectively. In addition, Williams et al. (1996) separated the single
canopy into different layers at various heights, and the total flux from the entire
canopy was calculated as the sum of those from each layer. Strictly speaking, this
model should also be considered as multi-source model, as vegetation layer at
different heights receive different radiation loading and have different canopy
resistances. Similar models include the WAVES model (Zhang et al. 1996), the
SVAT-CN model (Harly and Tenhunen 1991) and the HIRVAC model (Goldberg
and Bernhofer 2001).

1.2.1.2 Remote Sensing-Based ET Models

Satellite remote sensing has provided an unprecedented opportunity for capturing
ET across a variety of spatial and temporal scales that are not attainable by con-
ventional techniques (e.g., Carlson 2007). In general, the remote sensing-based ET
models can be grouped into three types, i.e., empirical model, energy balance model
and vegetation index model.
(1) Empirical model
Empirical or semi-empirical models are often accomplished by employing empirical
relationships and making use of data mainly derived from remote sensing obser-
vations with minimum ground-based measurement (Li et al. 2009). The main theory
of the empirical method was firstly proposed by Jackson et al. (1997), in which the
daily ET was directly related with the difference between instantaneous surface
temperature and air temperature measured near midday at about 13:30 to 14:00
local time. Seguin and Itier (1983) further investigated the relationship between
thermal images and land surface ET, and applied the model of Jackson et al. (1997)
to large spatial scales. However, one key assumption of these models is that the
constant Bowen ratio over a day, which is somehow deviates from the reality.
Triangle model and trapezoid model (e.g., Jiang and Islam 1999) are another two
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typical empirical models that are developed from Jackson et al. (1997). Both
models require determination of two extreme boundaries, i.e., the hot edge on
which ET equals zeros and the cold edge on which ET occurs at its potential rate.
The actual ET lies within the range of the two extreme conditions and is determined
via a certain interpolation method. Long et al. (2012) derived a theoretical solution
for the two extreme boundaries which provides the triangle and trapezoid models
with a sounder physical basis.
(2) Energy balance model
The energy balance remote sensing ET model estimates other energy components
explicitly and considers latent heat (ET) as the residual within the surface energy
balance equation. Based on different parameterizations of vegetation in the model,
energy balance model can be further classified into single source model and dual
source model. The SEBAL (Bastiaanssen et al. 1998) and SEBS (Su 2002) model
are typical single source energy balance models. SEBAL circumvents the diffi-
culties in estimating true values for aerodynamic temperature (Taero) and air tem-
perature (Ta) at reference height by assuming that the temperature difference (dT)
between Taero and Ta is linearly correlated with land surface temperature (LST). The
relationship between dT and LST is determined by using two “anchor” points
where a value for sensible heat can be reliably estimated based on a prior knowl-
edge of the fluxes over dry land (hot pixel) and wet land (cold pixel). As a result,
successful application of SEBAL also requires an area that is large enough to
encompass both extreme hot and extreme cold conditions. However, the land cover
may become more non-uniform with the increase of study extent and very likely the
required linear assumption in SEBAL is no longer valid. Moreover, visual selection
of hot and cold pixels in SEBAL is usually associated with great subjectivity,
resulting in further uncertainties in the model estimates. Different from SEBAL,
SEBS does not need manual selection of extreme pixels. Instead, it assumes that the
extreme dry and wet conditions theoretically existed within each pixel. Neverthe-
less, this assumption makes the SEBS model very sensitive to meteorological inputs
and thus more suitable for areas with relatively uniform meteorological fields.

Compared with one-source models which simulate bulk ET from the land
surface by primarily using remotely sensed land surface temperature (LST) and
vegetation index (VI) (e.g., Bastiaanssen et al. 1998; Carlson 2007; Long and Singh
2012; Su 2002), the two-source modes have the physics of depicting and simulating
E and T separately over larger areas (e.g., Long and Singh 2012; Mu et al. 2011;
Norman et al. 1995; Yang and Shang 2013), which could be more helpful in
understanding hydrological and biological processes of the terrestrial biosphere.
However, one fundamental difficulty in two source remote sensing ET models is
that two-source approaches require knowledge of surface temperatures of soil and
vegetation canopy, and this information is often unattainable directly from satellite
images because remotely sensed LST is a composite temperature of heterogeneous
surfaces. As a result, various approaches were developed to decompose remotely
sensed LST into temperature components and consequently separately quantify E
and T (e.g., Kustas et al. 2005). In the classic Two-source Energy Balance model
(TSEB, Norman et al. 1995; Kustas and Norman 1997), the Priestley-Taylor (P-T)

1.2 Current Research Status 7



parameterization is adopted to obtain a first estimate of T and canopy temperature
(Priestley and Taylor 1972), and then to calculate E and T in an iterative manner.
A similar idea was adopted by Kustas and Norman (1997) and Anderson et al.
(2005) and others. In addition, van der Keur et al. (2001) implemented remote
sensing data into a dual source SVAT model (i.e., DAISY) and developed remote
sensing-based DAISY model. Moreover, based on trapezoid scheme, Long and
Singh (2012) proposed a dual source trapezoid ET model, which has been suc-
cessfully applied in an agricultural region in central Iowa, USA.
(3) Vegetation index model
Vegetation index model estimates ET from the P-M equation, in which the surface
resistance is expressed as a function of remotely sensed vegetation index. Cleugh
et al. (2007) claimed that traditional energy balance models do not considered the
controlling effect of vegetation on ET. Besides, they found that using the P-M
model coupled with a simple canopy resistance model (a function of vegetation
index) can provide better ET estimates than energy balance model. Based on this,
Cleugh et al. (2007) produced monthly ET maps over Australia at a 1 km spatial
resolution. Leuning et al. (2008) improved the canopy resistance model and tested
the model at 15 flux sites in North America and Australia. Mu et al. (2007, 2011)
further improved the model of Cleugh et al. (2007) and produced a global ET
product based on MODIS data. This ET product has been accepted as the standard
ET product by MODIS community.

1.2.2 Current Issues

Although there have been great progress in ET studies, there are still many issues
that requires further investigation, particularly for ET mechanism and quantification
over non-uniformly vegetation surfaces. Here, we list four types of issues that are
commonly existed and are going to be reached in this dissertation.
(1) The applicability of different ET models
Even though numerous ET models have been developed during past decades,
consensus on model applicability has not been reached yet. Transfer of mass and
energy between the land and the atmosphere is an extremely complex non-linear
problem, and no model is able to explicitly describe every detail within that process.
Rather, models aim to reasonably simplify the entire process and to capture the most
important process that controls ET. For different environmental setting with various
vegetation and soil moisture conditions, the way of simplification in different ET
models can be very different, which results in different model applicability over
different environmental conditions. For example, the P-M model is only applicable
over fully and uniformly vegetated surfaces, and for sparse vegetation, layer model
works better over uniformly vegetated surfaces whereas patch model is more suit-
able for patchy vegetated surfaces (Lhomme and Chehbouni 1999).

In addition, more efforts have been made for quantifying ET in agricultural
ecosystems during previous studies, while quantification of ET in natural
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ecosystems is relatively under-attendant. However, taking China as an example,
agricultural lands occupy only 19 % of the national area, whereas forests and
grasslands account for 24 and 31 % of the total land, respectively (Wang et al.
2001). Therefore, more attention should be paid to ET model applicability in natural
ecosystems in further studies.
(2) Sub-processes of land surface evapotranspiration and their interactions
As stated above, the process of evapotranspiration consists of many sub-processes
that describe the exchange of vapour and energy between the land and the atmo-
sphere. To gain a deeper insight into ET process and to further improve the current
ET models, it is necessary to better understand those sub-processes in terms of their
mechanisms and interactions. For example, how soil water is extracted by plant root
and then moved upwards to leaf surfaces for transpiration? At which depth in the
soil evaporation actually occurs? What the effect of evaporation water loss on plant
root water uptake from the surrounding soil? How much sensible heat from soil
surfaces will be used by plant transpiration? How much intercepted rain water will
be directly absorbed by leaves and to what extent plant transpiration will be pre-
vented by those intercepted water? To answer these questions is an urgently needs
in further ET studies.

One possible way to look at these issues is by Soil-Plant-Atmosphere Continuum
(SPAC) modelling, which considers mass and water transfers through the entire
SPAC system and the interactions among different sub-processes (Cowan 1965;
Philip 1966). The outcome of SPAC modelling is not merely some final estimates
of ET or primary production, but also includes almost every variable that plays a
role in the entire process. This would greatly enhance our understanding of each
sub-process. However, they ability of a SPAC model to represent the reality
depends largely on the model complexity. Nevertheless, the more complex the
model is, the more inputs it may requires, which would limit the model applica-
bility. There is always a trade-off between data requirement, model complexities
and uncertainties, as well as purposes of studies and applications.
(3) Improvement on remote sensing ET models and their application in real water
management
Although there have been more than 40 years of progress in remote sensing ET
models, there is still room for further model improvement. A particular focus should
be made to two source remote sensing ET models, as they have been proved to
outperform the one source models over a wide range of surface conditions.

Besides the improvement of remote sensing ET model itself, a re-look is needed
at remote sensing ET model applications. In previous studies, remote sensing ET
models are more served as a pure research toll; however, they have rarely been
applied in real water management (Yang et al. 2012). Compared with traditional
ground-based ET models, remote sensing-based ET model has its irreplaceable
advantage in producing ET maps over large areas, which is the key to understand
the hydrological cycle and manage water resource (e.g., monitor water consump-
tion) at large spatial scales (e.g., basin scale).

1.2 Current Research Status 9



(4) Exploration of new theories of ET estimation
Up to date, development of ET models still relies on the three basic theories that can
be dated back to 19th century, i.e., the Dolton’s evaporation theory, Monin-
Obukhov similarity theory and energy balance theory. There is an urgent need for
developing new theories that could potentially advance our current understanding
of ET processes. However, this is also the most challenging issue in ET studies.
Nevertheless, there have been numerous attempts on this issue, such as the ther-
modynamic entropy theory (Bobylev et al. 2001), machine learning approach (Yang
et al. 2006; Sudheer et al. 2002) and ecosystem optimality theory (Lei et al. 2008).

1.3 Research Outline

This dissertation work looks at land surface ET estimation, with a special focus on
partially vegetated ecosystems. Firstly, it will discuss the applicability of different
ET models in estimating ET and its partitioning under various vegetation cover
conditions. Based on this, a new dual source ET model that is applicable for
different vegetation cover conditions will be developed. In addition, on one hand,
the developed ET model will be coupled with a soil water/heat dynamic model to
build a SPAC model; on the other hand, this model will be incorporated with
remote sensing to estimate ET at regional scales. Moreover, a new theory of ET
estimation by exploiting the linkage of the carbon and water cycles will be pro-
posed. Finally, the developed remote sensing ET model will be applied to examine
the spatial and temporal patterns of ET and its response to water management in a
large irrigation district in North China (i.e., the Hetao Irrigation District). The
outline of this dissertation is shown in Fig. 1.2 and the main content of each chapter
is given below.

Chapter 2 compares three different two source ET models in estimating potential
ET and its partitioning (i.e., potential evaporation and potential transpiration) over
various vegetation cover conditions. A detailed evaluation is then made in terms of
their advantages and disadvantages.

Chapter 3 develops a hybrid dual source ET model, which is able to simulate ET
under different vegetation cover conditions. The developed model is tested and
compared with three other commonly used ET models in four different ecosystems
(i.e., forest, shrubland, grassland and cropland).

Chapter 4 built a new soil-plant-atmosphere continuum model (HDS-SPAC) by
coupling the hybrid dual source ET model with a soil water/heat transfer model. The
HDS-SPAC model is then tested at two sites, including one agricultural site and one
forest site. For model application in forest site, a simple non-invasive filed experi-
ment to determine and parameterize plant root water uptake model is designed.

Chapter 5 developed a new two source remote sensing ET model (i.e., HTEM)
by coupling the hybrid dual source scheme with a theoretically determined vege-
tation index/land surface temperature trapezoidal space. Data from two agricultural
regions in USA and China are used for model validation.
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Chapter 6 proposes a new theory for ET estimation over vegetated surfaces by
exploiting the linkage between the carbon and water cycles.

Chapter 7 examines the spatial and temporal patterns of ET and its response to
water management in a large irrigation district in North China (i.e., the Hetao
Irrigation District) based on the HTEM model developed in Chap. 5.
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Chapter 2
Comparison of Dual-Source
Evapotranspiration Models in Estimating
Potential Evaporation and Transpiration

2.1 Introduction

Potential evapotranspiration (PET) is defined as the amount of ET that could occur
if a sufficient water source were available, the value of which is a function of
atmospheric conditions and surface vegetation distribution characteristics. How-
ever, traditional empirical PET models, such as the Hargreaves model and Priestley-
Taylor model, only account for the effect of atmospheric demand on PET, whereas
the impact of vegetation on PET is simply ignored. On the other hand, physical-
based PET models, such as the Penman-Monteith model (refer to as the P-M model
hereafter), take vegetation effect on PET into consideration. Nevertheless, the P-M
model treats the land surface as a uniform layer, where the vegetation covers the
land surface fully and uniformly as a “big leaf”. This simplification of vegetation
treatment makes the P-M model unable to distinguish evaporation from soil (E) and
transpiration from canopy (T), and therefore may not be appropriate for use in
partially vegetated areas.

Considering contributions of energy fluxes from different components (soil vs.
vegetation), dual-source ET models have been proposed to more precisely depict
water and heat transfers from sparse or heterogeneous canopies. In particular,
Shuttleworth and Wallace (1985) developed a two layer ET model, in which each
source of water and heat flux is superimposed and coupled. This model is also
referred to as the coupled model. In contrast, Lhomme et al. (1994) suggested that
for surface with low vegetation cover or patchy vegetation, the interaction between
components is generally very weak so that fluxes from each source interact inde-
pendently with each other and directly with the above atmosphere. This type model
is known as the patch model or uncoupled model. By combining the layer model
and the patch model, Guan and Wilson (2009) proposed a hybrid dual source,
which claims to be applicable for a range of vegetated surface.

Besides a general better performance of ET estimation, dual source models are
also capable of distinguishing different processes of E and T. To that end, dual

© Springer-Verlag Berlin Heidelberg 2015
Y. Yang, Evapotranspiration Over Heterogeneous Vegetated Surfaces,
Springer Theses, DOI 10.1007/978-3-662-46173-0_2

15



source models contains a greater application potential for ET estimation and
partitioning, in comparison to empirical ET models and single source ET models
(e.g., P-M model). However, consensus on the applicability of different dual source
ET models has not been achieved yet. The objective of this chapter is to compare
the performance of the three above-mentioned dual source models in estimating
PET and the partitioning between PE and PT. The comprehensive comparison
could provide important implications for developing model for actual ET estimation
at various spatial scales (see Chaps. 3–5).

2.2 Evapotranspiration Models

2.2.1 Penman-Monteith Model

The description of the Penman-Monteith (P-M) model is given in Eq. (2.1), and the
model structure is shown in Fig. 2.1a.

kET ¼ D Rn � Gð Þ þ qCpD=ra
Dþ c½1þ ðrc=raÞ� ð2:1Þ

where λ is the latent heat of vaporization; Rn and G are net radiation and soil heat
flux, respectively (W/m2); Δ is the slope of saturation vapor pressure—temperature
curve (kPa/K), ρ is the air density (kg/m3), Cp is the specific heat of air at constant
pressure (J/(kg K)), D is the vapor pressure deficit (kPa), γ is the psychrometric
constant (kPa/K), ra is aerodynamic resistance (s/m), and rc is bulk surface resis-
tance (s/m).

Fig. 2.1 Structure of the Penman-Monteith model (a); Shuttleworth-Wallace model (b); Two-
Patch model (c); and TVET model (d). The nomenclature used is given in Sect. 2.2 (Yu et al.
2014)
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The aerodynamic resistance determines the transfer of heat and water vapor from
evaporation surface into the air above the canopy, which is calculated from Allen
et al. (1998),

ra ¼
lnðzm�d

zom
þ uMÞ lnðzh�d

zoh
þ uHÞ

k2uðzmÞ ð2:2Þ

where k is von Karman’s constant (=0.41), d is zero plane displacement height (m),
zm and zh are height of wind measurement and humidity measurement, respectively
(m). u(zm) is wind speed at height zm (m/s), zom is the roughness length governing
momentum transfer, and zoh is the roughness length governing heat and vapor
transfer. Both roughness lengths (zom, zoh) and zero plane displacement height
(d) are defined as functions of vegetation height (h), given in Campbell and Norman
(1998). φM and φH represent atmospheric diabatic correction factors for momentum
and heat (or vapor) respectively and can be found in Brutsaert (1982).

The bulk surface resistance is estimated from Jarvis (1976),

rc ¼ 1
2LAI

rST min

f1f2f3f4
ð2:3Þ

where rST_min is the minimum stomatal resistance (s/m). f1, f2 and f3 are factors
accounting for the influence of shortwave radiation, air vapor deficit, and air
temperature on stomatal resistance, respectively, and are estimated following
Noilhan and Planton (1989). Parameter f4 accounts for the influence of root zone
soil moisture on stomatal resistance, which is calculated from

f4ðhÞ ¼
0 h� hW
h�hW
hF�hW

hW\h\hF
1 hF � h

8<
: ð2:4Þ

where θ is the soil water content within the root-zone (cm3/cm3), θF and θW are the
soil water content at the field capacity and wilting point, respectively.

2.2.2 Shuttleworth-Wallace Model

The Shuttleworth-Wallace (S-W) model is a typical two-layer model, which is also
the basis of other multi-layer models. The model structure is shown in Fig. 2.1b. In
the S-W model, ET is calculated from,

kETa ¼ kE þ kT ¼ CsPMs þ CcPMc ð2:5Þ
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where λE is the latent heat from soil and λT is the latent heat from canopy (W/m2).
Subscript s and c represent soil and canopy component, respectively. The expres-
sions of PM and C are given by

PMs ¼
DAþ qCpD� DrsaðA� AsÞ

� �
=ðraa þ rsaÞ

Dþ c 1þ ðrss=ðraa þ rsaÞÞ
� � ð2:6Þ

PMc ¼
DAþ qCpD� DrcaAsÞ

� �
=ðraa þ rcaÞ

Dþ c 1þ rcs=ðraa þ rcaÞ
� � ð2:7Þ

Cc ¼ 1=ð1þ RcRa=RsðRc þ RaÞÞ ð2:8Þ

Cs ¼ 1=ð1þ RsRa=RcðRs þ RaÞÞ ð2:9Þ

Ra ¼ ðDþcÞraa ð2:10Þ

Rs ¼ ðDþcÞrsa þ crss ð2:11Þ

Rc ¼ ðDþcÞrca þ crcs ð2:12Þ

where raa is the aerodynamic resistance between mean canopy surface and the
reference height (s/m); rsa is the aerodynamic resistance between soil surface and
mean canopy surface (s/m); rca is the aerodynamic resistance between mean leaf
surface and mean canopy surface (s/m); rcs is the canopy surface resistance, and rss is
the soil surface resistance (s/m). A and As are the total available energy and the
available energy for the soil component (W/m2), respectively, which can be esti-
mated from

A ¼ Rn � G ð2:13Þ

As ¼ Rn expð�kcLAIÞ � G ð2:14Þ

where kc is the extinction coefficient of radiation attenuation, and is set to be 0.7 for
deciduous broadleaf forests, 0.5 for evergreen needle-leaf forests, and 0.4 for herbs
(Lhomme and Chehbouni 1999; Monsi and Saeki 1953).

The aerodynamic resistance raa and rsa in the S-W model were assumed to change
linearly between those for the surface with full vegetation cover (assumed equal to
LAI = 4) and for bare soil, weighted by leaf area index (Shuttleworth and Wallace
1985),
when 0 < LAI < 4

raa ¼
1
4
LAI � raaðaÞ þ

1
4
ð4� LAIÞ � raað0Þ ð2:15Þ
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rsa ¼
1
4
LAI � rsaðaÞ þ

1
4
ð4� LAIÞ � rsað0Þ ð2:16Þ

when LAI ≥ 4

raa ¼ raaðaÞ ð2:17Þ

rsa ¼ rsaðaÞ ð2:18Þ

where α and 0 in the bracket indicate full vegetation cover and bare soil,
respectively.

Above the fully developed canopy, where the wind speed profile is logarithmic,
the aerodynamic resistance raaðaÞ is calculated using Eq. (2.2). For aerodynamic
resistance within the canopy, rsaðaÞ is obtained by performing an integration of eddy
diffusion coefficient (K) over the height from 0 to d + Zom, i.e.,

rsaðaÞ ¼
Zdþzom

0

dz
KðzÞ ¼

ln z�d
zom

þ uM

k2uðzÞ
h

nðh� dÞ fexp n� exp½nð1� d þ zm
h

Þ�g ð2:19Þ

where n is the extinction coefficient of the eddy diffusion, which is estimated by
linear interpolation between the value for h < 1 m (=2.5) and h > 10 m (=4.25); u(z)
is the wind speed at height z. The eddy diffusion coefficient K(z) is determined by

KðzÞ ¼ k2ðh� dÞuðzÞ
½lnðz� dÞ=zom� exp½�nð1� z=hÞ� ð2:20Þ

For surface without canopy, raað0Þ and rsað0Þ are estimated from the following
equations without the consideration of the zero plane displacement height,

rsað0Þ ¼
ðln h

zom 0 þ uMÞðln h
z0oh

þ uHÞ
k2uðhÞ ð2:21Þ

raað0Þ ¼
ðln zm

zom 0 þ uMÞðln zh
z0oh

þ uHÞ
k2uðzmÞ � rsað0Þ ð2:22Þ

where zom′ and zoh′ are the roughness length of bare surface governing momentum
transfer and heat and vapor transfer (=0.01 m), respectively; u(h) is the wind speed
at canopy height h

uðhÞ ¼ ln½ðh� dÞzom�
½lnðzm � dÞ=zom� uðzmÞ� ð2:23Þ

The intra-canopy aerodynamic resistance rca is calculated from Choudhury and
Monteith (1988),
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rca ¼
n

0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lw
uðhÞ

1
1� e�n=2

s
ð2:24Þ

where lw is the characteristic length of leaf width (m) (Table 2.1).
The canopy surface resistance in the S-W model (rcs ) is similar with the bulk

surface resistance in P-M model (rc). Thus, rcs can be computed from Eqs. (2.3) and
(2.4). The soil surface resistance is computed using an empirical equation given by
Lin and Sun (1983),

rss ¼ 3:5ðhs=h1Þ2:3 þ 33:5 ð2:25Þ

where θ1 is the soil water content within the surface soil layer.

2.2.3 Two-Patch Model

In the two-patch (T-P) model (Fig. 2.1c), both soil and vegetation components are
assumed to receive full radiation loading, and the total flux of latent heat per unit
area is calculated as the mean of fluxes from each component (canopy or soil)
weighted by their relative areas (Lhomme and Chehbouni 1999),

kETa ¼ Fr � kT þ ð1� FrÞ � kE ð2:26Þ

kT ¼ DAþ qCpD=ðraa þ rcaÞ
Dþ c½1þ rcs=ðraa þ rcaÞ�

ð2:27Þ

Table 2.1 Different vegetation cover conditions considered in this study (Yang and Shang 2012)

Cases Description

A (full vegetation) Assuming a full vegetation cover with Fr = 100 %, surface leaf area
index (LAI)a varies between 0.5 and 5, vegetation height of 5 m
and minimum canopy resistance (rsc_min)

b of 170 s m−1

B (partial, uniform
vegetation)

Assuming a leaf area index for simple plant (Lc)
c of 2, Fr varies

from 10 to 100 %. Other vegetation parameters are the same as
case A

C (partial, non-uniform
vegetation)

Assuming a constant surface leaf area index, the degree of
vegetation non-uniformity is reflected through varying vegetation
cover (LAI = Lc × Fr). The lower the Fc is, the higher the
vegetation non-uniformity is. Other vegetation parameters are the
same as case A

aLAI of 0.5–5 represents LAI values over most fully vegetated surfaces
brST_min = 170 s m−1 represents an average rST_min of typical ecosystems [Grassland,
rST_min = 130 s m−1 ; forest, rST_min = 180 s m−1 ; shrubland, rST_min = 210 s m−1 (Korner 1994)]
cSingle plant leaf area index (Lc) ranges typically from 0.5 to 5 for most species. In this study, a
midway of 2 was chosen
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kE ¼ DAþ qCpD=ðraa þ rsaÞ
Dþ c½1þ rss=ðraa þ rsaÞ�

ð2:28Þ

where Fr is the fractional vegetation coverage. The value of Fr can be either
determined by in situ measurements or estimated from remote sensing images
(Table 2.1), in which Fr is calculated from Mu et al. (2011),

Fr ¼ ðEVI� EVIminÞ=ðEVImax � EVIminÞ ð2:29Þ

where EVI is the enhanced vegetation index (Huete et al. 2002); EVImax and EVImin

are the maximum and minimum EVI values, respectively (Mu et al. 2007).
Aerodynamic resistances in the T-P model are similar with those in the S-W

model. However, when calculating λE and λT, the T-P model assumes that tran-
spiration occurs from a closed canopy surface while evaporation happens over bare
soil. As a result, aerodynamic resistances raa and rca in Eq. (2.27) are estimated by
Eqs. (2.2) and (2.23), while those in Eq. (2.28) are computed from Eqs. (2.21) and
(2.22), respectively.

Lhomme and Chehbouni (1999) suggested that for patchy or clumped vegeta-
tion, it is better to use the clumped leaf area index (Lc), which is defined as the LAI
per unit vegetated area (Lc = LAI/Fr). Therefore, the bulk canopy surface resistance
rcs is estimated from

rcs ¼
1
2Lc

rST min

f1f2f3f4
ð2:30Þ

where rST_min, f1, f2, f3, and f4 keep the same meanings as those in P-M and S-W
model.

Soil surface resistance of the T-P model is calculated from Eq. (2.25).

2.2.4 TVET Model

By coupling the layer and patch models, Guan and Wilson (2009) developed a
hybrid dual source model for estimating potential evaporation (PE) and potential
transpiration (PT) partitioning (i.e., the TVET model). The TVET model adopts the
layer approach to allocate available energy between canopy and soil (Eq. 2.14) and
to calculate aerodynamic resistances, and uses the patch approach to partition
energy into latent heat (E or T), sensible heat (H), and ground heat flux (G). The
model structure is given in Fig. 2.1d, and the equations is given below,

kPE ¼
DAs þ ð1� FrÞ qaCpD

raaþrsa

Dþ c
ð2:31Þ
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kPT ¼
DAc þ Fr

qaCpD
raaþrca

Dþ cð1þ rcs
raaþrca

Þ ð2:32Þ

where As and Ac are available energy for soil and canopy, which can be estimated
from Eqs. (2.16) and (2.17), respectively.

The TVET model estimates aerodynamic resistances following the same way as
the S-W model, and calculates surface resistances as that of the T-P model.

2.3 Comparison Setups

Single source model treats the land surface as uniform layer so that it cannot
distinguish evaporation from transpiration. In addition, studies have shown that
single source model does not suitable for ET estimation over partially vegetated
surfaces, on which dual source model performs generally better. In this section, the
three dual source ET models will be compared and evaluated in estimating potential
ET and its partitioning over surfaces with different hypothesized vegetation cover
conditions (Table 2.1).

When evaporating surface is not water-limited, the soil surface resistance is
considered to be negligible (Shuttleworth and Wallace 1985) and the canopy sur-
face resistance equals to the minimum canopy resistance. The meteorological data
is taken from the Linhe Station in the Inner Mongolia during the main growing
season of 2006 (April–October). The site is characterized with a dry and cold
climate, with a mean annual temperature of 6.8 °C and mean annual precipitation of
139 mm.

2.4 Results and Discussion

2.4.1 Surfaces with Full Vegetation Cover (Case A)

Previous studies have shown that the P-M model performs well in estimating
potential evapotranspiration (PET) over fully vegetated surface (e.g., Allen et al.
1998). Thus, PET estimates from the P-M model are considered as reference to
evaluate the performance of the other three dual source models. Results show that
the T-P model performed exactly the same as the P-M model (Fig. 2.2). This is
because that the T-P model shares the same formulation of the P-M model when Fc

equals 1. TVET model also gives similar results as the P-M model, except for a
slightly overestimation of PET by TVET in low LAI end (Fig. 2.2). In comparison,
the S-W model seriously overestimated PET and the difference increases with the
decrease of LAI (Fig. 2.3). Taking LAI = 2 as an example, Fig. 2.3 compares PET
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estimated from the P-M model with that from the three dual source models. It
shows that PET from TVET agrees very well with that from P-M (R2 = 0.998)
whereas the difference between S-W PET and P-M PET appears to be relatively
large (R2 = 0.982).

Further analysis on the results of PE and PT partitioning shows that PT from the
S-W model agrees well with that from the TVET model, whereas the S-W PE is
consistently higher than the TVET PE. This phenomenon suggests the overesti-
mation of PET by the S-W model is very likely due to its overestimation in
potential evaporation (Fig. 2.4). Shuttleworth and Wallace (1985) reported that
when soil surface resistance is large enough, E and T can be considered as two
separate processes such that the S-W model can be simplified to be the P-M model.
However, such extreme large soil surface resistance rarely occurs in realities,

Fig. 2.2 Relationship
between LAI and estimated
PET by different model over
fully vegetated surfaces
(Yang and Shang 2012)

Fig. 2.3 Comparison
between PET from P-M
model and those from the
three dual source models over
fully vegetated surfaces with a
fixed LAI = 2 (Yang and
Shang 2012)
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particularly when the soil surface resistance is taken to be zero for potential ET
estimation in this study. As a result, the S-W model appears to overestimate PE and
therefore PET under low LAI condition. For the T-P model, soil evaporation is
neglected under fully vegetated surfaces, which also obviously deviates from real
conditions. Compared with the S-W and T-P model, the TVET model performed
generally better in estimating PET and the partitioning of PE and PT under full
vegetation cover conditions.

2.4.2 Surfaces with Uniform and Partial Vegetation Cover
(Case B)

The relationship between Fc and PET estimated from the three dual source models
is shown in Fig. 2.5. It shows that PET from the S-W model is obviously higher
than that from the other two models, and the difference shows an increasing trend
with the increase of Fr. Similar with Case A, the overestimation of PET by S-W
model is due to its overestimation in PE (Fig. 2.6). The S-W model treats the soil
surface equally over the whole area and does not distinguish soil evaporation under
and between vegetation canopies, resulting in an increased error in PE estimates as
Fr increased. Combining the fact that the overestimation of PET by S-W model
increases with the decrease of LAI (higher PE/PET ratio) (Fig. 2.2), the results
suggest that PE from the S-W model are more likely close to that from inter-canopy
soil surfaces.

In contrast to the S-W model, the T-P model neglect evaporation from under-
canopy surfaces, resulting in lower PE estimates as Fr increased (Fig. 2.6). In
comparison, PE from the TVET model lies between that from the S-W model

Fig. 2.4 Comparison of PT (a) and PE (b) estimated from the S-W and TVET model under full
vegetation cover condition (LAI = 2) (Yang and Shang 2012)
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Fig. 2.5 Relationship
between Fr and PET
estimated from the three dual
source models (Yang and
Shang 2012)

Fig. 2.6 Relationship
between Fr and PE (a) and
between Fr and PT
(b) estimated from the three
dual source models (Yang and
Shang 2012)
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(overestimated) and the T-P model (underestimated), implying that the results from
the TVET model may be more reasonable.

2.4.3 Surfaces with Non-uniform and Partial Vegetation
Cover (Case C)

When surface leaf area index (LAI) is fixed, the non-uniformity of vegetation
distribution can be reflected by varying fractional vegetation cover (Fr). Our results
show that S-W PT does not vary with the changes on Fr, demonstrating that the
S-W model may not applicable over surfaces with partial and patch vegetation. In
addition, PE from the S-W model does not decrease with the increase of Fr. On the
contrary, it shows a slightly increasing trend as Fr increased. This is because the
increase in Fc would lead to a lower surface albedo and therefore higher available
energy for evapotranspiration (surface albedo is a function of Fr).

For the TVET model, its PT/PE increases/decreases with the increase of Fr,
suggesting that the TVET model is able to capture surface characteristics over a
wide range of vegetation cover conditions. For higher Fr (close to 100 %), results in
Case A have already shown a good performance of the TVET model; for lower Fr

(e.g., 20 %), the TVET PE is very close to that of the S-W model, whereas the
TVET PT is significantly lower than that of the S-W model, indicating that the
TEVT model may depict the reality better than the S-W model.

The relationship between Fr and PE/PT from the T-P model is very similar with
that of the TVET model (Fig. 2.7). Lhomme and Chehbouni (1999) reported that
the T-P model is more suitable for surfaces with low and patchy vegetation cover.
Similar finding was also reported in Blyth and Harding (1995), who found a good
performance of the T-P model over a surface with a ratio of vegetation height to
patch size larger than 0.1. Our results in Fig. 2.7 show that the estimated PE from
the T-P model agrees well with that from the TEVT model under low LAI con-
ditions. However, when LAI is high, the T-P PE decreases towards zero with the
increase of Fr. Similar with Casa B, this is because the T-P model does not account
for soil evaporation from under-canopy surfaces, which results in an increased
underestimation of PE as Fr increased by the T-P model. Moreover, for fixed Fr, PE
from the T-P model does not vary with changes in LAI. This is due to the ignorance
of radiation interception by vegetation canopy in the T-P model. On the other hand,
it assumes that each component (or patch) receives the same radiation load (i.e., full
radiation). In such a case, the amount of radiation received by soil surface is only
determined by fractional vegetation cover but not related with leaf size and density
(as reflected through LAI).
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2.5 Conclusion

Potential evapotranspiration depends greatly on local climate and vegetation dis-
tribution conditions, and is important in studying the cropland and basin hydro-
logical circles. The chapter provides a detailed comparison of the performances
among three dual-source evapotranspiration models, including the S-W model
(layer approach), the T-P model (patch approach) and the TVET model (hybrid
approach), in estimating and partitioning potential evaporation and potential

Fig. 2.7 Variations in PT and PE estimated from the three dual source models with those in LAI
and Fr (Yang and Shang 2012)
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transpiration under different hypothetical vegetation distribution conditions. The
S-W model ignores the difference of energy fluxes between under- and inter-canopy
soil; while the T-P approach assumes a full radiation loading for both the canopy
and inter-canopy soil and ignores the evaporation from under-canopy soil surfaces.
The TVET model is a combination of the layer and patch models, and adopts the
layer approach to partition available energy between canopy and soil and uses the
patch approach to calculate energy fluxes. As a result, both under- and inter-canopy
soil evaporation were estimated and distinguished in the TVET model. In simulation
scenarios, the height of vegetation was assumed to be 5 m with canopy leaf area
index of 2 and minimum stomatal resistance of 170 s/m. The bulk surface leaf area
index (LAI) varied from 0.5 to 5, and fractional vegetation coverage (Fc) varied
from 10 to 100 %. The vegetation clumpy patterns were quantified by fixing LAI
while varying Fc. The climate data was obtained from the Linhe meteorological
station located in an arid region in central Inner Mongolia of North China. The
results indicated that both the patch and hybrid model performed reasonably well in
estimating potential evapotranspiration under homogeneous vegetation distribution
conditions. However, the S-W model tended to overestimate potential evapotrans-
piration, as it generally gave higher potential evaporation estimates. The overesti-
mation in potential evapotranspiration by the S-W model was increased with the
increase of Fr and the decrease of LAI. In contrast, the T-P model had a tendency to
underestimate potential evaporation, especially with high Fc and low LAI. For
heterogeneous vegetation distribution conditions, potential evapotranspiration
estimated from the S-W model was generally higher than that given by the T-P and
TVET model, particularly with low Fr. Potential evaporation (potential transpira-
tion) from the S-W model increases (decreases) with the increase of LAI. However,
both variables from the S-W model did not change with changes of Fr. In contrast,
potential transpiration estimated from the T-P and TVET model was increased with
the increase of both LAI and Fr. Potential evaporation from the T-P model was
increased with the increase of Fr, but kept relative constant under various LAI
conditions, while potential evaporation from the TVET model was increased with
the decrease of both Fc and LAI. The above results suggest that the S-W model may
give reasonable potential transpiration estimates over homogeneous vegetated sur-
faces, while the T-P model is more suitable for surfaces with lower fractional and
clumped vegetation cover. By contrast, the TVET model performs better than both
the S-W model and the T-P model, which can be used to estimate potential evap-
oration and potential transpiration partitioning for a wide range of surfaces with
different vegetation distribution patterns.
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Chapter 3
A Hybrid Dual-Source Model
of Estimating Evapotranspiration
over Different Ecosystems

3.1 Introduction

In Chap. 2, we compared three dual source models in estimating potential ET and
its partitioning under different vegetation cover conditions. The results show that
the hybrid model (i.e., the TVET model) may be more suitable than the layer and
patch model for a broad range of vegetated surfaces. However, the TVET model by
Guan and Wilson (2009) was initially proposed to partition PE and PT for
hydrologic modelling; it does not consider environmental stresses (e.g., soil
moisture) on actual ET. Numerous studies have shown that soil moisture is the
prominent controlling factor of actual ET processes in arid and semiarid regions;
limited soil moisture is responsible largely for the recent decline in global land
surface evapotranspiration (Jung et al. 2010; Seneviratne et al. 2010). The TVET
model is not able to simulate actual E and T processes. Furthermore, soil moisture
conditions could also affect applicability of ET models. Existing studies have
indicated that the P-M model with variable canopy resistance can be directly
applied to estimate ET over sparsely vegetated canopies under different soil
moisture conditions (Ortega-Farias et al. 2004, 2010). Massman (1992) suggested
that the layer and patch approaches can be interchangeably used under the extre-
mely arid environment, as the surface resistance becomes a prominent factor of ET
whereas the interactions between components are relatively small.

The objectives of this study were therefore to (1) develop a hybrid dual-source
(H-D) model to estimate ET processes over four different ecosystems, including
deciduous broadleaf forest, woody savannas, grassland, and cropland, by combin-
ing canopy and soil surface resistances with the original H-D model developed by
Guan and Wilson (2009); (2) evaluate ET estimates from the developed H-D model
with eddy covariance measurements and compare with those from three other ET
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models (the P-M model, the S-W model, and the two-patch (T-P) model). Because
surface conditions (both the vegetation and soil moisture) are the primary factors
that determine applicability of different ET models, it is of great value to compare
different ET models under varying surface conditions.

3.2 Model Development

The H-D model is a mixture of the layer approach and the patch approach (Fig. 2.1d).
It adopts the layer approach to allocate available energy between canopy and soil
(Eqs. 2.13 and 2.14), and to calculate aerodynamic resistances, and uses the patch
approach to partition energy into latent heat (E or T), sensible heat (H), and ground
heat flux (G). The energy balance equations are,

Ac ¼ Fr � ðkT þ HcÞ ð3:1Þ

As ¼ 1� Frð Þ � ðkE þ HsÞ ð3:2Þ

For each component, fluxes of sensible and latent heat are calculated following
the classical Ohm’s law type formulations. To account for environmental stresses
on ET, the canopy and soil surface resistances were incorporated into the original
hybrid dual-source potential ET model of Guan and Wilson (2009),

Hc ¼ qCp
ðtv � tzhÞ
rca þ raa

ð3:3Þ

Hs ¼ qCp
ðts � tzhÞ
rsa þ raa

ð3:4Þ

kT ¼ qCp

c
ev � ezh

rca þ raa þ rcs
ð3:5Þ

kE ¼ qCp

c
es � ezh

rsa þ raa þ rss
ð3:6Þ

where t and e are the air temperature and humidity, respectively. Subscript v rep-
resents the bulk leaf stomata and zh is the reference height where temperature and
humidity are measured.

Assuming that vapor within the leaf stomata is always saturated under tv,
Eq. (3.5) can be rewritten as

kT ¼ qCp

c
esatðtvÞ � ezh
rca þ raa þ rcs

ð3:7Þ
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The term es in Eq. (3.6) represents the equilibrium vapor pressure within the
surface layer of soil, and can be calculated by the thermal equilibrium equation
(Edlefson and Anderson 1943). As a result, Eq. (3.6) is rewritten as

kE ¼ qCp

c
huesatðtsÞ � ezh
rsa þ raa þ rss

ð3:8Þ

where parameter hu is the relative humidity within the surface soil, and is estimated
based on the assumption that water in the liquid and vapor phases are in local
thermodynamic equilibrium (Edlefson and Anderson 1943)

hu ¼ exp
ghs
Rts

� �
ð3:9Þ

where R is the gas constant for water vapor (=461.5 J/(Kg K)); g is the gravitational
acceleration (=9.8 m/s2); hs and ts are the water potential (m) and temperature (K) of
the surface soil, respectively.

The Penman linear relationship (Penman 1948) is employed to convert saturated
vapor pressure at the reference height to that on the surface

esatðtvÞ ¼ esatðtzhÞ þ Dðtv � tzhÞ ð3:10Þ

esatðtsÞ ¼ esatðtzhÞ þ Dðts � tzhÞ ð3:11Þ

Substituting Eqs. (3.1), (3.3), (3.7) and (3.10), and convert fluxes into the total
surface area, the canopy transpiration is calculated as

kT ¼
DAc þ Fr qCp esatðtzhÞ�ezh½ �

raaþrca

Dþ c 1þ rcs
raaþrca

� � ð3:12Þ

Similarly, substituting Eqs. (3.2), (3.4), (3.8) and (3.11), one can get the
expression for estimating soil evaporation,

kE ¼
huDAs þ 1� Frð Þ qCp huesatðtzhÞ�ezh½ �

raaþrsa

Dhu þ c 1þ rss
raaþrsa

� � ð3:13Þ

Aerodynamic resistances (raa , r
c
a and rsa) and soil surface resistance of the H-D

model are calculated using the same equations as those of the S-W model. How-
ever, since the H-D model was originally proposed to estimate latent heat flux from
non-uniform vegetation, the clumped leaf area index is used in the H-D model to
upscale stomatal resistance into bulk canopy surface resistance (rcs ), as given in
Eq. (2.30).

3.2 Model Development 33

http://dx.doi.org/10.1007/978-3-662-46173-0_2


3.3 Data and Model Evaluation Criteria

3.3.1 Study Site and Data

Four sites within the AmeriFlux network were used in this study to validate the
model performance, including one deciduous broadleaf forest site (Morgan Monroe
State Forest, US_MMS) (Oliphant et al. 2011), one woody savannas site (Flagstaff
Managed Forest, US_Fmf) (Sullivan et al. 2008), one grassland site (Vaira Ranch,
US_Var) (Ryu et al. 2008), and one cropland site (Bondville, US_Bo1) (Meyers
and Hollinger 2004). For each site, continuous records of half-hourly meteoro-
logical and latent heat flux measurements from eddy covariance (EC) towers were
obtained from the AmeriFlux Web site (http://ameriflux.ornl.gov/). Ancillary and
biological data include soil moisture and temperature, leaf area index (LAI) and
vegetation height (h) were also acquired. A summary of the sites including loca-
tions, climate conditions, vegetation types, vegetation and soil parameters as well as
study periods is listed in Table 3.1 and soil moisture conditions during the study
period for each site are shown in Fig. 3.1.

Moderate Resolution Imaging Spectroradiometer (MODIS) images were used to
estimate the EVI and then to calculate Fr (Eq. 2.29) for each site due to the lack of
in situ Fr observations. EVI was calculated following the method given by Huete
et al. (2002) using MODIS surface reflectance dataset (MOD09GA) downloaded
from the NASA Data Center (http://reverb.echo.nasa.gov/). The original MODIS
images in the sinusoidal projection were re-projected into the UTM projection and
resampled into 1 km spatial resolution. For days without measurements, the values
of LAI, h and Fr were estimated by linearly interpolating those parameters between
the two bounding observations.

It is worthwhile to mention that although EC measurements have been widely
considered as the ground truth of energy and water exchanges between the land
surface and the atmosphere, studies have shown that ET from EC system suffers
from uncertainties to a certain degree, i.e., the energy balance closure of EC system
generally lies between 80 and 95 % (Wilson et al. 2002). In addition, linear
interpolation of vegetation parameters during days without in situ measurements
would also result in uncertainties. In this study, the EC-observed ET at the four sites
was obtained from the level-4 AmeriFlux dataset, in which rigorous quality control
procedures were made to guaranty the accuracy of EC observations. Thus, ET from
the EC system was regarded as ground truth of actual evapotranspiration to validate
the four models in the following analysis.
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3.3.2 Evaluation of Model Performance

Three statistic metrics recommend by Legates and McCabe (1999) were used to
evaluate the model performance, including the mean absolute error (MAE), the
modified coefficient of efficiency (E1), and the modified index of agreement (d1):

MAE ¼ N�1
XN
i¼1

Oi � Sij j ð3:14Þ

E1 ¼ 1:0�
PN
i¼1

Oi � Sij j
PN
i¼1

Oi � �Oj j
ð3:15Þ

d1 ¼ 1:0�
PN
i¼1

Oi � Sij j
PN
i¼1

Oi � �Oj j þ Si � �Oj jð Þ
ð3:16Þ

Fig. 3.1 Soil moisture time series at four sites examined in this study. a US_MMS; b US_Fmf;
c US_Var; and d US_Bo1. The upper dashed line indicates field capacity and the lower dashed
line indicates the wilting point (Yu et al. 2014)
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where Oi is the observed value, Si is the modeled value, and �o is the mean observed
value. For a perfect model, MAE should be 0, and both E1 and d1 should be 1. A
model performs better if MAE is smaller and E1 and d1 are lager.

In addition, the regressions of model estimated and observed ET with zero
interception were also used to evaluate the model performance, i.e.,

kET estimated ¼ akET observed ð3:17Þ

where λET_model and λET_observed are model-estimated and observed ET,
respectively, and a is the slope of regression. If a model performs well, the a value
should be close to 1.

3.4 Results and Discussion

3.4.1 Model Validation

Performance of the H-D model in simulating ET at a 30-min interval was firstly
validated with observations from the eddy covariance system (Fig. 3.2a–d). Overall,
the estimated ET agreed reasonably well with the ground-based measurements at all
sites, with all fitted lines close to the 1:1 line. The MAE ranged from 16.3 to
38.6 W/m2 (Table 3.2), indicating good performance of the H-D model in all
ecosystems being tested. The highest MAE occurred at the woody savannas site
(Flagstaff Managed Forest, US_Fmf), with E1 and d1 for this site being 0.56 and
0.77, respectively. The lowest MAE appeared at the grassland site (Vaira Ranch,
US_Var), with E1 of 0.72 and d1 of 0.87. For the deciduous broadleaf forest site
(Morgan Monroe State Forest, US_MMS), the MAE was 37.6 W/m2, E1 0.72, and
d1 0.87. The cropland site (Bondville, US_Bo1) had the highest agreement between
the estimated and observed ET, with d1 of 0.89 and E1 of 0.79.

ET has evident diurnal patterns as a result of combined physical (e.g., temper-
ature and radiation diurnal variations) and biological (e.g., stomatal closure) factors.
Generally, the H-D model successfully reproduced these diurnal patterns of ET at
all sites (Fig. 3.3). However, at the US_MMS and US_Fmf sites, the H-D model
slightly underestimated ET in the morning and overestimated ET in the afternoon
(Fig. 3.3a, b). This discrepancy is likely due to a simple canopy interception
algorithm for net radiation used in the model (see Eq. 2.14), which is not able to
reflect the diurnal variation in the sunlight incident direction. In the H-D model,
LAI was used to partition net radiation between soil and canopy (Eq. 2.14).
However, the LAI value used here only corresponds to that when the sun was
directly overhead. As the solar incident angle varies with time, the shadow area and
therefore the “effective” LAI values can vary during the daytime. As a result, the
use of Eq. (2.14) would result in improper radiation partitioning especially when
vegetation is tall [the mean vegetation height in US_MMS and US_Fmf are 27 and
18 m, respectively (Table 3.1)] and the canopy structure is non-uniform. For the
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remaining two sites, the H-D model slightly overestimated ET during the daytime
(Fig. 3.3c, d). The overall good agreement between estimated and observed ET in
different ecosystems indicates the potential of the H-D model to be applicable to a
wide range of vegetated surfaces.

3.4.2 Comparison with Other Models

To further demonstrate the advantages of the H-D model, four models with distinct
treatments on vegetation characterization were compared in Figs. 3.2 and 3.3 and
Table 3.2. It is worthwhile to mention that the same set of parameters (as described
in Table 3.1) was employed by the four models for each site; hence, disagreement
among model performance is mainly caused by differences in model structures
instead of different parameters. Interestingly, all statistics show that ET estimates
from the H-D model show closer agreement with the measurements than those from
three other models at all sites except for the P-M model at the US_Var site, where

Fig. 3.2 Comparisons of actual evapotranspiration (W/m2) estimates from four models to the
eddy covariance measurements over a 30-min period in four different ecosystems. a–d The H-D
model; e–h the S-W model; i–l the T-P model and m–p the P-M model (Yu et al. 2014)
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Table 3.2 Statistic summary of the four models in estimating actual evapotranspiration over
30-min period at four sites

Sites Models �o (W/m2) �s (W/m2) MAE (W/m2) E1 d1 α

US_MMS H-D 115.7 113.5 37.6 0.72 0.87 0.95

S-W 115.7 134.7 48.4 0.62 0.81 0.99

T-P 115.7 126.3 42.9 0.64 0.82 0.98

P-M 115.7 119.2 45.7 0.63 0.82 0.90

US_Fmf H-D 131.5 125.7 38.6 0.56 0.77 0.89

S-W 131.5 142.2 51.4 0.41 0.71 0.99

T-P 131.5 163.1 53.2 0.38 0.72 1.15

P-M 131.5 37.4 99.5 −0.20 0.43 0.20

US_Var H-D 53.6 50.9 16.3 0.72 0.87 0.98

S-W 53.6 76.7 33.8 0.37 0.75 1.40

T-P 53.6 44.7 24.4 0.58 0.81 0.92

P-M 53.6 43.4 15.7 0.73 0.86 0.93

US_Bo1 H-D 117.5 123.6 30.0 0.79 0.89 1.02

S-W 117.5 137.2 34.9 0.71 0.86 1.12

T-P 117.5 137.4 34.8 0.74 0.87 1.13

P-M 117.5 105.9 34.4 0.74 0.86 0.87
�s is the mean estimated value (Yu et al. 2014)

Fig. 3.3 Diurnal patterns of the estimated actual evapotranspiration from the four models and the
measurements at a US_MMS; b US_Fmf; c US_Var; d US_Bo1. Each time series shown is the
mean of three typical clear-sky days (Yu et al. 2014)
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the value of E1 of the P-M model was slightly higher than that of the H-D model
(0.73 vs. 0.72) and the MAE of the P-M model was slightly lower than that of the
H-D model (15.7 vs. 16.3 W/m2) (Table 3.2). The S-W and T-P models had similar
performance at the US_MMS, US_Fmf and US_Bo1 sites, but the S-W model
significantly overestimated ET at the US_Var site (Fig. 3.2g). The P-M model
showed the worst performance in estimating ET among the four models at the
US_MMS and US_Fmf sites. However, it performed best at the US_Var site and
better than the S-W model at the US_Bo1 site.

At the US_MMS site, the four models showed similar performance and corre-
sponded well with measurements (Fig. 3.3a, e, i, m). The MAE ranged from 37.6 to
48.4 W/m2 and the values of E1 were all larger than 0.6 and d1 were all larger than
0.8 (Table 3.2), indicating that all models appear to perform well at this site.

At the US_Fmf site, the P-M model severely underestimated ETa with a slope of
0.20 and E1 of −0.20, suggesting that the use of the P-M model to predict ETa was
even worse than using the mean value of the measurements (Fig. 3.2n and
Table 3.2). This marked underestimation was mainly because of the low Fr value at
the site (around 0.3 during the study period), which failed to meet the assumption of
“big leaf” in the P-M model. In addition, Stannard (1993) reported that the P-M
model would underestimate ET when canopy surface resistance was much greater
than soil surface resistance. During the study period, the average canopy surface
resistance (rcs ) was about 560 s/m, while the average soil surface resistance (rss) was
only 200 s/m at the US_Fmf site. Similar results can also be drawn from Fig. 3.3b,
where the P-M model greatly underestimated ET during the daytime. The perfor-
mance of the three dual-source models is much better than that of the P-M model
(Figs. 3.2b, f, j, n and 3.3b and Table 3.2), which can be ascribed mostly to their
ability to discriminate plant transpiration from soil evaporation. However, the T-P
model overestimated ET by about 24 %, with E1 of 0.38 and d1 of 0.72, and the
S-W model overestimated ET by 8 %, with E1 of 0.41 and d1 of 0.71 (Table 3.2).
The low E1 values of the T-P and S-W models suggest that both models do not
seem to work at the woody savannas site.

For the grassland site (US_Var), where Fr was high and the vegetation distri-
bution was relatively uniform, the performance of the P-M model was largely
improved compared with that at the US_Fmf site (Figs. 3.2c, g, k, o and 3.3c and
Table 3.2). The statistics show that the P-M model performed even better than the
three dual-source models at this site (Table 3.2). The S-W overestimated ET by
about 43 % (the slope was 1.40), which is larger than results in published studies.
Hu et al. (2009) reported that the S-W model generally overestimated ET by
8–15 % at four grassland sites of similar latitude as the US_Var site. The T-P model
also provided acceptable results, with a MAE of 24.4 W/m2, E1 of 0.58, and d1 of
0.81.

The cropland site (US_Bo1) showed the best correlations between estimates and
observations (Table 3.2) for all four models. In the farmland ecosystem where the
soil moisture remains at high levels (e.g., due to irrigation), the P-M model with
various bulk surface resistances was found to be a good predictor for
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evapotranspiration (Figs. 3.2p and 3.3d and Table 3.2). This phenomenon has also
been reported by other studies (Ortega-Farias et al. 2004, 2010; Rana et al.
1997a, b). Figure 3.3d shows that the P-M model slightly underestimates ET during
10:00–14:00, with a MAE of 34.4 W/m2, E1 of 0.74, and d1 of 0.86 for the study
period (Table 3.2). Amongst the dual-source models being tested, the ET estimates
from the S-W and T-P models have almost the same diurnal patterns (Fig. 3.3d) and
similar statistic values (Table 3.2), suggesting that these two models can be inter-
changeably used to estimate ET at the cropland site.

3.4.3 Evapotranspiration Components (E and T) and Its
Vegetation Controls

Differing descriptions of vegetation coverage characteristics are the largest differ-
ence among the four ET models. In order to trace the error of ET estimates and
explore the underlying reasons, variations in daily LAI, Fr, and estimated daily
evaporation (E) and transpiration (T) from the three dual-source models at four sites
are shown in Figs. 3.4, 3.5, 3.6 and 3.7. A summary of mean evaporation, mean
transpiration, and the ratio of E/ET during study periods from each model is given
in Table 3.3. Due to the inability to distinguish E and T, the P-M model was
precluded from the following analysis.

At the US_MMS site where LAI varied markedly and soil moisture remains
relatively constant at a high level (favorable water conditions, Fig. 3.1a) during the
study period, variations in transpiration from the H-D model show an obvious
positive relationship with those in LAI, whereas evaporation is negatively corre-
lated with LAI (Fig. 3.4a, b). Similar relationships were also found for the S-W
model (Fig. 3.4c, d). However, both E and T from the T-P model did not show
obvious variation with changes in LAI. This is because LAI is not used in the T-P
model, while Fr is the only variable used to account for the vegetation controls on E
and T partitioning. During the study period, Fr remained nearly invariant. As a
result, both E and T from the T-P model show dampened variations compared with
those from the H-D and S-W models (Fig. 3.4e, f).

The ratio of E/ET was similar between the H-D and the S-W models (Table 3.3).
However, the S-W model predicted higher values of both E and T compared with
the H-D model. Given the fact that the H-D model accurately estimated the total ET
while the S-W model overestimated it (Figs. 3.2a, e and 3.3a and Table 3.2), it is
plausible that both E and T were overestimated in the S-W model. Similarly, the
E/ET ratio from the T-P model was much higher than that from the H-D model,
suggesting that the T-P model overestimated E and underestimated T at this site
(Table 3.3).

At the US_Fmf site, both LAI and Fr remained generally invariant during the
simulation period. Variations in E and T were therefore controlled primarily by
atmospheric and soil moisture conditions. It is observed that T from the three
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models showed similar trends that appear to increase before *DOY 130 and then
to decrease to a low level between *DOY 140 and *DOY 210. Afterwards, T
started to increase again. This trend corresponds well with that of soil moisture
shown in Fig. 3.2b, suggesting a strong moisture control on plant transpiration at
this site. Although the surface vegetation condition was not the influential factor
controlling seasonal variations in E and T, it does play a key role in partitioning ET
into E and T. Because both the LAI and Fr were small at this site, E accounted for a
larger proportion of total ET (Table 3.3). The ratio of E/ETa was the highest from
the H-D model (82.8 %) and lowest from the S-W model (77.8 %). For the T-P
model, the E/ET ratio was 81.3 %. Combining the results listed in Tables 3.2 and
3.3, it was found that the S-W model overestimated T but the proposed H-D model
underestimated T. In addition, both E and T were significantly overestimated by the
T-P model.

Fig. 3.4 Variations in daily leaf area index (LAI), fractional vegetation coverage (Fr), and
estimated evaporation (λE) (left panel) (a, c and e) and transpiration (λT) (right panel) (b, d and
f) from three dual-source ET models at the US_MMS site (Yu et al. 2014)
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At the US_Var site, LAI showed obvious seasonal variations while Fr remained
invariant. Evaporation from both the H-D and S-W models had similar values
(Table 3.3) and remained relatively constant despite changes in LAI. This is pos-
sibly because that the actual evaporation process at this site was controlled mostly
by the variability in meteorological and soil moisture conditions. During the study
period, atmospheric demand was expected to increase with time, and soil moisture
remained at a high level before *DOY 100 but showed an abrupt decrease
afterwards (Fig. 3.1c), which may somehow offset the increase in atmospheric
demand and result in a relatively unchanged evaporation rate. Such an effect could
also affect the process of transpiration. However, T from the S-W model exhibited a
sharp increase after *DOY 100 despite the reduction in soil moisture (Fig. 3.6d),
resulting in a higher/lower T/E ratio in the S-W model (i.e., E/ET = 45 %). In
contrast, T from the H-D model that shows a more gradual increase with LAI after
*DOY 100 seems to be more reasonable (Fig. 3.6b). The above phenomenon
suggests that the S-W model may respond to changes in LAI/soil moisture more/

Fig. 3.5 Variations in daily leaf area index (LAI), fractional vegetation coverage (Fr), and
estimated evaporation (λE) (left panel) (a, c and e) and transpiration (λT) (right panel) (b, d and
f) from three dual-source ET models at the US_Fmf site (Yu et al. 2014)
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less sensitively than the H-D model does. Considering that the H-D model esti-
mated total ET more precisely while the S-W model considerably overestimated the
total ET (Table 3.2), and both models predicted similar E (Table 3.3), it could be
derived that the S-W model overestimated the T at this site. Studies also reported
that the ratio of E/ET for the grassland with mean growing season LAI of 0.50
(close to 0.52 of the US_Var site) were between 56 and 60 % (Hu et al. 2009),
which lends credibility to our findings at the US_Var site.

As for the T-P model, because the site was completely covered by vegetation,
there was no evaporation occurred during the simulation period (Fig. 3.6e). It is
interesting to note that the negligible E was well compensated by the overestimation
of T due to higher canopy available energy, thereby resulting in comparable total
ETa estimates (Table 3.2). However, because of the obviously erroneous E and T
partitioning, it is not recommended using the T-P model at the site.

Fig. 3.6 Variations in daily leaf area index (LAI), fractional vegetation coverage (Fr), and
estimated evaporation (λE) (left panel) (a, c and e) and transpiration (λT) (right panel) (b, d and
f) from three dual-source ET models at the US_Var site (Yu et al. 2014)
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At the US_Bo1 site, soil moisture remained at a high level (Fig. 3.1d) and both
LAI and Fr changed synchronously during most of the simulation period (Fig. 3.7).
As a result, both E and T estimated by all three models showed similar temporal
patterns. The estimated transpiration was positively correlated with changes in LAI
and Fr, while the evaporation was negatively related with these two variables. In
addition, the three models had similar E/ET ratios, with values ranging from 28.8 to
31.9 % (Table 3.3). However, the S-W and T-P models slightly overestimated T
compared to the H-D model (Table 3.3). This overestimation of transpiration would
likely be as a result of the overestimation in total ET by these two models
(Table 3.2). Nevertheless, the overestimation of the S-W model happened mostly
during the beginning and the end of the simulation period when LAI was generally
low (Fig. 3.7b, d), whereas the overestimation of the T-P model mainly occurred in
the end of the simulation period with low LAI but high Fr values.

Similar results can also be found at three other sites that the S-W model tended
to overestimate T when LAI was low, and therefore overestimated the total ET.

Fig. 3.7 Variations in daily leaf area index (LAI), fractional vegetation coverage (Fr), and
estimated evaporation (λE) (left panel) (a, c and e) and transpiration (λT) (right panel) (b, d and
f) from three-dual source ET models at the US_Bo1 site (Yu et al. 2014)
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Conceptually, this is because the S-W model assumes fluxes from different com-
ponents to be firstly fully coupled and then interact with the above atmosphere.
However, when LAI is low, the interactions between fluxes from different com-
ponents become less intense, which may contradict the assumption of the S-W
model. This discrepancy would be even larger if Fr is also small. Other similar
studies also reported that the S-W model overestimated T under low LAI conditions
(Brenner and Incoll 1997; Guan and Wilson 2009; Hu et al. 2009).

In contrast, the T-P model does not consider LAI. Instead, it uses Fr to partition
available energy and to rescale latent fluxes between components. As a result, the
T-P model provided a relatively high transpiration rate under high Fr conditions
regardless of low LAI values. This phenomenon was not only found at the US_Bo1
site but also at the US_MMS and US_Var sites (Figs. 3.4 and 3.5).

3.4.4 Advantages of the Hybrid Dual-Source Model

Compared with the S-W and T-P models, the estimated E and T from the H-D
model seem more reasonable. Not surprisingly, the H-D model performed best in
estimating total ET (Table 3.2). The H-D model deviates from a layer model in
distinguishing the difference in evaporation from inter-canopy soil and that from
under-canopy soil, and restricting convective transfer contributions to transpiration
only from vegetated fractions. The H-D model is also different from a patch model
in that it allows E from under-canopy soil, and the effect of vegetation on both E
and T is somehow considered. More importantly, both LAI and Fr are adopted in
the H-D model, while the S-W model only uses the LAI and the T-P model only
uses the Fr. It should be emphasized that LAI and Fr are two variables representing
different characteristics of surface vegetation distribution. LAI focuses on the
vertical density and distribution of leaves, whereas Fr explains more on the hori-
zontal development of vegetation canopies. Therefore, both variables showed
strong, but different controls on E and T processes (Figs. 3.4, 3.5, 3.6 and 3.7, see
also Yang and Shang 2013). Although the value of both variables would change
synchronously in some situations [i.e., in the farmland ecosystem, and thus resulted
in similar E and T estimation among three dual-source models (Fig. 3.7)], they
function differently in determining ET processes. Moreover, synchronized changes
in LAI and Fr rarely happen in natural ecosystems.

Table 3.3 Summary of mean evaporation (E, W/m2), mean transpiration (T, W/m2), and the ratio
of E/ET (%) at four sites during study periods (Yu et al. 2014)

Model US_MMS US_Fmf US_Var US_Bo1
E T E/ETa E T E/ETa E T E/ETa E T E/ETa

H-D 26.1 87.4 23.0 104.1 21.6 82.8 29.7 21.9 57.6 37.3 86.3 30.2
S-W 32.4 102.3 24.1 110.7 31.5 77.8 34.5 42.2 45.0 39.5 97.7 28.8
T-P 53.1 73.2 42.0 132.7 30.4 81.3 0 44.7 0 43.8 93.6 31.9
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3.5 Conclusion

In this chapter, a hybrid dual source (H-D) model is developed and applied in four
different ecosystems to estimate actual ET processes. Outputs of the H-D model
were tested against eddy covariance measurements and compared with three other
ET models. The results indicate that:

(1) The H-D model could generate accurate ET estimates in different ecosystems,
with mean absolute errors ranging from 16.3 to 38.6 W/m2, modified coeffi-
cient of efficiency ranging from 0.56 to 0.79, and modified index of agreement
ranging from 0.48 to 0.87;

(2) The H-D model generally gives better ET estimates and E and T partitioning
than the three other models (i.e., MAE = 33.8–51.4 W/m2 for the S-W model,
MAE = 24.4–53.2 W/m2 for the T-P model and MAE = 15.7–99.5 W/m2 for
the P-M model), suggesting that the H-D model appear to be more suited for
ET estimation over surfaces with different vegetation patterns;

(3) The P-M model significantly underestimates ET in the savannas ecosystem
(i.e., MAE = 99.5 W/m2), but generally performs well in other three
ecosystems;

(4) The S-W model tends to overestimate plant transpiration when LAI is low, and
the T-P model tends to overestimate plant transpiration under low LAI but
high Fr conditions.
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Chapter 4
A Hybrid Dual-Source Scheme Based
Soil-Plant-Atmosphere Continuum Model
(HDS-SPAC) for Water and Heat
Dynamics

4.1 Introduction

Soil-plant-atmosphere continuum (SPAC) models are effective tools to describe the
basic processes of coupled mass and energy transfer, which are important for
climatic, hydrologic, ecological and agricultural studies. During the past decade,
various models have been developed to partition available energy at the soil-plant-
atmosphere interface and to simulate mass or energy movement in the soil.
Examples include those developed by Wilson et al. (2003), Lee and Mahrt (2004),
Lei et al. (2008) and Krobel et al. (2010).

A common SPAC model usually includes two parts, the below-ground part (soil)
and the above-ground part. The former mainly focuses on simulations of coupled
water and heat transfer in the soil system, and the latter aims at the total energy
partitioning between latent heat for evaporation and transpiration, sensible heat, and
ground heat flux. However, due to the complexity of above-ground momentum,
energy and water transfer, various surface schemes with different conceptualiza-
tions have been used in different SPAC models. As shown in previous chapters, for
homogeneous surfaces with a dense vegetation cover, a single-source model [e.g.,
the widely used Penman-Monteith model (Monteith 1965)] may be suitable.
However, for surfaces with a heterogeneous canopy cover, a multi-source scheme
provides a more realistic representation of the turbulent and energy exchanges
(Kustas and Norman 1999; Sánchez et al. 2008).

The primary objective of this chapter is to extend the H-D model to a hybrid
dual-source SPAC model (HDS-SPAC) by including subsurface soil heat and water
dynamics. By this way, it is possible to study the mechanisms and interactions
among different sub-processes that constitute the entire land surface process. In
addition, a special focus on plant root water uptake process will be made in this
chapter by designing a simple non-invasive filed-based root water uptake experi-
ment for examining and parameterizing root water uptake models. Furthermore,
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improvements will be made to current root water uptake models and the improved
models will be incorporated into the HDS-SPAC model to simulate water and heat
transfer in a natural forest ecosystem.

4.2 Model Development

The HDS-SPAC model includes five main modules. They are modules for energy
budget, canopy interception, atmospheric turbulence, soil water and heat dynamics,
and root water uptake. The energy budget module calculates the available solar
radiation on the surface, and partitions it between components to estimate sensible
heat, latent heat and ground heat fluxes. The canopy interception module deter-
mines the amount of water occasionally intercepted by the canopy during a rainfall
event. The atmospheric turbulence module calculates aerodynamic and surface
resistances for vapor, heat and momentum transfers. The soil dynamics module
describes the coupled heat and water transport in the soil and related infiltration
processes, and estimates deep percolation. The root water uptake module deter-
mines the spatiotemporal variations of water absorbed by plant roots under different
soil moisture conditions and plant physiology status.

4.2.1 Surface Energy Budget

In HDS-SPAC, the net radiation on the surface is expressed by,

A0 ¼ Rn � Ait ð4:1Þ

where Rn is total net radiation of the surface (W/m2), and Ait is the energy consumed
for the evaporation of intercepted rainfall (W/m2). As a result, A′ is the total net
radiation minus occasional intercepted-water evaporation loss (W/m2). Rn in HDS-
SPAC can be estimated by published empirical method based on various degree of
data availability (Allen et al. 1998).

The surface is divided into two components in HDS-SPAC (Fig. 4.1), vegetation
canopy and soil. Radiation at the surface is thus further allocated to these two
components [As for soil and Ac for canopy (W/m2)], using a layer approach based
on Beer’s law:

As ¼ A0e�kcLAI ð4:2Þ

Ac ¼ A0ð1� e�kcLAIÞ ð4:3Þ

where LAI is bulk surface leaf area index, which is the production of canopy leaf
area index Lc (one-side leaf surface area above unit area of the canopy-covered
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ground surface) and the fractional vegetation coverage Fr of the surface
(LAI = Lc*Fr). kc is the extinction coefficient for net radiation and is fixed at 0.4
following Guan and Wilson (2009).

The available energy for canopy (Ac) and inter-canopy soil (As) are further
partitioned into latent heat, sensible heat and ground heat flux by patch approach. In
the patch approach, each patch acts independently of the other and fluxes of each
component represents an average value per unit area of the component under
consideration (not the whole ground), which means that the average values per unit
ground area should be weighted by the fractional coverage of each component.

Ac ¼ Fr � ðkEc þ HcÞ ð4:4Þ

As � G ¼ ð1� FrÞ � ðkEs þ HsÞ ð4:5Þ

where λ is the latent heat of vaporization; A is the available energy per unit ground
area (W/m2); subscripts s and c stand for inter-canopy soil component and canopy
component, respectively; G is ground heat flux (W/m2); λE is the latent heat flux per
unit component area (W/m2); H is the sensible heat flux per unit component area
(W/m2).

In HDS-SPAC, evaporation from the soil and transpiration from the canopy can
be separately derived similar to that of the Penman and Penman-Monteith equa-
tions). According to Lin and Sun (1983), the soil surface resistance is necessary in

Fig. 4.1 Schematic diagram of energy partition processes and resistance network for HDS-SPAC
[modified from Guan and Wilson (2009)]. The nomenclature used is given in Sect. 4.2
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estimating soil evaporation. As a result, evaporation and transpiration from the total
surface area are

khEci ¼
DAc þ Fr qaCp

rcaþraa
ðesatðTzÞ � ezÞ

Dþ cð1þ rcs
rcaþraa

Þ ð4:6Þ

khEsi ¼
huDðAs � GÞ þ ð1� FrÞ qaCp

rsaþraa
ðhuesatðTzÞ � ezÞ

Dhu þ cð1þ rss
rsaþraa

Þ ð4:7Þ

where a variable enclosed in < > represents the “total surface area” value; ρa is the
air density (kg/m3); Cp is the specific heat of moist air at constant pressure (J/ kg K);
Δ is the slope of the saturated vapor pressure-temperature curve (Pa/K); γ is the
psychrometric constant (≈66Pa/K); esat represents the saturated vapor pressure (Pa);
e (Pa) and T (K) stand for actual vapor pressure and air temperature, respectively;
subscript z refers to the level at the reference height (m); raa is the aerodynamic
resistance between mean canopy height and the reference height (s/m); rsa is the
aerodynamic resistance between soil surface and mean canopy height (s/m); rca is
the aerodynamic resistance between mean leaf surface and mean canopy height
(s/m); rcs is the bulk canopy stomatal resistance; rss is the soil surface evaporation
resistance (s/m). Parameter hu in Eq. (4.7) is calculated based on the assumption
that water in the liquid and vapor phases are in local thermodynamic equilibrium
(Edlefson and Anderson 1943),

hu ¼ expðghs
RTs

Þ ð4:8Þ

where g is the acceleration of gravity (m/s2); R is gas constant for water vapor
(=461.5 J/ kg K); hs (m) and Ts (K) are matric potential and temperature of surface
soil, respectively.

4.2.2 Canopy Interception

During a rainfall event, a fraction of rainfall is intercepted by vegetation canopy.
This amount of water evaporates back to the air at the potential rate from the wet
fraction of the canopy, while the remaining part of canopy transpires. As a result,
the available energy for canopy component is thus partitioned into three parts:
sensible heat, latent heat for transpiration from dry canopy, and latent heat for
evaporation from wet canopy.
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According to Deardorff (1978), the wet fraction of the canopy is defined as

d ¼ ðWr=WmaxÞ2=3 0\d\1 ð4:9Þ

where Wmax means the maximum capacity of interception (mm); Wr is the actual
amount of water intercepted by foliage, which can be expressed as (Noilhan and
Planton 1989),

@Wr

@t
¼ P� Pg � Ew ð4:10Þ

where P is the rainfall intensity above the canopy (mm/s); Pg is the throughfall
intensity (mm/s); Ew represents evaporation of the intercepted rainfall from the wet
fraction (mm/s). In Eq. (4.9), Wmax is given by Noilhan and Planton (1989),

Wmax ¼ 2� 10�4rfLAI ð4:11Þ

where σf is a shielding factor, which is expressed as a function of LAI following
Taconet et al. (1986),

rf ¼ 1� expð�0:4LAIÞ ð4:12Þ

As discussed above, when it rains, transpiration only happens over the dry part
of the canopy. Thus, Eq. (4.6) can be rewritten as

khEci ¼
ð1� dÞ½DAc þ Fr qaCp

rcaþraa
ðesatðTzÞ � ezÞ�

Dþ cð1þ rcs
rcaþraa

Þ þ Dd rcs
rcaþraa

ð4:13Þ

and the evaporation of intercepted rainfall Ew is calculated from

khEwi ¼
d½DAc þ Fr qaCp

rcaþraa
ðesatðTzÞ � ezÞ�

cþ Ddþ Dð1� dÞð rcaþraa
rcaþraaþrcs

Þ ð4:14Þ

4.2.3 Soil Water/Heat Dynamics

The method proposed by Philip and de Vries (1957), and modified by Milly (1982),
is adopted for HDS-SPAC to simulate simultaneous heat and water movement in
the saturated-unsaturated zone. In farmland ecosystems, because the soil water
content is often artificially kept at a high level, it is reasonable to neglect water
vapor movement in the soil (Milly 1984). Likewise, effect of thermally induced
liquid water transport can also be neglected. In addition, Celia and Bouloutas
(1990) reported that numerical solution based on the h-based form of Richards
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equation generally yields large mass balance errors, while using a mixed form of
Richards equation could commendably solve this problem. In HDS-SPAC, heat and
water movement in the soil are described by

@h
@t

¼ @

@z
KðhÞ @h

@z

� �
� @KðhÞ

@z
� Sw ð4:15Þ

CTðhÞ @T
@t

¼ @

@z
KTðhÞ @T

@z

� �
ð4:16Þ

where θ is the soil water content (m3/m3); t is time (s); K(h) is the unsaturated
hydraulic conductivity, which is a function of the soil matric potential h (m/s); Sw is
the root water uptake (1/s) and is described in detail in Sect. 2.5; T is soil tem-
perature in Kelvin (K); CT(θ) is specific heat capacity (J/m3 K) and KT(θ) is soil
thermal conductivity (W/m K). These two soil thermal properties are highly
depended on soil water content. According to de Vries (1963) and Chung and
Horton (1987), they can be calculated from

CTðhÞ ¼ 106 � ½1:925ð1� hsÞ þ 4:184h� ð4:17Þ

KTðhÞ ¼ b1 þ b2 þ b3h
0:5 ð4:18Þ

where b1, b2, b3 are three empirical coefficients depending on the soil type. The
modified VG-M model (Mualem 1976; van Genuchten 1980) is adopted to describe
soil hydraulic properties in the HDS-SPAC model.

4.2.4 Root Water Uptake

A macro-scope root water uptake model, which considers the root water uptake as a
sink term in the root zone soil water continuity equation (averages water uptake
over a large number of root), is adopted in the HDS-SPAC model to simulate water
uptake by plant roots. The basic equation of a macro-scope root water uptake model
is,

S ¼ aðhÞ � Sp ð4:19Þ

where S and Sp are the actual and potential root water uptake rates, respectively.
α(h) is the water stress response function reducing actual root water uptake from the
potential rate, which is a prescribed dimensionless function of root zone soil water
potential h (0 ≤ α(h) ≤ 1).

In the soil-plant-atmosphere continuum, if the change of water storage in the
plant is assumed negligible (Tyree and Yang 1990), root water uptake rate equates
plant transpiration rate. Then, Eq. (4.19) can be rewritten as:
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X
S ¼ T ¼ aðhÞ � PT ð4:20Þ

or

aðhÞ ¼ T=PT ð4:21Þ

where T is actual transpiration, PT is potential transpiration. Feddes and Raats
(2004) reviewed various forms of water stress functions α(h) that have been pro-
posed over years. Among these functions, two of them have been commonly used,
which were proposed respectively by Feddes et al. (1978) and van Genuchten
(1987).

In Feddes model (Fig. 4.2a), the water stress function is defined linearly for three
intervals of soil water potentials of h1, h2, h3 and h4. When soil is wetter than h1
(anaerobiosis point), the plant roots are short of oxygen. Under this condition, the
water uptake is assumed to be zero. When soil is dryer than h4 (wilting point), water
uptake is also assumed to be zero. Water uptake is assumed to be optimal when the
soil water potential is between h2 and h3, while for soil water potential between h1
and h2 (or h3 and h4), water uptake increases (or decreases) linearly with h. h3h and
h3l represent the value of h3 when potential transpiration is high or low,
respectively.

Fig. 4.2 Schematic of the
root water uptake water stress
response function, α(h), as
used by a Feddes et al. (1978)
and b van Genuchten (1987)
(Yang et al. 2013)
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In contrast, the function of van Genuchten is a smooth S-shape function to
account for water stress (Fig. 4.2b). h50 represents the soil water potential at which
the water extraction rate is reduced by 50 % from the potential rate,and p is an
empirical coefficient. Different from Feddes model, the S-shape function does not
consider the reduction in transpiration near saturation. However, this simplification
is considered to be reasonable when saturated or near-saturated conditions occur for
only a short period of time (van Genuchten 1987).

Once the water stress function is determined in the HDS-SPAC model, the rate
of root water uptake at different root layers can be estimated from (Luo et al. 2000)

S ¼ aðhÞRVðzÞR lr
0 aðhÞRVðzÞdz

� T ð4:22Þ

where lr is the depth of root zone (m) and RV is root density at different depth
(m m−3). According to Zhang (1999), we assume that the root density RV (root
length of unit soil volume) of a certain plant is negatively exponential-distributed in
the vertical direction,

q ¼ 1� e�cz ð4:23Þ

RV ¼ RL � c � e�cz ð4:24Þ

where ρ is the proportion of root mass within 0–z soil depth to total root mass; c is a
parameter reflecting plant growing phases (m−1). When cz = 1, ρ = 63 %. Thus, the
inverse of parameter c indicates the soil depth that contains 63 % of the total root
mass. The relation between RL (the root length of unit area) and RV is

RL ¼
Z1
0

RVdz ð4:25Þ

4.2.5 Outline of Calculation Procedure and Numerical
Solution

In the soil dynamic module, the coupled heat and water transport is numerically
solved using a fully implicit finite difference method, with N nodes. Lee and Abriola
(1999) reported that the accuracy of numerical solution is highly depended on time
step as well as vertical discretization. They also summarized that coarse vertical
discretization results in large overestimates and underestimates of near-surface soil
moisture with overestimates predominating. Since the accurate estimates of near-
surface soil moisture are important to correct estimation of soil evaporation and
shallow-root transpiration, the finer vertical resolution is adopted in the present
simulation (i.e., 0.01 m). The applied time step is 15 min, and numerical solution is
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found to be stable in the case studies. To run the model, initial profiles of soil water
content (or soil matrix potential) and temperature are required as well as two
boundary conditions. For the lower boundary condition, the temperature is pre-
scribed, and three options are available for the soil matric potential: (1) prescribed
value (adopted in the current study); (2) specified flux value; (3) gravity flux (free
drainage). The upper boundary condition is determined from the solution of soil
evaporation and ground heat flux in Sects. 2.1 and 2.2. However, when the soil
surface becomes saturated (e.g., after rainfall or irrigation), the upper boundary
condition is automatically changed from prescribed flux to a known potential (h = 0).
Root water uptake is a sink term of Richards equation, and its integral over the whole
root zone was assumed to equal the plant transpiration rate. Because of non-linear
interaction between water and heat transports and the implicit form of the boundary
conditions, iterative calculations for moisture and temperature distributions are
carried out at each time step until convergence on each node is obtained. During
rainfall events, the canopy interception module is triggered and time step can be set
shorter to guarantee the numerical stability for infiltration modeling, until all inter-
cepted water has been evaporated. Moreover, as the time step of the model does not
correspond to the time step of the measured weather data, the latter is interpolated
using published methods between the recorded values (Cong 2003). For simplicity,
plant characteristic parameters and root profiles are set unchanged within 1 day.

4.3 Model Application in Agricultural Ecosystem

4.3.1 Site and Data

The data to test the HDS-SPAC model were collected from a farmland ecosystem
with the crop type of winter wheat. The farmland locates at 116° 40′ E and 39° 47′
in Yongledian Experiment Station, Beijing, with an average elevation of 12 m
above sea-level. The mean annual temperature is 11.5 °C, and annual precipitation
is about 570 mm with most occurring from June to August. Water table in this area
is deeper than 5 m. The soil is sandy loam, with the bulk density of about 1.4 g/cm3.
Soil hydraulic parameters for the station were calibrated in former study (Shang
et al. 2004) (Table 4.1).

Winter wheat (Triticum aestivum L.) is one of the main crops in this region. It
grows in dry seasons from October to early June of the next year. During the soil
frozen period from late November to next February, wheat grows very slowly or
even stops for about 100 days. The growing period from greening (usually early
March) to mature (late May) is the main concern in the following studies. The
Feddes model is used to describe the root water uptake water stress function as
suggested by previous studies (Luo et al. 2000).

In growing season of 1998–1999, experiments were carried out at 24 experiment
plots (coded from A1 to F4). Daily meteorological data including air temperature,
humidity, wind speed, atmospheric pressure, solar radiation and sunshine hours,
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as well as pan evaporation and rainfall were recorded by a weather station at the
experimental site. A neutron probe was used to measure soil water content, and soil
temperature was measured with thermistor. Crop canopy characteristics, such as
crop height, leaf area index, vegetation cover, etc., were also measured. Detailed
description of the experiment can be found in Shang et al. (2004).

In this study, we chose plots A3 and E3 as our target plots; they severally represent
full irrigation of 230 mm and deficit irrigation of 60 mm. Since the maximum root
depth of winter wheat is about 1 m, the upper 1 m soil layer is considered in the
following analysis. Parameters used in the present study are summarized in Table 4.1.

Table 4.1 Parameters used in the present study (Yang et al. 2013)

Parameter/variable Symbol Units Value Source

Fractional vegetation cover
(A3 plot)

Fr % 34.3–93.4 Measured

Fractional vegetation cover
(E3 plot)

Fr % 30.0–90.0 Measured

Leaf area index (A3 plot) LAI m2/
m2

1.7–5.6 Measured

Leaf area index (E3 plot) LAI m2/
m2

1.7–5.2 Measured

Characteristic length of leaf
width

lw m 0.01 Cong (2003)

Maximum stomatal
resistance

rmax s/m 1,700 Cong (2003)

Minimum stomatal resistance rmin s/m 85 Cong (2003)

Plant growing phase
parameter 120, 160,
180 and 230 days after
sowing (12-Feb, 17-Mar,
13-Apr, and 2-June)

c 1/m 0.064, 0.057,
0.029, 0.025

Zhang (1999)

Saturated soil water content θs cm3/
cm3

0.48 Measured

Residual soil water content θr cm3/
cm3

0.01 Measured

Parameter in VG-M model aV 1/m 1.55 Shang et al.
(2004)

nV 1.55 Shang et al.
(2004)

Saturated hydraulic
conductivity

Ks m/s 0.42 × 10−5 Shang et al.
(2004)

Threshold values of soil
matric potential

h1 m −0.3 Luo et al. (2000)

h2 m −1 Site estimate

h3 m −6 Luo et al. (2000)

h4 m −15 Luo et al. (2000)

Empirical coefficients for
Eq. (4.25)

b1, b2,
b3

0.243, 0.393,
1.534

Chung and
Horton (1987)
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4.3.2 Results and Discussion

Simulation was performed in the main growing period of winter wheat, from March
10th to May 30th in 1999. Vegetation coverage in these 3 months increased from
30 % at the beginning to about 93 % in the early May. Since the model is proposed
to represent the effect of surface vegetation characteristics on quantifying evapo-
ration and transpiration, this change in vegetation cover provides a perfect condition
to test the HDS-SPAC performance.

4.3.2.1 Evaporation and Transpiration

Because rainfall was rare in this area during the simulation period (58.3 mm), total
ET was strongly influenced by soil moisture regime as a result of irrigation
scheduling. For A3 plot with full irrigation supply of 230 mm, soil moisture was
always kept at a higher level, the total ET reached 261.9 mm. However, for E3 plot
with the total irrigation amount of only 60 mm, the total ET is only 212.8 mm. The
smaller ET for less irrigation application is mainly caused by higher stomatal
resistance in response to water stress, which has also been reported in previous
studies. Li et al. (2007) reported that soil moisture was the most important envi-
ronmental factor controlling the dynamics of ET. Likewise, Miao et al. (2009)
found that ET appeared to be more sensitive to soil moisture than biological factors
(e.g., LAI, canopy conductance) in a dry year.

As shown in Fig. 4.3a, the simulation results are consistent with other modeling
(Cong 2003; Shang et al. 2004) and experiment studies (Liu et al. 2002; Lei and
Yang 2010) in the same region (North China Plain). Total ET increases almost
linearly with the sum of irrigation and precipitation (I + P), with the coefficient of
determination R2 = 0.891.

However, when the total ET exceeds a critical value, further irrigation would not
obviously increase total ET, and deep percolation will occur. Figure 4.3b shows the
relationship between soil water use and the sum of irrigation and precipitation
(I + P), which can also be expressed linearly (R2 = 0.988). Soil water storage will be
in balance if the I + P is about 260 mm. When I + P is larger than this critical value,
water consumption by ET could be completely supported by irrigation and pre-
cipitation (e.g., plot A3 in the present test). Nevertheless, if the amount of I + P is
small, crop can use a part of soil water in or below the root zone (e.g., plot E3 in the
present test).

Figure 4.4 shows the daily evaporation and transpiration processes and Fig. 4.5
shows the relationship between vegetation characteristics and the ratio of daily
evaporation to daily evapotranspiration (E/ET). With the increase of air temperature
and sunlight hours, total daily evapotranspiration of both plots increase dramatically.
However, this increase is mainly due to the increase of winter wheat transpiration,
while the soil evaporation maintains at lower level with small fluctuations. At the
greening stage with low vegetation cover, wheat transpiration and soil evaporation
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contribute comparably to the total evapotranspiration. After that, vegetation cover
increases quickly, which results in more canopy light interception and less evapo-
ration from inter-canopy soil. In early May when vegetation coverage and leaf area
index reached their maximum values, plant transpiration contributed to more than
90 % of the total ET in the study site. For A3 plot with full irrigation supply, the
simulated ratio E/ET in the simulation period is 19.5 %. This is in consistence with
lysimeter measurements in the North China Plain conducted by Liu et al. (2002),
who found that the E/ET was near 20 % in main growing season of winter wheat
under the ideal soil moisture condition. Although there was no direct measurement
of E or T to test the accuracy of partitioning, the accordance with experimental
studies in the same climate region would enhance our confidence in the performance
of the model. However, the ratio E/ET for E3 plot is 18.1 %. While the continuous
water deficit could exert a great influence on crop growth and hence result in a larger
area of bare soil; the decrease in rate E/ET can possibly be explained by the rapidly
increased soil surface resistance with decreased soil water content.

Fig. 4.3 Relationships between the sum of irrigation and precipitation (I + P) and ET (a) and soil
water use (b). Different symbols represent different measurements or modeling results, (♦) the
HDS-SPAC model, (■) the WheatSPAC model (Cong 2003), and (*) SMHT-SWT model (Shang
et al. 2004) at Yongledian Station in Beijing, (●) weighing lysimeter measurement (Liu et al.
2002) at Luancheng Station in Heibei Province, and (▲) eddy covariance measurement (Lei and
Yang 2010) at Weishan station in Shangdong Province (Yang et al. 2012)
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Back to the introduction part where we pointed out that the hybrid dual source
approach compromises the disadvantages of layer approach and patch approach,
and thus allows HDS-SPAC to simulate heat and water transfer in an ecosystem
with complicated and variegated surface characteristics (e.g., strong vegetation
coverage change with time, or strong spatial gradient in vegetation density). From
the radiation balance point of view, Eqs. (4.2) and (4.3) based on Beer’s law allow
evaporation from both inter-canopy soil and under-canopy soil. This is physically
true, because radiation from different directions throughout the day is impossible to
be intercepted by patchy canopy absolutely (Guan and Wilson 2009). Besides,
Breshears and Ludwig (2009) found that inter-canopy substrate hardly receives full
radiation loading even on surfaces with highly clumped vegetation. Although the
amount of radiation received by inter-canopy soil may be different from that of
under-canopy soil, the lump calculation is a good approximation, at least better than
a normal patch approach where under-canopy evaporation is simply neglected.

Incorporating both bulk surface leaf area index LAI and fractional vegetation
cover Fr allows the hybrid dual source approach to represent more vegetation
characteristics than either the layer or the patch approach, while only LAI is

Fig. 4.4 Daily evaporation
(E), transpiration (T) and
evapotranspiration (ET)
processes during simulation
period for plots A3 (a) and E3
(b) (Yang et al. 2013)
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considered in the layer approach and only Fr in the patch approach. Both Fr and
LAI are important factors in evaporation and transpiration partitioning, because
both factors show strong correlation with E/ET but in different forms (Fig. 4.5).
Although changes of Fr and LAI may be synchronized in some cases, it is not
always the truth for all vegetated surfaces (e.g., highly clumpy vegetation). The
combination of LAI and Fr could further reflect the clumpy degree of vegetation
and is thus more adaptable to a surface with patchy vegetation patterns. Figure 4.6
compares PT and PE estimated from the hybrid approach with those from the layer
approach for hypothetical vegetation covers [similar comparison can be found in
Guan and Wilson (2009)]. The LAI is fixed at 1 and Fr varies from 0 to 1, which
result in varying vegetation clumpy patterns. The results of the layer approach show
that this approach gives similar PE and PT under different vegetation coverages.
However, the hybrid approach estimates show that PT increases with Fr and PE
decreases with Fr, which may capture the actual situation more appropriately than
the layer approach. Mathematically, this is because Fr is included in the hybrid
approach for routing vapor and heat fluxes. In the present test, the strong correlation
between Fr and E/ET (Fig. 4.5a) could further support the conclusion that the
hybrid approach can be applied to a wide range of surfaces with different vegetation
coverages.

Fig. 4.5 Relationships
between the ratio E/ET and
two vegetation characteristics:
a fractional vegetation cover
(Fr), b bulk leaf area index
(LAI), for both plots (Yang
et al. 2013)
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4.3.2.2 Canopy Interception

The total rainfall interception during the simulation period is 7.57 mm for A3 plot
and 7.03 mm for E3 plot, which account for 13 and 12.1 % of the total rainfall
amount (58.3 mm), respectively. The maximum capacities of daily interception for
winter wheat are 1.01 mm for A3 plot and 0.91 mm for E3 plot, which are in
consistence with the field studies by Kang et al. (2005), who reported that the
maximum value of winter wheat canopy interception was less than 1.0 mm.
However, this value differs greatly in different studies, from 0.2 mm (Hough and
Jones 1997) to more than 10 mm (Du et al. 2001). Kang et al. (2005) reported that
canopy interception is affected by many factors, such as leaf area index, plant
height, drop diameter, rainfall intensity and wind speed. Nevertheless, LAI and
rainfall intensity are the only two controlling factors in the HDS-SPAC model.
Since an increasing number of studies (Kang et al. 2005; Tolk et al. 1995) sug-
gested that the canopy interception might be an important factor influencing field
microclimate, a more realistic model is expected to better understand canopy
interception and its influence on field microclimate.

4.3.2.3 Soil Water Content

Soil water balance in the upper 1 m soil layer was simulated, and these results will
be compared with observed values in the following analysis.

As an example, Fig. 4.7 shows the simulated and observed soil water storages in
0–1 m soil layer for two different irrigation schedules. In general, agreements
between measured and simulated soil water storage are good for both the full

Fig. 4.6 Comparison of
estimated PE and PT from the
hybrid approach (TVET) and
the layer approach (SW).
[adopted from Guan and
Wilson (2009) with
permission]

4.3 Model Application in Agricultural Ecosystem 63



irrigation plot (A3) and the deficit irrigation plot (E3). Soil water content in the root
zone follows dynamics of surface hydrological processes and development stages
of crops. Although over half of simulated results are greater than measured values,
the root-mean-square error (RMSE) for these two plots are 9.51 and 16.41 mm,
which equal 3.4 and 7.5 % of the average water storage in 0–1 m soil layer,
respectively. Comparisons between simulated and observed soil water content at
different soil depths are also illustrated (Fig. 4.8). Soil moisture varies rapidly in
upper soil layer but more gradually in lower layers. The simulated results showed
an acceptable fit to the measured values for most soil layers except the topmost one.
It may be caused by the impact of the air-soil interface on the neutron-probe
reading. Besides, the topmost layer is the most vulnerable layer affected by human
activities, which can result in considerable changes on soil physical characteristics.
In addition, although the total amount of root water uptake is determined by
transpiration, different root distributions pattern may still result in different shapes
of soil water profile. Wells and Eissenstadt (2003) found that water uptake primarily
occurs in young and unsuberized roots, and that the radial hydraulic conductivity of
these young roots is 10–100 times higher than that of older roots, which is not
considered in the present model. Moreover, the lower boundary condition of soil
water dynamics is linearly interpolated between limited measurements with slight
modifications. This simple treatment may also lead to some errors in numerical

Fig. 4.7 Comparison between simulated and measured soil water storage in 0–1 m soil layer of
A3 plot (a) and E3 plot (b) (Yang et al. 2013)
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solutions. All these factors should be among further efforts to improve the model.
Nevertheless, the largest RMSE is 0.048 cm3/cm3, which indicates that the biggest
discrepancy between simulated and observed soil water content is only 17.5 %.

Fig. 4.8 Comparisons between simulated and measured soil water contents at 10 cm (a), 20 cm
(b), 40 cm (c) and 80 cm (d) soil depth for full irrigation (A3, left) and deficit irrigation (E3, right).
RMSE indicates the root-mean-square error (cm3 cm−3) (Yang et al. 2013)
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Considering the uncertainty of neutron-probe measurement [±0.015 cm3/cm3

(Haverkamp et al. 1984)], the results of HDS-SPAC model are satisfactory.

4.3.2.4 Soil Temperature

Comparisons between simulated and observed soil temperature processes at dif-
ferent layers are shown in Fig. 4.9. In general, the simulated results agree well with
the observed ones, and the largest RMSE are 1.56 and 1.45 °C for A3 and E3 plots,
respectively. Considering the great variation of air temperature within a day and
errors in temperature measurements, these disagreements are acceptable. Notably,
the largest RMSE for both plots occurred in the top soil layer. Similar reasons for
the discrepancy in modeling soil moisture at the top layer could possibly account
for the difference found between measured and simulated soil temperatures, because
the simulated water and heat transfer are highly coupled. In addition, all compar-
isons used the soil temperature at 8:00 in the morning, when surface temperature
raised quickly. Thus, any small difference between the observation time (around
8:00 am) and the simulation time (8:00 am) will result in discrepancy between
observed and simulated surface soil temperatures.

4.4 Model Application in Natural Forest Ecosystem

4.4.1 Site and Data

For model application in natural forest ecosystem, we selected a natural grove on
the campus of Flinders University (138.572°E and 35.039°S). The site was on a
south facing slope of 4 % (Fig. 4.10). It is characterized with a Mediterranean type
climate, with a mean annual rainfall of 650 mm and mean annual temperature of
17.1 °C. The surface is covered by lawn with sparse trees. Data collected was
conducted from 28th February to 18th May of 2011.

Drooping sheoak (Allocasuarina verticillata) was the main species in the site
and is also an important native species in South Australia, which provides unique
habitats for some valuable animals. Two trees (1.5 m apart) were chosen to conduct
the experiment, their physiological characteristics are listed in Table 4.2.

Measurement of stem water potential: Thermocouple stem psychrometers
(PSY, ICT International Pty Ltd., Australia) developed by Dixon and Tyree (1984),
were used to measure stem water potential at a 15-min interval. The stem psy-
chrometer is attached to the stem using a clamp to hold it in the position and is
powered by either a 5 V battery or a 12 V solar panel. The measurement range of
PSY is from −0.01 to −10 MPa, with an accuracy of ±0.01 MPa and a resolution of
0.002 MPa.
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Fig. 4.9 Comparisons between simulated and measured soil temperature processes at 10 cm (a),
20 cm (b), 40 cm (c) and 60 cm (d) soil depth for full irrigation (A3, left) and deficit irrigation (E3,
right). RMSE indicates root-mean-square error (°C) (Yang et al. 2013)
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Measurement of sap flow: Heat-pulse sap flow sensors (SP, Tranzflo NZ Ltd.,
New Zealand) based on the compensation method proposed by Marshall (1958)
were used to monitor sap flow at a 30-min interval. For each tree, two sets of sap
flow probes were installed on the sunny and shade sides of the trunk, at a height of
0.7 m above ground. Each set comprises one heat pulse release probe (heater) and
two temperature measurement probes (each one has 3 temperature sensors) situated
5 mm upstream and 10 mm downstream from the heater. The probe sets and data
logger (Model CR1000, Campbell Scientific Inc., Utah, USA) were powered by one
12 V battery.

Following Green (2009), sapflows were corrected for the effects of wounds,
sapwood area, radial variability, and sapwood water content, and were converted to
transpiration based on the relationship between sapwood area and canopy projec-
tion area

T ¼ VsAsapwood

Acanopy
ð4:26Þ

where Vs is the sap velocity, Asapwood and Acanopy are sapwood area and canopy
projection area, respectively. The values in a 24-h period were summed to give a
daily transpiration rate.

Fig. 4.10 Location of the study site and the experimental setup showing two trees are being
monitored with stem psychrometers and sap flow meters (tree 1 on the right; tree 2 on the left)
(Yang et al. 2013)

Table 4.2 Selected characteristics of both trees in the experiment

Height (m) Diameter at breast (m) Canopy area (m2) LAI

Tree 1 6 0.15 21.7 1.3

Tree 2 6 0.13 14.5 1.1

Tree 1 is on the right, and tree 2 is on the left in Fig. 4.10 (Yang et al. 2013)
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Other measurements: Micrometeorological data, including global radiation, air
temperature, relative humidity, rainfall and wind speed, were measured with a
standard automatic weather station located about 150 m from the experimental site.
Leaf area index (LAI) was measured using a hemispherical photography method
(Zhang et al. 2005), with a high-resolution digital camera and hemispherical
(fisheye) lens to capture the canopy image (Table 4.2).

4.4.2 Determination of the Stress Function for Root Water
Uptake

Because this is the first study on the root water uptake of drooping sheoak, there
have been no previous suggestions on the type and parameters for the water stress
function of drooping sheoak. To appropriately choose and parameterize a water
stress function is of importance in modeling root water uptake (transpiration) and
soil water flow, because in most cases, plants suffer a certain degree of water stress.
Under such conditions, plant roots cannot uptake water from the surrounding soil at
the potential rate defined by the atmospheric demand. The dependence of root water
uptake on soil water availability is quantified by the water stress function for
modeling purpose.

Unfortunately, water stress functions are generally very difficult to determine
experimentally. Few studies have addressed this difficulty because of the following
reasons. (1) The water stress function is a hydrological expression of the plant
physiological characteristics. Very likely, it varies from species to species, and thus
need to be determined separately (van Dam and Feddes 2000). (2) Simultaneous
measurements of root zone soil water conditions and plant water uptake are
required to examine the water stress function. However, measuring soil water
condition representing the whole root zone is not an easy task. A common way is to
use buried sensors, such as Time-Domain Reflectometry (TDR), which is difficult
to capture water condition of the whole root zone. For instance, the root system of a
mature apple tree, in an arbitrary 2D profile of 3 m2, occupies an area of 1 m2

(Gong et al. 2006), while measurements with TDR cover only 10 cm2 (Knight et al.
1995). Due to spatial variability of soil water condition, using a limited number of
measurements is difficult to represent the whole root zone condition, especially for
plants with a complex root system. (3) Burying soil moisture sensors may disturb
soil structures and damage plant roots, which will affect root water uptake per-
formance. The above listed difficulties may explain why most reported root water
uptake experiments (e.g., Fujimaki et al. 2008) are conducted in laboratory. In these
experiments, plants are growing in a limited soil column, which may not represent
the natural conditions, especially for large trees.

As a result, the water stress function is often calibrated with the root-zone
hydrological model (e.g., Guan et al. 2006). The uncertainty from estimation of
vegetation function (water stress function) and of soil hydraulic properties is mixed,
which increases the possibility of non-unique solutions.
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In this study, rather than based on calibration of root-zone hydrological model,
we designed a simple non-invasive field-based experiment to determine and
parameterize water stress function. Studies (Richie and Hinckley 1975; Hinckley
et al. 1978) have shown that before sunrise, water potential along the soil-plant
continuum is in equilibrium with each other. Similarly, Richter (1997) found that
the predawn plant water potential equates the “wettest” soil water potential accessed
by roots. Meanwhile, studies (Jarvis 1989; Lai and Katul 2000) show that the plant
roots have ability to adjust their uptake performance. Water uptake reduced in the
stressed part of the root zone will be partially compensated by an increased uptake
from the wetter part. Therefore, it is reasonable to assume that the predawn stem
water potential (SWP) is a good surrogate for the root zone soil water potential to be
used for examining the water stress function for root water uptake.

By measuring and estimating the stem water potential, plant actual transpiration
and potential transpiration, we are able to examine and parameterize the water stress
function. The water stress functions are fitted with observed data based on the least
square criteria, and the F-statistics is used to test the significance of the correlation
coefficients (Myers 1990).

Potential and actual transpiration: Potential transpiration (PT) calculated from
TVET, and actual transpiration (T) based on sap flow measurements, for the whole
experimental period is shown in Fig. 4.11. Transpiration rates of both trees are
similar. For most time, except for the raining days, they are far below the potential
transpiration rates, suggesting that both trees are under water stress for root water-
uptake process.

Stem water potential: Fig. 4.12 gives an example of SWP measurements. Each
day, SWP reaches its maximum value around 6:00 am (local standard time). Similar
phenomenon is reported by Ritchie and Hinckley (1975). After sunrise, SWP
decreases quickly with an increase of transpiration rate, and comes to its minimal
value at around 2:00 pm. Then, it goes up quickly until sunset. After sunset, SWP
increases gradually until the water potential within soil-plant system becomes equi-
librium. In the following analysis, daily predawn SWP is selected from the continuous
output of stempsychrometers around 6:00 amevery day, and daily root zone soil water

Fig. 4.11 Daily PT, actual
transpiration (T) for both trees
and precipitation during the
experimental period (Yang
et al. 2013)
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potential is calculated by averaging predawn SWPof a day and the next day to account
for the slightly change in root zone soil water potential within 1 day.

For the whole week, there was not a rainfall event. The predawn SWP shows a
decreased trend (Fig. 4.12), indicating that the root zone became drier and drier
mainly due to evapotranspiration. This supports that the predawn SWP reflects the
changes of root-zone soil water condition.

Figure 4.13 shows the changes of predawn SWP during the experimental period.
Both trees show a good consistence, and stem water potential responses sensitively
to the rainfall events. In the dry intervals between rainfall events, predawn SWP
decreases primarily due to root zone water loss through evapotranspiration. This
trend agrees well with the experimental and modeling studies of root zone soil
water dynamics (e.g., Shang et al. 2004). In the following analysis, all data, except
for those of rainy days, are used to examine and parameterize the water stress
function (50 days in total). This is because a relative humidity of near 100 % occurs
during rainy days, which precludes transpiration from the canopy (Granier 1987).

Parameterization of water stress function: Fig. 4.14 shows the relationship
between predawn stem water potential and T/PT based on the field measurements.
The data clouds of both trees are similar. Based on visual observation, they are
different from the Feddes model piecewise linear shape, but more close to the
S-shape model form. Thus the S-shape function is chosen for further analysis.

Fig. 4.12 Example of SWP
measurements (tree 2, 1–7
March 2011) (Yang et al.
2013)

Fig. 4.13 Daily predawn
SWP and precipitation for
both trees during the
experimental period (Yang
et al. 2013)
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The S-shape model fits the observation data fairly well (Fig. 4.15), with a
coefficient of determination (R2) of 0.74 (n = 100, significance level < 0.01). Two
parameters are −0.52 MPa for h50 and 1.04 for p, respectively. However, some data
points (within the oval) greatly deviate from the fitted curve. This suggests that
some factors, other than the soil water condition, also influence the root water-
uptake. In a coupled soil-plant-atmosphere continuum model, these factors, such as
vapor pressure deficit, solar radiation, and air temperature, are considered to cal-
culate their stress effect (e.g., a Jarvis-type function). For a de-coupled model

Fig. 4.14 Relationship
between of root water uptake
fraction (T/PT) against
predawn SWP (Yang et al.
2013)

Fig. 4.15 Fitting result of the
S-shape root water uptake
function (Yang et al. 2013)
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discussed in this paper, these factors are often not considered. Nevertheless, it is
possible to lump these factors into the potential transpiration term, and incorporate
it into the water stress function.

Similar idea can be found in Feddes et al. (1978) that plants in a day with a larger
potential transpiration rate suffers a bigger water stress than in a day with a smaller
potential transpiration rate, even if the soil water conditions are similar. This
additional water stress is not due to a scant water supply, but a high atmospheric
demand.

To examine the effect of potential transpiration on water stress function, the
ratios of the measured water stress over the estimated water stress from the fitted
curve against PT are plotted in Fig. 4.16. The points show a linear trend with an R2

of 0.45 (n = 100, significance level < 0.01). This supports that the discrepancy
between measurements and fitted curve in Fig. 4.15 is at least partially caused by
different atmospheric demands.

In order to incorporate the effect of potential transpiration to the water stress
function, it is assumed that the uptake water stress α is a function of both root-zone
soil water potential and potential transpiration, i.e.,

aðh;PTÞ ¼ f ðhÞ � gðPTÞ ð4:27Þ

where f is a S-shape function of root zone soil water potential, and g is a function of
potential transpiration. Based on Fig. 4.16, where the ratio of α(h, PT) to α(h) is
linearly correlated with PT, we assume that g is a linear function. Then the water
stress function is expressed as,

Fig. 4.16 Relationship
between the ratio of observed
water stress to that estimated
with the fitted S-shape
function and PT (Yang et al.
2013)
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aðh;PTÞ ¼ 1
1þ ð h

h50
Þp � ðaPT þ bÞ ð4:28Þ

where a and b are two parameters of the linear function. While the measured α
value already includes the influences of both soil water condition and potential
transpiration, it is difficult to parameterize f(h) and g(PT) separately using the
observed α. Here, we use Matlab “surface fitting tool” to fit Eq. (4.28) with the data.

The fitting result of Eq. (4.28) is shown in Fig. 4.17, and four parameters are
−0.49 MPa, 0.91, −0.084 (day/mm) and 1.25 for h50, p, a and b, respectively. The
coefficient of determination (R2) of the fitted function is 0.85 (n = 100, significance
level < 0.01), which means that the new water stress function with PT correction fits
the data better than the sole S-Shape model. Besides, we find that the influence of
potential transpiration on the water stress can be expressed as a linear function. This
is in agreement with the potential transpiration dependent parameterization for the
Feddes model in HYDRUS (Šimunek et al. 2005), in which two threshold soil
water potentials (parameter h3) are prescribed for two threshold potential transpi-
ration rates. One is used for the high PT condition and the other applies for the low
PT condition (Fig. 4.2a). A linear interpolation applies to estimate h3 between the
two threshold conditions. Our result indicates that the S-shape model used in
HYDRUS can be improved to incorporate the PT effect. Including the PT effect in
the water stress function is a compensation of the de-coupled approach, to include
the micrometeorological effect on stomatal controls for transpiration.

As the result, the derived root water uptake model for the drooping sheoak is

T ¼ aðh;PTÞ � PT ¼ 1

1þ ð h
0:49Þ0:91

� ð�0:084PT þ 1:25Þ � PT ð4:29Þ

Fig. 4.17 Fitting result of
water stress function with PT
correction, based on
Eq. (4.28) (Yang et al. 2013)
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It should be noted that, because the data set is short (less than 3 months), the
calibrated results have some uncertainties. Although the experimental period covers
both a dry season (February–March) and a wet season (April–May), and measured
predawn SWP covers the normal range of root zone soil water potential for most
species (0 to −1.5 MPa) (e.g., Taylor and Ashcroft 1972), for the future work, it is
always better to examine and parameterize the model based on a longer data set.
Nonetheless, this study demonstrates a simple field-based experimental method
useful to determine vegetation root water uptake functions.

The root distribution along the soil profile is described by using a power function
model, in which the ratio of root length between layer i and layer i + 1 to the total
root length is expressed as (Li et al. 2001),

RVi¼ ln½ð1þe�bZiÞ=ð1þ e�bZiþ1Þ� þ 0:5ðe�bZi � e�bZiþ1Þ
ln½2=ð1þ e�blrÞ� þ 0:5 ð1� e�blrÞ ð4:30Þ

b ¼ 24:66RV10
1:59

lr
ð4:31Þ

where lr is root zone depth (taken to be 1 m); RV10 represents the proportion of
roots within the upper 10 % soil layer, and is set to be 35 % according to previous
studies.

Finally, by introducing Eqs. (4.30) and (4.31) into Eq. (4.22), one could get the
root water uptake model for drooping sheoak.

4.4.3 Results and Discussion

To test the HDS-SPAC model performance in this site, we recalibrated the root
water uptake model by using the Tree 1 data only (Eq. 4.32) and used the data from
tree 2 to test the model (Table 4.3).

aðh;PTÞ ¼ 1

1þ ð h
0:44Þ0:81

� ð�0:077PT þ 1:26Þ ð4:32Þ

Comparison between estimated and observed soil water potential and between
estimated and observed plant transpiration for tree 1 (water stress function was
calibrated with Tree 1 data) are shown in Figs. 4.18 and 4.19, respectively.

Table 4.3 Soil water dynamic parameters during the simulation (Yang et al. 2013)

Parameter α (m−1) n Ks (m day−1) θs (cm
3 cm−3) θr (cm

3 cm−3)

Value 1.5 1.4 0.41 0.46 0.1
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The results show that using the S-shape function after PT correction gave better soil
water potential and plant transpiration estimates than using the original S-shape
function. As a result, we only considered the corrected S-shape function in model
validation on Tree 2 (Figs. 4.20 and 4.21). The results show a reasonable good
agreement between estimates and observations in terms of both soil water potential
and plant transpiration. The above results suggest that (1) the HDS-SPAC model
can be well applied in nature forest ecosystem and (2) it is important to consider the
effect of PT in modelling root water uptake.

Fig. 4.18 Comparison between observed and estimate soil water potential for Tree 1. a Original
S-shape model, b S-shape model after PT correction

Fig. 4.19 Comparison between observed and estimate plant transpiration for Tree 1. a Original S-
shape model, b S-shape model after PT correction
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4.5 Conclusion

In this chapter, a unidirectional soil-plant-atmosphere continuum model based on
the hybrid dual-source approach for estimating actual evaporation and transpiration
has been developed and applied in an agricultural ecosystem and a natural forest
ecosystem, respectively. In addition, this chapter presents a new experimental
method for direct water stress function testing and parameterization. The results
show that:

(1) The HDS-SPAC model is able to correctly simulate soil moisture/temperature
profiles and evapotranspiration, and capture effects of surface vegetation
characteristics on quantifying actual evaporation and transpiration.

Fig. 4.20 Comparison
between observed and
estimate soil water potential
for Tree 2

Fig. 4.21 Comparison
between observed and
estimate plant transpiration
for Tree 2
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(2) The designed experimental method is capable in examining and parameterizing
water stress functions, and the S-shape function is better than the Feddes
function to fit for the data of drooping sheoak;

(3) The root water uptake water stress function is not only dependent of the soil
moisture condition, but also of the atmospheric demand. After incorporating
atmospheric demand into the S-shape water stress function, the performance of
the HDS-SPAC model is improved.
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Chapter 5
A Hybrid Dual-Source Scheme
and Trapezoid Framework Based
Evapotranspiration Model (HTEM)
Using Satellite Images

5.1 Introduction

Remote estimation of land surface evapotranspiration from satellite imagery is
probably the only effective way to obtain detailed spatial and temporal ET patterns
for large scales. After Brown and Rosenberg (1973) first used thermal remote
sensing to retrieval surface fluxes, methods (or models) to quantify ET based on
remote sensing developed rapidly (Bastiaanssen et al. 1998; Yan et al. 2012; Jiang
and Islam 1999; Kustas and Norman 1997; Moran et al. 1994; Mu et al. 2011;
Norman et al. 1995; Sánchez et al. 2008; Su 2002; Yang et al. 2012b). Among the
various models that have been proposed, two-source models, which treat soil and
vegetation as independent sources of the moisture flux, are generally considered to
be an advancement of single-source models. Single-source models represent the
surface as a single uniform layer and, therefore, may produce significant errors
when applied to partially vegetated landscapes (Timmermans et al. 2007; Verhoef
et al. 1997).

Two-source approaches require knowledge of the surface temperature of both
soil and vegetation canopy, and this information is unattainable directly from
satellite imagery because the land surface temperature (LST) observed by remote
sensing is a single temperature over heterogeneous surfaces. The temperature dif-
ference between vegetation and soil components can be more than 20 °C (Kustas
and Norman 1999). As a result, efforts have been made to decompose remotely
sensed LST into component temperatures (canopy and soil). Norman et al. (1995)
proposed a technique that uses the Priestly-Taylor relationship to estimate tran-
spiration and canopy temperature. Soil temperature can then be estimated using the
relationships between LST, fractional vegetation cover, and canopy temperature.
Similar idea was adopted in Kustas and Norman (1999) and Sánchez et al. (2008).
The difficulty in such an approach is the determination of the initial P-T coefficient.
In Norman et al. (1995), the initial P-T coefficient was chosen to be 1.3; while in
Kustas and Norman (1999), a value of 2 was found to be a better representative of
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this coefficient. Generally, the P-T coefficient is given approximately 1.26 over
moist surfaces but much smaller for dry surfaces (Komatsu 2003).

Another operational way to determine component temperatures is based on the
interpretation of the image (pixel) distribution in vegetation index (VI)/LST space.
As reviewed by Carlson (2007), if a sufficiently large number of pixels are present
and when contaminated pixels and outliers (e.g., clouds, surface water, sloping
terrain and shading) are removed, the shape of the pixel envelope constitutes a
meaningful triangle. Moran et al. (1994) claimed that the triangle space does not
account for the effect of water stresses on canopy transpiration, and therefore
replaced the triangle by using a trapezoid. In such a space, a higher VI value
generally corresponds to a lower LST value for a pixel where higher evapotrans-
piration would occur and vice versa. More promisingly, isolines of surface soil
wetness were found in the VI/LST space (Carlson 2007), representing constant soil
water availability. Since radiometric temperature of the soil surface is mostly
affected by the soil wetness and soil texture, and the latter remains relatively
constant for a certain region, it is reasonable to assume that each soil wetness isoline
representing the same soil surface temperature (Carlson 2007; Long and Singh
2012b; Nishida et al 2003).

Based on the trapezoidal VI/LST space and soil wetness isolines, Long and
Singh (2012b) developed a two-source evapotranspiration model named TTME
(Two-source Trapezoid Model for Evapotranspiration). However, one key
assumption in TTME is that the aerodynamic resistances are equal over the whole
domain. This assumption is also generally invoked in other triangle/trapezoid
framework based ET models (Carlson and Ripley 1997; Carlson et al. 1994; Gillies
et al. 1997; Jiang and Islam 1999, 2001, 2003; Jiang et al. 2009; Moran et al. 1994;
Price 1990). These models infer evaporative fraction (EF, defined as the ratio of
latent heat flux to available energy) without parameterizing the network of aero-
dynamic and surface resistances. As such, the effects of surface roughness and
atmospheric stability are essentially ignored. Consequently, these models may work
when surface roughness and LST are sufficiently uniform but will fail over more
heterogeneous surfaces.

To overcome this weakness, it is important to combine the triangle/trapezoid
framework with a resistance network. In this study, a new two-source evapotrans-
piration model is proposed to achieve this goal. The new model is based on the
trapezoidal framework to decompose LST into component temperatures, and uses a
dual-source modeling scheme to parameterize the resistance network and to estimate
surface fluxes. Different from existing two-source models, which are either based on
the “layer” approach (Kustas and Norman 1997; Shuttleworth and Wallace 1985) or
the “patch” approach (Sánchez et al. 2008), a hybrid dual-source modeling scheme
(Guan and Wilson 2009) is adopted in the new model. As discussed by Lhomme and
Chehbouni (1999), both the layer approach and the patch approach are restricted to
use within certain ranges of fractional vegetation cover: the layer model works better
for uniform vegetated surfaces, while the patch model is more suitable for clumped
vegetation. Besides, the layer model cannot tell the difference between under-canopy
soil evaporation and inter-canopy soil evaporation, which may result in significant
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modeling errors when being applied to surfaces with large soil moisture heteroge-
neity (e.g. partially irrigated cropland (Zhang et al. 2008)). The patch model assumes
a full radiation loading for each component, and does not consider the attenuation of
radiation by vegetation canopies. Therefore, evaporation from under-canopy soil
surfaces is simply ignored in the patch model.

The hybrid scheme adopts the layer approach to partition available energy
between components and uses the patch approach to calculate energy fluxes. As a
result, both under- and inter-canopy soil evaporation are considered and distin-
guished. In Chap. 4, we coupled the hybrid scheme with a soil moisture/heat
simulation component to simulate actual evaporation (E) and transpiration (T)
processes over a wheat field and a natural forest ecosystem using ground based
measurements. Results indicated that the hybrid model is capable in estimating
actual ET and gives reasonable partitioning between E and T.

The objective of this study is to develop a new operational remote sensing ET
model based on the hybrid dual-source modeling scheme and the trapezoid
framework. Combining the two would achieve two goals: (1) to consider the sur-
face aerodynamic characteristics in trapezoid model; (2) to incorporate remote
sensing information into the hybrid dual-source modeling scheme. In the following
sections, we will refer to it as the Hybrid dual-source scheme and Trapezoid
framework based Evapotranspiration Model (HTEM).

5.2 Model Development

The HTEM consists of two modules. The first module is to partition the available
energy for each component and to estimate the surface energy fluxes using a hybrid
dual-source scheme. The second module is to decompose the bulk radiative land
surface temperature into component temperatures based on a theoretically deter-
mined trapezoid framework.

5.2.1 Hybrid Dual-Source Scheme

The energy allocation and resistance network of the HTEM is shown in Fig. 2.1d.
In the hybrid dual-source scheme, a layer approach is used to allocate the available
energy for the soil and canopy component based on Beer’s law:

Ac ¼ Rn½1� expð�kcLAIÞ� ð5:1Þ

As ¼ Rn½expð�kcLAIÞ� ð5:2Þ

where A is the available energy per unit area (W m−2), subscripts c and s represent
canopy and soil components, respectively. kc is the extinction coefficient of
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radiation attenuation within the canopy, LAI is leaf area index (m2 m−2) and Rn is
the net radiation (W m−2), which is computed from,

Rn ¼ ð1� aÞSd þ erðeaT4
a � LST4Þ ð5:3Þ

where Sd is the downwelling shortwave radiation (W m−2), α is the surface albedo,
σ is Stefen-Boltzmann constant (=5.67 × 10−8 W m−2 K−4). Ta is air temperature
and LST is the radiative land surface temperature observed by satellite remote
sensing (K). ε is the emissivity of the bulk soil-canopy surface, and εa is the
emissivity of the atmosphere, given by Brutsaert (1975),

ea ¼ 1:24ðea=TaÞ1=7 ð5:4Þ

where ea is vapor pressure in hPa.
Kustas and Norman (1999) reported that the exponential extinction of net radi-

ation is only appropriate for canopy near full coverage and may produce systematic
errors for sparse canopies, and proposed a physically-based algorithm for estimating
the divergence of Rn in the canopy. However, this method requires detailed infor-
mation on canopy and leaf configurations and needs separate evaluations of the
visible and near-infrared albedos of the soil and vegetation, which may bring further
uncertainties. In HTEM, a simple linear interpolation of the value of kc between that
for full vegetation cover and bare soil in terms of fractional vegetation coverage was
conducted to obtain the kc value over partially vegetated surfaces, as suggested by
Zhang et al. (2008). The value of kc for full vegetation cover is set to be 0.8 for maize,
0.7 for soybean and 0.63 for wheat following experimental studies by Lindquist et al.
(2005), Sinclair and Horie (1989) and Thorne et al. (1988), respectively.

A patch approach is then used to partition available energy into the latent heat,
sensible heat and ground heat fluxes. In the patch approach, energy fluxes of each
component (canopy or soil) represents an average value per unit area of component
under consideration, and the average values per unit ground area is weighted by the
fractional coverage of each component,

Ac ¼ Fr � ðLEc þ HcÞ ð5:5Þ

As � G ¼ ð1� FrÞ � ðLEs þ HsÞ ð5:6Þ

where G is ground heat flux, LE is the latent heat flux and H is the sensible heat flux.
Fr is the fractional vegetation coverage, which is deduced from remote sensing by,

Fr ¼ 1� NDVImax � NDVI
NDVImax � NDVImin

� �n

ð5:7Þ

where NDVImax is the NDVI for complete vegetation cover andNDVImin is the NDVI
for bare soil. The coefficient n is a function of leaf orientation distribution within the
canopy, the value of which typically ranges between 0.6 and 1.25 (Li et al. 2005).
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Ground heat flux (G) in HTEM is estimated from a semi-empirical equation
provided by Bastiaanssen (2000),

G ¼ Rn � ðLST � 273:16Þ � ð0:0038þ 0:0074aÞ ð1� 0:98NDVI4Þ ð5:8Þ

For each component, the sensible heat flux is calculated by the classical Ohm’s
law type formulations,

Hc ¼ qCp
Tc � Ta

rha
ð5:9Þ

Hs ¼ qCp
Ts � Ta
raa þ rsa

ð5:10Þ

where ρ is the air density (kg m−3), Cp is the specific heat of air at constant pressure
(J kg−1 K−1). Ts and Tc are soil surface temperature and canopy temperature (K),
respectively. rha is the aerodynamic resistance to heat transfer between canopy and
the reference height (m s−1); raa is the aerodynamic resistance to heat transfer
between Zom + d (Zom is the canopy roughness length for momentum transfer, and
d is zero displacement height) and the reference height (m s−1); rsa is the aerody-
namic resistance to heat flow in the boundary layer immediately above the soil
surface (m s−1). The expressions to estimate these aerodynamic resistances can be
found in the appendix of Sánchez et al. (2008).

As a result, the latent heat flux for each component is computed as a residual in
Eqs. (5.5) and (5.6):

LEc ¼ Ac

Fr
� qCp

Tc � Ta
rha

ð5:11Þ

LEs ¼ As � G
1� Fr

� qCp
Ts � Ta
raa þ rsa

ð5:12Þ

For the whole surface, the total latent heat flux is calculated as the sum of fluxes
from each component weighted by their relative area (Lhomme andChehbouni 1999):

LE ¼ Fr � LEc þ ð1� FrÞ � LEs ð5:13Þ

5.2.2 Vegetation Index-Land Surface Temperature
Trapezoidal Space

In the hybrid dual-source scheme for evapotranspiration, soil surface temperature
and canopy temperature are both required, while only the bulk surface temperature
is available from remote sensing. Therefore, it is necessary to decompose the bulk

5.2 Model Development 85



surface temperature into component temperatures, which was achieved based on a
theoretically determined trapezoid framework (Long et al. 2012).

Theoretically, four critical points relating to four extreme conditions define a
trapezoid (Fig. 5.1). Point A represents the driest bare soil with the highest surface
temperature (Ts_max), point B represents the fully vegetated area with the highest
water stresses. As a result, point A and point B constitute the warm edge of the
trapezoid space, and it is further assumed that the evaporation rate on the warm
edge is zero. Points C and D represent fully vegetated surface and bare soil surface
without water stress, respectively. Evaporation on the cold edge CD is assumed to
be equal to the potential evaporation rate.

Prior studies have indicated that there exist soil wetness isolines within the Fr/
LST space (Carlson 2007; Sandholt et al. 2002). Assuming a uniform texture, the
soil radiometric temperature depends solely on the soil’s moisture content; based on
this, it is assumed that soil sharing the same moisture content is also isothermal
(Fig. 5.1). The slope of each isoline is derived by interpolating the slope of the
warm edge (βw = Tc_max – Ts_max) and that of the cold edge (βc = 0), in terms of
temperature difference between the pixel and cold edge (a) and the temperature
difference between the pixel and warm edge (b) (Fig. 5.1). Then, the soil surface
temperature can be computed from,

Ts ¼ Fr � a
aþ b

ðTs max� Tc maxÞ þ LST ð5:14Þ

a ¼ LST � Ta ð5:15Þ

b ¼ ð1� FrÞðTs max� Tc maxÞ þ Tc max� LST ð5:16Þ

Once the soil surface temperature has been determined, the canopy temperature
can be estimated from (Sánchez et al. 2008):

Fig. 5.1 A sketch of the
trapezoidal Fr/LST space in
the HTEM (Yang and Shang
2013)
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Tc ¼ eLST4 � ð1� FrÞesT4
s

Frec

� �1=4

ð5:17Þ

where εs and εc are emissivity of the soil surface and canopy surface, respectively.
To determine the shape of the trapezoid space, surface temperatures for the four

extreme points should be accurately determined. In HTEM, the algorithm proposed
by Long et al. (2012) is adopted to derive the theoretical boundaries of the trapezoid
space for the given meteorological conditions and surface characteristics.

For the cold edge, the largest evaporation rate corresponds to the lowest sensible
heat flux. As a result, spatially averaged air temperature (Ta) is taken to be the
horizontal cold edge. For the two extreme points on the warm edge, their
temperatures are theoretically determined through solving the surface radiation
budget and energy balance equations (Long et al. 2012). As a result, temperatures
for point A (Ts_max) and point B (Tc_max) are computed from [a detailed deri-
vation can be found in Long et al. (2012)]:

Ts max ¼ Rs;0

4esrT3
a þ qCp=½0:75ðraa + rsaÞ�

þ Ta ð5:18Þ

Tc max ¼ Rc;0

4ecrT3
a þ qCp=rca

þ Ta ð5:19Þ

Rs;0 ¼ ð1� as maxÞSd þ eseaT
4
a � esrT

4
a ð5:20Þ

Rc;0 ¼ ð1� ac maxÞSd þ eceaT
4
a � ecrT

4
a ð5:21Þ

where αs_max and αc_max are surface albedo for the two extreme points, and can be
estimated by extending the upper envelope of the Fr/albedo space intersecting with
Fr = 0 and Fr = 1, respectively (Long and Singh 2012a; Zhang et al. 2005). It is
noticed that the vegetation height for point B (hc_max) is arbitrarily taken to be 1 m.
However, sensitivity analysis in Sect. 5.2 suggests that estimated LE is not sensitive
to the changes in hc_max.

5.3 Model Validation at SMACEX (USA)

5.3.1 Site and Data

Site Description: During the period from 15 June (DOY 166) through 8 July (DOY
189), the Soil Moisture-Atmosphere Coupling Experiment (SMACEX) campaign
was conducted in the central Iowa (N41.87°–N42.05°, W-93.83°–W-93.39°), U.S.
(Fig. 5.2). The region can be classified as humid, with a mean annual precipitation of
about 835 mm. More than 80 % of the land cover within the region was comprised of
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rainfed corn and soybean fields. The campaign collected an extensive measurement
set including metrological data from fourteen observation towers, soil and vegetation
parameters and energy fluxes. Twelve of meteorological towers were equipped with
eddy covariance (EC) systems, and the Bowen ratio method was employed to
perform the energy closure of the EC system according to Twine et al. (2000) and
Anderson et al. (2005). Anderson et al. (2005) reported that the observed energy
fluxes after forcing with Bowen ratio method agreed well with aircraft counterparts
for the SMACEX site; the root mean square difference between the two measure-
ments are 10 W m−2 for sensible heat and 30 W m−2 for latent heat. This suggests
that the EC measurements are reasonably representative of the actual surface fluxes
at the site. Detailed descriptions of the measurement during the campaign are
provided in (Kustas et al. 2005).

Remote Sensing and DEM Data: Three cloud-free Landsat TM/ETM+ scenes
were taken during the SMACEX campaign period. These are available from the
U.S.Geological Survey data center (http://glovis.usgs.gov/) and consist of the
Landsat TM image acquired at 10:29 a.m. on DOY 174, the Landsat ETM+ image

Fig. 5.2 Location of the SMACEX site with the false color composite of Landsat TM imagery
acquired on June 23 (DOY 174), 2002. The yellow line indicates the main Walnut Creek, and the
12 flux towers are shown in numbered green circles nested with cross wires, with the crop type
(i.e., soybean (S) or corn (C)) (Yang and Shang 2013)
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acquired at 10:42 a.m. on DOY 182 and the Landsat ETM+ image acquired at 10:
48 a.m. on DOY 189. A digital elevation map of the study area with a spatial
resolution of 1 arc sec (about 30 m) was obtained from the National Elevation
Dataset (http://seamless.usgs.gov/).

Variable Derivation: LST was derived from the infrared band (TIR, band 6) of
Landsat TM/ETM+ images using a method specifically for the SMACEX site
described in Li et al. (2004). Albedo was retrieved from the visible and near-
infrared bands (band 1–5, 7) of the Landsat images following Allen et al. (2007). Fr

was calculated using Eq. (5.7) with the coefficient n of 0.625, and NDVImax of 0.94
and NDVImin of 0 (Li et al. 2004). Leaf area index (LAI) and vegetation height (hc)
were estimated using empirical relationships for the SMACEX site given by
Anderson et al. (2004),

LAI ¼ ð2:88� NDWI + 1:14Þ½1þ 0:104 expð4:1
� NDWI)] for both corn and soybean ð5:22Þ

hc ¼ ð1:2� NDWI + 0:6Þ½1þ 0:04 expð5:3� NDWI)] for corn ð5:23Þ

hc ¼ ð0:5� NDWI + 0:26Þ½1þ 0:005 expð4:5� NDWI)] for soybean ð5:24Þ

where NDWI is the Normalized Difference Water Index, computed from near
infrared (NIR, band 4 of TM/ETM+ images) and shortwave infrared (SWIR, band 5
of TM/ETM+ images) reflectances,

NDWI ¼ ðNIR� SWIRÞ=ðNIRþ SWIRÞ ð5:25Þ

5.3.2 Results

5.3.2.1 Validation at Flux Sites

For comparison with observations from the tower network, fluxes estimates were
averaged over an estimated upwind source-area (1–2 pixels/*120 m) for each flux
tower (Choi et al. 2009; Gonzalez-Dugo et al. 2009; Long and Singh 2012b).
Besides, all fluxes and meteorological measurements were linearly interpolated to
the time of satellite overpass using the two bounding measurements.

Comparisons between energy balance components (Rn,G,H and LE) produced by
the HTEM with TM/ETM+ data and those from tower-based measurements for all 3
days (DOY 174, DOY182 and DOY 189) are shown in Fig. 5.3. Generally, all four
energy components estimated from the HTEM agree reasonably well with flux tower-
based measurements. Estimated Rn has a root mean square error (RMSE) of
19.1Wm−2 and a bias (defined as mean simulated value minus mean observed value)
of 4.6Wm−2 (Table 5.1). The mean absolute percentage error (MAPE, defined as the
ratio of mean absolute error to mean observed value) of Rn estimates for the 3 days is
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2.4 %. The estimated ground heat flux (G) had an RMSE of 21.6 W m−2 and MAPE
of 19.7 %. However, as can be seen from Fig. 5.3b, the accuracy of G estimates is
systematically lower in soybean field than in the corn field. This is possibly due to the
semi-empirical equation for G (Eq. 5.8), which was derived in Gediz Basin, Turkey
(Bastiaanssen 2000) and may require local calibration.

The estimated sensible heat flux (H) has an RMSE of 25.1 W m−2 and a bias of
12.88 W m−2 (Table 5.1). The MAPE of estimated H for all 3 days was 100 % due
to an extremely high MAPE value of 262 % on DOY 189 (Table 5.1). In DOY 189,
five flux sites showed negative measured H, which indicates strong advection.
However, as the lower limit of surface temperature for both canopy and soil were
bounded above the air temperature in the trapezoid framework, the advection effect
is not considered in the HTEM. Besides, studies have shown that advective
conditions can greatly enhance measurement uncertainty of the EC system (e.g.,
Alfieri et al. 2011). The high MAPE on DOY 189 is exacerbated by the fact that
these negative measured values were small, and even though the MAPE was high
on DOY 189 the RMSE for that day was 28.1 W m−2, which accounts for only

Fig. 5.3 Comparison of Rn (a), G (b), H (c) and LE (d) from HTEM using Landsat TM/ETM+
images with corresponding tower-based flux measurements at the SMACEX site on DOY 174, 182
and 189 in 2002 (Yang and Shang 2013)

90 5 A Hybrid Dual-Source Scheme and Trapezoid Framework …



4.7 % of the total available energy. On the other 2 days, the H MAPE was better:
14.5 %. on DOY 174 and 16.1 % on DOY 182; these and the daily RMSE values
are listed in Table 5.1.

LE is computed by the HTEM as the residual of the surface energy balance
equation, and these estimates agree well with tower-based measurements
(Fig. 5.3d). The RMSE of LE for all 3 days was 31.1 W m−2 and the bias was
7.2 W m−2; the MAPE was 6.4 % (Table 5.1). Although a high MAPE of H is
found in DOY 189, the MAPE of LE for that day is only 4.1 % since the true
measured value was not close to zero. The RMSE on DOY 189 was 25.1 W m−2,
indicating that errors in estimated H are somehow compensated by errors in other
two energy component (Rn and G). The highest RMSE of estimated LE occurred in
DOY 174 with a value of 39.2 W m−2 because of a high RMSE for G on that day,
which was further due to a relative large disagreement between estimated G and
measured G in two soybean fields (the two red triangles in the very upper-right part
of the data clouds in Fig. 5.3b). As a result, a negative bias of G of −18.5 W m−2

resulted in a positive bias of LE of 17.8 W m−2 on DOY 174. For DOY 182, the
estimated LE showed an RMSE of 28.6 W m−2, the bias and MAPD are 1.2 W m−2

and 6.1 %, respectively (Table 5.1).

Table 5.1 A summary of the statistics of the HTEM performances at the SMACEX site

Energy
component

DOYa �o
(W m−2)

�s
(W m−2)

Bias
(W m−2)

RMSE
(W m−2)

MAPE
(%)

Rn 174 (9) 573.1 586.8 13.7 26.2 3.3

182 (10) 604.8 600.1 −4.7 16.3 2.0

189 (11) 591 595.2 4.2 14.0 2.0

Overall
(30)

589.7 594.3 4.6 19.1 2.4

G 174 (9) 101.3 82.8 −18.5 24.3 17.9

182 (10) 70.1 62.5 −7.6 15.7 16.2

189 (11) 79.3 59.2 −20.1 23.7 24.4

Overall
(30)

82.9 67.4 −15.5 21.6 19.7

H 174 (9) 123.5 137.9 14.4 21.9 14.5

182 (10) 135.9 137.6 1.7 24.5 16.1

189 (11) 22.4 44.2 21.8 28.1 262.0

Overall
(30)

90.6 103.4 12.8 25.1 100.0

LE 174 (9) 348.3 366.1 17.8 39.2 9.1

182 (10) 398.8 400.0 1.2 28.6 6.1

189 (11) 489.3 491.8 2.5 25.1 4.1

Overall
(30)

416.2 423.5 7.2 31.1 6.4

�o is the mean of observed values and �s is the mean of HTEM simulated values (Yang and Shang
2013)
aNumber in the bracket indicates the available number of measurement on each day
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5.3.2.2 Spatial Distribution of Estimated LE from HTEM

The spatial distribution of estimated canopy transpiration (LEc) and soil evaporation
(LEs) on 3 days together with the corresponding NDVI maps are shown in Fig. 5.4.
Generally, a higher NDVI value corresponds to higher LEc for all 3 days, while LEs

is negatively correlated with NDVI. This phenomenon can be seen from two per-
spectives. On the one hand, for each day, LEc is higher and LEs is lower where there
is a higher value of NDVI. An example of the relationships between NDVI and two
component fluxes (LEs and LEc) on DOY 174 are shown in Fig. 5.5. A positive

Fig. 5.4 Spatial distributions of NDVI, canopy transpiration (LEc) and soil evaporation (LEs)
produced by the HTEM on 3 days (Yang and Shang 2013)

Fig. 5.5 Relationship between NDVI and LEs(LEc) on DOY 174 (Yang and Shang 2013)
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relationship is clearly seen between NDVI and LEc, and a negative relationship is
found between NDVI and LEs. On the other hand, the overall NDVI was increasing
through DOY 174–189, which resulted an increasing in overall LEc and decreasing
in overall LEs from DOY 174–189 (a relative high LEs was observed in DOY 189
due a rainfall event 3 days before) (Fig. 5.4).

On DOY 174, when NDVI and soil moisture had the widest ranges within the
study area, the estimated LEc and LEs showed the largest variations across the
whole domain (Fig. 5.4). The coefficient of variation (CV) is 0.41 and 0.47 for LEc

and LEs on DOY 174, respectively. On the contrary, on DOY 189, NDVI reached
its maximum value for most pixels and soil moisture was relatively constant across
the region due to the rainfall event in DOY 185. As a result, both LEc and LEs on
DOY 189 showed the smallest spatial variations throughout the region among 3
days (Fig. 5.4) (CV values on these 2 days are: 0.26 for LEc and 0.32 for LEs on
DOY 182, and 0.22 for LEc and 0.18 for LEs on DOY 189). These results are
consistent with those reported by Choi et al. (2009), Long and Singh (2012b).

5.3.3 Comparison with Other Models

Extensive validation and intercomparison studies of remote sensing-based evapo-
transpiration models have been conducted using the SMACEX data (e.g., Choi
et al. 2009; Li et al. 2005; Long and Singh 2012a, b). Figure 5.6 shows the
comparison of statistics of the discrepancies between surface flux retrievals and flux
tower measurements from published studies and the present study. The main fea-
tures of each model and the remote sensing data being used in each study are
summarized in Table 5.2.

As can be seen from Fig. 5.6, the performances of the HTEM model in esti-
mating H and LE are generally better than all other models in terms of both RMSE
and bias with reference to tower-based measurements. The RMSE and bias of
HTEM-estimated Rn and G lie in the ranges of those found in other models. The
comparison between HTEM and TTME could be a convincing evidence of the
importance of considering the surface aerodynamic characteristics in the trapezoid
model, as the major difference between the two models is whether a resistance
network was incorporated in the trapezoidal Fr/LST space or not. Although the
SMACEX site is relative homogeneous landscape (dominate by crops), the com-
parison result does show a better H and LE estimates from the HTEM than those
from TTME.

As for other models, SEBAL (Surface Energy Balance Algorithm for Land)
showed a comparable performance with other two-source models (i.e., TTME and
TSEB), with an RMSE of LE about 50 W m−2 in both of its applications ((1) in
Long and Singh (2012a), and (2) in Choi et al. (2009)), while the bias from SEBAL
is on a magnitude of *10 W m−2 but differs in direction between the two appli-
cations; this could possibility due to a different selection of hot and cold pixels
between applications. Long and Singh (2012a) modified SEBAL by introducing the
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trapezoid framework to avoid the subjectivity in selecting extreme points. The
modified SEBAL model performed better than its ancestor with an RSME of
41.1 W m−2 and a bias of −4.4 W m−2 in estimated LE. In the two applications of
TSEB model ((1) in Li et al. (2005), and (2) in Choi et al. (2009)), the initial
Priestley-Taylor (P-T) coefficient was respectively set to be 1.3 and 1.26 for the
whole study area, including both stressed and unstressed natural vegetation and
crops. However, theoretically, the P-T coefficient should be a function of vegetation
type and density, soil water status and vapor pressure deficit (Agam et al. 2010).
A P-T coefficient larger than 1.26 typically represents unstressed full coverage
conditions. Hence, TSEB has a tendency to overestimate LE under less soil wetness
and larger drying power of air conditions (Agam et al. 2010; Choi et al. 2009;
Fisher et al. 2008; Kustas and Norman 1999; Long and Singh 2012b).

5.3.4 Sensitivity Analysis

A local sensitivity analysis was conducted to examine how the uncertainties in the
HTEM estimated LE can be apportioned to different sources of uncertainty in the
model input. The sensitivity to the ith forcing variable or parameter is assessed by

Fig. 5.6 Comparison of model performance in regarding to RMSE (a) and Bias (b) among HTEM
and other models [TTME (long and Singh 2012b); TSEB(1) (Choi et al. 2009); TSEB(2) (Li et al.
2005); M-SEBAL (Long and Singh 2012a); SEBAL(1) (Choi et al. 2009); SEBAL(2) (Long and
Singh 2012a); TIM (Choi, et al. 2009)] (Yang and Shang 2013)
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calculating LE with a set of baseline parameters (LE0) and comparing this with LE
calculated by varying the ith parameter (LE±); the sensitivity index is:

Si ¼ LE� � LE0

LE0
� 100% ð5:26Þ

The variation ranges and steps of each input variable are set the same as those in
Long and Singh (2012b), which are 2 K for temperature variables with a step of
0.5 K and 20 % for other variables with a step of 5 %. As suggested by Long and
Singh (2012b), the sensitivity analysis was conducted using the data from the
SMACEX site on DOY 174, which showed wider range of soil moisture and
vegetation coverage conditions. For DOY 182 and 189 in SMACEX site, the soil
moisture and vegetation coverage had less variability, which resulted in conser-
vative estimates of sensitivity.

As shown in Fig. 5.7, LE is most sensitive to changes in temperature variables.
The estimated LE showed positive correlations with Ta but negative correlations
with LST (Fig. 5.7a). An increase of 2 K in LST and Ta resulted in 23.2 % decrease
and 15.3 % increase in estimated LE, while a 2 K decrease in LST and Ta could lead
to 17.3 % increase and 21 % decrease in LE estimates, respectively (Table 5.3).
However, compared with the TTME model, which is also based on the theoretical

Table 5.2 Main characteristics of models used for comparison in this study

Model One/two
source

LST
decomposition

Resistance
network

Satellite
imagery

Closure
technique

Studies

HTEM Two Trapezoid
framework

Yes Landsat
TM/ETM+

BR In SMACEX
site

MODIS
Terra

RE In Weishan
site

TTME Two Trapezoid
framework

No Landsat
TM/ETM+

BR Long and
Singh (2012b)

TSEB Two P-T
approximation

Yes Landsat
TM/ETM+

BR Choi et al.
(2009)

Landsat
TM/ETM+

BR Li et al.
(2005)

M-
SEBAL

One - Yes Landsat
TM/ETM+

BR Long and
Singh (2012a)

SEBAL One - Yes Landsat
TM/ETM+

BR Choi et al.
(2009)

Landsat
TM/ETM+

BR Long and
Singh (2012a)

TIM One - No Landsat
TM/ETM+

BR Choi et al.
(2009)

SEBS One - Yes MODIS
Terra

RE Yang et al.
(2010)

Closure techniques include Bowen ratio (BR) and residual (RE) methods. Hyphen (-) indicates that
the corresponding model do not need LST decomposition (Yang and Shang 2013)
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Fig. 5.7 Sensitivity analysis of HTEM to LST and Ta in (a), α, αc_max and αs_max in (b), u and ea
in (c), hc and hc _max in (d) (Yang and Shang 2013)

Table 5.3 Relative sensitivity of estimated LE from the HTEM to input variable at the SMACEX
site on DOY 174 (Yang and Shang 2013)

Variation
(%/K)

−20 (−2) −15 (−1.5) −10 (−1) −5 (−0.5) 5 (0.5) 10 (1) 15 (1.5) 20 (2)

LST 17.3 13.6 9.5 5 −5.4 −11 −17 −23.2

Ta −21 −15.4 −10 −4.8 4.3 8.5 12.1 15.3

α 7.1 5.3 3.5 1.8 −1.8 −3.5 −5.3 −7.0

αc_max 0.73 0.54 0.38 0.19 −0.19 −0.38 −0.57 −0.75

αs_max 2.02 1.52 1.01 0.51 −0.51 −1.02 −1.53 −2.04

u 7.4 5.5 3.7 1.9 −1.8 −3.7 −5.5 −7.4

ea 1.8 1.4 0.9 0.4 −0.4 −0.8 −1.2 −1.6

hc 2.4 1.8 1.2 0.6 −0.5 −1.1 −1.6 −2.1

hc_max 1.2 0.9 0.6 0.3 −0.3 −0.6 −0.8 −1.1
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trapezoid, the HTEM showed less sensitivity to temperatures. Long and Singh
(2012b) reported that a 2 K increase in LST and Ta would respectively result in
28.6 % decrease and 27.6 % increase in estimated LE from the TTME model.

The surface albedo plays a fundamental role in determining the total available
energy, and LE is sensitive to changes in albedo. A 20 % increase in α would result
in a 7 % decrease in LE. However, the changes in albedo of two extreme surfaces
(Eqs. 5.18–5.21) have insubstantial effect on the final estimation of LE (Table 5.3).
Therefore, even if the process of determining αc_max and αs_max suffers certain
subjectivities, it will not greatly affect the accuracy of LE estimates.

For other input variables, results indicate that wind speed (u), ea and hc are all
negatively correlated with LE estimates. A 20 % increase in u, ea and hc would
result in a 7.4, 1.6 and 2.1 % decrease in LE estimates, respectively. The reason
why LE and u are negatively correlated is that an increase in u would lead to
decreases in aerodynamic resistances and thus decrease in both Ts_max and Ta_max
(Eqs. 5.18 and 5.19), which is indicative of the warm edge moving downwards and
therefore result in less latent heat flux. Moreover, it is shown that the hypothesized
vegetation height for the theoretical fully vegetated surface with largest water
stresses (hc_max) would not result in large uncertainty in the model.

5.4 Model Validation at Weishan (China)

5.4.1 Site and Data

Site Description: The second validation study uses data from the Weishan flux site
(N36.65°, E116.05°) located in the center of the Weishan Irrigation District along
the lower reaches of the Yellow River (Fig. 5.8), China. The elevation of the site is
30 m above the sea level, and it is characterized by sub-humid climate with a mean

Fig. 5.8 Location of the Weishan site (Yang and Shang 2013)
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annual precipitation of 532 mm (averaged from 1984 to 2007) and mean annual pan
evaporation of 1,950 mm (20 cm diameter evaporation pan; 1961–2005). The
annual average air temperature is 13.3 °C (1984–2007). The dominant crops at the
site are winter wheat and summer maize planted in rotation; this is the main
cropping system in the North China Plain. The growing season for winter wheat is
from late October to early June, while summer maize is planted in mid-June and
harvested in late September. However, because wheat grows very slowly or even
stops during winter season due to low temperature and frozen soil, only the main
growing season of winter wheat from early March to early June and summer maize
from mid-June to late September was considered in this study.

During the growing seasons of 2007, sensible and latent heat fluxes were
measured by a 10-m high flux tower mounted with an eddy covariance system
placed 3.7 m above the ground at 30-min interval. Meteorological data, including
air temperature and humidity, air pressure, downward and upward solar and long-
wave radiation, precipitation and wind speed and direction were recorded at 10-min
interval. Soil heat fluxes were measured at a depth of 3 cm at two sides of the tower.
The uncertainty analysis of EC measurements at Weishan site can be found in Lei
and Yang (2010), and the residual method was recommended by Yang et al. (2010)
to force the energy closure of the EC system at this site. A detailed description of
the site and the measurements can be found in Lei and Yang (2010).

Remote Sensing Data: The Moderate resolution Imaging Spectroradiometer
(MODIS) data were used to force the HTEM model at the Weishan site because of
its high temporal resolution (daily) and accessible spatial resolution (1 km). Good
agreement between sensible heat flux measured by large aperture scintillometer
(1 km) and that by EC system (100–500 m) was reported in Weishan site (Lei et al.
2011), indicating the EC data adequately represents the area within one MODIS
pixel and could provide accurate observations of actual surface fluxes. Data sets
titled MOD09GA, MOD09Q1 and MOD11A1 were used; these are available from
the NASA data center (http://reverb.echo.nasa.gov/). The original images were re-
projected into UTM projection and resampled with a spatial resolution of 1,000 m.
During the study period between March 1st (DOY 60) and September 30th (DOY
273), a total number of 66 cloud free MODIS images were available, with 39 days
in the growing season of winter wheat and 27 days in the growing season of
summer maize.

Variable Derivation: Liang’s (2001) method was used to calculate broadband
surface albedo from seven channels recorded in the data set of MOD09GA. NDVI
was derived from the red and near-infrared bands following Huete et al. (2002). The
observed maximum NDVI during study period was 0.93 (NDVImax) and observed
NDVI for bare soil (non-growing season) was 0.12 (NDVImin). The coefficient n was
determined to be 0.7 through optimizing Eq. (5.7) based on field measurements of
vegetation coverage. Because only a few measurements of LAI were available
during the study period, a parametric relationship between LAI and NDVI (8-day
temporal resolution and 250 m spatial resolution, MOD09Q1) was used to obtain
consecutive LAI values (Lei et al. 2012), and hc was expressed as a function of LAI
based on local measurement. Before vegetation height reaches its maximum value,
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hc ¼ 0:1029� LAI1:4496 for winter wheat ð5:27Þ

hc ¼ 0:2755� LAI1:3911 for summer maize ð5:28Þ

5.4.2 Results

5.4.2.1 Validation at Flux Site

Comparison between measured energy fluxes (Rn, G, H and LE) and estimated ones
from the HTEM at Weishan site during the growing season of 2007 are shown in
Fig. 5.9, and statistics of the HTEM performances are summarized in Table 5.4.
The estimated Rn had an RMSE of 24.1 W m−2 and a bias of −1.3 W m−2 over both

Fig. 5.9 Comparison of Rn (a), G (b), H (c) and LE (d) from HTEM using MODIS images with
corresponding tower-based flux measurements at the Weishan site on during the main growing
season of 2007 (Yang and Shang 2013)
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growing seasons (winter wheat and summer maize). However, slightly better
agreement was found during maize season than in wheat season (Table 5.4). The
estimated G had an overall bias of 3 W m−2 (6.6 W m−2 for wheat season and
−2.2 W m−2 in maize season, respectively) and an overall RMSE of 20.3 W m−2

(23.8 W m−2 in wheat season and 15.2 W m−2 in maize season). Similar to the
SMACEX site, a local calibration of Eq. (5.11) might be beneficial to improve the
accuracy of the G estimates.

The sensible heat flux had an overall RMSE of 27.3 W m−2 and bias of
5.7 W m−2, which accounts for 5.9 % of the mean observed H. However, the
sensible heat flux were systematically overestimated in the wheat growing season
and underestimated in the maize growing season. This was likely a result of the
semi-empirical estimates of LAI and hc (Eqs. 5.27 and 5.28).

Despite the systematic errors in estimated H, the simulated LE showed high
consistency with measurements, suggesting that errors in the estimates of available
energy and the sensible heat flux were somehow canceled each other out. The overall
RMSE of estimated LE for both seasons was 45 W m−2 and the bias was -10 W m−2.
The LE RMSE was lower for winter wheat than for summer maize, however the
MAPE was higher for maize than for winter wheat.

In general, the HTEM performed better in estimating all four energy components
during maize season than in the wheat season. The fact that only a few measure-
ments of LAI and hc were available during this experiment may result in inaccurate
parameter estimates for Eqs. (5.27) and (5.28). A more realistic relationship
between LAI and hc may improve predictions of H and LE at this site.

Table 5.4 A summary of the statistics of the HTEM performances at Weishan site

Energy
component

Crop
type

�o
(W m−2)

�s
(W m−2)

Bias
(W m−2)

RMSE
(W m−2)

MAPE
(%)

Rn Wheat 502.5 506.3 3.8 25.7 3.7

Maize 473.9 465.2 −8.7 21.9 3.2

Overall 490.8 489.5 −1.3 24.1 3.5
G Wheat 20.5 27.1 6.6 23.8 36.7

Maize 31.9 29.7 −2.2 15.2 30.5

Overall 25.2 28.2 3 20.3 34.2
H Wheat 77.3 91.9 17.6 28.9 47.8

Maize 125.3 113.9 −11.4 24.6 17.6

Overall 96.9 102.6 5.7 27.3 35

LE Wheat 404.7 387.3 −17.4 48.2 9.1

Maize 316.7 321.6 4.9 39.9 14.3

Overall 368.7 358.7 −10 45 11.2
�o is the mean of observed values and �s is the mean of HETM simulated values (Yang and Shang
2013)
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5.4.2.2 Processes of Evaporation and Transpiration

The measured total LE and estimated canopy transpiration (LEc) and soil evapo-
ration (LEs) during the study period are shown in Fig. 5.10. All three variables
showed a bimodal process within one year due to the crop rotation cycle. The
estimated LEc increases with the greening of crops and decreases with crop
senescence (as indicated by changes in NDVI). On the contrary, LEs decreases
during the crop greening stages and increases when senescence. This phenomenon
suggests that HTEM could reasonably reflect the vegetation coverage effect on
evaporation and transpiration partitioning. To further test the vegetation control on
LEc and LEs partitioning in the HTEM, the ratio of LEc (LEs) to equilibrium
evaporation against LAI (Fr) are shown in Fig. 5.11. The equilibrium evaporation is
calculated from (Eichinger et al. 1996),

LEeq ¼ DðRn � GÞ
Dþ c

ð5:29Þ

where Δ is the slope of relation between saturated vapor pressure and temperature, γ
is the psychometric constant.

For both growing seasons of winter wheat and summer maize, the ratio of LEc to
LEeq has a positive relationships with both LAI and Fr (Fig. 5.11a, b). Theoretically,
this is because that a higher LAI value corresponds to a higher canopy light
interception and a higher Fr value represents a larger proportion of surfaces
occupied by vegetation, and therefore, as defined in the patch approach, a higher

Fig. 5.10 Processes of NDVI, estimated canopy transpiration (LEc), soil evaporation (LEs) and
measured total evapotranspiration (LE) during the simulation period at the Weishan site. Each
value represents the corresponding latent heat flux at satellite imaging time (Yang and Shang
2013)
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LEc would occur. Not surprisingly, the ratio of LEs to LEeq is negatively correlated
with LAI and Fr, as can be seen from Fig. 5.11c, d. It is noticed that in Fig. 5.11c, d,
some points (within the oval) are significantly lower than the fitted lines; this was
due to the fact that the surface soil moisture for these days was significantly lower
than during the other days. Since the equilibrium evaporation only reflects atmo-
spheric controls on evapotranspiration, the variation of soil moisture availability
could leads to the scatter of the point clouds in Fig. 5.11.

5.4.3 Comparison with Other Models

Yang et al. (2010) estimated energy fluxes using the Surface Energy Balance
System (SEBS) model based on MODIS Terra image for the main growing season
of winter wheat and summer maize of 2006–2008 at the Weishan flux site, and their
model performances are compared with those from HTEM (Fig. 5.12).

Fig. 5.11 Relationships between the ratio of estimated LEc and LEs to LEeq against Fr (a and
c) and LAI (b and d) during the simulation period at Weishan site. The solid lines represent best fit
relationships (Yang and Shang 2013)
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For both growing seasons of winter wheat and summer maize, the HTEM RMSE
of H and LE were slightly lower than those from SEBS. The benefit of the HTEM is
its hybrid dual-source scheme; the single-source scheme used by SEBS does not
distinguish evaporation and transpiration, which results in great errors under low
LAI and Fr conditions (i.e., the greening and senescence stages of both wheat and
maize). However, both HTEM and SEBS showed systematic biases in H and LE
during the wheat season. Since both Rn and G were accurately estimated during the
wheat season, these systematic errors were most likely due to non-optimal vege-
tation parameters, determined from remote sensing-based LAI estimates.

5.5 Conclusion

In this chapter, a new remote sensing evapotranspiration model (HTEM) based on
the hybrid dual-source scheme and the theoretical trapezoid framework is proposed.
This model, designed to estimate energy fluxes using remotely sensed data, was
inspired by Guan and Wilson (2009) who partitioned potential evaporation and
potential transpiration using the hybrid dual-source scheme, and by Long et al.
(2012) who theoretically determined the boundaries of the trapezoidal Fr/LST
space. HTEM employs the layer approach to partition available energy and the
patch approach to estimate sensible and latent fluxes separately from the soil and
vegetation canopy. HTEM is different from a layer model in that it distinguishes the
difference in evaporation from inter-canopy soil and from under-canopy soil, and
limit convective transfer contribution to transpiration only from vegetated fractions.
HTEM is also different from a patch model in that it allows soil evaporation from
under-canopy soil, and the vegetation effect on both evaporation and transpiration is

Fig. 5.12 Comparison of model performance between HTEM and SEBS (Yang et al. 2010) at the
Weishan flux site (Yang and Shang 2013)
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somehow considered. These features suggest a high potential of the HTEM model
to be used for a wide range of surfaces with different vegetation coverage patterns.

Soil wetness isolines within a theoretically determined trapezoid Fr/LST space
are used in HTEM to decompose bulk radiative surface temperature into canopy
temperature and soil temperature. In such way, additional assumptions such as the
Priestley-Taylor approximation used in the TSEB model and the complementary
relationship used in Nishida et al. (2003) are no longer needed. However, ignoring
the advection effect on turbulent transport is still a limitation of the HTEM, a more
realistic cold edge should be the focus of further efforts.

Performance of the HTEM was tested at both the humid SMACEX site in Iowa
with Landsat TM/ETM+ data and the sub-humid Weishan site in North China Plain
with MODIS Terra data. Results showed that energy fluxes from HTEM agree well
with tower based measurements, and are generally better than other remote sensing
evapotranspiration models applied with the same data sets. Additionally, the HTEM
could provide reasonable partitioning between evaporation and transpiration.
Sensitivity analysis suggests that the HTEM is mostly sensitive to temperature
variables, and less sensitive to other meteorological observations and the hypothetic
vegetation parameters.
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Chapter 6
Remote Sensing Temporal and Spatial
Patterns of Evapotranspiration
and the Responses to Water
Management in a Large Irrigation
District of North China

6.1 Introduction

In arid and semiarid areas, agriculture relies heavily on irrigation of water diverted
from rivers. However, with intensified changes of climate and land use, runoff of
many rivers in arid area showed a declined trend during the past 50 years (Zhang
et al. 2011). Meanwhile, increasing water needs for industrial, domestic and
environmental uses, has led to water resources scarcity globally (Vörömarty et al.
2000). Consequently, traditional irrigation agriculture in these areas is now facing a
big challenge, which appeals people to develop water-saving irrigation for sus-
tainable water use.

One example of such cases is the Hetao Irrigation District in Inner Mongolia,
North China. Hetao Irrigation District is the third largest irrigation district in China,
with a total irrigation area of 573,300 hm2. It is located in a typical arid region with
an average annual precipitation of 130–350 mm and mean annual pan evaporation
of about 2,300 mm (Yu et al. 2010). As a result, precipitation is far less than crop
water requirement, and irrigation is essential for agriculture. Annual average water
diversion from the Yellow River is 5.165 billion m3 (from 1980 to 2000), which
accounts for about 1/10 of annual discharge of the Yellow River (53.5 billion m3,
measured at Huayuankou station from 1956 to 2000). However, due to the impact
of human activities and climate change, runoff within the Yellow River basin has
declined significantly during the past 50 years (Fu et al. 2004, 2007). The global
and regional projections showed that the warming trend is likely to continue in the
region during 21st century (Houghton et al. 2001; Nijssen et al. 2001), which will
further decrease runoff and thus exacerbate water resources shortages in the basin.

In order to tackle the water shortage issue, Chinese government started a program
of irrigation districts rehabilitation for water-saving in Hetao and other large-scale
irrigation districts in the Yellow River basin in 1998. The aim of the program at
Hetao is to reduce water diversion from the Yellow River to 4 billion m3 in 2015
while keeping the same agricultural production. Engineering measures have been
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applied since 1999, including reducing water diversions, increasing groundwater
use, lining diversion channels, improving irrigation efficiency, and so on. A direct
consequence of reducing water diversion from the Yellow River is the reduction in
water supply within the irrigation district, which will significantly change the
hydrological cycle of the region, as well as water allocation and consumption for
different land use types.

Evapotranspiration (ET) is the most active process in the hydrological cycle (Oki
and Kanae 2006), and is also a major component of energy and water balance in
agriculture ecosystems (Burba and Verma 2005). Thus, understanding the spatial
and temporal variability in ET is important for identifying the impact of meteo-
rology, soil water and crop factors on ET, and is vital for hydrologic modeling and
irrigation scheduling (Lei and Yang 2010). For Hetao Irrigation District, there is a
particular need of ET studies under the changing water use strategies for better
water resources management.

In regard to evapotranspiration studies, in situ measurements, such as weighting
lysimeter, Bowen ratio system, sap flow meters and eddy covariance technique, are
generally considered to be reliable methods for quantifying ET at a point or field
scale for specific sites (Baldocchi 2003; Gonzalez-Altozano et al. 2008; Kang et al.
2003; Zhang et al. 2008). However, it is fairly difficult to apply such methods for
larger scale ET quantifying. Wylie et al. (2003) has pointed out that biased esti-
mates occurs when the individual flux measurements are extrapolated to the
regional scale, as many flux sites cannot appropriately represent a larger area.
Similarly, traditional ET estimation models, whose parameters depend mostly on
field observations, are greatly restricted to be used at a small scale, i.e., soil-plant-
atmosphere continuum models (Zeppel et al. 2008).

Fortunately, remote sensing technique, which is able to capture land surface
information from larger geographic extents, provides an effective tool and meth-
odology for retrieving the ground parameters for estimating ET at regional scale.
Various models have been proposed for estimating ET with remotely sensed data
over the past decades, such as TSEB model (Norman et al. 1995), SEBAL model
(Bastiaanssen et al. 1998), S-SEBI model (Roerink et al. 2000), SEBS model (Su
2002), LandSAF model (Gellens-Meulenberghs et al. 2007), STSEB model (Sán-
chez et al. 2008), GLEAM model (Miralles et al. 2011), MODIS-ET model (Mu
et al. 2011) and HTEM model proposed in Chap. 5. These models generally per-
formed well, with the relative errors of 5–30 % in comparison with ground based
flux measurements at different ecosystems around the world. Detailed discussion of
remote sensing-based ET estimation models can be can be found in Gowda et al.
(2008) and Li et al. (2009).

In this chapter, the HTEM model was applied to 4 counties of Hetao Irrigation
District to map its evapotranspiration from 2000 to 2010. Because of soil frozen, ET
during winter season is negligible compared with crop growing seasons. Thus, only
crop growing periods from April to October were considered in this study. ET from
different land use types were estimated and analyzed separately. The main objec-
tives were: (1) to understand the spatial pattern of ET in the region, (2) to
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understand interannual and seasonal variability of ET in the region, (3) to identify
controlling factors of ET over different land use types, and (4) to evaluate the
benefit of water-saving rehabilitation during the past 11 years.

6.2 Study Site and Data

6.2.1 Study Area

The Hetao Irrigation District (N40.1°–41.4° E106.1°–109.4°) is located in the
western part of Inner Mongolia Autonomous Region, North China. Four counties
(Linhe, Wuyuan, Dengkou and Hangjinhouqi) in the district which have the largest
water diversions were selected for this study (Fig. 6.1). The area is characterized
with a typical continental climate, being very cold in winter with little snowfall and

Fig. 6.1 Location of the study area (Pentagram indicates the location of Dengkou Agricultural
Experiment Station) (Yang et al. 2012)
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very dry in summer. Average annual temperature is about 5.6–7.4 °C. Plain
occupies most part of the study area, with the elevation slightly higher in the south-
west and lower in the north-east (a.s.l. 1,028–1,062 m), except for a mountain
region in the north-west of Dengkou County (a.s.l. 1,059–2,012 m) (Fig. 6.1).
Besides, in the central and southern part of Dengkou County, there is an extensive
area of sandy land and Gobi desert (Fig. 6.2). The groundwater water table ranges
between 0.8 and 2.6 m within a year, and the soil texture is silty clay loam with
severe salinization (Yu et al. 2010).

Spring wheat, summer maize and sunflower are predominant crops within the
irrigation district. The growing season for spring wheat is from late March to mid-
July, while maize and sunflower are planted in late April and late May, and harvested
in mid-October and mid-September, respectively. Because of soil frozen from
November to March, the crop growing periods from April to October was considered
in the following analysis.

6.2.2 Data Sources

The Moderate Resolution Imaging Spectroradiometer (MODIS) data were used for
this study because of its high temporal resolution (1–2 days) and accessible spatial
resolution (250–1,000 m). Data sets including MOD09GA and MOD11A1 were
downloaded from NASA Data Center (https://wist.echo.nasa.gov/api). The original

Fig. 6.2 Land use map for the study area (Figure within the bracket indicates the area of the land
use type, hm2) (Yang et al. 2012)
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images were re-projected into Universal Transverse Mercator (UTM) projection and
resampled with a spatial resolution of 250 m. Images with cloud cover less than
about 5 % were used in the study based on visual examination (Table 6.1). Liang’s
method (Liang 2001) was used to calculate broadband surface albedo from seven
shortwave channels, and NDVI was derived from red and near-infrared bands
following Huete et al. (2002) and Zhou et al. (2009).

Land use map (1:100,000) of the study area for the year of 2000 was provided by
Environmental and Ecological Science Data Center for West China, National Nat-
ural Science Foundation of China (http://westdc.westgic.ac.cn). DEM data (SRTM)
with spatial resolution of 90 m were downloaded from http://srtm.csi.cgiar.org/.
Daily climate data for the study area were provided by China Meteorology Data
Sharing Service System (http://cdc.cma.gov.cn/). All these data were processed to be
the same with MODIS images in terms of their spatial reference and resolution.

Table 6.1 MODIS images used in this study (Yang et al. 2012)

Year Total
number

Day of year

2000 21 98, 106, 120, 124, 135, 143, 151, 160, 163, 174, 181, 192, 194, 207,
235, 242, 251, 256, 264, 266, 275

2001 30 103, 106, 110, 128, 131, 132, 135, 136, 137, 138, 148, 151, 153, 155,
158, 164, 192, 194, 203, 210, 211, 213, 221, 231, 232, 235, 236, 253,
263, 287

2002 29 95, 114, 123, 128, 113, 136, 149, 152, 157, 175, 179, 192, 195, 197,
206, 211, 214, 217, 218, 223, 227, 229, 231, 240, 260, 266, 268, 272,
281

2003 24 105, 106, 115, 120, 122, 128, 131, 143, 148, 154, 157, 166, 173, 189,
201, 206, 217, 218, 225, 235, 244, 250, 265, 274

2004 37 95, 101, 105, 107, 108, 113, 114, 115, 117, 128, 132, 133, 140, 142,
143, 146, 151, 152, 161, 172, 183, 188, 189, 197, 206, 212, 216, 217,
220, 221, 238, 242, 247, 252, 270, 277, 282

2005 22 94, 107, 114, 117, 126, 128, 134, 147, 152, 157, 165, 168, 173, 192,
205, 212, 229, 238, 244, 251, 264, 274,

2006 30 112, 120, 126, 133, 138, 142, 148, 151, 154, 161, 165, 176, 181, 186,
207, 209, 214, 215, 218, 226, 227, 228, 245, 248, 252, 254, 255,
258,259, 273

2007 29 98, 114, 115, 120, 125, 132, 133, 139, 146, 147, 152, 155, 157, 164,
178, 181, 190, 200, 214, 219, 232, 239, 246, 253, 264, 265, 266, 267,
284

2008 28 98, 104, 107, 119, 125, 139, 141, 143, 144, 149, 159, 170, 176, 177,
187, 194, 203, 207, 216, 219, 235, 239, 240, 251, 254, 255, 259, 276

2009 26 105, 106, 123, 125, 127, 142, 145, 150, 161, 165, 170, 171, 176, 182,
187, 196, 204, 206, 217, 225, 238, 243, 254, 257, 271, 282

2010 26 113, 121, 122, 126, 130, 139, 153, 155, 162, 164, 175, 186, 196, 203,
209, 217, 225, 234, 235, 238, 240, 255, 256, 266, 268, 277
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Data used for regional water balance modeling, including precipitation, total
water diversion from the Yellow River, total outflow and groundwater depth for
each county, were monitored and provided by the Hetao Irrigation District
Administration in Inner Mongolia Autonomous Region in North China (http://
www.htgq.gov.cn).

6.3 Evaluation of HTEM Performance

In this study, two ways were adopted to examine the performance of HTEM model.
At field scale, the output of HTEM model was compared with average ET rate of
5–7 days in the Dengkou Agricultural Experiment Station in 2009 (N40.41°
E107.04°) (Dai et al. 2011). During the growing of 2009, soil moisture at different
soil layers (0–20, 20–40, 40–60, 60–80, 80–100 cm) were measured using both
oven drying and TRIME-IPH methods with a sampling interval of 5–7 days.
Evapotranspiration between sampling days were derived by soil water balance
calculation. Then, a spatial averaged ET over different sampling points was used as
the representative for the whole pixel.

At regional scale, total ET for the growing season (April–October) of 2001–2009
estimated by HTEM was tested with regional water modeling,

ETwater balance ¼ Pþ D� R� DS ð6:1Þ

where ETwater_balance is the total ET calculated by water balance model; P and D are
the total rainfall and total water diversion from the Yellow River, respectively; R is
the total outflow, while there are no water flows into the region except the Yellow
River. ΔS is the annual variation of soil moisture storage, which was estimated from
the measured changes in groundwater depth,

DS ¼ DG � A � l ð6:2Þ

where ΔG is annual change in groundwater depth, and A is total area. μ is specific
yield, and was chosen as 0.046 following Chen et al. (2005).

6.4 Results and Discussion

6.4.1 Model Validation

At the field scale, the SEBAL estimated ET closely match the observed data (Dai
et al. 2011) (Fig. 6.3), with the root mean square error of 0.60 mm day−1 and the
relative error of 10.8 %. This accuracy is very similar with that of the SEBAL
model applied in the same region (RMSE = 0.53 mm day−1, relative error = 14.6 %)
(Yang et al. 2012).
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At the regional scale, the growing season ET estimated by HTEM generally
agrees well with the output of water balance model (Fig. 6.4). The root mean square
error is 21.9 mm and the relative error is 5.6 %. This error is slightly lower that of
the SEBAL model, which shows an RMSE of 26.1 mm (or 5.7 %), as reported in
Yang et al. (2012).

6.4.2 Spatial ET Pattern

The major advantage of remote sensing based ET estimation methods is its ability
to describe the spatial variation of ET at regional scale. The spatial pattern of
growing season ET of the year 2004 for the study area is illustrated in Fig. 6.5. The
reason to choose this year for illustration is that most available MODIS images were

Fig. 6.4 Comparison
between total growing season
ET calculated by HTEM and
water balance model from
2001 to 2009

Fig. 6.3 Comparison
between HTEM estimated ET
and measured ET
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used in 2004 (Table 6.1), which is believed to be able to produce the most reliable
model outputs (Ozdogan et al. 2010).

Overall, the growing season ET was higher in the northern and eastern parts of the
study area, and obviously lower in the southwest. This is because there are wide-
ranging areas of sandy land and Gobi desert in the Southwest, while agriculture land
occupies most part of northern and eastern regions, as indicated in Fig. 6.2. The
highest ET happens over water body of the Yellow River along the Southern edge of
the region. For the three counties in the eastern part (Wuyan, Linhe and Hang-
jinghouqi), ET ranges from 250 to over 700 mm, with most area between 500 and
650 mm. The lower ET occurs over the city and the scattered sandy dune areas. For
Dengkou in the southwest, the growing season ET was less than 300 mm in most
areas, while comparatively higher over the agricultural and marsh lands in the central
part of the county. In the mountain area, where the land surface is mainly covered by
bare rock with sparse vegetation, ET was around 250 mm.

6.4.3 Evapotranspiration Over Agriculture Land

The annual summaries of estimated agricultural land evapotranspiration (ETagri) and
other hydrometeorological characteristics are listed in Table 6.2. All ET discussed
below are spatial averaged values of different land use types. Agricultural land ET
during the growing season from 2000 to 2010 ranged from 578 to 634 mm, with the

Fig. 6.5 Spatial distribution of HTEM estimated total ET for the growing season (April–October)
of 2004
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highest ET occurred in 2010 and lowest in 2002. The variation of annual ETagri was
in good accordance with the variation of annual reference ET. The relationship
between them can be described by a linear function (Fig. 6.6), with the coefficient of
determination (R2) of 0.75. This is because that soil moisture of agricultural land is
artificially controlled at a high level by irrigation systems in the region. Therefore,

Table 6.2 Annual summaries of spatial averaged growing season agricultural land evapotrans-
piration (ETagri) and other hydrometeorological characteristics, including reference evapotranspi-
ration (ETr), cumulative net radiation (Rn), mean air temperature (Ta), mean vapor pressure deficit
(VPD), total precipitation (P) and mean wind speed for the growing period

Year ETagri
(mm)

ETr
(mm)

Rn

(MJ m−2)
Ta
(°C)

VPD
(kPa)

P (mm) Wind speed
(m s−1)

2000 598.4 916.2 2324.6 18.0 1.26 94.2 1.7

2001 595.1 903.9 2323.3 18.6 1.26 157.0 1.7

2002 579.2 880.9 2373.2 17.8 1.20 139.8 1.6

2003 588.7 927.9 2372.3 17.8 1.15 134.7 2.1

2004 599.6 948.6 2362.6 17.8 1.16 148.2 2.1

2005 597.5 955.0 2347.1 18.9 1.43 76.9 1.7

2006 618.9 964.3 2392.3 18.8 1.34 162.6 1.8

2007 594.7 919.0 2323.0 18.2 1.29 145.2 1.6

2008 578.1 904.7 2390.7 18.2 1.30 190.2 1.5

2009 612.3 958.5 2368.5 18.8 1.45 78.2 1.6

2010 633.9 978.8 2497.7 17.3 1.11 133.4 2.5

Average 599.8 932.5 2370.5 18.2 1.27 132.8 1.8

Maximum 633.9 978.8 2497.7 18.9 1.45 190.2 2.5

Minimum 578.1 880.9 2323.0 17.3 1.11 76.9 1.5

Fig. 6.6 Relationship
between agricultural land
evapotranspiration and
reference evapotranspiration
for the growing season of
2000–2010
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meteorological condition becomes the major influencing factor on actual evapo-
transpiration. Likewise, due to irrigation, rainfall impacts little on ETagri (Table 6.2).

The daily ETagri over the growing season (April–October) ranged from 2.72 to
2.96 mm day−1, with a mean value of 2.80 mm day−1. Compared with other
farmland ecosystems in North China, this value is higher than that measured in
Weishan Irrigation District of North China Plain (2.24 mm day−1, winter wheat and
summer maize, Lei and Yang 2010), while lower than those measured in Lu-
ancheng of North China Plain (3.9 mm day−1, winter wheat and summer maize, Liu
et al. 2002) and estimated in Songnen Plain of Northeast China (3.9 mm day−1

averaged from May to September, maize and spring wheat, Zeng et al. 2010.).
The monthly ET over agricultural land during the past 11 years is illustrated in

Fig. 6.7. The seasonal variation of ETargi within a year was a unimodal curve, with
the peak value occurring in June in most years. This is very different from the trend
found in North China Plain, where ETagri showed a bimodal process within a year
(Lei and Yang 2010; Liu et al. 2002). In North China Plain, multiple cropping of
winter wheat and summer maize in a year results in low ET in late growing period
of winter wheat and early growing period of summer maize. However, cropping
pattern in Hetao area is single cropping of spring wheat, summer maize and sun-
flower. ET over agricultural lands does not decrease too much during the harvest of
spring wheat, while still maintains at a high level in response to the rapid growth of
summer maize and sunflowers.

Monthly agricultural land ET was plotted against reference ET to investigate the
meteorological control on seasonal variability in ETagri (Fig. 6.8). On a monthly
basis, reference ET explained 77 % of seasonal variability in ETagri during the
whole growing seasons. However, as the crop growing stage may also be an
important controlling factor of ETagri (Allen et al. 1998), the whole growing period
was divided into three sub-periods based on the criteria that months within each

Fig. 6.7 Spatial averaged monthly agriculture land ET and reference ET (ETr) in the study area
from 2000 to 2010
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sub-period have similar regional crop coefficients (Kc_agri, defined as the ratio of
spatial averaged monthly ETagri to reference ET). As shown in Fig. 6.8, during the
sowing season of spring wheat in April, the regional crop coefficient had its lowest
value of about 0.3. Since the time of soil thawing may be different over years which
may result in different sowing time and thus variability in regional crop coefficient,
only 43 % of variability in April ETagri was explained by reference ET. In June, July
and August, the regional crop coefficient had its highest value of around 0.76, and
the variation of monthly reference ET explained 79 % of the variability of monthly
ETagri in this stage. During May, September and October, most crops enter its
developing or senescence stage, the regional crop coefficient is higher than that of
April but lower than those in June, July and August. Interestingly, the variability of
monthly ETagri in this sub-period is best correlated with that of reference ET with a
coefficient of determination of 0.93.

6.4.4 Evapotranspiration Over Other Land Use Type

Annual summaries of evapotranspiration over different land use types are listed in
Table 6.3.Water body had the largest ET with the mean value of 632 mm, while Gobi
desert had the minimum ET of 90 mm. Following water body, irrigated grassland had
the second largest mean ET of 553 mm. Marsh land, woodland and non-irrigated
grassland had similar annual ET with the mean value of about 460 mm. Beside, ET
over urban and suburb, mountain region and sandy land were 393, 200 and 136 mm,
respectively. Notably, average annual ET over mountain areas was slightly higher
than annual precipitation. This is due to the underestimation of precipitation over
mountain regions, as all measured rainfall data were collected in the plain area.

Fig. 6.8 Relationship
between monthly agriculture
land ET and reference ET.
The dashed line fits to the
whole data set, and solid lines
fit to each subset of data
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To further understand the controlling factors of ET in the region, ET over each
land use type are plotted against total reference ET and cumulative rainfall in
Figs. 6.9 and 6.10, respectively. As shown in Fig. 6.9, the variations of ET over
water body, marsh land, woodland and irrigated grassland were largely controlled by
reference ET on annual basis, with the determination coefficients of 0.87, 0.82, 0.75
and 0.69, respectively. The high dependence of woodland ET on reference ET is
likely because of shallow groundwater, from which trees can uptake water with
small stresses. While for irrigated grassland, irrigations were applied to maintain its
growth for stockbreeding. In such cases, plants may transpire at its potential rate
defined by atmospheric demand. On the contrary, the variations of annual ET over
sandy land and Gobi desert were mainly explained by the variation of annual rainfall
(Fig. 6.10). This is because that water was the main limitation on surface ET in these
areas. However, without other water sources, rainfall became the dominant factor
that controls the evapotranspiration processes. Notably, compared with the linear
relationship for sandy land, the responses of ET over Gobi desert to rainfall were
more like logistic, indicating that the increase rate of ET is going down with the
increase of precipitation in these regions. When the total rainfall amount excesses a
critical value, the extra precipitation will be taken away with surface runoff because
of small water holding capacity. Annual ET and rainfall over mountain area showed
similar relationship with that between ETGobi and rainfall. However, because rainfall
in the mountain areas were possibly underestimated as discussed earlier, the rela-
tionship between ETMount and rainfall is not shown in Fig. 6.10.

Compared with land use types listed above, the annual variation of ET from non-
irrigated grassland (ETNIGra) and saline soil (ETSal) were much more complex
(Table 6.3), as they did not depend either on reference ET or precipitation. ETSal
firstly showed a gradual decrease from 431 mm in 2000 to 380 mm in 2002, and then

Fig. 6.9 Relationships of
annual evapotranspiration
over different land use types
against reference
evapotranspiration (ETr)
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kept at 370–390 mm until 2005. After 2005, it went up year by year to 476 mm in
2010 (Table 6.3). This may be related to the following reasons. Firstly, as mentioned
earlier, the study area has been experiencing rehabilitation for water-saving since
1999. The reduction in irrigation and the increase in groundwater exploration have
led to a rapid decrease in groundwater level during the first several years (Fig. 6.11),
which may have resulted in insufficient water supply for saline fields, and thus
decreased ETSal. Secondly, the soil salinity has likely reduced after the decrease of
groundwater table (Yu et al. 2010). This may have resulted in an increasing
evapotranspiration after 2005, due to less salinity stress (Lamsal et al. 1999).

Fig. 6.10 Relationships of
annual evapotranspiration
over different land use type
against rainfall

Fig. 6.11 Variations of
annual average groundwater
depth and total water
diversion from the Yellow
River. The dashed line
indicates the variation trend of
total water diversion.
(Groundwater depth data for
2000 and 2010 are missing)
(Yang et al. 2012)

122 6 Remote Sensing Temporal and Spatial Patterns …



Thirdly, a small part of saline land may have been reclaimed to agricultural land with
the progress of irrigation district rehabilitation and with the decrease in soil salini-
zation as indicated in Gao et al. (2008). However, because the most recent land use
classification was made in 2000, the possible changes in saline soil area are not
considered in the study.

The interannual variation of regional crop coefficient of the non-irrigated grass-
land (Kc_NIGra) is shown in Fig. 6.12. Generally, Kc_NIGra decreased significantly
during the study period, with an average annual decline of 0.6 %. The decline of
Kc_NIGra reflects the increase of water stresses on evapotranspiration. Further analysis
ofKc_NIGra trend shows thatKc_NIGra decreased greater from 2000 to 2005, and almost
remain the same after 2005. This is in good agreement with the annual variation of
ETSal before 2005, which could have been caused by a decline in groundwater table
(Fig. 6.11). Figure 6.13 shows a close relationship between Kc_NIGra and the

Fig. 6.12 Variations of
annual crop coefficient
(Kc_NIGra) of non-irrigated
grassland and annual rainfall

Fig. 6.13 Relationship
between annual crop
coefficient (Kc_NIGra) of non-
irrigated grassland and
groundwater depth
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groundwater table, which could further support that the decreased in Kc_NIGra was
mainly caused by the decline of groundwater. Different from trees, the grass root is
shallow and less developed. Therefore, it is harder for grass root to access deeper
groundwater, and the decline of groundwater may exert a greater impact on grassland
evapotranspiration. Besides, because of root water storage capacity, the variation in
total rainfall may also influence Kc_NIGra, as shown in Fig. 6.12.

6.4.5 Evaluation of the Benefit of Water-Saving
Rehabilitation

ET maps over recent years provide an effective tool to evaluate the benefit of water-
saving rehabilitation, as evapotranspiration is the largest term of water consumption
in the study area (Du et al. 2011). As mentioned above, changing water use strategies
can strongly affect regional hydrological cycle and thus water use patterns for dif-
ferent land use types. Figure 6.14 shows the variation in the ratio of ETagri to ETall on
annual basis, where ETall is the sum of ET over woodland, grassland, marsh land,
urban and suburb, and agricultural land. Because of strong dependence on rainfall,
ET from sandy land, Gobi desert and mountain area are excluded in this analysis. In
addition, as part of saline fields may have been changed into agricultural lands which
were not considered in this study, the ET over saline soil was not include in this
analysis either.

Fig. 6.14 Variations of the ratio of annual agricultural land ET to regional ET and total volume of
water evaporated over agricultural land. The solid line indicates the variation trend of ETagri/ETall,
and the dashed line indicates the variation trend of total volume of water evaporated over
agricultural land

124 6 Remote Sensing Temporal and Spatial Patterns …



It is encouraging to see that the ratio of ETagri to ETall shows an ascending trend
over recent years (Fig. 6.14). This indicates that the proportion of agricultural land
water consumption in total water consumption has been increasing. Besides,
decreased water diversion from the Yellow River (Fig. 6.11) did not result in
decreased evapotranspiration in the agricultural land (Table 6.2 and Fig. 6.14), while
ETagri was reported to be positively correlated with agricultural yields when ETagri is
less than a certain value (Lei et al. 2010; Sun et al. 2006). This suggests that the
rehabilitation program in Hetao Irrigation District has not affected much on its
agricultural production. Inversely, the decline of groundwater level caused by
reduced recharge and intensified exploitation for agricultural water use have resulted
in a significant decrease in water use by non-irrigated grassland, which was found to
be the largest contribution of water saving. In addition, groundwater level fall may
benefit the management of saline soil, as groundwater rising during the spring and
summer is the main cause of secondary salinization in the study area (Yu et al. 2010).

6.5 Conclusions

Growing season evapotranspiration from 2000 to 2010 in Hetao Irrigation District
was mapped using the HTEM model fed with MODIS data. The performance of
HTEM model was tested with in situ measurement at field scale and water balance
modeling at regional scale, respectively. The results indicate that:

(1) The HTEM model can be well applied in Hetao area, with the RMSE of
0.6 mm day−1 at field scale on 5–7 days basis and 21.9 mm at regional scale
on annual basis.

(2) The annual agricultural land ET ranged from 578 to 634 mm, which accounts
for about 62 % of total ET in the region. Both the interannual variability in
annual ET and the seasonal variability in monthly ET can be primarily
explained by the variations of reference ET.

(3) The interannual variabilities in ET over water body, irrigated grassland, marsh
land and woodland were strongly correlated with the variations of reference
ET, while those over sandy land and Gobi desert mainly depended on the
variation of annual precipitation.

(4) Agricultural land ET did not decrease with the reduction in total water
diversion from the Yellow River following the progress of irrigation district
rehabilitation project. On the contrary, non-irrigate grassland was found to be
the largest contribution of water-saving due to groundwater level falling.
These results indicate a positive effect of the rehabilitation project, and would
be helpful in future water management for the area. Besides this positive
effect, however, we have to notice that the continuous decrease of water
supply would result in the drop of groundwater level and consequently the
degradation of non-irrigated grassland, which may further cause other eco-
logical issues.
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Chapter 7
A Novel Method for Estimating
Terrestrial Evapotranspiration
by Exploiting the Linkage
Between Water and Carbon Cycles

7.1 Introduction

As stated in Chap. 5, among many methods of ET quantification, satellite remote
sensing has been shown to be one of the most promising ways of mapping ET over
larger areas (e.g., Bastiaanssen et al. 1998; Norman et al. 1995). Numerous models
with varying structure and complexities have been developed to derive ET from
remotely sensed variables (e.g., land surface temperature, LST, and vegetation
index, VI) in combination with concurrent meteorological measurements (e.g., near
surface air temperature and vapor pressure) (e.g., Bastiaanssen et al. 1998; Long
and Singh 2012; Lu and Zhuang 2010; Norman et al. 1995; Su 2002; Yang and
Shang 2013). With increasing spatial and temporal resolutions of satellite images,
meteorological inputs at sufficient temporal and spatial scales corresponding to
those of satellite images are required but infrequently available. For example, the
Moderate Resolution Imaging Spectroradiometer (MODIS) Global Terrestrial
Evapotranspiration Product (MOD16) adopts Global Modeling and Assimilation
Office meteorological data at 1° latitude × 1.25° longitude resolution, and uses the
version 4 0.05-degree Climate Modeling Grid albedo as a major model input (Mu
et al. 2011). This is much too coarse with respect to 1 km × 1 km MODIS pixel and
the mismatch in spatial resolution among the three input data sets is a key limitation
of MOD16, especially for regions with strong climatic gradients.

Although it would be possible to improve the spatial resolution of meteoro-
logical fields, it is worthwhile exploring methods to estimate ET only from remotely
sensed information. This would substantially reduce the input effort and therefore
increase the robustness of satellite-based ET models. The idea lies in use of some
variables which are highly correlated with ET and have the potential to be estimated
based entirely on remote sensing.

ET consists of two components, evaporation (E) from the soil and transpiration
(T) from the vegetation canopy. Because photosynthesis and transpiration are both
biologically regulated by plant stomata and T generally dominates ET over vegetated
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surfaces, gross primary production (GPP) is considered valuable to infer ET over
large areas only using satellite data (Beer et al. 2009; Zhang et al. 2009). Existing
studies have shown that use of remote sensing data solely can provide reasonable
GPP estimates across a wide range of vegetation types (Rahman et al. 2005; Sims
et al. 2008; Peng et al. 2013). Moreover, the ratio of GPP to ET, known as the
ecosystem water use efficiency (WUE), was found to be fairly constant over time for
certain ecosystems (Beer et al. 2007, 2009; Law et al. 2002). Therefore, once the
among-site variability of WUE is well assessed, ET can be estimated from remotely
sensed GPP. The objective of this chapter is to develop a method to estimate ET
using remotely sensed GPP. ET estimates from the developed method were evalu-
ated with eddy covariance measurements within the Ameriflux network.

7.2 Site, Data and Methods

7.2.1 Flux Site Data

Data from 20 sites within the Ameriflux network (http://public.ornl.gov/) were used
to develop and evaluate the new method (Table 7.1). These sites represent a wide
diversity of bioclimate across North America. For each site, daily values of GPP
and ET accumulated from half-hourly measurements of net ecosystem exchange
and latent heat by eddy covariance systems were used. Data quantity control was
described in publications listed in Table 7.1. Daily data were further summed up to
obtain monthly GPP and ET values. Months with data-gap longer than 3 days were
discarded from this analysis. In addition to flux data, biological and ancillary data,
such as leaf area index and soil texture, were also acquired.

7.2.2 Remote Sensing Data

To estimate GPP, twoMODIS land surface products were used in this study (from the
Oak Ridge National Laboratory’s Distributed Active Archive Center (http://www.
modis.ornl.gov/modis/), including Enhanced Vegetation Index (EVI) and LST. EVI
was obtained from the 16-day Terra MODIS vegetation index product (MOD13Q1,
250 m) and LST was acquired from the 8-day LST and Emissivity product
(MOD11A2, 1,000 m). The LST data were averaged with two consecutive periods of
the data in order to conform to the 16-day MODIS EVI data. Only EVI data with
aerosol values listed as “low” and the “usefulness” values greater than 8 (on a scale of
0–10) and LST data marked as cloud free were used. Following Sims et al. (2006), all
data were extracted from 3 km × 3 km area centered on the flux tower.
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7.2.3 Ecosystem Water Use Efficiency

The coefficient of determination (R2) between monthly GPP and ET for the 20 sites
ranges from 0.72 to 0.97 (Table 7.1), demonstrating that WUE of the ecosystem
remains generally invariant at monthly scale. Then, WUE for each site was
calculated from,

Table 7.1 Descriptions of the flux sites in this study, including Site identifier (Site ID), Plant
Functional Type (PFT), Latitude (Lat, °N), Longitude (Lon, °W), data period, observed Water Use
Efficiency (WUE), coefficient of determination between observed monthly GPP and monthly ET
(R2) and reference (Yang et al. 2013)

Site ID PFT Lat Lon Data period WUE R2 References

US_Ha1 DBF 42.54 −72.17 2001–2005 3.40 0.97 Urbanski et al.
(2007)

US_WCr DBF 45.81 −90.08 2001–2006 3.67 0.93 Cook et al. (2008)

US_MMS DBF 39.32 −86.41 2001–2006 2.31 0.90 Dragoni et al.
(2007)

US_Bar DBF 44.07 −71.29 2004–2006 3.66 0.89 Jenkins et al.
(2007)

US_MOz DBF 38.74 −92.20 2004–2007 2.29 0.95 Gu et al. (2007)

US_Me2 ENF 44.45 −121.55 2002, 2004–
2007

3.14 0.80 Irvine et al. (2007)

CA_NS1 ENF 55.88 −98.48 2002–2005 2.12 0.87 Goulden et al.
(2006)

CA_NS2 ENF 55.91 −98.53 2002–2005 1.91 0.93 Goulden et al.
(2006)

CA_NS3 ENF 55.91 −98.38 2001–2005 2.19 0.87 Goulden et al.
(2006)

CA_NS4 ENF 55.91 −98.38 2002–2004 2.00 0.86 Goulden et al.
(2006)

CA_NS5 ENF 55.86 −98.49 2001–2005 2.93 0.94 Goulden et al.
(2006)

US_Wrc ENF 45.82 −129.95 2001–2006 3.21 0.72 Paw et al. (2004)

US_Syv MF 46.24 −89.35 2001–2005 3.39 0.95 Desai et al. (2005)

US_LPH MF 42.54 −72.19 2002–2005 2.77 0.95 Hadley et al.
(2008)

US_Ho1 MF 45.20 −68.74 2001–2004 4.27 0.93 Hollinger et al.
(2004)

US_NC1 MF 35.81 −76.71 2005–2006 1.73 0.93 Noormets et al.
(2010)

US_Fuf Savanna 35.09 −111.76 2005–2007 1.69 0.86 Dore et al. (2008)

CA_NS6 Shrub 55.92 −98.96 2001–2005 1.47 0.85 Goulden et al.
(2006)

CA_NS7 Shrub 56.64 −99.95 2005–2005 1.14 0.84 Goulden et al.
(2006)

US_Var Grass 38.41 −120.95 2001–2007 2.4 0.88 Ma et al. (2007)
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X
n

GPP
X
n

ET

 !�1

ð7:1Þ

where n is the number of months with available data.
Ecosystem WUE varies by a factor of *3 among sites (Fig. 7.1), which is

mainly attributed to environmental gradients. Following Beer et al. (2009), we
regressed WUE to two stable environment properties (R2 = 0.82, p < 0.001, n = 20),

WUE ¼ a1hF þ a2ð1� ekcLAImaxÞ ð7:2Þ

where a1 and a2 are regression coefficients (Table 7.2), θF is volumetric soil
water content at field capacity and LAImax is the maximum leaf area index during
the data period. In this study, θF was estimated to be the water content retained in
the soil at −0.02 MPa of suction pressure, which is midway of most reported θF
values (−0.01 to −0.033 MPa) (Haise et al. 1954; Lei et al. 1988). The VG-M
model (Van Genuchten 1980) was adopted to describe the soil water retention
curve, and the parameters of the VG-M model for each site were estimated from
measured soil texture and bulk density using the method given by Schaap et al
(1998). The exponential function of LAImax in Eq. (7.2) corresponds to the fraction
of absorbed sunlight in the photosynthetic active radiation (PAR) domain. kc is the
extinction coefficient of radiation attenuation and is set to be 0.6.

The leave-one-out cross validation is performed to test Eq. (7.2) (Fig. 7.1). The
estimated WUE agrees fairly well with observed ones (R2 = 0.80, p < 0.001,
n = 20). These estimated WUE values were later used to invert ET in combination
with remotely sensed GPP.

Fig. 7.1 Validation of
bivariate regression WUE = f
(θF, LAImax) by leaving one
out each time. Coefficient of
determination between
estimated and observed WUE,
1:1 line and site ID are shown
(Yang et al. 2013)
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7.2.4 ET Estimation

As ecosystem WUE remains fairly invariant at the monthly scale, monthly ET can
be calculated by dividing monthly GPP with WUE (i.e., ET = GPP/WUE).
However, to be consistent with the temporal scale of the MODIS data, we calcu-
lated ET at a 16-day interval here by assuming that the 16-day WUE is also
relatively constant. It is assumed that short-term (e.g., days and sub-days) fluctu-
ations in WUE can be effectively eliminated at the 16-day timescale.

We chose the Temperature-Greenness (TG) model proposed by Sims et al.
(2008) to estimate 16-day GPP. It was successfully applied to estimate 16-day GPP
for evergreen and deciduous forests in North America (Sims et al. 2008). The TG
model estimates GPP using a combination of MODIS LST and EVI products at the
16-day interval as:

GPP = m TG� R EVI� R LST ð7:3Þ

R EVI = EVI� 0:1 ð7:4Þ

Table 7.2 Value of
coefficients a1 and a2 and
estimated WUE for each site
(Yang et al. 2013)

Site a1 a2 Simulated WUE

US_Ha1 −5.652 4.938 3.58

US_WCr −5.428 4.805 2.96

US_MMS −5.534 4.905 2.66

US_Bar −5.649 4.934 3.79

US_MOz −5.574 4.923 2.72

US_Me2 −5.513 4.872 3.05

CA_NS1 −5.679 4.925 1.91

CA_NS2 −5.398 4.858 2.28

CA_NS3 −5.5 4.881 2.32

CA_NS4 −5.431 4.868 2.34

CA_NS5 −5.557 4.897 2.99

US_Wrc −5.55 4.869 2.85

US_Syv −5.483 4.858 3.25

US_LPH −5.832 5.026 3.37

US_Ho1 −5.095 4.686 3.69

US_NC1 −5.396 4.857 2.1

US_Fuf −5.812 4.965 1.27

CA_NS6 −5.493 4.874 1.55

CA_NS7 −5.81 4.97 0.72

US_Var −5.576 4.885 2.1

All −5.547 4.89 –
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30
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where m_TG is the coefficient, which can be estimated as a function of annual mean
nighttime LST (Sims et al. 2008). Equation (7.4) indicates a zero GPP when EVI is
smaller than 0.1, and Eq. (7.5) indicates the value of R_LST changes linearly
between one when LST is 30 °C and zero when LST is 0 or 50 °C.

7.3 Results and Discussion

Overall, the proposed approach estimated 16-day ET reasonably well with reference
to tower-based measurements (R2 = 0.84, p < 0.001, n = 1,290). The root mean
square error (RMSE) ranges from 0.16 to 0.72 mm/day and the mean relative error
(MRE) are found between 0.6 and 38.6 % (Table 7.3). The bias in ET estimation
results mostly from errors in modeled WUE from Eq. (7.2). For example, at
US_WCr, Eq. (7.2) underestimates WUE by 19.3 %, which results in a 15.8 %
overestimation of ET. The residual bias may be explained by error in m_TG
estimates.

Larger scatters of the relationship between observed and estimated ET are found
at the US_Me2 (R2 = 0.64, p = 0.001, n = 57) and US_Fuf sites (R2 = 0.68,
p < 0.001, n = 44), which could be ascribed to the weaker relationship between GPP
and ET (Table 7.3) and lower accuracy of the TG model in estimating GPP
(Table 7.3). Because of the strong correlation between GPP and ET, the accuracy of
ET estimates depends highly on that of GPP estimates. For the remaining sites, R2

between observed and estimated GPP by the TG model ranges from 0.74 to 0.96,
and R2 between observed and estimated ET are all larger than 0.75 (p < 0.001).
Besides the TG model, other remote sensing-based GPP models could also be used,
e.g., the chlorophyll content model (Gitelson et al. 2006; Peng et al. 2013). Wu
et al. (2011) evaluated the chlorophyll content model over 15 North American flux
sites and reported that the model could provide good estimates of monthly GPP for
both deciduous forest sites and non-forest sites with moderate results for evergreen
forest sites.

Despite the overall good performance, the proposed method tends to underesti-
mate ET at the lower end in all sites except for the grassland site (Fig. 7.2). This is
mainly due to the underestimation of soil evaporation (E) during non-growing
seasons. Theoretically, GPP should be a better indicator of plant transpiration
(T) than total ET (Beer et al. 2009). However, T usually dominates ET, and the
partitioning between E and T changes proportionally (depends mostly on surface
vegetation conditions) during growing seasons, which may still result in a good
GPP-ET relationship. Nevertheless, GPP and T declines towards zeros during non-
growing season, while E may still occur if temperature and water conditions permit.
Although the non-growing season is mainly defined by either low temperature or
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low soil moisture in natural ecosystems which implies only small E values, cautions
should be paid when applying the method to cropland ecosystems where plant
phenology and soil moisture conditions are profoundly impacted by human activi-
ties, e.g., irrigation.

It is more encouraging to see that nearly all statistics at all sites for the proposed
method show better performance than the MOD16 product (Table 7.3). In addition
to MODIS 1-km land surface products, MOD16 uses other coarse resolution
meteorological inputs and is essentially an interpolated and ‘pseudo-continuous’
product, i.e., not truly per pixel (Rahman et al. 2005). Performance of the MODIS
ET algorithm could be largely improved when in situ meteorological measurements
are used (Mu et al. 2011). Another limitation in MOD16 is that the effects of soil
moisture restriction on evaporation are generally reflected by meteorological forc-
ing based on the complementary relationship, resulting in slower response of
variations in energy and heat fluxes than the thermal infrared remote sensing-based
ET models (Long and Singh 2010). If estimating integrated ET over longer time-
scales (e.g., half a month) is the main focus of studies and the MODIS ET algorithm

Table 7.3 Summary of statistics of model performance at each site

Site ID GPP_TG model ET_This study ET_MOD16

RMSE R2 RMSE MRE R2 RMSE MRE R2

US_Ha1 2.16 0.85 0.43 4.4 0.86 - - -

US_WCr 1.46 0.94 0.41 15.8 0.92 0.76 36.1 0.85

US_MMS 1.49 0.91 0.45 2.7 0.89 0.81 23.2 0.82

US_Bar 0.76 0.96 0.32 0.6 0.89 1.03 78.5 0.83

US_MOz 1.87 0.74 0.72 10.1 0.76 1.04 3.6 0.76

US_Me2 1.21 0.76 0.48 5.1 0.64 0.79 8.5 0.29

CA_NS1 1.17 0.85 0.22 1.1 0.95 0.51 7.1 0.70

CA_NS2 0.63 0.90 0.35 11.4 0.93 0.43 5.3 0.75

CA_NS3 1.05 0.85 0.33 4.1 0.87 0.51 20.3 0.73

CA_NS4 0.41 0.94 0.16 11.9 0.91 0.58 71.1 0.76

CA_NS5 0.75 0.92 0.24 12.2 0.92 0.65 32.8 0.71

US_Wrc 1.97 0.77 0.47 3.7 0.75 1.28 43.5 0.41

US_Syv 1.32 0.89 0.43 2.6 0.88 1.37 69.7 0.78

US_LPH 1.58 0.87 0.58 17.4 0.87 1.13 61.5 0.76

US_Ho1 1.29 0.90 0.40 18.1 0.90 - - -

US_NC1 1.59 0.80 0.56 14.1 0.88 - - -

US_Fuf 0.91 0.56 0.44 6.1 0.68 1.00 49.2 0.42

CA_NS6 1.09 0.82 0.31 8.9 0.85 0.48 17.0 0.72

CA_NS7 0.77 0.79 0.59 21.3 0.84 0.44 28.8 0.69

US_Var 1.58 0.87 0.49 38.6 0.83 - - -

RMSE is the root mean square error (g C/m2 /day for GPP and mm/day for ET), MRE is the mean
relative error (%). Statistics of MOD16 are given in Mu et al. (2011). Hyphen (-) denotes null
value (Yang et al. 2013)
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underperforms in most cases, reliable estimates of ET based purely on satellite
remote sensing demonstrated in this study should have greater robustness.

In addition to the advantages in fewer inputs, the developed method circumvents
up-scaling instantaneous ET estimates at satellite overpass time to daily values or
longer timescales and therefore reduces possible uncertainties in extrapolating ET
under clear sky days over days without quality satellite images (Ryu et al. 2012).
MODIS 16-day EVI and 8-day LST data are used in the TG model to estimate GPP
and subsequently ET. These multi-day composite products are more routinely
available than daily MODIS data (e.g., MODIS swath LST). Effects of cloud on ET
estimation has been largely reduced because the composite 8-day LST product is
mainly used to capture low temperature (e.g., non-growing season) and drought
information over a half-month period in the TG model, and these information do
not change substantially between clear and cloudy days. This is an advantage over
those models that incorporate instantaneous remotely sensed LST.

However, there are also some limitations in the study: (1) only 20 sites were used
to develop the method, which may be not sufficient to come to a robust relationship
to map WUE at regional scale; (2) all sites used are located on continental North
America, with most regions subject to temperate or boreal climate. To make the
method an option for global ET estimation, more efforts will be needed to param-
eterize and validate the model over different bio-climates around the world; (3)
validation of the developed method was performed only at tower scales. Validation
of large-scale ET estimates from this approach can also be performed using water
balance closure (e.g., Yang et al. 2012) and it is our ongoing work.

Fig. 7.2 Comparison
between observed and
estimated 16-day ET at 20
Ameriflux sites. The dashed
line is the 1:1 line and the
solid line indicates the best fit
linear relationship (Yang et al.
2013)
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7.4 Conclusion

This chapter developed a method to estimate terrestrial ecosystem ET from remote
sensing by exploiting the linkage between water and carbon cycles. The major
strength of this method is that it does not require meteorological input as used by
other satellite-based ET models. This method is easy to apply, requiring only rou-
tinely available EVI and LST data at longer timescales (e.g., 16 days in MODIS
products) to calculate GPP, as well as remotely sensed leaf area index and regional
soil texture dataset to estimate WUE. ET estimates from the proposed method
compares reasonably well with flux-tower measurements at all validation sites.
Comparison with the MOD16 ET product shows that the developed method gen-
erally outperforms the MOD16 algorithm. Additional efforts will be made to
improve the method under lower evaporation conditions (e.g., non-growing season).
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Chapter 8
Conclusions, Limitations
and Recommendation for Future Research

8.1 Conclusions

Land surface evapotranspiration (ET) is one of the most active factors with the
terrestrial hydrological cycle, which also provides an important lower boundary
condition for understanding the climate system. Focused on vegetated surfaces,
particularly partially and non-uniformly vegetated surfaces, this dissertation com-
prehensively compared and evaluated different ET models (i.e., the P-M model,
two-layer model, two-patch model and the hybrid model) in estimating potential ET
and actual ET (Chaps. 2 and 3). With this, a hybrid dual source scheme-based soil-
vegetation-atmosphere continuum model was developed in Chap. 4. In order to
obtain ET information at the regional scale, a hybrid dual source scheme and
vegetation index-land surface temperature trapezoidal framework based remote
sensing ET model (i.e., HTEM) was proposed in Chap. 5. This model was then
applied in a larger irrigation district of North China to assess the impact of water-
saving rehabilitation project on local water resources in Chap. 6. Furthermore, to
circumvent difficulties in detail description of water and heat transfer over surfaces
with complex vegetation cover and to avoid uncertainties associated with meteo-
rological inputs at large scales, a new theory of ET estimation by exploiting the
linkage between water and carbon cycles was proposed in Chap. 7. Conclusions and
main findings of each chapter are given below.

Chapter 2 provides a detailed comparison of the performances among three dual
source ET models, including the S–W model, the T-P model and the TVET model,
in estimating and partitioning potential evaporation and potential transpiration
under different hypothetical vegetation distribution conditions. Results showed that
both the patch and hybrid model performed reasonably well in estimating potential
ET under homogeneous vegetation distribution conditions. However, the S–W
model tended to overestimate potential ET, as it generally gave higher potential
evaporation estimates. The overestimation in potential ET by the S–W model was
increased with the increase of Fc and the decrease of LAI. In contrast, the T-P
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model had a tendency to underestimate potential evaporation, especially with high
Fc and low LAI. For heterogeneous vegetation distribution conditions, potential ET
estimated from the S–W model was generally higher than that given by the T-P and
TVET model, particularly with low Fc. Potential evaporation (potential transpira-
tion) from the S–Wmodel increases (decreases) with the increase of LAI. However,
both variables from the S–W model did not change with changes of Fc. In contrast,
potential transpiration estimated from the T-P and TVET model was increased with
the increase of both LAI and Fc. Potential evaporation from the T-P model was
increased with the increase of Fc, but kept relative constant under various LAI
conditions, while potential evaporation from the TVET model was increased with
the decrease of both Fc and LAI. The above results suggest that the S–W model
may give reasonable potential transpiration estimates over homogeneous vegetated
surfaces, while the T-P model is more suitable for surfaces with lower fractional and
clumped vegetation cover. By contrast, the TVET model performs better than both
the S–W model and the T-P model, which can be used to estimate potential
evaporation and potential transpiration partitioning for a wide range of surfaces
with different vegetation distribution patterns.

Chapter 3 develops a hybrid dual source model (i.e., the H-D model) and applied
it in four different ecosystems to estimate actual ET processes. Outputs of the H-D
model were tested against eddy covariance measurements and compared with three
other ET models. The results indicate that (1) the H-D model could generate
accurate ET estimates in different ecosystems, with mean absolute errors ranging
from 16.3 to 38.6 W/m2, modified coefficient of efficiency ranging from 0.56 to
0.79, and modified index of agreement ranging from 0.48 to 0.87; (2) the H-D
model generally gives better ET estimates and E and T partitioning than the three
other models, suggesting that the H-D model appear to be more suited for ET
estimation over surfaces with different vegetation patterns; (3) the P-M model
significantly underestimates ET in the savannas ecosystem, but generally performs
well in other three ecosystems; (4) the S–W model tends to overestimate plant
transpiration when LAI is low, and the T-P model tends to overestimate plant
transpiration under low LAI but high Fr conditions.

Chapter 4 develops a unidirectional soil-plant-atmosphere continuum model (i.e.,
HDS-SPAC) by coupling the hybrid dual source scheme and a soil water/heat
dynamic model. The developed model was applied in an agricultural ecosystem and
a natural forest ecosystem, respectively. In addition, this chapter presents a new
experimental method for direct water stress function testing and parameterization.
The results show that (1) the HDS-SPAC model is able to correctly simulate soil
moisture/temperature profiles and ET, and capture effects of surface vegetation
characteristics on quantifying actual evaporation and transpiration; (2) the designed
experimental method is capable in examining and parameterizing water stress
functions, and the S-shape function is better than the Feddes function to fit for the
data of drooping sheoak; (3) the root water uptake water stress function is not only
dependent of the soil moisture condition, but also of the atmospheric demand. After
incorporating atmospheric demand into the S-shape water stress function, the per-
formance of the HDS-SPAC model is improved.
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Chapter 5 proposes a new remote sensing evapotranspiration model (HTEM)
based on the hybrid dual-source scheme and the theoretical trapezoid framework.
Soil wetness isolines within a theoretically determined trapezoid Fr/LST space are
used in HTEM to decompose bulk radiative surface temperature into canopy
temperature and soil temperature. Performance of the HTEM was tested at both the
humid SMACEX site in Iowa with Landsat TM/ETM+ data and the sub-humid
Weishan site in North China Plain with MODIS Terra data. Results showed that
energy fluxes from HTEM agree well with tower based measurements, and are
generally better than other remote sensing evapotranspiration models applied with
the same data sets. Additionally, the HTEM could provide reasonable partitioning
between evaporation and transpiration. Sensitivity analysis suggests that the HTEM
is mostly sensitive to temperature variables, and less sensitive to other meteoro-
logical observations and the hypothetic vegetation parameters.

Chapter 6 maps the growing season ET from 2000 to 2010 in Hetao Irrigation
District was mapped using the HTEM model fed with MODIS data. The perfor-
mance of HTEM model was tested with in situ measurement at field scale and water
balance modeling at regional scale, respectively. Results show that (1) the HTEM
model can be well applied in Hetao area, with the RMSE of 0.6 mm day−1 at field
scale on 5–7 days basis and 21.9 mm at regional scale on annual basis; (2) the
annual agricultural land ET ranged from 578 to 634 mm, which accounts for about
62 % of total ET in the region. Both the interannual variability in annual ET and the
seasonal variability in monthly ET can be primarily explained by the variations of
reference ET; (3) the interannual variabilities in ET over water body, irrigated
grassland, marsh land and woodland were strongly correlated with the variations of
reference ET, while those over sandy land and Gobi desert mainly depended on the
variation of annual precipitation; (4) Agricultural land ET did not decrease with the
reduction in total water diversion from the Yellow River following the progress of
irrigation district rehabilitation project. On the contrary, non-irrigate grassland was
found to be the largest contribution of water-saving due to groundwater level
falling. These results indicate a positive effect of the rehabilitation project, and
would be helpful in future water management for the area. Besides this positive
effect, however, caution has to be paid that the continuous decrease of water supply
would result in the drop of groundwater level and consequently the degradation of
non-irrigated grassland, which may further cause other ecological issues.

Chapter 7 proposes a method to estimate terrestrial ecosystem ET from remote
sensing by exploiting the linkage between water and carbon cycles. The major
strength of this method is that it does not require meteorological input as used by
other satellite-based ET models. This method is easy to apply, requiring only
routinely available EVI and LST data at longer timescales (e.g., 16 days in MODIS
products) to calculate GPP, as well as remotely sensed leaf area index and regional
soil texture dataset to estimate WUE. ET estimates from the proposed method
compares reasonably well with flux-tower measurements at all validation sites.
Comparison with the MOD16 ET product shows that the developed method gen-
erally outperforms the MOD16 ET algorithm.
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8.2 Limitations of Current Research
and Recommendations for Future Research

With the experience and insight gained from the studies, the following perspectives
are considered as limitations of the current study and recommended for future
research:

(1) Further validation of the hybrid dual source approach. Model comparison in
Chap. 2 was conducted in a relatively dry climate, and that in Chap. 3 was
limited in four types of ecosystem at the point level. Further efforts are needed
to test the applicability of the hybrid dual source approach over areas across a
wider range of climate types and vegetation types.

(2) Effect of terrain on ET processes. Despite vegetation, terrain factors, such as
slope size and direction, would also exert non-negligible impacts on ET
processes by directly controlling radiation transfer. Diverse in surface radia-
tion loading results in variations in water and heat conditions, leading to
heterogeneity in vegetation distribution. As a result, considering the terrain
effect on ET processes deserves more attentions as we continuous on ET
modelling.

(3) Further complement of the HDS-SPAC model. SPAC model contains detailed
descriptions of water and heat (also carbon) transfer within the SPAC system.
In comparison to previous SPAC models, the HDS-SPAC model focuses on
the improvements of above-surface water/heat transfer and sub-surface root
water uptake. However, for other sub-processes, such as radiation transfer
within the canopy and rainfall interception, HDS-SPAC adopts relatively
simple methods to describe them. Furthermore, surface runoff and ground-
water recharge, which represent another two critical hydrological components,
are ignored in HDS-SPAC. Further improvement on the HDS-SPAC model
requires a more comprehensive and detail description on different sub-pro-
cesses within the SPAC system.

(4) Improvement on the HTEM model. Air temperature is taken to be the lower
boundary of the trapezoid space in HTEM. However, such treatment does not
allow considering the effect of advection by the model. For desert oasis and
period short after rainfall or irrigation, the land surface often experiences a
strong horizontal energy movement. Thus, deriving a more realistic cold edge
of the trapezoid space is one of the key focuses in the improvement of the
HTEM model, especially for model application in relatively dry environments.

(5) Further exploring new methods for ET estimation over vegetated surfaces. In
this dissertation, we discussed the potential of ET estimation without using
meteorological data by exploiting the relationship between water and carbon
cycles. However, theoretically, GPP resulted from green vegetation photo-
synthesis is only related to vegetation transpiration (T). The non-biological

144 8 Conclusions, Limitations and Recommendation for Future Research

http://dx.doi.org/10.1007/978-3-662-46173-0_2
http://dx.doi.org/10.1007/978-3-662-46173-0_3


water consumption component, soil evaporation (E), does not contribute to
photosynthesis. This raises a more important question: whether the relationship
between GPP and T can be more stable than that between GPP and ET? A more
stable relationship between carbon and water cycles would greatly benefits our
understanding of the coupled water and carbon cycle and improves our ability
to quantify them.
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