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Preface

“More is different” is a famous aphorism of P.W. Anderson, who contributed
rather a lot to the development of condensed-matter physics in the latter
half of the 20th century. He claimed, by this aphorism, that macroscopic sys-
tems behave in a way that is qualitatively different from microscopic systems.
Therefore, additional rules are needed to understand macroscopic systems,
rules additional to the fundamental laws for individual atoms and molecules.
An example is provided by the various kinds of phase transitions that occur.
The state of a sample of matter changes drastically at a transition, and sin-
gular behavior is observed at the transition point. Another good example in
which quantity brings about a qualitative difference is the brain. A brain con-
sists of a macroscopic number of neural cells. It is believed that every brain
cell functions like an element of a computer. However, even the most sophis-
ticated computer consists of only a limited number of elements and has no
consciousness. The study of the human brain is still developing.

On the other hand, the paradigm for macroscopic matter, namely thermo-
dynamics and statistical physics, has a long history of investigation. The first
and second laws of thermodynamics and the principle of equal probability in
statistical physics have been established as laws that govern systems consisting
of a macroscopic number of molecules, such as liquids, gases, and solids (met-
als, semiconductors, insulators, magnetic materials, etc.). These laws belong
to a different hierarchy from the laws at the microscopic level, and cannot be
deduced from the latter laws, i.e. quantum mechanics and the laws for forces.
Therefore, a “theory of everything” is useless without these thermodynamic
and statistical-mechanical laws in the real world. The purpose of this book is
to explain these laws of the macroscopic level to undergraduate students who
are learning statistical physics for the first time.

In this book, we start from a description of a macroscopic system. We
then investigate ideal gases kinematically. Following on from the discussion
of the results, we introduce the principle of equal probability. In the second
and third chapters we explain the general principles of statistical physics on
the basis of this principle. We start our discussion by defining entropy. Then
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temperature, pressure, free energy, etc. are derived from this entropy. This
concludes Part I of the book. In Part II, from Chap. 4 onwards, we apply
statistical physics to some simple examples. In the course of this application,
we show that entropy, temperature, and pressure, when defined statistical-
mechanically, coincide with the corresponding quantities defined thermody-
namically. We consider only thermal-equilibrium states in this book. Most of
our examples are simple systems in which interaction between particles is ab-
sent. Interaction, however, is essential for phase transitions. For an illustration
of how a phase transition occurs, we consider a simple ferromagnetic system
in Chap. 7. At this point, readers will be able to obtain a general idea about
statistical physics: how a system in equilibrium is treated, and what can be
known. In Part III, some slightly more advanced topics are treated. First, we
consider first- and second-order phase transitions in Chaps. 8 and 9. Then,
in Chap. 10, we return to our starting point of the ideal gas, and learn what
happens at low temperature, when the density becomes higher.

Physics is one of the natural sciences, and the starting point of an inves-
tigation is the question “Why does nature behave like this?” Therefore, it is
a good attitude to ask “why?” This question should be aimed only at natural
phenomena, though. In this book, we give an explanation, for example, for
various strange characteristics of rubber. However, it is often useless to ask
“why?” about the methods used for solving these questions, or how an idea or
concept used to treat a problem was obtained. For example, it is not fruitful to
ask how the definition of entropy was derived. The expression for the entropy
was obtained by a genius after trial and error, and it cannot be obtained as
a consequence of logical deduction. Logical deduction can be done by a com-
puter. Great discoveries in science are not things that can be deduced. They
are rushes of ideas to the head. Some students stumble over these whys and
hows of the methods, and fail to proceed. We hope that you will accept the
various concepts that geniuses have introduced into science, and enjoy the
beauty of the physics developed by the application of such concepts.

Tokyo,
October 2005 Daijiro Yoshioka
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Symbols and Fundamental Constants

The symbols used in this book are listed alphabetically in Table 0.1. Funda-
mental constants are listed in Table 0.2.

Table 0.1. Symbols used in this book

Symbol Name Definition or meaning

CP Heat capacity at constant pressure T (∂S/∂T )P

CV Heat capacity at constant volume T (∂S/∂T )V

B Magnetic field µ0(H + M)
D(E) Density of single-particle states
E Energy Total energy of the system
EF Fermi energy Chemical potential

of fermion system at T = 0
F (T, V, N) Helmholtz free energy −kBT ln Z
FL(T, V, N, Ψ) Landau free energy Free energy for a given value

of the order parameter

f(E) Fermi distribution function 1/[eβ(E−µ) + 1]
G(T, P, N) Gibbs free energy −kBT ln Y = F + PV
H Magnetic field (B/µ0) − M
I Moment of inertia
J Exchange interaction

(Chaps. 7 and 9)
J(T, V, µ) Grand free energy (Chap. 10) −kBT ln Ξ = −PV
M Magnetization Total magnetic moment

per unit volume
N Number of particles

n(E) Bose distribution function 1/[eβ(E−µ) − 1]
P Pressure T (∂S/∂V )E,N

p Momentum vector
pF Fermi momentum

√
2mEF
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Table 0.1 continued

Symbol Name Definition or meaning

Q Quantity of heat
S Entropy kB ln W
T Temperature (∂S/∂E)−1

V,N

Tc Critical temperature
TF Fermi temperature EF/kB

U(S, V, N) Internal energy F + ST
V Volume
W Work

∫
F dx

Y (T, P, N) Partition function for fixed T and P
Z(T, V, N) Partition function

∑
i exp(−βEi)

α Critical exponent of heat capacity
β Inverse temperature 1/kBT
β Critical exponent of order parameter
ζ(z) Riemann zeta function

∑∞
n=1 n−z

λT De Broglie wavelength h/
√

2mkBT
µ Chemical potential −T (∂S/∂N)E,V

µ Atomic magnetic moment
Ξ(T, V, µ) Grand partition function
χ Magnetic susceptibility limB→0(µ0M/B)
Ψ Order parameter
Ω0(E) Number of states
Ω(E) Density of states dΩ0/dE

Table 0.2. Fundamental constants. The numbers in parentheses indicate the stan-
dard uncertainty; for instance, 1.60217653(14)×10−19 means that the most probable
value is 1.60217653×10−19 and the standard uncertainty is 0.00000014×10−19. The
three constants c, ε0, and µ0 are defined to have the values listed here, and so there
is no uncertainty in those values

Symbol Value Name

c 299792458m s−1 Velocity of light in vacuum
e 1.60217653(14) × 10−19 C Elementary charge
h 6.6260693(11)×1034 J s−1 Planck constant
� 1.05457168(18)×1034 J s−1 Planck constant divided by 2π
kB 1.3806505(24)×10−23 J K−1 Boltzmann constant
me 9.1093826(16) × 10−31 kg Electron mass
mp 1.67262171(29) × 10−27 kg Proton mass
NA 6.0221415(10)×1023 mol−1 Avogadro number
R 8.1314472(15) Jmol−1 K−1 Gas constant
ε0 1/µ0c

2 Permittivity of free space
µ0 4π × 10−7 NA−2 Permeability of free space
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General Principles



1

Thermal Equilibrium and the Principle
of Equal Probability

In this chapter, a brief introduction to thermal and statistical physics is given.
We describe in general terms the systems to which this branch of physics
can be applied, the relationship of thermal and statistical physics to other
branches of physics, and the objectives of thermal and statistical physics. We
consider the kinetic theory of gas molecules, and thereby introduce the essence
of statistical physics.

1.1 Introduction to Thermal and Statistical Physics

It is well known that matter is constructed from atoms. The inner structure
of atoms, of nuclei, and of nucleons has been clarified; the forces that act on
these particles and the laws of motion for them are known. However, we cannot
understand the properties of the pieces of matter of moderate size around us on
the basis of these laws only. Ordinary matter consists of macroscopic numbers
of atoms, ions, and electrons. For such macroscopic matter, knowing the rules
of motion for individual particles is not enough to understand its properties.
We need additional laws to understand the properties of gases, liquids, solids,
and solid solutions of macroscopic size. Such additional laws are provided by
thermal physics and statistical physics.

Thermal physics, or thermodynamics, treats a macroscopic sample of mat-
ter such as a gas or a solid as a black box. It provides general laws for the
response of matter to actions from the environment. For instance, when we
exert a force on a volume of gas in the form of a pressure, the gas will contract.
When we give energy in the form of heat to a gas, it will either expand or
increase its pressure. There are general relationships between these responses.
Thermodynamics gives us such relationships. This branch of physics evolved
from the necessity to increase the efficiency of the conversion of heat to work,
which became important after the Industrial Revolution. The laws of thermo-
dynamics are quite general; they are independent of the species of the atoms
from which the matter is constructed, and independent of the interactions
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between the atoms. In fact, the laws of thermodynamics are not based on
the fact that matter is made of atoms at all; they were established before
the existence of atoms was verified. Without us knowing the microscopic laws
governing atoms, it can still give an upper bound on the work that can be
obtained from an engine, i.e. on the efficiency of the engine. It gives a general
framework for every phenomenon related to heat, including living organisms,
and thus it should play an important role in solving environmental problems.

In thermodynamics, the free energy, which is a function of the state vari-
ables such as the pressure, temperature, volume, and entropy, plays an impor-
tant role. If the free energy is given, all properties of the thermal-equilibrium
state can be known. However, in the framework of thermodynamics, the free
energy can be known from measurement only; it cannot be obtained by theo-
retical calculation. Statistical physics is the branch of physics where a scheme
to calculate the free energy is formulated. In statistical physics, we use the fact
that matter consists of atoms. On the basis of a knowledge of the microscopic
laws that govern the motion of atoms, and, most importantly, an additional
law of statistical physics, statistical physics gives a general expression for the
free energy. Since statistical physics starts from the microscopic level, it can
discuss not only thermal-equilibrium states, but also nonequilibrium states.
Small deviations from thermal equilibrium can be discussed by the use of lin-
ear response theory, and we can discuss such effects as electrical or thermal
conductivity. However, the statistical physics of nonequilibrium states is not
yet well established, especially for states far from equilibrium. It is an ac-
tively investigated branch of physics even today. In this book, we restrict our
discussion mainly to equilibrium states.

1.2 Thermal Equilibrium

1.2.1 Description of a System in Equilibrium

What do you feel when you enter a room? You may feel cool or hot, you
may feel motion of the air, or, if you happen to be an android equipped with
a pressure sensor, you may be able to measure the pressure. If the room has
been kept closed for a long time and if there is neither air conditioning nor
an electric fan, you will not feel any motion of the air, and for a small room,
the temperature will be the same everywhere in the room. Similarly, if you
dip your finger into a cup that has been left untouched for a while after tea
has been poured into it, you will be able to tell that the tea is still hot or has
cooled down, but nothing else. As in these examples, a macroscopic volume of
air or fluid left untouched for a while becomes motionless and reaches a state
with a common temperature throughout. We call such motionless, uniform-
temperature states thermal-equilibrium states.

An important thing is that states in thermal equilibrium are characterized
by only a few pieces of information. When two cups of water have the same
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temperature, we cannot distinguish between those cups of water, regardless
of the fact that the motions of the water molecules in the two cups are quite
different. Although statistical physics is aimed at understanding the properties
of liquids, solids, or gases on the basis of the laws of motion of atoms and
molecules, the information necessary for us to describe and treat matter in
thermal equilibrium is quite limited; what we need are only a few variables,
known as state variables, such as the temperature, the pressure, the volume,
or the concentration in the case of a solution.

It is true that in states of thermal nonequilibrium we need more variables,
since the temperature may depend on the position, or there may be a flow in
such a state, for instance. However, the number of variables needed is much
much smaller than the total number of degrees of freedom of the motion of
the molecules involved. We know that about 12 g of carbon (i.e. diamond or
graphite) contains one mole of carbon atoms, namely NA � 6×1023 atoms.1 In
thermodynamics and statistical physics, we describe the state of matter using
only a small number of state variables. Such a description is in accordance
with our daily experience, and it is sufficient for utilizing matter.

1.2.2 State Variables, Work, and Heat

Let us elaborate a little more on state variables. Of the state variables, the
volume, written as V in this book, is the easiest variable to understand. It
is defined geometrically. When a sample of matter occupies a rectangular
space whose three sides are equal to Lx, Ly, and Lz, its volume is given by
V = Lx×Ly×Lz. The volume is measured in units of cubic meters (m3) in the
SI system. It is classified as an extensive state variable, since it is a property
of the whole system and scales with the amount of matter. When two systems
with the same volume are put together to form a single system, the volume
doubles.

The pressure, written as P in this book, is defined mechanically. When
a sample of matter of pressure P is bordered by a rectangular wall of area
S = Lx × Ly, the wall is pushed by the matter with a force F = PS. The
pressure is measured in Nm−2 = Pa (pascals). It is classified as an intensive
state variable, since it is defined in every part of the system and does not
scale with the amount of matter. At least one of these two state variables can
easily be assigned to the system as a boundary condition or constraint on the
system.

A system reaches thermal equilibrium when it is isolated from its envi-
ronment. In such a situation, the energy of the system must be conserved.
Therefore, the total energy of the system E is a well-defined variable. When
a system is in thermal equilibrium with its environment, its energy may fluc-
tuate slightly. However, the average value 〈E〉 is still well defined. In some
cases, the energy of the system contains mechanical energy of the center of
1 NA = 6.0221415 × 1023 is called the Avogadro constant.
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gravity. In a gravitational field, a system has gravitational potential energy. If
the system is moving as a whole, or if it is observed by a moving observer, it
has kinetic energy. These mechanical energies, which can easily be converted
to other forms of energy, that is, they can be utilized easily, can be put aside
in a discussion of thermal equilibrium. Therefore, we remove the mechanical
energy of the center of mass from the total energy, and call the average of the
rest of the energy the internal energy U . If there is no mechanical energy of
the center of mass, the internal energy coincides with the average energy 〈E〉.
This energy determines the properties of the system in equilibrium, and it is
another extensive state variable.2 By definition, U is the conserved energy E
itself for an isolated system in the absence of mechanical energy. The unit
for internal energy is the joule J =kg m2 s−2. The actual value of the internal
energy is difficult to measure, but it is not necessary to know it. The only
thing that we need to know is the difference between the internal energies of
two equilibrium states.

The amount of internal energy can be changed by performing work on
the system or supplying heat to it. The work can be either mechanical or
electromagnetic. Mechanical work can be done on a system by compressing
the system. When the system is compressed sufficiently slowly that the system
can be considered to be in equilibrium at all times, the pressure of the system
is well defined during the compression. In this case the work W done on the
system is given by

W = −
∫ V2

V1

P dV , (1.1)

where V1 and V2 are the initial and final values, respectively, of the volume.
The minus sign on the right-hand side comes from the definition that the work
is positive when the energy of the system increases.

Heat is a general term for energy transferred between systems that cannot
be considered as work. For example, it can be given to a system by placing
an electrical resistance R in the system and passing a current I through it. In
this situation a quantity of heat Q = RI ∆t is given to the system in a time
interval ∆t because of Joule heating in the resistor. Heat and work can be
given to a system by various means. They can also be extracted from a system.
In all cases, the internal energy changes by an amount ∆U when a quantity
of heat Q is supplied and work W is done on the system:

∆U = Q + W . (1.2)

This equation is known as the first law of thermodynamics.
At this point it is important to realize that heat and work are not state

variables. What we classify as state variables are those variables that are
uniquely determined when the system is in thermal equilibrium with fixed
boundary conditions. For instance, when the temperature and pressure of the
2 Strictly speaking, the pressure P is also defined as an average, and it fluctuates

slightly in space and time as U does.
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environment are fixed, a system in equilibrium has a certain pressure and
internal energy, which can be observed or measured in principle. However, we
cannot tell what is the amount of heat and work in the system. In fact, there
is no heat or work in thermal equilibrium; only the internal energy exists
in that situation. It is possible to extract all the internal energy as heat.
However, this does not mean that there is a quantity of heat Q equal to the
internal energy U . This is because we can also convert part of the internal
energy to work, and utilize it. The amount of work extracted depends on
the process. So quantities of heat and work are not uniquely determined in
thermal equilibrium, and therefore they cannot be classified as state variables.
We should not consider these variables to exist in thermal equilibrium. Heat
and work appear only when the system changes from one equilibrium state to
another.

1.2.3 Temperature and the Zeroth Law of Thermodynamics

A system with less internal energy is felt to be cool, and the same system
with more internal energy is felt to be hot. The temperature is an intensive
state variable used to describe quantitatively how cool or how hot a system is.
For a given system, the temperature is an increasing function of the internal
energy. The value of the temperature needs to be determined in such a way
that two systems with the same temperature are felt by us to have the same
hotness. For that purpose, two systems in mutual thermal equilibrium are
defined to have the same temperature. We mean by mutual thermal equilib-
rium the state of two systems kept in contact with each other for a long time
so that energy can be transferred between the systems, and the two systems
have reached an equilibrium state. It has been established, as the zeroth law
of thermodynamics, that this definition of equal temperature is consistent.
Suppose that two systems A and B are in mutual thermal equilibrium and
have the same temperature. Then, if another system C has the same temper-
ature as A, this law guarantees that C has the same temperature as B. From
this experimental fact, we can prepare a system to be used as a thermome-
ter. Any system can be used as a thermometer if there is a visible change in
the system as the temperature of the system changes, and there is a one-to-
one correspondence between the temperature and appearance of the system.
When such a system A is brought into thermal equilibrium with system B
or C, the temperature of system A that is known from the appearance of the
system gives the temperature of system B or C. The zeroth law guarantees
that when B and C have been measured to have the same temperature by
means of A, they are in mutual thermal equilibrium.

Since the temperature of a system is an increasing function of its internal
energy, one way to define a temperature scale is to make the temperature
a linear function of the internal energy of some standard sample of matter.
Historically, temperature was defined by means of this concept. The freezing
point and boiling point of water under ambient pressure were defined to be
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0 and 100 degrees Celsius, respectively, and temperatures between these two
fiducial points were determined such that the temperature became a linear
function of the internal energy. It was defined that the temperature of one
gram of water was raised by one degree Celsius when a quantity of heat of
about 4.2 J was supplied to the sample.3 However, this definition that depends
on a specific material has been replaced by a material-independent definition
of the absolute temperature, which we shall explain later. The unit in which
absolute temperature is measured is the kelvin (K). A temperature t ◦C cor-
responds to an absolute temperature T = t + 273.15 K.

It should be noted that, for the definition of equal temperature, we have
used the experimental fact that two systems with different temperatures reach
a state of mutual thermal equilibrium when in energetic contact. During the
course of the approach to equilibrium, energy in the form of heat moves from
the system at higher temperature to the other system, so the equilibrium tem-
perature attained is somewhere between the two initial temperatures. The fact
that heat will not be transferred in the other direction without the interven-
tion of a third system is known as the second law of thermodynamics.

1.2.4 Heat Capacity and Specific Heat

We have stated that temperature was historically defined to have a linear
relationship with the internal energy of water. However, the precise defini-
tion of temperature is slightly different, and the internal energy of a general
system, including one consisting of water, is not a linear function of the abso-
lute temperature. How the internal energy of a system changes as a function
of temperature depends on the particular system, and the derivative of the
energy with respect to temperature is related to a quantity called the heat
capacity. More precisely, the heat capacity is defined as the ratio of a quantity
of heat ∆Q and a temperature difference ∆T in the limit ∆T → 0, where ∆Q
is the quantity of heat needed to raise the temperature of the system by ∆T .
Namely, the heat capacity C is defined by

C = lim
∆T→0

∆Q

∆T
. (1.3)

In fact, the heat capacity depends on the boundary condition of the system.
When heat is supplied keeping the volume of the system constant, the heat
capacity is called the constant-volume heat capacity , written as CV. In this
case, work related to a volume change is not done. In the absence of any other
forms of work, the increase in the internal energy ∆U is equal to ∆Q, and
thus

CV = lim
∆T→0

∆U

∆T
=
(

∂U(T, V )
∂T

)
V

. (1.4)

3 In the old system of measurement, a quantity of heat of 4.18605 J was called
1 calorie.
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The subscript V on the right-hand side of this equation indicates explicitly
that the partial derivative should be taken with fixed V . This is a standard
notation in thermodynamics.

On the other hand, when heat is supplied while the system is kept in
a constant-pressure environment, thermal expansion of the system extracts
work from the system to the environment, and so more heat is needed to raise
the temperature of the system. The heat capacity in this case is called the
constant-pressure heat capacity , written as CP. From (1.2), ∆Q = ∆U+P∆V ,
and thus

CP =
(

∂U(T, V )
∂T

)
P

+ P

(
∂V

∂T

)
P

=
(

∂U(T, V )
∂T

)
V

+
(

∂U(T, V )
∂V

)
T

(
∂V

∂T

)
P

+ P

(
∂V

∂T

)
P

= CV +
{(

∂U(T, V )
∂V

)
T

+ P

}(
∂V

∂T

)
P

. (1.5)

The heat capacity is an extensive quantity; the heat capacity per unit mass
or per mole is called the specific heat or molar heat, respectively. The specific
heat of a dilute gas is almost temperature-independent, and so the internal
energy of a sample of a gas is proportional to the temperature. On the other
hand, the specific heat of a solid decreases at low temperature. We shall discuss
these behaviors in the following chapters.

1.3 Kinetic Theory of Gas Molecules

Why is it all right to use only a few state variables to describe the state of
matter in thermal equilibrium? Knowing the answer to this question leads di-
rectly to the essence of statistical physics. To answer this question, we start by
considering an ideal gas from the standpoint of kinetic theory. The air around
us has an almost uniform density and temperature on a scale of a few meters.
The pressure P and the temperature T obey approximately the equation of
state of an ideal gas, namely the Boyle–Charles law,

PV = nRT . (1.6)

Here, n is the quantity of gas in the volume V measured in moles, and R =
8.314472 J mol−1 K−1 is the gas constant. Let us see how this property arises
from the law of motion for gas molecules.

If we think naively, the gas molecules must cooperate to form such a state
of uniform density and uniform temperature. However, this expectation is
not true. We shall see that this result actually comes from the fact that
each gas molecule behaves independently of the others. The molecules can
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move freely with any velocity they like. Nevertheless, the Boyle–Charles law
is obtained.

1.3.1 The Spatial Distribution of Gas Molecules

Average Number of Molecules

First, we shall see that a uniform density is obtained even though each
molecule moves independently. There are several assumptions that we need
to obtain the results presented below:

• A gas consists of molecules.
• The number of molecules in the volume that we are considering is enor-

mous. For example, in the standard state, there are approximately 2.7 ×
1022 molecules in one liter of air.

• The gas molecules do not interact with each other.

The last assumption is an idealization, and so we are going to consider an
ideal gas. Strictly speaking, there are weak interactions between molecules in
real gases. In addition to these assumptions, we restrict ourselves to the case
in which the gas consists of a single species of molecules.

Since there are a huge number of molecules moving independently and
we cannot know the position or velocity of each molecule, what we discuss
is the probability distribution of the molecules. Since we cannot observe the
position of a molecule, we assume that it can be anywhere in a container
of volume V . This volume V is one of constraints we can assign to the gas.
We put N molecules into a box of this volume, and examine the probabil-
ity distribution of the number of molecules in a small volume V1 in the box
as shown in Fig. 1.1. The fact that the density of the air is uniform means
that the number of molecules in the volume V1 is NV1/V . However, since
the molecules are moving independently, there should be temporal fluctua-
tions in this number. We examine this fluctuation on the basis of the prob-
ability p for one molecule to be found in the volume V1.4 It is natural to
put p = V1/V .

Let us write the probability of finding n molecules in V1 as WN (n). This
probability is given as follows:

WN (n) =
N !

n!(N − n)!
pnqN−n , (1.7)

where q = 1 − p. In this expression, the first factor is the number of ways
in which n molecules can be taken from N , pn is the probability that these

4 We neglect gravity here. A gravitational field makes the probability slightly higher
when V1 is placed near the floor of the box V than when it is placed near the
ceiling. However, this effect is negligibly small when we consider a system whose
height is of the order of a meter.
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Fig. 1.1. A volume V and a part of it, V1. We put N molecules in the volume V ,
and guess the number of molecules in V1

n molecules are in V1, and qN−n is the probability that the other N − n
molecules are somewhere outside of the volume V1. From this probability, the
expectation value of the number of molecules in V1, which we denote by 〈n〉,
is given by

〈n〉 =
N∑

n=1

nWN (n)

=
N∑

n=2

Np
(N − 1)!

(n − 1)!(N − n)!
pn−1qN−n

= Np(p + q)N−1 = Np

= N
V1

V
, (1.8)

as expected. Here we have used the binomial theorem, described in Appen-
dix A.

Variance of the Distribution

Next we calculate the mean square deviation, or variance, of this probability
distribution. This is calculated as follows:

〈(n − 〈n〉)2〉 = 〈n2 − 2n〈n〉 + 〈n〉2〉
= 〈n2〉 − 〈n〉2
= 〈n(n − 1)〉 + 〈n〉 − 〈n〉2
=
∑

n

n(n − 1)Wn(n) + Np − N2p2

= N(N − 1)p2 + NP − N2p2

= Npq . (1.9)
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In the course of this calculation, we have used the binomial theorem again.
From this variance, the relative deviation is√〈(n − 〈n〉)2〉

〈n〉 =
1√
N

√
q

p
� 1 . (1.10)

This deviation is unbelievably small. Let us see how small this value is. Con-
sider a sample of gas consisting of a macroscopic number of molecules. For
example, there are about 2.7×1025 molecules in a volume of 1 m3 of air in the
standard state. Let us take p = 0.1, or V1 = 0.1m3. Then 〈n〉 = 2.7 × 1024,
and the standard deviation

√
Npq � 1012. So the number fluctuates by ±1012

around the mean value. This fluctuation itself is quite large. However, it is
negligibly small compared with the mean value, � 1024. To realize how small

Fig. 1.2. The probability distribution of the number of molecules in a small part of
a system. The probability of finding n molecules in a volume V1 = 0.1 m3, WN (n),
when there are 2.7×1025 molecules in V = 1 m3 is plotted. The vertical axis shows√

2πNpqWN (n), normalized such that the peak value is approximately unity. (a)
The whole range of possible variation 0 < n < N is shown. (b) The horizontal axis
has been expanded 10 million times, and only the region around the peak is shown.
(c) The horizontal axis has been expanded 7600 times further. (d) The horizontal
axis has been expanded 105 times from the situation shown in (b)
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it is, let us try to plot the probability distribution, taking n as the horizontal
axis and the probability WN (n) as the vertical axis.

Figure 1.2a shows the case where the whole range of n is plotted on a sheet
of ordinary size. The peak is at one-tenth of the length of the whole horizontal
axis from the origin. The width of the distribution function is much smaller
than the width of the line; in fact, it is smaller than the size of a nucleus. Next
we imagine a larger sheet of paper 500 km wide, almost the distance between
Berlin and Vienna, or 1.5 times the distance between Paris and London. The
peak will then be somewhere between those cities. Figure 1.2b shows what
is plotted around the peak. The width of this peak is about 0.1 µm, and is
still too small to be seen. Finally, let us imagine a sheet of width 3.8 million
kilometers, 10 times the distance between the earth and the moon. Then the
peak is situated on the surface of the moon. There, an astronaut can see
a distribution like that in Fig. 1.2c. Now we can see the width of the peak.
Figure 1.2d shows the shape of the peak expanded even further. You should
imagine the meaning of the size of the peak in Fig. 1.2c compared with the
vast distance to the moon. This sharpness of the peak of the distribution is
the essence of statistical physics. A sample of matter of ordinary size consists
of a macroscopic number of atoms or molecules. Because of this fact, the
probability distribution of every observable quantity shows a very sharp peak
around the mean value, and the mean value coincides with the peak of the
distribution, as we shall see next.

Details of the Distribution

We can rewrite the probability distribution WN (n) around the peak using the
fact that N and n are macroscopic numbers. For macroscopic numbers, the
factorial function can be approximated by Stirling’s formula,5

ln N ! � N ln N − N (N � 1) . (1.11)

Then we obtain

WN (n) � eN ln N−N

en ln n−ne(N−n) ln(N−n)−N+n
pnqN−n

= eN ln N−n ln n−(N−n) ln(N−n)pnqN−n

= en ln(N/n)+(N−n) ln[N/(N−n)]pnqN−n

=
(

p
N

n

)n(
q

N

N − n

)N−n

. (1.12)

5 See Sect. A.2 for Stirling’s formula. We use ln for the natural logarithm loge in
this book.
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The position of the peak of WN (n) is determined by the condition

d
dn

ln WN (n) � d
dn

{
n ln

(
p
N

n

)
+ (N − n) ln

(
q

N

N − n

)}

= ln
(

pN

n

)
− 1 − ln

(
q

N

N − n

)
+ 1

= 0 . (1.13)

Namely,
p

n
=

q

N − n
, (1.14)

or
Np = (p + q)n = n . (1.15)

Therefore the peak is positioned at n = 〈n〉.
Furthermore,

d2

dn2
ln WN (n) � d

dn

{
ln
(

pN

n

)
− ln

(
qN

N − n

)}

= − 1
n
− 1

N − n
= − 1

Np
− 1

Nq

= − 1
Npq

. (1.16)

Therefore, the Taylor expansion of lnWN (n) around the peak is

lnWN (n) = lnWN (〈n〉) − 1
2

1
Npq

(n − 〈n〉)2 + O[(n − 〈n〉)3] . (1.17)

That is, the distribution function is a Gaussian around the peak:6

WN (n) � WN (〈n〉) exp
[
−1

2
1

Npq
(n − 〈n〉)2

]
. (1.18)

In summary, we have found the following for the probability distribution of
gas molecules:

• The distribution has a peak at the mean value.
• There is a fluctuation around the peak.
• However, the fluctuation is so small that a nonuniform distribution is not

observed in practice.

We can imagine that these properties will not be restricted to the spatial
distribution of gas molecules, but may be possessed by any distribution in
thermal equilibrium in which a macroscopic number of molecules are involved.
6 For details of the Gaussian distribution function, see Appendix B. The result

(1.17) is an example of the central limit theorem, described in Sect. B.1.
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1.3.2 Velocity Distribution of an Ideal Gas

In the previous subsection, we simply assumed that each molecule can be any-
where in the whole volume with uniform probability. Then we recovered the
experimental fact that the density of a gas is uniform in thermal equilibrium.
This assumption is one example of the principle of equal probability, which we
shall describe later. In this subsection, we consider the velocity distribution
on the basis of a similar assumption. The molecules change their velocities
owing to collisions with each other and with the walls of the container. We
cannot observe the velocity of every molecule; even if it were possible to know
it, it would be hopeless to attempt to record all the velocities of the molecules.
This situation is similar to that for the observation of the position of every
molecule. Thus, it might be a good idea to assume that every molecule can
have any velocity it likes, just as it can be anywhere in the container. Some-
one once thought that this should work, since the number of molecules is
macroscopic. You may think that this idea may be too optimistic. However,
to disclose the conclusion first, the idea worked! Moreover, this kind of idea
has been generalized into the principle of equal probability, which states that
“at the microscopic level, every possible state is realized with the same proba-
bility”. The statistical physics of the equilibrium state is constructed upon this
principle, and every consequence of this theory coincides with experimental
results.

The construction of statistical physics on the basis of this principle is
described in the following chapters. Here, we return to the problem of the

Fig. 1.3. Velocity space. The velocity of a molecule is mapped to a point in this
space. The velocity distribution of all the molecules is described by a distribution of
points representing each molecule in this space. The distribution is specified by the
numbers of molecules in infinitesimally small boxes of volume dvx dvy dvz around
each velocity v



16 1 Thermal Equilibrium and the Principle of Equal Probability

velocity distribution. In Sect. 1.3.1, the molecules must observe the constraint
that they should be in a container of volume V . In the present case of the
velocity distribution, there is an additional constraint that the total energy of
the molecules E should be a constant. These constraints, specified by V and E,
characterize the system when it is in thermal equilibrium. These constraints
are nothing but the state variables with which we describe the system in
equilibrium.

For the following discussion, we need to introduce velocity space, which
is shown in Fig. 1.3. The velocity of a molecule is mapped to a point in
this space. The fact that each molecule can take any velocity means that
the point representing the velocity of a molecule can be anywhere in this
infinite space with equal probability. Thus, if we divide this space into small
boxes of volume dvx dvy dvz, the probability g of finding a molecule in this
space is proportional to this volume, and g/(dvx dvy dvz) is independent of the
position of the small box. Each molecule is distributed with this probability in
this space, and the velocity distribution of all the molecules is described by the
numbers of molecules in all of the small boxes. Now we calculate a probability
for a particular distribution where the ith box has ni molecules, namely where
the first box has n1 molecules, the second box has n2 molecules, and so on.
This probability is given by

W (n1, n2, . . .) ∝ N !
n1!n2! · · ·ni! · · ·g

n1
1 gn2

2 · · ·

�
(

N

n1

)n1
(

N

n2

)n2

· · · gn1
1 gn2

2 · · · . (1.19)

Here gi is the probability for a molecule to be in the ith box, and is propor-
tional to the volume of the box. Stirling’s formula, N ! � NNe−N (N � 1),
has been used to derive the final form.

Now the total number of molecules N and the total energy E are expressed
as follows:

N = n1 + n2 + · · · , (1.20)
E = n1ε1 + n2ε2 + · · · , (1.21)

where εi = (m/2)vi
2 is the kinetic energy of a molecule in the ith box, whose

center is situated at vi. The maximum probability W under the constraints of
fixed N and E is the most probable velocity distribution. It should be almost
the unique distribution in thermal equilibrium, just as we have seen for the
spatial distribution of the molecules, because of the macroscopic number of
molecules involved. To find the maximum of W under the constraints, we ap-
ply Lagrange’s method of undetermined multipliers to lnW .7 The conditions
for the maximum are obtained as follows. Introducing λ and β as undeter-
7 Lagrange’s method of undetermined multipliers is described briefly in Ap-

pendix C.
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mined multipliers, we require the following equations to be satisfied for each
nj , j = 1, 2, 3, · · ·:

∂

∂nj

(
ln W − λ

∑
i

ni − β
∑

i

niεi

)
= 0 . (1.22)

Differentiating, we obtain

0 = ln N − ln nj − 1 + ln gj − λ − βεj . (1.23)

Thus, the value of nj that gives the maximum probability is

nj = N exp(−λ − 1 − βεj)gj . (1.24)

The undetermined multipliers λ and β are determined so as to fulfill the
following equations:

N =
∑

j

N exp(−λ − 1 − βεj)gj (1.25)

and
E =

∑
j

εjN exp(−λ − 1 − βεj)gj . (1.26)

These summations are performed as integrals over velocity space. Since
gj is proportional to the volume of the box dvx dvy dvz, we simply put
gj = c dvx dvy dvz. Noticing that εj = (m/2)v2

j = (m/2)(v2
jx + v2

jy + v2
jz),

we calculate (1.25) as follows:8

N =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
N exp(−λ − 1) exp

[
−mβ

2
(v2

x + v2
y + v2

z)
]

c dvx dvy dvz

= N

(
2π

mβ

)3/2

c exp(−λ − 1) . (1.27)

This gives c exp(−1 − λ) = (mβ/2π)3/2. We input this result into (1.26) to
obtain E:

E = N

(
mβ

2π

)3/2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(m

2
v2
)

exp
(
−mβ

2
v2

)
dvx dvy dvz

=
3N

2β
. (1.28)

That is, β = 3N/2E. This β turns out to be equal to 1/kBT , as shown later,
where kB = 1.380650 × 10−23 J K−1 is called the Boltzmann constant, and is
equal to the gas constant R divided by the Avogadro constant NA.
8 For integrals of this kind, see Appendix B.
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As a result of these calculations, we find finally that the most probable
number of molecules in a box of volume dvx dvy dvz at v in velocity space is

n(v) dvx dvy dvz = N

(
mβ

2π

)3/2

exp
(
−mβ

2
v2

)
dvx dvy dvz . (1.29)

This most probable distribution is almost always realized in thermal equilib-
rium, and is called the Maxwell distribution. This distribution has been exper-
imentally confirmed in thermal equilibrium. It has a peak at v = 0. However,
the number of molecules whose absolute value of velocity lies between v and
v + dv is given by 4πv2n(v) dv = 4πN(mβ/2π)3/2v2 exp(−mβv2/2) dv, and
this distribution of speed is peaked at v =

√
2/mβ as shown in Fig. 1.4.

Fig. 1.4. The distribution of the speed of molecules, 4πv2n(v). To make the figure
dimensionless, 4πv2n(v) divided by N

√
mβ/2π has been plotted as a function of√

2/mβv. The peak is attained at v =
√

2/mβ, or when the kinetic energy of
a molecule is equal to 1/β(= kBT )

1.3.3 The Pressure of a Gas

Gas molecules enclosed in a container of volume V collide with the walls
of the container repeatedly. These collisions are the origin of the pres-
sure. The pressure is independent of the material from which the walls are
made.9 Therefore, for the calculation of the pressure, we can assume that the
9 If the pressure depended on the material, we could make a yacht that sailed

without any wind, if we were to make a sail for the yacht where the two sides
were covered with different materials. The second law of thermodynamics tells us
that such a sail cannot be realized.
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walls are perfectly flat and are so hard that a collision is a perfect elastic
reflection.

Let us assume that the gas is contained in a rectangular box whose three
sides have lengths Lx, Ly, and Lz as shown in Fig. 1.5. We calculate the
contribution of the ith molecule to the pressure on the wall that is perpendic-
ular to the x-axis. This molecule has a velocity whose x-component is vix. In
a collision, this molecule gives an impulse 2mvix to the wall. Such a collision
occurs once in a time interval ∆t = 2Lx/vix, so the impulse per unit time,
that is, the time average of the force on the wall, is

f̄i =
2mvix

2Lx/vix
=

mv2
ix

Lx
. (1.30)

Summation of this force over all of the molecules gives the force on the wall,
and when divided by the area S = LyLz it gives the pressure P :

P =
N∑

i=1

f̄i

S
=

N∑
i=1

mv2
ix

V

=
1

3V

N∑
i=1

m(v2
ix + v2

iy + v2
iz) =

2
3

1
V

N∑
i=1

1
2
mv2

i

=
2
3

1
V

E =
N

V β
. (1.31)

In the third equality in (1.31), we have used the fact that the motion of the gas
must be isotropic, so that

∑
i v2

ix =
∑

i v2
iy =

∑
i v2

iz. In the final equality, we
have noticed the fact that the sum of the kinetic energies is the total energy E,
and is equal to 3N/2β according to (1.28).

An ideal gas is known to satisfy the Boyle–Charles equation of state PV =
NkBT . Combining this with the present result gives β = 1/kBT , as mentioned
before. However, you should remember that we have not defined the absolute
temperature yet.

Fig. 1.5. Collisions of molecules with the walls are the origin of the pressure of
a gas. In a collision with the right wall, a molecule gives an impulse 2mvx to the
wall



20 1 Thermal Equilibrium and the Principle of Equal Probability

1.4 The Principle of Equal Probability

In this chapter, we have succeeded in reproducing the properties of an ideal
gas in equilibrium. For the spatial distribution of the molecules, we assumed
that each molecule can be anywhere in the container with equal probability,
and obtained a uniform density. For the distribution in velocity space, we
assumed similarly that each molecule can move with any velocity it likes, and
obtained the Maxwell distribution, which has been confirmed experimentally.
In both cases we assumed equal probabilities for microscopic motions that
we cannot detect, except for imposing some obvious macroscopic constraints.
Namely, for microscopic motions that we cannot observe or control, we allowed
the molecules to do whatever they like. We then succeeded in obtaining the
correct thermal properties. This success leads us to state a principle of equal
probability, namely, “In thermal equilibrium under macroscopic constraints,
every possible microscopic state allowed by the constraints is realized with
equal probability.” Here the macroscopic constraints are what are called state
variables, such as the total energy or the volume of the system.

Strictly speaking, this principle is not exact. For example, in the derivation
of the Maxwell distribution, molecules are allowed to move with speeds higher
than the speed of light. However, in the Maxwell distribution obtained in this
way, the probability of finding such high-speed molecules is so small that it
is practically zero. Because there are a macroscopic number of molecules, the
peak of the distribution becomes very sharp, and most of the microscopic re-
alizations belong to states around the peak. Thus, even if the principle is not
rigorously satisfied, the result obtained is essentially correct. In the following
chapters, we construct the statistical physics of equilibrium states on the basis
of this principle. The statistical physics thus constructed is then applied to
several examples. From these examples, you will learn the paradoxical fact
that as a result of every microscopic possibility being allowed, a unique ther-
mal equilibrium is realized macroscopically. The origin of this paradox is the
macroscopic number of molecules.

Exercise 1. Using the definition of a calorie and the fact that the mass of
1 cm3 of water is 1 g, calculate the molar heat of water. Express the answer in
units of the gas constant R.

Exercise 2. Iron has a molar heat of about 25 J mol−1 K−1. Calculate the
heat capacity of a block of iron whose volume is 1m3. Compare the result
with that for the same volume of water. (The relative atomic mass of iron is
55.845 and its density is 7.86 × 103 kgm−3.)

Exercise 3. Calculate the increase in the gravitational potential energy of
1 mol of water when it is brought from sea level to an altitude of 100m.
Calculate the increase in the temperature of the water when this amount of
work is supplied to the water to increase its internal energy instead of raising
it in height.
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Exercise 4. The internal energy of an ideal gas depends only on its tempera-
ture, and is independent of the volume V . Use this fact and the Boyle–Charles
law to derive the relation between the constant-volume and constant-pressure
heat capacities of an ideal gas, CP = CV + NkB. (This relation is known as
the Mayer relation.)

Exercise 5. The average velocity of a molecule of an ideal gas is given by
v =

√
2kBT/m. Evaluate this velocity for an oxygen molecule in a gas at

300K. (One mole of oxygen molecules weighs about 32 g.)
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Entropy

In the previous chapter, we introduced the principle of equal probability. In
this chapter we define entropy on the basis of this principle. Temperature is
defined through this entropy. We develop a general theory here; in particu-
lar, we discuss the condition for thermal equilibrium under the constraint of
a given total energy. It is shown that this is the condition that the entropy is
maximized.

2.1 The Microcanonical Distribution

We consider a system enclosed by an adiabatic wall. By an adiabatic wall
we mean that energy cannot be transferred through this wall. The system
can be a gas, liquid, or solid. For this system, the volume V , the number of
molecules N , and the total energy E are kept constant. These variables repre-
sent the only possible constraints for this system. Other than these constraints,
we cannot place any restriction on the microscopic motions of the molecules.
Therefore, according to the principle of equal probability, each molecule can
do anything that is possible under these macroscopic constraints, and various
microscopic states should be realized with equal probability in thermal equi-
librium. Among these microscopic states, some states may be quite special,
such that they will not be realized in reality. However, except for a few such
exceptional states, almost all microscopic states will actually be realized as the
state of the system changes temporally. Because of the vast number of possi-
ble microscopic states, the exceptional states will practically never be realized
anyway; this is the conclusion of the previous chapter. We call this situation,
where every possible microscopic state is realized with equal probability, the
microcanonical distribution.

We write the total number of microscopic states allowed under the macro-
scopic constraints as W (E, δE, V,N). Therefore, the probability of each mi-
croscopic state being realized is 1/W . Here we have allowed some uncertainty
δE in the total energy, and have counted microscopic states where the total
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energy is between E and E + δE. The reason for this will be clarified later.
Using this W , we define the entropy S(E, δE, V,N) as follows:

S(E, δE, V,N) = kB ln W (E, δE, V,N) . (2.1)

Furthermore, we define the temperature of the system as follows:

T =
[
∂S(E, δE, V,N)

∂E

]−1

. (2.2)

In this equation, the partial differentiation is done keeping δE, N , and V
fixed. As we shall see later, the temperature thus defined coincides with the
temperature defined by thermodynamics.

At this point you may have several questions.

• Question 1 : The uncertainty in the energy δE looks arbitrary. If so, can
the entropy and the temperature be defined without arbitrariness?

• Question 2 : How can we count the number of microscopic states? In the
case of a gas, the position and velocity of each molecule are continuous
variables. Do two molecules with slightly different velocities belong to the
same microscopic state or not?

• Question 3 : Why is the uncertainty δE needed?

Before proceeding, let us answer these questions briefly.
First, we consider the effect of δE. We can show that the entropy and

temperature do not depend on the choice of δE as long as δE is small enough.
When δE is sufficiently small, W should be proportional to δE, i.e. W = w δE,
where w is independent of δE. We can compare the value of the entropy for two
different choices of δE, δE1 and δE2. The entropies S1 and S2 are calculated
using the uncertainties δE1 and δE2, respectively:

S1 = kB ln (w δE1) (2.3)

and
S2 = kB ln (w δE2) . (2.4)

Now, the number of macroscopic states W is tremendously large when N is
large, and the entropy Si turns out to be proportional to N , as we shall see
later, i.e. Si = kBO(N). Here, O(N) means a number of the order of N . On
the other hand, the difference between S1 and S2 turns out to be of the order
of unity:

S1 − S2 = kB ln
(

δE1

δE2

)
= kBO(1) . (2.5)

Therefore, for macroscopic systems where N is of the order of 1022, the dif-
ference between S1 and S2 is negligibly small compared with the value of Si,
and so the choice of δE is arbitrary. Because of this arbitrariness of δE, we
shall not write δE in the argument of S in the following equations.

Second, we consider question 2. It is true that we cannot count the num-
ber of microscopic states if we consider the motion of molecules in classical
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mechanics. In classical mechanics, the state of a molecule is described by the
continuous variables r and v. Therefore, we cannot give a reasonable definition
of the entropy. However, classical mechanics is not valid for the description
of the motion of microscopic particles. At the microscopic level, the motion
is governed by quantum mechanics. As we shall see in Chap. 4, the motion
of molecules is quantized, and we can count the number of microscopic states
even for a gas molecule in a container.

As a consequence of quantum mechanics, the energy is quantized also.
That is, the kinetic energy of a molecule is no longer a continuous variable.
This fact gives us an answer to question 3. Namely, we need a nonzero δE to
have a reasonable behavior of W . If we make δE arbitrary small, W ceases
to be a well-behaved function of E. It may happen for some energy E that
there is no microscopically allowed state, but in the vicinity of that energy, W
may become quite large. Finally, we remark on the derivative with respect to
energy. Even if W is not a wild function of E for nonzero δE, it will change
stepwise. However, each step is much smaller than the value of W there, and
therefore it is possible to approximate W by a continuous function of E.
The differentiation should be considered to be performed on this continuous
function.

Example

For a better understanding of W and S, let us investigate a simple example of
the counting of microscopic states. We consider here a situation where a large
amount of money is distributed among a population of N people.1 The total
amount of money and the total number of people are macroscopic variables,
which are fixed as constraints; that is, they are the state variables. If the
money is in the form of a bar of gold, it can be divided almost continuously,
and so it is hard to count the ways to distribute it among N people. This sit-
uation is similar to the situation where we treat a physical system by classical
mechanics. However, in the case of money there are units, for example yen or
cents, just as energy is quantized in quantum mechanics. If we use such units,
the number of ways to distribute the money is countable.

The number of ways of distributing E yen to N people is given as follows:

W =
(E + N − 1)!
E!(N ! − 1)

�
(

E + N

E

)E (
E + N

N

)N

. (2.6)

Here, to obtain the final result, Stirling’s formula has been used. Thus the
entropy and temperature are given by

S(E,N) = kB ln W � kBE ln
(

1 +
N

E

)
+ kBN ln

(
1 +

E

N

)
(2.7)

1 This situation may seem unrelated to statistical physics, but the same equation
appears later when we consider the heat capacity of a solid.
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and
1
T

=
∂S

∂E
= kB ln

(
1 +

N

E

)
. (2.8)

Expressing E in terms of T , we obtain

E =
N

exp(1/kBT ) − 1
. (2.9)

This form is known as the Bose distribution function, and we shall encounter
it when we consider the vibration of two-atom molecules, black-body radia-
tion, and the heat capacity of solids. A detailed discussion of this distribution
function will be given in Chap. 10. You should notice that to obtain these
results, we have implicitly taken δE to be 1 yen. Also, we have approximated
the stepwise function W (E,N) by a smooth function after using Stirling’s
formula, by treating E as a real number.

Remark

When two systems of the same size are united into one, E, N , and V are
doubled. In this case the entropy should also be doubled. Otherwise, the tem-
perature defined by (2.2) will change after the union. The entropy S (2.7) has
this property. Similarly, the entropies of all the systems that we consider in
this book have this property. If we want to define an entropy with this prop-
erty starting from W , taking the logarithm of W is necessary. Then what is
the reason why W was chosen as the starting point for obtaining S? I think
that there is no a priori, logical reason to choose W . This choice was discov-
ered by the genius Ludwig Boltzmann, probably after much trial and error.
We can imagine how excited he was when he found that this entropy and the
thermodynamic entropy were the same.

2.2 Number of States and Density of States

The entropy is defined by the number of microscopic states for a given energy.
It can also be calculated from the number of states or from the density of
states, both of which we define in this section. Any system has a state that
has the lowest total energy out of all possible states. This is called the ground
state in quantum mechanics. We take the origin of the energy so that the
energy of the ground state is zero. We define the number of states Ω0(E) as
the number of microscopic states that have a total energy less than or equal
to E. By definition, the number of states Ω0(E) is an increasing function of E.

As in the case of the distribution of money considered above, the energy E
may not be allowed to take a continuous set of values. However, since the total
energy is the result of a summation over a macroscopic number of molecules,
it should be tremendously larger than the unit of energy. Therefore it is legit-
imate to consider the number of states as a continuous function of E, and we
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can define the density of states as the derivative of the number of states with
respect to E, i.e.

Ω(E) =
dΩ0(E)

dE
. (2.10)

The number of microscopic states W is nothing but Ω(E) multiplied by some
energy uncertainty δE, i.e. W = Ω(E) δE.

As seen in our example related to money, W increases exponentially
with E. Therefore Ω(E) and Ω0(E) also increase exponentially. Most macro-
scopic systems behave like this, and are called statistical-mechanically nor-
mal systems.2 In this case we can use Ω0(E) to calculate the entropy from
S = kB ln[Ω0(E)]. This is because of the following inequality, which can easily
be shown to be satisfied from comparison of the areas shown in Fig. 2.1:

S = kB ln[Ω(E) δE] < kB ln[Ω0(E)] < kB ln[Ω(E)E] . (2.11)

If we calculate the difference between the right-hand and left-hand sides of
these inequalities, we obtain

kB{ln[Ω(E)E] − ln[Ω(E) δE]} = kB ln
(

E

δE

)
. (2.12)

Since the entropy is a macroscopic quantity proportional to N , this difference
is negligibly small compared with the entropy itself. Even if E/δE is quite
large, such as a billion or a trillion, the logarithm of it is not large.3 This

Fig. 2.1. Relationship between the energy and the number of states. The density
of states Ω(E) is plotted. The number of states Ω0 is given by the shaded area below
the curve. It is larger than Ω δE but smaller than Ω × E

2 Under special conditions it can happen that Ω(E) or W is not an increasing
function of E. In the case of our example related to money, this happens when
there is an upper limit on the amount of money that an individual can possess.
A physical example is provided by a model where only a finite number of electronic
states are taken into account.

3 When E/δE = 1030, ln(E/δE) = 71.4. This value is negligible compared with
N � 1024.
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means that all the expressions in this inequality have effectively the same
value, and any of these expressions can be used to calculate the entropy.

2.3 Conditions for Thermal Equilibrium

We consider two systems that are separated. We then couple these two sys-
tems with a weak interaction. After we have waited for a sufficiently long
time, the two systems will reach a mutual equilibrium owing to the sec-
ond law of thermodynamics. We seek a condition to describe this equilibrium
state.

When the interaction is weak, the microscopic states of each system are
almost the same as when the systems are isolated. As a matter of fact, the
systems will interact through parts of their surfaces, and so the explicit effect
of the interaction will be restricted to a region around those parts. Thus,
we can assume that the density of states Ω(E) of each system will remain
the same as in the isolated case. We distinguish the two systems by using
subscripts I and II, and so we write the variables as EI, NI, and VI for system I
and as EII, NII, and VII for system II.

2.3.1 Equilibrium Condition when only Energy is Exchanged

First we consider the case in which NI, VI, NII, and VII are kept constant,
but energy can be transferred between the systems. In this case only the sum
of the energies E = EI + EII is conserved. We shall calculate the density of
states of the total system Ω(E), or, more precisely, the number of microscopic
states Ω(E) δE. This is expressed in terms of the corresponding quantities
for each system, ΩI and ΩII. When system I is in one of the microscopic
states of energy EI, system II can be in any of the microscopic states of
energy EII that satisfy E − EI ≤ EII ≤ E − EI + δE. The number of such
states is NII = ΩII(E−EI) δE. The number of microscopic states in the whole
system in which system I has an energy between EI and EI +dEI is then this
number NII times the number of states in system I in this energy interval
NI = ΩI(EI) dEI:

NINII = ΩI(EI) dEI × ΩII(E − EI) δE . (2.13)

The number of states of the whole system Ω(E) is obtained by summing this
number over the possible range of EI:

Ω(E) δE =
∫ E

0

dEI ΩI(EI) × ΩII(E − EI) δE . (2.14)

According to the principle of equal probability, all these Ω(E) δE microscopic
states are realized with equal probability in thermal equilibrium for a total
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energy E. Therefore, the probability f(EI) dEI that system I has some energy
between EI and EI + dEI is NINII divided by Ω(E) δE:

f(EI) dEI =
ΩI(EI) dEI ΩII(E − EI) δE

Ω(E) δE
. (2.15)

Considering the fact that ΩI(EI) and ΩII(EII) are rapidly increasing functions
of energy, we can expect that this product will show a very sharply peaked
structure. In that case the system will almost always remain at around the
position of the peak. That is, in equilibrium, the product ΩI(EI)ΩII(E − EI)
takes its maximum value. The way in which the peak becomes sharp for
a macroscopic system is illustrated in Fig. 2.2.

The position of the peak is given by the maximum of ln [ΩI(EI)ΩII(E−EI)]:

0 =
d

dEI
kB ln[ΩI(EI)ΩII(E − EI] =

d
dEI

[SI(EI) + SII(E − EI)]

=
∂SI(EI)

∂EI
− ∂SII(E − EI)

∂E
. (2.16)

That is, the total entropy S(E) = SI(EI) + SII(EII) is maximized in ther-
mal equilibrium under the constraint that the total energy is fixed. Now we
recall that the temperature is defined by the derivative of the entropy with
respect to the energy, i.e. ∂S/∂E = 1/T . Therefore, (2.16) indicates that the
temperatures of the two systems become the same when they are brought to
equilibrium through exchange of energy.

Fig. 2.2. The probability that system I has energy EI, f(EI) = ΩI(EI)ΩII(E −
EI)/Ω(E). To normalize the figure, what is actually plotted is f(EI)E as a function
of EI/E. This figure shows the probability when the two systems are ideal gases with

equal numbers N of molecules. In this case ΩI(EI) ∝ E
3N/2
I . The dashed line and

solid line show the probability when N = 100 and N = 1000, respectively. The peak
narrows in proportion to

√
N , so for macroscopic systems the peak is very narrow,

like that shown in Fig. 1.2
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2.3.2 Equilibrium Condition when Molecules are Exchanged

Next we consider the case in which two systems are connected by a small hole,
and molecules can be exchanged between them. Since the molecules carry
energy, energy is also exchanged. The energy and the number of molecules in
each system are not conserved, but the total number of molecules N = NI+NII

and the total energy E = EI+EII are conserved. We already know the density
of states of the total system when each of the two systems has a fixed number
of molecules. The density of states in the present case is obtained by summing
the density of states for a fixed number over the possible distributions of the
molecules, i.e. for 0 ≤ NI ≤ N . Thus, the density of states of the total system is

Ω(E,N) =
N∑

NI=0

∫ E

0

ΩI(EI, NI)ΩII(E − EI, N − NI) dEI . (2.17)

The probability for system I to have an energy between EI and EI + dEI and
NI molecules is

f(EI, NI) dEI =
ΩI(EI, NI)ΩII(E − EI, N − NI) dEI

Ω(E,N)
. (2.18)

Thermal equilibrium is attained when this probability reaches its maximum.
Since the logarithm of the numerator is the entropy of the total system
S(E,N) = SI(EI, NI) + SII(EII, NII), the condition is that the total entropy
is maximized under the constraint of fixed E and N :(

∂S(E,N)
∂EI

)
E,N,NI

=
(

∂SI(EI, NI)
∂EI

)
NI

−
(

∂SII(E − EI, N − NI)
∂E

)
NI

= 0 (2.19)

and(
∂S(E,N)

∂NI

)
E,N,EI

=
(

∂SI(EI, NI)
∂NI

)
EI

−
(

∂SII(E − EI, N − NI)
∂N

)
EI

= 0 . (2.20)

Fig. 2.3. Two systems connected by a small hole
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We define the chemical potential µ by the following equation:(
∂S

∂N

)
E,V

= −µ

T
. (2.21)

The conditions for thermal equilibrium are TI = TII and µI = µII; that is, the
temperature and the chemical potential must both have equal values in the
two systems.

2.3.3 Equilibrium Condition when Two Systems
Share a Common Volume

This time we consider two systems that are connected by a movable wall, for
example two systems in a cylinder separated by a piston as shown in Fig. 2.4.
The motion of the wall transmits energy between the systems, but the numbers
of molecules are conserved in both systems. In this case we count the number
of microscopic states in system I under the condition that the system has an
energy between EI and EI + dEI and a volume between VI and VI + dVI. We
write the result as ΩI(EI, VI) dEI dVI. The density of states of the total system
is then

Ω(E, V ) =
∫ E

0

dEI

∫ V

0

dVI ΩI(EI, VI)ΩII(E − EI, V − VI) , (2.22)

and the probability of system I having an energy between EI and EI + dEI

and a volume between VI and VI + dVI is

f(EI, VI) dEI dVI =
ΩI(EI, VI)ΩII(E − EI, V − VI) dEI dVI

Ω(E, V )
. (2.23)

The condition for thermal equilibrium is that this probability has its maximum
value; this is the condition that the total entropy SI(EI, VI)+SII(E−EI, V −VI)
is maximized with respect to EI and VI. We define the pressure as follows:(

∂S

∂V

)
E

=
P

T
. (2.24)

The equilibrium condition is that the pressures of the two systems are equal,
together with the temperatures, namely TI = TII and PI = PII.

As we have seen, the total entropy is maximized in thermal equilibrium.
We have defined the entropy, and have defined the temperature, pressure,
and chemical potential as derivatives of the entropy. We have then rewritten
the condition for thermal equilibrium in terms of those variables. Are these
variables the same as those which occur in thermodynamics or mechanics, and
are measured in experiments? This is a natural question that you should have.
The answer to this question is given in Chap. 4, where we discuss an ideal gas
by using statistical physics. There we shall find that the statistical-mechanical
definitions of these variables coincide with the traditional definitions.
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Fig. 2.4. Two systems separated by a movable wall

2.4 Thermal Nonequilibrium and Irreversible Processes

We have seen that the entropy is maximized in a state of thermal equilibrium.
Here we consider the entropy in a state of thermal nonequilibrium. Thermal-
nonequilibrium states are caused by actions from outside the system. For
example, the earth as a whole is not in thermal equilibrium. There is a nearly
constant input of energy from the sun in the form of electromagnetic radia-
tion. This energy is radiated, in turn, from the earth to the cosmos. In the
presence of this flow of energy, the earth cannot be in an equilibrium state,
and various meteorological phenomena occur and life is supported. Another
example is a conductor connected to a battery. In this case an electric current
flows in the conductor. The systems in these examples are in quasi-stationary
nonequilibrium states. That is, energy is continuously put into the system,
and the nonequilibrium state lasts for a long time. On the other hand, there
are also situations where a nonequilibrium state is prepared by some means
or other, and after that the system is left to evolve by itself without further
input of energy from outside. One example is that of two systems at different
temperatures, placed in thermal contact at some time. Such a nonequilibrium
state, when left alone, approaches a thermal-equilibrium state as time elapses.
This process is irreversible. A thermal-nonequilibrium state changes into an
equilibrium state spontaneously, but not vice versa. We shall argue that in
such an irreversible process the entropy always increases.

For that purpose, we note that a thermal-nonequilibrium state can be cre-
ated by imposing various constraints on the system. One example of a typical
nonequilibrium state is a system in which the temperature depends on posi-
tion. Another example is that of a cup of water to which a droplet of ink has
just been added. In order to keep these systems in their initial condition, we
would need to divide the system into many small cells with adiabatic barri-
ers between them in the case of the first example, and to wrap the droplet
of ink in the case of the second example. A thermal-equilibrium state would
be approached after these constraints were removed. The molecules acquire
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more freedom when the constraints are removed. Thus, it is evident that the
number of microscopic states increases when this removal happens. Therefore,
we can conclude that the entropy, defined as the logarithm of the number of
microscopic states, is larger in the thermal-equilibrium state. That is, as the
system evolves from a nonequilibrium state to an equilibrium state, the en-
tropy increases.

In other words, the microscopic states allowed in a nonequilibrium state are
a subset of the microscopic states allowed in the equilibrium state. The prin-
ciple of equal probability tells us that any microscopic state in the nonequilib-
rium state is realized in the equilibrium state with some probability, in prin-
ciple. However, when the constraints that are needed to realize the nonequi-
librium state are removed, the number of microscopic states allowed increases
so tremendously that the probability that the system will return to a state in
the original subset is vanishingly small.

Exercise 6. Consider the problem of distributing E yen to a population of
N people, where, in this case, E < N and everyone is allowed to possess at
most 1 yen. Calculate the entropy and temperature of this model. Express E
as a function of T .
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The Partition Function and the Free Energy

In the previous chapter, we discussed a system under the constraint that the
total energy is conserved. However, this condition is difficult to achieve in
a real experimental situation. Therefore, in this chapter, we discuss a system
for which energy is not conserved. Instead of a system for which energy is
conserved, we consider a system in thermal equilibrium with a heat bath. In
this situation, the free energy plays an important role. We derive an expression
for the free energy. This chapter concludes our discussion of the basics of the
statistical physics of equilibrium systems.

3.1 A System in a Heat Bath

It is difficult to isolate a system energetically from its environment. Energy
may enter the system by thermal conduction, electromagnetic radiation (e.g.
light), or sound, for example. Therefore, it is more appropriate to allow the
energy of the system to fluctuate, and to discuss the probability of the sys-
tem having various values of its energy. In this case the state of the sys-
tem depends on its environment. Therefore, we must first prepare a well-
defined environment. In addition to the system under consideration, we pre-
pare a system that is itself in thermal equilibrium, and has a much larger heat
capacity than the system under investigation. This larger system is called
a heat bath, and we surround the system under consideration with it. The
heat bath forms a well-defined environment. Since the heat capacity of the
heat bath is much larger than that of the system under consideration, the
amount of energy exchanged between the systems is negligibly small com-
pared with the total energy of the heat bath. Therefore, the heat bath can be
considered to be at a fixed temperature. We are going to examine the prob-
ability distribution of the energy of a system surrounded by a heat bath at
temperature T .
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3.1.1 Canonical Distribution

In this chapter, we consider a situation in which only energy is exchanged
between the system and the heat bath. Other situations, in which volume or
molecules are exchanged, will be treated in Chaps. 8 and 10, respectively.

In the previous chapter we discussed the condition for the thermal equi-
librium of two systems when energy is exchanged. To utilize that discussion,
we shall call the system under investigation system I, and the heat bath sys-
tem II. In Chap. 2, we found the most probable distribution of energy between
the two systems. Here, we discuss how the energy fluctuates around this most
probable distribution. In this case, system I need not be a macroscopic sys-
tem; it may be a microscopic system such as a single molecule. If system I
is macroscopic, the most probable energy is practically always realized; the
temperature of the system is defined and has the same value as that of the
heat bath. It should be noted, however, that a temperature cannot be defined
for system I if it is a microscopic system, and in that case the distribution of
the energy can be rather wide, as we shall see later.

First, we consider the probability f(EI) that system I is in a microscopic
state of energy EI. The total system, i.e. system I plus system II, can be
considered by use of the microcanonical distribution for a total energy Et.
The probability f(EI) is proportional to the number of microscopic states
in which system I is in the given state. Since system I is already in a given
microscopic state, this number is given by the number of microscopic states
of system II at energy EII = Et − EI. Therefore,

f(EI) ∝ ΩII(Et − EI) ∝ ΩII(Et − EI)
ΩII(Et)

. (3.1)

Here ΩII is the density of states of the heat bath (system II), and the de-
nominator in the final form is simply a constant that is introduced for later
convenience. Because system II is much larger than system I, the condition
Et � EI should be satisfied.1 We can expand the right-hand side with respect
to EI:

f(EI) ∝ ΩII(Et − EI)
ΩII(Et)

= exp
[

1
kB

{SII(Et − EI) − SII(Et)}
]

� exp
[
−EI

kB

∂SII(Et)
∂E

]

= exp
[
− EI

kBT

]
. (3.2)

1 This is the condition that system II can behave as a heat bath.
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This gives the probability that system I is in a microscopic state with en-
ergy EI. This is called the canonical distribution.

3.1.2 Application to a Molecule in Gas

In Chap. 1, we derived the Maxwell distribution, which describes the probabil-
ity of a gas molecule having a particular velocity. If we consider one molecule
in a gas as system I and the rest of the gas as a heat bath, then the Maxwell
distribution (1.29) can be derived from the canonical distribution of the kinetic
energy of the molecule. Since system I is microscopic, the energy distribution
is quite broad.

When the gas is in a gravitational field, the energy of a molecule consists
of its kinetic energy and potential energy:

ε =
mv2

2
+ mgh , (3.3)

where h is the altitude and g is the acceleration due to gravity. Therefore, the
probability f(v, h) of finding a molecule at altitude h with speed v in a gas at
temperature T is

f(v, h) ∝ exp
[
−
(

mv2

2kBT
+

mgh

kBT

)]
. (3.4)

We can estimate from this equation how the density of oxygen in the air
decreases as we climb a mountain. The mass m of an oxygen molecule is
5.33 × 10−26 kg. Therefore, the ratio of the density of oxygen molecules at
h = 3000m to that at h′ = 0 m at T = 300 K is

exp
(
−mg(h − h′)

kBT

)
= e−0.378 = 0.68 . (3.5)

Because of this decrease in the density of oxygen, you need oxygen cylinders
to climb Mount Everest.

You might think that this equation could be used to determine kB. Namely,
if we measure how the density or pressure of the air decreases with altitude,
we can determine m/kB, and then, if we know m, kB can be determined.
However, this is not a good idea, because the ratio m/kB is already known
from macroscopic measurements. If m and kB are multiplied by the Avogadro
constant NA, mNA � 32 g is the molar mass of oxygen, and kBNA = R is
the gas constant, known from the equation of state of an ideal gas. Therefore,
to determine the value of kB we need to use something else, whose mass is
known independently.

In 1908, Perrin measured the vertical distribution of resin particles in
water and succeeded in determining the value of kB independently of the
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Avogadro number. He also showed that the values of these quantities were
consistent. To prepare many resin particles of the same size, Perrin dis-
solved a resin in alcohol. The solution was then mixed with water to pre-
cipitate out the resin as small particles. Since the particles had various sizes,
a centrifuge was used to separate the particles according to size. One kilo-
gram of resin was processed over several months, and Perrin obtained only
a tiny amount of resin particles with sizes that were sufficiently well matched.
The size and density of the particles were measured, and the particles were
then suspended in water. The vertical distribution was measured by count-
ing particles in the field of view of a microscope with a depth of focus
of 2 µm; that is, particles that were in focus, which floated at heights be-
tween h and h + 2 µm, were counted. The dependence of the resulting num-
ber on h was plotted, and fitted to a dependence on h of the form (3.5).
Since the mass m of a particle could be determined from the mass den-
sity of the resin and the diameter of the particles, this fitting process gave
the value of kB. This experiment to determine kB brought Perrin a Nobel
Prize.

3.2 Partition Function

The probability of the canonical distribution (3.2) is not normalized. Let us
now normalize it. We number the microscopic states of system I, and write
the energy of the ith state as Ei. It should be noted that it is possible that
different microscopic states may have the same energy Ei. We first calculate
the following sum Z over all microscopic states:

Z(T, V,N) =
∑

i

exp
(
− Ei

kBT

)
. (3.6)

The normalized probability is then

f (Ei) =
e−Ei/kBT

Z
. (3.7)

The normalization factor Z introduced here is called the partition func-
tion. It is a function of the temperature, the volume, and the number of
molecules, and plays an important role, as we shall see in the next section.
However, before discussing its importance, we shall rewrite the above equa-
tion in a more convenient form. For a macroscopic system, there are infinitely
many microscopic states. Therefore, it is impossible to carry out the sum-
mation in (3.6). We need to calculate the sum by replacing the summation
with an integral. There are many microscopic states between energies E and
E + dE. The number of states in this range is given by ΩI(E) dE, where
ΩI(E) is the density of states. On the other hand, for all the states with en-
ergy Ei in this range, we can write exp(−Ei/kBT ) as exp(−E/kBT ). The
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summation over the states between E and E + dE can then be written
as ∑

E≤Ei<E+dE

exp
(
− Ei

kBT

)
= exp

(
− E

kBT

) ∑
E≤Ei<E+dE

1

= exp
(
− E

kBT

)
ΩI(E) dE . (3.8)

Summing over all the whole range of energies, we obtain Z in the form of an
integral:

Z =
∫ ∞

0

e−E/kBT ΩI(E) dE . (3.9)

3.3 Free Energy

We now introduce the free energy F (T, V,N), derived from the partition func-
tion Z(T, V,N):

F (T, V,N) ≡ −kBT ln Z(T, V,N) . (3.10)

We shall show that this function is equal to U −ST for a macroscopic system,
where U is the internal energy of the system. Therefore, F coincides with
the Helmholtz free energy of thermodynamics, and all possible information
about the equilibrium state is known once this function has been obtained.
To show this equality, we shall evaluate Z. We rewrite Z using the entropy
S = kB ln(ΩI δE):

Z(T, V,N) =
∫ ∞

0

dE e−E/kBT ΩI(E)

=
∫ ∞

0

dE exp
[
− 1

kBT
{E − S(E, V,N)T}

]
1

δE
. (3.11)

In this integral, E and S are both macroscopic variables proportional to N .
Thus, the integrand changes drastically around the minimum of E−ST , which
occurs at E∗. Since the integrand becomes exponentially small once E deviates
from E∗, the integral can be evaluated from the integrand in the vicinity of
E∗. The position of the minimum E∗ is determined by the following equation:

0 =
∂

∂E
(E − ST ) = 1 −

(
∂S

∂E

)
T,V,N

T . (3.12)

It should be noted that the temperature in this equation is that of the heat
bath. When we discussed the microcanonical distribution, the temperature of
the system was given by (

∂S

∂E

)
V,N

=
1
T

. (3.13)

Here, a similar equation determines E∗.
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The integrand is the probability that energy of the heat bath, of tempera-
ture T , is E. So E∗ is the most probable energy of the system, and the sharp
peak means that the fluctuation in the energy is small for a macroscopic sys-
tem. Thus E∗ is also the average energy 〈E〉 of the system. The sharpness of
the peak is illustrated in Fig. 3.1.

To perform the integration, we expand E − ST around E∗:

E − ST = E∗ − S (E∗, V,N)T + (E − E∗)

− (E − E∗)
∂S

∂E
T − 1

2
(E − E∗)2

∂2S

∂E2
T + · · ·

� E∗ − S (E∗, V,N) T +
1
2

(E − E∗)2
1

TC

+O[(E − E∗)3] . (3.14)

Here (3.12), i.e. (∂S/∂E)T = 1, has been used, and we have put

∂2S

∂E2
= − 1

T 2C
. (3.15)

C is a positive constant, which is actually the heat capacity of the system.
The integral reduces to a Gaussian integral in this approximation, and the
result is

Z =
(
2πkBT 2C

)1/2 1
δE

exp
[
−E∗ − S (E∗, V,N) T

kBT

]
. (3.16)

Fig. 3.1. The integrand of (3.11), exp[(E − ST )/kBT ], and the argument of the
exponential, (E − ST )/kBT . The dashed line shows the behavior of (E − ST )/kBT
around the minimum for a system consisting of a sample of an ideal gas with 10 000
molecules. The solid line shows exp[−(E−ST )/kBT ]. Since (E−ST )/kBT increases
in proportion to N , the number of molecules, the width of the integrand decreases
in inverse proportion to

√
N , and it becomes very narrow for a macroscopic system
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Hence,

F = −kBT ln Z

= [E∗ − S (E∗, V,N) T ] − kBT ln

[(
2πkBT 2C

)1/2

δE

]
. (3.17)

In this equation, the first term is a macroscopic quantity proportional to N .
Compared with this term, the second term is negligibly small: even if the
argument of the logarithm is macroscopic, the logarithm is of the order of
one. As a result, we obtain

F = E∗ − ST . (3.18)

Namely, while F is equal to −kBT ln Z, it is also the minimum value of E−ST
in the argument of the exponential in the integrand of (3.11), which gives Z.

The fact that the minimum of E−ST gives the most probable distribution,
namely thermal equilibrium, under the constraint of a given temperature and
volume, is important. Here this function is minimized with respect to the en-
ergy E. However, we can extend this rule. It sometimes happens that a system
is characterized by an additional state variable, say X, in addition to T , V ,
and N . An example of X might be the magnetization in the case of a ferro-
magnetic system. In this case, the summation over the microscopic states in
the calculation of Z can be done under the constraint of a given value of X,
and Z and F are given by functions of T , V , N , and X. The value of X
in thermal equilibrium is given by the value at which F is a minimum. This
is because the partition function is a maximum for that value of X, which
means that the number of microscopic states is at its largest, and so one of
them is almost always realized owing to the principle of equal probability. In
Chap. 7, we apply this principle to discuss a phase transition in a magnetic
material. This principle is also used in Landau’s theory of second-order phase
transitions, discussed in Chap. 9.

3.4 Internal Energy

In thermodynamics, the internal energy is introduced, and is usually written
as U . It is the energy of a system after any mechanical energy associated with
the center of mass of the system has been removed. Since it is usually trivial to
remove such mechanical energy, we shall assume that “energy” in this section
means the energy without any such external energy.

In the microcanonical distribution, the energy E is given and the temper-
ature is determined as a function of E. There is no fluctuation in the energy,
and the internal energy U is nothing but this energy E. In the canonical dis-
tribution, on the other hand, the temperature is given, and the microscopic
states, with energy Ei, are distributed according to the probability (3.7). In
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this case U is given by 〈Ei〉. Since the distribution function of the energy is
sharply peaked, the average coincides with the most probable value of the
energy, E∗. Therefore, the relationship F = U − ST can be established.

Let us now give a useful equation for U , and show that U = 〈E〉 actually
coincides with E∗. From the definition of a thermal average in equilibrium,
U can be expressed and rewritten as

U =
∑

i

Eie−Ei/kBT

Z
= − ∂

∂β
ln Z , (3.19)

where β = 1/kBT as usual. That is, U is obtained from the derivative of
ln Z. Using F for lnZ, we can show that this average coincides with the most
probable energy E∗:

U =
∂

∂β

(
F

kBT

)

=
1

kBT

∂F

∂β
+ F

∂

∂β

(
1

kBT

)

= −T
∂F

∂T
+ F = TS + F = E∗ . (3.20)

In the last line we have used a well-known relation from thermodynamics,
(∂F/∂T )V = −S. We shall derive this relation in the next section.

3.5 Thermodynamic Functions
and Legendre Transformations

The entropy that we defined in Chap. 2 is a function of the energy E, the
volume V , and the number of molecules N , and its total differential is

dS =
1
T

dE +
P

T
dV − µ

T
dN . (3.21)

This equation is satisfied in thermal equilibrium. Thus we can use U instead
of E and rewrite the total differential of the entropy as a total differential
of U :

dU = T dS − P dV + µdN . (3.22)

This equation means that we should consider the internal energy U as a func-
tion of S, V , and N .

On the other hand, the free energy F defined in the previous section is
a function of T , V , and N by definition. We can obtain the total differential
of F using F = U − ST :

dF = dU − d(TS) = dU − S dT − T dS = −S dT − P dV + µdN . (3.23)
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From this equation, we can obtain (∂F/∂T )V,N = −S, for example, which
was used in the previous section. In this way, we can change the independent
variables from the set (S, V,N) to the set (T, V,N) by subtracting ST from U .
This operation is called a Legendre transformation.

A further Legendre transformation defines the Gibbs free energy G as
G = F + PV . This free energy is a function of (T, P,N):

dG = −S dT + V dP + µdN . (3.24)

This Gibbs free energy has an interesting property. Among T , P , and N ,
only N is an extensive variable. Therefore, the following relation should be
satisfied:

G(T, P, αN) = αG(T, P,N) . (3.25)

This equation means that G(T, P,N) = g(T, P )N . Here g is the Gibbs free
energy per molecule. On the other hand, from the derivative of G, we know
that (∂G/∂N)T,P = µ. Thus we can conclude that g(T, P ) = µ, i.e.

G(T, P,N) = µ(T, P )N . (3.26)

U , F , and G are connected by a Legendre transformation and collectively
called thermodynamic functions. They have different sets of independent vari-
ables. The variables associated with each function are called its natural vari-
ables. It is important to realize that this association is not arbitrary: once
a thermodynamic function has been given as a function of its natural variables,
we can obtain the values of any state variables in thermal equilibrium, but this
is not so if the function is given in terms of another set of variables. For exam-
ple, once we have obtained F (T, V,N), S, P , and µ can be derived by differen-
tiating F with respect to T , V , and N , respectively. Furthermore, other ther-
modynamic functions can be obtained by Legendre transformations. On the
other hand, suppose that the internal energy U has been obtained as a func-
tion of (T, V,N); of these variables, T is not a natural variable. In this case we
cannot derive S from an expression for U(T, V,N). In fact, it is known, and is
shown in the next chapter, that U(T, V,N) = (3/2)NkBT for an ideal gas com-
posed of monatomic molecules. We cannot derive S or P from this function.

3.6 Maxwell Relations

From the fact that state variables are given by derivatives of thermodynamic
functions, we can obtain important relations between their derivatives. Con-
sider F as an example. Since it is differentiable, its second-order derivative
can be calculated in two ways and the results should be the same. That is,
the following equation is satisfied:

∂2

∂V ∂T
F =

∂2

∂T∂V
F . (3.27)
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Putting (∂F/∂T )V = −S and (∂F/∂V )T = −P into the two sides of this
equation, we obtain the equation(

∂S

∂V

)
T

=
(

∂P

∂T

)
V

. (3.28)

This kind of relation can be derived using other thermodynamic functions as
well. All such relations are called Maxwell relations.

One application of these relations is to the determination of entropy. En-
tropy cannot be measured by simply reading a gauge on an apparatus, as can
be done for temperature or pressure. Instead, (3.28) can be used to find out
how S changes when the volume changes at a given temperature. Similarly,
from an equation obtained from the derivative of G,(

∂S

∂P

)
T

= −
(

∂V

∂T

)
P

, (3.29)

we can find out how S changes when the pressure changes.
Finally, we remark on some relations for an ideal gas that can be derived

from such equations. For an ideal gas, PV = nRT . From that equation, the
right-hand side of (3.28) is equal to nR/V = P/T , and we obtain (∂S/∂V )T =
P/T . On the other hand, the pressure is defined by (∂S/∂V )E = P/T . This
gives (∂S/∂V )T = (∂S/∂V )E for an ideal gas. This is a consequence of the
special characteristics of an ideal gas that the temperature is proportional to
the energy and that the energy is uniquely determined by the temperature.

Exercise 7. Calculate by how much the density of oxygen is decreased at the
summit of Mount Everest (altitude 8848 m).

Exercise 8. Show that the constant C in (3.14) is the heat capacity of the
system.

Exercise 9. Derive the Maxwell relation (3.29).
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Ideal Gases

Here, we shall apply statistical physics to an ideal gas. We calculate the tem-
perature and pressure as defined by statistical physics, and show that these
statistical-mechanical definitions give the same temperature and pressure as
do the thermodynamic definitions. We also discuss the thermal properties of
an ideal gas consisting of diatomic molecules.

4.1 Quantum Mechanics of a Gas Molecule

Suppose that we enclose N molecules in a box of volume V with adiabatic
walls, and let them move with arbitrary velocities. If the influence of gravity
can be neglected, the molecules continue to move and they become distributed
uniformly, as we have seen in Chap. 1.1 If there is no interaction between the
molecules, the speed of every molecule is conserved. In this case it is impossible
for the system to iterate through all possible microscopic states. Therefore we
allow a weak interaction between the molecules so that every microscopic state
can be realized. A model with this property describes an ideal gas, and also
describes a real gas in the dilute limit.

We shall investigate this model by the use of statistical physics in this chap-
ter. For this purpose, we must distinguish between microscopic states. This
task cannot be accomplished if we are discussing the motion of a molecule
using classical mechanics. In classical mechanics, the state of a molecule is
determined by its position r and its momentum p. These variables vary con-
tinuously, and so we cannot count the number of states that have energies
between E and E + δE. The way out of this difficulty is to use quantum
mechanics, which is the correct set of laws governing the microscopic world.

The essence of quantum mechanics is that a molecule behaves both as
a particle and as a wave. A wave function ψ(r), which is a continuous
1 Note that since there is no energy transfer between the adiabatic walls and the

molecules, the energy of a molecule must be conserved in a collision with a wall.
The reflection must be perfectly elastic.
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function and takes complex values, is associated with a molecule, and the
probability of finding the molecule in an infinitesimal volume δV around
r is given by |ψ(r)|2 δV . The momentum of the molecule p is related to
the wave vector k of the wave function by p = �k, where � = h/2π �
1.05 × 10−34 J s is the Planck constant divided by 2π.2 The energy of the
molecule E = p2/2m is related to the angular frequency of the wave ω by
E = �ω.

To illustrate quantum mechanics, let us consider a one-dimensional sys-
tem for simplicity. When a molecule moves along the x-axis with a definite
momentum p = �k, it is described by the following wave function:

ψ (x) = Aei(kx−ωt)

= |A | cos (kx − ωt + α) + i |A | sin (kx − ωt + α) . (4.1)

Here, Euler’s formula,

exp(ix) = cos x + i sin x , (4.2)

has been used, and the coefficient A is assumed to be a complex number
of the form A = |A|eiα. This state, with a definite momentum, is a spatially
extended state, and the probability of finding a molecule is independent of the
position: |ψ(x)|2 = |A|2. This state is not appropriate for discussing molecules
in a box.

To discuss molecules in a box, we need to use standing-wave states. The
description of a state in classical and quantum mechanics is illustrated in
Fig. 4.1. In classical mechanics, molecules are reflected from the walls, and
their momentum changes sign when this happens, from p to −p. Likewise,
a molecule in a box is described by a wave that is a superposition of waves
with momenta p and −p. If the size of the box in the x-direction is Lx and
the molecule can move in the region 0 < x < Lx, the wave function is

ψ(x, t) = A sin
(px

�

)
e−iωt =

A

2i

(
ei(px/�−ωt) − e−i(px/�+ωt)

)
. (4.3)

In order to satisfy the boundary condition that ψ(0, t) = ψ(Lx, t) = 0, p must
be equal to pn = nh/2Lx, where n is a positive integer.3 In this way, the mo-
mentum in the x-direction is restricted to discrete values pn when the molecule
is in a box. This restriction is called quantization of momentum. Owing to this
quantization, the kinetic energy in the x-direction is also quantized:

Ex,n =
p2

x

2m
=

h2

2m

(
n

2Lx

)2

. (4.4)

2 The Planck constant h is equal to 6.6260693 × 10−34 J s. This constant divided
by 2π, � = h/2π = 1.05457168 × 10−34 J s, is also used frequently.

3 There is no probability of finding the molecule outside the box. Thus, ψ(x, t) = 0
for x < 0 and x > Lx. The continuity of the wave function requires the boundary
condition specified here.
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Fig. 4.1. Motion of a molecule in a box. (a) Classical mechanics: a molecule of
momentum p is reflected at a wall so that after reflection it has a momentum −p.
(b) Wave function in quantum mechanics: the wave function ψ(x) is a continuous
function and has a nonzero value only inside the box. In this figure, only the x-
component of the motion is depicted, for simplicity

Each of these states, indexed by an integer n, is a microscopic state in which
a molecule can be accommodated.
The extension of this standing-wave state to a molecule in a three-dimensional
box of size Lx×Ly×Lz is straightforward. The wave function and the allowed
momenta are

ψ(r, t) = A sin
(pxx

�

)
sin

(pyy

�

)
sin

(pzz

�

)
e−iωt (4.5)

and

p = (px, py, pz) =
(

nh

2Lx
,

mh

2Ly
,

lh

2Lz

)
, (4.6)

where n, m, and l are positive integers.

4.2 Phase Space and the Number of Microscopic States

In order to count the number of microscopic states of an N -molecule sys-
tem, we need to depict them. For this purpose, we introduce what is called
phase space. The phase space for a single molecule is the space spanned
by the real-space coordinate r and the momentum p. If we consider only
one-dimensional motion along the x-axis, the phase space becomes two-
dimensional, and a point in that space has coordinates (x, px). What is
shown in Fig. 4.1a is this two-dimensional phase space. In classical me-
chanics, the state of a molecule at a given time is indicated by a point
in this space, and the molecule moves in this space along an orbit, shown
by the dashed line, as time elapses. On the other hand, in quantum me-
chanics, a standing-wave state is represented by a pair of parallel lines at
px = ±nh/2Lx in this space, as shown in Fig. 4.2. The nth state has
a momentum px,n = hn/2Lx, and the pair of lines enclose an area nh
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Fig. 4.2. Quantization of the momentum. The state of a molecule in quantum
mechanics is described by a pair of lines at px = ±nh/2Lx in phase space. The
arrows indicate that each state is a superposition of right-going and left-going plane
waves

in the phase space. Since there are n states in this area, we can conclude
that an area of h in this phase space contains just one microscopic state of
a molecule.4

We have derived this relation on the basis of an inspection of the standing-
wave states. However, it is actually a general consequence of Heisenberg’s
uncertainty principle, which tells us that there is uncertainty in both the
position and the momentum of a particle; the position and momentum can
only be determined subject to the condition that ∆x ∆p ≥ h. In the case
of a standing-wave state, the molecule can be anywhere in the box, so
that ∆x = Lx. Therefore, ∆p ≥ h/Lx must be satisfied. This is the rea-
son that the lowest momentum is ±h/2Lx, which is nonzero and has un-
certainty of ∆p = h/Lx. A spatially more localized wave function can be
constructed in the form of a wave packet by superposition of wave func-
tions. If we mix waves with momenta from p to p + δp, we obtain a wave
which has a large amplitude between x and x + δx and with a mini-
mum δx determined by δp from δx δp > h, as shown in Fig. 4.3. The
Heisenberg uncertainty relation is a consequence of this general property of
a wave. A wave created in this way occupies an area of ∆x∆p in phase
space. Thus, a microscopic state of one-dimensional motion can be con-
sidered to occupy an area h in two-dimensional phase space, as shown in
Fig. 4.4.

This result can be generalized to motions in real three-dimensional space.
In this case the phase space becomes six-dimensional, and a point in this

4 There are, for example, three states in the area between the lines for n = 3, with
px = ±h/2Lx, ± 2h/2Lx, and ± 3h/2Lx, as shown in Fig. 4.2.
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Fig. 4.3. Wave packet. By superposition of waves with momenta in the range p ±
h/(2 ∆x), we can create a wave packet of length ∆x

Fig. 4.4. There is one microscopic state in each area of size ∆x ∆p = h in phase
space

space is described by a vector (x, y, z, px, py, pz). A quantum mechanical state
of a molecule occupies a volume ∆x∆y ∆z ∆px ∆py ∆pz = h3 in this space.

In statistical physics, we consider a system of N molecules. A microscopic
state in this case is depicted in a phase space of 6N dimensions. A point in
this space has coordinates (x1, y1, z1, p1x, p1y,, p1z, x2, y2, z2, . . .); that is, six
dimensions are assigned to the real-space coordinates and momenta of each
molecule. In classical mechanics, a point in this space describes perfectly the
state of all the molecules. In quantum mechanics, a microscopic state occupies
a volume of h3N in this 6N -dimensional space.

4.3 Entropy of an Ideal Gas

Once we can count W (E), which is the number of microscopic states that
have energies between E and E +δE, we can obtain the entropy from S(E) =
kB ln W (E). We can also use the number of states Ω0(E) that have energies
less than E instead of W (E). In that case,

S(E) = kB [lnΩ0 (E) + O (1)] . (4.7)
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For N molecules, the phase space is 6N -dimensional, and the states with
a total energy less than E occupy a nonzero volume in this space. The number
of states Ω0(E) can be calculated by dividing the volume of phase space
by h3N .

We begin the calculation with the simplest case. We consider a system
of a single molecule where the motion of the molecule is restricted to a one-
dimensional space of le ngth Lx. The phase space is two-dimensional, as shown
in Fig. 4.5a. If the energy of the system is E, the momentum of the molecule
must satisfy |px| =

√
2mE, where m is the mass of the molecule. Therefore,

the region of phase space for states with an energy less than E is the shaded
area in the figure, and the number of states is

Ω0 =
2 ×√

2mELx

h
. (4.8)

Next, the momentum subspace for a molecule in a two-dimensional space of
area Lx × Ly is shown in Fig. 4.5b, and the region corresponding to energies
less than E is the shaded circle, the area of which is π(

√
2mE)2. Thus,

Ω0 (E) =
π
(√

2mE
)2

LxLy

h2
. (4.9)

Similarly, in a three-dimensional space of volume V , the region of the momen-
tum subspace where the energy is less than E is a sphere of radius

√
2mE,

and Ω0 is given by

Ω0 (E) =
4π

3
(2mE)3/2

h3
V . (4.10)

Fig. 4.5. The shaded area shows the region in phase space in which the energy of the
system is less than E. (a) One-dimensional system. (b) Two-dimensional system,
where only the momentum subspace is shown
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Finally, we consider N molecules in a three-dimensional space of volume V .
In this case the coordinate part of the phase space has a volume V N . The
momentum part of the phase space is 3N -dimensional, and the region cor-
responding to energies less than E is the inside of a hypersphere of radius√

2mE, namely the region defined by

E ≥
N∑

i=1

1
2m

(
p2

ix + p2
iy + p2

iz

)
. (4.11)

The volume of this hypersphere is calculated in Appendix D, and is given by

π3N/2

Γ (3N/2 + 1)

(√
2mE

)3N

, (4.12)

where Γ (n + 1) = n! is the gamma function. The number of states Ω0(E) is
then given by

Ω0 (E) =
V N

h3N

π3N/2

Γ (3N/2 + 1)

(√
2mE

)3N 1
N !

. (4.13)

In this equation, the final factor 1/N ! arises from the fact that the molecules
cannot be distinguished. That is, the microscopic state in which the ith and
jth particles are in the kth and lth quantum mechanical states, respectively,
is the same as that in which the ith and the jth particle have been exchanged
and are in the lth and kth quantum mechanical states, respectively, Therefore,
a microscopic state in which N molecules are in N quantum states α1, α2,
· · ·, αN , where the ith molecule is in the state αi, and a microscopic state
in which the ith molecule is in the state αP (i), where P (i) is any of the N !
permutations of the molecules, are the same microscopic state of the ideal
gas. To avoid counting the same microscopic states many times, we need the
factor N !. We shall come back to this point in Chap. 10. Without this factor
N !, the entropy has a strange N dependence, which is known as the Gibbs
paradox (see also Exercise 11 at the end of this chapter).

Now the entropy of an ideal gas is obtained:

S (E, V,N) = kB ln Ω0 (E)

= kB ln

(
(2πm)3N/2

N !h3NΓ (3N/2 + 1)

)
+ kBN ln V +

3kBN

2
ln E

= NkB

{
ln

V

N
+

3
2

ln
2E

3N
+ ln

(2πm)3/2e5/2

h3

}
. (4.14)

In the final form, Stirling’s formula (lnN ! = N ln N − N) has been used. The
entropy is proportional to the number of molecules for a fixed number density
N/V and fixed energy density E/V = (E/N)(N/V ), as it should be.
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Before closing this section, we examine the validity of using Ω0(E) in-
stead of W (E). The latter is the number of microscopic states with energies
between E and E + δE. Therefore, it is proportional to the surface area of
a 3N -dimensional hypersphere of radius

√
2mE. This surface area is given by

the derivative of the volume with respect to the radius, as shown in Appendix
D. We obtain

W (E) � V N

h3N

3mNπ3N/2

Γ (3N/2 + 1)
(2mE)3N/2−1 δE

1
N !

. (4.15)

The difference between the entropy obtained from this W (E) and from (4.14)
is negligibly small: apart from an unimportant constant term, the results differ
only in that the coefficients of lnE are (3N/2 − 1)kB and (3N/2)kB, respec-
tively. As N is a macroscopic number, these values for the entropy can be
regarded as exactly the same.

4.4 Pressure of an Ideal Gas:
Quantum Mechanical Treatment

In Chap. 1, we derived the pressure of an ideal gas as P = 2E/3V using
classical mechanics. However, molecules are governed by quantum mechanics,
not by classical mechanics. The use of quantum mechanics to describe the
state of a molecule is essential for statistical physics. Therefore, we need to
calculate the pressure quantum mechanically, and verify that we obtain the
same result. The pressure obtained quantum mechanically is compared with
the pressure obtained from the entropy in the next section. There, we show
agreement between these two pressures.

In the situation shown in Fig. 4.6, the gas is pushing against a piston, and
the resulting force is balanced by an external force F . When the balance is
infinitesimally broken so that the gas expands, work is extracted from the gas.
The extracted work makes the internal energy of the gas decrease. From the
decrease in the internal energy as the gas expands slowly, we can calculate
the force F and the pressure.

We take the x-axis in the direction in which the piston moves. We consider
a situation in which the initial length of the cylinder is Lx, and the cross sec-
tion of the cylinder is a rectangle of area Ly × Lz. Each molecule is in one of
the standing-wave states (4.5), with a momentum given by (4.6). The energy
of a molecule in this case is

En,m,l =
h2

2m

{(
n

2Lx

)2

+
(

m

2Ly

)2

+
(

l

2Lz

)2
}

, (4.16)

where n, m, and l are positive integers. When we change the length in the
x-direction slowly from Lx to Lx + δLx, the wave function changes so that
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Fig. 4.6. A gas contained in a cylinder with a piston. The piston is pushed by
a force F from outside to keep the gas at a given volume. The internal energy of
the gas decreases when it expands. When the piston is moved in the x-direction,
the wave function ψ(x) is elongated in the x-direction and the energy of the state
decreases

the boundary condition that ψ(r) = 0 at the wall is maintained. This is
accomplished by a slow change in px. When Lx increases, px = nh/2Lx

decreases, and the energy of each molecule decreases. The energy decreases
by

−δEn,m,l = −∂En,m,l

∂Lx
δLx =

2
Lx

h2

2m

(
n

2Lx

)2

δLx . (4.17)

We equate this decrease to a quantity of work:

w = fx δLx . (4.18)

The force fx that the molecule exerts on the piston is then obtained:

fx =
2

Lx

h2

2m

(
n

2Lx

)2

=
2

Lx
× (kinetic energy in the x-direction) . (4.19)

Summing over all the molecules, and using the fact that the total kinetic en-
ergy in the x-direction is one-third of the total kinetic energy E owing to
the isotropy of the system, we obtain the force exerted on the piston by the
gas:

Fx =
2

3Lx
× E . (4.20)

From this force, we obtain the pressure as P = Fx/(LyLz) = (2/3)E/V . This
is the same result as that obtained from classical mechanics. The total kinetic
energy E is nothing but the internal energy of the (ideal) gas.

4.5 Statistical-Mechanical Temperature and Pressure

In this section, we show that the temperature and pressure defined by statis-
tical mechanics are the same as those defined by thermodynamics. In order
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to avoid confusion, we add a subscript “s” to the symbols for these quantities
defined by statistical mechanics, and therefore write them as Ts and Ps. From
their definitions and the expression for the entropy in (4.14), Ts and Ps are
given by

1
Ts

=
(

∂S

∂E

)
V,N

=
3
2
NkB

1
E

, (4.21)

Ps

Ts
=
(

∂S

∂V

)
E,N

= NkB
1
V

. (4.22)

By eliminating Ts from these equations, we obtain Ps = (2/3)E/V . Therefore,
Ps is the same as the pressure defined mechanically, which was calculated in
the previous section.

Next we examine the temperature. The thermodynamic absolute temper-
ature is defined through the efficiency of an ideal heat engine. This defini-
tion is independent of any material. Now, thermodynamics tells us that in
the case of an ideal gas whose internal energy depends only on the tem-
perature and whose state of equation is given by the Boyle–Charles law
PV = nRT = NkBT , the T in the right-hand side of that equation co-
incides with the absolute temperature. The ideal gas treated in this chap-
ter satisfies this necessary condition. Namely, (4.21) shows that E depends
only on Ts, and (4.22) tells us that PV = kBNTs. Therefore, the tempera-
ture defined by statistical physics coincides with the thermodynamic absolute
temperature.

From this comparison, we have found that the statistical-mechanical tem-
perature and pressure of an ideal gas are the same as the temperature and
pressure obtained from thermodynamics, as expected. This leads us to the con-
clusion that the definitions of temperature and pressure in statistical physics
are equivalent to the corresponding definitions in thermodynamics for any
system. This can be proved by the following consideration. Let an arbitrary
system I be in thermal and mechanical equilibrium with an ideal gas, which
we shall call system II. Then, as explained in Sect. 2.3, the principle of equal
probability makes Ts and Ps the same for these systems, i.e. T

(I)
s = T

(II)
s and

P
(I)
s = P

(II)
s . On the other hand, the thermodynamic temperature and the

mechanical pressure are also the same for the two systems, i.e. T (I) = T (II)

and P (I) = P (II). Since T
(II)
s = T (II) and P

(II)
s = P (II), we conclude that

T (I) = T
(I)
s and P (I) = P

(I)
s . Namely, the statistical-mechanical temperature

and pressure coincide with the thermodynamic temperature and the mechan-
ical pressure for any system.

4.6 Partition Function of an Ideal Gas

Above, we calculated the entropy of an ideal gas using the microcanonical
distribution. We can also obtain the same result using the canonical distribu-
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tion, in which the temperature is fixed by a heat bath. The partition function
in this case is

Z(T, V,N) =
∑

i

exp(−βEi)

=
1

N !

∫
e−βE(r1,r2,···,p1,p2,···) d

3r1 d3p1 · · ·
h3N

. (4.23)

Here, β = 1/kBT .5 The 6N -dimensional phase space of N molecules has been
reduced by a factor of 1/N ! by considering the exchange of molecules, and has
been divided into cells of volume h3N corresponding to microscopic states. The
energy of a microscopic state, E (r1, r2, · · · ,p1,p2, · · ·) does not depend on the
position ri:

E =
1

2m

(
p1

2 + p2
2 + p3

2 · · ·) . (4.24)

The integral over the space coordinates gives V N , and the integral over the
momentum gives

Z(T, V,N) =
V N

N !
1

h3N

∫
d3p1 exp

(
−β

p2
1

2m

)∫
d3p2 exp

(
−β

p2
2

2m

)
· · ·

=
1

N !
V N

h3N

(
2πm

β

)3N/2

�
(

2πmkBT

h2

)3N/2(
V

N
e
)N

. (4.25)

From this partition function, the free energy F , the internal energy U , and
the entropy S can be calculated:

F (T, V,N) = −kBT ln Z

= −3NkBT

2
ln
(

2πmkBT

h2

)
− NkBT ln

(
V e
N

)
, (4.26)

U(T, V,N) = −
(

∂

∂β
ln Z

)
V,N

= − ∂

∂β

[
3N

2
ln
(

1
β

)]

=
3
2
NkBT , (4.27)

S(T, V,N) = −
(

∂F

∂T

)
V,N

=
3
2
NkB ln

(
2πmkBT

h2

)
+ NkB ln

(
V e
N

)
+

3
2
NkB . (4.28)

As T ∝ U = E, this entropy coincides with (4.14).
5 In statistical physics, β is always used for 1/kBT .
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We can also verify that the pressure obtained from the free energy is the
same as before:

P = −
(

∂F

∂V

)
T,N

= NkBT
1
V

. (4.29)

From the internal energy, we can calculate the heat capacity at constant vol-
ume:

CV =
(

∂U

∂T

)
V,N

=
3
2
NkB . (4.30)

Since the internal energy U depends only on the temperature, and (∂V/∂T )P

= V/T , (1.5) tells us that the constant-pressure heat capacity CP is given by

CP = CV + NkB . (4.31)

This relation is known as the Mayer relation. (see Exercise 4 in Chap. 1.)
The ratio CP/CV ≡ γ is known as the specific-heat ratio. In the present

case γ = 1.67. This value coincides with the experimental value for helium
gas, but for air at room temperature, γ is equal to 1.403. This discrepancy
arises from the fact that air consists of diatomic molecules, as explained in
the next section.

4.7 Diatomic Molecules

4.7.1 Decomposition of the Partition Function

The monatomic molecules that we have considered in the previous sections
have three degrees of freedom, associated with the motion of the center of
gravity. On the other hand, a diatomic molecule has six degrees of freedom,
since it consists of two atoms. Therefore, in addition to the three degrees of
freedom associated with the center of gravity, it has three degrees of freedom
associated with its internal motion. To describe the internal motion, we take
a coordinate system attached to the molecule as shown in Fig. 4.7. The three
degrees of freedom of the internal motion can then be divided into two kinds:

• Vibration in the x-direction. This has one degree of freedom.
• Rotation around the y- and z-axes. This has two degrees of freedom.

To be exact, there are also degrees of freedom associated with the motion of
the electrons and with the rotation and vibration of the nucleus, but these
degrees of freedom need not be considered at room temperature, for a reason
that will be explained later. So here we consider the statistical mechanics of
diatomic molecules taking account of the above six degrees of freedom.

Now, because of these internal motions, the calculation of the partition
function of a diatomic-molecule gas becomes a little complicated. To reduce
the complexity, we shall first show that the total partition function can be
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Fig. 4.7. Diatomic molecule, and coordinate system attached to the molecule

obtained from a product of single-molecule partition functions in the case
of an ideal gas. This is because there is no interaction, and each molecule
is independent of the others. Let us write the energy of the jth quantum
mechanical state of the ith molecule as Ei(j), where 0 ≤ j ≤ ∞ and 0 ≤ i ≤
N . When the ith molecule is in the jith state, the total energy of the gas E is

E(j1, j2, · · · , jN ) =
∑

i

Ei(ji) . (4.32)

The partition function is then

Z =
1

N !

∑
j1

∑
j2

· · ·
∑
jN

exp [−βE(j1, j2, · · · , jN )]

=
1

N !

∑
j1

∑
j2

· · ·
∑
jN

∏
i

exp [−βEi(ji)]

=
1

N !

∏
i

⎧⎨
⎩
∑
ji

exp [−βEi(ji)]

⎫⎬
⎭

=
1

N !

⎧⎨
⎩
∑

j

exp [−βE1(j)]

⎫⎬
⎭

N

. (4.33)

In the last line, the function in the large braces is the partition function of
the first molecule z1,

z1 ≡
∑

j

exp (−βE1(j)) . (4.34)

Since all the molecules are the same, z1 = z2 = · · · = zN . Thus the partition
function of an ideal gas can be written as a product of single-molecule partition
functions. It is easy to check that the partition function of a monatomic ideal
gas (4.25) can be obtained from this equation.
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For the calculation of the single-molecule partition function, it is a good
approximation to consider the six degrees of freedom independently. In this
case the energy of a microscopic state of a molecule is given by the sum of the
energies for each degree of freedom. Thus the energy of the ith molecule is

Ei = E
(CG)
i + E

(V)
i + E

(R)
i , (4.35)

where E
(CG)
i , E

(V)
i , and E

(R)
i are the energies associated with the center of

gravity, the vibration, and the rotation, respectively, of the ith molecule. Since
the energy is the sum of the energies for each degree of freedom, z1 can be
rewritten as follows:

z1 =
∑

j

exp [−βE1(j)]

=
∑

j

exp
[
−βE

(CG)
1 (j)

]∑
k

exp
[
−βE

(V)
1 (k)

]∑
j

exp
[
−βE

(R)
1 (l)

]

≡ Z(CG)Z(V)Z(R) . (4.36)

The total partition function and the free energy are then

Z =
1

N !

{
Z(CG)Z(V)Z(R)

}N

(4.37)

and

F = −kBTN
{

ln Z(CG) + ln Z(V) + ln Z(R)
}

+ kBT ln N !

= F (CG) + F (V) + F (R) + kBTN ln N . (4.38)

In the following, we calculate each term in this equation.

4.7.2 Center-of-Gravity Part: Z(CG)

This part is the same as that for a monatomic molecule. Writing the center
coordinate, the total momentum, and the total mass as R, P , and M = 2m,
respectively, we can calculate this part as follows:

Z(CG) =
∑

j

exp
[
−βE(CG)(j)

]
=

1
h3

∫
d3R d3P exp

(
−β

P 2

2M

)

=
V

h3
(2πMkBT )3/2

. (4.39)

The free energy and the internal energy for this part of the partition function
are

F (CG) = −kBTN ln Z(CG) = −3
2
kBTN ln (2πMkBT ) (4.40)

and
U (CG) = −N

∂

∂β
ln Z(CG) =

3
2
NkBT . (4.41)
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4.7.3 Vibrational Part: Z(V)

To discuss vibration, we consider a diatomic molecule as two atoms of mass m
connected by a spring of spring constant k, as shown in Fig. 4.8. The equation
of motion for this system in classical mechanics is

µẍ = −k(x − d) , (4.42)

where µ = m/2 is the reduced mass, x is the distance between the atoms, and d
is the mean value of this distance. This is the equation of motion of a harmonic
oscillator, and the solution is x = A sin (ωt + α) + d, where ω =

√
k/µ. The

energy is the sum of the kinetic energy

µ

2
ẋ2 =

k

2
A2 cos2 (ωt + α) (4.43)

and the potential energy

1
2
k(x − d)2 =

k

2
A2 sin2 (ωt + α) , (4.44)

and we obtain E(V) = (k/2)A2. The amplitude A can take any value, and so
the energy is continuous. We cannot count the number of microscopic states
in classical mechanics.

On the other hand, in quantum mechanics, the energy of a harmonic os-
cillator is given by

E(V) =
(

n +
1
2

)
h

ω

2π
=
(

n +
1
2

)
�ω , (4.45)

where n = 0, 1, 2, · · · is a nonnegative integer. The lowest-energy state, the
ground state, is obtained when n = 0. Even in this case, the energy is nonzero.
This is because a zero-energy state is not allowed by the uncertainty principle:
E(V) = 0 would mean that there was no vibration, and so the distance between
the atoms would be fixed at d without any fluctuation, which would mean that
the relative momentum must be completely uncertain, i.e. ∆p → ∞. This
means that the energy would be very large, in contradiction to the initial
assumption that E(V) = 0. Therefore, even in the ground state, there must
be some vibration. This vibration is known as the zero-point vibration.

We cannot give a derivation of (4.45) here; that belongs in a course on
quantum mechanics. Here we shall simply accept the result and calculate the

Fig. 4.8. Model of a diatomic molecule. To discuss vibration, we consider a diatomic
molecule as two atoms of mass m connected by a spring of spring constant k
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partition function. The partition function can be expressed in terms of the
hyperbolic function sinhx:6

Z(V) =
∞∑

n=0

exp
[
−β

(
n +

1
2

)
�ω

]
=

e−β�ω/2

1 − e−β�ω
=

1
2 sinh (β�ω/2)

. (4.46)

The free energy and internal energy associated with vibration can then be
obtained:

F (V) = −kBTN ln Z(V) = kBTN ln
[
2 sinh

(
1
2
β�ω

)]
(4.47)

and
U (V) = −N

∂

∂β
ln Z(V) = N

∂

∂β
ln
[
2 sinh

(
1
2
β�ω

)]

=
N

2
�ω coth

(
1
2
β�ω

)

=
N

2
�ω +

N�ω

eβ�ω − 1
. (4.48)

We now examine the temperature dependence of the internal energy. When the
temperature is low enough that β�ω � 1, or �ω � kBT , is satisfied, we have
eβ�ω � 1. In this case the second term can be neglected, and U (V) = (N/2)�ω.
This means that every molecule is in the ground state at low temperature. On
the other hand, at a temperature high enough that β�ω � 1, or �ω � kBT ,
is satisfied, we have eβ�ω � 1 + β�ω, and U (V) � (N/2)�ω + NkBT � NkBT .
The average energy of a molecule is now kBT ; namely, every molecule has
an average kinetic energy and an average potential energy of (1/2)kBT each.
The fact that the kinetic energy of a system at high temperature is equal to
(1/2)kBT for each degree of freedom is known empirically and is called the law
of equipartition, and the energy (1/2)kBT is often called the thermal energy.
This law is obeyed by the center-of-gravity part of the internal energy (4.41)
also. However, the law of equipartition is obeyed only approximately in the
high-temperature limit in the case of vibration. Owing to the temperature
dependence of the internal energy, the contribution to the heat capacity from
vibration, C(V) =

(
∂U (V)/∂T

)
, has a temperature dependence of the form

shown in Fig. 4.9. Namely, C(V) is exponentially small at low temperature,
but approaches NkB at high temperature.

The temperature dependence described above arises from the discreteness
of the energy of vibration E

(V)
n = (n + 1/2)�ω. The integer n in this equation

is an example of a quantity called a quantum number. It indicates how much
vibrational energy a molecule has in units of �ω. The average vibrational
energy of a molecule can be written as

〈E(V)〉 = (〈n〉 + 1/2)�ω , (4.49)
6 Hyperbolic functions are defined and briefly described in Appendix E.
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Fig. 4.9. Contribution to the heat capacity from vibration for a diatomic molecule.
CV/NkB is plotted as a function of kBT/�ω = kBT/(hω/2π)

where 〈n〉 is the thermal average of the quantum number n, and is given by

〈n〉 =

∞∑
n=1

n exp
[
−βE(V)

n

]
∞∑

n=0

exp
[
−βE(V)

n

] =
1

eβ�ω − 1
. (4.50)

The result for U (V) (4.48) can be recovered from these equations, since U (V) =
N〈E(V)〉. This distribution of n is called the Bose distribution. It has already
appeared in (2.9), where we considered a distribution of money. There, the
unit of energy �ω was replaced by a unit of money, 1 yen.

When the thermal energy (1/2)kBT is much smaller than the unit of
energy �ω, the system cannot accept energy from a heat bath. In such
a case, we can neglect the corresponding degree of freedom, and say that
that degree of freedom is “dead”; in this situation, that degree of freedom
makes a negligible contribution to any observable. For nitrogen or oxygen,
hω/kB � 2000K � T � 300K, and so the vibrational degree of freedom
is dead at 300K. Likewise, the units of energy for the motion of electrons
in a molecule and for the motions within a nucleus are much higher than
the thermal energy. This is the reason we can neglect the degrees of free-
dom associated with those motions. The energy of the center of gravity is
also quantized, as can be seen from (4.4). However, the unit of energy in this
case, (1/2m)(h/2L)2, is very small for macroscopic values of L, and so the
translational motion of the center of gravity is not dead even at low tempera-
ture. Thus, the law of equipartition is obeyed in this case down to the lowest
temperatures.
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4.7.4 Rotational Part: Z(R)

First we consider the system using classical mechanics. If the molecule rotates
about the z-axis with an angular frequency ω, the velocity is given by v =
(d/2)ω, where d is the distance between the centers of the two atoms. Thus
the energy is

E(R) = 2 × m

2

(
d

2
ω

)2

=
1
4
md2ω2 =

1
2
Iω2 , (4.51)

where I = (1/2)md2 is the moment of inertia of the molecule. Since ω is a con-
tinuous variable, E(R) is also continuous, and we cannot count the number of
microscopic states.

The angular momentum associated with this rotation, L = r×p, has only
a z-component,

Lz = 2 × d

2
× m

d

2
ω =

1
2
md2ω = Iω . (4.52)

This is also a continuous variable in classical mechanics, but is quantized in
quantum mechanics:

Lz = Iω = l� , l = 0, 1, 2, · · · . (4.53)

In terms of this l, the square of the angular momentum is

L2 = l (l + 1) �
2 , (4.54)

and the energy is

E(R) =
1
2I

L2 = l (l + 1)
�

2

2I
. (4.55)

For each value of l, there are 2l + 1 states owing to the freedom in the choice
of the direction of the axis of rotation.7 If we accept this result of quantum
mechanics, the partition function can be calculated as follows:

Z(R) =
∞∑

l=0

(2l + 1) exp
{
−l (l + 1)

β�
2

2I

}
. (4.56)

This summation cannot be done analytically. However, at high temperature
it can be done approximately. When β�

2/2I � 1, the exponential factor
becomes small only at large l. The factor (2l + 1) makes the contributions
from large values of l more important than those from small values. In this
case it is a good approximation to calculate the summation as an integral. As
the variable of the integral, we take

ε (l) ≡ l (l + 1)
β�

2

2I
. (4.57)

7 When L2 = l(l + 1)�2, Lz takes 2l + 1 quantized values, which can be expressed
as Lz = mz�, where mz is an integer that satisfies −l ≤ mz ≤ l.
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Then
dε

dl
= (2l + 1)

β�
2

2I
, (4.58)

and the partition function can be approximated as

Z(R) ∼=
∞∫
0

dl (2l + 1) exp
{
−l (l + 1)

β�
2

2I

}

=
2I

β�2

∞∫
0

dε exp (−ε) =
2I

�2
kBT . (4.59)

From this Z(R), the free energy and the internal energy are

F (R) � −kBTN ln
(

2I

�2
kBT

)
(4.60)

and
U (R) � −N

∂

∂β
ln Z(R) =

N

β
= NkBT . (4.61)

This result for the internal energy can again be interpreted as a consequence
of the equipartition law. Namely, the thermal energy (1/2)kBT is given to each
of the two degrees of freedom of each molecule. In this limit, the contribution
to the heat capacity is

C(R) =
∂U (R)

∂T
= kBN . (4.62)

For an oxygen molecule, for which m = 2.66 × 10−26 kg and d = 2.8 Å =
0.28 × 10−9 m, the moment of inertia I is 1.05 × 10−45 kg m2, and so

1
kB

�
2

2I
= 0.38K . (4.63)

Therefore, room temperature can be considered as a high temperature. The
situation is similar for a nitrogen molecule. Thus the law of equipartition is
obeyed for the rotation of air molecules at room temperature.

The total heat capacity of a diatomic gas is the sum of all of the above
contributions:

CV = C(CG) + C(V) + C(R) =
3
2
kBN + C(V) + kBN =

5
2
kBN . (4.64)

This applies at room temperature, where C(V) is negligibly small. Then, from
Mayer’s relation, we obtain CP = CV + kBN = (7/2)kBN , and the specific-
heat ratio γ is equal to 7/5 = 1.4. This value agrees with experimental results
for air.

Exercise 10. Evaluate the lowest kinetic energy of an oxygen molecule in
a cubic box of volume 10 cm3. Express the result in joules and calculate the
temperature at which the thermal energy kBT corresponds to this energy.
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Exercise 11. Gibbs noticed that without the factor N !, the entropy of an
ideal gas has a strange behavior. Obtain an expression for S without this
factor. Use this expression and show that the total entropy of two identical
systems S(2E, 2V, 2N) is different from 2S(E, V,N).

Exercise 12. Calculate the entropy of an ideal gas using (4.15), and compare
the result with (4.14).

Exercise 13. The frequency ν of vibration of an O2 molecule is 4.74×1013 Hz.
Evaluate the spring constant k = µω2 of the bond between the oxygen atoms,
where µ = m/2 is the reduced mass, m = 2.66 × 10−26 kg, and ω = 2πν.



5

The Heat Capacity of a Solid,
and Black-Body Radiation

The molar heat of solids approach a common value at high temperatures,
whereas they decrease in proportion to T 3 at low temperatures. To explain
this behavior, we introduce here the Einstein and Debye models as models
of the crystal lattices of solids, and investigate them. Black-body radiation
has the same mathematical structure as the Debye model. We shall derive
Planck’s radiation formula.

5.1 Heat Capacity of a Solid I – Einstein Model

In the previous chapter, we showed how we can understand the heat capacity
of an ideal gas. Now we shall try to understand the heat capacity of a solid
using statistical mechanics. First, we summarize the experimental facts:

• Around room temperature, ordinary simple solids have a molar heat1 of
about 3kBN � 25 J mol−1 K−1. This fact is called the Dulong–Petit law.
Some examples are listed in Table 5.1.

• At low temperatures, the molar heat decreases in proportion to T 3.

We shall explain these facts in this and the following section.
In this section, we investigate solids using the Einstein model. Just as the

motion of atoms contributes to the heat capacity of a gas, we expect that the
motion of atoms or ions will contribute to the heat capacity of a solid. The
ideal solid is a crystal, where atoms are arranged periodically in a lattice. In
a simple cubic lattice, eight neighboring atoms sit at the corners of a cube. The
atoms can move around their equilibrium positions, which are called lattice
points. Owing to the surrounding atoms, the potential energy of an atom is
lowest at its lattice point. We can depict this situation schematically as one
where atoms are connected by springs, as shown in Fig. 5.1. Einstein simplified

1 The molar heat is the heat capacity per mole.
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Table 5.1. Molar heats of solids at 25◦C in Jmol−1 K−1. Note that diamond has
an exceptionally small value

Material Molar heat

Aluminum 24.34
Gold 25.38
Silver 25.49
Iron 25.23
Sulfur 22.60
Phosphorus 23.8
Diamond 6.115

the real situation by assuming that each atom is connected to its lattice point
by a spring independently of the other atoms.

In this model, the motion of each atom is a harmonic oscillation. Let the
angular frequency of the oscillation be ω in all three directions x, y, and z.
Each atom then has an energy

Enx,ny,nz =
(

nx +
1
2

+ ny +
1
2

+ nz +
1
2

)
�ω , (5.1)

where nx, ny, and nz are the quantum numbers of oscillation in the x, y, and
z directions, respectively. From this energy, the partition function of a system
of N atoms is

Z =

⎧⎨
⎩

∞∑
nx=0

∞∑
ny=0

∞∑
nx=0

exp(−βEnx,ny,nz)

⎫⎬
⎭

N

=

{ ∞∑
n=0

exp
[
−β

(
n +

1
2

)
�ω

]}3N

=
{

1
e(1/2)β�ω − e−(1/2)β�ω

}3N

=
{

1
2 sinh [(1/2)β�ω]

}3N

, (5.2)

where β = 1/kBT as usual.2 The internal energy U and the constant-volume
heat capacity CV are given by

U = − ∂

∂β
ln Z =

3
2
N�ω coth

(
�ω

2kBT

)
(5.3)

2 In this equation, we do not have a factor 1/N !. This is because each atom can be
identified by the position of its lattice point.
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Fig. 5.1. Crystal lattice. Atoms, shown by solid circles, are arranged periodically in
a lattice. The equilibrium position of each atom is called a lattice point. The atoms
can be considered as connected by springs

and

CV =
dU

dT
= 3NkB

(
�ω

2kBT

)2 1
sinh2 (�ω/2kBT )

. (5.4)

The temperature dependence of the heat capacity is plotted in Fig. 5.2. When
T → ∞, �ω/2kBT → 0, and CV approaches 3NkB. The molar heat in this
limit is 3NAkB = 3R = 24.93 J/mol K. This is the Dulong–Petit law. We
can understand this result by using the equipartition law; namely, a thermal
energy of (1/2)kBT is given to the kinetic energy and the potential energy
in each of the x, y, and z directions in this limit. On the other hand, at low
temperature, i.e. when T → 0, CV ∝ (1/T 2)e−�ω/kBT ; that is, it decreases
exponentially.

Fig. 5.2. Heat capacity due to lattice vibrations, calculated from the Einstein model.
CV/NkB is plotted as a function of kBT/�ω
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The expression for the heat capacity is essentially the same as that for the
vibration of diatomic molecules, C(V). The difference is that here an atom can
move in any direction, whereas only vibration in the x-direction is possible in
the case of a diatomic molecule. The average energy of each atom is given by
the Bose distribution as before:

〈E〉 =
(
〈nx〉 + 〈ny〉 + 〈nz〉 +

3
2

)
�ω , (5.5)

where
〈nx〉 = 〈ny〉 = 〈nz〉 =

1
eβ�ω − 1

. (5.6)

One quantitative difference between diatomic molecules and solids is that
whereas the vibrations of diatomic gases are dead at room temperature, ex-
perimental evidence tells us that the vibrations of atoms in solids are in the
high-temperature regime �ω � kBT . This difference arises from two factors.
One is a difference in the “spring constant”. The bond between the atoms
in a diatomic molecule is a covalent bond, which is a strong chemical bond.
On the other hand, the bonds between the atoms in a solid are rather weak.
In the case of metals, these are metallic bonds, mediated by the conduction
electrons. That these bonds are weak is reflected in the fact that metals are
easily scratched. The other factor is the difference in the mass of the atoms.
The atoms in the molecules of oxygen and nitrogen gas are rather light. In
contrast, atoms such as gold, silver, or iron are heavy. Considering these dif-
ferences, it is easy to understand why diamond has a small heat capacity at
room temperature; the reason is discussed in Sect. 5.2.4 after we have studied
the Debye model.

5.2 Heat Capacity of a Solid II – Debye Model

5.2.1 Collective Oscillations of the Lattice and the Internal Energy

The Einstein model was successful in explaining the Dulong–Petit law, but
failed to explain the low-temperature behavior. The heat capacity decreases
exponentially according to the Einstein model, much faster than the T 3 de-
pendence observed experimentally. The failure arises from the fact that the
vibrations of atoms are not independent. The atoms move as coupled oscil-
lators, and the frequency of oscillation can be quite low when nearby atoms
move collectively. The collective oscillations of a solid behave as waves, as
shown in Fig. 5.3. This aspect of the oscillations is taken into account in the
Debye model.

The coupled oscillations of the crystal lattice are described by normal
modes; any oscillation can be represented by a superposition of normal modes.
A normal mode here is a plane wave, characterized by a wave vector k and
the direction of the displacement. A mode in which the displacement is par-
allel to the wave vector is called a longitudinal mode. A mode in which the
displacement is perpendicular to the wave vector is called a transverse mode.
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Fig. 5.3. Coupled oscillations of atoms. Here, one row of atoms aligned in the
x-direction is shown. The atoms (solid circles) are displaced along the y-axis from
the lattice points (open circles). In addition to the displacement in the y-direction
shown here, displacements in the x- and z-directions exist

To obtain a better understanding, let us consider a one-dimensional crystal
of length L first. We take the x-axis along the crystal. The atoms move in
the x-direction in a longitudinal mode. There are also two sets of transverse
modes, since the atoms can be displaced either in the y-direction or in the
z-direction. If we assume that the atoms at both ends of the crystal are fixed,
standing waves play the role of normal modes. Just as in the case of the wave
function of a molecule in a box, the allowed wavelengths λ of the standing
waves are given by

λ

2
n = L, n = 1, 2, 3, · · · , N , (5.7)

where N = L/a is the number of atoms and a is the spacing between the
atoms, or lattice constant. The allowed wave numbers are

kn =
2π

λ
=

π

L
n . (5.8)

In this case, the number of normal modes is finite. There is a shortest wave-
length, as shown in Fig. 5.4. Therefore, there are N different wave numbers
for each direction of displacement. Since there is one set of longitudinal modes
and two sets of transverse modes, the total number of normal modes is 3N ,
which coincides with the number of degrees of freedom of the N atoms.

In a normal mode, every atom oscillates at the same frequency, by defini-
tion. The angular frequency and the wave number are related:

ωt(k) = 2
vt

a
sin

ka

2
� vtk (transverse wave) , (5.9)

ωl(k) = 2
vl

a
sin

ka

2
� vlk (longitudinal wave) . (5.10)

Here vt and vl are the velocities (sound velocities) of the transverse and lon-
gitudinal waves, respectively, in the solid.3 These relations between the fre-
quency and wave number are called dispersion relations. Although the dis-
3 A long-wavelength oscillation in a crystal lattice is nothing but a sound wave.



72 5 The Heat Capacity of a Solid, and Black-Body Radiation

Fig. 5.4. (a) An example of a standing wave in a one-dimensional crystal of length L.
The spacing between atoms, i.e. the lattice constant, is a. (b) The displacement of
shortest wavelength, i.e. the standing wave with the largest wave number

persion relations of a crystal lattice are not linear, we adopt a linear approx-
imation to the right-hand side of these equations, and use this linear disper-
sion in our subsequent calculations. This approximation is called the Debye
approximation.

For a real three-dimensional crystal, the wave number is replaced by the
wave vector k, where

k =
(

π

Lx
nx,

π

Ly
ny,

π

Lz
nz

)
. (5.11)

The allowed values of k form a lattice in the wave vector space, shown in
Fig. 5.5. The angular frequencies are given as follows in the Debye approxi-
mation:

ωt(k) = vt|k| , (5.12)
ωl(k) = vl|k| . (5.13)

When we treat the oscillations quantum mechanically, a normal mode of fre-
quency ω behaves similarly to a harmonic oscillator of the same frequency.
Thus, the energy of a normal mode is quantized:

Eα,n(k) =
(

n +
1
2

)
�ωα (k) , (5.14)

where n is the quantum number of the oscillation, and α(= l or t) indicates
the direction of the oscillation. Since the expression for the energy is the same
as that for a harmonic oscillator, the thermal average of this energy is given
by the same equation as before: namely, we can replace n in the right-hand
side of (5.14) by 〈n〉. The total internal energy is obtained by summing this
thermal average 〈Eα(k)〉 over α and k:

U =
∑

k

∑
α

(
〈n〉 +

1
2

)
�ωα (k)

=
∑

k

∑
α

[
�ωα (k)

exp [β�ωα (k)] − 1
+

1
2

�ωα (k)
]

. (5.15)
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Fig. 5.5. Wave vector space. The allowed values of k = (πnx/Lx, πny/Ly,
πnz/Lznz) form a lattice in this space

The final term in the right-hand side is the contribution from the zero-point
oscillation, which is independent of the temperature.

To evaluate this equation, we perform the summation over k as an inte-
gral in wave vector space. In the one-dimensional case kn = (π/L)n, there
is one point corresponding to an allowed wave number for each interval
∆k = π/L. In the three-dimensional case, there is one point corresponding
to an allowed wave vector in each volume π3/LxLyLz. Therefore, there are
dkx dky dkz/(π3/V ) allowed wave vectors in a volume of dkx dky dkz, and so
U is given in integral form by

U =
∑
α

∫ π/a

0

dkx

∫ π/a

0

dky

∫ π/a

0

dkz
V

π3

�ωα(k)
exp [β�ωα(k)] − 1

+ const.

=
V

8π3

∑
α

∫ π/a

−π/a

dkx

∫ π/a

−π/a

dky

∫ π/a

−π/a

dkz
�ωα(k)

exp [β�ωα(k)] − 1
+ const.

(5.16)

In the second line of this equation, the integrals for each direction have been
extended to negative wave vector components, and the expression has been
divided by 23 = 8. This is allowed because the frequency is a function of
the absolute value of k. The last term is the contribution from the zero-
point oscillation, which is independent of temperature. On the basis of this
expression for the internal energy, we shall now investigate the temperature
dependence of the internal energy and the heat capacity.

5.2.2 Heat Capacity at High Temperature

The high-temperature region is defined as that in which β�ωα (k) � 1 is
satisfied for all of the normal modes. In this case the following approximation
can be used:

exp[β�ωα (k)] � 1 + β�ωα (k) = 1 +
�ωα (k)

kBT
. (5.17)
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Then, apart from a constant term, we obtain

U =
V

8π3

∑
α

∫ π/a

−π/a

dkx

∫ π/a

−π/a

dky

∫ π/a

−π/a

dkz kBT

=
V

8π3
× 3 ×

(
2π

a

)3

kBT = 3
(

V

a3

)
kBT = 3NkBT . (5.18)

Here we have used the fact that V/a3 is the total number of atoms N . The
equipartition law is satisfied, and the Dulong–Petit law is obeyed by the molar
heat.

5.2.3 Heat Capacity at Low Temperature

In the Debye model, the frequencies of the normal modes are distributed from
vαπ/L to the highest frequency, of the order of vlπ/a ≡ ωmax. We define the
low-temperature region such that the thermal energy kBT is much smaller
than the energy unit for the highest frequency, i.e. β�ωmax � 1. In this tem-
perature region exp[β�ωmax] is huge, and so the integrand in (5.16) vanishes
beyond the boundary of the integral. Therefore, we can extend the integral to
the whole wave vector space. Then U can be calculated analytically, except
for a constant term:

U � V

8π3

∑
α

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

�vαk

exp (β�vαk) − 1

=
V

8π3

∑
α

∫ ∞

0

4πk2 dk
�vαk

exp (β�vαk) − 1

=
V

2π2

1
β4

∑
α

1
(�vα)3

∫ ∞

0

dx
x3

ex − 1
. (5.19)

In the final line, β�vαk ≡ x has been used. The final integral with respect to
x gives π4/15. This result shows that U ∝ β−4 ∝ T 4, and hence CV ∝ T 3.

5.2.4 Heat Capacity at Intermediate Temperature

In this region, we need to perform a numerical integration of (5.16). If we
take the velocities of the longitudinal and transverse waves to be the same
for simplicity, and define TD, which is called the Debye temperature, by
kBTD ≡ �ωmax, the heat capacity can be expressed as a function of T/TD.
The result of a numerical calculation is shown in Fig. 5.6. It is known that
this temperature dependence reproduces the behavior of the actual heat ca-
pacities of solids. The heat capacity starts to decrease below TD. The values
of the Debye temperature for several solids are listed in Table 5.2. We remark
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that TD of diamond is exceptionally high. This is the reason that diamond
does not obey the Dulong–Petit law at room temperature.

This high Debye temperature can be understood from the well-known
properties of diamond. The average frequency of the normal modes is the
same as the frequency in the Einstein model, and is given by ω =

√
k/m,

where k is the spring constant and m is the mass of an atom. Diamond is
the hardest solid known, which means that the bonds (covalent) between the
atoms are strong, and so k must be large. Furthermore, the carbon atom is
one of the lighter atoms. Therefore, it is natural that diamond has a high
Debye temperature. Lead has properties opposite to those of diamond. It is
soft, and the lead atom is one of the heaviest atoms. Therefore, the Debye
temperature of lead is low. We can estimate the “spring constant” k from the
Debye temperature and the mass of an atom, and can compare the strengths
of various kinds of bonds. This is left as an exercise for readers at the end of
this chapter.

Fig. 5.6. Heat capacity calculated from the Debye model. The horizontal axis shows
T/TD, where the Debye temperature TD is defined by kBTD ≡ �ωmax

5.2.5 Physical Explanation for the Temperature Dependence

The Dulong–Petit law, obeyed at high temperature, is easy to understand.
In this case kBT � �ωmax, and so the equipartition law is obeyed for all
normal modes, as in the Einstein model at high temperature. The behavior at
low temperature can be understood as follows. From our experience with the
diatomic molecule and the Einstein model, we know that the contribution to
the heat capacity from modes with frequencies ω that satisfy �ω > kBT will be
negligibly small. For these modes, 〈n〉 ∼ 0; these modes are dead, inert modes.
Now, we can divide the modes roughly into two parts at a frequency ωT ≡
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Table 5.2. Debye temperatures of typical solids

Material TD Remarks

Lead (Pb) 105K Heavy, soft metal
Gold (Au) 165K Heavy, soft metal
Sodium chloride (NaCl) 321K Ordinary ionic crystal
Aluminum (Al) 428K Ordinary metal
Iron (Fe) 467K Ordinary metal
Diamond (C) 2230K Light, hard crystal

kBT/�. We neglect the contribution to the heat capacity from the modes with
ω > ωT. On the other hand, we assume that the equipartition law is obeyed
for the active modes, where ω < ωT. The number of active modes is given by
the number of points representing k values in wave vector space in a sphere of
radius kT = ωT/vα. This number is proportional to the volume of the sphere,
which is proportional to k3

T ∝ T 3. The internal energy is this number of active
modes times kBT , and so is proportional to T 4. This is the reason why U in
(5.19) is proportional to T 4, and the heat capacity is proportional to T 3.

5.3 Black-Body Radiation

5.3.1 Wien’s Law and Stefan’s Law

Iron heated in a blast furnace glows red at lower temperatures, and white at
higher temperatures. The temperature of the iron determines how it glows,
and so can be measured by analysis of the spectrum. The relation between
the spectrum and the temperature does not depend on the material at high
temperature. In this section, we investigate this relationship theoretically. The
electromagnetic energy emitted from a sample of matter at temperature T
between frequencies ν and ν +dν is written as Kν(T ) dν. The behavior of this
function is shown in Fig. 5.7.

By the end of the nineteenth century, two laws were known:

• Wien’s displacement law (1893). From thermodynamic considerations,
Wien concluded that the frequency dependence of the radiated energy
must have the form Kν(T ) = ν3F (ν/T ). From this functional form, we
can conclude that the product of the wavelength λm at which the inten-
sity of the radiated energy reaches its maximum and the temperature is
a constant, i.e. λmT = constant.

• Stefan’s law (1879). From experiments, Stefan showed that the total energy
of the radiation in a cavity was proportional to T 4. Boltzmann proved this
result in 1884 using thermodynamics. Therefore, this law is also known as
the Stefan–Boltzmann law.

In this section, we calculate Kν(T ), and confirm these laws.
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Fig. 5.7. Frequency dependence of Kν(T ) at T = 2000K, 4000K, and 6000K

Every sample of matter has its intrinsic color, which affects Kν(T ), especially
at low temperatures. To remove the effect of this color, we first define a black
body. This is a sample of matter that absorbs all electromagnetic radiation
incident on it. Therefore, there is no reflected light, and the light emitted
from a black body originates from the fact that it has a temperature T . Such
a black body can be realized by cutting a tiny hole in the wall of a cavity.
Light going into the cavity is reflected by the inside wall many times before it
comes out of the hole again. At each reflection, part of the light is absorbed,
and so when it comes out of the hole, it is substantially weakened. In fact,
when we look into the hole, it is dark inside, and we see no light. A small
window in a blast furnace is such a black body; when the temperature of the
furnace becomes sufficiently high, it begins to emit light.

5.3.2 Energy of Radiation in a Cavity

Light is emitted from a cavity because the space in the cavity is filled with
electromagnetic radiation that is in thermal equilibrium with the wall, at
a temperature T . We consider a rectangular cavity whose size is Lx×Ly ×Lz.
If we assume a boundary condition such that standing waves are allowed, the
allowed wave vectors of the radiation are

k = (kx, ky, kz) =
(

π

Lx
nx,

π

Ly
ny,

π

Lz
nz

)
, nx, ny, nz > 0 . (5.20)

We can also use a periodic boundary condition, which gives the following
condition for the wave vectors:

k = (kx, ky, kz) =
(

2π

Lx
nx,

2π

Ly
ny,

2π

Lz
nz

)
, (5.21)
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where −∞ < nx, ny, nz < ∞. The angular frequency of the radiation, ω, is
given by ω(k) = c|k|, where c is the velocity of light. The following calculation
does not depend on the boundary condition, and so we can use either of these
conditions; the number of modes in the frequency range between ω and ω+∆ω
is independent of the boundary condition. We summarize these boundary
conditions in Appendix F. We notice that the situation is quite similar to
that for the Debye model described in the previous section. A plane wave
with a wave vector k is a normal mode of the electromagnetic radiation, and
behaves as a harmonic oscillator. The main differences are

• electromagnetic radiation has no longitudinal modes;
• there is no upper bound on |k|;
• the velocity is not the velocity of sound but that of light.

Apart from these differences, we can apply statistical mechanics just as before.
There are two polarization directions for transverse modes, and so the internal
energy of the radiation is

U =
V

8π3
× 2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

�ck

eβ�ck − 1
+ const.

=
V

4π3

∫ ∞

0

dk 4πk2 �ck

eβ�ck − 1
+ const.

=
V

π2

(kBT )4

(�c)3

∫ ∞

0

dk
k3

ek − 1
+ const. = V

π2

15
(kBT )4

(�c)3
+ const.

= V
8π5

15
(kBT )4

h3c3
+ const. (5.22)

Here, the constant is the contribution from the zero-point energy. This result
agrees with Stefan’s law. Since there is no maximum to the frequency, radia-
tion in a cavity is always in the low-temperature regime: ∞ = �ωmax � kBT .
Stefan’s law and the T 3 dependence of the low-temperature heat capacity of
a solid are closely related.

5.3.3 Spectrum of Light Emitted from a Hole

The energy of the radiation of wave vector k, apart from the zero-point energy,
is �ck 〈n〉, where 〈n〉 at T (= 1/kBβ) is given as follows:

〈n〉 =
1

eβ�ck − 1
. (5.23)

If the cavity has a small hole of area S, part of this energy comes out of the
hole. As shown in Fig. 5.8, the energy contained in a volume of Sc ∆t cos θ
will come out during a time ∆t, where θ is the angle between the normal to



5.3 Black-Body Radiation 79

Fig. 5.8. Light with wave vector k coming out of a hole of area S. We place the hole
(thick circle) in the xy plane, and take the z-axis perpendicular to the hole. The
radiation (with wave vector k) in the canted cylinder comes out of the hole during
a time interval ∆t

the hole (z-axis) and k. Since the energy per unit volume is 〈n〉 �ck/V , the
energy coming out of the hole is S cos θc ∆t 〈n〉 �ck/V , which is equivalent to
cos θ 〈n〉 �c2k/V per unit area per unit time.

We sum over the values of k whose energy lies between ν and ν + dν to
obtain Kν(T ) dν We express k by use of polar coordinates. The number of
modes in an infinitesimal volume in wave vector space defined by

⎧⎨
⎩

k to k + dk
θ to θ + dθ
0 ≤ φ ≤ 2π

is [2V /(2π)3]2π sin θ dθ k2 dk. This number is multiplied by the emitted energy
〈n〉 �c2k cos θ/V and integrated over the range 0 ≤ θ ≤ π/2. We then obtain
Kν(T ) dν, the energy in the interval k to k + dk:

Kν(T ) dν =
∫ π/2

0

dθ 〈n〉 �c2k cos θ
1

2π2
sin θk2 dk

=
1

(2π)2
�c2k3〈n〉dk . (5.24)

Using the relation k = (2π/c)ν and dk = (2π/c) dν, we obtain

Kν (T ) =
2πh

c2
ν3 1

exp(hν/kBT ) − 1
≡ ν3F

( ν

T

)
. (5.25)

Thus we have obtained Wien’s displacement law, and also obtained the un-
known function as F (x) = (2πh/c2)/[exp(hx/kB) − 1].
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This distribution can be rewritten as the emitted energy between the wave-
lengths λ and λ + dλ, Iλ dλ. Using ν = c/λ and dν = −(c/λ2) dλ, we obtain

Iλ(T ) dλ =
2πh

c2

c3

λ3

1
eβhc/λ − 1

c

λ2
dλ

=
2πhc2

λ5

1
eβhc/λ − 1

dλ . (5.26)

This Iλ is shown in Fig. 5.9.
The value of λ at which Iλ has its maximum, λm, can be written as

λm =
hc

4.97kBT
=

2.90×10−3

T
m K−1 . (5.27)

When T = 6000K, λm = 4.8×10−7 m = 480 nm. This corresponds to blue
light. The surface temperature of the sun is about 6000K, and so the spectrum
of the light from the sun is peaked in the blue. Our eye-and-brain system is
designed to perceive this spectrum as white light.

Fig. 5.9. Wavelength dependence of Iλ(T ), the energy emitted between λ and λ+dλ
from a hole of unit area per second

5.3.4 The Temperature of the Universe

In 1964, Penzias and Wilson at Bell Laboratories discovered noisy microwave
radiation coming from the sky while they were developing a high-sensitivity
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antenna for microwave communication. The radiation was peaked at λm =
1.1mm. At about the same time, researchers at nearby Princeton University
thought that if the universe began with a big bang and had been expanding
and cooling down, it should be filled with black-body radiation. They had
a plan to observe this radiation to measure the temperature of the universe.
Penzias and Wilson heard of this plan, and realized that what they had consid-
ered to be noise was the black-body radiation of the universe. From the peak
wavelength, the temperature of the universe was found to be 2.7 K. Penzias
and Wilson were awarded a Nobel Prize in 1978.

Since its discovery, astronomers have investigated this microwave radia-
tion, known as the cosmic microwave background radiation. The cosmic space
is almost empty, but it contains stars and galaxies. Therefore, the cosmic mi-
crowave background radiation is not isotropic. In 1989 an artificial satellite
called COBE was put into orbit, and it observed that there was a tiny temper-
ature fluctuation of δT/T = 10−5. In 2001, another satellite, the Wilkinson
Microwave Anisotropy Probe (WMAP), was launched, and has been sending
us more detailed data with higher spatial resolution. From these data, the age
of the universe has been determined to be 13.7 ± 0.2 billion years. Further-
more, the data indicate that the amount of ordinary matter in the universe
is only 4% of the total matter and energy, the rest being dark matter (23%)
and dark energy (73%). The data also show that the inflation theory of the
universe is consistent with observation [1].

Exercise 14. The Debye temperature TD can be considered to give the av-
erage angular frequency ω of lattice vibrations, i.e. kBTD = �ω. The spring
constant of the lattice k can be estimated from this ω using k = mω2, where m
is the mass of an atom or ion constituting the crystal. Obtain values of k for the
following crystals, and compare the results with that for the oxygen molecule
evaluated in Exercise 13 in Chap. 4. (1) Diamond: TD = 2230K, relative
atomic mass 12.01. (2) Iron: TD = 467 K, relative atomic mass 55.85. (3) Lead:
TD = 105 K, relative atomic mass 207.2. (4) Sodium chloride: TD = 321K,
relative atomic masses 22.99 (Na) and 35.45 (Cl).
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The Elasticity of Rubber

In this chapter, we apply the microcanonical distribution to a simple model
of rubber, and explain its elasticity. It is shown that this simple model and
statistical mechanics reproduce several characteristics of rubber, such as the
fact that it obeys Hooke’s law. The elasticity of rubber looks similar to
the elasticity of a spring, but these two phenomena have different origins.
The elasticity of a spring arises from the forces between metal ions, and to
derive Hooke’s law we need to know about quantum mechanics, the the-
ory of electrons in metals, and so on. On the other hand, the elasticity of
rubber arises from entropy, and can be understood by the use of a simple
model.

6.1 Characteristics of Rubber

Rubber is distinct from ordinary solids. The special characteristics of rubber
are listed below:

• It is easily deformed by weak forces.
• It can be deformed heavily: it can be elongated by two to three times its

original length.
• Its Young’s modulus is roughly proportional to T .
• It becomes warmer when extended rapidly, and shrinks when warmed.

Let us elaborate on these characteristics. The Young’s modulus of rubber is
compared in Table 6.1 with values for other typical materials to show its un-
usual smallness. Young’s modulus E is defined as follows: when a sample of
a material of length L and cross section S is pulled with a force F and elon-
gated by ∆L, ∆L/L is proportional to F/S as long as ∆L/L is small enough.
This relation is written as F/S = E ∆L/L, where E is the Young’s modulus.
When a metal sample is elongated beyond its elastic limit of a few percent, it
does not return to its original length after the force is removed, but a sample
of rubber will return to its original shape even if it is elongated by twice its
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length. The Young’s modulus of an ordinary material is almost temperature-
independent, but it is proportional to T for rubber. The fact that rubber
shrinks when warmed is opposite to the behavior of ordinary materials. You
can feel how rubber warms up when extended by pulling it between your lips.

Table 6.1. Young’s modulus E for typical materials

Material Young’s modulus (MPa)

Steel 2.0 × 105

Copper 1.3 × 105

Glass 0.8 × 105

Rubber 1–3

These characteristics of rubber remind us of those of ideal gases, except that
“extended” in the case of rubber must be replaced by “compressed” in the
case of a gas. Namely, gases have the following characteristics:

• Gases can be compressed by a weak pressure.
• It is possible to change the volume by a factor of several times.
• The bulk modulus is proportional to the temperature.
• A gas warms up when compressed adiabatically, and expands when heated.

Here, the bulk modulus K is defined by the equation ∆P = −K ∆V /V . This
K can be calculated using PV = nRT :

∆P = nRT ∆
(

1
V

)
= −nRT

∆V

V 2
= −P

V
∆V . (6.1)

Therefore K = P , and at a fixed volume V , it is proportional to T . The
atmospheric pressure is about 103 hPa = 0.1 MPa, and so is one order of
magnitude smaller than the Young’s modulus of rubber.

6.2 Model of Rubber

The characteristics of a gas can be reproduced by a simple model in which
molecules move freely and collide with the walls to create a pressure. Likewise,
we can construct a simple model for rubber. Rubber is a polymer; that is, it is
composed of a collection of long, chain-like molecules. We consider a model in
which the chains do not interact with each other, and their shape can be freely
changed without force. Since the chains are independent, we shall consider
only a single chain. We model a single polymer chain as being composed of
rigid rods of length a connected to each other at their ends. The angle between
two adjacent rods is assumed to take only one of two values: 0 or π. These two
configurations are assumed to have the same energy. The model is depicted
in Fig. 6.1.
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Fig. 6.1. A simplified model of rubber. A rubber molecule is modeled by a chain
consisting of rigid rods. The rigid rods are shown as arrows with circles at both
ends. The rods are assumed always to be parallel to the x-axis

6.3 Entropy of Rubber

We shall now calculate the entropy of this model system, and obtain a relation
between force and length for the system. We assume that the total number of
rods is N . Therefore, the maximum length of the chain is Na. As shown in
Fig. 6.1, we treat the rods as vectors. When all the rods points in the positive
x-direction, the length is at its maximum. In an ordinary state of the system,
each rod can point in either the positive or the negative direction. When
there are N+ rods pointing in the positive direction and N− (= N −N+) rods
pointing in the negative direction, the total length is x = (N+ − N−)a. We
calculate the entropy when the total length is x. This is given by the logarithm
of the number W of microscopic states that realize this length x. This number
is equal to the number of ways of choosing N+ objects from N . Noting that

N+ =
Na + x

2a
and N− =

Na − x

2a
, (6.2)

we obtain W (x):

W (x) =N CN+ =
N !

N+!N−!
� NN

N
N+
+ N

N−
−

. (6.3)

The entropy is then given by

S (x) = kB ln W (x) � kB [N ln N − N+ ln N+ − N− ln N−]

= kB

[
N ln N −

(
N

2
+

x

2a

)
ln
(

N

2
+

x

2a

)

−
(

N

2
− x

2a

)
ln
(

N

2
− x

2a

)]

= kBN

[
ln 2 − 1

2

(
1 +

x

Na

)
ln
(
1 +

x

Na

)

−1
2

(
1 − x

Na

)
ln
(
1 − x

Na

)]
. (6.4)
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6.4 Hooke’s Law

To calculate the force needed to keep the chain at a length x, we consider the
situation shown in Fig. 6.2. The system is isolated thermally from its environ-
ment, and so the total energy E is conserved. The gas in the cylinder and the
sample of rubber (a chain) are in thermal equilibrium at a temperature T .1

They are also in mechanical equilibrium: the chain is forced to have a length x
by the pressure of the gas. In this equilibrium, the length of the chain and the
volume of the gas are correlated, and are determined by the condition that
the total entropy of the gas and rubber is maximized. We write the entropy
of the gas as SG, and let the cross section of the cylinder be A. The condition
that the total entropy Stot = S + SG is maximized with respect to x is

0 =
(

∂SG

∂x

)
E

+
(

∂S

∂x

)
E

= A

(
∂SG

∂ (Ax)

)
E

+
(

∂S

∂x

)
E

= A
P

T
+
(

∂S

∂x

)
E

. (6.5)

In this equation, P is the pressure of the gas. On the other hand, the condition
for mechanical equilibrium tells us that F = PA, where F is the tension in
the chain. Therefore, the derivative of the entropy is related to the tension:(

∂S

∂x

)
E

= −F

T
. (6.6)

We evaluate the derivative on the left-hand side and obtain the tension:

F = −T
∂S

∂x
=

kBT

2a
ln
(

1 + x/Na

1 − x/Na

)
� kBT

Na2
x , (6.7)

where Na � x has been used.

Fig. 6.2. Mechanical equilibrium between forces exerted by rubber and gas pressure.
A gas at temperature T is confined in a cylinder by a force from a sample of rubber
that holds the piston in place

1 The chain in this model has no internal energy. The temperature of the gas is
determined by the total energy of the system, which is equal to the energy of the
gas.
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This result reproduces the characteristics of rubber. The model chain obeys
Hooke’s law, i.e. F ∝ x, and the elasticity constant, or Young’s modulus, is
proportional to the temperature T . When the chain is extended, the entropy
S(x) decreases, and so the excess entropy must be given to the environment.
That is, the chain gives heat to its environment, which is the gas in this case.
On the other hand, if heat is given to the chain, its entropy increases, and so
it must shrink. In this way, we can explain the main properties of rubber with
this simple model. This is an example of the virtue of statistical physics.

The present model, however, has some defects arising from oversimplifica-
tion. One of them is that the total length of the chain is zero when no tension
is applied. The origin of this defect is that we have neglected the thickness of
the polymer chain, and have also neglected the fact that the chains are en-
tangled three-dimensionally. To incorporate these effects is not an easy task,
and can be done only approximately. The task of constructing a more realistic
model and investigating it statistical-mechanically is one of the frontline fields
of research in statistical physics [2, 3].
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Magnetic Materials

We have applied the methods of statistical physics to several systems in the
previous chapters. The systems that we have considered so far are simple, since
they are noninteracting systems. In this chapter we investigate the Ising model
as a model for ferromagnetic systems, in which interaction plays an important
role. A ferromagnetic system undergoes a phase transition at high temperature
to a paramagnetic phase. We discuss this transition by use of a mean-field
theory. We also calculate the exact free energy for a one-dimensional system.

7.1 Origin of Permanent Magnetism

Some kinds of atoms have a magnetic moment. That is, those atoms behave
as small permanent magnets. When a crystal contains such atoms, it is a re-
alization of a system in which tiny magnetic moments are placed regularly in
a crystal lattice. Under suitable conditions, these magnetic moments become
aligned in a common direction. The whole crystal then behaves as a permanent
magnet. When this alignment happens, the crystal is said to be ferromagnetic.
At higher temperatures, the moments in a ferromagnetic material cease to be
aligned, because of thermal fluctuations; it then becomes paramagnetic.

In this section, we explain what a magnetic moment of an atom is, and why
these magnetic moments become aligned. First, we shall explain the magnetic
moment. An atom consists of electrons and a nucleus. The nucleus consists
of protons and neutrons. These particles have a spin angular momentum S,
which can be considered as a rotation of the particle. The magnitude of S is
fixed at �/2 for these particles. This rotation leads to a circulating electric
current, and a magnetic moment µ. It is evident that this moment should be
proportional to the angular velocity and the charge of the particle. For the
same angular momentum, a heavier system rotates more slowly, and so we ex-
pect the magnetic moment of a nucleon to be smaller than that of an electron.
The size of µ for the electron, proton, and neutron is given in Table 7.1. The
reason that the neutron has a nonzero µ is that it consists of charged quarks.
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Table 7.1. Magnetic moments of elementary particles. The masses of these particles
are written as me, mp, and mn for the electron, proton, and neutron, respectively

Particle Magnetic moment

Electron µe = 9.28 × 10−24J/T � (1/2)(e�/me)
Proton µp = 1.41 × 10−26J/T = 5.58 × e�/4mp

Neutron µn = 9.66 × 10−27J/T = 4.49 × e�/4mn

We can see that µe � µp, µn as expected, and so the magnetic moment of
an atom originates mostly from the electrons. Although the orbital motion
of the electrons in an atom can contribute to the magnetic moment when
the atom is isolated, such moments are canceled in a crystal. In the case of
an iron atom, the configuration of the 26 electrons in the atom is as follows:
1s22s22p63s23p63d64s2. This means that there are two electrons in the 1s
orbital, two electrons in the 2s orbital, and so on. The part 1s22s22p63s23p6 of
the configuration is the same as the configuration of the electrons in an argon
atom. Here all the allowed electronic states in the 1s, 2s, 2p, 3s, and 3p orbitals
are filled with electrons, and it is said that closed shells are formed. For a closed
shell, the total orbital and total spin angular momenta are zero, and there is no
magnetic moment. For an iron atom, however, there are additional electrons
in the 3d and 4s orbitals. The spins of the six electrons in the 3d orbitals
are mostly aligned, and therefore they contribute to the magnetic moment of
the atom. On the other hand, their orbital motion does not contribute to the
magnetic moment, because each d electron is in a state that is a superposition
of two counterrotating states. The two electrons in the 4s orbitals behave as
conduction electrons in metallic iron.

The reason why the spins align can be understood as follows. Within an
atom, electrons usually occupy orbitals from the lowest energy up. Owing
to the Pauli principle, electrons of the same spin direction cannot occupy the
same orbital, and so the two electrons in a 1s or 2s orbital have opposite spins,
and their magnetic moments cancel. However, in the case of the 3d orbitals,
there are five orbitals with energies that are almost the same. We say that
these orbitals are almost degenerate. In this case the Coulomb interaction
energy between the electrons is lower when the electrons have their spins
aligned. Therefore, in an iron atom five spin-aligned electrons occupy all of
the 3d orbitals, and the remaining electron has its spin reversed and occupies
the lowest-energy 3d orbital, as shown in Fig. 7.1. This fact is in accordance
with Hund’s rules. Therefore, the six electrons in the 3d orbitals of iron are
nearly all aligned in the same direction.

The Coulomb interaction between electrons, the Pauli principle, and the
existence of the conduction electrons cause an interaction between the spins
of nearby atoms. This effective interaction between spins is usually called
the exchange interaction. The sign of the exchange interaction may be either
positive or negative, depending on the material. It tends to align the spins
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Fig. 7.1. Spin configuration of d electrons in an iron atom. In an atom, shown
symbolically by the large circle, there are five nearly degenerate 3d orbitals, shown
symbolically by five horizontal lines. These orbitals are occupied by six electrons in
the case of an iron atom. The electrons are shown by closed circles with an arrow
showing the direction of the spin. The first five electrons occupy these five orbitals
one by one, and the spins are aligned in accordance with Hund’s rules. The sixth
electron must have a reversed spin to occupy one of the already occupied d orbitals,
and cancels the spin of the other electron in the orbital. As a result there remain four
aligned spins, and the total spin angular momentum is four times that of an electron

of nearest-neighbor atoms for some materials, such as metallic iron (Fe) and
chromium dioxide (CrO2), whereas it has the opposite effect for some other
materials, such as iron(II) oxide (FeO) and cobalt(II) oxide (CoO).1 The effect
of the exchange interaction is much stronger than the dipole–dipole interaction
between the magnetic moments of atoms.

7.2 Statistical Mechanics of a Free Spin System

7.2.1 Model and Entropy

We consider a model in which atoms of a single species are placed on a crystal
lattice. There are N atoms per unit volume, and each atom has a nonzero total
electron spin and a nonzero magnetic moment m. We write the magnitude of
the magnetic moment of an atom as µ. In the present form of the model, we
assume that there is no interaction between the spins. Furthermore, we assume
that each spin can have only one of two directions, either parallel to the z-axis
1 Magnetite (Fe3O4) is also an iron oxide, and was the first permanent-magnet

material that humans discovered. The three iron ions in a unit cell of the crystal
are on two types of sites: one ion is on an A site and two ions are on B sites.
The exchange interaction acts so as to make the spins of the ions on the A and
B sites antiparallel. Since there are more ions on the B sites, a nonzero total
magnetization appears in this material.
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or antiparallel to it. Therefore, the magnetic moment has only a z-component,
and is allowed to have only two quantized values, mz = ±µ. This model is not
as strange as it might appear, because the projection of the spin of an electron
onto any direction is known from quantum mechanics to have only two possible
values, ±�/2. We call the state of an atom that has a moment µ the “up” state
and the state that has a moment −µ the “down” state. When interaction is
added to this model, we obtain the Ising model, which we consider in the next
section, but here we consider the noninteracting model.

The total magnetic moment of the system per unit volume is called the
magnetization, which we write as M . When all the moments are aligned in the
positive direction, the magnetization takes the value Mmax ≡ Nµ. This value
Mmax is called the saturation magnetization. The magnetization is bounded
by this value:

−Mmax ≤ M ≤ Mmax . (7.1)

We shall now calculate the entropy for a given value of M . We consider a sys-
tem of unit volume and write the numbers of atoms in the up and down states
as N+ and N−, respectively. The magnetization is

M = (N+ − N−)µ , (7.2)

where
N = N+ + N− (7.3)

is the total number of atoms. That is,

N± =
1
2µ

(Mmax ± M) , (7.4)

or
N±
N

=
1
2

(
1 ± M

Mmax

)
. (7.5)

Here we notice that the situation is similar to that for rubber. There are the
following correspondences between the two cases:

N± ↔ N± ,
a ↔ µ ,
x ↔ M ,

Na ↔ Mmax .

Using the notation M/Mmax ≡ x, we obtain the entropy per unit volume:

S(M) = kBN

[
ln 2 − 1

2
(1 + x) ln(1 + x) − 1

2
(1 − x) ln(1 − x)

]
. (7.6)

In general, the entropy is a function of the external constraints, or state vari-
ables. When we differentiate S with respect to these variables, we obtain other
state variables. For example, the derivative of S with respect to the volume
gives the pressure divided by the temperature, P/T . When we investigated
rubber, we showed that the tension could be obtained by differentiating S
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with respect to the total length x. In the present case, however, M is not
an external constraint that we can fix arbitrarily. Rather, it is induced by
applying magnetic field B in the z direction. Therefore, we should not ex-
pect to be able to obtain a state variable by differentiating S with respect
to M . However, this model is an exception. The total energy of the system
E = −MB is given by the interaction between the external magnetic field B
and the magnetization M . Thus,

dS

dM
=

dS

dE

dE

dM
= −B

T
. (7.7)

Differentiating (7.6) with respect to M , we obtain

B =
kBT

2µ
ln
(

1 + x

1 − x

)
. (7.8)

This can be rewritten as

x = tanh
(

µB

kBT

)
. (7.9)

We must remember that this is a special result for a noninteracting system,
which cannot be generalized.2

7.2.2 Free Energy, Magnetization, and Susceptibility

We can also treat the system by use of the canonical distribution. We assume
that the system is in thermal equilibrium with a heat bath at temperature T .
We also assume that the system is in a magnetic field B parallel to the z-axis.
Each atom has a magnetic moment mz = ±µ, and so it has an energy ∓µB
in the magnetic field. Thus, the partition function of an atom is

Z(T,B) = eβµB + e−βµB , (7.10)

and the average moment of an atom is

〈mz〉 =
µeβµB − µe−βµB

Z
= µ tanh (βµB) . (7.11)

The partition function, the free energy, and the magnetization of the total
system of N atoms are

ZN (T,B) = ZN =
(
eβµB + e−βµB

)N
=
[
2 cosh

µB

kBT

]N

, (7.12)

F (T,B) = −NkBT ln
[
2 cosh

µB

kBT

]
, (7.13)

2 The function tanhx is one of the hyperbolic functions. For the definitions and
properties of the hyperbolic functions, see Appendix E.
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and

M(T,B) = N〈mz〉 = Nµ tanh
(

µB

kBT

)
. (7.14)

The magnetic moment can also be obtained from the free energy:

M(T,B) = −
(

∂F

∂B

)
T

= N
1
β

∂

∂B
ln Z

= Nµ tanh
(

µB

kBT

)
. (7.15)

Thus (7.8) and (7.9) have been reproduced.
The entropy as a function of T and B is

S(T,B) = −
(

∂F

∂T

)
B

= kBN

{
ln
[
2 cosh

(
µB

kBT

)]
− µB

kBT
tanh

(
µB

kBT

)}
. (7.16)

As T → ∞ or B → 0, this entropy tends to kBN ln 2. The temperature
dependence is shown in Fig. 7.2. If we eliminate B from this equation using
(7.8), we return to the expression for the entropy (7.6). Thus, the expression
for the total differential of the free energy,

dF (T,B) = −S(T,B) dT − M(T,B) dB , (7.17)

has been confirmed.
The magnetic-field dependence of M(T,B) is shown in Fig. 7.3. This figure

shows that a magnetization is induced by the magnetic field. When B is small,

Fig. 7.2. Temperature dependence of the entropy at nonzero magnetic field B
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Fig. 7.3. Magnetization as a function of the magnetic field B

M is proportional to B. The proportionality constant defines the magnetic
susceptibility, written as χ(T ). Usually, the magnetic field H is used instead
of B to express the proportionality: χ = (∂M/∂H)H=0. In the present model,
in which interactions between atoms are neglected, B = µ0H, where µ0 =
4π × 10−7 Hm−1 is the permeability of free space.3 Thus,

χ(T ) ≡ µ0
∂M

∂B

∣∣∣∣
B=0

= µ0
µ

kBT
Mmax = µ0

Nµ2

kBT
∝ 1

T
. (7.18)

The susceptibility is dimensionless and inversely proportional to the tempera-
ture. This temperature dependence is known as Curie’s law, and is obeyed by
paramagnetic materials. From the coefficient, we can obtain experimentally
the magnitude of the magnetic moment µ of an atom.

7.2.3 Internal Energy and Heat Capacity

Next, we shall calculate the average energy and the heat capacity. The average
energy Ẽ ≡ 〈E〉 in a magnetic field can be obtained by means of a Legendre
transformation of F :4

Ẽ(S,B) = F + TS = −NµB tanh
(

µB

kBT

)
= −MB . (7.19)

3 The correct relation between the magnetic fields H and B is B = µ0(H+M). The
contribution from the magnetization M is due to the magnetic dipole interaction.
In the present model this interaction has been neglected. Thus B = µ0H has been
used here. For real materials, M is usually much smaller than H, except when
the material is ferromagnetic.

4 Since the energy here contains the effect of the external magnetic field, we cannot
call Ẽ the internal energy.
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This result can also be obtained from the general relation

Ẽ(S,B) = −∂ ln ZN

∂β
. (7.20)

This result, Ẽ = −MB, is as it should be. From Ẽ, we obtain the heat capacity
at constant magnetic field:

C =

(
∂Ẽ

∂T

)
B

= NkB

(
µB

kBT

)2

sech2

(
µB

kBT

)
. (7.21)

The temperature dependence of the average energy and of the heat capacity is
shown in Fig. 7.4. The heat capacity is peaked around kBT � µB, and tends
to zero at high temperature. This behavior is quite different from that of the
heat capacity of a solid.

Fig. 7.4. Temperature dependence of (a) the average energy and (b) the heat
capacity of a free spin system
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The average energy Ẽ(S,B) is a function of S and B, and the total differ-
ential is

dẼ(S,B) = dF + T dS + S dT = T dS − M dB . (7.22)

On the other hand, the true internal energy is obtained by removing the
contribution of the external field B:

U(S,M) = Ẽ(S,B) + MB = 0 . (7.23)

This can also be considered as a Legendre transformation, and so this U is
a function of S and M . As the energy in this model comes solely from the
interaction with the magnetic field, this result U = 0 is reasonable. From the
differential of the internal energy, which is also zero, we obtain the following
relation:

dU(S,M) = T (S,M) dS + B(S,M) dM = 0 . (7.24)

In the present system S(M) is a function of M only, and so we obtain (7.7)
again from this relation between differentials:

dS

dM
= −B

T
.

7.3 Ising Model – Mean-Field Approximation

In the previous section, we neglected the interaction of a spin with surround-
ing spins, and obtained the result that the magnetization vanishes as the
magnetic field goes to zero. However, when we take interactions between
spins into account, a ferromagnetic phase becomes possible. In this case the
magnetization remains nonzero even without a magnetic field. We shall in-
vestigate how a nonzero magnetization emerges by using an approximation
called the mean-field approximation. This approximation gives a qualitatively
correct description of the phenomenon in a three-dimensional isotropic sys-
tem. It is known to be a better approximation in a fictitious four-dimensional
system.5

7.3.1 Links

We consider the same model as in the previous section except that here we take
interaction between nearest-neighbor spins into account. We draw fictitious

5 On the other hand, for lower-dimensional systems, the mean-field approximation
becomes worse. However, for some one- and two-dimensional model systems, an
exact treatment is possible. We shall study exact solutions of the one-dimensional
and two-dimensional Ising models in Sects. 7.4 and 9.3, respectively.
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lines between the members of every nearest-neighbor pair, and call these lines
links. For example, when atoms with spins are placed on a simple cubic lattice,
each atom has six nearest neighbors, and six links are attached to the central
spin. As shown in Fig. 7.5, there are two categories of links. One category is
that of parallel links, in which the two spins at the ends of the link are parallel
to each other. The other is that of antiparallel links, in which the spins point in
opposite directions. Owing to the interaction, the energy of a link depends on
whether it is parallel or antiparallel. In the model considered here, a parallel
link has an energy −J , and an antiparallel link has an energy +J . If there are
N spins and each spin has z nearest neighbors,6 the total number of links is
zN/2.

Fig. 7.5. Two nearest-neighbor atoms (solid circles) and a link between them. The
spin of an atom is shown by an arrow. (a), (b) Parallel links in which the spins at
the ends of the link are parallel to each other. (c), (d) Antiparallel links

A microscopic state is described by arrangement of up and down spins.
As in the previous section, we use N+ and N− to represent the numbers of
up spins and down spins, respectively. We also define N++ as the number
of links in which the two spins at both ends are up. We define N+−, N−+,
and N−− similarly. We then have the following relations for the total number
of spins N , the total number of links zN/2, the magnetization M , and the
interaction energy Ei:

N = N+ + N− ,

1
2
zN = N++ + N+− + N−+ + N−− ,

M = (N+ − N−) µ ,

Ei = −J (N++ + N−− − N+− − N−+) . (7.25)
6 For a simple cubic lattice, z = 6.
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7.3.2 Mean-Field Approximation

To proceed further, we assume that the N+ up spins and N− down spins
are distributed randomly. This is the mean-field approximation. The proba-
bility of finding an up-spin atom is then N+/N , and the probability of find-
ing a ++ link is (N+/N)2; the average numbers for the four kinds of links
are

〈N++〉 =
1
2
zN

(
N+

N

)2

=
z

8
N (1 + x)2 , (7.26)

〈N−−〉 =
z

8
N (1 − x)2 , (7.27)

〈N+−〉 = 〈N−+〉 =
1
2
zN

(
N+

N

)(
N−
N

)
=

z

8
(
1 − x2

)
, (7.28)

where x ≡ M/Mmax as before. The average of the interaction energy is

〈Ei〉 = −z

2
JNx2 . (7.29)

In an external magnetic field, the average energy Ẽ is the sum of 〈Ei〉 and the
average energy of the free spin system, −MB. In this approximation, the en-
ergy of a microscopic state depends only on M , and so the entropy, expressed
as a function of M , is the same as before:

S (M) = kBN

[
ln 2 − 1

2
(1 + x) ln (1 + x)

−1
2

(1 − x) ln (1 − x)
]

. (7.30)

Thus the free energy F (B,T,M) is given as follows as a function of B,
T , M :

F (B,T,M) = 〈Ei〉 − MB − TS

= −z

2
JNx2 − MB

−NkBT

[
ln 2 − 1

2
(1 + x) ln (1 + x)

−1
2

(1 − x) ln (1 − x)
]

. (7.31)

Of the three variables B, T , and M , the first two, B and T , are ex-
ternal variables or constraints that we can fix arbitrarily. On the other
hand, we cannot fix M ; it is determined by the system. In accordance
with the general principle that the most probable state is realized, the
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value of M at which the free energy becomes a minimum is also real-
ized. Therefore M(B,T ) is determined by the condition that ∂F/∂M = 0.
Namely,

0 =
(

∂F

∂M

)
B,T

= −zJ
x

µ
− B +

kBT

2µ
ln
(

1 + x

1 − x

)

= −Beff +
kBT

2µ
ln
(

1 + x

1 − x

)
. (7.32)

Here we have defined the effective magnetic field as Beff ≡ B + zJx/µ,
so that this equation has the same form as (7.8). Thus, the magnetization
is

x =
M

Mmax
= tanh

(
µBeff

kBT

)
. (7.33)

This equation for x = M/Mmax has the unknown x on the right-hand side
also. Therefore, we must determine x self-consistently. In the mean-field ap-
proximation, we usually obtain this kind of equation, called a self-consistent
equation.

Before solving this equation, we analyze the meaning of Beff . A parallel link
has an energy −J . We can imagine that the nearest link acts as if it induces an
internal magnetic field Bint = J/µ at the position of the neighboring spin. The
interaction energy between the spin and Bint then reproduces the interaction
energy −J . When there are z neighboring spins, there are zN+/N up spins
and zN−/N down spins among these z spins on average. The total internal
magnetic field is then

Bint = z
J

µ

(
N+

N
− N−

N

)
= z

J

µ
x . (7.34)

Adding the external field, we obtain the effective field given in (7.33), i.e.
B + Bint = Beff .

7.3.3 Solution of the Self-Consistent Equation

First we consider the situation in which there is no external magnetic field.
In this case the self-consistent equation becomes

M

Mmax
= tanh

(
zJ

kBT

M

Mmax

)
. (7.35)

This equation always has a solution M = 0. This is the paramagnetic state.
However, we have additional solutions at low temperature. In Fig. 7.6a, we
have plotted the right-hand side of (7.35) as a function of M/Mmax. The
solution is given by the intersection of this curve with the dashed line, which
represents the left-hand side, M/Mmax. We define a critical temperature Tc ≡
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Fig. 7.6. Behavior of the self-consistent equation and F at several temperatures.
In (a), the right-hand side of (7.35) is plotted as a function of M/Mmax. In (b),
F (0, T, M) is plotted as a function of M/Mmax. In these graphs, Tc ≡ zJ/kB

zJ/kB. When T > Tc, there is only one crossing, at the origin. At T = Tc, the
solid curve touches the dashed line at the origin; at T < Tc, the slope of the
solid curve near the origin exceeds unity, and an additional crossing appears
at nonzero M/Mmax.

The self-consistent equation represents the condition that the free energy
has an extreme value. Therefore, the solution can be found also from the plot
of the free energy shown in Fig. 7.6b. At T > Tc, there is only one minimum,
at M/Mmax = 0. At T = Tc, this minimum becomes very flat: around the min-
imum, F ∝ (M/Mmax)4. Finally, at T < Tc, the extremum at M/Mmax = 0
changes into a maximum, and the minimum at T > Tc separates into two min-
ima situated symmetrically around the origin at nonzero |M/Mmax|. There-
fore, when the temperature is lower than the critical temperature, a state with
a nonzero magnetization is realized even without a magnetic field.
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Table 7.2. Curie temperatures Tc for typical ferromagnetic materials

Material Curie temperature

Fe 1043K
Co 1400K
Ni 637K
Fe3O4 (magnetite) 860K

The critical temperature is also called the Curie temperature in the case of
the ferromagnetic phase transition. The Curie temperatures of some typical
ferromagnetic materials are listed in Table 7.2. These temperatures suggest
values of J several orders of magnitude larger than the values that can be esti-
mated from the dipole–dipole interaction between magnetic moments. This is
experimental evidence that J originates from a quantum mechanical exchange
interaction.

Below the Curie temperature, there are two possibilities, either M > 0 or
M < 0, but only one of them is realized.7 At T > Tc the two spin states,
up and down, are symmetric and interchangeable. Each atomic moment can
fluctuate between up and down equally, and the total magnetization fluctuates
around the origin. At T < Tc this symmetry is spontaneously broken. Once
either of these possible orientations has been chosen, thermal fluctuations of M
occur only around the corresponding minimum. We call this lack of symmetry
below Tc spontaneous symmetry breaking, and call the change in the state at
the critical temperature Tc a phase transition. The ferromagnetic state at
T < Tc is created by cooperation of spins. At higher temperatures this order
is destroyed, since the −ST term in the free energy favors a higher-entropy
state, which is obtained at smaller M .

The temperature dependence of M obtained from (7.35) is shown in
Fig. 7.7. Around T ∼ Tc, the magnetization is small. Therefore, the self-
consistent equation can be expanded around x ≡ M/Mmax:

M

Mmax
≡ x = tanh

(
Tc

T
x

)
� Tc

T
x − 1

3

(
Tc

T
x

)3

, (7.36)

i.e.
1
3

(
Tc

T
x

)3

=
(

Tc

T
− 1

)
x . (7.37)

7 Which of these two states is realized depends on subtle details of the history of
the system. For example, even at T > Tc, M has tiny fluctuations. The sign of
M when the temperature of the system passes through the critical temperature
will determine the sign of the magnetization at T < Tc.
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Fig. 7.7. Results obtained from the mean-field approximation. Temperature depen-
dence of magnetization

From this equation, the magnetization just below the Curie temperature is
given by8

M

Mmax
�
√

3
Tc − T

Tc
. (7.38)

On the other hand, M/Mmax when T → 0 has the following temperature
dependence:

M

Mmax
≡ x = tanh

(
Tc

T
x

)

� 1 − 2 exp
(
−2

Tc

T
x

)

� 1 − 2 exp
(
−2

Tc

T

)
. (7.39)

7.3.4 Entropy and Heat Capacity

The entropy predicted by the mean-field theory is obtained by putting the
self-consistent solution for x = M/Mmax into (7.30). The result at B = 0 is
8 Around the Curie temperature, x2 = (M/Mmax)

2 can be expanded as a power
series in the reduced temperature t ≡ (T − Tc)/Tc. Equation (7.38) shows the
leading-order term in t. In order to obtain the next-order term, we need to expand
tanh(Tcx/T ) up to the fifth-order term in (Tcx/T ). Then, up to the order t2, x2

is given by x2 � −3t − (12/5)t2.
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Fig. 7.8. Results obtained from the mean-field approximation. Temperature depen-
dence of the entropy

shown in Fig. 7.8. It increases gradually with temperature, and saturates at
the transition temperature.

Next we calculate the heat capacity at B = 0. This can be calculated
either from the entropy using C = T ∂S/∂T or from the internal energy using
C = ∂U/∂T . The internal energy at B = 0 is

U = −z

2
JN

(
M

Mmax

)2

. (7.40)

At T > Tc and B = 0, M is equal to 0. Hence U = 0 and C = 0.
This result can also be obtained from the entropy. At T < Tc and B = 0,
a simple expression for the the heat capacity is obtained from the internal
energy:

C = −zJN
M

M2
max

∂M

∂T
. (7.41)

The result is shown in Fig. 7.9. A numerical solution of the self-consistent
equation has been used to obtain the temperature dependence of M . The
value at T = Tc can be calculated analytically from (7.38). Just below the
Curie temperature, the energy is

U =
3
2
kBN(T − Tc) . (7.42)

Thus, C(Tc) = (3/2)kBN .9

9 If we use the expression for x2 given in footnote 8, C(T ) = (3/2)kBN [1+(8/5)(T−
Tc)/Tc] is obtained. This expression reproduces the linear decrease of C for T < Tc

in Fig. 7.9.
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Fig. 7.9. Results obtained from the mean-field approximation. Temperature depen-
dence of the heat capacity

7.3.5 Susceptibility

The susceptibility χ(T ) at T > Tc is given by

χ(T ) = µ0

(
∂M

∂B

)
T

= µ0Mmax
∂

∂B
tanh

(
µBeff

kBT

)

= µ0Mmax
µ

kBT
sech2

(
µBeff

kBT

)
∂Beff

∂B

=
µµ0Mmax

kBT
sech2

(
µBeff

kBT

)[
1 + z

J

µ

1
Mmax

(
∂M

∂B

)
T

]

=
µµ0Mmax

kBT
sech2

(
µBeff

kBT

)
+

zJ

kBT
χ sech2

(
µBeff

kBT

)
. (7.43)

From this equation, we obtain

χ =

µµ0Mmax

kBT
sech2

(
µBeff

kBT

)

1 − zJ

kBT
sech2

(
µBeff

kBT

) . (7.44)

In the paramagnetic phase, sech2(µBeff/kBT ) → 1 as B → 0. Therefore, χ
can be expressed as

χ(T ) =
µµ0Mmax

kB (T − Tc)
= µ0

µ2N

kB

1
T − Tc

. (7.45)
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This temperature dependence is called the Curie–Weiss law. The divergence
of χ at T = Tc is a general property of the ferromagnetic phase transition,
not a special consequence of the mean-field approximation. It means that
a nonzero magnetization is induced by an infinitesimally weak magnetic field
at the Curie temperature. At T < Tc, no magnetic field is needed to obtain
a nonzero M .

7.3.6 Domain Structure

Iron or steel at room temperature is in the ferromagnetic phase, but a block
of iron as a whole does not usually have a nonzero magnetization. This is be-
cause it consists of many small ferromagnetic domains, in which the magnetic
moments of the domains are aligned such that they cancel when the total
moment is taken, as shown schematically in Fig. 7.10. We have remarked that
the dipole–dipole interaction between spins is too small to be the origin of the
ferromagnetic phase. However, once a system is in the ferromagnetic phase,
this interaction becomes important. This is because the dipole interaction is
long-ranged, and aligned spins make a large total moment. When two bar
magnets are put together, their north poles are attracted to the south poles
of the other magnet. As a result, they will stick together so that the north
pole of each magnet is in contact with the south pole of the other magnet. As
a result, the total moment is reduced. In this configuration, the energy of the
magnetic field is reduced, and the two magnets are in their most stable state.
Similarly, a block of iron is divided into many domains and the moments of
the domains cancel to reduce the energy of the magnetic field. If the magnetic
moments of the domains are aligned, the block becomes a permanent magnet.

Fig. 7.10. An example of a magnetic-domain structure. In this case the system is di-
vided into four domains. The magnetic moment in each domain is shown by an arrow

7.4 The One-Dimensional Ising Model

7.4.1 Free Energy

In the previous section, we investigated the Ising model by use of the mean-
field theory. The free energy obtained there was an approximation. An exact
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calculation of the free energy of an interacting system is impossible in general.
However, in one dimension, the free energy of certain systems can be calculated
exactly. The Ising model is one such system, and so here we calculate its free
energy exactly.

We investigate a system of unit length consisting of N spins aligned lin-
early. The ith spin is denoted by σi, which is equal to either +1 (up) or −1
(down). We impose a periodic boundary condition so that σN+1 = σ1. The
spins interact with their nearest-neighbor spins. A microscopic state given by
a spin configuration (σ1, σ2, · · · , σN ) has the following energy E:

E({σi}) = −J
N∑

i=1

σiσi+1 − µB
N∑

i=1

σi, σi = ±1 , (7.46)

where the magnitude of the magnetic moment µ has been included in the cou-
pling constant J , and B is the external magnetic field. The partition function
is the following sum over the microscopic states:

Z =
∑
{σi}

e−βE({σi})

=
∑
σ1

∑
σ2

. . .
∑
σN

N∏
i=1

A (σi, σi+1) , (7.47)

where

A (σi, σi+1) = exp
[
βJσiσi+1 +

1
2
βµBσi +

1
2
βµBσi+1

]
. (7.48)

Let us consider the sum over the ith spin σi:∑
σi

A (σi−1, σi)A (σi, σi+1) . (7.49)

We notice that this can be considered as a matrix product of a two-by-two
matrix A with itself, where

A =
(

A(+,+)
A(−,+)

A(+,−)
A(−,−)

)
. (7.50)

To simplify the treatment, we introduce the notation K = βJ and b = βµB.
The matrix elements of A are

A (+,+) = exp
(

βJ +
1
2
βµB +

1
2
βµB

)
= eK+b , (7.51)

A (+,−) = A (−,+) = exp (−βJ) = e−K , (7.52)

A (−,−) = exp
(

βJ − 1
2
βµB − 1

2
βµB

)
= eK−b . (7.53)
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Thus the two-by-two matrix A has the following form:

A =
(

eK+b

e−K
e−K

eK−b

)
. (7.54)

This matrix A is called a transfer matrix.
The partition function can now be rewritten as follows:

Z = Tr
(
AN

)
. (7.55)

Since the matrix A is real and symmetric, it can be diagonalized:

U−1AU =
(

λ+

0
0
λ−

)
. (7.56)

The partition function can be calculated as follows:

Tr
(
AN

)
= Tr

(
U−1AUU−1AU · · ·AU

)
= λN

+ + λN
− . (7.57)

Since N is a macroscopic number, if λ+ > λ− then λN
+ � λN

− , and Z = λN
+

for N → ∞. The eigenvalues λ± can be calculated as the solutions of the
following equation:∣∣∣∣λ − eK+b

−e−K
−e−K

λ − eK−b

∣∣∣∣ = λ2 − 2λeK cosh b + 2 sinh 2K = 0 . (7.58)

The larger solution λ+ is

λ+ = eK cosh b +
√

e2K cosh2 b − 2 sinh 2K . (7.59)

When B = 0, i.e. when b = 0,

λ+ = eK + e−K = 2 cosh K , (7.60)

and the free energy is

F = −NkBT ln (2 cosh βJ) . (7.61)

7.4.2 Entropy and Heat Capacity

The entropy at B = 0 can be calculated by differentiating the free energy
with respect to the temperature:

S = −∂F

∂T
= NkB

[
ln
(

2 cosh
J

kBT

)
− J

kBT

(
tanh

J

kBT

)]
. (7.62)

The result is shown in Fig. 7.11.
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The internal energy and the heat capacity are

E = F + ST = −NJ tanh
J

kBT
(7.63)

and

C =
dE

dT
=

NJ2

kBT 2
sech2 J

kBT
. (7.64)

The heat capacity can also be calculated from C = T ∂S/∂T . The temperature
dependence is shown in Fig. 7.12. The heat capacity has the same temperature

Fig. 7.11. Exact result for one-dimensional Ising model: entropy plotted as a func-
tion of kBT/J

Fig. 7.12. Exact result for one-dimensional Ising model: heat capacity plotted as
a function of kBT/J
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dependence as that of a system of free spins in a magnetic field B = J/µ.
Compare this result with that obtained from the mean-field approximation,
which has a discontinuity at Tc = 2J/kB in the present notation.

7.4.3 Magnetization and Susceptibility

Here we allow the magnetic field to have a nonzero value; that is, b = βµB �= 0.
The free energy F and the magnetization M are now given by

F = −NkBT ln
[
eK cosh b +

√
e2K cosh2 b − 2 sinh 2K

]
(7.65)

and

M = −∂F

∂B
= −∂F

∂b
βµ

= βµNkBT

eK sinh b +
e2K sinh b cosh b√

e2K cosh2 b − 2 sinh 2K

eK cosh b +
√

e2K cosh2 b − 2 sinh 2K
. (7.66)

In the limit of a weak magnetic field, sinh b � b, cosh b � 1, and

M � Nµ
eK + e2K/e−k

eK + e−K
× b =

Nµ2

kBT
× e2KB =

Nµ2

kBT
e2J/kBT B . (7.67)

Thus there is no spontaneous magnetization: when B = 0, M = 0. The
susceptibility is given by

χ = µ0
Nµ2

kBT
e2J/kBT . (7.68)

The susceptibility of a free spin system, µ0Nµ2/kBT , is enhanced by a factor
e2J/kBT . The temperature dependence is shown in Fig. 7.13.

The result of this exact calculation has shown that there is no phase tran-
sition in this one-dimensional Ising model. This is a special feature of a one-
dimensional system. The order in a one-dimensional system is quite fragile
with respect to thermal fluctuations. Since each spin has only two nearest
neighbors, a flip of a single spin can cause a spin flip of a neighbor with
a probability of 1/2, and so a spin flip can propagate and may cause flips of
the majority of spins. On the other hand, propagation of a spin flip is un-
likely in two dimensions if the spins are already mostly aligned. In fact, it
has been shown that there is a phase transition in the two-dimensional Ising
model, as we shall see in Chap. 9. The transition temperature in this case is
given by kBTc = J/ sinh−1 1 = 1.13J for a square lattice. The investigation of
a one-dimensional system is sometimes fruitful, because we can obtain exact
solutions, but we must be aware that the results may be qualitatively different
from those for real three-dimensional systems.
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Fig. 7.13. Exact result for one-dimensional Ising model: susceptibility plotted as
a function of kBT/J . Note that the vertical axis is logarithmic

Exercise 15. In order to estimate the strength of the magnetic dipole inter-
action between atoms, consider the interaction of the spin magnetic moments
of two electrons separated by a typical interatomic distance of 0.5 nm. Cal-
culate the interaction energy for two cases: (1) the spins are parallel to the
line joining the electrons and point in the same direction, and (2) the spins
are parallel to the line joining the electrons but point in opposite directions.
Express the interaction energy as a temperature.
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First-Order Phase Transitions

In the previous chapter we have seen that a magnetic material undergoes
a phase transition between a paramagnetic phase and a ferromagnetic phase
as the temperature is varied. There are various other kinds of phase transi-
tions in nature apart from this ferromagnetic phase transition. They can be
categorized into two kinds. One kind, first-order transitions, is characterized
by a discontinuous change in the internal energy. The general behavior of
this kind of transition is discussed in this chapter. The other kind is second-
order transitions, in which the internal energy changes continuously across
the transition point. This kind of transition is discussed in Chap. 9.

8.1 The Various Phases of Matter

Water has at least three different phases: liquid, solid (ice), and gas (vapor).1

At any given temperature and pressure, one of these phases exists, and for
some special combinations of temperature and pressure, two or all three phases
coexist. Likewise, other substances exist in various phases. For example, ni-
trogen at atmospheric pressure is in the gas phase at room temperature, but
it liquefies at 77.35 K and solidifies at 63.29 K. Helium gas is hard to liquefy,
but the helium isotope of mass number 4 liquefies at 4.2K at atmospheric
pressure. Liquid helium can be divided further into a normal fluid phase at
T > Tλ and a superfluid phase at T < Tλ, where Tλ, the lambda transition
temperature, depends on the pressure, and is 2.17 K under the saturated va-
por pressure. A solid can also have different phases. For example, as explained
in Chap. 7, iron is in a paramagnetic phase at T > Tc and a ferromagnetic
phase at T < Tc.

As the pressure or temperature changes, one phase may be replaced by
another phase. This change of phase is called a phase transition. Phase
transitions can be divided into two classes. In a first-order phase transi-
tion, the internal energy per mole changes by a nonzero amount. On the
1 Strictly speaking, ice has several different phases.
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other hand, in a second-order phase transition, the internal energy changes
continuously through the transition point. The phase transitions between
a gas and a liquid, between a liquid and a solid, and between a solid and
a gas are usually of first order. The magnetic transition and the normal-to-
superfluid transition of liquid helium are of second order. In this chapter, we
consider first-order phase transitions; second-order transitions are treated in
Chap. 9.

The reason why a gas liquefies or solidifies is the attractive interaction
between its atoms or molecules. Without such an interaction, a gas would
behave as an ideal gas, and would remain a gas at any temperature above ab-
solute zero. The interaction between the atoms or molecules is usually caused
by their electric dipole moments. A water molecule has a permanent elec-
tric dipole moment, since the three atoms in the H–O–H molecule are not in
a straight line, and the hydrogen atoms are slightly positively charged and
the oxygen atom is slightly negatively charged. Therefore, between suitably
oriented molecules, there is an attractive interaction. The nitrogen molecule,
oxygen molecule, and helium atom do not have a permanent electric dipole
moment. However, electron motion in a molecule causes a temporally vary-
ing dipole moment, and a fluctuating electric field around the molecule. This
fluctuating electric field can polarize nearby molecules and induce a dipole
moment in them, as shown in Fig. 8.1. Once a moment has been induced,
it in turn supports the dipole moment in the original molecule, and so the
average dipole moment of this pair of molecules becomes nonzero, and an at-
tractive interaction acts between the molecules. The potential energy between
these induced moments varies as r−6, and the force between them varies as
r−7.

Fig. 8.1. Interaction between neutral molecules or atoms. Even if molecule A is
electrically neutral and does not have a permanent electric dipole, it has a fluctuating
electric dipole moment, which polarizes a nearby molecule B and induces an electric
dipole in it. These electric dipoles causes an attractive interaction between them
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The attractive interaction is replaced by a strong repulsive interaction
when the molecules begins to overlap with each other. This repulsive part is
called the hard-core repulsion between the molecules. The total interaction,
which is repulsive at short distances and attractive at long distances, is called
the van der Waals interaction. The typical behavior of the van der Waals
interaction potential is shown in Fig. 8.2.

At zero temperature, the lowest-energy state is realized. If there are only
two molecules, they will form a bound state where the distance between the
molecules is given by the position of the minimum of the interaction poten-
tial. Therefore, they can no longer behave as free molecules. Adding another
molecule will result in a bound state of three molecules. If we imagine the
addition of more molecules, we can arrive at a macroscopic system. Here the
state of lowest potential energy will be a crystal of molecules, in which the
molecules are placed in a lattice of some kind.

At zero temperature, there are small vibrations of the molecules due to the
quantum mechanical zero-point motion. For most substances, this zero-point
motion is not important. However, the case of helium atoms is an exception.
In this substance, the zero-point motion is so large that the crystal melts,
and helium remains liquid unless a pressure of about 25 atm is applied. For
other solids, the lattice vibrations, which give rise to the lattice specific heat
considered in Chap. 5, become more violent as the temperature is raised. At
some particular temperature the crystal melts into a liquid state. The liquid
state has a similar density to the solid state, and so the distance between
the molecules is nearly the same as in the solid; therefore, the liquid is also
bound by the van der Waals interaction. Melting occurs when the temperature
is much higher than the Debye temperature, and so the equipartition law is

Fig. 8.2. The van der Waals potential. This has a strongly repulsive part at short
distances (hard-core part), and an attractive part due to dipole–dipole interaction
which decreases as r−6 at long distances
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expected to be satisfied. This means that each molecule has an average kinetic
energy of 〈

1
2
mv2

〉
� 3

2
kBT . (8.1)

When this average energy becomes of the same order as the binding energy
due to the van der Waals interaction, the molecules are no longer bound into
a liquid, and a gas phase is obtained.

This is a rough scenario for the phase transitions of a substance that
is in the gas phase at room temperature.2 The strength of the attrac-
tion part depends on the polarizability of the molecules, which is a mea-
sure of how easily a molecule is polarized. The electrons in a helium atom
form a closed shell, and it is hard to change the configuration of the elec-
trons and therefore it is hard to polarize a helium atom. Because of this,
the interaction between helium atoms is weak, and the liquefaction tem-
perature is low. Compared with helium, oxygen molecules and nitrogen
molecules have a larger polarizability, and so oxygen and nitrogen liquefy
at higher temperatures. Needless to say, water, which has a permanent elec-
tric dipole moment, has higher transition temperatures than those of oxygen
and nitrogen.

Fig. 8.3. Phase diagram of water. There are two special points: the triple point
at T = 273.16K and P = 611.66Pa, and the critical point at T = 647.31K and
P = 22.106MPa

2 There are also substances which are in a solid phase at room temperature. In these
substances, the attractive interaction between the atoms is stronger than the van
der Waals attraction. In ionic crystals, such as NaCl, positively charged Na+ ions
and negatively charged Cl− ions attract as a result of the Coulomb interaction. In
metals, the positive ions are bound together by the negative conduction electrons
(metallic bonding). The carbon atoms in diamond are bound together by strong
covalent bonds.
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The temperature of a phase transition point is affected by the pressure.
Therefore, a phase diagram can be drawn in the plane of temperature and
pressure. As an example of a phase diagram, that of water is shown in Fig. 8.3.
This tells us which phase exists at any given temperature and pressure. There
are two special points in the phase diagram. One is the triple point , at which
the solid, liquid, and gas phases can coexist. This occurs at T = 273.16 K and
P = 611.66 Pa.3 Another is the critical point , beyond which the line separating
the gas and liquid phases disappears. This is the point at T = 647.31 K
and P = 22.106 MPa. In the following sections, we discuss first-order phase
transitions with the help of statistical physics.

8.2 System in a Heat Bath at Fixed P and T

For the discussion of first-order phase transitions, we need to consider a system
of N particles in a heat bath, at a constant temperature T and pressure
P . Under these conditions, every possible microscopic state of the system,
with energy E and volume V , is realized with a probability determined by
the law of statistical physics, namely the principle of equal probability. We
can repeat the discussion in Chap. 3 with slight modifications to obtain this
probability.

Let the total energy of the system (system I) plus the heat bath (sys-
tem II) be Et, and let the total volume be Vt. The probability that sys-
tem I is in a state with energy EI and volume VI is proportional to the total
number of microscopic states of the whole system that allow system I to be
in that state. That is, the probability is proportional to the number of mi-
croscopic states in which the heat bath has an energy Et − EI and volume
Vt − VI. This number is given by the entropy of the heat bath SII(E, V ). We
obtain

Probability ∝ exp [SII(Et − EI, Vt − VI)/kB]
exp [SII(Et, Vt)/kB]

= exp
{

1
kB

[SII(Et − EI, Vt − VI) − SII(Et, Vt)]
}

� exp
[

1
kB

(
−EI

∂SII(Et, Vt)
∂Et

− VI
∂SII(Et, Vt)

∂Vt

)]

= exp
(
− EI

kBT
− PVI

kBT

)
, (8.2)

where T and P are the temperature and pressure of the heat bath.
3 This pressure is so low that it looks as if the gas phase terminates at around

300K in this figure. In fact, the gas phase still exists on the low-pressure side of
the solid phase, and extends down to T = 0 K.
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The relative probability that system I has an energy between EI and EI +
δEI and a volume between VI and VI+δVI is then given by the density of states
of system I, ΩI(EI, VI, N), or by the entropy of that system, SI(E, V,N):

Prel(EI, VI, N) dEI dVI ∝ ΩI(EI, VI, N) dEI dVI exp
(
− EI

kBT
− PVI

kBT

)

= dEI dVI exp
{
− 1

kBT
[EI + PVI − SI(EI, VI, N)T ]

}
.

(8.3)

The partition function in this situation, Y (T, P,N), is obtained by integrating
this relative probability over the energy and volume:

Y (T, P,N) =
∫ ∞

0

dVI

∫ ∞

0

dEI exp
{
− 1

kBT
[EI + PVI − SI(EI, VI, N)T ]

}
.

(8.4)
Because we are considering a macroscopic system as in Chap. 3, the integrand,
which is the probability of finding system I at EI and VI, should be sharply
peaked at the minimum of EI + PVI − SIT , at E∗(T, P,N) and V ∗(T, P,N).
Therefore, the system will almost always be found with this energy and vol-
ume. The energy at the minimum E∗ is the internal energy U of the system.
Since U + PV − ST = G(T, P,N) is the Gibbs free energy introduced in
Sect. 3.5, what is shown here is that under this condition of given T and
P , the state realized has the lowest Gibbs free energy with respect to E
and V .

A relation between the partition function Y and the Gibbs free energy G
can be obtained by evaluating Y through expanding the integrand around E∗

and V ∗. Since the integrand decreases rapidly around the peak, expansion up
to the second order is sufficient. The integral then becomes Gaussian, and so
the result is

Y (T, P,N) = C(T, P,N) exp
{
− 1

kBT
[E∗ + PV ∗ − SI(E∗, V ∗, N)T ]

}

= C(T, P,N) exp
[
− 1

kBT
G(T, P,N)

]
, (8.5)

where C(T, P,N) is some function of T , P , and N , which is obtained from
the Gaussian integral; an explicit expression is not needed here. We obtain

G(T, P,N) = −kBT [lnY (T, P,N) − ln C(T, P,N)]

= −kBT ln Y (T, P,N) . (8.6)

Since G and lnY are quantities of order N , lnC = O(1) has been neglected
in obtaining the second line of the equation above.
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8.3 Coexistence of Phases

As shown in the previous section, at given T and P a system is in the phase
which has the lowest value of E + PV −S(E, V,N)T , and this lowest value is
equal to G. The phase may be a solid, liquid, or gas depending on the tem-
perature and pressure. Experimentally, these phase transitions occur as the
temperature or pressure is changed, and so the minimum should be transferred
from one phase to another at the transition point. That is, the coexistence
condition is the condition that the Gibbs free energy has the same value for the
two phases. Since the Gibbs free energy divided by the number of molecules
is the chemical potential µ(T, P ) = G(T, P,N)/N , we can also say that the
chemical potentials of the two phases are equal when they coexist.

Let us see how the transfer of the minimum occurs. First, we consider
the solid-to-liquid phase transition. In general, the liquid phase has a slightly
larger molar volume and a slightly higher internal energy. The molecules in the
liquid require a larger nearest-neighbor distance to move around, and so the
volume expands, and the average potential energy of interaction is higher. The
molecules or atoms in the liquid phase can be anywhere in the volume, but in
the solid phase they can move only around their lattice points. Therefore, the
number of possible microscopic states is much larger in the liquid phase than in
the solid phase, and the entropy of the liquid phase should be larger. Near the
phase transition point, there should be two local minima of E+PV −S(E, V )T
in the E–V plane. One of these minima corresponds to the solid phase and the
other to the liquid phase. The quantity E+PV is lower at the solid-phase local
minimum, as explained above. Therefore, at lower temperatures, where the
contribution ST is small, the solid phase has a lower value of E+PV −ST . As
the temperature becomes higher, the liquid-phase minimum decreases faster
than the solid-phase minimum owing to the larger value of S, and so a transfer
of the minimum from one phase to the other occurs at some temperature.

Next we consider the liquid-to-gas phase transition. In this case the energy
is higher in the gas phase because there is practically no energy gain from the
attractive interaction of the molecules. The volume and entropy are much
larger in the gas phase. Therefore, both temperature and pressure can be
effective in causing a transition between the phases. The liquid phase is favored
at high pressure because of the PV term. The gas phase is favored at high
temperature because of the −ST term. These tendencies are in accordance
with our everyday experience.

The coexistence condition defines lines in the P–T plane. On the coexis-
tence line, the volume and the internal energy of the system are somewhat
arbitrary. For example, let us consider the case of a gas–liquid transition,
where the system consists of one mole of molecules of some kind. When the
system becomes a liquid it has a smaller molar volume Vl, and when it becomes
a gas it has a larger molar volume Vg. At the coexistence point, the volume
can take values between Vl and Vg. Namely, if a mass fraction x is in the liquid
phase and the remaining fraction 1−x is in the gas phase, the total volume is
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V = xVl + (1− x)Vg, as shown in Fig. 8.4. What determines the fraction x is
the total internal energy, given by U = xUl + (1 − x)Ug, which can be varied
between Ul and Ug. Since the Gibbs free energies per mole are the same on
the coexistence line, the differences in the molar entropy ∆S ≡ Sg −Sl, in the
molar volume ∆V ≡ Vg − Vl, and in the molar internal energy ∆U ≡ Ug −Ul

are related:
T ∆S = ∆U + P ∆V . (8.7)

When we add a quantity of heat Q to this system the total entropy increases
by T δS = Q. Some of the liquid evaporates because of this heat, and the
fraction x increases to x + δx, where δx = δS/∆S. The total energy then
increases by δU = ∆U δx, and the total volume increases by δV = ∆V δx.
The quantity of heat needed to convert one mole of liquid into one mole of
gas, QL = T ∆S, is called the latent heat. Since the entropy changes across
the coexistence line, i.e. the line of the first-order phase transition, a latent
heat is always needed for a first-order phase transition.

In equilibrium statistical physics, we consider equilibrium phases that are
realized after waiting for a long time for the system to stabilize. Therefore,
at given T and P there is only one stable phase, except on the coexistence
line. However, in reality it can happen that a phase continues across the co-
existence line. That is, a liquid may continue to be a liquid above the boiling
point or below the freezing point. These phenomena are called superheating
and supercooling, respectively, and can occur at any phase boundary. The
reason for these phenomena is that there are two local minima of the quan-
tity E + PV − ST in the E–V plane. One of them, the true minimum, is
realized in thermal equilibrium, but the other one can also be realized in
a metastable state. In a supercooled or superheated state, the system is in

Fig. 8.4. Coexistence of liquid and gas phases. The system is assumed to be in
a heat bath at temperature T and pressure P , on the coexistence line in the phase
diagram. The total volume xVl + (1 − x)Vg can be anywhere between Vl and Vg
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such a metastable state. Interaction with the heat bath makes the system
fluctuate around the corresponding minimum with a probability given by the
canonical distribution. A rather large perturbation is needed from the heat
bath to make the system move to a configuration around the other (true)
minimum. Therefore, the system can remain around the higher minimum for
some time.

8.4 The Clausius–Clapeyron Law

The slope of the coexistence line in the phase diagram, dP/dT , can be related
to measurable quantities. Along the coexistence line, the Gibbs free energies
of the two phases are the same. Therefore, we have two equations that apply
at adjacent points on the coexistence line:

GI(T, P,N) = GII(T, P,N) ,

GI(T + ∆T, P + ∆P,N) = GII(T + ∆T, P + ∆P,N) , (8.8)

where I and II are labels used to distinguish the two phases. We expand both
sides of the second equation with respect to ∆T and ∆P to the lowest order
and, using the relation in the first line, obtain

∆T

(
∂GI

∂T

)
P,N

+ ∆P

(
∂GI

∂P

)
T,N

= ∆T

(
∂GII

∂T

)
P,N

+ ∆P

(
∂GII

∂P

)
T,N

.

(8.9)
Since (

∂GI

∂T

)
P,N

= −SI , (8.10)

(
∂GI

∂P

)
T,N

= VI , (8.11)

and so on, we obtain
∆T ∆S = ∆P ∆V , (8.12)

where ∆S ≡ SII − SI and ∆V ≡ VII − VI. Since T ∆S = QL is the latent heat
of the transition,

dP

dT
= lim

∆T→0

∆P

∆T
=

QL

T ∆V
. (8.13)

Thus the volume change and the latent heat determine the slope of the coex-
istence line.

In the case of a gas–liquid transition, where phase I is the liquid and
phase II is the gas, ∆V > 0 and ∆S > 0. Therefore, the slope is positive. As
we increase the temperature, the saturated vapor pressure increases. In the
case of water, the vapor pressure reaches atmospheric pressure at 100 ◦C, and
water begins to boil at that temperature at sea level.
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Usually, the entropy and volume of the liquid phase are larger than those
of the solid phase. Therefore, the slope of the coexistence line is usually also
positive in the case of solid–liquid phase transitions. However, there are ex-
ceptions. One such exception is the case of water. As we know, ice floats on
water: the volume of a sample of ice is larger than that of a sample of water of
the same mass. On the other hand, ice has a lower entropy, which is evident
because we need heat to melt ice. Therefore, the slope of the phase boundary
between ice and liquid water is negative. Ice melts when pressure is applied.4

A rough value for the slope can be estimated from our daily experience. To
make iced coffee, we first almost fill the glass with ice at 0 ◦C. Since there
is space between the blocks of ice, we can pour nearly the same amount of
boiling coffee into the glass. Then most of the ice melts, and we get cold cof-
fee. This tells us that the latent heat, the quantity of heat required to melt
a sample of ice, is nearly the same as the quantity of heat required to heat
the same amount of water from 0 ◦C to 100 ◦C. The latter quantity of heat is
about 100 cal g−1, as this can be related to the definition of the calorie, which
is equal to 4.18 J in SI units. The volume change can be guessed from the way
ice floats on water. About 10% of the ice is above the surface of the water,
and so the volume change is about 10%, or 10−7 m3 g−1. Using these values,
we can obtain the estimate

dP

dT
= − 418 J

273K × 10−7 m3
= 1.5 × 107 PaK−1 . (8.14)

Thus the freezing temperature decreases by 0.007 K when a pressure of 1 atm
is applied.5

Another exception is the coexistence line between liquid and solid 3He,
the isotope of helium with mass number 3. Liquid helium-3 remains liquid
even at zero temperature when the pressure is below about 3.4 MPa. Above
that pressure, it solidifies. The phase diagram is as shown in Fig. 8.5. In
the low-temperature portion of the coexistence line, between T � 1 mK and
T � 0.316 K, the slope is negative. How is such a behavior possible? The solid
phase has a smaller volume. This is evident because the solid phase is on the
high-pressure side. This is the normal behavior. Therefore, the entropy must
behave abnormally. Namely, the entropy of the solid must be larger than that
of the liquid. The larger entropy of the solid cannot originate from the motion

4 This melting of ice under pressure was once considered to be the main reason
why we can enjoy skiing or ice-skating. However, this is not correct. The lowering
of the melting temperature under a skater’s blade is estimated to be only about
3 K, which is too small to explain the fact that we can skate or ski even when
the temperature of the ice or snow is −30 ◦C. The true reason is the existence of
a thin liquid layer covering the ice, although the reason for the existence of this
liquid is not fully understood [4].

5 The correct values for the latent heat and the molar-volume difference at ambient
pressure are QL = 6.01×103 J mol−1 and ∆V = 1.62×10−6 m3 mol−1. Therefore,
dP/dT = 1.36 × 107 Pa K−1.



8.4 The Clausius–Clapeyron Law 125

Fig. 8.5. Phase diagram of helium-3 below 1 K. The solid–liquid coexistence line
has a minimum pressure of 2.9 MPa at 0.316K. The phase boundary between the
gas phase and the liquid phase is on the low-pressure side of the liquid phase

of the atoms. In fact, it arises from the nuclear magnetic moments. In the solid
phase, the atoms are confined around lattice points. If the atoms did not move,
the interaction between the nuclear moments would be only the magnetic
dipole interaction, which is small because of the small magnetic moment of the
nuclei. In reality, cyclic exchanges of atoms are possible even in the solid phase,
which leads to an interaction between nuclear moments through quantum
mechanical effects. This interaction is larger than the magnetic interaction.
However, at the temperatures that we are considering, even though they are
low, the interaction is not enough to cause a magnetic phase transition, and
the solid He is in a paramagnetic phase. The moment of each atom has two
possible orientations, and so for N atoms the contribution to the entropy from
the magnetic moments is

Ss = kBN ln 2 . (8.15)

On the other hand, in the liquid phase, the moments cannot be so free. They
are restricted so as to make the total moment zero for a reason explained
in Chap. 10, and the resulting entropy is therefore much smaller than that
for the solid. This difference in the entropy due to the magnetic moments
exceeds the difference in the entropy due to the motion of the atoms, and the
slope therefore becomes negative. The solid loses this large entropy below the
magnetic transition at T � 0.92mK. Thus, below this temperature, the slope
of the coexistence line returns to the normal behavior.

The fact that the entropy of the solid phase is larger means that when
the liquid is compressed so that it is changed into the solid, heat is absorbed.
Thus, if it is compressed on the coexistence line, the system moves to lower
temperatures. This phenomenon is called Pomeranchuk cooling, and was used
to demonstrate the superfluid transition in liquid helium-3 at around 1mK
for the first time in 1972 [5].
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8.5 The Critical Point

Let us go back to the phase diagram of an ordinary gas–liquid transition.
In Fig. 8.3, the coexistence pressure increases as the temperature increases
until the coexistence line terminates at the critical point. Above this point,
there is no distinction between the liquid and the gas. What happens here is
schematically depicted in Fig. 8.6, where the value of E + PV − S(E, V )T
that appears in the integrand of the partition function Y is plotted as a func-
tion of V for three pairs of values (T, P ) on the coexistence line, where
E can be approximated by U(T, P ). Therefore, at the minima, this inte-
grand coincides with the Gibbs free energy. As we move to higher tem-
peratures, the two minima corresponding to the liquid phase and the gas
phase approach each other, and finally merge into a single minimum at
the critical point. Therefore, above the critical point there is no distinc-
tion between the two phases. This behavior is similar to what we have seen
in the mean-field treatment of a magnetic material described by the Ising
model.

The behavior around the critical point can be considered as a kind of
phase transition. At higher temperatures, the system is in a phase where
there is no distinction between the liquid and the gas. At lower temperatures,
it is in a “phase” where there is such a distinction. Again, this is similar to
a magnetic phase transition. For a magnetic material, there is a distinction
between two directions in the ferromagnetic phase: the direction parallel to the
magnetic moment and the direction opposite to it. The distinction disappears
above the Curie temperature. These phase transitions are second-order phase
transitions, which we discuss in Chap. 9.

Fig. 8.6. The left panel shows the V dependence of the integrand E+PV −S(E, V )T
of the partition function near the critical point. The lines are displaced vertically
by arbitrary amounts. A, B, and C correspond to the points in the phase diagram
shown in the right panel. Points A and B are on the coexistence line, and point C is
the critical point
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The reason for the existence of the critical point is that the difference
between the liquid and the gas lies only in the density. The difference is
qualitative, and can be reduced to zero continuously. On the other hand,
a solid differs from a liquid or a gas qualitatively. The atoms or molecules in
a solid are on lattice sites, and so there is what is called long-range order.
That is, from a knowledge of the configuration of the molecules in one part
of the solid, the positions of molecules far from that part can be known. This
long-range order is the hallmark of a solid.

The existence of the critical point is useful in that it makes it possible to
achieve some things that might look difficult. One of these is the production of
aerogels. Aerogels are solids of very low density, which are made by replacing
water in a gel with air. You might think that they would be easy to make: take
a gel and simply evaporate the water from it, and that would be it. However,
aerogels cannot be made in this way. Because of the surface tension of the wa-
ter, the gel is destroyed in the course of the evaporation. This difficulty can be
avoided by taking advantage of the existence of a critical point. The gel is put
into a pressure cell together with water. The water is placed under a pressure
higher than the critical pressure, the temperature is raised higher than the
critical temperature, the pressure is reduced below the critical pressure, and
the temperature is then reduced, as shown in Fig. 8.7. Now that the water in
the gel has been replaced by vapor, air can be introduced safely, and an aero-
gel can be made. The trick is that during this process there is no coexistence
of liquid and gas, and therefore there is no surface and no surface tension.

Water above the critical point is called supercritical water. It is useful be-
cause it has the properties of both a liquid and a gas. In addition to being
used to make aerogels, it is used in various other situations. For example, it

Fig. 8.7. Liquid water can be changed continuously into vapor by going around the
critical point
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is a good solvent, like ordinary water, but the solute can diffuse rapidly in
the solution like gas molecules. Therefore, chemical reactions can be carried
out efficiently in supercritical water. It is also powerful for decomposing or-
ganic molecules by hydrolysis. Therefore, it can be used to decompose harmful
substances such as dioxins and polychlorinated biphenyls (PCBs).

8.6 The van der Waals Gas

The equations of state of real gases deviate from the Boyle–Charles law. The
van der Waals equation is often used to describe the equations of state of real
gases. The equation for one mole of gas contains parameters a and b, which
are specific to each gas: (

P +
a

V 2

)
(V − b) = RT . (8.16)

This equation can also be written in the form

P =
RT

V − b
− a

V 2
. (8.17)

In this equation, a describes the attractive interaction between molecules, and
b describes the hard-core part of the repulsive interaction. Because of the at-
tractive interaction between the molecules, a molecule at the boundary of the
system is pulled inwards, and therefore the pressure on the wall is reduced.
This effect is taken into account by the parameter a, which makes the pres-
sure lower than in the ideal-gas case. Since V −2 is proportional to the mean
distance between the molecules to the sixth power, it reflects the r−6 depen-
dence of the van der Waals potential. The parameter b is easier to understand.
Because of the hard-core repulsion, the system cannot have a volume smaller
than the volume at which the molecules are closely packed together. This
minimum volume is b, and at this volume the pressure diverges. The values
of the parameters for typical gases are listed in Table 8.1. The van der Waals
equation is interesting because it predicts a critical point and a gas–liquid
phase transition.

The isothermal P–V relation predicted by the van der Waals equation is
shown in Fig. 8.8. At higher temperatures, the pressure decreases monoton-
ically as the volume increases. However, at low temperatures, the pressure
first decreases rapidly, then begins to increase, and decreases again at larger
volumes. The temperature Tc that separates these two distinct behaviors can
be determined from the equation of state. At higher temperatures, (∂P/∂V )T

is always negative, but at lower temperatures it becomes zero at two values
of V . Therefore, at T = Tc, (∂P/∂V )T ∝ −(V − Vc)2 close to the point at
which it is zero. From this condition, Tc = (8/27)a/Rb and Vc = 3b can be
deduced. (See Exercise 16 at the end of this chapter for a hint about to derive
these relations.) This temperature is the critical temperature, and the critical
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Fig. 8.8. Isotherms of a van der Waals gas. The temperature, volume, and pressure
are scaled by Tc = (8/27)a/Rb, Vc = 3b, and Pc = (1/27)a/b2, respectively

pressure Pc is equal to (1/27)a/b2. If T , V , and P are scaled by these values
to obtain t ≡ T/Tc, v ≡ V/Vc, p ≡ P/Pc, the equation of state can be written
in a material-independent form,

p =
8t

3v − 1
− 3

v2
. (8.18)

The values of Tc calculated from the parameters in Table 8.1 and the actual
values are compared in that table.

Table 8.1. Parameters a and b used to describe typical gases by means of the
van der Waals equation. (From Epstein [6]; 1 atm = 1.01325×105 Pa.) The critical
temperatures predicted from these values, T calc

c , and the actual critical temperatures
T actu

c are also shown

Gas a (atm m6 mol−2) b (m3 mol−1) T calc
c (K) T actu

c (K)

He 0.03415 × 10−6 23.71 × 10−6 5.20 5.25
Ne 0.2120 × 10−6 17.10 × 10−6 44.8 44.8
H2 0.2446 × 10−6 26.61 × 10−6 33.19 33.25
N2 1.346 × 10−6 38.52 × 10−6 126.1 126.1
O2 1.361 × 10−6 32.58 × 10−6 150.8 154.4
CO2 3.959 × 10−6 42.69 × 10−6 334.8 304.3
H2O 5.468 × 10−6 30.52 × 10−6 646.8 647.3
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8.6.1 Coexistence of Gas and Liquid

There is no distinction between the gas and the liquid above Tc. On the other
hand, below Tc, part of the isothermal line describes the equation of state
of the gas and the other part describes that of the liquid. Let us consider
an isotherm at T < Tc and draw a horizontal line at P = Pcoex, as shown
in Fig. 8.9. The pressure P = Pcoex has been chosen such that the shaded
areas above and below the line have equal areas. This Pcoex is the coexistence
pressure at this temperature. The lowest-volume intersection of this line with
the isotherm gives the volume of the liquid phase Vl at the coexistence point,
and the highest-volume intersection gives the volume of the gas phase Vg.
The part of the isotherm at V < Vl describes the P–V relation for the liq-
uid phase, and the part of the isotherm at V > Vg describes P–V relation
for the gas phase. The other parts of the isotherm with a negative slope de-
scribe a metastable supercooled or superheated state; the part with a positive
slope is unstable and can never be realized. This method of determining the
coexistence condition is known as Maxwell’s rule.

The fact that Pcoex gives the coexistence pressure can be shown by calcu-
lating the difference in the Gibbs free energy between the liquid phase and
the gas phase. Since (

∂G

∂P

)
T

= V , (8.19)

the difference between the free energies at (Vl, Pcoex) and (Vg, Pcoex) should
be given by the integral along the isotherm:

G(Vg, Pcoex) − G(Vl, Pcoex) =
∫ Pcoex

Pcoex

V dP . (8.20)

Fig. 8.9. An isotherm below the critical temperature and a method to determine
the gas–liquid coexistence pressure
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Here the integration is performed from Vl to Vg. We separate this integral
into four parts and consider the meaning of each part. The first part is from
Pcoex to Pm, the minimum of the isotherm. This integral gives the negative
of the area bounded by two horizontal lines at Pcoex and Pm, the vertical
axis at V = 0, and the isotherm. The negative sign arises from the fact
that Pcoex > Pm. The next part is the integral from Pm to Pcoex, namely
to the point where the coexistence pressure intersects the isotherm in the
unstable region. This integral also gives the area to the left of the isotherm,
but this time the sign is positive. Therefore, the sum of the first and the
second part gives the shaded area below the coexistence pressure. Similarly,
the third and the fourth part give the negative of the shaded area above the
coexistence pressure. As a result, the whole integral gives zero when the two
shaded regions have the same area, and then the Gibbs free energies have the
same value. A similar consideration tells us that when the Gibbs free energies
are compared at a pressure higher than Pcoex, the Gibbs free energy of the
liquid phase has a lower value, and when the Gibbs free energies are compared
at a pressure lower than Pcoex, the Gibbs free energy in the gas phase has lower
value.

The van der Waals equation of state was written down phenomenologically
by considering the attractive and repulsive parts of the interaction between
gas molecules. It is not a rigorous equation of state, but it captures the essence
of the effects of interaction, and predicts a gas–liquid transition. A Nobel Prize
was awarded to van der Waals in 1910 for the discovery of this equation of
state.

Exercise 16. When the temperature is fixed at the critical temperature Tc,
the equation of state of a van der Waals gas behaves as P −Pc ∝ −(V − Vc)3

close to the critical point. Therefore, at (Tc, Vc),(
∂P

∂V

)
T

= 0 (8.21)

and (
∂2P

∂V 2

)
T

= 0 (8.22)

are satisfied. Determine Vc, Tc, and Pc from these equations.
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Second-Order Phase Transitions

Besides first-order phase transitions, there are other kinds of phase transitions.
Here, we consider second-order phase transitions, in which the internal energy
changes continuously, and there is no latent heat at the transition. The mag-
netic phase transition considered in Chap. 7 is an example of such a transition.
To describe the transition, we introduce a variable called the order parameter,
which characterizes one of the phases. As an example of a second-order phase
transition, we investigate the two-dimensional Ising model.

9.1 Various Phase Transitions and Order Parameters

A typical example of a second-order phase transition is the magnetic phase
transition in the Ising model that we considered in Chap. 7. At tempera-
tures higher than the Curie temperature Tc, the system is in the paramag-
netic phase, in which the magnetization is proportional to the magnetic field,
whereas at temperatures lower than the Curie temperature, the system is in
the ferromagnetic phase, where the magnetization has a nonzero value even
without a magnetic field. At the Curie temperature, the magnetization in the
absence of a magnetic field changes continuously, and so does the internal
energy.

The spins in the Ising model are allowed to point in the ± z directions
only. If we relax this restriction, we can consider other, more realistic models.
The XY model is a model in which the spins can point in any direction in the
xy plane. The Heisenberg model is a model in which the spins can point in any
three-dimensional direction. These models can also undergo a second-order
phase transition. The higher-temperature phase is a paramagnetic phase, and
the lower-temperature phase is a ferromagnetic phase with a nonzero magnetic
moment, which is a vector in these models.

Another example is provided by the critical point of the gas–liquid phase
transition described in the previous chapter. Above the critical temperature,
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there is no distinction between the gas and liquid phases, but below the crit-
ical temperature, the densities of these phases are different. The difference
in the density develops continuously, like the magnetization, at the criti-
cal point, and the internal energy changes continuously. The normal-metal-
to-superconductor phase transition and the normal-fluid-to-superfluid phase
transition are also examples of second-order phase transitions.

Since the transition is continuous, there should be something which allows
us to make a distinction between the phases above and below the transition
temperature, otherwise we would not be able to detect the existence of the
transition. In many cases the distinction appears in the symmetry of the
system. In this case the higher-temperature phase has the higher symmetry,
and the lower-temperature phase has the lower symmetry. For example, in
the case of the Ising model, the original system has no preference between
the up and down directions of each spin. This symmetry is retained in the
paramagnetic phase. The up direction and the down direction have equal
probabilities of being realized, and so the average magnetic moment vanishes
in the absence of a magnetic field. In the ferromagnetic phase, this symmetry
is spontaneously broken. The system has a nonzero magnetic moment pointing
either in the up direction or in the down direction.

These two possibilities for the magnetization have the same total energy,
and so, from the viewpoint of the canonical distribution, should be realized
with equal probability. However, in real systems only one of these possibilities
is realized. This is because the low-temperature phase is created by the cooper-
ation of the spins. Each spin has a favored direction, because the surrounding
spins are ordered. Therefore, most of the spins must change direction simulta-
neously for the system to move from one choice of direction to the other, which
is impossible for a macroscopic system. The creation of a symmetry-broken
state is called spontaneous symmetry breaking.

Although spontaneous symmetry breaking signals the phase transition in
most cases of second-order phase transitions, and it is appropriate to make
use of this concept to understand the transition qualitatively, for quantitative
discussion of a phase transition it is better to introduce a quantitative variable
called the “order parameter”. For magnetic systems, the order parameter is
the total magnetic moment, which is generally a vector; for the gas–liquid
transition, it is the difference in the density; for superfluid helium, it is the
wave function of the Bose–Einstein condensate; and for a superconductor,
it is the wave function of the Cooper pairs. These order parameters vanish
continuously as the temperature approaches the transition temperature from
below, and remain zero in the higher-temperature phase.

9.2 Landau Theory

Here we consider the general structure of a second-order phase transition. For
simplicity, we consider the case in which the order parameter Ψ is a real scalar.
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Every microscopic state that is realized in the system under consideration has
some value for this Ψ . For a system in a heat bath, each microscopic state
is realized with a probability that is given by the canonical distribution. The
value of the order parameter that is obtained at a given temperature is the
most probable value of the order parameter at that temperature.

To calculate the probability distribution of the order parameter, we define
the density of states Ω(E,Ψ) for a given value of the order parameter Ψ .
Namely,

Ω(E,Ψ) dE dΨ (9.1)

gives the number of microscopic states that have an energy between E and
E + dE and an order parameter between Ψ and Ψ + dΨ . We then define the
partial partition function z(Ψ) by

z(Ψ) ≡
∫ ∞

0

dE Ω(E,Ψ)e−βE . (9.2)

The total partition function Z is given by the integral of z(Ψ):

Z =
∫ ∞

−∞
dψ

∫ ∞

0

dE Ω(E,Ψ)e−βE

=
∫ ∞

−∞
dψ z(ψ) . (9.3)

The probability of a particular value of Ψ being realized is given by

z(Ψ)
Z

. (9.4)

To discuss this probability, Landau expressed the partial partition function in
terms of a free energy FL(T, V,N, Ψ), where

FL(T, V,N, Ψ) ≡ −kBT ln [z(Ψ)] . (9.5)

Landau expected that near the phase transition point the order parameter Ψ
would be small, and so the Landau free energy FL can be expanded as a power
series in Ψ . There should be no terms containing odd powers of Ψ , since
we are considering a system in which states with order parameters +Ψ and
−Ψ are equally probable at high temperature, although this symmetry is
spontaneously broken below Tc. The general form is

FL(T, V,N, Ψ) = F0(T, V,N) + a Ψ2 + b Ψ4 + · · · . (9.6)

The most probable, and almost certainly realized, value of the order parameter
at (T, V,N) is determined by the minimum of this free energy. Since Ψ is small
near the transition point, we can safely neglect the terms of higher order than
Ψ4 in the expansion of (9.6).

This Landau free energy has a minimum at Ψ = 0 if the coefficients a
and b are positive. Therefore, a > 0 and b > 0 describes the phase above the
critical temperature. On the other hand, if a < 0 and b > 0, minima occur at
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Ψ = ±
√

− a

2b
. (9.7)

Therefore, this situation describes the ordered phase below the critical tem-
perature, and only one of the two possible choices of the order parameter is
realized. It is natural to assume that the coefficient a has the following T
dependence near the critical temperature Tc:

a(T ) = a0(T − Tc) . (9.8)

The order parameter then has the following temperature dependence:

Fig. 9.1. Dependence of FL(T, V, N, Ψ) − F0(T, V, N) on Ψ at T < Tc (dash-dotted
line), T = Tc (solid line), and T > Tc (dashed line)

Fig. 9.2. Temperature dependence of the order parameter around Tc. The order
parameter is proportional to

√
Tc − T for T < Tc
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Ψ =

⎧⎪⎨
⎪⎩

0 (T ≥ Tc) ,

±
√

a0

2b
(Tc − T ) (T < Tc) .

(9.9)

The fact that the order parameter is proportional to
√

Tc − T for T < Tc is
the same behavior as in the mean-field result for the Ising model. The behav-
ior of the Landau free energy and the order parameter is depicted in Figs. 9.1
and 9.2.

9.2.1 Free Energy

Now we consider the behavior of various thermodynamic variables around the
transition temperature. The total partition function Z, which gives the true
free energy F (T, V,N), is obtained from an integral containing FL(T, V,N, Ψ):

Z(T, V,N) =
∫

dΨ z(Ψ) =
∫

dΨ e−βFL(T,V,N,Ψ) . (9.10)

The integrand is expected to be sharply peaked at the most probable value of
Ψ for a macroscopic system. Thus, the integration can be done as a Gaussian
integral. For T > Tc, we obtain

Z(T, V,N) = e−βF0(T,V,N)

∫ ∞

−∞
dΨ e−βaΨ2

=
√

π

βa
e−βF0(T,V,N) (9.11)

and

F (T, V,N) = −kBT ln Z = F0(T, V,N) − 1
2
kBT ln

(
π

βa

)
� F0(T, V,N) .

(9.12)
The last approximation is justified because F0 is a macroscopic quantity of
order O(N)×kBT but the neglected term is of the order of kBT , unless a � 0.

For T < Tc, only one of the two possibilities for the order parameter is
realized. Once one value has been chosen by the system, the broken symmetry
does not allow the other value to be realized in the ordered phase. Thus,
only microscopic states around the selected order parameter are counted in
the partition function. Here we choose Ψ =

√−a/2b. Around this value, we
expand FL as follows:

FL(T, V,N, Ψ) � F0(T, V,N) − a2

4b
− 2a (∆Ψ)2 , (9.13)

where

∆Ψ ≡ Ψ −
√−a

2b
. (9.14)

A Gaussian integral around this minimum gives the partition function and
the free energy for T < Tc:
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Z(T, V,N) �
∫ ∞

−∞
d(∆Ψ) exp

[
−β

(
F0(T, V,N) − a2

4b
− 2a (∆Ψ)2

)]

=
√

π

−2aβ
exp

[
−β

(
F0(T, V,N) − a2

4b

)]
(9.15)

and

F (T, V,N) = F0(T, V,N) − a2

4b
− 1

2
kBT ln

(
π

−2aβ

)

� F0(T, V,N) − a2
0

4b
(Tc − T )2 . (9.16)

The last approximation is valid except close to the transition temperature,
where a � 0. In this approximation, the free energy changes continuously
through the critical temperature.

9.2.2 Entropy, Internal Energy, and Heat Capacity

Here we consider how the thermodynamic variables behave in the ordered
phase compared with the normal phase that exists when T > Tc. The en-
tropy S is given by the derivative of F . For T > Tc,

S(T, V,N) = −
(

∂F (T, V,N)
∂T

)
V,N

= −
(

∂F0(T, V,N)
∂T

)
V,N

≡ S0(T, V,N) . (9.17)

The internal energy U is given by

U(T, V,N) = F (T, V,N) + S(T, V,N)T

= F0(T, V,N) + S0(T, V,N)T . (9.18)

The constant-volume heat capacity C is given by

C(T, V,N) =
(

∂U

∂T

)
V,N

= T

(
∂S(T, V,N)

∂T

)
V,N

≡ C0(T, V,N) . (9.19)

The concrete behavior of these quantities above Tc depends on the actual
system.

Next we calculate these variables for the low-temperature phase. The en-
tropy and the internal energy have the following forms below Tc:

S(T, V,N) = −
(

∂F

∂T

)
V,N

= −
(

∂F0

∂T

)
V,N

− a2
0

2b
(Tc − T )

= S0(T, V,N) − a2
0

2b
(Tc − T ) (9.20)
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and

U(T, V,N) = F (T, V,N) + S(T, V,N)T

= F0(T, V,N) + S0(T, V,N)T +
a2
0

4b

(
T 2 − T 2

c

)
. (9.21)

The entropy and the internal energy are continuous at the transition temper-
ature.

The heat capacity C is not continuous. It has the following form for T < Tc:

C(T, V,N) = T

(
∂S

∂T

)
V,N

= T

(
∂S0

∂T

)
V,N

+
a2
0

2b
T

= C0(T, V,N) +
a2
0

2b
T . (9.22)

The behavior of C is depicted in Fig. 9.3; it has a discontinuity of magnitude
(a2

0/2b)Tc at the transition temperature.

Fig. 9.3. Temperature dependence of the heat capacity around Tc

9.2.3 Critical Phenomena

The Landau theory predicts the general behavior of the thermodynamic vari-
ables around the transition temperature, as described above. In the present
section we have restricted the discussion to the case in which the order param-
eter is a real scalar. The theory is easily generalized to cases where the order
parameter is a vector, as in the case of the Heisenberg model of a ferromagnet,
or where it is a complex scalar, as in the case of a superfluid, and so on. So this
theory is quite powerful as a means of helping us to understand second-order
phase transitions in general. It is known that, for various systems, the Landau
theory gives the same behavior as the mean-field theory around the critical
temperature.
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However, the Landau theory fails to describe systems when the tempera-
ture is very close to the transition temperature. The reason is easily under-
stood. As we have remarked, close to the transition point, the coefficient a(T )
becomes small. Thus, it is no longer appropriate to take into account only
the quadratic term and to neglect the higher-order terms in the expansion
of the Landau free energy in terms of the order parameter. Neglect of the
higher-order terms leads to a divergence of the free energy at a = 0, which
does not occur in reality. Around the transition temperature, we need to treat
the system more carefully.

The investigation of the behavior of systems close to the transition tem-
perature is an active area of research in statistical physics; it is referred to
as the study of critical phenomena. The main theme of such investigations is
the determination of critical exponents. That is, the most dominant temper-
ature dependences of various variables around Tc are assumed to have a form
|T − Tc|x, and the exponent x is called the critical exponent. Critical expo-
nents are denoted by Greek letters: for example, the critical exponent for the
heat capacity is represented by α, and that for the order parameter is rep-
resented by β. In the Landau theory, the order parameter has the behavior
Ψ ∝ (Tc−T )β , where β = 1/2, and so the critical exponent β for the order pa-
rameter is 1/2. In the Landau theory, the heat capacity shows a discontinuous
change and does not show a power-law behavior, and so α = 0. Since the Lan-
dau theory fails at the transition temperature, the critical exponents obtained
by this theory do not agree with experiment in general. Therefore, critical phe-
nomena have been investigated intensively. Going beyond the Landau theory
is beyond the scope of this book, however. In the next section we give the ex-
act free energy for the two-dimensional Ising model, and see how the system
behaves at the transition point, as an example of a critical phenomenon.

9.3 The Two-Dimensional Ising Model

We consider a two-dimensional Ising model on a square lattice. In this model,
the spins are placed at lattice points as shown in Fig. 9.4. The ith spin σi can
take a value of either 1 or −1. The energy of a configuration {σi} is given by

E = −
∑
i,j

Ji,jσiσj , (9.23)

where the interaction energy Ji,j is either J or J ′, depending on whether
the ith and jth spins are nearest neighbors in the horizontal direction or in
the vertical direction, respectively. Onsager calculated the free energy for this
model analytically in 1944 [7]. The result is

F = −kBTN

{
1
2

ln [4 cosh(2βJ) cosh(2βJ ′)]

+
1

2π2

∫ π

0

dω

∫ π

0

dω′ ln (1 − 2κ cos ω − 2κ′ cos ω′)
}

, (9.24)
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where

2κ ≡ tanh(2βJ)
cosh(2βJ ′)

and

2κ′ ≡ tanh(2βJ ′)
cosh(2βJ)

. (9.25)

This model reduces to a one-dimensional model when J ′ is zero. In this case
2κ = tanh(2βJ), 2κ′ = 0, and cosh(2βJ ′) = 1. The free energy then reduces
to

F = −kBTN

{
1
2

ln [4 cosh(2βJ)] +
1

2π2

∫ π

0

dω

∫ π

0

dω′ ln (1 − 2κ cos ω)
}

= −kBTN

{
1
2

ln [4 cosh(2βJ)] +
1
2π

∫ π

0

dω ln (1 − 2κ cos ω)
}

. (9.26)

The integral here is known to have the following value:
1
2π

∫ π

0

ln (1 − 2κ cos ω) dω =
1
2

ln
(

1
2

+
1
2

√
1 − 4κ2

)
. (9.27)

Since 2κ = tanh 2βJ ,
√

1 − 4κ2 = 1/ cosh(2βJ). We then obtain

F = −kBTN

{
1
2

ln
[
4 cosh(2βJ)

(
1
2

+
1
2

1
cosh(2βJ)

)]}

= −kBTN

[
1
2

ln [2 cosh(2βJ) + 2]
]

= −kBTN ln [2 cosh(βJ)] . (9.28)

Fig. 9.4. Ising model on a square lattice. Each lattice point (solid circle) has a spin σ
which can take a value of either 1 or −1. The spins interact with their nearest-
neighbor spins. The interaction energy is −Jσiσj if the ith and jth spins are nearest
neighbors in the horizontal direction, and −J ′σiσj if the ith and jth spins are nearest
neighbors in the vertical direction
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The final result agrees with that obtained in Chap. 7.
Now we return to the main theme of this section, the square-lattice Ising

model. For a square lattice, J = J ′ and 2κ = 2κ′ = tanh(2βJ)/ cosh(2βJ).
The free energy can be transformed as follows:

F = −kBTN

(
ln [2 cosh(2βJ)]

+
1

2π2

∫ π

0

dω

∫ π

0

dω′ ln (1 − 2κ cos ω − 2κ cos ω′)
)

= −kBTN

(
ln [2 cosh(2βJ)]

+
1

2π2

∫ π

0

dω

∫ π

0

dω′ ln [1 − 4κ cos(ω + ω′) cos(ω − ω′)]
)

= −kBTN

(
ln [2 cosh(2βJ)]

+
1

2π2

∫ π

0

dω1

∫ π

0

dω2 ln [1 − 4κ cos ω1 cos ω2]
)

= −kBTN

(
ln [2 cosh(2βJ)]

+
1
2π

∫ π

0

dω ln
[
1
2

+
1
2

√
1 − (4κ cos ω)2

])
. (9.29)

We have used the formula (9.27) to obtain the final result. In this expression
for the free energy, we notice that if κ is larger than 1/4, the square root has
a negative argument around ω � 0 and ω � π. However, κ can be expressed
in the form

κ =
1
2

sinh(2βJ)
1 + sinh2(2βJ)

, (9.30)

which has a maximum at sinh(2βJ) = 1, the maximum value being 1/4.
Therefore, the free energy behaves normally over the whole temperature
range, although we may anticipate that something special will happen at
sinh(2βJ) = 1.

Our expectation of something special at sinh(2βJ) = 1 is confirmed when
we calculate the heat capacity C. First, we calculate the internal energy

U = −∂ ln Z

∂β
= −NJcoth (2βJ)

[
1 +

2
π

κ1K1

]
, (9.31)

where
κ1 = 2 tanh2(2βJ) − 1 (9.32)



9.3 The Two-Dimensional Ising Model 143

and K1 is the complete elliptic integral of the first kind, defined as follows:1

K1 ≡ K(4κ) =
∫ π/2

0

dφ√
1 − (4κ sin φ)2

. (9.33)

The heat capacity is then obtained as follows:

C =
∂U

∂T

= NkB [βJcoth(2βJ)]2
2
π

[
2K1 − 2E1 − (1 − κ1)

(π

2
+ κ1K1

)]
.

(9.34)

Here E1 is the complete elliptic integral of the second kind, defined by

E1 ≡ E(4κ) =
∫ π/2

0

√
1 − (4κ sin φ)2 dφ . (9.35)

Let us write the temperature at which sinh(2βJ) becomes 1 as Tc. Since
sinh(0.881374) = 1, Tc = 2.269185J/kB. At this temperature, 4κ = 1, and the
complete elliptic integral K1 diverges:

K(4κ) � 1
2

ln
(

1
1 − 4κ

)
� − ln

(
2J

kBT 2
c

|T − Tc|
)

. (9.36)

Tc is the transition temperature, i.e. the Curie temperature, for this model.
At Tc, κ1 = 1 and coth(2βcJ) =

√
2. Thus, the heat capacity diverges around

this temperature logarithmically:

C � − 2
π

NkB

(
J

kBTc

)2

ln |T − Tc| . (9.37)

The temperature dependence of the heat capacity is shown in Fig. 9.5. This
dependence is quite different from the that in the Landau theory, although
the critical exponent α in this case is equal to 0 also.2

Since C = T ∂S/∂T , the peak of C indicates a temperature at which
a large increase in the entropy occurs. It is instructive to plot the entropy to
see how it increases from S = 0 at T = 0 to S = NkB ln 2 as T → ∞. It can
be obtained from U and F using S = (U − F )/T , and is shown in Fig. 9.6.

An analytical expression for the spontaneous magnetization below the
Curie temperature has been obtained by Yang [9]. This expression is as fol-
lows:

M = Mmax

(
1 − 1

sinh4(2βJ)

)1/8

. (9.38)

1 For more information about the complete elliptic integrals, see [8], for example.
2 The divergence of ln |T − Tc| at T � Tc is weaker than |T − Tc|α for any α > 0.

Thus the exponent α of the logarithmic divergence is 0.
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Its behavior just below the Curie temperature is

M ∝ (Tc − T )1/8
. (9.39)

Therefore, the critical exponent β is 1/8. The temperature dependence of the
magnetization is shown in Fig. 9.7.

As we have seen, the critical exponents for the Ising model differ from
those for the Landau theory. There are many models which show a second-
order phase transition. Even though an exact calculation of the partition func-
tion has not been done for most of these models, the critical exponents have
been investigated by various methods, including numerical methods. It has

Fig. 9.5. Temperature dependence of the heat capacity for the square-lattice Ising
model. The heat capacity diverges logarithmically at the transition temperature
Tc = 2.269185J/kB

Fig. 9.6. Temperature dependence of the entropy for the square-lattice Ising model.
The entropy tends to NkB ln 2 as T → ∞
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Fig. 9.7. Temperature dependence of the magnetization for the square-lattice Ising
model

been shown that these models can be classified into several groups, known as
universality classes. Within the same universality class, the critical exponents
are the same, and the models behave similarly around the transition tempera-
ture. The detailed theory of and explanation for these universality classes are
beyond the scope of this book. For those wishing to study critical phenomena
further, the books by Stanley [10] and Ma [11] are recommended.



10

Dense Gases – Ideal Gases at Low Temperature

We considered the statistical physics of an ideal gas in Chap. 4. There, we
introduced a factor 1/N ! to reduce the phase space of N molecules, since
the atoms or molecules are indistinguishable and an interchange of molecules
gives the same microscopic state. However, this procedure is not exact, and
this becomes important when the density of the gas becomes sufficiently high.
In this chapter we consider what happens in such a system. We shall see that
a gas can be classified as either a Fermi gas or a Bose gas depending on the
properties of its atoms or molecules.

10.1 The Phase Space for N Identical Particles

In Chap. 4, we introduced the phase space for N particles,1 which is a 6N -
dimensional space spanned by the three-dimensional space coordinates and
three-dimensional momenta of all N particles. The volume of this phase space
is reduced by a factor 1/N !, since any interchange of particles gives the same
microscopic state. The number of microscopic states is obtained by dividing
this reduced volume by h3N . This reduction of the phase space is almost
exactly correct at high temperatures, as we shall show later, but becomes
incorrect at low temperatures.

We shall explain the reason for this incorrectness using a very simple sys-
tem, namely a two-particle system in which each particle has only two possible
states, a and b. If the particles are distinguishable, there are four microscopic
states: (a, a), (a, b), (b, a), and (b, b), where (a, b) means that the first particle
is in state a and the second particle is in state b, and so on. What we did
in Chap. 4 was to divide this number of microscopic states, four, by 2! = 2.
Thus, we consider the number of states as two when the particles are indis-
tinguishable. However, of these four states, only two of them, namely (a, b)
1 In this chapter, we use the word “particles” to represent both atoms and

molecules. Later, we shall consider the conduction electrons in a metal as a gas of
electrons. Therefore, “particles” is more appropriate than “atoms” or “molecules”.
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and (b, a), are the same state when the particles are indistinguishable. Hence,
the number of microscopic states is not two but three. The discrepancy arises
from the fact that there are states in which two particles occupy the same
state a or b. An interchange of the particles in (a, b) makes an apparently
different state (b, a), but an interchange of the particles in (a, a) or (b, b)
does not make a different state. Therefore, division by 2! is not correct in
this case, in which double occupancy of the same state by two particles is
allowed.

Now let us consider what happens if the states that lead to the discrepancy,
those with double occupancy, are not allowed. In this case there is only one
allowed state, (a, b) = (b, a), and so the number of microscopic states is not
two but one. So even if the origin of the discrepancy is removed, the division
by 2! is still not correct. Our present task is to construct a scheme to count
the number of microscopic states correctly.

For that purpose, we must have a rule that states whether we allow double
occupancy of a state or not. Of course, this rule is determined by nature. It
turns out that both possibilities occur. Particles have a characteristic called
their “statistics” that determines which possibility. Some particles are called
fermions, and obey Fermi statistics. For these particles, it is not allowed for
a single state to be occupied by more than one particle. That is, for each
state, there is only the possibility that it is not occupied or that it is oc-
cupied by one particle. This rule for fermions is called the Pauli exclusion
principle. The remaining particles are classified as bosons, and obey Bose
statistics. For these particles, any number of particles can occupy the same
state.

There is a relation between the spin of a particle and its statistics. A par-
ticle with a half-integer spin is a fermion. The electron, proton, and neutron
have a spin of one-half, and so they are fermions. On the other hand, a par-
ticle with an integer spin is a boson. Electromagnetic radiation can be con-
sidered as a collection of particles, called photons. The photon has a spin
of 1, and so it is a boson. Lattice vibrations, which contribute to the spe-
cific heat of a solid, can also be considered as a collection of particles, called
phonons. The phonon has no spin, and so it is a boson. The spin of an atom
or molecule is determined by the spins of its constituent particles. An atom
or molecule composed of an even number of fermions has an integer spin,
and so is a boson, whereas an atom or molecule with an odd number of
fermions has a half-integer spin, and so is a fermion. Most helium atoms
have a mass number of 4 (4He): each atom of this isotope is composed of
two protons, two neutrons, and two electrons. Thus it is a boson. On the
other hand, another isotope of helium, 3He, has only one neutron, and so is
a fermion.

All particles can be classified as either bosons or fermions. How do we
count microscopic states for these particles and how do we justify what we
did in Chap. 4? To answer this question, let us consider the general case
of a system of N particles, each of which can take one of M states, where
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M � N . If the particles are fermions of the same species, the number of
microscopic states is the number of ways to choose N states from M states,
MCN . The chosen states are those which accommodate a fermion. In the limit
of large M � N � 1, the number of microscopic states can be approximated
by

MCN =
M !

N !(M − N)!
� MN

N !
. (10.1)

On the other hand, if the particles are bosons of the same species, the number
of microscopic states is the number of ways of distributing N particles among
M states without restriction. This is the same as the number of ways to give N
yen to M people, which we considered in Chap. 1, and is given by M+N−1CN .
It can be approximated as follows when M � N � 1:

M+N−1CN =
(M + N − 1)!
N !(M − 1)!

� MN

N !
. (10.2)

These limiting values are the same, and are also equal to the value which was
used to count the number of microscopic states in Chap. 4. There, the particles
were treated independently; for each particle there are M possibilities and so
the total number of ways is MN , and division by N ! gives the same result
as above. Therefore, the result in Chap. 4 is justified when M � N . A gas
at normal temperature and pressure satisfies this condition. We shall see this
later. On the other hand, this condition is not satisfied at low temperature. Of
course, at low temperature the attractive interaction causes the gas to become
a liquid, as we saw in Chap. 8. However, there are several systems which can be
considered as a gas of particles even at zero temperature. Electrons in metals,
liquid helium, and alkali metal vapors are some such systems. We begin our
consideration of models for these systems in the next section.

10.2 The Grand Canonical Distribution

Counting the number of microscopic states or calculating the partition func-
tion for fermions or bosons is not easy when the total number of particles is
fixed. It becomes much easier if we allow fluctuations in the number. Thus, in
this section, we consider a system (system I) in a heat bath (system II), with
which system I can exchange energy and particles. The heat bath has a fixed
temperature T and a fixed chemical potential µ. We shall first describe our
general scheme for calculating the partition function and free energy in this
case.

First, we consider the probability that system I is in a microscopic state
with an energy EI and a number of particles NI. To determine this probability,
we consider the total system, i.e. the system plus the heat bath, by use of the
microcanonical distribution just as we did in Chap. 3. In this case, the total
energy Et and the total number of particles Nt are fixed. The probability
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f (EI, NI) is proportional to the number of microscopic states of the heat
bath:

f (EI, NI) ∝ ΩII (Et − EI, Nt − NI)
ΩII (Et, Nt)

= exp
[

1
kB

{SII (Et − EI, Nt − NI) − SII (Et, Nt)}
]

� exp
[

1
kB

{
−EI

∂SII

∂E
− NI

∂SII

∂N

}]

= exp
[
− 1

kBT
(EI − µNI)

]
. (10.3)

That is, the chemical potential µ of the heat bath controls the probability
and hence controls the number of molecules in system I. The corresponding
distribution is called the grand canonical distribution.

The normalized probability is

f (E,N) =
1
Ξ

exp
[
− 1

kBT
(E − µN)

]
. (10.4)

The denominator of the normalization coefficient,

Ξ(T, µ) ≡
∞∑

N=0

∫ ∞

0

exp
[
− (E − µN)

kBT

]
ΩI (E,N) dE

=
∞∑

N=0

∫ ∞

0

exp
[
− [E − µN − SI(E,N)T ]

kBT

]
dE , (10.5)

is called the grand partition function. If system I is macroscopic, the integrand
is sharply peaked around the minimum of the argument of the exponential
function in the last line, and the system should almost always be found at the
values E = E∗ and N = N∗ for which the minimum is realized. Furthermore,
since system I and the heat bath (system II) are in thermal equilibrium, the
temperature T and the chemical potential µ are also those of system I.

The free energy associated with this grand partition function can be writ-
ten as

J = −kBT ln Ξ(T, µ) . (10.6)
The value of J can be formally evaluated by expanding the integrand around
the maximum at (E∗, N∗) up to second order in the deviation, neglecting
terms of order one with respect to terms of order N . The result is

J = E∗ − S(E∗, N∗)T − µN∗ . (10.7)

Since E∗ = U is the internal energy and µN∗ = G = U − ST + PV is the
Gibbs free energy, we arrive at the conclusion that

J = −PV . (10.8)
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10.3 Ideal Fermi Gases and Ideal Bose Gases

10.3.1 Occupation Number Representation

Now we shall apply this scheme to an ideal gas of fermions or bosons. Because
we are considering an ideal gas, we can treat each particle independently, ex-
cept for the limitation due to the Pauli exclusion principle. Therefore, we can
define single-particle states for the system. These are states in which indi-
vidual particles can be accommodated, with energies specific to each state.2

To describe the microscopic state of a system of many particles, we have
considered above a method in which we specify the one-particle states that
are occupied by particles. This description tells us which particle is in which
single-particle state. However, the same many-particle state can be described
by specifying the number of particles accommodated in each single-particle
state. That is, we make a table of single-particle states and write down the
number of particles in each of these states. This method is called the occupa-
tion number representation, and is very suitable for the description of fermions
and bosons.

Fermion Gases

In this occupation number representation, we can consider each single-particle
state, with energy Ei (i = 1, 2, 3, · · · ,∞), as system I. For a fermion gas, such
a state can contain only one particle at most. Therefore, the grand partition
function for this single-particle state is

Ξi = e0 + e−β(Ei−µ) , (10.9)

where β = 1/kBT and µ have values determined by the heat bath. The prob-
ability that this state contains no particle is

e0

Ξi
=

1
1 + e−β(Ei−µ)

, (10.10)

and the probability that it contains one particle is

e−β(Ei−µ)

Ξi
=

1
eβ(Ei−µ) + 1

. (10.11)

Therefore, the expectation value of the particle number in this state is

〈ni〉 =
1

eβ(Ei−µ) + 1
. (10.12)

2 For a system in which the particles interact, we cannot define single-particle
states. The state of a particle is affected by all the other particles owing to the
interaction, and therefore an individual particle cannot have a definite energy.
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For a state with an energy Ei � µ − kBT , we have 〈ni〉 � 1, and for a state
with an energy Ei � µ+kBT , this expectation value is vanishingly small, i.e.
〈ni〉 � 0. If we consider the right-hand side of the above equation as a function
of E, we obtain the Fermi distribution function f(E), where

f(E) =
1

eβ(E−µ) + 1
. (10.13)

The behavior of f(E) as a function of E is shown in Fig. 10.1.
The total number of particles in a macroscopic system is given almost

exactly by
N =

∑
i

〈ni〉 . (10.14)

This equation can be used to determine the value of µ when we consider
a situation in which the total number of particles N is given. The grand
partition function of the total system is

Ξ =
∏

i

Ξi =
∏

i

(
1 + e−β(Ei−µ)

)
. (10.15)

Fig. 10.1. The Fermi distribution function f(E) = 1/[eβ(E−µ) + 1]. The thin dashed
line shows f(E) at T = 0. The solid and dash-dotted lines show f(E) at kBT = µ/20
and kBT = µ/10, respectively

Boson Gases

For a boson system, the ith single-particle state can accommodate any number
of particles. The grand partition function for the ith state is

Ξi = e0 + e−β(Ei−µ) + e−β(2Ei−2µ) + e−β(3Ei−3µ) + · · ·
=

1
1 − e−β(Ei−µ)

. (10.16)
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Here, we have used the fact that the energy of the ith state, when it contains
n particles, is nEi. The probability of having n particles in this state is

1
Ξ

e−β(nEi−nµ) =
[
1 − e−β(Ei−µ)

]
e−β(nEi−nµ) . (10.17)

The expectation value of the number of particles in this state is

〈ni〉 =
∞∑

n=1

ne−nβ(Ei−µ)
[
1 − e−β(Ei−µ)

]

=
e−β(Ei−µ)

1 − e−β(Ei−µ)

=
1

eβ(Ei−µ) − 1
. (10.18)

If we consider the right-hand side of this equation as a function of E, we
obtain the Bose distribution function

n(E) =
1

eβ(E−µ) − 1
. (10.19)

We have already encountered this form, with µ = 0, in various situations,
namely the harmonic oscillations of diatomic molecules, the oscillations of
a crystal lattice, and electromagnetic waves in a cavity. The behavior of the
Bose distribution function is shown in Fig. 10.2. The grand partition function
of the total system is

Ξ =
∏

i

Ξi =
∏

i

1
1 − e−β(Ei−µ)

. (10.20)

Fig. 10.2. The Bose distribution function n(E) = 1/[eβ(E−µ) − 1]. The chemical
potential µ must be negative; n(E) at kBT = 10|µ| and 20|µ| are shown by the solid
and dash-dotted lines, respectively
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10.3.2 Thermodynamic Functions

The free energy J has similar forms for the fermion gas and the boson gas:

J = −kBT ln Ξ

= ∓kBT
∑

i

ln
(
1 ± e−β(Ei−µ)

)
, (10.21)

where the upper sign applies to fermions and the lower sign applies to bosons.
The entropy can be obtained from this J :

S = −
(

∂J

∂T

)
µ

= ±kB

∑
i

ln
(
1 ± e−β(Ei−µ)

)
+

1
T

∑
i

Ei − µ

eβ(Ei−µ) ± 1
. (10.22)

Since the internal energy is given by

U =
∑

i

Ei

eβ(Ei−µ) ± 1
, (10.23)

this entropy can be rewritten as

S = −J

T
+

U

T
− Nµ

T
. (10.24)

This is a relation expected from the general principle of thermodynamics
U = ST − PV + µN . The entropy can also be written as

S = −kB

∑
i

[〈ni〉 ln〈ni〉 + (1 ∓ 〈ni〉) ln (1 ∓ 〈ni〉)] . (10.25)

10.4 Properties of a Free-Fermion Gas

In this section, we examine the properties of a Fermi gas using an explicit
form for the single-particle energy Ei. It is known that liquid 3He and the
conduction electron systems in metals behave like a free-fermion gas. In fact,
the interaction between helium atoms is not negligible and the electrons in
metals interact quite strongly with each other through the Coulomb interac-
tion, and so they themselves cannot behave like a free-fermion gas. However,
each particle together with its influence it gives to the surroundings can be
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considered as a kind of a particle. This is a particle dressed with interac-
tion effects, and usually called a quasiparticle. These quasiparticles can be
considered as weakly interacting fermions [12].

We consider such quasiparticles and neglect the interaction between them.
In a box of size Lx × Ly × Lz, a quasiparticle has the following energy:

Ei =
p2

i

2m
+ gµBsB , (10.26)

where m is the mass of a fermion, pi is its momentum, g is the gyromagnetic
ratio, also called the Landé g-factor,3 µB = e�/2m is the Bohr magneton,
s = ±1/2 is the spin of the fermion in units of �, and B is the magnetic field
applied to the system. The momentum is quantized such that it is specified
by integers (nx, ny, nz):

pi =
(

2π�

Lx
nx,

2π�

Ly
ny,

2π�

Lz
nz

)
. (10.27)

Using the resulting energy spectrum, we define the density of single-particle
states D(E), such that D(E) dE is the number of single-particle states for
each spin state in which the kinetic energy EK = p2

i /2m is in the range E to
E + dE. Note that we have also defined a density of states in Chap. 2. The
density of states in Chap. 2 is for an entire system, but that defined here is
for single-particle states, and so instead of Ω(E) we write D(E).4

Let us calculate the density of single-particle states. First we calculate
the number of states for which the absolute value of the momentum pi is in
the range p to p + dp. The volume of this range of p in momentum space is
4πp2 dp. On the other hand, the momentum is quantized, and the separation
between adjacent momenta is ∆px = 2π�/Lx, and so on. Thus, there is one
state in each volume (2π�)3/LxLyLz = (2π�)3/V . Therefore, 4πp2 dp divided
by (2π�)3/V gives the number of states in the momentum-space volume that
we are considering, where V is the real-space volume of the system. That is,
there are

4πp2 dp

(2π�)3/V
=

V

2π2�3
p2 dp (10.28)

states. Using dE/dp = p/2m and p =
√

2mE, we obtain

D(E) dE =
V

2π2�3
m
√

2mE dE . (10.29)

3 As explained in Sect. 7.1, the magnetic moment of a particle is expected to be
proportional to the angular momentum. However, the classical relation is not
correct for elementary particles. The gyromagnetic ratio expresses the correction
factor to be applied to the classical relation between these two quantities.

4 Both the D(E) defined here and Ω(E) are commonly called the density of states
in the literature. It should not be difficult to determine from the context which
density of states is meant.
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Various thermodynamic variables can be written as a function of T , V , µ,
and B in an integral form in terms of this single-particle density of states.
We first note that in a magnetic field, a fermion with energy Ei has a kinetic
energy EK = Ei − gµBsB. Therefore, the density of single-particle states at
Ei is D(Ei − gµBsB). We also note that the minimum value of Ei is gµBsB.
Thus, the total number of particles N , the average energy in the magnetic
field Ẽ, the total spin magnetic moment M , and the internal energy U are
given by

N(T, V, µ,B) =
∑

i

∑
s=±1/2

1
eβ(Ei−µ) + 1

=
∑

s=±1/2

∫ ∞

gµBsB

dE D(E − gµBsB)
1

eβ(E−µ) + 1
, (10.30)

Ẽ(T, V, µ,B) =
∑

i

∑
s=±1/2

Ei

eβ(Ei−µ) + 1

=
∑

s=±1/2

∫ ∞

gµBsB

dE D(E − gµBsB)
E

eβ(E−µ) + 1
, (10.31)

M(T, V, µ,B) =
∑

i

∑
s=±1/2

−gµBs

eβ(Ei−µ) + 1

=
∑

s=±1/2

∫ ∞

gµBsB

dE D(E − gµBsB)
−gµBs

eβ(E−µ) + 1
, (10.32)

and

U(T, V, µ,M) = Ẽ(T, V, µ,B) + MB

=
∑

s=±1/2

∫ ∞

gµBsB

dE D(E − gµBsB)
E − gµBs

eβ(E−µ) + 1
. (10.33)

Finally, the pressure can be obtained from J , but it can also be written in
terms of the internal energy U :

P (T, V, µ,B)V = −J = kBT ln Ξ(T, V, µ,B)

= kBT
∑

i

∑
s=±1/2

ln
[
1 + e−β(Ei−µ)

]

= kBT
∑

s=±1/2

∫ ∞

gµBsB

dE D(E − gµBsB) ln
[
1 + e−β(E−µ)

]
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= kBT
V

2π2�3
m
√

2m
∑

s=±1/2

∫ ∞

gµBsB

dE
√

E − gµBsB

× ln
[
1 + e−β(E−µ)

]

=
2
3

V

2π2�3
m
√

2m
∑

s=±1/2

∫ ∞

gµBsB

dE
[E − gµBsB]3/2

eβ(E−µ) + 1

=
2
3

V

2π2�3
m
√

2m
∑

s=±1/2

∫ ∞

gµBsB

dE D(E − gµBsB)

×E − gµBsB

eβ(E−µ) + 1

=
2
3
U . (10.34)

This relationship between U and PV is generally satisfied for an ideal gas.
From (10.30), we can calculate µ(T, V,N,B), the chemical potential for

a given value of the particle number N . Using this chemical potential, we can
obtain the internal energy U(T, V,N,M), the magnetization M(T, V,N,B),
and the pressure P (T, V,N,B).

10.4.1 Properties at T = 0

B = 0

We can evaluate these variables analytically at T = 0. First we consider
the case where there is no magnetic field, i.e. B = 0. In this case the spin-up
(s = 1/2) and spin-down (s = −1/2) fermions have the same energy spectrum.
The Fermi distribution function

f(E) =
1

eβ(E−µ) + 1
(10.35)

is unity for 0 ≤ E ≤ µ and zero for E > µ. Therefore, the total number of
fermions N is given by

N = 2
∫ µ

0

dE D(E) = 2
∫ µ

0

dE
V

2π2�3
m
√

2mE

=
V

3π2�3
(2mµ)3/2

. (10.36)

At T = 0, µ has the meaning that it is the energy of the highest-energy
occupied state when there are N fermions and the system is in the ground
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state. This highest energy is usually called the Fermi energy and written as
EF. That is, EF = µ at T = 0. It can be expressed as follows:

EF =
�

2

2m

(
3π2N

V

)2/3

. (10.37)

The absolute value of the momentum of a fermion with energy E = EF is
called the Fermi momentum and written as pF; it is equal to

√
2mEF. The

condition that |p| = pF defines the surface of a sphere in momentum space.
This sphere, which is shown in Fig. 10.3, is called the Fermi surface. Inside the
Fermi surface, every single-particle state is occupied, and outside the surface,
no state is occupied, at T = 0. The total number N can be expressed in terms
of EF and pF as

N =
V

3π2�3
(2mEF)3/2 =

V

3π2

(pF

�

)3

. (10.38)

Fig. 10.3. The Fermi surface in momentum space. Every state with |p| ≤ pF is
occupied

We can now change the variable from µ to N , and consider a system
containing a fixed number of fermions. In the calculation, it is convenient to
use an expression for D(E) in terms of the Fermi energy EF,

D(E) =
3
4
N

(
E1/2

E
3/2
F

)
. (10.39)

The internal energy of the system is calculated as follows:

U = 2
∫ EF

0

dE ED(E) =
∫ EF

0

dE
3
2
N

(
E

EF

)3/2

=
3
5
NEF . (10.40)
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From the internal energy, we can calculate the pressure P at T = 0 and B = 0:

P =
3U

2V
=

2N

5V
EF . (10.41)

Therefore, kBT for the classical ideal gas is replaced by 2EF/5, and the pres-
sure is nonzero even at T = 0. These results for U and PV are consistent with
(10.24):

ST = −J + U − Nµ =
2
5
NEF +

3
5
NEF − NEF

= 0 . (10.42)

To obtain the value of S at T = 0, we use (10.25): at T = 0, 〈ni〉 = 0 or 1,
and so 〈ni〉 ln〈ni〉 = 0 and (1 − 〈ni〉) ln(1 − 〈ni〉) = 0. Thus we conclude that
S = 0.5

B > 0

Next we consider the effect of a magnetic field. Without a magnetic field, the
up-spin states and down-spin states are equally occupied, and so the total
magnetization of the system is zero. However, in the presence of a magnetic
field, the single-particle energies for the same momentum p are split owing to
the Zeeman term gµBsB. A magnetization is then induced by the magnetic
field B. At T = 0, (10.30) reads

N(0, V, µ,B) =
∑

s=±1/2

∫ µ

gµBsB

dE D(E − gµBsB)

=
∑

s=±1/2

∫ µ

gµBsB

dE
3
4

N

E
3/2
F

(E − gµBsB)1/2

=
∑

s=±1/2

1
2

N

E
3/2
F

(µ − gµBsB)3/2

= N

(
µ

EF

)3/2

+ O(B2) . (10.43)

Thus, µ = EF +O(B2). For the calculation of the magnetic moment, we need
only terms linear in B, and so we can neglect the dependence of the chemical
potential µ on B.

Now we calculate the total magnetic moment. From (10.32), we obtain

M =
∑

s=±1/2

∫ EF

gµBsB

dE (−gµBs)D(E − gµBsB) . (10.44)

5 The fact that liquid 3He has a very small entropy at low T , even though each
atom has a magnetic moment, has been remarked on in Sect. 8.4.
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In order to obtain the magnetic susceptibility, we evaluate this integral up to
only the first order in B. We obtain

M � 1
2

(gµB)2 D(EF)B =
3
2

(
1
2
gµB

)2
N

EF
B . (10.45)

Thus the magnetic susceptibility per unit volume is

χ =
3
2

(
1
2
gµB

)2
µ0N

V EF
, (10.46)

where µ0 is the permeability of free space.

10.4.2 Properties at Low Temperature

The Fermi Temperature

At nonzero temperatures, thermodynamic variables such as the internal en-
ergy and the magnetic susceptibility deviate from their values at T = 0. The
amount of deviation depends on whether we consider the system at a fixed
number of particles or a fixed value of the chemical potential. Here, we cal-
culate the deviation at a fixed number of particles in the lowest order of the
temperature T . Since the Fermi distribution function is expressed in terms of
the chemical potential, we first calculate how the chemical potential changes
at nonzero temperature, and then calculate the temperature dependence of
the internal energy, the heat capacity, and the magnetic susceptibility of the
system at a fixed number of particles.

In order to present the results in a transparent form, we need a natural
scale for the temperature. This scale is provided by the Fermi temperature TF,
which is defined as the Fermi energy divided by the Boltzmann constant kB:

TF =
EF

kB
=

�
2

2mkB

(
3π2N

V

)2/3

. (10.47)

The Fermi energy or the Fermi temperature is a function of the particle density
N/V . If the conduction electrons in a metal are considered as free fermions,
we can estimate the Fermi temperature of the metal. From the mass density
of the metal and the mass number of the constituent atoms, we can calculate
the number density of atoms. From the valence of the metal, we know how
many conduction electrons are provided to the metal by each atom. We can
then estimate the conduction electron density N/V . The effective mass m is
usually of the order of the vacuum mass of an electron. So, by assuming that
the effective mass is equal to the vacuum mass, we can estimate the Fermi
energy and the Fermi temperature. For most metals, this procedure gives val-
ues of TF between 104 and 105 K. Some values of the Fermi temperature for
typical metals are given in Table 10.1. In this subsection, “low temperature”
means that T � TF. Therefore, metals at room temperature can be regarded
as being in the low-temperature regime.
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Table 10.1. Fermi temperatures TF of typical metals

Metal Valence Fermi temperature (104 K)

Li 1 5.48
Na 1 3.75
K 1 2.46
Cu 1 8.12
Ag 1 6.36
Au 1 6.39
Mg 2 8.27
Al 3 13.49
Pb 4 10.87

Formulas for the Temperature Dependence
of Thermodynamic Variables

The calculation of the temperature dependence of the thermodynamic vari-
ables for a system with a fixed number of particles is done in two steps. First,
the temperature dependence for a system at a given chemical potential µ is
calculated. One of the thermodynamic variables is the particle number N .
Then N(T, µ), considered as a function of T and µ, is inverted to obtain
µ(T,N). In a second step, this µ(T,N) is put into the expressions for the
other variables to obtain the temperature dependence for fixed N .

The first step is performed by use of a general formula derived below. For
simplicity, we first consider a system in the absence of a magnetic field. In
this case thermodynamic variables such as N and U are given by integrals of
the following kind:

F (T, V, µ) =
∫ ∞

ε0

dE g(E)f(E) , (10.48)

where F is one such variable, ε0 = 0 is the lowest single-particle energy,6 g(E)
depends on which variable we want to calculate, and f(E) is the Fermi dis-
tribution function. This type of integral can be evaluated at low temperature
as a power series in the temperature T . In order to obtain the desired result,
we first define a function G(E), which is the integral of g(E):

G(E) ≡
∫ E

ε0

g(E′) dE′ . (10.49)

The value of F (T, V, µ) at T = 0 is the value of G at E = µ:

F (0, V, µ) = G(µ) . (10.50)

6 We write the lowest energy as ε0 in these equations. At B = 0, ε0 = 0. However,
at finite magnetic field, this energy becomes finite, because ε0 = gµBsB.
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Therefore, G(µ) is the zeroth-order term in the expansion of F (T, V, µ) as
a power series in T . Using this G(E), we can rewrite the integral for F (T, V, µ):

F (T, V, µ) =
∫ ∞

ε0

dE

[
d

dE
G(E)

]
f(E)

=
[
G(E)f(E)

]∞
ε0

−
∫ ∞

ε0

dE G(E)
df(E)

dE
. (10.51)

The first term in the last line is zero, because at E = ε0, G(ε0) = 0 and
f(ε0) � 1, and as E → ∞, f(E) � e−β(E−µ) vanishes exponentially. To
evaluate the second term, we notice that df(E)/dE is sharply peaked around
E = µ and vanishes rapidly as E deviates from µ, as shown in Fig. 10.4. This
fact enables us to do the following:

1. Extend the lower bound of the integral to −∞.
2. Expand the function G(E) around µ and retain only the low-order terms.

Since

G(E) � G(µ) + (E − µ)G′(µ) +
1
2
(E − µ)2G′′(µ) + · · · , (10.52)

we need to evaluate the following integral for n = 0, 1, 2, · · ·:∫ ∞

−∞
dE (E − µ)n df(E)

dE
= β−n

∫ ∞

−∞
dx xn d

dx

(
1

ex + 1

)
. (10.53)

For n = 0, this integral is easily evaluated, and the result is −1. For odd n,
the integral vanishes, since

d
dx

(
1

ex + 1

)
= −1

4
sech2 x

2
(10.54)

Fig. 10.4. The derivative of the Fermi distribution function, df(E)/dE;
−df(E)/dE is shown for kBT = µ/20 and µ/10 by the solid and dash-dotted lines,
respectively. This derivative is sharply peaked around E = µ at low temperature
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is an even function of x. For even n, it can be calculated as follows:

β−n

∫ ∞

−∞
dx xn d

dx

(
1

ex + 1

)
= 2β−n

∫ ∞

0

dx xn d
dx

(
1

ex + 1

)

= −2nβ−n

∫ ∞

0

dx
xn−1

ex + 1

= −2nβ−n
∞∑

k=0

(−1)k

∫ ∞

0

dx xn−1e−(k+1)x

= −2n!β−n
∞∑

k=0

(−1)k

(k + 1)n

= −2n!β−n(1 − 21−n)ζ(n) . (10.55)

Here ζ(n) =
∑∞

k=1 k−n is the Riemann zeta function, which has the following
values:7

ζ(2) =
π2

6
, ζ(4) =

π4

90
. (10.56)

From these equations, (10.48) can be expanded as a series in T :

F (T ) = G(µ) +
(πkBT )2

6
g′(µ) +

7(πkBT )4

360
g′′′(µ) + · · · . (10.57)

We shall calculate the heat capacity and the magnetic susceptibility as func-
tions of the number of fermions N and of T at low temperature using this
formula.

Chemical Potential at B = 0

Now we shall calculate the particle number N(T, V, µ) to obtain µ(T, V,N) in
the absence of a magnetic field. The magnetic-field dependence is considered
later, when we calculate the susceptibility. From (10.30), we obtain

N(T, V, µ) = 2
∫ ∞

0

dE D(E)f(E) . (10.58)

Thus, in this case

g(E) = 2D(E) =
3
2

N

EF

√
E

EF
, (10.59)

G(µ) = N

(
µ

EF

)3/2

, (10.60)

7 The Riemann zeta function is described in Appendix G.
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and
g′(µ) =

3
4

N

E
3/2
F

1
µ1/2

. (10.61)

Using these equations, we obtain N(T, V, µ) up to the second order in T :

N(T, V, µ) � N

(
µ

EF

)3/2

+
1
8

N(πkBT )2

E
3/2
F µ1/2

. (10.62)

As we expect that µ/EF = 1+O(T 2), µ in the second term on the right-hand
side can be replaced by EF. Then µ/EF can be obtained as follows up to the
second order in T/TF:

µ

EF
�
[
1 − π2

8

(
T

TF

)2
]2/3

� 1 − π2

12

(
T

TF

)2

. (10.63)

In this equation, we have used the relation that EF = kBTF. This temperature
dependence and the correct temperature dependence of µ up to T = 3TF are
shown in Fig. 10.5.

Fig. 10.5. Temperature dependence of µ/EF as a function of T/TF. The exact result
is shown by the solid line, and the dash-dotted line shows the approximation to the
chemical potential (10.63)

Internal Energy, Pressure, and Heat Capacity

The internal energy in the absence of a magnetic field is

U(T, V, µ) =
∫ ∞

0

dE 2ED(E)f(E) . (10.64)

Thus, in this case

g(E) = 2ED(E) =
3
2
N

(
E

EF

)3/2

, (10.65)

G(µ) =
3
5
N

µ5/2

E
3/2
F

, (10.66)
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and

g′(µ) =
9
4
N

µ1/2

E
3/2
F

. (10.67)

Using these relations, we obtain U(T, V, µ):

U(T, V, µ) =
3
5
N

µ5/2

E
3/2
F

+
3π2

8
N

(kBT )2µ1/2

E
3/2
F

. (10.68)

The internal energy at a given value of N , U(T, V,N), is obtained by using
the expression for the chemical potential (10.63):

U(T, V,N) � 3
5
NEF

[
1 − π2

12

(
T

TF

)2
]5/2

+
3π2

8
NEF

(
T

TF

)2

� 3
5
NEF

[
1 − 5π2

24

(
T

TF

)2
]

+
3π2

8
NEF

(
T

TF

)2

=
3
5
NEF

[
1 +

5π2

12

(
T

TF

)2
]

. (10.69)

The pressure of the system is related to U by PV = (2/3)U :

P (T, V,N)V � 2
5
NEF

[
1 +

5π2

12

(
T

TF

)2
]

. (10.70)

Fig. 10.6. Temperature dependence of PV/NkBTF as a function of T/TF. The
solid line shows the correct temperature dependence, the dash-dotted line shows
the approximation (10.70), and the dashed line shows PV = NkBT , which is the
relation for a classical ideal gas
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The temperature dependence of PV is shown in Fig. 10.6, where the solid
line shows the correct temperature dependence, the dash-dotted line shows
the approximation (10.70), and the dashed line shows the classical result
PV = NkBT .

The fact that the correction to the internal energy is proportional to T 2 is
easily understood. The Fermi distribution function deviates from the distribu-
tion function at T = 0 only near the Fermi energy. Only particles with energies
near the Fermi energy can have a thermal energy kBT , and the number of such
particles is of the order of kBT times the density of states D(EF). Therefore,
the increase in the internal energy at finite temperature is proportional to T 2.

Now that we have obtained the internal energy, we can calculate the heat
capacity of a free-fermion gas at low temperature:

C(T, V,N) =
(

∂U(T, V,N)
∂T

)
V,N

� π2

2
NkB

T

TF
. (10.71)

Since C = T (∂S/∂T ), and S(0, V,N) = 0 at T = 0, we can also obtain the
entropy at low temperature:

S(T, V,N) � C(T, V,N) � π2

2
NkB

T

TF
. (10.72)

We can compare this result with that obtained from the Debye model of lattice
vibrations. The latter model predicts a value of 3NkB at temperatures higher

Fig. 10.7. Temperature dependence of CV /NkB as a function of T/TF. The solid
line shows the correct temperature dependence, the dash-dotted line shows the
lowest-order approximation (10.71), and the dashed line shows the classical result,
CV = 1.5NkB
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than the Debye temperature. For ordinary solids, this high-temperature con-
dition is satisfied at room temperature. On the other hand, a conduction elec-
tron system has a TF of the order of 104 K, and room temperature (� 300 K)
is much lower than TF. Therefore, the contribution to the heat capacity of
a metal from the conduction electrons is negligibly small at room tempera-
ture. We note also that at temperatures much higher than TF, a fermion gas
behaves as a classical ideal gas. Therefore, at such temperatures the constant-
volume heat capacity tends to (3/2)NkB. The temperature dependence of the
heat capacity is shown in Fig. 10.7.

Magnetic Susceptibility

The magnetic susceptibility due to the spins is obtained from

χ(T, V,N) = lim
B→0

µ0M(T, V,N,B)
BV

.

Thus we need to calculate the total magnetic moment M(T, V,N,B) and
µ(T, V,N,B) up to first order in the magnetic field B. First, we need to
examine how the chemical potential depends on the magnetic field. For that
purpose, we write down an equation for the number of particles at given µ in
the presence of a magnetic field:

N(T, V, µ,B) =
∑

s=±1/2

∫ ∞

gµBsB

dE D(E − gµBsB)f(E) . (10.73)

The right-hand side of this equation is clearly a continuous even function of B.
Therefore, without actual calculation, we can guess the following result:

N(T, V, µ,B) = N(T, V, µ, 0) + O
(
B2
)

� N

(
µ

EF

)3/2

+
1
8
N

(πkBT )2

E
3/2
F µ1/2

+ O
(
B2
)

. (10.74)

The correction to the chemical potential then also starts from the second order
in B, namely

µ(T, V,N,B) = µ(T, V,N, 0) + O
(
B2
)

� EF

[
1 − π2

12

(
T

TF

)2
]

+ O
(
B2
)

. (10.75)

Therefore, for the calculation of the magnetic susceptibility, we need not con-
sider the magnetic-field dependence of the chemical potential.



168 10 Dense Gases – Ideal Gases at Low Temperature

Next we calculate the total spin magnetic moment to the lowest order
in B. First, we calculate it at a given chemical potential µ. It is given by the
following equation:

M(T, V, µ,B) =
∑

s=±1/2

∫ ∞

gµBsB

dE (−gµBs)D (E − gµBsB) f(E)

� −gµB

∑
s=±1/2

[∫ µ−gµBsB

0

dE sD(E)

+
π2

6
(kBT )2 sD′ (µ − gµBsB) + O

(
T 4
) ]

� 3
2

(
1
2
gµB

)2
BN

EF

[(
µ

EF

)1/2

− π2

24

(
T

TF

)2(
EF

µ

)3/2
]

.

(10.76)

Inserting the expression for the chemical potential, we obtain the total mag-
netic moment up to the term linear in B and up to terms in T 2:

M(T, V,N,B) =
3
2

(
1
2
gµB

)2
BN

EF

[
1 − π2

12

(
T

TF

)2
]

. (10.77)

Finally, we obtain the magnetic susceptibility per unit volume:

χ(T, V,N) = lim
B→0

(
µ0M

BV

)

=
3
2

(
1
2
gµB

)2
µ0N

EFV

[
1 − π2

12

(
T

TF

)2
]

. (10.78)

The susceptibility decreases quadratically as (T/TF)2 from its value at T = 0.
Again, the deviation from the zero-temperature value is small for ordinary
metals at room temperature. At temperatures much higher than TF, χ tends
to the classical value for N independent particles in a volume V , (7.18):

χ =
(

1
2
gµB

)2(
µ0N

kBTV

)
. (10.79)

The reason that χ saturates at a finite value as T → 0 can be understood from
the behavior of the Fermi distribution function. Namely, only particles that
have energies around the Fermi energy are active at low temperature and can
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change their spin state in response to an external magnetic field. The number
of particles can be estimated as 2D(EF)kBT . We should replace N in (10.79)
with this estimate. The correct value at T = 0,

χ =
3
2

(
1
2
gµB

)2
µ0N

EFV
,

is then obtained.

10.5 Properties of a Free-Boson Gas

10.5.1 The Two Kinds of Bose Gas

As we have seen in Chap. 5, the Bose distribution function n(E) with µ = 0
appears when we consider either the Debye model of a solid or black-body
radiation. In these cases, a wave with a wave vector k and angular frequency
ω(k) = c|k| is allowed to have quantized energies

E(k) =
(

n +
1
2

)
�ω(k) ,

and the expectation value of n is given by the Bose distribution function
with µ = 0. This result can be interpreted as showing that lattice vibrations
and electromagnetic radiation behave as Bose particles, which have a mo-
mentum p = �k and an energy E = �ω(k). The particles for lattice vibra-
tions are called phonons, and those for electromagnetic radiation are called
photons.

The total number of these bosons is not fixed. They are created by the
energy of the heat bath, and absorbed as energy into the heat bath. This non-
conservation of the total number of particles is the origin of the condition that
µ = 0 for these bosons. The chemical potential µ is defined as the derivative
of the entropy of the heat bath with respect to the number of particles in the
heat bath. Once phonons or photons have been absorbed into the heat bath,
they lose their identity, and so the entropy of the heat bath does not depend
on the number of particles absorbed. Thus the chemical potential must be
zero.

We have already studied the properties of a gas made up of these noncon-
served particles in Chap. 5. What we consider in this section is a second kind
of Bose gas, made up of particles for which the total number of particles is
conserved. An ordinary gas for which the constituent atoms or molecules are
bosons is a natural example of such a Bose system.

The characteristic properties of a Bose gas appear at low temperature. So
we need a system that behaves like a free-boson gas even at low temperature.
One candidate is helium-4. The helium-4 atom is a Bose particle, and helium
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gas is hard to liquefy. At 1 atm, it liquefies at 4.2 K. This is the lowest gas–
liquid phase transition temperature of any substance except for helium-3. At
atmospheric pressure, all other substances solidify at much higher tempera-
tures. However, 4.2K is still not low enough for a Bose gas to show its most
peculiar characteristics. On the other hand, liquid helium-4 remains a liquid
down to T → 0 below about 25 atm. Even though it is a liquid and the inter-
actions between the atoms are not negligible, some aspects of the liquid, such
as the superfluid phase transition, can be understood as a property of a Bose
gas. Other, much better examples of Bose gases have recently been realized:
these are provided by vapors of alkali metals, cooled down to temperatures
in the microkelvin range. We are now going to study the properties of such
a Bose gas at low temperature.

Since the Bose distribution function diverges if the chemical potential co-
incides with a single-particle energy of the Bose gas, µ must be lower than
the lowest single-particle energy, which is zero for gas of atoms. Therefore,
the chemical potential must always be negative at finite temperature for the
second kind of Bose gas.

10.5.2 Properties at Low Temperature

Bose–Einstein Condensation

The energy spectrum of an atomic Bose particle is the same as that for a Fermi
gas, and so the density of single-particle states has the same form:

D(E) dE =
V

2π2�3
m
√

2mE dE .

A Bose particle has an integer spin. Here we consider the simplest case, namely
that of particles with spin zero. In this case the number of particles is given
by the following equation:

N =
∑

i

1
eβ(Ei−µ) − 1

. (10.80)

At high temperature, we can calculate this summation as an integral with
respect to the energy:

N =
∫ ∞

0

dE D(E)
1

eβ(E−µ) − 1
. (10.81)

However, at low temperature, this replacement is not permissible. This is
a special property of a Bose gas. We shall see in the following why this re-
placement is not correct.

The Fermi distribution function is finite for any energy, and is less than or
equal to one. On the other hand, the Bose distribution function can diverge as
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µ → Ei, whereas it becomes vanishingly small when Ei−µ � kBT . Therefore,
at T = 0, almost all the states satisfy Ei −µ � kBT = 0, and all the particles
are accommodated in the lowest-energy single-particle state at Ei = 0. The
chemical potential is vanishingly small, and the internal energy is zero. That
is, µ → 0 and U = 0 at T = 0.

When the temperature is low enough, we can expect that the majority of
the bosons will still occupy the single-particle state at E = 0, and only some
of the bosons will be excited to finite-energy states. This phase, where a finite
fraction of the bosons occupies the lowest-energy single-particle state, is called
a Bose–Einstein condensed state, and this phenomenon is called Bose–Einstein
condensation. The bosons in the lowest-energy single-particle state are called
the Bose–Einstein condensate.

In a Bose–Einstein condensed state, it is not permissible to replace the
summation in (10.80) by the integral form (10.81). This is because the den-
sity of states D(E) vanishes at E = 0, in spite of the fact that the lowest-
energy single-particle state exists at E = 0. In (10.81), the contribution from
the state at E = 0 has not been counted, even though most bosons are ac-
commodated in this state. However, we need to replace the summation by
an integral to perform an analytical investigation of boson systems at low
temperature.

This is accomplished by treating the state at E = 0 separately, and treating
the contribution from the other states by means of an integral. That is, we
calculate the summation as follows in the case of a Bose–Einstein condensed
phase:

N =
∑

i

1
eβEi − 1

= N0 +
∫ ∞

0

dE D(E)
1

eβE − 1
. (10.82)

In this equation, N0 is the number of bosons in the E = 0 state, or the number
in the Bose–Einstein condensate. We have put µ = 0 in this equation, because
it has only a small negative value in the condensed phase. The actual value
is given below. A very small value of µ is necessary to give us N0 = O(N) at
E = 0.

For a better understanding of Bose–Einstein condensation, let us consider
the system at higher temperature, and then see what happens as the tem-
perature is lowered. At high temperature, the bosons are distributed among
various single-particle states, and no state contains a macroscopic number of
bosons. Thus, for any state, Ei is higher than µ, and hence µ must have a finite
negative value, which is determined by (10.81) for a given particle number N .
Now, what happens when the temperature is lowered? The right-hand sides
of (10.80) and (10.81) are monotonically increasing functions of µ, and also
increasing functions of T . Thus, as the temperature is lowered at fixed N , the
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chemical potential increases towards zero. If we use the original summation in
(10.80) to determine the chemical potential, we can always find a solution: the
right-hand side tends to zero as µ → −∞, and it diverges as µ → 0. However,
it turns out that the right-hand side of the integral in (10.81) remains finite
even at µ = 0, and the limiting value decreases as the temperature is lowered.
The temperature at which the limiting value coincides with N is the critical
temperature Tc for Bose–Einstein condensation. For T > Tc, the right-hand
side of (10.81) at µ = 0 is larger than the number of bosons, and the finite
negative chemical potential can be determined. On the other hand, for T < Tc,
the right-hand side is less than N and we must put µ = 0 and use (10.82)
with a finite N0.

Now let us determine the critical temperature Tc. From the considerations
above, we know that it is determined by the following equation:

N =
∫ ∞

0

dE D(E)
1

eβcE − 1
, (10.83)

where βc ≡ 1/kBTc. The right-hand side is

r.h.s =
V

4π2�3
(2m)3/2

∫ ∞

0

dE

√
E

eβcE − 1

=
V

4π2�3

(
2m

βc

)3/2 ∫ ∞

0

dx
x1/2

ex − 1

=
V

4π2�3

(
2m

βc

)3/2

Γ

(
3
2

)
ζ

(
3
2

)

= V

(
mkBTc

2π�2

)3/2

ζ

(
3
2

)
, (10.84)

where the integral representation of the zeta function (G.2) has been used.
Using the value of the zeta function ζ(3/2) = 2.612 . . ., we can determine the
critical temperature:

Tc =
2π�

2

mkB

(
N

2.612V

)2/3

. (10.85)

Below Tc, the number of particles in the Bose–Einstein condensate becomes
of the order of N :

N0 = N − V

(
mkBT

2π�2

)3/2

ζ

(
3
2

)
= N

[
1 −

(
T

Tc

)3/2
]

. (10.86)
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From this value of N0, we can determine the value of the chemical potential
at T < Tc. It satisfies the condition that

N0 =
1

e−βµ − 1
� −kBT

µ
. (10.87)

Here we have used the fact that |βµ| � 1 and e−βµ � 1 − βµ. Thus,

µ = − kBT

N
[
1 − (T/Tc)

3/2
] . (10.88)

That is, the chemical potential is of the order of kBT/N . Therefore, for any
positive-energy single-particle state, it is justifiable to replace µ by 0.

Let us estimate Tc for the case of helium. Helium gas liquefies at T = 4.2 K
under atmospheric pressure. For simplicity, let us assume that the gas satisfies
the equation of state of an ideal gas down to this temperature. In this case
we obtain N/V = P/kBT = 1.74 × 1027 m−3 at P = 1.01 × 105 Pa and
T = 4.2 K. Using this value, we obtain Tc = 0.58 K. Thus we cannot expect
Bose–Einstein condensation of helium gas at ambient pressure. Next, let us
consider liquid helium, which has a molar volume V/N = 27.6 cm3 mol−1. This
gives Tc = 3.13K. Therefore, if the interaction between helium atoms in the
liquid phase is negligible, we can expect to have Bose–Einstein condensation at
this temperature. In fact, the interaction is not negligible, but liquid helium
undergoes a phase transition to the superfluid phase at Tλ = 2.19K. This
is the Bose–Einstein condensation transition that occurs in the presence of
interaction between atoms.

For a long time it was thought that Bose–Einstein condensation could not
be realized in any substance other than helium. However, in 1995, it became
possible to cool vapors of alkali metals, such as Li, Na, and Rb, to below 1 µK.
The densities of these gases were in the range 1018 to 1020 m−3, and at the
expected Tc of about 30 nK to 300 nK, evidence of condensation was obtained
[13, 14]. Since then, these Bose–Einstein condensates have been intensively
investigated. A Nobel Prize was awarded in 2001 to Cornell, Ketterle, and
Wieman for the realization of these condensates.

Internal Energy, Pressure, and Heat Capacity

The internal energy can be written as

U(T, V, µ) =
∑

i

niEi =
∫ ∞

0

dE D(E)
E

eβ(E−µ) − 1

=
V

4π2�3
(2m)3/2

∫ ∞

0

dE
E3/2

eβ(E−µ) − 1
. (10.89)
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The pressure can be calculated from the partition function J , and related to
the internal energy:

P (T, V, µ)V = −J = −kBT
∑

i

ln
[
1 − e−β(Ei−µ)

]

= −kBT

∫ ∞

0

dE D(E) ln
[
1 − e−β(E−µ)

]

=
2
3
U(T, V, µ) . (10.90)

This relation is easily verified by partial integration, just as in the case of the
Fermi gas. In fact, the relation PV = (2/3)U is a property common to all
noninteracting gases.

To proceed, we need to consider the cases of T < Tc and T > Tc separately.
In a Bose–Einstein condensed phase at T < Tc, the chemical potential is fixed
at µ = 0, and so in this region calculation is easy. Since the Bose–Einstein
condensate does not contribute to the energy, U can be calculated as follows:

U(T, V, µ = 0) =
V

4π2�3
(2m)3/2

∫ ∞

0

dE
E3/2

eβE − 1

=
V

4π2�3
(2m)3/2 (kBT )5/2

∫ ∞

0

dx
x3/2

ex − 1

=
V

4π2�3
(2m)3/2 (kBT )5/2

Γ

(
5
2

)
ζ

(
5
2

)
. (10.91)

This can be rewritten using the relation between the particle number N and
Tc given by (10.84),

N = N(Tc, V, µ = 0) =
V

4π2�3
(2m)3/2 (kBT )3/2 Γ

(
3
2

)
ζ

(
3
2

)
,

as

U(T, V,N) =
3
2

ζ(5/2)
ζ(3/2)

NkBT

(
T

Tc

)3/2

= 0.7703NkBT

(
T

Tc

)3/2

. (10.92)

The pressure is then given by

P (T, V,N)V =
2
3
U(T, V,N) =

ζ(5/2)
ζ(3/2)

NkBT

(
T

Tc

)3/2

= 0.5135NkBT

(
T

Tc

)3/2

. (10.93)
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Thus, at T = Tc, the pressure is reduced to about one-half of the classical
value given by PV = NkBT . From this equation, it might be thought that
Boyle’s law, PV = constant at fixed temperature, is obeyed. However, this is
not correct. Since Tc ∝ (N/V )2/3, the pressure at T ≤ Tc is independent of
the volume and depends only on T :

P (T, V,N) = kBT

(
mkBT

2π�2

)3/2

ζ

(
5
2

)
. (10.94)

From the internal energy, the heat capacity at constant volume can be
calculated:

CV =
(

∂U(T, V,N)
∂T

)
V,N

=
15ζ(5/2)
4ζ(3/2)

NkB

(
T

Tc

)3/2

= 1.926NkB

(
T

Tc

)3/2

. (10.95)

That is, it decreases in proportion to T 3/2.

Thermodynamic Variables at T > Tc

At T > Tc, calculation becomes difficult. In order to proceed, we introduce
a function Fσ(α), where

Fσ(x) ≡ 1
Γ (σ)

∫ ∞

0

dy
yσ−1

ex+y − 1
=

∞∑
n=1

n−σe−nx . (10.96)

For σ > 1, the value at x = 0 is given by the zeta function: Fσ(0) = ζ(σ)
(σ > 1). The derivative with respect to x is related to Fσ−1, i.e.

d
dx

Fσ(x) = −Fσ−1(x) . (10.97)

In terms of this function, the thermodynamic functions can be written as

N(T, V, µ) =
V

4π2�3
(2mkBT )3/2

F3/2(−βµ) , (10.98)

U(T, V, µ) =
V

4π2�3
(2mkBT )3/2

kBTF5/2(−βµ)

=
3
2
NkBT

F5/2(−βµ)
F3/2(−βµ)

, (10.99)
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and

P (T, V, µ)V = NkBT
F5/2(−βµ)
F3/2(−βµ)

. (10.100)

Using the expression for Tc, we can rewrite (10.98) as

N(T, V, µ) = N

(
T

Tc

)3/2 F3/2(−βµ)
ζ (3/2)

. (10.101)

This equation can be used to determine the chemical potential as a function
of T/Tc. Namely, µ is determined by solving the equation

F3/2(−βµ) = ζ

(
Tc

T

)3/2

. (10.102)

An analytical solution of (10.102) cannot be obtained. Thus, here we shall
show only that the heat capacity is continuous at Tc. We first calculate the
derivative of µ using (10.102). As Tc is given by the ratio N/V , the derivative
at fixed V and N gives

F ′
3/2(−βµ)

(
∂(−βµ)

∂T

)
V,N

= − 3
2T

F3/2(−βµ) . (10.103)

This can be rewritten as follows:

F1/2(−βµ)
(

∂(−βµ)
∂T

)
V,N

=
3

2T
F3/2(−βµ) . (10.104)

Now we can calculate the heat capacity:

CV =
(

∂U

∂T

)
V,N

=
3
2
NkB

(
F5/2

F3/2
+ T

F ′
5/2F3/2 − F5/2F

′
3/2

F 2
3/2

(
∂(−βµ)

∂T

)
V,N

)

=
3
2
NkB

(
F5/2

F3/2
− 3

2

F 2
3/2 − F5/2F1/2

F3/2F1/2

)

=
3
2
NkB

(
5
2

F5/2

F3/2
− 3

2
F3/2

F1/2

)
. (10.105)

In this equation, the argument of Fσ, −βµ has been omitted for simplicity.
When the temperature approaches Tc, the chemical potential vanishes. In this
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limit, F1/2 diverges, and Fσ → ζ(σ) for σ = 3/2 and 5/2.8 Thus, the second
term of the heat capacity vanishes at T = Tc, and the first term coincides
with the value for the Bose–Einstein condensed phase, (10.95).

In Figs. 10.8–10.10, we show the temperature dependence of various vari-
ables: the chemical potential (solid line) and the fraction in the Bose–Einstein
condensate (dashed line) are shown in Fig. 10.8, the pressure is shown in Fig.
10.9, and the heat capacity is shown in Fig. 10.10.

Fig. 10.8. Temperature dependence of the normalized chemical potential µ/kBTc

and the fraction in the Bose–Einstein condensate, shown by solid and dashed lines,
respectively. The horizontal axis shows the reduced temperature T/Tc

Fig. 10.9. Temperature dependence of PV/NkBTc, plotted as a function of the
reduced temperature T/Tc. The thin dashed line shows the classical value, given by
PV/NkBTc = T/Tc

8 Fσ(0) = ζ(σ) is true only for σ > 1. When σ = 1/2, ζ(1/2) = −1.4603545 is
finite, but F1/2(0) = ∞.
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Fig. 10.10. Temperature dependence of the constant-volume heat capacity normal-
ized by NkB, CV/NkB, plotted as a function of the reduced temperature T/Tc. The
thin dashed line shows the classical value, given by CV/NkB = 3/2

10.6 Properties of Gases at High Temperature

From Figs. 10.5–10.10, we can see that both the Fermi gas and the Bose gas
approach the classical ideal gas at T � TF or T � Tc. Here we discuss this
crossover from a quantum gas to a classical gas. We have seen that a typ-
ical Fermi gas, namely the system of conduction electrons in a metal, has
a high Fermi temperature, while the Bose–Einstein condensation temperature
of a typical Bose gas, namely liquid helium or an alkali metal vapor, is low.
However, this difference arises from the difference in the mass of the particles
and in the number density. In fact, if the mass and the density were the same,
these temperatures would be of the same order. These temperatures are given
by

kBTF = 9.57
�

2

2m

(
N

V

)2/3

(10.106)

and

kBTc = 6.63
�

2

2m

(
N

V

)2/3

. (10.107)

These are of the order of the kinetic energy of a particle with a wave number
(N/V )1/3, or a particle with a wavelength of the order of the mean interpar-
ticle distance.

Now let us see what happens when the temperature is higher than these
temperatures. As shown in the figures, the chemical potential decreases as the
temperature is increased. This behavior is easily understood. If the chemical
potential is fixed and the temperature is raised, the occupation probability
of each single-particle state increases and the total number of particles N
increases. Thus, to keep N fixed, µ must decrease. Since a higher tempera-
ture causes higher-energy single-particle states of the system to be populated,
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the decrease of the chemical potential must occur in such a way that the
occupation probability of each single-particle state is decreased. That is, for
a fixed energy, the exponential in the denominator of the distribution func-
tion eβ(E−µ) must increase as the temperature is increased. Therefore, at
sufficiently high temperatures, the condition eβ(E−µ) � 1 is satisfied, and the
distribution functions of both a Fermi and a Bose system can be approximated
as follows:

〈n(E)〉 =
1

eβ(E−µ) ± 1
� e−β(E−µ) . (10.108)

In this limit, both Fermi and Bose gases behave like a classical ideal gas.
Let us determine the chemical potential in this limit, and calculate U(T, V,N)
and P (T, V,N). For simplicity, we consider spinless particles here.9 The total
number of particles at a given chemical potential is

N =
∫ ∞

0

dE D(E)〈n(E)〉

� V

4π2
(2m)3/2

∫ ∞

0

dE
√

E e−β(E−µ)

= V

(
mkBT

2π�2

)3/2

eβµ . (10.109)

Thus,

e−βµ =
V

N

(
mkBT

2π�2

)3/2

=
1

ζ(3/2)

(
T

Tc

)3/2

, (10.110)

where the definition of the Bose–Einstein condensation temperature has been
used. Therefore, the assumption eβ(E−µ) ≥ e−βµ � 1 is justified when
T � Tc. The way in which the chemical potential approaches the classi-
cal value as the temperature is raised is shown in Fig. 10.11.

Now that the chemical potential has been determined, we can calculate
the internal energy:

U =
∫ ∞

0

dE D(E)E〈n(E)〉

� V

4π2
(2m)3/2

∫ ∞

0

dE (E)3/2 e−β(E−µ)

=
V

4π2
(2m)3/2 e−βµΓ

(
5
2

)
1

β5/2

=
3
2
NkBT . (10.111)

9 For a spinless or spin-polarized Fermi gas, the Fermi temperature is given by
TF = (�2/2mkB)(6π2N/V )2/3 = 15.19(�2/2m)(N/V )2/3.
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Fig. 10.11. The chemical potentials of Bose and Fermi gases are shown by the solid
line and dash-dotted line, respectively, and that of a classical ideal gas obtained
from (10.110) is shown by the dashed line. The temperature has been scaled by
the Bose–Einstein condensation temperature Tc. The Fermi temperature is given by
TF = 2.293Tc

This is the correct result for a classical ideal gas. The pressure can be seen to
satisfy the Boyle–Charles equation, PV = NkBT , from this internal energy,
since PV = (2/3)U is satisfied. This result can also be obtained from the
partition function J :

J = −PV = −kBT
∑

i

ln
(
1 − e−β(Ei−µ)

)

� −kBT
∑

i

e−β(Ei−µ) = −kBT
∑

i

〈ni〉

= −NkBT . (10.112)

The condition under which the treatment of a Fermi or Bose gas as a classical
gas is valid, namely e−βµ � 1 or 〈n〉 � 1 for any single-particle state, is un-
derstandable. We discussed at the beginning of this chapter how the reduction
of the phase space by a factor of N ! becomes invalid when the possibility of
occupancy of the same state by more than one particle becomes important.
For 〈n〉 � 1, such a possibility is negligible, and the classical approximation
becomes valid.

It is instructive to derive this condition in other ways. At a temperature T ,
the particles have an average energy of about kBT , and so the magnitude of
the average momentum will be pT =

√
2mkBT . The volume of the single-

particle phase space within this momentum pT is (4π/3)p3
TV , and the number

of single-particle states in this region of the phase space is (4π/3)p3
TV/h3. The

classical approximation should be valid if this number is much larger than N .
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The condition for this to apply is

(4π/3)p3
TV

h3
� N , (10.113)

or
4π

3
V

N

(
mkBT

h2

)3/2

� 1 . (10.114)

This is the same condition as before, except for an unimportant numerical
factor. The Planck constant divided by pT is the wavelength of a particle with
momentum pT, and is called the thermal de Broglie wavelength and given by

λT =
h√

2mkBT
. (10.115)

The condition above can be written as

(
4π

3
V

N

)1/3

� λT . (10.116)

Since the left-hand side gives the mean distance between the particles, this
condition can be interpreted as follows. As momenta up to pT are available, the
wave functions of the particles can be constructed as wave packets of size λT.
When the interparticle distance is much larger than the size of these wave
packets, there is no interference between waves, and no quantum mechanical
effects appear. Once the wave packets overlap, however, interference between
the waves leads to quantum mechanical effects, and the gas must be treated
as a Fermi gas or Bose gas.

I started this book with an introduction to the principles of statistical
physics based on consideration of a classical ideal gas. Now we have learned
how statistical physics can be applied to various other systems; we have also
learned that an ideal gas should actually be described either as a Fermi gas
or as a Bose gas, and we have clarified the question of when an approximate
treatment of an ideal gas as a classical system is allowed. More topics exist
in the field of thermal-equilibrium statistical physics, to which the discussion
in this book has been restricted. However, I think that this is an appropriate
point at which to end this book on elementary statistical physics. For those
who want to learn about more advanced concepts and topics, I recommend
several standard books on equilibrium statistical physics [15, 16, 17, 18].

Exercise 17. Estimate the Fermi temperature of copper. The relative atomic
mass of copper is 63.546, the density is 8.93×103 kg m−3, and the valence is 2.
For the mass of a conduction electron, use the value for an electron in vacuum.

Exercise 18. Derive (10.25).
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Formulas Related to the Factorial Function

A.1 Binomial Coefficients and Binomial Theorem

If we have a set of N identical particles, there are

NCn =
N !

(N − n)!n!
(A.1)

ways of choosing n particles from the set; these ways are called combina-
tions, and NCn is called a binomial coefficient. The following equation can be
proved:

(p + q)N =
N∑

n=0

NCn pnqN−n , (A.2)

which is known as the binomial theorem.

A.2 Stirling’s Formula

The factorial of a large integer N can be approximated as follows:

N ! �
√

2πNNN e−N . (A.3)

This is called Stirling’s formula. For example, for N = 50, the right-hand and
left-hand sides of (A.3) are 3.041×1064 and 3.036×1064, respectively. Taking
the logarithm of both sides, we obtain

ln N ! �
(

N +
1
2

)
ln N − N + 0.919 � N ln N − N . (A.4)
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A.3 n!!

The notation n!! does not mean the factorial of n!. When n is an odd integer,

n!! = n × (n − 2) × (n − 4) × · · · × 3 × 1 , (A.5)

and when n is even,

n!! = n × (n − 2) × (n − 4) × · · · × 4 × 2 = 2n/2(n/2)! . (A.6)



B

The Gaussian Distribution Function

B.1 The Central Limit Theorem

Consider a situation in which a variable x is realized randomly with some
probability. If the probability of observing a value of this variable between x
and x + dx is given by

P (x) dx =
1√

2πσ2
exp

[
− (x − µ)2

2σ2

]
dx , (B.1)

it is said that the probability distribution function of x is a Gaussian distri-
bution function, or normal distribution function. If x is observed many times,
the average is µ, and σ2 gives the variance; using a Gaussian integral of the
kind described below, we can see that

〈x〉 ≡
∫ ∞

−∞
dx xP (x) = µ (B.2)

and
〈(x − µ)2〉 ≡

∫ ∞

−∞
dx (x − µ)2P (x) = σ2 . (B.3)

Gaussian distributions often appear in statistical physics. The reason arises
from the central limit theorem. This theorem says that if there are N random
variables xn (n = 1, 2, 3, · · · , N), whose distribution functions need not be
Gaussian, the probability distribution function of the sum of these variables

X ≡
N∑

n=1

xn (B.4)

becomes Gaussian in the limit N → ∞. Since many thermodynamic variables,
such as the internal energy, pressure, free energy, and magnetization, are given
by a summation over contributions from a macroscopic number of particles of
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the order of the Avogadro number, it is expected that the probability distri-
bution functions of these macroscopic variables will be given by a Gaussian
distribution function.

Let us state the theorem more precisely. Let us write the average and the
variance of each random variable xn as 〈xn〉 = en and 〈(xn − en)2〉 = vn,
respectively (n = 1, 2, · · · , N). We write the sums of the averages and of the
variances as

EN ≡
N∑

n=1

en (B.5)

and

VN ≡
N∑

n=1

vn . (B.6)

Then, if VN → ∞ and vn/VN → 0 as N → ∞ for all n, the probability
distribution of

X ≡
N∑

n=1

xn (B.7)

is given by a Gaussian distribution function with an average µ = EN and
a variance σ2 = VN as N → ∞:

P (X) =
1√

2πVN

exp
[
− (X − EN )2

2VN

]
. (B.8)

B.1.1 Example

As a simple example, let us consider a situation in which each random variable
xn takes values of ±1 with equal probability. This is the situation that exists in
our toy model of rubber under zero applied force (Chap. 6), in the Ising model
in the case of the paramagnetic phase (Chap. 7), and in a one-dimensional
random walk, where a person walks back and forth randomly (not treated
in this book). In this case the average en is equal to 0, and the variance vn

ie equal to 1. Therefore, the probability distribution function of X ≡ ∑
xn,

P (X), tends to

P (X) =
1√

2πN
exp

[
−X2

2N

]
(B.9)

as N → ∞.

B.2 Gaussian Integrals

Integrals of the following form are called Gaussian integrals, and appear in
various situations in physics:∫ ∞

−∞
dx x2ne−σx2

=
(2n − 1)!!

2n

√
π

σ2n+1
. (B.10)
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Here n is an integer. In particular, the Gaussian integrals for n = 0 and n = 1
are ∫ ∞

−∞
dx e−σx2

=
√

π

σ
(B.11)

and ∫ ∞

−∞
dx x2e−σx2

=
√

π

2σ3/2
. (B.12)

Equation (B.11) can be proved in the following way. First we consider the
following double integral:

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−σ(x2+y2) . (B.13)

The integrals with respect to x and y are independent, and so we can write
this equation as ∫ ∞

−∞
dx e−σx2

∫ ∞

−∞
dy e−σy2

. (B.14)

This means that this double integral is equal to the square of the left-hand
side of (B.11). On the other hand, we can consider the double integral as
a surface integral in the xy plane. Using polar coordinates (r, θ) and noting
that x2 + y2 = r2 and dxdy = r dr dθ, we can rewrite the double integral in
the following form: ∫ ∞

0

dr

∫ 2π

0

dθ re−σr2
. (B.15)

This integral is easily evaluated, and the result is π/σ. Thus (B.11) has been
proved. Equation (B.10) can be derived from (B.11) by differentiating both
sides n times with respect to σ.

B.3 The Fourier Transform
of a Gaussian Distribution Function

The Fourier transform of a Gaussian distribution function also has the form
of a Gaussian distribution function. To show this, we consider the following
integral:

∫ ∞

−∞
dx ekxe−σx2

=
∫ ∞

−∞
dx exp

[
−σ

(
x − k

2σ

)2

+
k2

4σ

]

=
∫ ∞

−∞
dx exp

[
−σx2 +

k2

4σ

]
=
√

π

σ
ek2/4σ . (B.16)
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In the above equation, we have used the fact that we can replace (x − k/2σ)
by x, as the limits of the integral extend to infinity. This integral can also be
evaluated by expanding ekx in a Taylor series as follows:

∫ ∞

−∞
dx ekxe−σx2

=
∞∑

n=0

kn

n!

∫ ∞

−∞
dx xne−σx2

=
∞∑

n=0

k2n

(2n)!

∫ ∞

−∞
dx x2ne−σx2

=
√

π

σ

∞∑
n=0

(2n − 1)!!
(2n)!

k2n

2nσ2
=
√

π

σ

∞∑
n=0

1
(n)!

(
k2

4σ

)2

=
√

π

σ
ek2/4σ . (B.17)

The Fourier transform of a Gaussian distribution function is obtained by re-
placing k in these equations by ik:

1√
2π

∫ ∞

−∞
dx eikxe−σx2

=

√
1
2σ

e−k2/4σ . (B.18)

Equation (B.17) tells us that it is permissible to replace (x − k/2σ) by x in
(B.16), even if k is a complex number. Those who are familiar with complex
integrals will be able to prove the validity of this replacement directly using
Riemann’s theorem. The Fourier transform of a Gaussian distribution function
does not appear in this book. However, it appears in various situations in
physics, including situations in quantum mechanics and advanced statistical
physics.



C

Lagrange’s Method
of Undetermined Multipliers

This is a method for finding an extremum of f(x, y) under the condition that
g(x, y) = c, where c is a given constant. Suppose that the equation g(x, y) = c
has been solved to obtain y = h(x, c). The problem then reduces to finding
an extremum of f(x, h(x, c)), and so the condition is

d
dx

f(x, h(x, c)) =
∂f(x, h)

∂x
+

∂f(x, y)
∂y

dh(x, c)
dx

= 0 . (C.1)

On the other hand, from the derivative of c = g(x, y) = g(x, h(x, c)) with
respect to x, we obtain

0 =
∂g

∂x
+

∂g

∂y

dh

dx
. (C.2)

Thus,
dh

dx
= −∂g/∂x

∂g/∂y
. (C.3)

We can use this equation to eliminate dh/dx in (C.1), and obtain

∂f(x, h)
∂x

− ∂g/∂x

∂g/∂y

∂f

∂y
= 0 (C.4)

as the condition for an extremum.
However, the equation g(x, y) = c is usually difficult to solve. In such

a case we can try to find an extremum of f(x, y) − λg(x, y) with respect to
x and y, where we have introduced an undetermined multiplier λ. We obtain
two conditions:

∂f

∂x
− λ

∂g

∂x
= 0,

∂f

∂y
− λ

∂g

∂y
= 0 . (C.5)

By eliminating λ from these equations, we obtain the following equation:

∂f

∂x
− ∂g/∂x

∂g/∂y

∂f

∂y
= 0 . (C.6)
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This is the same equation as (C.4). This agreement gives us a strategy for
finding an extremum of f under the condition g = c. We solve the coupled
equations (C.5), and find (x(λ), y(λ)) at which f has an extremum, where λ
is a parameter. Then we choose the value of λ such that g(x(λ), y(λ)) = c is
satisfied. This is Lagrange’s method of undetermined multipliers.

C.1 Example

To illustrate the method, we consider an easy example here. Let us find an
extremum of the function f(x, y) = ax+by under the condition that g(x, y) =
x2 + y2 = 1. We calculate the following derivatives:

0 =
∂f

∂x
− λ

∂g

∂x
= a − 2λx ,

0 =
∂f

∂y
− λ

∂g

∂y
= b − 2λy . (C.7)

From these equations, we obtain the values of x and y at which the function f
has an extremum: x = a/(2λ) and y = b/(2λ). The undetermined multiplier
λ is determined from the condition that g = 1. Namely, from

g

(
a

2λ
,

b

2λ

)
=

a2 + b2

4λ2
= 1 , (C.8)

we obtain λ = ±√
a2 + b2/2. Thus, we find that under the condition x2 +

y2 = 1, the function f(x, y) = ax + by has extremal values of ±√
a2 + b2 at

x = ±a/
√

a2 + b2 and y = ±b/
√

a2 + b2.
A slightly harder example may be obtained by changing the function f to

f = xy + ax + by. The solution is left as an exercise for the reader.

C.2 Generalization

Up to this point, we have considered the case of two variables x and y. The
method can easily be generalized to the case of many variables. To find the
extrema of a function of n variables f(x1, x2, · · · , xn) under the condition that
g(x1, x2, · · · , xn) = c, we first solve the following coupled equations for xi:

∂f

∂xi
− λ

∂g

∂xi
= 0 (i = 1, 2, · · · , n) . (C.9)

The solution xi is put into the function g to determine the values of λ that
satisfy g = c. The extrema of f can then be calculated.



D

Volume of a Hypersphere

We need to know either the surface area or the volume of a hypersphere in
6N -dimensional phase space to determine the entropy of an ideal gas. This
hypersphere is defined by the condition of constant energy. Here we derive its
surface area and volume.

A hypersphere in an n-dimensional space is defined by

n∑
i=1

x2
i = r2 , (D.1)

where xi is the ith coordinate in the n-dimensional space, and r is the radius
of the hypersphere. The volume of the hypersphere is proportional to rn, and
so we write it as Vn (r) = cnrn. A hypersphere is a circle in two-dimensional
space and an ordinary sphere in three-dimensional space. Therefore,

c2 = π (D.2)

and

c3 =
4
3
π . (D.3)

The surface area of an n-dimensional hypersphere is given by

Sn(r) = ncnrn−1 , (D.4)

since the following equation is satisfied:

Vn (r) =
∫ r

0

Sn (r) dr . (D.5)
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Now let us consider the following integral:

I =
∫ ∞

0

e−ar2
Sn (r) dr = ncn

∫ ∞

0

e−ar2
rn−1 dr

=
1
2
ncn

∫ ∞

0

e−azzn/2−1 dz

= ncn
1

2an/2
Γ
(n

2

)
. (D.6)

In the second line, the variable of integration has been replaced by z = r2.
The gamma function Γ in the last line is defined as follows:

∫ ∞

0

e−attb dt =
Γ (b + 1)

ab+1
. (D.7)

It can be shown that Γ (x + 1) = xΓ (x) and that Γ (n) = (n − 1)!, by partial
integration of the defining equation (D.7). We can also show that Γ (1) = 1
and Γ (1/2) =

√
π. On the other hand, the integral I can be interpreted as

a volume integral of e−ar2
in the n-dimensional space, and can be rewritten

using the relation r2 = x2
1 + x2

2 + x2
3 + · · · + x2

n:

I =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 · · ·

∫ ∞

−∞
dxn exp

{−a
(
x2

1 + x2
2 · · · + x2

n

)}

=
{∫ ∞

−∞
exp

(−ax2
)

dx

}n

=
(√

π

a

)n

. (D.8)

From (D.6) and (D.8), we obtain

cn =
2πn/2

nΓ (n/2)
=

πn/2

Γ (n/2 + 1)
. (D.9)



E

Hyperbolic Functions

The functions sinh x, cosh x, tanh x, and their inverses are known as hyperbolic
functions. These functions have an intimate relationship to the trigonometric
functions. The definitions of the hyperbolic functions are

sinh x =
ex − e−x

2
, (E.1)

cosh x =
ex + e−x

2
, (E.2)

tanh x =
sinh x

coshx
, (E.3)

coth x =
1

tanh x
, (E.4)

sech x =
1

coshx
, (E.5)

cosech x =
1

sinh x
. (E.6)

Therefore, when these functions are used with imaginary arguments, they
become trigonometric functions:

cosh(ix) = cos x, sinh(ix) = i sin x (E.7)

Figure E.1 shows the behavior of these functions.
The hyperbolic functions satisfy the following relations:

cosh2 x − sinh2 x = 1 ,

1 − tanh2 x = sech2x . (E.8)
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Their derivatives are given by

(sinh x)′ = coshx ,

(cosh x)′ = sinhx ,

(tanh x)′ = sech2x , (E.9)

and they have the following series expansions at small x:

sinh x = x +
1
3!

x3 +
1
5!

x5 +
1
7!

x7 + · · · ,

cosh x = 1 +
1
2!

x2 +
1
4!

x4 + +
1
6!

x6 · · · ,

tanh x = x − 1
3
x3 +

2
15

x5 − 17
315

x7 · · · . (E.10)

Fig. E.1. Graphs of the hyperbolic functions sinh x (solid line), cosh x (dash-dotted
line), and tanh x (dashed line)
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Boundary Conditions

Waves in a rectangular box can be described by means of a superposi-
tion of normal modes. Particles behave as waves, according to quantum
mechanics, and so they can also be described by normal modes. A nor-
mal mode is characterized by its wave vector or momentum. In this book,
the molecules of an ideal gas, considered in Chaps. 4 and 10, and lattice
vibrations and electromagnetic waves, considered in Chap. 5, are treated
as waves in a box. The wave vector k and momentum p are related by
de Broglie’s relation p = �k, and the allowed values of the wave vector
are determined by the boundary condition. Here we summarize the rela-
tion between the boundary condition and the allowed values of the wave
vector.

F.1 Fixed Boundary Condition

One typical boundary condition is the fixed boundary condition. In this con-
dition, the displacement of the wave must be zero at a wall. For example,
a sound wave in air is a longitudinal wave, and the motion of the air perpen-
dicular to the wall must be zero at the boundary. The wave function of an
electron or atom also vanishes at a wall.

First, we consider the one-dimensional case. When a wave is confined in
a region 0 ≤ x ≤ Lx, the wave must have the following form for it to vanish
at x = 0:

ψ(x, t) = A sin(kx) cos(ωt + α) . (F.1)

Here A is the amplitude of the wave, and α is the phase. The condition that
ψ(Lx, t) = 0 at x = Lx must also be fulfilled. As a result, the wave number k
must be one of the following kn, where n is a natural number:

kn =
(

π

Lx

)
n . (F.2)
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Here n must be positive, because a wave with a negative value of k is the
same wave as one with a wave number |k|. If there is an upper limit on the
wave number k so that k ≤ kM, the number of allowed values of k is kMLx/π.

This result can be extended to the three-dimensional case. If the wave is
confined in a box of dimensions Lx × Ly × Lz, the allowed wave vectors are
given by

k =
(

π

Lx
nx,

π

Ly
ny,

π

Lz
nz

)
, (F.3)

where nx, ny, and nz are natural numbers.

F.2 Periodic Boundary Condition

In the case of the fixed boundary condition, the existence of the walls is
considered explicitly. In this case the situation near the walls is somewhat
different from that in the interior, far from the walls. However, there is another
boundary condition that can be used, for which we need not consider the
existence of the walls explicitly. This is the periodic boundary condition. For
a one-dimensional system, we impose the condition that

ψ(x + Lx, t) = ψ(x, t) . (F.4)

A wave satisfying this condition now has the form of a propagating wave
instead of the standing wave described by (F.1), namely

ψ(x, t) = A cos(kx − ωt + α) . (F.5)

From the boundary condition (F.4), the allowed values of the wave number kn

are given by

kn =
2π

Lx
n , (F.6)

where n is an integer. In this case the wave is a propagating wave, and the
direction of propagation depends on the sign of n. The interval between ad-
jacent values of kn in the present case is twice that for (F.2). However, since
a negative value of n describes a different wave, the number of waves that
satisfy |k| ≤ kM is kMLx/π, as before.

In the three-dimensional case, the allowed wave vectors are given by

k =
(

2π

Lx
nx,

2π

Ly
ny,

2π

Lz
nz

)
, (F.7)

where nx, ny, and nz are integers.
A periodic boundary condition is difficult to realize experimentally. On the

other hand, it is often more convenient for theoretical considerations. When
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we are dealing with the properties of a bulk sample, the result should be
independent of the boundary condition. This is because the contribution from
regions near the wall is negligible compared with that from the interior of the
sample, which represents most of the volume. In fact, the number of states
that satisfy |k| ≤ kM does not depend on the boundary condition. Since the
energy of a wave is determined by the frequency of the wave, which depends on
the absolute value of the wave vector, the density of states is independent of
the boundary condition. Therefore, the properties of a bulk sample calculated
by use of statistical mechanics do not depend on the boundary condition.



G

The Riemann Zeta Function

The Riemann zeta function ζ(z) at Re z > 1 is defined by the infinite series:

ζ(z) =
∞∑

n=1

1
nz

(Re z > 1) . (G.1)

The value at Re z ≤ 1 is given by the analytic continuation of (G.1) to
Re z ≤ 1. This function appears in statistical physics because of the following
two integral representations. One of these representations is related to the
Bose distribution function:

ζ(z) =
1

Γ (z)

∫ ∞

0

tz−1

et − 1
dt (Re z > 1) . (G.2)

The other is related to the Fermi distribution function:

ζ(z) =
1

(1 − 21−z) Γ (z)

∫ ∞

0

tz−1

et + 1
dt (Re z > 0) . (G.3)

In these equations, Γ (z) is the gamma function, defined in (D.7).
It is easy to verify these representations. For example, (G.2) can be trans-

formed to

ζ(z) =
1

Γ (z)

∫ ∞

0

tz−1

et

1
1 − e−t

dt

=
1

Γ (z)

∫ ∞

0

tz−1
∞∑

n=0

e−(n+1)t dt

=
∞∑

n=0

1
(n + 1)z

=
∞∑

n=1

1
nz

. (G.4)

Equation (G.3) can be verified similarly.



202 The Riemann Zeta Function

For z = 2 and 4, the zeta function can be calculated analytically. The
results are

ζ(2) =
π2

6
,

ζ(4) =
π4

90
. (G.5)

The following asymptotic expansion is convenient for calculating ζ(z) for an
arbitrary value of z:

ζ(z) =
n∑

m=1

1
mz

+
1

(z − 1)nz−1
− 1

2nz
+

z

12nz+1

−z(z + 1)(z + 2)
720nz+3

+
z(z + 1)(z + 2)(z + 3)(z + 4)

30240nz+5
· · · . (G.6)

Using this expansion, we can obtain the following values, used in Sect. 10.5.2
in relation to the ideal Bose gas:

ζ

(
3
2

)
= 2.61237535 , (G.7)

ζ

(
5
2

)
= 1.34148726 . (G.8)
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Index

absolute temperature 8
adiabatic wall 23
aerogels 127
age of the universe 81
angular frequency 48
angular momentum 64
Avogadro constant 5

binomial coefficients 185
binomial theorem 11, 185
black body 77
blast furnace 76
Bohr magneton 155
Boltzmann constant 17
Bose distribution 63, 70
Bose distribution function 26, 153, 201
Bose gas 147, 169
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Bose–Einstein condensate 134
Bose–Einstein condensation 170, 171
boson 148
boson gas 152
boundary condition 5, 197
Boyle’s law 175
Boyle–Charles law 9
bulk modulus 84

canonical distribution 36
cavity 77
center of gravity 58
chemical bond 70
chemical potential 31, 121, 149
classical ideal gas 178
Clausius–Clapeyron law 123

closed shell 90
COBE 81
coexistence condition 121
coexistence of gas and liquid 130
coexistence of phases 121
collective oscillations of solid 70
combinations 185
constant-pressure heat capacity 9
constant-volume heat capacity 8
constraint 5
Cooper pairs 134
cosmic microwave background radiation
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coupled oscillators 70
coupling constant 107
covalent bond 70
critical exponent 140
critical phenomena 139
critical point 119, 126, 133
critical temperature 100, 128
crystal lattice 67
Curie temperature 102
Curie’s law 95
Curie–Weiss law 106

dark energy 81
dark matter 81
de Broglie wavelength 181
de Broglie’s relation 197
Debye approximation 72
Debye model 70
Debye temperature 74
degrees of freedom 58
density of single-particle states 155
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density of states 26
diamond 75
diatomic molecule 58
dipole–dipole interaction 91
dispersion relation 71
domains 106
Dulong–Petit law 67

effective magnetic field 100
Einstein model 67
elasticity of rubber 83
electric dipole moment 116
electromagnetic radiation 77, 148
energy 5
energy of a harmonic oscillator 61
energy of rotation 64
energy of vibration 62
entropy 24, 138, 154
environment 5, 35
equation of state 9
equilibrium condition 28
equipartition law 62
Euler’s formula 48
exchange interaction 90
extensive state variable 5

factorial function 185
Fermi distribution function 152, 201
Fermi energy 158
Fermi gas 147
Fermi momentum 158
Fermi statistics 148
Fermi surface 158
Fermi temperature 160
fermion 148
fermion gas 151
ferromagnetic phase 133
ferromagnetism 89
first law of thermodynamics 6
first-order transition 115
fixed boundary condition 197
free energy 39, 137, 150

gamma function 53
gas constant 9
Gaussian distribution function 14, 187
Gaussian integral 187
Gibbs free energy 43, 120
Gibbs paradox 53

grand partition function 150
ground state 26
gyromagnetic ratio 155

hard-core repulsion 117
harmonic oscillation 68
harmonic oscillator 61
heat 6
heat bath 35
heat capacity 8, 96, 103, 109, 138, 166,

175
heat capacity of a solid 67
Heisenberg model 133
Heisenberg’s uncertainty principle 50
helium 115
helium-3 124
Helmholtz free energy 39
Hooke’s law 83
Hund’s rules 90
hyperbolic function 62, 195
hypersphere 53, 193

ideal Bose gas 151
ideal Fermi gas 151
ideal gas 10, 47, 147
intensive state variable 5
internal energy 6, 97, 138, 164, 173
ionic crystal 118
iron 90
irreversible process 32
Ising model 92, 97, 133

Joule heating 6

kinetic theory of gases 9

Lagrange’s method of undetermined
multipliers 191

lambda transition temperature 115
Landau free energy 135
Landau’s theory 41
latent heat 122
lattice constant 71
lattice point 67
lattice vibrations 148
law of equipartition 62
lead 75
Legendre transformation 42
links 97
long-range order 127
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longitudinal mode 70

magnetic materials 89
magnetic moment 89
magnetic susceptibility 95, 105, 110,

160, 167
magnetite 91
magnetization 41, 92, 110
many-particle state 151
Maxwell distribution 18, 37
Maxwell relations 43
Maxwell’s rule 130
Mayer relation 21, 58
mean-field approximation 97, 99
mechanical energy 6
metallic bond 70
metastable state 122
microcanonical distribution 23
microwave radiation 80
model of rubber 84
molar heat 9
molar heat of a solid 67
moment of inertia 64
mutual thermal equilibrium 7

natural variables 43
neutron 89
nitrogen 115
nonequilibrium state 32
normal distribution function 187
normal modes 70
nuclear magnetic moment 125
number of microscopic states 23
number of states 26

occupation number representation 151
order parameter 133

paramagnetic phase 133
paramagnetism 89
partial partition function 135
partition function 38, 120
Pauli exclusion principle 148
periodic boundary condition 77, 198
permanent magnet 89
permeability of free space 95
permutation 53
Perrin 37
phase diagram 119

phase space 49, 147
phase transition 102, 115
phonon 148, 169
photon 148, 169
Planck constant 48
polymer 84
Pomeranchuk cooling 125
potential energy 6
pressure 5, 31, 165, 174
pressure of gas 18
pressure of ideal gas 54
principle of equal probability 15, 20
proton 89

quantization of momentum 48
quantum mechanics 25, 47
quantum number 62
quasi-stationary nonequilibrium state

32
quasiparticle 154

random walk 188
resin 37
Riemann zeta function 163, 201
rotation 58
rubber 83

saturated vapor pressure 115
saturation magnetization 92
second law of thermodynamics 8
second-order phase transition 41, 133
self-consistent equation 100
single-particle state 151
sound velocity 71
specific heat 9
specific-heat ratio 58
spin 148
spin angular momentum 89
spontaneous symmetry breaking 102,

134
standing wave 71
standing-wave states 48
state variables 5
statistics (Bose or Fermi) 148
Stefan’s law 76
Stirling’s formula 13, 185
supercooling 122
supercritical water 127
superfluid phase 115, 173
superheating 122
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symmetry 134

temperature 7, 24
temperature of the universe 81
thermal energy 62
thermal equilibrium 4
thermodynamic function 42, 154
thermodynamics 3
thermometer 7
total differential 42
total energy 5
transfer matrix 108
transverse mode 70
triple point 119
two-dimensional Ising model 140

universality class 145

van der Waals gas 128
van der Waals interaction 117
variance 11

velocity distribution 15
velocity space 15
vibration 58
volume 5

water 115
wave function 47
wave packet 50
wave vector 48
wave vector space 72
Wien’s law 76
WMAP 81
work 6

XY model 133

Young’s modulus 83

zero-point vibration 61
zeroth law of thermodynamics 7
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