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Preface

This book is intended to provide an introduction to the physics and applications of soft x-
rays and extreme ultraviolet (EUV) radiation. These short wavelengths are located within
the electromagnetic spectrum between the ultraviolet, which we commonly associate with
sunburn, and harder x-rays, which we often associate with medical and dental imaging. The
soft x-ray/EUV region of the spectrum has been slow to develop because of the myriad
atomic resonances and concomitant short absorption lengths in all materials, typically of
order one micrometer or less. This spectral region, however, offers great opportunities for
both science and technology. Here the wavelengths are considerably shorter than visible or
ultraviolet radiation, thus permitting one to see smaller features in microscopy, and to write
finer patterns in lithography. Furthermore, optical techniques such as high spatial resolution
lenses and high reflectivity mirrors have been developed that enable these applications to
a degree not possible at still shorter wavelengths. Photon energies in the soft x-ray/EUV
spectral region are well matched to primary resonances of essentially all elements. While this
leads to very short absorption lengths, typically one micrometer or less, it provides a very
accurate means for elemental and chemical speciation, which is essential, for instance, in
the surface and environmental sciences. Interestingly, water is relatively transparent in the
spectral region below the oxygen absorption edge, providing a natural contrast mechanism
for imaging carbon-containing material in the spectral window extending from 284 to 543 eV.
This provides interesting new opportunities for both the life and the environmental sciences.

Exploitation of this region of the spectrum is relatively recent. Indeed the names and
spectral limits of soft x-rays and extreme ultraviolet radiation are not yet uniformly accepted.
We have chosen here to follow the lead of astronomers, the lithography community, and much
of the synchrotron and plasma physics communities in taking extreme ultraviolet as extending
from photon energies of about 30 eV to 250 eV (wavelengths from about 40 nm to 5 nm) and
soft x-rays as extending from about 250 eV (just below the carbon K edge) to several thousand
eV (wavelengths from 5 nm to about 0.3 nm). The overlaps with ultraviolet radiation on the
low photon energy side and with x-rays on the high photon energy side of the spectrum are not
well defined. For comparison, green light has a photon energy in the vicinity of 2.3 eV and a
wavelength of 530 nm. Recent developments involve advances in both science and technology,
moving forward in a symbiotic relationship. Of particular importance is the development of
nanofabrication techniques by the electronics industry. These provide well-defined structures
with feature sizes similar to the wavelengths of interest here. The development of thin film
multilayer coating capabilities by the materials science community has also been of great
importance.
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xiv P R E F A C E

This book is intended for use by graduate students and researchers from physics, chem-
istry, engineering, and the life sciences. It is an outgrowth of classes I have taught during the
past 14 years at the University of California at Berkeley. Typically the students in these classes
were from the Ph.D. programs in Applied Science and Technology, Electrical Engineering
and Computer Science, Physics, Chemistry, Materials Science, Nuclear Engineering, and
Bioengineering. In some cases there were undergraduate students. This diversity of academic
backgrounds has led to a text well suited for interdisciplinary pursuits. The text is intended to
be comprehensive, covering basic knowledge of electromagnetic theory, sources, optics, and
applications. It is designed to bring readers from these backgrounds to a common understand-
ing with reviews of relevant atomic physics and electromagnetic theory in the first chapters.
The remaining chapters develop understanding of multilayer coated optics with applications to
materials science and EUV astronomy; synchrotron and undulator radiation; laser-produced
plasmas; EUV and soft-x-ray lasers; coherence at short wavelengths; zone plate lenses and
other diffractive structures with applications to biomicroscopy, materials microscopy and in-
spection of nanostructure patterns; and, finally, a chapter on the application of EUV and soft
x-ray lithography to future high-volume production of sub-100 nm feature size electronic
devices.

While the book is comprehensive in nature, it is meant to be accessible to the widest
possible audience. Each chapter begins with a short summary of the important points in the
material, illustrations that capture the main subject matter, and a few selected equations to
whet the academic appetite. Most chapters have introductory sections designed for readers new
to the field that include heuristic arguments and illustrations meant to clarify basic concepts.
Each chapter also contains a mathematical development of equations for graduate students and
specialists with particular interest in the chapter subject matter. To follow these mathematical
developments, an undergraduate training in vector calculus and Fourier transforms is required.
Descriptions of current applications in the physical and life sciences are incorporated. While
there is a rigorous mathematical development, it is possible to absorb important concepts
in the introductory material and then skip directly to the applications. Homework problems,
which may be found at the website http://www.coe.berkeley.edu/AST/sxreuv, are designed to
strengthen understanding of the material, to familiarize the reader with units and magnitudes,
and to illustrate application of various formulas to current applications.

Over 600 references are provided to serve as an entry point to current research and ap-
plications. To facilitate use as a reference work many of the more important equations are
boxed. In some cases the equations are repeated in numerical form, with common units, for
more convenient use in a handbook fashion. Reference appendicies include tables of elec-
tron binding energies, characteristic emission lines, tables and graphs of real and imaginary
scattering factors for many elements, graphs of calculated photo-absorption cross-sections,
updated physical constants, and a convenient list of vector and mathematical relations. The
International System of Units (SI) is also summarized, with lists of derived units and conver-
sion factors commonly used in this field.

Berkeley, California
June 1999
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Chapter 1

INTRODUCTION

1.1 THE SOFT X-RAY AND EXTREME ULTRAVIOLET REGIONS
OF THE ELECTROMAGNETIC SPECTRUM

One of the last regions of the electromagnetic spectrum to be developed is that between ul-
traviolet and x-ray radiation, generally shown as a dark region in charts of the spectrum. It
is a region where there are a large number of atomic resonances, leading to absorption of
radiation in very short distances, typically measured in nanometers (nm) or micrometers (mi-
crons, µm), in all materials. This has historically inhibited the pursuit and exploration of the
region. On the other hand, these same resonances provide mechanisms for both elemental (C,
N, O, etc.) and chemical (Si, SiO2, TiSi2) identification, creating opportunities for advances
in both science and technology. Furthermore, because the wavelengths are relatively short,
it becomes possible both to see smaller structures as in microscopy, and to write smaller
patterns as in lithography. To exploit these opportunities requires advances in relevant tech-
nologies, for instance in materials science and nanofabrication. These in turn lead to new
scientific understandings, perhaps through surface science, chemistry, and physics, providing
feedback to the enabling technologies. Development of the extreme ultraviolet and soft x-ray
spectral regions is presently in a period of rapid growth and interchange among science and
technology.

Figure 1.1 shows that portion of the electromagnetic spectrum extending from the in-
frared to the x-ray region, with wavelengths across the top and photon energies along the
bottom. Major spectral regions shown are the infrared (IR), which we associate with molec-
ular resonances and heat; the visible region from red to violet, which we associate with color
and vision; the ultraviolet (UV), which we associate with sunburn and ionizing radiation; the
regions of extreme ultraviolet (EUV) and soft x-rays (SXR), which are the subject of this
book; and finally hard x-rays, which we associate with medical and dental x-rays and with the
scientific analysis of crystals, materials, and biological samples through the use of diffractive
and other techniques.

The extreme ultraviolet is taken here as extending from photon energies of about 30 eV
to about 250 eV, with corresponding wavelengths in vacuum extending from about 5 nm to
40 nm.∗ The soft x-ray region is taken as extending from about 250 eV ( just below the carbon

∗It is common to express photon energies in this spectral region in electron volts (eV) or thousands of
electron volts (keV), where the photon energy is h̄ω, h̄ is Planck’s constant divided by 2π , and ω = 2π f

1

                                                                                            
                                              

                                                            



2 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

F IGURE 1.1 (see Colorplate I). The electromagnetic spectrum as it extends from the infrared (IR) to the
x-ray regions. Visible light is shown with red (650 nm), green (530 nm), and blue (470 nm)
wavelengths. At shorter wavelengths are ultraviolet (UV) radiation, extreme ultraviolet radiation
(EUV), soft x-rays (SXR), and hard x-rays. Shown for reference are the silicon L-absorption edge at
99.2 eV (12.5 nm wavelength), the carbon K-absorption edge at 284 eV (4.37 nm), the oxygen
K-absorption edge at 543 eV (2.28 nm), the silicon K-absorption edge at 1.84 keV (0.674 nm), the
copper K-absorption edge at 8.98 keV (0.138 nm), the copper Kα-emission line at 0.154 nm or 1.54 Å
(8.05 keV), and twice the Bohr radius at 2a0 = 1.06 Å, the diameter of the n = 1 orbit in Bohr’s model
of the hydrogen atom, but more generally a dimension within which resides most of the charge for all
atoms. Vertical dashed lines correspond to the transmission limits of common window materials used
to isolate vacuum. Shown are approximate transmission limits for common thicknesses of fused silica
(pure SiO2) at 200 nm, a thin film of silicon nitride (∼100 nm thick Si3N4) at 15 nm, and an 8 µm
thick beryllium foil at a wavelength of about 1 nm.

K-edge) to several keV, as shown in Figure 1.1. These spectral regions are characterized by the
presence of the primary atomic resonances and absorption edges of most low and intermediate
Z elements, where Z is the atomic number (the number of protons in the nucleus). The primary
atomic absorption edges† for selected elements are given in Table 1.1, along with 1/e absorption
lengths at photon energies of 100 eV and 1 keV. The K- and L-absorption edges, associated
with the removal of a core electron by photoabsorption from the most tightly bound atomic
states (orbitals of principal quantum numbers n = 1 and n = 2, respectively), are described
later in this chapter. The K-absorption edges of carbon (CK), oxygen, silicon, and copper are
shown in Figure 1.1, as is the L-absorption edge of silicon (SiL), just below 100 eV.

We see in Table 1.1 that many of these absorption edges lie in the combined soft-x-ray
and extreme ultraviolet spectral region. What differentiates these regions from neighboring
spectral regions is the high degree of absorption in all materials. At lower photon energies,
in the visible and ultraviolet, and at higher photon energies, in the hard x-ray region, many
materials become transparent and it is not necessary to utilize vacuum isolation techniques
in general. For example, Figure 1.1 shows dashed vertical lines at the locations of common
window materials that can hold vacuum over square centimeter areas while still transmitting
radiation in the indicated regions. In the UV, fused silica, a form of pure SiO2, is transmissive to
wavelengths as short as 200 nm, in millimeter thickness. For shorter wavelengths one quickly
enters the vacuum ultraviolet (VUV), where air and all materials are absorbing. Shown just

is the radian frequency. Wavelengths (λ) are commonly expressed in nanometers (1 nm = 10−9 m)
and angstroms (1 Å = 10−10 m). See Appendix A for the values of physical constants and conversion
factors.

†Standard reference data for this spectral region are given in Refs. 1–4.
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TABLE 1.1. K- and L3-absorption edges for selected elements. Also given are 1/e
absorption depths at photon energies of 100 eV and 1 keV. Energies are given to the
nearest electron volt. They are measured from the vacuum level for gases (N2, O2),
relative to the Fermi level for metals, and relative to the top of the valence band for
semiconductors. Wavelengths are given to three significant figures. These K- and
L-edge values can vary somewhat with the chemical environment of the atom. Values
here are taken from Williams.1 Absorption lengths are obtained from Henke,
Gullikson, and Davis.3

labs

Kabs-edge Labs-edge λK−abs λL−abs 100 eV 1 keV
Element Z (eV) (eV) (nm) (nm) (nm) (µm)

Be 4 112 — 11.1 — 730 9.0
C 6 284 — 4.36 — 190 2.1
N 7 410 — 3.02 — — —
O 8 543 — 2.28 — — —

H2O 160 2.3
Al 13 1,560 73 0.795 17.1 34 3.1
Si 14 1,839 99 0.674 12.5 63 2.7
S 16 2,472 163 0.502 7.63 330 1.9

Ca 20 4,039 346 0.307 3.58 290 1.3
Ti 22 4,966 454 0.250 2.73 65 0.38
V 23 5,465 512 0.227 2.42 46 0.26
Cr 24 5,989 574 0.207 2.16 31 0.19
Fe 26 7,112 707 0.174 1.75 22 0.14
Ni 28 8,333 853 0.149 1.45 16 0.11
Cu 29 8,979 933 0.138 1.33 18 0.10
Se 34 12,658 1,434 0.0979 0.865 63 0.96
Mo 42 20,000 2,520 0.0620 0.492 200 0.19
Sn 50 29,200 3,929 0.0425 0.316 17 0.17
Xe 54 34,561 4,782 0.0359 0.259 — —
W 74 69,525 10,207 0.0178 0.121 28 0.13
Au 79 80,725 11,919 0.0154 0.104 28 0.10

below 1 nm wavelength is the transmission limit of a thin (�8 µm)beryllium foil that transmits
photons of energy greater than about 1.5 keV. For many years these two materials defined
the limits of available window materials. More recently thin films (∼100 nm) such as silicon
nitride (stoichiometrically Si3N4) have extended transmissive windows to photon energies just
under 100 eV, as shown in Figure 1.1.

While this plenitude of atomic resonances and efficient photoabsorption has made the
EUV and soft x-ray regions more difficult to access, it also provides a very sensitive tool for
elemental and chemical identification, thus creating many scientific and technological oppor-
tunities. These opportunities are enhanced in this spectral region in that the wavelengths are
short, but not so short as to preclude the development of high resolution optical techniques,
thus permitting direct image formation and spatially resolved spectroscopies, to spatial res-
olutions measured in tens of nanometers. The relative transparency of water and its natural
contrast with other elements further add to these opportunities, for instance for spectroscopy
in the life and environmental sciences.

In the paragraphs that follow we will briefly review the basic processes of absorption,
scattering, and photoemission; atomic energy levels and allowed transitions; and associated
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absorption edges and characteristic emission lines. We note two interesting features asso-
ciated with wavelengths in the EUV/soft-x-ray spectral region. In general the wavelengths
are large compared to the Bohr radius, λ � a0, where a0 is the radius of the first (n = 1)
stationary electron orbit in the Bohr model of hydrogen.‡ More significantly here, the di-
ameter 2a0 = 1.06 Å typically encompasses most of the electronic charge in multi-electron
atoms,¶ so that to a large degree the treatment of scattering simplifies as the various electrons
experience a rather uniform phase variation, an assumption that would not hold at shorter
x-ray wavelengths. Furthermore, because the wavelengths are long on the atomic scale, much
greater than the Compton wavelength4, 5 (λ � λC = h/mc = 0.0243 Å), momentum transfer
from the photon can be ignored during scattering, i.e., the photon momentum h̄k � h̄kC ,
where k = 2π/λ is the wavenumber, again simplifying the analysis of scattering in this
spectral region.

Finally, we close this section with some numerical relationships7 in units8 convenient
for work in this spectral region. Based on the dispersion relation in vacuum, f λ = c
or ω = kc, where c is the velocity of light§ in vacuum and ω = 2π f , the product of
photon energy h̄ω and wavelength λ is given by (see Appendix A for values of physical
constants)

h̄ω · λ = hc = 1239.842 eV nm (1.1)

The number of photons required for one joule of energy, with wavelength given in nanometers
(nm), is

1 joule ⇒ 5.034 × 1015λ[nm] photons (1.2a)

or in terms of power

1 watt ⇒ 5.034 × 1015λ[nm]
photons

s
(1.2b)

where 1 nm = 10 Å. Thus for a wavelength λ = 1 nm, a power of one watt corresponds to a
photon flux of 5.034 × 1015 photons/s, each photon having an energy E � 1240 eV.

‡Numerically a0 = 4πε0h̄2/me2 = 0.529 Å, where m is the electron rest mass, e the electron charge,
ε0 the permittivity of free space, and h̄ Planck’s constant divided by 2π . See Eisberg and Resnick, Ref.
5, for a discussion of Bohr’s model of the hydrogen atom (Chapter 4) through a discussion of wave
mechanics for the multi-electron atom (Chapter 10). Also see Tipler, Ref. 6, for a somewhat more
introductory presentation.

¶In multi-electron atoms the inner shells typically have very small radii, of order a0/Z , as they experience
nearly the full Coulomb attraction of the higher-Z nucleus, with little shielding by the outer electrons.
A few outer electrons typically orbit with a radius na0. See Eisberg and Resnick, Ref. 5.

§The phase velocity of EUV and soft x-ray radiation is derived from Maxwell’s equations in Chapters
2 and 3, for propagation in vacuum and materials.
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F IGURE 1.2. (a) An incident primary electron of sufficiently high energy E p is scattered by an atom as
it knocks free a core electron from the K-shell. The primary electron now travels in a new direction,
with a reduced energy E ′

p . The lost energy is used to overcome the binding energy of the previously
bound electron, and to impart kinetic energy to what is now referred to as a secondary electron. The
core vacancy (K-shell in this case) can then be filled by a higher-lying L- or M-shell electron. (b) An
incident photon of sufficient energy h̄ω is absorbed by the atom with the emission of a photoelectron of
kinetic energy equal to the photon energy minus the binding energy. Again a vacancy is created,
eventually to be filled by an outer electron. (c) An atom with a core vacancy readjusts as a higher-lying
electron makes a transition to the vacancy, with the emission of a photon of characteristic energy
(fluorescent radiation). (d) The atom adjusts to the core vacancy through the non-radiative Auger
process in which one electron makes a transition to the core vacancy, while a second electron of
characteristic energy is emitted. The second electron is not necessarily emitted from the same shell.

1.2 BASIC ABSORPTION AND EMISSION PROCESSES

In this section we briefly review the basic processes through which radiation interacts with
matter. In Figure 1.2 we show simplified models of the atom, with point electrons in orbit
around a nucleus of positive charge +Ze. In x-ray notation the electron orbits are labeled
K, L, and M, corresponding to principal quantum numbers n = 1, 2, and 3, respectively. A
more accurate model of the atom is discussed in the next section, but that shown in Figure 1.2
suffices for these introductory comments.

Shown in Figure 1.2(a) is a primary electron incident on a multi-electron atom, with
sufficient energy to remove a core electron in a close encounter. Common nomenclature refers
to the incident electron as a primary electron, shown as scattered (redirected) off at some new
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F IGURE 1.3. Fluorescence and Auger yields for the
K-shell and the L3-subshell as a function of atomic
number Z . The Auger yields include all
non-radiative contributions. (Following M.
Krause,9 Oak Ridge National Laboratory.)

angle, and in this case with reduced energy (E ′
p), where the lost energy is used to overcome the

binding energy needed to remove the core electron, now free and referred to as a secondary
electron, and to supply kinetic energy to the electron (Es). The core vacancy can then be
filled by an electron from a higher-lying orbit, pulled by the strong nuclear potential, with the
emission of a photon of characteristic energy equal to the difference between the two shells.
In Figure 1.2(b), a related process, photoionization, is shown in which a photon of sufficient
energy is absorbed by the atom, transferring the energy to an emitted photoelectron with a
kinetic energy equal to that of the incident photon, minus the binding energy of an electron in
the particular shell. As an L-shell electron is bound to the atom with less energy than a K-shell
electron, it will emerge with greater kinetic energy. Electron binding energies for hydrogen
through uranium are given in Appendix B, Table B.1.

In both of these ionization processes [(a) and (b)] the atom is left with a core vacancy. The
atom can rearrange itself for minimal total energy by the transition of a higher-lying electron,
pulled by the strong nuclear potential, to the vacancy by one of two competing processes.

In (c) the atom is shown rearranging in a process of fluorescence, in which the electron
transition is accompanied by the emission of a photon of characteristic energy equal to the
difference between that of the initial and final atomic states. Characteristic emission energies
are given in Appendix B, Table B.2. In a competing effect (d) the atom rearranges through the
emission of a second Auger (pronounced ō −′zhā), electron, again of characteristic energy.
The emitted Auger electron is labeled with three capital letters, the first representing the
shell of the original vacancy, the second representing the shell from which the vacancy is
filled, and the third representing the shell from which the Auger electron is ejected. In the
competition between fluorescent emission and the Auger process, the probability tends to
favor fluorescence for high Z atoms, as shown in Figure 1.3, and the Auger process for low
Z atoms.9 Auger electron energies10 for lithium through uranium are given in Appendix B,
Table B.3. As the Auger electrons have a fixed characteristic energy, they are used extensively
for elemental characterization in surface and interface analysis.

The study of atoms, molecules, and surfaces by the measurement of photoelectron kinetic
energies, as a function of incident photon energy, is known as photoemission spectroscopy.
This process is widely used for the elemental identification and analysis of chemical bonding
for atoms at or near surfaces. As generally employed, photons of fixed energy illuminate a
surface or thin film, providing the necessary energy to lift bound electrons into the continuum,
as shown in Figure 1.4. With well-known electron binding energies (Appendix B, Table B.1)
the observed kinetic energies can be used to identify the elements present. As the binding
energies of core electrons are affected by the orbital parameters of the outer electrons (chemical
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F IGURE 1.5. Electron mean free path, as a function of electron energy, for (a) aluminum, (b) gold, and
(c) a combination of many materials. The data in (a) and (b) is from Penn,18 while that in (c) is from
Seah and Dench.19 The various curves reflect efforts to develop a universal model that describes
inelastic scattering of electrons in a solid.

bonding in molecules, valence and conduction bonds in solids), photoemission also provides
a powerful tool for the study of chemical states.11−17 As L-shell energies are more sensitive
to the bonding of outer electrons than are the energies of the more tightly bound and shielded
K-shell electrons, the L-shell electrons are more commonly used in photoemission studies.

If the emitted photoelectron travels any distance in a material, it is likely to lose energy
quickly through interactions with other electrons (individual collisions or collective motion).
Figure 1.5 shows typical electron range data, as a function of electron energy, in aluminum
and gold,18 as well as a universal curve for many materials.19, 20 With incident photon energies
characteristic of the EUV/soft-x-ray spectral region, it is clear that photoelectron ranges will be
extremely short, of order 1 nm, so that these techniques are clearly limited to surface science.

When observing the emission spectrum from a solid material bombarded by electrons it
is typical to observe both characteristic line emission and continuum emission. This latter
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of electrons interact randomly with nuclei at various distances of closest approach, b, resulting in wide
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F IGURE 1.7. Continuum radiation and narrow line emission from a solid target with incident electrons,
as might be observed from the anode of an electrical discharge tube.

process is called bremsstrahlung, from the German word for “braking radiation.” Figure 1.6
shows a simple diagram of the process, in which electrons of a given velocity v, or energy
E , approach an electron or nucleus at various distances of closest approach, b (the impact
parameter), experiencing a wide range of accelerations (depending on the closeness of the
interaction) and thus emitting photons across a wide range of energies. With a large number
of incident electrons and a wide variety of impact parameters, a rather broad continuum of
radiation is produced. Where photoemission occurs due to direct impact with bound electrons,
as described earlier in Figure 1.2(a), characteristic line emission is also observed. Both
phenomena are illustrated, as they might typically be observed,21 in Figure 1.7. The nature
and nomenclature of the characteristic line emissions are discussed in the following section.

Historically, the process of photoabsorption [Figure 1.2(b)] has been observed macro-
scopically by passing radiation through thin foils and observing the resultant decrease in
intensity as a function of thickness.22 As shown in Figure 1.8, one observes that with incre-
mental increases in thickness, �x , there is an an incremental decrease in transmitted intensity
I , relative to the incident intensity I0, such that

�I

I0
= −ρµ �x

where ρ is the mass density and µ is an energy- and material-dependent absorption coefficient.
Writing this in the differential limit (�x → dx, �I → d I ), the equation integrates to a
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F IGURE 1.8. (a) Photoabsorption as observed with thin foils of increasing thickness x at fixed photon
energy, with (b) an example of the (mass) absorption coefficient µ for copper (from Henke, Gullikson,
and Davis3). The same process is described on an atomic level in (c), with the photoabsorption
cross-section (photoionization) for a copper atom in (d) (from Yeh and Lindau4). Exponential
attenuation of the radiation is shown in (e). Differences observed in comparing (b) and (d) are due to
solid state effects in metallic copper foils, most noticably for copper in the absence of the atomic 3d
edge just above 10 eV photon energy.

logarithmic dependence ln(I/I0) = −ρµx , or in exponential form

I

I0
= e−ρµx (1.3a)

where µ = µ(E, Z ), E = h̄ω is the photon energy, Z represents the elemental dependence,
and µ has the somewhat unfortunate, but historical, name mass absorption coefficient. Stan-
dard values of µ are given in Appendix C for representative materials. This same expression
can be written in terms of an atomic density na and a cross-section for photoabsorption, σabs, as

I

I0
= e−naσabsx (1.3b)

where σabs depends on both element (Z ) and photon energy. Curves of σabs, also referred
to as the photoionization cross-section, are given in Appendix C for representative elements,
and more completely in Ref. 4. The development of Eqs. (1.3a) and (1.3b), which repre-
sent macroscopic and microscopic descriptions of the same process, is given in Chapter 3,
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Section 3.2, where it is shown that µ = σabs/Amu , where A is the number of atomic mass
units and mu is an atomic mass unit (approximately the mass of a proton or neutron), as given
in Appendix A. There are some differences in the two sets of data, as the thin foil absorption
coefficients µ are experimentally derived and thus involve atoms in a particular solid material
or molecular form. The cross-sections σabs are calculated for single isolated atoms. The latter
have the benefit that they include separately identifiable contributions of the various atomic
subshells,4 as seen here in Figure 1.8(d).

While Figure 1.8(b) and (d) are macroscopic and microscopic manifestations of the same
physical processes, some differences are notable. At low photon energies solid state effects
in the metallic copper foil [Figure 1.8(b)] are important, and as a result the sharp 3d edge
of the isolated copper atom [Figure 1.8(d)] just above 10 eV is not observed. Such data
are of great interest to atomic and solid state researchers. Examples of the measured and
calculated curves are given in Appendix C. A variety of techniques are employed to study
atomic positions within solids and on surfaces, based on details of the absorption and emission
processes in the presence of near-neighbor atoms. Examples of the literature are given in
Refs. 11–17.

1.3 ATOMIC ENERGY LEVELS AND ALLOWED TRANSITIONS

The modern understanding of atomic energy levels, and allowed transitions between these
levels, began with the Bohr–Rutherford model of the atom5, 6 consisting of a small positive
nucleus of charge +Ze, surrounded by electrons of charge −e orbiting at relatively large radii,
of order 1 Å. Based on Rutherford’s experiments (1911) with the scattering of α-particles,‖

which demonstrated the existence of a very small nucleus of positive charge, Planck’s concept
(1900) of radiation from quantized oscillators, and extensive spectroscopic data showing that
atoms emit characteristic narrow lines with frequencies (or wavelengths) in specific numerical
sequences, Bohr (1913) proposed the first partially successful quantum model of the atom.
By equating the Coulomb force due to the positive nucleus, Ze2/4πε0r2, to the centripetal
force mv2/r for quantized circular orbits of angular momentum mvr = nh̄ (n = 1, 2, 3, . . .),
Bohr found stationary electron orbits, for the single electron atom, of energy En and radius
rn , where

En = − m Z2e4

32π2ε2
0 h̄2

1

n2
(1.4)

and

rn = 4πε0 h̄2

m Ze2
· n2 (1.5)

where e and m are the electron charge and mass, respectively, Ze is the nuclear charge, ε0 is
the permittivity of free space, and h̄ is Planck’s constant divided by 2π .

‖The α-particle derives its name from early studies of the radioactive decay of heavy elements. It consists
of two protons and two neutrons, but no electrons, and thus is essentially a bare helium nucleus, 4He.
As a radioactive decay product it is typically emitted with an energy of 5–9 MeV (Ref. 4). The other
particles observed through trajectory variations in a magnetic field were β-particles (electrons, opposite
curvature of trajectory to α-particles) and γ -rays (photons, no deflection).
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The Bohr model, despite continuous acceleration of the electron, permits radiation only
when the electron makes a transition from one stationary state (ni ) to another (n f ), with
characteristic energies

h̄ω = Ei − E f = m Z2e4

32π2ε2
0 h̄2

(
1

n2
f

− 1

n2
i

)
(1.6)

– characteristic in that there is a Z 2 dependence specific to the particular element radiating,
and because of the numerical sequence involving the possible combinations of ni and n f . The
constant me4/32π2ε2

0 h̄2 = hcR∞ = 13.606 eV, known historically as the Rydberg constant
from earlier studies of hydrogen spectra, gives the ionization potential∗∗ of the ground state
(ni = 1, n f = ∞) of the hydrogen atom (Z = 1). The value of the first Bohr radius of the
hydrogen atom, r1 ≡ a0, is a common scale of atomic radii; from Eq. (1.5)

a0 = 4πε0 h̄2

me2
= 0.529 Å (1.7)

In terms of the Rydberg constant and first Bohr radius, the characteristic emission lines of a
single electron atom of nuclear charge Z are

h̄ω = (13.606 eV)Z2

(
1

n2
f

− 1

n2
i

)
(1.8)

and the radii are

rn = a0n2

Z
(1.9)

A great success of the Bohr model was its ability to accurately match the well-known
optical spectra of hydrogen, known as the Balmer series (1885), corresponding to n f = 2
and ni = 3, 4, 5, . . . , and also to give an accurate theoretical value for the experimentally
known (1890) Rydberg constant. This was soon extended to the then unknown Lyman series,
largely in the ultraviolet, with n f = 1, ni = 2, 3, 4, . . . ; the Paschen series with n f = 3,
ni = 4, 5, 6, . . . ; the Brackett and Pfund series with n f = 4 and n = 5, respectively, both in the
infrared. Sommerfeld (1916) extended the success of the Bohr atom by introducing elliptical
orbits and a second, azimuthal quantum number characterizing the ellipticity of the orbits.
Additionally, taking account of the relativistic nature of the electron motion (v/c ∼ 10−2 in
the hydrogen atom), Sommerfeld showed that quantized elliptical orbits introduce energetic
fine structure in the spectra, as was observed experimentally.

∗∗The energy required to remove an electron from an atom.
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These successes, however, raised questions about the model and the very nature of the
physics. Among the specifics, not all predicted emission lines were observed, suggesting
that among the possible quantum states, only some transitions were permitted. Indeed, the
model said nothing regarding transition rates or line intensities. More generally, the model
was perplexing in that it was based on continuous electron acceleration within the permitted
orbits, but without radiation and thus loss of energy – clearly in conflict with classical radia-
tion physics. Collectively, elements contributing to the above model are now known as “the
old quantum theory.” Following a decade of intense creativity,†† in the period from 1925 to
1930, Schrödinger, Heisenberg, Dirac and others developed a new quantum theory based on
wave mechanics, in which the particles are described in terms of a probabilistic wave function
�(r, t). In combination with the introduction of electron spin, the new quantum mechan-
ics provides a procedure for accurately predicting and matching experimental observations
regarding properties of the atoms.

The quantum mechanical description5, 6, 23−26 of a particle’s motion is in terms of a wave
function �(r, t), which obeys Schrödinger’s wave equation

− h̄2

2m
∇2�(r, t) + V (r, t)�(r, t) = ih̄

∂�(r, t)

∂t
(1.10)

where m is the particle mass, V (r) is the potential energy, and ∇ is the vector gradient. Particle
energy and momentum are associated with the operators

E → ih̄
∂

∂t
(1.11)

and

p → −ih̄∇ (1.12)

respectively. In wave mechanics, the probability of finding a particle within coordinates dr is

P(r, t)dr = �∗(r, t) �(r, t) dr (1.13)

where �∗ is the complex conjugate of �, and dr is shorthand notation for the scalar volume
around the position r, for instance dr = dx dy dz in rectangular coordinates. The function
�(r, t) is normalized to unity, so that

∫∫∫
all

space

|�(r, t)|2 dr = 1 (1.14)

Furthermore, expectation values for quantities such as the position vector, energy, and momen-
tum are given by integrals of the following form: For the expectation value of vector position,

r̄ =
∫∫∫

rP(r, t) dr =
∫∫∫

�∗(r, t)r �(r, t) dr (1.15)

which is a probabilistic average position where the particle can be expected to be found at a

††For a review see the texts by Tipler (Ref. 6) and by Eisberg and Resnick (Ref. 5), for example.
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time t . For the expectation value of energy,

Ē =
∫∫∫

�∗(r, t) E�(r, t) dr = ih̄
∫∫∫

�∗(r, t)
∂�(r, t)

∂t
dr (1.16)

and for the expectation value of momentum,

p̄ =
∫∫∫

�∗(r, t) p(r, t) �(r, t) dr = −ih̄
∫∫∫

�∗(r, t) ∇�(r, t) dr (1.17)

where Eqs. (1.11) and (1.12) have been used.
Solution of Schrödinger’s equation for the one-electron atom assumes a time dependence

�(r, t) = �(r)e−i Et/h̄ (1.18)

in a Coulomb potential

V (r) = −Ze2

4πε0r
(1.19)

with separable functions in spherical coordinates

�(r) = �(r, θ, φ) = R(r )�(θ )�(φ) (1.20)

where θ is measured from the z-axis. Requiring that these functions be finite, continuous,
singlevalued and normalizable introduces three quantum numbers, n, l, and ml , one for each
coordinate. For negative energy these correspond to bound electrons in orbits of discrete,
quantized energy. For positive energy the states are continuous and the electron is free. Here
n is the principal quantum number, associated with the radial coordinate, and having allowed
integer values n = 1, 2, 3, . . . The orbital quantum number l associated with the θ -coordinate
is related to the angular momentum by L = √

l(l + 1) h̄, and is constrained to the integer
values l = 0, 1, 2, . . . , n − 1. The magnetic quantum number ml , associated with continuity
of the wave function in the angle φ, is related to the z-component of angular momentum by
Lz = mlh̄, and is constrained to the integer values ml = −l, −l + 1, . . . , 0, 1, . . . , l.

The quantum mechanical description is completed with the introduction of a fourth quan-
tum number, ms , associated with the intrinsic electron angular momentum or spin, s. With s
having a value of 1

2 , the quantum number ms can have values of ± 1
2 . This admits the Pauli

exclusion principle, that no two electrons can have an identical set of quantum numbers. Elec-
tron spin additionally allows a spin–orbit coupling that energetically matches the fine structure
observed in emission lines.

The enumerated constraints on allowable quantum numbers n, l, ml , and ms , along with
the exclusion principle, dictate limits on the number of electrons in each shell. For instance,
the first shell, with n = 1, can hold only two electrons, with quantum numbers l = 0, ml =
0, ms = ± 1

2 . The second shell, with n = 2, can hold eight electrons, two in the l = 0 subshell,
and six in the l = 1 subshell, with ml = 0, ±1 and ms = ± 1

2 . The third shell, with n = 3, can
hold 18, with quantum number combinations l = 0, ml = 0, ms = ± 1

2 ; l = 1, ml = 0, ±1,
and ms = ± 1

2 ; and l = 2, ml = 0, ±1, ±2, and ms = ± 1
2 ; etc. In spectroscopic notation

the electron configuration according to n and l, for an atom such as argon (Z = 18), would
be written as 1s2 2s2 2p6 3s2 3p6, where s refers to an l = 0 subshell and p refers to l = 1 (d
refers to l = 2, f refers to l = 3, etc.), and where the historical use of s predates the later use
of s for spin.

With the constraints on the quantum numbers n, l, ml , the Schrödinger equation provides
a set of wavefunctions, �n,l,ml , with which to describe the atom. For instance, the probability
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F IGURE 1.9. (a) Radiative decay from an upper state �i to a lower state � f involves a mixed atomic
state in which the atom oscillates between the two at a frequency ωi f = (Ei − E f )/h̄, (b) with the
probability of finding the atom in the upper state slowly decaying to zero in a transition lifetime equal
to many millions of cycles. (Following Liboff31.)

of finding an electron within coordinates dr at a vector position r, in a state described by
�n,l,ml , is given by Eq. (1.13) to be |�n,l,ml |2 dr. The expectation value of vector coordinates
for this particular state (“orbit”) of the atom is given by Eq. (1.15) to be

r̄n,l,ml =
∫∫∫

�∗
n,l,ml

r �n,l,ml dr

That is, the coordinates are only known probabilistically, in contrast with the Bohr model,
where there were well-defined orbital coordinates. Interestingly, for the hydrogen atom, the
expectation values of energy are equal to those of the Bohr atom [Eq. (1.4)], with a correc-
tion due to spin–orbit coupling. The explicit coordinate dependence of the hydrogen atom
wavefunctions, and their energies including spin–orbit fine structure, are described in the
literature.5, 27, 28

The probability of a transition between two stationary states of the atom, which we
abbreviate here as �i and � f for initial and final states, is proportional to the square of the
quantum mechanical dipole matrix element29−31

−er̄i f = −e
∫

�∗
i r� f dr (1.21)

During a transition from the higher energy stationary state �i to the lower energy stationary
state � f , the average position of the electron oscillates between the two states at a frequency
equal to the difference in energies ωi f = (Ei − E f )/h̄, as shown in Figure 1.9. Quantum
mechanically the atom is in a mixed state in which the probability of finding the atom in the
upper state gradually diminishes from unity to zero, while the probability of finding it in the
lower state increases during this same transition period, or lifetime, from zero to unity. During
the transition period the electron typically executes millions of oscillations. This provides a
quantum mechanical description of the spontaneous emission of radiation that occurs after an
atom is excited to a higher energy level by photoabsorption (the inverse process) or collision
with an electron. The line width of the resultant emission depends on the time duration
(lifetime) of the transition, as the latter affects the number of oscillations corresponding to the
emitted photon or wavetrain. The longer the wavetrain, the better defined the wavelength and
hence the narrower the line width.

The transition probability depends on the integral matrix element given by Eq. (1.21). The
integral has a classical counterpart23 in the current density J = −env, whose time derivative
is used to calculate radiation in Maxwell’s equations, a subject we return to in Chapter 2. Here
the particle density is given by �∗�, the charge density by −e�∗�, and the velocity v by
dr/dt → −iωi f r , so that a time derivative of the classical current is analogous to that of the
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quantum mechanical dipole moment as given in Eq. (1.21). Transitions from an initial state
�i to a final state � f occur quantum mechanically when the two wave functions yield a finite
oscillation amplitude r̄(t) as given by the matrix element in Eq. (1.21). If the wavefunctions
�i , � f are such that the integral is zero, there is no oscillation leading to a transition, and the
transition is said to be not allowed. Examining the integral, one notes that r is an odd function
of the coordinates (replacing r by −r changes the sign of the integrand), requiring that the
initial and final wavefunctions be of opposite parity (one even, one odd in the coordinates
of integration) for a non-zero integral. The parity of the wavefunctions is found to alternate
with increasing quantum number l, leading to selection rules for allowed transitions in the
hydrogen or single electron atom5, 6, 23−31:

�l = ±1 (1.22)

Furthermore, the total angular momentum quantum number, j , determined by the vector sum
of orbital and spin angular momentum, must satisfy

� j = 0, ±1 (1.23)

where j can take the values l + s, l − s, or s when l = 0. The special case of a transition
between j = 0 states is not allowed. Note that in order to conserve angular momentum
in the allowed transitions, the emitted photon must carry away a quantum (h̄) of angular
momentum.5, 29 These allowed transitions lead to the strong characteristic spectral emission
lines observed experimentally. Furthermore, the atomic transition probabilities23, 29, 30 be-
tween any two states can be computed on the basis of matrix elements of the form given in
Eq. (1.21).

Selection rules for transitions involving multi-electron atoms follow similar rules when
the quantum numbers are assigned to a core level vacancy, as occurs in the photoemission
process described earlier in Figure 1.2. Figures 1.10 and 1.11 illustrate the energy levels and
several prominent transitions for the multi-electron atom. Figure 1.10 introduces the x-ray
nomenclature22 wherein the n = 1 state is referred to as the K-shell, n = 2 as the L-shell,
n = 3 as the M-shell, etc. Emission lines terminating in the ground state (n = 1) are referred to
as K-shell emissions, shown here as Kα , Kβ , etc. The energy required to lift a K-shell electron
to a free state of zero binding energy is referred to as the K-absorption edge EK,abs. Excess
energy beyond this value goes to kinetic energy of the liberated electron. Similar notation is
shown for the L-shell emissions.

Figure 1.10 is useful for an introduction. It is simplified, however, in that it does not
show shell substructure, and that it implies a systematic labeling of sequential emission lines
within a given series by ordered Greek subscripts α, β, etc. In fact the lines have historical
designations of limited value today. Figure 1.11 shows a more accurate version28 of the energy
levels and some well-known transitions (on a logarithmic scale) for the copper atom (Z = 29).
Values of the quantum numbers n, l, and total angular momentum j are given for each subshell,
along with the subshell designations and spectroscopic notation. Specific values of the various
energy levels and a few well-known transition energies are given for the specific example of
a copper atom. Note the substantial energy fine structure due to spin–orbit coupling in the
various angular momentum states.5, 27, 28 Note also that the 29 copper electrons are written in
spectroscopic notation as 1s2 2s2 2p6 3s2 3p6 3d10 4s1, thus consisting of closed K-, L-, and M-
shells, plus a single valance or conduction electron. Tabulated values of binding energies1 and
prominent emission lines2 for elements through uranium (Z = 92) are given in Appendix B.

Of great interest to us in later chapters is the spatial distribution of charge in multi-
electron atoms, as we will be calculating the scattering of electromagnetic radiation and are
interested in the appropriateness of assuming that the wavelength λ is large compared to atomic
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F IGURE 1.10. Energy levels for a multi-electron atom, showing the K-shell (n = 1), L-shell (n = 2),
M-shell (n = 3), and N-shell (n = 4), with transitions that provide characteristic narrow line emission
at well-defined photon energies. Examples shown include Kα (n = 2 to n = 1), Kβ (n = 3 to n = 1),
Lα (n = 3 to n = 2), etc. Also shown are the absorbtion edge energies, such as EK,abs, the energy
required to take an electron from the K-shell (n = 1) to the continuum limit (n = ∞). For an incident
photon of energy h̄ω > EK,abs, a K-shell electron can be lifted beyond the continuum limit to a state of
positive kinetic energy, as shown. An L-shell electron would acquire a greater kinetic energy. The
binding energies are not drawn to scale. Subscript labeling of the emission lines is less systematic than
implied here, as discussed in the text. (Following Compton and Allison.22)

radii for extreme ultraviolet and soft x-ray radiation. Toward that end, the probabilistic radial
charge distribution density for filled quantum states of the argon atom (1s2 2s2 2p6 3s2 3p6) is
shown in Figure 1.12. Due to the strong nuclear attraction (Z = 18), the K-shell electrons
(1s; n = 1, l = 0) are pulled into a region of small radius, with highest probable radial
coordinate much smaller than the hydrogenic Bohr radius a0. The 2s and 2p L-shells (n =
2, l = 0 and n = 2, l = 1, respectively) have their charge distribution largely within a radius
less than a0, while only the M-shell 3s and 3p have significant probability of being located
in the radial interval from a0 to 3a0. Thus in EUV and soft-x-ray scattering calculations,
with wavelengths of order 1 nm or longer (about 20a0), a reasonable approximation is that all
electrons see approximately the same phase and scatter collectively (in phase) in all directions.
This approximation cannot be made for shorter x-ray wavelengths where λ ∼ a0, at least not
for the outer valence levels. Note that the valence electrons at radii beyond a0 are those
responsible for chemical bonding, and to first order set the apparent size of an atom, as in a
molecule, crystal, or other solid.32 This compact binding of the inner electrons explains the
relatively small variation of volume occupied by atoms of widely different atomic number (Z )
in solids and molecules: in the higher Z elements the additional electrons are largely confined
to tight orbits nearer to the highly charged nucleus, with outer valence electrons having radial
charge distributions, or equivalent mean radii, not too different from their lower Z cousins.
For instance, in diamond the carbon atoms are separated by only 1.5 Å. For comparison, the
hydrogen n = 1 mean diameter (2a0) is 1.1 Å. For the face-centered cubic silicon crystal
(Z = 14), adjacent silicon nuclei are separated by about 2.4 Å, and for common salt (NaCl)
the separation distance between closest Na and Cl nuclei is about 2.8 Å.27, 32 Indeed, for
gold (Z = 79) with an atomic mass of 197 and a mass density of 19.3 g/cm3, the atom to
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F IGURE 1.11. Energy level diagram for copper (Z = 29) showing transitions allowed by the selection
rules �l = ±1 and � j = 0, ±1, where n is the principal quantum number, l is the quantum number
for orbital angular momentum, and j is the quantum number for total angular momentum (orbital plus
spin). In x-ray notation the K-shell corresponds to n = 1, the L-shell to n = 2, etc. Absorption edge
nomenclature is shown to the right. Following spectroscopic notation, angular momentum quantum
numbers l = 0, 1, 2, 3 are represented by the letters s, p, d, and f, respectively. Sample energies (and
wavelengths) are shown for various absorption edges and allowed transitions. Note that the energy
levels are not to scale, but are approximately logarithmic.
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Quantum Physics of Atoms, Molecules, Solids,
Nuclei, and Particles, 2nd ed., by R. Eisberg and
R. Resnick5; reprinted by permission of John
Wiley & Sons, Inc.)
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TABLE 1.2. Key to the periodic table of the elements. See back inside
cover of book for full periodic table.

14
Si2.33

4.99
2.35

28.09
4

[Ne]3s23p2

Silicon

Density (g/cm3)
Concentration (1022atoms/cm3)

Nearest neighbor (Å)

Atomic number Atomic weight

References: International Tables for X-ray Crystallography (Ref. 44) and J.R. De Laeter and 
K.G. Heumann (Ref. 46, 1991).

Key

Symbol

Electron
configurationName

Oxidation states
(Bold most stable)

Solid

Gas

Liquid

Synthetically
prepared)

atom separation is only 2.9 Å. There is strikingly little difference in the separation distances
between gold, or other high Z atoms, and low Z atoms in their natural states.

A periodic table of the elements, including atomic number, atomic mass, common mass
density, atomic density, atomic separation distance, and spectroscopic notation of electron
structure, can be found on the inside of the back cover. The key to the periodic table of
the elements is given in Table 1.2. The atomic density is obtained from the relation na =
ρNA/A, where ρ is the mass density, NA is Avogadro’s number (see Appendix A), and A is
the atomic weight of the atom, as given in the periodic chart, expressed in atomic mass units
(amu).

1.4 SCATTERING, DIFFRACTION, AND REFRACTION
OF ELECTROMAGNETIC RADIATION

This text assumes a familiarity with Maxwell’s equations, which describe the propagation of
electromagnetic radiation. A wide range of literature is available that discusses the develop-
ment of these equations.33−38 In Chapters 2, 3, 4, 8, and 9 we will consider various aspects of
wave propagation, scattering, diffraction, and refraction of radiation, with particular emphasis
on application to the soft x-ray and extreme ultraviolet regions of the spectrum. In general
we will use these words in the following senses.

Scattering is a process by which incident radiation‡‡ is redirected over a very wide angular
pattern, perhaps even 4π sr, generally by disordered systems or rough surfaces, as shown in
Figure 1.13(a) and (b). The angular pattern of scattering is related to the spatial periodicities
of the scattering object through the Fourier transform of their charge density correlation
function. A point particle, for example, scatters radiation equally in all directions. The subject
of scattering from free and bound electrons is discussed in Chapter 2. The term “scattering” is
used in the same sense when discussing particles, as when high energy electrons are scattered
by individual nuclei.

Diffraction is generally used to describe the process whereby incident radiation is redi-
rected into relatively well-defined directions by ordered arrays of scatterers. The diffraction
patterns result from positive interference in certain directions. Examples include the diffrac-
tion of x-rays by a crystal in which the position of the atoms, in a periodic array, provide
well-defined planes from which the radiation appears to reflect at well-defined angles, as

‡‡In this section we use “incident radiation” to mean nearly monochromatic radiation propagating in a
well-defined direction.
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F IGURE 1.13. Scattering, diffraction, and refraction of electromagnetic radiation.

described by Bragg’s law (1913) [see Chapter 4]:22, 27, 28, 32, 41, 42

mλ = 2d sin θ (1.24)

where d is the spatial periodicity, λ is the wavelength, m is an integer, and θ is measured
from the reflecting plane, as shown in Figure 1.13(c). In fact, the atomic positions in a
crystal always describe many such planes, so that diffraction (positive interference) occurs
in several directions. While the diffraction of x-rays by crystals is not discussed further in
this text, diffraction from one-dimensional ordered systems, known in the EUV and soft-x-
ray community as multilayer mirrors, is described in Chapter 4. These structures may be
amorphous or partially ordered within the individual layers but well ordered in the stack
direction, leading to very strong positive interference in directions described by the Bragg
condition, Eq. (24). This leads to very high reflectance for appropriate choices of material,
wavelength (photon energy), and angle. Readers interested in the important subject of x-ray
diffraction by crystals are referred to Refs. 27, 28, 32, and 41–43.
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“Diffraction” is also used to describe the situation in which incident radiation is redirected
in some well-defined pattern, as when visible light or shorter wavelength radiation is diffracted
by a small circular aperture (a pinhole), causing a divergence of the radiation with bright and
dark angular interference rings, as shown in Figure 1.13(d). This is known as an Airy pattern
(1835); the first dark null in the diffraction pattern occurs at a half angle (see Chapter 9,
Section 9.3)

θnull = 1.22λ

d
(1.25)

where θ is measured from the axis of symmetry through the center of the pinhole, and d is the
pinhole diameter. Similar characteristic angular patterns occur when radiation is diffracted
from other well-defined objects, such as a knife edge or a sphere.

Finally, refraction is the turning of radiation at an interface of materials of dissimilar
refractive index n, generally written in the EUV/soft x-ray region as‡‡

n = 1 − δ + iβ (1.26)

where in this spectral region both δ and β are generally small compared to unity, as is discussed
in Chapter 3. Refractive turning at an interface occurs as the incident wave excites radiation
among atoms at the surface of the second material. This launches a new wave through inter-
ference of radiation from the various atoms, in a manner that ensures continuity of the field
quantities at the boundary. The process is sketched in Figure 1.13(e). Finally, Figure 1.13(f )
shows an example of reflection peculiar to this spectral region. With a refractive index less
than unity it is possible to have total external reflection in which most of the incident energy is
redirected by the surface. There is little absorption even in the case of an otherwise absorptive
material (β ≤ δ). Total external reflection occurs as long as the glancing angle of incidence θ

is less than a critical angle θc � √
2δ, as described22 first by Compton in 1922. This subject

is described further in Chapter 3.
The development of electromagnetic theory with special emphasis on the application to

EUV and soft x-ray wavelengths, based on Maxwell’s equations, begins in Chapter 2. The
wave equation in vacuum is obtained, Poynting’s theorem and expressions for radiated power
are developed, and scattering cross-sections are introduced. The cross-sections for scattering

‡‡The choice of ±iβ in Eq. (1.26) depends on the mathematical form by which waves are represented,
and must be consistent with wave decay in the presence of absorption. Early x-ray workers such as
Compton22 employed a plane wave representation equivalent to exp[i(ωt −kr )], where ω is the radian
frequency, k = 2π/λ, and the refractive index n is defined by the dispersion relation ω = kc/n, or
equivalently f λ = c/n. Written in this form, n has a negative imaginary component in the presence of
absorption; thus for x-rays n = 1 − δ − iβ. This form continues to dominate common usage in the x-
ray community. However, in the broader community of modern electrodynamics and optical sciences
(Sommerfeld,39 Born and Wolf,37 Fowles,40 Jackson,36 and Spiller45) plane wave representations are
more commonly written in the form exp[−i(ωt − kr )], where the imaginary component of refractive
index is positive in the presence of absorption, as in Eq. (1.26). For this text the more modern approach
has been adopted; however, its adaptation to the older one should cause the reader little inconvenience.
Algebraic demonstration of the above is given in Chapter 3, Section 3.2.
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of radiation by free and bound electrons are obtained. These results are extended to scatter-
ing by multi-electron atoms and to atomic scattering factors, within certain approximations
generally applicable in the EUV and soft x-ray regions of the spectrum.

In Chapter 3 Maxwell’s equations are applied to the propagation of short wavelength
radiation in a medium of uniform density, developing expressions for the complex refractive
index, phase variation, and attenuation. Also discussed are reflection and refraction at arbi-
trary angle of incidence, total external reflectance and normal incidence reflection as special
cases, Brewster’s angle, and topics such as the Kramers–Kronig relations among the real and
imaginary parts of the atomic scattering factors.

In Chapter 4 the subject of multilayer interference coatings is discussed, with applications
to a variety of activities, including multilayer curved mirrors for focusing EUV, soft x-ray, and
x-ray radiation. The applications discussed in Chapter 4 include photoemission microscopy,
polarization control, astronomy, plasma diagnostics, and industrial lithography.

In Chapters 8 and 9 the topics of coherence and diffraction are discussed. In Chapter 9
the use of Fresnel zone plates as diffractive lenses is discussed, with application to soft x-ray
microscopy at high spatial resolution – well beyond that of visible light microscopy – in the
physical and life sciences.

REFERENCES

1. A compilation by G.P. Williams of Brookhaven National Laboratory, “Electron Binding Energies,”
in X-Ray Data Booklet (Lawrence Berkeley National Laboratory Pub-490 Rev.2, 1999), based
largely on values given by J.A. Bearden and A.F. Barr, “Reevaluation of X-Ray Atomic Energy
Levels,” Rev. Mod. Phys. 39, 125 (1967); M. Cardona and L. Ley, Editors, Photoemission in Solids
I: General Principles (Springer, Berlin, 1978); and J.C. Fuggle and N. Mårtensson, “Core-Level
Binding Energies in Metals,” J. Electron. Spectrosc. Relat. Phenom. 21, 275 (1980).

2. A compliation by J.B. Kortright, “Characteristic X-Ray Energies,” in X-Ray Data Booklet (Lawrence
Berkeley National Laboratory Pub. 490 Rev. 2, 1999), based on values given by J.A. Bearden, “X-
Ray Wavelengths,” Rev. Mod. Phys. 39, 78 (1967).

3. B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-Ray Interactions: Photoabsorption, Scattering,
Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nucl. Data
Tables 54, 181 (1993). Current updates maintained by E.M. Gullikson at http://www-cxro.lbl.gov/

4. J.-J. Yeh and I. Lindau, “Atomic Subshell Photoionization Cross Sections and Asymmetry Param-
eters: 1 ≤ Z ≤ 103,” Atomic Data and Nucl. Data Tables 32, 1–155 (1985); J.-J. Yeh, Atomic
Calculation of Photoionization Cross-Sections and Asymmetry Parameters (Gordon and Breach,
Langhorne, PA, 1993); I. Lindau, “Photoemission Cross Sections,” Chapter 1, p. 3, in Synchrotron
Radiation Research: Advances in Surface and Interface Science, Vol. 2 (Plenum, New York, 1992),
R.Z. Bachrach, Editor.

5. R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles
(Wiley, New York, 1985), Second Edition.

6. P.A. Tipler, Modern Physics (Worth, New York, 1978).
7. Numerical values of fundamental physical constants are obtained from E.R. Cohen and B.N. Taylor,

“The Fundamental Physical Constants,” Phys. Today, p. BG9 (August 1995).
8. Use of metric units (SI) follows R.A. Nelson, “Guide for Metric Practice,” Phys. Today, p. BG15

(August 1995).
9. M.O. Krause, “Atomic Radiative and Radiationless Yields for K and L Shells,” J. Phys. Chem. Ref.

Data 8, 307 (1979); M.O. Krause and J.H. Oliver, “Natural Widths of Atomic K and L Levels, Kα

X-Ray Lines and Several KLL Auger Lines,” J. Phys. Chem. Ref. Data 8, 329 (1979); M.O. Krause,
“Average L-Shell Fluorescence, Auger, and Electron Yields,” Phys. Rev. A 22, 1958 (1980).

10. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spec-
troscopy (Physical Electronics, Eden Prairie, MN, 1995).



22 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

11. D.E. Eastman and F.J. Himpsel, “Ultraviolet Radiation – An Incisive and Versatile Tool,” Physics
Today, p. 64 (May 1981).

12. C.S. Fadley, “Basic Concepts of X-Ray Photoelectron Spectroscopy,” pp. 1–156 in Electron Spec-
troscopy, Theory, Techniques and Applications (Pergamon Press, Oxford, 1978), C.R. Brundle and
A.D. Baker, Editors; C.S. Fadley et al., “Surface, Interface and Nanostructure Characterization with
Photoelectron Diffraction and Photoelectron and X-ray Holography,” J. Surface Anal. 3, 334 (1997);
C.S. Fadley and P.M. Len, “Holography with X-rays,” Nature 380, 27 (1996); A. Kay, E. Arenholz,
S. Mun, F.J. Garcia de Abajo, C.S. Fadley, R. Denecke, Z. Hussain, and M.A. Van Hove, “Multi-
atom Resonant Photoemission: A Method for Determining Near-Neighbor Atomic Identities and
Bonding,” Science 281, 679 (1998); G. Faigel and M. Tegze, “X-ray Holography,” Rep. Progr. Phys.
62, 355 (1999).

13. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties
(Springer, Berlin, 1996), Chapter 8, “Photoelectron Spectroscopy.”

14. S. Hüfner, Photoelectron Spectoscopy: Principles and Application (Springer, Berlin, 1996).
15. V. Schmidt, Electron Spectroscopy of Atoms Using Synchrotron Radiation (Cambridge Univ. Press,

1997).
16. W. Eberhardt, Editor, Applications of Synchrotron Radiation: High Resolution Studies of Molecular

Adsorbates on Surfaces (Springer-Verlag, Berlin, 1995).
17. C.R. Brundle, C.A. Evans, and S. Wilson, Encylopedia of Materials Characterization (Butterworth-
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Chapter 2

RADIATION AND SCATTERING
AT EUV AND SOFT

X-RAY WAVELENGTHS
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(2.66)

f 0(ω) =
Z∑
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ω2

ω2 − ω2
s + iγω

(2.72)

In this chapter basics of electromagnetic theory are reviewed. Beginning with Maxwell’s equa-
tions, the wave equation is developed and used to solve several problems of interest at short
wavelengths. Poynting’s theorem regarding the flow of electromagnetic energy is used to solve
the power radiated by an accelerated electron. The concept of a scattering cross-section is in-
troduced and applied to the scattering of radiation by free and bound electrons. A semiclassical
model is used in the latter case. Scattering by a multi-electron atom is described in terms of
a complex atomic scattering factor. Tabulated scattering factors, which are available in the
literature for use in special circumstances, are described.

2.1 MAXWELL’S EQUATIONS AND THE WAVE EQUATION

In this chapter we will consider radiation and scattering by accelerated charges. We will use
these results to study scattering cross-sections and interesting phenomena at visible, EUV, and
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soft x-ray wavelengths. In later chapters we will examine their relation to the refractive index
(propagation effects) and the properties of undulator radiation.

Our study begins with Maxwell’s equations,1−5 written in a form appropriate to the use
of MKS units:∗

∇ × H = ∂D
∂t

+ J (Ampere’s law) (2.1)

∇ × E = −∂B
∂t

(Faraday’s law) (2.2)

∇ · B = 0 (2.3)

∇ · D = ρ (Coulomb’s law) (2.4)

where E is the electricfield vector, H is the magneticfield vector, D is the electric displacement,
B is the magnetic density or magnetic induction, J is the current density, ρ is the charge density,
ε0 is the permittivity (dielectric constant) of free space, and µ0 is the magnetic permeability.
If the above are considered to describe fields in free space (vacuum), the constitutive relations
take the form

D = ε0E (2.5)

B = µ0H (2.6)

where now the charge density ρ and current density J must be described in a self-consistent
manner, i.e., where the fields affect the particles and the particles contribute to the fields.
Note that, as is common in the literature, we have used ρ for both charge and mass density
(Chapter 1). The reader will recognize the difference by the context.

As described by James Maxwell in 1865, these equations can be combined to form a vector
wave equation describing the propagation of electromagnetic waves, as later demonstrated by
Heinrich Hertz in 1888. The mathematical description covers electromagnetic phenomena ex-
tending from very long wavelengths, to radiowaves, microwaves, infrared, visible, ultraviolet,
and x-rays and beyond. The vector wave equation can be obtained from Maxwell’s equations
by taking ∇ × [Eq. (2.2)] and using the vector identity† ∇ × ∇ × A = ∇(∇ · A) − ∇2A to
obtain

∇ × (∇ × E) = ∇ ×
(

−∂B
∂t

)

∇(∇ · E) − ∇2E = − µ0
∂

∂t
(∇ × H)

∗See Appendix A, Units and Physical Constants.
†See Appendix D, Mathematical and Vector Relations.
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∇
(

ρ

ε0

)
− ∇2E = −µ0

∂

∂t

(
∂ D

∂t
+ J

)

∇
(

ρ

ε0

)
− ∇2E = − ε0µ0

∂

∂t

(
∂E
∂t

+ J
ε0

)

Rearranging terms, we obtain

ε0µ0
∂2E
∂t2

− ∇2E = −µ0
∂J
∂t

− 1

ε0
∇ρ

which when properly grouped is recognized as the vector wave equation:

(
∂2

∂t2
− c2∇2

)
E(r, t) = − 1

ε0

[
∂J(r, t)

∂t
+ c2∇ρ(r, t)

]
(2.7)

where

c ≡ 1√
ε0µ0

(2.8)

is identified as the phase velocity of an electromagnetic wave in vacuum, often referred to
as the “speed of light in vacuum.” Note that this is an inhomogeneous partial differential
equation. The driving terms on the right-hand side of the equation can be linear or non-linear,
leading to a wealth of interesting phenomena.

The wave equation (2.7) will serve as our point of departure in considering radiation,
scattering, and refractive index in situations including free and bound electrons, single atoms,
and various distributions of atoms. In this chapter we will treat the scattering of x-rays by
individual electrons and atoms through appropriate representations of the induced source terms
on the right side of the wave equation. We will obtain several interesting results, including
expressions for the well-known Thomson and Rayleigh scattering cross-sections for free and
bound electrons, as well as atomic scattering cross-sections for multi-electron atoms. We will
employ very simple models of the atom, but will observe that the basic results are identical in
form to those obtained with more sophisticated quantum mechanical models. In Chapter 3 we
will treat wave propagation phenomena in relatively uniform media containing many atoms.
There we will find it convenient to bring the uniformly distributed source terms to the left side
of the wave equation, where the combined terms will lead to a modified phase velocity and
thus the introduction of a refractive index. This will lead to several practical results, including
equations governing the total external reflection of x-rays. We will also discuss how refractive
indices and complex scattering cross-sections are determined and tabulated in practice.

Before proceeding to these topics, we note that an expression for conservation of charge,
the so-called equation of charge continuity, is easily developed and will be useful later. This
follows by taking ∇ · [Eq. (2.1)] and noting the vector identity ∇ · ∇ × A ≡ 0. We have

∇ · ∇ × H = ∂

∂t
∇ · D + ∇ · J
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a

sin2ΘΘ
F IGURE 2.1. As observed at a great distance, fields
radiated by an accelerated charge propagate over a
broad angular range, but not in the direction of
acceleration.

λ
F IGURE 2.2. Irregularly shaped objects and isolated
charges, including free electrons and electrons
bound to isolated atoms, scatter radiation in many
directions.

where the left hand side is identically 0, and on the right-hand side ∇ · D = ρ. This gives the
equation for conservation of charge:

∇ · J + ∂ρ

∂t
= 0 (2.9)

What we would like to accomplish in this chapter is a solution to Eq. (2.7) for E(r, t)
in the presence of source terms – for instance, radiated fields due to accelerated free and
bound electrons (Figure 2.1), or the scattered fields caused by such oscillating charges in the
presence of incident (x-ray) radiation. The latter is a process whereby well-directed energy,
propagating in a given direction, is widely redirected by non-uniformly distributed charges or
by irregularly shaped objects (Figure 2.2).

One can write the current density J(r, t) as

J(r, t) = qn(r, t)v(r, t) (2.10)

a product of charge density and velocity, both as functions of space and time. Note that the
product nv raises the possibility of non-linear terms entering via particle motions into the
otherwise linear electromagnetic fields. This interesting phenomenon, which we touch on in
later chapters, occurs in media (plasmas, fluids, solids) in which both n and v vary, giving
rise to beat frequencies, sum and difference frequencies, and such phenomena as harmonic
generation. In this chapter we concern ourselves with isolated charges, both free and bound,
for which Eq. (2.10) can be written in a somewhat different form convenient to this simple
case. We will consider this shortly.

2.2 CALCULATING SCATTERED FIELDS

First we outline the approach to be taken in solving the wave equation (2.7) for E(r, t) in the
presence of a source term. Then we calculate the radiated power and its angular dependence.
Treating the bracketed quantity on the left side of Eq. (2.7) as an operator, we can imagine
solving for E(r, t) in terms of arbitrary sources, with a formal solution of the form

E(r, t) =
∫

volume
[Green’s function][source terms] dr (2.11)
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where the field E is described mathematically in terms of the response to a distribution of
sources – embodied in the so-called Green’s function – integrated over the full volume.

This is not convenient to do with Eq. (2.7) in the form of a vector partial differential
equation. But it can be accomplished6, 7 without too much difficulty by introducing space-time
transformations of E(r, t) that algebraize the partial differential operators, ∇ and ∂/∂t . Working
then with transform amplitudes E(k, ω), abbreviated Ekω, the differential operators become
algebraic multipliers, the inversions required in Eq. (2.11) become simple, and the integration
proceeds using standard techniques. Note that the vector field transform amplitudes Ekω are
a generalization of the Fourier coefficients utilized in one dimensional (scalar) problems.
Using this technique to solve for E(r, t), the remaining fields, including H(r, t) etc., can be
determined from transforms of Eqs. (2.1)–(2.6).

In order to simplify both the space (∇) and time (∂/∂t) operators, we introduce the
Fourier–Laplace transform

E(r, t) =
∫

k

∫
ω

Ekωe−i(ωt−k·r) dω dk
(2π )4

(2.12a)

and its inverse

Ekω =
∫

r

∫
t
E(r, t)ei(ωt−k·r) dr dt (2.12b)

where the symbols dk and dr are shorthand notation for scalar volume elements. These abbre-
viations correspond in rectangular coordinates to dr = dx dy dz and dk = dkx dky dkz . We
also understand that the Fourier–Laplace amplitudes Ekω are shorthand notation for E(k, ω),
as they are vector field amplitudes and are functions of the wave vector k and frequency ω.
We assume that the frequency has a small imaginary component such that the amplitude Ekω,
defined by the integral in Eq. (2.12b), is finite for real fields E(r, t). Thus with ω = ωr + iωi ,
where ωi is small but positive, the integrand in Eq. (2.12b) goes to zero as t → ∞.

Representing all field quantities in a similar manner, i.e.,

J(r, t) =
∫

k

∫
ω

Jkωe−i(ωt−k·r) dω dk
(2π )4

(2.13a)

Jkω =
∫

r

∫
t
J(r, t)ei(ωt−k·r) dr dt (2.13b)

ρ(r, t) =
∫

k

∫
ω

ρkωe−i(ωt−k·r) dω dk
(2π )4

(2.14a)

ρkω =
∫

r

∫
t
ρ(r, t)ei(ωt−k·r)dr dt (2.14b)

etc., we can appreciate the algebrized nature of the operators. For instance, if we consider the
time derivative, ∂/∂t , acting on ρ(r, t), we have

∂ρ(r, t)

∂t
= ∂

∂t

∫
k

∫
ω

[
ρkωe−i(ωt−k·r)

] dω dk
(2π )4

Note that ∂/∂t passes through the integrals (to first order, k and ω are not functions of time).
Since ρkω is also not a function of time (to first order), the time derivative acts only on the
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exponent, giving

∂ρ(r, t)

∂t
=

∫
k

∫
ω

(−iω)ρkωe−i(ωt−k·r) dω dk
(2π )4

Thus the time differential operator ∂/∂t results in an algebraic multiplier (−iω) when acting on
ρ(r, t), i.e., when operating in k, ω-space. Similarily the gradient operator, taken component
by component in some coordinate space, becomes

∇ρ(r, t) = ∇
∫

k

∫
ω

[
ρkωe−i(ωt−k·r)] dω dk

(2π )4

Although the algebraization may be evident to the reader at this point, it is easily illustrated
by introducing rectangular coordinates, such that the k ·r term in the exponent becomes kx x +
ky y + kzz, the gradient becomes ∇ = x0 ∂/∂x + y0 ∂/∂y + z0 ∂/∂z, and k = x0kx + y0ky +
z0kz , where x0, y0, z0 are unit vectors. Since the components ∂/∂x, ∂/∂y, ∂/∂z act only on
the exponent, the expression for ∇ρ(r, t) becomes

∇ρ(r, t) =
∫

k

∫
ω

(ix0kx + iy0ky + iz0kz)
[
ρkωe−i(ωt−k·r)] dω dk

(2π )4

or

∇ρ(r, t) =
∫

k

∫
ω

ikρkωe−i(ωt−k·r) dω dk
(2π )4

so that the ∇ operator is replaced by a multiplicative factor ik in k, ω-space. Finally, if we
consider the operator ∇2 ≡ ∇ · ∇ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, we can readily demonstrate
that

∇2E(r, t) =
∫

k

∫
ω

(ik)2Ekωe−i(ωt−k·r) dω dk
(2π )4

where now it can be seen that ∇2 = ∇ · ∇ algebrizes to ik · ik = −k2 in k, ω-space.
The vector wave equation (2.7) can now be algebrized itself into a very convenient form

in terms of the Fourier–Laplace amplitudes:∫
k

∫
ω

(−iω)2Ekωe−i(ωt−k·r) dω dk
(2π )4

− c2
∫

k

∫
ω

(−k2)Ekωe−i(ωt−k·r) dω dk
(2π )4

= − 1

ε0

[∫
k

∫
ω

(−iω)Jkωe−i(ωt−k·r) dω dk
(2π )4

+ c2
∫

k

∫
ω

ikρkωe−i(ωt−k·r) dω dk
(2π )4

]

where we note that every term includes the same k, ω-integration, which can therefore be
removed, and further, that each term contains an exponential factor −i(ωt − k · r), which can
also be removed, leaving

(−iω)2Ekω − c2(−k2)Ekω = − 1

ε0
[(−iω)Jkω + c2(ik)ρkω]

In operator form, the wave equation in k, ω-space is

(ω2 − k2c2)Ekω = 1

ε0
[(−iω)Jkω + ic2kρkω] (2.15)
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which, if inverted, can be solved for Ekω:

Ekω = (−iω)Jkω + ic2kρkω

ε0(ω2 − k2c2)
(2.16)

This shows the source terms in the numerator, and poles at ω = ±kc representing the system
response in terms of incoming and outgoing waves. Our task now is to set models for the
sources in a given problem, J(r, t) and ρ(r, t), obtain their transforms Jkω and ρkω, determine
a solution for Ekω from Eq. (2.16), and then return to the inverse transform [Eq. (6.12a)] to
calculate the radiated field E(r, t) through the required dω dk integrations [Eq. (6.12a)].

Making the same substitutions as above in the equation for charge conservation [Eq. (2.9)],

∇ · J + ∂ρ

∂t
= 0

permits similar simplification of it. Upon use of similar transforms and operations this becomes

ik · Jkω − iωρkω = 0

so that

ρkω = k · Jkω

ω

Thus the expression for the radiated fields Ekω [Eq. (16)] can be written as

Ekω = − iω

ε0

[
Jkω − (c2/ω2)k(k · Jkω)

ω2 − k2c2

]

or

Ekω = − iω

ε0

[
Jkω − k0(k0 · Jkω)

ω2 − k2c2

]
(2.17)

Here we have written the wave propagaton vector as k = k0k. The unit vector k0 is in the
propagation direction, and k = 2π/λ is the scalar wavenumber. The equation ω = kc (equiv-
alent to f λ = c) is most readily appreciated from Eq. (2.17) as the required condition for
finite field amplitude Ek,ω even in the absence of sources. In other words, ω = kc satisfies the
homogeneous (vacuum) case where the right-hand side of Eq. (2.15) is zero. These are the
so-called resonances or natural modes of the system. The condition ω = kc is often referred
to as a dispersion relation; we will discuss it further in Chapter 3.

We can simplify Eq. (2.17) for Ekω by introducing a coordinate system oriented around
the wave propagation direction k0, as shown in Figure 2.3. For instance, we can decompose
the vector Jkω into components along and transverse to the propagation direction k0:

Jkω = JTkω
+ JLkω

k0

If we do so, it is evident that with k = kk0 the numerator in the bracketed factor in Eq. (2.17)
becomes

Jkω − k0(k0 · Jkω)︸ ︷︷ ︸
k0 portion

= JTkω
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k0

t0′′

t0
′ F IGURE 2.3. (a) A vector coordinate system useful

for decomposing vector fields into components
parallel and transverse to the wave propagation
direction. Polar coordinates in this k-space are
k, θ, φ, where θ is the polar angle measured from
k0 and φ lies in the transverse plane (t ′0, t ′′0 ). The
unit vectors are related by k0 × t′0 = t′′0.

where JT kω is the component of the vector Jkω transverse to k0. Note that k0 · Jkω is the scalar
component of Jkω in the k0-direction, and thus k0(k0 · Jkω) is the vector component of Jkω in
the k0-direction, i.e., the longitudinal vector component. Thus, when it is subtracted from Jk,ω,
only the transverse vector portion remains. The solution for Ekω, Eq. (2.17), then becomes

Ekω = −iω

ε0
· JTkω

ω2 − k2c2
(2.18)

Having a formal solution (2.18) to Ekω in terms of the source, we can now return to
the Fourier–Laplace transform relations, specifically Eq. (2.12a), to find the space and time
dependent field E(r, t):

E(r, t) =
∫

k

∫
ω

Ekωe−i(ωt−k·r) dω dk
(2π )4

With Eq. (2.18) we can express the radiated electric field E(r, t) in terms of the transverse
component of current density as

E(r, t) =
∫

k

∫
ω

(
− iω

ε0

)
JTkω

e−i(ωt−k·r)

(ω2 − k2c2)

dω dk
(2π )4

(2.19)

which is the form of a Green’s function integration, albeit in k, ω-space. The question now is:
what is JTkω

? This will depend on the specific problem of interest.
Let us start by considering a point radiator that is small compared to the radiating wave-

length, and could be an oscillating free or bound electron. If this radiating particle is sufficiently
small, we can represent its density n(r) as a Dirac delta function‡ such that the current density,
J (r, t) [Eq. (2.10)], given by

J(r, t) = qn(r, t)v(r, t)

can be written for an electron as

J(r, t) = −eδ(r)v(t) (2.20)

In rectangular coordinates δ(r) is shorthand notation for the product δ(x)δ(y)δ(z), where the
delta function has the properties

δ(x) =
{

0 for x �= 0
∞ for x = 0

‡See Appendix D.
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The normalization condition of the delta function is∫ ∞

−∞
δ(x) dx = 1

The delta function has the additional property that

δ(x − a) =
{

0 for x �= a
∞ for x = a

with the normalization condition ∫ ∞

−∞
δ(x − a) dx = 1

This leads to the so-called sifting property∫ ∞

−∞
f (x)δ(x − a) dx = f (a)

The transformed current density Jkω for a point source radiator can now be determined
for use in Eq. (2.19) by utilizing Eq. (2.13b):

Jkω =
∫∫

J(r, t)ei(ωt−k·r) dr dt

Using Eq. (2.20) for the current density of a point source, one has

Jkω =
∫

r

∫
t
[−eδ(r)v(t)]ei(ωt−k·r) dr dt

Jkω = −e
∫

t
v(t)eiωt dt︸ ︷︷ ︸

v(ω)

Jkω = −ev(ω)

This has a transverse component

JTkω
= −evT (ω) (2.21)

where vT is the velocity component transverse to the propagation direction k0.
To determine the electricfield, as given in Eq. (2.19), one must then perform the integration

E(r, t) = ie

ε0

∫
k

∫
ω

ωvT (ω)e−i(ωt−k·r)

ω2 − k2c2

dω dk
(2π )4

(2.22)

The k-space integration is accomplished by introducing spherical coordinates oriented around
the propagation vector k0, with differential volume element (a scalar quantity), for instance,
as in Figure 2.3,

dk = k2 sin θ dθ dφ︸ ︷︷ ︸
d�

dk (2.23)
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where θ is measured from k0, and where 0 ≤ k ≤ ∞, 0 ≤ θ ≤ π , and 0 ≤ φ ≤ 2π . In these
coordinates, for a vector r at a polar angle θ to k, the phase term that occurs in the exponent
of Eq. (2.22) becomes

k · r = kr cos θ

The angular integrations of Eq. (2.22) in polar coordinates are straightforward. This leaves
the k- and ω-integrations. The k-integration can be performed in the complex k-plane using the
Cauchy integral formula.8 The integrand is seen to have two poles, at k = ±ω/c, representing
incoming and outgoing waves. Assuming that the poles each have a small lossy component
representing wave decay, the integration path can be closed in the upper half plane with a
semicircle of infinite radius, which makes no contribution to the integral. The closed path
then encloses a single pole, slightly displaced from the real axis, and the k-integral is readily
evaluated. Details of the integration are given in Appendix E. The result of the k-integration is

E(r, t) = e

4πε0c2r

∫ ∞

−∞
(−iω)vT (ω)e−iω(t−r/c) dω

2π
(2.24)

which leaves only the ω-integration to be completed. The quantity −iω in the integrand is
recognized as equivalent to the differential operator d/dt , which can then be taken outside
the integral, leaving the transform of vT (ω). The result for the radiated electric field due to an
oscillating point electron is then

E(r, t) = e

4πε0c2r

dvT (t − r/c)

dt

Recognizing this as the transverse component of acceleration, the electric field associated
with the radiated wave can be written as

E(r, t) = eaT (t − r/c)

4πε0c2r
(2.25)

That is, the radiated electric field E(r, t) is due to the component of electron acceleration
transverse to the propagation direction, observed at a retarded time t − r/c, that is, after
traveling a distance r to the observer at the speed of light, c. The dependence on only the
transverse component of acceleration introduces angular effects into radiation and scattering
problems, to be addressed in a following section.

2.3 RADIATED POWER AND POYNTING’S THEOREM

Radiated power, or more specifically power per unit area, is described in electromagnetic
theory by the so-called Poynting vector 1−5

S = E(r, t) × H(r, t) (2.26)
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which gives the magnitude and direction of energy flow or power per unit area. This can be
obtained directly from Maxwell’s equations. We will derive it, and then calculate the power
radiated by an accelerated electron, using the radiated electric field E(r, t) given by Eq. (2.25).

To obtain Poynting’s theorem for S, we begin with Maxwell’s equations (2.1–2.6), and
form the difference of H · [Eq. (2.2)] − E · [Eq. (2.1)] to obtain

H · (∇ × E) − E · (∇ × H) = −H · ∂B
∂t

− E · ∂D
∂t

− E · J

Recalling the vector identity ∇ · (A × B) = B · (∇ × A) − A · (∇ × B), and using Eqs. (2.5)
and (2.6) for B and D, this becomes

∇ · (E × H) = −µ0H · ∂H
∂t

− ε0E · ∂E
∂t

− E · J

or

∇ · (E × H)︸ ︷︷ ︸
S

= − ∂

∂t

(
µ0 H 2

2

)
− ∂

∂t

(
ε0 E2

2

)
− E · J (2.27)

Equation (2.27) is the differential form of Poynting’s theorem. The time derivative terms
on the right side of the equation represent the rate of change of energy per unit volume
(energy density) stored in the magnetic and electric fields, respectively. The rightmost term
represents the rate of energy dissipation per unit volume associated with the current density
J. Identification of S = E × H on the left is thus suggestive, as this would represent the net
flow of energy into or out of a controlled volume. Certain ambiguities3, 4 in this interpretation
can be removed by integrating (27) over a closed volume, e.g.,∫∫

vol.

∫
∇ · (E × H) dV = − ∂

∂t

∫∫
vol.

∫ (
µ0 H 2

2
+ ε0 E2

2

)
dV −

∫∫
vol.

∫
(E · J) dV

which by Gauss’s divergence theorem¶ for a vector quantity B,∫∫
vol.

∫
(∇ · B) dV =

∫
surface

∫
B · dA

becomes the integral form of Poynting’s theorem:

∫ ∫
surface

(E × H)︸ ︷︷ ︸
S

· dA = − ∂

∂t

∫∫
vol.

∫ (
µ0 H 2

2
+ ε0 E2

2

)
︸ ︷︷ ︸

stored energy density

dV

(2.28)−
∫∫

vol.

∫
(E · J)︸ ︷︷ ︸

energy dissipation

dV

¶See Appendix D.
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where S(r, t) = E(r, t)×H(r, t), the Poynting vector, represents the vector flow of energy per
unit area in the direction orthogonal to E and H, which we shall see shortly is the propagation
direction k0 for plane waves. The units of S are those of energy per unit time and per unit
area. The magnitude of S is often referred to as the intensity, I , typically with units of watts
per square centimeter.

To complete the calculation of radiated power we must form the vector product E × H,
wherein to this point we have only calculated E [Eq. (2.25)]. To obtain H(r, t) knowing E(r, t)
we return to Eq. (2.2):

∇ × E(r, t) = −∂B(r, t)

∂t

By Eq. (2.6),

B = µ0H

which gives

∇ × E = −µ0
∂H
∂t

Recalling the algebraic equivalents of ∇ and ∂/∂t for fields transformed to a k, ω plane wave
presentation, this takes the form

ik × Ekω = +iωµ0Hkω

Thus in k, ω-space

Hkω =
√

ε0

µ0
k0 × Ekω

where we have used the fact that for waves propagating in free space ω = kc and c = 1/
√

ε0µ0.
Now it is possible to replace both Ekω and Hkω by their inverse transforms, as in Eq. (2.12b).
Noting that the rotation operator k0× passes through the dr dt integrals on both sides of the
resulting equation, one obtains an equation of identical form in r, t-space. That is, for plane
waves propagating in free space the electric and magnetic fields are related by

H(r, t) =
√

ε0

µ0
k0 × E(r, t) (2.29)

For example, the magnetic field associated with radiation from an accelerated charge, with
E(r, t) given by Eq. (2.25), is

H(r, t) = e

4πcr
k0 × aT

(
t − r

c

)
(2.30)

which we note is both transverse to the propagation direction k0 and, by Eq. (2.29), transverse
to E.
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The radiated power per unit area can be determined from Eqs. (2.26, 2.29), and consid-
eration of Poynting’s vector, where for a plane wave in vacuum

S = E × H = E(r, t) ×
[√

ε0

µ0
k0 × E(r, t)

]

Noting the vector identity A × (B × C) = (A · C)B − (A · B)C, and that for a transverse wave
k0 · E = 0, we have

S(r, t) =
√

ε0

µ0
|E|2k0 (2.31)

The quantity
√

µ0/ε0 is often referred to as the “impedance of free space,” Z0.
For the accelerated point charge with radiated electric field given by Eq. (2.25), Eq. (2.31)

gives the instantaneous power per unit area, radiated in the direction k0:

S(r, t) = e2|aT |2
16π2ε0c3r2

k0 (2.32)

which decreases as the distance squared and is proportional to the square of the vector ac-
celeration in a direction orthogonal to k0, i.e., to |aT |2. Referring to the vector coordinates
for propagation described in Figure 2.4, the acceleration a at angle � to the propagation
(observation) direction k0 has a transverse component of magnitude

|aT | = |a| sin �

Thus from Eq. (2.32) the instantaneous power per unit area radiated by an accelerated electron
becomes

S(r, t) = e2|a|2 sin2 �

16π2ε0c3r2
k0 (2.33)

again showing the r2 decrease with distance, the dependence on a2, and the well-known1−5, 9

sin2 � angular pattern of dipole radiation, as observed in the far field when the oscillation
amplitude is small compared to the wavelength, e.g., in the point source approximation.
The resultant radiation pattern, sketched in Figure 2.5, displays a sin2 � toroidal pattern,
with maximum radiation intensity orthogonal to the acceleration direction, and zero radiation
in the direction of acceleration. The power per unit solid angle is obtained by noting that
S = (d P/d A)k0, and that the differential elements of area and solid angle are related by
d A = r2 d�, so that it follows from Eq. (2.33) that

d P

d�
= e2|a|2 sin2 �

16π2ε0c3
(2.34)

in an outgoing k0-direction.
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a

Θ
k0

t0′′

t0
′

F IGURE 2.4. Vector coordinates for acceleration a
and propagation (observation) direction k0,
separated by an angle � measured from the
acceleration direction a. Note that the vector
components of the acceleration are
aL = k0 · a = a cos �, and aT = −k0 × (k0 × a),
where |aT | = a sin �.

a

sin2ΘΘ

a(b)(a)

k0

F IGURE 2.5. (a) The sin2 � radiation pattern of a small accelerated charge, and (b) its
three-dimensional toroidal appearance.

The total power radiated, P , is determined by integrating S over the area of a distant
sphere:

P =
∫
area

∫
S · dA =

∫
solid
angle

∫
S · (r2 d� k0) (2.35)

where for 0 ≤ � ≤ π and 0 ≤ φ ≤ 2π we have d� = sin � d� dφ; thus

P =
∫∫ [

e2|a|2 sin2 �

16π2ε0c3r2 k0

]
· r2 sin � d� dφ k0

P = e2|a|2
16π2ε0c3

∫ 2π

0

∫ π

0
sin3 � d�︸ ︷︷ ︸∫ π

0 (1−cos2 �) sin � d�= 4
3

dφ

Thus the total power radiated by an oscillating electron of acceleration a is

P = 8π

3

(
e2|a|2

16π2ε0c3

)
(2.36)

For sinusoidal fields we are often interested in the time-averaged power P̄ and the time-
averaged power per unit area, S̄. To form appropriate expressions it is necessary to take the
product of real field quantities. For sinusoidal fields we have found it convenient to write the
various vectors E, H, a, etc., in the form

E(r, t) = E0e−i(ωt−k·r)
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S i
F IGURE 2.6. Scattering of incident radiation into
many directions, leaving a less intense wave in the
forward direction.

where the amplitude E0 itself may include a complex phase factor eiφ . For such fields one can
show by algebraic substitution 3, 4 that the time-averaged real power per unit area flowing in
a particular direction is

S̄ = 1
2 Re(E × H∗) (2.37)

where Re refers to the real part, the asterisk refers to complex conjugation, and the factor
1
2 arises from averaging a sin2 ωt or cos2 ωt product term over a full cycle.3 In calculations
of average power and intensity we will thus encounter quantities such as E0 · E∗

0, and a · a∗,
which we will abbreviate as |E0|2 and |a|2, etc. Following these procedures, the average power
radiated by an oscillating electron, P̄ , will be half that given by Eq. (2.36), and the average
power per unit solid angle will be half that given by Eq. (2.34), when the field amplitudes a
and E are expressed in terms of their peak values.

2.4 SCATTERING CROSS SECTIONS

We are now in a position to calculate the power radiated by free and bound electrons experi-
encing an acceleration a(r, t). An interesting problem is that of an oscillating electron, free or
bound, accelerated by an incident electromagnetic field. As this process redirects radiation to
a wide range of angles (Figure 2.6), it is generally referred to as scattering. A measure of the
scattering power of an electron is given by its equivalent scattering cross-section σ , that is, its
effective area for redirecting incident radiation. This cross-section is defined as the average
power radiated divided by the average incident power per unit area, |S̄i |, that is,

σ ≡ P̄scatt.

|S̄i |
(2.38)

where P̄scatt. is the average power scattered to all directions when an incident wave of electric
field Ei (r, t) excites an electron to acceleration a(r, t). By Eqs. (2.37) and (2.31) the average
power per unit area carried by the incident electromagnetic wave is given by

S̄i = 1

2

√
ε0

µ0
|Ei |2 k0 (2.39)
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2.5 SCATTERING BY A FREE ELECTRON

For a free electron the incident field causes an oscillatory motion described by Newton’s
second equation of motion, F = ma, where F is the Lorentz force on the electron; thus

ma = −e[Ei + v × Bi ] (2.40)

From Eq. (2.29), H = √
ε0/µ0 k0 × E(r, t) for an incident plane electromagnetic wave in

vacuum, so that with B = µ0H,

Bi (r, t) = k0 × Ei (r, t)

c
(2.41)

We see from the above that the term v × Bi (r, t) in Eq. (2.40) is of order v/c compared to
Ei (r, t), and therefore negligible for non-relativistic oscillation velocities. The instantaneous
acceleration of a free electron driven by a passing (incident) electromagnetic wave is then

a(r, t) = − e

m
Ei (r, t) (2.42)

The scattered electric field, given by Eq. (2.25), depends only on the transverse component of
acceleration, which as seen in Figure 2.4 has scalar amplitude

aT = a sin � = − e

m
Ei sin �

From Eq. (2.25) the scalar electric field, scattered to an angle � with respect to the polarization
direction of the incident electric field, can thus be expressed as

E(r, t) = −e2 Ei sin �

4πε0mc2r
e−iω(t−r/c)

Introducing the classical electron radius, re, the electric field scattered by a free electron can
be written more compactly as

E(r, t) = −re Ei sin �

r
e−iω (t − r/c) (2.43)

where

re = e2

4πε0mc2
(2.44)

is defined1 by equating the electrostatic energy of a uniform sphere of radius r and charge e,
e2/4πε0r , to its rest energy mc2. In a later section we will calculate the scattered field due to
a many-electron atom and will compare it with that for a single free electron, Eq. (2.43). In
this way we will introduce an atomic scattering factor, a multiplying factor that compares the
electric field scattered by a multi-electron atom with that scattered by a single free electron.
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θ,φ

(θ,φ)dP
dΩ F IGURE 2.7. Angle-dependent scattering can be

described in terms of a differential scattering
cross-section that takes account of variations in
power per unit solid angle.

The average power scattered by an oscillating electron is obtained by combining Eqs. (2.36)
and (2.42):

P̄scatt. = 1

2

8π

3

e2
(

e2

m2 |Ei |2
)

16π2ε0c3

where the factor 1
2 appears due to time averaging the squared sinusoidal fields. The scattering

cross-section given by Eq. (2.38) is then

σ = P̄scatt.

|S̄| =
4π
3

(
e4|Ei |2

16π2ε0m2c3

)

1
2

√
ε0
µ0

|Ei |2

where we have used Eq. (2.39) for the time averaged Poynting vector of the incident wave.
Again using the classical electron radius re, the scattering cross-section for a free electron can
be expressed as

σe = 8π

3
r2

e (2.45)

where the subscript e denotes the fact that this is the scattering cross-section for a single
electron. This result was first obtained by J.J. Thomson,§ and is referred to as the Thomson
cross-section1 for scattering of electromagnetic waves by a free electron. Note that for a free
(unbound) electron, Eq. (2.45) has no frequency (wavelength) dependence, thus indicating that
the scattering cross-section is the same across the electromagnetic spectrum, from microwaves
to visible light to x-rays. Limitations for very short wavelength x-rays and gamma rays,
where the momentum of the incident photon is sufficient to cause recoil, are discussed in the
literature.10 Note that numerically

re = 2.82 × 10−13 cm (2.46a)

σe = 6.65 × 10−25 cm2 (2.46b)

§See J.J. Thomson, Conduction of Electricity Through Gases (Cambridge Univ. Press, 1906), Second
Edition, p. 325. The “corpuscles” (see his p. 197 as well) are what we now call electrons. In the Third
Edition (1933, with G.P. Thomson) the classical theory of scattering is presented in the manner followed
by modern texts.
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A differential scattering cross-section per unit solid angle (Figure 2.7) can be obtained
by the same procedures. Using Eq. (2.34), with a factor 1

2 for average power in terms of peak
acceleration, and normalizing to |S̄i | = 1

2

√
ε0/µ0 E2

i , the differential scattering cross-section
is defined as

dσe

d�
≡ 1

|Si |
dP̄

d�
=

e2a2 sin2 �
32π2ε0c3

1
2

√
ε0
µ0

|E2
i |

Again using Eq. (2.42), we now obtain the differential Thomson scattering cross-section for
a free electron:

dσe

d�
= r2

e sin2 � (2.47)

In addition to Thomson’s early efforts to identify the nature of the electron, knowledge of
the free-electron cross-section is widely used for other purposes. In modern studies of plasma
physics, as in fusion research, Thomson scattering of laser light is widely used as a diagnostic
of free electron density and of temperature (both electron and ion), and to determine the
presence of various plasma waves.11

2.6 SCATTERING BY BOUND ELECTRONS

A number of interesting phenomena can be explained on the basis of scattering by bound
electrons. Topics of interest here include the scattering of x-rays by multi-electron atoms,
the refractive index at x-ray wavelengths, and phenomena such as total external reflection of
x-rays at glancing incidence to a material surface, as well as the more common scattering of
visible sunlight in the atmosphere, which leads to the appearance of a blue sky and a red sunset.
While the scattering is accurately described by quantum mechanical techniques,12−16 much can
be learned from a simple semi-classical model in which the atom is represented by a massive
positively charged (+Ze) nucleus surrounded by several (Z ) electrons held at discrete binding
energies. In this model the relatively massive nucleus does not respond dynamically to the high
frequency incident fields, but the electrons are caused to oscillate at the frequency ω imposed
by the electric field Ei of a passing electromagnetic wave. The various electrons, being bound
by differing restoring forces, respond differently to the impressedfields. The response depends
on the resonant frequencies ωs of the bound electrons and, more specifically, on the closeness
of the driving (incident wave) frequency to the resonances, that is, on ω − ωs . A discussion
of this semi-classical model and its relation to more rigorous quantum mechanical models is
found in Refs. 1 and 12 through 17.

To proceed we require an equation of motion for each of the bound electrons so that we
may determine its acceleration a in the presence of an incident field – and from that determine
the reradiated power in much the same manner as we did previously for free electrons. Thus
we must determine an appropriate formulation of Newton’s second law of motion (F = ma)
for each of the bound electrons. In the semi-classical model we treat the multi-electron atom
as a collection of harmonic oscillators, each with its own set of resonances, h̄ωs , which we
can associate with known transitions between stationary states of the atom. We note, before
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proceeding to the semi-classical equation of motion, that in a proper quantum mechanical
model, the presence of a time dependent external electric field perturbs the atomic system
so that there is a time dependent probability of finding the atom in various stationary states
ψn – perhaps upper and lower states – oscillating continuously between the two at the im-
pressed frequency and thus giving the sense of a time-dependent oscillation of charge distri-
bution within the atom.

In the semi-classical model each bound electron is forced to execute simple harmonic mo-
tion by the impressed electricfield while in the presence of the restoring central forcefield of the
massive, positively charged nucleus. The equation of motion can then be written as follows:‖

m
d2x
dt2

+ mγ
dx
dt

+ mω2
s x = −e(Ei + v × Bi︸ ︷︷ ︸

�0

) (2.48)

where the first term is the acceleration (ma), the second term is a dissipative force term that
accounts for energy loss (we assume γ /ω � 1), and the third term is due to the restoring
force for an oscillator of resonant frequency ωs ; where −e(Ei + v × Bi ) is the Lorentz force
exerted by the incident fields; and where, as before, the v×Bi term is small for non-relativistic
oscillation velocities v. With oscillations impressed by an incident electric field of the form

E = Ei e
−iωt

we anticipate that the displacement x, velocity, and acceleration will all have the same e−iωt

time dependence. The time derivative in all terms can then be replaced by −iω, so that the
equation of motion (2.48) becomes

m(−iω)2x + mγ (−iω)x + mω2
s x = −eEi

where we have suppressed the explicit e−iωt factor that appears in each term. Combining
factors, we see that the harmonic displacement is given by

x = 1

ω2 − ω2
s + iγω

eEi

m
(2.49)

and thus the acceleration is

a = −ω2

ω2 − ω2
s + iγω

eEi

m
(2.50)

Following the procedures used earlier for the free electron [Eqs. (2.38), (2.39), and (2.44)], we
obtain the semi-classical scattering cross-section for a bound electron of resonant frequency
ωs :

σ = 8π

3
r2

e

ω4(
ω2 − ω2

s

)2 + (γω)2
(2.51)

‖J.D. Jackson, Ref. 1, p. 309.
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σ = σT(ωs/γ)2

σ = σT
(ω/ωs)4

(γ/ωs) = 10–1

Lorentzian line shape 
of halfwidth γ/2
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F IGURE 2.8. The semi-classical scattering cross-section, Eq. (2.51), for a bound electron of resonant
energy h̄ωs and an assumed damping factor γ /ωs = 0.1.

where we note that the scattering cross-section for bound electrons displays a strong frequency
dependence, especially near the resonance.

This is substantially different from the free electron cross-section, which is frequency
independent. The form of the bound electron cross-section is illustrated in Figure 2.8. This
semi-classical result shows a strong resonance at ω � ωs , with a peak cross-section very large
compared to the free electron result. Near resonance the line shape approximates that of a
Lorentzian of half width at half maximum γ /2. For very large frequencies the cross-section
approaches Thomson’s result [Eq. (2.45)] for the free electron. In this very high frequency
limit, where ω2 � ω2

s , the bound electrons scatter as though they were free. In this case
the oscillations forced by the incident radiation are too rapid to be affected by the natural
response of the resonant system. For incident frequencies well below the resonant frequency,
such that ω2 � ω2

s and γ � ωs , the cross-section takes on a form first described by Lord
Rayleigh:18

σR = 8π

3
r2

e

(
ω

ωs

)4

= 8π

3
r2

e

(
λs

λ

)4

(2.52)

which has a very strong (λ−4) wavelength dependence.
Rayleigh first used this result in 1899 to explain the blue color of the sky. The photon

energies (h̄ω) of visible light extend from about 1.8 eV (7000 Å) for red to about 2.3 eV
(5300 Å) for green and about 3.3 eV (3800 Å) for blue light. The bound electrons of atmo-
spheric oxygen and nitrogen, with UV resonances at 8.6 eV and 8.2 eV (1520 Å), respectively,
cause very strong scattering at the shorter visible light wavelengths. Indeed, the λ−4 wave-
length dependence of the scattering cross-section gives a factor of about 24, or 16 times
more scattering for blue light than for red. This explains both the blue appearance of the sky
when looking overhead, and the residual red appearance of the setting sun – the latter being
observed in direct viewing after the light has propagated over a long path in which the blue,
green, etc. have been preferentially scattered to the other directions, as illustrated in Figure 2.9.
For a quantum mechanical description of resonant scattering, including lifetime and Doppler
(motion) effects, refer to Loudon, Ref. 12, pp. 314–318 and 70–78.
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F IGURE 2.9 (see Colorplate II). Looking upward, the earthly observer at night sees only blackness or the
occasional star. However during daylight, indirect light is scattered toward the observer when looking
overhead. This scattering is caused by non-uniformities in the atmospheric density of O2 and N2, and
appears blue because of the strong wavelength dependence of bound electron scattering. Upon direct
viewing of the sun, particularly at sunset, the light path is long and passes through the most dense
portion of the atmosphere. As much of the residual light reaching the observer at sunset is greatly
depleted in blue and green, the sun appears red, as do any clouds off which this reddish light reflects.
Very fine atmospheric dust, such as volcanic ash, causes a similar effect.

2.7 SCATTERING BY A MULTI-ELECTRON ATOM

In this section we turn to the subject of scattering by an atom that contains many electrons.
We again use a semi-classical model of point electrons, each with its own resonant frequency,
excited by a continuous electromagnetic wave. Because we do not wish to make the assumption
that the wavelength is long compared to atomic dimensions – which is often not true for
x-rays – we permit each of the electrons to have separate coordinates. Although this is a very
simple atomic model, it gives valuable insights into the angular and wavelength limitations of
various scattering formulae.

In this semi-classical model we can write the electron distribution function within the
atom as

n(r, t) =
Z∑

s=1

δ[r − �rs(t)] (2.53)

where r is the coordinate of the nucleus, �r is the vector displacement from the nucleus, and
Z is the total number of electrons held by the atom. The total current density can be written
as

J(r, t) = −e
Z∑

s=1

δ[r − �rs(t)]vs(t) (2.54)

where for the purposes of scattering calculations vs(t) will be dominated by the incident
field. The assumption that vs is dominated by the incident field, ignoring the effect of waves
scattered by neighboring electrons, is referred to as the Born approximation.

To make use of our radiated power and scattering cross-section formulae we follow the
procedures developed earlier, first calculating the k, ω transform of J(r, t) [see Eq. (2.13b)]:

Jkω =
∫

r

∫
t
J(r, t)ei(ωt−k·r) dr dt
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Electron
at ∆rs
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k = kk0

2θ∆rs

rs ≡ r – ∆rs

r
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at r >>⎥∆rs⎥

F IGURE 2.10. Scattering diagram for radiation incident on a many-electron atom, semi-classically
described as a collection of quantized point electrons surrounding a nucleus of charge +Ze at r = 0.

which with Eq. (2.54) becomes

Jkω = −e
Z∑

s=1

∫∫
δ(r − �rs)vs(t)ei(ωt−k·r) dr dt

Jkω = −e
Z∑

s=1

e−ik·�rs

∫
vs(t)eiωt dt︸ ︷︷ ︸

vs (ω)

where we have assumed that the time dependence of �rs(t) due to positional variation of
the electrons is on a slower time scale than ω−1 and thus separable to first order from the
integration. Recognizing the time integral as the Laplace transform vs(ω), we have

Jkω = −e
Z∑

s=1

e−ik·�rs vs(ω) (2.55)

Continuing to follow our earlier procedures, the electric field scattered by the Z electrons of
the atom is given by Eq. (2.19):

E(r, t) =
∫

k

∫
ω

−iω

ε0

JTkω
e−i(ωt−k·r)

ω2 − k2c2

dk dω

(2π )4

E(r, t) = − e

ε0

Z∑
s=1

∫
k

∫
ω

(−iω)e−ik·�rs vT,s(ω)e−i(ωt−k·r)

ω2 − k2c2

dk dω

(2π )4

E(r, t) = − e

ε0

Z∑
s=1

∫
k

∫
ω

(−iω)eik·(r−�rs )vT,s(ω)e−iωt

(ω − kc)(ω + kc)

dk dω

(2π )4

where vT,s(ω) is the component of vs(ω) transverse to the direction of propagation (obser-
vation) k. The quantity r − �rs in the exponent is identified as the vector distance from the
particular s-electron (�rs) to the observation point (r), as illustrated in Figure 2.10.

Shown in Figure 2.10 are the various point electrons at their positions �rs (measured from
the nucleus at r = 0), an incident wavevector ki , and the scattered wavevector k propagating
toward the observer at r. Note that the scattered wavevector k0 is at angle 2θ (lowercase)
to the incident wavevector ki , and that this scattering angle is different from � (uppercase),
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which is the angle between Ei (not shown) and k. Note also that the diagram defines the vector
position of each electron as seen by the observer,

rs ≡ r − �rs (2.56)

With this definition the expression for E(r, t) becomes

E(r, t) = − e

ε0

Z∑
s=1

∫
k

∫
ω

(−iω)eik·rs vT,s(ω)e−iωt

(ω − kc)(ω + kc)

dk dω

(2π )4

where now rs is the vector distance to the point at which radiatedfields are detected. Proceeding
as before with the dk dω integrals, which led to Eq. (2.25), we find for the multi-electron atom
that

E(r, t) = e

4πε0c2

Z∑
s=1

1

|rs |
d

dt
vT,s

(
t − |rs |

c

)
︸ ︷︷ ︸

t ′
s

where there now appears a retarded time of observation t ′
s = t − |rs |/c appropriate to each

electron. Defining the scalar magnitude of observer distance to the sth electron as

rs ≡ |rs |

the expression for the electric field scattered from a multi-electron atom becomes

E(r, t) = e

4πε0c2

Z∑
s=1

aT,s (t − rs/c)

rs
(2.57)

which is an evident extension of the earlier result for a single electron [Eq. (2.25)].
Using expressions for the transverse acceleration of each bound electron, aT,s , in terms

of the incident field Ei which excites it to oscillation, we can calculate the scattered power
and cross-section. We can write the equation of motion for each of these electrons as

m
d2xs

dt2
+ mγ

dxs

dt
+ mω2

s xs = −e(Ei + vs × B︸ ︷︷ ︸
�0

) (2.58)

where in this case we must be careful to keep the spatial dependence of the incoming wave in
order to account for the differing phase seen by each electron. To do so we rewrite the electric
field as

Ei (r, t) → Ei e
−i(ωt−ki ·�rs ) (2.59)

where we explicitly label the incoming (incident) wavevector as ki . Combining Eqs. (2.58)
and (2.59), we proceed as before to a solution of the equation of motion (at position �rs) for
the oscillatory motion of a bound electron in the presence of an incident electromagnetic field:

xs(t) = 1

ω2 − ω2
s + iγω

e

m
Ei e−i(ωt−ki ·�rs ) (2.60)
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and

as(t) = −ω2

ω2 − ω2
s + iγω

e

m
Ei e−i(ωt−ki ·�rs ) (2.61)

The electric field scattered by a multi-electron atom to a distant observer can now be
obtained by combining Eqs. (2.57) and (2.61), defining the transverse component of accelera-
tion as was done previously for the single electron case, and introducing the classical electron
radius [Eq. (2.44)], so that in terms of field amplitudes

E(r, t) = −e2

4πε0mc2

Z∑
s=1

ω2 Ei sin �

ω2 − ω2
s + iγω

1

rs
e−i[ω(t−rs/c)−ki ·�rs ]

where rs ≡ r − �rs and rs = |rs |. For r � �rs we can write to good approximation (see the
boxed note below)

rs � r − k0 · �rs (2.62)

Note on the relative phase terms for a multi-electron atom: If rs = r − �rs then

rs · rs = (r − �rs) · (r − �rs) = r · r + �rs · �rs − 2r · �rs

r2
s = r2 + �r2

s − 2r · �rs

For r � �rs ,

r2
s � r2 − 2r · �rs = r2

(
1 − 2r · �rs

r2

)
rs � r

(
1 − r · �rs

r2

)

and for r in the k0-direction (see Figure 2.10)

r
r

≡ r0 = k0

Thus for r � �rs

rs � r − k0 · �rs

as given in Eq. (2.62).

We can simplify the expression for E(r, t) by approximating rs by r in the slowly varying
amplitude term, while retaining it in the rapidly varying phase term. The electric field is then

E(r, t) = −re

Z∑
s=1

ω2 Ei sin �

ω2 − ω2
s + iγω

1

r
exp

{
−i

[
ω

(
t − r

c

)
+ ω

(
k0 · �rs

c

)
− ki · �rs

]}
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k

∆k

k i

2θ

F IGURE 2.11. A vector scattering diagram for
incident wave vector ki and scattered wave vector
k. If both waves are at the same frequency
(stationary scatterer), the vector diagram is
isosceles.

Noting that ω/c = k and that kk0 = k, the phase term can be written more compactly as

E(r, t) = −re

Z∑
s=1

ω2 Ei sin �

ω2 − ω2
s + iγω

1

r
exp

{
− i

[
ω

(
t − r

c

)
+ (k − ki )︸ ︷︷ ︸

�k

·�rs

]}

where we have introduced the quantity �k defined by

�k = k − ki (2.63)

where �k is the vector periodicity associated with the inhomogeneity of the medium that
results in a wave of propagation vector ki being scattered into a direction characterized by
the scattered wavevector k. This density fluctuation wave vector, denoted here by �k, is a
quantity one encounters generally in the study of scattering processes, including the scatter-
ing of light or x-rays from crystals, plasma waves, and a host of other non-uniform density
distributions.

Since both k and ki propagate in vacuum, the magnitudes of the wave vectors satisfy
|k| = |ki | = ω/c, so that the scattering diagram, illustrated in Figure 2.11, is isosceles
with

|�k| = 2ki sin θ (2.64)

With simple identifications this will be recognized as the Bragg equation, λ = 2d sin θ ,
where ki = 2π/λ and for a crystal the periodicity is �k = 2π/d. A powerful insight into this
simple equation (2.64) is that electron density distributions of periodicity d scatter radiation
of wavelength λ through an angle 2θ , and can thus provide a Fourier analysis technique useful
in many fields of study.

Using the definition �k in the expression for E(r, t), we have

E(r, t) = −re

r

[
Z∑

s=1

ω2e−i�k·�rs

ω2 − ω2
s + iγω

]
︸ ︷︷ ︸

f (�k, ω)

Ei sin � e−iω(t−r/c) (2.65)

where the quantity f (�k, ω) is the complex atomic scattering factor
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k

k i

F IGURE 2.12. Scattering diagram for a
multi-electron atom. Note that the two electrons
shown as large dots see the same incident phase,
but are of different phase to the observer.

f (�k, ω) =
Z∑

s=1

ω2e−i�k·�rs

ω2 − ω2
s + iγω

(2.66)

a function of the incident wave frequency ω, the various resonance frequencies ωs of the bound
electrons, and the phase terms due to their various positions within the atom, �k · �rs . The
atomic scattering factor describes the electric field amplitude of the scattered wave relative to
that scattered by a free electron:

E(r, t) = −re f (�k, ω)Ei sin �

r
e−iω(t−r/c) (2.67)

where for the referenced (single) free electron, Eq. (2.43), ωs , γ , and �rs are zero, so that
f (�k, ω) is unity. Note that the expression �k ·�rs gives the phase variation of the scattered
fields, due to differing electron positions, as seen by the observer. Thus that product contains
both the different incident phases seen by the various electrons and the phase variations due
to the different path lengths to the observer (see Figure 2.12).

Having determined E(r, t) for the semi-classical multi-electron atom, we can now calcu-
late the differential and total scattering cross-sections following the procedures used earlier
in this chapter for the free electron, obtaining

dσ (ω)
d�

= r2
e | f |2 sin2 � (2.68)

σ (ω) = 8π

3
| f |2r2

e (2.69)

where the complex atomic scattering factor (2.66) is

f (�k, ω) =
Z∑

s=1

ω2e−i�k·�rs(
ω2 − ω2

s + iγω
)

and where the cross-sections (2.68) and (2.69) now display not only the various resonances
and a damping term, but also explicit phase terms e−iφs allowing for the discrete positions of
the various electrons in the semi-classical atom – factors that are significant when λ is less
than or similar to the atomic radius. In general the �k · �rs phase terms do not simplify, and
treatment of the complex atomic scattering factor is problematical. However, in two special
situations f (�k, ω) does simplify. To understand these two special cases we reconsider the
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vector scattering diagram of Figure 2.12. We recall Eq. (2.64):

|�k| = 2ki sin θ

where ki = 2π/λ, so that

�k = 4π

λ
sin θ

With the charge distribution within the atom largely contained within dimensions of the order
of the Bohr radius,∗∗ traditionally written as a0, the phase term in Eq. (2.66) for the complex
atomic scattering function is bounded by

|�k · �rs | ≤ 4πa0

λ
sin θ (2.70)

where the inequality results from the nature of the vector dot product. The phase expression
in (2.70) clearly simplifies in two special cases:

|�k · �rs | → 0 for a0/λ � 1 (long wavelength limit) (2.71)

|�k · �rs | → 0 for θ � 1 (forward scattering) (2.72)

In each of these two cases the atomic scattering factor f (�k, ω) reduces to

f 0(ω) =
Z∑

s=1

ω2

ω2 − ω2
s + iγω

(2.72)

where we denote these special cases by the superscript zero.
It is convenient at this point to introduce the concept of oscillator strengths, gs , which in

the simple semi-classical model are integers that indicate the number of electrons associated
with a given resonance frequency ωs . In such a model one could associate two electrons
with a K-shell resonance, six with an L-shell resonance, etc. Spectroscopists have long taken
this model a step further, introducing fractional oscillator strengths to accommodate known
probabilities for transition to various higher-lying energy states for each atom. Thus we take
the sum of oscillator strengths as equal to the total number of electrons:∑

s

gs = Z (2.73)

A shortcoming of the semi-classical model, among others, is that while it gives the proper
form of scattering cross-sections and refractive index, it does not provide a basis for calculating
oscillator strengths. In the quantum mechanical description12−15 these oscillator strengths††

arise naturally as non-integer transition probabilities, gkn , between stationary states ψk and
ψn of the atom, leading to an expression similar to Eq. (2.73) when summed over final states

∗∗For example see Chapter 1, Figure 1.12. Note that the Bohr radius for the ground state of the hydrogen
atom (n = 1) is a0 = 4πε0h̄2/me2 = 0.529 Å.

††In the literature the symbol f is commonly used to represent both scattering factor and oscillator
strength. To avoid confusion we use g to represent oscillator strength in this chapter and in Chapter 3.
In Chapter 7, where the scattering factor does not occur, we use f for oscillator strength.
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n from an initial state k: ∑
n

gkn = Z (2.74)

Equation (2.74) is known14,15,19 as the Thomas–Reiche–Kuhn sum rule. It was deduced before
wave mechanics was introduced to provide the modern understanding of quantum mechanics.

Introducing the oscillator strengths, we can rewrite the atomic scattering cross-sections
(2.72) for the special cases of long wavelength (λ � a0) or small angles (θ � λ/a0) as

dσ (ω)

d�
= r2

e | f 0(ω)|2 sin2 � (2.75)

and

σ (ω) = 8π

3
r2

e | f 0(ω)|2 (2.76)

where now

f 0(ω) =
∑

s

gsω
2

ω2 − ω2
s + iγω

(2.77)

where again
∑

s gs = Z . Although based on a very simple semi-classical model, Eqs. (2.75–
2.77) give a solution for the scattering of radiation by a multi-electon atom, which, except for
the different interpretations of oscillator strengths, is identical within the limitations discussed
to that derived by modern quantum mechanical techniques. These limitations require that either
the wavelength be large compared to atomic dimensions [Eq. (2.71a)] or that the scattering
be in the forward direction [Eq. (2.71b)], and also that the photon energy be not too close to
an atomic resonance, as that case requires an understanding of lifetimes (damping rates γ ),
which is not addressed by the semi-classical model.20

An interesting limit of scattering involves low-Z atoms and relatively long wavelength
soft x-rays and extreme ultraviolet radiation, for which λ/a0 is much greater than unity. Such
scattering played a role in the development of early atomic theory19 in that it gave evidence of
the number of electrons bound to the atom. In this very special case one can simultaneously
satisfy the conditions that ω2 � ω2

s and λ/a0 � 1, so that the atomic scattering factor f (�k, ω)
reduces to‡‡

f (�k, ω) → f 0(ω) →
∑

s

gs = Z (2.78a)

‡‡For high-Z atoms some orbits bring electrons very close to the nucleus, at highly relativistic veloc-
ities, thus increasing their mass and decreasing their scattering strength from that of a free electron.
Corrections of order (Zα)2, where α is the fine structure constant, are discussed in the literature.22
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and thus

dσ (ω)

d�
� Z2r2

e sin2 � = Z2 dσT

d�
(2.78b)

and

σ (ω) � 8π

3
r2

e Z2 = Z2σe (2.78c)

Thus, for example, a carbon atom (Z = 6) scatters 4 Å wavelength radiation about 36 times
more than that of a single free electron. In this case we say that the six electrons are scattering
coherently in all directions, that is, the scattered electric fields from all atomic electrons add in
phase at all distant points of observation. In the case of carbon at 4 Å wavelength, the photon
energy is h̄ω � 3 keV, well above the binding energy of the most tightly held electrons, the
K-shell electrons, for which the binding energy is about 284 eV (Ref. 21). This is indeed
much less than the photon energy (3 keV), and λ is much greater than the Bohr radius, a0 �
0.5 Å.

For both scattering and refractive index (the latter to be considered in the next chapter)
we will want to determine the real and imaginary parts of f 0(ω), which we will write as23¶¶

f 0(ω) = f 0
1 (ω) − i f 0

2 (ω) (2.79)

where the sign of the imaginary portion is chosen to be consistent with our use of e−iωt time
dependence. In general these are not calculable for the many electron atom. We will see in
Chapter 3 that there is a very close relation between forward scattering (θ = 0), where we can
use the f 0 approximation, and refractive index. Indeed, we will determine that the refractive
index n(ω) can be written as19

n(ω) = 1 − δ + iβ = 1 − nareλ
2

2π

(
f 0
1 − i f 0

2

)
(2.80)

relating the complex atomic scattering factor for forward scattering (θ = 0) to both phase
velocity variation, through f 0

1 , and wave amplitude decay due to absorption, through the
imaginary component f 0

2 . We will address the experimental determination of f 0
1 and f 0

2 in the
next chapter. At this point we simply note that these quantities are tabulated,21 and attach as
an example the data for carbon as Figure 2.13. Note that for the special case of low-Z atoms
(such as carbon), the approximation λ � a0 combined with h̄ω � h̄ωs does work well. In the
case of carbon cited above, the tabulated data gives f 0

1 � 6.1, which is very close to the value
of Z . The tabulated value f 0

2 � 0.071 shows that absorption is relatively weak well above the
binding energy. Note, however, that in general f 0

1 and f 0
2 are very strong functions of photon

energy, particularly near absorption edges. In the limit of very high photon energy the binding
energies become relatively unimportant and all electrons scatter as though they were free. In
this limit f 0

1 goes to Z , and f 0
2 goes to zero. Discussions of the oscillator strength sum rules

for intermediate energies are given by Soufli24 and Wooten.17 Note too that the tabulations
are for f 0(ω), not f (�k, ω), and thus do not address angular effects at short wavelengths.
Nonetheless, the data is very useful for refractive index and long wavelength (soft x-ray)
scattering where these specialized approximations are valid.

¶¶Note that at high frequencies, such that ω2 � ω2
s , Eq. (2.77) goes to the limit f 0(ω) � ∑

s gs = Z . For
this reason some authors14 write f 0

1 (ω) as a decrement from the total electronic charge, Z +� f 0
1 (ω).
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Energy (eV) f1 f2 µ (cm2/g)

30 3.692 2.664E+00 3.111E+05
70 4.249 1.039E+00 5.201E+04

100 4.253 6.960E-01 2.438E+04
300 2.703 3.923E+00 4.581E+04
700 6.316 1.174E+00 5.878E+03

1000 6.332 6.328E–01 2.217E+03
3000 6.097 7.745E–02 9.044E+01
7000 6.025 1.306E–02 6.536E+00

10000 6.013 5.892E–03 2.064E+00
30000 6.000 4.425E–04 5.168E–02

µ(
cm

2 /g
)

10 100 1000
E (eV)

10000

10 100 1000 10000

10 100 1000
E (eV)

10000

σa(barns/atom) = µ(cm2/g) × 19.95
E(keV)µ(cm2/g) = f2 × 3503.310

0 0

Edge Energies:

4

6

8

2

0

f1

f2

106

102

104

100

10–2 10–3

10–2

10–1

100

101

0

0

K 284.2 eV

Carbon (C)
Z = 6

Atomic weight = 12.011

F IGURE 2.13. Tabulated real ( f 0
1 ) and imaginary ( f 0

2 ) parts of the atomic scattering factor for the
carbon atom in the limit (superscript zero) of long wavelength or small scattering angle. Note that the
sign of f 0

2 is consistent with the mathematical representation of forward wave propagation as
exp[−i(ωt − k · r)]. Data is from Henke, Gullikson, and Davis21; also see E. Gullikson.23
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Homework problems for each chapter will be found at the website:
http://www.coe.berkeley.edu/AST/sxreuv



Chapter 3

WAVE PROPAGATION AND
REFRACTIVE INDEX AT EUV
AND SOFT X-RAY
WAVELENGTHS

n = 1 – δ + iβ
n = 1 φ

k

k′

k′′

n(ω) = 1 − nareλ
2

2π

(
f 0
1 − i f 0

2

)
(3.9)

n(ω) = 1 − δ + iβ (3.12)

labs = λ

4πβ
(3.22)

σabs. = 2reλ f 0
2 (ω) (3.28)

�φ =
(

2πδ

λ

)
�r (3.29)

θc =
√

2δ (3.41)

Rs,⊥ � δ2 + β2

4
(3.50)

φB � π

4
− δ

2
(3.60)

In this chapter wave propagation in a medium of uniform atomic density is considered. Ex-
pressions for the induced motion of bound atomic electrons are used in combination with the
wave equation to obtain the complex refractive index for EUV and soft x-ray propagation.
This is then expressed in terms of the atomic scattering factors of Chapter 2. Phase velocity,
absorption, reflection, and refraction are then considered. Results such as the total external
reflection of x-rays at glancing incidence from the surface of a lossy material, the weak normal
incidence reflection of x-rays, Brewster’s angle, and Kramers–Kronig relations are obtained.
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3.1 THE WAVE EQUATION AND REFRACTIVE INDEX

Here we consider the subjects of electromagnetic wave propagation, reflection, and refrac-
tion,1–5 with particular emphasis on application to the EUV and soft x-ray regions of
the spectrum. Here the wavelengths are very short, approaching atomic dimensions, and
the photon energies are comparable to the binding energies of atomic electrons. Whereas in
the previous chapter we considered scattering from a single atom, in this chapter we consider
the effect of many atoms, each containing many electrons. We can imagine that in general this
could be a very complicated problem; however, if we restrict ourselves to propagation in the
forward direction, the problem simplifies significantly, leading to relatively simple expressions
for the refractive index, related to those obtained in the previous chapter. Indeed, it is the sum
of forward-scattered radiation from all atoms that interferes with the incident wave to produce
a modified propagating wave, compared to that in vacuum. As the scattering process involves
both elastic (lossless) and inelastic (dissipative) processes, the resultant refractive index is in
general a complex quantity, describing not only a modified phase velocity, compared to that
in vacuum (c), but also a wave amplitude that decays as it propagates.

Our point of departure for the study of refractive index is the vector wave equation
[Chapter 2, Eq. (2.7)]

(
∂2

∂t2
− c2 ∇2

)
E(r, t) = −1

ε0

[
∂J(r, t)

∂t
+ c2∇ρ(r, t)

]

which, as seen in Chapter 2, follows directly from Maxwell’s equations with the identification
that [Eq. (2.8)]

c ≡ 1√
µ0ε0

is the phase velocity for propagation in vacuum. For the propagation of transverse waves
(E perpendicular to k) the ∇ρ term does not contribute, nor does the longitudinal component
of J, i.e., the component of J in the direction of propagation [see the arguments in Chapter 2
leading to Eqs. (2.16) and (2.18)]. Thus for transverse electromagnetic waves of the form
exp[−i(ωt − k · r)], propagating in the vector k-direction, we need consider only field com-
ponents transverse to k,

(
∂2

∂t2
− c2∇2

)
ET(r, t) = − 1

ε0

∂JT(r, t)

∂t
(3.1)

where the subscript T denotes a direction transverse to k, as illustrated previously in the vector
coordinate system shown in Figure 2.3. The two possible transverse coordinates correspond
to the two possible states of polarization. Equation (3.1) is recognized as the inverse Fourier–
Laplace transform of Eq. (2.18), the transverse wave equation in k, ω-space.

To determine JT for the many-atom situation we must sum the contributions of all elec-
trons. We recall from Chapter 2 that a passing electromagnetic wave of frequency ω induces
an oscillatory electron motion of the same frequency, with an amplitude of oscillation given
by [Eq. (2.49)]

x(r, t) = e

m

1(
ω2 − ω2

s

) + iγω
E(r, t)
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where in the semi-classical model of the atom ωs is the electron’s natural frequency of
oscillation, γ is a dissipative factor, and E(r, t) is the electric field of the passing wave.
For small amplitude oscillations, the oscillation velocity is thus

v(r, t) = e

m

1(
ω2 − ω2

s

) + iγω

∂E(r, t)

∂t
(3.2)

The total current density J(r, t) must sum the contributions of all such bound electrons within
an atom, and sum over all atoms. Were we interested in the scattering to all angles within
this many atom system, we would have the formidable problem of describing not only the
positions of all electrons within the atom, as was considered in Chapter 2, but also the relative
positions of all atoms. However, in this chapter we restrict our interests to propagation only in
the forward direction (θ = 0), which as we saw in the previous chapter leads to a significant
simplification. Indeed, we found that in the forward direction the positions of the individual
electrons are irrelevant [Eq. (2.67)], as the forward-scattered radiation has the same phase,
with respect to the incident radiation, for all electrons of like resonant frequency, independent
of their positions. It is the interaction of these forward-scattered waves with the incident
wave that contributes to modified propagation characteristics that we refer to as the refractive
index – both the modified phase velocity and the amplitude decay.

As the electron positions do not affect forward propagation, we can simplify the cur-
rent density expression for these purposes by introducing an expression with subscript zero,
J0(r, t), referring to the special case of forward scattering (θ = 0) where now all similar atoms
contribute identically, and the summation is only over like resonances, that is,

J0(r, t) = −ena

∑
s

gsvs(r, t) (3.3)

where na is the average density of atoms, and where the oscillator strengths for the various
resonances sum to the total number of electrons per atom,∗ i.e., [Eq. (2.73)]

∑
s

gs = Z

where Z is the number of electrons per atom. Combining Eqs. (3.2) and (3.3), the total current
density J0 contributing to propagation in the forward direction is

J0(r, t) = −e2na

m

∑
s

gs(
ω2 − ω2

s

) + iγω

∂E(r, t)

∂t
(3.4)

Substituting this into the transverse wave equation (3.1), one has

(
∂2

∂t2
− c2 ∇2

)
ET(r, t) = e2na

ε0m

∑
s

gs(
ω2 − ω2

s

) + iγω

∂2ET(r, t)

∂t2

∗As in Chapter 2, we use gs for the oscillator strength to avoid confusion with the use of f for the
scattering factor. In Chapter 7, Extreme Ultraviolet and Soft X-ray Lasers, the oscillator strength is
represented by the more traditional flu .



58 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

1

0
Infrared Visible Ultraviolet

Ultraviolet

R
ef

ra
ct

iv
e 

in
de

x,
 n

X-ray
ωIR ωUV ωK,L,M

F IGURE 3.1. A sketch of refractive index showing the strong variations near IR, UV, and x-ray
resonances (ωs ), and the general tendency toward unity for very short wavelengths where the
frequencies are higher than all atomic resonances. Only the real part of the refractive index is
shown here.

Combining terms with similar differential operators, one has[(
1 − e2na

ε0m

∑
s

gs(
ω2 − ω2

s

) + iγω

)
∂2

∂t2
− c2 ∇2

]
ET(r, t) = 0 (3.5)

which can be rewritten in the standard form of the wave equation as

[
∂2

∂t2
− c2

n2(ω)
∇2

]
ET(r, t) = 0 (3.6)

where the frequency dependent refractive index n(ω) is identified as

n(ω) ≡
[

1 − e2na

ε0m

∑
s

gs(
ω2 − ω2

s

) + iγω

]1/2

(3.7)

Note that we have used n for both the refractive index n(ω) and the number density na (atoms
or electrons per unit volume), as is also common. The reader will have to be alert to these
differences, generally differentiated by subscripts or indicated independent variables.

Note that as it appears in Eq. (3.7) the refractive index n(ω) has a strong frequency
dependence, particularly near the resonant frequencies ωs , and is thus said to be dispersive.
That is, waves of different frequencies propagate at different phase velocities and thus tend
to separate (disperse). It is a simple matter to show that for EUV/SXR radiation ω2 is very
large compared to the quantity e2na/ε0m, so that to a high degree of accuracy the index of
refraction can be written as

n(ω) = 1 − 1

2

e2na

ε0m

∑
s

gs(
ω2 − ω2

s

) + iγω
(3.8)

This equation predicts both positive and negative dispersion, depending on whether the fre-
quency ω is less or greater than ωs . This sign convention follows experience with visible
light, where the resonances, ωs are generally in the ultraviolet region for common glass lenses
and prisms. Among early researchers this led to what became known as normal dispersion.
Radiation for which ω > ωs was considered “anomalous.” Figure 3.1 illustrates a generic
refractive index across the electromagnetic spectrum with resonances in the infrared (IR), in
the ultraviolet (UV), and the x-ray region.
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F IGURE 3.2. Left- and right-propagating waves.

Note that Eq. (3.8) can be rewritten in somewhat simpler form in terms of the classical
electron radius [Eq. (2.44)]

re = e2

4πε0mc2

and the complex atomic scattering factor (θ = 0, superscript zero) [Eq. (2.77)]

f 0(ω) =
∑

s

gsω
2

ω2 − ω2
s + iγω

which can be written in terms of its complex components [Eq. (2.79)]

f 0(ω) = f 0
1 (ω) − i f 0

2 (ω)

Making these substitutions, the refractive index [Eq. (3.8)] can be rewritten as

n(ω) = 1 − nareλ
2

2π

[
f 0
1 (ω) − i f 0

2 (ω)
]

(3.9)

where λ is the wavelength in vacuum. Note that this relationship shows explicitly the link
between forward scattering and refractive index. In a later section we will discuss the experi-
mental and computational determinations of f 0

1 (ω) and f 0
2 (ω) and their utilization in various

x-ray experiments.
Some further comments can be made on the role of the refractive index as embodied in

the wave equation (3.6), which can be factored into the product of two operators, viz.,

(
∂

∂t
− c

n(ω)
∇

) (
∂

∂t
+ c

n(ω)
∇

)
ET(r, t) = 0 (3.10)

When either factor is zero the equation can be satisfied for non-zero electric field. These two
conditions correspond to left and right propagating waves, as illustrated in Figure 3.2:
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Note from Eq. (3.10) that for a wave propagating in a medium of uniform atomic density
the phase velocity (the speed with which crests of fixed phase move) is not equal to c as in
vacuum, but rather is modified to a value

vφ = c

n(ω)
(3.11)

That this is so can be seen by examining Eq. (3.10) for the case of fixed amplitude, for
instance traveling with fixed phase at the peak amplitude of the wave. This requires that
one of the brackets, which correspond to left- and right-propagating waves, contribute as a
zero multiplier. For the right-running one-dimensional wave illustrated in Figure 3.2, with
space–time dependence E = E0 exp[−i(ωt − kz)], setting the operator to zero gives the
condition

−i

(
ω − ck

n

)
= 0

or

ω

k
= c

n

which we recognize as a phase velocity vφ different from the vacuum value c, in a medium
of refractive index n. Thus for visible light, with ω < ωs , the refractive index is greater
than unity, typically 1.5 or so for common glass, which corresponds to a relatively low phase
velocity, less than c. Typical phenomena affected by low phase velocity propagation of visible
wavelengths include reflection and refractive turning at tilted interfaces, focusing by lenses,
dispersive separation of wavelengths by prisms, and total internal reflection, as in a prism
or a fish tank. For EUV/SXR radiation, where ω is greater than ωs for many of the atomic
electrons, the refractive index is less than unity, but only slightly so, indicating that x-rays
propagate in materials at phase velocities somewhat greater than in vacuum (c). This gives rise
to the interesting and important phenomenon of total external reflection of x-rays, whereby
reflection occurs with little absorption at glancing incidence from material interfaces. Note
that although the phase velocity can be greater than c for x-rays, the group velocity, which
represents energy flow, is less than c. For further discussion of phase and group velocities,
see Refs. 1–3.

As the refractive index for EUV and soft x-ray radiation deviates only a small amount
from unity, it is common6 to write it in the following form:

n(ω) = 1 − δ + iβ (3.12)

where the choice of a positive sign for the β term is consistent with the form of exponential
wave description used throughout these notes,† exp[−i(ωt − k · r)]. As we shall see shortly,
this choice of sign for the imaginary term leads to an appropriate decay of wave intensity in
a lossy medium.

†See the footnote following Eq. (1.26) in Chapter 1. The consistency of this choice is clarified in the
algebra leading to Eq. (3.17) in Section 3.2 below. For assumed waves of the form exp[+i(ωt − k · r)]
the proper choice for wave decay in a passive lossy medium would be n(ω) = 1 − δ − iβ.
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Comparing Eqs. (9) and (12), we observe that

δ = nareλ
2

2π
f 0
1 (ω) (3.13a)

β = nareλ
2

2π
f 0
2 (ω) (3.13b)

That these are small quantities can be verified by a simple example. We consider carbon
with mass density ρ = 2.26 g/cm3, and thus atomic density 1.13 × 1023 atoms/cm3 (see
the periodic chart, Chapter 1, Table 1.2). For carbon at a wavelength of 4 Å, f 0

1 = 6.09
and f 0

2 = 0.071, as we saw in the tabulated example at the end of Chapter 2 (Figure 2.13).
Thus with re = 2.82 × 10−13 cm [Eqs. (2.44) and (2.46)], we have δ = 4.90 × 10−5

and β = 5.71 × 10−7, indeed much less than unity. For longer wavelengths or higher
Z (atomic number on the periodic chart) materials, the values of δ and β will be larger,
but still much less than unity. The strongest dependence is on λ2, while f 0

2 scales slowly
with Z , somewhat less than linearly. Thus even for a high Z element such as gold, at soft
x-ray wavelengths δ and β will have values of order 10−2, still far less than unity. Values of
f 0
1 (ω) and f 0

2 (ω) have been tabulated by Henke, Gullikson, and Davis7 for all elements from
hydrogen to uranium (Z = 92), and for photon energies extending from 50 eV to 30 keV (from
10 eV for f 0

2 ), by techniques we will return to at the end of this chapter. See Appendix C for
representative values for several common elements.

3.2 PHASE VARIATION AND ABSORPTION OF PROPAGATING WAVES

Having convenient relations, Eqs. (3.12) and (3.13), for the refractive index, it is now con-
venient to consider phase variation and absorption during wave propagation at EUV/SXR
wavelengths. In Chapter 1 we considered absorption and transmission by thin foils in terms
of a so-called‡ mass-dependent absorption coefficient, µ(λ). We now inquire as to how the
absorption coefficient µ relates to the refractive index that appears in the propagation of short-
wavelength electromagnetic radiation. We can answer this by considering a plane wave of the
form

E(r, t) = E0e−i(ωt−k·r) (3.14)

propagating in some material with an initial amplitude E0 and having a complex dispersion
relation given by

ω

k
= c

n
= c

1 − δ + iβ
(3.15)

‡The choice of name is not the best, as it is photons that are absorbed. The name is meant to differentiate
this absorption coefficient from that defined in terms of an atomic density, that is, in terms of na rather
than ρ.
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Solving for k, we obtain

k = ω

c
(1 − δ + iβ) (3.16)

Substituting this into Eq. (3.14), in the propagation direction defined by k · r = kr one has

E(r, t) = E0e−i[ωt−(ω/c)(1−δ+iβ)r ]

or

E(r, t) = E0e−iω(t−r/c)︸ ︷︷ ︸
vacuum propagation

e−i(2πδ/λ)r︸ ︷︷ ︸
φ-shift

e−(2πβ/λ)r︸ ︷︷ ︸
decay

(3.17)

where the first exponential factor represents the phase advance had the wave been propagating
in vacuum, the second factor (containing 2πδr/λ) represents the modified phase shift due to
the medium, and the factor containing 2πβr/λ represents decay of the wave amplitude.

To compute the intensity of the wave whose electric field is given by Eq. (3.17), we must
first determine the associated magnetic field and take the cross product of E and H to obtain the
Poynting vector S. We follow the same general procedure as was used in Chapter 2 for a plane
electromagnetic wave in vacuum, but now use the refractive index appropriate to propagation
in a uniform, isotropic material. For a plane wave in any medium, we found in Chapter 2
[above Eq. (2.29)] that the field components are given by

ik × Ekω = iωµ0Hkω

while for a material of refractive index n, according to Eq. (3.15),

ω

k
= c

n

Thus with k = kk0, where k0 is a unit vector in the direction of propagation, the field compo-
nents are related by

ikk0 × Ekω = i(kc/n)µ0Hkω

or

Hkω = n

cµ0
k0 × Ekω

With c ≡ 1/
√

ε0µ0 and refractive index n varying slowly with frequency, the transformed
fields in real space are given by

H(r, t) = n

√
ε0

µ0
k0 × E(r, t) (3.18)

which is similar in form to Eq. (2.29), but more general in that Eq. (3.18) includes the effect
of the refractive index n.

The scalar average intensity of a plane electromagnetic wave, Ī , in units of power per
unit area, is given for sinusoidal fields by the magnitude of the Poynting vector averaged over
one period (as denoted by the bar). Following the discussion in Chapter 2 [Eq. (2.37)], the
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average intensity1, 3 is

Ī = |S̄| = 1
2 |Re(E × H∗)| (3.19)

which for a plane wave in a medium of complex refractive index n, with use of Eq. (3.18), is
given by

Ī = 1

2
Re(n)

√
ε0

µ0
|E|2 (3.20)

where in Eqs. (3.19) and (3.20) the field values are those at the peak of the cycle. Thus for
the plane wave described by the electric field of Eq. (3.17), the average intensity is given by

Ī = 1

2
Re(n)

√
ε0

µ0
|E0|2e−2(2πβ/λ)r

which can be written completely in terms of the intensity Ī 0 at some reference plane in the
material (for instance just on the material side of an interface with vacuum), as

Ī = Ī 0e−(4πβ/λ)r (3.21)

that is, the wave decays with distance r into the material, with an exponential decay length

labs = λ

4πβ
(3.22)

where we recall that β is the absorptive portion of the complex refractive index, as seen in
Eq. (3.12). Referring back to Eq. (3.13b), we can write the absorption length in terms of the
imaginary portion of the complex atomic scattering coefficient, f 0

2 (ω), as

labs = 1

2nareλ f 0
2 (ω)

(3.23)

In Chapter 1 we considered experimentally observed absorption in thin foils, writing

Ī

Ī 0
= e−ρµr (3.24)

where ρ is the mass density,¶ µ is the absorption coefficient, and r is the foil thickness.
Comparing Eqs. (3.21) to (3.24) shows that macroscopic (µ) and atomic ( f 0

2 ) absorption

¶Again we have the inconvenience of a letter, ρ in this case, being commonly used for two different
quantities: mass density here, and charge density in Maxwell’s equations [Eqs. (2.1)–(2.4)]. The reader
will recognize the proper meaning by its usage.
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factors are related by

ρµ = 2nareλ f 0
2 (ω)

Since the mass density ρ is related to the atomic density na by

ρ = mana = Amuna (3.25)

where ma is the atomic mass, mu is the atomic mass unit,§ and A is the number of atomic
mass units (as given in the periodic chart, Table 1.2), the macroscopic-to-atomic relationship
can be written as

µ = 2reλ

Amu
f 0
2 (ω) (3.26)

Thus we have a relationship between the macroscopically observed absorption of x-rays by
thin foils, µ(ω), and the absorptive portion of the atomic scattering factor for a single atom,
f 0
2 .

For some applications the absorption of radiation by thin films is expressed in terms of
an atomic cross-section for absorption, σabs, through a relation similar to Eq. (3.24), but in
terms of the atomic density na rather than the mass density ρ [see Eq. (1.3)]. In this case one
expresses the absorption as

Ī

Ī 0
= e−naσabsr (3.27)

so that a comparison with Eqs. (3.21–3.23) gives an expression between the atomic absorption
cross-section and β or f 0

2 , viz.,

σabs = 2reλ f 0
2 (ω) (3.28a)

or equivalently

σabs = Amuµ(ω) (3.28b)

An example showing the photon energy dependence of µ and σabs for copper atoms is given
in Chapter 1, Figure 1.8.

Returning to Eq. (3.17), we note that we have written the electric field in terms of an
initial value E0 multiplied by factors involving δ and β that take account of phase shifting

§The atomic mass unit is given in Appendix A as mu = 1.66054 × 10−24 g. Note that numerically mu

is equal to the reciprocal of Avogadro’s number NA (Appendix A), so that the mass of one mole is
m = Amu NA = A, the atomic weight expressed in grams.
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F IGURE 3.3. A Mach–Zehnder interferometer for measuring phase shift.

and absorption in the medium. We see from Eq. (3.17) that the phase of the wave is shifted
because of its propagation through the medium of atoms (na), and that the relative phase shift
�φ, compared to propagation in vacuum, is given by

�φ =
(

2πδ

λ

)
�r (3.29)

where �r is the thickness or propagation distance. We will see in later chapters that this phase
shift plays an important role in diffractive optics, multilayer mirrors, interferometry, and many
other subjects.

The measurement of phase shift in a material is most directly accomplished with the use
of an interferometer, an instrument in which a wavefront is dissected into parts, one of which
is propagated through the object and one of which is propagated through a reference path,
typically vacuum or air. The two waves are then recombined to form an interference pattern
where differences in optical path (�φ) are manifested as localized shifts of the fringe pattern.‖

Interferometry is a widely used technique1, 8 at visible and longer wavelengths, with many
variations based on available optics, parameters of interest, and coherence properties of the
radiation.

To introduce the general concept, Figure 3.3 illustrates an interferometer introduced in the
1880s by Mach and Zehnder to study airflow patterns with incoherent visible light. Knowing
the material thickness �r and measuring the phase shift �φ, one can deduce δ, the real part
of the refractive index, through use of Eq. (3.29), and thus for our purposes find f 0

1 as a
function of probe wavelength or photon energy. Note that the beamsplitters (BS) and mirrors
must (M) be optically flat to a fraction of a wavelength across the aperture of the beam. This
is particularly challenging at x-ray wavelengths. Nonetheless, through the clever use of cut
monolithic crystals, Bonse and Hart9 have introduced the use of interferometric techniques at
x-ray wavelengths.

Interferometry at soft x-ray and EUV wavelengths is more challenging because of the
higher degree of absorption at these wavelengths. Soft x-ray interferometry is, however, be-
coming a reality as various techniques are investigated that provide the requisite splitting into
sufficiently flat wavefronts. An example of an EUV interferometer is given near the end of

‖The phrase fringe pattern refers to the alternating bright and dark bands caused by the positive and
negative interference of two waves.
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F IGURE 3.4. Interface geometry for incident, reflected, and refracted waves. The plane of incidence is
defined as containing the incident wave vector k and the surface normal z0.

Chapter 8. Note that in the interferometer illustrated in Figure 3.3, the two wavefronts are re-
combined in a manner that maintains their original spatial orientation, thus requiring minimal
coherence properties∗∗ for the formation of a high-contrast fringe pattern.

3.3 REFLECTION AND REFRACTION AT AN INTERFACE

To consider the phenomena of reflection and refraction we introduce Figure 3.4, which illus-
trates the incident, reflected, and refracted waves at a material interface. Note that all angles
are measured from the surface normal (z-axis), and that propagation effects such as phase ve-
locity and attenuation are contained in k, the vector propagation constant, through the complex
refractive index, e.g., as in Eq. (3.16):

k = |k| = ω

c
(1 − δ + iβ)

where we assume that ω is real and that all waves have the same time dependence, e−iωt ,
because they are driven by the incident wave. We consider a plane wave incident from the
vacuum side and write the incident wave as

E = E0e−i(ωt−k·r) (3.30a)

the refracted wave as

E′ = E′
0e−i(ωt−k′ ·r) (3.30b)

and the reflected wave as

E′′ = E′′
0e−i(ωt−k′′ ·r) (3.30c)

where the subscript zero denotes the vector field amplitudes at the interface position r = 0.
Because the incident and reflected waves propagate in the same medium (vacuum), they
experience the same refractive index (n = 1). Thus for the same oscillating frequency (ω),

∗∗The subjects of spatial and temporal coherence are discussed in Chapter 8.
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from Eq. (3.16), one can write

|k| = k′′| = ω

c
(3.31)

At the interface (z = 0) where these three waves meet, the fields must obey certain boundary
conditions1−5 in order to satisfy Maxwell’s equations:

Condition 1: Field components of E and H parallel to the interface must be continuous. For the
geometry shown in Figure 3.4, where z0 is a unit vector normal to the interface, the boundary
conditions in the absence of surface currents are

z0 × (E0 + E′′
0) = z0 × E′

0 (3.32a)

and

z0 × (H0 + H′′
0) = z0 × H′

0 (3.32b)

Condition 2: Field components of D and B normal (perpendicular) to the interface must be
continuous. For the geometry in Figure 3.4 the boundary conditions in the absence of surface
charge are

z0 · (D0 + D′′
0) = z0 · D′

0 (3.32c)

and

z0 · (B0 + B′′
0) = z0 · B′

0 (3.32d)

We consider the incident wave vector k to lie in the x, z-plane, and refer to this as the
plane of incidence, as it contains both k and the surface normal z0. At this point we make
no assumption as to the polarization of the incident wave, that is, to the direction of E with
respect to this plane. If the parallelfield components are to be continuous everywhere along the
interface as required by Eqs. (3.32a) and (3.32b), then the phase and amplitude variations for
all waves must be identical along the interface. This requires that the x-direction components
of the wavevectors in Eqs. (3.30a–c) satisfy the condition

(k · x0 = k′ · x0 = k′′
0 · x0) at z = 0 (3.33)

Since k has no y-component by our orientation of axes, neither can k′ or k′′. Thus all three
vectors must lie in the plane of incidence defined by k and the surface normal direction z0. If
the phase and amplitude factors are to match along the interface in the x-direction, all waves
must have equal kx components. In this way one ensures that the boundary condition is met
everywhere along the interface if it is met at any one point. Following this argument Eq. (3.33)
requires that

kx = k ′
x = k ′′

x (3.34a)

or in terms of the angles shown in Figure 3.5,

k sin φ = k ′ sin φ′ = k ′′ sin φ′′ (3.34b)
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F IGURE 3.5. Parallel components of the wave vectors.

Since k and k ′′ propagate in vacuum, they are real and equal in magnitude as observed in
Eq. (3.31); thus from (34b) we can write

sin φ = sin φ′′ (3.35a)

or

φ = φ′′ (3.35b)

which states that the angle of incidence equals the angle of reflection. Considering the refracted
wave k′, Eq. (3.34b) permits us to write

k sin φ = k ′ sin φ′ (3.36)

Since both waves must oscillate at the same frequency (ω), we can write, by using Eq. (3.15),
that

ω = kc = k ′c/n

or

k ′ = kn = ω

c
(1 − δ + iβ) (3.37)

indicating that the propagation vector in the medium is complex, representing both phase
variation and amplitude decay as the wave propagates, as seen previously in Eqs. (3.16) and
(3.17). Equation (3.36) can now be rewritten as Snell’s law:

sin φ′ = sin φ

n
(3.38)

which formally describes the refractive turning of a wave entering a uniform, isotropic medium
of complex refractive index n. The fact that n is complex implies that sin φ′ is also complex for
real incidence angle φ. Thus both the wavevector k ′ and the turning angle φ′, in the medium,
have real and imaginary components, giving a somewhat more complicated representation of
refraction and propagation.
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F IGURE 3.6. Glancing incidence radiation and total external reflection.

Snell’s law (3.38) is valid over a wide range of wavelengths and photon energies. It is
widely used in lens designs at visible wavelengths, and to describe such interesting phenomena
as total internal reflection of visible light within the denser medium at water–air and glass–air
interfaces. We will use Snell’s law here to describe the near-total reflection of short wavelength
radiation at glancing incidence to a material surface.

3.4 TOTAL EXTERNAL REFLECTION OF SOFT X-RAYS AND EUV RADIATION

For most angles of incidence the reflection coefficient for soft x-rays and extreme ultraviolet
radiation is very small, as we will see in a following section of this chapter. This is due to
the fact that the refractive index is very close to unity so that there is little change of field
amplitudes across the interface. However, there is an important exception for radiation incident
at a glancing angle to the material surface, far from the surface normal. We will see that in
this case, radiation of any polarization experiences near total reflection. This total external
reflection is widely used in experiments involving radiation transport, deflection, focusing, and
filtering. Like its visible light counterpart total internal reflection (commonly observed in fish
tanks and used for turning visible laser beams within glass prisms where the refractive index is
greater than unity), the x-ray effect can be understood in large measure on the basis of Snell’s
law, Eq. (3.38). Snell’s law indicates that visible light will be bent towards the surface normal
(φ′ < φ) when entering a medium of greater refractive index (n typically greater than 1.5 for
glass or water at visible wavelengths). For EUV and x-rays, however, with the real part of the
refractive index slightly less than unity, Snell’s law indicates that the radiation is refracted in
a direction slightly further from the surface normal. Inspection of Eq. (3.38) shows that for n
slightly less than unity, sin φ′ is slightly larger than sin φ. Thus for near-glancing incidence
(φ near π/2) the refraction angle φ′ can equal π/2, indicating that to first order the refracted
wave does not penetrate into the material, but rather propagates along the interface. In short
order we will investigate the dependence of these fields on the parameters of the problem: the
wavelength λ, incidence angle φ, and refractive index components δ and β. First, however,
we consider the simplified problem with β approaching zero, which permits us to understand
the basic phenomenon of total external reflection and quantify the critical angle with minimal
mathematical complexity. The general effect is illustrated in Figure 3.6.

Considering Snell’s law for a refractive index of n � 1 − δ, where for the moment we
assume that β approaches zero, one has

sin φ′ = sin φ

1 − δ
(3.39)

Thus the refracted wave is at an angle φ′, somewhat further from the surface normal than φ
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because of the 1 − δ factor. As φ approaches π/2 it is evident that sin φ′ approaches unity
somewhat faster. The limiting condition occurs at a critical angle of incidence, φ = φc, where
φ′ = π/2, so that sin φ′ = 1 and from Eq. (3.39)

sin φc = 1 − δ (3.40)

This is the condition for total external reflection; the incident x-rays do not penetrate the
medium, but rather propagate along the interface at an angle φ′ = π/2. The angle for which
this condition is just met is given by Eq. (3.40). Since δ 	 1 for x-rays, the phenomenon
occurs only for glancing angles where φ is near 90◦. Thus it is convenient to introduce the
complimentary angle θ , measured from the interface as shown in Figure 3.6, where

θ + φ = 90◦

The critical angle condition (3.40) then becomes

sin(90◦ − θc) = 1 − δ

or

cos θc = 1 − δ

Since δ 	 1 for x-rays, cos θc is near unity, θc is very small, and we may make the small angle
approximation

1 − θ2
c

2
+ · · · = 1 − δ

which has the solution

θc =
√

2δ (3.41)

as the critical angle for total external reflection of x-rays and extreme ultraviolet radiation, a
result first obtained by Compton6 in 1922.

Since the real part of the refractive index can be written as [Eq. (3.13a)]

δ = nareλ
2 f 0

1 (λ)

2π

we have, to first order,

θc =
√

2δ =
√

nareλ2 f 0
1 (λ)

π
(3.42a)

Because the atomic density na , in atoms per unit volume, varies only slowly among the natural
elements, the major functional dependencies of the critical angle are

θc ∝ λ
√

Z (3.42b)

where we have used the fact that to first order f 0
1 is approximated by Z , although as we

have seen f 0
1 is also a complicated function of wavelength (photon energy) for each element.
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To obtain a conveniently large critical angle, Eq. (3.42) suggests use of a relatively long
wavelength and a higher Z material. We will see that other factors enter, such as the absorption
β, specific absorption edges available with differing materials, and the availability of certain
elements in convenient form for laboratory use. We will return to this subject, with illustrations
for a variety of materials, later in this chapter.

As a specific example of the critical angle for total external reflection we consider a carbon
mirror with incident radiation of 0.4 nm wavelength. We have previously observed, in the
paragraph below Eq. (3.13), that for this case δ = 4.90×10−5, and thus θc = √

2δ � 10−2 rad,
or about 0.6◦ from the surface. At longer wavelengths one finds larger critical angles, as
indicated in Eq. (3.42). For instance, at a wavelength of 1.04 nm one finds from the tables (see
Appendix C) that δ = 3.4 × 10−4, so that θc increases to about 2.6 × 10−2 rad, or about 1.5◦.
Use of a higher Z material, such as nickel or gold (coating), increases the critical angle further.
Note that not only are these angles small, and perhaps inconvenient, but as a consequence
the possible collection solid angles for use in experiments such as plasma diagnostics and
EUV/x-ray astronomy are quite limited.

The above model of total external reflection is incomplete in that it does not include the
effect of finite β. Since a portion of the field extends into the lossy medium, even if only in an
evanescent manner, losses are incurred and total reflection is not achieved. In the following
section we calculate the reflection coefficients for radiation incident on an interface at arbitrary
angle of incidence for finite δ and β. In a later section we investigate further the nature of
field penetration near the critical angle for finite β.

3.5 REFLECTION COEFFICIENTS AT AN INTERFACE

Returning to Figure 3.4, which shows the geometry of incident, reflected, and refracted waves
at an interface, we use the various wave amplitudes given in Eqs. (3.30) and the boundary
conditions [Eq. (3.32)] to determine the field amplitudes in both regions, and from these
determine the reflectivity. Incident radiation of any polarization (linear, circular, elliptical)
can be described in terms of two orthogonal polarizations with appropriate amplitudes and
phase angle between the two. For the purpose of analysis, it is convenient to decompose
incident radiation into two geometries, one with the incident electric field E perpendicu-
lar to the plane of incidence (containing k and z0), and one with E parallel to that plane.
These orientations are often referred to as s and p polarizations, respectively, following the
German words for perpendicular (senkrecht) and parallel (parallele). Any incident wave,
polarized or not, can be represented in terms of these two polarizations. We can determine the
refracted and reflected wave amplitudes at the interface, E′

0 and E′′
0, by applying the bound-

ary conditions given by Eqs. (32a) and (32b). We treat the two possible field orientations
separately.

3.5.1 E0 Perpendicular to the Plane of Incidence

For the case of the incident electric field polarized perpendicular to the plane of incidence, in
the y-direction for our choice of axes (see Figure 3.7), application of Eq. (3.32a) is relatively
simple. The scalar field amplitudes at the interface (subscript zero) must satisfy the condition

E0 + E ′′
0 = E ′

0 (3.43)
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F IGURE 3.7. Field components for perpendicular
(s) polarization, where E is polarized in the
y-direction (into the paper as shown here),
perpendicular to the x, z plane of incidence.

while continuity of the magnetic field [Eq. 3.32b], upon inspection of Figure 3.7, requires that
at the interface

H0 cos φ − H ′′
0 cos φ = H ′

0 cos φ′ (3.44)

Equations (3.43) and (3.44) can be combined to solve for the fields by recalling that for plane
waves propagating in a medium of refractive index n, E and H are related by Eq. (3.18):

H(r, t) = n

√
ε0

µ0
k0 × E(r, t)

or, more conveniently, the amplitudes are related by

H = n

√
ε0

µ0
E

where the field orientations are described by Eq. (3.18) with E0 = E0y0, E′
0 = E ′

0y0, and
E′′

0 = E ′′
0 y0. Equation (3.44) can now be expressed, after eliminating magnetic fields, as√

ε0

µ0
E0 cos φ −

√
ε0

µ0
E ′′

0 cos φ = n

√
ε0

µ0
E ′

0 cos φ′

or

(E0 − E ′′
0 ) cos φ = nE ′

0 cos φ′ (3.45)

From Snell’s law [Eq. (3.38)] we know the relation between φ and φ′:

sin φ′ = sin φ

n

Thus we have three equations [(3.38), (3.43), and (3.45)] in five unknowns (E0, E ′
0, E ′′

0 , φ,
and φ′), which can be solved by treating two (E0 and φ) as independent variables describing
the incident radiation. We can now solve for the refracted and reflected field amplitudes, E ′

0
and E ′′

0 , in terms of the incident wave parameters E0 and φ.
Combining Eqs. (3.43) and (3.45), we have

(E0 − E ′′
0 ) cos φ = n(E0 + E ′′

0 ) cos φ′
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Combining terms according to incident and reflected fields, one has

(cos φ − n cos φ′)E0 = (cos φ + n cos φ′)E ′′
0

so that the ratio of field amplitudes is

E ′′
0

E0
= cos φ − n cos φ′

cos φ + n cos φ′

From Snell’s law,

cos φ′ =
√

1 − sin2 φ′ =
√

1 − sin2 φ

n2

or

n cos φ′ =
√

n2 − sin2 φ

The ratio of field amplitudes is then

E ′′
0

E0
= cos φ −

√
n2 − sin2 φ

cos φ +
√

n2 − sin2 φ
(3.46)

The refracted field E ′
0 can then be determined from Eq. (3.43):

E ′
0

E0
= 1 + E ′′

0

E0
= 1 + cos φ −

√
n2 − sin2 φ

cos φ +
√

n2 − sin2 φ

or

E ′
0

E0
= 2 cos φ

cos φ +
√

n2 − sin2 φ
(3.47)

Thus we have the refracted and reflected field amplitudes for the case of perpendicular po-
larization. The reflectivity R, defined as the ratio of reflected to incident intensity (at the
surface), is determined, with the use of Eq. (3.19), to be

R = Ī ′′

Ī 0
= |S̄′′|

|S̄| =
1
2 Re(E′′

0 × H′′∗
0 )

1
2 Re(E0 × H∗

0)
(3.48)

With n = 1 for both incident and reflected waves,

R = |E ′′
0 |2

|E0|2
which with Eq. (3.46) becomes, for the case of perpendicular (s) polarization,

Rs =

∣∣∣cos φ −
√

n2 − sin2 φ

∣∣∣2

∣∣∣cos φ +
√

n2 − sin2 φ

∣∣∣2 (3.49)



74 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

where n is complex. Knowing the values of δ and β as functions of photon energy, one can
now calculate the reflectivity, at an arbitrary angle of incidence, for s-polarized radiation.
Alternatively, angle-dependent reflectivity can be used to experimentally determine values of
δ and β, that is, determine the refractive index at short wavelengths. Soufli and Gullikson10

have used this technique, with tunable synchrotron radiation and specially prepared (smooth,
unoxidized) surfaces, to measure the optical constants (δ and β) of silicon in the photon energy
range from 50 eV to 180 eV, extending above and below the L-edges.

Two cases of particular interest are normal incidence reflection (φ = 0) and glancing
incidence reflection (φ ≥ φc, θ ≤ θc). For normal incidence (φ = 0) one has

Rs,⊥ = |1 − n|2
|1 + n|2 = (1 − n)(1 − n∗)

(1 + n)(1 + n∗)

For n = 1 − δ + iβ

Rs,⊥ = (δ − iβ)(δ + iβ)

(2 − δ + iβ)(2 − δ − iβ)
= δ2 + β2

(2 − δ)2 + β2

which for δ 	 1 and β 	 1 gives the reflectivity for x-rays and EUV radiation at normal
incidence (φ = 0) as

Rs,⊥ � δ2 + β2

4
(3.50)

which shows that the reflection is indeed very small for x-rays incident normally on a sin-
gle interface. Similar results follow from Eq. (3.49) for all angles except those at glancing
incidence.

The case of glancing incidence at or below the critical angle (θ ≥ θc) can also be
considered by examining Eq. (3.49). Using the definitions

θ = 90◦ − φ ≤ θc

where

θc =
√

2δ 	 1

and where for glancing incidence

cos φ = sin θ � θ

we have to a high degree of accuracy

sin2 φ = 1 − cos2 φ = 1 − sin2 θ � 1 − θ2

Noting further that for n = 1 − δ + iβ

n2 = (1 − δ)2 + 2iβ(1 − δ) − β2

we see that the reflectivity [Eq. (3.49)] for glancing incidence of perpendicularly polarized
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x-rays can be written to a good approximation as

Rs,θ =

∣∣∣θ −
√

(1 − δ)2 − β2 + 2iβ(1 − δ) − (1 − θ2)
∣∣∣2

∣∣∣θ +
√

(1 − δ)2 − β2 + 2iβ(1 − δ) − (1 − θ2)
∣∣∣2 (θ 	 1)

Dropping second order terms of order δ2, β2, δβ,

Rs,θ =

∣∣∣θ −
√

θ2 − 2δ + 2iβ
∣∣∣2

∣∣∣θ +
√

θ2 − 2δ + 2iβ
∣∣∣2

Recalling that θc = √
2δ,

Rs,θ =

∣∣∣θ −
√(

θ2 − θ2
c

) + 2iβ
∣∣∣2

∣∣∣θ +
√(

θ2 − θ2
c

) + 2iβ
∣∣∣2 (θ 	 1)

Absolute values can be taken to obtain a purely real coefficient of reflection by first expressing
the square root of the complex quantity in terms of a sum of real and imaginary components.
This is accomplished by introducing the quantity

√
a + ib such that

Rs,θ =
∣∣θ − √

a + ib
∣∣2

∣∣θ + √
a + ib

∣∣2 (3.51a)

where

a = θ2 − θ2
c (3.51b)

b = 2β (3.51c)

and from Appendix D

√
a + ib = 1√

2

[√
(a2 + b2)1/2 + a + i

√
(a2 + b2)1/2 − a

]
= A + i B (3.51d)

so that complex conjugates are readily identified and the reflectivity for glancing incidence
can be written relatively simply, following Compton and Allison,6 and Parratt,11 as

Rs,θ =
∣∣∣∣θ − (A + i B)

θ + (A + i B)

∣∣∣∣
2

= (θ − A)2 + B2

(θ + A)2 + B2
(3.52a)
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F IGURE 3.8. Reflectivity curves from Eq. (3.52) as a function of the parameter β/δ for radiation
incident from vacuum upon an idealized material interface. Finite absorption (β) causes a rounding of
the otherwise sharp angular dependence of reflectance at the critical angle. These results apply to both
perpendicular (s) and parallel (p) polarization.

where now

A =
√

(a2 + b2)1/2 + a

2
(3.52b)

B =
√

(a2 + b2)1/2 − a

2
(3.52c)

and where

a = θ2 − θ2
c = θ2 − 2δ (3.52d)

b = 2β (3.52e)

which, although convenient in form, reveals a somewhat complicated dependence of the
reflection coefficient on θ, δ, and β near glancing incidence. Numerical solutions are shown
in Figure 3.8 for various values of the parameter β/δ. Analytic expressions are readily obtained
for two special cases. Just at the critical angle θ = θc, one has a = 0 and one obtains

Rs,θc =
1 −

√
2δβ

δ + β

1 +
√

2δβ
δ + β

(3.53)

which is unity for β/δ = 0, 0.20 for β/δ = 1
2 , and 0.17 for β/δ = 1. For θ = 0, Eq. (3.52a)

is unity for all values of δ and β.
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F IGURE 3.9. Field components for parallel (p)
polarization, where E lies in the x, z-plane of
incidence.

3.5.2 E0 Parallel to the Plane of Incidence

The second decomposition of incident polarization is that in which the electric field vector
lies in the x, z-plane of incidence, as shown in Figure 3.9, and is referred to as parallel
(p) polarization (in both English and German). Applying the boundary conditions as in the
previous case, one now obtains

E ′′
0

E0
= n cos φ − cos φ′

n cos φ + cos φ′

Noting that

cos φ′ =
√

1 − sin2 φ′ =
√

1 − sin2 φ

n2

this becomes

E ′′
0

E0
= n cos φ − 1

n

√
n2 − sin2 φ

n cos φ + 1
n

√
n2 − sin2 φ

or

E ′′
0

E0
= n2 cos φ −

√
n2 − sin2 φ

n2 cos φ +
√

n2 − sin2 φ
(3.54)

for the reflected field amplitude. The refracted electric field is then determined from the
boundary condition

nE ′
0 = E0 + E ′′

0

to be

E ′
0

E0
= 1

n

[
1 + n2 cos φ −

√
n2 − sin2 φ

n2 cos φ +
√

n2 − sin2 φ

]
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or

E ′
0

E0
= 2n cos φ

n2 cos φ +
√

n2 − sin2 φ
(3.55)

which we note are similar in form, but slightly different than the equations for reflected
and refracted fields in the case of perpendicular polarization [Eqs. (3.46) and (3.47)]. The
reflectivity for parallel polarization is determined from Eq. (3.54) to be

Rp =
∣∣∣∣ E ′′

0

E0

∣∣∣∣
2

=

∣∣∣n2 cos φ −
√

n2 − sin2 φ

∣∣∣2

∣∣∣n2 cos φ +
√

n2 − sin2 φ

∣∣∣2 (3.56)

which we note is different than Eq. (3.49) for the case of perpendicular polarization.
It is interesting that in several important special cases both polarizations give the same

result. For normal incidence, Eq. (3.56) for p-polarization reduces to

Rp,⊥ = (n − 1)(n∗ − 1)

(n + 1)(n∗ + 1)
� δ2 + β2

4
(3.57)

which is identical to Eq. (3.50) for s-polarization at φ = 0, as it should be, since the two
polarizations are physically indistinguishable at normal incidence. For glancing incidence
Eq. (3.56) also reduces to the same result obtained previously for perpendicular polarization,
given as Eq. (3.52) and plotted in Figure 3.8.

While Figure 3.8 is very instructive, showing the effect of finite β on the shape of an
idealized critical angle reflection (β = 0), more practical results can also be obtained through
the use of Eq. (3.52) for real materials at various photon energies. For instance, in laboratory
studies it is often interesting to know what is the reflectivity vs. photon energy for a given
mirror material at various angles of incidence near the critical angle. To calculate such curves
one must know the values of δ and β for the material of interest, across the photon energies of
interest, and use them in Eq. (3.52) for the incident angles relevant to the experiment. Values
of δ and β are tabulated by Henke et al.7; examples are given in Appendix C for selected
materials. The resultant reflectivity curves are interesting in that they relate to real materials
and include the effects of absorption edges, which can be used to enhance angular cutoffs at
a given photon energy, and also can include the effects of oxidation and other multi-element
effects. Figure 3.10 illustrates glancing incidence reflection curves for carbon, aluminum,
aluminum oxide, and gold. Results for other materials are given in Ref. 7.

As the reflectivity curves show, mirrors at glancing incidence do not reflect well at higher
photon energies, and thus can be used as low pass filters. This contrasts with thin transmitting
foils, which are highly absorptive at low photon energies and thus serve as high pass filters. In
combination, a mirror–filter pair can provide a moderate resolution notch filter, which blocks
low and high energy photons, but passes a central pass band of relative spectral bandwidth
E/�E of 3–5, depending on the degree to which absorption edges can be used to enhance
the sharpness of reflection or transmission curves. Figure 3.11 illustrates the idea of a notch
filter based on an idealized mirror whose cutoff angle is matched to the K-absorption edge of
a transmission filter. Such mirror–filter pairs are quite convenient to use, and are often utilized
in imaging and transport applications involving broadband sources of radiation.
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F IGURE 3.10. Glancing incidence reflectivity vs. photon energy for incidence angles (θ ) of 30 mrad and
80 mrad, for materials of (a) carbon, (b) aluminum, (c) aluminum oxide, and (d) gold. The results
follow from Eq. (3.52), for both parallel and perpendicular polarization, as a function of θ . Values of δ

and β are from the tabulations of Henke, Gullikson, and Davis.7 Note how the combination of cutoff
angle and absorption edge can be used to enhance the sharpness of the reflectivity curve, which is
useful when the material is used as a low pass filter. Recall that 1 mrad = 0.0573◦ = 3.44 arcmin (see
Appendix A).
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E/∆E – 4~

F IGURE 3.11. A moderate resolution spectral
bandpass, or notch filter, is constructed by
sequential reflection from an idealized mirror of
glancing incidence, and transmission through a foil
whose absorption edge is matched to the decline in
mirror reflectivity.



80 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

1

φB

nn
2  +

 1

F IGURE 3.12. A diagram for understanding
Brewster’s angle.

Another, more specialized option for spectral filtering involves the failure of total external
reflectance in the vicinity of certain absorption edges. For EUV radiation there is strong
anomalous dispersion near the L2, 3-edges of the third period elements, such as Al and Si,
which results in a sign reversal of f 0

1 , and thus δ. This results in a sharp transmission window,
making it possible to exploit the effect to create very narrow spectral bandwidth filters.12

3.6 BREWSTER’S ANGLE

An effect unique to parallel polarization occurs at an angle for which the numerator of
Eq. (3.56) is zero, or at least reaches a minimum. At visible light wavelengths, where β/δ

is extremely small, this phenomenon has important applications and is known as Brewster’s
angle, or the polarizing angle (see Refs. 1, 4, and 5). For instance, visible light laser rods
often have their ends cut at Brewster’s angle to minimize intracavity reflective losses and
to provide a mechanism for polarization selection. At EUV and x-ray wavelengths, where
reflectivities are already very small at relevant angles (near 45◦, as we shall see shortly), the
effect is less dramatic but still very useful in polarization sensitive applications. Furthermore,
the effect is reduced by absorptive losses (β), which are more important in this region of the
spectrum. The minimum in reflectivity occurs when the numerator in Eq. (3.56) satisfies the
condition

n2 cos φB =
√

n2 − sin2 φB (3.58)

Squaring both sides, collecting like terms involving φB , and factoring, one has

n2(n2 − 1) = (n4 − 1) sin2 φB

or

sin φB = n√
n2 + 1

This permits us to construct the diagram in Figure 3.12, from which we see that the condition
for a minimum in the reflection coefficient, for parallel polarized radiation, occurs at an angle
given by

tan φB = n (3.59)

For visible light where glass typically has a refractive index n = 1.5, Brewster’s angle is about
56◦ from the surface normal.

Since n is complex, Eq. (3.59) does not yield a real angle φB for which Rp(φ) would be
zero; rather, a minimum is achieved. From Eq. (3.56) we expand the reflectivity Rp(φ) in the
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F IGURE 3.13. The special angle φB that results
in minimal or no refracted wave for parallel
polarization because the refracted wave is oriented
so as to excite no reflected field components.
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F IGURE 3.14. Reflectivity versus angle for parallel
(dashed line) and perpendicular polarized radiation
(solid line) incident on a tungsten surface at a
wavelength of 4.48 nm (from Underwood13).

small parameters δ and β, then find the minimum by setting the derivative with respect to φ

to zero. Doing this, we find that the Brewster minimum occurs at a real angle of incidence
given by

tan φB = 1 − δ

which for δ � 1 corresponds to an angle of incidence φB slightly less than 45◦ from the
surface normal. Taking a Taylor expansion of tan φB about π/4, one finds that Brewster’s
angle, or, if one prefers, the polarizing angle, is given by

φB � π

4
− δ

2
(3.60)

This result has an interesting physical interpretation. At Brewster’s angle the refracted
wave is turned in just such a manner that the refracted wave vector k′ is at a right angle to the
reflected wave vector k′′, as illustrated in Figure 3.13. Note that with parallel polarization the
refracted electric field E′ is then coaligned with the reflected wave vector k′′ – a condition in
which it cannot generate a reflected wave. In this situation the atoms at the interface respond
to the impressed field E′

0, oscillating in a direction parallel to k′′, each radiating a sin2 θ pattern
which is zero in the reflected direction and thus producing no reflected field component E′′

0.
Figure 3.14 shows an example of reflection coefficients for both parallel and perpendicular
polarized radiation incident on a tungsten surface at a wavelength of 4.48 nm.13 Note the
sharp reflectivity dip at an incidence angle just below 45◦ for parallel polarization (dashed
line).
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k′

⎪k′⎪ = k′
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z z
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θ
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φ′′φ
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k′ = k′ sinφ′ = k′  + ik′
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Exaggerated

x xr xi

k′ = k′ cosφ′
z

z

zr zik′ = k′  + ik′

F IGURE 3.15. (a) Wave vectors for radiation incident on a lossy medium near the critical angle. (b) Real
and imaginary components of the refracted wave vector for a complex angle φ′. The very small angle ε

is exaggerated for clarity of the vector components.

3.7 FIELD PENETRATION INTO A LOSSY MEDIUM NEAR THE CRITICAL ANGLE

In an earlier section we considered the nature of the refracted wave incident upon a lossless
medium (β = 0) at glancing incidence. It was determined that for angles of incidence θ

less than a critical angle θc = √
2δ, the refracted wave propagated along the interface, with

no energy flow into the material. However, in the preceding section where we considered
reflectivity from a material with finite δ and β, we found that even at glancing incidence finite
values of β have a significant effect on reflectivity, as seen in Eq. (3.52) and Figure 3.8. These
results raise questions as to the nature of the wave at the interface, the penetration depth of the
fields, and the flow of power across the interface when finite losses are considered. Because of
finite absorptive losses in the medium, there must now be some energy flow into the medium,
even for θ < θc. This is different from the idealized case (β = 0) considered earlier, in which
the refracted wave was found to propagate at a real angle φ′ = π/2, just along and parallel to
the surface. Now with finite β, we must permit the refracted wave vector k′ to have a finite
real component k′

zr into the medium, as illustrated in Figure 3.15. Thus we expect that even
for θ < θc, φ′ will have a solution slightly less than π/2.

We start our analysis, as we did for the ideal case (β = 0), with Snell’s law [Eq. (3.38)],
but now for a complex refractive index

sin φ′ = sin φ

n

where

n = 1 − δ + iβ

Since n is complex, φ′ will be complex for real angle of incidence φ. Since δ and β are very
small for x-rays, we may write

sin φ′ = (1 + δ − iβ) sin φ (3.61)

and assume

φ′ = φ′
r − iφ′

i (3.62)



C H A P T E R T H R E E: W A V E P R O P A G A T I O N A N D R E F R A C T I V E I N D E X A T E U V A N D S O F T X-R A Y W A V E L E N G T H S 83

where we have taken a negative imaginary component for consistency with the sign of β in
Eq. (3.61). Upon inspection of Figure 3.15 we see that the propagation vector k′ in the medium
has components

k ′
x = k ′ sin φ′

and

k ′
z = k ′ cos φ′

where from Eq. (3.37)

k ′ = ω

c
(1 − δ + iβ)

so that

k ′
x = ω

c
(1 − δ + iβ) sin φ′ (3.63a)

and

k ′
z = ω

c
(1 − δ + iβ) cos φ′ (3.63b)

Recognizing that k ′
x and k ′

z are in general complex, we may rewrite the above in terms of real
and imaginary components

k ′
xr + ik ′

xi = ω

c
(1 − δ + iβ) sin φ′ (3.64a)

and

k ′
zr + ik ′

zi = ω

c
(1 − δ + iβ) cos φ′ (3.64b)

For a complex angle φ′ = φ′
r − iφ′

i , as in Eq. (3.62), one has the trigonometric identities
(see Appendix A)

sin φ′ = sin φ′
r cosh φ′

i − i cos φ′
r sinh φ′

i (3.65a)

and

cos φ′ = cos φ′
r cosh φ′

i + i sin φ′
r sinh φ′

i (3.65b)

The real and imaginary parts of the wave vector components can now be identified by com-
bining Eqs. (3.64) and (3.65), viz.,

k ′
xr + ik ′

xi = ω

c
(1 − δ + iβ)[sin φ′

r cosh φ′
i − i cos φ′

r sinh φ′
i ] (3.66a)

and

k ′
zr + ik ′

zi = ω

c
(1 − δ + iβ)[cos φ′

r cosh φ′
i + i sin φ′

r sinh φ′
i ] (3.66b)

For β � 1, so that φ′
i � 1, one can make the approximations

sinh φ′
i � φ′

i (3.67a)



84 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

and

cosh φ′
i � 1 + φ′2

i

2
(3.67b)

For angles φ near the critical angle we can again take the approximation

sin φ = cos θ � 1 − θ2

2
(3.67c)

For angles near critical, with a refracted wave propagating very close to the interface of a lossy
medium, we can take the solution for φ′ in which the real part is very close to but slightly less
than π/2, such that

φ′
r = π

2
− ε, ε � 1 (3.68)

This permits the refracted wave to propagate very close to the interface, but with a small real
component of k ′

z so that energy can propagate across the interface and thus maintain steady
state fields in the presence of finite absorptive losses. In this limit we can make the additional
approximations

sin φ′
r = cos ε � 1 − ε2

2
(3.69a)

and

cos φ′
r = sin ε � ε (3.69b)

Collecting these various angular approximations [Eqs. (3.67), (3.68), and (3.69)], the expres-
sions for real and imaginary wave vector components in the lossy medium [Eqs. (3.66a) and
(3.66b)] become

k ′
xr + ik ′

xi = ω

c
(1 − δ + iβ)

[(
1 − ε2

2

) (
1 + φ′2

i

2

)
− iεφ′

i

]
(3.70a)

and

k ′
zr + ik ′

zi = ω

c
(1 − δ + iβ)

[
ε

(
1 + φ′2

i

2

)
+ i

(
1 − ε2

2

)
φ′

i

]
(3.70b)

Thus for k ′
x , along the interface,

k ′
xr = ω

c
(1 − δ)

(
1 − ε2

2

) (
1 + φ′2

i

2

)
+ ω

c
βεφ′

i (3.71a)

and

k ′
xi = ω

c
β

(
1 − ε2

2

) (
1 + φ′2

i

2

)
− ω

c
(1 − δ)εφ′

i (3.71b)
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and for k ′
z , in a direction perpendicular to the interface,

k ′
zr = ω

c
(1 − δ)ε

(
1 + φ′2

i

2

)
− ω

c
β

(
1 − ε2

2

)
φ′

i (3.72a)

and

k ′
zi = ω

c
βε

(
1 + φ′2

i

2

)
+ ω

c
(1 − δ)

(
1 − ε2

2

)
φ′

i (3.72b)

If we now apply the boundary condition that k ′
x = kx , ensuring continuous transverse field

components along the interface [Eq. (34a)], then we must set k ′
xr = kxr = (ω/c)(1 − θ2/2) in

Eq. (3.71a) and k ′
xi = 0 in Eq. (3.71b). From the latter we obtain

β

(
1 − ε2

2

) (
1 + φ′2

i

2

)
= (1 − δ)εφ′

i

Dropping second order terms ε2 and φ′2
i as being small, and noting that δ � 1, we have to

first order

φ′
i � β

ε
(3.73)

while the condition on k ′
xr gives

ω

c

(
1 − θ2

2

)
� ω

c
(1 − δ)

(
1 − ε2

2

) (
1 + φ′2

i

2

)
+ ω

c
βεφ′

i

(
1 − θ2

2

)
� (1 − δ)

(
1 − ε2

2

) (
1 + β2

2ε2

)
+ β2

Thus to first order, with β2 � δ,(
1 + δ − θ2

2

)
�

(
1 − ε2

2

) (
1 + β2

2ε2

)

δ − θ2

2
� −ε2

2
+ β2

2ε2

which we can write in quadratic form

ε4 − (θ2 − 2δ)ε2 − β2 = 0 (3.74)

which has solution for the (real) angular decrement ε (from π/2)

ε2 =
√

(θ2 − 2δ)2 + 4β2 + (θ2 − 2δ)

2
(3.75)

and where we have taken the positive square root to ensure a real solution for the angle ε.
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Thus general solutions for the complex refraction angle φ′, at glancing incidence, are obtained
from Eqs. (68) and (73) to be

φ′
r = π

2
− ε = π

2
−

[√
(θ2 − 2δ)2 + 4β2 + (θ2 − 2δ)

2

]1/2

(3.76a)

φ′
i = β

ε
=

√
2β[√

(θ2 − 2δ)2 + 4β2 + (θ2 − 2δ)
]1/2 (3.76b)

from which we can now determine the various wave vector components, from Eqs. (3.71)
and (3.72), for the refracted wave in a lossy medium near the critical angle. Note that, with
these same approximations that θ2, δ, and β are all much less than unity, the wave vector
components in the medium, Eqs. (3.71) and (3.72), now reduce to

k ′
xr � ω

c

(
1 − θ2

2

)
(3.77a)

k ′
xi = 0 (3.77b)

k ′
zr � ω

c
ε (3.77c)

k ′
zi � ω

c

β

ε
(3.77d)

The first two are set by the boundary conditions. The third, Eq. (3.77c), simply says that the
real wave vector, related to power flow, propagates at an angle ε, slightly non-parallel to the
interface. Lastly, Eq. (3.77d) shows that field decay into the medium is proportional to β/ε,
which must be carefully analyzed for the various angles of interest.

Two cases of special interest offer insights into the nature of wave propagation, the
resultant fields, and their relation to energy loss in a lossy medium near the critical angle of
incidence. The special cases are those of extreme glancing incidence, such that θ � θc, and
incidence just at the critical angle θ = θc. Combining Eqs. (3.76) and (3.77), we have the
following:

(1) Glancing incidence, θ2 � θ2
c , ε = β/(θ2

c − θ2)1/2 → β/
√

2δ:

φ′
r � π

2
− β(

θ2
c − θ2

)1/2 → π

2
− β√

2δ
(3.78a)

φ′
i � (

θ2
c − θ2

)1/2 →
√

2δ (3.78b)

k ′
xr � ω

c

(
1 − θ2

2

)
(3.78c)

k ′
xi = 0 (3.78d)
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k ′
zr � ω

c

β(
θ2

c − θ2
)1/2 → ωβ

c
√

2δ
(3.78e)

k ′
zi � ω

c

√
θ2

c − θ2 → ω

c

√
2δ (3.78f)

where the arrows indicate limiting values as θ goes to zero.
(2) Critical angle, θ = θc, εc � β1/2:

φ′
r � π

2
− β1/2 (3.79a)

φ′
i � β1/2 (3.79b)

k ′
xr � ω

c

(
1 − θ2

2

)
= ω

c
(1 − δ) (3.79c)

k ′
xi = 0 (3.79d)

k ′
zr � ω

c
β1/2 (3.79e)

k ′
zi � ω

c
β1/2 (3.79f)

In both special cases above, the solutions indicate an evanescent wave propagating very
nearly parallel to the interface, withfield amplitudes decaying with distance z into the material.
The small angle ε by which the wave vector is non-parallel to the interface is zero only in the
lossless limit, β equal to zero. It is interesting to note the differing field penetrations in the
two cases, and relate these to reflectance curves previously seen in Figure 3.8. According to
Eq. (3.78), at glancing incidence the fields decay with an exponential dependence

e−k ′
zi z � exp

[
−

(
ω

c

√
θ2

c − θ2

)
z

]
→ e−(2π

√
2δ/λ)z (3.80a)

i.e., with a field penetration depth for θ near zero,

z0 � λ

2
√

2
πδ1/2 (θ � θc) (3.80b)

This is to be compared with the case just at the critical angle, where according to Eq. (3.79)

e−k ′
zi z � exp

[
−

(
ω

c
β1/2

)
z

]
= e−(2πβ1/2/λ)z (3.81a)
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with a field penetration depth at the critical angle

zc � λ

2πβ1/2
(θ = θc) (3.81b)

Thus for β < δ, the penetration depth at the critical angle will be greater than for incidence
angles closer to the surface, leading to greater absorption of the wave and thus less reflectivity
at the critical angle, as was seen in Figure 3.8. In an earlier section we calculated that for carbon
at a wavelength of 0.4 nm δ = 4.90 × 10−5 and β = 5.71 × 10−7. Thus for a carbon mirror
the critical angle is 9.9 mrad (0.57◦) at 0.4 nm wavelength, and according to Eqs. (3.80b) and
(3.81b) the penetration depth at near-zero glancing angle is 16λ, or 6.4 nm, and extends to
210 λ, or 84.0 nm, at the critical angle. In both cases energy propagates across the interface,
as indicated by the finite values of k ′

zr , which we note goes to zero as β goes to zero.
The nature of energy flow into the lossy medium can be seen explicitly by considering the

z-directed portion of the Poynting vector, S̄z , which we can deduce by taking the cross product
of the appropriate fields. For convenience we consider the case of incident radiation with the
electric field polarized in the y-direction. In addition to the primary component of magnetic
field associated with the refracted plane wave calculated for a lossless medium far from the
critical angle (θ 	 θc), we also expect a second-order magnetic field due to the non-uniform
nature of the wave. This non-uniformity has contributions both due to absorption and due to
the evanescent decay for incidence angles θ less than the critical angle. For this non-uniform
wave, characterized by an evanescent electric field E ′

y(x, z)y0 in the medium, we can calculate
the magnetic fields from Faraday’s law, Eq. (2.2) in Chapter 2:

−∂B′

∂t
= ∇ × E′

or in terms of vector components

−∂B′

∂t
=

(
∂

∂x
x0 + ∂

∂y
y0 + ∂

∂z
z0

)
× E ′

y(x, z)y0

or

−∂B′

∂t
= ∂ E ′

y

∂x︸ ︷︷ ︸
B ′

z

z0 − ∂ E ′
y

∂z︸ ︷︷ ︸
B ′

x

x0 (3.82)

In Eq. (3.82), above the first term on the right of the equality is B ′
z , the first order magnetic

field associated with a uniform plane wave propagating in the x-direction. The second term
on the right is B ′

x , which includes the second order magnetic fields due to absorption and
below-critical evanescence, each of which give z-dependent variations, and also includes
the z-direction component of plane wave propagation. Thus the second-order magnetic field,
B ′

x , which will cross with E ′
y to give power flow in the z-direction (across the interface),

corresponds to the x0-components of Eq. (3.82), viz.,

−∂ B ′
x

∂t
= −∂ E ′

y

∂z
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The time dependence for allfields is the same; thus ∂/∂t = −iω. Furthermore, from Eq. (3.77)
the z-dependence of E ′

y(x, z) is given by

E ′
y(z) = E ′

y(0)eiωεz/ce−ωβz/εc

so that

B ′
x (x, z) = − 1

iω

(
iωε

c
− ωβ

εc

)
E ′

y(x, z)

B ′
x (x, z) = −

(
ε

c
+ i

β

εc

)
E ′

y(x, z)

For non-magnetic materials, where µ = µ0, the magnetic field vector is

H ′
x (x, z)x0 = −

√
ε0

µ0

(
ε + i

β

ε

)
E ′

y(x, z)x0 (3.83)

where ε is the angle measured from the interface. With the magnitude of the average Poynting
vector given by Eq. (3.19), the time-averaged power per unit area crossing the interface is
given by

|S̄| = 1
2 Re(E × H∗)

with z-component

S̄′
zz0 = 1

2 Re(E ′
yy0 × H ′∗

x x0)

so that

S̄′
z = −1

2
Re

[
(E ′

y)

(
−

√
ε0

µ0

) (
ε − i

β

ε

)
E ′

y

]

S̄′
z = 1

2

√
ε0

µ0
ε|E ′

y |2 (3.84)

where the angle ε is given in Eq. (3.75). We see that the power flowing across the interface
is directly proportional to ε, which has a complicated dependence on θ, δ, and β, but which
goes to zero as β goes to zero. Tracing this term back through the mathematics, we observe
that it is due to the non-parallelism of the refracted wave with respect to the surface, which
arises because of the finite absorptivity β. The second term [for instance the iβ/ε term in
Eq. (3.83)], which is due to the evanescent nature of the fields, even when β is zero (β/ε is
not zero in this limit), does not contribute to power flow across the interface, as is seen in the
mathematical progression from Eq. (3.83) to (3.84). This term gives a measure of the stored
energy in the evanescent fields.

In summary, we observe that in the case of a lossy medium, with an angle of incidence θ

less than the critical angle, the refracted wave is non-uniform, that is, the field amplitudes are
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no longer constant in planes transverse to the propagation direction. The wave now propagates
at a slight angle (ε) to the interface, with second order fields out of the plane. That is, the
refracted wave is neither uniform nor plane. Power flows across the interface for non-zero
absorptivity β. Details of the evanescent field decay, and power flow, depend on both δ and
β, and of course the angle of incidence φ (or θ ).

3.8 DETERMINATION OF δ AND β: THE KRAMERS–KRONIG RELATIONS

In principle δ and β can be determined for all materials through measurements of absorption
and phase shift, as discussed in the text leading to Eqs. (3.22) and (3.29). This is in fact how
β is determined. However, determining δ proves to be more problematic, particularly for soft
x-rays, because interferometry is not sufficiently advanced. Rather, the general approach is to
return to Eqs. (3.13a) and (3.13b), where δ and β are expressed in terms of real and imaginary
parts of the complex atomic scattering factor, i.e.,

δ = nareλ
2

2π
f 0
1 (ω)

β = nareλ
2

2π
f 0
2 (ω)

where from Eq. (2.79) the complex atomic scattering factor

f 0(ω) = f 0
1 (ω) − i f 0

2 (ω)

is the ratio of the electric field strength scattered by an atom to that of a single free electron.
Recall that the subscript zero refers to the limiting cases of either long wavelength or forward
scattering [Eqs. (2.70)–(2.72)], the latter having a direct relation to the refractive index.

The determination of f 0
2 (ω) is accomplished by measuring the absorption of radiation

through thin foils (or gases) of an element of interest (C, O, . . . , Ni, . . . , Au, . . .) for a broad
range of photon energies (h̄ω). This can be done using broadly tunable synchrotron radia-
tion (discussed in Chapter 5) and a suitable monochromator. From these measurements the
macroscopic mass absorption coefficient µ(ω) can be determined, as described in Chapter 1,
and here in Eq. (3.24). The imaginary part of the atomic scattering factor is then determined
from Eq. (3.26), viz.,

f 0
2 (ω) = Amu

2reλ
µ(ω)

– a macroscopic-to-microscopic relationship, where for the element in question A is the
number of atomic mass units, mu is the atomic mass unit, re is the classical electron radius, λ

is the wavelength in vacuum, andµ is the photon energy dependent mass absorption coefficient.
The real part of the atomic scattering factor, f 0

1 (ω), is then determined through mathemat-
ical relationships between f 0

1 and f 0
2 , generally referred to as Kramers–Kronig relations,14–17

first derived in 1927. For a broad class of physical problems – including damped electrical
circuits, scattering, and refractive index – these relate the real and imaginary parts of the
physical “response” to a “stimulus” in linear, stable, causal systems. If the system is causal,
there is no response (Escatt) until there is a cause (Einc). The scattering of radiation is just such
a problem. For the problem of interest here, we shall show in this section that the real and
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ωi

ωr–ωs – i ωs – i
γ
2

γ
2

F IGURE 3.16. Representing f 0(ω) in the complex
ω-plane. For γ � ωs the function f 0(ω) has poles
at ±ωs − i(γ /2) in the lower half plane, and is
analytic in the upper half plane.

imaginary parts of the complex atomic scattering factor are related by

f 0
1 (ω) = Z − 2

π
PC

∫ ∞

0

u f 0
2 (u)

u2 − ω2
du (3.85a)

and

f 0
2 = 2ω

π
PC

∫ ∞

0

f 0
1 (u) − Z

u2 − ω2
du (3.85b)

where f 0
1 is written as having a first order term Z , the number of electrons per atom, and a

departure therefrom due to the degree of binding, as discussed in Chapter 2. PC indicates
taking only the non-divergent Cauchy principal part of the integral. As shown in Appendix
D, PC(1/x) is defined by Cauchy’s principal value theorem:

lim
ε→0

1

x ∓ iε
= PC (1/x) ± iπδ(x) (3.86)

where the principal value PC(1/x) refers to a function that behaves like 1/x everywhere
except at x = 0, with the discontinuous behavior separated out and described by the Dirac
delta function, δ(x), which is described in Appendix D.

The significance of Eqs. (3.85a) and (3.85b) is that a knowledge of either the real or
the imaginary part of the response function f 0(ω) across the full spectrum of frequencies
is sufficient to determine the other. Thus if one can determine f 0

2 (ω) through absorption
measurements, across a sufficiently broad range of frequencies, that the integral converges,
one can determine f 0

1 (ω). In other words, measurement of β across a sufficiently broad
photon energy range allows one to determine f 0

1 (ω), and thus the real part of the refractive
index decrement δ(ω), by use of Eq. (3.85a). This is in fact the procedure used by Henke and
his colleagues5 to deduce the values of f 0

1 and f 0
2 for all elements from hydrogen (Z = 1) to

uranium (Z = 92), for photon energies extending from the extreme ultraviolet to the hard x-ray
region of the spectrum. Experimental confirmations of these tables is of great interest, being
pursued with several new types of interferometers, and with glancing incidence technologies
based on best fits of Eq. (3.52) to reflections from very clean, homogeneous, and very flat
surfaces.

To derive the Kramers–Kronig relations [Eqs. (3.85a) and (3.85b)] we begin with the
expression for the atomic scattering factor [Eq. (2.77)]

f 0(ω) =
∑

s

gsω
2

ω2 − ω2
s + iγω

where the oscillator strengths gs in this semi-classical model sum to the total number of
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atomic electrons, Z , and where for small γ the poles lie in the lower half plane (LHP) at
ω = ±ωs − iγ /2 (see Figure 3.16). Multiplying the numerator and denominator of f 0(ω) by
the complex conjugate of the scattering factor, we obtain the real and imaginary parts

f 0
1 (ω) =

∑
s

gsω
2
(
ω2 − ω2

s

)
(
ω2 − ω2

s

)2 + γ 2ω2
(3.87a)

and

f 0
2 (ω) =

∑
s

gsγω3(
ω2 − ω2

s

)2 + γ 2ω2
(3.87b)

where again

f 0(ω) = f 0
1 (ω) − i f 0

2 (ω)

Using the Cauchy residue theorem18 (Appendix D), we can represent the complex function
f 0(ω), which has poles only in the lower half plane, in terms of a function f (u) which is
analytic in the upper half plane (UHP), viz.,

f 0(ω) = 1

2π i

∮
f 0(u)

u − ω
du (3.88a)

More conveniently, for a function that has a limiting value Z as ω approaches infinity, we can
write this as

f 0(ω) − Z = 1

2π i

∮
f 0(u) − Z

u − ω
du (3.88b)

Recalling the normalization condition for gs from Eq. (2.73), we can write

f 0(ω) − Z =
∑

s

gsω
2

ω2 − ω2
s + iγω

−
∑

s

gs
(
ω2 − ω2

s + iγω
)

ω2 − ω2
s + iγω

or

f 0(ω) − Z =
∑

s

gs
(
ω2

s − iγω
)

ω2 − ω2
s + iγω

This sum goes to zero as ω approaches infinity, and thus does not contribute to the integral
in Eq. (3.88b) along the semicircle of infinite radius in the UHP. Thus only the integral along
the real axis remains, which can be written as

f 0(ω) − Z = 1

2π i

∫ +∞

−∞

f 0(u) − Z

u − ω
du

Using the principal value theorem, Eq. (3.86), this can be rewritten as

f 0(ω) − Z = 1

2π i

∫ ∞

−∞

[
PC

(
1

u − ω

)
+ π iδ(u − ω)

]
[ f 0(u) − Z ] du
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or

f 0(ω) − Z = 1

2π i
PC

∫ ∞

−∞

f 0(u) − Z

u − ω
du + 1

2
[ f 0(ω) − Z ]

Combining like terms,

f 0(ω) − Z = 1

π i
PC

∫ ∞

−∞

f 0(u) − Z

u − ω
du

Recalling that f 0(ω) = f 0
1 (ω) − i f 0

2 (ω), we can equate real and imaginary components to
obtain

f 0
1 (ω) − Z = − 1

π
PC

∫ ∞

−∞

f 0
2 (u)

u − ω
du (3.89a)

and

f 0
2 (ω) = 1

π
PC

∫ ∞

−∞

f 0
1 (u) − Z

u − ω
du (3.89b)

where the integration is along the real axis, from minus infinity to plus infinity. To rewrite
these equations in terms of only positive frequencies, we divide Eq. (3.89a) into two parts as
follows:

f 0
1 (ω) − Z = − 1

π

[
PC

∫ 0

−∞

f 0
2 (u)

u − ω
du + PC

∫ ∞

0

f 0
2 (u)

u − ω
du

]

Replacing u by −u in the first integral, and noting from Eq. (3.87b) that f 0
2 (−u) = − f 0

2 (u)
and that in general reversing the limits of integration causes a sign change, the integration can
be rewritten in terms of positive frequencies only as

f 0
1 (ω) − Z = − 1

π
PC

∫ ∞

0

[
1

u + ω
+ 1

u − ω

]
f 0
2 (u) du

or more concisely as

f 0
1 (ω) − Z = − 2

π
PC

∫ ∞

0

u f 0
2 (u)

u2 − ω2
du (3.85a)

which gives a solution for f 0
1 (ω), and thus δ, at some specific frequency ω in terms of an

integral of f 0
2 (ω), or equivalently β, over all real positive frequencies – a result we stated

without proof at the beginning of this section. In similar fashion we can separate Eq. (3.89b)
into integrals from minus infinity to zero and from zero to infinity, make the substitution
−u for u in the first integral, and observe that in this case according to Eq. (3.87a) we have
f 0
1 (−u) = f 0

1 (u), and that

1

u − ω
− 1

u + ω
= u + ω

u2 − ω2
− u − ω

u2 − ω2
= 2ω

u2 − ω2
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With these substitutions Eq. (3.89b) becomes

f 0
2 (ω) = 2ω

π
PC

∫ ∞

0

f 0
1 (u) − Z

u2 − ω2
du (3.85b)

showing that f 0
2 , and thus β, could in complementary fashion be obtained by an integration

of f 0
1 (u), if it were δ that was more easily measured. Equations (3.85a) and (3.85b), the

Kramers–Kronig relations,13−16 provide the desired integral relationship between the real and
imaginary parts of the atomic scattering factor, f 0

1 and f 0
2 , or equivalently between δ and β.

Since it is easier to determine β for a wide range of photon energies (frequencies) through
absorption measurements, this provides a technique for numerically determining values of
δ(ω).

Henke and his colleagues5 have compiled absorption data ( f 0
2 ) for all elements from

hydrogen to uranium, for photon energies extending from 10 eV to 30 keV, and from this
data have computed and tabulated values of f 0

1 from 50 eV to 30 keV. Sample tabulations
of f 0

1 and f 0
2 are given for some common elements in Appendix C. Recall that we have

used the superscript zero to emphasize the simplification of the atomic scattering factor [see
Eqs. (2.70)–(2.77)] when the exponent δk · δrs goes to zero, i.e., in either the long wavelength
or the forward scattering limit. As a consequence the reader must make the identifications of
f 0
1 and f 0

2 here, with f1 and f2 in Ref. 5. Furthermore, the sign on f 0
2 is negative because of

our choice regarding e−iωt , as discussed earlier in this chapter.

3.9 APPLICATIONS TO GLANCING INCIDENCE OPTICS

We have seen in the preceding chapters that it is possible to reflect EUV, soft x-ray, and
x-ray radiation using glancing (or grazing) incidence techniques. The critical angle for such
reflections was found to be [Eq. (3.41)] θc = √

2δ, where δ scales to first order as λ
√

Z , as
described in Eq. (3.42). For example, a nickel mirror (Z = 28) has a critical angle of about
10 mrad (0.57◦) for a photon energy of 6 keV, while a carbon mirror (Z = 6) has a critical
angle of about 250 mrad (14◦) for a photon energy of 100 eV. Absorption edges can be used
to sharpen the reflectivity curves for particular applications, as has been illustrated here in
Figure 3.10. Further examples of reflection curves for common mirror materials are given
by Henke et al.7 Glancing incidence optics are widely used to transport and moderately filter
short wavelength radiation in applications such as plasma diagnostics, astronomy, synchrotron
radiation beamlines, and laser research.

Imaging is possible with glancing incidence optics, as illustrated in Figure 3.17. As
originally suggested by Kirkpatrick and Baez,19 a pair of spherical mirrors, placed orthogonal
to each other at glancing incidence, can be used to form an image of an emitting or backlighted
object. The first mirror provides strong focusing in the horizontal direction, while the second
mirror provides strong focusing in the vertical direction. The combination provides a real
image with properly adjusted focal lengths (mirror curvatures).20 In principle this is similar
to forming a real visible light image with a pair of orthogonal refractive cylindrical lenses.
In the EUV–x-ray case the incident radiation is far from the surface normal – a situation that
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(a) (b)
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F IGURE 3.17. (a) Principle of the Kirkpatrick–Baez mirror system. The rays shown solid are the
tangential rays for the first mirror and are strongly focused by it, but weakly focused by the second
mirror, for which they are sagittal rays. The opposite is true for the dashed rays. (Following
Underwood.20, 21) (b) An image of a compressed and heated laser-fusion fuel capsule, as observed at
about 2 keV photon energy, using a glancing incidence Kirkpatrick–Baez microscope.26

introduces strong aberrations in the image, as we know from visible light experience.†† In
the Kirkpatrick–Baez microscope, astigmatism from the first mirror, which would result in
more of a line focus, is compensated by that from the second mirror. A discussion of other
image forming glancing incidence mirror systems, including Wolter’s combinations of conic
sections, is given in the review article by Underwood.21 A discussion of common aberrations
in visible light optical systems is given in the text by Hecht.5 A discussion of aberrations in
images formed with glancing incidence optics is given by Underwood.21 Applications to EUV
and soft x-ray astronomy are discussed in the texts of Charles and Seward,22 and that of Golub
and Pasachoff.23 The use of glancing incidence optics in the design of synchrotron beamlines
and monochromaters is discussed in articles by Namioka, Koike, Padmore, Howells, McKin-
ney, and Underwood in the two-volume edition Vacuum Ultraviolet Spectroscopy edited by
Samson and Ederer.24 The use of glancing incidence optics in the design of synchrotron
radiation beamlines is also described in the text by Peatman.25

3.10 ENHANCED REFLECTIVITY FROM PERIODIC STRUCTURES

In this chapter we have shown that, except at glancing incidence, the reflection of x-rays from
a single surface is very small. In Chapter 4 on Multilayer Interference Coatings we will see
that in fact large reflectivities can be obtained from a periodic structure in which the weak
reflected fields add constructively at certain angles, producing a Bragg effect, even where the
alternating material layers are amorphous (non-crystalline, without order) within the plane.
At glancing incidence these coatings provide a Bragg peak at an angle several times larger
than θc and thus permit increased numerical aperture, increased collection solid angle, and
reduced aberrations (closer to the surface normal). For mirrors at normal incidence (φ = 0),

††Recall the childhood use of a visible light spherical lens to burn a leaf using focused light from
the sun. If the lens is held so that the incoming radiation is normal to the lens surface (parallel to
the optic axis), the smallest focal spot is obtained, causing the leaf to burn. If the lens is tilted so
that the incident radiation is at an angle far from the surface normal, the focal spot becomes highly
aberrated, resulting in a large and distorted focal region, not sufficiently intense to burn the leaf.
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constructive interference requires that each material layer (in a bi-layer periodic structure)
have a thickness of approximately λ/4. With typical atomic diameters of about 2.5 Å (see
the periodic chart in Chapter 1, Table 1.2), this would in principle permit normal incidence
reflection at 10 Å (1 nm) wavelength. In practice the formation of amorphous layers with
stable interfaces, particularly on curved substrates, requires more like 10 atomic planes per
layer. As a result high normal incidence reflectivity is most likely achieved at wavelengths
of order 10 nm in the EUV. The pursuit of high normal incidence reflectivity in the soft
x-ray spectral region is of great interest and a very active area of research. Such multilayer
mirrors, as they are often called, significantly extend the scientific and technical opportunities
addressable with short wavelength radiation. The subject is discussed further in Chapter 4.
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Chapter 4

MULTILAYER INTERFERENCE
COATINGS

(W
/C

, T
. N

gu
ye

n)

mλ = 2d sin θ

100 nm

10 eV 100 eV
Photon energy

(D
. W

in
dt

, D
. S

te
ar

ns
, J

. K
or

tr
ig

ht
)

Wavelength

N
or

m
al

 in
ci

de
nc

e 
re

fle
ct

iv
ity

Natural
crystals

MgF2/Al

Si C

 Pt,
Au

1 KeV 10 KeV

10 nm 1 nm 0.1 nm

Multilayer mirrors (  )

1.0

0.5

0

Multilayer interference coatings, often referred to as multilayer mirrors, are formed by deposit-
ing alternating layers of two materials of differing refractive index that form long-term stable
interfaces. Typically the two materials are of alternating high and low atomic number (Z ) in
order to maximize the difference in electron density. The coatings permit the achievement of
high normal incidence reflectivity, within a modest spectral bandwidth, at EUV wavelengths.
They also offer new opportunities for glancing incidence reflectivity at soft x-ray and x-ray
wavelengths. The coatings are largely amorphous (or to some degree polycrystalline) within
individual layers, and reflection conforms to Bragg’s law for a periodicity d equal to the
thickness of one bilayer pair, typically measured in tens of atomic monolayers. Multilayer
coatings have the great advantage of being adaptable to curved surfaces, enabling their use as
reflective optics in EUV and soft x-ray microscopes, telescopes, and other applications.

4.1 INTRODUCTION

High reflectivity at normal incidence∗ can be achieved at EUV, and to some extent soft x-ray,
wavelengths through the use of multilayer interference coatings, sometimes called reflection

∗k-vector perpendicular to the surface.
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F IGURE 4.1. Side view of a multilayer interference coating, obtained by transmission electron
microscopy (TEM) of a thinned section. In this example there are 20 layer pairs of molybdenum (dark)
and silicon (light), which were sputtered onto a silicon substrate. The d-spacing, the thickness of one
layer pair of Mo and Si, is 9.0 nm. The materials are largely amorphous, but some nanocrystalline
substructure is discernible. Note also the interference transition layers due to the (asymmetric)
interdiffusion of Mo into the Si layer and of Si into the Mo layer. (From T. Nguyen, Ph.D. thesis.10)

coatings or multilayer mirrors.1–6 The coatings, largely amorphous or polycrystalline in nature,
consist of alternating high and low Z materials, with a periodicity (one layer pair) d = λ/2
for normal incidence illumination at wavelength λ. A side view of such a coating is shown
in Figure 4.1. Normal incidence reflectivities of approximately 70% have been achieved7–9

in the EUV with Mo/Si and Mo/Be, just below the absorption edges of the low Z materials
at 99 eV (Si) and 111 eV (Be). The spectral bandpass for these mirrors is of order 1/N ,
where N is the number of layer pairs, typically between 30 and 50 for high reflectivity.
For normal incidence reflection, individual layers are each about λ/4 thick. Thus for soft
x-rays each layer is only a few atoms thick. Lack of interface perfection on this spatial scale,
due principally to roughness and interdiffusion, greatly reduces collective interference and
thus sharply diminishes achievable normal-incidence reflectivity at these shorter wavelengths.
Off-normal incidence, however, is still possible and very useful, following the traditional
Bragg’s law dependence d = λ/(2 sin θ ), where θ is measured from the surface. Applications
of multilayer mirror techniques to surface science (photoemission microscopy), astronomy,
lithography, plasma diagnostics, polarimetry, and materials microprobing are described in this
chapter.

4.2 CONSTRUCTIVE INTERFERENCE OF SCATTERED RADIATION

In a medium of uniform refractive index, of infinite extent, there is no scattering. Scattering
arises from variations in refractive index, within a material or at its boundary with another
material (or vacuum). We have considered the scattering from isolated free and atomically
bound electrons. With a large number of such scattering centers (electrons, atoms) per unit
wavelength, the scattering in any direction is canceled by interference with that from another
scattering center, a distance λ/2 away, along the direction of observation. Residual scattering
occurs only because of fluctuations from the mean. The sky would not be blue – or any other
color – if it were not for density fluctuations in the atmosphere that redirect light away from
its initial path. For short wavelengths this requires further consideration, but basically one
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F IGURE 4.2. (a) Scattering of incident radiation, of wave vector ki by a one-dimensional sinusoidal
density distribution of scattering centers (atoms or electrons) characterized by density na(z) and
periodicity d. (b) The associated density wave vector, kd = (2π/d)z0, points in the z-direction, where z0
is a unit vector. The scattered wave vector ks is obtained by adding wave vectors as described in Eq. (4.5).

observes scattering only to the degree that there are departures from the average density along
a given line of sight. This occurs at an interface (for example, between a material and vacuum
or between two materials) because the density of scatterers is different. In such cases one can
apply the techniques described in Chapter 3 and solve for the resultant reflection in terms
of changes in the refractive index at the interface – essentially uncompensated changes in
scattering density or strength.

We begin the study of multilayer mirrors by considering first the scattering of radiation by
a one-dimensional sinusoidal density profile na(z), uniform across the x, y-plane, as shown in
Figure 4.2. Considering Maxwell’s equations, scattered fields are generated by induced bound
electron currents that can be described for long wavelengths (λ > a0) in terms of a complex
atomic scattering factor f 0(ω), as seen earlier in Chapter 2, Eq. (2.66). The induced current
can then be written as

J(r, t) = −e f 0(ω)na(r, t)v(r, t) (4.1)

where −e is the electron charge, na is the density in atoms per unit volume, v is the oscillatory
velocity that would be experienced by a single free electron (dominated by the electric field
Ei of the incident field), and f 0(ω) is the frequency dependent factor that takes account
of the multiplicity of bound electrons held by each atom. Performing a space–time Fourier
transform, or simply representing the three waves (incident, scattered, and density) in terms
of amplitudes and exponential factors, one obtains an expression for the induced current that
drives the scattering process,

Jscatte
−i(ωst−ks·r) = −e f 0(ωi)nae−i(ωdt−kd·r) −eEi

−iωim
e−i(ωit−ki·r) (4.2)

where the subscript d denotes a density wave, and where the oscillating velocity v is related
to the incident electric field by the equation of motion m dv/dt = −eEi, as in Chapter 2.
Matching amplitudes and phase for all r, t , one has the general scattering relationships

Js = ie2na f 0(ωi)

ωim
Ei (4.3)

ωs = ωi + ωd (4.4a)
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and

ks = ki + kd (4.4b)

Equations (4.4a) and (4.5a), multiplied by h̄, provide familiar expressions for conservation of
energy and momentum in the scattering process, i.e.,

h̄ωs = h̄ωi + h̄ωd (4.5a)

h̄ks = h̄ki + h̄kd (4.5b)

These general scattering relations can be applied to a wide variety of phenomena, in-
cluding Raman and Brillouin scattering, which we will consider in Chapter 6 for the case
of propagating plasma waves. Here we are interested in the stationary density distribution of
atoms, as illustrated in Figure 4.2. In this case the density “wave” does not move, so that ωd

is zero and ωs = ωi. In this case the magnitudes of the incident and scattered wave vectors
must be equal, |ks| = |ki| = 2π/λ, so that the scattering diagram representing Eq. (4.5) must
be isosceles, as shown in Figure 4.2(b). Taking sin θ in one half of the isosceles triangle, one
obtains

sin θ = kd/2

ki

or

λ = 2d sin θ (4.6a)

which we recognize as the first order (m = 1) of Bragg’s law – a rather general relationship for
scattering or diffraction from periodic structures, including crystal planes and plasma waves.
If the density distribution na(z) is not a simple sinusoid, it can be Fourier decomposed into
harmonic components of period d/m. In an angular (θ ) scan of incident wave vector ki = 2π/λ,
the various Fourier components will generate successive scattering peaks, corresponding to
wavenumbers kd/m = 2π/(d/m), yielding the more general form of Bragg’s law†

mλ = 2d sin θ (4.6b)

where m = 1, 2, 3, . . . . At this point the terminology used to describe this process generally
changes from use of the word “scattering” to “diffraction,” or even “reflection,” implying that
the observed scattering has coalesced into a rather well-defined angular pattern, characteristic
of the orderliness of the scattering medium.

†Correcting for refraction in the multilayer mirror, this becomes

mλ = 2d sin θ

√
1 − 2δ̄

sin2 θ
= 2d sin θ

√
1 − 4δ̄d2

m2λ2

where δ̄ is the bilayer weighted real part of the refractive index.
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F IGURE 4.3. (a) Measured angular scan (2θ ) of reflectivity for a tungsten–carbon multilayer at
λ = 1.54 Å (Cu Kα). The mirror consists of 22 W–C bilayer pairs of 36.1 Å period. In addition to total
external reflection at small angles, one observes a strong first order (m = 1) Bragg peak at about 2.5◦,
and less intense peaks corresponding to m = 2, 3, 4, and 5. (Courtesy of Y. Wu and J. Underwood.)
(b) The calculated interference pattern of electric fields associated with the incident and reflected
waves within the multilayer. Fields are calculated at the Bragg angle for which the interference
nulls are centered within the more absorptive material, thus maximizing reflectivity. (Courtesy of
J. Underwood, Lawrence Berkeley National Laboratory.)

In the fabrication and testing of multilayer mirrors, a common method for measuring
d-spacing, and inferring interface sharpness, is to perform an angle dependent reflectivity
scan with short wavelength radiation, typically Cu Kα at 1.54 Å. An example of such data
is shown in Figure 4.3(a), for a tungsten–carbon multilayer mirror of 36.1 Å period, where
several Bragg peaks are evident. The amplitudes of the peaks can be understood in terms
of a spatial Fourier transform of the multilayer density distribution, or more accurately, the
scattering strength na f (ω) as in Eq. (4.3). For example, if we examine Figure 4.2, where
the density n(z) is sinusoidal, we expect to see only a single Bragg peak (m = 1) in an
angular scan. However, if n(z) were a symmetric step function we would expect to see a
series of Bragg peaks corresponding to m = 1, 3, 5, . . . , with peak intensities declining
as 1/(mπ )2. If the interfaces were not so sharp, being somewhat rounded, we would expect
the higher order peaks to vanish and intermediate orders to diminish in amplitude. If the
density function were asymmetric, due to unequal thicknesses of high and low Z materials,
we would expect the even orders (m = 2, 4, . . .) to appear. Thus a large number of higher
order Bragg peaks indicates a sharp interface, while the presence of even orders indicates an
asymmetry within the bilayer. In Figure 4.3(a) Bragg peaks to m = 5 are quite clear. However,
the intensities decline more rapidly than 1/(mπ )2, indicating that the density profile is less
pronounced than a square wave, which is not surprising when one considers the finite number
of atomic monolayers contributing to each layer pair (about seven per layer in this case – see
Table 1.4).

The appearance of even orders in Figure 4.3(a) indicates that the multilayer coating is
somewhat asymmetric. In fact this coating was designed to have the tungsten layers somewhat
thinner than the carbon layers, which has the effect of decreasing absorption and thus enhancing
diffraction to the first order.11, 12 In designing multilayer coatings an important parameter is the
ratio of high Z material thickness to bilayer period, represented here by the Greek letter �, i.e.,

� = �tH
�tH + �tL

= �tH
d

(4.7)
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where �tH is the thickness of the high Z material and �tL is the thickness of the low Z
material. In a manner somewhat analogous to the Borrmann effect13 in crystals, the incident
and reflected fields interfere to form a standing wave within the multilayer stack, as shown in
Figure 4.3(b). This calculation of |E |2 within the multilayer corresponds to incident radiation
at the Bragg angle. In this case the inward- and outward-propagating waves interfere in such a
way that the resultantfield minima (nulls) are centered within the high Z absorbing layers. This
has the effect of decreasing absorption and thus increasing reflectance at the Bragg condition.‡

Each period of the interference pattern corresponds to one period of the multilayer. For angles
of incidence off the Bragg peak the interference pattern shifts within the multilayer, moving
the null away from the position of minimum absorption, thus causing the reflectivity to drop.

In general it is best if the low Z material acts simply as a “spacer,” with as little absorption
as possible. In fact, the optical constants of the low Z material, δL and βL [as in Eq. (3.12)],
should be as small as possible to provide the greatest refractive index contrast at the interfaces.
In that limit, or an approximation to that limit, the high Z layers provide both the scattering and
absorption. The tradeoff then is to obtain sufficiently strong scattering, to first approximation
through refractive index contrast at the interfaces, while minimizing the absorption by reducing
the thickness of the high Z layer. Vinogradov and Zeldovich have studied this and find, for
normal incidence, an optimized value �opt given by

tan(π�opt) = π

[
�opt + βL

βH − βL

]
(4.8)

where βL and βH are the absorptive components of refractive index for the low Z (L) and high
Z (H) materials. For the W–C multilayer in Figure 4.3, at 1.54 Å wavelength, using values of β

derived from the tables of Henke et al.14 [see Eqs. (3.12) and (3.13)], Eq. (4.8) indicates that the
optimum value is �opt � 0.1. For the specific case considered here, with d = 36.1 Å, the ideal
thickness of the tungsten layers would be about 3.6 Å, or about 1.5 monolayers (see Table 1.4).
This of course is not very realistic, considering current experience with achievable interface
definition. Factors such as interface roughness (typically several monolayers), compound for-
mation (tungsten carbide, molybdenum silicide, etc.), cross-interface interpenetration, crys-
tallite formation, etc., limit the minimum layer thickness to at least several monolayers. For
such practical reasons, typically achieved values of � are more generally in the region of 0.3
to 0.5 for small d-spacing coatings. For further discussion, see the text by Spiller.1

4.3 COMPUTATIONAL MODEL FOR CALCULATING REFLECTION FROM
A MULTILAYER MIRROR

In the limit where material interfaces are well defined, it is possible to use the optical techniques
developed in Chapter 3, Section 3.5, where reflection and refraction at well-defined interfaces

‡The interference in atomic crystals, which gives rise to very high reflectance at x-ray wavelengths
and phenomena such as the Borrmann effect (important to x-ray interferometry), has the additional
advantage that the absorbing atomic states are tightly confined to a region at the null (near-zero field).
In such crystals the separation of atomic planes is set by the relatively non-absorbing valence electrons,
while the more absorbing K-shell orbitals are very tightly confined to regions near the respective nuclei
(see Figure 1.12). As a result, with properly controlled illumination (low angular divergence), the
incident and reflected fields in atomic crystals primarily scatter off the more numerous outer electrons
and experience little absorption.
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(From Underwood.4)

are calculated in terms of increments in refractive index. In fact, finite transition zones can
be addressed using these same techniques. Following Underwood,4 Figure 4.4 illustrates the
method for calculating multilayer reflection.

The calculation is performed for incident radiation at an angle θ from the surface, applying
the boundary conditions that tangential components of E and H must be continuous at each
interface, as employed earlier in Chapter 3 for a single interface. Each material is characterized
by a refractive index, described in Eqs. (3.12) and (3.13) as

n = 1 − δ + iβ = 1 − nareλ
2

2π

(
f 0
1 − i f 0

2

)
(4.9)

where na is the density in atoms per unit volume, re is the classical electron radius, λ is
the wavelength, and f 0

1 , f 0
2 are the real and imaginary components of the complex atomic

scattering function.14 Calculations of reflected and refracted waves are then performed at each
interface and summed. The calculations are done separately for perpendicular (s) and parallel
(p) polarization. Examples of calculated reflectance are shown in Figures 4.5 and 4.6.

Figure 4.5 shows reflectivity as a function of glancing incidence angle θ , for a soft x-ray
W–C multilayer mirror at 8.34 Å wavelength.15 The multilayer coating in this calculation has
100 layer pairs, with d = 22.5 Å and � = 1

3 . High reflectivity due to total external reflection
is predicted for θ < 2◦. The calculation also predicts a strong, first order Bragg peak at a
glancing incidence angle just under 11◦, with a reflectivity of about 70%. The angular bandpass
is about 1.5%, indicating that the spectral bandpass, for a given incidence angle, would also be
about 1.5%. This proves useful in various applications where modest but well-defined spectral
selectivity is desired, such as plasma diagnostics, EUV/soft x-ray astronomy, EUV/soft x-ray
laser line isolation, and others. Measured values are typically somewhat less due to interface
roughness, interpenetration of the two materials, and compound formation, although these
have a much stronger effect on higher orders.4
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F IGURE 4.5. Computed reflectivity versus glancing incidence angle for a tungsten–carbon multilayer
mirror of 100 bilayers, with periodicity d = 22.5 Å, � = 1

3 , at a wavelength of 8.34 Å. The angle θ is
measured from the surface. Total external reflectance is shown below 2◦, and a strong first order
(m = 1) Bragg peak is seen at just under 11◦. (From Underwood,15 LBNL.)

F IGURE 4.6. Measured reflectivity versus wavelength for a molybdenum–silicon (Mo/Si) mirror
consisting of 40 layer pairs, with a d-spacing of 6.77 nm and � = 0.45. Peak reflectivity is 66.5% at
13.2 nm wavelength. The mirror was coated by C. Montcalm of Lawrence Livermore National
Laboratory,9 and measured by Underwood and Gullikson of Lawrence Berkeley National Laboratory.16

Figure 4.6 shows reflectivity versus wavelength for a Mo/Si multilayer at θ = 85◦, i.e.,
5◦ from normal incidence. The multilayer has a d-spacing of 6.77 nm and a �-value of 0.45
as measured with Cu Kα radiation and atomic resolution transmission electron microscopy
(TEM). The measured peak reflectivity is 66.5% at 13.2 nm wavelength. Based on best avail-
able refractive index data,17 and with an assumption of perfectly sharp interfaces, the theo-
retical reflectivity would be 74%. The difference is quite likely due to interface roughness,
interpenetration and molybdenum silicide formation at the interfaces, etc. Indeed, even small
variations in refractive index, due to density variations in the layering process, and improved
values of the scattering factors at these wavelengths can account for differences of order 2%.18

To account for the differences between experimental results and idealized (perfect inter-
faces) calculations, researchers sometimes invoke a Debye–Waller factor1 in the reflection
coefficients that is meant to represent in some fashion the diffuse nature of the interface.
Originally introduced to take account of thermal motion of atoms in a crystalline lattice, it
is used in multilayer characterization as a catch-all factor representing the spatial scale of
interface broadening and roughness, generally in the form of a Gaussian distribution of rms
value σ , to either side of the ideal interface.1 To account for the observed difference between
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experimental and observed reflectivity of the Mo–Si mirror considered in Figure 4.6, it is
necessary to invoke an interface parameter σ = 6.5 Å rms, which could represent two or three
atom roughness, or random interpenetration, to either side of the ideal interface location.

It is worth noting that although both roughness and (uniform) interdiffusion reduce reflec-
tivity, only roughness generates non-specular scattering. Toward that end substantial efforts
are presently underway to measure scattering1, 19–21 from multilayer structures, and to model
it in terms of spectral density distributions with various layer to layer and lateral distribution
functions. With a better understanding of interface parameters, this may lead to new techniques
for controlling the growth of interface non-uniformities. This is done in conjunction with other
valued diagnostic tools such as TEM, atomic force microscopy (AFM), and visible light pro-
filometry. This combination of techniques provides the primary basis for the deterministic
assessment of Debye–Waller coefficients mentioned above.

Before closing this section we note that somewhat higher EUV reflectivities have been
achieved with Mo/Be coatings.8, 9 In such coatings the Be provides a less absorptive spacer
material than Si, permitting the achievement of reflectivity in excess of 70% at a wavelength
of 11.3 nm (110 eV), just below the K-absorption edge of Be at 111.5 eV.

As pointed out in the introduction, normal incidence reflection requires nominal λ/4
thicknesses for each layer. Thus for soft x-rays, with wavelengths of just a few nanometers,
each layer would be of order 1 nm thick, which corresponds to only a few atomic monolayers.
To be more specific, a normal incidence multilayer mirror designed to operate just below the
oxygen K-edge at 543 eV (2.28 nm wavelength in vacuum) would require individual layers
of about 0.6 nm, corresponding to only two or three atomic monolayers. Clearly this is very
difficult to achieve in non-crystalline material combinations. As a consequence it has not been
possible to date to achieve high normal incidence reflectivity at soft x-ray wavelengths. This
is illustrated in the reflectivity data presented in the frontispiece of this chapter, which shows
sample experimental values reported in the recent literature. Several groups have reported
values of order 5% near the nitrogen K-edge.

Finally, we note that during high thermal loading, multilayer mirrors can be heated to
high temperatures, potentially leading to degradation of otherwise stable interfaces. Toward
this end Ziegler,23 Takenaka et al.,24 and others have studied multilayer mirrors at high x-ray
intensity, and countermeasures such as interleaved barrier layers.

4.4 MULTILAYER FABRICATION

Multilayer interference coatings for short wavelength applications have been successfully fab-
ricated using evaporation,1 sputtering,2, 25−27 epitaxial growth,28 and laser-plasma deposition
techniques.29 For applications involving curved surfaces, especially where uniformity or d-
spacing control is of interest, sputtering is particularly attractive and widely used. Figure 4.7
shows the basic sputtering technique and geometry.

Blank mirror substrates are placed face down over holes in a circular table that rotates
above sputtering targets for the two desired materials, labeled here as “high Z” and “low Z .”
In this manner a bilayer pair is deposited with each revolution of the table. In addition to table
rotation, the substrates are also rotated, at higher angular speed, in localized planetary motions
so as to improve coating uniformity. Shadow masks25–27 are often employed to further improve
uniformity or control specified d-space variation, as shown schematically in Figure 4.7(a).

The magnetron sputtering process described here involves a plasma discharge maintained
just above the desired target materials. The discharge is maintained between the grounded
rotation table (anode) and the negative target (cathode) housings, with most of the voltage
drop very close to the target. A magnetron structure, shown in Figure 4.7(b), provides magnetic
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F IGURE 4.7. Magnetron sputtering is illustrated for two materials, one high Z and one low Z . Positive
argon ions from a magnetically confined plasma are attracted to the negative cathode, where they
sputter away (knock free) neutral atoms of the desired material. These neutral atoms move freely, some
reaching the mirror substrates passing above. Shadow masks and planetary rotations are used to
improve uniformity and control desired d-space variation. The magnetron sputtering source is shown
in (b). (Courtesy of J. Bowers and J. Underwood, Lawrence Berkeley National Laboratory.)

flux lines that tend to hold the plasma in the vicinity of the target material. Typically the
plasma is formed in a low pressure argon gas. Argon ions are attracted to the negative target
housing, colliding and knocking free desired atoms for the coating process. These uncharged
atoms then freely move away in all directions, perhaps restricted by a shadow mask, many
of them reaching the substrate passing above and adhering as a sputtered thin film. The table
rotation speed is set to provide a single layer of the desired thickness on each pass. Stable
control of the plasma properties through gas pressure and well regulated voltages make this a
very reproducible process. Nonetheless, the use of witness plates with Cu Kα measurements
of d-spacing is usual. In some cases, in situ x-ray monitoring is also employed. Often it is
desirable to employ a third material as a capping layer, at the end of the process, to control
oxidation upon eventual exposure to air.30 In some cases an adhesion or sacrificial separation
layer is employed between the substrate and multilayer coating.

4.5 APPLICATIONS OF MULTILAYER COATED OPTICS

A great advantage of multilayer interference coatings is that they can be applied to curved
substrates for use in imaging applications, such as microscopes and telescopes. This is not
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possible with purely crystalline structures. Furthermore, they provide a modest well-defined
spectral bandpass, with a relatively high throughput, whichfinds many additional applications.
In this section we give illustrative examples from surface science, astronomy, plasma physics,
industrial lithography, polarization sensitive materials science, and materials microprobing
for chemical analysis, impurity detection, and microdiffraction.

4.5.1 Soft X-ray and Extreme Ultraviolet Photoemission Microscopy for Surface Science

As modern materials science and nanofabrication techniques permit the advance of structures
to ever smaller dimensions, surface and interface properties become ever more important.
Prime examples in which small structures are technologically and economically important
are the semiconductor electronics and magnetic recording industries, where typical feature
sizes are well below 1 µm and will soon be as small as 100-nm. In such situations there
is great interest in analytic tools that can measure surface composition, including elemental
concentrations and chemical bonding, on a sub-100-nm spatial scale. Toward this end, a very
valuable tool is the photoemission microscope, which combines high spectral and spatial
resolution, and permits the study of heterogeneous surfaces.

A photoemission microscope employing multilayer coated optics is shown in Figure 4.8.
Photons of specified energy are focused onto a sample, in this case by a multilayer coated
optical system known as a Schwarzschild objective,31, 32 causing the emission of photoelec-
trons, which reveal the elemental composition and chemical bonding among elements at the
surface. The basic photoemission process is described in Chapter 1, Section 1.2, with further
applications in Chapter 9, Section 9.9. For the microscope illustrated in Figure 4.8, undulator
radiation, tuned and monochromatized to provide the desired photon energy, illuminates a
2 µm diameter pinhole that is imaged at 20:1 demagnification to a nominal 100 nm spot size
on the surface to be investigated. Emitted photoelectrons are then drawn off the surface by a
suitable potential and analyzed using an electron energy spectrometer.

The Schwarzschild reflecting microscope is shown in profile in Figure 4.8(b). The two
spherical surfaces are multilayer coated to provide peak reflectivity matched to the photon
energy selected by the undulator and monochromator. The microscope has been operated with
Mo–Si coatings for photoemission at 91.8 eV (13.5 nm wavelength), and also with Ru–B4C
coatings27 for photoemission at 130 eV (9.54 nm wavelength). For Ru–B4C the number of
effective layer pairs is greater (�70), thus narrowing the Bragg peak and requiring graded
d-spacing across the high curvature primary mirror.

A secondary electron photoemission micrograph of a 435 nm thick Alx Ga1−x N film is
shown in Figure 4.8(c). The sample was grown on a sapphire substrate, with x = 0.23, using
metal–organic chemical vapor deposition (MOCVD). Secondary electrons of 5 eV kinetic
energy were collected with a cylindrical mirror analyzer (CMA) electron spectrometer, as
the sample was illuminated with 130 eV photons from an undulator at the Advanced Light
Source in Berkeley (see Chapter 5). The sample field size in Figure 4.8(c) is 30 µm × 60 µm.
The photoemission image indicates morphological inhomogeneities with a mean grain size
of about 2 µm, in agreement with atomic force microscope (AFM) results. Further results
obtained with this microscope are presented in Chapter 9, Figure 9.39.

4.5.2 Extreme Ultraviolet and Soft X-ray Astronomy

Until the emergence of multilayer coatings, EUV, soft x-ray, and x-ray astronomy were limited
to glancing-incidence optics characterized by limited collection angle (θ ≤ θc; see Chapter
3, Sections 3.4 and 3.9) and broad spectral bandpass (E/�E ∼ 3 or so). With multilayer
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F IGURE 4.8 (see Colorplate III). (a) The photoemission microscope of Cerrina, Underwood, and
colleagues,32 employing a multilayer coated Schwarzschild objective to focus monochromatic
undulator radiation to a nominal 100 nm spot size. Photoelectron energy distributions are measured as
a function of position as the sample position (x, y) is raster scanned. (b) Details of the Schwarzschild
optics are shown. The object is a pinhole demagnified (u/v = 20) to a reduced focal spot size. (c) A
secondary electron photoemission micrograph of an AlGaN thin film. The incident photon energy is
126 eV, and the collected secondary electrons have a kinetic energy of 5 eV. Lateral inhomogeneities
show a mean grain size of about 2 µm in this 30 µm × 60 µm image. (Courtesy of G.F. Lorusso, and
F. Cerrina, University of Wisconsin, Madison.) Further results obtained with this photoemission
microscope are described in Chapter 9, Section 9.9.
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coatings large collection solid angle optics are possible at EUV wavelengths, with improved
angular resolution and well-defined spectral bandpass of width E/�E ∼ N , where N is the
number of layer pairs.33 At soft x-ray wavelengths normal incidence optics are not generally
an option, but improved spectral bandpass is available, and the increased angle of incidence
(θBragg > θc) reduces off axis aberrations in image forming studies.

The use of multilayer coated normal incidence optics to obtain high resolution astronom-
ical images is clearly illustrated in Figure 4.9(a). This shows an image of the solar corona
obtained at nominal 17.3-nm wavelength (71.7 eV). The image was obtained by Walker,
Barbee, Hoover, and Lindblom35 using a rocket-launched Cassegrain telescope with Mo/Si-
coated optics, as shown in Figure 4.9(b). The primary optic is a concave spherical mirror
with a diameter of 6.4 cm and a radius of curvature of 1.2 m. The secondary mirror is a
2.5 cm diameter convex sphere of radius 0.5 m. Both employ superpolished substrates, for
maximum reflectivity and minimal nonspecular scattering. The Mo–Si multilayer coating has
a d-spacing of 8.55 nm and � = 0.43, achieving a peak reflectivity of 35% at 17.2 nm with a
spectral bandpass λ/�λ of about 13. The bandpass is further narrowed by use of an aluminum
L-edge filter (72.5 eV, 17.1 nm) to λ/�λ � 40, extending from 17.1 nm to 17.5 nm. This
spectral band is dominated by line emission from highly ionized iron (Fe+8 and Fe+9, eight
and nine times ionized, respectively), which is present in the coronal plasma in regions where
the temperature is of order 100 eV (1.2 × 106 K).

In Figure 4.9(a) the authors identify several areas of particularly intense emission, in-
cluding areas of known activity (lower right), magnetically confined coronal loops at the solar
limb, and relatively quiescent north and south (upper left and lower right) coronal holes where
long polar plumes of escaping plasma emerge along radial magnetic field lines to contribute to
the solar wind. Also seen are lower temperature filaments and prominences (upper left). With
the relatively large collection solid angle, and well-defined spectral bandpass, these multilayer
coated optics clearly provide new opportunities for the study of more distant matter in the
universe.

Figure 4.10 shows further detail of solar activity obtained with the NASA TRACE¶

telescope.36 The instrument employs a 30 cm diameter Cassegrain telescope with an angular
resolution of 1 arcsec. The optics are coated in quadrants to provide three EUV passbands
and one UV passband. The three EUV channels employ Mo2C/Si multilayer coatings with
respective spectral peaks at 17.3 nm, 19.5 nm, and 28.4 nm. Images are read out with a
1024×1024 CCD array in which one pixel corresponds to 0.5 arcsec. The image in Figure 4.10,
obtained at 17.3 nm wavelength, shows fine loop detail at the solar limb. This spectral band is
dominated by Fe+8 and Fe+9 emissions, characteristic of a solar region with a temperature of
order 100 eV. Typical exposure times are several seconds, permitting continuous time coverage
and thus a powerful new tool for studies of coronal dynamics.36

4.5.3 Extreme Ultraviolet Lithography

Lithography is a process for printing or copying a pattern from a flat surface, originally a stone,
in some cases using inks or other treatments to enhance image transfer. In today’s semiconduc-
tor industry lithography is used to copy patterns for manufacturing nanoelectronic processors
and memory devices for modern computing systems. These computer chips, as they are called,
contain millions of transistors, with feature sizes as small as 250 nm, across square centimeter

¶Transition Region and Coronal Explorer (TRACE).
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F IGURE 4.9 (see Colorplate IV). (a) EUV image of the sun obtained with a rocket launched Cassegrain
telescope employing multilayer coated normal incidence optics. (b) The telescope employs
Mo/Si-coated spherical optics that, in combination with an aluminum L-edge filter, provide a 17.1 nm
to 17.5 nm spectral bandpass. It achieves an angular resolution of about 1.2 arcsec (5.8 µrad). (Courtesy
of A.B.C. Walker, T.W. Barbee, R.B. Hoover, and J.F. Lindblom; Stanford, LLNL, and NASA.)

dimensions. The most critical layers are printed with nominally four times (4×) reduction
cameras, known as “optical steppers,” using 248-nm wavelength KrF laser radiation as the
deep ultraviolet (DUV) source. Critical dimensions for use in high volume manufacturing are
anticipated to decrease on a schedule of

√
2 reductions every two or three years, to 100 nm in

the year 2006, and to 50 nm in the year 2012.37 There are several competing technologies that
can potentially provide these capabilities, some of which are described in Chapter 10. Among
them are continuations of DUV techniques using 193 nm ArF lasers, soft x-ray proximity
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F IGURE 4.10 (see Colorplate V). An EUV image of the solar corona showing arcsecond details of loops
near the solar limb. (Courtesy of L. Golub, A. Title, C. Wolfson, B. Handy, T.W. Barbee;
Harvard-Smithsonian Center for Astrophysics, Lockheed Martin, LLNL, and NASA.)

printing at nominally 1 nm wavelength, electron beam writing techniques, ion beam writing,
and extreme ultraviolet lithography based on multilayer coated reflective optics. The last is of
particular interest in this chapter.

Concisely, the advantages of EUV are the continuation of optical techniques at a signif-
icantly reduced wavelength (11–13 nm versus 193–248 nm), permitting the achievement of
small feature size (100 nm or smaller) with modest numerical aperture and large depth of
focus. To print large (square centimeter) field sizes with a modest number of curved surfaces,
limited by finite reflectivities and thus system throughput, requires the use of high precision
aspheric optics, at technically challenging specifications. That notwithstanding, the dominant
enabling technology for this approach to lithography is the ability of Mo/Si and Mo/Be multi-
layers, first perfected by Barbee,7 to achieve reflectivities of order 70%. Figure 4.11(a) shows
schematically the basic elements of EUV lithography.

In this example, nominal 13 nm radiation, from a laser produced plasma (Chapter 6) or
a synchrotron radiation source (Chapter 5), illuminates a multilayer coated reflective mask
that is overcoated with an absorber pattern. Multilayer coated reduction optics are then used
to replicate the pattern at nominal 4:1 reduction on a suitable wafer. In practice a four or five
bounce imaging system would be used for pattern reduction, and further condenser optics
would be used between the source and mask for proper illumination. Further discussion and
references are given in Chapter 10. A pattern of both 80 nm and 90 nm wide lines printed at
a 1 : 2 pitch within a small field of view with a developmental EUV microstepper camera38

is shown in Figure 4.11(b). The camera uses a 10:1 reduction Schwarzschild system, similar
to that seen in Figure 4.8(b). Cameras based on aspheric optics, designed to print over a
26 mm × 56 mm field, are presently under development.
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F IGURE 4.11. (a) Extreme ultraviolet (EUV) lithography is illustrated schematically, showing
multilayer coated reflective optics used to image a mask pattern at a nominal 4 : 1 reduction at the
wafer. With wavelengths in the range of 11–14 nm, features of order 100 nm can be printed with
relatively low numerical aperture and large depth of focus. (b) A pattern showing both 80 nm and 90
nm lines (1 : 2 pitch) printed with a developmental EUV microstepper camera using Mo–Si-coated
10 : 1 Schwarzschild optics. Companion images showing line widths down to 50 nm are shown in
Chapter 10, Figure 10.10 (Courtesy of J.E. Goldsmith, C.F Cardinale, C.C. Henderson, R.H. Stulen,
and colleagues, Sandia National Laboratories.)

4.5.4 Plasma Diagnostics

Multilayer coated mirrors provide many opportunities and are widely used for the diagnostics
of hot plasmas that radiate at wavelengths from the EUV to x-ray regions of the spectrum.
As in astronomy, the well-defined spectral bandpass makes them ideal for many studies of
energy transport and temperature where only moderate spectral resolution (λ/�λ � 10–30)
suffices. Again as in astronomy, they are very convenient for clearly isolating certain spectral
lines, for instance in the development of EUV and soft x-ray lasers, where one lasing line
may be isolated from others (see Chapter 7). As their top surfaces are generally reflective
for visible light as well, they are conveniently combined with a wide range of detectors in
imaging, spectroscopic, and transport experiments.

An early application of multilayer mirrors to plasma diagnostics is outlined in
Figure 4.12(a). Of interest here is the transport of energy into a layered laser-plasma target,39

with characteristic emissions of the various layers to be separated through the use of matching
multilayer mirrors, and recorded with a single 15 ps time resolved streak camera. Discussion
of the emission from laser produced plasmas, including the diagnostic use of streak cameras,
is presented in Chapter 6. For example, using a glass (SiO2) target with overlayers of CF
and CH, one would expect to see delayed emissions of characteristic line emissions from
He-like fluorine (1s2p → 1s2 at 737 eV) and H-like oxygen (2p → 1s at 653 eV), as well
as several narrow channels that sample the broad continuum of emission at energies of 102
eV, 267 eV, and 943 eV, as delivered energy burns through the target and “lights up” the
various lines. For each multilayer bandpass, a matching thin film absorber is used to block top
surface reflections of long wavelength visible, IR, and UV radiation. For the transport studies
proposed in Figure 4.12(a), the multilayer channels fielded39, 40 were as follows: V/C with
d = 14.3 nm at 25◦ incidence angle for the 102 eV channel, Ti/C with d = 5.5 nm at 25◦

for the 267 eV channel, W/C with d = 2.1 nm at 27.1◦ for the 653 eV channel, W/C with
d = 2.1 nm at 23.8◦ for the 737 eV channel, and W/C with d = 1.5 nm at 25◦ incidence angle
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F IGURE 4.12. (a) Time resolved soft x-ray emission, in five well-defined spectral windows defined by
multilayer mirrors, for use in thermal transport studies of laser irradiated targets. (b) Sample data for a
laser irradiated Be on Al target, showing three channels. (Courtesy of G. Stradling.)

for the 943 eV channel. Sample data40 for emission from a non-optimized Be on Al target
are shown in Figure 4.12(b), for an 89 J, 720 ps duration (FWHM), 1.06 µm laser pulse at
an incident intensity of 3 × 1014 W/cm2. Further discussion of hot dense plasmas and their
emission characteristics is presented in Chapter 6.

4.5.5 Polarization Studies of Magnetic Materials

It has been known since the time of Michael Faraday (1845) that the presence of magnetic
fields can alter the propagation properties of light in certain materials. Magneto-optical ef-
fects refer to various changes in the polarization vector, taken here as the wave’s electric field
vector E, as radiation interacts with magnetic materials. These effects include rotation of a
linearly polarized electric field vector, as in the Faraday and Kerr effects, and the differential
absorption (or scattering) of left and right circularly polarized radiation, known as circu-
lar dichroism.42, 43 For visible and ultraviolet light these effects involve valence electrons in
molecules, loosely bound valence and conduction electrons in solids, and free electrons in plas-
mas. However, in the EUV and soft x-ray regions, these interactions involve more tightly bound
core (K- and L-shell) electrons, and thus provide a mechanism for providing element specific
information.

Multilayer mirrors provide a powerful tool for controlling and measuring the polarization
properties of radiation at these short wavelengths, based on reflection properties near 45◦

incidence angle.44–47. As seen earlier in Chapter 3, Section 3.6, there is an angle at which
p-polarized radiation (electric field vector E lying in the plane of incidence) is not reflected
at an interface, or is minimally reflected in the case of a lossy material (β �= 0). At this same
angle the s-polarization can have a relatively large reflection. For a single interface this angle is
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known as Brewster’s angle, and for short wavelength radiation it is very close to π/4 radians.
As seen in Chapter 3, Eq. (3.60), Brewster’s angle for EUV/soft x-ray radiation incident from
vacuum onto a material of refractive index n = 1 − δ + iβ is given by

φB � π

4
− δ

2

where φB is measured from the surface normal.
For multilayer mirrors the reflection process is somewhat different because the radiation

interacts sequentially with two alternating materials. As a consequence the radiation expe-
riences small refractive turnings toward and away from the surface normal, in response to
small positive and negative changes in refractive index. At each interface, however, the re-
sult is similar in that for p-polarized radiation a minimal reflection occurs at each sequential
interface, preserving the essence and advantage of Brewster’s angle. Thus with multilayer
mirrors designed for use at Brewster’s angle the difference in reflectivities can be very great,
approaching unity for s-polarized radiation at the Bragg peak, and orders of magnitude less
for p-polarized radiation.45 Kortright and his colleagues48−50 have pursued the application of
multilayer mirrors to the study of magnetic materials utilizing several of these magneto-optical
techniques. For example, the use of a polarizing multilayer mirror to analyze Faraday rotation
of linearly polarized soft x-rays, after passing through magnetized iron (Fe), is illustrated in
Figure 4.13(a).

In this example linearly polarized undulator radiation (see Chapter 5) passes though an
Fe/Cr sandwiched material§ magnetized by a static axial magnetic field (H0) of 3 kOe. The
radiation is then reflected off a W/B4C multilayer mirror (polarization analyzer) at Brewster’s
angle (�45◦), into a detector. The multilayer mirror is laterally graded (tapered), as shown
in Figure 4.13(b), so that with translation it can be used over a range of photon energies.
In the case cited here, the nominal d-spacing is only 1.23 nm, for use at photon energies
from 680 eV to 740 eV at 45◦ incidence angle. With such a short d-spacing the maximum
achieved reflectivity for s-polarized radiation was only about 1%. However the p-to-s polarized
extinction ratio was 3 × 10−4.

The multilayer mirror can be rotated about the axis of symmetry (the coaligned axes of
the applied static magnetic field H0 and the wave propagation vector direction k) to measure
the new direction of polarization after traversing the medium. Rotating the mirror with no
sample present results in a sinusoidal reference signal, with maximum amplitude when the
linearly polarized undulator radiation intersects the mirror as s-polarization, and minimal
amplitude when that same undulator radiation intersects the mirror as p-polarization (90◦

rotation difference). With the sample in place the wave vector E rotates some amount due to
the Faraday effect, causing the measured sinusoidal signal (as the mirror is rotated 360◦) to
exhibit a phase shift. The sense of rotation is reversed if the axial magnetic field direction is
reversed. As shown in Figure 4.13(d), data is then obtained as a function of photon energy,
in this case across the Fe L2 and L3 edges at 720 eV and 707 eV, respectively. The measured
maximum rotation of 4.8◦, for a total Fe thickness of 80 nm, corresponds to a Faraday rotation
constant of 6.0 × 104 deg/mm, about twice that of visible light, and 1000 times greater than
with 7.1 keV x-rays. The rotation angle can then be used to determine the magnetization of
the material.42, 43

§Actually in the form of an Fe/Cr multilayer structure consisting of 40 bilayers of 2.0 nm Fe and 1.9 nm
Cr on a 100 nm thick silicon nitride membrane.
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F IGURE 4.13. (a) Technique for measuring Faraday rotation at soft x-ray wavelengths using a multilayer
mirror polarization analyzer at Brewster’s angle (�45◦ in this region). (b) Use of a laterally graded
multilayer permits the measurement at a range of wavelengths. (c) Multilayer reflectivity versus photon
energy, at 45◦ angle of incidence, as the mirror is translated to expose regions of varied d-spacing and
thus varied photon energy at the Bragg peak. (d) Recorded Faraday rotation angle for an Fe/Cr sample
as a function of photon energy, crossing the Fe L-edges at 707 eV and 720 eV. (Courtesy of J.B.
Kortright, M. Rice, LBNL, and R. Carr, Stanford University.)

The resonant behavior observed in Figure 4.13(c) suggests that this technique is extendable
to element specific applications in multicomponent magnetic films containing other transition
metals such as V, Cr, Mn, Co, and Ni. Kortright and Rice49 have used the soft x-ray Kerr effect to
observe hysteresis in Fe and Cr. Magnetic circular dichroism (MCD) for the conversion of lin-
early polarized soft x-rays to an elliptically polarized state is also discussed in the literature.50

4.5.6 The X-Ray Microprobe

For x-rays of photon energy 6–20 keV it is not possible to make normal incidence multilayer
mirrors. Nonetheless, they are quite useful in applications of coated optics, in part because of
the well-defined but not overly narrow spectral bandpass, and in part because the Bragg angle
can be several times larger than the critical angle for total external reflection. The latter offers
the potential for increased collection solid angle in some applications and reduced off-axis
aberrations in others.

Figure 4.14 shows a pair of crossed, multilayer coated optics, used to focus 8–12 keV
x-rays to a nominal 1 µm diameter spot size.51 In the Kirkpatrick–Baez (KB) configuration
one mirror provides the horizontal focus while the other provides the vertical focus. In this
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F IGURE 4.14. A fluorescence x-ray microprobe, using a pair of multilayer coated elliptically bent
mirrors of varied d-spacing, to focus hard x-rays to a nominal 1 µm diameter focal spot. Three
separate mirror pairs provide pass bands at 8 keV, 10 keV, and 12 keV, with E/�E � 30. Incident
photons create core-level vacancies through photoemission. Subsequent characteristic line emission
(fluorescence) is detected by an energy selective detector, permitting clear identification of elements
present. Because of the “photon-in–photon-out” nature of the measurement, bremsstrahlung is absent
and detection thresholds are very low, at the parts-per-billion and femtogram levels. This is possible
even in a high Z host by using a photon energy below the host K-edge. Raster scanning the sample
provides a two-dimensional concentration map for each element detected. Shown in (b) is the
fluorescent emission of dilute iron particles found to be the contaminating agent in a defective solar
cell. (Courtesy of A. Thompson, J. Underwood, LBNL; the sample in (b) is from unpublished work
with R. Holm of Miles Laboratory in Pittsburgh, PA.)

particular embodiment broad band bending magnet radiation (see Chapter 5) is used, although
both wiggler and undulator radiation offer advantages. The focusing optics consist of a pair of
elliptically bent mirrors52 employing W/B4C multilayer coatings at a nominal incidence angle
of 1◦. The coatings have graded d-spacings to accommodate the variation in incidence angles.
In fact there are three sets of optics: one set for 8 keV, a second set for 10 keV, and a third
set for 12 keV photon energy. The nominal spectral bandpass in each case is E/�E � 30.
Compared to the use of spherical or cylindrical optics, the use of elliptically bent optics reduces
off-axis spherical aberrations, resulting in a smaller spot size, just under 1 µm diameter, and
significantly reduced flare, i.e., a better-defined focal spot. For the configuration shown in
Figure 4.14, the nominal demagnification is 400 : 1.

Such focusing optics are conveniently adapted for use in many applications, involving
a variety of techniques. For example, the focused radiation has been used extensively as an
x-ray fluorescence microprobe, with nominal 1-µm spatial resolution, in which the incident
radiation causes photoemission of core-level electrons from a broad range of elements that
may be present. Subsequent fluorescent line emissions, characteristic of the elements present,
are then detected with an energy selective solid state detector, as shown in Figure 4.14.
The fluorescence provides a measure of the relative concentrations of elements present and



118 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

pg/µm2

1 mm

1 mm

Ca

2.4

Cr Fe

ZnNi Cu

1.0

0.1 pg/µm2

0.2 pg/µm2

0.3 pg/µm2

10

F IGURE 4.15. Elemental concentrations and size distributions of the elements Ca, Cr, Fe, Ni, Cu, and
Zn found in contaminated wetlands as determined from x-ray microfluorescence. Bioremediation
techniques involving organic materials are dependent on elemental concentrations and particle size. All
concentrations are given in units of picograms per square micron. (Courtesy of T. Tokunaga and
A. Thompson, LBNL, unpublished.)

accessible with the incident photon energy passed by the multilayer coating, i.e., with binding
energies (Chapter 1, Table 1.2) below the incident photon energy.

This fluorescent emission technique is quite powerful in several ways. Because it is
a “photon-in–photon-out” technique, there is no bremsstrahlung, and thus the background
noise is very low, permitting detection sensitivities at the part per billion (ppb) and femtogram
(fg) level. Furthermore, these dilute concentration levels can be detected in the presence of
a high Z host material by selecting an incident photon energy below the host K-edge so as
to avoid exciting host fluorescence. Figure 4.14(b) shows data obtained at 10 keV incident
energy, which indicate the presence of iron particle contamination in a defective silicon solar
cell. Figure 4.15 shows elemental concentration of Ca, Cr, Fe, Ni, Cu, and Zn, measured using
this same technique, as part of an environmental remediation study involving contaminated
wetlands near the San Francisco Bay. By the identification of elements present and particulate
sizes, such studies can contribute to the development of appropriate bioremediation techniques.

The x-ray microprobe can also be used in combination with diffractive techniques.
Figure 4.16 shows an early example of KB optics used in a microdiffraction configuration
to study structural phase transformations of material under high pressure in a diamond-anvil
cell. First experiments of this type were conducted by Mao, Wu, and colleagues53−55 using
synchrotron radiation at Stanford (SSRL) and Brookhaven (NSLS), and are now being imple-
mented at third generation synchrotron facilities.56, 57 The smaller electron beam size, high
x-ray intensity, and wider availability of undulator and wiggler radiation at the third generation
facilities (see Chapter 5) make these microprobe techniques very attractive.56
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F IGURE 4.16. (a) Multilayer coated focusing optics used to deliver a high photon flux to small samples,
typically 10 µm across, in a high pressure diamond-anvil cell. Monochromatic x-rays were obtained
with a Si(III) double-crystal monochromator at the Stanford Synchrotron Radiation Laboratory. (b) A
diffraction pattern obtained with CsI and neon at 26 GPa. Structural changes in the CsI were observed
as the pressure varied from zero to 300 GPa. (From Y. Wu, Ph.D. thesis, UC Berkeley, 1990.53)

For the microdiffraction investigation depicted in Figure 4.16, cesium iodide (CsI), with
neon as a pressure medium, was studied over the pressure range from zero to 300 GPa (�3×106

atm), simulating conditions in the earth’s interior. With increasing pressure, CsI was observed
through diffraction to transform in stages from a simple cubic structure to a hexagonal close-
packed (hcp) structure above 200 GPa. CsI was chosen for these early studies because it is a
widely used prototype for experimental and theoretical studies of crystal structures, equations
of state, and metallization at high pressure.

Further topics of great interest include metallization of hydrogen,54 and the structural
phase of iron58 at high pressure. Because these very high pressures are achieved in the labora-
tory over very limited dimensions (of order 10–20 µm in a diamond-anvil cell), it is important
that the incident radiation be focused to a spot size of order 1 µm diameter. It is clear that these
studies will be improved by the use of elliptically bent optics,52 graded d-spacing multilayer
coatings,25−27 and third generation synchrotron radiation facilities (see Chapter 5) character-
ized by small (emission) beam size and divergence. These improvements will result in greatly
increased photon flux within the desired spot size, as well as improved angular resolution.
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F IGURE 5.1. Bending magnet radiation occurs when a relativistic electron travels in a uniform magnetic
field, executing a circular motion with acceleration directed toward the center. The radiation is directed
tangentially outward in a narrow radiation cone, giving the appearance of a sweeping “searchlight.”
The radiation spectrum is very broad, analogous to a “white light” x-ray light bulb. The emission angle
is typically 1/γ , where γ is the Lorentz contraction factor.

In this chapter we briefly review the central features of synchrotron radiation, beginning
with estimates of radiated photon energies and angular divergence based on the application
of well-known results from the theory of relativity and Heisenberg’s uncertainty principle.
For bending magnet radiation, formulae describing photon flux as a function of angle and
photon energy are summarized in a convenient handbook style. Undulator radiation, generated
by relativistic electrons traversing a periodic magnet structure, is calculated in detail. The
approach taken makes maximal use of the well-known classical results of dipole radiation.
This is accomplished by solving the electron equation of motion in the laboratory frame of
reference, then making a Lorentz transformation to the frame of reference moving with the
average electron velocity. In this frame of reference the motion is non-relativistic, yielding
the well-known sin2 � angular dependence of radiated power per unit solid angle. These
results are then Lorentz transformed back to the laboratory (observer) frame of reference. A
central radiation cone, defined as containing a 1/N relative spectral bandwidth, is shown to
correspond to an angular half width of 1/γ

√
N , where N is the number of magnet periods.

Power radiated in the central cone is readily calculated from the dipole formula. Calculations
of spectral brightness follow in a straightforward manner. Wiggler radiation, the strong field
extension of undulator radiation, is shown to be dominated by a large number of harmonics
that merge to a continuum at high photon energy. The spectral shape of wiggler radiation
is similar to that of bending magnetic radiation, but shifted to higher photon energy (by the
higher magnetic fields) and to increased (2N ) photon flux.

5.1 INTRODUCTION

It is well known that an accelerated charged particle, such as one traveling on a curved
trajectory, will emit radiation. When moving at relativistic speeds, this radiation is emitted
as a narrow cone tangent to the path of the particle.1 Synchrotron radiation is generated
when relativistic electrons (or positrons) are accelerated (undergo a change of direction) in a
magnetic field, as seen in Figure 5.1.

There are three types of magnetic structures commonly used to produce synchrotron
radiation: bending magnets, undulators, and wigglers. Bending magnets cause a single curved
trajectory as pictured in Figure 5.1. The result is a fan of radiation around the bend. Undulators
are periodic magnetic structures with relatively weak magnetic fields. The periodicity causes
the electron to experience a harmonic oscillation as it moves in the axial direction, resulting
in a motion characterized by small angular excursions called undulations,2, 3 as shown in
Figure 5.2. The weak magnetic fields cause the amplitude of this undulation to be small.
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F IGURE 5.2. Undulator radiation is generated as a highly relativistic electron traverses a periodic
magnetic field. In the undulator limit, the magnetic field is relatively weak and the resultant angular
excursions of the electron are smaller than the angular width of the natural radiation cone, 1/γ ,
normally associated with synchrotron radiation. The frequency spread of undulator radiation can be
very narrow, and the radiation can be extremely bright and partially coherent, under certain
circumstances. The characteristic emission angle is narrowed by a factor

√
N , where N is the number

of magnetic periods. Typically N is of order 100. Depending on the magnet strength, harmonic
radiation may be generated.
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F IGURE 5.3. Wiggler radiation is also generated from a periodic magnet structure, but in the strong
magnetic field limit where in at least one plane the angular excursions are significantly greater than the
natural (1/γ ) radiation cone. Because accelerations are stronger in this limit, the radiation generated
peaks at higher photon energies and is more abundant (higher photon flux and more power). The
radiation spectrum is very broad, similar to that of the bending magnet. Although more power is
radiated, wiggler radiation is less bright because of the substantially increased radiation cone.

Hence, the resultant radiation cone is narrow. In combination with a tightly confined electron
beam, this leads to radiation with small angular divergence and relatively narrow spectral
width, properties we generally associate with the coherence properties of lasers.4 Wigglers
are a strong magnetic field version of undulators. Due to the stronger fields, the oscillation
amplitude and concomitant radiated power is larger. The radiation cone is broader in both space
and angle. The radiation spectrum is similar to that of bending magnets, but characterized
by a much larger photon flux and a shift to harder x-rays (shorter wavelengths), as seen in
Figure 5.3.

Historically, synchrotron radiation was first observed as energy loss in electron storage
rings. Logically, the first synchrotron radiation sources for general scientific use were simple
parasitic beam ports utilizing otherwise lost radiation at existing storage rings. Over time,
however, sources have been constructed for dedicated use as synchrotron radiation facilities
(second generation facilities). The newest synchrotron facilities (third generation facilities)
are composed of many straight sections specially optimized to produce high brightness undula-
tor and wiggler radiation. Figure 5.4 illustrates yesterday’s and today’s synchrotron radiation
facilities.

Figure 5.5 is a simple schematic of a synchrotron radiation source. The relativistic elec-
trons are injected into the ring from a linear accelerator and (energy) booster synchrotron. Var-
ious magnetic lenses keep the electrons traveling along the desired trajectory. Synchrotron
radiation is produced as the electrons pass through the bending magnets, undulators, and
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F IGURE 5.4. (a) Early synchrotron radiation facilities were basically circular rings for bending magnet
radiation, although some have been retrofitted with periodic magnetic structures (undulators or
wigglers). They generally have an electron beam of relatively large cross-section and angular
divergence. (b) Modern storage rings are dedicated to broad scientific use and optimized for high
spectral brightness through the inclusion of many long straight sections for undulators and wigglers, as
well as very tightly confined (spatial and angular extent) electron beams. Bending magnet radiation is
also generated in turning from one straight section to the next (not shown).

wigglers. Electron beam energy lost to synchrotron radiation is replenished with a radio-
frequency accelerator (a cavity with an axial electric field oscillating at the frequency of
arrival of sequential electron bunches). Typical parameters characterizing synchrotron radia-
tion from two modern storage rings, one optimized for the generation of soft x-rays and one
optimized for the generation of hard x-rays, are given in Table 5.1.

5.2 CHARACTERISTICS OF BENDING MAGNET RADIATION

In this introductory section, we wish to use simple arguments to show why one expects to see
radiation at x-ray wavelengths. The arguments are based on an estimate of the time duration
of the observed radiation signal and an application of Heisenberg’s uncertainty principle for
photon energy. Bending magnet radiation is sometimes described as a sweeping “searchlight,”
analogous to the headlight of a toy train on a circular track. This searchlight effect is a general
manifestation associated with radiation from relativistic particles undergoing acceleration. An
electron experiencing radial acceleration as it travels around a circle emits radiation through a
broad angular pattern – as seen in its frame of reference. However, angular patterns are very
much compressed upon Lorentz transformation from one frame of reference (that moving
with the electron) to another (the laboratory frame of the observer) when the relative motion
is highly relativistic. In Appendix F it is shown that angles measured from the direction of
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F IGURE 5.5. This sketch of an electron storage ring optimized for soft x-ray radiation shows a linear
accelerator (linac) and booster synchrotron that bring electrons up to an energy matched to storage ring
magnet settings, an injection system, which directs electrons into the ring, and a radio frequency (rf)
generator to replenish the energy lost to synchrotron radiation as the electrons pass bending magnets,
undulators, and wigglers. Straight sections for undulators and wigglers direct energy into beamlines
and end sections for various scientific studies. Bending magnet radiation beamlines, located between
straight sections, are not shown.

motion are related by

tan θ = sin θ ′

γ (β + cos θ ′)
(5.1)

where θ ′ is observed in the frame of reference moving with the electron, θ is in the laboratory
frame, β ≡ v/c (where v is the relative velocity between frames and c is the velocity of light),
and γ ≡ 1/(1 − v2/c2)1/2. For highly relativistic electrons β approaches unity, and γ � 1.
Thus for arbitrarily large emission angles θ ′, in the electron frame, the radiation is folded into
a narrow forward radiation cone of half angle

θ � 1

2γ
(5.2)

leading to the description of synchrotron radiation as being concentrated in a narrow “search-
light beam.”
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TABLE 5.1. Typical parameters for synchrotron radiation at two complementary storage
ring facilities. Both rings are optimized for small electron phase space (emittance) and
the use of multiple straight sections for undulators and wigglers. Bending magnet
radiation is obtained as the electron beam turns from one straight section to the next.
The two facilities are complementary in that one is optimized for soft x-rays while the
other is optimized for hard x-rays. The Advanced Light Source (ALS) is operated by
Lawrence Berkeley National Laboratory in California. The Advanced Photon Source
(APS) is operated by Argonne National Laboratory in Illinois. Parameters for other
facilities around the world are tabulated by Winck (Ref. 5).

Facility ALS APS

Electron energy 1.90 GeV 7.00 GeV
γ 3720 13,700
Current (mA) 400 100
Circumference (m) 197 1100
RF frequency (MHz) 500 352
Pulse duration (FWHM) (ps) 35–100 170

Bending Magnet Radiation:
Bending magnet field (T) 1.27 0.599
Critical photon energy (keV) 3.05 19.5
Critical photon wavelength 0.407 nm 0.0636 nm (0.636 Å)
Bending magnet sources 24 35

Undulator Radiation:
Number of straight sections 12 40
Undulator period (typical) (cm) 5.00 3.30
Number of periods 89 72
Photon energy (K = 1, n = 1) 457 eV 9.40 keV
Photon wavelength (K = 1, n = 1) 2.71 nm 0.132 nm (1.3 Å)
Tuning range (n = 1) 2.0–5.4 nm 0.10–0.35 nm
Tuning range (n = 3) 0.68–1.8 nm 0.033–0.12 nm
Central cone half-angle (K = 1) 35 µrad 11 µrad
Power in central cone (K = 1, n = 1) (W) 2.3 12
Flux in central cone (photons/s) 3.1 × 1016 7.9 × 1015

σx , σy (µm) 260, 16 320, 50
σ ′

x , σ ′
y (µrad) 23, 3.9 23, 7

Brightness (K = 1, n = 1)a

[(photons/s)/mm2 · mrad2 · (0.1%BW)] 2.3 × 1019 4.8 × 1018

Total power (K = 1, all n, all θ ) (W) 187 780
Other undulator periods (cm) 3.65, 8.00, 10.0 2.70, 5.50, 12.8

Wiggler Radiation:
Wiggler period (typical) (cm) 16.0 8.5
Number of periods 19 28
Magnetic field (maximum) (T) 2.1 1.0
K (maximum) 32 7.9
Critical photon energy (keV) 5.1 33
Critical photon wavelength 0.24 nm 0.038 nm (0.38 Å)
Total power (max. K ) (kW) 13 7.4

aUsing Eq. (5.65). See comments following Eq. (5.64) for the case where σ ′
x,y � θcen.
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F IGURE 5.6. (a) A schematic of bending magnet radiation illustrating the “searchlight” effect, similar to
that of the headlight of a train on a circular track, which is a general feature of radiation by highly
relativistic electrons. (b) The time width of the observed radiation pulse is determined by transit time
differences between radiation and electrons between points A and B. The uncertainty relationship
between pulse duration and minimal spread of photon energy indicates that a broad range of photon
energies, extending to the x-ray region, is to be expected. (Following Hofmann.2)

As an electron traverses a curved path, radiation is emitted tangentially, as seen in Fig-
ure 5.6, in a narrow radiation cone of half width θ � 1/2γ . For electrons circulating in
a ring, we can estimate the photon energies and wavelengths radiated using simple argu-
ments based on Heisenberg’s uncertainty principle, �E · �τ ≥ h̄/2, where �τ is the (rms)
time duration during which one detects radiation, and �E is the uncertainty (rms spread)
in observed photon energies. We begin by estimating the detected pulse duration, 2 �τ , of
radiation emitted by a short bunch of electrons following a circular trajectory of radius R.
We estimate the time extent of the observed signal by considering a detector at point B or
equivalently further to the right at B ′. As the electron comes within an angle θ � 1/2γ

of the horizon at point A, the detector will be in the path of emitted photons. These pho-
tons will be detected after a transit time of the light, τr . The signal will continue until
the electron reaches point B, beyond which the radiation cone has turned too far to permit
reception by our detector. The electron will reach point B after a transit time around the
bend, τe. The pulse width, �τ , shown in Figure 5.6(b) is the difference between these two
transit times, i.e., the detector detects radiation after a time τr , and stops detecting radiation
at τe.

Following this outline, we see that

2 �τ = τe − τr

2 �τ = arc length

v
− radiation path

c

2 �τ � R · 2θ

v
− 2R sin θ

c

Noting that θ � 1/2γ , making a small angle approximation for sin θ , and substituting v = βc,
one obtains

2 �τ � R

γ v
− R

γ c
= R

γ

(
1

v
− 1

c

)
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Writing v = βc, one has

2 �τ � R

γβc
(1 − β)

Noting that

γ ≡ 1√
1 − β2

γ 2 = 1

1 − β2
= 1

(1 − β)(1 + β)

and thus for β = v/c approaching unity

1 − β � 1

2γ 2
(5.3)

the expression for the duration of the radiation pulse becomes

2�τ � R

2cγ 3
(5.4a)

This can be expressed as an anticipated photon energy spread through the use of Heisenberg’s
uncertainty principle6 and an expression for the radius of curvature R. From the uncertainty
principle,

�E · �τ ≥ h̄/2

Combining this with the expression in Eq. (5.4a) for the pulse duration, we see that the photons
will have an rms energy spread of order∗

�E ≥ 2h̄cγ 3

R
(5.4b)

To better appreciate the photon energies implied by Eq. (5.4b) it is useful to replace the
electron radius of curvature R with an expression involving γ and the magnetic field. For
electrons crossing a perpendicular magnetic field, as in a bending magnet, the relativistically
correct form of the equation of motion can be written as

F = dp
dt

= −ev × B

where p = γ mv is the momentum,6 m is the electron rest mass, γ is the Lorentz factor, v is
the velocity, and B is the magnetic flux density. For electron motion in a uniform magnetic
field, the electron energy and thus γ is a constant, so that only the direction of v changes, not
its magnitude. To see this we write the rate of change of electron energy as

d Ee

dt
= v · F = −ev · (v × B)︸ ︷︷ ︸

≡0

∗Similar arguments are given in J.D. Jackson (Ref. 1), First Edition, pp. 475–477.
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which is zero by vector identity (see Appendix B). Thus the electron energy, which can be
written6 as γ mc2, is a constant, viz.,

d Ee

dt
= d

dt
(γ mc2) = 0

Thus γ , and therefore the scalar magnitude v of the velocity, are both constant. The equation
of motion can be rewritten as

γ m
dv
dt

= −ev × B

Since the magnitude of v is constant, the magnitude of the acceleration is also constant, equal
to evB/γ m, in a plane perpendicular to B. This corresponds to motion along a circle, with
centripetal acceleration v2/R, so that the scalar form of the equation of motion becomes

γ m

(
−v2

R

)
= −evB

Solving for the radius of curvature, we have

R = γ mv

eB

or for highly relativistic electrons

R � γ mc

eB

Using this in Eq. (5.4b), the rms spread of photon energies for bending magnet radiation
becomes

�E ≥ 2e h̄ Bγ 2

m
(5.4c)

which we note depends on the electron charge to mass ratio, e/m, and the product Bγ 2. If
we substitute values for e, h̄, and m, Eq. (5.4c) indicates photon energies in the keV range
(nanometer wavelengths) for typical values of γ and B found in modern storage rings, e.g., γ
of several thousand and B of 1T or more. For highly relativistic electrons it is convenient to
express the total electron energy in terms of γ and the electron rest energy, mc2, as6

γ = Ee

mc2
= 1957Ee(GeV) (5.5)

where on the right side we have used the fact that the electron rest energy is 0.5110 MeV, and
expressed the electron energy Ee in GeV.

The description of expected photon energy spread obtained above, Eq. (5.4c), is based on
relatively simple arguments involving Heisenberg’s uncertainty principle. It is valuable in that
it provides a measure of the expected photon energies radiated by accelerated charges moving
at relativistic speeds, and gives a functional dependence in terms of Bγ 2. The numerical
factor (2) obtained by this argument is, however, is somewhat arbitrary in that it depends
on the angular distribution of radiation embodied in our assumption that θ � 1/2γ . A
more precise description of the photon energy distribution, obtained by a rigorous solution of
Maxwell’s equations for a relativistic electron in a uniform magnetic field, introduces instead a
factor of 3

2 and a more useful definition of �E . The results are somewhat complex, involving
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TABLE 5.2. Sample values of the functions
G1(y) and H2(y), where y = ω/ωc (following
Green.7).

y G1(y) H2(y)

0.0001 9.959 × 10−2 6.271 × 10−3

0.0010 2.131 × 10−1 2.910 × 10−2

0.0100 4.450 × 10−1 1.348 × 10−1

0.1000 8.182 × 10−1 6.025 × 10−1

0.3000 9.177 × 10−1 1.111 × 100

0.5000 8.708 × 10−1 1.356 × 100

0.7000 7.879 × 10−1 1.458 × 100

1.000 6.514 × 10−1 1.454 × 100

1.500 4.506 × 10−1 1.250 × 100

2.000 3.016 × 10−1 9.780 × 10−1

3.000 1.286 × 10−1 5.195 × 10−1

4.000 5.283 × 10−2 2.493 × 10−1

5.000 2.125 × 10−2 1.131 × 10−1

7.000 3.308 × 10−3 2.107 × 10−2

10.00 1.922 × 10−4 1.478 × 10−3

modified Bessel functions of the second kind (see Refs. 1–3). Defining θ as the in-plane
observation angle for radiation from relativistic electrons traveling in a circular path, and ψ

as the out-of-plane (vertical) angle, Kim3 shows that the photon flux FB for bending magnet
radiation is given on axis by

d3 FB

dθ dψ dω/ω

∣∣∣∣
ψ=0

(5.6)

= 1.33 × 1013 E2
e (GeV)I (A)H2(E/Ec)

photons/s

mrad2 · (0.1% BW)

where the electron energy Ee is in GeV, the average current I is in amperes, where the units
of relative spectral bandwidth dω/ω are expressed non-dimensionally as a factor of 10−3, or
0.1% BW, as discussed further in section 5.4.6, and the function

H2(y) = y2 K 2
2/3(y/2)

is a modified Bessel function dependence, tabulated in Table 5.2 and shown graphically in
Figure 5.7. The ratio E/Ec is the photon energy normalized with respect to a critical photon
energy

Ec = h̄ωc = 3e h̄ Bγ 2

2m
(5.7a)
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F IGURE 5.7. The functions H2(y), representing
on-axis photon flux from a bending magnet, and
G1(y), representing the vertically integrated
photon flux, as functions of photon energy
normalized to the critical photon energy. Half the
radiated power is in photons of energy greater than
Ec, and half in photons of energy less than Ec

(following Kim3). Note that for a photon energy of
4Ec the photon flux is reduced a factor of about 10
from its value at Ec.

The critical photon energy is that for which half the radiated power is in higher energy photons
and half is in lower energy photons. As such it provides a primary parameter for characterizing
bending magnet radiation.

Equation (5.7a) can be rewritten in practical units as

Ec(keV) = 0.6650E2
e (GeV)B(T) (5.7b)

where the critical photon energy is in keV, the electron beam energy is given in GeV, and the
magnetic field in teslas. The corresponding critical wavelength is

λc = 4πmc

3eBγ 2
(5.7c)

which can be written in practical units of nanometers, GeV, and teslas as

λc (nm) = 1.864

E2
e (GeV)B(T)

(5.7d)

Note that the critical photon energy given in Eq. (5.7a) is well within the range of pho-
ton energies estimated by Eq. (5.4c) on the basis of relativistic angular transformations and
Heisenberg uncertainty arguments.

The critical photon energy is in fact a very useful parameter for characterizing synchrotron
radiation from relativistic electrons as they traverse the fields of a bending magnet. For ex-
ample, of two new storage rings operating in the United States, the Advanced Light Source
(ALS) at Lawrence Berkeley Laboratory in California, with a beam energy of 1.9 GeV and
a bending magnet field strength of 1.27 T, has a critical photon energy of 3.1 keV and a
critical wavelength of 0.41 nm (4.1 Å), while the Advanced Photon Source (APS) at Argonne
National Laboratory in Illinois, with a beam energy of 7.0 GeV and a bending magnet field
strength of 0.60 T, has a critical photon energy of 20 keV and a critical wavelength of 0.064 nm
(0.64 Å).

Typical parameters characterizing synchrotron radiation from these two representative
facilities are presented in Table 5.1. Between the two they cover a broad region of the elec-
tromagnetic spectrum. In fact, inspection of Figure 5.7 shows that on axis the photon flux
decreases by only a factor of 10 at a photon energy equal to 4Ec. For many experiments this
significantly extends the useful range of bending magnet radiation, for instance to 12 keV at
the ALS, and to 80 keV at the APS. Further enhancements using strong field periodic wigglers
are also possible. Wiggler radiation is described at the end of this chapter.
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TABLE 5.3. Measures of angular divergence of
bending magnet radiation in the vertical plane, as
a function of normalized photon energy. Single
sided rms and full width at half maximum
(FWHM) measures are given. (Following Kim.3)

E/Ec σ′
ψ (rms) FWHM

0.01 5.0/γ 12/γ

0.03 3.3/γ 7.8/γ

0.1 2.0/γ 4.7/γ

0.3 1.2/γ 2.8/γ

1 0.64/γ 1.5/γ

3 0.37/γ 0.9/γ

10 0.18/γ 0.4/γ

On occasion it is convenient to know the bending magnet photon flux per unit horizontal
angle θ , integrating out the vertical plane φ-dependence. In this case Kim3 finds that the
radiated photon flux, in units of photons per second per milliradian per 0.1% relative spectral
bandwidth, is given by

d2 FB

dθ dω/ω
= 2.46 × 1013 Ee(GeV)I (A)G1(E/Ec)

photons/s

mrad · (0.1%BW)
(5.8)

where the function

G1(y) = y
∫ ∞

y
K5/3(y′) dy′

is also shown graphically in Figure 5.7. Note that by the definition of Ec, the integrals of
G1(y) from zero to one and from one to infinity are equal, as suggested in Figure 5.7. Table 5.2
gives some specific values of the functions H2(ω/ωc) and G1(ω/ωc).

Note that the bending magnet radiation is linearly polarized when viewed in the horizontal
plane of acceleration. When viewed outside this plane, bending magnet radiation is elliptically
polarized. The out of plane photon flux, decomposed into horizontal and vertical polariza-
tion components, is given by Kim.3 Kim also introduces a convenient measure of angular
divergence3 in the vertical plane, σ ′

ψ , for bending magnet radiation. This divergence angle
varies with normalized photon energy, E/Ec. Fitted to a Gaussian angular distribution, the rms
half angle in the vertical plane is 0.64/γ at E/Ec = 1. Full width at half maximum (FWHM)
measures are larger by a factor of 2.35. Sample values are given in Table 5.3 for sample values
of E/Ec.

Since the acceleration of electrons is confined to the horizontal plane (for vertical bending
magnet fields), the electric field of the resultant radiation will be linearly polarized in that



C H A P T E R F I V E: S Y N C H R O T R O N R A D I A T I O N 135

Magnetic undulator
(N periods)

Relativistic
electron beam,
Ee = γmc2

λ

λ –

2θ

λu

λu

2γ2

∆λ
λ

1
N

~

θcen –
1

γ∗  N

cen
=

~

⎧
⎩

⎫
⎭

F IGURE 5.8. Illustration of narrow cone undulator radiation that is generated by electrons traversing a
periodic magnet structure.

plane. The general polarization properties of bending magnet radiation for arbitrary angles of
observations are discussed in Ref. 3.

5.3 CHARACTERISTICS OF UNDULATOR RADIATION

An electron traversing a periodic magnet structure8 of moderate field strength will undergo
a small amplitude oscillation and therefore radiate. If the electron’s angular excursions are
small compared to the natural radiation width, θe < 1/2γ , the device is referred to as an
undulator (see Figure 5.8). The resultant radiation is greatly reduced in wavelength, λ, from
that of the magnet period, λu . We will see shortly that Lorentz contraction and relativistic
Doppler shift lead to a reduction in the radiated wavelength by a factor of 2γ 2. As γ can
easily be several thousand, undulator periods measured in centimeters lead to observed x-ray
wavelengths measured in angstroms.

While discussing undulator radiation, we will find it convenient to consider the radiation
in several frames of reference. Many of the calculations will be done in the reference frame
moving with the electron. We will then transform the results to the rest frame of the laboratory
via Lorentz transformations (see Ref. 9 or Appendix F, Lorentz Space–Time Transformations).
The following is a brief introduction to undulator radiation. A more detailed discussion will
follow in subsequent sections.

In the frame moving with the electron, the electron “sees” a periodic magnet structure
moving toward it with a relativistically (Lorentz) contracted period, λ′, given by

λ′ = λu

γ
(5.9)

where γ ≡ 1/
√

(1 − v2/c2), v is the relative velocity, and c is the velocity of light in vacuum,
as discussed in Appendix F. Due to the periodic magnet, the electron experiences an oscillation
and consequently radiates. In the frame moving with the electron this problem is that of the
classical radiating dipole, a point charge oscillating with an amplitude much smaller than
the radiated wavelength. The frequency of this emitted radiation, in the reference frame of
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λ′

λ′ λxv

Note: Angle-dependent doppler shift

v << c v   c~<

F IGURE 5.9. Radiation from an oscillating charge moving at (a) a non-relativistic and (b) a relativistic
speed. Short wavelengths are observed because comparable speeds of the moving charge (v) and the
radiation (c) reduce the separation of succeeding phase fronts. Indeed, as v approaches c, the spatial
phase variations (λ) are dramatically compressed by many orders of magnitude. (Following J. Madey.)

the electron, is

f ′ = c

λ′ = cγ

λu

To the observer in the fixed laboratory reference frame, the radiation wavelength is further
reduced by Doppler shifting. The Doppler shift is dependent on the relative velocity and
therefore is dependent on the observation angle θ , as can be deduced from Figure 5.9. The
shortest wavelength is observed on axis. The relativistic form of the Doppler frequency
formula is [see Appendix F, Eq. (F.8b)]

f = f ′

γ (1 − β cos θ )
= c

λu(1 − β cos θ )
(5.10)

where β ≡ v/c and θ is the observation angle measured from the direction of motion.
Let us first analyze the observed frequency on axis. Here θ = 0, cos θ = 1, and

f = c

λu(1 − β)

As noted in Eq. (5.3), for β � 1 we have 1 − β � 1/2γ 2. Therefore, the observed radiation
frequency on axis is

f = 2γ 2c

λu

and the observed wavelength on axis is

λ = c

f
= λu

2γ 2
(5.11)

Note that the observed wavelength, λ, is relativistically contracted by a factor 2γ 2 from the
period of the undulator. Again using the ALS as an example, with a 1.9 GeV electron energy,
γ � 3700 [see Eq. (5.5)]; thus 2γ 2 � 2.8 × 107. If the undulator period is λu = 5.0 cm, the
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resultant on-axis radiation will be relativistically shifted to an observed wavelength of order

λ � 5.0cm

2.8 × 107
� 1.8 nm

Thus the periodic magnet generates radiation peaked in the soft x-ray region of the electro-
magnetic spectrum.

If we wish to consider Doppler shifts at small angles off axis (θ 	= 0), we can return to
Eq. (5.10) and use the small angle approximation. The Taylor expansion for small angles is
cos θ = 1 − θ2/2 + · · ·; therefore,

f =
c
λu

1 − β
(

1 − θ2

2 + · · ·
) =

c
λu

1 − β + βθ2

2 + · · ·
=

c
(1−β)λu

1 + βθ2

2(1−β)

Since β � 1 and by Eq. (3) 1 − β � 1/2γ 2, one has

f =
2γ 2c
λu

1 + 2γ 2θ2

2 − · · ·
= 2cγ 2

λu(1 + γ 2θ2)

In terms of the observed wavelength λ = c/ f , one has to first order

λ = λu

2γ 2
(1 + γ 2θ2) (5.12)

We again see the 2γ 2 contraction on axis, but now with the off-axis radiation having a wave-
length increased by a factor (1+γ 2θ2). Hence, to observe the narrow bandwidth characteristic
of this relativistic harmonic oscillator, it is necessary to select only near-axis radiation.

As we will see explicitly in a following section, the magnetically induced undulation
causes the electron to follow a somewhat longer pathlength as it traverses the undulator.
Thus, the mean axial velocity is reduced, resulting in a modified Doppler shift and therefore
somewhat longer wavelengths than indicated by Eq. (5.12), and a broader radiation cone as
well.

5.3.1 Undulator Radiation Pattern

As we saw in Chapter 2, Eqs. (2.25)–(2.33), an oscillating electron of charge −e undergoing
an acceleration a will radiate electromagnetic waves characterized by an electric field (also
see Leighton, Ref. 9).

E(r, t) = ea(t − r/c)

4πε0c2r
sin �

and an orthogonal magnetic field

H (r, t) = ea(t − r/c)

4πcr
sin �

where t − r/c is the retarded time (delayed arrival at distance r ), and � is the angle between
the direction of acceleration (a) and the propagation direction (k0). Because the electric
and magnetic fields are orthogonal, their cross product gives a Poynting vector S (power per
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F IGURE 5.10. Illustration of an oscillating charge and the resultant radiation pattern. Note that there is
no radiation in the direction of acceleration, giving the radiation pattern a doughnut-like appearance.
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F IGURE 5.11 (see Colorplate VI). (a) Illustration of the radiation pattern of an oscillating electron in the
frame of reference moving with the average electron speed. (b) Illustration of the radiation pattern of a
highly relativistic electron as observed in the laboratory frame of reference. The shortest wavelengths
are observed on axis. (Following Hofmann.2)

unit area) of

S = E × H =
[

e2a2 sin2 �

16π2ε0c3r2

]
k0

The radiated power per unit solid angle is [Chapter 2, Eq. (2.34)]

d P

d�
= r2|S| = e2a2

16π2ε0c3
sin2 �

Hence, the radiation pattern has a toroidal sin2 � shape, because there is no radiation in the
acceleration direction (� = 0), as illustrated in Figure 5.10.

For an undulating electron, undergoing simple oscillations in its own reference frame
(γ ), one obtains the same radiation pattern. However, the radiation pattern as observed in
the laboratory frame is relativistically contracted into a narrow radiation cone (the so-called
searchlight effect) as shown in Figure 5.11(b). Considering the symmetry of the problem, it
is convenient to work with a polar coordinate system measured from the z-axis. For instance,
in the plane defined by the electron acceleration (a) and the z-axis, the factor sin2 �′ becomes
cos2 θ ′, θ ′ being the polar angle measured away from the z-axis in the primed coordinate
system. In this primed electron frame of reference the radiation pattern has a half-intensity
angle at cos2 θ ′ = 1

2 or θ ′ = 45◦. According to Eq. (5.1), this corresponds to an angle in the
unprimed laboratory (observer) frame of reference of θ � 1/2γ . Returning to the example
of a 1.9 GeV electron (γ � 3700), in this case traversing a periodic magnet structure, one
anticipates that radiated x-rays will largely be confined to a cone of half angle 140 µrad. As
we will see in the following paragraphs, further cone narrowing can be obtained in the case
of undulator radiation.
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F IGURE 5.12. (a) The radiation spectrum as seen in the frame of reference moving with the electron is
narrow with a relative spectral bandwidth of order 1/N , where N is the number of oscillation periods.
(b) In the laboratory frame of reference, the wavelengths are shorter, but the spectrum is broader due to
off-axis Doppler effects. (Following Hofmann.2)

5.3.2 The Central Radiation Cone

The spectrum of radiation in the two reference frames is shown in Figure 5.12(a) and (b).
Figure 5.12(a) shows the narrow spectral width in the electron frame, set by the harmonic
oscillation for a fixed number of periods N . This is essentially a frequency–time (Laplace)
transform.

For example, the ALS has undulators of 5.0 cm period, with a length of 89 periods, so
that one can expect �ω′/ω′ = �λ′/λ′ of order 0.01. Note, however, that upon transformation
to the laboratory frame of reference, off-axis Doppler effects will broaden this considerably.
Figure 5.12(b) illustrates the Doppler shifted spectrum that results when the sin2 � dipole
radiation pattern is transformed according to Eqs. (5.1) and (5.12).

Recall that we have determined the undulator equation (5.12) in the laboratory frame,
viz.,

λ � λu

2γ 2
(1 + γ 2θ2)

and have also noted that the radiation is primarily contained in a narrow cone of half angle
θ = 1/2γ . The corresponding spectral width within this cone can thus be estimated by taking
the difference of Eq. (5.12) for two angles. Taking the wavelength as λ on axis (θ = 0), and
λ + �λ off axis at angle θ , then taking ratios, one obtains

�λ

λ
� γ 2θ2 (5.13)

where Eq. (5.13) shows how the wavelength increases as one observes the radiation off axis.
Note that for radiation within the cone of half angle θ � 1/2γ the relative spectral bandwidth
given by Eq. (5.13) is 1

4 ; thus the cone of half-intensity half angle encloses a relative spectral
bandwidth of about 25%. Use of aperture spectral filtering is illustrated in Figure 5.13. Often,
further spectral narrowing is desired, for instance, when probing in the vicinity of sharp atomic
resonance features. In such cases, a monochromator of some type (see Chapter 8) is employed
that acts as a narrow bandpass filter. In the case of radiation from a single electron or a tightly
constrained bunch of electrons, modest spectral filtering (as narrow as 1/N ) can be obtained
with a simple small-angle selecting aperture (pinhole). In this limit, we will see that angular
width and spectral width are closely connected. The interrelationship is shown in Figure 5.14.

Further cone narrowing can be appreciated by considering the undulator equation for two
angular positions, one on axis and one at angle θ , as we did previously in Eq. (5.13). If one
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F IGURE 5.13. The spectrum of undulator radiation in the laboratory frame of reference before and after
selecting an angular cone near the axis. With a sufficiently small electron beam phase space
(size–angle product) this can provide a simple mechanism for monochromatization.
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F IGURE 5.14. Illustration of a grating monochromator as used to filter undulator radiation to a “natural”
spectral width 1/N , and the concomitant cone narrowing to 1/γ

√
N that occurs with a tightly

constrained electron beam.

sets the monochromator for a “natural” bandwidth �λ/λ, set by the number of oscillation
periods, N , then one obtains the condition

�λ

λ
= 1

N
(5.14)

which, when combined with Eq. (5.13), indicates that narrower bandwidth radiation occurs
in a concomitantly narrower “central” radiation cone of half width

θcen � 1

γ
√

N
(5.15)

This narrow undulator radiation cone implies an emission solid angle reduced by a factor
1/N . These factors become very important when considering brightness and coherence (see
Chapter 8).



C H A P T E R F I V E: S Y N C H R O T R O N R A D I A T I O N 141

By = Bo cos 2πz
λu

y

z

x

v

e–

F IGURE 5.15. Electron motion in a periodic
magnetic field.

The above analysis is for a single electron. For these results to hold for an electron
beam with many electrons, it is necessary that all electrons in the bunch be contained within
an angular variance of less than 1/γ

√
N . This angular constraint on the electron beam is

referred to as the undulator condition. Again considering 1.9 GeV electrons, with γ � 3720
and N � 100, one expects the 1% bandwidth radiation to be confined within a cone of angular
half width θ � 35 µrad.

5.4 UNDULATOR RADIATION: CALCULATIONS OF RADIATED POWER,
BRIGHTNESS, AND HARMONICS

Having introduced the basic features of undulator radiation, we now wish to solve the problem
by considering the equations of motion for a highly relativistic electron traversing a periodic
magneticfield. In the laboratory frame, the electron experiences only the static, albeit periodic,
magnetic field for small K . Hence, the laboratory is a convenient reference frame for the
calculation. After calculating electron trajectories in the laboratory frame, we will transform
to the frame of reference moving with the average electron motion (γ ). Our next step will be
to calculate the radiated fields in the electron frame where we have simple harmonic motion
(dipole radiation). We will see a multiplicity of harmonics, nω, of this radiation. Finally,
we will transform the radiated fields to the laboratory frame. The approach follows that of
Hofmann.2

5.4.1 The Undulator Equation

The force equation for a charge in the presence of electric and magnetic fields can be written
in any frame of reference as

dp
dt

= q(E + v × B) (5.16)

where p = γ mv is the momentum, q is the charge, v is the velocity, and E and B are the
electric and magnetic fields, determined through Maxwell’s equations. The problem we are
considering is dominated by the applied dc magnetic field associated with a periodic magnet
structure (undulator), as illustrated in Figure 5.15. There are no applied electricfields. Further,
we consider the radiated electromagnetic fields due to the undulator radiation generated by
many electrons to be relatively weak in the sense that the radiated fields have a negligible
effect on the various electron motions. To this level of approximation, we take E � 0 in
Eq. (5.16). Note that this would not be the case in a sufficiently long undulator. In fact, the
effect of the radiated fields would lead to free electron laser (FEL) action.10, 11 With these
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approximations the momentum equation becomes

dp
dt

= −e(v × B)

For the undulator case with relatively weak radiated fields (pre-FEL action), we take the
approximations E � 0 and By = B0 cos(2π z/λu) plus a negligible radiation field. Addition-
ally, taking to first order v � vz , the vector components in the x-direction give

mγ
dvx

dt
= +evz By

mγ
dvx

dt
= e

dz

dt
· B0 cos

(
2π z

λu

)
(0 ≤ z ≤ Nλu)

Now we can solve for the transverse oscillation vx . This gives rise to the primary source of
undulator radiation. To first order, we will find vx as a function of axial position z. Continuing
the algebra,

mγ dvx = e dz B0 cos

(
2π z

λu

)

Integrating both sides gives

mγ vx = eB0
λu

2π

∫
cos

(
2π z

λu

)
· d

(
2π z

λu

)

or

mγ vx = eB0λu

2π
sin

(
2π z

λu

)
(5.17)

This is an exact solution of the simplified equation of motion, but note that z is not a linear
function of time. That is, vz is not constant, but rather involves oscillations itself. Hence,
terms of the sin(· · · sin) type will appear, giving rise to harmonics.

Define the non-dimensional magnetic strength for a periodic magnet parameter as12

K ≡ eB0λu

2πmc
(5.18a)

or, in convenient units,

K = 0.9337B0(T)λu(cm) (5.18b)

The electron’s transverse velocity can then be written as

vx = K c

γ
sin

(
2π z

λu

)
(5.19)

Note that the angle the electron motion makes with the z-axis is a sine function bounded
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z
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vz

vxθe

F IGURE 5.16. Electron angular excursions are harmonic, with maximum excursion K/γ . For K < 1
the angular excursions are within the natural radiation cone (1/2γ ), leading to interesting interference
effects that are manifested in cone narrowing, higher spectral brightness, and in some cases partial
coherence. The case of small angular excursions (K < 1) is referred to as the undulator limit. For
K � 1 such interference effects are not possible. This limit (K � 1) is referred to as the wiggler
limit. The scales here are exaggerated in the x-direction for clarity of presentation.

by ±K/γ , i.e.,

tan θe = vx

vz
� K

γ
sin

(
2π z

λu

)
(5.20)

so that K is also referred to as the (magnetic) deflection parameter. Note that to good ap-
proximation we have taken vz � c. Thus the maximum excursion angle (see Figure 5.16)
is

|θe, max| � K

γ
(5.21)

This is the root of differences between undulator radiation and wiggler radiation. Recall
that the characteristic half angle for emission of radiation is θrad � 1/2γ . Thus, for magnet
strength characterized by K ≤ 1, the electron angular excursions lie within the radiation cone.
This is the undulator case where interesting interference effects can occur, narrow bandwidths
result, and narrower radiation cones are obtained.

In the strong field case, K � 1, we refer to wiggler radiation. In this case, interference
opportunities are lost because the radiation from various segments of an oscillation are widely
separated in angle and therefore do not overlap in space after some propagation distance.
Nonetheless, other valuable attributes appear. Primarily, wiggler radiation provides a 2N
increase in radiated power and a broad shift to higher photon energies. We will discuss both
cases (K < 1, K � 1) further.

Recall that Eq. (5.19) is not that of a simple time harmonic, because z = z(t) is only
approximately equal to ct . To see this explicitly, we recall that γ is constant in a magnetic
field; thus for motion in the x, z-plane (vy = 0),

γ ≡ 1√
1 − v2

c2

= 1√
1 − v2

x +v2
z

c2

Thus,

v2
z

c2
= 1 − 1

γ 2
− v2

x

c2
(5.22)
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Knowing vx from Eq. (5.19), we can solve for vz :

v2
z

c2
= 1 − 1

γ 2
− K 2

γ 2
sin2

(
2π z

λu

)

To first order in the small parameter K/γ ,

vz

c
= 1 − 1

2γ 2
− K 2

2γ 2
sin2

(
2π z

λu

)
(5.23a)

where sin2 kuz = 1
2 (1 − cos 2kuz), and thus

vz

c
= 1 − 1 + K 2/2

2γ 2
+ K 2

4γ 2
cos 2kuz (5.23b)

Hence, the axial velocity (z-direction) has a reduced average component and a component
oscillating at twice the magnet spatial frequency. By averaging over a single period, we can de-
termine the average axial velocity, which plays a major role in the relativistic transformations.
Defining an average quantity

v̄z ≡ L

T
= L∫ L

0 dz/vz

(5.24)

where vz is given in Eq. (5.23b) and where T is the time required for the electron to travel a
distance L = Nλu . Then

v̄z = c

[
1 − 1 + K 2/2

2γ 2

] [
L∫ L

0
dz

1+α cos 2ku z

]

where

α = K 2

4γ 2
[
1 − 1+K 2/2

2γ 2

]

Expanding the denominator of the integral to second order in the small parameter α, one
obtains

v̄z = c

[
1 − 1 + K 2/2

2γ 2

] (
1 − α2

2

)

where the α2 term is of order 1/γ 4 and thus can be ignored, so that the average axial velocity
at finite K is given by

v̄z

c
= 1 − 1 + K 2/2

2γ 2
(5.25)
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From this, we can define an effective axial value of the relativistic factor,

γ ∗ ≡ γ√
1 + K 2/2

(5.26)

where the asterisk (*) refers to the reduction of the relativistic contraction factor by an amount√
1 + K 2/2. Hence Eq. (5.25) can be rewritten as

v̄z

c
= 1 − 1

2γ ∗2
(5.27)

As a consequence, the observed wavelength in the laboratory frame of reference is modified
from that given in Eq. (5.12), now taking the form

λ = λu

2γ ∗2
(1 + γ ∗2θ2)

that is, the Lorentz contraction and relativistic Doppler shift now involve γ ∗ rather than γ .
Expanding γ ∗ according to Eq. (5.26), one has

λ = λu

2γ 2

(
1 + K 2

2

) (
1 + γ 2

1 + K 2/2
θ2

)

or

λ = λu

2γ 2

(
1 + K 2

2
+ γ 2θ2

)
(5.28)

where we recall that K ≡ eB0λu/2πmc. Equation (5.28) is the undulator equation, which
describes the generation of short (x-ray) wavelengths through the factor λu/2γ 2, magnetic
tuning through K 2/2, and off-axis wavelength variations through γ 2θ2. Note that wavelength
tuning through variations of K requires changing the magnet gap. This is more desirable
than γ -tuning, as it affects only the desired experimental station on a multi-undulator storage
ring (see Figure 5.5). In practical units the wavelength λ and corresponding photon energy
E = 2πh̄c/λ are given by

λ(nm) =
1.306λu(cm)

(
1 + K 2

2 + γ 2θ2
)

E2
e (GeV)

(5.29a)

and

E(keV) = 0.9496E2
e (GeV)

λu(cm)
(

1 + K 2

2 + γ 2θ2
) (5.29b)

where λu is to be given in centimeters and the electron energy Ee in GeV.
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F IGURE 5.17. Illustration of the first and second
harmonic motions of the electron.

5.4.2 Comments on Undulator Harmonics

In addition to modifying the observed wavelength of the fundamental [as given by Eq. (5.28)],
the effect of transverse oscillations introduces higher harmonics into the motion. We will see
that the harmonic amplitudes scale as K n , where n is the harmonic number. These higher
harmonics of the radiation will occur at frequencies nω1 and wavelengths λ1/n. Because
short wavelengths are difficult to generate, harmonics are of great interest, especially since
they are a natural consequence of the motion. Harmonics are frequently used to extend the
photon energy range of a given undulator or facility.

We begin by considering second harmonic motion. From Eq. (23b) – repeated below –
we have

vz

c
= 1 − 1 + K 2/2

2γ 2
+ K 2

4γ 2
cos

(
2 · 2π z

λu

)

This expression displays both the decreased axial velocity and an axial velocity modulation
at twice the fundamental frequency. This is referred to as a second harmonic of the motion
and is illustrated in Figure 5.17. If the first order (fundamental) motion leads to radiation at
frequency ω′

1 in the electron frame, then the axial harmonic will radiate at ω′
2 = 2ω′

1; hence,
it is called second harmonic radiation. Note that the magnitude of the second harmonic term
scales as K 2.

Note that the second harmonic oscillations of the electron are at right angles to the
fundamental oscillations. That is, the fundamental radiation results from oscillations in the
x-direction, while the second harmonic (and other even harmonics) result from oscillations
in the z-direction. As a result, the polarization is different. Additionally, when transformed
to the laboratory frame, the angular distributions will be different. Figure 5.18 illustrates the
radiation patterns of the fundamental and second harmonics.

If we further analyze details of the electron motion, we will find that for larger K -values,
K ≥ 1, additional harmonics will appear due to the continued mixing of harmonic motions.
As K increases, this mixing will eventually lead to a strongly non-sinusoidal wiggler limit.
In all cases, the observed wavelengths will be governed by an extension of the undulator
equation:

λn = λu

2γ 2n

(
1 + K 2

2
+ γ 2θ2

)
(5.30)
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F IGURE 5.18. (a) Illustration of the figure eight electron motion in the frame of reference moving with
the average electron velocity, and the resultant radiation patterns at the fundamental and second
harmonic frequencies in both (b) the frame of reference moving with the electron and (c) the laboratory
frame of reference.

Due to the increased number of cycles, the relative spectral bandwidth is also improved,† viz.,(
�λ

λ

)
n

= 1

nN
(5.31)

where n is the harmonic number and N is the number of magnetic periods.
From Figure 5.18, we see that the even harmonics radiate a pattern that peaks off axis

and has zero intensity on axis. (Note that within a full electron bunch, this will be modified
due to random individual motions slightly off axis, i.e., to finite phase space effects.) As a
consequence, the even harmonics tend to be relatively weak on axis and, upon transformation
to the laboratory frame, radiate into a hollow cone of radiation. We will see later that this
cone has less interesting coherence and brightness properties. On the other hand, the odd
harmonics (n =1, 3, 5, . . . ) radiate on axis with a narrow spectrum and into a narrow forward
cone. Hence, they are quite interesting as sources of high brightness and partially coherent
x-rays. We will return to this subject in Section 5.5.

5.4.3 Power Radiated in the Central Radiation Cone

The undulator equation (5.28) tells us the wavelength of radiation as a function of magnet
period λu , magnet deflection parameter K , electron energy γ (in rest energy units), and polar
angle of observation θ . Now we would like to calculate the amount of power radiated. A
natural and interesting choice is to calculate the power radiated into the central radiation
cone, of half angle θcen, which we can identify with a relative spectral bandwidth λ/�λ �
N , where N is the number of magnetic periods and thus the number of oscillations the
electron executes in traversing the undulator. This has a natural appeal, common to our
experience with other physical phenomena involving oscillators, gratings, etc., which we
embody mathematically in our time–frequency and space–angle transformations. The choice
of a central radiation cone containing the 1/N relative spectral bandwidth is also interesting
because applications of undulator radiation generally involve the use of narrow bandwidth,
quasi-monochromatic radiation, and the 1/N bandwidth is as small‡ as one can obtain without
use of a monochromator.

†In practice this narrowed spectral bandwidth is limited to the first few harmonics due to electron energy
spread (�γ ) in a many-electron beam. Typically �γ/γ is of order 10−3 in a modern storage ring.

‡In fact the 1/N value is idealistic in that in practice one utilizes radiation from a multi-electron bunch
for which there is an angular divergence due to the slightly varying electron trajectories. In specific
cases considered later in this chapter, this typically contributes an additional broadening to the relative
spectral bandwidth.
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In Section 5.3.3 we used a simplified version of the undulator equation to introduce the
concept of a central radiation cone, finding that for a bandwidth 1/N the cone half angle is
1/γ

√
N . Having reconsidered electron motion in an undulator of finite K (Section 5.4.1), we

can now follow the same arguments using the corrected undulator equation (5.28), viz.,

λ = λu

2γ 2

(
1 + K 2

2
+ γ 2θ2

)

Writing this equation twice, once for a wavelength λ0 corresponding to θ = 0, and once
for an off-axis angle θcen such that it encompasses a full bandwidth �λ, subtracting the two
equations and normalizing (as was done in Section 5.3.2, but now for finite K ), one obtains a
corrected formula for the central radiation cone

θcen = 1

γ ∗√N
=

√
1 + K 2/2

γ
√

N
(5.32)

of a single electron, containing a relative spectral bandwidth �λ/λ = 1/N , where γ ∗ =
γ /

√
1 + K 2/2, as defined earlier in Eq. (5.26). Thus for finite K there are not only longer

wavelengths at each angle, but also an enlargement of the central radiation cone. We can
trace both effects to the reduced average axial velocity of the electron for finite K , and thus
to reduced effects of the angle dependent relativistic Doppler shift. A further discussion of
spectral bandwidth is presented in Section 5.4.4.

Our task now is to calculate the power radiated within the central cone, at the fundamental
frequency only. In later sections we will calculate other details, including the total power
radiated. Our approach will be to use our knowledge of classical dipole radiation, as considered
earlier in Chapter 2. We might ask how this can be done in a situation involving highly
relativistic motion. The technique is to transfer the calculation to the frame of reference
moving with the average electron velocity. In this frame of reference the electron motion is
non-relativistic, at least for modest K , and the oscillation amplitude is small compared to the
wavelength (in the frame of reference in which the calculation is made), as it should be for the
dipole approximation to be valid. Having the desired power calculations, the results are then
Lorentz transformed back to the laboratory (observer) frame of reference using straightforward
but relativistically correct angular relationships given in Appendix F. This procedure gives
us maximum leverage on the use of classical radiation results, and provides very valuable
insights to the most important properties of undulator radiation. The process is outlined in
Table 5.4.

Following the procedure outlined in Table 5.4, the electron velocity in the laboratory
frame of reference has been derived, from Newton’s second law of motion, as Eq. (5.19),

vx = K c

γ
sin

2π z

λu

which we can write as

vx = K c

γ
sin kuz

To obtain the acceleration we need vx as a function of time. To first order we assume that
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TABLE 5.4. An outline of the procedure for calculating power radiated by relativistic electrons traversing a
periodic undulator. Electron motion is determined in the laboratory frame of reference. A Lorentz
transformation to the frame of reference moving with the average electron velocity permits the use of
classical dipole radiation (Chapter 2), as the electron motion is non-relativistic in this frame. The dipole
radiation results are then Lorentz transformed back to the laboratory frame of reference.

e−

γ*
e−

z

N periods

x′

z′

Lorentz transformation

Lorentz
transformation

Θ′
θ′

sin2Θ′

= Nλ′
∆λ′

λu

λu

x

z= N

θcen =

λ
∆λ

1
γ *  N

′ =
λu

γ*

Determine x, z, t motion:

Ne uncorrelated electrons:

Ne = IL /ec, L = Nλu

x, z, t laboratory frame of reference x′, z′, t′ frame of reference moving with the
average velocity of the electron

Dipole radiation:

=

x′, z′, t′ motion
a′(t′) acceleration

= –e (E + v × B)

mγ       = e B0 cos

vx(t); ax(t) = . . .

vz(t); az(t) = . . .

dp
dt
~

dvx

dt
dz
dt

2πz
λu

dP′
dΩ′

= 8γ*2dP

dΩ

=

∆ Ωcen = π θ 2   = π /γ*2 N

Pcen = 

dP

dΩ

dP′
dΩ′

= (1–sin2 θ′ cos2 φ′) cos2 ω′ut′
dP′
dΩ′ ⎧⎩

⎧⎩

K2

1 + K2/2

K ≤ 1
θ ≤ θcen

⎫
⎭2 3

2 2

Pcen = K2

1 + K2/2 2

2

⎬

cen

e2 c

u

u
N

K2

1 + K2/2

e I

u

e a

c

e c

u

K2

1 + K2/2

e c

 

⎧⎩

⎧⎩

⎧⎩

⎧⎩

⎧⎩

⎧⎩

z � v̄z t = β∗ct , where v̄z is the average electron velocity in the z-direction and β∗ is very
close to unity. The velocity can then be written as

vx � K c

γ
sin kuβ

∗ct = K c

γ
sin ωut
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where ωu = kuβ
∗c � kuc. Integrating once with respect to time t , we have the first order

oscillatory motion x(t):

x � − K

kuγ
cos ωut

The Lorentz transformations from the (x, t) laboratory frame of reference to the (x ′, t ′)
frame of reference moving with the average electron velocity (β∗c or γ ∗) are given in Appendix
F, Eqs. (F.1b) and (F.1c), as

t = γ ∗
(

t ′ + β∗z′

c

)
� γ ∗

(
t ′ + z′

c

)

x = x ′ (non-relativistic motion transverse to z for K ≤ 1 )

Thus in the electron frame of reference

x ′ � − K

kuγ
cos ωuγ

∗
(

t ′ + z′

c

)

where z′ represents the small axial excursions about the average position in the reference
frame moving with the electron. This is an important term, which we will see later provides
a coupling of energy to higher harmonics. For small values of K , however, this term’s
contribution to the fundamental motion is minimal. Thus to a fair degree of accuracy we can
write

x ′ � − K

kuγ
cos ωuγ

∗t ′

Recognizing the Lorentz shifted frequency ω′
u , this becomes

x ′ � − K

kuγ
cos ω′

ut ′

Taking the second derivative with respect to t ′, we have

a′
x � Kω′2

u

kuγ
cos ω′

ut ′

where a′
x ≡ d2x ′/dt ′2. Noting that ω′

u = γ ∗kuc = γ kuc/(1 + K 2/2)1/2, one has the desired
electron acceleration in the (x ′, t ′) moving frame of reference:

a′
x � 2πc2γ

λu

K

(1 + K 2/2)
cos ω′

ut ′ (5.33)

This acceleration can now be used in the dipole radiation formula [Chapter 2, Eq. (2.34)]

d P ′

d�′ = e2a′2 sin2 	′

16π2ε0c3

where a′ is the instantaneous electron acceleration, 	′ is the angle of observation measured
from the direction of acceleration, and we have assumed that the amplitude of oscillation is
small compared to the radiated wavelength (in the frame of reference where the calculation is
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λ′

Θ′

z′

θ′ φ′

F IGURE 5.19. Illustration of the polar coordinate
system (r ′, θ ′, φ′) where d�′ = sin θ ′dθ ′dφ′, and
where the coordinate system is oriented to have the
polar axis (θ ′ = 0) oriented along the z′-axis of
symmetry for undulator radiation.

made). Using Eq. (5.33) for the electron acceleration in the moving frame of reference, and
averaging over one full cycle of the motion, we obtain the average power radiated per unit
solid angle to be

d P̄ ′

d�′ = e2cγ 2

8ε0λ2
u

K 2

(1 + K 2/2)2
sin2 	′ (5.34)

where time averaging cos2 ω′
ut ′ over a full cycle (or N full cycles) has introduced a factor of 1

2 .
The sin2 	′ factor can be set to unity, as only radiation in the vicinity of 	′ � π/2 contributes
to the central radiation cone in the laboratory frame. The angular factors will be discussed in
detail in the next section. However, for clarity in understanding the approximation to various
angular factors, we introduce the coordinate system shown in Figure 5.19. We recall that the
Lorentz transformation to the laboratory frame will concentrate the radiation pattern into a
narrow cone about the z-axis. It is sensible to organize our angular measurements about this
natural symmetry axis. Hence, we introduce a polar coordinate system (r ′, θ ′, φ′) where r ′ is
the polar axis oriented collinear to the z-axis, θ ′ is the polar angle (0 to π ), and φ′ is measured
from the x ′-axis in the x ′, y′-plane (0 to 2π ). For the fundamental at ω′

u , with acceleration
a′

x ′ , 	′ is measured from the x ′-axis as shown in Figure 5.19.
In a polar coordinate system, the angle between the two vectors k′ and a′ (wave propagation

direction and acceleration direction) is given by (see Appendix D)

cos 	′ = cos θ ′
k cos θ ′

a + sin θ ′
k sin θ ′

a cos(φ′
k − φ′

a) (5.35)

For the fundamental radiation at ω′
u, θ

′
a = π/2, and φ′

a = 0. Equation (5.35) then simplifies
to

cos 	′ = sin θ ′
k cos φ′

k

so that for the radiated power,

sin2 	′ = 1 − sin2 θ ′
k cos2 φ′

k (5.36)

In what follows we drop the subscript k for convenience. The approximation that sin2 	′ � 1
can then be understood by examining the magnitude of the sin2 θ ′ cos2 φ′ term for angles
which will transform to angles θ ≤ θcen in the laboratory frame. From Appendix F, Eq. (F.14),
the polar angles in the two frames of reference are related by

sin θ ′ = 2γ ∗θ
1 + γ ∗2θ2

where both θ ′ and θ are measured from the z-axis in their respective frames of reference. For
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a central cone of half angle θ = 1/γ ∗√N , the corresponding angle in the primed reference
frame is sin θ ′ � 2/

√
N , so that θ ′ � 2/

√
N for large N (of order 100). For such small angles

it is clear that, for all values of φ, sin2 	′ � 1 − θ ′2/2 � 1 − 2/N , thus permitting, for large
N , the first order approximation sin2 	′ � 1 in Eqs. (5.34) and (5.36).

Equation (5.34) above gives us the power radiated per unit solid angle, for angles near
the z-axis, in the frame of reference moving with the average electron velocity. Following the
procedure outlined in Table 5.4, we now want to transform this result back to the laboratory
frame of reference. To do so we need a relativistically correct relation between d P ′/d�′ and
d P/d�. In the next section we will show that the desired relationship is

d P

d�
= 8γ ∗2

(1 + γ ∗2θ2)3

d P ′

d�′

which for small angles within the central radiation cone reduces to

d P

d�
� 8γ ∗2 d P ′

d�′

Thus using Eq. (5.34) with the approximation sin2 	′ = 1, the average power radiated per
unit solid angle, as observed in the laboratory frame of reference, is

d P̄

d�

∣∣∣∣
e−

� e2cγ 4

ε0λ2
u

K 2

(1 + K 2/2)3
(K ≤ 1, θ ≤ θcen) (5.37)

where the subscript e− reminds us that this is for a single electron. To obtain power radiated
we simply multiply by the element of solid angle associated with the central radiation cone,
viz.,

��cen =
∫ 2π

0

∫ 1/γ ∗√N

0
sin θ dθ dφ = π

(γ ∗√N )2

and thus conclude that, as observed in the laboratory frame of reference, the average power
radiated into the central cone, for a single electron, is given by

P̄cen

∣∣
e− � πe2cγ 2

ε0λ2
u N

K 2

(1 + K 2/2)2
(5.38)

with an associated bandwidth of �λ/λ = 1/N and a radiation cone half angle of 1/γ ∗√N .
This result is generally valid for K ≤ 1. We observe that the power radiated is proportional to
(Kγ /λu)2, due to the dependence on electron acceleration squared, and inversely proportional
to N . While the inverse dependence on N may at first seem surprising, it can be understood
as a combination of increased power (N ), combined with a decreased solid angle (1/N ) of the
central radiation cone and a decreased central cone bandwidth (1/N ). The additional factor
involving K in the denominator is associated with the reduced acceleration as the electron’s
axial motion is decreased. Recall that the wavelength of this radiation is given by the undulator
equation (5.28).

An important extension of this result is to the practical case of multi-electron bunches
traversing the undulator, in which case the radiated power is much greater and thus much more
valuable for laboratory applications. We show in the next section that for an electron current
I in the storage ring, the number of electrons radiating within an undulator, averaged over a
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long time period compared to the electron bunch structure, is equal to

Ne = I L/ec

where L = Nλu is the length of the undulator. If the motion of the various electrons is
uncorrelated, the radiatedfields due to differing electrons will have no special relationship, and
as a result the radiated power will increase proportionally to Ne, the number of electrons. Were
the electron motions well correlated, as in an electron wave (sometimes called microbunching),
this would lead to phase correlated electric and magnetic fields – as in a free electron laser
(FEL). In such a case the fields of the Ne electrons would add in phase and since radiated
power is proportional to E2, far greater power could be radiated, perhaps N 2

e times greater
than for a single electron. For the uncorrelated case, generally understood as undulator
radiation, the intensities rather than the fields add and one simply multiplies Eq. (5.38) by
Ne = I L/ec = I Nλu/ec to obtain

P̄cen � πeγ 2 I

ε0λu

K 2

(1 + K 2/2)2
(5.39)

for the average power radiated by electrons of current I , at the fundamental frequency (n = 1),
within a relative spectral bandwidth �λ/λ � 1/N , and into a central radiation cone of half
angle θcen = 1/γ ∗√N =

√
1 + K 2/2/γ

√
N . Detailed spectral shapes and increases to the

central radiation cone caused by random electron motions (divergence) within the electron
beam are discussed in Section 5.4.5.

We give two examples of the use of this formula, involving soft x-ray and hard x-ray
undulators at the ALS and APS, previously cited in Table 5.1. For a typical soft x-ray case
(γ = 3720, λu = 5.00 cm, N = 89, and I = 400 mA), power of order 1–2 W is radiated
into a half angle of about 35 µrad, in a wavelength region extending from 2 nm to 5 nm
(250 eV to 600 eV photon energy), within a relative spectral bandwidth of approximately
1.1%. For a typical hard x-ray undulator at the APS (γ = 13,700, λu = 3.30 cm, N = 72,

and I = 100 mA ), power of order 10–20 W is radiated into an 11 µrad half angle cone, at
wavelengths from about 0.1 nm to 0.3 nm (1 Å to 3 Å, 5 keV to 14 keV photon energy), within
a relative spectral bandwidth of approximately 1.4%. Tuning curves for these two undulators
are presented in Figure 5.20(a) and (b), respectively, illustrating photon energy and power in
the central cone as a function of the magnetic deflection parameter K . At the lowest values of
K there is little transverse acceleration and thus little power radiated. Because the electrons
move through the undulator relatively fast at low K -values, the N oscillations are executed
more rapidly, resulting in higher frequency radiation, higher photon energies, and shorter
wavelength. For small K , power grows as K 2, peaking according to Eq. (5.39) at K = √

2.
At such high K -values, however, the coupling to higher harmonics becomes very efficient,
and the accuracy of our results, which are valid for K < 1, requires further attention.

The formulation of power radiated in the central cone [Eq. (5.39)] is based in part on a
small perturbation analysis in which we have assumed small K operation. These approxima-
tions were made in the development of a simplified expression for the electron acceleration
[Eq. (5.33)] in the moving frame of reference, which is subsequently squared and used in the
dipole radiation formula. To obtain Eq. (5.33) we started in the laboratory frame with the elec-
tron velocity [Eq. (5.19)] vx = (K c/γ ) sin kuz and assumed to first order (in K ) that z � β∗ct ,
thus neglecting higher order harmonic motions, which scale as K 2, K 3, etc. Having made the
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F IGURE 5.20. Power radiated into the central radiation cone (θcen = 1/γ ∗√N , 1/N relative spectral
bandwidth, n = 1 only) as a function of photon energy and magnetic deflection parameter K , for
typical soft x-ray and hard x-ray undulators. Harmonic power is not included (n = 1 only).

transformation to the moving reference frame, where x ′ � −(K/kuγ ) cos ωuγ
∗(t ′ + z′/c),

we again assumed on the basis of K n scaling that the z′-term, which is associated with har-
monic oscillations about the average electron trajectory, could be neglected. Now, however,
observing that central cone power scales as K 2 with a peak just above K = 1 according
to Eq. (5.39), we have a great interest in understanding the accuracy of the low K results
as K approaches and exceeds unity. This knowledge will be of great value in planning
experiments.

Kim3 has analyzed undulator radiation in a very complete manner, accounting for all
harmonics and accurate for all K . Comparing his results [Ref. 3, Eq. (4.44)] with that of
Eq. (5.39) here, there is an additional multiplicative factor, f (K ), associated with the transfer
of power from the fundamental (n = 1) to the harmonics (n > 1) and given by the difference
of Bessel functions,

f (K ) = [J0(x) − J1(x)]2 (5.40a)

where x = K 2/4(1 + K 2/2). For modest values of x (zero to 1
3 for 0 ≤ K ≤ 2),

Jn(x) =
∞∑

s=0

(−1)s

s!(n + s)!

( x

2

)n+s

so that the relevant expansions are

J0(x) = 1 −
( x

2

)2
+ 1

(2)2

( x

2

)4
− · · ·

and

J1(x) = x

2
− 1

2

( x

2

)3
+ · · ·
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TABLE 5.5. The multiplicative correction factor
f (K ) that enables the low K analytic formulation
of undulator central cone power [Eq. (5.39)] to be
extended to higher K -values.

K x = K 2

4(1+K 2/2) J0(x) J1(x) f (K )

0 0 1.0000 0 1.000
0.5 0.0556 0.9992 0.0278 0.944
1.0 0.1667 0.9931 0.0831 0.828√

2 0.2500 0.9844 0.1240 0.740
1.5 0.2647 0.9826 0.1312 0.725
2.0 0.3333 0.9724 0.1643 0.653
2.5 0.3788 0.9644 0.1860 0.606

For small K the multiplicative factor f (K ) is approximated by

f (K ) = 1 − x − x2

4
+ 3x3

8
+ · · · (5.40b)

The factor f (K ) is tabulated in Table 5.5 for selected values of K . Thus Eq. (5.39)
overestimates the fundamental power radiated in the central cone by 6.6% for K = 1

2 , and
17% for K = 1. These overestimates are incurred through the omission of second order
and higher terms in K , which would have had the effect of reducing the first order electron
velocity and acceleration, and thus of concomitant radiated power. Nonetheless, this analytic
formulation [Eq. (5.39)] has provided a valuable tool for understanding the most important
features of undulator radiation, with very simply interpreted physical insights.

A modified version of Eq. (5.39), which extends its utility to higher K -values while
preserving the clarity of its analytic features, is obtained by including f (K ) as a finite K
corrective factor, so that the power in the central cone (n = 1, 1/N relative spectral bandwidth,
finite K ) becomes

P̄cen = πeγ 2 I

ε0λu

K 2

(1 + K 2/2)2
f (K ) (5.41a)

where f (K ) is given in Eq. (5.40). In practical units this can be written as

P̄cen = (5.69 × 10−6 W)
γ 2 I (A)

λu(cm)

K 2

(1 + K 2/2)2
f (K ) (5.41b)

Note that for the two undulators cited, Eq. (5.41b) indicates that for K = 1 the 5.0 cm
undulator at the ALS radiates 2.3 W in the central cone at 2.71 nm wavelength, while the
3.3 cm undulator at the APS radiates 12 W at 0.13 nm (1.3 Å).

The power in the central cone can be written explicitly as a function of photon energy
through use of the undulator equation (5.28), which relates K 2 to frequency. From the
undulator equation, f = 2γ 2c/λu(1 + K 2/2) on axis. Thus h̄ω = 4πh̄γ 2c/λu(1 + K 2/2) =
h̄ω0/(1 + K 2/2), where h̄ω0 is defined as the photon energy on axis for the limiting case
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K = 0. From this one can solve for both 1 + K 2/2 and K 2 to obtain

P̄cen = 2πeγ 2 I

ε0λu
· h̄ω

h̄ω0

(
1 − h̄ω

h̄ω0

)
f (h̄ω/h̄ω0) (5.41c)

where we replace the multiplicative factor f (K ) by the related function

f (h̄ω/h̄ω0) � 7

16
+ 5

8

h̄ω

h̄ω0
− 1

16

(
h̄ω

h̄ω0

)2

+ · · · (5.41d)

which is the finite-K correction factor (5.40) written in terms of photon energy. In numerical
form this becomes

P̄cen = (1.14 × 10−5 W)
γ 2 I (A)

λu(cm)
· h̄ω

h̄ω0

(
1 − h̄ω

h̄ω0

)
f (h̄ω/h̄ω0) (5.41e)

where h̄ω0 = 4πh̄cγ 2/λu has the value 686 eV for γ = 3720 and λu = 5.00 cm, and the
value 14.1 keV for γ = 13,700 and λu = 3.30 cm.

5.4.4 Power as a Function of Angle and Total Radiated Power

In this section we return to the calculation of power radiated per unit solid angle, for small K ,
in this case keeping the angular dependence. Again we follow the procedure outlined in Table
5.4. At the end of the section we integrate over all angles to obtain the total power radiated at
the fundamental (n = 1) frequency. In the previous section we employed dipole radiation in
the frame of reference moving with the electron,

d P ′

d�′ = e2a′2 sin2 	′

16π2ε0c3

along with the first order acceleration of an electron traversing an undulator [Eq. (5.33)],

a′
x � 2πc2γ

λu

K

(1 + K 2/2)
cos ω′

ut ′

where ω′
u = γ ∗ωu = 2πγ ∗β∗c/λu � 2πγ ∗c/λu , and where a′

x ≡ d2x ′/dt ′2, to obtain the
average power radiated per unit solid angle in the electron frame of reference [Eq. (5.34)],

d P̄ ′

d�′ = e2cγ 2

8ε0λ2
u

K 2

(1 + K 2/2)2
sin2 	′

where averaging over a full cycle of the motion has introduced a factor of one-half. Thus,
comparing with Eq. (5.34), here we have kept the factor sin2 	′.

As illustrated in Figure 5.19 and described in Eq. (5.36), the factor sin2 	′ can be written
in terms of the polar angles

sin2 	′ = 1 − sin2 θ ′ cos2 φ′
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where θ ′ is the polar angle (0 to π ) measured from the z-axis and φ′ is the azimuthal angle
(0 to 2π ) measured from the x ′-axis in the x ′, y′-plane. The radiated power in the fundamental
is therefore

d P̄ ′

d�′ = e2cγ 2

8ε0λ2
u

K 2

(1 + K 2/2)2
(1 − sin2 θ ′ cos2 φ′) (5.42)

To transform this to the laboratory frame of reference we make use of angular relationships
obtained in Appendix F as Eqs. (F.9) to (F.11):

sin θ ′ = sin θ

γ ∗(1 − β∗ cos θ )

cos θ ′ = cos θ − β∗

1 − β∗ cos θ

tan θ ′ = sin θ

γ ∗(cos θ − β∗)

and

sin θ = sin θ ′

γ ∗(1 + β∗ cos θ ′)

cos θ = cos θ ′ + β∗

1 + β∗ cos θ ′

tan θ = sin θ ′

γ ∗(cos θ ′ + β∗)

In the highly relativistic case, where γ ∗ 	 1, β∗ � 1, these take the approximate forms

sin θ ′ � 2γ ∗θ
1 + γ ∗2θ2

(5.43a)

cos θ ′ � 1 − γ ∗2θ2

1 + γ ∗2θ2
(5.43b)

tan θ ′ � 2γ ∗θ
1 − γ ∗2θ2

(5.43c)

Since the angles φ and φ′ lie in planes perpendicular to the relativistic motion, we have

φ′ = φ

Using the angular relations, Eq. (5.43), for γ ∗ 	 1, the angular radiation pattern in Eq. (5.42)
becomes

1 − sin2 θ ′ cos2 φ′ = 1 + 2γ ∗2θ2(1 − 2 cos2 φ) + γ ∗4θ4

(1 + γ ∗2θ2)2
(5.44)
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Similarly, the element of solid angle d�′ can be rewritten as

d�′ � sin θ ′dθ ′dφ′ � 4γ ∗2

(1 + γ ∗2θ2)2
· θ dθ dφ

or

d�′ � 4γ ∗2

(1 + γ ∗2θ2)2
d� (5.45)

where we recognize that for small angles d� = θ dθ dφ.
To complete the transformation of power per unit solid angle in the moving (primed)

frame of reference, d P̄ ′(θ ′, φ′)/d�′, to the laboratory frame of reference, d P̄(θ, φ)/d�, we
are left to consider the relationship between the radiated power, P ′ and P , as observed in the
two frames of reference. To do this we consider the emission of a finite number of photons,
N ′, during a time interval �t ′, as seen in the moving frame of reference where all photons
have the same energy h̄ω′, independent of emission angle – a property of dipole radiation.
These same photons, discretely counted in identical number, N = N ′, in the laboratory frame
of reference, are observed there in a time interval �t , with an angle dependent photon energy
[due to the angle dependent Doppler shift, Appendix F, Eq. (F.8b)] given by

h̄ω = h̄ω′

γ ∗(1 − β∗ cos θ )

Since the Lorentz transformation forces all angles θ ′ to very small angles of order θ � O(1/γ ∗)
in the laboratory frame, we can approximate the Doppler shift by

h̄ω � 2γ ∗

1 + γ ∗2θ2
h̄ω′

By noting that time intervals in the two frames of reference are related by Appendix F,
Eq. (F.13) as

�t = γ ∗�t ′

we can likewise relate the incremental radiated power in the two frames of reference,

�P ′ = N ′h̄ω′

�t ′

and

�P = N h̄ω

�t

Rewriting the expression for �P and then substituting relationships in terms of primed quan-
tities for N , ω and �t , one obtains

�P = N h̄ω

�t
=

N ′
(

2γ ∗

1 + γ ∗2θ2

)
h̄ω′

γ ∗�t ′

�P = 2

1 + γ ∗2θ2

N ′h̄ω′

�t ′
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Recognizing the quantity on the right as �P ′, and writing this in differential form, one has

d P = 2

1 + γ ∗2θ2
dP ′

Using the relation given in Eq. (5.45) between d�′ and d�, the relationship for power
per unit solid angle between the two reference frames becomes

d P

d�
= 8γ ∗2

(1 + γ ∗2θ2)3

d P ′

d�′ (5.46)

Combining Eqs. (5.42), (5.44), and (5.46), one obtains the average power radiated per unit
solid angle at the fundamental frequency (n = 1), for small K , as observed in the laboratory
frame of reference:

d P̄

d�

∣∣∣∣
e−

= e2cK 2γ 4

ε0λ2
u(1 + K 2/2)3

[
1 + 2γ ∗2θ2(1 − 2 cos2 φ) + γ ∗4θ4

(1 + γ ∗2θ2)5

]
(5.47)

This result is for a single electron. A more useful result would be the power radiated by
an electron bunch in which the individual motions within the bunch are random. In this case
the radiated fields due to different electrons are uncorrelated and the average power radiated
is a simple sum of the radiated power from individual electrons; that is, we sum intensities,
not fields. For the moment let us consider the electron bunch to be sufficiently constrained in
spatial and angular extent that the angular dependencies are tofirst order as given by Eq. (5.47).
We will see in the next section that this requires that the extent of random angular deviation
within the electron bunch be limited to values σ ′ < 1/γ ∗√N , where σ ′ is the rms measure
of width of the electron angular distribution function about the z-axis.

To generalize Eq. (5.47) to the many electron case we must determine how many electrons,
on average, are radiating from within the undulator at any given time. It is convenient to do
this in terms of the current in the storage ring. Current is defined as the charge per unit time
crossing a given plane. For electrons of velocity v the magnitude of the current can be written
as

I = evnl

where nl is the number of electrons per unit length in the direction of motion. For a magnet
structure (undulator) of length L containing on average Ne electrons in its entire length, each
traveling with a velocity v � c, the average current is

I = ecNe

L

so that the total number of electrons radiating within the magnet structure at a given time is

Ne = I L

ec
(5.48)

which was cited without proof in the previous section. The average power radiated per unit
solid angle by a distribution of relativistic electrons of average current I is then obtained,
following the same arguments regarding uncorrelated motions which led to Eq. (5.39), by
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simply multiplying the single electron result [Eq. (5.47)] by the average number of electrons
within the undulator [Eq. (5.48)] to obtain

d P̄

d�
= Ne

d P̄

d�

∣∣∣∣
e−

= eNγ 4 I

ε0λu
· K 2

(1 + K 2/2)3

[
1 + 2γ ∗2θ2(1 − 2 cos2 φ) + γ ∗4θ4

(1 + γ ∗2θ2)5

]
︸ ︷︷ ︸

F(θ, φ)

(5.49)

where we have used the fact that the undulator length L is equal to Nλu .
This is a significant result for undulator radiation (K < 1). Note that the angular function

F(θ, φ) in Eq. (5.49) is unity on axis, is approximately 1
3 for an angle θ = 1/2γ ∗, and goes

rapidly to zero for θ > 1/γ ∗. Thus we again see the generally anticipated searchlight effect
for synchrotron radiation, this time with an explicit power dependence on angle.

For small amplitude oscillations, e.g., K ≤ 1, the K 2 dependence reflects the acceleration
(a2) dependence on magnetic field. For K > 1 the power radiated in the fundamental begins
to decline as the strong magnetic field couples energy into successively higher harmonics, thus
beginning an evolution towards wiggler radiation. The γ 4 dependence reflects the relativistic
photon energy shift (γ 2) and the ever narrowing emission solid angle (1/γ 2). The angular
distribution given in Eq. (5.49) can be used to provide a small (several percent) correction to
the previously derived power in the central radiation cone.

In the derivation of Eqs. (5.38) and (5.39) we assumed that the power per unit solid
angle, d P/d�, was to first order independent of θ for θ ≤ θcen = 1/γ ∗√N , where typically
N = 100. We see, however, in Eq. (5.49) that there are several terms involving γ ∗2θ2 which
reach values of order 1/N within the central cone. Thus for improved accuracy in predicting
undulator performance, attention should be paid to these angular factors. Towards this end,
numerical integration programs such as that described by Walker and Diviacco,13 are an
important complement to the simplified analytic formulation. These computer codes also
permit the inclusion of finite electron beam size, angular divergence, and energy spread, as is
discussed in the next section.

Our next task is to calculate the undulator power radiated at the fundamental wavelength
to all angles and all wavelengths, which is achieved by integrating Eq. (5.49) over all solid
angles d� = sin θ dθ dφ. Recalling that the integrand falls off rapidly for angles beyond
1/γ ∗, we can take d� � θ dθ dφ, and proceed beyond that with an exact integration. Note
that φ appears in only one term, which integrates to zero, viz.,

∫ 2π

0
(1 − 2 cos2 φ) dφ = −1

2

∫ 2π

0
cos 2φ · d(2φ) = −1

2
sin 2φ

∣∣∣∣
2π

0

= 0

In all other terms there is no φ-dependence, so that the φ-integration gives a simple 2π

factor. The remaining integration is performed (see Appendix F) by introducing u = γ ∗θ and
x = 1 + u2, then integrating the resultant polynomial over dx = 2u du to obtain

∫ π

0

∫ 2π

0

1 + γ ∗4θ4

(1 + γ ∗2θ2)5
θ dθ dφ = π

3γ ∗2

The total radiated power in the fundamental (n = 1), to all angles and wavelengths, for small
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F IGURE 5.21. (a) Radiated wavetrain from a single electron traversing an undulator, as detected in the
laboratory frame of reference, and (b) the corresponding spectral distribution function, where
u = �ω/ω0 and �ω = ω − ω0.

K , is then

PT, 1 = πeγ 2 I N

3ε0λu
· K 2

(1 + K 2/2)2
(5.50a)

where we have made the identification L = Nλu . Note that the total power is larger than that
in the central cone [Eq. (5.39)] by a factor N/3. Rewriting in practical units, the total power
in the fundamental for small K is

PT, 1(W) = (1.90 × 10−6 W)γ 2 N I (A)

λu(cm)
· K 2

(1 + K 2/2)2
(5.50b)

where I is in amperes and λu is in centimeters. We note that for the two undulators cited in
Table 5.1, the soft x-ray undulator radiates 69 W into the fundamental at all angles, while the
hard x-ray undulator generates 350 W in the fundamental. The subject of harmonic motion
and power radiated at harmonic frequencies is discussed in later sections.

The preceding analysis appears to imply that with a sufficiently small angular aperture
one could measure power into an infinitely narrow spectral bandwidth. Consideration of fi-
nite undulator length obviates this unphysical conclusion. Electron oscillation through a finite
number of periods (L = Nλu) will give rise to a minimum relative spectral bandwidth of order
N−1. Finite random motion within the electron bunch, giving rise to instantaneous trajectories
at various angles to the z-axis, also contributes to spectral width at any given observation angle.
Although finite lateral width of the electron bunch has little effect upon spectral characteris-
tics, the considerable longitudinal depth of the radiation source can contribute a discernible
broadening to the observable radiation characteristics through what could be described as a
depth of focus effect. These topics are discussed further in the following section.

5.4.5 Spectral Bandwidth of Undulator Radiation

For an undulator of N periods each electron oscillates through N cycles of its motion and thus
radiates a wavetrain consisting of N well-defined cycles of the electric field as illustrated in
Figure 5.21(a). The Fourier transform of this waveform,14 which gives the spectral content
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of the fields, is a (sin x)/x , or sinc x, function, where as used here x = Nπu, u = �ω/ω0,
and �ω = ω − ω0 is the frequency shift away from the central maximum at ω0, as observed
at a given angle and K -value. The intensity observed in the laboratory frame is proportional
to the square of the electric field, so that in normalized form

I (ω)

I0
= sin2(Nπ�ω/ω0)

(Nπ�ω/ω0)2
(5.51)

For large N the major contribution to the fundamental occurs for small values of �ω/ω0. This
is a commonly encountered function, tabulated14 as sinc2x , which is normalized to unity with
a full width at half maximum (FWHM) of approximately 1/N , centered at ω0, as illustrated
in Figure 5.21(b). For undulator radiation the central frequency ω0 is equal to 2πc/λ0, which
we determined earlier (without the use of a subscript zero) to be given by [Eq. (5.28)].

λ = λu

2γ 2

[
1 + K 2

2
+ γ 2θ2

]

Thus the central maximum of the spectral distribution function (5.51b) occurs at a frequency
(subscript zero suppressed)

ω = 4πcγ 2

λu

(
1 + K 2

2 + γ 2θ2
) (5.52)

which we recall is a function of the observation angle θ in the laboratory frame. Thus for
undulator radiation from a single electron moving along the undulator (z) axis, we expect
to see radiation centered at a photon energy h̄ω0 given as a function of angle by Eq. (5.52),
with a spectral distribution of intensity given by Eq. (5.51b), and having a relative spectral
bandwidth of approximately 1/N . If the acceptance cone for this observation, �θ at θ , is
finite, the detected frequency or energy bandwidth may be broader.

In a previous section we used a general knowledge of Fourier transform pairs to predict
that undulator radiation would have a “natural” spectral bandwidth of 1/N and, on the basis
of this, defined a central radiation cone with an inclusive half angle of [Eq. (5.32)]

θcen = 1

γ ∗√N

Beyond the natural or lifetime broadening, due to the finite number N of oscillations, further
spectral broadening can be incurred with the passage of many electrons through the undulator
in a bunch of finite size, divergence, and energy spread. Parameters describing electron beam
size and divergence¶ are illustrated in Figure 5.22. If there is an electron energy spread within

¶In an electron storage ring the beam size and divergence, σ and σ ′, are described in terms of a phase
space product, known as the emittance, and a β-function, a parameter characterizing the magnet’s
structure (lattice) that confines the electrons within the ring. The phase space volume is the region of a
six-dimensional position–momentum, or position–angle, space that encloses all particles. For particles
with a Gaussian distribution of rms spatial and angular measures, σ and σ ′ respectively, accelerator
physicists refer to the electron beam phase space volume ε as the emittance, where ε = πσσ ′ is
generally written separately for the horizontal and vertical planes, i.e., εh = πσxσ ′

x and εv = πσyσ
′
y .

The rms electron beam parameters are given by σx, y = √
εx, yβx, y and σ ′

x, y = √
εx, y/βx, y . where

the emittances εx and εy are fixed for a given storage ring, while βx and βy have different values around
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F IGURE 5.22. Cross-sectional view of an electron
beam of elliptical cross-section with Gaussian
distribution of density in both (a) spatial and
(b) angular coordinates, where x ′ = dx/dz and
y′ = dy/dz.

the bunch, �Ee/Ee = �γ/γ , there will be a corresponding photon energy spread according
to Eq. (5.52), given by

�E

E
= 2 �γ

γ
(5.53)

where the factor of two is due to the squared relationship between photon energy and electron
energy. Since typical energy spreads in modern storage rings are of order �γ/γ = 10−3,
this is generally negligible in the fundamental for undulators of about 100 periods, although
it can be an observable factor for higher harmonic (n) radiation where the effective number
of cycles in the observed radiation is nN .

A more significant effect is that due to random angular motion within the bunch. As
a result some electrons traverse the magnet structure not along or parallel to the z-axis, but
at a small angle α thereto. These electrons undergo the same number N of oscillations, but
experience a somewhat longer period, and further, the observed radiation is affected by a non-
axial relativistic Doppler shift. The net result is a Doppler-dominated energy shift, always to
lower photon energy (longer wavelength), given by§

�E

E
= γ ∗2α2 (5.54)

This term is important for electron trajectories such that the angle α causes a photon energy
shift �E/E of order 1/N . For a collection of electrons passing through the undulator in a
bunch, maintenance of the sharp single-electron spectral features requires that the rms angular
divergence σ ′ cause a spectral broadening less than 1/N . From Eq. (5.54), with α replaced
by σ ′, and �E/E < 1/N , one obtains the undulator condition restricting electron beam

the ring depending on local magnetic fields. The ratio εy/εx is referred to historically as the coupling
ratio. Typically the coupling ratio is of order 1% in modern storage rings. For further discussion see
the article by Cornacchia.15

§Write the undulator equation (5.28) for an increased period λu/ cos α, and for an observation angle
θ = α; then compare this with the α = 0 case and normalize to form �λ/λ and �E/E .
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F IGURE 5.23. Spectral line shape and relative spectral brightness of undulator radiation as a function of
electron beam angular divergence σ ′ divided by the central cone half angle θcen, for a soft x-ray
undulator having γ = 3720, λu = 5.00 cm, N = 89, and K = 1. (Following Kitamura.16)

divergence, as anticipated in earlier sections:

σ ′2 
 1

γ ∗2 N
(5.55a)

or

σ ′2 
 θ2
cen (5.55b)

A far-field computation of the predicted spectral distribution of undulator radiation for
various values of electron beam divergence is presented in Figure 5.23. Note that this is
a summation of sinc2 Nπu individual electron spectral functions, shifted to lower photon
energies �E for an assumed Gaussian distribution of electron trajectories at an angle α to the
z-axis. The example is chosen with N = 89, for a natural bandwidth of about 1.1%, and a
(single electron) central cone of half angle 35 µrad. The rms electron angular distributions
(σ ′), ranging from zero to 70 µrad, illustrate the transition from a sin2 Nπu behavior for many
parallel electrons, to an extended low photon energy (red shifted) tail when the rms values
are comparable to the characteristic central cone angle. As these curves illustrate, when σ ′

is comparable to the single electron value of θcen, the observed on-axis spectrum is spread
to varying degrees. This requires some adjustment to our characterization of the observed
radiation. For instance, we calculated in an earlier section the power radiated in the central
cone. Clearly that power is not confined within the central cone of a single electron, but
rather is spread to a larger angle by random electron trajectories within the beam. As a first
approximation we can define a total central radiation cone θT as a near-Gaussian square root
of the sum of squares. As storage ring electron beams are generally elliptical in cross-section,
as was illustrated in Figure 5.22, we choose to define horizontal and vertical values, θT x
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and θT y , as

θT x =
√

θ2
cen + σ ′2

x (5.56a)

and

θT y =
√

θ2
cen + σ ′2

y (5.56b)

To appreciate the magnitude of these corrections we take as an example the ALS 5 cm
period undulator operating at K = 1, which has a single electron central radiation cone half
angle (θcen) of 35 µrad. For the ALS σ ′

x = 23 µrad and σ ′
y = 3.9 µrad, so that the total

central cone half angles are θT x � 42 µrad and θT y = 35 µrad. Adding angles in quadrature,
as in Eqs. (5.56), is correct for Gaussian distributions, but only a convenient approximation
for broadening of the central radiation cone. Nonetheless the model is simple, with a clear
physical concept, and gives an easily obtained estimate of the degree to which single-electron
calculations of power and divergence are modified by beam divergence. More accurate es-
timates require numerical studies, which include finite angular acceptance, real measures of
electron angular distribution, and other storage-ring–beamline characteristics.13

Further spectral broadening can be incurred due to the finite electron bunch size, as was
illustrated in Figure 5.22(a) in terms of a Gaussian radial measure σ , with subscripts indicating
differing widths in the various coordinate directions. Although spatial effects can be quite
large in older storage rings with large beam sizes, in modern storage rings spatial effects
are typically somewhat smaller than those due to angular divergence. The effect of spatial
broadening is due to the fact that electrons traveling parallel to the z-axis, but displaced at some
lateral coordinates (x, y), will be observed at some finite angle, and thus again be Doppler
shifted to longer wavelengths. As typical values of σ are of order 100 µm in modern storage
rings, and observations (experimental chambers) are typically 10 m or more downstream,
angular measures due to source size are of order 10 µrad, and thus cause less of a spectral
broadening effect than that due to electron beam divergence (σ ′) as estimated by Eq. (5.56).

5.4.6 Spectral Brightness of Undulator Radiation

As measures of the radiation emitted by electrons traversing a periodic magnet undulator we
have calculated the power, photon flux, and power per unit solid angle. Another important
measure is brightness, or in fact spectral brightness.‖ Brightness is defined here as radiated
power per unit area and per unit solid angle at the source, or equivalently the photon flux per
unit area and per unit solid angle. Spectral brightness is the brightness per unit relative spectral
bandwidth, i.e., the brightness contained within a relative spectral bandwidth (�λ/λ or �ω/ω)
of interest. Brightness has an important conceptual role, as it is a conserved quantity in perfect
optical systems. That is, in a lossless unaberrated optical system the brightness is equal in
the source and image planes. For instance, in a simple imaging system the size magnification
is matched by an equal angular demagnification, so that the size–angle product is fixed. The

‖Some use the phrase “spectral brilliance.” Refer to Born and Wolf, Ref. 17.
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area–solid-angle product is therefore also equal in the object and image planes. It is thus
an important quantity in designing microscopes, microprobes, and other imaging systems.
Furthermore, it has very interesting wavelength limits when considering experiments that
utilize the partially coherent nature of undulator radiation, a subject we return to in Chapter 8.

To first order one can define brightness as the power �P radiated from an area �A into
a solid angle �� as

B = �P

�A · ��
(5.57)

and the spectral brightness as that portion of the brightness lying within a relative spectral
bandwidth �ω/ω as

B�ω/ω = �P

�A · �� · �ω/ω
(5.58)

To specialize this to the case of undulator radiation we can use the previously calculated
power in the central radiation cone, Pcen, which was defined as having a relative spectral
bandwidth (BW) of �ω/ω = 1/N and a radiation cone of half angle θcen, which in the
presence of an elliptically divergent electron beam becomes elliptical itself with half angles
θT x and θT y as defined in Eq. (5.56). In the synchrotron community the tradition is to define
spectral brightness in terms of photon flux (photons per unit time), rather than power, and
furthermore to express the result in terms of a relative spectral bandwidth of 10−3, often written
as 0.1%BW. To accommodate this tradition we introduce the photon flux within the central
cone, Fcen, which we define as the radiated power divided by the energy per photon, viz.,

F̄cen = P̄cen

h̄ω/photon
(5.59)

Defining the undulator spectral brightness in terms of photon flux within the central cone, one
has

B̄�ω/ω = F̄cen

�A · �� · N−1
(5.60a)

To write this in terms of a 0.1% bandwidth, rather than 1/N , we multiply numerator and
denominator by a unitless factor 10−3 to obtain

B̄�ω/ω = F̄cen · (N/1000)

�A · �� · (0.1%BW)
(5.60b)

The factor N/1000, which appears in the numerator, takes account of the fact that with a
choice of photon flux within a unit relative bandwidth less than 1/N , only a portion of the
flux within the central cone is utilized, e.g., for N = 100 only N/1000 = 10−1 of the central
cone flux is within a relative bandwidth of 0.1%.

If the radiation emits from a source of elliptical cross-section, having a Gaussian distri-
bution of density across both horizontal (x) and vertical (y) coordinates, the photon flux per
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unit area can be written as∗∗

d F

d A
= Fcen

2πσxσy
e−x2/2σ 2

x e−y2/2σ 2
y (5.61)

where the spatially integrated distribution is normalized to Fcen, the total flux within a 1/N
relative spectral bandwidth without divergence. For the assumed Gaussian spatial distribution
the on-axis value of photon flux per unit area is F̄cen/2πσxσy , where πσxσy is the area of a
cross-sectional ellipse of semi-major and semi-minor axes σx and σy .

To complete the brightness calculation an expression is needed for d F/d� within the
central cone. Various forms of this function will be appropriate, depending on the relative
measures of σ ′

x,y and θcen. If the undulator condition (5.55) is well satisfied, so that σ ′
x,y � θcen,

the central cone will be rather well defined in terms of both its angular definition and spectrum.
The spectrum will approximate the limiting case illustrated in Figure 5.23, while the cone half
angle will be only slightly larger than θcen, which we can approximate by θT x and θT y , in the
respective planes, as given in Eq. (5.56). In this case the central cone solid angle will be only
slightly elliptical, and well approximated by ��cen = πθT xθT y , so that within this cone

d F

d�
= F̄cen

πθT xθT y
(5.62)

which is the expression we will use in Eq. (5.60), as it captures our sense of the ideal cir-
cumstances for observing undulator radiation. In other cases, however, where the undulator
condition is not well satisfied, such as σ ′

x,y � θcen, the concept of a well-defined central cone
is somewhat diminished. As we observed in Figure 5.23, this leads to a broader emission
spectrum of reduced spectral intensity. In such a case the angular distribution of central cone
photon flux will also be spread. We distinguish this from the central cone arguments developed
in this chapter, for which to first order the various electrons travel parallel to the z-axis and
radiate a nearly uniform angular pattern out to θcen. Rather, the Gaussian distribution argu-
ment follows from a convolution of the many single electron radiation patterns (θcen) with an
angular distribution function whose measures are σ ′

x and σ ′
y . This leads to a smoother angular

distribution, which can in some cases be fitted with a Gaussian distribution, particularly when
the values of σ ′

x and σ ′
y approach that of θcen. This is the type of argument that led to the

definitions of θT x and θT y as total central cone angles in their respective planes, as defined
in Eqs. (5.56a) and (5.56b). In this case the angular distribution of radiation within a narrow
bandwidth would be approximated by a Gaussian distribution of the form

d F̄

d�
= F̄cen

2πθT xθT y
e−(x ′)2/2θ2

T x e−(y′)2/2θ2
T y

where x ′ is an abbreviation for the radiation angle in the x, z-plane measured from the
z-axis, y′ is an abbreviation for the radiation angle in the y, z-plane, and integration over
all angles would be normalized to F̄cen/2πθT xθT y . Keeping to the spirit of a well-defined
central radiation cone, with the undulator condition well satisfied, we will use the formulation
of photon flux angular distribution given by Eq. (5.62). Where the condition σ ′

x,y � θcen is
not well satisfied, computational techniques will be very useful.

∗∗This is confirmed by integrating d F/d A over all x and y, and noting (Appendix D) that
∫ ∞

0 e−a2x2
dx =√

π/2a.
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Combining expressions for a Gaussian spatial distribution [Eq. (5.61)] with the central
cone angular distribution given by [Eq. (5.62)], the on-axis photon flux per unit area and per
unit solid angle is

d2 F̄

d A d�
= F̄cen

2π2σxσyθT xθT y
(5.63)

so that the on-axis spectral brightness follows from Eq. (5.60b) as

B̄�ω/ω(0) = F̄cen · (N/1000)

2π2σxσyθT xθT y(0.1%BW)
(5.64)

where F̄cen is given in Eq. (5.59) and where the zero in parentheses refers to an on-axis
value with respect to both position and angle. Combining this with Eqs. (5.41b) and (5.59)
for Pcen and Fcen, the expression for on-axis spectral brightness can be rewritten in practical
units as

B�ω/ω(0) = 7.25 × 106γ 2 N 2 I (A)

σx (mm)σy(mm)

(
1 + σ ′2

x

θ2
cen

)1/2 (
1 + σ ′2

y

θ2
cen

)1/2

× K 2 f (K )(
1 + K 2

2

)2
photons/s

mm2mrad2(0.1%BW)

(5.65)

where σx and σy are in millimeters, I is in amperes, and f (K ) is the finite-K correction factor
given in Eq. (5.40) and Table 5.5. This formulation is most accurate when the electron beam
divergences σ ′

x and σ ′
y are significantly less than θcen so that the undulator condition is well

satisfied. For large electron beam divergence, such that σ ′
x,y � θcen, the undulator condition

is not satisfied, so that the spectral content is significantly broadened, as illustrated in Figure
5.23, and Eq. (5.65) overestimates spectral brightness by a factor approaching two. In this
case it is best to utilize numerical simulations, although the analytic formulation will continue
to give useful insights. Sample values of spectral brightness for soft and hard x-ray undulators
are given in Table 5.1, and general trends are shown in Figure 5.24, where brightness values
for bending magnet radiation and wiggler radiation are shown for comparison. Note that the
expression (5.65) for spectral brightness can be written explicitly in terms of photon energy
by relating K 2 to photon energy, as was done in Eqs. 5.41(c), (d), and (e).

5.4.7 Time Structure

The electron beam in a storage ring is not a continuous stream, but rather a highly modulated
density function consisting of axial bunches. The spacing of these bunches is set by the radio
frequency (rf) used to restore power to electrons, once each turn around the storage ring,
to compensate for power lost to synchrotron radiation. The rf is fed to a microwave cavity
operating in a mode with an axial electric field, synchronized so that slower electrons receive
a small acceleration, while faster electrons experience a small deceleration. In this manner
a sequence of potential wells is set up that tends to trap available electrons into a series of
buckets that travel around the ring at the speed of light, with a bunch-to-bunch separation
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F IGURE 5.24. General trends of spectral brightness
for undulator radiation, wiggler radiation, and
bending magnet radiation, showing the
complementary nature of soft x-ray (1–2 GeV) and
hard x-ray (6–8 GeV) storage ring facilities. High
spectral brightness is particularly useful for
experiments involving scanning microscopy and
partial coherence, diffraction from small crystalline
samples, and other studies which generally benefit
from radiation of minimal divergence emanating
from a small source size. Units as in Eq. (5.65).

F IGURE 5.25. Illustration showing how the time structure of synchrotron radiation is related to rf power
replenishment and resultant electron bunch structure (axial electron density modulation) for a typical
storage ring. In the example shown here the radio frequency (rf) and storage ring circumference are
matched for a 60 cm peak to peak structure of 328 axial buckets, of which a pre-selected fraction are
filled with electrons. At the speed of light, 60 cm corresponds to a 2 ns x-ray pulse separation. The
individual pulse duration, set by the rf voltage and beam dynamics, is 35 ps FWHM in the example
shown, which corresponds to a Gaussian axial bunch length (2σz) of 8.9 mm rms.

equal to the rf wavelength. Figure 5.25 illustrates electron bunch structure in the ALS storage
ring for a multibunch operation in which all of the buckets are filled. By proper timing of
electron injection into the ring any sequence of filled buckets can be obtained. A less common,
but regularly used mode of operation employs only two filled bunches, which is convenient
for use with time-of-flight measurements of chemical reaction products in photodissociation
products.

For some experiments involving time-of-flight detection of photofragments (chemical dy-
namics) very few buckets contain electrons. More generally, most buckets are filled, leaving
some sequence unfilled to counteract beam propagation instabilities that are thought to involve
ion trapping within the ring. For the case illustrated in Figure 5.25 a 500 MHz rf produces a
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bunch-to-bunch separation of 60 cm, which accommodates a 328 bucket axial charge distri-
bution within a 197 m storage ring circumference set by the beam energy and bending magnet
fields. In the case illustrated, 288 of the 328 buckets are filled. Each of the electron bunches
has a near-Gaussian pulse shape with a nominal 35 ps FWHM duration, corresponding to
an axial charge distribution of σz = 4.5 mm rms. The pulse-to-pulse separation seen at any
given position along the ring is 2.0 ns, corresponding to the 60 cm electron bunch separation
traveling around the ring at near the velocity of light.

In many of the examples considered throughout this chapter, the average power, photon
flux, etc., were calculated on a time average basis (indicated by a bar over the assigned symbol,
as in P̄cen). To calculate peak powers (P̂) one must know the exact time dependence. For
instance, in the case illustrated in Figure 5.25, where a sequence of 35 ps FWHM Gaussian
pulses occurs every 2.0 ns, the ratio of peak to average power, P̂/F̄ , is 54. Thus the peak power,
photon flux, and spectral brightness values are higher than the time-averaged values cited by
a factor of 54. Other operating parameters can give significantly different ratios depending
on optimizations of interest. For instance, in single-bunch operation the ratio would be larger
by several hundred. The pulse duration can also be adjusted through the choice of rf voltage
and the use of third harmonic cavities (1.5 GHz at the ALS), which are used to extend pulse
duration (to 100 ps, nominal operation) and thus extend the beam lifetime due to the reduced
electron density in the bunch. The APS typically operates with nominal 170 ps FWHM pulses
with a pulse to pulse separation of 2.8 ns, so that with all buckets full the ratio of peak to
average power is about 16. However, a typical choice of operation at this facility is to fill only
200 of 1296 available buckets, so that the ratio of peak to average power is more typically
100.

5.4.8 Polarization Properties of Undulator Radiation

For electron motion directed along the z-axis of an undulator (see Figures 5.8 and 5.17) with
periodic magnetic fields oriented in the vertical (y) direction, electron oscillations are in the
horizontal (x) direction for low K -values. This generates radiation at a fundamental (n = 1)
wavelength given by the so-called undulator equation (5.28), having fields within the central
cone polarized with the electric field in the horizontal (x) direction. For somewhat higher
K -values, of order one, second and third harmonics become important, as was illustrated in
Figure 5.17 and is discussed further in Section 5.5, which follows. For these modest K -values
the second harmonic motion consists of a velocity modulation in the z-direction so that in
the primed frame of reference, moving with the mean electron motion, the second harmonic
radiation (ω′

2) is polarized in the z′-direction, with maximum intensity off axis at θ ′ = π/2,
as shown in Figure 5.18(b). This radiation is then transformed to the laboratory frame of
reference as an axisymmetric second harmonic radiation cone, with a peak intensity off axis
having a radial electric field polarization, and an intensity null on axis. Thus by moving the
point of observation circularly around the second harmonic peak 0 ≤ φ ≤ 2π , at an angle of
1/γ off axis, the polarization detected will vary smoothly from vertical to horizontal. Third
harmonic radiation (n = 3) is similar to the fundamental, being horizontally polarized for
angles of observation near the central (z) axis. The subject of off-axis polarization for arbitrary
K -values is discussed by Kim in Ref. 3.

Specialized magnet structures for the generation of arbitrarily polarized undulator radia-
tion are of great interest for probing magnetic materials, helical structures, and other samples
with polarization dependent properties.18 In general the greatest freedom in varying both po-
larization state and wavelength is valued. Toward this end efforts have been made to construct
magnet structures that can provide orthogonal linear polarizations, left or right circularly
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F IGURE 5.26. Schematic of a pair of crossed undulators that can be used to generate linearly polarized,
circularly polarized, or elliptically polarized radiation across a broad range of EUV and soft x-ray
energies. (Courtesy of K.-J. Kim.19)

polarized radiation, and elliptically polarized radiation. Figure 5.26 shows a pair of axially
separated crossed undulators.19, 20 As electrons sequentially traverse the two undulators, radi-
ation is generated with orthogonal polarizations. In each magnet structure the emitted phase is
related to the motion of the electron. By controlling the electron transit time between the two
undulators through the use of a variable-field magnet, the relative phase of the radiated field
amplitudes (E) can be selected. Thus linearly polarized radiation can be obtained with field
orientations set to ±π/4 from the vertical. By modulating the electron transit time between
undulators one can switch between these two orthogonal polarizations. Similarly one can gen-
erate left or right circular polarization through proper phasing. The wavelength is controlled
independently by setting the magnet gap. A pair of crossed undulators such as these has
been installed at the BESSY Facility in Berlin for the study of spin resolved photoemission
at soft x-ray and EUV wavelengths.21 As noted earlier in Eq. (5.55a), optimum undulator
performance is obtained with small electron beam divergence, σ ′ < 1/γ

√
N , which limits

devices such as this to modern storage rings.
A number of other magnet structures have been designed with various additional attributes.

Onuki and colleagues22, 23 have designed and built a system in which two orthogonal undulators
are placed side by side so that the electrons experience a net magnetic force due to the combined
fields at each point along their trajectory. By phase shifting one undulator magnet set (say
the horizontal field set) by a quarter period, that is, moving it axially by a distance ±λu/4,
one can induce left or right handed helical motion of the electrons as they traverse the magnet
structure. This has the great advantage of avoiding harmonic radiation.12 An 8 cm period
prototype of this helical undulator has been built and tested in the 0.6 GeV Teras storage ring
in Japan, where it produced 63 nm circular and linear polarized radiation. Elleaume at ESRF
in Grenoble,24 and Di Viacco and Walker at Sincrotrone Trieste25 in Italy, have designed
planar magnet structures that generate circularly polarized radiation with minimal effect on
the vacuum chamber configuration.

S. Sasaki and colleagues26, 27 in Japan have developed an undulator concept for the gener-
ation of linear and circular polarized radiation based on the use of four rows of periodic magnet
arrays, as illustrated in Figure 5.27. In this structure all the magnets are above or below the
electron orbit plane, thus avoiding horizontal gap–electron-beam interactions. In this device
the four rows of periodic magnets are arranged with two rows above and two rows below the
electron orbit plane. In both the upper and lower magnet planes one row of magnets is fixed
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F IGURE 5.27. Schematic view of a magnetic structure for generating variably polarized undulator
radiation in which there are no magnets in the plane of electron motion. (a) Isometric view showing
two fixed rows (upper right and lower left) and two axially movable rows (upper left and lower right),
shown displaced forward by one quarter period. (b) End-on view in a midplane of the magnet structure
in a configuration that produces both horizontal and vertical magnetic fields on axis, which will result
in a helical electron motion and the concomitant emission of elliptically polarized radiation.
(Following Sasaki et al.26, 27)

and one is movable (in the axial direction). The two movable magnet sets, upper front and
lower back in Figure 5.27, move together. In combination, the four magnet structures create
an on-axis magnetic field that can induce linear or helical electron motion as the position of
the diagonally opposed moveable set is translated in the axial direction.

Versions of this elliptically polarizing undulator have been constructed for use at both
the 3 GeV Stanford Synchrotron Radiation Laboratory (SSRL) and the 1.9 GeV Advanced
Light Source (ALS) in Berkeley. The SSRL elliptically polarizing undulator (EPU) employs
a 6.5 cm period, with 0.2 T horizontal and vertical fields, optimized for elliptically polarized
undulator radiation in the 300–1000 eV spectral region.28 The ALS EPU has a 5.0 cm period,
with maximum horizontal and vertical magnetic fields of 0.55 and 0.80 T, respectively. It
has 37 periods and provides circularly polarized radiation tunable from 130 eV to 700 eV.29

Higher photon energies are accessible with elliptical polarization. Recent reviews of periodic
magnet structures (insertion devices) for third generation hard x-ray facilities are presented
in Refs. 30–32.

5.5 THE SCALE OF HARMONIC MOTION

To understand undulator harmonic motion and the resultant radiated power, it is instructive
to continue the analysis of electron dynamics for the case of K approaching unity. We will
transform to the frame of reference moving with the average electron velocity v̄z . In this
frame, the motion is a simple harmonic, or described in terms of Fourier coefficients of simple
harmonics. Therefore, we can utilize the well-known results for radiation from an oscillating
electron, summarized earlier in this chapter.

To begin the analysis, we recall the earlier result, Eq. (5.19):

vx = K c

γ
sin

(
2π z

λu

)

To determine the oscillation amplitude and accelerations we must find vx (t), rather than vx (z).
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To do so, we must utilize our knowledge of z = z(t) and do the necessary transformations to
the frame of reference moving with the average electron motion. In this frame of reference, at
least in the low-K undulator regime, the motion is described in terms of a few simply related
harmonic motions. To do this, we recall Eq. (5.23a):

vz � c

[
1 − 1

2γ 2
− K 2

2γ 2
sin2 2π z

λu

]

Recalling that sin2 α = (1−cos 2α)/2 and defining kuz = 2π z/λu , where ku is the wavenum-
ber, we rewrite the above as previously in Eq. (5.23b):

vz = c

[
1 − 1 + K 2/2

2γ 2
+ K 2

4γ 2
cos(2kuz)

]

Noting that z = ∫
vz dt , we have

z(t) = c

(
1 − 1

2γ ∗2

)
︸ ︷︷ ︸

β∗

t + cK 2

4γ 2

∫
cos[2kuz(t)] dt

where z(t) appears twice. Noting that the cosine term is bounded, and approximating z(t) �
β∗ct in the integral, this gives, to first order,

z � cβ∗t + cK 2

4γ 2 · 2kucβ∗ sin 2kuβ
∗ct (5.66)

where we have used the following definitions:

γ = 1√
1 − β2

and

γ ∗ = 1√
1 − β∗2

= γ√
1 + K 2/2

Therefore, for β approaching unity,

β∗ = 1 − 1

2γ ∗2
(5.67a)

β∗ = 1 − 1 + K 2/2

2γ 2
(5.67b)

Substituting ωu = β∗kuc and rearranging terms, Eq. (5.66) becomes

z − β∗ct � K 2

8γ 2kuβ∗ sin 2ωut

The Lorentz transformation, as described in Appendix F, can be used to transform this
equation from the laboratory frame of reference (z, t) to the electron frame of reference (z′, t ′).
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F IGURE 5.28. Axial motion z′(t ′) for an electron traversing a low K undulator, as seen in the moving
(γ ∗) frame of reference. Note the double oscillation for a single period of the magnet structure, and the
distortion for higher K as a 4ω′ contribution pulls the positive amplitude peaks earlier in time and
pushes the negative peaks later in time.

Using the transformation [Appendix F, Eq. (F.1)], the z′-motion takes the form

z′

γ ∗ � K 2

8γ 2kuβ∗ sin 2ωu

[
γ ∗

(
t ′ + β∗z′

c

)]

Multiplying through by γ ∗, noting that ωu = kuc, and taking β∗ � 1, one has

z′ � K 2

8γ ku(1 + K 2/2)1/2
sin(2ωuγ

∗t ′ + 2kuγ
∗z′)

For convenience, we define

K ∗ ≡ K

(1 + K 2/2)1/2
(5.68)

where we note that for large K , K ∗ approaches
√

2. We also note that because of the Lorentz
contraction k ′

u = γ ∗ku , with corresponding frequency ω′
u = γ ∗ωu . Thus z′ can be written as

z′(t ′) = K ∗2

8k ′
u

sin(2ω′
ut ′ + 2k ′

uz′) (5.69)

where we observe the complexity of this equation in that z′ appears both on the left and in a
phase term on the right. A numerical solution of this equation is illustrated in Figure 5.28,
showing the basic second harmonic motion for a relatively low K -value (two full cycles of
motion in a time period λ′

u/c), with an observable asymmetry for K = 1, where the sine
function peaks early in the first half cycle and late in the second half cycle. This asymmetric
behavior indicates the growing presence of still higher harmonics as K grows from very
small values to unity and beyond. Before proceeding to the consideration of higher K -values,
we first examine the low K case somewhat further for a better insight into the motion and
amplitude scaling in this important parameter regime.

Since z′, as described in Eq. (5.69), is bounded by the sine function to an oscillation
amplitude z′ � K ∗2/8k ′

u , the second phase term, 2k ′
uz′, never exceeds K ∗2/4. This is in

contrast with the first phase term, 2ω′
ut ′, which dominates the oscillations for small K ∗. In
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this limit the lowest order solution for z′(t ′) is

z′(t ′) � K ∗2

8k ′
u

sin 2ω′
ut ′ (5.70)

which displays a double-frequency oscillation in the axial direction, with an amplitude that
scales as K ∗2. Note that the validity of this approximation, for instance K ∗2/4 < 0.1,
corresponds to K < 0.7, while K ∗2/4 < 0.2 corresponds to K < 1.1. As the axial “sloshing
amplitude,” the z′ motion serves as the amplitude for second harmonic radiation, and also
as the coupling mechanism between fundamental and higher harmonics. Note that the axial
oscillation velocity, v′

z = dz′/dt ′, is bounded by K ∗2c/4.
To determine the third harmonic of the motion, we return to the calculation of x(t), where,

as we found in Section 5.4.3 [in the development of Eq. (5.33)],

x � − K

γ ku
cos ωut

Again using the Lorentz transformations x = x ′ and t = γ ∗(t ′ + β∗z′/c) � γ ∗(t ′ + z′/c),

x ′ � − K

kuγ
cos ωuγ

∗
(

t ′ + z′

c

)

Using Eq. (5.70) for z′(t ′), and noting that the Doppler shifted wavenumber and frequency are
k ′

u = γ ∗ku , and ω′
u = γ ∗ω′

u , the x ′-motion becomes

x ′(t ′) � − K ∗

k ′
u

cos

(
ω′

ut ′ + K ∗2

8
sin 2ω′

ut ′
)

(5.71)

If we let ε = K ∗2/8, Eq. (5.71) becomes

x ′(t ′) � − K ∗

k ′
u

cos(ω′
ut ′ + ε sin 2ω′

ut ′)

Using the trigonometric identity (Appendix D) that cos(α + β) = cos α cos β − sin α sin β,
the expression for x ′(t ′) can be expanded as

x ′(t ′) � − K ∗

k ′
u

[cos ω′
ut ′ cos(ε sin 2ω′

ut ′) − sin ω′
ut ′ sin(ε sin 2ω′

ut ′)]

For ε � 1 this becomes

x ′(t ′) � − K ∗

k ′
u

[cos ω′
ut ′ − ε sin ω′

ut ′ sin 2ω′
ut ′]

The third harmonic component is obtained from the last term by using the trigonometric
identity (Appendix D) sin α sin β = [cos(α − β) − cos(α + β)]/2. The expression for x ′(t ′)
is then

x ′(t ′) � −K ∗

k ′
u

[
cos ω′

ut ′ − ε

2
cos ω′

ut ′ + ε

2
cos 3ω′

ut ′
]
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For ε = K ∗2/8 � 1 the dominant terms are

x ′(t ′) � − 1

k ′
u

[
K ∗ cos ω′

ut ′ + K ∗3

16
cos 3ω′

ut ′
]

(5.72)

The first term describes the fundamental oscillation as the electron traverses the periodic
magnet structure, while the second term describes the third harmonic component of the motion.
Thus both first and third harmonic radiations will have the same (x ′) polarization.

For the low-K undulator case the lowest order harmonic motions are described by
Eqs. (5.70) and (5.72), which we restate below in terms of the fundamental wavelength in the
moving reference frame, λ′

u = 2π/k ′
u , as

x ′(t ′)
λ′

u

� − 1

2π

[
K ∗ cos ω′

ut ′ + K ∗3

16
cos 3ω′

ut ′
]

(5.72)

z′(t ′)
λ′

u

� 1

2π

[
K ∗2

8
sin 2ω′

ut ′
]

(5.70)

We observe that the various harmonic amplitudes scale as K ∗n , so that harmonic motion can
be expected to grow very rapidly as K approaches and exceeds unity (a subject for the next
section). Furthermore, since the power radiated scales as the square of acceleration for the
respective harmonics, we can anticipate that harmonic power per unit solid angle will scale as

d P ′

d�′ ∝ n4 K ∗2n

i.e., an ∝ n2 K ∗n , d P ′/d�′ ∝ a2
n . Thus the radiated power will indeed grow very quickly with

increasing K . Note, however, that the growth scales with K ∗, so that for a given harmonic there
is a built-in saturation as K ∗ levels off at a value of

√
2 for large K . Rather, as we will see in the

following section, the radiation evolves to ever higher harmonics. Note also, from Eqs. (5.70)
and (5.72), that the harmonic amplitudes, scaled to their respective wavelengths (λ′

u/n), are
each bounded to values less than K ∗n/2π , so that for K � 1 the dipole approximations
x ′

u/λ
′
u � 1 are well satisfied, i.e., ∣∣x ′

ω′
u

∣∣
λu

≤ K ∗

2π
(5.73a)

∣∣z′
2ω′

u

∣∣
λ′

u/2
≤ 1

4

K ∗2

2π
(5.73b)

∣∣x ′
3ω′

u

∣∣
λ′

u/3
≤ 3

16

K ∗3

2π
(5.73c)

For modest K -values the motion in the electron reference frame approximates a fig-
ure eight. This can be seen by combining the fundamental and second harmonic terms in
Eqs. (5.70) and (5.72), viz., for small K

x ′

λ′
u

� − K

2π
cos ω′

ut ′
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F IGURE 5.29. The x ′, z′-motion of an electron in the
moving (γ ∗) frame of reference, as it traverses a
low-K undulator.

and

z′

λ′
u

� K 2

16π
sin 2ω′

ut ′

so that the electron executes two z′ oscillations for each x ′ oscillation, as illustrated in Figure
5.29.

Note that the relative width of the figure eight grows with increasing K , as x ′ is propor-
tional to K , while the z′-motion is proportional to K 2. In the following section we consider
the more complex transition from undulator to wiggler radiation as K exceeds unity, taking on
very large values and thus leading to a domination by higher harmonics. In this limit the har-
monics become very close, and various practical effects lead to their (laboratory) observation
as a smoothed continuum at very high photon energies.

5.6 THE TRANSITION FROM UNDULATOR TO WIGGLER RADIATION

We have seen in the preceding sections that as K increases toward unity the radiated power
in higher harmonics grows rapidly. Indeed, for K 
 1 analysis shows the emergence of a
large number of ever stronger harmonics, extending to ever higher photon energies. Figure
5.30 shows the development of this comblike harmonic structure for increasing values of the
magnetic deflection parameter K . The curves shown are for the limiting case in which all
the electrons are contained within a vanishingly small phase space volume, ε = πσσ ′ → 0,
with the radiation observed in a very small acceptance cone of half angle �θ → 0. Note
that in these limits the even harmonics, which are zero on axis, do not appear. Although the
harmonic spikes seen in Figure 5.30 would be broadened for finite emittance, a more important
factor in the case of high K wiggler radiation is the observation cone angle, �θ . With the
radiated energy spread into so many harmonics, and into a fan of angular width K/γ , it is
natural to utilize the available photons by accepting a larger radiation cone. In this case the
relative spectral bandwidth of each harmonic expands in frequency from values of order 1/N
to values dominated by the γ 2θ2 term in the undulator equation (5.28). The harmonic spikes
then merge into a quasi-continuum, much like that seen earlier for bending magnet radiation,
with interesting consequences.

The broadening of harmonics and their merger into a smooth continuum can be understood
better if we consider the various mechanisms involved and estimate the effect of each. We
again follow the path of considering a small phase space electron beam traversing a periodic
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F IGURE 5.30. The transition from undulator radiation (K ≤ 1) to wiggler radiation (K 
 1) is
illustrated. The emergence of bright and more numerous harmonics is evident as the magnetic strength
(K ) is increased. Spectral brightness is indicated on axis in the limits of very small electron beam
phase space (ε) and very small angular acceptance (�θ ). The comblike spectrum eventually merges to
a continuum for finite emittance and acceptance angle in the wiggler limit (K 
 1). (With K.J. Kim,
unpublished.)

magnet structure of N periods, and initially consider a near-axial observation of radiation
within a relatively narrow acceptance cone. In this case the even harmonics are, at least
initially, not observed. Through a little algebraic manipulation of the undulator equation for
harmonic n [see Eq. (5.30)] one can show that the separation between harmonics on axis (only
odd harmonics appear) is given by

� f�n=2 = 2

(
2cγ ∗2

λu

)
= 2 f1 (5.74)

where f1 is the frequency of the fundamental and the subscript �n = 2 reminds us that the
separation is between harmonics n and n + 2. Since the relative bandwidth [Eq. (5.31)] for
the nth harmonic of an N -period undulator in terms of frequency is

� fn,N

fn
= 1

nN
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F IGURE 5.31. The effect of finite acceptance angle (�θ ) is shown by dashed lines superposed on the
spectrum of harmonic radiation for zero acceptance angle (solid lines). A small electron beam phase
space (ε = 0) is assumed in both cases. The solid lines also shift to lower frequencies (lower photon
energies h f ) for electron trajectories at angle α to the z-axis. For sufficiently large acceptance angle
and magnetic field strength the harmonics merge into a smooth continuum. However, for finite K and
�θ the spectrum may continue to display many sharp peaks and valleys, particularly in the lower
photon energy region.

the absolute bandwidth can be written as

� fn,N = fn

nN
= 1

N
· f1 (5.75)

The bandwidth of radiation collected within an angular aperture 2θ (radiation cone of half
angle θ ) is, for the nth harmonic [an extension of Eq. (5.13) for finite K ]

� fn,γ ∗θ = γ ∗2θ2 fn = nγ ∗2θ2 f1 (5.76)

Finally, we note that an individual electron traveling somewhat off axis at an angle α will
experience a somewhat longer period, and further, the observed radiation will be affected
by the equivalent of an off-axis Doppler shift. The net result is a shifted frequency [see
Eq. (5.54)]

� fn,α = nγ ∗2α2 f1 (5.77a)

Note that for an electron storage ring there are many electrons in each bunch with random
angular excursions described statistically by σ ′. Thus the frequency spread due to random
Doppler shifts [Eq. (5.77a)] becomes

� fn,α = nγ ∗2σ ′2 f1 (5.77b)

With substantial off-axis motion even harmonics are also observed on axis so that the harmonic
separation, Eq. (5.74), is replaced by � f�n=1 = f1. Combining this with Eq. (5.77b) one
obtains the conditions for harmonic merging due to finite electron beam divergence

nmγ ∗2
σ ′2 ≥ 1 (5.78)

Based on these estimates, Figure 5.31 sketches the expected frequency spectrum. The
sketch is for a modest value of K where the various effects can still be distinguished. Note
that it is presented in frequency space; conversion to photon energy requires multiplication by
Planck’s constant (h). The solid lines, corresponding to a small acceptance angle �θ , show
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a series of harmonics at frequencies n times the fundamental (2cγ ∗2/λu), with only the odd
harmonics observed on axis. According to Eq. (5.74) they are separated by an interval 2 f1,
and according to Eq. (5.75) they each have a width 1/N times the fundamental.

A very important consideration is that of finite angular acceptance at moderate to high
K operation. To understand this merging to a continuum for finite acceptance angle θ , we
note that even harmonics will be observed off axis, and thus again replace Eq. (5.74) by
� f�n=1 = f1. Combining this with Eq. (5.76) we obtain the condition for harmonic merging
due to a finite acceptance angle

nmγ ∗2θ2
m = 1 (5.79a)

Thus the condition for harmonic merging within a finite acceptance angle θ is

n ≥ 1

γ ∗2θ2
(5.79b)

Eq. (5.79) suggests an evolution to a quasi-continuum spectrum, particularly for the higher
harmonic region of the spectrum where much of the radiated energy resides.

To better understand the evolution from a spectrum characterized by sharply peaked
harmonics to a relatively smooth continuum similar to that from a bending magnet, it is useful
to consider further the relationship between harmonic number (n) and K . In an earlier section
on bending magnet radiation we discussed the critical photon energy [Eq. (5.7)]:

Ec = h̄ωc = 3e h̄ Bγ 2

2m

for which half of the radiated energy appears at higher photon energy, and half at lower photon
energy. Here on the other hand we have been discussing the generation of a comblike structure
of very high harmonics from a wiggler. A useful notion is to combine the two and introduce
the concept of a critical harmonic number for which half the radiated energy is in higher
harmonics, and half is in lower harmonics.

A few simple substitutions provide the desired result. Rewriting the critical energy in
terms of the non-dimensional magnetic deflection parameter [Eq. (5.18)]

K = eB0λu

2πmc

this becomes

h̄ωc = 3πc h̄γ 2 K

λu
(5.80)

For a periodic structure the harmonic frequencies, from the harmonic undulator equation
(5.30), are

ωn = 2πc

λn
= 4πncγ 2

λu(1 + K 2/2)
(5.81)

Equating Eqs. (5.80) and (5.81), we can define a critical harmonic number, nc, viz.,

ωc ≡ ωn,c = ncω1
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Thus

3πcγ 2 K

λu
= 4πcγ 2

λu(1 + K 2/2)
· nc

or

nc = 3K

4

(
1 + K 2

2

)
(5.82)

which for large K takes the form

nc � 3K 3

8
, K 
 1 (5.83)

The 19-period wiggler at the 1.9 GeV ALS, as indicated in Table 5.1, has a peak magnetic flux
density on axis of B0 = 2.13 T, a period of 16.0 cm, a critical photon energy of 5.1 keV (0.24 nm
wavelength), and a deflection parameter at peak field of K = 32, with a corresponding critical
harmonic number nc in excess of 12,000.

Under the circumstances it is interesting to reconsider the condition for harmonic merging
given by Eq. (5.79a). For very large K the condition for spectral merging of the harmonics
becomes

θm =
√

1 + K 2/2

γ
√

n/2
� K

γ
√

2n
(5.84a)

or for nc

θm,c � 1.2

γ
√

K
(5.84b)

For the example cited, with K = 32, this corresponds to a collection angle of θm,c � 0.2/γ , or
only 50 µrad for γ = 3914. Indeed, with a horizontal radiation fan of ±K/γ , one might use
a significantly larger acceptance angle to collect the radiation, thus ensuring spectral merging
for very low harmonics, well below nc.

The picture that emerges for very large K operation, where the spectral energy density
shifts to very high harmonics, is one of spectrally isolated lower harmonics, a merger into a
quasi-continuum well below the critical harmonic, and finally a relatively smooth continuum
for n > nc. The high photon energy portion of the spectrum is similar to that of a bending
magnet, but intensified by a factor 2N (two peak field locations per period), and shifted to
a higher critical photon energy because the peak wiggler field is much greater than that of a
bending magnet.†† An example of a detailed calculation is presented in Figure 5.32 for a 6 cm
period magnet structure, operating at K = 3.7, in the 2 GeV storage ring Elettra in Trieste,
Italy.13 In this example nc = 22, and with an acceptance angle of 0.1 mrad, harmonic merging

††In a circular orbit the beam energy and magnetic field are matched so as to maintain a path of constant
radius and thus avoid hitting the vacuum wall. In a periodic structure the magnetic fields can be
considerably larger, as alternate poles redirect the beam, keeping it near the vacuum chamber axis at
all times.
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F IGURE 5.32. Calculated photon flux near the central axis for a 6 cm periodic magnet structure
operating at an intermediate K -value of 3.7. The calculation is performed for the third generation 2
GeV synchrotron radiation facility Elettra in Trieste, Italy. The critical harmonic number, nc is 22 for
this K -value. The acceptance half angle is 0.1 mrad. Harmonic merging occurs for this acceptance
angle at nm � 51. (Courtesy of R.P. Walker and B. Diviacco.13)

occurs at n � 51. This is an interesting illustration of the evolution from undulator to wiggler
radiation. For significantly higher K and larger acceptance angle, harmonic merging occurs
for n � nc. This corresponds to the wiggler limit, which is discussed in the following section.

5.7 WIGGLER POWER AND FLUX

We have approached the subject of radiation from relativistic electrons traversing periodic
magnet structures from a small K theory of undulator radiation. While this has clear advan-
tages, the approximations made are not valid for large K wiggler radiation. The advantages
of small K theory are that one is able to borrow significant results from well-known clas-
sical dipole radiation, transform the results to the laboratory frame of reference, and obtain
simple analytic expressions and a clear physical model for the major features of undulator
radiation, including observable wavelengths, bandwidth, polarization, power scaling, and the
emergence of harmonics. For wiggler radiation with K 
 1 the motion becomes significantly
more complex – relativistic even in the electron (γ ∗) frame of reference – and the acceleration
becomes very strong at the extremes of its off-axis excursions. Indeed, the accelerations be-
come so strong at the extrema that the radiation appears not to come from a near-point-source
oscillator on axis, but rather from an alternating sequence of two points at the extremes of
motion in a highly non-sinusoidal trajectory. Fourier analysis of this radiation would clearly
involve very sharp temporal gradients (time derivatives), and thus lead to very high harmonics
of the basic periodic motion. This causes a shift to higher photon energies, and thus shorter
wavelengths. Because the accelerations are greater (the time derivatives are sharper), there
is also a substantial increase in radiated power. The angular width however is increased in
the horizontal plane to a value K/γ , and the apparent source size is increased, particularly if
observed from a position somewhat off axis, thus significantly reducing overall brightness.

A discussion of the relevant physics, including analytic and numerical solutions for ar-
bitrary K , is given by Kim (Ref. 3). For example, the total radiated power in all harmonics,
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F IGURE 5.33. Comparison of on-axis photon flux per unit solid angle and per unit relative spectral
bandwidth for bending magnet radiation and wiggler magnet radiation from the same storage ring. The
shape of the curves is basically the same, H2(ω/ωc). The photon flux from the wiggler is 2N higher in
the case illustrated, and shifted 2× to higher photon energy by the critical energy h̄ωc. The wiggler
curve below the critical photon energy (shown dashed here) has a complex harmonic content that may
not be smooth, depending on the acceptance angle and electron beam divergence (see text).

integrated over all angles and wavelengths, for arbitrary K , is given by

PT = πeK 2γ 2 I N

3ε0λu
(5.85a)

Note that this is similar to our earlier result for PT,1, the total power radiated to all angles in
the fundamental (n = 1 only), Eq. (5.50a), except that the factor (1 + K 2/2)2 is absent from
Eq. (5.85a). This factor accounts for the power radiated to all harmonics. In practical units
the total power radiated to all harmonics, for arbitrary K , is given by

PT = 1.90 × 10−6(W)K 2γ 2 N I (A)

λu(cm)
(5.85b)

Typical values for radiated power from high K wigglers are given in Table 5.1. Both
radiate about 10 kW of x-ray power, with critical photon energies of 5.1 keV and 33 keV for
the soft x-ray and hard x-ray facilities, respectively. Expressions for the photon flux from a
wiggler, in the limits K 
 1 and n 
 1, are similar to those for bending magnet radiation,
but increased by a factor of 2N due to the strong acceleration that occurs twice in each period
at the peaks of magnetic field. For instance the on-axis photon flux per unit solid angle, per
unit relative spectral bandwidth, is given by (Kim3)

d2 F

d� dω/ω

∣∣∣∣
0

= 2.65 × 1013 N E2
e (GeV)I (A)H2(E/Ec)

photons/s

mrad2(0.1%BW)
(5.86)

where H2(y) is illustrated in Figure 5.7 and partially tabulated in Table 5.2. Relative spectra
for both a bending magnet and a wiggler are presented in Figure 5.33. Note the 2N times
larger photon flux for the wiggler, and the shift to higher photon energies (h̄ωc). Expressions
for off-axis photon flux in the two orthogonal polarizations are given by Kim.3
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To calculate the photon flux or power radiated by a wiggler within a given spectral
bandwidth we can begin with Eq. (5.8) for bending magnet radiation with the dependence
on vertical angle (ψ) already integrated out. To adapt this to wiggler radiation we multiply
by 2N to obtained the photon flux per unit horizontal angle θ , and per unit relative spectral
bandwidth

d2 F

dθ dω/ω
= 4.92 × 1013 N Ee(GeV)I (A)G1(E/Ec)

photons/s

mrad · (0.1%BW)
(5.87)

where the various parameters are described below Eq. (5.8), and where the function G1(E/Ec)
is tabulated in Table 5.2 and shown graphically in Figure 5.7. As we have seen, wiggler
radiation in the horizontal plane is dominated by the electron trajectory [Eq. (5.20)] with
angular deflection limits ± K/γ . This results in an angular photonflux dependence3 d F/dθ =
F0

√
1 − (γ θ/K )2, which has a characteristic angular extent (2θ )FWHM = √

3K/γ . With
this θ -dependence an angular integration of Eq. (5.87) leads to a multiplicative factor‡‡ of
1.57K/γ , giving a wiggler radiated photon flux per unit relative spectral bandwidth of

F = 3.94 × 1013 N K I (A)G1(E/Ec)
photons/s

(0.1%BW)
(5.88a)

where we have used Eq. (5.5) to replace γ by Ee. This equation can be written alternatively
in terms of the magnetic flux density B0 and the wiggler length L = Nλw, using Eq. (5.18b)
to express K in terms of B0(T ) and λw(cm), as

F = 3.68 × 1015L(m)B0(T )I (A)G1(E/Ec)
photons/s

(0.1%BW)
(5.88b)

where E = h̄ω is the photon energy, and from Eq. (5.76b) Ec (keV) = 0.665E2
e (GeV)B0(T ).

Inspection of Eq. (5.88b) indicates that there is a linear dependence on wiggler length, peak
magneticflux density, and current as expected. Tofirst order there is no dependence on electron
beam energy, only a very slow dependence through Ec in G1(E/Ec). A potential application
of these formulas is the use of wiggler radiation as a source for EUV lithography (see Chapter
4, Section 4.5.3, and Chapter 10, Section 10.2). At a wavelength of 13.4 nm (92.5 eV photon
energy), and within a relative spectral bandwidth of 0.1%, Eq. (5.88b) gives a radiated wiggler
power of

P13.4nm,0.1%BW = (5.46 × 10−2W)L(m)B0(T )I (A)G1(E/Ec) (5.89)

To understand what performance might be achieved in a practical application we consider a
wiggler similar to that employed at the ALS (B0 = 2.1 T, λw = 16 cm, K = 32, N = 19,
and L = 3.0 m) in an optomized¶¶ 0.5 GeV, 1A storage ring, which would provide a radiated
power of 8.1 W within a 2.5% relative spectral bandwidth at 13.4 nm, and within a 3 mrad by
56 mrad angular emission fan.

‡‡Y. Liu, private communication.
¶¶A small circumference ring, perhaps having room temperature magnets, with a low energy, high

current, large phase-space electron beam, and a value of G1(E/Ec) = 0.92 at E/Ec = 0.26. For
example see the paper by D.C. Ockwell, et al., “A Synchrotron Light Source for EUV Lithography,”
J. Vac. Sci. Technol. B17 (1999) and also product literature for Aurora 2s and 2d by the Sumitomo
Heavy Industry Corporation.
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5.8 FEMTOSECOND PULSE GENERATION

The study of dynamics in physical systems often requires time resolution beyond the pi-
cosecond capabilities presently available with synchrotron radiation. Femtosecond (10−15 s)
capabilities have been available for many years at visible wavelengths.33 There exists a wide
interest in the extension of femtosecond techniques to the EUV, soft x-ray, and x-ray regions
of the spectrum. Proposed techniques include the generation of very short electron bunches
that would subsequently radiate femtosecond pulses, techniques that would slice a short elec-
tron bunch out of a longer bunch, and techniques involving the upconversion of femtosecond
visible light pulses to significantly shorter wavelengths. Pellegrini and a broadly based group
of collaborators34 have proposed building a high power free electron laser (FEL) that, if suc-
cessful, would accelerate 160 fs pulses at wavelengths of order 4 nm. The proposal is based
on high gain self-amplified spontaneous emission (SASE), using the existing SLAC§§ linear
accelerator (linac) operating at 7 GeV electron energy, and a 60 m long 8.3 cm period undu-
lator. Recent papers about this and other options are discussed by Kulipanov, Skrinsky, and
Vinokurov35 and by Kim.36

Schoenlein, Leemans, Shank, and colleagues37−39 have taken a different approach, em-
ploying strongly Doppler shifted Thomson scattering of femtosecond infrared (800 nm) laser
pulses. In their experiments 100 fs (FWHM) laser pulses are scattered off the 50 MeV elec-
trons (γ = 98) of a linear accelerator at the ALS in Berkeley. Nominal 300 fs duration pulses
of 30 keV photons (0.04 nm wavelength) are scattered 90◦ into a narrow cone (θ � 1/γ ) in
the direction of the electron beam.37−39 The 300 fs x-rays have been used in time resolved
diffraction experiments to study lattice expansion in InSb under high intensity short duration
laser excitation.40

Zholents and Zolotorev41 have suggested procedures to extract very short electron bunches
from longer electron bunches through the use of high intensity short duration laser pulses. In
their proposal, intense femtosecond light pulses are resonantly matched to electron periodic
motion in an undulator. The excited electrons are spatially separated from their neighbors.
In subsequent passage through a bending magnet field they radiate normal bending magnet
radiation, but of very short temporal duration. Experiments are currently underway at the ALS
in Berkeley, led by Schoenlein et al., employing 800 fs infrared laser pulses at 800 nm wave-
length, followed by a 1.27 T bending magnet with 3.1 keV critical energy photons (0.41 nm
wavelength). To resonantly match the laser-induced electron oscillations to those of the un-
dulator, they utilize first harmonic motion (n = 1) in a high K wiggler mode of operation
(K = 16.5 for λu = 16 cm). In a third approach, Larsson, Heimann, Falcone, and their col-
leagues have developed a technique for carving a nominal 1 ps x-ray pulse out of longer
synchrotron radiation pulses, using femtosecond laser (Ti : Al2O3, 800 nm wavelength) irra-
diated crystals. Using a double crystal, double laser pulse irradiation technique with variable
delay, they have observed time dependent Bragg reflection at 5 keV. In a cross-correlation
mode, they have detected variations in the crystal structure to a time resolution42 of 2 ps, with
the potential of reducing this to sub-picosecond resolution with improved statistics. Using
cross-correlated x-ray diffraction, they have studied reversible disordering of the structure of
an InSb crystal.43 This offers another option for the pursuit of femtosecond short wavelength
radiation. Further options, involving high harmonic generation in neutral gases, and lasing at
EUV/soft x-ray wavelengths, are discussed in Chapters 6 and 7.

§§Stanford Linear Accelerator Center, at Stanford University.
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In this chapter the physics of hot dense plasmas is considered. Combining both high tem-
perature and high density, such plasmas are particularly bright sources of EUV through soft
x-ray radiation. In general the radiation consists of a broad spectral continuum, plus narrow
line emission from the various ionization stages of those elements present. Such plasmas are
found in the stars and, on a laboratory scale, at the focus of intense laser beams irradiating
material surfaces.

6.1 INTRODUCTION

The study of hot dense plasmas constitutes a subset of plasma physics relevant to the generation
of intense x-rays. Such plasmas are found in the stars and, on a smaller scale, at the focus
of intense laser beams irradiating material surfaces (see chapter frontispiece). The physics of
plasmas involves interaction between many charged particles on a microscopic scale through
the electric and magnetic fields associated with their positions and velocities. Fortunately,
this extremely complex many body problem often may be simplified by the consideration
of macroscopic, collective interactions where the charges are described in terms of charge
densities and currents. The study of plasmas is rich in interesting phenomena at both the
linear and the non-linear level.1−15 The term “non-linear” refers to various phenomena, such
as wave growth or particle acceleration, which depend on some parameter, like temperature or
density, in other than a linear manner, or on some combination of such parameters. Non-linear
processes can involve frequency sums and differences, harmonics, and mixing phenomena.

Hot dense plasmas have a natural tendency to push at the threshold of many of these
strong non-linear mixing processes. In order to generate EUV and soft x-ray radiation, the
plasma must consist of particles at very high energies – of the order 100 eV to several keV
if they are to radiate such energies during particle–particle interactions, since total energy
must be conserved. This may also be understood in terms of blackbody radiation. The peak
photon energy is related to the temperature of the radiating body, so that soft x-rays require
radiators that are extremely hot. In addition, for the radiation to be intense, the emissions
must come from a large number of particles in a small volume, perhaps approaching densities
characteristic of solids. Thus the descriptive phrase “hot dense plasma.”

Of course, these conditions are far from equilibrium in our 1
40 eV world. As a consequence,

such plasmas are inherently short-lived. The high temperatures imply high velocities that
cause the plasmas to rapidly expand and cool. For electron temperatures of 1 keV, a plasma of
electrons and silicon ions that is electrically neutral overall will expand at a velocity of order
0.3 µm/ps (where 1 ps = 10−12 s, and 1 µm = 10−6 m). For comparison, the speed of light in
these units is 300 µm/ps. Since a great deal of energy must be imparted to each particle, and
there are so many particles per unit volume, these plasmas tend to be very small, on the order
of 100 µm in dimension. Thus, a typical time for expansion is

	t = 	x

v
= 100 µm

0.3 µm/ps
� 300 ps

As a result the world of hot dense plasmas is generally one of microns (µm) and picoseconds.
Clearly, there are detailed phenomena that occur on both shorter and longer time scales, but
these simple arguments give a general idea of the domains involved.

This raises a question: How can we create a plasma quickly enough to deliver significant
energy to a small volume in a short time? The primary technology with this capability is high
peak power lasers, which can deliver single pulses with gigawatt to terawatt peak powers to spot
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sizes of characteristic dimension 100 µm in sub-nanosecond pulses. Sub-picosecond pulses
may also be used, but these provide less input energy, and thus less energy radiates out of the re-
sulting plasma. Such short pulse lasers are primarily employed in cases where extremely short
time scales are required. On longer time scales, of order 10–100 ns, other technologies such
as electrical discharges may be employed, but these generally involve larger volumes at lower
densities and temperatures, tending to be better optimized for extreme ultraviolet radiation.

Hot dense plasmas are of interest in basic physics research because of the multitude of
interesting phenomena that arise. Moreover, they are of technological and industrial impor-
tance in such research areas as laser fusion, EUV and soft x-ray lasers, lithography, and other
areas well known for concentrated energy densities. Because of the high energy concentration,
which implies high temperatures and pressures, these plasmas tend to involve rapid expan-
sions and thus sharp gradients in density and other parameters. This introduces a fair degree
of complexity into the description of plasma processes, requiring the use of several tools.
Theoretical models are created that attempt to explain the behavior of these plasmas within
limited parameter ranges, perhaps of density and temperature. They describe the system in
purely analytic terms, and strive to find closed form mathematical descriptions of various
phenomena. To deal with the wide variations of density, temperature, and field intensities,
numerical simulations are employed.

Several types of computer modeling are used. On a small scale, the detailed motion of
a finite number of particles is tracked, for instance, to study non-linear plasma motion in the
presence of extremely high incident laser radiation. On a somewhat larger scale, fluid-like
zoning techniques are used to follow energy and particle transport in the presence of sharp
spatial and temporal gradients in the presence of localized heating.

Finally, it is essential that theory and simulations be compared with real experiments.
Only in the laboratory (or the stars) can the plasma be studied in a rigorous manner, with
all Mother Nature’s interactions present and accounted for. However, to understand these
experiments, they must be carefully considered and executed with appropriate diagnostic in-
strumentation. Indeed, because of the considerable complexity, a satisfactory interpretation
of the experiments generally requires substantial use of both theory and simulations.

Of primary interest here is the resultant emission of radiation, particularly at short wave-
lengths. As hot dense plasmas are fully ionized, the radiation consists of a broad continuum of
so-called bremsstrahlung,∗ due to free-electron–ion interactions, and narrow line emissions
due to bound–bound transitions in the atoms (ions) of various charge states. A composite
sketch of what such an emission spectrum might look like is shown in Figure 6.1.

The spectrum consists of a broad continuum, perhaps near-thermal in nature, with narrow
atomic emission lines of characteristic L-shell and K-shell transitions. These atoms have gen-
erally lost several, perhaps many, electrons in collisions with energetic free plasma electrons,
and thus radiate emission lines characteristic of ions of several ionization states. In addition,
there may be a long tail of energetic x-rays emitted by hot, or suprathermal, electrons generated
by non-linear wave–particle processes in the plasma.

6.2 SHORT AND LONG RANGE INTERACTIONS IN PLASMAS

Several basic processes occur in plasmas. Among these are short distance binary collisions, and
longer distance many-particle interactions better described in terms of collective phenomena.

∗German word for “braking radiation.”
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F IGURE 6.1. Line and continuum radiation from a hot dense plasma. The narrow emission lines are
from ions of various ionization states.
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F IGURE 6.2. Bremsstrahlung occurs when a passing electron is accelerated by an ion, causing it to
radiate. Because of the wide range of incident electron velocities and the range of distances of closest
approach (impact parameter b) a broad continuum of radiation is generated in a plasma, with a
spectrum closely related to the electron velocity distribution, or its characteristic temperature.

The short distance collisions transfer energy from particle to particle, in a somewhat random
fashion, thereby thermalizing the plasma and ionizing the atoms. The level of ionization (the
number of electrons lost) is set by the electron temperature of the plasma and the atomic
binding energies, a topic we discuss further in a later section. Generally, multiple ionization
states are formed, each with its own characteristic emission lines, leading to a rich complex
of lines, often useful for diagnostic purposes, providing information regarding the electron
and ion temperatures and the density. Collisions also cause the plasma to radiate. When
an electron collides with an ion, as illustrated in Figure 6.2, it is accelerated and therefore
radiates.

If the electron comes very close to the ion (small value of the impact parameter b in
Figure 6.2), the acceleration is strong, the deflection angle is large, and the radiated photon
is of high energy. For a more distant interaction (larger impact parameter) the acceleration is
weaker and the radiated photon is of lower energy. With a random interaction process involving
many electrons of differing velocity and impact parameter, one can expect a rather smooth
continuum spectrum, related to the plasma’s electron velocity distribution, or more simply
its temperature. By a thermal plasma we mean an idealized equilibrium plasma in which all
species (electrons, ions, radiation) are characterized by a single temperature and appropriate
energy or velocity distributions. In practice the different particles will be characterized by
different temperatures that vary with space and time. Indeed, we may find that for a single
species, such as electrons, the velocity distribution cannot be described by a single temperature.
This then leads us to concepts such as near-thermal radiation and the use of two-temperature
models involving a thermal component and a suprathermal component, as used in Figure 6.1.
Nonetheless, it is very useful to consider the thermal limit. For electrons characterized by a
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F IGURE 6.3. (a) An electron-acoustic wave, typically oscillating near the plasma frequency ωp ,
propagates as an electron density modulation. Uniformly distributed ions (not shown) are too massive
to participate in this relatively high frequency wave, but do provide overall charge neutrality. The wave
is shown propagating to the right with a phase velocity vφ . (b) The velocity distribution function f (v)
of individual electrons with a characteristic (rms) “thermal velocity,” ve. Electron-acoustic waves, as
described in (a), generally propagate with a phase velocity vφ significantly greater than the thermal
velocity ve = (κTe/m)1/2.

single electron temperature† κTe, the Maxwellian velocity distribution is16

f (v) = ne

(2π )3v3/2
e

e−v2/2v2
e (6.1)

where

ve = (κTe/m)1/2 (6.2)

is the root mean square thermal velocity, ne is the electron density, and m is the electron mass.
The closely related topic of blackbody thermal radiation is described in a later section.

Longer range interactions are also important in plasmas, and especially so in hot dense
plasmas. These often take the form of plasma oscillations, collective waves that propagate
naturally, much like sound waves or deep water waves in their respective media. Generally these
are high frequency waves associated with electrons, and lower frequency waves associated
with the heavier ions, referred to respectively as electron-acoustic and ion-acoustic waves. A
sketch of a propagating electron-acoustic wave is shown in Figure 6.3.

It is longitudinal in nature and propagates at a very high phase velocity, as we will see in
the theory section that follows. Indeed, at long plasma wavelengths this wave propagates at
phase velocities much greater than the electron thermal velocity, as shown in Figure 6.3(b).
Collective oscillations such as these are naturally damped at short wavelengths by wave–
particle interactions. This occurs on a scale related to the Debye screening distance λD , which
gives a measure of the transition between short and long range interactions in a plasma. It is
discussed in the following section. Where circumstances conspire to cause such a wave to grow
to large amplitude, the crest regions of high electron density can form a very high potential
well in which individual electrons can be trapped and accelerated to enormous energies. These
energetic suprathermal or “hot” electrons will eventually exhibit their presence through the
ensuing bremsstrahlung process, giving off a high photon energy tail as suggested in Figure 6.1.
Such high amplitude waves are indeed encountered in hot dense plasmas. They are driven

†The Boltzmann constant is κ = 8.6174 × 10−5 eV/K (see Appendix A), so that when expressed in
energy units a temperature of 100 eV corresponds to 1.16 × 106 kelvin (K).
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F IGURE 6.4. Three wave mixing among natural modes of the plasma. In resonant mixing the three
satisfy conservation of energy and momentum.

to high amplitude by various non-linear processes involving wave–wave and wave–particle
interactions, as suggested in Figure 6.4.

These non-linear processes are particularly strong in hot dense plasmas because the en-
ergy, time, and space scales require very high power densities, and thus high field amplitudes.
These high field amplitudes (electric field, velocity, etc.) tend to force the plasma away from
equilibrium, near-thermal states toward highly non-thermal states. For instance, a high inten-
sity focused laser pulse can excite plasma waves out of the noise of random particle motions
(which are always present). As an example, in what is known as stimulated Raman scatter-
ing (SRS), an intense incoming electromagnetic (laser) wave rattles all electrons at a single
frequency, with well-defined spatial periodicity (k), and with high velocity. This can lead to
a well-organized, large amplitude electron-acoustic wave. A portion of the incoming elec-
tromagnetic wave can be scattered collectively from the growing plasma wave, creating an
outgoing scattered wave with appropriate Doppler frequency shift and directional change.
This can lead to a resonant three-wave interaction in which the wave frequencies (ω) and
wave vectors (k) satisfy conservation of energy and momentum relations of the form

h̄ωi = h̄ωp + h̄ωs (6.3)

h̄ki = h̄kp + h̄ks (6.4)

where (ωi , ki ) characterizes the incoming or incident radiation, (ωp, kp) characterizes the
particular plasma wave involved, and (ωs, ks) represents the outgoing scattered wave. With
a very intense incident wave the plasma wave can be amplified to very high amplitude at the
beat frequency (ωp = ωi − ωs) between the two electromagnetic waves, growing quickly out
of the noise (of many plasma waves), and soon dominating the process. This can then seri-
ously affect the observed emission spectrum as the excited plasma wave, now characterized
by high fields (electric potential) and generally high velocities (ωp/kp), traps and accelerates
individual electrons to very high velocities, to a large fraction of the speed of light in some
cases, resulting in the emission of very high energy photons, as mentioned earlier. Where this
process involves excitement of a high frequency electron-acoustic wave, there is a substantial
shift of the scattered wave frequency and the process is called stimulated Raman scattering –
stimulated because the plasma wave’s growth from noise is driven by the strong incident wave
it eventually scatters and resonates with. Where the process involves the emergence of a high
amplitude ion-acoustic wave, the scattered wave experiences only a small frequency shift and
the process is referred to as stimulated Brillouin scattering (SBS).

As the generation of suprathermal processes necessarily takes energy away from thermal
processes, and often is deleterious in its own right, the avoidance of such processes is often of
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great interest. Thresholds are thus well studied, and countermeasures, principally operating at
lower intensities and high frequencies, are employed. In laser-produced plasmas this generally
requires that the incident intensity I be kept below a threshold Iλ2/κTe, depending on the
wavelength λ and temperature κTe, which we will discuss in a later section.

6.3 BASIC PARAMETERS FOR DESCRIBING A PLASMA

To further explore basic processes in a plasma it is necessary to develop an appropriate
framework. This will necessarily involve important physical quantities such as the electron
density ne the electron temperature T , and the magnetic induction B. These in turn will lead
to the natural introduction of characteristic parameters such as the plasma frequency ωp, the
Debye screening distance λD , the cyclotron frequency ωc, and the collision mean free path
lmfp, among others. In general the plasmas are electrically neutral, so that the ion density
differs from the electron density only by the average ionization state. Hot dense plasmas are
effectively fully ionized, so that neutral atoms are of little consequence. The electron density
ne determines the electron plasma frequency

ωp =
(

e2ne

ε0m

)1/2

(6.5)

a natural frequency at which electrons tend to oscillate. In Eq. (6.5) e and m are the electron
charge and mass, respectively, and ε0 is the permittivity of free space.

In the next section we will see that electron-acoustic waves tend to oscillate at frequencies
at or just above ωp. Furthermore, we will see that electromagnetic waves can propagate in
a plasma only if their frequency ω is greater than ωp. For a plasma with an electron density
gradient, as shown in Figure 6.5, the incident electromagnetic wave is totally reflected at the
critical electron density nc where ω = ωp. Except for a short exponential penetration depth,
the wave is totally excluded from the region characterized by ω < ωp.

For hot dense plasmas, particularly laser produced plasmas, the electron densities of
interest are near-solid densities. For a common neodymium (Nd) laser of 1.06 µm wavelength,
the laser-plasma interaction occurs near the critical electron density, nc = 1 × 1021 e/cm3,
where the plasma frequency is just equal to the laser light radian frequency, about 1.8 × 1015

rad/s. The absorption and various scattering processes, some of which were discussed in the
previous section, occur predominantly in the low density (1019 e/cm3 to 1021 e/cm3) region
just below the critical region. Classical absorption occurs here, as the incident radiation causes
the electrons to oscillate, giving them energy that is then lost in part to random collisions with
ions, as was illustrated in Figure 6.2. X-ray emission tends to come predominantly from a
thin, somewhat higher density region (1021 e/cm3 to 1023 e/cm3), just behind the critical
layer, where energy has been transported by charged particles and radiation. This region
characterized by high density and high temperature (see Figure 6.5), is ideal for intense x-ray
generation.

A second important plasma parameter is the Debye screening distance

λD =
(

ε0κTe

e2ne

)1/2

(6.6)

– a distance beyond which individual charges tend to be screened by the presence of other
nearby and mobile charges. For a 1 keV plasma at 1021 e/cm3, the Deybe screening distance
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F IGURE 6.5. Intense laser light is absorbed in the
region just below and at the critical density region.
Energy transport to a thin region just beyond the
critical density region creates a region of intense
x-ray emission. Laser light that reaches the critical
surface, of electron density nc, is reflected.

is about 7 nm. On spatial scales shorter than λD the presence and effects of individual charges
are evident. On longer spatial scales the individual charges tend to be screened by neighbor-
ing charges, so that on this longer scale charged particle interactions tend to occur through
collective motions, such as the electron- and ion-acoustic waves.

In the theoretical study of plasma waves, one finds that the dispersion relation ω(k) con-
tains a damping term due to individual electron–wave interactions which, although negligible
at long wavelengths, become very strong for plasma of wavenumber k > 1/λD . This natural
decay of short wavelength plasma waves is known as Landau damping. It is an example of a
plasma process whose understanding and theoretical description require not only use of fluid
mechanical quantities, such as density and temperature, but also a detailed knowledge of the
shape of the velocity distribution function f (v), shown earlier in Figure 6.3(b). We will return
to this subject in the next section.

What begins to emerge here is a more detailed understanding of the manner in which the
Debye screening distance separates short-range from long-range interactions in a plasma. In
describing collective effects in plasma an important parameter is the number of electrons in
the Debye sphere

ND = 4π

3
λ3

Dne (6.7)

For ND � 1, fluctuations in the microscopic fields are small, and as a result the collective
description in terms of averaged field quantities is more effective.

A further important plasma parameter, associated with a directional or imposed magnetic
induction B, is the electron cyclotron frequency

ωc = eB

m
(6.8)

with which electrons circle about the magnetic field. For a 1 MG field the electron cyclotron
frequency is about 2 × 1013 rad/s. The electron cyclotron frequency is important for the un-
derstanding of energy transport in plasmas, as electrons tend to circle about magnetic field
lines with a Larmor radius rL = v/ωc = mv/eB, interrupted only by collisions. This tends to
inhibit energy transport to density regions of potentially intense x-ray emission. For instance,
x-ray emission from the sun shows dark spots and bright coronal loops, which are clear ev-
idence for the presence of strong magnetic fields and constrained charged particle transport.
The cyclotron frequency can also play an important role in the collective plasma oscillations, at
both low and high frequency, introducing strong dispersion and polarization effects. Cyclotron
resonances, where the dispersion relation is flat, can play an important role in absorption of
low frequency electromagnetic waves (microwaves) by magnetic fusion plasmas.
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A fourth parameter, also important to energy transport by charged particles, is the electron–
ion collision mean free path, lmfp, which has various dependencies on basic plasma properties,
but typically is proportional to (κT )2/ni Z , where ni is the ion density and +Ze the average
charge state. For a 1 keV electron in a 1020 ion /cm3 plasma of +10 charge state, the mean free
path is about 4 µm (that is, at the critical electron density 1021 e/cm3). A 10 keV electron, well
out on the velocity distribution curve, would have a similar mean free path at the 100nc surface,
which could be only a few microns away for a sharp density gradient in the supracritical region
of a laser-produced plasma. Thus much of the absorbed energy could be stopped by classical
collisions in a distance of only a few microns from the critical surface, causing this region to
light up with intense (radiated power per unit area) x-ray emissions.

6.4 MICROSCOPIC, KINETIC, AND FLUID DESCRIPTIONS OF A PLASMA

The theoretical description of a plasma may take several forms with varying levels of
detail.1, 3−6 The most exact and complex model involves a description of the position and
velocity of each and every particle in the plasma as a function of time. With so many particles
present, this level of description is mathematically intractable and must be left to numerical
simulations with small numbers of particles.

A simplification is obtained by averaging over a spatial volume containing a large number
of particles. This leads to a kinetic description in terms of a more tractable velocity distribution
function, which can still have a slow space and time dependence, but omits the details of
any particular particle. Further simplification results from averaging over all velocities and
describing the plasma in terms of fluid parameters such as density, temperature, and pressure.
We begin our analysis at the microscopic level and work our way to the fluid description.

6.4.1 The Microscopic Description

A formal description of plasma dynamics suggested by Klimontovich5 involves a microscopic
distribution function describing the position and velocity of all particles in a six dimensional
velocity–position phase space:

f (v, r; t) =
N∑

i=1

δ[r − ri (t)]δ[v − vi (t)] (6.9)

where the detailed motion of the i th point particle is described by ri (t) and vi (t). The dis-
tribution function is normalized to the total number of particles, N , by the phase space
integral

∫
r

∫
v

f (v, r; t) dr dv = N (6.10)

where we define the shorthand notation, for example in Cartesian coordinates

δ(r) ≡ δ(x)δ(y)δ(z) (6.11)

δ(v) ≡ δ(vx )δ(vy)δ(vz) (6.12)
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and

dr ≡ dx dy dz (6.13)

dv ≡ dvx dvy dvz (6.14)

where the properties of the Dirac delta function δ(x) are described in Appendix B.
The particle dynamics of the particle distribution can be determined by taking a partial

derivative of f (v, r; t) with respect to time:

∂ f

∂t
=

∑
i

[
∂

∂t
δ(r − ri )

]
δ(v − vi ) +

∑
i

[
∂

∂t
δ(v − vi )

]
δ(r − ri )

The first bracketed quantity can be simplified by use of the chain rule for differentiation. For
simplicity we first use a scalar, one-dimensional version, defining the functions g(t) = ri (t)
and f (g) = δ(r − ri (t)) = δ(r − g(t)), so that by the chain rule

∂ f (g)

∂t
= ∂g

∂t
· ∂ f

∂g

or explicitly

∂

∂t
δ(r − ri (t)) = ∂ri

∂t

∂δ(r − ri )

∂ri

Noting that for delta functions (see Appendix B) (d/dx)(x − a) = −(d/da)(x − a), we can
interchange differentials to obtain

∂(r − ri )

∂ri
= −∂δ(r − ri )

∂r

and thus

∂

∂t
δ(r − ri (t)) = −∂ri

∂t

∂

∂r
δ(r − ri )

In its three-dimensional generalization this becomes

∂

∂t
δ(r − ri (t)) = −∂ri

∂t
· ∇δ(r − ri (t))

where we recognize the differential ∂ri/∂t = dri/dt = vi , so that

∂

∂t
δ(r − ri (t)) = −vi · ∇δ(r − ri (t))

Likewise, for the second bracketed quantity one obtains

∂

∂t
δ(v − vi (t)) = −∂vi

∂t
· ∇vδ(v − vi (t))

where use of the Lorentz force on each particle permits the substitution

∂

∂t
δ(v − vi (t)) = −qi

m
(E + vi × B) · ∇vδ(v − vi (t))
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Combining these results for the two bracketed quantities, we see that the microscopic particle
distribution function f (v, r; t) obeys the equation

∂ f

∂t
=

∑
i

(−vi ) · ∇[δ(r − ri )δ(v − vi )] +
∑

i

−qi

m
(E + vi × B) · ∇v[δ(r − ri )δ(v − vi )]

By identifying f (v, r; t) in each term above one obtains the Klimontovich equation

∂ f

∂t
+ v · ∇ f + q

m
(E + v × B) · ∇v f = 0 (6.15)

which describes the evolution of the microscopic distribution function, as a function of time,
in phase space.

A self-consistent solution is required because of the interdependence of variables, namely,
the velocity distribution function f (v) depends on the electric and magnetic fields E and B,
which in turn depend on f (v) through the charge density ρ and current J as they appear in
Maxwell’s equations. To find such a solution we note that the charge and current densities
can be written in terms of the distribution functions f j (v, r; t), for each particle type present
( j = 1 for electrons, j = 2 for ions) as

ρ j (r, t) =
∑

i

q jδ(r − ri ) =
∑

i

q j

∫
δ(r − ri )δ(v − vi ) dv = q j

∫
f j (v, r; t) dv (6.16)

and

J j (r, t) =
∑

i

q j viδ(r − ri ) =
∑

i

q j

∫
vδ(r − ri )δ(v − vi ) dv

= q j

∫
v f j (v, r; t) dv (6.17)

where for electrons q1 = −e and the sum
∑

i is over all individual electrons, and for ions
q2 = +Ze and the sum

∑
i is over all individual ions. The formal set of self-consistent field

equations, which describe plasma dynamics at the microscopic level, are called the Maxwell–
Klimontovich equations. They take the form [see Chapter 2, Eqs. (2.1–2.6)]

∇ × H = ∂D
∂t

+
∑

j

q j

∫
v f j (v, r; t) dv (6.18)

∇ × E = −∂B
∂t

(6.19)

∇ · D =
∑

j

q j

∫
f j (v, r; t) dv (6.20)

∇ · B = 0 (6.21)
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with constitutive relations

D = ε0E (6.22)

B = µ0H (6.23)

and for each particle species ( j)

∂ f j

∂t
+ v · ∇ f j + q j

m j
(E + v × B) · ∇v f j = 0 (6.24)

where the field equations are written for a multicomponent plasma (electrons and ions) with
respective distribution functions f j (v, r; t), for species of charge q j and mass m j (see Ref. 2).

The Klimontovich description is a simple yet formal approach to the microscopic de-
scription of plasma phenomena. It postulates a distribution function, takes its time derivative,
and writes it in a form that easily evolves into a reduced kinetic theory, which we consider in
the next section.

6.4.2 The Kinetic Description

The microscopic description in terms of Klimontovich’s density function is highly stochas-
tic, varying rapidly over space and time, and involves details regarding too many individ-
ual particles for analytic treatment. A reduced description, averaged somewhat over a space
containing a large number of particles, forms a more slowly varying distribution, f (v, r; t),
which contains no information regarding individual particles, but rather describes an av-
erage velocity distribution function f (v), with a slow space–time dependence. We drop
the subscript j here for convenience, but understand that this process must be followed
separately for each species. Whereas Klimontovich’s distribution function is discontinuous
and stochastic, with wildly varying amplitude, the kinetic distribution function f is ana-
lytic. Integrating the Maxwell–Klimontovich equations over a spatial volume sufficient to
include many particles – so that statistical fluctuations are not so wild – produces such a
distribution.3

We can write the distribution function in terms of a slowly varying part and a fluctuating
part, as

f (v, r; t) = f̄ (v, r; t) + f̃ (v, r; t)

with a similar description for the fields

E(r, t) = Ē(r, t) + Ẽ(r, t), etc.

Then substituting these into the Klimontovich equation [Eq. (6.15)], and averaging over a
spatial scale sufficiently large to give a smoothed kinetic equation for the velocity distribution
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function, gives us a kinetic equation formally equivalent to the Boltzmann equation:

∂ f

∂t
+ v · ∇ f + q

m
(E × v × B) · ∇v f (v, r; t)

= − q

m
∇v · (Ẽ + v × B̃) f̃ (6.25)

where for simplicity of notation we have dropped, on the left side of the equation, the overbars
denoting slowly varying variables, i.e., f̄ , Ē , and B̄. The right side is a symbolic “collision”
term, non-linear (because of the product terms) in fluctuations from the mean, which tends to
bring the distribution function back toward an equilibrium. In situations not too distant from
equilibrium, and not turbulent, the collision term may be small. In such a case one has the
collisionless Vlasov equation, which is valuable in solving many plasma kinetic problems. Of
course this must be solved self-consistently with similarly smoothed Maxwell’s equations for
the slowly varying quantities Ē, H̄, B̄, D̄, and f̄ . Substituting in Eqs. (6.18–6.24) quantities
such as E = Ē + Ẽ, H = H̄ + H̃, etc., retaining only the slowly varying quantities (¯), and
then, for simplicity of notation, dropping the bars, we obtain the collisionless Maxwell–Vlasov
equations for a plasma,

∇ × H = ∂D
∂t

+
∑

j

q j

∫
v f j (v, r; t) dv (6.26)

∇ × E = −∂B
∂t

(6.27)

∇ · D =
∑

j

q j

∫
f j (v, r; t) dv (6.28)

∇ · B = 0 (6.29)

plus the constitutive relations in vacuum,

D = ε0E (6.30)

B = µ0H (6.31)

and the collisionless Vlasov equations for each species (electrons, ions),

∂ f j (v, r; t)

∂t
+ v · ∇ f j (v, r; t)

+ q j

m j
(E + v × B) · ∇v f j (v, r; t) = 0 (6.32)
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F IGURE 6.6. Velocity distribution function with an
injected electron beam.

These equations are formally identical to the Maxwell–Klimontovich equations [Eqs. (6.18–
6.24)], but contain significantly less detail, making them mathematically more tractable.
Whereas the Maxwell–Klimontovich equations were written for an N -particle distribution
function, containing detailed positions and velocities of all N particles, the Maxwell–Vlasov
equations involved a simpler kinetic distribution function, which does not distinguish (or rec-
ognize) any individual particles. This kinetic distribution function is sometimes referred to in
the literature as the “single particle” distribution function, emphasizing that it does not have
discrete N -particle information.

Examples of phenomena that can be mathematically described by the use of a kinetic
description are those of electron-acoustic wave amplification and collisionless decay, known
commonly as Landau growth and damping. The distribution function for thermal electrons
takes the form shown previously in Figure 6.3(b). For example, in the case of the electron-
acoustic wave, which is a longitudinal wave of electrons in a uniform positive ion density back-
ground, a charge density modulation propagates in some direction as shown in Figure 6.3(a).
Most of the electrons do not move with the wave, but rather oscillate in a nearly fixed position
as the wave passes by, as in the case of the motion of molecules in a sound wave. However, as
shown by the distribution function, some electrons travel at a velocity near that of the wave.
Electrons that move slightly slower than the wave are pushed by the negative potential of
the charge density peak; therefore, these electrons accelerate, taking energy from the wave.
Likewise, electrons traveling slightly faster than the wave push the charge density peaks, thus
decelerating themselves while imparting energy to the wave. In a thermal distribution, there
are more electrons traveling slower than the phase velocity of the wave, vφ , so the wave is
damped [see Figure 6.3(b)].

On the other hand, if a beam of electrons with velocities slightly larger than the wave
velocity (vφ) is injected into the plasma, the new electron velocity distribution function,
shown in Figure 6.6, causes wave growth. In this case the injected electrons tend to “push” the
potential crests of the wave, transferring energy to the wave, and losing energy themselves as
they merge into it. Mathematical solutions to Eqs. (6.26–6.32) show that the Landau damping
or growth rate is related to the slope of f (v) at v = vφ (Refs. 4 and 18).

6.4.3 The Fluid Description

The Vlasov equation has a great deal of information about velocity distributions and how
they evolve in space and time. In some problems velocity information is critical, but in some
it is not needed and further simplification is possible. A set of fluid mechanical equations,4

containing physical variables such as the particle density n j (r, t) for each species, the average
velocity v̄ j (r, t), partial pressure Pj (r, t), and others, can be developed directly from the
kinetic Vlasov equation. These common fluid mechanical quantities correspond to so-called
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velocity moments, or velocity weighted integrals, of the kinetic velocity distribution function
f j (v, r; t) with scalar, vector, and dyadic multipliers of the velocity. Specifically, for the
electrons (q j = −e) one defines

ne(r, t) =
∫

f (v, r; t) dv (6.33)

nev̄(r, t) =
∫

v f (v, r; t) dv (6.34)

where the subscript e has been suppressed for simplicity on both v̄ j and f j (v, r; t). In terms
of the random (thermal) component of the velocity, ṽ, that is, the departure from the average
velocity v̄, higher velocity moments are

Pe = nemṽṽ = m
∫

ṽṽ f (v, r; t) dv (6.35)

neUe = 1

2
nemṽ2 = 1

2
m

∫
ṽ2 f (v, r; t) dv (6.36)

and

Qe = 1

2
nemṽ2ṽ = 1

2
m

∫
ṽ2ṽ f (v, r; t) dv (6.37)

where ne(r, t) is the local electron (particle) density, v̄(r; t) is the distribution weighted average
velocity, the fluctuation component of fluid velocity is defined by v = v̄ + ṽ, Pe is the tensor
electron pressure dyadic, Ue is the electron thermal (kinetic) energy density, and Qe is the
vector heat flux or thermal flux density carried by electrons. Note that the notation ṽ2 is
understood to represent the scalar quantity ṽ · ṽ and that simple juxtaposition (ṽṽ) indicates
a nine component tensor multiplication of two vectors, as described in Appendix D. As a
specific example, the pressure dyadic Pe of Eq. (6.35), which involves the tensor velocity
product ṽṽ, can be written out in terms of its components as

Pe = nem

⎡
⎢⎢⎢⎣

ṽ2
x x0x0 ṽx ṽyx0y0 ṽx ṽzx0z0

ṽy ṽx y0x0 ṽ2
yy0y0 ṽy ṽzy0z0

ṽz ṽx z0x0 ṽz ṽyz0y0 ṽ2
z z0z0

⎤
⎥⎥⎥⎦ (6.38)

where v = vx x0 + vyy0 + vzz0 in Cartesian coordinates, with unit vectors x0, y0, z0. The
unit dyad has diagonal units equal to one, and zeros elsewhere, so that its dot product with
any vector equals the vector, i.e., 1 · v = v. One can show (see Appendix B) that in general,
for two vectors A and B, ∇ · (AB) = A · ∇B + B∇ · A, a relationship we will find useful in
following paragraphs.

The relevant equations for these fluid mechanical quantities (n, v̄, P, etc.,) can be obtained
by multiplying the Vlasov equation by 1, v, vv, etc., and integrating over all velocities. These
are the so called moment equations, as they each multiply the Vlasov equation by some quantity
before integration. Assuming for the moment that the collision term is small, we start with the
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collisionless Vlasov equation [Eq. (6.32)] and integrate over velocity, viz.,∫ [
∂ f

∂t
+ v · ∇ f + q

m
(E + v × B) · ∇v f

]
dv = 0 (6.39)

where we have written this for a specific species j , for instance for the electrons or for a
particular ionic species. Recall that dv is not a vector quantity, but rather shorthand notation
for the volume element in velocity space, e.g., dv = dvx dvy dvz . Long range interactions
between various species are included through the slowly varying electromagnetic fields. Short
range interactions (collisions) that involve strong space–time variations of these fields are
included, where appropriate, through the product of fluctuation term on the right-hand side of
Eq. (6.25).

To perform the indicated integrations we note that the independent coordinates in this
non-relativistic kinetic plasma are v, r, and t . Thus in the first term of Eq. (6.39) the time
derivative passes through the velocity integral, leaving

∂

∂t

∫
f (v) dv = ∂

∂t
n(r, t)

by the definition in Eq. (6.32). The second term of Eq. (6.39), involving v · ∇ f , can be
integrated using the vector identity ∇ · (φA) = φ∇ · A + A · ∇φ, so that

v · ∇ f = ∇ · ( f v) − f ∇ · v︸ ︷︷ ︸
=0

The last term above is zero, as v is not a function of r and thus ∇· ≡ 0. The second term of
Eq. (6.39) is then integrated as follows:∫

v · ∇ f (v) dv =
∫

∇ · f v dv = ∇ ·
∫

f (v) v dv ≡ ∇ · nv̄

using the definition given in Eq. (6.33). The fluid equation now emerging from Eq. (6.39)
becomes

∂n

∂t
+ ∇ · (nv̄) + q

m

∫
(E + v × B) · ∇v f (v) dv = 0

With a few steps we will show that for this first fluid equation the Lorentz force term
does not contribute; however, in higher order fluid equations, to be considered next, it will
contribute. Considering the remaining integral in Eq. (6.39), we again use the ∇ · (φA) vector
relation, i.e.,

(E + v × B) · ∇v f (v) = ∇v · [(E + v × B) f ] − f ∇v · (E + v × B)︸ ︷︷ ︸
=0

where we note that in the term ∇v ·E, E is not a function of v, and ∇v ·(v×B) = (∇v×v)·B = 0
since ∇v × v = 0. The remaining term can then be integrated using Gauss’s theorem for an
arbitrary vector A: ∫

volume

(∇ · A) dV =
∮

surface

A · dS
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so that in velocity space

∫
∇v · [(E + v × B) f (v)] dv =

∫
velocity
space

surface

[(E + v × B) f (v)] · dSv = 0

where the integral is evaluated at a velocity space surface where v approaches infinity (or
some other sufficiently large value not exceeding c). Taking dS = 4πv2 d�v0, where v0 is a
unit vector in the outgoing velocity direction, the v × B term is normal to v0 and thus does
not contribute.

The remaining surface integral involving E f (v) does not contribute for the case where
f (v) goes to zero faster than 1/v2 for large v, a very reasonable assumption for any physical
plasma. The resultant fluid equation, the first moment (lever arm) of the collisionless Vlasov
equation for electrons, is then

∂ne

∂t
+ ∇ · (nev̄) = 0 (6.40)

which in fluid mechanics is referred to as the continuity equation, and expresses the conser-
vation of particles of a certain type, in this case electrons.

The next fluid equation, involving conservation of momentum, takes on the form of
Newton’s second law of motion for a fluid. It is obtained by taking a second moment of the
collisionless Vlasov equation [Eq. (6.32)], this time by multiplying all terms by the momentum
mv and then integrating over all velocities to obtain

∫
mv

[
∂ f

∂t
+ v · ∇ f − e

m
(E + v × B) · ∇v f

]
dv = 0 (6.41)

Noting again the fluid definitions of Eqs. (6.33) to (6.37), and the interchangeability of order
among r, t , and v derivatives, one has

m
∂

∂t
(nev̄) + m∇ ·

∫
vv f (v) dv − e

∫
v [(E + v × B) · ∇v f ] dv = 0

m
∂

∂t
(nev̄) + m∇ · (nevv) − e

∫
v [(E + v × B) · ∇v f (v)] dv = 0

This begins to look like the desired fluid mechanical momentum equation if we expand
the first two terms. If we write the velocity as the sum of a slowly varying component v̄(r; t)
and a faster fluctuating component ṽ, such that v = v̄ + ṽ, then the product vv becomes

vv = (v̄ + ṽ)(v̄ + ṽ) = v̄v̄ + 2 v̄ṽ︸︷︷︸
=0

+ ṽṽ

where v̄ṽ = v̄ṽ = 0, since ṽ ≡ 0. The v̄v̄ term is a non-linear product of velocities that gives
rise to interesting fluid mechanical properties, including aerodynamic flight. With expansion
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of the differential product terms, the second fluid equation (6.39) takes the form

mne
∂ v̄
∂t

+mv̄
∂ne

∂t
+mnev̄ ·∇v̄+mv̄∇ · nv̄+m∇ · (neṽṽ)

−e
∫

v [(E+v×B) ·∇v f (v)] dv = 0

where the second and fourth terms cancel by the continuity equation [Eq. (6.40)], where the
expansion of the ∇ · (nvv) term made use of the dyadic relation ∇ · (AB) = A · ∇B + B∇ · A,
and where we recognize mneṽṽ from Eq. (6.35) as the dyadic pressure Pe. To simplify the
remaining integral involving the Lorentz force term, we replace −e(E + v × B) by F(v, r; t).
The remaining integral is then∫

v[F(v) · ∇v f (v)] dv =
∫

v{∇v · [F(v) f (v)] − f (v)∇v · F︸ ︷︷ ︸
=0

dv

where we have used the vector identity ∇ · (φA) = φ∇ · A + A · ∇φ, and noted that ∇v · F =
−e∇v · (E+v×B) = 0 (since E is not a function of v) and ∇v ·v×B = ∇v ×v ·B = 0 (since
∇v × v = 0). Again using the dyadic expansion of ∇ · (AB), this time with A = F(v) f (v) and
B = v, the remaining integral becomes∫

v{∇v · [F(v) f (v)]} dv =
∫

{∇v · [F(v) f (v)v] − F(v) f (v) · ∇vv︸︷︷︸
1

} dv

The first term is again set equal to zero on the basis of Gauss’s theorem in velocity space
for the dyadic quantity F f (v)v, which requires a somewhat faster decay of f (v) with large
v than in the first moment equation (for the continuity equation). The second term, however,
contributes in this case. Note that −F(v) f (v) · 1 = −F(v) f (v) = e(E + v × B) f (v), so that
the remaining integral in Eq. (6.41) becomes

−e
∫

[(E + v × B) · ∇v f (v)]v dv = e
∫

(E + v × B) f (v) dv = ene(E + v̄ × B)

where we have again used the definitions for ne(r, t) and ne(r, t)v̄(r; t) given by Eqs. (6.33) and
(6.34). Combining all terms, we obtain the fluid mechanical equation expressing conservation
of momentum for electrons:

m

[
∂

∂t
+ v̄ · ∇

]
︸ ︷︷ ︸

D/Dt

v̄ = − 1

ne
∇ · Pe − e(E + v̄ × B) (6.42)

where D/Dt = ∂/∂t + v̄ · ∇ is the substantial derivative, a time derivative moving with
the average velocity, and where Pe = mneṽṽ is the dyadic electron pressure, as defined in
Eq. (6.34).

Equation (6.37) provides a mathematical description for the rate of change of momentum
for a compressiblefluid – it is essentially Newton’s second law of motion where the unbalanced
forces are due to a gradient in pressure along the fluid trajectory, and to the Lorentz force
−e(E + v̄ × B) on the electrons (charged particles). In many cases, involving an isotropic
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distribution function, the dyadic pressure reduces to a scalar pressure P such that P = P1,
and ∇ · P = ∇ P , yielding a more common form of the fluid mechanical momentum equation
for electrons:

m

(
∂

∂t
+ v̄ · ∇

)
v̄ = − 1

ne
∇ Pe − e(E + v̄ × B) (6.43)

The inclusion of viscosity, a frictional effect involving velocity differences (gradients)
among adjoining regions of the same species, leads to an additional term in the momentum
equation [Eq. (6.43)], which is then referred to in fluid mechanics as the Navier–Stokes
equation.17 In its most common form this involves the addition of a viscous force term µ∇2v
to the right-hand side of Eq. (6.43). A discussion of the fluid transport equations including
viscosity (for uncharged particles) is given in Ref. 16.

Another commonly encountered situation in which an alternative form of Eq. (6.43)
occurs is that in which short range collisions between the various species (electrons, ions,
and neutrals) leads to a transfer of momentum among species, such as between electrons
and ions, or between electrons and neutrals. For this to arise naturally would require an
appropriate collision term on the right side of the kinetic Vlasov equation (6.25). Inclusion
of such a collision term produces no additional term in the continuity equation (6.40), but a
collision term of the form −mνv̄ will appear in Eq. (6.43), where ν is an effective collision
frequency for momentum transfer among different species due to short-range collisions.16 In
the absence of such viscosity and inter-particle collisions, the fluid equations are referred to as
the Euler equations. Collecting the fluid equations (6.40) and (6.43) for each species j along
with Maxwell’s equations, we now have the Maxwell–Euler equations that describe plasma
dynamics on fluid level:

∇ × H = ∂D
∂t

+
∑

j

q j n j v j (6.44)

∇ × E = −∂B
∂t

(6.45)

∇ · D =
∑

j

q j n j (6.46)

∇ · B = 0 (6.47)

with the constitutive relations

D = ε0E (6.48)

B = µ0H (6.49)
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and for each particle species ( j)

∂n j

∂t
+ ∇ · (n j v j ) = 0 (6.50)

m

(
∂

∂t
+ v j · ∇

)
v j = − 1

n j
∇ Pj + q j (E + v j × B) (6.51)

where for electrons q = −e and for ions q = +eZ . Note that for simplicity we have dropped
the overbar on the average velocities v̄ j with the understanding that the simpler notation v j

now carries the connotation of a slowly varying function of space and time.
The Maxwell–Euler equations are an independent set in that the particles affect the elec-

tromagnetic fields, through the charge [Eq. (6.46)] and current [Eq. (6.44)] distributions, while
the fluid equations are in turn affected by E and B [Eq. (6.38)]. The coupled set of equations as
described here is incomplete in that for each species we have added five new fluid quantities
(n j , v j , and the scalar Pj ), but only four new scalar equations, one from Eq. (6.40) and three
from Eq. (6.43). An additional equation is required for each. To complete the set of cou-
pled fluid–electromagnetic equations we must generate another equation – an energy related
equation – by taking an additional moment of the Vlasov equation (6.32) for each species,
this time by multiplying through by a scalar factor mv2/2 and then proceeding with the
velocity-space integrals. From Eq. (6.32) we form equations for each species:

∫
mv2

2

[
∂ f j

∂t
+ v · ∇ f j + q j

m
(E + v × B) · ∇v f j

]
dv = 0 (6.52)

Integration techniques similar to those used to obtain Eqs. (6.40) and (6.43), yield2 a conser-
vation of energy equation:

n j

[
∂

∂t
+ v · ∇

]
U j + (P j · ∇) · v + ∇ · Q j = 0

(6.53)

where for each species U j is the (random) thermal energy defined by Eq. (6.36), Q j is the
thermal flux vector defined by Eq. (6.37), and we recall that ṽ2 ≡ ṽ · ṽ.

For an isotropic plasma (no directional preference) with a symmetric distribution function
[ f (v) = f (−v)] the pressure dyad reduces to a scalar pressure times the unit dyad Pj1,
and the thermal energy flux Q j is zero. The simplified adiabatic (Q = 0) equation (6.53) is
then

n j
DU j

Dt
+ Pj∇ · v = 0 (6.54)

where we use the substantial derivative D/Dt = ∂/∂t + v · ∇, and where we recall that there
is a separate v j for each species, but that we have suppressed the j for simplicity. Writing the
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continuity equation (6.40) in terms of the substantial derivative as

∇ · v = − 1

n j

Dn j

Dt

the adiabatic energy equation (6.54) can be written as

n j
DU j

Dt
− Pj

n j

Dn j

Dt
= 0 (6.55)

As we shall see, this leads to a very simple relation between P and n, as needed to complete
the Maxwell–Euler equation set.

For a fluid with three degrees of translational freedom, elementary kinetic theory tells us
that the thermal energy U can be expressed in terms of a temperature T , for each species, by

U j = 1

2
mṽ2 ≡ 3

2
κTj (6.56)

e.g., an energy of 1
2κT per degree of freedom. From our definition of the pressure dyadic

[Eq. (6.35)], for the symmetric and isotropic case,

P = nmṽṽ = nm
(
ṽ2

x x0x0 + ṽ2
yy0y0 + ṽ2

z z0z0
)

where ṽ2
x = ṽ2

y = ṽ2
z = 1

3 ṽ2, so that

P j = mṽ2 · 1 = Pj1 (6.57)

Combining Eqs. (6.56) and (6.57), we obtain the perfect gas relation for partial pressures,

Pj = n jκTj (6.58)

From Eq. (6.56) the thermal energy can now be written as

U j = 3

2

Pj

n j
(6.59)

From Eq. (6.55) we can write the adiabatic energy equation as

DU j

Dt
= Pj

n2
j

Dn j

Dt
= −Pj

D

Dt

(
1

n j

)

so that with Eq. (6.59)

3

2

D

Dt

(
Pj

n j

)
= −Pj

D

Dt

(
1

n j

)

Moving along a streamline, i.e., with D/Dt , the differential relation takes the form

3

2

[
d Pj

n j
+ Pj d

(
1

n j

)]
= −Pj d

(
1

n j

)
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or

d Pj

Pj
=

(
1 + 2

3

)
dn j

n j
= γ

dn j

n j
(6.60a)

Integrating, one obtains the desired adiabatic condition between pressure and density for
processes (wave motions, etc.) involving no heat transfer:

Pj

P0 j
=

(
n j

n0 j

)γ

(6.60b)

where P0 j and n0 j are background values, and γ = 1 + 2/N is the thermodynamic ratio of
specific heats for a system with N degrees of freedom. In this case γ = 5

3 , for three degrees
of translational motion. For a diatomic molecule, one would have two additional degrees of
rotational freedom, and one degree of vibrational freedom. This then completes the Maxwell–
Euler equation set for a fluid mechanical description of an isotropic, collisionless plasma with
a symmetric velocity distribution function.

Using Eq. (6.60), the pressure P can be eliminated from Eq. (6.43) so that there are an equal
number of equations and unknowns. The coupled set of equations then permits a mathematical
or computational description offluid level plasma phenomena (particle transport, wave motion,
radiation, etc.) in which the particle densities and currents determine the electromagneticfields,
and these fields self-consistently determine the particle densities and velocities. Descriptions
of various plasma phenomena are presented in Refs. 1–12.

The fluid model has an appropriate level of detail to describe some of the basic properties
of wave propagation in plasmas. For instance, the propagation of both transverse and longitu-
dinal waves is easily described, dispersion relations obtained, and some dominant wave–wave
couplings identified. Wave mixing occurs as a result of the non-linear terms in the Maxwell–
Euler equations: n j v, v · ∇v, and v × B. For instance, if waves with frequencies ω1 and ω2

propagate in the plasma, then the density and velocity will have terms that vary in space and
time as

e−i(ω1t−k1·r) and e−i(ω2t−k2·r).

Multiplying these terms together results in a cross term with beat frequencies ω3 = ω1 ± ω2.
Thus, these terms can lead to scattering processes where two waves create a third, or the
inverse process where a wave decays into two other waves. Examples of this are stimulated
Raman scattering (SRS), stimulated Brillouin scattering (SBS), and the 2ωpe instability. These
will be discussed later.

An example of something missing from the fluid treatment of a plasma is the collisionless
Landau damping discussed earlier. Since the magnitude and sign of this damping process
depend entirely upon the shape of the velocity distribution near the electron-acoustic wave
phase velocity, it cannot be described by the fluid equations, in which all information about
the velocity distribution has been integrated out. In general, any process that involves velocity
specific wave–particle interactions cannot be described in the fluid description. However, in
some cases the averaged consequences of these processes can be included, for instance by
adding a collision term or damping rate to the fluid equations.
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6.4.4 Plasma Expansion

An important characteristic of hot dense plasmas is the fact that they expand into vacuum
with a speed determined by the temperature of the electrons (usually hotter than the ions)
and the mass of the ions. The rate at which this occurs determines how fast energy must be
supplied to the plasma if it is to reach a high temperature. The expansion rate of a plasma
may be described in terms of the one-dimensional isothermal expansion of a hot fluid with
two species: electrons and ions. This can be seen by examination of the conservation of mass
and momentum equations (6.40) and (6.43) for both electrons and ions. Because the resultant
expansion velocity is small (because of the ion mass), the electron momentum equation is
dominated by the non-velocity terms, so that for a dimensional plasma of electron density ne

and electron pressure Pe

neeE = − ∂

∂x
Pe. (6.61)

The one-dimensional continuity (6.40) and momentum (6.43) equations describing ions
of density ni , partial pressure Pi , charge +Ze and mass M are

∂ni

∂t
+ ∂

∂x
(ni v) = 0 (6.62)

Mni

[
∂

∂t
+ v

∂

∂x

]
v = ni ZeE − ∂

∂x
Pi . (6.63)

The attraction of the electrons to the ions maintains an overall neutrality in the plasma, so
that

ne = Zni (6.64)

The pressure terms in the electron and ion momentum equations (6.61) and (6.63) can be re-
placed with expressions involving the respective densities through use of the adiabatic energy
condition, Eq. (6.60b), in the form

d P = γ P

n
dn

Writing this separately for the electron and ion partial pressures, and using the perfect gas
relation, Eq. (6.58), for both, the pressure gradient terms in Eqs. (6.61) and (6.63) be-
come

∂ Pe

∂x
= γ κTe

∂ne

∂x
(6.65)

and

∂ Pi

∂x
= γ κTi

∂ni

∂x
(6.66)

The momentum equation for ions then becomes

Mni

[
∂

∂t
+ v

∂

∂x

]
v = ni ZeE − γ κTi

∂ni

∂x
(6.67)
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Substituting for the electric field E from Eq. (6.61), which couples electron and ion motion,
i.e.,

E = − 1

ene

∂ Pe

∂x
= −γ κTe

ene

∂ne

∂x

the ion momentum equation (6.67) becomes

Mni

[
∂

∂t
+ v

∂

∂x

]
v = −(Zγ κTe + γ κTi )

∂ni

∂x

or for Te � Ti [
∂

∂t
+ v

∂

∂x

]
v = −v2

exp
1

ni

∂ni

∂x
(6.68)

where we define an electron–ion thermal expansion velocity

vexp =
(

Zγ κTe

M

)1/2

(6.69a)

driven by the electron pressure (through neκTe), but limited by the inertia of the ions through
their mass M . In practical units the expansion velocity can be expressed as‡

vexp = 0.28

(
ZκTe

M

)1/2

µm/ps (6.69b)

where Z is in units of ten, κT is in keV, the ion mass M is expressed in units of 20 times that
of a proton, and γ is taken as 5

3 .
The ion continuity equation (6.62) can be written as[

∂

∂t
+ v

∂

∂x

]
ni + ni

∂v

∂x
= 0 (6.70)

As can be seen by substitution, a solution to the fluid equations (6.68) and (6.70) is1

v = vexp + x

t
(6.71)

and

ni = Ni0e−x/vexpt (6.72)

‡For comparison, the speed of light in vacuum, in these units, is c � 300 µm/ps.
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Thus the plasma expands from an initial ion density ni0, at a surface x = 0, with the electron–
ion thermal velocity, vexp. Examining the density function ni (x, t) we see that the density
gradient length lexp, due to the expansion, is given by

lexp ≡ −ni/(∂ni/∂x) = vexpt (6.73)

and increases with time at a rate set by the expansion velocity vexp. According to Eq. (6.69),
a 1 keV plasma of ions with an average charge state of Z = +12 will expand at a velocity of
approximately 0.21 µm/ps.

6.4.5 Electron-Acoustic Waves

The propagation of high frequency longitudinal waves in a plasma, known widely as electron-
acoustic waves, and also known as electron-plasma waves or as Langmuir oscillations, is
readily described on the basis of the Maxwell–Euler fluid equations (6.40) and (6.43–6.49).
For high frequency waves the more massive ions are relatively immobile and simply provide
a uniform, electrically neutralizing charge distribution. For longitudinal waves in which the
field quantities n, v, P, E, etc., vary only in the wave propagation (k) direction, one need
consider only the equations of continuity (6.40), momentum conservation (6.43), and Gauss’s
law (6.46), which for electrons are written as

∂ne

∂t
+ ∇ · (nev) = 0

m

(
∂

∂t
+ v · ∇

)
v = − 1

ne
∇ Pe − e(E + v × B)

∇ · E = −ene/ε0

where the uniform ion distribution does not contribute to the last equation.
The non-linear terms, involving products like nev, v · ∇v, and v × B, can be simplified

through a linearization process in which one assumes that each field can be written as the sum
of a background value and a small fluctuation therefrom. Thus we write

ne = n0 + ñe (6.74a)

v = v0 + ṽ (6.74b)

E = E0 + Ẽ (6.74c)

and so on. We then assume that the waves of interest are of small amplitude, such that
ñe/n0 � 1, etc. In the case of the velocity modulation we assume that there is no directed
average motion, so that v0 = 0. Substituting Eqs. (6.74) into the fluid equations and dropping
all product of fluctuation terms as being of second order (very small), we have (dropping the
tildes for fluctuating quantities)

∂ne

∂t
+ n0∇ · v + v0 · ∇ne︸ ︷︷ ︸

=0

= 0 (6.75)
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m
∂v
∂t

= − 1

n0
γ κTe∇ne − eE (6.76)

∇ · E = −ene

ε0
(6.77)

where the pressure gradient was handled as in Eq. (6.65). Taking ∂/∂t of Eq. (6.75),

∂2ne

∂t2
+ n0

∂

∂t
(∇ · v) = 0

and the divergence (∇·) of Eq. (6.76),

m
∂

∂t
(∇ · v) = −γ κTe

n0
∇2ne − e∇ · E

these can be combined to form a wave equation

∂2ne

∂t2
− γ κTe

m
∇2ne − en0

m
∇ · E = 0

Using Eqs. (6.46) and (6.48), this can be written as

∂2ne

∂t2
+ e2n0

ε0m
ne − γ κTe

m
∇2ne = 0

or

[
∂2

∂t2
+ ω2

p − a2
e ∇2

]
ne(r, t) = 0 (6.78)

which we recognize as a longitudinal wave equation for electron density fluctuations, with
electron sound speed ae given by

ae =
(

γ κTe

m

)1/2

(6.79)

where γ = 1+2/N , as described below Eq. (6.60b), and where, as we will understand shortly,
the natural frequency of oscillation ωp, known as the plasma frequency, is given by

ωp =
(

e2n0

ε0m

)1/2

(6.80)

for background electron density n0. For the 1 keV electron temperature plasma considered
earlier, the electron sound speed is ae � 17 µm/ps.
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To better appreciate the plasma frequency, we consider an electron density wave of the
form

ne(r, t) = nee−i(ωt−k·r) (6.81)

where the wave is of frequency ω and wavevector k, with scalar wavenumber k = 2π/λ.
For a wave of this form the time and space differentials are replaced by (see Chapter 2,
Section 2.2)

∂

∂t
→ −iω (6.82a)

and

∇ → ik (6.82b)

so that the wave equation (6.78) takes the form[
ω2 − ω2

p − k2a2
e

]
ne = 0 (6.83)

where the exponential with time and space dependence is suppressed. Following the same
procedures as in Chapter 2 for electromagnetic waves, we observe that Eq. (6.83) has solutions
for finite n when the bracketed quantity is zero. This then is a natural oscillation or wave of
the system, requiring, in principle, no driving term. Setting the bracketed quantity equal to
zero yields the dispersion relation for the electron-acoustic wave,

ω2 = ω2
p + k2a2

e (6.84)

This tells us that for long period plasma waves, where k goes to zero, there is natural oscillation
at the electron plasma frequency, ω � ωp. For waves offinite k, in the range of 0 ≤ k ≤ ωp/ae,
the frequency increases somewhat, to a value of

√
2ωp at k = ωp/ae, as shown in the dispersion

diagram of Figure 6.7.
Here the frequency as a function of wavenumber is shown for naturally occurring waves

in a plasma. The parameter ωp/ae = 1/
√

γ λD is approximately equal to one over the Debye
screening distance, discussed earlier in Section 6.3, Eq. (6.6). For waves characterized by
k < kD ≡ 1/λD , the wavelength λ is greater than λD and the discreteness of individual charges
within the plasma is not “seen” by the wave – they are screened. In this region (k < 1/λD), the
fluid model is quite accurate and the wave propagates as indicated. However, for k > 1/λD , the
wavelength of the plasma wave is less than the Debye screening distance and the discreteness
or individuality of charges should be apparent, i.e., not screened. As a consequence we can
suspect that the fluid theory, which averages out (ignores) individual charge effects, might be
inadequate.

Indeed, if one considers the propagation of the electron-acoustic wave based on a kinetic
theory, as discussed in Section 6.4.2, one obtains the same basic dispersion relation [Eq. (6.84)],
but the frequency is found to be complex, with an imaginary component ωi corresponding to
wave decay,1, 3, 4, 12 where for ω = ωr + ωi

ωi = π

2

ω2
pωr

k2

∂ f

∂v

∣∣∣∣∣
v=ω/k

(6.85)
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kD = 1/λD k
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F IGURE 6.7. The dispersion diagram for naturally occurring waves in an isotropic plasma. Shown are
the transverse electromagnetic wave with cutoff at the plasma frequency ωp , a high frequency
longitudinal wave called the electron-acoustic wave, and a low frequency longitudinal wave called the
ion-acoustic wave.

so that a negative slope for ∂ f/∂v corresponds to damping. The expression for a three-
dimensional Maxwellian distribution f (v) is given by

f (v) = 1

(2π )3/2v3
e

e−v2/2v2
e (6.86a)

However, in Eq. (6.85), f (v) may be considered to be a one-dimensional Maxwellian electron
velocity distribution as follows:

f (v) = 1√
2πve

e−v2/2v2
e (6.86b)

where the electron thermal velocity is

ve = (κTe/m)1/2 (6.86c)

the damping term becomes

ωi

ωr
= −

√
π

8

ω2
pωr

k3v3
e

e
− ω2

r
2k2v2

e (6.87)

where from Eq. (6.84) ω2
r � ω2

p(1 + k2/k2
D), and where kD = ωp/ve. For k � kD the expo-

nential factor in Eq. (6.87) dominates, so that ωi/ωr goes to zero and damping is negligible.
However, for larger k, near kD , damping is very strong, with

ωi

ωr
� −

√
π

4

(
kD

k

)3

e −(kD/k)2

so that for k = kD the wave decays to a 1/e field amplitude in just a few oscillations. Decay
of electron-acoustic waves is known as Landau damping,18 ¶ and is due to particle–wave

¶Named for the Russian scientist L.D. Landau.
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ve

vø =

More slow electrons

Fewer fast electrons

v

f(v)

ω
k

F IGURE 6.8. The electron velocity distribution [Eq. (6.86)] in a thermal plasma has more slow electrons
than fast electrons in the vicinity of vφ , the phase velocity electron-acoustic waves. This is particularly
troublesome for short period (high k) waves for which vφ ≥ ve. In this region there are many resonant
electrons and the gradient in velocity is sharp, leading to strong damping of the wave. This process,
called Landau damping, is a collisionless wave–particle interaction in which energy is transferred from
the wave to the individual electrons.

interactions, particularly for electrons traveling in the wave direction with velocities approx-
imately equal to the wave’s phase velocity.

As was suggested earlier in Figure 6.3, the electron-acoustic wave consists of regions of
high charge density that propagate at high phase velocity vφ . From Eq. (6.84) we can now
conclude, with a little algebraic manipulation, that

vφ = ω

k
= ae

√
1 + k2

D

k2
(6.88)

so that in general vφ > ae for propagating waves (k < kD). In this region (v > ae) the veloc-
ity distribution (6.86) falls very rapidly with increasing velocity (negative slope), so that in
general there are more slow electrons (v ≤ vφ) than fast electrons (v ≥ vφ) interacting with
the wave. Because the velocities of these resonant electrons are close to that of the wave,
there is a relatively long interaction time in which energy can be exchanged between the
electrons and the wave. Traveling with the wave, the somewhat faster electrons tend to “push”
the potential crest of the wave, giving up energy as they merge with it. Somewhat slower
electrons must be dragged along, taking energy from the wave, As shown in Figure 6.8,
the thermal velocity distribution is negative in slope for v > ae, so that there are more slow
electrons taking energy away from the wave than fast electrons contributing energy. Thus
on balance, there is a net loss of energy for a plasma wave of high phase velocity (vb > ae).
In this case the complete electron velocity distribution has a positive slope (more fast than
slow electrons) near vb, leading to wave growth, sometimes described as “inverse Landau
damping.”

6.4.6 Ion-Acoustic Waves

The fluid level plasma equations (6.40, 6.43–6.49) also have a low frequency solution, a
natural mode of oscillation at a frequency ω � ωp. In this longitudinal wave the frequency is
sufficiently low that the ions play a major role and, as we will see, the electrons also participate.
At these very low frequencies the electron and ion charge densities are very closely coupled,
a condition called quasi-neutrality. We again seek a linearized version of the fluid equations
(6.40, 6.43), through a perturbation analysis ni = n0i + ñi , ne = n0e + ñe, vi = v0i + ṽi , and
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ve = v0e + ṽe. With no long scale average motion v0e = v0i = 0. For ions of charge Z and
mass M , the condition of quasi-neutrality permits us to make the approximations n0i = n0e/Z ,
ñi � ñe/Z , and ṽe � ṽi . Furthermore, for small amplitude waves the process is adiabatic
(no heat transfer), so that the pressure gradients can be replaced by density gradients [as seen
previously in Eqs. (6.65) and (6.66)], viz.,

∇ P̃ i = γ κTi∇ñi (6.89)

and

∇ P̃e = γ κTe∇ñe (6.90)

where the values of γ will depend on the nature of the wave and thus could be different for
ions and electrons.

With these approximations the linearized fluid equations for the ions can be written as

∂ni

∂t
+ n0

Z
∇ · vi = 0 (6.91)

Mn0

Z

∂vi

∂t
= −γ κTi∇ni + en0E (6.92)

and the electron momentum equation, with ve � vi and ne � Zni , is

mn0
∂vi

∂t
= −Zγ κTe∇ni − en0E (6.93)

where we have dropped the tildes for simplicity (they appear on all but background quantities),
have replaced ve by vi as discussed above, and have simplified the background charge densities
by writing n0e = n0 and n0i = n0/Z . With these low-frequency approximations the electron
continuity equation offers no additional information. Adding the two momentum equations
(6.91) and (6.92) to eliminate E, and noting that m � M/Z , we have

Mn0

Z

∂vi

∂t
= −(γ κTi + Zγ κTe)∇ni (6.94)

A wave equation can now be formed by taking ∂/∂t (6.91) and ∇ · (6.94):

∂2ni

∂t2
+ n0

Z

∂

∂t
(∇ · vi ) = 0

Mn0

Z

∂

∂t
(∇ · vi ) = −(γ κTi + Zγ κTe)∇2ni

which can be combined to form the ion-acoustic wave equation

∂2ni

∂t2
−

(
γ κTi + Zγ κTe

M

)
∇2ni = 0 (6.95)

For the common case Te � Ti , generally resulting from the fact that energy is delivered to the
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electrons and only indirectly transferred to the ions through collisions, the ion-acoustic wave
equation can be written as

∂2ni

∂t2
− a∗2∇2ni = 0 (6.96)

where the wave propagates with a hybrid sound speed

a∗ =
√

Zγ κTe

M
(6.97)

which has the characteristics of an electron temperature and an ion mass.4 This low-frequency
plasma oscillation is thus seen to be driven by electron thermal energy, but with an inertia
set by the more massive ions. Due to the quasi-neutrality at this low frequency, each electron
must drag an equivalent (per unit charge) mass of M/Z .

Following our usual procedures, the dispersion relation for an ion-acoustic wave with
ni = ni0 exp[−i(ωt − k · r)] follows from Eq. (6.96) as

ω = ka∗ (6.98)

as illustrated by the lower branch in Figure 6.7. This dispersion relation indicates a linear
relationship between k and ω, so that in fact it lacks dispersion – all frequencies propagate at
the same phase velocity, a∗. A somewhat more refined analysis shows a rollover to lower phase
velocities as k approaches the Debye wavenumber. Again Landau damping can be important,
but in this case it is the ions that do the damping, and the degree of damping is a function of
Z Te/Ti due to the variation in sound speed. At the phase velocity of this wave, a∗, the electron
velocity distribution is nearly flat [ f ′(v) � 0], so that the number of relatively fast and slow
electrons is about equal, and there is little transfer of energy. For the ions, with Z Te/Ti � 1,
a∗ is much greater than the ion thermal speed (ai = √

γ κTi/M) and thus the phase velocity
of the ion-acoustic wave is so far out on the ion velocity distribution curve that fi (a∗) goes to
zero and again there is little damping, i.e., although f ′

i (v) is sharp, there are few ions in this
velocity region. For Z Te/Ti approaching unity, a∗ approaches ai and ion damping becomes
very strong for k near the Debye wavenumber

6.4.7 Transverse Electromagnetic Waves in a Plasma

Transverse electromagnetic waves also propagate in a plasma, much like those considered in
Chapter 2, but with a cutoff appearing at the plasma frequency ω � ωp, which has important
consequences for energy delivery in laser-produced plasmas. The Maxwell–Euler fluid equa-
tions give a very satisfactory description of these waves. At these high frequencies the ions
are immobile, so that we need consider only the electrons in Eqs. (6.44–6.51). For transverse
electromagnetic waves of relatively weak intensity these equations simplify considerably. The
current term in Eq. (6.44), which in general is non-linear, simplifies in this case to J = −en0v,
where n0 is the background electron density, assumed in this weakfield limit to be unmodulated
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by the passing electromagnetic wave. In this case Maxwell’s equations (6.44–6.49) can be
written as

∇ × H = ε0
∂E
∂t

− en0v (6.99)

∇ × E = −µ0
∂H
∂t

(6.100)

In Eqs. (6.50) and (6.51), which describe particle motion, all non-linear terms can be neglected
in the weak field limit, so that with only electrons mobile, these become

∂ne

∂t
+ n0∇ · v = 0 (6.101)

and

m
∂v
∂t

= −γ κTe

n0
∇n0 − eE (6.102)

For transverse electromagnetic waves, as seen earlier in Chapters 2 and 3, only the trans-
verse component of the current density JT contributes to the wave, and thus only to the
transverse component of v. This is also the case for the plasma in the weak-field limit. Thus in
Eqs. (6.101) and (6.102), the ∇ → ik terms are longitudinal and thus do not contribute to the
transverse motion. The remaining terms in Eq. (6.102) yield a simplified version of Newton’s
law, F = ma, for the electrons:

m
∂v
∂t

= −eE (6.103)

We can now develop a wave equation by differentiating Eq. (6.99) with respect to time,

∇ × ∂H
∂t

= ε0
∂2E
∂t2

− en0
∂v
∂t

(6.104)

and taking the curl of Eq. (6.100),

∇ × (∇ × E) = −µ0∇ × ∂H
∂t

(6.105)

We combine Eqs. (6.104) and (6.105) by eliminating ∇ × ∂H/∂t , and use the vector relation
∇ × (∇ × E) = ∇(∇ · E) − ∇2E (see Appendix D) to obtain

∇(∇ · E) − ∇2E = −µ0ε0
∂2E
∂t2

+ µ0en0
∂v
∂t

(6.106)

For transverse waves ∇ · E = 0 (recall from Chapter 2 that ∇ → ik). Furthermore, we can
replace ∂v/∂t with an expression involving E by use of Eq. (6.103), so that

∂2E
∂t2

+ en0

ε0

(
eE
m

)
− 1

ε0µ0
∇2E = 0

Recognizing c2 = 1/ε0µ0 and ω2
p = e2n0/ε0m [Eq. (6.80)], we have the wave equation for a
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transverse wave in a plasma,

(
∂2

∂t2
+ ω2

p − c2∇2

)
E(r, t) = 0 (6.107)

For a plane wave of the form E(r, t) = E0e−i(ωt−k·r) Eq. (6.107) yields a dispersion
relation

ω2 = ω2
p + k2c2 (6.108)

where we have essentially taken the indicated derivatives, or equivalently used the identifi-
cation of Eqs. (6.82a) and (6.82b). The dispersion relation for waves propagating in plasma
differs from that in vacuum by the appearance of the ω2

p term. In vacuum this term is zero,
giving ω2 = k2c2, or equivalently f λ = c, whereby waves of all frequencies propagate with
the same phase velocity c. According to Eq. (6.108) there is a cutoff frequency in the plasma
at ω = ωp. For ω < ωp, the solution for k is imaginary, indicating that the wave cannot
propagate in this overdense plasma. Rather the wave decays exponentially with wavenumber

k =
√

ω2 − ω2
p

c
(6.109)

or in the highly overdense limit ω2 � ω2
p

k = i
ωp

c
(6.110)

which corresponds to a penetration depth l into the highly overdense plasma of

l = c/ωp (6.111)

The frequency for which ω = ωp is often referred to as the critical frequency, and the
corresponding electron density is defined as the critical electron density, nc, where from
Eq. (6.5)

nc ≡ ε0mω2

e2
(6.112a)

or in terms of the wavelength (in microns)

nc = 1.11 × 1021 e/cm3

λ2(µm) (6.112b)
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TABLE 6.1. Electron density, plasma frequency, critical photon energy for
ωc = ωp , and critical wavelength for electromagnetic radiation.

ne(e/cm3) ωp/2π h̄ωc (eV) λc Comments

1.00 × 106 8.94 MHz 33.5 m Between AM and FM radio
1.00 × 1014 89.4 GHz 3.35 mm Microwaves
1.00 × 1019 10.6 µm CO2 laser
1.00 × 1021 1.17 1.06 µm Nd laser
1.60 × 1022 4.86 266 nm 4ω of Nd laser
4.60 × 1024 80.0 15.5 nm Ne-like Y laser

Thus for a Nd laser of wavelength 1.06 µm, the critical density is nc � 1 × 1021 e/cm3.
For frequency doubled light at 0.53 µm wavelength (green light) the critical electron density
quadruples to 4 × 1021.

Referring back to Figure 6.5, we can now better appreciate the role of the critical density
region. There we see the laser light incident from the right on a plasma of sharply rising
electron density. During passage through the underdense region of the plasma (n < nc) the
wave experiences classical absorption as it causes electrons to oscillate, some of which then
lose their energy through electron–ion collisions, thermally heating the plasma in the process.
This transfer of energy to the plasma increases in efficiency as the light wave propagates
to higher densities. Eventually the laser light of frequency ω reaches the critical density nc,
beyond which it cannot propagate (ωp > ω, k imaginary), and the wave is reflected back
toward the vacuum and lost.

The overdense plasma is important in several other well-known situations. Astronauts and
cosmonauts regularly experience a communication blackout during reentry into the earth’s at-
mosphere as their capsules are engulfed in an overdense plasma created as it heat and ionizes
atmospheric molecules, preventing the transmission or reception of shortwave or microwave
signals. Common AM broadcasts, at frequencies around 1 MHz, are reflected from the earth’s
ionosphere17 (105 e/cm3 to 106 e/cm3 at heights of 100 km to 400 km), often permitting
distant reception at night when absorption is minimal. There are interesting daily and seasonal
variations to this phenomenon, affected by cycles of ionizing radiation from the sun, longer
charged particle lifetimes at higher altitudes, and increased collisional absorption during the
day as the sun’s heat warms the atmosphere below, causing it to expand outward into the
lower regions of the ionosphere where 1 MHz radiation is typically reflected (or absorbed).
Broadcast emissions in the 100 MHz region (nc ∼ 108 e/cm3), typically used for FM, are of
sufficiently high frequency that they propagate through the ionosphere and into outer space,
which explains why the reflection phenomena experienced with AM radio do not occur for
FM broadcasts. Critical parameters are given for representative values of ne in Table 6.1.

For waves of frequency ω > ωp there is a real propagating wave in the plasma, with
properties much like those considered in Chapters 2 and 3, except that now there is considerable
dispersion (the phase velocity is not constant) and the refractive index, or dielectric constant,
is different. The wave’s dispersion relation [Eq. (6.108)] is shown in Figure 6.7 with phase
velocity (Chapter 3, Section 3.2) vφ = ω/k approaching c, the phase velocity of light in
vacuum, for ω � ωp. From Eq. (6.108) the phase velocity of the wave is

vφ = ω

k
= c√

1 − ω2
p/ω

2
= c√

1 − ne/nc
(6.113a)
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while the group velocity ∂ω/∂k, is given by

vg = ∂ω

∂k
= c

√
1 − ω2

p

ω2
= c

√
1 − ne

nc
(6.113b)

We see that these velocities are not constant, but vary with ωp/ω, or ne/nc. For low electron
densities, where ne/nc is small, both the phase and group velocities approach c. However,
for ne/nc approaching unity the phase velocity can be very large and the group velocity, with
which we associate with the transport of energy, can be very small.20, 21 From Eq. (6.113a)
we can see that the refractive index (see Chapter 3) of the plasma, n � c/vφ = ck/ω, is given
by

n =
√

1 − ω2
p

ω2
(6.114a)

or equivalently

n =
√

1 − ne

nc

(6.114b)

This analysis is readily extended to include the effect of collisions between electrons,
oscillating due to the transverse wave, and ions. By including a collision term,4, 6, 16 the
electron momentum transfer equation (6.103) becomes

m
∂v
∂t

= −eE − mνei v (6.115)

where the momentum transfer is proportional to the electron momentum mv and where νei is
the electron–ion collision frequency. The electron velocity can now be written as

v = − ie

m(ω + iνei )
E (6.116)

and the dispersion relation (6.108) is modified, for νei � ω, to

ω2 = ω2
p

(
1 − i

νei

ω

)
+ k2c2 (6.117)

If we set ω = ωr + iωi , substitute into Eq. (6.117), and solve separately for the real and
imaginary parts, we find, for νei/ω � 1, that the real part of the frequency satisfies

ω2
r = ω2

p + k2c2 (6.118a)
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much as before, but we now have an imaginary component

ωi � −νei ω2
p

2 ω2
= − ne

2nc
νei

(6.18b)

where the negative sign indicates damping. Physically, as the electromagnetic wave propagates
through the plasma, its electric field induces an oscillatory component to the velocity of all
electrons, superposed on their otherwise random motion. As the electrons experience collision
with ions, their energy of oscillation is converted to random energy, thus heating the electrons
to a higher temperature. Thus there is a transfer of energy from the wave to the plasma,
increasing the thermal energy of the plasma and decreasing the intensity of the wave. This
linear damping mechanism, referred to as collisional damping or inverse bremsstrahlung, is
very important for the creation and heating of laser-produced plasmas.1, 23

In this connection we note that for real ω, the dispersion relation (6.117) yields real
and imaginary components of the magnitude of the propagation vector, k = kr + iki , given
by

kr =
√

ω2 − ω2
p

c
(6.119a)

and

ki = νeiω
2
p

2cω
√

ω2 − ω2
p

= νeiω
2
p

2vgω2
(6.119b)

The attenuation length for 1/e intensity decay is a distance

labs = 1

2ki
= ω2

ω2
p

vg

νei

In terms of electron densities, the absorption length for a transverse wave in a plasma is given
by1

labs = nc

ne

vg

νei

(6.119c)

The collision frequency νei in a hot plasma is complicated, as it depends on many long
range relatively weak interactions. There are, however, many of the these interactions, and the
result can lead to a very strong absorption process,22−24 as we shall see for the case of laser-
produced plasmas of even relatively short density scale lengths, e.g., tens of wavelengths. The
momentum transfer in collisions can be studied by considering Figure 6.2, where the distance
b is called the impact parameter. The amount of momentum transfer clearly depends on the
velocity of the electron v, the ion charge Z , and b. The change in momentum 
p = m 
v
is equal to the force experienced multiplied by the interaction time F 
t . For an interaction
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time 
t � 2b/v and a Coulomb force e2 Z/4πε0b2, the resultant hyperbolic trajectory has a
corresponding scalar momentum change1

m 
v � e2 Z

4πε0b2
· 2b

v

or


v � e2 Z

2πε0mvb

We see that the velocity change in a collision has an inverse dependence on both v and b. The
time required to undergo a substantial momentum change such that 
vrms ∼ v clearly depends
on the range of values of v and b, and on the ion density. The reciprocal of this collision time
is the effective electron–ion collision frequency νei .

Dawson and his colleagues23, 24 have determined the collision frequency for a Maxwellian
velocity distribution, as a function of density, temperature, and ion charge. According to
Johnson and Dawson,24

νei = e4 Zne ln �

3(2π )3/2ε2
0m1/2(κTe)3/2

(6.120a)

or

νei

ωp
= Zω3

p ln �

3(2π )3/2nev3
e

(6.120b)

where ve is the electron thermal velocity [Eq. (6.86b)], ve = (κTe/m)1/2, and � is the ratio
bmax/bmin of the impact parameters corresponding to the Debye length (bmax) beyond which
the individual ion is effectively screened and the classical distance of closest approach (bmin)
without capture, the latter determined by equating the energy in the Coulomb field of the
ion at closest approach, e2 Z/4πε0bmin, to the average electron thermal energy 3

2 mv2
e (i.e.,

1
2 mv̄2 = 3

2κTe = 3
2 mv2

e). Observing that the Debye length [Eq. (6.6)] can be written as
λD = ve/ωp, the electron collision frequency can be written as

νei

ωp
= 1

9

√
2

π

Z

ND
ln

(
9ND

2Z

)
(6.120c)

where ND = (4π/3)λ3
Dn is the number of electrons in a Debye sphere, given in practi-

cal units as

ND = 4π

3
λ3

Dne = 1.7 × 103 (κTe)3/2

n1/2
e

(6.121)

for κTe in keV and ne in units of 1021 e/cm2.
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For a plasma with κTe = 1 keV, created by a 1.06 µm laser, at half-critical density
0.5×1021 e/cm3 and with Z = +14 (neon-like chromium, discussed later in this chapter) one
has ND � 3.4×103 and νei/ωp � 2.5×10−3. At half-critical density, ωp � 1.3×1015 rad/s,
so that νei � 3.3 × 1012/s. In this example the absorption length [Eq. (6.119c)] at this density
is labs � 130 µm. In view of the density scale length [Eq. (6.73)] for an expanding plasma, this
same chromium plasma would have an expansion velocity [Eq. (6.69)] of vexp � 0.21 µm/ps
and thus a density scale length lexp � 110 µm after 500 ps of irradiation.

As this scale length is about equal to the absorption length, we expect a fairly significant
collisional absorption of 1.06 µm light for nanosecond duration or longer pulses, especially
in the region approaching the critical density. This can be seen more clearly by algebraically
rearranging the parameters in Eqs. (6.119c) and (6.120a) so as to better illustrate the scaling
of collisional absorption with density, temperature, and ion charge state:

labs ∝
√

1 − ne/nc(κTe)3/2

n2
e Z

(6.122)

Thus in the example above the absorption scale length decreases substantially as the wave
progression propagates into more dense plasma (above nc/2), leading to rapidly increasing
absorption. The advantage of short wavelength illumination is also clear. Using a harmonic
of Nd at 2ω or 3ω (0.53 µm or 0.35 µm), where harmonic conversion can be done very
efficiently, raises the critical density by a factor of four or nine, respectively, again leading to
a substantial decrease of the absorption length in the subcritical density region. Furthermore,
as the wave approaches the critical surface the group velocity goes to zero, again enhancing
absorption as represented by the factor

√
1 − ne/nc in Eq. (6.122).

Kruer has solved Maxwell’s equations for a wave propagating into a one-dimensional
expanding plasma with density profile n/nc = exp(−l/Z ). For the case of non-resonant (see
next section) s-polarized light he obtains an analytic solution for the collisional absorption
fraction1

fabs = 1 − exp

[
−

(
8ν∗

ei l cos3 θ

3c

)]

where θ is the angle of incidence measured from the surface normal and ν∗
ei is the value of

νei at ne = nc, where much of the absorption occurs. The strong angular dependence is due
to refraction in the plasma. For the 1 keV temperature chromium plasma considered above,
with normal incidence irradiation (θ = 0) at 1.06 µm wavelength, the wave will experience
80% absorption with a density scale length of about 30 µm, thus ensuring high absorption of
nanosecond duration irradiation at modest intensity. For frequency-doubled Nd at 0.53 µm
wavelength the required scale length for 80% absorption is only about 7 µm, permitting strong
collisional absorption even with rather short duration modest scale length plasmas.

In a following section we will discuss the effect of high-intensity irradiation on expanding
density profiles. In such cases the intense illumination can generate a radiation pressure that
steepens the electron density profile and thus reduces the role of collisional absorption in
the underdense plasma. In very steep density profiles, collision absorption is compromised,
but the incident wave can approach very close to the critical region where, depending on the
electric field polarization, an enhanced resonance absorption can become important. This is
discussed in the following section.
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6.4.8 Resonance Absorption

In very steep gradient plasmas the incident wave is very close to the critical density surface
before it is reflected (or, more accurately in an expanding plasma, refracted away). Steep gradi-
ent plasmas are encountered with very short pulse irradiations where expansion is minimized,
and in very high intensity illuminations where radiation pressure inhibits the expansion. For a
one-dimensional plasma expanding from a planar surface with a density gradient ∇ne and an
incident wave vector k at an angle of incidence θ from the surface normal, the wave is refracted
out of the plasma, reaching a highest electron density nc cos2 θ at the turning point, beyond
which k is imaginary, representing an evanescent or tunneling field.25, 26 Depending on the
polarization of the incident radiation, it is possible to directly excite plasma waves through the
resonance ω = ωp at the critical density. For p-polarized radiation, with the electric field lying
in the plane of incidence defined by ki and the surface normal, the electric field at the turning
point has a component in the direction of the gradient that tunnels into the critical region. As
we saw in Chapters 2 and 3, Maxwell’s equations must satisfy the condition ∇ · (εE) = 0 at
an interface, where for a plasma ε = ε0n2 = ε0 (1 − ne/nc) and n = c/vφ is the refractive
index as given in Eq. (6.113a). One then has ε0∇ · [(1 − ne/nc) E] = 0, which shows that the
tunneling field E will drive a resonant response at the critical surface n = nc, strongly driving
plasma oscillation at ω = ωp. A solution of Maxwell’s equations in the critical region26 shows
that the fraction of energy absorbed depends on the parameter (ki l )1/3 sin θ , where l is the
density scale length. The absorption peaks at about 50% when the parameter is equal to about
0.8. For normal incidence, θ = 0, there is no axial component of electric field to drive the
resonance, and for glancing incidence (large θ ) the wave is refracted away from the critical
surface, so that the tunneling field is weak.

6.4.9 Waves in a Magnetized Plasma

The presence of a static magnetic field B0 can substantially modify the nature of waves that
propagate in a plasma, particularly if the cyclotron frequency ωc = eB0/m is comparable to
or greater than the plasma frequency. Magnetized plasmas such as this are of great interest in
astrophysics27−30 and for the pursuit of fusion energy using magnetic confinement techniques.
Not surprisingly, the orientation of the static magnetic field with respect to the propagation
direction and electric field polarization is a significant factor. An example of dispersion curves
for a magnetized plasma with ωc < ωp is shown in Figure 6.9, for electromagnetic waves
propagating along (θ = 0) and perpendicular (θ = π/2) to the static magnetic field direction
(B0). Solutions for intermediate angles are shaded. The subject of magnetized plasma is
beyond the scope of this text, but the interested reader will find substantial material in the
plasma literature.4, 6, 11, 14

6.4.10 Non-linear Processes in a Plasma

If we look back at the fluid level Maxwell–Euler equations, we see that product terms, which
are inherently non-linear,27 appear in several places. For convenience we repeat these equations
here and box the terms that involve a product of field quantities:

∇ × H = ε0
∂E
∂t

+
∑

j

(nqv) j (6.123a)
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F IGURE 6.9. Dispersion diagram for plasma waves in the presence of an external magnetic field with
ωc < ωp . (Courtesy of N. Marcuvitz.3)

∇ × E = −µ0
∂H
∂t

(6.123b)

∂n j

∂t
+ ∇ · (n j v) = 0 (6.123c)

m j n j

(
∂

∂t
+ v · ∇

)
v = −∇ Pj + q j n j (E + v × B) (6.123d)

where we have used D = ε0E and B = µ0H, and where Eqs. (6.123c) and (6.123d) must be
written for both electrons and ions ( j = 1 and 2) with appropriate mass and charge. We see
that in at least four places there is a term involving a product of fields. These introduce the
possibility for both non-linear growth and frequency mixing, and are known to play a major
role in the development of non-thermal processes such as continuum x-ray emission, in favor
of sometimes deleterious processes such as runaway suprathermal electrons and hard x-ray
emission tails.

If we Fourier analyze one of these terms, we can gain some appreciation of the manner
in which these processes operate, as well as some insight into the characteristic signatures we
might look for. For instance, we can analyze the current term for electrons in Eq. (6.44),

J(r, t) = −ene(r, t)v(r; t) (6.124a)

by writing each field in terms of its respective wave component, viz.,

Je−i(ω1t−k1·r) = −enee−i(ω2t−k2·r )ve−i(ω3t−k3·r) (6.124b)

where a term by term match shows that for the amplitudes

J = −enev
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F IGURE 6.10. A three-wave mixing process.

while for the frequencies and wavenumbers

ω1 = ω2 ± ω3 (6.125a)

and

k1 = k2 ± k3 (6.125b)

Equations (6.125a) and (6.125b) are sometimes referred to as conservation of energy and con-
servation of momentum equations for three-wave interactions, as is suggested by multiplying
through by h̄. Figure 6.10 captures the simplicity of this idea.

The process can in fact be either linear or non-linear. If a wave exists at a certain fixed
amplitude, such as a density wave ne(r, t), or even a fixed grating, then incoming waves
ω1, k1 scatter from it in linear fashion to a new frequency (for a moving wave) and wavevector
ω3, k3. This is a linear process: n is fixed, and the scattered field ω3, k3 depends linearly on
the incident field ω1, k1. This specific example was the subject of Figure 6.4 in Section 6.2.

These processes can also be non-linear, and may apply to or grow out of any of the boxed
non-linear terms in Eq. (6.123). For instance, it may occur that the incoming wave ω1, k1 is
very intense, and as a result, as it propagates into or through the plasma, it scatters from a
spectrum of natural waves ω2, k2 which pre-exist in the normal noise of random low level
plasma oscillations. Of course ω1, k1 will scatter from this spectrum of natural waves ω2, k2,
generating a spectrum of scattered waves ω3, k3. Not all wave combinations will satisfy the
conservation equations (6.125a, b) – matching of frequency and wavevectors is simply not
guaranteed for three natural modes, each with its own dispersion relation. However, in some
cases they may match, perhaps only at some special density.28, 29 In those cases the three waves
are said to resonate. The incoming wave scatters off waves in the noise. The new scattered
wave grows in amplitude, and interferes with the incident wave at the beat frequency ω3 − ω1

and difference wavevector k3 − k1, causing the initial noise at ω2 = ω3 − ω1, k2 = k3 − k1

to grow in amplitude. This of course causes further scattering, and the process of growth
and scattering continues. This process is called stimulated scattering. An incoming wave
drives a plasma wave out of the noise and stimulates it to grow, by the very process of
scattering from it in a resonant three-wave mixing process. Note that since these processes
are resonant, they are sensitive to the background plasma parameters and to gradients of these
quantities.

Figure 6.11 shows dispersion diagrams7 for two such processes involving intense inci-
dent electromagnetic radiation: stimulated Brillouin scattering (SBS) and stimulated Raman
scattering (SRS). In SBS the incident wave scatters from a low-frequency ion-acoustic wave
generating a scattered wave (ωR, kR) of slightly shifted frequency. In SRS the incident wave
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F IGURE 6.11. Dispersion diagrams for (a) Brillouin and (b) Raman scattering of incident
electromagnetic radiation by ion-acoustic and electron-acoustic waves, respectively. The scattered
wave experiences a relatively small frequency shift in the Brillouin case. Negative k-values indicate
backscattered waves. Note that k-vector matching occurs for a strong incident wave participating in a
three-wave process in which frequency and wavevector matching occur, i.e., when the ω, k for all
three waves lie on the naturally occurring dispersion curves. (Following H. Motz.7)

scatters from a high-frequency electron-acoustic wave, generating a scattered wave (ωR, ωR)
at a substantially shifted frequency.

The first is called Brillouin scattering because of the small scattered wave frequency
shift, analogous to light scattering from acoustic waves in (neutral) gases. The second is
called Raman scattering because of the large frequency shift reminiscent of light scattering
from vibrational states in molecules. Both are called “stimulated” because the third wave –
ion-acoustic in one case, electron-acoustic in the other – is caused to grow out of the noise
through stimulation at the beat frequency. In each case the wave equations can be written
with the non-linear terms appearing as driving terms on the right-hand side of the otherwise
homogeneous (source-free) wave equation – now inhomogeneous. Whether the wave grows,
and to what amplitude is determined by the balance of loss processes (collisions or Landau
damping, non-linear saturation processes, etc.) against the gain provided by the resonant beat
frequency driver.

To further illustrate this three-wave mixing, we consider the stimulated Raman scattering
of Figure 6.10(b) in some additional detail. We consider backscattered radiation in which the
incident frequency ωi is somewhat greater that 2ωp, so that both the scattered transverse wave
frequency ωR and the excited electron-acoustic wave frequency ωea are just slightly above ωp

as indicated in Figure 6.11. Because ωi = 2ωp, this corresponds to the quarter-critical density
region, n � nc/4. Since the scattered wave has ωR � ωp, it has a very small wave wavenumber
in the plasma, �k � ki/2, smaller than it would have in vacuum. In order to resonantly match
both frequencies and wavenumbers, as required by Eqs. (6.123), the electron-acoustic wave
must have a wavenumber kea = ki + �k, as shown in Figure 6.12. The frequency matching
condition, ωi = ωR +ωea, for waves with dispersion relations given by Eqs. (6.84) and (6.108)
is given by

ωi = ωp

[
1 + (�k)2c2

ω2
p

]1/2

+ ωp

[
1 + (ki + �k)2a2

e

ω2
p

]1/2

(6.126)
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F IGURE 6.12. Three-wave mixing is illustrated for stimulated Raman backscattering at the
quarter-critical electron density surface, ne � nc/4.

or for small �k,

ωi = ωp + ωp

(
1 + k2

i a2
e

ω2
p

)1/2

(6.127)

We can eliminate ki through use of the transverse dispersion relation, Eq. (6.107), where

ki =
(

ω2
i − ω2

p

c2

)1/2

�
(

4ω2
p − ω2

p

c2

)1/2

�
√

3ωp

c
(6.128)

The frequency matching condition (6.127) then becomes

ωi � ωp + ωp

(
1 + 3a2

e

c2

)1/2

︸ ︷︷ ︸
ωea

(6.129)

For a 1 keV electron temperature, ae � c/18, so that the electron-acoustic frequency is ωea �
1.005ωp, and thus by Eq. (6.127) ωi = 2.005ωp. The three-wave mixing therefore occurs at
an electron density in the vicinity of n � 0.249 nc, that is, very close to the quarter-critical
surface.

Note that an electron density gradient, as depicted in Figure 6.5, will limit this three-wave
resonant mixing to a small region of the plasma. Note also that the phase velocity of the
electron-acoustic wave is

vφ = ωea

kea
� ωp√

3ωp/c
� c√

3
(6.130)

If this wave is driven to large amplitude by the high intensity three-wave resonance, it offers
the possibility of trapping electrons within its high potential crests and accelerating them
to velocities of c/

√
3, or to energies of order 100 keV. Turner, Drake, Campbell, and their

colleagues34, 35 report experiments in which suprathermal electrons of order 100 keV energy
are generated in a nominally 1 keV plasma by high intensity laser irradiation experiments
in which SRS is identified as the non-linear acceleration mechanism. Once accelerated to
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high energies, these suprathermal electrons will eventually generate suprathermal x-rays as
they collide with ions and nearby dense materials. In the following two subsections we con-
sider intensity thresholds for non-linear processes, and numerical simulations of just such
processes.

6.4.11 Threshold for Non-linear Processes

As we have seen in the previous subsection, the Maxwell–Euler equations (6.123a–d) are
non-linear, with several product terms available for mode mixing and large amplitude growth.
It is possible to determine the initial growth rate of such processes by expanding the fields
in a power series, as was done earlier in the linearization process, but now carrying selected
second order, or product of fluctuation, terms. The procedure is to keep linear terms to the left
side of the equal signs, and treat the second order (non-linear) terms to the right as driving
terms, much as in the treatment of inhomogeneous differential equations. At relatively small
amplitude it is then possible to consider the product terms as exciting the natural (linear)
modes to finite initial growth rates. Thresholds for the onset of non-linear growth of fields
are then obtained by comparing these initial growth rates with natural wave decay rates
such as collisional or collisionless (Landau) damping. For instance, in the stimulated Raman
process just considered, one would determine what incident electric field E, or equivalently
wave intensity I , would be required to overcome collisional and Landau damping of the
electron-acoustic wave, and collisional damping (νei of the two transverse waves). This would
be a threshold intensity; below this intensity the waves naturally decay, and above it they
grow.

We will not consider quasi-linear growth rates of plasma waves here, as we are generally
confronted in hot dense plasmas, particularly in intense laser-produced plasmas, by growth
rates that rapidly exceed these thresholds and for which further tools are required. These tools
include numerical simulations in which a finite number of individual charged particles, con-
strained to a limited range of background density and temperature variations, are followed
in the presence of high intensity laser illumination. Examples of such “particle in cell” calcu-
lations are described in the following section. By numerically studying the growth of waves
and the acceleration of particles as a function of laser intensity, it is possible both to determine
threshold values and to gain a better insight into the evolution of non-linear processes and
their resultant field distributions.

Before proceeding to the numerical simulations, however, it is useful to develop some
intuitive appreciation for the general nature of these stimulated processes and a likely order
of magnitude estimate of threshold conditions. For instance, in the stimulated Raman process
we can imagine a relatively weak electromagnetic wave, of frequency ω and electric field E ,
incident on a thermal plasma of electron density ne and temperature κTe. At low intensity the
electron motions are dominated by random interactions (collisions) with other electrons and
ions, both at short distances and through longer range wave motions. Superimposed on this
random motion is a small sinusoidal velocity component, vos. As the incident laser intensity
increases, the oscillatory component of the velocity becomes more important and there evolves
a distinctive coherent nature to the electron motions – phase locked in both space and time
to the electric field of the transverse wave. Where the imposed frequency and wavenumber
of the collective electron motion are a close match to a natural mode of the system – an
electron-acoustic wave – we can expect the physics to change from one of random thermal
processes to coherently driven wave motions. A measure of this transition is the intensity at
which the imposed oscillation velocity vos is comparable to a random thermal velocity, which
we can take as ve in Eq. (6.86c).
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We can determine the oscillating component of velocity, vos, as we did earlier using
Eq. (6.103), which in scalar form gives

m
∂vos

∂t
= −eE

or with imposed time dependence e−iωt is

vos = −i
eE

mω

We then compare this with a measure of the electron’s random thermal motion, ve from
Eq. (6.86c):

ve =
(

κTe

m

)1/2

We take the ratio and square it so that it represents a ratio of energies, that is, the ratio of
electron energy in coherent oscillations to that in random motion. The result is

∣∣∣∣vos

ve

∣∣∣∣
2

= e2 E2

mω2κTe
= I/c

ncκTe

(6.131a)

where the relationship between I and E2 follows from Chapter 3, Eq. (3.20). For a plasma
produced by a 1.06 µm wavelength Nd laser, with critical electron density nc = 1×1021 e/cm2

and an assumed (typical) electron temperature of 1 keV, the ratio of coherent to thermal electron
energies is unity for a focused laser intensity I = 4.7 × 1015 W/cm2. This is a commonly
achieved value – and one such that the effects of non-linear processes are readily evident in
the literature.36 We can rewrite this ratio of energies in terms of common laboratory values as

∣∣∣∣vos

ve

∣∣∣∣
2

= 0.021I (1014 W/cm2)λ2(µm)

κTe(keV)
(6.131b)

where I is in units of 1014 W/cm2, λ is in microns, and κTe is in keV.
To avoid the excitation of non-thermal processes in a laser-produced plasma it is clearly

advantageous to utilize low intensities and short wavelengths where possible. For instance, in
laser-driven inertial fusion, where high intensities are essential, the use of short wavelengths
through harmonic generation is common.37 The achievable thermal temperature κTe is also
closely related to the incident intensity I , as we will see in a following section on blackbody
radiation, so there too it may be more convenient to use a shorter wavelength. This is partic-
ularly true for the generation of thermal x-rays, but less so for extreme ultraviolet radiation
where the requisite laser intensities are rather modest, in the 1012 W/cm2 to 1013 W/cm2

range.
For further discussion of these non-linear processes the reader is referred to the book by

Kruer1 and the article by Baldis, Campbell, and Kruer33 in which they describe in detail several
stimulated processes, their specific thresholds, and in particular, limits to growth rates in sharp
gradient plasmas where energy and momentum matching can only be achieved over limited
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F IGURE 6.13. The basic cycle of a particle
simulation code. (Following Kruer.1)

spatial dimensions. In the case of sharp gradients the intensity–wavelength thresholds, Iλ2 in
Eq. (6.131b), evolve to Iλl thresholds, where l is the density scale length. For instance, see
Table 2 of Baldis, Campbell, and Kruer.33 Experiments confirming several of these thresholds
are reviewed by Drake.38

6.5 NUMERICAL SIMULATIONS

The plasma theories considered in Section 6.4 are complicated in several ways. As we have
seen, they are highly non-linear, the parameters vary sharply in space and in time, and they
involve both fluid and kinetic details characteristic of long range and short range interactions.
Linearized theories built around slowly varying background quantities are very useful for
understanding the basic phenomena and obtaining initial growth rates for non-linear processes,
but they are not adequate in themselves for the inherent complexities of hot dense plasmas.
Numerical simulations offer additional tools to address these complex phenomena. We discuss
two methods in particular that address different aspects of this problem. One technique, called
particle in cell calculations, follows the detailed kinetic motion of a finite number of particles
in a background of limited space–time variations. These techniques are particularly useful
for studying particle kinetics and wave growth in highly non-linear laser plasma interactions.
A second numerical technique, sometimes referred to as “hydrodynamic transport codes,”
utilizes zonal tracking of fluid properties such as density, temperature, and velocity in the
presence of strong localized heating (laser energy deposition), including thermal and non-
thermal energy transport among zones, with the use of energy bins as needed. These are
generally called Lagrangian techniques in that they tend to follow identifiable mass regions
as their positions and shape evolve in time.

6.5.1 Particle in Cell Simulations

In the particle in cell numerical simulations, a finite number of charged particles are tracked
as their positions and velocity evolve in response to the self-consistent fields, electric and
magnetic, they themselves produce, as well as any applied fields. As an initial condition, a
distribution of charged particle positions and velocities is selected, perhaps to represent a
modest one-dimensional density ramp, with electron velocities chosen to represent a selected
electron temperature, and ions immobile. From these initial positions and velocities the charge
distributions and currents are determined on a spatial scale (grid) sufficient to resolve collective
motion. These are then used with Maxwell’s equations to calculate the electric and magnetic
fields generated. These fields, averaged over a suitable grid, are then used with the Lorentz
force to determine changes in the position and velocity of all the particles. This constitutes
one step in the simulation. The process is continued,1, 10 as shown in Figure 6.13, with charge
densities and currents re-determined for each step. The process is repeated through many
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F IGURE 6.14. Numerical simulation of stimulated Raman scattering from a plasma with an electron
density ramp (a) just reaching nc/4 in a distance of about 16 wavelengths of the incident laser radiation.
The initial electron (thermal) temperature (b) is ve/c = 0.028, and the incident laser intensity is such
that (vos/ve)2 = 1.1. The electron velocities as a function of position are shown at 1600 (c) and 3000
(d) cycles. The Raman scattered electromagnetic wave at ωi/2 and other half harmonics is shown in (e)
and (f). (Courtesy of D. Forslund, J. Kindel, and E. Lindman, Los Alamos National Laboratory.)

cycles at small time intervals, sufficient to resolve the phenomena of interest, but typically on
a time scale equal to a small fraction of 1/ωp.

Figure 6.14 shows the results of a numerical simulation of stimulated Raman scattering by
Forslund, Kindel, and Lindman,39 in which the motion of 15,000 electrons, initially distributed
in an electron density map extending from nc/8 to nc/4, with a thermal velocity distribution
ve/c = 0.028, is tracked as a function of time during irradiation by intense laser light (λ)
that induces an oscillatory motion of the electrons at vos/c = 0.30, thus just above the condition
for |vos/ve|2 = 1 in Eq. (6.122). The ions are held immobile. The electron density map and
initial (thermal) velocity distribution are shown in Figure 6.14(a) and (b), respectively. The
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F IGURE 6.15. The electron energy distribution
determined in a numerical simulation of the
stimulated Raman scattering process, for a uniform
plasma of electron density n = nc/10, plasma
length of 127 electromagnetic wavelengths, initial
electron temperature of 1 keV, and incident laser
intensity I corresponding to (vos/ve)2 = 0.53. The
simulation shows a heated electron tail at
κThot = 13 keV, essentially corresponding to
electrons of velocity equal to the phase velocity of
the simulated electron-acoustic wave. (Courtesy of
Estabrook, Kruer, and Lasinski, Lawrence
Livermore National Laboratory.)

velocity distributions are shown later, after 1600 and 3000 oscillations, in Figure 6.14(c)
and (d), displaying very large amplitude oscillations, much larger than ve, near the quarter-
critical density. The amplitude of the scattered wave’s electric field is shown in Figure 6.14(e),
indicating an extremely sharp rise, with a growth period measured in tens of cycles of the
incident radiation, essentially equal to the transit time across the density ramp. The power
spectrum of scattered radiation shows a very strong component at ω = ωi/2, as would be
expected for Raman scattering, and many additional half-frequency harmonics due to the
onset of further wave mixing in this very intense and highly non-linear interaction. In these
calculations about 30% of the incident electromagnetic energy goes to the plasma oscillation.

Further simulations by Estabrook, Kruer, and Lasinski40 explore the electron heating due
to the intense stimulated Raman process in a wide range of electron densities, with mobile
ions, and with competition among non-linear processes. Figure 6.15 shows the heated electron
energy distribution for a simulation in which an incident laser wave (λ) of intensity I , such
that the ratio in Eq. (6.131), |vos/ve|2 = 0.53, traverses a uniform plasma of electron density
n = nc/10 and length L = 127λ, and initial electron temperature 1 keV. The figure shows
a cold (thermal) component and a heated electron component characterized by κThot � 13
keV, due to the wave–particle interaction between electrons and the stimulated electron-
acoustic wave. Further simulations show that, as expected from the arguments in Section
6.4.10, Eqs. (6.126) to (6.130), the energy of the heated electrons is largely dependent on
the phase velocity of the Raman stimulated electron-acoustic wave (e.g., on κTe and ne or
ωp), and only weakly dependent on the incident wave intensity. Indeed, the simulations show
that through control of the phase velocity of the electron-acoustic wave, largely the choice of
ne/nc, it is possible to generate a Raman heated electron tail of energy up to 100 keV, as was
suggested below Eq. (6.130).

6.5.2 Lagrangian Zonal Calculations of Plasma Mass and Energy Transport

Our description of the hot dense plasma includes sharp density profiles, rapid thermal expan-
sion, and a host of non-linear terms, which in general cannot be linearized. Furthermore, we
have seen that the energy distributions of particles and radiation can have substantial non-
thermal components. Under these circumstances the mathematical problem of describing the
plasma evolution is analytically intractable. Rather we again seek numerical solutions, in this
case fluidlike Lagrangian computer codes in which the plasma mass is grouped into zones
of specified mass, with appropriate fluid level parameters, whose evolution is followed as
they absorb energy, increase in temperature and pressure, and expand. Basic parameters in
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F IGURE 6.16. Results of Lagrangian calculation of hot dense plasma expansion from a laser-heated
parylene disk (a) at the peak of a nominally 1 × 1014 W/cm2, 150 ps FWHM pulse of 1.06 µm light.
The non-uniform laser light intensity is shown to the right in (b). Shown in (b) are mass density
contours corresponding to electron densities of nc/2, 2nc, and 50nc at the peak of the 0.5 nsec laser
pulse. Also shown are electron temperature contours for 0.5 keV, 0.3 keV, and 0.1 keV in the dense
region of the plasma (higher in the low-density region). Various contours for calculated off-axis “dc”
(varying only on the time scale of the expansion, not of the laser light) magnetic fields in megagauss
are also shown. (Courtesy of G. Dahlbacka, M. Mead, C. Max, and J. Thomson, Lawrence Livermore
National Laboratory.)

each zone include density, temperature, pressure, vector velocity, multiple species, perhaps
energy bins for electrons and photons, etc. As an example, Figure 6.16 shows a Lagrangian
mesh calculated for a hot dense plasma as it expands from a laser-heated parylene (CH) disk.
These computations are done with the program LASNEX developed by Zimmerman and
colleagues41 at Lawrence Livermore National Laboratory.

Shown are the expanded zones at the peak of the laser pulse after each has absorbed
prescribed amounts of laser energy and increased in temperature and pressure, thus exerting
pressure on surrounding zones causing fluid motion. Note that one side is shown for this ax-
isymmetric problem. Larger zone size indicates lower density; thus we see directly the plasma
expansion into vacuum at the right. Mass density contours corresponding to electron densities
of nc/2, 2nc, and 50nc are shown, as are electron temperature contours for 0.1, 0.3, and 0.5 keV.
Expansion velocities of the critical density surface in these numerical simulations, obtained
by comparing zone positions at the two different times in the calculation, are typically 0.3
µm/ps, similar to the values estimated in Section 6.4.4 following Eq. (6.69). These Lagrangian
computer codes are of great utility in understanding the complex fluid (plasma) dynamics, and
also in the interpretation of experimental data, as the measurements generally involve finite
space–time and spectral resolution in the presence of the sharp space–time gradients.

The simulation in Figure 6.15 was part of an effort to determine possible mechanisms
for inhibiting energy transport from the sub-critical absorption region to the more dense
supra-critical region, and thus a possible explanation of hard x-ray (suprathermal) tails. Two
candidates considered were turbulent electron density fluctuations that would enhance elec-
tron scattering and thus inhibit energy transport, and megagauss magnetic fields that might
also inhibit energy transport to the dense plasma region. In the particular case examined in
Figure 6.15 a somewhat annular laser light illumination pattern was used to generate strong
lateral gradients, creating a ∇ne × ∇Te driven annular magnetic field, in this case reaching
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levels as high as 2 MG in a wrap-around (toroidal) field. Although not confirmed in early ex-
periments, the subject of laser-generated megagauss magnetic fields continues to be of great
interest.43

Through this example we see that numerical techniques can provide a very valuable
tool for the study of complex hot dense plasmas, and also provide substantial assistance
for interpreting experimental results that themselves are limited by finite spatial and temporal
resolution, and thus not uniquely understandable without further information. These numerical
simulation techniques provide a major capability for the planning and subsequent analysis of
laser-fusion experiments,41 as well as the emission characteristics from laser plasma sources.

6.6 DENSITY GRADIENTS: UV AND EUV PROBING

We have seen in preceding chapters that the electron density scale length plays an important role
in determining which of several possible mechanisms dominates the absorption process. For a
long scale, at moderate laser intensity, collisional absorption is very efficient, while for short
scale length resonant absorption can also be important. For long scale lengths several non-linear
processes can be important at high intensity. However, at high intensities the plasma density
distribution can be strongly affected by radiation pressure, which we will discuss shortly.
In any event it is important to measure the electron density scale length to better under-
stand the competition among linear and non-linear mechanisms, and to quantitatively under-
stand the dominant process. Toward that end we discuss measurements of electron density
through the use of short wavelength interferometry in this section.

First we note that for high intensity radiation it is possible to generate sufficiently strong
radiation pressure Pr, comparable to the plasma’s electron thermal pressure Pe, such that the
plasma is partially excluded from regions of otherwise high density.1 The size of this effect
can be estimated by considering the momentum transfer of absorbed and reflected photons
near the region. For absorbed photons that deliver a momentum h̄k, and reflected photons that
have a change of momentum 2h̄k, one can readily show that the radiation pressure, expressed
as the momentum change per unit area, is approximately

Pr = (2 − fabs)Fh̄k

A

where fabs is the absorption fraction and F is the incident photon flux within an area A. With
k = ω/c and intensity I = h̄ωF/A, the radiation pressure is

Pr = (2 − fabs)I

c

For a plasma of electron density ne and temperature κTe, the electron thermal pressure Pe is

Pe = neκTe

so that the ratio is

Pr

Pe
� (2 − fabs)I

cncκTe

For a 1 keV plasma at 1021 e/cm3 and an absorption fraction (near critical) of 0.5, the ratio
is unity for a laser intensity of about 3 × 1015 W/cm3. Thus even for some fraction of
this intensity the radiation pressure can significantly affect the sub-critical electron density
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profile,44 and thus the competition and effectiveness of the various linear and non-linear
absorption processes.

It is possible to measure electron density distributions in the critical region using interfer-
ometric probing techniques. Generally the experiments employ a shorter wavelength probe to
minimize refractive bending in the steep gradient plasma, and small targets so as to minimize
the path length and thus the total turning angle. For plasma of a given electron density ne � nc,
the refractive index n is given by Eq. (6.114b) as

n � 1 − 1

2

ne

nc

where by Eq. (6.112)

nc = 1.11 × 1021 e/cm3

λ(µm)2

for a probe of wavelength λ in microns. The first experiments45, 46 to successfully probe the
critical region of a Nd-laser irradiated target utilized a frequency quadrupled (4ω) probe of
ultraviolet wavelength 266 nm, so that the plasma contribution to the refractive index was
reduced by a factor of 16. The number of fringes NF observed after propagating a distance
L in a medium of refractive index n, and comparing with an equal path L in vacuum, is (see
Chapter 3)

NF = 1

λp

∫ L

0
(1 − n) ds (6.132)

where λp is the probe wavelength, ds is the incremental path length, and L is the total extent
of propagation in the medium. For a region or relatively uniform density over a path length
L , the number of fringes is then NF = ne L/2ncλp, where nc is the critical density for the
probe at λp. For a laser heating pulse of wavelength λ and associated critical density nc, the
number of fringes is NF = λp L/2λ2. To avoid the difficulty of too many fringes, perhaps
too closely spaced, to be optically resolved or so close that they are easily time smeared, it is
clearly advantageous to choose a short probe wavelength λp and a short plasma propagation
path L . If the axial gradient is such that the electron density falls to a value 1/e in a distance
l , then the fringe separation distance45 at critical is

�z|c = l
NF/e

� 5.4lλ2

λp L
(6.133a)

or in terms of the critical electron density [Eq. (6.112)]

�z|c � 2.1 × 102 m

µ0e2
· l
λp Lnc

(6.133b)

which explicitly shows the functional dependence of required spatial resolution for short
wavelength interferometry on the plasma parameters l , L , and nc, for a probe wavelength
λp. Clearly, to probe high electron densities in steep gradient plasmas it is necessary to
minimize the product λp L . To probe the critical density associated with a laser heating pulse
of wavelength λ = 1.06 µm, with a 4ω probe at wavelength λp = 266 nm, assuming a gradient
length λ = 1.5λ � 1.6 µm and a plasma lateral extent of L = 30 µm requires a spatial
resolution [Eq. (6.133)] of about 1.1 µm, which can be accomplished at 266 nm with a
commercially available UV objective lens.
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F IGURE 6.17. UV interferograms of laser produced plasmas, created with a 1.06 µm laser pulse, 30 ps
FWHM, with nominal intensities of 3 × 1014 W/cm2. The probe pulse wavelength is 266 nm, with a
15 ps FWHM duration, timed to arrive at the peak of the heating pulse. The interferograms are
obtained using a holographic technique. The lack of temporal smearing in many such experiments
suggests that critical surface moves more slowly than predicted, perhaps due to radiation pressure.45, 46

Figure 6.17 shows two such interferograms,45 obtained using a holographic interferometer
at 266 nm wavelength to probe plasma irradiated at 3 × 1014 W/cm2 with a spherical shell
target (a) and with a flat disk target (b). In both cases the electron density distribution was
determined assuming axial symmetry. Both show clear effects of radiation pressure pushing
plasma (partially) out of the near-critical interaction region. Assuming an electron temperature
of 1 keV, the ratio of pr to Pe is about 0.1 in these experiments. The spherical glass shell target
experiment [Figure 6.17(a)] had the advantage of a short propagation path and thus was able
to probe to just above the critical density. The target diameter was only 41 µm, and the lateral
probing distance, equivalent to L , was shorter still. Note that the axial density profile shows
a pronounced steepening just below critical, with a measured scale length l � 1.6 µm. This
is quite similar to values seen in numerical simulations and is perhaps affected somewhat by
the finite resolution of the UV objective lens, which is just under 1 µm at 266 nm wavelength.
The flat disk targets are of larger diameter, that in Figure 6.17(b) having a 70 µm diameter,
thus limiting the measurements to about half-critical density. Their analysis, however, is to
first order simpler. All the targets in this series show relatively flat fringe patterns, which for
an axisymmetric geometry indicate very clearly46 the presence of a density depression, or
cavity, in the sub-critical region.

It is evident from Eq. (6.133) that to resolve fringes at high electron density, one key is to
probe at shorter wavelength. Toward this end Da Silva and his colleagues47 have developed
a 15.5 nm probe beam based on EUV lasing, a subject discussed in Chapter 7, and have used
it to probe relatively large scale plasmas at L � 1 mm and electron densities in excess of
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F IGURE 6.18. (a) An interferogram of an expanding CH plasma obtained with a 15.5 nm wavelength,
350 ps duration laser pulse. The plasma is produced by a 1 ns square pulse of 0.5 µm laser light at an
intensity of 2.7 × 1013 W/cm2 on a triangular shaped CH target. The probe pulse, from a neon-like
yttrium laser, is of 300 ps duration, timed to arrive 1.1 nsec after initiation of the heating pulse.
(b) Measured electron density, to values above 1021 e/cm2, are shown for a position 0.35 mm from the
target surface. (Courtesy of L. Da Silva, Lawrence Livermore National Laboratory.)

1021 e/cm2. Figure 6.18 shows (a) a fringe pattern obtained with a hot dense plasma expanding
from a laser heated Mylar (CH) target, and (b) the measured electron density as a function of po-
sition away from the target surface. The target is irradiated with a 1 ns duration rectangular pulse
of 0.53 µm (frequency doubled Nd) laser light, at an intensity of 2.7 × 1013 W/cm2, in a 0.7
mm diameter focal spot. The expanding plasma was integrated with a 350 ps duration, 15.5 nm
probe pulse, arriving 1.1 ns after the arrival of the laser heating pulse. Analysis of the fringe pat-
tern indicates a peak electron density of 3×1021 e/cm3 and a scale length of l � 40 µm. This
clearly represents a new capability of the study of electron density distributions in hot dense
plasmas, extendible to densities of 1022 e/cm3 in sub-millimeter plasmas. Indeed, the authors
have used the 15.5 nm laser pulse to interferometrically probe colliding high density plasmas of
interest to the inertial confinement fusion (ICF, or laser fusion) community.47 Moreno, Rocca,
and colleagues have recently reported the study of plasma dynamics in a capillary discharge
using shadowgrams at 48.9 nm with a table top Ne-like laser (see Chapter 7, Section 7.5).

6.7 X-RAY EMISSION FROM A HOT DENSE PLASMA

That a plasma is both hot and dense, characterized by keV temperatures and near-solid den-
sities, ensures that it will be a bright source of short wavelength radiation. As we have seen
in the preceding sections, there is the possibility of both thermal and non-thermal processes
taking place, from classical electron–ion collisions to highly non-linear three-wave mixing
processes, each impressing its own signatures on the electron velocity distribution, and even-
tually on the observed emission spectra as the electrons collide with ions or nearby dense
material. In the following subsections we consider various aspects of the emission process,
with examples of line and continuum radiation.
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F IGURE 6.19. Typical x-ray spectra from a laser irradiated high Z target at moderate Iλ2. The data
was obtained at Lawrence Livermore National Laboratory’s Nova Laser Facility. (Courtesy of
R. Kauffman.)

Figure 6.19 shows data of the type we might expect to encounter.49 It shows the radiated
spectral energy density, in joules per keV bandwidth, radiated into 4π sr, for a gold disk
target irradiated with 0.35 µm light (3ω of Nd) at an intensity of 5 × 1014 W/cm2, in a
1 nsec duration pulse. The emission spectrum shows a near-thermal continuum in the sub-
kilovolt photon energy range, characteristic line spectra at a few keV (relatively broad M-band
structure in this case), an exponentially falling spectrum of mixed free–bound and free–
free bremsstrahlung radiation extending to photon energies of order 10 keV, and finally a
suprathermal tail extending to 100 keV and beyond. In the following sections we consider
separately general aspects of the thermal component, followed by various examples of line
and continuum radiation is the sub-kilovolt and kilovolt photon energy ranges.

6.7.1 Continuum Radiation and BlackBody Spectra

We have seen in previous sections that hot dense plasmas are characterized by sharp spa-
tial and temporal gradients, rapid expansion, and a variety of characteristic temperatures
(Te, Ti, Thot, . . .). Such a plasma is clearly far from equilibrium. Nonetheless, a great fraction
of the plasma energy is invested in a near-thermal distribution, and thus it is valuable to pause
and consider the limiting case of blackbody radiation, that emitted by material characterized
by a single temperature T that is in thermodynamic equilibrium with its surroundings.

In 1900 Max Planck, in an early contribution to the quantum theory of matter,50 showed
that if one assumed radiation to be emitted in discrete quanta of energy, with energy propor-
tional to frequency, that the spectral energy density of radiation for such a body in equilibrium
is51, 52

U�ω = h̄ω3/π2c3

eh̄ω/κT − 1
(6.134a)

in units of energy per unit volume, per unit frequency interval �ω, at frequency ω, i.e.,
�2 E/�V �ω. Expressing this in terms of relative spectral bandwidth (�ω/ω), the spectral
energy density [�2 E/�V (�ω/ω)] becomes

U�ω/ω = h̄ω4/π2c3

eh̄ω/κT − 1
(6.134b)
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Since the radiation is isotropic and propagating at the speed of light, we may write the spectral
brightness as

B�ω/ω = cU�ω/ω

4π
= h̄ω4/4π3c2

eh̄ω/κT − 1
(6.135a)

now in units of energy per unit time, per unit area, per steradian, per unit relative spectral
bandwidth [�4 E/�t �A �	 (�ω/ω)]. Observing that energy per unit time can be written in
terms of energy per photon (h̄ω) times the photon flux, the spectral brightness can be rewritten
in terms of photon flux, rather than energy, as

B�ω/ω = (h̄ω)3

4π3h̄3c2

1

eh̄ω/κT − 1
(6.135b)

now in photons per second per steradian per unit area · per unit �ω/ω. Normalizing to κT
and substituting standard values for h̄ and c (from Appendix A), the spectral brightness of
blackbody radiation can be expressed as

B�ω/ω = 3.146 × 1020

(
κT

eV

)3 (h̄ω/κT )3

(eh̄ω/κT − 1)

photons/s

mm2 · sr · (�ω/ω)

(6.136a)

This can also be expressed in units previously used for the brightness of synchrotron radiation
(Chapter 5, Section 5.4.6) by noting that 1 sr = 106 mrad2, and that for the special case
�ω/ω = 0.1%BW,

B�ω/ω = 3.146 × 1011

(
κT

eV

)3 (h̄ω/κT )3

(eh̄ω/κT − 1)

photons/s

mm2 · mrad2 · (0.1%BW)

(6.136b)

The spectral brightness has a functional dependence of the form x3/(ex − 1), as plotted
in Figure 6.20, where x = h̄ω/κT . This Planckian function has a maximum value of 1.421 at
x = 2.822, so that the peak spectral brightness occurs at a photon energy

h̄ω|pk = 2.822κT

(6.137)

where the peak spectral brightness is, per steradian and per unit relative spectral bandwidth,

B�ω/ω(2.822κT ) = 4.472 × 1020

(
κT

eV

)3 photons/sec

mm2 · sr · (�ω/ω)

(6.138a)
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F IGURE 6.20. The Planck distribution function, of
the form x3/(ex − 1) where x = h̄ω/κT , for the
spectral distribution of radiation from a body in
equilibrium with its surroundings, a so-called
blackbody. The function peaks at x = 2.822, or
h̄ω = 2.822κT , where κT is the temperature in eV.

or, per square milliradian and per 0.1% bandwidth,

B�ω/ω(2.822κT ) = 4.472 × 1011

(
κT

eV

)3 photons/sec

mm2 · mrad2 · (0.1%BW)

(6.138b)

Thus for example, at a radiation temperature of κT = 100 eV, the peak spectral bright-
ness at 282 eV is 4.47 × 1026 (photons/s)/mm2 · sr, or 4.47 × 1017 (photons/s)/mm2 · mrad2·
(0.1%BW), falling to half these values to either side of the peak, at photon energies of 116 eV
and 541 eV. We see that a blackbody with κT of order 100 eV is a copious radiator of EUV
and soft x-ray radiation, indeed with a high spectral brightness. For laboratory plasmas we
will find that this provides a useful, if idealistic, limit for the consideration of near-thermal
radiation.

An important issue for laboratory plasmas is that the lifetime of the hot dense plasma
is in general very close to the duration of the heating pulse, which is typically measured in
nanoseconds for such high temperatures. Thus in order to obtain substantial time averaged
emission it becomes important to have a very high repetition rate, for instance, kilohertz lasers
in which each individual pulse is focused to an intensity of order 1012 W/cm2 or higher. These
numbers will become more meaningful as this section continues.

It is often of interest to know the radiant energy flux (power per unit area) passing a given
surface, as, for instance, through the hole in the cavity in Figure 6.21. Since the radiation
is isotropic within the blackbody, we understand that the net energy flow across any given
surface is zero. However, we may consider the single-sided integral of energy flux crossing
a specified area in one direction, which is non-zero. From Eq. (6.135a) we can compute the
spectral intensity of radiation crossing in one direction as

I�ω/ω =
∫

2π

B�ω/ω cos θ d	 (6.139)

where θ is measured from the surface normal, d	 = sin θ dθ dφ = 2π sin θ , for 0 ≤ θ ≤ π/2,
and where I�ω/ω has units of energy per unit area per unit of relative spectral bandwidth �ω/ω.
Since the spectral brightness is isotropic (no θ -dependence), and

∫ 2π

0 2π sin θ cos θ dθ = π ,
one has

I�ω/ω = 1

4π2h̄3c2

(h̄ω)4

eh̄ω/κT − 1
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F IGURE 6.21. A cavity, or hohlraum, in which the
contained radiation field is in radiative equilibrium
with the surrounding wall.

Integrating this over all (normalized) frequencies dω/ω, one has the (single-sided) intensity
in units of energy per unit area, passing a given interface from one side to the other,

I =
∫ ∞

0

1

4π2h̄3c2

(h̄ω)3

eh̄ω/κT − 1
h̄ dω (6.140a)

I = (κT )4

4π2h̄3c2

∫ ∞

0

x3 dx

ex − 1
(6.140b)

where the integral can be found in standard integral tables53 as equal to π4/15, so that the
blackbody intensity at any interface is

I = π2

60c2h̄3 (κT )4 (6.141a)

or

I = σ T 4 (6.141b)

where

σ = π2κ4

60c2h̄3 (6.142)

is the Stefan–Boltzmann constant, written in terms of the Boltzmann constant κ .
Equation (6.141) is known as the Stefan–Boltzmann radiation law; it says that the radiant

energy flux per unit area crossing any surface or interface of a blackbody is proportional to
the fourth power of the absolute temperature. This applies to the energy received by a nearby
surface, and to the energy radiated back if the two are in radiative equilibrium.

Figure 6.21 illustrates a small cavity, or hohlraum, for which the radiationfield is Planckian
of temperature κT , in equilibrium with the surrounding walls, also at temperature κT . For a
very small hole, small enough so as not to upset the overall radiative equilibrium, the radiated
intensity per unit area is given by Eq. (6.141). This relationship is very useful for estimating
an upper bound to the radiated intensity from a laser heated surface, the sun, a fireplace, or any
hot object to the extent that it approximates radiative equilibrium. In many cases the emission
spectrum is quite complex and we define an equivalent blackbody temperature by setting the
radiated intensity equal to σ T 4.

Equation (6.141) can be written in terms of κT , expressed in electron volts, which is more
convenient for application involving EUV and soft x-ray radiation, i.e.,

I = σ̂ (κT )4 (6.143a)
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in terms of a modified Stefan–Boltzmann constant

σ̂ = π2

60h̄3c2
= 1.027 × 105 W

cm2 · eV4
(6.143b)

In these units we readily see that a blackbody with temperature κT = 100 eV radiates at an
intensity I � 1.0 × 1013 W/cm2, and according to Eq. (6.137) peaks at h̄ω = 282 eV.

We might ask under what practical circumstance such emission characteristics might
be achieved with a laboratory laser produced plasma, with finite fractional absorption of the
incident laser radiation, and fractional conversion of absorbed light to re-radiated near-thermal
emission. Experience with high intensity, nominally nanosecond duration laser pulses tells
that the plasmas produced reach a steady state in a matter of picoseconds, during which the
hot dense plasma is formed and energy partition between the charged particles, radiation
field, and surrounding material is achieved, albeit briefly. Depending on various parameters,
including intensity, laser wavelength, material (Z ), and achieved temperature, as discussed
earlier in Sections 6.4.9 and 6.4.10, this can lead to the creation of a rather efficient hot
dense plasma radiator of soft x-rays and extreme ultraviolet radiation. For example, with a
laser of 0.53 µm wavelength and incident intensity of 1014 W/cm2 in a half nanosecond
duration pulse incident on a medium to high Z solid target, one can expect to produce a near-
thermal plasma with typically 80% absorption33 of the incident laser energy, and 10% of the
absorbed energy re-radiated at short wavelengths, for a total radiation conversion efficiency49

of about 50% (see Section 6.7.6 regarding laser wavelength trends). Thus the re-radiated
intensity would be 5 × 1013 W/cm2, which for a blackbody according to Eq. (143a) would
correspond to a temperature T � 150 eV, with a peak [Eq. (6.137)] at 420 eV. Even with an
incident laser intensity of 1012 W/cm2, with similar assumptions, the equivalent blackbody
temperature is reduced by only a factor of about 3.2 (fourth root), so that κT � 50 eV, with
peak emission at a photon energy of about 140 eV, sufficiently energetic to create the desired
ionization states among the plasma ions and to radiate strongly in the EUV region of the
spectrum. We discuss the departures for the idealized blackbody emission in the following
sections.

6.7.2 Line Emission and Ionization Bottlenecks

Hot dense plasmas are essentially fully ionized, that is, every atom has at least one electron
removed. In fact the temperatures are sufficiently high that most atoms have many fewer bound
electrons than protons in the nucleus. The ionization state (number of electrons removed)
depends primarily on the binding energies of the various electrons and on the electron plasma
temperature. Typically the outer electrons in a multi-electron atom are held by only a few
electron volts, while the core K, L, and M shell electrons (principal quantum numbers n = 1,
2, and 3) are closer to the nucleus and held more tightly, with binding energies of hundreds of
thousands of electron volts.54 Table 6.2 gives the binding energies calculated by Scofield55 for
selected ions. The elements listed vertically extend from a carbon nucleus (Z = 6) to a xenon
nucleus (Z = 54). Shown in the body of the table is the energy in electron volts required to
remove an additional electron from an ion having 1 (“hydrogen-like”), 2 (“helium-like”), . . . ,
10 (“neon-like”), etc., remaining electrons.

For example, aluminum in its neutral state has 13 electrons. Table 6.2 indicates that with
one electron already gone and 12 remaining (“magnesium-like” in electron configuration) the



TABLE 6.2. Ionization energies for selected ionic species. Each column is labeled with the number of
electrons bound to the ion before ionization and, in parenthesis, the symbol of the neutral atom with the same
number of electrons.

Ionization energy (eV)

Element 1 (H) 2 (He) 3 (Li) 4 (Be) 10 (Ne) 11 (Na) 12 (Mg) 27 (Co) 28 (Ni) 29 (Cu)

6 C 490.0 392.1 64.49 47.89
7 N 667.1 552.1 97.89 77.48
8 O 871.4 739.3 138.11 113.90
9 F 1103.1 953.9 185.18 157.15

10 Ne 1362.2 1195.8 239.09 207.26 21.564

11 Na 1648.7 1465.1 299.86 264.21 47.286 5.139
12 Mg 1962.7 1761.8 367.5 328.0 80.143 15.035 7.646
13 Al 2304.2 2086.0 442.0 398.7 119.99 28.447 18.828
14 Si 2673.2 2437.7 523.4 476.3 166.42 45.12 33.64
15 P 3070 2816.9 611.7 560.8 220.31 65.02 51.80

16 S 3494 3224 707.0 652.1 281.00 88.05 72.59
17 Cl 3946 3658 809.2 750.5 348.5 114.20 96.84
18 Ar 4426 4121 918.4 855.8 422.8 143.46 124.24
19 K 4934 4611 1034.6 968.0 503.9 175.82 145.75
20 Ca 5470 5129 1157.7 1087.3 591.9 211.28 188.38

21 Sc 6034 5675 1288.0 1213.6 686.6 249.84 225.13
22 Ti 6626 6249 1425.3 1346.9 788.2 291.50 264.98
23 V 7246 6851 1569.7 1487.3 896.6 336.3 307.9
24 Cr 7895 7482 1721.1 1634.8 1011.8 384.2 354.0
25 Mn 8572 8141 1879.9 1789.5 1133.8 435.2 403.2

26 Fe 9278 8828 2045.8 1951.3 1262.7 489.3 455.6
27 Co 10012 9544 2218.9 2120.4 1389.3 546.6 511.0 7.86
28 Ni 10775 10289 2399.3 2296.7 1540.8 607.0 569.7 18.17 7.63
29 Cu 11568 11063 2587.0 2480.2 1690.2 670.6 631.4 36.83 20.29 7.73
30 Zn 12389 11865 2782.0 2671.1 1846.4 737.3 696.4 59.57 39.72 17.96

31 Ga 13239 12696 2984.4 2869.4 2009.4 807.3 764.5 86.0 63.4 30.7
32 Ge 14119 13557 3194 3075 2179.3 880.4 835.8 115.9 90.5 45.72
33 As 15029 14448 3412 3288 2356.0 956.8 910.3 149.2 121.2 62.3
34 Se 15968 15367 3637 3509 2539.6 1036.3 988.1 185.5 155.4 81.7
35 Br 16937 16317 3869 3737 2730.1 1119.1 1069.1 225.4 192.8 103.0

36 Kr 17936 17296 4109 3973 2927.4 1205.2 1153.3 268.2 233.4 125.9
37 Rb 18965 18306 4357 4216 3132 1294.5 1240.8 314.2 277.1 150.7
38 Sr 20025 19345 4612 4467 3343 1387.2 1331.5 363.3 324.1 177.3
39 Y 21115 20415 4876 4726 3561 1483.1 1425.6 413.6 374.0 205.9
40 Zr 22237 21516 5147 4993 3786 1582.4 1523.0 471 427.4 236.2

41 Nb 23389 22648 5426 5268 4017 1684.9 1623.7 530 483.8 268.5
42 Mo 24572 23810 5713 5550 4256 1790.9 1727.8 592 541.7 302.6
43 Tc 25787 25004 6008 5841 4502 1900.3 1835.2 656 605.8 338.5
44 Ru 27033 26230 6312 6140 4754 2013.0 1946.1 724 671.4 376.3
45 Rh 28312 27487 6623 6447 5014 2129.2 2060.3 795 740.1 416.0

46 Pd 29623 28776 6943 6762 5280 2248.9 2178.0 869 811.8 457.5
47 Ag 30966 30097 7271 7086 5553 2372.0 2299.2 946 886.6 500.9
48 Cd 32341 31451 7608 7418 5834 2498.6 2423.9 1026 964.5 546.2
49 In 33750 32837 7953 7758 6121 2628.8 2552.1 1109 1045.4 593.3
50 Sn 35192 34257 8307 8107 6415 2762.5 2683.9 1196 1129.1 642.3

51 Sb 36668 35710 8670 8465 6717 2899.8 2819.2 1285 1215.3 693.2
52 Te 38177 37196 9041 8832 7025 3041 2958.1 1377 1306.3 746.1
53 I 39721 38716 9421 9207 7340 3185 3101 1472 1399.3 800.8
54 Xe 41300 40271 9810 9591 7663 3334 3247 1571 1495.4 857.4

(Courtesy of J. Scofield, Lawrence Livermore National Laboratory.)
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calculated energy to remove the twelfth electron is 18.8 eV. That would leave 11 electrons.
The energy required to remove another electron (the eleventh) is 28.4 eV. Having removed the
eleventh, there are 10 remaining electrons, forming a closed shell in the neon-like (1s2 2s2 2p6)
configuration. The symmetry of the closed shell makes removal of an additional electron more
difficult, and the ionization potential (binding energy) jumps significantly to 120 eV for neon-
like aluminum. This significantly increased threshold for further electron removal can be
considered an ionization bottleneck for a plasma of a given temperature.

For instance, if irradiation conditions (intensity, etc.) were adjusted to produce an electron
temperature of 60 eV, as cited in the previous subsection, one could expect that relatively direct
electron–ion collisions would easily remove the outermost electrons of most aluminum ions,
including the eleventh electron, of binding energy equal to 28.4 eV. However, removal of
electrons from the remaining 10-electron neon-like configuration, of binding energy equal
to 120 eV, would be substantially more difficult for a 60 eV temperature plasma. As the
temperature represents a distribution of energies, there are certainly higher energy electrons
that can cause further ionization, but the energy distribution [Eq. (6.86)] falls off exponentially
beyond κT , so that the process quickly decreases in efficiency.

We will show data in Section 6.8.4 for the line emission from a laser-produced titanium
(Z = 22) plasma at high laser intensity, with κTe � 1–2 keV, where the ionization thresholds
(Table 6.2) permit relatively easy removal of all but the last two electrons. For example, with
only three electrons remaining, the energy required to remove an additional electron is 1.4
keV, which occurs rather efficiently in a 1–2 keV plasma. With two remaining electrons, the
ion is then in a helium-like closed shell configuration and the threshold for further ionization
jumps to 6.2 keV, creating a well-defined step (bottleneck) in this sequential ionization pro-
cess. As a result the plasma at this temperature consists largely of helium-like titanium atoms
with some lithium-like and beryllium-like ions, but little else. As we will see in Section 6.7.4,
this leads to very strong line emission from helium-like titanium ions. The principal n = 2 to
n = 1 transitions for helium-like (and hydrogen-like) ions, again calculated by Scofield,55 are
given in Table 6.3. For the helium-like titanium ion the table shows principal emission lines at
4.727 keV and 4.750 keV: the 1P1 and 3P1 to 1S0 resonance and intercombination 1s2p → 1s2

transitions.

6.7.3 Sub-Kilovolt Line and Continuum Emissions

Hot dense laboratory plasmas are copious emitters of extreme ultraviolet and soft x-ray ra-
diation, have a generally complex internal density and temperature structure, and are not in
equilibrium with their surroundings, although they may reach some quasi-steady state for a
brief period during their expansion. These laboratory plasmas generally exhibit an emission
spectrum different from the ideal blackbody considered in Section 6.7.1. Recall that the high-
est electron temperature occurs in the relatively low density (ne ≤ nc) absorption region. The
absorbed energy is transported by random charged particle motion and radiation to a cooler,
higher density (ne > nc) region. Radiation from this relatively high density region tends to
dominate the emission process, generating the bulk of low to medium photon energies. As
the propagation path is relatively long, through a dense plasma region, the line spectra due
to the various ions tends to be smoothed to a modulated continuum. Where the modulation
is relatively modest, blackbody radiation characteristics can be helpful in understanding and
scaling problems. In some cases it is useful to introduce an equivalent blackbody temperature
Teq that would generate the same radiated intensity when integrated over a broad spectral
region. We will consider such radiation in this section.



TABLE 6.3. Transition energies for transitions from the n = 2 state to the n = 1
ground state of H- and He-like ions. (Courtesy of Scofield, Lawrence Livermore
National Labortory.)

Transition energy (eV)

Hydrogen-like Helium-like

Element 2p1/2 2p3/2 2p 3P1 2p 1Pl

5 B 255.17 255.20 202.78 205.37

6 C 367.5 367.5 304.3 307.8
7 N 500.3 500.4 426.3 430.7
8 O 653.5 653.7 568.7 574.0
9 F 827.3 827.6 731.5 737.8

10 Ne 1021.5 1022.0 914.9 922.1

11 Na 1236.3 1237.0 1118.8 1126.9
12 Mg 1471.7 1472.7 1343.2 1352.3
13 Al 1727.7 1729.0 1588.3 1598.4
14 Si 2004.3 2006.1 1853.9 1865.1
15 P 2301.7 2304.0 2140.3 2152.6

16 S 2619.7 2622.7 2447.3 2460.8
17 Cl 2958.5 2962.4 2775.1 2789.8
18 Ar 3318 3323 3124 3140
19 K 3699 3705 3493 3511
20 Ca 4100 4108 3883 3903

21 Sc 4523 4532 4295 4316
22 Ti 4966 4977 4727 4750
23 V 5431 5444 5180 5205
24 Cr 5917 5932 5655 5682
25 Mn 6424 6442 6151 6181

26 Fe 6952 6973 6668 6701
27 Co 7502 7526 7206 7242
28 Ni 8073 8102 7766 7806
29 Cu 8666 8699 8347 8392
30 Zn 9281 9318 8950 8999

31 Ga 9917 9960 9575 9628
32 Ge 10575 10624 10221 10280
33 As 11255 11311 10889 10955
34 Se 11958 12021 11579 11652
35 Br 12682 12753 12292 12372

36 Kr 13429 13509 13026 13114
37 Rb 14199 14288 13783 13880
38 Sr 14990 15090 14562 14669
39 Y 15805 15916 15364 15482
40 Zr 16643 16765 16189 16318

41 Nb 17503 17639 17036 17178
42 Mo 18387 18537 17907 18062
43 Tc 19294 19459 18800 18971
44 Ru 20224 20406 19717 19904
45 Rh 21178 21377 20658 20861

46 Pd 22156 22374 21622 21843
47 Ag 23157 23396 22609 22851
48 Cd 24183 24444 23621 23884
49 In 25233 25518 24657 24942
50 Sn 26308 26617 25717 26027
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F IGURE 6.22. Emission spectrum from a laser-heated lanthanum target, showing 4f to 3d line structure
due to ions in various ionization states from zinc-like (+27 charge state) to titanium-like (+35 charge
state). Laser energy is 70 J, 3.5 ns FWHM, 1.06 µm wavelength at about 1014 W/cm2. (Courtesy of
A. Zigler, Hebrew University, Jerusalem.)

In the following section we will consider higher photon energy radiation from the hotter
low density region in which the propagation path to vacuum is shorter, involves less absorption
and scattering, and results in a significantly modulated spectrum with pronounced line structure
characteristic of the various ionization states present. For a discussion of radiation transport in
optically thick (much absorption and scattering) and optically thin (minimal absorption and
scattering) regions of plasma see the book by Griem.9

An example of near-thermal emission from a moderate intensity high-Z laser-produced
plasma is shown in Figure 6.22. The experiment, conducted by Zigler and colleagues,56

utilized a 70 J, 3.5 ns FWHM Nd laser pulse at 1.06 µm wavelength, focused to an intensity
of about 1014 W/cm2 on a lanthanum (Z = 57) target. Dispersion of the emitted spectrum
was achieved through use of a potassium ammonium phosphate (KAP) crystal and recorded
on RAR 2495 x-ray film. The observed modulation of the emission spectrum is ascribed to
4f → 3d transitions in lanthanum ions of various ionization states, extending from zinc-like
(30 remaining electrons, +27 charge state) to titanium-like (22 remaining electrons, +35
charge state). The various peaks consist of numerous closely packed lines in what the authors
call an unresolved transition array. After correcting for the non-linear film response,57, 58 the
modulation is only about 20%, peak to valley. The ionization energy for lanthanum in this range
of charge states (+35 to +27) is typically several hundred electron volts. At an irradiation
intensity of 1014 W/cm2 the maximum equivalent blackbody temperature is about 170 eV,
with a peak photon energy near 500 eV, or a wavelength of 25 Å. Thus the observed lines
in Figure 6.22 are likely somewhat on the high photon energy side of the emission peak. In
similar experiments, but with 20 times less laser energy, the authors report that the transition
arrays due to the higher ionization states are significantly less pronounced, merging into a
noisy continuum for Cr-like and beyond.

Emission from a moderate Z laser-produced plasma, also at moderate laser intensity,
is shown in Figure 6.23. In this case a chromium target (Z = 24) is irradiated with 1.06
µm wavelength light, at 2 × 1014 W/cm2, in a 150 ps duration pulse. Well-defined lines of
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F IGURE 6.23. The emission spectrum recorded for a chromium target irradiated by a 1.06 µm Nd laser
pulse of 150-ps duration and 2 × 1014 W/cm2 incident intensity. Prominent lines of neon-like Cr+14

are evident, as well as weaker Cr+15 (fluorine-like) lines. (Courtesy of R. Kauffman and L. Koppel,
Lawrence Livermore National Laboratory.)

neon-like Cr+14, and weaker Cr+15, are seen. The high photon energy limit of the observed
spectrum is set by the L-absorption edge of neutral iron (707 eV, Appendix D) in an overlying
filter. Dispersion here is provided by a lead behenate crystal (2d � 120 Å), with the data
recorded on x-ray film. According to Table 6.2, the ionization energy for Cr+13 (11 electrons)
is 384 eV, while that for neon-like Cr+14 (10 electrons) is 1012 eV. With an irradiation intensity
of 2×1014 W/cm2 we can expect an equivalent blackbody temperature κTeq � 200 eV, with a
spectral emission peak approaching 600 eV. This is then consistent with a neon-like ionization
bottleneck in which most Cr+13 ions are ionized further to Cr+14, explaining the observation
of strong Cr+14 lines and weak Cr+15 lines. According to Kelly,54 the principal 3s to 2p and
3d to 2p emission lines§ should lie at photon energies of 586 eV, 594 eV, 660 eV, and 670 eV,
respectively, very close to experimental values seen in Figure 6.23. Note that the Cr+15 3s to
2p lines are of somewhat higher energy than those for Cr+14, as there is one fewer electron
and thus somewhat reduced screening of the nuclear charge, leading to tighter binding of the
remaining electrons and somewhat larger transition energies. In general the spectral evidence
here appears to be quite consistent with an electron temperature, or equivalent blackbody
temperature, approaching 200 eV in the strong emission region of the plasma.

In many applications fine details of the emission spectra are not essential, except for
diagnostic purposes. Rather, what is essential is an accurate understanding of energy transport.
Toward this end it is often useful to measure the radiated energy in rather broad energy
bins (intervals). Slivinsky, Kornblum, Tirsell, and their colleagues59 have done this for the
laser fusion program at Lawrence Livermore National Laboratory using a series of glancing
incidence mirrors, K- and L-edge transmission filters, and absolutely calibrated x-ray diodes,
in instruments they refer to as “Dante.” These instruments have been used extensively, and
provide the basic data for many studies of the conversion efficiency of laser light to soft
x-rays. An interpretive summary of experiments at 1.06 µm, 0.53 µm, 0.35 µm, and 0.26 µm
wavelengths is given by Mead et al.36

§More completely, 1s2 2s 2p5 3s to 1s2 2s 2p6, etc.
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F IGURE 6.24. A schematic drawing of a time resolved three channel soft x-ray spectrometer, employing
a 15-ps resolution soft x-ray streak camera and three side-by-side “notch filters” nominally centered at
200 eV, 400eV, and 600 eV, each consisting of a glancing incidence soft x-ray mirror and a matching
K- or L-edge absorption filter. (Courtesy of G. Stradling, LANL, and R. Kauffman LLNL.)

Time resolved studies of thermal emission from laser-produced targets have been con-
ducted using a 15-psec resolution streak camera60 and a series of glancing incidence mirrors
with matching transmission filters,61, 62 as illustrated in Figure 6.24. The combination of low
pass glancing incidence mirrors and high pass transmission filters was described in Chapter 3,
Figure 3.11, as a notch filter with relative spectral pass band E/�E � 3 to 5. The streak cam-
era has a slit photocathode sensitive to soft x-rays and x-rays. The emerging photoelectrons
inside the tube are refocused as a slit image on a rear face phosphor plate. By optically trigger-
ing a properly timed ramp voltage the passing (time dependent) slit-shaped electron beam is
swept vertically across the output phosphor screen, producing a time resolved streak of the slit,
which is optically recorded. By placing information along the slit, such as three side-by-side
notch filtered soft x-ray signals, one can obtain a time history of emission in the three selected
photon energy bands. G. Stradling, R. Kauffman, H. Medecki, and colleagues61, 62 conducted
such studies with nominal 200 eV, 400 eV, and 600 eV channels of, respectively, a 5◦ carbon
mirror with a carbon K-edge filter, a 5◦ nickel mirror with a vanadium L-edge filter, and a 3◦

nickel mirror with an iron L-edge filter. Figure 6.25 shows the soft x-ray channels for a laser
irradiated gold disk target.

Spectral integration of the three channels, also shown in Figure 6.25, has a temporal peak
of radiated soft x-ray power equal to 1.5 × 1010 W, assuming isotropic radiation into 4π sr.
With an emission area equal to the laser focal spot area, this gives a temporally peaked soft
x-ray emission intensity of 3 × 1014 W/cm2. The equivalent blackbody temperature required
to radiate at this intensity, according to Eq. (6.143), is 230 eV, with a spectral peak at 660 eV.
Similar temperatures are quoted in the article by Sigel.63 Note that the time history is similar to
that of the irradiating laser pulse, 680 ps FWHM, except for a somewhat faster rise, presumably
due to heating of the initially cold target and a long temporal decay as the target cools and
energy flows to the low photon energy (200 eV) channel. Thus the soft x-ray emission has a
somewhat longer pulse duration of 790 ps FWHM. Note that a recording instrument with a
slower response would indicate a lower peak power (same radiated energy, longer time) and
thus a reduced equivalent radiation temperature. In Figure 6.25 the equivalent temperature
drops to about 160 eV at times ±0.5 nsec to either side of the temporal peak. Further time
resolved experiments, involving energy transport in layered targets, have been reported in
the thesis by Stradling61 in which the mirror–filter channels are replaced with narrow band
multilayer mirrors coated to match selected emission lines from various layers of the target
as thermal energy arrives (see Chapter 4, Section 4.5.4).
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F IGURE 6.25. Time histories of soft x-ray emission in the 200, 400, and 600 eV channels for a laser
irradiated gold disk target at an incident intensity of about 1015 W/cm2, in a 680-ps pulse of
frequency-doubled (2ω) Nd laser light at 0.53 µm wavelength. Spectral integration of the three
channels shows a total soft x-ray power that peaks at about 1.5 × 1010 W, assuming isotropic radiation
into 4π sr. The equivalent radiation temperature has a temperature peak at about 230 eV. (Following
R. Kauffman, unpublished, Lawrence Livermore National Laboratory.)

According to the blackbody scaling, it should be possible to obtain significant EUV
radiation at relatively low laser intensity on target. For instance, according to Eqs. (6.137) and
(6.143), it should be possible to obtain peak photon emission at 100 eV with an equivalent
blackbody temperature of only 35 eV, which radiates at only 1.5 × 1011 W/cm2. At these low
intensities laser light absorption is very efficient, perhaps 80%, with high (� 60%) fractional
conversion to near-thermal radiation. The model then suggests that a laser intensity of order
3×1011 W/cm2 on a medium or high Z target is sufficient. There is no need to employ a laser
wavelength of less than 1 µm at these low intensities, as non-linear processes leading to the
generation of suprathermal electrons would be unimportant. Several authors have pursued the
generation of EUV radiation with low intensity laser produced plasmas. Spitzer et al.64 have
studied tin (Sn) and gold (Au) laser produced plasmas at incident intensities from 109 W/cm2

to 1013 W/cm2, at 1.06 µm and 0.53 µm wavelength, with a 7.5 ns duration commercial laser.
Effort toward developing a suitable laser plasma source for EUV lithography has been

reported by Kubiak and colleagues,65 who have developed a gas jet target with laser irradiation
so as to eliminate the particulate debris that emerges from solid targets. For this particular
study emission just below the L-edge of silicon (99.2 eV; see Chapter 1, Table 1.2) is of
particular interest because of the desire to use Mo/Si multilayer interference coatings for EUV
lithography (see Chapter 4, Section 4.5.3). For their work they employ a supersonic Xe gas jet
irradiated at about 1012 W/cm2, with a commercial 1.06 µm Nd laser of nominal 5 ns duration,
at a repetition rate of 100 Hz. The focal region is typically 100 µm in diameter in a larger gas
jet plume. With this laser intensity it is possible to reach an electron temperature near 50 eV,
sufficient to generate strong emission in the 100–150 eV spectral region. The authors find that
the use of cluster seeding techniques enhances EUV yield by permitting the achievement of
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F IGURE 6.26. Emission spectra of a xenon plasma, produced in a 0.2 torr capillary discharge at 6 kA
peak current. (Courtesy of M. Klosner and W. Silfvast, U. Central Florida.)

greater than critical density in the laser–gas-jet interaction region. The conversion efficiency
with the seeded Xe jet is comparable to that of solid targets. Approximately 1% of the incident
light is converted to EUV radiation in a 2.5% relative spectral bandwidth at 13.4 nm, and into
2π sr. The emission within this band is dominated by spectrally unresolved 4d94f and 4d10

transitions of Xe+8 to Xe+10, which give a local enhancement to the spectrum.66

Of course the plasma exists only during irradiation, so that high repetition rates are the
key to achieving high time-averaged photon flux or high time-averaged EUV power. Several
authors have also pursued the generation of intense EUV radiation for these same purposes,
but using discharge plasmas. Klosner and Silfvast have reported the generation of intense
EUV radiation in the 10–16 nm wavelength region using a xenon discharge in a capillary
tube.67 An example of their data, obtained at a Xe pressure of 0.2 torr, is shown in Figure 6.26.
Prominent emission lines‖ of Xe+10 at 13.5 nm wavelength, and Xe+11 at 11.0 nm, suitable
for use with Mo/Si and Mo/Be multilayer mirrors, are seen. McGeoch has conducted similar
studies using a xenon Z -pinch discharge plasma,68 showing the advantages of employing
Xe–He gas mixtures to modify the emission spectrum to some degree.

6.7.4 Multi-kilovolt Line Emission

Emission lines at higher photon energies, in the multi-kilovolt region, are generated predom-
inantly in the sub-critical plasma where electron temperatures are high and densities are low.
Here the line emissions are quite prominent, especially when dealing with K-shell spectra, as
there are few ionization states (He-like and H-like), the background continuum is relatively
low, and, because of the low density and high temperature, opacity effects are minimal.69, 70

This low density high temperature region is sometimes called the plasma corona.
Figure 6.27 shows the well resolved 2–3 keV silicon K lines obtained from a 0.35 µm,

2 ns, 3 × 1014 W/cm2 irradiation of a glass (SiO2) disk, obtained by Kauffman49 using a

‖Xenon has the electron configuration [Kr]4d105s25p6. Removal of the last 5p and the two 5s electrons
requires ionization energies of 82 eV, 100 eV, and 120 eV, respectively. On reaching the Kr-like
closed shell, the ionization energy then jumps to 210 eV for removal of a 4d electron. This is the
ionization bottleneck discussed in Section 6.7.2. These ionization energies are from Allen, Astrophysical
Quantities, pp. 37–39 (Ref. 27).
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disk irradiated by a 0.35 W/cm2 wavelength, 2-nsec laser pulse at 3 × 1014 W/cm2. (Courtesy of
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nearly 2 J is radiated in the lines at 4.75 keV.
(Courtesy of D. Matthews, Lawrence Livermore
National Laboratory.)

crystal for dispersion and x-ray recording film. The data shows several prominent lines of
H-like and He-like silicon merging into the continuum at longer wavelengths. Following early
spectroscopic notation, α corresponds to an n = 2 to n = 1 transition, β to n = 3 to n = 1,
γ to n = 4 to n = 1, etc., for each ionization state present.

Data from Matthews and his colleagues71 having higher photon energy lines from He-like
and Li-like titanium are shown in Figure 6.28. The 2p1s to 1s2 He-like lines at 4.7 keV clearly
dominate the spectra, while Li-like lines are present but far less intense, and the H-like 2p to 1s
(H-like Kα) is barely visible. From Table 6.2 (from Ref. 55) we see that the ionization energy
of Li-like titanium is 1.4 keV, while that of He-like titanium jumps to 6.2 keV. This is a clear
example of an ionization bottleneck. The hot plasma has stripped off the outer electrons until
there are only two electrons remaining (He-like). The fact that the Li-like lines are so weak
indicates that there are few ions present with three electrons; thus the electron temperature
is certainly of order 1 keV or more. The fact that the hydrogen-like lines are relatively weak
as well suggests that the 6.2 keV binding energy of the helium-like electrons is too high
for the electron energies present in this plasma, and therefore that the electron temperature
is well below 6 keV, thereby setting a bound on the electron temperature. In this particular
experiment71, 72 a titanium disk was irradiated at 3 × 1015 W/cm2, with 3 kJ of 1.06 µm light
in a 600 ps pulse delivered to a 450 µm diameter spot. Dispersion is achieved with a PET
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crystal, with data recorded on Kodak no-screen film. In this experiment approximately 2 J is
radiated in the 1s2p → 1s2 helium-like lines (Heα) at 4.75 keV, for a conversion efficiency
(into 4π sr) of approximately 0.05% into this one prominent spectral feature. The conversion
efficiency for these lines varies considerably with the illumination intensity, which, of course,
is closely related to the corona electron temperature.

These studies have been extended to shorter wavelengths (0.53 µm and 0.35 µm) and
shorter pulse duration (60–120 ps), and a wider range of target materials, by Yaakobi et al.73

and by Phillion and Hailey,74 seeking to further refine the parameters for optimization of a
short wavelength probe pulse, or flash backlighter, for high density laser fusion implosion
studies.72 In addition, because of their short wavelength, these emissions can be used to infer
valuable plasma temperature and density information through the appearance of lines, line
widths, line intensity ratios, and merger into the continuum.69, 73−77

6.7.5 Suprathermal X-Rays

In laser irradiation experiments at high intensity it is common to observe a suprathermal tail
of x-ray emission extending beyond 100 keV, and in some cases to several hundred keV. These
high energy tails can be very strong at a laser wavelength of 1.06 µm, and even more so at
10.6 µm (CO2 laser). Figure 6.29 shows typical data33, 35 obtained with 0.53 µm light on a
gold disk target at intensities from 1014 W/cm2 to 3 × 1015 W/cm2. The data is collected
with a series of K-absorption edge filters with calibrated diode detection, and with a set of
filter–fluorescers with photomultiplier recording.78 The emission at very high photon energy is
sensitive to wavelength, and is generally described in terms of the parameter Iλ2 as suggested
in Section 6.4.11. Temperatures of the suprathermal tail can be in the range of 10–40 keV
at high values of Iλ2. Figure 6.30 shows an example of data, described by Campbell et
al.,79 for gold disks irradiated at a nominal intensity of 1014 W/cm2 to 3 × 1015 W/cm2,
for wavelengths of 1.06 µm, 0.53 µm, and 0.35 µm, with nominal focal spot diameters of
150 µm. The measured photon flux in the 45–50 keV channel is nearly 100 times less for the
0.35 µm irradiation than for the 1.06 µm experiment at this intensity. Correlation with optical
data indicates that the suprathermal tail is associated with stimulated Raman scattering,35 as
was described in Section 6.4.10.
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F IGURE 6.30. Suprathermal x-ray emission from gold disk targets at 3 × 1014 W/cm2, for wavelengths
of 1.06 µm, 0.53 µm, and 0.35 µm. Incident energies ranged from 20 J to 30 J. Nominal pulse duration
and focal spot diameters were 700 psec and 150 µm, respectively. The units assume isotropic radiation
into a sphere. (Courtesy of M. Campbell, B. Pruett, R. Turner, F. Ze, and W. Mead, Lawrence
Livermore National Laboratory.)

6.7.6 Laser Wavelength Trends

To conclude this section we summarize the general trends of laser light absorption and con-
version to thermal and suprathermal x-rays as functions of laser wavelength and intensity
on targets. The trends are illustrated for nominal nanosecond duration pulses, where the ex-
pansion time is sufficient to permit significant collisional absorption, particularly at the low
range of intensities. The trends are shown for a planar gold disk target. As discussed in the
previous sections, plasma properties and processes can vary widely with the electron density
and its gradient, the electron temperature and its spatial variation, and the ion charge state
(and thus target material) – all of which are affected by the irradiation wavelength (through
nc), intensity, and pulse duration (through the scale length lexp). Thus these trends must be
taken as illustrative only, but are nonetheless valuable for guiding the choice of operating pa-
rameters for specific applications. The curves are generally derived from specific references
with extensive diagnostic capabilities and from sufficient data to cover large intensity and
wavelength variations; the trends represented by them reflect a broad consensus developed
within the international community based on measurements at many facilities.

Figure 6.31 shows general trends of laser light absorption as a function of intensity on
a gold disk target, for nominally 1 nsec duration pulses of Nd laser light at 1.06 µm and its
harmonics (n = 2, 3) at 0.53 µm and 0.35 µm. Collisional absorption clearly favors shorter
wavelength radiation where nc, proportional to 1/λ2, is significantly higher, and thus collisional
absorption, proportional to n2 Z , is far more effective. At high intensities radiation pressure can
depress sub-critical electron densities, thus reducing absorption, while non-linear mechanisms
increase energy losses due to scattering and deposit absorbed energy in non-thermal particle
and photon distributions.

Conversion of laser light to near-thermal x-rays is addressed in Figure 6.32, as a function
of laser intensity and wavelength. Conversion efficiency is defined as radiated energy within
the broad window extending from 0.1 keV to 1.5 keV divided by the incident laser energy.
The data assume a Lambertian (cos θ ) angular distribution of thermal x-rays from the flat
disk target. Again the example is for a gold disk irradiated with a nominally 1 nsec duration
pulse. The curves are of course affected by the finite absorption values from Figure 6.31.
For low intensity illumination, especially at short wavelength, the conversion efficiency to
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F IGURE 6.31. Curves showing the general trend of laser light absorption as a function of incident light
intensity and wavelength, for nanosecond duration light pulses. In this example the target is a gold
disk. For lower Z material the absorption is generally less [see Eqs. (6.120–6.122)]. These curves are
derived from the data of Campbell, Turner, Ze, Max, and colleagues,33, 79−81 Lawrence Livermore
National Laboratory.
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F IGURE 6.32 (see Colorplate VII). Curves showing the trend of x-ray conversion energy within the broad
0.1 keV to 1.5 keV spectral window, divided by the incident laser energy, assuming a Lambertian
(cos θ ) angular distribution in the emission hemisphere. Efficiency is shown as a function of intensity
for Nd laser light at 1.06 µm (red) and its harmonics at 0.53 µm (green), 0.35 µm (blue), and 0.26 µm
(ultraviolet) for nanosecond duration pulses. The target is a gold disk. The curves are derived largely
from the data of Kauffman, Kornblum, Tirsell, Lee, Turner, and colleagues,36, 49, 82−84 Lawrence
Livermore National Laboratory.

thermal radiation is high. For the shorter wavelengths the absorption is at high densities where
collisional thermalization is very efficient. At longer wavelengths and higher intensities non-
thermal processes result in decreased absorption (increased stimulated scattering processes)
and in increased radiation at multi-keV photon energies. Except for the lowest intensities
shown, there is a great advantage to the use of harmonic conversion to short wavelength.

At high irradiation intensity, non-linear processes tend to dominate laser–plasma inter-
action physics as stimulated scattering processes drive high amplitude, high phase velocity
plasma waves, trapping and accelerating some electrons to very high energy. One signature
of these processes is the appearance of high energy suprathermal x-rays, such as illustrated
in Figure 6.33, where the growth of 40–50 keV x-rays is shown as a function of intensity and
wavelength, again for a gold disk target and a nominally nanosecond irradiation pulse. Again
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the message is clear: suppression of non-thermal processes is best accomplished through use
of modest irradiation intensity and short wavelength.

As indicated in the literature, there are many ways to affect the specific numerical values
given in the illustrations presented in this section (target material, geometry, laser bandwidth,
focal spot uniformity, etc.), but the general trends as functions of wavelength and intensity
are essentially universal. At high laser intensities use of the shorter wavelengths is mandated
and widely used.37 This is permissible in large part because of the very high efficiencies with
which Nd laser light at 1.06 µm wavelength can be converted to its harmonics – for example,
80% conversion to 3ω for both small and large scale lasers.37

6.8 HIGH HARMONIC GENERATION WITH FEMTOSECOND LASER PULSES

A very active area of current research is generating very high harmonics of intense femtosecond
duration laser pulses in noble gases. The harmonics result from a strongly non-linear interaction
between the electric field of the incident laser pulse and the individual atoms. The laser
intensities and pulse durations are just at the limits of ionizing the neutral atoms. The incident
field simultaneously drives the non-linear generation of harmonics in a large number of atoms,
all phase coherent with the incident laser field. Thus, the resultant harmonics add in phase in
the direction of the driving pulse, leading to the appearance of intense high harmonics in a
relatively narrow forward radiation cone. In a typical experiment 800 nm wavelength linearly
polarized laser pulses of 20–100 fs duration, corresponding to 8–40 oscillation periods, are
focused to an intensity of 1014 W/cm2 to 1015 W/cm2 in a gas of neutral He, Ne, Ar, or Xe.
In such experiments several groups86−90 report the observation of a long spectral sequence
(a comb) of very strong, well-defined odd harmonics, to order 100 or greater. With incident
photons of 1.55 eV, the n = 101 harmonic (odd only) corresponds to nearly 160 eV photon
energy, well into the EUV. In some experiments these harmonics merge into a quasi-continuum
that extends into the soft x-ray region beyond the carbon K-absorption edge at 284 eV. These
harmonics typically appear in a narrow forward radiation cone of half angle less than 1 mrad.
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The major features of these experiments are explained by a strongfield laser–atom interac-
tion model91−93 in which the linearly polarized electric field suppresses the binding potential
of the atom, permitting an electron to tunnel free. The electron is then accelerated to high
kinetic energy in the first half cycle of the laser field and reversed in the second half cycle,
returning to the vicinity of the atom at high kinetic energy. Through recombination, or scat-
tering, the electron undergoes a very strong short duration (much less than one optical cycle)
acceleration, leading to the emission of radiation at very high photon energies. These photon
energies extend to values as high as the electron kinetic energy plus the atomic binding energy,
described in current theories91, 92 as

(h̄ω)max � Ip + 3.2Up (6.144)

Here Ip is the atomic ionization potential, and Up is the cycle-averaged kinetic energy of the
electron in an electric field E0 and frequency ω0, i.e., where

Up = e2 E2
0

4mω2
0

(6.145a)

or

Up = 2πcre IL/ω2
0 (6.145b)

Here Up is sometimes called the ponderomotive potential, IL is the laserfield intensity, and re is
the classical electron radius as given in Chapter 3, Eq. (3.44). For an intensity of 1015 W/cm2,
a laser frequency ω0 = 2.4 × 1015 rad/s, and re = 2.8 × 10−13 cm, we have Up � 60 eV.
Thus by Eq. (6.144) one could expect the highest harmonic to have a photon energy of 192
eV + Ip, about 220 eV in helium, which has an ionization potential of 24.5 eV. The radiation
occurs in odd harmonics due to the cyclic nature of the process, which is driven by the incident
laser field. Constructive interference of the various harmonics can be affected by propagation
through the gas, particularly as partial ionization begins to cause variations in the frequency
dependent refractive index near the peak of the pulse. This would clearly affect the highest
harmonics, which are generated by the strongest electric fields. As a consequence the highest
harmonics can be expected to appear in the shortest pulse, highest intensity experiments,
where detrimental ionization effects have less opportunity to degrade the high field harmonic
generation or the subsequent propagation and collective interference. Needless to say, it is
essential in these experiments that there be no laser pre-pulse, which would cause early
ionization and preclude the intense laser–atom interaction described by this model.

Examples of data from recent high harmonic experiments are shown in Figure 6.34.
Figure 6.34(a) shows data from experiments reported by L’Huillier and Balcou86 of Saclay, in
which radiation up to the 135th harmonic of Nd was obtained with a 1 ps duration 1.053 µm
laser pulse at an intensity of 1.5 × 1015 W/cm2 in neon (21.5 eV ionization potential). These
data show the long sequence of odd harmonics, extending to a wavelength of less than 8 nm
(155 eV). The harmonics typically correspond to about 105 detected photons.

Figure 6.34(b) shows harmonic spectra reported by Chang et al.88 in the group of Murnane
and Kapteyn at the University of Michigan. In this example radiation from a Ti : sapphire
laser, at a wavelength of 800 nm and a pulse duration of only 26 fs, is used to irradiate neon
atoms at an intensity of approximately 6 × 1015 W/cm2. Harmonics to n = 155 are observed,
corresponding to a wavelength of 5.2 nm, or a photon energy of 240 eV. This demonstrates
the advantage of shorter pulse duration and higher laser intensity. The use of helium in these
same studies permitted extension to higher harmonics, as predicted by Eq. (6.144). In a later
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F IGURE 6.34. High harmonics of femtosecond near-infrared laser pulses are shown for three separate
experiments. In each of the three a comb of harmonics is generated that extends through the EUV and
into the soft x-ray spectral region. The harmonics are generated by the strongly non-linear interaction
between individual atoms and the intense laser field. Through the use of very short duration fields the
experiments are performed just on the threshold of ionization. The interactions are all phase coherent
with the incident wave, and thus interfere coherently in a narrow forward cone. The time symmetry of
the process leads to odd only harmonics. (a) Data from L’Huillier and Balcou86 showing the harmonic
spectrum obtained in neutral neon gas at 40 torr with a 1 ps duration 1.053 µm Nd laser pulse at an
intensity of 1.5 × 1015 W/cm2. The harmonics extend to order n = 135. (b) Data from Chang and
colleagues88 showing well-resolved harmonics to order n = 155, obtained in neutral neon gas at 8 torr
with a 26 fs duration, 800 nm wavelength pulse from a Ti : sapphire laser, at an incident intensity of
approximately 6 × 1015 W/cm2. Harmonics to order n = 211, corresponding to a wavelength of
3.79 nm and a photon energy of 327 eV, were observed in helium under similar irradiation conditions.
(c) Data from Schulze and colleagues90 showing harmonic data obtained in neutral neon, with a 700 fs
duration, 1053 nm wavelength laser pulse at approximately 5 × 1014 W/cm2, showing clearly resolved
high harmonics that extend about 13 nm. Their data show that the high harmonics are of the same
polarization as the high intensity laser pump pulse.

publication this same group increased the output power in high harmonics through the use of
phase matching techniques in which the phase velocity and divergence of the driving laser
pulse were controlled using waveguide propagation in gas filled capillary tubes.94

Finally, Figure 6.34(c) shows data reported by Schulze and colleagues90 at the Max
Born Institute in Berlin and the Universität Bielefeld. In these experiments a 700 fs duration,
1053 nm wavelength, Nd : glass amplified Ti : sapphire laser pulse is focused to an intensity
of 5 × 1014 W/cm2 in neon gas jet at a focal diameter of about 65 µm. Figure 6.34(c) shows
well-defined harmonics that extend to about 13 nm. In this study the polarization of high
harmonics is shown to be the same as that of the high intensity laser pump.

The use of high intensity femtosecond laser pulses of only a few cycles duration, es-
sentially “optical transients,”89 to drive highly non-linear processes in neutral atoms has
opened new opportunities for the generation and application95 of short wavelength coherent
radiation.96 Present techniques result in the generation of a broad comb of odd harmonics
throughout the EUV and into the soft x-ray region of the spectrum. This work is comple-
mented by recent developments in short wavelength lasers, discussed in the following chapter,
which tend to generate radiation in a single spectral line.
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Chapter 7

EXTREME ULTRAVIOLET AND
SOFT X-RAY LASERS
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Lasing at short wavelengths in the EUV and soft x-ray regions of the spectrum is achieved in
hot dense plasmas. Temperatures of several hundred electron volts to above 1 keV are required
to collisionally excite atoms (ions) to the required energy levels. As these are well above the
binding energies of outer electrons, the atoms are necessarily ionized to a high degree. Upper
state lifetimes are typically measured in picoseconds, so that energy delivery (pumping) must
be fast. As a result high power infrared, visible, and ultraviolet lasers are generally employed
to create and heat the plasma, although in some cases fast electrical discharges are employed.
Population inversion is generally accomplished through selective depopulation, rather than
selective population. High gain lasing requires a high density of excited state ions, thus mandat-
ing a high density plasma. Preferred electron configurations are hydrogen-like (single electron,
nuclear charge +Ze), neon-like (10 electrons), and nickel-like (28 electrons) ions, which tend
to have a large fraction of the plasma ions in a desired ionization state. The short lifetime of hot
dense plasmas limits the effectiveness of cavity end mirrors, so that in general these are high
gain single pass lasers, albeit with some exceptions. Lacking multipass mode control, short
wavelength lasers typically are far from diffraction limited. Temporal coherence lengths, set
largely by ion Doppler line broadening, are typically 104 waves. The pumping power necessary
to produce short wavelength lasers scales as 1/λ4. Recent high gain experiments demonstrate
a capability for saturated lasing throughout much of this spectral region.
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F IGURE 7.1. The processes of absorption,
spontaneous emission, and stimulated emission.

7.1 BASIC PROCESSES

Lasing involves the stimulated emission and amplification of resonant electromagnetic radi-
ation by quantized atomic systems in identical excited states.∗ 1–6 In such interactions the
passing radiation stimulates the excited atoms to undergo transitions from their upper state to
a lower state, resulting in the emission of radiation at the same frequency and phase coherent
with the stimulating radiation. For lasing to occur there must be a population inversion in
which there are more atoms in the upper excited state than in the lower state.

We begin the discussion of lasing with a review of absorption, spontaneous emission,
and stimulated emission of radiation involving quantized atomic states, as illustrated in
Figure 7.1. For the absorption process the atom is initially in the lower energy state, labeled l
in Figure 7.1(a). Incident radiation of precise energy h̄ω = Eu − El causes the bound electron
to oscillate, acquiring the necessary energy to make a transition to the upper energy state u.
For states whose difference in energy is defined to a specificity �E/E = �ω/ω = �λ/λ,
the transition involves a large number of oscillations between the two states, with the atom
eventually residing in the upper level. The number of oscillations, of order E/�E , is typically
106 or more. For the spontaneous emission process, described previously in Chapter 1 and
shown here in Figure 7.1(b), the atom is initially in an excited state. Perhaps due to back-
ground field fluctuations, the electron is perturbed and begins to oscillate between the upper
and lower energy states, emitting radiation at frequency ω in a wavetrain of duration (in cycles)
of order E/�E , eventually residing in the lower energy state. The third process, shown in
Figure 7.1(c), is that of stimulated emission, which occurs when incident radiation of resonant
frequency ω encounters an atom already in the upper excited state. Here again the electron is
caused to oscillate at the frequency ω by the incident radiation, undergoing many oscillations
and thus resulting in the emission of radiation with the atom eventually residing in the lower
energy level. In this case the emitted radiation is not only at the same frequency, but is phase
coherent with the stimulating radiation, and of the same polarization.

Lasing occurs when many atoms are initially in the same upper states and a cascading
occurs in which some initial radiation, perhaps building from spontaneous emission (noise) or
from an incident wave, causes the sequential stimulation of many phase coherent emissions,
leading to substantial wave amplitude or energy amplification.7−9 The spatial and temporal
coherence properties of the resultant radiation will depend on the control of this initiating
process. Known as mode control, this involves phase space, bandwidth, and polarization lim-
itations imposed by geometry and cavity optics, a topic we take up later in this section.

∗The acronym “laser” is derived3 from “light amplification through stimulated emission of radiation.”
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F IGURE 7.2. The lasing process begins with amplified spontaneous emission (ASE) in directions for
which there is a long axial path length. The illustration shows amplification only toward the right, but it
would actually occur in both directions. Radiation to the side leaves the gain medium after too short a
propagation path to experience significant gain.

The initiation of lasing is illustrated in Figure 7.2, which shows the random emission from
a collection of atoms, initially all in the same excited state. Due to variations in backgroundfield
perturbations and the initial absence of a stimulating field, the atoms begin to spontaneously
emit radiation at random times and in various directions. Early in the process, although at
the same frequency ω, the various emissions are phase incoherent, as the initiation of the
emission processes in different atoms is random and uncorrelated. As time progresses the
situation changes. For emission in the lateral directions there is little chance for substantial
amplification, due to the short path lengths; thus these emissions continue to be spontaneous
and incoherent. However, for radiation emitted along the longer axial path there is a much
increased probability of interacting with excited atoms, leading to stimulated phase coherent
emission in a cascading, ever more intense propagating wave. This is the process of amplified
spontaneous emission (ASE), which, with sufficient path length and density of excited atoms,
evolves to lasing action. As we will see in the following section, it leads to exponential growth
in the long path axial direction.

In some of the earliest EUV and soft x-ray laser demonstrations,10−13 the observation
of exponential intensity growth with length, in a well-defined axial direction, was a primary
diagnostic, giving clear evidence that lasing had occurred. This was contrasted with lateral
emissions that grew only linearly with axial path length, with little chance for amplification
before exiting the active (inverted population density) region.

The process of lasing described above is dependent on a population inversion: the presence
of more atoms in the upper excited state u than in the lower state l. Without such an inversion
there is likely to be more absorption of radiation than stimulated emission, leading to a net
decrease of wave intensity with propagation distance. Figure 7.3 shows population density
versus energy level for two cases, (a) an equilibrium situation in which the upper state u
is less populated than the lower state l, and (b) a non-equilibrium situation with an inverted
population distribution between the upper and lower states. The inverted case, with more atoms
in the upper state than in the lower state, can lead to lasing, while the equilibrium distribution
leads to net absorption. The question then is, how can an inverted population distribution be
obtained?

One method is to flood the atoms with radiation of sufficiently high photon energy to
excite them to higher energy levels, permitting the atoms to evolve back to the ground state
through transitions to various intermediate excited states. Because of differences in decay
times for the various states, some of which may be metastable or relatively long lived due to
less favorable quantum transition rates, temporary population inversions may occur. Thus for a
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F IGURE 7.3. Equilibrium and non-equilibrium energy distributions. Lasing requires an inverted
population density (more atoms in the upper state than in the lower state), as in (b).

F IGURE 7.4. Three-level lasing between an upper
state u and a lower state l. A pumping mechanism
from the ground state g is also shown. Population
inversion is obtained with many such atoms if the
transition from u to l is relatively slow, while that
from l to the ground state is relatively fast. This
avoids subsequent reabsorption of the stimulated
emission, or so-called radiation trapping.

brief period conditions for lasing may be present. In the presence of a sufficiently high density
of excited states and a sufficiently long length of such lasing material, lasing will occur. Many
visible light lasers operate with nanosecond, picosecond, and shorter pulse durations. Some
operate in a pulse repetition mode, or in a continuous wave (cw) mode, where the cycle of
pumping, excitation, and de-excitation through lasing is constantly repeated.

Other forms of pumping the inversion, more typical of short wavelength lasers, involve
collisional excitation or recombination into a higher excited state. Figure 7.4 shows several
energy levels of an atom to which energy has been provided by a pump that raises the atom to a
long-lived excited state u, or to a higher excited state (not shown) from which it cascades down
to the state u, and eventually lases to the state labeled l. The pump could consist, for example,
of a collision with an energetic electron in a plasma. The lower level is unoccupied, perhaps
because of its relatively rapid radiative decay. Thus for some period of time, determined
by quantum transition rates, the atom resides in the upper state, available to participate in
stimulated emission. The key to producing the inverted population density is the availability
of upper and lower states with sufficiently dissimilar lifetimes.

Figure 7.5 shows a somewhat more realistic energy level diagram for a particularly simple
one-electron (hydrogen-like) ion. This diagram will help us understand the energetics of EUV
and soft x-ray lasing. In this spectral region the photon energies of interest for laboratory lasers
extend from perhaps 50 eV to 500 eV. The requisite pump energies are necessarily higher, in
that the atom must be lifted from the ground state to an energy at least equal to that of the upper
excited state. With such energetic pump processes the atoms will surely be ionized to some
high degree, as was described in Chapter 6, Section 6.7.2. In fact all successful EUV and short
wavelength lasers to date have involved highly ionized plasmas,10−21 either laser-produced
plasmas or discharge plasmas.

The simplified energy level diagram in Figure 7.5 relates to a hydrogen-like (single
electron) ion of nuclear charge Z . In this case the highly ionized atom is stripped of all
electrons through energetic collisions in a hot plasma. As the plasma cools, a nearby free
electron recombines with the ion, into a high level excited state. The electron then drops down
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F IGURE 7.5. Energy levels for a hydrogen-like
(single electron) ion of nuclear charge Z .
Stimulated emission is shown for an n = 3 to
n = 2, Balmer α transition. Energy levels scale
according to Z2. See Eq. (7.1) and Table 7.1 for
values.

through the bound states, emitting characteristic radiation. In Figure 7.5 the ion is shown
undergoing a stimulated n = 3 to n = 2 (Balmer α) transition, emitting a characteristic photon
of energy [see Chapter 1, Eq. (1.8)]

h̄ω = (13.606 eV) Z2

(
1

n2
f

− 1

n2
i

)
(7.1)

where for ni = 3, n f = 2, and a carbon nucleus of charge Z = 6 we have h̄ω = 68.03 eV
(18.22 nm wavelength). Indeed, studies of this transition in hydrogen-like carbon played an im-
portant role in the early development of short wavelength lasers.22−26 Note that the ionization
energy required to remove the last electron from the carbon atom is 490 eV [ni = 1, n f = ∞
in Eq. (7.1)], so that preparation of such an ion for recombination laser studies requires an
electron temperature of 100 eV to 200 eV.

With regard to favorable lifetimes and oscillator strengths, summarized here in Table 7.1
for a hydrogen-like ion of nuclear charge Z , the 3d→2p transition has an oscillator strength f32

of 0.696, with thus a high probability for transition, and a lifetime of 12 ps.27 The subsequent
2p → 1s transition to the ground state has an oscillator strength of 0.416 and a lifetime of
only 1.2 ps, allowing for a fast depopulation of the lower state, as desired. Note that energy
levels in Eq. (7.1) scale as Z2, a general trend for higher photon energy lasers. The ionization
energies scale in the same manner, so that requisite temperatures scale as h̄ω and Z2 as well.

Earlier in this section reference was made to the use of cavity optics for the control of
coherence, spectral bandwidth, and polarization, techniques frequently employed at visible
wavelengths7, 9 Figure 7.6 illustrates (a) cavity optics for a visible light laser, and (b) a high
gain, single pass EUV/soft x-ray laser. The visible light laser is configured for best spatial
and temporal coherence. High reflectivity front and back mirrors are used to return the ini-
tial amplified spontaneous emission (ASE) many times through the gain medium (gas or
solid with population inverted atoms – the “active” region). This improves energy extraction,
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TABLE 7.1. Transitions in single electron, hydrogen-like carbon ions
(Z = 6 nuclear charge). Photon energies, according to Eq. (7.1), scale as
Z2. Oscillator strengths are independent of Z . Radiative lifetimes,27

which are the reciprocals of the Einstein coefficients Aul given in
Eq. (7.17), scale as Z4, i.e., τZ = τH /Z4

Photon Wavelength Oscillator Lifetime
Transition energy λ strengtha τ = 1/Aul

u– l h̄ω(eV) (nm) flu (ps)

2p–1s 367.0 3.378 0.4162 1.2
3p–1s 435.0 3.350 0.0791
4p–1s 458.7 2.703 0.0290
3p–2s 68.03 18.22 0.435 4.1
3s–2p 68.03 18.22 0.0136
3d–2p 68.03 18.22 0.696 12.0
4p–2s 91.84 13.50 0.103
4s–2p 91.84 13.50 0.0030
4d–2p 91.84 13.50 0.122
4p–3s 23.81 52.07 0.485

a The emission oscillator strength ful (which has a negative value) and
absorption oscillator strength flu are related by ful = −(gl/gu) flu .

providing a higher output power and permitting many passes for phase space control, spectral
bandwidth selection, and choice of polarization. (Phase space control refers to the product
of beam diameter and divergence at the lasing wavelength. The relationship between phase
space product and full spatial coherence, d · θ = λ/2π for Gaussian beams, is discussed in
Chapter 8.)

Typically the rear mirror in Figure 7.6(a) would have a reflectivity of 99.9% for a visible
light laser, while the partially transmitting front mirror might have a reflectivity of 90%,
allowing some laser radiation to pass once for each round trip within the cavity. A transverse
mode selector, typically a pinhole, blocks all ASE in the laser startup period except that
which will eventually satisfy the stringent phase space constraint for full spatial coherence –
in cavity parlance a transverse electromagnetic mode, TEM00. The accepted ASE, which
passes through the pinhole aperture, is reflected back through the gain medium, amplified,
and returned again by the focusing rear mirror. Through many round trip passes the phase-
space-selected radiation is selectively and exponentially amplified, easily dominating random
ASE in undesired directions. At the same time a longitudinal mode selector – typically two
axially separated resonant thin films, forming a high spectral selectivity Fabry–Perot bandpass
– is used to narrow the laser line width to as little as a single axial mode of the cavity, typically
narrower than the natural line width of stimulated emission. Narrowing the spectral bandwidth
�λ increases the temporal (longitudinal) coherence length lcoh = λ2/�λ, also discussed in
Chapter 8.

In some cases the narrow spectrum mode selector is replaced by an axial mode-locking sat-
urable dye absorber. This passes only large intra-cavity intensity spikes, which tend to include
contributions from all possible axial modes. Possessing the largest possible lasing bandwidth,
this tends to produce the shortest time duration pulses. This and other gain controlling tech-
niques are commonly used to extract available laser energy in short pulses, providing high
peak power output.



C H A P T E R S E V E N: E X T R E M E U L T R A V I O L E T A N D S O F T X - R A Y L A S E R S 273

F IGURE 7.6. (a) Diagram of a visible light laser employing cavity defining feedback mirrors, an etalon
for spectral narrowing through the enhancement of selected longitudinal cavity modes, a pinhole
aperture for transverse mode control (spatial coherence), the gain medium, and a flashlamp pump to lift
atoms into desired energy states. (b) Diagram of an EUV or soft x-ray laser based on high gain
amplified spontaneous emission from an elongated laser-produced plasma (pump wavelength λir)
containing an inverted population density of ions in an upper excited state. The divergence of emitted
radiation is set largely by the aspect ratio, d/L , but is also affected by refraction in the steep transverse
density gradient plasma, as suggested by the dashed lines.

The gain medium shown in Figure 7.6(a) is a solid state rod, perhaps ruby, YAG, or glass,
cut at Brewster’s angle† (see Chapter 3, Section 3.6) for polarization control, and pumped by
a flash lamp of incoherent light to achieve the initial population inversion. Both gaseous and
solid state lasing media are common at visible wavelengths.7, 9

By comparison the EUV/soft x-ray laser, at least in its typical configuration as shown in
Figure 7.6(b), is much simpler. In order to simultaneously achieve the requisite high tempera-
ture and high density, energy is deposited in a short time, typically sub-picosecond to several
nanoseconds in duration, generally by a high power infrared or visible Laser or, for longer
EUV wavelength lasers, by a short pulse, high current electrical discharge. Since light travels
at a speed of 300 µm/ps, a 1 ns duration laser pulse would permit use of a single mirror at 15 cm
or two mirrors each 7.5 cm from the center for full cavity operation. Generally mirror damage
due to pum–laser scattering and plasma debris limit the use of cavity end mirrors at EUV and
soft x-ray wavelengths, although some work has been done.12, 28, 29 For shorter pulse duration
the cavity length would be even shorter than the required gain length, typically measured in
centimeters, thus excluding the possibility of multipass operation, unless regenerated plasma

†For lasing rods cut at Brewster’s angle (see Chapter 3, Section 3.6), properly polarized light experi-
ences no reflective loss at the air–solid interface, giving a slight intensity advantage over other ASE
polarizations in the round trip gain competition, which rapidly leads to single polarization dominance
in the multipass exponential lasing process.
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techniques are developed. As a consequence, present EUV/soft x-ray lasers are largely single
pass, high gain devices. Without cavity mirrors, the ability to control spatial coherence is lim-
ited to geometrical considerations, such as the ratio of output aperture diameter to axial lasing
length.

These considerations are further complicated by refractive effects that tend to increase
the divergence of laser radiation due to sharp lateral density gradients encountered in these
rapidly expanding hot dense plasmas.11, 14, 30 The subject of refraction in plasmas is discussed
in Chapter 6, Section 6.6. Efforts to control the effects of refraction on short wavelength lasers,
including prepulses, multiple pulses, double targets and special pump focusing techniques,
are currently of great interest.29, 31−33 In part this interest is due to the fact that the phase space
product of EUV/soft x-ray lasers (the product of beam diameter and divergence) is generally
much larger than the wavelength, indicating that the radiation consists of many transverse
modes, and indicating minimal spatial coherence, particularly at the shorter wavelengths.34

Further discussion of spatial coherence, and improvements through techniques such as
pinhole spatial filters and staged amplifiers, is presented in Chapter 8, Section 8.5. Laser line
widths, typically dominated by Doppler broadening14 due to motion of the relatively hot lasing
ions, are generally of order �λ/λ ∼ 10−4, leading to temporal coherence lengths approaching
a millimeter, values quite useful for many applications.

7.2 GAIN

Obtaining exponential gain from stimulated emission of radiation requires a substantial pop-
ulation density inversion. Generally we inquire as to what difference in upper state and lower
state ion densities, nu and nl , will lead to a substantial gain–length product GL , such that an
initial emission intensity I0 grows according to

I

I0
= eGL (7.2)

where I0 is an initial EUV/soft x-ray intensity (power per unit area) that grows to a value I
after propagating a distance L in a lasing media of gain per unit length G.‡ The gain is often
expressed in terms of atomic cross-sections for stimulated emission and absorption, σstim and
σabs:

G = nuσstim − nlσabs (7.3)

which can be written in terms of a density inversion factor F , as

G ≡ nuσstim F (7.4)

‡For short-wavelength lasers a more appropriate model is that of uniformly distributed spontaneous
emission, amplified by stimulated emission as it propagates to the exit surface of the gain medium. In this
case the integrated output intensity I , for an active medium gain G and length L , is I = Js(eGL −1)3/2/

G(GLeGL )1/2 where Js is the spontaneously emitted power per unit volume within the lasing line. This
is often referred to as the Linford formula.35 It is widely used to assign gain values G in experimental
studies of laser intensity versus length, such as we shall encounter here in Sections 7.3 and 7.4.
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where the density inversion factor is given by

F ≡ 1 − nlσabs

nuσstim
= 1 − nl gu

nu gl
(7.5)

and where the otherwise symmetrical cross-sections for stimulated emission and absorption
may differ by statistical weights gu and gl , which are due to degeneracies (same energy,
different quantum numbers) in the upper and lower lasing states.

Expressions for the cross-section for stimulated emission and gain can be obtained in terms
of the Einstein A and B coefficients,36−38 which appear when one considers rate equations for
transitions among quantum states. For example, if we consider the rate of transitions, per unit
volume, between the upper and lower states u and l, then in radiative equilibrium (as many
transitions up as down)

nu Aul + nu BulU�ω(h̄ω) = nl BluU�ω(h̄ω) (7.6)

where again nu and nl are the densities of atoms (ions) in the upper and lower states, Aul is
the spontaneous decay rate (number per second) from u to l, Bul is the stimulated transition
rate from u to l in the presence of radiation of spectral energy density¶ U�ω(h̄ω), and Blu

is the absorption coefficient for transition from the lower state l to the upper state u. Again
Bul and Blu would be equivalent, due to the symmetric nature of the two processes, except
for the degeneracies, so that in general gl Blu = gu Bul . In equilibrium, U�ω is the Planckian
distribution

U�ω(h̄ω) = h̄ω3

π2c3(eh̄ω/κT − 1)
(7.7)

where the density of states follows the Boltzmann energy distribution34

nl

nu
= gl

gu
e(Eu−El )/κT = gl

gu
eh̄ω/κT (7.8)

A consistent solution of Eqs. (7.6–7.8) requires that the Einstein coefficients be related36 by§

Aul

Bul
= h̄ω3

π2c3
(7.9)

an expression we will make use of shortly.
For lasing the idea is to get out of equilibrium, creating a temporary population inversion

where nu > nl , with a sufficient spectral energy density of photons at h̄ω = Eu − El that
the stimulated process dominates, resulting in the preferential phase-coherent emission of
radiation in a narrow spectral band. For the situation where stimulated emission far exceeds
spontaneous emission, the rate equation for the increase in energy per unit time, within a
narrow spectral bandwidth �ω, can be written [in distinction to Eq. (7.6) for equilibrium] as

�E

�t
= �I · �A = [nu BulU�ω(h̄ω) − nl BluU�ω(h̄ω)] h̄ω · �A · �L (7.10)

¶See Chapter 6, Eq. (6.134a). U�ω(h̄ω) has units of energy per unit volume, per unit frequency interval
�ω, at frequency ω.

§Aul/Bul = 8πhν3/c3 when expressed in terms of ν rather than ω. See Ref. 38, pp. 688, 712, and 63.
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F IGURE 7.7. Geometry for considering laser
amplification in a gain medium, in terms of an
incremental increase �I in intensity.

where, as shown in Figure 7.7, �I is the incremental increase in intensity within the resonant
bandwidth of the transition from u to l, �A is the element of cross-sectional area, and �L
is the thickness of the volume element in the direction of propagation, and where we have
neglected the spontaneous emission term as being relatively small. The incremental increase
in intensity due to stimulated emission, contributed by the population inversion in the element
of length �L , is then

�I = nu F BulU�ω(h̄ω)h̄ω · �L (7.11)

where we have used the density inversion factor defined earlier in Eq. (7.5). Writing the
radiation spectral energy density in terms of the local intensity per unit bandwidth (see Chapter
6, Section 6.7.1), we have

U�ω(h̄ω) = I (h̄ω)

(�ω)c
(7.12)

so that the incremental increase in intensity due to stimulated emission can be written as

�I

I
= h̄ωnu F Bul · �L

(�ω)c
(7.13)

Recalling the relation between A and B coefficients [Eq. (7.9)], this can be rewritten as

�I

I
= π2c2nu F Aul · �L

(�ω)ω2
(7.14a)

Noting that (�ω)ω2 = (�ω/ω)ω3 = (�λ/λ)(2π )3c3/λ3, the increase in intensity as a func-
tion of wavelength is

�I

I
= λ3nu F Aul · �L

8πc(�λ/λ)
(7.14b)

Integrating this from �L = 0 to L , over which the intensity increases from I0 to I , one obtains
the expression previously written as Eq. (7.2):

I

I0
= eGL

where now the gain G is given explicitly as

G = λ3nu F Aul

8πc(�λ/λ)
(7.15)
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Recalling our earlier definition of the stimulated emission cross-section σstim in terms of the
gain [Eq. (7.4)] as

G = nuσstim F

we now identify the cross-section as14

σstim = λ3 Aul

8πc(�λ/λ)
(7.16)

where �λ/λ is the full spectral bandwidth.
Quantum mechanically the Einstein A coefficient can be expressed in terms of the oscil-

lator strength‖ flu as9, 27

Aul = e2ω2

2πε0mc3

(
gl

gu

)
flu (7.17)

The cross-section for stimulated emission is then

σstim = πλre

�λ/λ

(
gl

gu

)
flu (7.18)

where we have introduced the classical electron radius re = e2/4πε0mc2 = 2.82×10−13 cm,
as described in Chapter 2, Eqs. (2.44) and (2.46).

For EUV and soft x-ray lasers the observed linewidth is dominated by Doppler broadening
in the hot plasma. For a Maxwellian velocity distribution [see Chapter 6, Eq. (6.86), written for
ions] the resultant spectral bandwidth, for full width at half maximum (FWHM) of intensity,
is given by

(�λ)

λ

∣∣∣∣
FWHM

= vi

c
= 2

√
2 ln 2

c

√
κTi

M
(7.19a)

where vi is the rms ion thermal velocity, κTi is the ion temperature, and M is the ion mass.
Expressing κTi in electron volts and the ion mass as 2m p Z , where mp is the proton mass and
Z is the number of protons, the Doppler broadened linewidth can be expressed as

(�λ)

λ

∣∣∣∣
FWHM

= 7.69 × 10−5

(
κTi

2Z

)1/2

(7.19b)

Returning to the calculation of gain, from Eq. (7.4),

‖In this chapter we return to the standard use of f for the oscillator strength, with subscripts u and l
to show the upper and lower states. In Chapters 2 and 3 f was used to represent the atomic scattering
factor. Also, we use g here, again with u and l subscripts, to denote the degeneracy of atomic states.
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G = πre flu
λnu F

(�λ/λ)

gl

gu

(7.20)

Expressions for gain as an explicit function of wavelength, for given line shapes, are derived
by Silfvast in Ref. 9, Chapter 7.

For the previously cited example, with a 3d → 2p Balmer α transition at h̄ω = 68.03 eV
(18.22 nm wavelength) in hydrogen-like carbon (see Figure 7.5 and Table 7.1), we can estimate
the cross-section for stimulated emission from Eq. (7.18). For a carbon plasma initially heated
to an electron temperature of several hundred electron volts to ensure full ionization, then
quickly cooled to an ion temperature12 of κTi = 10 eV, with an ion mass of M = 2Zm p = 12
atomic mass units, the FWHM relative spectral bandwidth is �λ/λ = 7.0 × 10−5. For the
3d to 2p transition,27 (see Table 7.1), f23 = 0.696 and gl/gu = 3/5, so that from Eq. (7.18),
σstim � 9.6×10−15 cm2. The associated gain, given by Eq. (7.4), is G � (9.6×10−15 cm2)nu F .
For exponential amplification one requires, by Eq. (7.2), a length L such that GL > 1, or an
inversion density–length product

nu F L > 1/(9.6 × 10−15 cm2)

Assuming a lasing medium of length L = 0.3 cm and a density inversion factor approaching
unity, this requires an initial excited state (n = 3) ion density of greater than 3.5 × 1014/cm3.
Calculations of ion density and excited state distributions26 for C+5 (one electron) in plasmas
in the assumed temperature ranges typically indicate a fraction of order 10−3 in the n = 3
excited state, thus requiring a total C+5 ion density of order 4 × 1017 ions/cm2, and thus an
electron density (five times greater for charge neutrality) of ne � 2×1018e/cm2. This electron
density is below the critical value for CO2 and Nd lasers, 1019 and 1021 e/cm2 respectively
(see Chapter 6, Table 6.1), and thus is reasonably approached with plasma formation by
either system. In the next section we discuss early lasing experiments conducted with plasmas
produced by both Nd and CO2 lasers.

Having some understanding now of the temperatures and densities required to achieve
lasing, it is interesting to inquire as to what power and intensity this requires of the driver, and
how these scale with lasing wavelength. To estimate the required power that must be delivered
to the lasing medium (plasma) in order to maintain the inverted population density, we can
write

P = h̄ωnu FV

τ
(7.21)

where nu F is the inverted population density, V is the plasma volume, and h̄ω is the photon
energy that would be emitted by spontaneous emission in a transition of lifetime τ . In fact this
is a lower limit on the required power, as the pumping is far from 100% efficient, involving
several ionization stages, many energy states, and a general investment in thermal energy.
Observing that τ = 1/Aul , and using Eq. (7.15) to replace nu F Aul = 8πc(�λ/λ)G/λ3, the
required power per unit volume of plasma is

P

V
= 16π2c2h̄(�λ/λ)G

λ4
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so that in terms of the gain–length product, with V = AL , the required power per unit area
(i.e., intensity) is

P

A
= 16π2c2h̄(�λ/λ)GL

λ4
(7.22)

Thus to maintain a population inversion density with a given gain–length product and a
linewidth (�λ/λ) determined by the ion temperature κTi as given in Eq. (7.19), the requisite
laser intensity scales as 1/λ4. Actually, the linewidth �λ/λ ∝ √

κTi , so that if Ti ∝ Te and
κTe ∝ h̄ω ∝ 1/λ, one has the proportionality �λ/λ ∝ 1/

√
λ. Where this is so, the required

laser intensity scales39, 40 as 1/λ4.5. This very rapid scaling of required pump intensity with
lasing wavelength provides a significant challenge for the achievement of laser action at soft
x-ray wavelengths.

7.3 RECOMBINATION LASING WITH HYDROGEN-LIKE CARBON IONS

The early history of EUV/soft x-ray lasing is associated with the pursuit of population inver-
sion in hydrogen-like carbon plasmas, formed by the irradiation of carbon fibers at the focus
of high power, short duration Nd lasers. The work was motivated in part by the observation
of intense EUV lines and the possibility for population inversion as pointed out by Jaeglé,
Carillon, and their colleagues,41 as well as early theoretical predictions by Gudzenko and
Shelepin42 and others.

The first experimental inferences of population inversion, albeit small, were reported by
Irons and Peacock,22 followed by scalable threshold observations by Pert, Ramsden, and their
colleagues23, 25 and by Key, Lewis, and Lamb.24 These pioneering experiments were all based
on recombination in rapidly cooling, fully ionized carbon plasmas, described by the energy
level diagram in Figure 7.5, in geometries similar to that of Figure 7.6(b). The general idea
is to produce fully stripped carbon ions in a hot dense laser-produced plasma. By Eq. (7.1),
removal of the last electron requires an energy of 490 eV, thus requiring an initial electron
temperature of 100–200 eV, a value achievable with laser intensities of order24, 25 1013 W/cm2

to 1014 W/cm2, depending on the laser wavelength (see Chapter 6, Section 6.7.1). With rapid
cooling by expansion and radiation, recombination takes place with low energy electrons
populating upper excited levels, forming hydrogen-like (single electron) carbon ions. In this
collisional recombination a third particle (an additional electron) is required to satisfy con-
servation of energy. As a consequence the rate of recombination is proportional to n2

eni , and
thus occurs most efficiently at high electron density. Recombination is dependent on a low
electron temperature; thus fast cooling is critical to this lasing technique. As the single bound
electrons cascade down to lower excited states, a population inversion is created between the
n = 3 and n = 2 levels due to the faster decay rates from n = 2 to n = 1, as indicated
in Table 7.1. The 3d → 2p transition, with a 0.696 oscillation strength and a 12 ps lifetime,
is then a good candidate for amplified spontaneous emission, as discussed in the previous
section.

Suckewer and his colleagues introduced a novel43 and successful12, 13 approach to the
idea of recombination lasing by suggesting the use of an axial magnetic field to constrain the
lateral expansion of the laser-produced carbon plasma, thus tending to maintain high den-
sities for a longer time while introducing a more favorable geometry for lasing. The basic
geometry is illustrated in Figure 7.8(a). As electron densities under 1019 e/cm2 are consistent
with required ion densities, as discussed in the preceding section, use was made of a CO2
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F IGURE 7.8. (a) A CO2-laser-produced plasma constrained to a primary axial expansion by a solenoidal
magnetic field. (b) The plasma is seen expanding away from a carbon disk target. A perpendicular
carbon blade is shown, whose role is to enhance cooling, plasma density, and uniformity in the
expanding plasma. A diagnostic window (slot) is shown in the carbon disk, which permits collection
and spectral analysis of radiation in the axial direction through use of a spectrometer. A second
spectrometer is used to study emissions in the transverse direction. (c) The presence of a strong axial
magnetic field, through pressure balance, tends to produce an annular plasma with a density depression
on-axis. (Courtesy of S. Suckewer, Princeton University.)

laser, which delivered approximately 300 J in a 70 ns FWHM pulse, resulting in an incident
intensity of 5×1012 W/cm2 on the solid carbon disk target. At this intensity the plasma should
reach a temperature approaching 100 eV at peak irradiation intensity, permitting at least a fair
fraction of the desired C+5 density.∗∗ Furthermore, with a CO2 laser wavelength of 10.6 µm,
this intensity corresponds to a rather high value of Iλ2 (see Chapter 6, Section 6.4.11). This
leads to the generation of a non-Maxwellian energy distribution in which the hot-electron
tail may further assist in the ionization process. With a solenoidal magnetic field of 90 kG,
the electrons tend to circle the axial field lines with a Larmor radius†† of order one micron
as they expand (axially) away from the irradiated disk region, typically 1 mm in diameter.
Aspect ratios (L/r ) of order 10 to 100 were obtained with the magnetically confined plasma
expansion.

Shown in Figure 7.8(a) is the incident CO2 laser beam irradiating a solid carbon disk
target, the solenoidal magnetic field, and the expanding target. In these experiments one
to four carbon blades [see Figure 7.8(b)], mounted perpendicular to the solid disk in off
axis positions, were utilized to enhance plasma density, cooling, and uniformity in the axial
direction.13 The presence of a strong axial magnetic field tends to produce a plasma with

∗∗Note that many authors follow the spectroscopic notation in which C VI is equivalent to C+5 (neutral
carbon is C I).

††The Larmor radius, rL = mv/eB, is 3.7 µm for a 100 eV electron in a 90 kG, or 9 T, magnetic field.
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F IGURE 7.9. Emission spectra observed in the (a)
axial and (b) transverse directions from a CO2
laser-produced plasma formed by irradiating a
carbon disk target located in a strong axial
magnetic field. The laser energy was 300 J in an
80 ns pulse. (Courtesy of S. Suckewer, Princeton
University.)

electron temperature peaked on axis (set by the laser irradiation profile), but with density
peaked off axis, as illustrated in Figure 7.8(c), tending to produce favorable lasing conditions
in an annular geometry.

Spectrally resolved emissions were observed both axially and in a transverse direction.
Sample spectra are shown in Figure 7.9 for a single CO2 laser pulse. In the axial direction
there is a dominant emission line identified as that of the 3 → 2 transition in C+5. In the
transverse direction this line is barely discernible. This particular experiment13 employed a
300 J CO2 laser pulse of nominal 80 ns duration, and four symmetrically located carbon blades.
Measurements in this series showed that maximum gain occurred off axis in a 200 µm thick
annular shell at a radius of 1.3 mm to 1.5 mm, as observed through the diagnostic viewing slot.
The maximum gain in these experiments13 corresponds to a gain–length product GL � 8.
The gain was determined by the simultaneous observation of lasing and non-lasing emission
lines in C+5: the n = 3 to n = 2 line at 18.22 nm, the n = 4 to n = 2 line at 13.50 nm, and
the spontaneous emission n = 2 to n = 1 line at 3.378 nm used to monitor reproducibility of
plasma conditions. Lasing energies of 3 mJ per pulse were recorded at a repetition rate of 0.05
Hz, within a divergence angle of 5–10 mrad.

In a continuation of these early recombination lasing experiments with hydrogen-like
carbon, the Princeton group conducted a further series of experiments44 utilizing a 25 J, 3
ns duration Nd laser pulse to irradiate carbon targets with a 100 µm by several millimeter
cylindrical focus, designed to generate lasing in a direction parallel to the target surface. A
stainless steel (C + Fe) blade was again used, parallel and near (0.8 mm) to the line focus,
to assist in plasma cooling.44, 45 A magnetic field parallel to the line focus was employed,
but played a less essential role due to the natural plasma line shape associated with the line
focus. The laser intensity was nominally (0.8–1) × 1013 W/cm2. Spectrally resolved emission
lines observed in the long plasma direction are shown in Figure 7.10, for plasma lengths
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F IGURE 7.10. (a–c) Emission spectra from a hydrogen-like carbon plasma formed by a Nd : glass laser.
The line focus length is varied from 1 mm to 3 mm across the surface of a carbon target. Emission is
observed in the elongated plasma direction. With longer plasma length the emission line at 18.22 nm
grows exponentially out of the noise to become a prominent spectral feature. A companion line, less
likely to lase, at 13.50 nm, is shown for comparison. (d) Relative emission intensities of C+5 lines at
18.22 nm (solid circles) and 13.50 nm (open circles), showing an exponential growth with plasma
length for the n = 3 to n = 2 line at 18.22 nm. Nd laser energy was 25 J (15 J on target), with a
magnetic field of 50 kG. The dashed curve is a theoretical fit to a gain of 8.1/cm. Growth of the 13.50
nm line (n = 4 to 2) is linear with length. (Courtesy of S. Suckewer, Princeton University.)

of 1–3 mm. For the shortest plasma length (1 mm) a number of weak emission lines are
observed just above the continuum, including lines of iron (Fe) and oxygen associated with
the nearby stainless steel blade. As the plasma length is increased to 2 mm and 3 mm, by
elongating the line focus, the C+5 n = 3 to 2 transition at 18.22 nm grows rapidly out of
the noise. A companion line at 13.50 nm, corresponding to an n = 4 to 2 transition in C+5

(see Table 7.1), shows weaker growth with plasma length. This 13.50 nm line has a shorter
wavelength and smaller oscillator strength (see Table 7.1), and is thus expected by Eq. (7.20)
to have a smaller gain. In Figure 7.10(d) the intensity increase of these two lines is shown
as a function of plasma length. The lasing line at 18.22 nm is observed to exponentiate with
a gain of G � 8.1/cm, while the reference line at 13.50 nm grows linearly with length. The
observation of exponential intensity growth with plasma length was used as proof of lasing
in these early studies. Further research at the Rutherford-Appleton Laboratory46 has led to
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F IGURE 7.11. On-axis emission spectra from Nd laser irradiated carbon fibers of 7 µm diameter and
different lengths. The data show substantial growth for the n = 3 to n = 2 Balmer α line of C+5 at
18.22 nm. Laser intensity is nominally 6 × 1015 W/cm2 in a 2 ps duration pulse. The gain length
product was GL = 6.5 for the 5.0 mm long plasma. (Courtesy of J. Zhang and M.H. Key,46

Rutherford-Appleton Laboratory.)

beautifully resolved 18.22 nm lines in higher intensity, 3 × 1015 W/cm2, 2 ps duration Nd
laser irradiations of 7 µm diameter, 5 mm long carbon fibers, achieving gains up to 12.5/cm.
An example of their data is shown in Figure 7.11.

7.4 COLLISIONALLY PUMPED NEON-LIKE AND NICKEL-LIKE LASERS

Collisionally pumped lasers, involving closed shell, highly ionized ions, offer an alternative
path toward high gain at short wavelengths. The technique makes use of ionization bottlenecks,
associated with closed electron shells as discussed in Chapter 6, Section 6.7.2, to ensure a
high density of ions in a particular ionization state. It employs cylindrical illumination of
thin, elongated foils, which are laser-heated to high density and high electron temperature, as
illustrated in Figure 7.12. The irradiation intensity is chosen to produce an electron temperature
that is well matched to the ionization potential of the desired closed shell ion. Excited states
are mostly produced by collisions with plasma electrons, but also by cascading down from
higher-still Ne-like (10 electrons) excited states, and by recombination of overly ionized
F-like ions. Population inversion is by selective depopulation of the lower lasing state, rather
than by selective population of the upper state. These techniques were pioneered at Lawrence
Livermore National Laboratory by Matthews,10, 47 Rosen,11, 48 Hagelstein, MacGowan,49−52

and their colleagues,53−57 based in part on the early theoretical work of Vinogradov and
Shlyaptsev58 and others.

The earliest demonstration10, 11 of high gain at short wavelength utilizing collisionally
pumped closed shell ions employed neon-like selenium (Z = 34, 10 electrons, net charge
+24). The ionization energy required to remove an electron from an 11-electron Na-like ion
is 1036 eV, while that for a 10-electron Ne-like ion is 2540 eV due to the closed shell.‡‡ With
an electron temperature of about 1 keV one can then expect a large fraction of the ions to be in
the Ne-like state, with fewer in the Na-like and lower ionization states. Simulations indicate,48

‡‡See Chapter 6, Table 6.2, in Section 6.7.2.
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F IGURE 7.12. Double-sided irradiation of a thin film selenium target for high gain lasing at 20.65 nm
and 20.98 nm wavelengths. High gain amplified spontaneous emission (ASE) grows exponentially in
the elongated plasma column, resulting in intense narrow band lasing in two opposite directions.
Irradiation is by high power visible light (nominally 2.4 TW, 0.527 µm wavelength, 450 ps FWHM,
7 × 1013 W/cm2, 200 µm × 1.1 cm elongated focal spot). Two time-gated spectrometers record axial
and off-axis emission spectra. A time resolved transmission grating streak spectrometer records axial
emission spectra in the opposite direction. (Courtesy of D. Matthews, Lawrence Livermore National
Laboratory.)

for instance, that about 20% of all ions are Ne-like, a similar number are F-like (9 electrons),
and the rest are dispersed over a broad range of ionization states. These observations are
confirmed by experimental emission spectra.11 For the Ne-like ions, a population inversion
is produced between the 1s2 2s2 2p5 3p and 1s2 2s2 2p5 3s states, as shown in the energy level
diagram of Figure 7.13. Both states are filled by collisions from below, and by recombination
and cascading from higher level states. Population inversion results as the 2p5 3p to 2p6

(ground state) transition is dipole forbidden (see Chapter 1, Section 1.3), while the 2p5 3s to
2p6 transition is radiatively allowed with a high oscillation strength and a short lifetime, of
order 1

3 ps. Lasing then occurs on the 3p (J = 2) to 3s (J = 1) transitions. Electron collisional
excitation from the ground state to these and higher excited states requires at least 1.5 keV,59

thus also requiring a high electron temperature.
Experimental data10 obtained with thin film selenium foils of three lengths are shown

in Figure 7.14. The targets were irradiated with frequency doubled Nd laser light (0.527 µm
wavelength), line focused to a nominal intensity of 7 × 1013 W/cm2, in a pulse of 450 ps du-
ration (FWHM). The foil targets consisted of a 750 Å thick layer of selenium, vapor deposited
on a nominally 1500 Å thick Formvar (C11H18O5) substrate. Using a cylindrical lens, a line
focus of 200 µm × 1.1 cm was obtained. With two beam illumination from opposite sides
of the Novette laser, plasmas up to 2.2 cm length were formed. Due to the thin nature of the
target material, the entire irradiated area was vaporized, creating a single elongated plasma.
The combination of experimental data and computer simulations indicates57 that at the time of
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F IGURE 7.13. Simplified energy diagrams showing two lasing lines, at 20.64 nm and 20.98 nm, in
neon-like (10 electron) selenium ions. The ground state has a 1s2 2s2 2p6 configuration. The Ne-like
ions are produced in a hot dense plasma. The ions are pumped into excited states by direct electron
collisional excitation, and by downward cascading from overly ionized F-like ions. Population
inversion results from selective depopulation. The 3p to 2p transition is a long-lived dipole forbidden
transition, while the 3s to 2p is dipole allowed with a fast radiative decay of about 1

3 ps. This creates a
population inversion between the 3p and 3s states. (Courtesy of M. Rosen, Lawrence Livermore
National Laboratory.)

lasing the electron density was about (3–5) ×1020 e/cm3 with a density scale length in excess
of 100 µm, electron temperature approximately 900 eV, and ion temperature approximately
400 eV.

Figure 7.14 shows time-gated axially observed emission spectra for plasma lengths of
4.6 mm, 10.1 mm, and 22.4 mm. For the 4.6 mm long plasma the 2p5 3p to 2p5 3s lines,52, 53

at 20.64 nm and 20.98 nm, are evident but comparable in intensity to many other emission
lines, just above the background continuum. Observed at an angle away from the axis, with a
companion instrument, these lines are barely discernible above the background continuum.10

As seen in Figure 7.14(b), with a plasma length of 10.1 mm the two lasing lines begin to
dominate the spectrum. For the 22.4 mm plasma length, Figure 7.14(c), the lasing lines at
20.64 nm and 20.98 nm completely dominate the observed axial emission spectra. Integrated
line intensities versus target length are shown in Figure 7.14(d) for (laterally displaced) double
sided target irradiations. The exponential growth of intensity for both 20.64 nm and 20.98 nm
lines is a clear diagnostic of amplification by stimulated emission. This exponential growth
is observed only in the axial direction, where a sufficient gain–length (GL) product exists.
Fits to the experimental data in Figure 7.14 indicate a gain of approximately 5/cm for the
two-sided irradiations.

Further confirmation of lasing, obtained in later experiments, involved measurement of
the emission line spectral shape (�λ), and the observation of gain narrowing of the 20.64 nm
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F IGURE 7.14. (a–c) Axial emission spectra are observed for selenium plasmas of lengths 4.6 mm,
10.1 mm, and 22.4 mm. The Ne-like selenium lasing lines, at 20.64 nm and 20.98 nm wavelengths, are
observed to grow dramatically in intensity with increasing plasma length. Data are obtained with the
time-gated spectrometer shown in Figure 7.12. Observation of the same spectral range from an off-axis
position shows these same lines to be very weak, lacking a sufficient propagation distance for growth by
stimulated emission. (d) Exponential growth of integrated line intensity with target length provided the
primary evidence for lasing on the 3p to 3s transitions at 20.64 nm and 20.98 nm wavelength in Ne-like
selenium ions. (Courtesy of D. Matthews and colleagues,10 Lawrence Livermore National Laboratory.)

line in time resolved high spectral resolution studies by Koch et al.56, 57 Neon-like lasing was
extended to relatively modest facilities by Lee, McLean, and Elton,60 who used a 400 J, 2 ns
Nd laser and solid targets to demonstrate lasing in Cu and Ge, albeit at the somewhat longer
wavelengths of 27.93 nm and 23.22 nm, respectively. Collisionally pumped lasing in Ne-like
electron configurations was extended to shorter wavelengths15−17, 47, 49 using Ne-like Y at
15.50 nm and 15.71 nm, and Ne-like Mo at 13.10 nm and 13.27 nm.¶¶

Continuation to still shorter wavelengths using this same isoelectronic sequence requires
ever higher electron temperatures and thus higher visible laser intensities, which is problematic
because of power requirements for these large area targets. Recent experiments utilizing double
pulse transient excitation offer a new and more efficient route to collisionally pumped lasing.
In this technique two time-separated laser pulses are used to heat a plasma. The first is a
relatively modest intensity nanosecond duration pulse that pre-forms a plasma to the desired
ionization stage. The plasma is then allowed to expand for 1–2 ns, creating a larger plasma
with more gentle density gradients. A second, more intense pulse, typically one picosecond
in duration, is then used to rapidly heat the pre-formed plasma, collisionally exciting the
existing neon-like atoms to higher excited states. Differences in radiative decay rates among

¶¶A comparison of experimentally observed and calculated Ne-like lasing wavelengths is given by
Nilson and Scofield.53
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F IGURE 7.15. Simplified energy level diagram for
Ni-like Ta+45, showing the 4d to 4p lasing
transition at 4.483 nm (276 eV). (Following
MacGowan et al.52)

the various excited states provide the desired population inversion. The more gentle density
gradients reduce refraction in the plasma, increase the potential lasing volume, and permit
more efficient extraction of energy from the picosecond heating pulse.

Nickels and his colleagues61 have used this transient inversion technique with a relatively
modest laser facility to achieve lasing in neon-like titanium at 32.6 nm. In their experiments
a total of only about 10 J was used to obtain clear lasing results, pointing a path toward future
table top capabilities. Using a 30 µm by 5 mm line focus on a solid titanium target, 7 J of
1.053 nm laser light in a 1.5 ns FWHM pulse is delivered to the target, at an intensity of
about 1012 W/cm2. This is followed by a 1.5 ns delayed pulse of 4 J in 0.7 ps, at a nominal
intensity of 1015 W/cm2. The 0.7 ps transient pulse permits a favorable inversion condition
with respect to the longer lifetimes of the excited upper states. With an irradiated target length
of 5 mm, a gain of 19/cm was achieved, for a gain–length product of GL = 9.5. Continuation
of these transient population inversion experiments is described toward the end of this section
in experiments involving collisionally pumped nickel-like lasers.

A second route in the pursuit of ever shorter wavelength lasers, also utilizing collisional
pumping of closed electron shells, is that involving nickel-like ions.50−52, 54 In this case the
closed-shell ground state is 1s2 2s2 2p6 3s2 3p6 3d10, a 28-electron ion, with lasing between
the 3d9 4d and 3d9 4p excited states. Key advantages of the Ni-like schemes are the lower
ionization potentials of n = 4 levels, vs. n = 3 levels for Ne-like, and the lower excitation
energies from the 3d10 ground state, about 1.1 keV vs. about 1.5 keV for Ne-like (from 2p6).
Figure 7.15 shows a simplified energy level diagram52, 54 for Ni-like tantalum (Z = 73, 28
electrons, net charge +45). Pumping is largely through direct electron collisional excita-
tion and through cascading down from upper levels. Population inversion is again achieved
through selective depopulation of the lower 3d9 4p level in a fast radiative decay to the ground
state.

Experimental data51, 52 for axial emissions of Ni-like Ta+45 are shown in Figure 7.16. With
a small increase in plasma length from 1.7 cm to 2.5 cm, the 4.483 nm line is seen to emerge
dramatically from the noise. The intense line of the 2.5 cm case has a gain–length product
GL � 8. Axially observed lasing lines at 5.023 nm, 4.483 nm, 4.318 nm, and 3.556 nm,
observed with Ni-like ions of ytterbium, tantalum, tungsten (wolfram), and gold, are shown
in Figure 7.17. The lines of Ta and W are selected as they straddle the K-absorption edge of
carbon at 4.36 nm, an important feature for many scientific and technological applications, as
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F IGURE 7.16. Measured axial emission spectrum for 1.7 cm and 2.5 cm long tantalum foils, showing
the emergence of the 4d to 4p lasing line in Ni-like Ta, at 4.483 nm wavelength. (Courtesy of
B. MacGowan and colleagues,52 Lawrence Livermore National Laboratory.)

F IGURE 7.17. Examples of on-axis spectra from Ni-like lasers, showing strong 4d to 4p lines in Yb at
5.023 nm, in Ta at 4.483 nm, in W at 4.318 nm, and in Au at 3.556 nm wavelength. (Courtesy of
B. MacGowan and colleagues,52 Lawrence Livermore National Laboratory.)

discussed for instance by London, Rosen, and Trebes.55 For the Ta+45 laser, the output energy
is estimated62 to be about 30 µJ in a 250 ps pulse, radiating into a horizontal divergence angle
of about 12 mrad (FWHM).

Work on Ni-like lasers, in pursuit of saturated lasing at shorter wavelengths, continues.
In a collaboration between the Institute for Laser Engineering in Osaka and the National
Laboratory for High Power Lasers and Physics in Shanghai, Kato, Wang, Daido, and their
colleagues29, 63, 64 have employed multiple pulse irradiation techniques to control refraction,
and multilayer mirrors to provide feedback, in experiments involving Ni-like lasing in Nd
(Z = 60) at 7.905 nm wavelength. Their technique employs four pulses of 1.053 µm, each of
nominal 100 ps duration and 7 × 1013 W/cm2 intensity. The first pulse is used to pre-form the
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F IGURE 7.18. Radial distributions of electron temperature, electron density, ion temperature, percentage
of Nd ions in the Ni-like ionization stage, and predicted gain, at the peak of the third pulse in a
multipulse irradiation of coaxial Nd slab targets at nominal 7 × 1013 W/cm2, 100 ps, cylindrically
focused Nd laser pulses. The simulations are based on experiments conducted with the GEKKO XII
laser at the Institute of Laser Engineering in Osaka. At peak gain (expansion radius 81 µm) the
predicted values are κTe = 820 eV, ne = 2.8 × 1020 e/cm3, κTi � 340 eV, 35% of Nd ions in the
Ni-like ionization state, and gain 4.8/cm. (Courtesy of Y. Kato, H. Daido, and colleagues,29 ILE, Osaka
University, and S. Wang and colleagues, NLHPLP, Shanghai.)

plasma, allowing free expansion to set a relatively long density scale length so as to minimize
refractive turning during subsequent irradiations. Cylindrical focusing is used on side-by-
side slab targets, illuminated from opposite sides and aligned for double plasma path length.
The two targets are separated axially by 3 cm center to center, are curved to compensate for
refraction, and are laterally displaced. The double targets are irradiated with this sequence
of four pulses, in each case with one target irradiation delayed by 100 ps to enhance gain
in one direction (�τ = �l/c). A Ru–B4C multilayer mirror,§§ with 7% reflectivity at 7.9 nm
wavelength, is placed 6 cm from the center of the closest target. This separation matches
the 400 ps interval between pulses (2 × 6 cm/c). With feedback from the mirrors, lasing is
enhanced on the third and fourth pulses. The combination of multipass lasing in refraction-
compensated, quasi-traveling-wave illumination (delayed by one target) of solid Nd targets
generates a sequence of three 130 ps duration pulses, of 40 µJ energy each,64 at 7.905 nm
wavelength in a nickel-like neodymium plasma.

Numerical simulations of plasma conditions at the peak of the third pulse, obtained using
a one-dimensional (radial) computer code, are reproduced here in Figure 7.18. The figure
shows radial profiles of electron density, electron temperature, ion temperature, percentage of
Ni-like Nd+32 ions, and predicted gain. A maximum gain of 4.8/cm is predicted during the
third pulse, for a double length target of 4.6 cm. Maximum gain is predicted to occur at an
expansion radius 81 µm from the initial surface, in a radial region about 40 µm wide, radiating
into a divergence angle of about 3 mrad. At maximum gain, the computer code predicts an
electron temperature of 820 eV, an electron density of 2.8 × 1020 e/cm3, an ion temperature
of about 340 eV, and a Ni-like Nd+32 ion fraction of about 35%.

Saturation of Ni-like lasers at a variety of wavelengths, as short as 7.355 nm in Sm, has
been achieved in experiments at the Rutherford-Appleton Laboratory using 75 ps, 1.05 µm

§§See Chapter 4, Refs. 24 and 27.
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F IGURE 7.19. Axial emission spectrum from a single 18 mm long curved silver target, showing the
dominant Ni-like Ag 4d to 4p lasing line at 13.99 nm. (Courtesy of J. Zhang and colleagues,65

Rutherford-Appleton Laboratory.)

laser heating pulses, cylindrically focused to (1–4) ×1013 W/cm2 irradiation intensity. Zhang,
MacPhee, Lin, and their colleagues32, 65 have employed double pulses (2.2 ns separation) to
irradiate side-by-side slab targets, axially aligned and oppositely illuminated, up to 3.6 cm
total length. With the resultant opposed density gradients, refraction in the sequential plas-
mas is partially compensated, with resultant divergence angles of 1–2 mrad. These satura-
tion results are particularly interesting in that they are obtained with modest laser intensities
(2 × 1012 W/cm2) that are accessible at many smaller laser facilities, thus showing a path
towards wider access to short wavelength lasing.

Figure 7.19 shows the axial emission spectrum of a single 18 mm long curved silver
target.65 The spectrum is dominated by the 4d → 4p (J = 0 → 1) lasing line of nickel-like
Ag at 13.99 nm.‖‖ The small signal gain in these experiments was about 7.2/cm. Saturation,
as shown in Figure 7.20(a), was achieved with a gain–length product of GL � 1.6). Based on
best estimates of source size (43 µm ×57 µm FWHM) and divergence (1.5 mrad × 3.5 mrad
FWHM), a pulse peak spectral brightness of 1.1 × 1025 photons/s · mm2 · mrad is estimated.
This is based on a laser output energy of 90 µJ in a single 43 ps pulse, corresponding to
an output intensity of 69 GW/cm2. Saturation curves66 for nickel-like lasing in Ag, In, Sn,
and Sm, at wavelengths of 13.99 nm, 12.59 nm, 11.98 nm, and 7.355 nm, respectively, are
shown in Figure 7.20. The Sm laser at 7.355 nm has a smaller angular divergence than silver
(1.3 mrad versus 2.8 mrad) and a significantly higher output intensity, 2.5 × 1011 W/cm2.

The efficiency with which saturation is achieved in these Ni-like lasers has recently
been improved by an order of magnitude using picosecond transient inversion techniques
combined with a true traveling wave illumination. In these experiments, also at the Rutherford-
Appelton Laboratory, MacPhee, Lewis, Pert, and colleagues67 use a 280 ps FWHM, nominal
1013 W/cm2 prepulse followed 550 ps later by a 3 ps FWHM, nominal 1015 W/cm2 heating
pulse (both 1.053 µm wavelength) to drive a transient population inversion. By using off-axis
illumination the transient heating pulse travels along the gain medium at the same velocity as

‖‖The wavelengths quoted here follow the predicted values of Scofield and MacGowan,54 and are within
the uncertainties of measurements.
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F IGURE 7.20. Laser output versus target length, showing saturation for nickel-like silver (13.99 nm),
indium (12.59 nm), tin (11.98 nm), and samarium (7.355 nm). Gains are shown in inverse centimeters.
For these experiments refraction compensating double targets were irradiated by a pair of 75 ps,
2 × 1013 W/cm2 Nd pulses (1.053 µm ) separated by 2.2 ns. (Courtesy of J.Y. Lin and colleagues,
Rutherford-Appleton Laboratory,66 with permission of Elsevier Science.)

the exponentially growing short wavelength laser pulse. Using tin coated strips on solid glass
targets, very high gains of 31/cm were obtained on the Ni-like Sn line at 11.98 nm wavelength.
Full saturation was obtained67 with a target length of only 1 cm, yielding an output energy of
about 60 µJ in a nominal 3 ps duration pulse, for a peak power of order 20 MW. The measured
beam divergence was approximately 6 mrad. The total energy input for this experiment was
approximately 30 J, most of it in the prepulse. The achievement of saturated lasing with modest
pump energy, at these relatively short wavelengths, portends well for the development of table
top soft x-ray lasers, especially as further improvements in irradiation efficiency are realized.

7.5 COMPACT EUV LASERS

While relatively large visible and infrared laser drivers are used to form laser produced plas-
mas for the generation of soft x-ray and EUV laser radiation, discharge tube plasmas pro-
vide an alternate route, at least for EUV lasing that may not require as high a density or
temperature. Rocca and his colleagues68−74 at Colorado State University have developed
an electrical-discharge-driven EUV laser operating at 46.86 nm wavelength73 on a 3p to 3s
transition (J = 0 to 1) in Ne-like argon. The discharge, in a 500–700 mtorr argon gas, is
driven by a 70 ns, 37 kA peak current from a 3 nF capacitor. The high current pulse drives
a J × B radial compression74 of the plasma, as shown in Figure 7.21. The discharge occurs
through the argon plasma in a 16 cm long, 4 mm diameter capillary tube. Electron densities of
(5–8) × 1018 e/cm3 are obtained, with electron temperatures of 65–90 eV, across a plasma
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F IGURE 7.21. A fast high current electrical
discharge compresses and heats a plasma column
for use in EUV laser generation experiments.
Current density increases in the sequence from (a)
to (b) and (c). The optimum electron density and
temperature for lasing are obtained near the end of
the compression. (After Rocca et al.74)

column of order 300 µm diameter. The elongated plasma column thus has an aspect ratio
of up to 1000 : 1. Examples of axial emission spectra are shown in Figure 7.22, for plasma
lengths of 3, 6, and 12 cm. For the 3 cm plasma length, many lines are observed, including
several identified as Al-like (13 electrons) and Mg-like argon (12 electrons). The Ne-like Ar+8

3p → 3s line is not particularly intense. With a 6 cm plasma length, amplified spontaneous
emission has intensified the 3p → 3s line to prominence. With a 12 cm plasma length the
Ne-like Ar+8 3p → 3s line at 46.86 nm has grown to an intensity one hundred times that of all
other lines. The early data matches an exponential gain of about 0.6/cm, giving a gain–length
product GL � 7. Later experiments achieve a gain coefficient of 1.2/cm and single pass gains
larger than70 GL = 13. Single pass saturation70 is achieved [Figure 7.22(d)] with a 16 cm
capillary length yielding an output laser energy of 6 µJ on this line. Use of a normal incidence
iridium mirror (R � 20%), permitted double pass experiments that achieved GL � 28, with
an output energy of 30 µJ at 46.86 nm wavelength, in a 0.8 ns FWHM duration pulse. In more
recent experiments, single pulse energies of 130 µJ have been achieved.70 Near- and far-field
images71 indicate an exit beam size of 150–300 µm diameter (FWHM) and a divergence an-
gle (2θ ) of 2–5 mrad (FWHM), with the smaller numbers corresponding to the highest initial
argon pressure (750 mtorr). This corresponds to radiation approximately 20–70 times diffrac-
tion limited at this wavelength.∗∗∗ Measurements of spatial coherence, using diffraction from
a knife-edge, show expected correlations with column length and discharge parameters.72 The
extension of discharge-driven lasers to shorter wavelengths using Ni-like ions is clearly of
interest for future table top experiments.

An alternative approach to compact laser systems is the pursuit of short pulse transient
inversions, such as that discussed by Nickels et al.61 earlier, in the section on collisionally
pumped neon-like schemes. Transient inversions significantly enhance the efficiency of lasing
and thus permit a decreased scale of operation. An important component to such pursuits is
that of using femtosecond duration excitation of atoms and ions in what is known as optical
field ionization (OFI).75, 76 OFI involves the application of very high intensity pulses, of order

∗∗∗See Chapter 8, Eq. (8.5), and the footnote following. For a diffraction limited radiation source of
Gaussian spatial distribution and Gaussian far-field angular distribution, the product of source size
(d) and divergance angle (2θ ) is given in terms of FWHM values as (d · 2θ )FWHM = 0.44λ. For
further discussion see the footnote following Eqs. (8–5) in Chapter 8.
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F IGURE 7.22. EUV lasing at 46.86 nm on the 3p → 3s, J = 0 to 1 transition in neon-like argon. Axial
emission spectra are shown68 for (plasma) capillary lengths of (a) 3 cm, (b) 6 cm, and (c) 12 cm. Later
results extended these experiments to saturation at 16 cm capillary length, with an output energy of
6 µJ in a 0.8 ns FWHM pulse, and a gain–length product GL � 13. Double pass experiments, utilizing
an iridium mirror, extend this further, to GL � 28, with an output energy of 30 µJ at 46.86 nm
wavelength (26.46 eV photon energy), also in a 0.8 ns duration pulse. (See Rocca et al.70, 73) Recent
results have extended the time averaged power to 0.9 mW using a modified capillary and a 7 Hz
repetition rate (Courtesy of B.R. Benware, J. Rocca and colleagues, Colorado State University.)

1017 W/cm2, in a pulse of perhaps 20–200 fs. In this fast excitation process a fair fraction of the
electrons are accelerated to high energies, into the continuum, but do not become well separated
from the parent atom or ion. The technique can lead to very high harmonic generation77−80

(HHG), as discussed in Chapter 6, but can also be employed in the development of efficient
lasing systems, which have the advantage that they radiate their energy in a single emission line.

Pursuits of this approach include that of Lemoff, Harris, and their colleagues81 at Stanford,
who observed lasing at 41.8 nm in Pd-like Xe+8, using nominal 40 fs, 70 mJ, 800 nm wave-
length (Ti : sapphire laser) pulses at 10 Hz, focused longitudinally into a Xe gas (5 torr to
12 torr) at an intensity of about 3 × 1016 W/cm2. The pulse duration in this case is only about
15 cycles, well matched to the OFI model. The kinetic energy of the eight liberated electrons,
equal to the quiver energy gained in the high intensity optical field minus the sequentially
increased binding energies, ranges from about 9 eV to 550 eV, and thus contributes to the
collisional excitation of the remaining bound electrons on the Xe+8 ion. Lasing on the 5d to
5p transition is reported at a gain of 13/cm, with a total gain–length product of GL = 11.

Nagata, Toyoda, and their colleagues82 at RIKEN in Japan, and Korobkin, Nam, and
Suckewer83 at Princeton, have pursued lasing to the ground state in hydrogen-like lithium,
Li+2. Nagata et al.82 used double pulse irradiation, a 20 ns prepulse followed by a 500 fs,
1017 W/cm2, 248 nm wavelength pulse, to create an inversion with cylindrical illumination
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F IGURE 7.23. Axial spectra obtained with femtosecond laser heating of a lithium plasma, in which the
n = 2 to 1 transition in Li+2, at 13.50 nm wavelength, is observed to grow rapidly out of the noise as
the microcapillary length is increased from 2 mm to 5 mm. The 13.50 nm line grows with a gain
G � 11/cm, while a nearby non-lasing line (n = 3 to 1) at 11.39 nm barely emerges from the noise.
(Courtesy of D.V. Korobkin, C.H. Nam, and S. Suckewer, Princeton University.)

of solid targets. Recombination lasing on the Lyman α 2p to 1s transition in Li+2 at 13.5 nm
wavelength was observed with a modest gain–length product GL � 4.

These efforts have been extended by the Princeton group,83 who improved the efficiency
and gain–length product by pumping the plasma axially in a hollowed LiF microcapillary tube,
using a modest prepulse followed several hundred nanoseconds later by an intense 250 fs, 248
nm wavelength inversion pump at about 2 × 1017 W/cm2 and 2 Hz repetition rate. By fully
stripping the Li ions by OFI, lasing is then possible by three body recombination to highly
excited states on a sub-picosecond time scale. The inversion pulse is nominally 0.25 ps,
while the 2p to 1s transition in Li+2 has a lifetime of 26 ps, giving stimulated emission a
significant time advantage. Figure 7.23 shows the emergence of the n = 2 to 1 emission in
Li+2, at 13.50 nm wavelength, as a function of microcapillary length. While a nearby n = 3
to 1 line at 11.39 nm shows very little growth with increased plasma length from 2 mm to
5 mm, essentially remaining in the noise, the 13.50 nm line grows exponentially with a gain
G � 11/cm, for a gain–length product of GL � 5.5.

The authors believe that laser waveguiding by the plasma radial density profile plays a
significant role in both guiding the high intensity KrF laser pulse and guiding the axially prop-
agating stimulated radiation. Their model derives from the initial plasma formation process in
which the relatively low power Nd pulse enters the initially evacuated LiF capillary, causing
ablation of plasma from the inner surface, which expands towards the axis. This creates a
plasma with lower electron density, and thus higher refractive index (see Chapter 6, Section
6.4.7), on axis. The phase velocity of radiation is thus slower on axis, tending to create a
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situation that guides radiation in the axial direction for a relatively long propagation distance.
Radiation guiding effects such as this are common at all wavelengths. Such effects have been
used for microwave plasma diagnostics, and are critical to future plans for a high gain, short
wavelength free electron laser (FEL).
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stration of a Discharge Pumped Table-Top Soft X-Ray Laser,” Phys. Rev. Lett. 73, 2192 (17 October
1994).

69. J.J. Rocca, M.C. Marconi, J.L.A. Chilla, D.P. Clark, F.G. Tomasel, and V.N. Shlyaptsev, “Discharge-
Driven 46.9 nm Amplifier with Gain–Length Approaching Saturation,” IEEE J. Sel. Top. Quant.
Electr. 1, 945 (1995).

70. J.J. Rocca, D.P. Clark, J.L.A. Chilla, and V.N. Shlyaptsev, “Energy Extraction and Achievement of
the Saturation Limit in a Discharge-Pumped Table-Top Soft X-Ray Amplifier,” Phys. Rev. Lett. 77,
1476 (1996); B.R. Benware, C.D. Macchieto, C.H. Moreno, and J.J. Rocca, “Demonstration of a
High Average Power Table-Top Soft X-Ray Laser,” Phys. Rev. Lett. 81, 5804 (1998).

71. C.H. Moreno, M.C. Marconi, V.N. Shlyaptsev, B.R. Benware, C.D. Macchietto, J.L.A. Chilla, J.J.
Rocca, and A.L. Osterheld, “Two-Dimensional Near-Field and Far-Field Imaging of a Ne-like Ar
Capillary Discharge Table-Top Soft X-Ray Laser,” Phys. Rev. A 58, 1509 (1998).

72. M.C. Marconi, J.L.A. Chilla, C.H. Moreno, B.R. Benware, and J.J. Rocca, “Measurement of the
Spatial Coherence Buildup in a Discharge Pumped Table-Top Soft X-Ray Laser,” Phys. Rev. Lett.
79, 2799 (1997).

73. J.J. Rocca, F.G. Tomasel, M.C. Marconi, V.N. Shlyaptsev, J.L.A. Chilla, B.T. Szapiro, and G. Guidice,
“Discharge-Pumped Soft X-Ray Laser in Neon-Like Argon,” Phys. Plasmas 2, 2547 (1995).
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Whereas spatially and temporally coherent radiation is plentiful at visible wavelengths due to
the availability of lasers, it is just becoming available at shorter wavelengths. In this chapter we
review the concepts of spatial and temporal coherence, some applications that require radiation
with these properties, and methods to generate spatially and spectrally filtered radiation at
extreme ultraviolet, soft x-ray, and x-ray wavelengths.

8.1 CONCEPTS OF SPATIAL AND TEMPORAL COHERENCE

The ability to focus radiation to the smallest possible spot size, to propagate it great distances
with minimal divergence, to encode wavefronts, and in general to form interference patterns,
requires well-defined phase and amplitude variations of the fields throughout the regions
of interest. In general, simple phase distributions approaching those of plane or spherical
waves are of greatest interest in those applications. Real laboratory sources, especially at very
short wavelengths, generally radiate fields with more complex phase relationships that are
well defined over only limited spatial and temporal scales. This brings us to the subject of
coherence, its technical definition, and various convenient measures.

Coherence in our daily lives refers to a systematic connection or logical relationship
between events, actions, or policies. In physics the word implies similar relationships among
the complex field amplitudes used to describe electromagnetic radiation. Mathematically, one
utilizes a mutual coherence function, �, as a measure of the degree to which the electric field
at one point in space can be predicted, if known at some other point, as a function of their
separation in space and time1, 2:

�12(τ ) ≡ 〈E1(t + τ )E∗
2 (t)〉 (8.1)

where in this scalar form E1 and E2 are the electric fields at points 1 and 2, and τ is the time
delay. The angular brackets denote an expectation value, or a time average of the indicated
product. It is often convenient to introduce a normalized complex degree of coherence, γ12,
again in scalar form, as

γ12(τ ) = �12(τ )√
〈|E1|2〉

√
〈|E2|2〉

(8.2)

where the normalizing factors in the denominator are clearly related to the local intensities at
the respective points, as was discussed in Chapter 2, Section 2.3. Thus, for example, in the
case of a uniform plane wave, of very well-defined frequency, if the electric field is known
at any given space–time point, it can be predicted everywhere else with certainty. As we
quantify this later for real physical systems, we will consider this uniform plane wave as
coherent radiation, meaning that |γ | = 1 everywhere. The counterexample would be one in
which there were a large number of atoms moving randomly and radiating independently, at
various frequencies, so that fields at the two separated points have almost no relationship. In
this case the resultant degree of coherence, µ, approaches zero, and the fields are considered
incoherent.

One could write similar functions to describe amplitude and phase correlations in other
physical systems. For a well-behaved water wave, for instance, one would expect the surface
amplitude to be predictable over great distances, so that |γ | would be near unity, implying a
high degree of coherence, over much of the observed field. On the other hand, the introduction
of randomly thrown pebbles would create a jumble of uncorrelated disturbances, so that |γ |
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θd

(a) (b)λ λ, ∆λ

F IGURE 8.1. (a) Fully coherent radiation from a point source oscillator, which oscillates for all time.
Note the circular or spherical nature of the outgoing waves. (b) Partially coherent radiation from a
source of finite size, emission angle, and duration. Note that the outgoing radiation only approximates
circular or spherical waves.

would approach zero in the immediate vicinity, leading us to conclude that the fields in this
vicinity were largely incoherent.

To introduce the concept of a coherence region, we consider first the rather visual example
of soldiers marching across a field. The coherent limit corresponds to all the soldiers in perfect
step. In the presence of a strong wind, however, some soldiers might not hear the leader calling
the cadence. In this case those soldiers close enough to hear would remain in step, while those
further away would become out of step – so there would be a region of coherence near
the leader. The distance over which there is a reasonable expectation that the soldiers were
marching in step could be called a “coherence length.” Note that the coherence length need
not be the same in all directions, in this case being dependent on wind direction. The complete
absence of cadence would result in uncorrelated stepping, a state of incoherence where |γ |
goes to zero for the smallest separations, and where the coherence length is essentially zero.
In the following paragraphs we will attempt to provide measures of the distances over which
electromagnetic fields can be expected to be well correlated, and thus useful for interference
experiments as discussed in the first paragraph of this chapter.

In the theoretical limit of a point source oscillating at a single frequency for all time,
from minus infinity to plus infinity, the radiated field quantities would be perfectly correlated
everywhere. That is, if one knew the electric field amplitude and phase at a given point and
time, one would know these quantities at all points and for all time. In this limiting case
the radiation field is said to be coherent. Real physical sources, however, are made up of
spatially distributed radiators that emit with a finite spectral bandwidth for a finite period of
time. Consequently, well-defined phase relationships between field amplitudes are in practice
restricted to a finite region of coherence.

Real sources are neither fully coherent nor fully incoherent, but rather are partially
coherent.1 In Figure 8.1(a) the point source radiates fields that are perfectly correlated,
and thus coherently related everywhere. In Figure 8.1(b) a source of finite size and spec-
tral bandwidth, restricted to radiate over a limited angular extent, generates fields with strong
phase and amplitude correlation over only a limited extent. This brings us again to notions
of “regions of coherence” and “coherence time”: that is, spatial and temporal measures over
which the fields are well correlated. In cases where there is a well-defined direction of propa-
gation, it is convenient to decompose the region of coherence into orthogonal components, one
in the direction of propagation and one transverse to it, as illustrated in Figure 8.2. Throughout
the remainder of this chapter we will confine ourselves to the subject of partially coherent
radiation in which there is a relatively well-defined direction of energy transport.

In the direction of propagation it is common to introduce a longitudinal, or temporal,
coherence length lcoh over which phase relationships are maintained. For a source of bandwidth
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F IGURE 8.2. Transverse and longitudinal coherence.
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F IGURE 8.3. (a) Spectral bandwidth and (b) coherence length: destructive interference due to finite
spectral bandwidth for radiation of wavelength λ and spectral bandwidth �λ.

�λ, one can define a coherence length

lcoh = λ2

2 �λ
(8.3)

where �λ is the spectral width, as discussed by several authors.2, 3 The relationship between
longitudinal coherence length (e.g., in the direction of propagation) and spectral bandwidth is
illustrated in Figure 8.3. Here the coherence length is taken as that distance that results in two
waves, of wavelength difference just equal to the bandwidth �λ, becoming 180◦ out of phase.
Over such a distance one would expect the waves emanating from a source of continuous
spectral width to become largely uncorrelated, and thus not contribute significantly to a well-
defined interference pattern. Equation (8.3) follows from Figure 8.3 on writing l coh = Nλ for
the first wave and l coh = (N − 1

2 )(λ + �λ) for the spectrally shifted wave, which executes
one-half less oscillation (one-half fewer wavelengths) to travel the same distance, and then
equating the two to solve for the “number of waves of coherence,” N = λ/(2 �λ). Equa-
tion (8.3) then follows on multiplying N by the wavelength, giving the coherence length for
which radiation of continuous bandwidth �λ becomes substantially dephased. The resultant
numerical factor of 1

2 appearing in Eq. (8.3) is somewhat arbitrary as obtained here, as it
depends on the criteria selected. The numerical factors’ dependence on spectral line shape
is discussed by Goodman2 in his Section 5.1.3. In the experimental formation of interfer-
ence (fringe) patterns by amplitude dissection (e.g., using a beamsplitter) and recombination,
as in interferometry1 and holography,3 it is essential that differences in propagation length
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be less than the coherence length; otherwise high contrast interference patterns will not be
obtained.

Transverse, or spatial, coherence is related to the finite source size and the characteristic
emission (or observation) angle of the radiation. In this case one is interested in phase cor-
relation in planes orthogonal to the direction of propagation. It is instructive to consider the
relationship of spatial coherence to spherical waves in the limit of phase being perfectly corre-
lated everywhere. Clearly this limit corresponds to concentric spherical waves with constant
phase across every spherical surface and with phase maxima separated by a wavelength in
the outward propagation direction. Although somewhat restrictive, we consider the spherical
case because it is common to our experience and yields a clear physical insight. Again we
consider only a small portion of the spherical wave propagating in a relatively well-defined
direction. With some appropriate bandwidth, and thus finite coherence length, such a spheri-
cal wave could provide a reference wave for encoding complex wavefronts, as in holography.
Near-spherical waves can be focused to a spot size approaching finite wavelength limits, as in
a scanning microscope, or collimated to travel with minimal divergence for use in precision
diffraction experiments.

Full spatial coherence, the situation in which phase is perfectly correlated at all points
transverse to the propagation direction, can be achieved with a spherical wavefront, which we
associate with a point source. We might then ask, “How small is a point source?” or more
accurately, “How small must the source be to produce wavefronts suitable for our purpose?”
and “How small must our undulator electron beam or x-ray laser aperture appear to be in
order to provide spatially coherent radiation?” We can obtain a simple estimate based on
Heisenberg’s uncertainty principle

�x · �p ≥ h̄/2 (8.4)

Here �x is the uncertainty in position and �p the uncertainty in momentum, both being
single-sided rms (1/

√
e) measures of Gaussian probability distributions.4 Using Eq. (8.4), we

can determine the smallest source size d resolvable with finite wavelength λ and observation
half angle θ . For photons the momentum is h̄k, where the scalar wavenumber |k| is 2π/λ. If
the relative spectral bandwidth �λ/λ, which is equal to �k/k, is small, then the uncertainty
in momentum, �p = h̄ �k, is due largely to the uncertainty in direction θ , so that for small
angles |�p| = h̄k �θ . Substituting into the uncertainty relation (8.4)

�x · h̄k �θ ≥ h̄/2

and noting that k = 2π/λ, one has

�x · �θ ≥ λ/4π

Identifying the source diameter as d = 2 �x and the divergence half angle θ with the
uncertainty �θ , as illustrated in Figure 8.4, we obtain the limiting relationship5−7

d · θ = λ/2π (8.5)

which determines the smallest source size we can discern; that is, within the constraints of
physical law we would not be able to tell if our “point” source were any smaller. We recall
from Eq. (8.4) that this relationship is for Gaussian rms quantities (d and θ ). For non-rms
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F IGURE 8.4. Spherical wavefronts and spatially coherent radiation are approached when the source size
and far-field divergence angle are related to wavelength as indicated in Eq. (8.5).
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F IGURE 8.5. Propagation of a Gaussian beam.

measures the numerical factor (1/2π ) will be different.∗ Radiation satisfying the equality
(8.5) is said to be diffraction limited – that is, limited by the finite wavelength and observation
angle (or numerical aperture θ ). To generate a spatially coherent spherical wave we must
develop a source – at x-ray wavelengths – that approaches the limiting values set by Eq. (8.5).
For symmetry purposes some researchers prefer to introduce a “spatial coherence length,”
rather than θ . This would clearly depend on distance z from the source; e.g., if one defines
ltransverse ≡ zθ , one has

l transverse = zλ

2πd

In this text, we will confine ourselves to the use of the space–angle relationship given in
Eq. (8.5).

For comparison, a laser radiating in a single transverse mode TEM00 satisfies this same
condition when the waist diameter d and far-field divergence half angle θ are written in terms
of rms quantities, as illustrated in Figure 8.5. For a spherical wave propagating with a Gaussian
intensity distribution, I/I0 = exp(−r2/2r0), where r0 is the 1/

√
e waist radius at the origin

(z = 0), the intensity distribution grows with a 1/
√

e radius given by5, 6

r (z) = r0

√
1 +

(
λz

4πr2
0

)2

Thus in the far field, where z � 4πr2
0 /λ, the 1/

√
e divergence half angle is

θ ≡ r (z)

z
= λ

4πr0

∗For Gaussian intensity distributions measured in terms of FWHM diameter (d) and FWHM angle (2θ ),
the equivalent relation is (d · 2θ )FWHM = 2 ln 2

π
λ = 0.441λ, or approximately λ/2.
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With a waist diameter d = 2r0, this TEM00 laser cavity mode exhibits a waist diameter times
far-field divergence half angle (both in terms of 1/

√
e measures) given by

d · θ = λ

2π

as found previously in Eq. (8.5) on the basis of Heisenberg’s uncertainty principle.
In summary, we now have two convenient relationships by which to gauge the coher-

ence properties of a radiation field for the purpose of conducting phase sensitive interference
experiments, Eqs. (8.3) and (8.5):

lcoh = λ2

2 �λ
(temporal or longitudinal coherence)

and

d · θ = λ/2π (spatial or transverse coherence)

In the next section we will use these measures to determine what fraction of radiated power,
or photon flux, from a given source is useful for experiments requiring spatially or temporally
coherent radiation within required bounds.

8.2 EXAMPLES OF EXPERIMENTS THAT REQUIRE COHERENCE

As discussed in the preceding section, radiation from a real physical source cannot be truly
coherent, because of both the finite spectral width and the finite physical extent. Nonetheless,
in many experiments we require a high degree of coherence across only a limited region, and
as a consequence may wish to employ spatial and temporal filtering techniques. For example,
if one wishes to focus radiation to the smallest possible spot size, at a given wavelength
(λ) and lens numerical aperture, the lens must be coherently illuminated, as illustrated in
Figure 8.6.

Such focusing is essential for the achievement of highest spatial resolution in a scanning
x-ray microscope, a topic we take up in Chapter 9. The advantage of scanning x-ray microscopy
is that it is capable of achieving significantly smaller focal spots than are achievable with visible
or ultraviolet radiation, and thus it is becoming a widely used tool for the study of material
surfaces, chemical fibers, and biological materials. For the case of the smallest possible focal
spot size, the lens forms a wavelength-limited image of the source. This process is referred
to as diffraction limited focusing because the intensity distribution in the focal region is
limited by the finite wavelength and lens numerical aperture, rather than the actual source
size. This is, of course, a limiting case. For a larger source size the image would simply be
demagnified by the ratio M = q/p, where q is the source to lens distance, p is the lens to
image distance, and these are related to the lens focal length f by the reciprocal thin lens
equation 1/ f = 1/p + 1/q. In the diffraction limited case, however, the source size d is
sufficiently small that the radiation intercepted by the lens (see θ in Figure 8.6) approximately
satisfies the spatial coherence condition set by Eq. (8.5), or its equivalent. In this case the focal
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F IGURE 8.6. Diffraction limited focusing – that is, limited only by the finite wavelength and lens
numerical aperture (NA) – requires a perfect lens and coherent illumination. The refractive lens shown
is for illustration only. At x-ray wavelengths this would require diffractive or reflective optics, such as a
Fresnel zone plate or a multilayer coated spherical mirror. In a scanning microscope a sample would be
placed at the focus and raster scanned with a suitable translation stage while observing an appropriate
signal such as transmitted x-rays, fluorescent emission of characteristic radiation, or photoelectrons.
The spatial resolution of the measurement would be set by the focal spot size, assuming this is not
compromised by lens imperfections, mounting-related aberrations, improper illumination, or scanning
stage limitations such as placement accuracy or non-uniform dwell times.
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F IGURE 8.7. A possible approach to off-axis x-ray holography, which would require spatially and
temporally coherent radiation to achieve high contrast interference patterns.

region intensity pattern approximate an Airy pattern,1,8 with a focal region radius to the first
null given by 0.61λ/NA. The fact that this is a spherical wave illumination, rather than a plane
wave illumination, simply moves the focal plane to a conjugate point determined by the thin
lens equation for finite source distance q. Departures from spatially coherent illumination of
the lens, due to finite source size and divergence, are addressed in Section 8.6.

A second example in which coherence plays an important role is that of encoding complex
wavefronts, as in holography.3 A typical setup, such as might be used with a weak x-ray
scattering object, is shown in Figure 8.7. The incident wave is shown illuminating a flat mirror
and a nearby object. After reflection from the multilayer mirror, the radiation propagates
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toward the recording medium, and is referred to now as the reference wave. In the presence of
a weakly scattering object, secondary radiation is scattered in all directions, although Figure
8.7 shows only that portion directed toward the recording plane.

To form an interference pattern in the plane of the recording medium, the reference and
scattered waves must maintain a time averaged phase relation, that is, the detected fields must
at every point in this plane have a complex degree of coherence [Eq. (8.2)] of order unity, or
some fraction thereof, in order to form a recordable interference pattern. Because a complex
object, such as the double stranded structure in Figure 8.7, redirects radiation at various an-
gles, leading to a complex jumble of interacting waves at the detector, it is essential that the
incident and reference wavefronts maintain a simple variation across the field, such as with the
spherical wavefront invoked for development of the spatial coherence condition [Eq. (8.5)], so
as to provide a clear mechanism for wavefront encoding and subsequent decoding, or recon-
struction, with a similar spherical wavefront. Furthermore, to ensure high contrast encoding
(interference) it is essential that all path lengths from the source (not shown) to the detector
be equal to within a longitudinal coherence length [Eq. (8.3)], lcoh = λ2/(2 �λ), whether that
path involves a reflection from the mirror or scattering from the object. The latter condition
must be satisfied at every point in the detector plane. Having satisfied these conditions, and
with sufficient coherent photon flux or power, a suitable interference pattern can be produced
and recorded with an appropriate detector.

In general, the interference pattern at x-ray wavelengths will be characterized by a very
fine spatial scale, of order λ/ sin α, where α is the angle between reference and scattered
waves. The geometry of Figure 8.7 is designed to keep these two waves nearly collinear
(small α), but sufficiently separated to permit an unambiguous reconstruction – an attribute
of off-axis holography. Note that the selected geometry imposes a condition whereby the
angle of recorded scattering, which is due to spatial features of the sample, is about equal to
the change in direction of the reference wave, which is due to the spatial periodicity of the
multilayer mirror. Thus by this technique one would expect, if successful, to image features
in the sample with a scale size about equal to a multilayer period. By the Bragg condition
discussed in Chapter 4, this is equal to λ/

√
2 for a total turning angle of 90◦.

This example, however, is presented here to illustrate ideas and concepts rather than to
suggest its practical implementation. Although in principle it achieves a resolution equal to
the wavelength, large angle x-ray scattering from a non-periodic structure can be expected to
be weak. Success for such an experiment would require a high resolution (λ/ sin α) detector
with high (quantum) sensitivity, good dynamic range and linearity, and a radiation source ca-
pable of generating radiation with the requisite spatial and temporal coherence at sufficiently
high coherent photon flux or coherent power. In the following section we discuss the pro-
cedures by which a partially coherent radiation field can be spatially and temporally filtered
to achieve the desired degree of coherence. Early examples that demonstrate off-axis holog-
raphy with a spatially and temporally filtered x-rays are presented in the literature by Aoki,
Kikuta, Kohra, and their colleagues.9 Gabor holography is discussed by Howells, Jacobsen,
Kirz, and their colleagues,10 and soft x-ray interferometry is discussed by Joyeaux and
Pollack.11

A clever approach to atomic resolution holographic imaging of surface structures is based
on the scattering and interference of fluorescence emission. Known as inside source holog-
raphy, the technique does not require coherent illumination, but rather utilizes the inherent
coherence of single atom emissions scattered off near neighbors. The resultant interference
patterns are summed in the far field over the contributions of many atoms in an identical geo-
metric lattice. First proposed for this application by Szöke, recent experiments are described
by Fiagel, Tegze, Marchesini, and their colleagues in reference 9–101.
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F IGURE 8.8 (see Colorplate IX). Spatial and spectral filtering is illustrated as a procedure to produce
coherent radiation, albeit at greatly diminished power, from an ordinary thermal source of visible light.
In the nomenclature used here, d would be the diameter of the pinhole shown in part (d), and θ would
be the divergence half angle in part (d), set either by the radiation emission characteristics, by a
downstream acceptance aperture, or by a lens. (From A. Schawlow,12 Stanford University.)

8.3 SPATIAL AND SPECTRAL FILTERING

We concluded in Section 8.1 that the limiting condition of spatially coherent radiation is a
space–angle product [Eq. (8.5)], or phase space† volume

d · θ = λ/2π

where d is a Gaussian 1/
√

e diameter and θ is the Gaussian half angle. All physical sources
generate radiation of space–angle product larger than this, often considerably larger. At visible
wavelengths, for instance, only lasers with intra-cavity mode control approach this limit, those
operating in the so-called TEM00 mode.5 The question here is: what if your source generates
radiation into a larger phase space, largely incoherent in nature, but you wish to use it for
phase sensitive experiments that require a higher degree of coherence? Schawlow,12 in his
article on lasers, introduces a very informative illustration to show how such radiation can
be filtered, both spectrally and spatially, to obtain radiation of greatly improved coherence
properties, albeit at the loss of considerable power.

The illustration is reproduced in part here in Figure 8.8. Shown is a typical thermal light
bulb with an extended filament heated to a temperature such that many excited atoms randomly

†This space–angle product is often referred to as a “phase space” volume. This derives from the study of
dynamics, where particles are followed in a position–momentum phase space (�x, �p). For photons
p = h̄k, and for nearly monochromatic radiation the interval in momentum �p = h̄ �k becomes
�p = h̄k �θ, where �θ is transverse to k. Thus for nearly monochromatic photons the interval of
position–momentum phase space becomes �x · �θ, which has a scalar minimum given by Eq. (8.5).
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radiate a broad spectrum of white light – that is, radiate a continuum containing all colors
of the spectrum visible to the human eye. The radiation is filtered in two ways. A pinhole is
used [Figure 8.8(b)] to obtain spatially coherent radiation (over some angular extent), as set
here by Eq. (8.5). A color filter is used [Figure 8.8(c)] to narrow the spectral bandwidth, thus
providing a degree of longitudinal coherence, as described here in Eq. (8.3). Combining both
the pinhole and the filter, one obtains radiation that is both spatially and temporally coherent,
as is seen in Figure 8.8(d), but with a power that is only a small fraction of the total power
radiated by the light bulb.

As Schawlow points out in his article, a visible light laser has the great advantage of
providing these desired coherence properties, often with very long temporal coherence length
(very narrow �λ/λ), without compromising available power. As we have seen, however, this is
a much greater challenge at x-ray wavelengths, both because the energetics make lasing at high
photon energy more difficult, and because the very short wavelengths place great demands on
the achievement of substantial spatial coherence [Eq. (8.5)]. As a consequence, lasing to date
has been accomplished largely at the longer wavelengths of extreme ultraviolet (EUV) and soft
x-rays, and has lacked spatial coherence. The techniques of spatial and spectral filtering are
therefore very important, and are now commonly used at EUV through x-ray wavelengths. In
the following section we discuss the use of spatial and temporal filtering of undulator radiation
at powers sufficient to permit experimentation at these very short wavelengths.

8.4 SPATIAL AND SPECTRAL FILTERING OF UNDULATOR RADIATION

As an example of pinhole spatial filtering, Figure 8.9 illustrates how the technique is used to
obtain spatially coherent radiation from a periodic undulator,7, 13 as was described in Chapter 5.
The secret to success in this spatial filtering process is that the electron beam cross-section
and divergence must be sufficiently small, so that a fair fraction of the radiated flux is able to
pass through a pinhole–aperture combination for which d · θ = λ/2π, as described earlier in
Eq. (8.5). That is, viewed through an appropriate pinhole and angular aperture, the radiation
must appear to come from a point source. Figure 8.9(a) depicts both the undulator and one
form of a spatial filter. Within the indicated central radiation cone (θcen), the emitted radiation
is characterized by a relative spectral bandwidth λ/�λ equal to N , which is the number of
magnet periods and thus the number of oscillations executed by the electrons as they traverse
the magnet structure. Figure 8.9(b) shows the calculated power radiated within the central cone
[Chapter 5, Eq. (5.41)] for an undulator at the Advanced Light Source (E = 1.9 GeV), which
was described previously in Chapter 5, with parameters summarized in Chapter 5, Table 5.1.

In general the phase space of the central radiation cone is larger than the limiting condition
[Eq. (8.5)] required for spatial coherence. That is, if we take a typical electron beam diameter
of 100 µm and a typical central cone half angle of 50 µrad, the product d · θ is 5 nm, generally
much greater than λ/2π for EUV and soft x-ray wavelengths. Thus for experiments that require
spatial coherence, a pinhole and angular acceptance aperture are introduced, as shown in Figure
8.9(a). This pinhole spatial filter is used to narrow, or filter, the phase–space of transmitted
radiation, much as was illustrated in Figure 8.8. Filtering to d · θ = λ/2π requires the use of
both a small pinhole (d) as shown, and some limitation on θ , such that the product is equal
to λ/2π . For example, one could accept the full central cone (θcen) and choose an appropriate
pinhole diameter d = λ/2πθcen. Alternatively, one could use a downstream angular aperture
(perhaps another pinhole or a lens) of acceptance angle θ < θcen, and choose d accordingly.
Both forms of spatial filter are used in practice.

To calculate the spatially coherent power transmitted by the pinhole spatialfilter, one must
consider the phase–space of the emitted radiation in both the vertical (y–z) and horizontal
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F IGURE 8.9 (see Colorplate X). (a) Undulator radiation with a pinhole spatial filter. (b) Power in the central
radiation cone (θcen, 1/N relative spectral bandwidth) for an 8 cm period undulator at the ALS
(Table 5.1). (c) Time-averaged coherent power after spatial filtering (d · θ = λ/2π ).

(x–z) planes, as the condition d · θ = λ/2π must be satisfied for both. If the electron beam
is elliptical, as was discussed in Chapter 5, Section 5.4.5, and illustrated in Figure 5.22, with
major and minor diameters dx = 2σx and dy = 2σy , and if the central radiation cone is also
somewhat elliptical due to differences in the horizontal and vertical electron beam divergence,
so that the characteristic half angles‡ are θx and θy , then the respective phase–space volume

‡In Eqs. (5.56) these were described as the “total” central cone half angles θT x=
√

θ2
cen+σ ′2

x and
θT y=

√
θ2

cen+σ ′2
y , where σ ′

x and σ ′
y are the respective measures of electron beam divergence in the

two planes. For simplicity in this chapter we have replaced θT x by θx and θT y by θy .
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containing the emitted power in the radiation cone, P̄cen of Eq. (5.41), will be (dxθx )(dyθy).
The pinhole spatial filter must reduce both dxθx and dyθy to λ/2π . The transmitted spatially
coherent power7 will therefore be reduced, proportionally, to a value

P̄coh,N =
(

λ/2π

dxθx

) (
λ/2π

dyθy

)
P̄cen (8.6)

where the horizontal (x) and vertical (y) phase–space filter factors are written separately to
remind us that each alone has a maximum value of unity. In much of what follows we will
assume that in both planes d · θ > λ/2π , permitting some simplifications to the formulae.¶

We recall from Chapter 5, Eq. (5.41a), that

P̄cen = πeγ 2 I

ε0λu
· K 2

(1 + K 2/2)2
f (K )

where I is the average current, λu is the undulator period, and f (K ) is a finite-K correction
factor of order unity which is given in Chapter 5, Eq. (5.41). The longitudinal coherence
length is understood to be lcoh = λ2/(2 �λ) = Nλ for N undulator periods and no further
spectral filtering. This is consistent with our formulations of P̄cen and θcen, which are defined
for a relative spectral bandwidth of λ/�λ = N . According to Eq. (8.6), the spatially coherent
power can generally be expected to decline with a λ2 behavior for shorter wavelengths. This
phase–space scaling, however, is modified for undulator radiation by several factors that arise
from the K-dependence of radiated power, involving the electrons’ transverse acceleration,
reduced axial velocity, and electron beam divergence parameters.

To examine the wavelength dependence of coherent power further we note that P̄cen

contains a factor K 2/(1+ K 2/2)2 that is related to wavelength through the undulator equation
[Eq. (5.28)]

λ = λu

2γ 2

(
1 + K 2

2
+ γ 2θ2

)

For on-axis radiation (θ = 0) one has

λ = λu

2γ 2

(
1 + K 2

2

)

or more conveniently, in terms of photon energy (h̄ω = 2πh̄c/λ),

h̄ω = h̄ω0

1 + K 2/2
(8.7a)

where

h̄ω0 ≡ 4πh̄cγ 2/λu (8.7b)

¶The phase–space assumption d · θ>λ/2π is generally valid for the undulator radiation, but is near
its limit (diffraction limited radiation) in the vertical plane for longer wavelength radiation at third
generation facilities.
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is the highest photon energy that can be radiated in the fundamental (n = 1) by a given
undulator, and that corresponds to the limiting case K = 0. With some algebraic manipulation
one can show that the three wavelength-dependent factors, λ2 due to the coherent phase–space
constraint, K 2 due to the transverse electron acceleration, and (1+K 2/2)2 due to the decreased
axial velocity (γ ∗ = γ /

√
1 + K 2/2) forfinite K , combine to give a photon energy dependence

(h̄ω0 − h̄ω)/h̄ω, so that the spatially coherent power [Eq. (8.6)] for an undulator wavetrain of
N cycles takes the form

P̄coh,N = eλu I

8πε0dx dyθxθyγ 2

(
h̄ω0

h̄ω
− 1

)
f (h̄ω/h̄ω0) (8.7c)

where in terms of photon energy the finite-K correction factor [Eq. 5.41(d)] can be rewritten
as

f (h̄ω/h̄ω0) = 7

16
+ 5

8

h̄ω

h̄ω0
− 1

16

(
h̄ω

h̄ω0

)2

+ · · · (8.8)

Note that for magnetic tuning of the undulator through a range 0 ≤ K ≤ 2, the photon energy
is varied by a factor of three, where now in terms of h̄ω/h̄ω0 the factor f (1) = 1, while for
instance f ( 1

3 ) = 0.65. Equation (8.7), however, does not give the full story, as the product
θxθy in the denominator may also contain a noticeable photon energy dependence, depending
on the relative values of electron beam divergence σ ′

x,y and the central cone half angle, θcen

[see the footnote below Eq. (8.6)]. For the case where the undulator condition σ ′2
x,y � θ2

cen is
well satisfied, which corresponds to a relatively narrow spectral shape (see Figure 5.23), the
product θxθy can be approximated as

θxθy � θ2
cen = 1 + K 2/2

γ 2 N

which by Eq. (8.7a) becomes θxθy � h̄ω0/h̄ωγ 2 N . The spatially coherent power in this
important special case then takes the form

P̄coh,N = eλu I N

8πε0dx dy

(
1 − h̄ω

h̄ω0

)
f (h̄ω/h̄ω0)

(
σ ′2 � θ2

cen

)
(8.9)

An example of coherent power versus photon energy is given in Figure 8.9(c) for the
case of an 8 cm undulator at the ALS, where σ ′

x = 23 µrad, σ ′
y = 3.9 µrad, and for K = 1

(286 eV photon energy, 4.34 nm wavelength) the central cone half angle is 44 µrad, so that
the undulator condition is well satisfied. The values of dx and dy are 520 µm and 32 µm,
respectively. The spatially coherent fraction (λ/2π )2/dxθx dyθy , given in Eq. (8.6), is 1.3×10−2

for this undulator at a wavelength of 4.34 nm (K = 1, h̄ω = 286 eV). Thus the 1.4 W power
in the central cone is reduced by spatial filtering to a value of 18 mW of spatially coherent
power. According to Eq. (8.9), the coherent power is a linearly decreasing function of photon
energy, going to zero at h̄ω0 = 428 eV. Although the curve in Figure 8.9(c) derives from the
more general Eq. (8.7), it very closely follows the specialized form given in Eq. (8.9) for this
case where σ ′

x,y � θcen.
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F IGURE 8.10. Spatially coherent average power within a 1/N relative spectral bandwidth for
undulators at the Advanced Light Source and the Advanced Photon Source, previously described in
Chapter 5, with electron beam parameters summarized in Table 5.1. Note that coherent power is
shown for the ALS at 1.9 GeV, and for the APS at 7.0 GeV beam energy. Harmonics (n = 3, 5) can be
used to bridge photon energies between those shown. Note that peak powers are nominally 54 times
higher than average power values at the ALS, and 100 times higher than average power values at the
APS.

Coherent power can be obtained at higher photon energies through the use of shorter un-
dulator periods (λu) and higher electron beam energies. This point is illustrated in Figure 8.10,
which shows spatially coherent power [Eq. (8.7)] versus photon energy for several undulator
periods and differing electron beam energies at the two U.S. synchrotron radiation facilities
described in Chapter 5 (Section 5.1 and Table 5.1). These curves are for a longitudinal coher-
ence length lcoh = Nλ/2, where N is the number of periods for each specific undulator. Note
that spatially coherent power of order 100 µW is achievable to photon energies as high as 10
keV at the Advanced Photon Source (E = 7.0 GeV).

The scaling of coherent power at high photon energy can best be appreciated through
examination of Eq. (8.7), where θx and θy are retained as variables because at high values of
γ , θcen is smaller and possibly comparable to σ ′

x and σ ′
y . Typical values are given in Table 5.1.

With dx , dy, θx , and θy fixed or slowly varying, and with the factors (h̄ω0/h̄ω−1) f (h̄ω/h̄ω0)
providing a local photon energy shape factor for a given undulator in the vicinity of its own
h̄ω0, the wavelength scaling of coherent power is dominated by λu/γ

2, which is proportional
to λ, or inversely to photon energy, as seen on the more global scale of Figure 8.10. In the
vicinity of h̄ω0 for any given undulator, λu and γ are fixed and the dependence on photon
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energy is dominated by the local shape factor described above. The absolute values of coherent
power are also affected by the storage ring current I , which is generally less at higher beam
energies. Again see Table 5.1 for typical values.

On a more global scale, the coherent power is observed in Figure 8.10 to scale roughly
as λ, when corrected for differences in current. From Eq. (8.6) we expect coherent power to
scale as λ2, but higher values of γ are required to reach shorter wavelengths, and the power in
the central cone scales as γ 2/λu , or as 1/λ, thus giving a net scaling proportional to λ, as seen
in Figure 8.10. Note that because of the duty cycle of the synchrotron facilities (e.g., 35 ps
FWHM Gaussian pulses every 2.0 ns at the ALS), the peak power can be considerably higher
than the average power, for instance, a factor of 54 at the ALS and a factor of 100 at the APS,
as discussed in Section 5.4.7.

For many experiments it is also desirable to narrow the spectral bandwidth, either be-
cause improved spectral resolution is required to probe atomic or molecular states, because
a chromatically sensitive zone plate focusing lens requires a relatively narrow spectral band-
width (narrower than one divided by the number of zones), or because a longer longitudinal
coherence length is required for high contrast interferometric or holographic fringe formation.
The radiation must then be spectrally filtered by a monochromator (not shown in Figure 8.9)
to further narrow the relative spectral bandwidth to a suitable value of �λ/λ, thus increasing
the longitudinal coherence length from a value of Nλ/2 to a greater length lcoh = λ2/(2 �λ).
For example, if monochromatization to a value λ/�λ = 103 were desired, the longitudinal
coherence length would become lcoh = 103λ/2. This of course is accomplished at a reduction
in spatially coherent power. By filtering from �λ/λ = 1/N to �λ/λ = 1/103, the transmit-
ted power is necessarily reduced by a multiplicative factor (�λ/λ)/(1/N ), or N/103 in the
example cited. Furthermore, there will be an insertion loss due to the finite monochromator
efficiency, including such factors as the grating or crystal efficiency, finite mirror reflectivi-
ties, etc. If we collect these factors into an inclusive beamline efficiency η, then the available
coherent power can be written as

P̄coh,λ/�λ = η︸︷︷︸
beamline
efficiency

(λ/2π )2

(dxθx )(dy, θy)︸ ︷︷ ︸
spatial
filtering

· N
�λ

λ︸ ︷︷ ︸
spectral
filtering

·P̄cen (8.10a)

which can be rewritten following the logic that led to Eq. (8.7) as

P̄coh,λ/�λ = eλu I (ηN�λ/λ)

8πε0dx dyθxθyγ 2

(
h̄ω0

h̄ω
− 1

)
f (h̄ω/h̄ω0) (8.10b)

where λ/�λ is the relative spectral bandwidth, N is the number of undulator periods, η is the
beamline efficiency (insertion loss), h̄ω0 = 4πch̄γ 2/λu is the highest photon energy achiev-
able with the fundamental (n = 1) of a given undulator in the limit K = 0, and f (h̄ω/h̄ω0)
is the finite-K correction factor for central cone radiation expressed in terms of h̄ω/h̄ω0 as in
Eq. (8.8). To emphasize the penalty paid for this further monochromatization we have brack-
eted the quantity ηN�λ/λ, which is a numerical factor less than unity that represents the loss
of power incurred through monochromatization.
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In the case where the undulator condition is well satisfied (σ ′
x,y � θcen), such that θxθy �

(1 + K 2/2)/Nγ 2, the expression for coherent power takes the form

P̄coh,λ/�λ = eλu Iη(�λ/λ)N 2

8πε0dx dy
·
(

1 − h̄ω

h̄ω0

)
f (h̄ω/h̄ω0)

(
σ ′2 � θ2

cen

)

(8.10c)

which we note scales as N 2 in this limit. This expression is quite accurate for low emittance§

soft x-ray synchrotron facilities such as the ALS and its equivalent elsewhere, as the condition
σ 2

x,y � θ2
cen is reasonably well satisfied for γ � 3728, N � 50–100, and σ ′ ≤ 20 µrad. Note

that while in this case the coherent power scales as N 2, in the case where σ ′ � θcen, as may
occur for high γ facilities, Eq. (8.10b) must be used and the scaling of coherent power will
be closer to linear in N .

In the example cited previously for an 8 cm period undulator at the Advanced Light
Source, a monochromator and beamline optics, with an overall efficiency η of 10% (30%
grating efficiency and five glancing incidence mirrors at 0.8 reflectivity each) are used to
obtain λ/�λ = 103. The resultant coherent power at 4.3 nm wavelength (286 eV) would be
[following Eq. (8.10a)] ( 1

10 ) (0.013) (55/103) (1.4 W), or about 100 µW, with a longitudinal
coherence length of 103λ = 3.5 µm. The detailed photon energy (wavelength) dependence is
included in Eq. (8.10c).

An example of a beamline designed for spatial and spectral filtering of soft x-ray and
extreme ultraviolet (EUV) undulator radiation is shown in Figure 8.11. It employs a grazing
incidence grating monochromator14, 15 as appropriate for use at these wavelengths. (There is
extensive recent literature on the design of grating monochromators.16−18)

The first optical element (M1) is a water cooled plane mirror set at an angle that reflects
the desired radiation but absorbs the unwanted power residing in higher harmonics. Following
this are curved reflective optics that form an image of the radiating electrons at 65 : 1 spatial
demagnification on a downstream entrance pinhole. As with any imaging system, this provides
a concomitant increase in angular illumination (65θcen � 2.9 mrad at K = 1), as required in
this case for the downstream experiment, which here involves coherent interferometry of
EUV optical systems. With this relatively large angular illumination, pinholes of about 1 µm
diameter are required to approximate the condition [Eq. (8.5)] for spatial coherence at 13 nm
wavelength.‖ Also included in the beamline optics is a combined grazing incidence grating
and exit slit that provides the desired wavelength and spectral bandpass. Use of a varied
line space grating permits wavelength tuning without movement of the (fixed) exit slit.14, 15

The remaining mirrors permit an intermediate image of the source at the exit slit of the
monochromator, with final vertical and horizontal image formation at the pinhole. Though
separate branchlines for coherent optics and photoemission microscopy are shown, details of
the beamline optics are omitted.

Calculations of the anticipated coherent power available with this undulator and beamline
combination are shown in Figure 8.11(b), for a monochromator setting of λ/�λ = 103, so that

§The phrase “low emittance” refers to an electron beam of small (phase space) product πσσ ′. The phrase
is occasionally used to describe the facility as well.

‖The work at 13 nm wavelength involves the use of Mo–Si multilayer mirrors, as discussed in Chapter 4.
The coated optics are used for reduction imaging in the EUV lithography program, as discussed in
Chapter 10, Section 10.2.
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F IGURE 8.11. A coherent optics beamline used for spatial and spectral filtering of undulator radiation.
The grating and exit slit provide spectral filtering, typically to λ/�λ = 1000, for a fixed and stable
electron beam position. The reflective optics (mirrors) refocus the source at a 65 : 1 demagnification on
an entrance pinhole at each station. The pinhole diameter is selected to provide spatial filtering for the
given incident radiation cone and/or the acceptance cone within each experimental chamber. Three
separate branch lines are available as shown, and are selected by retractable mirrors. Resultant
coherent power is shown in (b) for radiation satisfying d · θ = λ/2π , λ/�λ = 1000, and an assumed
beamline efficiency of 10% as described by Eq. (8.10a). Advanced Light Source (ALS) electron beam
parameters are assumed (see Chapter 5, Table 5.1).

the longitudinal coherence length is 103λ/2, and for a pinhole diameter such that a high degree
of spatial coherence is obtained. The resultant coherent power is shown in Figure 8.11(b)
to be broadly tunable from 80 eV to 400 eV photon energy (3 nm to 15 nm wavelength),
with about 5 µW to 30 µW within this narrow (10−3) spectral band. The coherent optics
branchline, though not shown in detail in Figure 8.11(a), is designed to cover higher photon
energies, including third harmonic (n = 3) undulator radiation to 1 keV, using mirrors closer
to glancing incidence so as to reflect well at the shorter wavelengths.

Experiments have been performed to record spatially and spectrally filtered radiation
using the undulator and beamline described in Figures 8.9 and 8.11. The exit slit of the
monochromator was set for a relative spectral bandwidth �λ/λ of 1/1100. Downstream of a
1.1 µm diameter pinhole, Airy diffraction patterns1, 8 were recorded with a CCD electronic
array detector∗∗ having single photon detection sensitivity at these wavelengths. Recorded
images19 are shown in Figure 8.12 for several undulator wavelengths. All show the character-
istic central Airy disk surrounded by several dark and bright rings. The integrated power in
the central Airy disk at 13.4 nm corresponds to a time averaged coherent power of 11 µW, or

∗∗A back-thinned charge coupled device (CCD), with single photon detection capability for photons just
below the silicon L-absorption edge at 99 eV.
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F IGURE 8.12 (see Colorplate XI). Far-field images (Airy patterns) of spatially filtered undulator radiation at
wavelengths of 11.2 nm and 13.4 nm. Wavelength tuning is accomplished through variation of the
magnetic field, and thus K , for an 8 cm period undulator at the Advanced Light Source. The beamline
and pinhole spatial filter are illustrated in Figure 8.11 and discussed in the text. A 1.1 µm diameter
pinhole was used, and the monochromator was set for a relative spectral bandwidth of 1/1100. The
measured power in the central Airy disk is 11 µW at 13.4 nm wavelength. Radiation within the central
Airy disk is used for spatially coherent experimentation. (Courtesy of P. Naulleau and colleagues,19

Lawrence Berkeley National Laboratory.)

7×1011 coherent photons per second. The longitudinal coherence length, set by the measured
spectral bandwidth and wavelength, is 7.4 µm.

A further examination of the scaling of spatially and temporally filtered undulator ra-
diation, for both soft and hard x-rays, is shown in Figure 8.13, which follows Eq. (8.10b)
with the assumption in all cases that η = 10% and that λ/�λ = 103. This permits one to
see the general trend as a function of photon energy. One observes the general λ-dependence
discussed earlier (in connection with Figure 8.10), with local shape factors near the respective
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F IGURE 8.13. Spatially and temporally coherent power for a variety of undulators at both the ALS and
APS, following Eq. (8.10b). Only the fundamental (n = 1) is shown; higher harmonics (n = 3, etc.)
would extend this coverage in each case. Spatial coherence satisfying d · θ = λ/2π and a relative
spectral bandwidth of 103 is assumed in each case. An overall beamline efficiency of 10% is assumed
in each case. Specific undulator, current, and electron beam parameters are summarized in Chapter 5,
Table 5.1. When adjusted for differences in current (dashed vertical line), the undulator coherent power
scales roughly proportionally to λ, as discussed in the text. Further analyses of the theoretical21 and
experimental22−24 coherence properties of undulator radiation are presented in the literature.
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values of h̄ω0. Account is taken of differences in electron beam parameters and average
current. Similar scaling curves appear in the literature,7, 20 occasionally in terms of coherent
photon flux, or with an imposed constraint of fixed coherence length (rather than fixed relative
spectral bandwidth). In each of these manners of presenting information an additional factor
of λ (∝ 1/h̄ω) is introduced, leading to a sharper λ2 fall-off (scaling) with increasing photon
energy. In the first case this is because there are proportionally fewer photons per radiated
Joule of energy at higher photon energy, and in the second case because fixed coherence length
requires narrower relative spectral bandwidth at higher photon energy (shorter wavelength)
and thus proportionally less available power.

8.5 SPATIALLY COHERENT EUV AND SOFT X-RAY LASERS

Spatial filtering requirements for extreme ultraviolet and soft x-ray lasers are similar to those
for undulators. In general these lasers lack transverse mode25−27 control and as a result gen-
erate radiation characterized by d · θ 
 λ/2π , thus requiring substantial spatial filtering for
applications requiring spatial coherence. Spectral filtering, on the other hand, is generally not
required, as these lasers naturally radiate with a very narrow linewidth,28 typically with �λ/λ

of order 10−4. The coherent power available after spatial filtering can be written in a manner
similar to that for undulators [Eq. (8.6)]:

Pcoh = (λ/2π )2

(dxθx ) (dyθy)
Plaser

(8.11)

where Plaser is the radiated laser power occupying an elliptical phase–space (dxθx ) (dyθy). Re-
calling the nickel-like tantalum laser29 of Chapter 7, radiating 100 kW in a single 250 ps pulse
at a wavelength of 4.483 nm, we can now estimate the coherent power that would be available
after spatial filtering. The laser is shown schematically in Figure 8.14 along with measured
emission spectra. With a source diameter d estimated at 100 µm and a divergence half angle θ

of 5 mrad, the space product d ·θ is approximately 700 times larger than λ/2π . The single pulse
coherent power available after spatial filtering is therefore about 100 kW/(700)2, or 200 mW.
Considering the pulse duration of 200 ps, this corresponds to an energy of 40 pJ, or about 106

spatially coherent photons within a temporal (longitudinal) coherence length of about 25 µm.
Importantly, the soft x-ray laser does not require a monochromator, because of its already

narrow spectral width. There are, however, incoherent line emissions and continuum emissions
from the hot dense plasma, and in some cases nearby but less intense lasing lines, all of which
must in general be suppressed. Often this can be done with a single multilayer mirror, which at
these wavelengths can achieve a reflectivity of about 10% for a 90◦ deflection. Thus one expects
a 20 mW pulse of coherent power into an experiment, or about 105 spatially coherent photons,
at 4.483 nm wavelength. Similar results have been obtained on the high side of the (neutral)
carbon K-absorption edge, with lasing in nickel-like tungsten at 4.318 nm (287.1 eV), thus
permitting wavelength differential imaging or other experiments around the carbon edge.29

Methods for measuring the coherence properties of EUV/soft x-ray lasers are described in the
literature.30, 31

In addition to post-lasing pinhole spatial filtering, one can imagine effective mode control
within the laser itself, as in a conventional visible light laser such as that illustrated in Figure
8.15, or within a laser amplification chain as illustrated in Figure 8.16. Spatial filtering within
the oscillator is the most energy efficient way to proceed, as it stimulates atoms to radiate only
within the desired phase space. This, however, requires multipass lasing, which in general
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F IGURE 8.14 (see Colorplate XII). Soft x-ray lasing is demonstrated on a 4d to 4p (J = 0 to 1) transition at
4.483 nm wavelength (276.6 eV) in nickel-like tantalum atoms (Z = 73, 28 electrons, +45 charge
state). The highly stripped atoms are created and collisionally pumped in a hot dense laser plasma
created by a high power 250 psec pulse duration terawatt laser pulse. A multimode 100 kW pulse is
produced in both directions at 4.483 nm wavelength. Spatial filtering to a single transverse mode would
yield a 20 mW pulse of spatially coherent radiation with a 25-µm longitudinal coherence length. (Data
courtesy of B. MacGowan, Lawrence Livermore National Laboratory.)

is difficult for lasing in hot dense plasmas created by intense, very short duration visible
light lasers or electronic discharges. For a half-nanosecond duration plasma, this permits a
propagation path length of only 15 cm (at the speed of light); thus for just one round trip,
the cavity end mirrors32, 33 would be just 7.5 cm apart and an intracavity pinhole would at
most be only a few centimeters from a very intense pump pulse. Such a configuration would
tend to vaporize the pinhole and create an additionally complicated refractive medium within
the cavity. This might have a better chance of success with longer pulse duration lasers or
discharges, perhaps more toward extreme ultraviolet wavelengths where the energetics of
atomic lasing (lower photon energy, lower excitation energies) require less intense pumping,
and where phase–space constraints are less demanding.

A second approach is to use a sequence of collinear laser amplifiers in a chain that
incorporates a pinhole spatialfilter following thefirst stage.25, 26 Thus the second and sequential
amplification stages are driven by single mode spatially coherent radiation, rather than growing
from noise as in the first stage, and have the possibility of growing to high coherent power
levels. Such staging requires precise timing and alignment as well as careful attention to
the control of transverse gradients in the amplification stages, which could lead to increased
angular divergence and thus reduced spatial coherence. Further ideas for enhancing the spatial
coherence of EUV and soft x-ray laser radiation, including the use of gain guiding and other
transverse mode control techniques, are discussed in the literature.26, 27, 34, 35

Several additional routes toward spatially coherent EUV radiation have recently been
developed, both involving table top sized equipment. Marconi, Rocca, and colleagues36 have
measured a high degree of spatial coherence, of order ten times diffraction limited, with
46.9 nm radiation from a neon-like argon laser driven by a capillary discharge plasma. Their
work is described further in Chapter 7, Section 7.5. Murnane, Kapteyn, and colleagues37
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F IGURE 8.15. Comparison of a multipass visible light laser employing intra-cavity longitudinal and
transverse mode selectors, with a typical EUV or soft x-ray laser that generally lacks cavity mirrors
and mode selecting optics.
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F IGURE 8.16. A laser oscillator followed by a pinhole spatial filter and a chain of laser amplifiers –
similar to the first stage but stimulated to emit by spatially filtered radiation, rather than growing from
noise as in the first stage. In this manner energy from the second and later stages contributes only to the
TEM00 (spatially coherent) mode.25

have recently reported a sharp increase in the generation of high harmonics of femtosecond
laser pulses when phase velocity matching techniques are employed. Their pump wave is a
nominal 20 fs duration, 800 nm laser pulse incident on neutral argon gas in a capillary tube.
They observe harmonics of order n = 23 to 31 (26 nm to 35 nm wavelength) with a divergence
angle of about 1 mrad and a source diameter of 40–70 µm. This suggests that the harmonics
are about three to six times diffraction limited. Each harmonic has an energy of about 0.2 nJ per
pulse, at an repetition rate of 1 kHz. The work is described further in Chapter 6, Section 6.8.

8.6 THE VAN CITTERT–ZERNIKE THEOREM

In the previous sections of this chapter we have compared the phase–space of emitted radiation
from an incoherent source with that from a nearly point source for which the radiated fields
approach perfect correlation in the transverse plane and for which the phase–space is given by
the limiting condition d · θ = λ/2π . We then compared the phase–space ratios to estimate the
spatially coherent power available, assuming that this could be obtained by appropriate spatial
filtering. In this section we discuss the finite degree of spatial coherence that results when an
extended incoherent source of quasi-monochromatic radiation is observed through the use of
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spatial and angular apertures. The complex degree of coherence in such a radiation field is
described by the van Cittert–Zernike theorem.1, 2, 38−39 It is of particular interest to us as a
means to predict the degree of spatial coherence that will result from pinhole spatial filtering
of both undulator radiation and EUV/soft x-ray laser radiation, each of which is, to a large
degree, spatially incoherent in nature. For the consideration of spatially coherent radiation
one is primarily interested in the correlation of quasi-monochromatic fields in the limit that
the time separation τ goes to zero. In this limit the normalized degree of coherence between
fields at points 1 and 2 [Eq. (8.2)] takes a simpler form as γ12(0) → µ12, where now1, 2

µ12 = 〈E1(t)E∗
2 (t)〉√

〈|E1|2〉
√

〈|E2|2〉
(8.12)

with absolute values bounded by 0 ≤ |µ12| ≤ 1. While still generally referred to as the
normalized degree of coherence, µ12 is also known as the complex coherence factor.

The van Cittert–Zernike theorem provides a very convenient method for calculating the
degree of spatial coherence that can be derived from a collection of mutually incoherent but
quasi-monochromatic radiators. That spatially coherent radiation can be obtained in any cir-
cumstance involving uncorrelated radiators may atfirst seem surprising. Figure 8.17 introduces
the subject.

Imagine first that in Figure 8.17 there is only the point source S1, whose radiation at
wavelength λ illuminates a mask with two small openings at points P1 and P2 in what we call
the test plane, because we will use it to test the degree of coherence as a function of separation
distance between the two observation points. Radiation will pass these two small openings,
propagating to a distant screen where the two beams will overlap. Because the emission is
quasi-monochromatic and from a point source (S1), a well-defined interference pattern will be
formed on the screen, as indicated by the solid sinusoidal pattern. Note that the exact location
of maxima and minima in this self-interference pattern will depend on the phase difference
of the paths from S1 to P1 and P2, indicated as ψ21 in Figure 8.17. This phase difference is
due entirely to the geometry (and wavelength) and is therefore constant in time, so that the
interference pattern (maxima and minima) is also constant in time. Now consider a second
point source S2 at a very small distance from the first (S1). Its radiation paths are indicated by
the dashed lines, resulting in a second stationary interference pattern at the screen, also shown
as a dashed line in Figure 8.17. Because the two point radiators are uncorrelated, their fields
do not combine to form a mixed (time averaged) interference pattern. Rather, they each form
separate self-interference patterns that are quite similar, in fact displaced on the distant screen
by only a small phase difference δψ21, which is evidently due to the small spatial separation
between S1 and S2.

We thus begin to see the emerging picture. With some constraints on lateral source size,
wavelength, and observation angles, it is possible to obtain rather well-defined interference
patterns even with completely uncorrelated emissions. On the other hand, it is also possible
to scramble the resultant interference pattern completely by observing a collection of such
radiators whose positions in the source plane are sufficiently separated that the resultant phase
shifts δψ21 are of order π rad or larger, so that the summed intensity patterns at the screen
show no net modulation, indicating a total absence of coherence in the test plane. Following
Wolf,1 we will now detail the geometry of propagation paths involved and explore under what
circumstances a finite degree of coherence can be obtained, and what the resultant degree of
coherence will be.

In Figure 8.18(a) we revisit this geometry for the single point source S, showing propaga-
tion paths to two points in the test plane, the origin O, which we use to define an optical axis,
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F IGURE 8.17. The persistence of interference fringes as observed in a distant plane is dependent on the
spatial separation of two mutually incoherent quasi-monochromatic point sources, the angles, and the
wavelength. The source S1 illuminates small openings at points P1 and P2 in a test plane. For a single
point source S1 there is a fixed variation ψ21 between the two observation points. The resulting
interference pattern is observed at a distant screen (solid line). Placing a second point source S2 at a
small distance from S1 results in a second interference pattern, mutually incoherent with the first, that
very nearly overlaps the interference pattern due to S1, but is shifted by a small amount, δψ21. This
small phase increment is due to the separation between S1 and S2. Thus one sees that within some as
yet to be determined limits on source size, observation geometry, and wavelength, mutually incoherent
sources of emission can provide a highly coherent radiation field at a distant plane. This is the basis of
the van Cittert–Zernike theorem.

and a point P a distance x away in the transverse plane. The distance z separating the parallel
source and observation (test) planes is assumed very large compared to the lateral source and
observation distances, so that the angle θ is very small. The phase difference between the two
paths (ψ21 in Figure 8.17) is

ψ = 2π l
λ

= kx2

2z
= kzθ2

2
(8.13)

where l is the difference in physical path lengths, determined by comparing the sides of the
triangle with equal radial distances measured from S. This difference gives the additional path
length for a propagating wave. In Figure 8.18(b) we show the point source displaced a distance
ξ in the source plane, and again calculate the various path lengths. With the source displaced
a distance ξ we observe that a ξ -dependent increment of path difference is introduced, δψ ,
where from the geometry

δl = −ξ x/z = −ξθ

with a corresponding increment in phase

δψ = 2π δl
λ

or

δψ = −kξ x/z = −kξθ (8.14)

These relations can be seen by forming a right angle from the path SO to the line from S to P.
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F IGURE 8.18. Propagation paths for radiation from a single point source to two observation points O
and P at a distant observation plane. The separation distance z between the two parallel planes is large
compared to the lateral source (ξ ) and observation (x) distances in their respective planes (z � ξ, x).
Shown in (a) are the differences in path length and the resulting phase difference ψ for a spherical
wave propagating from a point source at the origin in the source plane to two points in the test
(observation) plane, one at the origin O and one a distance x off axis at a point P(x). In (b) the path
lengths and phase difference δψ are shown when the source point is displaced a distance ξ from the
origin in the source plane.

The increment δl , due to displacement ξ , is also dependent on the distance x from O to P in
the test plane.

The scalar electric field at a distance R from a point source of field Eξ can be written
as

E = Eξ eik R

R

where the time dependence e−iωt and an arbitrary phase factor are suppressed. Thus the
electric field at points O and P due to the source S at ξ can be written for x , ξ � z
as

EO = Eξ eik(z+ξ 2/2z)

z + ξ 2/2z
� Eξ eikz eikξ 2/2z

z
(8.15)

and

EP =
Eξ exp

[
ik

(
z + x2

2z + ξ 2

2z − ξ x
z

)]
z + x2

2z + ξ 2

2z − ξ x
z

� Eξ eikz eikξ 2/2z eikx2/2z e−ikξ x/z

z

or

EP � Eξ eikz eikξ 2/2z eiψ e−ikξθ

z
(8.16)

where ψ is given by Eq. (8.12) and where we observe that EO and EP contain two identical
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F IGURE 8.19. The geometry for calculation of the van Cittert–Zernike theorem, which involves
integration in the (ξ, η) source plane of the contributions from a continuum of quasi-monochromatic
mutually incoherent sources of radiation to the fields at a distant observation plane at the origin O and
the off-axis point P(x, y). (Following M. Born and E. Wolf1.)

phase factors, eikz and eikξ 2/2z . Thus for a single point source at ξ , the normalized degree of
coherence for electric fields at a point O on the optic axis and a point P at distance x off axis
can be obtained by combining Eqs. (8.12), (8.15), and (8.16) to form

µOP = 〈EO E∗
P〉√

〈|EO|2〉
√

〈|EP|2〉
= e−iψ eikξθ (8.17)

where for z � x, ξ both normalizing fields can be approximated by

√
〈|EO|2〉 �

√
〈|EP|2〉 � |Eξ |

z

In Eq. (8.17) ψ is an x-dependent phase shift (for fixed z) due to the displacement of P
from the axis, and the ikξθ factor is due to the ξ -dependent tilt of the wavefront, with a leverage
due to x , where θ � x/z. Equation (8.17) is readily extended to three dimensions (ξ, η, z and
x, y, z), as illustrated in Figure 8.19. The normalized correlation function becomes

µOP = e−iψ eik(ξθx +ηθy ) (8.18a)

where in the three dimensional coordinate system

ψ = k
x2 + y2

2z
= kz

θ2
x + θ2

y

2
(8.18b)

θx = x

z
(8.18c)

θy = y

z
(8.18d)

Again, the ψ factor is strictly due to the angular projection of the observation point P as
measured from the optic axis, with no dependence on the source point location, while the
k(ξθx +ηθy) factor is now generalized to take account of the wavefront tilt due to both source
point coordinates ξ and η.
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If we now assume that there is a distribution of quasi-monochromatic source points in
the ξ, η-plane, all mutually incoherent, then we can sum their individual contributions to
the fields at O and P in the x, y-plane. Integrating over the extended source as suggested
in Figure 8.19, one obtains the complex degree of coherence by combining Eqs. (8.12) and
(8.18):

µOP = e−iψ
∫∫ |E(ξ, η)|2 eik(ξθx +ηθy ) dξ dη∫∫ |E(ξ, η)|2 dξ dη

or in terms of the source plane intensity distribution I (ξ, η) ∝ |E(ξ, η)|2,

µOP = e−iψ
∫∫

I (ξ, η)eik(ξθx +ηθy ) dξ dη∫∫
I (ξ, η) dξ dη

(8.19)

This is the van Cittert–Zernike theorem. It states that the normalized degree of coherence
for a distribution of uncorrelated quasi-monochromatic emissions, observed in a distant
plane, is equal to the two dimensional Fourier transform of the source intensity function.
Again the phase ψ = k(x2 + y2)/2z is purely geometrical, giving the predictable oscil-
lation of phase as the observation point P is moved from the reference position O at the
origin.

Of particular interest to us is the axisymmetric case, as might be encountered in pinhole
spatial filtering of undulator or EUV/soft x-ray laser radiation. For an axisymmetric geometry
it is convenient to introduce cylindrical coordinates, (ρ, φS), in the (ξ, η) source plane, and
(r, φP) in the (x, y) observation (test) plane. The geometrical details are clarified in Figure 8.20.
The normalized degree of coherence can now be written as

µOP = e−iψ
∫ ∞

0

∫ 2π

0 I (ρ, φS)eik(ρ cos φS·θ cos φP+ρ sin φS·θ sin φP) ρ dρ dφS∫ ∞
0

∫ 2π

0 I (ρ, φS)ρ dρ dφS

µOP = e−iψ
∫ ∞

0

∫ 2π

0 I (ρ, φS)eikρθ cos(φS−φP)ρ dρ dφS∫ ∞
0

∫ 2π

0 I (ρ, φS)ρ dρ dφS

where cos(φS − φP) = cos φS cos φP + sin φS sin φP. For the axisymmetric case, where
I (ρ, φS) = I (ρ), this becomes

µOP = e−iψ
∫ ∞

0 I (ρ)J0(kρθ ) ρ dρ∫ ∞
0 I (ρ) ρ dρ

(8.20)

where we have made the identification40−42

J0(kρθ ) = 1

2π

∫ 2π

0
eikρθ cos(φS−φP) dφS (8.21)

for a Bessel function43 J0(ν) of the first kind, order zero. In this axisymmetric geometry, the
degree of coherence is described in terms of a Fourier–Bessel transform of the radial source
function, sometimes described as a Hankel transform.44, 45
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F IGURE 8.20. Geometry of the various propagation path lengths and phase differences (ψ) as a function
of cylindrical coordinates (ρ, φS) in the source plane and (r, φP) in the observation (test) plane. The
angle θ is measured from the optic axis to the point P.

We will next consider three axisymmetric cases of interest, (1) a point source, (2) a
Gaussian intensity distribution, and (3) a uniformly but incoherently illuminated pinhole. The
analysis of each follows.

(1) A Point Source: For a point source described by a normalized delta function†† in cylin-
drical coordinates,

I = I0δ(ρ)/2πρ (8.22)

the degree of coherence is given by [Eq. (8.20)]

µOP = e−iψ
∫ ∞

0 δ(ρ)J0(kρθ ) dρ∫ ∞
0 δ(ρ) dρ

= e−iψ J0(0)

or

µOP = e−iψ (8.23a)

where J0(0) = 1 and from Figure 8.20 ψ = kr2/2z = kzθ2/2. Thus for a true point
source the normalized degree of coherence |µOP| = 1, so that the radiated field is fully
coherent in the distant (z) plane, with a perfectly described phase variation ψ(r ) as a
function of off-axis position, i.e., the field variations in the observation or test plane are
completely predictable, with a variation for distance z between the source and observation
planes given by

µOP = e−ikzθ2/2 (8.23b)

with a θ2 phase variation as was first encountered in Figure 8.18(a).

††The normalization condition is determined by
∫ ∞

0

∫ 2π
0 f (ρ, φ) ρ dρ dφ = 2π

∫ ∞
0 f (ρ) ρ dρ = 1.
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(2) A Gaussian Intensity Distribution: For an axisymmetric Gaussian source of standard
deviation a such that

I = I0e−ρ2/2a2
(8.24)

the normalized degree of coherence [Eq. (8.20)] takes the form

µOP = e−iψ
∫ ∞

0 e−ρ2/2a2
J0(kθρ) ρ dρ∫ ∞

0 e−ρ2/2a2
ρ dρ

These are standard integrals,46 which yield the result

µOP = e−iψe−(kaθ )2/2 (8.25)

This degree of coherence for a Gaussian distributed source exhibits the same geometrical
phase variation, ψ = kzθ2/2, as did the point source, now however with an additional
Gaussian amplitude dependence as a function of θ . Note that for kaθ = 1

2 , corresponding
to d · θ = λ/2π , the normalized degree of coherence is

|µOP| = e−1/8 = 0.88

which is just 12% less than the maximum value of unity. Thus for a radiation source de-
scribed statistically as a point source to within a standard deviation a, the far-field angular
distribution is concomitantly determined to within one standard deviation θ , as described
earlier in this chapter on the basis of uncertainty arguments, i.e., the quantities a and θ

constitute an uncertainty pair or transform pair, more usually written as uncertainties in
position and momentum �r ·�p = h̄/2, where �r = a and �p = h̄�k = 2πh̄θ/λ. We
now see by use of the van Cittert–Zernike theorem that in the case where the uncertainty
condition, written as d · θ = λ/2π earlier in this chapter, is just met, the finite degree of
coherence is not unity, but somewhat less at 0.88. That is to say, if we knew the electric
field on axis, the expectation that we could predict the field at an off-axis angular position
θ would be 0.88. Since the degree of coherence varies as θ2 in this case [Eq. (8.23b)],
the degree of coherence can be increased substantially, to e−1/32 = 0.97, by halving the
observation angle to kaθ = 1

4 , albeit at a considerable loss of flux or power.
(3) A Uniformly but Incoherently Illuminated Pinhole: For a uniform circular disk of

uncorrelated emitters, the equivalent of an incoherently illuminated pinhole, we can write
the source function as

I (ρ) =
{

I0 for ρ ≤ a
0 for ρ > a

(8.26)

where d = 2a is the pinhole diameter. The degree of coherence [Eq. (8.20)] then becomes

µOP = e−iψ I0
∫ a

0 J0(kρθ ) ρ dρ

I0
∫ a

0 ρ dρ

µOP = 8e−iψ

d2

∫ a

0
J0(kρθ )ρ dρ
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F IGURE 8.21. The degree of coherence for a uniformly but incoherently illuminated pinhole as observed
at an angle θ in the far field. The modulus of the degree of spatial coherence follows a 2J1(ν)/ν
behavior.

which is of the standard integral form47

∫ 1

0
x J0(νx) dx = J1(ν)

ν

where we have made the substitutions ρ = ax and kρθ = νx so that ν = kaθ . Making
these substitutions, one finds that for the incoherently illuminated pinhole the normalized
degree of coherence is

µOP(θ ) = e−iψ 2J1(kaθ )

kaθ
(8.27)

where J1(ν) is a Bessel function of the first kind, of order one, and where again ψ =
kzθ2/2.

The function 2J1(ν)/ν is plotted43 in Figure 8.21. It has a maximum value of unity at kaθ =
0, drops to 0.88 at kaθ = 1, and is zero, corresponding to complete incoherence (no correlation
among the fields at these two points), for kaθ = 3.832. The latter corresponds to d ·θ = 1.22λ.
These results are particularly interesting in a practical sense in that circular pinhole apertures,
back-illuminated by essentially incoherent radiation, provide a particularly attractive method
by which to obtain spatially coherent radiation at these very short wavelengths, as was stated
without proof in Section 8.4 and illustrated in Figure 8.9. Further tradeoffs, gaining improved
spatial coherence at a cost of reduced coherent power, can be made by further constraining the
product kaθ . For example, rather than accepting a degree of coherence of 0.88 with kaθ = 1,
choose smaller values of both a and θ . Expanding J1(kaθ ) for small values48 of kaθ in
Eq. (8.27), the degree of coherence for an incoherently illuminated pinhole becomes

|µOP| � 1 − 1

8
(kaθ )2 + 1

384
(kaθ )4 − · · · (8.28)

One finds, for instance, that for a space–angle constraint kaθ = 1
4 corresponding to d · θ =

λ/4π , the degree of coherence is 0.99, and thus within 1% of perfect spatial coherence over this
limited phase–space product. Compared to the case kaθ = 1, with a 0.88 degree of coherence,
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this improvement comes at a cost of reduced coherent power by a factor of 16, because, the loss
scales as (kaθ )2 in an axisymmetric system. Nonetheless, this provides an interesting exercise
in the use of the powerful van Cittert–Zernike theorem, permitting a quantitative evaluation
of the tradeoff between available coherent power and degree of spatial coherence in a very
practical application.

Thompson and Wolf49 have taken this work further in both experiments and analysis. In
much referenced experiments1, 2, 50 with incoherent visible light and a geometry similar to that
of Figure 8.17, the contrast in fringe (interference) patterns is observed to follow the J1(ν)/ν
behavior of Eq. (8.26), illustrated in Figure 8.21, with fringe visibility rising and falling as
predicted. Furthermore, Thompson and his colleagues have extended the analysis of far-field
pinhole diffraction patterns for partially coherent radiation51, 52 with varying degrees of spatial
coherence across the pinholes. Their diffraction results are described further in Chapter 9,
where diffraction from pinholes and zone plates is considered (see Section 9.3, Figure 9.11).

8.7 EXAMPLES OF HIGH CONTRAST FRINGES FORMED
AT SHORT WAVELENGTHS

High quality interference patterns have been recorded at very short wavelengths utilizing
radiation from an extended, essentially incoherent source of quasi-monochromatic radiation
taking advantage of the quantitative limits of source size and divergence permitted by the
van Cittert–Zernike theorem. The experiments are part of a developmental activity led by
J. Bokor and his colleagues53−56 involving at-wavelength interferometry57, 58 for the metrology
and ultimate improvement of both multilayer coated and diffractive optics. Pinhole spatial
filtering of largely incoherent radiation, as discussed in the preceding paragraphs, is employed
with undulator radiation in a geometry illustrated earlier in Figures 8.9 and 8.11.

The geometry for the particular phase shifting point diffraction interferometer 54, 55 uti-
lized is shown in Figure 8.22. It is a common-path interferometer, thus requiring minimal
longitudinal coherence length and requiring no beamsplitter (for which flatness is problem-
atic at these wavelengths). The grating provides a phase shifting capability to assist in fractional
fringe analysis and with a relatively high throughput. As seen in Figure 8.22, undulator radi-
ation characterized by a large phase space overfills a pinhole of diameter d. The acceptance
angle θ is set by the aperture of the optic under test and its distance downstream of the pinhole.
The optical system under test forms an image of the pinhole at its conjugate (image) plane.
The grating, which is employed to provide a fractional fringe phase shifting capability when
moved laterally, generates several orders, two of which are permitted to reach the image plane.
For the example shown in Figure 8.22 the zeroth order and one of the first orders are selected
by an image plane mask. With a perfect optic both would form Airy patterns1 at the focal
plane.‡‡ This, of course, is not the case; aberrations of the optical system cause departures of
the wavefronts from sphericity, which is precisely what is to be measured in the interferometer.
To do so, one of the two waves reaching the image plane is spatially filtered a second time,
using an image plane mask reference pinhole to remove these wavefront distortions. This then
provides a near-perfect spherical reference wave against which to compare the second (still
aberrated) wavefront of the remaining order. The two then propagate on to overlap and form
an interface pattern, which is recorded by the CCD camera.¶¶

‡‡The subject of pinhole diffraction and Airy patterns is discussed in Chapter 9, Section 9.3.
¶¶Charged coupled device, an electronic array detector, back-thinned in this case to provide detection

sensitivity at EUV and soft x-ray wavelengths.
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F IGURE 8.22. A phase shifting point diffraction interferometer (PS/PDI) for testing reflective and
diffractive optics at EUV and soft x-ray wavelengths. Largely incoherent undulator radiation enters
from the left, over-filling a pinhole spatial filter. The grating generates several orders, two of which are
permitted (by an image plane mask) to pass through the interferometer. The optical system under test
forms an image of the pinhole with each of the transmitted orders. Because the optic is not perfect, it
distorts both wavefronts, which therefore now carry information regarding the aberrations of the
optical system. By removing the wavefront distortion in one of the two wavefronts, through the use of
a second, image-plane pinhole spatial filter, a short wavelength optical interferometer is formed. The
two wavefronts propagate to a distant plane, where they overlap and their interference is recorded on a
CCD electronic array detector. (Courtesy of H. Medecki, E. Tejnil, K. Goldberg, P. Naulleau, J. Bokor,
and colleagues,54−56 Lawrence Berkeley National Laboratory.)

An interference pattern59 recorded in this manner is shown in Figure 8.23(a). The period
of the interference pattern is controlled by the choice of grating period and geometry. A line-
out showing the fringe contrast (visibility) is shown in Figure 8.23(b). The optical system
under test in this case was a 10× magnification, 0.08 NA Schwarzschild optic (see Chapter
4), multilayer coated60, 61 for peak reflectivity at a wavelength of 13.4 nm. The undulator was
tuned for maximum output at this wavelength. A recorded Airy pattern, showing the emissions
from the first (upstream) pinhole used to illuminate the optic under test, was shown earlier in
Figure 8.12 and in the frontispiece for this chapter. About half of the central radiation lobe is
used. For the interference pattern shown in Figure 8.23(a), the upstream spatial filter consists
of a 0.75 µm diameter pinhole and an acceptance half angle of 0.008 (i.e., NA/10), so that for
λ = 13.4 nm the parameter appearing in Eq. (8.26) is kaθ = 1.4. According to the previous
paragraphs this corresponds to a degree of coherence of approximately 0.8 radially across
the test wavefront. The image plane pinhole, used to generate the final reference wave, has a
120 nm diameter.

Note that fringe contrast in this experiment is affected by the grating period, which sets
the shear angle between the two interfering wavefronts. The fringe contrast shown in Figure
8.23(b) is about 0.7. For the particular optic under test in these experiments,59 analysis of the
interference pattern indicates an optical wavefront error of 0.86 nm rms at 13.4 nm (λeuv/15),
indicating a capability for near-diffraction-limited imaging over a small field. The subject of
better quality optics and the use of aspheres to cover a larger field of view is discussed in
Chapter 10, in Section 10.2 on extreme ultraviolet lithography.

The accuracy of this interferometer ultimately depends on minimizing departures from
sphericity of the wavefront incident on the optic under test, and a similar constraint on the ref-
erence wavefront incident on the CCD. To improve the accuracy, at the cost of reduced photon
flux, the pinhole-aperture spatial filter can be operated at smaller values of the parameter kaθ .
To assess the accuracy of the interferometer one can spatially filter both waves (grating orders)
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F IGURE 8.23. An interference pattern (a) obtained using the interferometer of Figure 8.22, recorded at a
wavelength of 13.4 nm. The intensity variation (b) for a line through the center of the fringe pattern
shows a contrast (visibility) of approximately 0.7. The optical system under test in these
measurements, a multilayer coated 10× reduction Schwarzschild (see Chapter 10, Figure 10.10), has a
figure error of 0.86 nm rms (λeuv/15). (Courtesy of K. Goldberg and colleagues,59 Lawrence Berkeley
National Laboratory.)
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F IGURE 8.24. (a) An interference pattern recorded at 13.4 nm wavelength using two 100 nm diameter
pinholes and an EUV CCD in the point diffraction interferometer shown in Figure 8.22. Through use
of this two-pinhole null mask the wavefront accuracy of the interferometer can be determined. (b)
Analysis of the interference pattern yields data on wavefront uniformity, measured to be 0.054 nm rms,
or λeuv/250 with these 100 nm pinholes. Wavefront uniformity has been measured to λeuv/330 using
80 nm pinholes. (Courtesy of P. Naulleau and colleagues,63 Lawrence Berkeley National Laboratory.)

using two pinholes in the mask plane. This is accomplished by replacing the image plane mask
shown in Figure 8.22 by one containing two side-by-side pinholes. Figure 8.24(a) shows a
recorded interference pattern obtained with two side-by-side 100 nm diameter pinholes, sep-
arated from each other by 4.5 µm. The mask was fabricated using electron beam lithography
techniques,62 as discussed in the following chapter, Section 9.10. Analysis of the interference
pattern indicates that the reference wave has a departure from sphericity [Figure 8.2(b)] of
0.054 nm rms over a numerical aperture of 0.08, or λeuv/250 at 13.4 nm wavelength.63 Ex-
periments using a pair of 80 nm pinholes have achieved a wavefront error of 0.041 nm rms,
or λeuv/330. In an rms sense, this is a metrological accuracy smaller than the first Bohr radius
of the hydrogen atom (a0 = 0.053 nm). A comparison of visible light and EUV interferom-
etry is described by Goldberg, Naulleau, Chapman, and colleagues in Ref. 64. Note that this
interferometer can also be used to test Fresnel zone plate lenses, a subject discussed in the
following chapter on diffractive optics.

Chang65 has begun efforts to repeat at short wavelength the classic two pinhole fringe
visibility experiments of Thompson and Wolf49. Figure 8.24(a) shows the recorded interfer-
ence pattern at 13.4 nm wavelength of overlapping Airy patterns from two 420 nm diameter
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F IGURE 8.25. (a) The recorded interference pattern at 13.4 nm wavelength of two 420 nm diameter
pinholes separated by 5 µm as part of experiments to measure the partial coherence of reimaged
undulator radiation. (b) The normalized intensity modulation through the center of (a) showing
approximately 70% fringe contrast at this separation. (Courtesy of C. Chang, University of California,
Berkeley, and Lawrence Berkeley National Laboratory.)

pinholes seperated by 5 µm. The interference pattern is recorded on a one inch square, 512
by 512, EUV sensitive CCD camera at a distance of 26 cm. The radiation is derived from the
undulator beamline19 described in Figures 8.11 and 8.12. Intensity modulation of the recorded
interference pattern is shown in Figure 8.24(b). At this separation the fringe contrast is ap-
proximately 70%. Increasing the pinhole separation to 9 µm in these continuing experiments,
the contrast decreases significantly, indicating a decreased coherence.
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22. D.L. Abernathy, G. Grübel, S. Bauer, I. McNulty, G.B. Stephenson, S.G.J. Mochrie, A.R. Sandy,
N. Mulders, and M. Sutton, “Small-Angle X-Ray Scattering Using Coherent Undulator Radiation
at ESRF,” J. Synchr. Rad. 5, 37 (1998).

23. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the Possibilities of X-Ray
Phase Contrast Microimaging by Coherent High-Energy Synchrotron Radiation,” Rev. Sci. Instrum.
66, 5486 (1995); Z.H. Hu, P.A. Thomas, A. Snigerev, I. Snigireva, A. Souvorov, P.G.R. Smith,
G.W. Ross, and S. Teats, “Phase-Mapping of Periodically Domain-Inverted LiNbO3 with Coherent
X-Rays,” Nature 392, 690 (1998).

24. Y. Takayama, R.Z. Tai, T. Hatano, T. Miyahara, W. Okamoto, and Y. Kagoshima, “Measurement
of the Coherence of Synchrotron Radiation,” J. Synchr. Rad. 5, 456 (1998); Y. Takayama et al.,
“Relationship between Spatial Coherence of Synchrotron Radiation and Emittance,” J. Synchr. Rad.
5, 1187 (1998).

25. D. Attwood, “Comparative Features of Partially Coherent X-Ray Sources,” in Proceedings of the
First Symposium on the Applications of Laboratory X-Ray Lasers, Asilomar, February 1985, N.M.
Ceglio, Editor; published by Lawrence Livermore National Laboratory as CONF-850293-Abstracts.

26. M.D. Rosen, J.E. Trebes, and D.L Matthews, “A Strategy for Achieving Spatially Coherent Output
from Laboratory X-Ray Lasers,” Comments Plasma Phys. Fusion 10, 245 (1987).

27. R.A. London, M. Strauss, and M.D. Rosen, “Model Analysis of X-Ray Laser Coherence,” Phys.
Rev. Lett. 65, 563 (30 July 1990); see also R.A. London, P Amendt, M. Strauss, M.D. Rosen, M.D.
Feit, and J.A. Fleck, “Coherent X-Ray Lasers for Applications,” p. 363 in X-Ray Lasers 1990 (Instit.
of Physics, Bristol, England, 1990), G.J. Tallents Editor.

28. J.A. Koch, B.J. MacGowan, L.B. DaSilva, D.L. Mathews, S. Mrowka, J.H. Underwood, and P.J.
Batson, “Selenium X-Ray Laser Line Profile Measurements,” in X-Ray Lasers 1992 (Inst. Phys.,
Bristol, England, 1992), E.E. Fill, Editor; also J.A. Koch et al., Phys. Rev. Lett. 68, 3291 (1992).

29. B.MacGowan, S. Maxon, P. Hagelstein, C. Keane, R. London, D. Mathews, M. Rosen, J. Scofield,
and D. Whelan, “Demonstration of Soft X-Ray Amplification in Nickel-Like Ions,” Phys. Rev. Lett.



CHAPTER EIGHT: C O H E R E N C E A T S H O R T W A V E L E N G T H S 335

59, 2157 (9 November 1987); see also B.J. MacGowan, S. Maxon, L.B. Da Silva, D.J. Fields, C.J.
Keane, D.L. Matthews, A.L. Osterheld, J.H. Scofield, G. Shimkaveg, and G.F. Stone, “Demonstration
of X-Ray Amplifiers Near the Carbon K Edge,” Phys. Rev. Lett. 65, 420 (1990).

30. L. Da Silva, T. Barbee, R. Cauble, P.Celliers, D. Ciarlo, S. Libby, R. London, D. Matthews, S.
Mrowka, J. Trebes, A. Wan, and F. Weber, “Development of XUV-Interferometry (155 Å) Using a
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HOMEWORK PROBLEMS

Homework problems for each chapter will be found at the website:
http://www.coe.berkeley.edu/AST/sxreuv



Chapter 9

SOFT X-RAY MICROSCOPY
WITH DIFFRACTIVE OPTICS

Zone Plate Lens

∆r

λ

θ
f

f +

D = 2rN

rn

r2
r1

nλ
2

Soft X-Ray Microscope

Scanning Soft X-Ray Microscope

Aperture
(OSA)

Detector

Sample
scanning

stage

λ

Zone Plate lens

Zone Plate lens

Sample

Soft X-ray CCD

λ

Pinholeλ

θnull

d

Zone Plate Formulae

r2
n = nλ f + n2λ2

4
(9.9)

D = 4N�r (9.13)
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Rayleigh res. = 0.610λ

NA
= 1.22�r (9.47, 9.48)

DOF = ± 1

2

λ

(NA)2 = ± 2(�r )2

λ
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In this chapter we consider Fresnel zone plates, particularly as they are used as diffractive im-
age forming lenses for high resolution soft x-ray microscopy. We begin with a relatively simple
approach based on our general experience with interference phenomena. From this we obtain a
physical appreciation for zone plate performance, and derive most of the useful formulae sum-
marized on this page. We also describe the complementary features of various zone plate mi-
croscopes. We next consider formal diffraction theory to better understand the limits of spatial
resolution. Pinholes are also considered, as they play an essential role in generating the spatially
coherent radiation required for scanning microscopy and other applications involving spatially
coherent short wavelength radiation. Finally, we conclude with applications of soft x-ray mi-
croscopy to the physical and life sciences, and a short section on the fabrication of zone plates.

9.1 INTRODUCTION

In previous chapters we have discussed the various ways in which radiation can be redirected
for image formation, spectroscopic, and other applications. In Chapter 1, Figure 1.13, we
summarized the basic processes of scattering, diffraction, refraction, and reflection. In Chapter
3 we studied refraction, the bending of radiation paths at the interface between materials of
differing refractive index n = 1 − δ + iβ. For EUV and soft x-ray wavelengths, we observed
that for all materials the ratio β/δ is sufficiently close to unity that significant refraction cannot
be obtained within an absorption length. As a consequence the formation of real images by
refraction of EUV or soft x-ray radiation is impractical. Glancing incidence total external
reflection with curved optics provides a successful path to image formation, particularly at
EUV, soft x-ray, and x-ray wavelengths where there are few competing techniques; but the
image resolution is significantly compromised by aberrations. Multilayer coatings extend the
use of reflective optics, as discussed in Chapter 4, particularly at EUV wavelengths longer
than 5 nm, where normal incidence coatings achieve high reflectivity. With high quality
curved substrates, multilayer coated mirrors permit near-diffraction-limited imaging in the
EUV region, i.e., limited only by the wavelength and numerical aperture of the system.

At shorter wavelengths, particularly in the soft x-ray region extending from perhaps
0.3 nm to 5 nm, diffractive techniques using Fresnel zone plate lenses of various forms are
of great interest1−5 because of their ability to form images at very high spatial resolution,
approaching the diffraction limit. Diffraction is the process by which radiation is redirected
near sharp edges. As it propagates away from these sharp edges or obstacles, it interferes
with nearby undiffracted radiation, producing bright and dark bands known as interference
patterns. Because the diffracted radiation propagates in a new direction, the dark and bright
interference patterns appear to move laterally with distance away from the obstruction. For
small diffracting structures such as disks, pinholes, and gratings (repetitive lines and spaces) it
is found that these diffraction patterns, and the energy they represent, propagate away from the
structure at angles of order θ ∼ λ/d, where d is a characteristic dimension. With repetitive
structures, such as transmission gratings, consisting of many parallel lines and spaces, the
positive interference in certain directions can lead to a very strong redirection of energy. This
is also possible in circular geometries, with proper placement of the radial zones, so that
positive interference of the diffracted radiation occurs at a well-defined downstream position.
This downstream distance is known as the focal length, and the appropriate structure that leads
to this focusing of energy is known as a Fresnel zone plate lens. Capable of spatial resolution
measured in tens of nanometers, these diffractive lenses are especially valuable for the study
of microscopic objects of limited lateral dimensions.
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F IGURE 9.1. A Fresnel zone plate lens used for x-ray microscopy. (Courtesy of E. Anderson,
LBNL.)

∆r

λ

D

S

P

p

q

F IGURE 9.2. A Fresnel zone plate used as a diffractive lens to form an x-ray or EUV image of a source
point S in the image plane at P. The lens is shown as having a diameter D and outer zone width �r .
The object and image distances are p and q, respectively.

Figure 9.1 shows a zone plate lens used in soft x-ray microscopy. Figure 9.2 illustrates
the general technique for point to point imaging with a Fresnel zone plate lens. In its simplest
form the zone plate consists of alternating opaque and transparent zones, essentially a circular
grating, with radial zones located such that the increased path lengths through sequential
transparent zones differ by one wavelength each and thus add in phase at the image point.6−13

In this manner, on a point by point basis, the image of a full two-dimensional object can be
formed in the image plane, using essentially incoherent radiation. As we understand from
the previous chapter, the smallest possible spot size that can be formed at P is obtained with
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F IGURE 9.3. Diffraction from a transmission grating
showing only the 0th and ±1st orders. Higher
orders are omitted for clarity. Constructive
interference of the diffracted radiation occurs at
angles where the path length increases by λ for
each additional period d of the grating, such that
sin θ = λ/d in first order.

spatially coherent illumination of the zone plate, a subject of interest for the formation of
scanning spot microscopes, which we discuss in the following paragraphs. Of interest here as
well is the practical case of partially coherent radiation and the potential advantage this has
for image formation and resolution.

We begin our analysis with a simple transmission grating, as illustrated in Figure 9.3.
Constructive interference occurs, in first order, at angles where the path length is increased by
one wavelength, such that

sin θ = λ

d
(9.1)

This occurs for both positive and negative angles, giving rise to the ±1st orders of the grating,
in addition to the 0th order in the forward direction. Higher orders will be generated at angles
θm , corresponding to increased path lengths mλ, such that

sin θm = mλ

d
(9.2)

where m = 0, ±1, ±2, ±3, . . . . For radiation incident on the grating at an angle θi , measured
from the normal, one readily shows that the condition for constructive interference is

sin θ − sin θi = mλ

d
(9.3)

where again m = 0, ±1, ±2, ±3, . . . . Equation (9.3) is known as the grating equation, and
Eq. (9.2) is clearly a special case of it for normal incidence.

The fraction of incident energy diffracted into the various orders depends on the nature
of the periodic structure, i.e., the sharpness of profile, the bar to space ratio (line width as a
fraction of grating period), and the complex refractive index, which affects the absorption and
phase shift in the grating. For a transmission grating of opaque lines of width equal to half
the grating period, as illustrated in Figure 9.4, one can represent the transmission function in
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F IGURE 9.4. Representation of a transmission grating of unit absorption in terms of Fourier
components. Each component m of the expansion represents an equivalent thin grating, where the
coefficient cm is related to the amount of energy diffracted to a given order m, and where the period
d/m is related to the angle of diffraction for that order. Only the first term (m = 1) in the expansion is
shown. The first coefficients are c0 = 1

2 , c1 = 1/π , c2 = 0, c3 = 1/3π , etc., as derived in the text.

a Fourier series expansion, taking even (cosine) terms only for the coordinate choice taken:

f (ξ ) =
∞∑

m=−∞
cm cos

(
2πmξ

d

)
(9.4)

with coefficients

cm = 1

d

∫ d/2

−d/2
f (ξ )e−2π imξ/d dξ

where f (ξ ) = 1 in the interval |ξ | ≤ d/4, and = 0 in the interval d/4 < ξ ≤ d/2. Substituting
for f (ξ ), noting that e−iθ = cos θ − i sin θ (Appendix D) and that the sine term does not
contribute in this even interval, the integral for the coefficient becomes

cm = 2

d

∫ d/4

0
cos

(
2πmξ

d

)
dξ

cm = sin(mπ/2)

mπ
(9.5)

By L’Hospital’s rule, c0 = 1
2 . The even order coefficients are all zero, due to the symmetry

of the problem with this choice of coordinate origin. The odd order coefficients are cm =
1/π, −1/3π, 1/5π, . . . , for m = ±1, ±3, ±5, . . . , respectively.

We can now represent the single rectangular grating of unit absorption by a superposition
of thin cosine gratings of increasing spatial frequency km = 2πm/d and transmission cm .
Each such grating corresponds to one term in the expansion, leading to radiation of the
various diffractive orders m, at angles θm described earlier in Eq. (9.2), and associated electric
fields Em = cm E0, where E0 is the incident electric field at the grating. From Chapter 3,
Eqs. (3.18–3.20), it follows that the intensities of the various diffractive orders are given by

Im =
√

ε0/µ0|Em |2 = |cm |2 I0 (9.6)

so that the efficiencies ηm = Im/I0 for diffraction to the various orders are proportional to
|cm |2, and thus from Eq. (9.5)

ηm =
⎧⎨
⎩

0.25 m = 0
1/m2π2 m odd
0 m even

(9.7)
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For an opaque transmission grating of equally wide lines and spaces, 25% of the incident
energy is in the 0th order, approximately 10% is diffracted to each of the ±1st orders, and so
forth, while the grating itself absorbs 50% of the incident energy.14, 15

In phase gratings the opaque lines are replaced by partially transmitting materials to
reduce absorptive losses. For materials and wavelengths for which β/δ is minimal, and for
thicknesses that permit a relative propagation phase shift approaching π , this can lead to a
significant enhancement of diffraction efficiency.

The coefficients in Eq. (9.7) correspond to a symmetric grating of equal line and space
widths, permitting a representation [Eq. (9.4)] involving only even cosine functions. For an
asymmetric grating involving unequal line and space widths, odd sine functions would also
be required. An example would be a grating with line widths equal to 1

3 the grating period
and open spaces of width equal to 2

3 of the grating period. In such cases the asymmetry (sine
terms) leads to non-zero even orders, i.e., finite values of |cm |2 for m = ±2, ±4, etc. This is
very much analogous to the discussion of even multilayer diffraction orders for asymmetric
coatings of 
 �= 0.5, as discussed in Chapter 4, Section 4.2 and Figure 4.4 therein. This subject
is relevant here, as we shall shortly consider the diffraction efficiency of zone plate lenses.

For symmetric structures of equal area in successive zones (opaque and transmissive)
we will again find only odd orders, m = ±1, etc. The even orders (m = ±2) will cancel at
the focal point. However, for asymmetric zones of unequal successive areas, even orders do
appear. An example of this would be a zone plate where the alternate open zones are narrower
than prescribed due to imperfections in the fabrication process. Depending on the degree of
asymmetry, even orders of various intensities would appear.

An extensive literature exists on the subject of diffraction from transmission and re-
flection gratings. In particular see Born and Wolf14 for an extensive introduction, Hecht13

for a tutorial on blazed reflection gratings, Morrison15 for a description of phase gratings
at short wavelengths, and Michette12 for a general description of diffraction gratings at soft
x-ray wavelengths. Variable line space gratings are discussed by Hettrick and Underwood and
their colleagues.16−17 The topic of EUV/soft x-ray gratings continues to be one of active re-
search, with applications in many fields, including synchrotron radiation, astrophysics, plasma
physics, and fusion. Several recent books specifically addressing this spectral region add to
the wealth of valuable literature on the subject of reflection and transmission gratings.18−20

In the next section we discuss Fresnel zone plates as circular diffraction gratings that also
generate many orders, some of which are diffracted radially inward toward the optic axis and
can form a real image (the positive orders), and some of which are diffracted radially outward,
forming a virtual image (the negative orders).

9.2 THE FRESNEL ZONE PLATE LENS

The focusing properties of a Fresnel zone plate lens can be understood by considering the first
order diffraction from a circular grating with the zonal periods adjusted so that at increasing
radius from the optic axis the periods become shorter, and thus by Eq. (9.1) the diffraction
angle becomes larger, thus permitting a real first order focus, as illustrated in Figure 9.5. If
one draws a right triangle with the focal length f as one side, the radius of any zone rn as a
second side, and the hypotenuse of length f + nλ/2, then by the Pythagorean theorem the
zonal radii are given by

f 2 + r2
n =

(
f + nλ

2

)2

(9.8)
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F IGURE 9.5. A Fresnel zone plate lens with plane wave illumination, showing only the convergent
(+1st) order of diffraction. Sequential zones of radius rn are specified such that the incremental path
length to the focal point is nλ/2. Alternate zones are opaque in the simple transmission zone plate.
With a total number of zones N the zone plate lens is fully specified. Lens characteristics such as the
focal length ( f ), diameter (D), and numerical aperture (NA) are described in the text in terms of λ, N ,

and �r , the outer zone width.

which upon expansion and consolidation of like terms becomes

r2
n = nλ f + n2λ2

4
(9.9)

The term n2λ2/4, which represents spherical aberration, can be ignored for f � nλ/2,
which we will see shortly corresponds to a lens of small numerical aperture NA = sin θ =
λ/(2 �r ) � 1, as is often the case at x-ray wavelengths. Where this is not the case, perhaps
with a larger NA optic at an EUV wavelength, the term should be retained. For the low NA
case Eq. (9.9) simplifies to

rn �
√

nλ f (9.10)

showing that a real first order focus is achieved when successive zones increase in radius by√
n, providing the desired prescription by which the radial grating period must decrease in

order to provide a common focus. The earliest known record regarding the demonstration of
focusing light with alternately opaque Fresnel zones is that of Lord Rayleigh in 1871.6

We can now obtain expressions for the lens diameter D, focal length f , numerical aperture
NA = sin θ , spatial resolution, and depth of focus. We choose to do this in terms of the
wavelength λ, the total number N of zones, and the outer zone width �r . We do this from
an experimental point of view. In designing an experiment the wavelength is often a first
priority, driven by the elemental composition of the material or sample under study and their
characteristic absorption and emission lines. In microscopy the next priority is the spatial
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resolution required to see features of interest. For zone plate lenses the spatial resolution limit
is set by the outer zone width �r , as we will see shortly. As our third choice we take N ,
the total number of zones. As we will see in the following paragraphs, zone plate lenses are
highly chromatic, that is, the focal length of the lens varies strongly with wavelength. Thus
for precise imaging it is necessary to restrict the illumination spectral bandwidth, �λ/λ. We
will see shortly that there is an inverse relationship between �λ/λ and N , the total number of
zones. Thus the total number of zones N will be restricted by the relative spectral bandwidth.
With this motivation we proceed in the following paragraphs to develop relationships for f, D,
NA, resolution, and depth of focus in terms of λ, �r , and N .

We begin by defining the outer zone width for n → N ,

�r ≡ rN − rN−1 (9.11)

where N is the total number of zones, i.e., the sum of both opaque and transparent zones
(twice the number of radial periods). The outer zone width �r provides a very convenient
parameter, and is useful in expressions for other lens parameters.

Now we write Eq. (9.10) twice, once for rN and once for rN−1, and subtract as follows:∗

r2
N − r2

N−1 = Nλ f − (N − 1)λ f = λ f

Using the definition of �r given in Eq. (9.11), one also has for the left side of the above
equation

r2
N − (rN − �r )2 = 2rN �r − (�r )2 � 2rN �r

since �r � rN for large N . Combining the above two equations, one obtains

2rN �r � λ f

or

D �r � λ f (9.12)

From Eq. (9.10) we note that λ f � r2
N /N , so that from Eq. (9.12) one has

D �r � r2
N

N
= D2

4N

or

D � 4N �r (9.13)

The focal length can then be obtained from Eq. (9.12) as

f � D �r

λ

∗Note that the area of successive zones, π (r2
n − r2

n−1) = πλ f , is a constant, at least within the long
focal length, small NA approximation leading from Eq. (9.9) to Eq. (9.10). Thus the areas of all zones
are equal and contribute equally to the intensity of focus.
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or in combination with Eq. (9.13)

f � 4N (�r )2

λ
(9.14)

This is a very important relationship for the design of zone plate microscope lenses in that it
shows that the focal length scales directly with the number of zones, with the square of the
outer zone width (which essentially sets the resolution), and inversely with the wavelength,
thus introducing a strong chromatic effect.

The numerical aperture (NA) of a lens is defined as

NA ≡ sin θ

where θ is the half angle measured from the optic axis at focus back to the lens, as illustrated
here in Figure 9.5. Thus the numerical aperture of a zone plate lens is given by NA = rN / f =
D/2 f , or from Eq. (9.12)

NA � λ

2 �r
(9.15)

which is a particularly simple form that will be convenient when considering spatial resolution.
A related quantity is the lens F-number, which we will abbreviate as F#, defined as

F# ≡ f

D

or again using Eq. (9.12)

F# � �r

λ
(9.16)

We will return to these parameters in the following section on spatial resolution, depth of
focus, and chromatic aberration.

In the preceding paragraphs we have considered the focusing conditions for a zone plate
lens with plane wave illumination, as illustrated in Figure 9.5. Next we consider the point by
point imaging of an object at a finite distance q from the zone plate, to an image plane at a
distance p, as illustrated in Figure 9.6.

Again the successive zones, alternately transmissive and opaque, are constructed so as to
add λ/2 to successive path lengths, so that

qn + pn = q + p + nλ

2

where for modest numerical aperture lenses

qn = (
q2 + r2

n

)1/2 � q + r2
n

2q

pn = (
p2 + r2

n

)1/2 � p + r2
n

2p



346 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

Object
plane

Image
plane

qn

rn

pn

q p

F IGURE 9.6. Point by point imaging with a Fresnel zone plate lens is illustrated. Successive propagation
paths are increased by λ/2.

so that

q + r2
n

2q
+ p + r2

n

2p
� q + p + nλ

2

r2
n

2q
+ r2

n

2p
� nλ

2

1

q
+ 1

p
� 1

f
(9.17)

where from Eq. (9.10), f = r2
n /nλ. Equation (9.17) relates the image and object distances to

the focal length as for an ordinary visible light refractive lens. Similarly, one can show that
the transverse magnification is

M = p

q
(9.18)

We now have a basic understanding of how a Fresnel zone plate can be used both to focus
radiation and to form a real image of an extended object using first order diffraction.

Recall, however, that a transmission grating generates many orders, thus complicating
the use of a zone plate lens and leaving only a fraction of the available photons for the primary
purposes of a given experiment. The procedure, suggested in Figure 9.5, of adding a path
length of nλ/2 for constructive interference of sequential zones in first order can be extended
to the higher orders (m = 2, 3, . . .) by adding path lengths mnλ/2. Following the same
procedures used in the preceding paragraphs for the first order (m = 1), one finds that the
radial zones correspond to phase advances for the higher order diffracted waves given by

r2
n � mnλ fm (9.19)

for zones n = 0, 1, 2, . . . and diffractive orders m = 0, ±1, ±2, . . . , and with corresponding
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F IGURE 9.7. Representation of a Fresnel zone plate as a transmission grating in terms of the radius
squared. Only the first term (m = 1) is shown.

focal lengths given by

fm = f

m
(9.20)

where we note that the negative orders give rise to virtual foci of negative focal length. The
diffraction efficiencies of the various orders can be analyzed much like the transmission grating
efficiencies of the previous section [see Eqs. (9.4) and (9.5)]. In the case of the transmission
zone plate of unity absorption in the opaque zones, one can represent the transmission function
in a Fourier series expansion in terms of r2, as suggested by Eq. (9.19).

The sketch in Figure 9.7 is useful for visualizing the Fourier decomposition and identifying
the periodicity in r2. Following Goodman,21 we expand the transmission function in terms of
γ r2, taking only odd (cosine) terms for the chosen coordinates, so that

f (γ r2) =
∞∑

m=−∞
cm cos(mγ r2) (9.21)

where from Figure 9.7 we see† that γ = π/λ f . This can be written as

f (u) =
∞∑

m=−∞
cm cos(mu)

where u = γ r2 = πr2/λ f , and where the Fourier coefficients are given by

cm = 1

2π

∫ π

−π

f (u) cos(mu) du (9.22)

For the alternately opaque and transmissive zones of interest here the transmission function
f (u) = 1 for 0 ≤ u ≤ π/2, and f (u) = 0 for π/2 < u ≤ π (see Figure 9.7), so that

cm = 1

π

∫ π/2

0
cos mu du

†A radial phase shift of 2π corresponds to a difference �n = 2 in the zone plate (one opaque,
one transmissive). From Eq. (9.19), for m = 1, this gives an argument in the expansion parameter
γ (r2

n − rn−2) = 2λ f γ = 2π , or γ = π/λ f . Check this in Figure 9.7, where the phase shift between
n = 2 and n = 4 corresponds to 7π/2 − 3π/2 = 2π .
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F IGURE 9.8. Zone plate diffractive focusing is illustrated for the first three positive orders. An order
sorting aperture (OSA), of the type that would be used to block all but the first order, is also shown.
Negative orders (m = −1, −3, −5) are shown as solid lines diverging from the optical axis, and
projected backward to virtual foci (behind the lens) by dashed lines.

or

cm = sin(mπ/2)

mπ
(9.23)

where m = 0, ±1, ±2, ±3, . . . . This is identical to the result obtained earlier for the linear
transmission grating. As we observed in that case, the diffraction efficiencies to the various
orders are given by [Eq. (9.16)]

Im = |cm |2 I0

so that for a Fresnel zone plate of alternately opaque and transmissive zones the diffraction
efficiencies are given by

ηm =

⎧⎪⎨
⎪⎩

1
4 m = 0

1/m2π2 m odd

0 m even

(9.24)

where half the incident energy is absorbed by the opaque zones. The efficiency to the first order
focus is thus about 10%, another 10% goes to the divergent m = −1 order, approximately
1% goes to the divergent third order (m = 3, virtual focus), etc., while 50% of the incident
radiation is absorbed and 25% is transmitted in the forward direction (m = 0). As in the case
of the transmission grating considered in Section 9.1, the even orders do not contribute in the
symmetric case where successive zone areas are equal. The various orders are illustrated in
Figure 9.8.

The decreasing efficiency with increasing order m has an interesting explanation. Within
a given transmissive zone n, the even orders of m cancel at the focus, so that only odd
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orders (m = ±1, ±3, ±5, . . . ) need be considered. For the odd orders of |m| > 1, the
diffraction efficiency will be decreased by factors of 1/m2 relative to m = 1 because of canceled
contributions within each transparent zone. For instance, the third order focus will receivefield
contributions from three sub-regions within each zone, two of which will cancel, leaving only a
1
3 contribution to the electricfield at the third order focus (1/m). As the intensity is proportional
to E2, the intensity will be diminished by 1

9 , i.e., by 1/m2. Likewise, for the fifth order focus,
four of the five sub-zone contributions will cancel (in pairs), leaving only a 1

5 contribution to
the field, or a 1

25 contribution to the intensity.
It is possible to increase the efficiency of zone plates by replacing the opaque zones with

phase reversal zones by which the goal is to achieve a λ/2 phase shift relative to the open
zones, with minimal absorption, as first suggested by Lord Rayleigh.6, 8 In this manner the
electric fields at focus can be increased by up to a factor of two, and thus the intensities (and
efficiencies) by up to a factor of four. The required thickness �t for obtaining a phase shift of
π for a given material and wavelength is given by [see Chapter 3, Eq. (3.29)]

�t = λ

2δ
(9.25)

Of course, for x-rays and EUV radiation, where the refractive index n = 1 − δ + iβ, and
where β/δ is non-negligible, this factor of four cannot be realized. Nonetheless significant
improvements are possible. Kirz11 has calculated the optimum zone plate thickness as a
function of the parameter β/δ. He finds, for example, that the optimum thickness decreases
to about 0.9 of that given in Eq. (9.25) for β/δ = 0.2, and about 0.8 at β/δ = 0.5. Enhanced
diffraction efficiencies of zone plate lenses to first order, based on partial phase contributions
in the material zones, have been reported in the literature.22−25 The relative electric field after
propagating through a finite thickness �t is given by [Chapter 3, Eq. (3.17)]

E

E0
= e−πβ/δ (9.26)

From this the efficiencies to various orders can be calculated.26 Note that values of δ and β,
given as a function of photon energy,27 are reproduced here in Appendix C for several common
materials. Further possibilities for improved efficiency, using theoretically optimized phase
profiles, are discussed in the literature.28

The analyses above are all based on thin zone plate theory in that they do not take account
of finite (λ/�t) wavelength effects within the zone plate. More realistic calculation for finite
thickness zone plates are also discussed in the literature.29−33

9.3 DIFFRACTION OF RADIATION BY PINHOLE APERTURES AND ZONE PLATES

To understand the limiting spatial resolution of a lens, set by the wavelength of radiation and
the numerical aperture (NA), it is necessary to have knowledge of the focal plane intensity
distribution due to a point source. One can then consider two such point sources, bring them
close to each other, and set some criterion for the separation distance that renders the two
just resolvable. This brings us to the subject of diffractive optics, that is, the study of lenses,
mirrors, gratings, etc., where there are features comparable in size to the irradiating wave-
length that cause radiation to propagate in directions different from those given by geometrical
considerations. Of particular interest here is the diffraction of short wavelength radiation by
pinholes and zone plates, which are much used in this region of the spectrum. Of course,
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F IGURE 9.9. Geometry for the description of diffraction of radiation from an aperture plane (ξ, η) to an
observation point (x, y). R is the distance from a source point S(ξ, η) in the aperture plane to an
observation point P(x, y). The two planes are parallel, separated by a distance z. The aperture
illustrated here is a circle of diameter d = 2a. The angle θ is measured from the origin of the
ξ, η-plane to the observation point P.

diffraction is a basic electromagnetic phenomenon, well known at lower wavelengths. For
instance, when a common refractive lens is used to focus visible laser light, the limited lens
aperture causes some angular spread of the radiation that appears to emanate from the sharp
boundary, resulting in a finite width of the focal spot and some nearby ringing due to the inter-
fering fields in the focal plane. In this section we will discuss analogous diffractive limitations
that occur with zone plate lenses, and closely related diffraction from small pinholes.

There is a long history of mathematical development on the theory of diffraction that
successfully predicts physical observations. Most notable is the scalar theory of diffraction
developed by Kirchhoff in 1882, extending the earlier work of Huygens (1690) and Fresnel
(1818), and leading to what is now known as the Fresnel–Kirchhoff diffraction formula,34−39

which for small angle scattering in the near-forward direction (θ � λ/d � 1, where d is a
characteristic dimension), can be written as35

E(x, y) = −i

λ

∫ ∫
E(ξ, η)eik R

R
dξ dη (9.27)

where k = 2π/λ, E(x, y) is the electric field observed at a distant point P(x, y), E(ξ, η) is the
incident field as a function of position in the aperture plane (z = 0), and R is the distance from
each source point S(ξ, η) to the observation point P(x, y), as illustrated in Figure 9.9. Basically
this states that the field detected in a distant plane is obtained by summing the contributions
from every point in the aperture plane, allowing for its propagation distance R and phase eik R ,
as if each point were a secondary source of radiation. As we will see shortly, the finite aperture
introduces unbalanced contributions near boundaries, leading to interference effects specific
to the geometry and clearly dependent on the wavelength.
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From the geometry of Figure 9.9 we see that

R =
√

z2 + (x − ξ )2 + (y − η)2

For the case where z � x, y and z � ξ, η, this becomes

R � z + x2

2z
+ y2

2z
+ ξ 2

2z
+ η2

2z
− ξ x

z
− ηy

z
(9.28)

so that

E(x, y) = −ieikzeik(x2+y2)/2z

λz

∫ ∫
E(ξ, η)eik(ξ 2+η2)/2ze−ik(ξθx +ηθy ) dξ dη (9.29)

where θx = x/z = r cos φp/z = θ cos φp and θy = y/z = r sin φp/z = θ sin φp.
To proceed further we need to consider specific problems. Two problems of particular

interest are those of (1) a small pinhole and (2) a Fresnel zone plate lens. The analysis of each
follows.

9.3.1 Pinhole Aperture

For a small pinhole of radius a, such that ka2/2z � 1,‡ assuming uniform plane wave
illumination such that E(ξ, η) = E0, and that the exponent term k(ξ 2+η2)/2z can be neglected
as second order compared to the ξθx and ηθy terms, Eq. (9.29) simplifies to

E(x, y) = −i E0eikzeik(x2+y2)/2z

λz

∫ ∫
e−ik(ξθx +ηθy ) dξ dη (9.30)

Converting to polar coordinates as shown in Figure 9.9 for this axisymmetric problem, where
(ξ, η) → (ρ, φs) and (x, y) → (r, φp), the integral reduces to

E(r, θ ) = −2π i E0eikz eikr2/2z

λz

∫ a

0
J0(kρθ )ρ dρ (9.31)

where we have replaced r by θ , using r = θ z for final z, and where¶ the φs-integral has led
to the identification40−43

J0(kρθ ) = 1

2π

∫ 2π

0
eikρθ cos(φs−φp) dφs (9.32)

where J0(ν) is a Bessel function of the first kind, of zero order. The integral in Eq. (9.31) is
of the standard form44

∫ 1

0
x J0(νx) dx = J1(ν)

ν
(9.33)

where we have made the substitutes ρ = ax and kρθ = νx , so that ν = kaθ . The field diffracted
by a small pinhole, in the small angle (θ ) approximation, is therefore obtained from Eqs. (9.31)

‡This is the far-field approximation, valid for z � πd2/4λ, where d = 2a is the pinhole diameter.
¶Note that this is mathematically identical to the treatment of partial coherence integrals in Chapter 8,

leading to Eqs. (8.19) and (8.20).



352 S O F T X-R A Y S A N D E X T R E M E U L T R A V I O L E T R A D I A T I O N

1.0

0.5

0
0 5 10

kaθ

kaθ = 3.832

R
e
la

tiv
e
 in

te
n
si

ty
, 

I(
θ)

/I
(o

)

2J1(kaθ)

(kaθ)

2 F IGURE 9.10. The far-field diffraction pattern of a
circular pinhole illuminated by a uniform plane
wave. I (θ ) is the angular distribution of intensity in
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function of the first kind, order one.

and (9.33) to be

E(θ ) = −2π ia2 E0eikz eikzθ2/2

λz
· J1(kaθ )

kaθ
(9.34)

with a corresponding intensity distribution in the far field of the pinhole given by

I (θ )

I0
=

(
ka2

2z

)2 ∣∣∣∣2J1(kaθ )

kaθ

∣∣∣∣
2

(9.35)

where I0 = √
ε0/µ0|E0|2 is the illumination intensity at the pinhole. Note that Eq. (9.35)

can be written in terms of the radial coordinate in the observation plane (x, y) through the
substitution θ = r/z, for fixed z. Equation (9.35) gives the functional dependence of the
far-field diffraction pattern of a coherently illuminated (monochromatic plane wave) pinhole,
illustrated in Figure 9.10.

The angular dependence is dominated by the quantity |2J1(kaθ )/kaθ |2, often referred to
as an Airy pattern34, 37 after George Airy, who first described this functional dependence in
1835. The function |2J1(ν)/ν|2 is unity for ν = 0, declines to zero at ν = 3.832 (Refs. 43 and
45), and then oscillates with successively smaller maxima and minima for increasing values
of ν. The central lobe of this angular diffraction pattern, sometimes called the Airy disk, is
bounded by the first Airy null at

kaθ = 3.832

which corresponds to a first null diffraction half angle

θnull = 0.610λ

a
= 1.22λ

d
(9.36)

where d = 2a is the pinhole diameter. Recall that this result is valid in the far field where
z � πa2/λ, so that the radius r of this null, given by r = zθ , is much greater than the pinhole
radius a, i.e., r = zθ � 2a. Thus the far-field Airy pattern is propagating outward from the
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pinhole with a half angle proportional to λ/a as in Eq. (9.36), with an Airy null of ever larger
radius r = 0.610λz/a.

Furthermore, we observe from Eq. (9.35) that the on-axis intensity in the far field of the
pinhole decreases in proportion to I (0) = I0(ka2/2z)2, or

I (0) = πE0

(
a

λ

)2 (
1

z

)2

(9.37)

where we recall that I0 is the incident plane wave intensity at the pinhole, where we define
E0 = πa2 I0 as the total energy passing through the pinhole, and where 2J1(0)/(0) is unity
on-axis, as can be shown with use of L’Hospital’s rule. Thus the on-axis intensity of the
far-field diffraction pattern decreases with the inverse square of the distance z as we would
expect, with a proportionality (a/λ)2 as we also would expect on a solid angle basis with a
divergence half angle given by Eq. (9.36). Approximately 84% of the incident energy E0 lies
within the first Airy null.34 The interesting subject of finite pinhole thickness and the effect of
non-circular geometry are discussed in the literature.46, 47

The mathematical developments here and in Section 8.6 are similar and deserve comment.
Both developments involve applications of incident radiation on a pinhole, and thus through the
axial symmetry, with radius a and wavelengthλ, naturally involve Bessel functions of argument
kaθ , where k = 2π/λ. The problems are quite different, however, as is the interpretation of the
results. In Chapter 8 we were concerned with the subject of partial coherence, and considered
the problem of incoherent illumination of a pinhole, finding that the mutual coherence function
in the far field has a J1(ν)/ν dependence, although the radiation pattern itself may be much
broader. Here we have considered coherent illumination of a pinhole, and have determined
the resulting far-field intensity distribution to be proportional to |J1(ν)/ν|2, as shown here in
Figure 9.10. Thus in the first case there may be a very broad radiation pattern within which
there exist well-correlated fields near the axis [J1(ν)/ν], while in the second case all the
radiation appears in a |J1(ν)/ν|2 intensity pattern.

9.3.2 Zone Plate

When a Fresnel zone plate is placed within the aperture of Figure 9.9, a large number of
diffracted orders are generated. As is illustrated in Figure 9.8, the various orders are expected
to come to focus (real and virtual) on axis at focal distances [see Eq. (9.19)]

fm = r2
1

mλ
(9.38)

with diffraction efficiencies given by Eq. (9.24). It is possible then to evaluate the Fresnel–
Kirchhoff integral for this case by replacing the zone plate with an infinite series of thin
lenses, one for each order.21 The stepwise radial phase advance (or retardation), mnλ/2, of
the wavefront associated with each zone and each order is then, as seen in Figure 9.11, given by

�φm,n(ρ) = k

(
mnλ

2

)

which by Eq. (9.19) can be written in terms of the radius ρn as

�φm,n = kρ2
n

2 fm
(9.39)

where fm = f/m, and where f is the first order (m = +1) focal length.
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F IGURE 9.11. (a) Geometry for the description of diffraction of radiation from a Fresnel zone plate. The
geometry and nomenclature is similar to that of Figure 9.9. The zones are described as a function of the
radius ρ in the ξ, η-plane; however, for consistency with the zone plate formulae developed in Section
9.2, we take the outermost open zone to have a width �r , and take D as the zone plate diameter. The
inset (b) illustrates the wavefront curvature (phase advance) of the m = +1 diffracted order, which is
brought to focus a distance z from the zone plate.

For a zone plate of many zones, for instance48 N > 100, the first order wavefront can be
approximated by a continuous radial phase advance

φ(ρ) = kρ2

2 f
(9.40)

where by Eq. (9.38) f = r2
1 /λ, or equivalently in terms of the outer zone width �r and

number of zones N [see Eq. (9.14)], f � 4N (�r )2/λ. Thus the electric field in the aperture,
as it appears in Eq. (9.27), can be written as

E(ξ, η) =
∑

m

E0

|mπ | e−ikρ2/2 fm (9.41)

where the coefficients |1/mπ | correspond to the diffractive efficiencies of the non-zero orders,
as given in Eq. (9.24), and again fm = f/m.

The Fresnel–Kirchhoff diffraction formula can then be approximated for the various
orders as

Em(x, y) = −i E0

mπλ

∫ ∫
e−ik(ξ 2+η2)/2 fm eik R

R
dξ dη (9.42)
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where for the first order focus at z = f ,

R � f + x2

2 f
+ ξ 2

2 f
− ξ x

f
+ y2

2 f
+ η2

2 f
− ηy

f
(9.43)

as illustrated in Figure 9.11. With this expansion of R the integral for the first order field
becomes

E1(x, y) = −i E0

πλ f
eik f eik(x2+y2)/2 f

∫ ∫
e−ik(ξ x+ηy)/ f dξ dη

where the −ik(ξ 2 + η2)/2 f term due to the zone plate phase advance in the first order has
exactly canceled the +ik(ξ 2 + η2)2z term from the expansion of R at z = f . Following the
now familiar conversion to polar coordinates for the axisymmetric geometry [see Eqs. (9.31)
to (9.33)] relevant to a zone plate, the diffraction formula for the first order field becomes

E1(r ) = −2i E0

λ f
eik f eikr2/2 f

∫ a

0
J0(kρθ )ρ dρ

where θ = r/ f , where a = D/2 is the outer radius of the zone plate, and where J0 is the
Bessel function of the first kind, order zero. Performing the integration, as was done in the
steps leading to Eq. (9.34), one obtains for the first order field in the focal plane at z = f

E1(θ ) = −2ia2 E0

λ f
eik f eikθ2 f/2 J1(kaθ )

kaθ
(9.44)

where J1(ν) is the Bessel function of the first kind, order one, and where the above can be
written in terms of the focal plane radius by substituting r = f θ for fixed focal length f .

The corresponding focal plane intensity, for the first order m = +1, is obtained by forming
I1(θ ) = √

ε0/µ0|E1(θ )|2, with the result that the focal plane intensity of the zone plate is given
by

I1(θ )

I0
= N 2

∣∣∣∣2J1(kaθ )

kaθ

∣∣∣∣
2

(9.45)

where I0 = √
ε0/µ0|E0|2, is the illumination intensity of the aperture, N is the total number of

zones in the zone plate, D2 = 4a2, and by Eq. (9.10), written for n → N , we have D2 = 4Nλ f .
The function |2J1(ν)/ν|2, the so-called Airy function that was seen earlier in Figure 9.10, is
unity on axis, has its first null at kaθ = 3.832, and oscillates beyond that with ever decreasing
amplitude. Thus according to Eq. (9.45), the first order focus of the zone plate lens has an
on-axis intensity N 2 greater than the incident intensity. The radial focal plane intensity pattern
(Airy pattern) is shown in Figure 9.12.

Note that the first null occurs for

k Dθ/2 = 3.832
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F IGURE 9.12. The Airy pattern of focal plane
intensity for a zone plate lens at its first order focus.
I0 is the illumination intensity at the zone plate, N
is the total number of zones, a = D/2 is the lens
radius k = 2π/λ, θ = r/ f is measured from the
center of the lens away from the optic axis, r is the
focal plane radius, and f is the focal length.

so that with focal plane radius r = f θ in Figure 9.11, the radius of the first null occurs at

rnull = 0.610λ

N A
(9.46)

where in the small angle approximation (ρ, r � z) we have taken NA = sin θ � θ . This
is a very well-known result that plays a significant role in determining the resolution of an
ideal lens, limited only by the wavelength λ and the numerical aperture. In this ideal case the
lens performance is described as diffraction limited. In the following sections we consider
the Rayleigh criterion for determining resolution in this limit, as well as practical limitations
due to various effects. We also describe how such lenses are fabricated, various microscopes
in which they are used, and some examples of applications in the physical and life sciences.
We note that at EUV and soft x-ray wavelengths numerical apertures approaching 0.1 are
available in several laboratories, and thus Eq. (9.46) indicates the possibility of focusing such
radiation to focal spots of tens of wavelengths in diameter.

An important consideration not addressed here is that of finite lens thickness. The fore-
going analysis assumed opaque zones of essentially zero thickness. In practice the zones are
very thick compared to the wavelength, and permit finite transmittance due to finite values
of β/δ. Maser, Schneider, and Schmahl at Göttingen have approached this mathematically
using a coupled-wave analysis in which incident radiation couples to many modes within the
waveguide-like structure. Numerical solutions point toward enhanced resolution using higher
orders of improved efficiency.31−33

The Moscow X-Ray Optics Group of Popov, Kopylov, and Vinogradov29 takes a different
approach. They note that at these very short wavelengths the refractive index is very close
to unity, so that in calculating diffracted fields it is possible to factor out the rapidly varying
z-dependence, eikz in Eq. (9.29), leaving a complex field amplitude with a relatively slow
dependence on the spatial coordinates. The resultant field satisfies a parabolic wave equation
similar to that encountered in quantum mechanics for a complex potential. For refractive index
near unity, solutions involve a slow transverse propagation of energy and permit relatively
straightforward numerically efficient solutions for arbitrary diffractive structures. With this
approach it is not only possible to consider optimized zone structures, but also to efficiently
calculate off-axis imaging properties, including aberrations, in thick structures. An example
of a calculation by Kopylov et al.29 is shown in Figure 9.13 for a relatively thick nickel zone
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Focal planePlane of zone plate

λ

F IGURE 9.13 (see Colorplate XIII). Diffraction from a thick nickel zone plate lens calculated in the
parabolic wave approximation. The zone plate thickness is 300 nm, the wavelength is 2.4 nm, the outer
zone width is 30 nm, and the zone plate has 300 zones, an outer diameter of 36 µm, and a focal length
of 450 µm in first order. (Courtesy of Yu.V. Kopylov and A.V. Popov,29 Moscow Optics Group.)

plate with �t = 300 nm, illuminated with wavelength λ = 2.4 nm, so that �t/λ is of order
100. The lens has 300 zones, an outer zone width of 30 nm, and thus a diameter of 36 µm.
The calculation indicates a diffraction efficiency to first order of 26%. It also shows increased
diffraction efficiency to higher orders, compared to a reference thin zone plate, including a
relatively strong (2%) second order (m = 2), as can be seen in the illustration.

Finally, we note that although the pinhole and zone plate diffraction formulae are quite
similar in form, both involving the Airy pattern |2J1(ν)/ν|2, the effects are quite different. In
the case of the pinhole the Airy pattern is expanding radially in the far field to characteristic
dimensions much larger than the original pinhole size, while in the case of the zone plate lens
the Airy pattern is formed in the focal plane with characteristic lateral dimensions (focal spot
size) much smaller than the zone plate diameter.

9.4 SPATIAL RESOLUTION OF A ZONE PLATE LENS

One measure of the resolution of a lens is the minimum discernible separation of two mutually
incoherent point sources. This in turn depends on the so-called point spread function of the
lens, that is, the image plane intensity distribution due to a distant point source. For an ideal
lens, including an ideal zone plate of many zones, the point spread function is an Airy pattern
[Eq. (9.45), Figure 9.12], whose lateral extent (spread) depends on both wavelength and
lens numerical aperture. The famous Rayleigh resolution, which we discuss in the following
paragraph, involves two such point sources, each producing independent Airy patterns. The
Rayleigh resolution criterion corresponds to the two being brought sufficiently close that the
first null of one pattern is just aligned with the peak intensity of the other, resulting is a
small but discernible dip in the summed intensity distribution. More generally, one finds that
the resolution depends on illumination and can, of course, be limited by lens imperfections,
mounting errors, noise, and other factors. For a Fresnel zone plate lens two well-known
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F IGURE 9.14. Airy intensity patterns due to mutually incoherent, quasi-monochromatic point sources at
the image plane of a lens of numerical aperture NA. In (a) the two are well separated and easily
resolved. In (b) the two are just resolved by the Rayleigh criterion. In (c) several form a periodic
intensity pattern.

limitations are the inverse focal length dependence on wavelength (chromatic aberration) and
zone placement errors. Other common aberrations13 such as astigmatism and coma can also
limit resolution and image fidelity. We discuss these further in the paragraphs that follow.

We begin the study of spatial resolution by considering two point sources of quasi-
monochromatic radiation, each producing an Airy intensity pattern in the image plane of the
lens, as illustrated in Figure 9.14(a). In each case the radius to thefirst null is given by Eq. (9.46).
Two physical situations that would approximate this mathematically ideal limit are those of
(1) a sub-resolution point of emission in the object plane of a microscope, perhaps created by
a backlighted pinhole of very small dimension, and (2) a distant star of angular extent well
below resolvable limits. In each case an image plane intensity distribution approximating that
in Figure 9.14(a) would be obtained in near-perfect experimental conditions.

One could then imagine two such point sources of equal intensity in a noise free back-
ground. If the two were sufficiently separated, by a large distance �l, as shown in
Figure 9.14(a), the image would contain two distinct Airy patterns and we would conclude that
the two sources of emission were well resolved. Next, one could imagine the two sources of
emission being closer to each other, so that the Airy patterns overlapped. In the consideration
here the two are assumed mutually incoherent, so that the fields do not form a time averaged
interference pattern; rather, the intensities add. As the two Airy patterns are brought closer
to each other, the intensity between the two peaks rises so that it becomes more difficult to
discern the two. By Rayleigh’s criterion the two are said to be just resolved when the first null
of one overlaps the peak of the other, so that �l = rnull, as illustrated in Figure 9.14(b). In this
case the central Rayleigh dip in intensity is 26.5%. The corresponding Rayleigh resolution
limit, for �l just equal to rnull in Figure 9.14(b), is
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�rRayl. = 0.610λ

NA
(9.47)

or equivalently, in terms of the lens F# [see Eqs. (9.15) and (9.16)], where F# � 1/(2 NA) =
�r/λ for small NA,

�rRayl. = 1.22F#λ = 1.22 �r (9.48)

where �r is the outermost zone width of the zone plate lens. If the objects are brought any
closer, the intensity dip rapidly diminishes, and the two are considered unresolved. Although
other criteria exist, the Rayleigh criterion is a well-known benchmark, and one that is difficult
to achieve in practice, much more so to exceed, at soft x-ray and EUV wavelengths.

There is, however, an advantage that accrues with variation of the angular illumination,
that is, partially coherent illumination. We discuss this in the following paragraphs.

As periodic patterns are also commonly used in tests of resolution, we also show in
Figure 9.14(c) the intensity pattern that would result for a series of mutually incoherent point
sources laid side by side with the respective Airy peaks and nulls overlapped in the Rayleigh
manner. Here we see that the period of the resulting intensity pattern is just equal to what we
have taken as the Rayleigh criterion separation, i.e.,

1 period � �rRayl. = 0.610λ

NA
(9.49)

where the intensity dip, or modulation in this case, is not greatly different than that for the
just-resolved points.

Equation (9.49) is interesting for the insight it provides with regard to resolution tests in-
volving periodic patterns. For instance, gratings of equally wide bars and spaces are frequently
used for such tests, essentially to measure how the peak to valley intensity modulation varies
as a function of decreasing period. Although one must be careful here to properly account for
partial coherence of the illumination, Eq. (9.49) clearly suggests that the Rayleigh criterion
corresponds to a full period of the intensity pattern, so that the identification of individual
line or space widths, corresponding to a half period, should be numerically equal to half the
Rayleigh resolution, and should be understood as such. As an example, Figure 9.15 shows an
x-ray zone plate image of a radial test pattern consisting of approximately equal gold bars and
spaces. The image was obtained at 2.4 nm wavelength with a zone plate of outer zone width
(�r ) equal to 30 nm, corresponding to a numerical aperture [see Eq. (9.13)] NA � λ/(2 �r )
of 0.04 at 2.4 nm wavelength, and a Rayleigh resolution [Eq. (9.47)] for an ideal lens of
1.22 �r = 37 nm. The image shows 30 nm gold features, corresponding to a period of 60 nm,
just resolved. The resolution is thus about 1.6 times the Rayleigh value. Further discussion of
spatial resolution and its measurement is deferred, as these are affected by the illumination
(partial coherence) pattern of the optical system.

Another common test of resolution is the knife-edge test. This is a particularly attractive
test because of its ease of implementation, but requires a well-defined edge on the scale of
EUV and soft x-ray wavelengths, which can be quite challenging. Nonetheless it is widely used
and often valuable. In Figure 9.16 an effort is made to correlate the knife-edge test with the
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30 nm
gold features

(60 nm period)

F IGURE 9.15. X-ray image at 2.4 nm wavelength of
a radial gold test pattern showing 30 nm gold
features (60 nm period). The soft x-ray image was
obtained with a CXRO/IBM zone plate lens having
a 30 nm outer zone width, and the University of
Göttingen soft x-ray microscope at the BESSY
synchrotron radiation facility in Berlin (see Refs.
22 and 23).

F IGURE 9.16. Simulation of a knife-edge test with an Airy image plane intensity distribution. The
laterally integrated intensity is shown as a function of position as a calculated Airy pattern is scanned
across a mathematically sharp knife edge. The radial position shift producing an intensity variation
from 10% to 90% is approximately equal to the Rayleigh resolution, or first Airy null.

Rayleigh criterion for the case of a point source illumination. A focal plane Airy distribution is
numerically scanned across a mathematically perfect knife-edge. The resultant intensity profile
is shown to the right. Upon comparison, it is observed that the Rayleigh criterion corresponds
to a 10% to 90% intensity variation. The 25% to 75% intensity variation overstates the spatial
resolution, relative to the Rayleigh criterion, by a factor of two. Nonetheless, the 25% to 75%
criterion is sometimes used because it is readily identified even with noisy data.

Figure 9.17 shows an example of knife-edge data obtained with a zone plate of 35 nm
outer zone width and a wavelength of 2.4 nm. The effect of partially coherent illumination
on knife-edge intensity in the image plane is illustrated in Chapter 10, Figure 10.3. The data
was taken with the knife-edge in the image plane of a soft x-ray microscope at the Advanced
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F IGURE 9.17. Image plane intensity as a function of position for a knife edge in the object plane of a
full field soft x-ray microscope employing a zone plate lens of 35 nm outer zone width. The
wavelength is 2.4 nm. The experimental data (dotted band) indicates a 10% to 90% resolution of 41
nm. The theoretical limit, including partially coherent microscope illumination (see text), is 29 nm.
Thus the microscope achieves about 1.4 times diffraction limited resolution. (Following W. Meyer-Ilse
and his colleagues,49−51 LBNL.)

Light Source in Berkeley, and recorded with a back-thinned soft x-ray CCD. The measured
10–90% intensity separation is 41 nm, corresponding to 0.59λ/NA, slightly better than the
Rayleigh limit. This, however, is somewhat misleading, as the Rayleigh limit is not quite
appropriate here, due to illumination effects that we discuss in a following section. In fact,
these measurements, when proper account is taken of the angular illumination profile, indicate
a spatial resolution of about 1.4 times the diffraction limit.49−51

9.5 DEPTH OF FOCUS AND SPECTRAL BANDWIDTH

The depth of focus of a lens or imaging system is the permitted displacement, away from the
focal or image plane, for which the intensity on axis is diminished by some permissible small
amount, or image resolution is only slightly degraded. For the focal plane of a perfect circular
lens, with plane wave illumination, it can be shown52 that the on-axis intensity decreases by
only 20% when the observation plane is displaced from the ideal focal plane (smallest focal
spot, thus highest axial intensity, z = f in Figure 9.11) by an amount

�z = ±1

2

λ

(NA)2
(9.50)

or

�z = ±2F#2λ = ±2(�r )2/λ (9.51)

where for the zone plate lens F# = �r/λ, where �r is the outer zone width, and NA �
1/2F#. We observe that the depth of focus is inversely proportional to the square of the
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focal plane, z = f

two depths of focus away, z = f –
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λ
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λ
(NA)2
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F IGURE 9.18. An illustration of intensity distribution and depth of focus for a zone plate lens with
monochromatic plane wave illumination. At the focal plane the radiation is described by an Airy
pattern, as given in Eq. (9.45). Within a nearby region of displacement �z = ±λ/2(NA)2, referred to
as the depth of focus, the on-axis intensity decreases by only 20%. Further departures from the focal
plane, such as the planes at twice and four times this amount, show significantly decreasing peak
intensity. The simulated zone plate has �r = 30 nm, N = 300, and λ = 2.4 nm. (Numerical
simulations courtesy of N. Iskander and E. Anderson,53 LBNL)

numerical aperture. Thus for lenses of large NA, which potentially achieve the smallest focal
spot according to Eq. (9.46) or best spatial resolution according to Eq. (9.47), the depth of
focus is very short, leaving little latitude for error. In microscopes and other imaging systems,
this also limits the region of a thick sample that is in focus. As an example, for a zone plate lens
with an outer zone width of 30 nm, the depth of focus at λ = 2.4 nm is �z = ±0.75 µm. Thus
the focal region in which the axial intensity is not diminished by more that 20% is restricted
to 1.5 µm. Similarly, in an imaging microscope, as will be discussed in a later section, an
extended three-dimensional object would have only a section 1.5 µm thick in focus; material
outside that region would be seen with diminished resolution. An illustration of depth of focus
is presented in Figure 9.18, including isometric views of the intensity distribution at best focus,
the Airy pattern, and in places 2 and 4 depths of focus away.53

We observed earlier in Eq. (9.14) that the zone plate focal length has a strong wavelength
dependence

f � 4N (�r )2

λ

Thus we can imagine that a source of spectral bandwidth �λ might have a sufficient focal
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length variation to exceed the depth of focus due to diffraction. We consider now the bandwidth
necessary to avoid this situation. With the focal length given by Eq. (9.14), the derivative of
f with respect to wavelength is

d f � −4N (�r )2

λ2
dλ

Expressed in terms of the focal length [Eq. (9.14)] and the bandwidth �λ, this becomes

� f = − f · �λ

λ

that is, the focal length is now spread by and amount � f due to the finite spectral bandwidth
�λ. This focal shift is symmetric, ±� f/2 about the monochromatic focal plane at f , with
longer wavelengths coming to focus closer to the lens and shorter wavelengths farther away.
Equating this chromatic focal shift to the diffractive depth of focus given in Eq. (9.51), one has

±2(�r )2

λ
= ± f

2
· �λ

λ

or, using Eq. (9.14),

2(�r )2

λ
= 2N (�r )2

λ
· �λ

λ

yielding the condition of maximum spectral bandwidth,

�λ

λ
≤ 1

N
(9.52)

where �λ is the spectral bandwidth and N is the total number of zones (opaque and trans-
missive) in the zone plate.

Thus to avoid chromatic aberration, so that the focal plane intensity is not diminished
within the depth of focus, we require that the relative spectral bandwidth �λ/λ be less than
or equal to one over the number of zones, i.e., less than 1/N . For a typical zone plate lens
with several hundred zones this requires a relative spectral bandwidth much less than 1%.
To obtain near-diffraction-limited performance, limited only by wavelength and numerical
aperture as given in Eq. (9.47), a polychromatic source of broader spectral bandwidth must
be monochromaticized to the extent indicated by Eq. (9.52).

9.6 SPATIAL RESOLUTION BEYOND THE RAYLEIGH LIMIT: THE EFFECTIVE
ANGULAR ILLUMINATION PROFILE

In Section 9.4 we considered the ability to discern two mutually incoherent point sources,
each producing an independent Airy intensity pattern in the image plane of the lens. Following
Rayleigh, the criterion for just resolving these two points is that their separation should be such
that the first intensity nulls of each overlap the other’s central intensity peak. By extension,
this corresponds to normally incident radiation illuminating a periodic structure in the object
plane of a lens, as illustrated in Figures 9.19(a) and 9.20(a), such that the diffracted radiation
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F IGURE 9.19. The effect of illumination on achievable resolution is suggested through the use of
scattering diagrams. In (a) normal incidence plane wave illumination, scattered through an angle θ and
collected by the lens of NA = sin θ , permits one to “see” features of characteristic dimension (period)
d. In (b) the illumination is oblique, entering the sample at an angle θ , allowing radiation scattered
through an angle 2θ to be collected, and thus permitting one to “see” smaller features of characteristic
dimension d/2, effectively gaining a factor of two in resolution. In practice the gains in resolution are
more modest. For the gain of 2 a narrow angular cone of illumination would be required, thus
sacrificing available photon flux and compromising the contrast of lower spatial frequency features. In
(c) tailoring the angular distribution of the illuminating radiation is suggested as a method to control
the spatial frequency response of the imaging system. A qualitative analysis of possible improvements
in resolution, as described by Hopkins, is summarized in Ref. 14.

at an angle θ � λ/d is just captured by the lens and thus contributes to image formation in the
image plane (not shown). This situation can be improved, however, by bringing the incident
radiation in at an oblique angle, as suggested in Figures 9.19(b) and 9.20(c).

Figures 9.19 and 9.20 approach this problem from the perspective of general scattering
diagrams, as discussed in Chapter 2, and diffraction from simple gratings, respectively. In
each case it is clear that in the limit of extreme illumination and acceptance, it is possible to
improve resolution by a factor approaching two. Thus, for example, one might imagine a zone
plate microscope§ employing a condenser that provides an annulus of incident radiation of
large numerical aperture, combined with a zone plate objective lens with the innermost zones
blocked, so that only a narrow annulus of radiation is collected, corresponding to diffraction
of the highest spatial frequencies in the object or sample. While not very efficient, this would
permit one, in principle, to achieve a spatial resolution exceeding the incoherent Rayleigh
limit by a factor approaching two. Thus in Figure 9.20(c), with oblique incident radiation, it
is possible to “see” a grating of period d = �r , rather than d = 2 �r as in the case (a) of
normal incidence. Here �r is the outer zone width of the lens, which by the Rayleigh criterion
would just resolve a structure of period 2 �r (see Figure 9.14).

§Or, for that matter, a visible light microscope with a high NA refractive objective lens.
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F IGURE 9.20. The effect of illumination is further demonstrated for the specific case of a zone plate lens
(outer zone width �r ) collecting radiation diffracted from a transmission grating. In (a) the grating
period is d = 2 �r , causing normal incidence radiation at wavelength λ to be partially captured by the
lens. In (b) the grating period is reduced by a factor of two, causing diffraction at twice the angle and
resulting in loss of the radiation, i.e., some radiation not captured by the lens and thus not contributing
to an image of the grating. In (c) the illumination is oblique, at an incidence angle θ , so that diffraction
from the shorter period grating is again captured by the lens. Thus, as in Figure 9.19, we see that
controlling the angular distribution of incident radiation can provide improved resolution (d = �r vs.
d = 2 �r ) up to a factor two. Details depend on the illumination (condenser) and collection (lens)
numerical apertures, the detailed angular distributions therein, the system throughput (photon flux),
and the desired contrast as a function of feature size in the object.

The control of angular illumination as a method of enhancing the spatial resolution of
microscopes and other imaging or printing (lithographic) optics is discussed in the literature.49

The application to x-ray microscopes, including both the ratio of condenser to objective lens
numerical aperture and the effect of objective lens central obstruction, is considered by Jochum
and Meyer-Ilse.50 It is these effects that explain how the knife-edge experimental results
presented in Figure 9.17 could achieve a resolution that appears to exceed, if just slightly, the
Rayleigh limit.51

9.7 HIGH RESOLUTION SOFT X-RAY MICROSCOPY

In this section we consider the application of zone plate lenses to high spatial resolution
soft x-ray microscopy. With short wavelengths (nominally 0.4 nm to 4.4 nm) and reasonable
numerical aperture lenses of high quality, these microscopes are capable of achieving spatial
resolutions of several tens of nanometers, about ten times better than that of a visible light
microscope. The corresponding photon energies (0.3 keV to 3 keV) span the primary (K-
shell) and secondary (L-shell) resonances of half the elements in the periodic chart, providing
natural contrast mechanisms for elemental (Z ) and even chemical bond mapping. In their
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F IGURE 9.21. The two most common zone plate microscopes: (a) a soft x-ray microscope in which a
complete image is formed at the CCD and (b) a scanning microscope in which the sample is scanned
past a focused spot and the image is constructed electronically, pixel by pixel.

most common usage to date, these microscopes are used for the formation of images based
on (1) differential absorption and phase shift of transmitted radiation from relatively thick (to
10 µm) samples, and (2) the detection of photoemitted electrons of well-defined energy
(incident photon energy minus binding energy) near an accessible surface. At somewhat higher
photon energies the detection of characteristic fluorescent emission also becomes possible,
but with compromises in zone plate resolution.‖ Here we consider two basic microscope
geometries, as illustrated in Figure 9.21.

9.7.1 The Soft X-Ray Microscope

The soft x-ray microscope is shown in Figure 9.21(a). Development of this microscope∗∗

has been pioneered by Schmahl, Rudolph, Niemann, and their colleagues10, 54−57 at George-
August University in Göttingen, at first using bending magnet radiation at LURE in France,
and later at the BESSY synchrotron facility in Berlin. In this microscope the zone plate lens
forms a complete image at the detector, in the manner described earlier in Figure 9.6, on a

‖Because the higher energy photons are more penetrating, the zones must be thicker. However, fabri-
cation limits with respect to achievable aspect ratios �t/�r then impose larger outer zone widths �r .

∗∗Sometimes called a transmission x-ray microscope (TXM).
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F IGURE 9.22. The soft x-ray microscope utilizes a condenser zone plate with a central stop and a
sample plane order sorting aperture, or stop, to illuminate the sample with first order radiation. A micro
zone plate with high numerical aperture collects transmitted and diffracted radiation, forming a high
resolution, high magnification (M ∼ 400 to 1000) image at the CCD. The back focal plane of the
micro zone plate is available for use of an annular phase plate. (Following Schmahl, Rudolph,
Niemann, and colleagues,54−56 George-August University, Göttingen.)

parallel point by point basis, much as with the common visible light (refraction) microscope
found in every biology laboratory. The achievable spatial resolution is set largely by the
lens outer zone width �r , but can be improved somewhat through optimized illumination,
as discussed in Section 9.6. The illuminating radiation must be of relatively narrow spectral
bandwidth, �λ/λ less or equal to 1/N , where N is the number of zones, as described by
Eq. (9.52).

As shown in Figure 9.21(a), the incident x-rays pass through the sample, where they are
partially absorbed with a spatial variation dependent on the atoms present, their distribution,
and the wavelength. The emerging radiation is then diffracted by the lens to form a first order
image. Examples of images obtained are shown in the next section. The zeroth and other
zone plate orders are controlled by both illumination and detection geometry, as illustrated in
Figure 9.22. Phase contrast microscopy58 at soft x-ray wavelengths59 has been demonstrated
using a back focal plane annular phase plate, whose position is indicated in Figure 9.22.

The primary advantage of the soft x-ray microscope is its simplicity and ability to form
the highest spatial resolution images. Because it does not require spatially coherent radiation,
it generally forms images with bending magnet radiation involving exposure times of a few
seconds. Due to the relatively modest zone plate efficiency, typically 10–20% even with
phase effects, the radiation dose to the sample is larger than desired. For radiation sensitive
biological materials this is largely obviated through the use of cryogenic sample holders,60−62

which maintain structural integrity even at high radiation dose. Indeed, it appears possible
to conduct high resolution tomographic (three dimensional) imaging studies of biological
materials through the use of multiple exposures at angularly separated views.63

9.7.2 The Scanning Soft X-Ray Microscope

The scanning soft x-ray microscope is illustrated in Figure 9.21(b). Development of the
scanning soft x-ray microscope†† has been pioneered by Kirz, Rarback, Jacobsen, and

††Often referred to as a scanning transmission x-ray microscope (STXM).
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F IGURE 9.23. The scanning soft x-ray microscope utilizes a central zone plate stop and an order sorting
aperture (OSA) to block all but the first order from reaching the sample. (Following J. Kirz, H.
Rarback, C. Jacobsen, and colleagues,64, 65 SUNY Stony Brook.)

colleagues24, 25, 64−66 at SUNY Stony Brook and Brookhaven National Laboratory, at first
using bending magnet radiation and later undulator radiation at Brookhaven’s National Syn-
chrotron Light Source (NSLS). In this microscope spatially coherent soft x-rays illuminate a
zone plate lens, which forms a first order focal spot at the sample plane. If properly illuminated
and mounted, the zone plate provides an Airy pattern focal spot intensity distribution, with
resolution set by the outer zone width according to Eqs. (9.47) and (9.48). The zeroth and
other orders are prevented from reaching the sample64 by a combination of a zone plate central
stop and an order sorting aperture (OSA), as shown in Figure 9.23. Thus radiation dose to the
sample is minimized.

The spatially coherent illumination is generally obtained by spatially filtering undulator
radiation, as was described previously in Chapter 8, Section 8.4, Figures 8.9 and 8.11. The
radiation transmitted through the sample is then detected by a fast x-ray detector as the sam-
ple is raster scanned past the focal spot. An image (array of pixels) of arbitrary size is then
constructed by correlating sample position with electronic signal. The scanning microscope
is very flexible in that it can be used in several modes of operation. In the transmission mode,
as described above, it can be used to record sample absorption versus position, repeated at
various wavelengths for elemental and chemical analyses at spectral resolution set by the
upstream monochromator. It can also be used in a fluorescence or luminescence mode in
which incident radiation excites or indirectly causes the emission of radiation that reveals
the chemical nature of the sample, or the presence of special molecular tags, again as a
function of scanned position. A third mode of operation is that of detecting photoelectron
emission as a function of position. Combining the latter with photoelectron spectroscopy, at
each scanned position, provides a powerful tool for the study of surface composition and
chemistry.

Exposure times are relatively long with the scanning microscope, despite the use of
an undulator, because of the significant loss of flux incurred through spatial filtering. Typ-
ical exposure times are several minutes for a 400 by 400 pixel array. The scanning system
also introduces the possibility of reduced spatial resolution through the inability to maintain
nanometer placement accuracy at high scanning speed.

Soft x-ray micrographs obtained with both imaging and scanning microscopes are shown
in the following sections.
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TABLE 9.1. The elements important to living cells. The first four
(H, C, N, O) constitute approximately 96% by weight of the
human body. The following seven (Na, Mg, P, S, Cl, K, and Ca)
make up most of the remaining 4%. Also important, but in trace
amounts, are an additional 14 elements, a few of which are
indicated.68, 71 The K and L absorption edges are largely from
Appendix B. Those in parentheses are greatly affected by
bonding to neighboring atoms.

Atomic % by K abs Labs
Element no. weight (eV) (eV)

Hydrogen (H) 1 9.5 (13.6)
Carbon (C) 6 18.5 284
Nitrogen (N) 7 3.3 410 (37)
Oxygen (O) 8 65.0 543 (42)
Sodium (Na) 11 0.2 1,071 (31)
Magnesium (Mg) 12 0.1 1,303 (49)
Phosphorus (P) 15 0.2 2,149 135
Sulfur (S) 16 0.3 2,472 163
Chlorine (Cl) 17 0.2 2,833 200
Potassium (K) 19 0.4 3,608 295
Calcium (Ca) 20 1.5 4,039 346
Iron (Fe) 26 <0.01 7,112 707
Copper (Cu) 29 <0.01 8,979 933
Zinc (Zn) 30 <0.01 9,659 1022
Iodine (I) 53 <0.01 33,169 4557

9.8 APPLICATIONS TO THE LIFE SCIENCES

The study of biological structures67−71 provides unique opportunities for the use of short
wavelength radiation, both because of the potential to form high spatial resolution images,
by various means, and the ability to identify particular atomic elements by exploiting the
coincidence between photon energy and atomic resonances of the primary constituents of
organic material. For instance, living cells are known to consist largely of the four elements
hydrogen, carbon, oxygen, and nitrogen, with additionally significant amounts of seven other
elements, as indicated in Table 9.1, and several important trace elements (<0.01% by weight)
that are critical to particular cell functions. As we saw in Chapter 1, these elements, except for
hydrogen, have their primary absorption edges in the soft x-ray and x-ray spectral regions, thus
providing a variety of spectroscopic tools, often in conjunction with imaging and diffraction,
to probe their presence and the local environment in which they reside.

It is also of interest to consider the spatial scales of cellular and sub-cellular structures for
which these short wavelength techniques are likely to be most useful. An animal cell is typically
10–30 µm across, with a nucleus 3–10 µm in diameter. Ribosomes, the two-component
structures in which proteins are synthesized, are 20–30 nm across. Various macromolecules
(proteins, carbohydrates, lipids, nucleic acids) have dimensions of one to several nanometers.
Proteins, for instance, are typically 3–10 nm across. Glucose (C6H12O6), a common sugar,
is just under 1 nm long. DNA, the molecule that stores the genetic code for all living cells,
consists of a double helix only 2 nm in diameter, but several centimeters long for humans,
coiled into fibers and loops to form very compact structures, which open and close during
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F IGURE 9.24. The packaging of a chromosome (DNA and its associated proteins) is believed to involve
a sequence of ever larger beads, fibers, and loops that open at appropriate times in the cell cycle to
permit transcription (reading) of particular sections of the DNA (genes) that encode the molecular
sequence (instructions) for the synthesis of a specific protein. Shown in (a) is a current model for
wrapping a several centimeter long, 2 nm diameter DNA molecule of 3.4 nm helical groove period,
into 11 nm “beads on a string,” coiled into a 30 nm diameter chromatin fiber, then looped into a protein
scaffold, finally appearing as the very compact cross-shaped chromosome seen by visible light
microscopy at metaphase in the cell cycle. At other times in the cycle of cell division, the structure
opens for transcription (reading) of selective regions of the DNA molecule, leading to the synthesis of
proteins coded by that specific region (a gene). The spatial resolution of soft x-ray microscopy provides
a potential path for observing some portions of these structures for the first time in a near-native wet
state. (b) A soft x-ray image of a wet but fixed giant polytene (many fiber) chromosome from a larvae
of Chironomus thumi, obtained at 2.4 nm wavelength with the Göttingen (imaging) x-ray microscope
at the BESSY synchrotron facility in Berlin. The image shows banding structure familiar from visible
light microscopy,67 as well as 60 nm fibers that could not be seen with visible light. (Courtesy of G.
Schmahl, Göttingen, and M. Robert-Nicoud, University Joseph Fourier, Grenoble.)

the cell cycle to permit duplication and gene expression. Figure 9.24 illustrates a current
model of DNA packaging, including the 30 nm diameter chromatin fiber (DNA and structural
proteins), and the familiar cross-shaped chromosome seen at metaphase in the cell cycle.
Also shown in this figure is a soft x-ray image of a polytene (large multifiber) chromosome
of Chironomus thummi, obtained at 2.4-nm wavelength by the Göttingen group using their
imaging x-ray microscope at the BESSY synchrotron facility in Berlin,57 which shows clearly
resolved features that could not be seen with visible light microscopy.

The smaller structures mentioned in the preceding text, and many of the atomic details of
molecular structure that are critical to biochemical function, are comparable to x-ray wave-
lengths and are presently beyond the capabilities for direct image formation. The wealth of
information we know about such structures (see Refs. 67–71) is obtained through techniques
such as electron microscopy72 and x-ray crystallography.73−75 For a concise review of these
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F IGURE 9.25. The absorption length for soft x-rays in water and a Generic protein as a function of
photon energy. Natural contrast is obtained in the water window, between the carbon and oxygen
absorption edges, where the high carbon content protein is absorbing but where water is relatively
transparent (see Ref. 76).

tools, including visible light microscopy and techniques for extending resolution through
fluorescence tagging, see the text by Darnell, Lodish, and Baltimore.69

The opportunity, however, to form direct images of thick hydrated biological material
in a near-native environment, at a spatial resolution well beyond that achievable with visible
light microscopy, lies in the soft x-ray spectral region.55, 66 Natural contrast is available at
soft x-ray energies due to the presence of absorption edges for all the major constituents
(C, O, N) as illustrated in Table 9.1. The relative transparency of water between the carbon and
oxygen absorption edges makes this a particularly attractive region for soft x-ray microscopy,
as the human body, for instance, is 70% water by weight. This water window76 is illustrated
in Figure 9.25. It shows, for instance, that in the 400–500 eV region (2.5–3.1 nm wavelength)
carbon-rich protein has a far shorter absorption length [see Chapter 3, Eq. (3.22)] than water,
thus providing natural contrast for biological material in 10 µm of water, the thickness of a
typical cell.‡‡ For the biological community this natural contrast at high spatial resolution is
indeed very attractive. However, there are two particular concerns, each of which is partially
addressed by current research. One is that of radiation-induced damage. The other is the
development of fluorescent tagging techniques to enhance the visibility of specific proteins
within larger three-dimensional structures.

With regard to radiation damage, photons in this spectral region have sufficient energy to
break chemical bonds and ionize constituent atoms. This can cause chemical and structural
damage, potentially affecting critical function. Indeed, the energy deposited per unit mass
(dose) can cause microscopically (micron scale) observable changes in structure. Several
routes are available to partially mitigate these effects. For one, there is substantial variability
in sensitivity to radiation dose among biological materials, so that choice of subject may be
an option. Another countermeasure, widely used in electron microscopy, is chemical fixation
(plasticizing). Most importantly, rapid cryofixation (quick freezing) provides a mechanism for
maintaining atomic and molecular position, albeit with a loss of functionality. Nonetheless,

‡‡Water again becomes transparent at several keV, offering further opportunities there.
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F IGURE 9.26 (see Colorplate XIV). Images of malaria infected red blood cells obtained at 2.4 nm
wavelength with the high resolution soft x-ray microscope XM-1 at the Advanced Light Source in
Berkeley. Image (a) shows an uninfected cell, (b) shows a newly infected cell, and (c) shows a cell 36 h
after infection. All are chemically fixed. Image (d), obtained with visible light microscopy, is shown
for comparison. (Courtesy of C. Magowan, W. Meyer-Ilse, and J. Brown,80 Lawrence Berkeley
National Laboratory).

radiation damage is an important constraint, and thus these countermeasures are scientifically
important and actively pursued in the research community.5

Of great interest to the life sciences community is the structure and function of specific pro-
teins. In general the determination of structure requires atomic resolution, obtainable only with
considerably shorter x-ray wavelengths, using the techniques of protein crystallography.73−75

Equally important is the location of proteins within the cell. Toward this end much work is
done at the cellular, or more specifically subcellular, level, as evidenced by the extensive use
of visible light microscopy, often in conjunction with site specific fluorescent markers (molec-
ular labels) that help to identify the location and role of specific proteins.77 The extension of
molecular labeling techniques to soft x-ray microscopy, first pointed out by Jacobsen90, offer
substantial new opportunities for resolution of biological questions at the subcellular level.
Several examples demonstrating the use of molecular labels in soft x-ray microscopy are dis-
cussed in the following sections. Recent advances in cryofixation,61, 78 and the possibility of
tomographic imaging63 that this permits, may further enhance the potential use of soft x-ray
microscopy in the life sciences.

9.8.1 Biological Applications of the Soft X-Ray Microscope

Images are shown in Figures 9.26–9.32 that illustrate the quality of structural and chemical
information that can be obtained using soft x-ray microscopes and various sample preparations.
All were obtained using bending magnet radiation, some at BESSY56 in Berlin and some at
the Advanced Light Source in Berkeley.79

The images of malaria infected red blood cells in Figure 9.26 were obtained using the
soft x-ray microscope XM-1 at the Advanced Light Source in Berkeley.79 They are part of
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F IGURE 9.27 (see Colorplate XV). Soft x-ray images of Cryptosporidium, a common parasite found in
lakes and rivers, and occasionally in municipal water supplies. Outbreaks of the disease caused by this
sporozoite have caused loss of life in the U.S. Image (a) shows the last of four sporozoites still in its
protective oocyst. Image (b) shows a sporozoite emerging from the oocyst. Images are at 2.4 nm
wavelength. (Courtesy of C. Peerson, UCSF, and W. Meyer-Ilse, LBNL)

1 µm

Protein
(less oxygen)

DNA (more oxygen)

2.30 nm (539 eV), photon energy at 
maximum absorption peak of oxygen

(a) (b)

F IGURE 9.28. Soft x-ray images of transgenic sperm. Image (a) is at 539 eV (2.30 nm), where
absorption by oxygen peaks. Image (b) is a differential image formed by logarithmic subtraction of
images at 539 eV and 533 eV, just above and below the oxygen edge, so as to emphasize the presence
of oxygen. Note that the tail is barely visible in (b). The images are not fixed. The dose for each image
is 9 MGy. (Courtesy of R. Balhorn et al.,85 LLNL, and W. Meyer-Ilse et al.,79 LBNL.)

an extensive study80 of the progression of the disease, involving thousands of high resolution
(nominally 40 nm) soft x-rays images. The series was obtained by allowing the cells to grow
in culture, interrupting that growth for selected cells at various times in the 48 h malaria life
cycle, followed by chemical fixation and x-ray imaging. Because the material is fixed, longer
exposure times of 20–60 s were used to obtain higher counts per pixel, thus reducing noise
and improving image quality. In some studies medical countermeasures (protease inhibitors),
thought to be useful in the treatment of this disease (which kills approximately 2.7 million
people yearly81), were introduced so as to observe the effect on development of the parasite.
Figure 9.26(a) shows an uninfected erythrocyte (red blood cell), (b) shows a newly infected
cell, (c) shows a cell 36 h after infection, and (d) shows a visible light microscope image for
comparison. The x-ray microscope image sizes in Figure 9.26 are 7 µm × 7 µm and were
obtained at 2400× magnification.

Images of Cryptosporidium, a common parasite found in lakes, in rivers, and occasionally
in public water supplies, are shown in Figure 9.27, also obtained with XM-1 in Berkeley.
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F IGURE 9.29. A composite soft x-ray image of a section of pancreatic tissue, showing several acinar
cells each containing many zymogen granules, small vesicles thought to play a major role in the
intracellular transport of digestive enzymes. (From B. Loo, and S. Rothman,86 UCSF, and W.
Meyer-Ilse, LBNL.)

F IGURE 9.30 (see Colorplate XVI). A soft x-ray micrograph at 520 eV (2.4 nm wavelength) of a whole
hydrated mouse epithelial cell (EPH4) as seen in a color coded intensity map. The image is 32 µm by
32 µm. The microtubule network, made evident by high absorption due to silver enhanced gold labels,
is color coded blue in the image. The cell nucleus and nucleoli, characterized by moderately dense and
absorbing proteins, are coded orange. The less absorbing more aqueous regions of the cell are color
coded black. The silver enhanced gold is part of a molecular double label, discussed in the text, that
permits cross correlation with visible light fluorescence in a confocal microscope. (Courtesy of C.
Larabell, W. Meyer-Ilse, and colleagues,87 Lawerence Berkeley National Laboratory.)
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2 µm

F IGURE 9.31. An image of an alga Chlamydomonas
rheinardtii, taken at 2.4 nm wavelength with the
fast cryo-preparation stage employed in the
Göttingen soft x-ray microscope at BESSY in
Berlin. The exposure time is 5 s. (Courtesy of
G. Schneider and B. Niemann,61 Göttingen.)

(a) (b)

F IGURE 9.32. Amplitude and phase contrast images of the alga Euglena gracilis taken at 2.4 nm
wavelength with the Göttingen soft x-ray microscope at BESSY. The sample was quick frozen to
cryogenic temperature before the exposures. The image in (a) is a conventional transmission image in
which contrast is due to absorption in the sample. The exposure time was 3 s, and the accumulated
dose was 3 MGy. The image in (b) employs phase contrast to enhance the contrast of fine features. Due
to illumination constraints in (b), the exposure time is somewhat longer, 15 s; however, the
accumulated dose is unchanged at 3 MGy. (Courtesy of G. Schneider, G. Schmahl, T. Schliebe,
M. Peuker, and P. Guttmann,62 George-August University, Göttingen.)

Associated with animal wastes, this parasite is resistant to chlorination treatment and filtering
while encapsulated in its 4–6 µm protective shell (oocyst). Long lived (typically six months),
the parasites enter the human digestive tract and open in the intestine, where they feed and
reproduce. Only a small number are required to induce symptoms. Recent large scale outbreaks
have occurred in several U.S. cities. An outbreak in Milwaukee, Wisconsin (1993) infected
about 400,000 people, resulting in 104 deaths, and an outbreak in Las Vegas, Nevada (1994)
resulted in 19 deaths.82, 83 Figure 9.27(a) shows the last of four sporozoites (parasites) still in
its protective oocyst.84 Figure 9.27(b) shows a sporozoite emerging from the oocyst. These
samples were also chemically fixed.

Figure 9.28 shows images of transgenic sperm, part of a study of chromatin (the proteins
that package DNA) organization85 in mammalian sperm. Sperm are particularly radiation
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hardy (relatively insensitive), permitting several images without fixation. The unfixed samples
in Figure 9.28 received a dose of approximately 9 MGy per image. The image in Figure 9.28(a)
was taken at 539 eV (2.30 nm wavelength), where absorption by oxygen peaks. The head and
tail are seen. Figure 9.28(b) shows a differential image, formed by logarithmic subtraction of
electronic images on a pixel by pixel basis [see Chapter 2, Eq. (2.24)], in this case images above
and below the oxygen absorption edge, at 539 eV and 533 eV, respectively. The differential
image highlights oxygen content, which in this case is larger in the head than in the tail, which
is barely visible. The DNA in the sperm head is known to contain more oxygen that the protein
in the tail.

Figure 9.29 shows a composite image of a section of pancreatic tissue,86 obtained by
stitching together many sub-images, in this case achieving a field of view of approximately
120 µm on a side, far larger than would normally be possible with a high resolution imaging
x-ray microscope. In this example the field contains approximately 3000 by 3000 pixels, each
40 nm square. The image shows several pancreatic acinar cells, each containing many zymo-
gen granules (small vesicles thought to play an important role in the intra-cellular transport of
digestive enzymes). The vesicles are seen here as small circular dots of varying diameter and
opacity. The purpose of the study is to evaluate alternative theories on the release of protein
content. Also seen in several cells are the nucleus and nucleolus. In this investigation, with au-
tomated data acquisition and stitching, hundreds of images have been obtained in a single day.

As described toward the end of the previous section, an important goal for biologists is
not only to determine a protein’s structure but also to understand its function. Toward this
end it is essential to know where the protein is within the cell, and how this might vary with
time in the cell cycle and with various stimuli. A very important tool that permits spatial
localization with visible light microscopy is the use of protein specific labels (molecular tags)
that attach to the protein of interest and fluoresce at defined wavelengths. Figure 9.30 shows a
520 eV (2.4 nm wavelength) soft x-ray microscope image of a mouse epithelial cell87 (EPH4),
with the microtubule¶¶ network visualized through an extension of this labeling technique. In
this case a double-labeling technique involving fluoroscein and Nanogold§§ is employed. The
fluoroscein has a visible fluorescence that permits visualization of the microtubule network in
a visible light confocal microscope. The same molecular tag includes a 1.4 nm gold particle,
small enough to penetrate the cell membrane during the labeling process. The gold is then
silver enhanced to an approximately 45 nm diameter for visualization by absorption in the soft
x-ray microscope. The high absorption coefficient of the silver enhanced gold particles allows
them to be easily isolated in the image. Using a color coded intensity mapping, Figure 9.30
shows these high absorption regions in blue, revealing the extensive microtubule network.
At this photon energy (520 eV) regions of low protein content, largely aqueous environment,
show little absorption and as a consequence appear as a black background in the figure. The
moderately absorbing (unlabeled) nucleoli within the cell’s nucleus appear orange. The image
is actually a montage of individual soft x-ray micrographs, utilizing the overlay techniques
shown earlier in Figure 9.29. This and other images in the same study show a close relationship
to the visible light images, but at higher spatial resolution. Furthermore, the soft x-ray images
reveal additional features of the cell, such as the nucleus and nucleoli revealed in Figure 9.30.

¶¶Microtubles are nominal 25 nm diameter structural filaments of great adaptability. They can provide
polarity to the cell, regulate cell shape, and provide a network of fibers to guide the movement of
vesicles and organelles. The microtubules consist of molecular tubulin proteins.

§§Nanogold and FluoroNanogold are products of Nanoprobes, Inc., Stony Brook, New York. Web site
www.nanoprobes.com
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As noted in an earlier section, a major concern in the study of biological samples is
their sensitivity to radiation dose. A large part of the solution to this problem is the use
of cryogenic techniques that maintain structural integrity of fine features to very high dose
levels. This follows similar solutions to the dose problem taken in the transmission electron
microscopy (TEM) community. The most active soft x-ray microscopy groups are presently
implementing cryo capabilities into their microscopes. Figure 9.31 shows an image of the
alga Chlamydomonas rheinardtii, obtained at 2.4 nm wavelength in the new cryo stage of the
Göttingen soft x-ray microscope at BESSY.61 The frozen hydrated sample is prepared by shock
freezing in liquid ethane. The image shows two flagellae (F) of 300 nm diameter, their roots
(FR), the chloroplast (Chl) with the pyreniod (Py), and several dense phospholipid vesicles
(Ph). The exposure time was 5 s, with an accumulated dose of 4 MGy. The sample is whole,
unfixed, and unstained. Further development plans include a capability for tomographic (three
dimensional) images, made possible by the high dose tolerance of cryo-prepared samples.

Phase contrast soft x-ray microscopy has been developed by the Göttingen group59, 60−62

using the geometry shown in Figure 9.22. To obtain phase contrast, radiation from the con-
denser is limited to a narrow annular cone that is matched by an annular phase plate in the
back focal plane of the objective lens (the micro zone plate). The phase plate thickness is
designed to produce a negative 3π/2 phase shift of the unscattered radiation at 2.4 nm wave-
length, with considerable attenuation. The incident annular cone is diffracted into first order
by the micro zone plate, forming a phase shifted reference wave. The scattered radiation from
within the object itself undergoes a positive π/2 phase shift, so that the two interfere with
maximum (π ) phase contrast. Figure 9.32 shows a side by side comparison of soft x-ray
microscope images obtained by absorption (amplitude) contrast (without the phase plate) and
phase contrast with the Göttingen microscope at BESSY. The images are of a frozen hydrated
alga Euglena gracilis,62 taken at 2.4 nm wavelength, with exposure times of 3 s (amplitude
contrast) and 15 s (phase contrast). The samples are whole and unstained. The accumulated
dose in each is 3 MGy. The phase contrast image shows significant contrast enhancement of
fine features.

9.8.2 Biological Applications of the Scanning Soft X-Ray Microscope

The great advantages of the scanning soft x-ray microscope are the flexible modes of operation
and the relatively low radiation dose delivered to the samples, as was discussed in Section
9.7.2. The lower dose66 is accomplished in the scanning microscope by permitting only the
first order (focused) radiation to reach the sample, blocking all other orders (which typically
account for 90% of the energy) with an order sorting aperture, as illustrated in Figures 9.21(b)
and 9.23. Sample images obtained with the scanning soft x-ray microscope at Brookhaven’s
National Synchrotron Light Source (NSLS) are shown in Figures 9.33–9.36.

Figure 9.33 shows three images of a bull sperm head obtained at slightly different photon
energies.88 The photon energies are selected to reveal the presence of protein and DNA through
differences in their x-ray absorption near edge structure (XANES). The reference image in
Figure 9.33(a) was obtained at a photon energy of 290.5 eV (4.268 nm), just above the
carbon absorption edge. The images in Figure 9.33(b) and (c) were obtained at slightly longer
wavelengths where chemical bonding (C=C, C=N, and C=O) leads to spectral resonances
that permit enhancement of protein and DNA contributions to the absorption.88 These studies
demonstrate how chemical mapping can be used to form detailed compositional maps, from
protein to DNA in this case.

An example of an image obtained using cryofixation and scanning soft x-ray microscopy78

is shown in Figure 9.34. The image is that of a frozen hydrated 3T3 fibroblast imaged at 110 K.
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Image at λ = 4.268 nm Protein map DNA map 2 µm

F IGURE 9.33. Image of air-dried bull sperm, showing how chemical mapping (carbon–carbon,
carbon–nitrogen, and carbon–oxygen bonds) can be used to add contrast to protein and DNA content.
(Courtesy of X. Zhang, R. Balhorn, LLNL, and J. Mazrimas, and J. Kirz,85, 88 SUNY Stony Brook.)

8 µm

F IGURE 9.34. Image of a frozen hydrated 3T3
fibroblast at 110 K, obtained with the Stony Brook
scanning soft x-ray microscope at NSLS. (Courtesy
of J. Maser, C. Jacobsen, J. Kirz, and colleagues,78

SUNY Stony Book.)

1 µm

F IGURE 9.35. A stereo image pair of a human spermatozoon obtained with 20◦ angular separation
between exposures. (Courtesy of B. Loo and S. Rothman,89 UC San Fransisco.)

The cultured cell was grown on a Formvar coated gold grid and plunge frozen from the culture
medium into liquid ethane. The cryofixation in this case makes use of techniques developed
for use with high vacuum transmission electron microscopes (TEMs). Figure 9.35 shows
the first stereo image pair obtained with soft x-ray microscopy. The images show a human
spermatozoon, rotated 20◦ between images obtained with the Stony Brook–NSLS scanning
microscope.86 With cryofixation it may be possible in the near future to extend these results
to full tomographic imaging.63

As discussed in an earlier section, the usefulness of soft x-ray microscopy can be sub-
stantially advanced by the development of site specific tags or markers, including x-ray to
visible light fluorescent markers,90 as well as dark field scattering techniques.91−94 Techniques
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F IGURE 9.36 (see Colorplate XVII). Dark field soft x-ray scanning microscopy is demonstrated in this
image of a human fibroblast, a collagen rich cell that plays an important role in the formation of
extracellular matricies of connective tissue. The image, obtained at 2.50 nm wavelength with the Stony
Brook scanning microscope at Brookhaven National Laboratory, consists of an overlay of the two
signals: a transmission signal in gray indicative largely of absorption of x-rays by carbon, and a signal
in red due to scattering of x-rays by silver enhanced gold labels attached to microtubules (cytoskeleton
fibers of the cell not found in the nucleus). (Courtesy of H. Chapman, LLNL; J. Fu and C. Jacobsen,
SUNY Stony Brook; and K. Hedberg, University of Oregon.92)

employing x-ray to visible light fluorescence offer the advantage of better spatial resolution
through a smaller scanning spot size, as they are combined with protein specific labeling
techniques already in wide use with visible light microscopes. Preliminary images using this
technique have been obtained.90, 95, 96 Dark field imaging has been obtained with the scanning
microscope by blocking the transmitted photons with a central stop just before the transmis-
sion detector (see Figure 9.22), and instead collecting the relatively weak signal due to x-rays
scattered into a surrounding annular or ring-field detector.

An example of such dark field x-ray microscopy, obtained with the Stony Brook scanning
microscope at 2.50 nm wavelength, is shown in Figure 9.36. The figure shows an overlay
of two images of the same human fibroblast in which the microtubules (25 nm filaments
that are part of the cell cytoskeleton but are not present in the nucleus) were labeled with
silver enhanced gold colloids. The gray image is due to the bright field absorption signal,
primarily indicating the presence of carbon. The red overlay is due to the collection of
scattered x-rays into the annular ring, showing the location of gold–silver labels and thus
the position of microtubules. It is clear that the scanning microscope offers many applica-
tions for studying biological material at a spatial resolution well beyond that of visible light
microscopy.

9.9 APPLICATIONS TO THE PHYSICAL SCIENCES: ANALYTIC TOOLS
FOR MATERIALS AND SURFACE SCIENCE AT SPATIAL
RESOLUTIONS BELOW 100 NANOMETERS

Modern materials science involves ever smaller structures, for which the properties of sur-
faces and thin films become more important than bulk or volumetric properties. In part this
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F IGURE 9.37 (see Colorplate XVIII). Cross-sectional view of a 0.1 µm complementary metal oxide
semiconductor (CMOS) field effect transistor (FET) with dual n+–p+ doped polysilicon gates. The
thin gate oxide is 0.1 µm wide and 35 Å deep. The titanium silicide provides a low resistivity
interconnect. The oxide spacers and LOCOS (Localized Oxidation of Silicon) are insulator regions.
Note the presence of silicon in several chemical forms (crystalline, Si substrate with various dopings,
polycrystalline Si, SiO2, and TiSi2). Concentrations of dopants and impurities in the vicinity of the
gate region are critical to the performance of such devices and thus may require diagnostic methods,
including soft x-ray microscopy, that are element sensitive with high spatial resolution and reasonable
penetration depth. (Following Y. Taur et al.99, IBM.)

is due to simple scaling. The ratio of volume to area decreases linearly with smaller size. In
some cases properties are different near surfaces, and in the limit quantum mechanical effects
become important. Some applications that drive this trend toward smaller dimensions include
semiconductor manufacturing, which currently fabricates devices with 250 nm critical dimen-
sions97‖‖ and requires analytic tools for materials processing with a spatial resolution 5 to 10
times smaller (25–50 nm), and magnetic recording materials with characteristic magnetic do-
main sizes of 10–20 nm.98 Relevant to this chapter is the possibility of providing an analytic
capability for surfaces and thin structures with a (transverse) spatial resolution of 10–20 nm.
For instance, such tools might be used to determine the chemical state of constituent atoms
(such as Si, SiO2, TiSi2, etc.), or the quantitative measurement of dopant or impurity concen-
trations that might be present in the vicinity of critical structures. Figure 9.37 illustrates the
materials and dimensions typical of what one might anticipate in a future electronic device.99

Note that the concentrations of dopants and impurities in the vicinity of the gate region are
critical to the performance of the device, and thus will require analytic techniques with both
element sensitivity and high spatial resolution with reasonable penetration depth, attributes
that may be unique to soft x-ray microscopy.

A very powerful and versatile tool for such studies is that of x-ray photoelectron spectros-
copy100−104 in which an incident photon transfers its energy ( h̄ω) to a bound electron near the
surface, resulting in a transition to a free state in the continuum above the vacuum level. As
indicated in Figure 9.38, by conservation of energy the free electron has a kinetic energy E
given by

E = h̄ω − EB (9.53)

‖‖The industry road map for major manufacturing capabilities follows a time line whereby the spatial
scales decrease a factor of

√
2 every two or three years, thus reaching a minimum feature size of

approximately 100 nm in the year 2005, requiring analytic tools of 10–20 nm spatial resolution. See
Chapter 10, Section 10.1 for further discussion.
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F IGURE 9.38. The process of photoemission, in
which an absorbed photon transfers its energy to a
bound electron near the material–vacuum interface,
resulting in a transition to a free electron state in
the continuum with kinetic energy equal to that of
the incident photon minus the binding energy.

where EB is the binding energy of the electron in its initial state. Photoelectron spectroscopy∗∗∗

then refers to the experimental procedure for measuring the energy spectrum of the emitted
electrons. From this one can determine both the elements present (C, N, . . . , Si, . . .) and the
nature of their chemical bonding to neighboring atoms. For instance, the appearance of sharp
features at known binding energies for various states (1s, 2s, 2p, . . .) indicates the elements
present, while shifts of the binding energies provide information regarding the chemical
environment, e.g., bonding with neighboring atoms [Si(111), SiO2, etc.]. The technique is
primarily a tool for the study of surfaces and thin films, due to the limited range (escape depth)
of electrons in solids, typically only a few angstroms at 20–100 eV kinetic energy. The observed
emission spectrum generally includes a low kinetic energy continuum (<10 eV) of secondary
electrons,105, 106 resulting from collisions or scattering between an emitted photoelectron (the
primary electron) and perhaps a low binding energy conduction (secondary) electron.

Figure 9.39 shows a typical photoemission spectrum that in this case clearly reveals
both the elements present and information regarding their chemical environment.107 In this
example the bonding of CaF2 to a crystalline Si(111) substrate is studied as a model for
insulator–semiconductor epitaxial systems because of their nearly identical lattice matching.
The three spectra shown in Figure 9.39(c) correspond to approximately a monolayer (a single
molecule thick on average across the surface) of CaF2 on Si(III), to a thin film about 1 . 1 nm
thick corresponding to a few monolayers of CaF2, and to a relatively thick film (� 5nm) for
which the photoemission signature is characteristic of bulk CaF2. Incident photon energies of
typically 135 eV were used in these studies, which were performed at the Stanford Synchrotron
Radiation Laboratory (SSRL). Electron energies [see Eq. (9.53)] are given in electron volts
below the silicon valence band.

For the monolayer in (a) the fluorine 2p and calcium 3p peaks, at approximately 8.3 eV
and 25.6 eV, respectively, are relatively narrow atom-like features, associated in the case of
calcium with bonding to the surface. In (b) there is a transition as the fluorine 2p feature
broadens toward a CaF2 bulk dominated valence band, and the Ca 3p develops a double-
peaked structure reflecting both the surface dominated and bulk valence band of CaF features,
at 25.6 eV and 27.9 eV, respectively. Thus there is a 2.3 eV difference in Ca 3p binding

∗∗∗X-ray photoelectron spectroscopy (XPS) is also referred to as electron spectroscopy for chemical
analysis (ESCA). In general both XPS and ESCA include the use of EUV, soft x-ray, and x-ray
radiation.
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F IGURE 9.39 (see Colorplate XIX). Photoelectron spectroscopy is used to study calcium fluoride bonding to
a silicon(111) substrate. The measured electron energy spectrum is shown for a monolayer of CaF2 on
Si(111), for a thin film of about 1.1 nm thickness, and for a relatively thick film of about 5 nm.
(Courtesy of M. Olmsted,107 U. Washington.)

energy for the surface and bulk dominated environments. A core level fluorine 2s feature is
also clearly seen. In (c) both the fluorine 2p and calcium 3p features reflect a fully developed
bulk CaF2 signature, despite a thickness of only about 5 nm.

The shift for Ca 3p binding reflects the difference between Ca–Si bonding in the monolayer
case and the fluorine dominated 3p orbitals in bulk CaF2. In the latter, the Ca atom, which
normally has two electrons in the 4s2 orbital, is surrounded by eight strongly electronegative
fluorine atoms that draw away the two outer electrons, thus increasing the binding energy
of the remaining 3p electrons. In the interface dominated case (a), the role of fluorine is
diminished in favor of Ca–Si bonding, in which the calcium retains a larger fraction of the
shared electrons than in the bulk, resulting in the lower binding energies observed.107

From these and further studies108−110 the authors have used photoelectron spectroscopy to
learn a great deal about interface formation and thin film growth in this model system. For our
purposes in this chapter it demonstrates the utility of photoemission as a tool for the identifica-
tion of elemental constituents and their chemical bonding under differing circumstances. Our
interest now shifts to the extension of these techniques to photoemission microscopy, or spec-
tromicroscopy, using zone plate optics to focus the incident radiation to sub-100-nm spot sizes.

The first use of zone plate focusing for spatially resolved photoemission was that of Ade,
using the Stony Brook scanning microscopy beamline at Brookhaven.111, 112 As illustrated in
Figure 9.40, the sample consisted of aluminum and silicon dioxide strips on a Si substrate.
For the data shown, a 690 eV undulator radiation was focused to a sub-micron spot size with
an elliptically shaped zone plate that compensated for astigmatism in the beamline. Photo-
electrons were collected and energy resolved with a cylindrical mirror analyzer (CMA) as the
sample was raster scanned past the focal spot. In experiments in which the electron spectrom-
eter was optimized for detection of selected characteristic energies, two-dimensional images,
as shown in Figure 9.40, were obtained. Bright images (high photoelectron current) were
obtained for Al 2p (575 eV kinetic energy), Si 2p (546 eV kinetic energy), and oxide shifted
Si 2p (542 eV kinetic energy) photoelectrons. These kinetic energies are somewhat different
than the values predicted by Eq. (9.53), due to issues involving localized work functions and
surface preparation. The strong photoelectron signals (yellow regions in Figure 9.40) correlate
with the respective regions of the sample, demonstrating spatially resolved elemental (Al, Si)
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F IGURE 9.40 (see Colorplate XX). Spatially resolved photoemission from a composite Al–Si–SiO2 sample
illuminated with zone plate focused undulator radiation at Brookhaven National Laboratory. The
incident photon energy is 690 eV, and the electron spectrometer passband is set for kinetic energies
appropriate to the various binding energies of interest. (Courtesy of H. Ade et al.,111, 112 SUNY Stony
Brook and North Carolina State University.)

F IGURE 9.41 (see Colorplate XXI). Spatially resolved scanning photoemission image of a 100 mesh Cu
grid on a gold foil, with localized spectra from Cu and gold regions. The incident photon energy is
420 eV. The image contrast is primarily due to the Cu 3p core-level intensity, but the shadows and
enhancements are due to topographic effects of imaging with a small (∼0.2 µm) beam spot. (From T.
Warwick, J. Denlinger, E. Rotenberg, and colleagues,113, 114 Lawrence Berkeley National Laboratory.)

and chemical (Si, SiO2) analysis. The spatial resolution in these pioneering studies was about
0.3 to 0.5 µm.

A further example of spatially resolved photoemission, showing spectrally well-resolved
gold 4f and Cu 3p electron energy spectra, obtained with a hemispherical electron analyzer
and the zone plate Scanning Photoemmission Microscope (SPEM) at the ALS, is shown in
Figure 9.41 for a copper grid on a gold foil.113, 114 In the gold region well-defined Au 4f
features are identified, while in the copper region a well-identified Cu 3p spectral signal is
observed. The image shown in Figure 9.41 was obtained at 420 eV photon energy, with the
photoelectron analyzer passband set to a 12 eV window around the Au 4g peaks, giving the gold
region a bright appearance (high current) in the scanned image. The spatial and relative spectral
resolutions for this particular image are approximately 0.2 µm and 8 × 103, respectively.
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F IGURE 9.42 (see Colorplate XXII). Photoemission spectromicroscopy with multilayer coated
Schwarzschild optics is illustrated in (a) and applied to a structure shown in (b). Photoelectron spectra
are illustrated in (c) for two regions of an SRAM chip, one region where the silicon substrate is bare,
and one region of silicon dioxide. In both cases Si 2p photoelectrons are detected during irradiation by
130 eV photons. The images in (d) and (e) are obtained at fixed electron energies corresponding to the
unshifted (d) and oxide shifted (e) 2p states. The bright region (high photoelectron current) in (e)
indicates an exposed region of SiO2, initially covered with titanium silicide (TiSi2). It appears that
during the annealing process titanium silicide, initially covering a polysilicon pad, has agglomerated,
leaving a region of SiO2 exposed. (Courtesy of S. Singh and F. Cerrina, University of
Wisconsin–Madison.118)

Although somewhat out of place in this chapter, photoemission microscopy with mul-
tilayer coated optics, previously described in Chapter 4, provides vary similar capabilities
to those with zone plates as described in the previous paragraph. The primary differences
are that the multilayer coated optics are coated for specific photon energies, and thus not
easily tuned. Furthermore, they are limited to photon energies below about 200 eV, where
reasonably high mirror reflectivities are presently available (see Chapter 4). However, the
multilayer based Schwarzschild photoelectron microscope, shown in Figure 9.42(a), offers a
considerably larger working distance, which can be useful in photoemission studies.
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An example of electron spectra obtained with the MAXIMUM photoemission micro-
scope, work of Cerrina and his colleagues at the University of Wisconsin–Madison,115−119 is
also shown in Figure 9.42. For those experiments at 130 eV photon energy, the Schwarzschild
optics were coated with a Ru–B4C multilayer. The purpose of these particular experiments
was to study the technologically important application of titanium silicide (TiSi2), a low
resistivity interconnect material used in semiconductor integrated circuits. Use of the TiSi2
involves an annealing process, to form a stable low resistivity state. There is evidence that
during annealing, migration and agglomeration of the titanium silicide occurs. The data in
Figure 9.39 demonstrates the value of spectromicroscopy for the study of heterostructure
surface chemistry on a 100 nm spatial scale.

9.10 ZONE PLATE FABRICATION

The fabrication of high resolution zone plates is an outgrowth of techniques developed for
the semiconductor industry, which has for decades been involved in the manufacture of inte-
grated circuit (IC) electronic devices based on complex material structures with micron and
sub-micron features.120−123 For zone plates, the fabrication involves writing a desired pattern
in some recording medium, typically PMMA,††† with an electron beam,124−126 typically of
50 keV to 100 keV electron energy, perhaps 50 nm to 10 nm in diameter, as indicated in
Figure 9.43. The electron beam (e-beam) writing path is recorded by broken molecular bonds
in the recording material (resist). The beam path is defined by deflection electrodes controlled
by an electronic pattern generator, with beam blanking as necessary to move from one part
of the desired pattern to another. The regions of broken bonds are then removed by a chem-
ical development process, leaving a clean mold pattern as illustrated in Figure 9.44(b). This
pattern is then transferred to some other, more appropriate material, such as gold, nickel, or
germanium, which has the desired EUV/soft x-ray absorption and phase shift properties at the
intended wavelength of use.

The procedure begins with a multilevel structure such as shown in Figure 9.44(a). Here a
silicon wafer, with a back-etched window, has been coated with a thin film of approximately
100 nm of silicon nitride (stoichiometrically Si3N4) that will eventually serve as the zone plate
lens’s support membrane. A gold plating base about 5 nm thick, and a chromium (�5 nm)
adhesion layer, are evaporated onto the silicon nitride. An appropriate thickness of PMMA is
then spun across this to form the recording medium for electron beam writing. The PMMA
might typically be 100 nm or more thick, depending on the desired zone plate thickness and
limitations of the pattern transfer process with regard to achievable aspect ratio of thickness
to outer zone width (�t/�r ). Fabrication of the desired zone plate is then accomplished by
electron beam writing of the desired pattern in the top layer PMMA. After removal of resist
in the e-beam-exposed areas, the thin gold plating base is exposed, and cleaned further as
necessary. Gold, nickel, or some other material is then electroplated onto the base within
the PMMA mold. The remaining PMMA is then removed with acetone, leaving the desired
gold zone plate pattern on a thin but rather strong silicon nitride membrane, across the open
window of the supporting silicon wafer. In some cases the remaining gold plating base (in the
“open” zones) is removed by reactive ion etching (RIE) to improve the photon transmission
and thus optical efficiency of the resultant zone plate lens. Indeed, zone plates have been made
free-standing by including radial support struts written into the original pattern.121

†††The chemical name is polymethyl methacrylate.
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F IGURE 9.43. Electron beam patterning by writing with a small high energy beam in a molecular resist
recording material. Deflection electrodes are used to steer the beam across the recording material,
shown as PMMA here, as directed by an electronic pattern generator. Beam blanking permits
movement without writing from zone to zone. The inset is the Lawrence Berkeley National Laboratory
logo, showing the Advanced Light Source (ALS) “on the Hill” above the University of California at
Berkeley campus, represented by the Campanile. The lines used to form the letters in “BERKELEY
LAB” are each 90 nm wide. (Courtesy of E. Anderson, LBNL.)

F IGURE 9.44 (see Colorplate XXIII). Nanofabrication of a gold zone plate involves a multilevel structure for
recording a pattern in PMMA through (a) spatially patterned electron beam exposure, (b) development
into a PMMA mold, (c) gold plating into the mold, and (d) removal of the remaining PMMA to leave a
gold zone plate lens on a thin silicon nitride membrane, over an etched window in the silicon wafer
substrate.
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F IGURE 9.45. An SEM micrograph of a 100 nm thick gold zone plate with a 30 nm outer zone width
and 300 zones. This zone plate was used to form the image in Figure 9.15. (Courtesy of E. Anderson,
LBNL, and D. Kern,126 IBM.)

For state of the art zone plates with minimal outer zone widths (�r ) of 20–40 nm,
the aspect ratio (�t/�r ) in the outer region is typically limited to 3 : 1 or 4 : 1. With less
challenging outer zone widths the final structures can have higher aspect ratios. Figure 9.45
shows a 100 nm thick gold zone plate126 with 30 nm outer zone width and N = 300 zones,
intended to be relatively opaque for photon energies of 500 eV or less (2.4 nm wavelength or
longer). At a wavelength of 2.4 nm this lens has a focal length of 0.45 mm, a diameter of 36
µm, and a numerical aperture of 0.04 [see Eqs. (9.13–9.15)]. A radial test pattern imaged with
this zone plate in the Göttingen microscope at BESSY was shown previously in Figure 9.15.
Features as small as 30 nm (half a period; recall Figure 9.13) are evident at the lower limit of
contrast.

A nickel zone plate of 50 nm outer zone width, fabricated by the same procedures,126

was shown earlier in Figure 9.1. It offers a higher efficiency at photon energies just below the
L-absorption edge at 853 eV. For these zone plate lenses to achieve high spatial resolution and
high efficiency, it is necessary that the zone pattern be written and transferred with highfidelity,
of order �r/4, to achieve the desired interference effects. Thus there is a substantial need
for nanometer electron beam placement accuracy in the writing process, which translates to
demanding diagnostic techniques and to feedback within the writing instrument, particularly in
the vicinity of the beam–resist interaction region. For the Nanowriter125 facility in Berkeley this
includes transmitted, backscattered, and secondary electrons. The Nanowriter specification is
centered on a 100 kV, 3 nm to 5 nm electron beam size, with 3 nm beam placement accuracy
over a 65 µm wide field, and field stretching to 20 nm over a 1 cm field with the aid of
λ/1024 visible light translation stage interferometry. Advances in nanofabrication, including
the ability to successfully transfer ever smaller outer zone width patterns, with acceptable
thickness (aspect ratio) and materials choice, will continue to pace progress in the fabrication
of improved zone plates.125−129 The eventual achievement of efficiency improving the zonal
substructure (e.g., three steps per period) will further improve their utility.

Topics not discussed here but which may be of interest to the reader are the fabrica-
tion of so-called “jelly roll,” or sputtered–sliced, zone plates130 and of Bragg–Fresnel zone
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plates.131, 132 The sputtered zone plates are made using multilayer fabrication techniques, in
this case coating a rotating wire with alternate materials. The idea here is to achieve very
narrow outer zones with high aspect ratio. The Bragg–Fresnel zone plates combine diffrac-
tion of hard x-rays by a crystal with an overlaid zone plate pattern and thus are primarily
designed for use with multi-keV x-rays. It is also possible to use a multilayer coated mirror
with an overlaid zone plate pattern at somewhat lower photon energy. Both are described in
the literature.131, 132
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Chapter 10

EXTREME ULTRAVIOLET
AND X-RAY LITHOGRAPHY

λeuv λx

Lw = k1
λ

NA
(10.1)

DOF = ±k2
λ

(NA)2
(10.2)

σ = NAcond

NAobj
(10.3)

Lw = α
√

gλ (10.4)

Historically, lithography is the printing process in which an image is transferred from aflat sur-
face, initially a smooth stone and later a metal plate, through the selective use of ink-receptive
and ink-repellent treatments. Today a major application of lithography is the repetitive copy-
ing of highly detailed sub-micron spatial patterns, which after processing will form single
layers of an interconnected multilevel semiconductor electronic structure commonly known
as a microchip.1 These chips are the basic building blocks of modern electronic instruments,
computers, and telecommunications equipment. In this chapter we describe current state of
the art lithographic equipment: deep ultraviolet (DUV) steppers that use mercury arc lamps
and excimer lasers, with largely refractive optics, to print patterns with sub-quarter-micron
features. The SIA Technology Road Map for Semiconductors,2 which provides a 15-year,
six-generation projection of integrated circuit (IC) characteristics, is described, with selected
technical parameters for microprocessors and dynamic random access memory (DRAM) chips
through the year 2012. This is followed by sections describing two candidate technologies,
each of which has the potential to provide the engineering and economic solution to these
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F IGURE 10.1. Optical projection lithography in which a mask pattern on a thin transmissive reticle is
imaged to the wafer plane by an objective lens, typically at 4 : 1 demagnification. For deep ultraviolet
(DUV) lithography the source can be a mercury arc lamp (248 nm wavelength), a KrF laser (248 nm),
or an ArF laser (193 nm). The condenser optics, shown here as a single lens, illuminates the mask with
numerical aperture NAcond = sin θcond. The reduction optics, shown here as a single objective lens,
collects light through a numerical aperture NAobj = sin θobj. The illustration shows use of Köhler
illumination, in which the condenser projects an image of the source in the pupil plane. In practice the
condenser optics may have a variable numerical aperture and may employ soft apodized or hard
apertures to control the angular distribution of light illuminating the mask. The degree to which phase
effects (interference) can be used to enhance certain spatial frequencies is set by the partial coherence
parameter σ = sin θcond/ sin θobj. For low σ illumination the mask may employ phase shifting
elements to enhance image contrast.

challenges in high volume manufacturing: extreme ultraviolet (EUV) lithography and soft
x-ray proximity lithography, known succinctly as x-ray lithography.

10.1 DEEP ULTRAVIOLET (DUV) LITHOGRAPHY AND BEYOND

Current state of the art manufacturing of microelectronic semiconductor devices3, 4 is accom-
plished using optical reduction cameras (steppers), such as that outlined schematically in
Figure 10.1. The stepper involves a radiation source, an illumination system represented here
by a single condenser lens, the mask pattern that is to be replicated, a demagnifying optical
system represented here by a single objective lens, and a photoresist coated wafer to record
the demagnified image of the mask pattern.5−7

Earlier generations of chip technology used the g-line (436 nm wavelength) and i-line
(365 nm) of a mercury (Hg) arc lamp as the source. Today there is an evolution underway
from the Hg arc emission band at 248 nm to krypton fluoride (KrF) and argon fluoride (ArF)
excimer lasers at wavelengths of 248 nm and 193 nm, respectively. The laser sources have
considerably narrower line widths8 than the Hg emission band at 248 nm, which is of value
in controlling chromatic aberrations in the largely refractive optics. Shorter laser wavelengths
enable the continued march toward smaller feature sizes.

For steppers operating at 248 nm the refractive optics are fused silica, one of the few highly
transmissive materials in this wavelength region. The optical systems generally include several
reflective optics as well.

The condenser-optics–mask illumination system is generally quite complex, permitting
variation of the illumination numerical aperture NAcond = sin θcond, and masking of the angular
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illumination pattern, each of which can be used to affect the sharpness of particular patterns
and spatial frequencies in the image transfer process. In Figure 10.1, Köhler illumination
is employed, in which the condenser optics forms an image of the source far beyond the
mask, in the entrance pupil of the objective lens. This has the advantage of providing more
uniform illumination of the mask, which now receives radiation from every point on the source.
Generally the mask consists of an absorber pattern on a transmissive reticle. The mask pattern
is generated using electron beam lithography,9, 10 with techniques similar to those described
in Chapter 9, Section 9.10. Phase shifting structures are sometimes used within the mask to
enhance the sharpness (contrast) of selective features.5, 7, 11

The reduction imaging system is of relatively high numerical aperture NAobj = sin θobj,
typically 0.5 or 0.6, which permits the printing of patterns with feature sizes approximately
equal to the wavelength. The reduction optics are highly corrected so as to print near-
diffraction-limited∗ patterns over square centimeter dimensions at the wafer.

The wafer is coated with a photosensitive polymer, known as photoresist or simply resist,
that records the projected pattern.12 Both positive and negative resists are used. The positive
resists are rendered soluble by exposure to radiation, allowing exposed areas to be dissolved
away, followed by further steps in the fabrication of desired microelectronic structures. The
negative resist is rendered insoluble by radiation, so that exposed areas remain after unexposed
resist is removed by a subsequent development, again followed by pattern transfer to the
desired structure. High contrast resists are used, for which a process window is determined
experimentally. The process window gives the allowable variations in focus and exposure for
which the dimensions of the smallest printed patterns stay within narrowly confined tolerances.
The process is designed to enhance the effective pattern transfer capabilities of the optical
stepper. That is, the photoresist, its exposure, and its controlled development are used to extend
and enhance the resolving capabilities of the imaging system.

The combination of what is called wavefront engineering (partially coherent mask illumi-
nation and use of phase structures),5, 7, 11 high contrast photoresist with stringent processing
controls, the use of ever shorter wavelengths to the limits of transmissive materials, and in-
creasing numerical aperture has permitted optical projection lithography to be extended far
beyond earlier perceived limitations. Indeed, the limits of this optical extension, which are in-
fluenced both by technical and by economic factors, are yet to be determined. In the following
paragraphs we explore somewhat further the status of DUV lithography, followed by separate
sections on two potential candidates for lithography further in the future, EUV lithography
and soft x-ray proximity lithography.

For the projection printing of nanoelectronic patterns near the diffraction limits of optical
systems, equations regarding minimum achievable feature sizes, optical depth of focus, and
degree of partial coherence are of great interest. The achievable minimum line width Lw with
lithographic systems is written as

Lw = k1
λ

NA
(10.1)

where λ is the wavelength, NA is the numerical aperture seen at the wafer, and k1 is a
constant that is largely dominated by the optical system, but for lithographic applications
is also dependent on photoresist recording and processing. This is similar to the Rayleigh
expression13 for the minimum resolvable separation of phase-incoherent point sources by a

∗“Diffraction limited” refers to ideal imaging systems limited only by the finite wavelength λ and the
collection numerical aperture NA = n sin θobj, where n is the refractive index of the medium, typically
1 for lithographic applications.
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perfect optical system, for which k1 = 0.61, as we saw in Chapter 9, Section 9.4. However,
the use of such a resolution criterion is inappropriate for applications of lithography where the
purpose is not to achieve a faithful representation of the original object, but rather to print a
pattern that (after processing) will yield an electronic structure with the desired features.14 With
high contrast resists and use of wavefront engineering as described in the previous paragraph,
values of k1 = 0.5 are achieved in high volume manufacturing of current computer chips. For
example, quarter-micron generation chips are fabricated with 0.5 NA projection optics and
a 248 nm Hg arc source, with minimum line widths just below 250 nm. Further extensions
using shorter wavelengths and higher NA are discussed in the following paragraphs.

The optical depth of focus (DOF), written as

DOF = ±k2
λ

(NA)2
(10.2)

gives a longitudinal measure of the distance over which the image is in proper focus.13 Quan-
titative measures of depths of focus are described in Chapter 9, Section 9.5 for a diffractive
Fresnel zone plate lens. The expressions there are applicable to refractive optics as well. Typ-
ically k2 = 0.5, so that the total (±) DOF is about λ/(NA)2, or about 1 µm for the 248 nm,
NA = 0.5 example considered below Eq. (10.1). This is a significant constraint on optical
stepper systems, and requires constant monitoring and adjustment of the final lens-to-wafer
separation distance in order to maintain highest resolution. Note also that the DOF decreases
as (NA)2, more rapidly than the improvement in resolution.

The ability to print fine, high contrast features is significantly affected by the degree of
coherence within the optical system. If there exists a high degree of spatial coherence, diffrac-
tion from adjacent mask features will interfere in the image plane, significantly modifying the
recorded patterns. With electric fields adding, in the coherent limit, ringing will be observed
near sharp features and the contrast will vary dramatically for spatial structures that contribute
to constructive or destructive interference. The parameter used to characterize the degree of
partial coherence13 is

σ = NAcond

NAobj
(10.3)

where NAcond is the illumination numerical aperture as seen from the mask, and NAobj is the
collection numerical aperture of the reduction optics, also as seen from the mask. Both are
shown in Figure 10.1. The coherent limit corresponds to σ = 0, as occurs for instance with a
uniform plane wave illumination of NAcond = 0. The incoherent limit, σ = ∞, corresponds
to an illumination cone larger than the collection NA of the imaging optic; in practice σ > 1
means the illumination is effectively incoherent.

It is difficult to compare the general transfer properties of an optical system for coher-
ent and incoherent illumination. In the incoherent limit, diffraction from various features is
imaged independently at the wafer plane, and the process is accurately described by a linear
modulation transfer function (MTF). In the coherent limit, electric fields interfere and the
transfer function is non-linear, depending on detailed aspects of the object (mask pattern) to
be imaged. Nonetheless, there is value in presenting an apparent transfer function,15 as in
Figure 10.2, that attempts to describe the resultant contrast achievable with patterns of various
spatial frequencies, as a function of the partial coherence factor σ , understanding that the
curves are object dependent.5, 11

In the coherent limit (σ = 0), the transfer function is flat out to a very sharp cutoff at a
spatial frequency of NAobj/λ; incident and diffracted wavefronts are both well defined, and the
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F IGURE 10.2. The apparent optical transfer properties of a perfect lens with varying degrees of partially
coherent illumination. For coherent and low σ illumination, interference between diffracted radiation
from nearby objects causes the transfer function to be object dependent. Spatial frequency refers to an
inverse period, where one period corresponds to a line pair of one bar and one space.

F IGURE 10.3. Intensity versus distance, in units of λ/(2 NA), across the image of a sharp edge
(knife-edge) pattern as a function of partial coherence σ . (Courtesy of M. O’Toole and
A. Neureuther,16 University of California, Berkeley.)

wave is either fully captured by the lens or not at all. In the incoherent limit (σ > 2), there is a
wide variety of incident wave vectors, which when diffracted are captured to varying degrees,
out to twice the spatial frequency of the coherent case. Transfer of modulation out to higher
spatial frequencies in the incoherent case is due to the large angle of incidence, θcond, which
permits radiation to be collected after vector scattering through twice the angle available in
the coherent limit. Diagrams illustrating these points with diffraction gratings were discussed
in Chapter 9, Section 9.6 with regard to resolution beyond the Rayleigh limit in soft x-ray
microscopes. Apparent transfer functions are shown in Figure 10.2 for partial coherence values
of σ = 0.3 and 0.6, values that are often utilized in DUV lithographic systems. Figure 10.3
shows a numerical simulation of the image across a sharp edge for varying degrees of partial
coherence, as calculated by O’Toole and Neureuther.16 Notice the substantial interference
effects (ringing) for the cases with a high degree of spatial coherence (low σ ), and the rather
smoother, but somewhat broader profiles for σ ≥ 1.

An example of an optical system used today in semiconductor manufacturing is shown
in Figure 10.4. It shows the projection optics layout for the DUV stepper, the Micrascan
III manufactured by SVG Lithography.17−19 The system employs 13 fused silica refractive
lenses, two mirrors (one of which is an asphere), a polarizing beamsplitter, and two quarter-
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F IGURE 10.4. A commercial projection optical
system for sub-250-nm generation lithography,
employed in the Micrascan III, a DUV stepper with
NA = 0.6, an excimer laser source, and variable
illumination allowing the partial coherence factor
σ to be varied from 0.3 to 0.8. (Courtesy of
D. Williamson and J. Shamaly, SVG Lithography,
Wilton, CT.17−19)

1 field

Silicon
wafer Scanned

slot

F IGURE 10.5. Step and scan lithography. With
synchronous movement of the mask and wafer, at a
magnification corrected sweep speed, a rectangular
illumination slot is scanned across the field of what
eventually will become one layer of a single
computer chip. The wafer is then stepped to the
next position and the mask is scanned again,
repeating the process until all available fields have
been printed.

wave plates.19 The optical system has a numerical aperture NAobj = 0.6, has a demagnification
of 4, and operates with a coherence factor σ variable between 0.3 and 0.8. It uses a 15 W,
1 kHz repetition rate KrF laser at 248 nm, with a spectral bandwidth (�λ) between 100 pm
and 300 pm (λ/�λ > 1000). The large number of refracting elements, in groups of four or
five, work in combination to provide most of the optical power (NA) and correct variations of
spherical aberration, coma, astigmatism, and distortion across the field. The aspheric mirror
contributes most of the optical power (NA), and also corrects high order aberration.

This stepper is designed to print sub-250-nm generation chips in high volume manufac-
turing. It employs a step and scan system of synchronous mask and wafer motion in which the
optical system illuminates only a narrow rectangular slot, which is scanned across the mask.
The wafer is synchronously scanned at one-fourth the speed (to match the optical demagnifi-
cation) until a full field is printed, as illustrated in Figure 10.5. The wafer is then stepped to the
next field, and the process is repeated until all available fields on the wafer have been scanned.

Advantages of the step and scan system are that it can print over a larger dimension in the
scan direction, and that aberrations of the optical system need be controlled only within the
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F IGURE 10.6. (a) Layout showing general topography of a Pentium II 400 MHz microprocessor chip, as
seen at visible light resolution. (b) Scanning electron microscope (SEM) image of the 0.25 µm
(250 nm) gate region of a single transistor on the same chip. (Courtesy of G. Neubauer and B. Triplett,
Intel Corporation, Santa Clara, CA.)

smaller area of the rectangular slot. In some cases the mask contains several replicates of the
same pattern. These sub-fields are called dies.

Figure 10.6 shows two images of a quarter-micron generation Pentium II microprocessor
chip,20 which has a clock speed of 400 MHz. Figure 10.6(a) is a cross-sectional view of
the Pentium II, showing five levels of metallization. Each of these layers requires a separate
lithographic step. The metal layers are separated by insulating oxide (SiO2) layers, which
in some areas show tungsten interconnects, known as vias, to the metal layers above and
below. Figure 10.6(b) shows a scanning electron microscope (SEM) close-up view of the
0.25 µm wide gate region of a single transistor, with titanium silicide electrodes, and silicon
nitride insulating spacers. For comparison, see the side view of a CMOS field effect transistor
(FET) shown in Chapter 9, Figure 9.34. The quarter-micron device in Figure 10.6 was printed
with an earlier Micrascan II stepper,18 which has a 0.5 numerical aperture and uses a 2.4
kW Hg arc lamp with 248 nm central wavelength and a spectral bandwidth of 7 nm FWHM
(λ/�λ � 35).

The Semiconductor Industry Association (SIA) prepares a technology roadmap for semi-
conductors,2 updated every three years, that provides a 15-year six-generation projection of
anticipated integrated circuit (IC) characteristics. The roadmap attempts to project into the
future historic growth trends in the microelectronics industry first reported in 1965 by Gordon
Moore of Intel.21 He observed that feature sizes in the most complex circuits were decreasing
by a

√
2 factor every two years, thus increasing the number of functional units (transistors

or memory devices) per unit area by a factor of two every two years. Combined with a
simultaneous factor of two growth in chip area during the same time interval, this led to an
exponential growth in which functional capability quadrupled every two years, i.e., doubled
every year. It was also observed that this led to an exponential decrease in cost per component.
Moore points out in a more recent article21 that this exponential growth has continued now
for 35 years, albeit with variations of exponentiation time.

Table 10.1 shows an anticipated future trend in which minimum feature size is reduced
on average by

√
2 every two to three years, increasing the number of transistors per unit area

by a factor of two. With an increase in area of about 20% per year, this predicts a doubling of
functionality (transistors per field) approximately every two years, about half the earlier rate.
Moore points out that this exponentiation cannot continue indefinitely. Because of physical
constraints the growth must slow, and eventually saturate. He describes the territory beyond
the 180 nm generation as terra incognita.
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F IGURE 10.7. The National Technology Roadmap for Semiconductors is a 15-year projection of the
integrated circuit (IC) technology characteristics required to maintain the historical rate of
performance improvements. First year of IC volume production is shown for six generations of
lithography, denoted by minimum printed feature size for isolated microprocessor lines and half-period
DRAM lines. The historical trend is a

√
2 reduction in minimum feature size every two years. Future

projections correspond to similar reductions every two to three years. The technology roadmap is a
guide in that it identifies technological targets, but does not identify technical solutions. Rather it
identifies potential solutions – a constantly moving target. (Courtesy of the Semiconductor Industry
Association, San Jose, CA.2)

A graphic version of the roadmap, with emphasis on candidate lithographic technolo-
gies to meet these challenges, is shown in Figure 10.7. Plotted is the first year of vol-
ume production for microprocessors (computer logic) and dynamic random access mem-
ory (DRAM) chips versus technology generation on the vertical scale, expressed in terms
of minimum feature size.† Thus the 180 nm minimum feature size technology will use 248
nm DUV steppers. The next technology generation at 130 nm feature sizes is expected to
use ArF steppers,22, 23 at 193 nm wavelength, entering the market between 1999 and 2002.
In practice there is likely to be an evolution from 248 nm (KrF) to 193 nm (ArF), and per-
haps next to the fluorine laser (F2) at 157 nm, with continuous upgrades due not only to
wavelength and numerical aperture, but to the use of (1) so-called optical enhancements,
wavefront engineering advances involving illumination control, phase masks, geometrical
layout, and design rule limits, (2) tighter optical tolerances (closer to the elusive diffraction

†A technology generation is defined in terms of the half period (half pitch) of repetitive lines and
spaces, as in a DRAM. Isolated lines generally achieve somewhat narrower line widths, as indicated in
Table 10.1 for microprocessor gate widths.
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TABLE 10.1. The National Technology Roadmap for Semiconductors in tabular form, showing
anticipated technological characteristics for selected parameters of microprocessors and DRAM chips.
The projections cover seven generations of technology, denoted by minimum feature sizes. (Courtesy
of the Semiconductor Industry Association, San Jose, CA2; dates of entry updated April 1999.)

Year of first shipment 1997 1999 2002 2005 2008 2011

Technology Generation (nm): 250 180 130 100 70 50
(Dense lines, in resist)

Isolated lines, (microprocessor gates) 200 140 100 70 50 35
DRAM Memory (bits) 256 M 1 G 4 G 16 G 64 G 256 G
Logica (transistors/cm2) 4 M 6 M 18 M 39 M 84 M 180M
Chip frequencya (GHz) 0.4 0.6 0.8 1.1 1.4 1.8
Gate CD control:

3σ at post-etch (nm) 20 14 7 5 4 3
Overlay: mean + 3σ (nm) 85 65 45 35 25 20
Field size (mm × mm) 22 × 22 25 × 32 25 × 36 25 × 40 25 × 44 25 × 52
Wafer diameter (mm) 200 200 300 300 450 450

a High volume microprocessor.

limit24), and (3) ever tighter controls on photoresist contrast and processing. These lead to
intermediate technology steps, and enhancements across the product lines, known as lithog-
raphy shrinks.

To meet roadmap projections at the 100 nm entry point and beyond, the roadmap in
Figure 10.7 shows several competing technologies, including 193 nm (ArF), 157 nm (F2),
proximity x-ray, electron beam projection, electron beam direct write, EUV lithography, and
ion projection lithography. EUV and x-ray proximity lithography are discussed in the following
sections of this chapter. The three particle beam technologies are not discussed here, but infor-
mation is available to the reader elsewhere.25 Briefly, e-beam direct write9, 10 is very similar
to the technology described in Chapter 9, Section 9.10. It offers the advantage of being able to
write very detailed small-feature patterns and is usually used for the fabrication of the most ad-
vanced test structures, but is a relatively slow sequential writing tool, economically uncompet-
itive for high volume production in its present form. E-beam projection26 attempts to overcome
this by writing larger areas using electron scattering plate masks and broader field electron op-
tics. This may be economically more attractive if challenges involving stability of the reticle‡

can be met. Ion beam projection lithography has similar reticle issues and would be a rather sub-
stantial change in technology. All of the above are in a competition among technologies to meet
future challenges. The winning solution, however, will not only include a technical demon-
stration of working devices, but also an economic advantage involving existing investments
in capital and human resources (training and expertise), as well as projected profit margins.

Further details of the technology roadmap are presented in Table 10.1, which shows a
selection of projected parameters2 for microprocessors and DRAMs. Extending to the year
2011, the table shows technology generations extending from 250 nm (quarter micron technol-
ogy) to 50 nm, with isolated microprocessor gate widths extending from 200 nm to 35 nm, and
DRAM memory extending from 256 Mb to 256 Gb in 2011. According to these projections,

‡The reticle is made of a thin membrane with a patterned absorber.
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the industry is targeting the 100 nm generation in the year 2005, with 70 nm processor gates,
and 39 million transistors per centimeter squared, on a chip of dimensions 2.5 cm by 4.0 cm,
having a chip clock rate of 1.1 GHz. A significant challenge for this same generation is the
indicated 5 nm critical dimension control on gate width. This is a challenge for the lithographic
technology as well as for the materials processing and metrology, as discussed for instance
in Chapter 9, Section 9.9, dealing with the need for analytic tools that have elemental and
chemical sensitivity on this spatial scale.

10.2 EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY

One candidate technology for high volume manufacturing beyond the use of 193 nm wave-
length ArF lasers is extreme ultraviolet lithography (EUVL). Based on multilayer coated
reflective optics, it makes a dramatic jump in wavelength to the 11–13 nm region while main-
taining the evolution of optical techniques27−36 and the industry’s investment therein. The
shorter wavelength offers a continued path to smaller feature sizes, with modest NA, over
several successive generations, with a substantial gain in depth of focus. Because multilayer
reflectivities are limited to about 70% in this spectral region37 (see Chapter 4), the number of
mirrors used is limited by throughput considerations.

In order to correct for aberrations across the relatively large field, being limited to a few
optical surfaces, one must turn to aspheric optics, that is, optics that are designed to have
surfaces that depart from spherical.38 This is significant, as the optics must also meet tight
specifications39 on polish to control scattering of radiation within and outside the printed field.
Optical polishing techniques are more advanced for spherical surfaces than for aspheres; thus
there is a technical challenge involved in achieving new levels of surface figure and finish
(polish) to the specifications required for EUV lithography at the entry points (nodes) at
100 nm and beyond.

A simplified diagram illustrating the basic concept of EUV lithography is shown in
Figure 10.8. EUV radiation at 13 nm wavelength is shown illuminating a multilayer coated
reflective mask, which has an absorber pattern across its surface. An aspheric optical system
reimages the pattern at 4 : 1 demagnification to the photoresist-coated wafer. Only two mirrors
are shown for simplicity. The inset shows a TEM side view of a molybdenum–silicon multilayer
coating. The coating has a 6.7 nm period for peak reflectivity at about 13.4 nm wavelength. This
wavelength corresponds to a photon energy of 92.5 eV, just below the silicon L-absorption edge
at 99 eV. Thus, the silicon acts as a low absorption spacer material, permitting the achievement
of high reflectivity, again about 70%. There are other candidate material combinations,37, 40, 41

for instance Mo/Be, which operates at wavelengths down to 11.2 nm, just below the beryllium
K-absorption edge at 112 eV.

Reflectivities42 for both Mo/Si and Mo/Be are shown in Figure 10.9, along with a graph
showing the radial uniformity37, 43 of a Mo/Si coating across a 50 mm radius mirror. Note
that both Mo/Si and Mo/Be achieve reflectivities of about 70%, Mo/Si with a somewhat
broader passband. For this coating the radial uniformity achieves an rms d-space variation,
�d/d, of 3 × 10−4 rms. This results in a surface height variation at the top of the multilayer
stack (40.5 layer pairs) of 0.05 nm rms, or λeuv/250. The systematic variation observed in
Figure 10.9(b) suggests that further improvements can be expected as multilayer engineering
proceeds. Furthermore, part of this systematic variation in surface height variation can be
compensated in subsequent optical focusing.

An early EUVL testbed, utilizing 10 : 1 reduction Schwarzchild optics, is shown schemat-
ically in Figure 10.10(a), with an example of a printed pattern in Figure 10.10(b). The
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F IGURE 10.8. The basic concept of EUV lithography showing multilayer coated aspherical optics (only
two for simplicity) forming a reduced image, at the photoresist covered wafer, of an absorber pattern
on a multilayer coated reflective mask. The enabling technology is the availability of high reflectivity
(� 70%) multilayer coatings in the 11–13 nm wavelength range. Shown in the inset is a TEM side
view of a molybdenum–silicon multilayer mirror seen previously in Chapter 1, Figure 10.1.
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F IGURE 10.9. (a) Reflectivity of a Mo/Si multilayer mirror near its peak at 13.4 nm wavelength and of
Mo/Be near its peak at 11.3 nm. (b) Multilayer uniformity expressed in terms of d-space variation
across a 50 mm aperture projection optic coated with Mo/Si for use at 13.4 nm wavelength. The
d-space variation in this ungraded direction departs from specifications by only 0.02% rms,
corresponding to a surface height variation of 0.05 nm rms, or λeuv/250. The coating is purposely
tapered in the orthogonal direction, to accommodate larger variations of incidence angle, but achieves
similar uniformity. (Courtesy of C. Montcalm, E. Spiller, S. Bajt, and J. Folta37, LLNL43;
J. Underwood and E. Gullikson, LBNL.42)

Schwarzchild optics are spherical, have up to NA = 0.088, and are Mo/Si coated for pattern
transfer experiments at 13.4 nm. The Microstepper,44 as it is called, employs a laser-produced
plasma cluster jet source, discussed earlier in Chapter 6, Section 6.7.3. The present system
employs a 40 W average power, 1.06 µm wavelength Nd:YAG laser delivering 5 nsec dura-
tion pulses at a 100 Hz repetition rate. Using a xenon cluster jet, the conversion efficiency is
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F IGURE 10.10. (a) An early EUV lithography testbed utilizing 10 : 1 reduction Schwarzschild optics.
The optics are spherical with a numerical aperture of 0.07, and are coated with Mo/Si multilayers for
exposures at 13.4 nm. The radiation source is a laser-produced gas jet of Xe clusters. (b) SEM image of
50 nm, 60 nm, and 70 nm wide lines printed as lines and spaces having a 1 : 2 duty cycle with the 10×
microstepper shown in (a). Such patterns are used for optical alignment, resist development, and
process control protocol development. (Courtesy of Sandia, Lawrence Livermore, and Lawrence
Berkeley National Laboratories, and of Intel, Motorola, and Advanced Micro Devices.44, 46)
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F IGURE 10.11. (a) Cut-away engineering computer aided design (CAD) drawing of a
pre-manufacturing (α-like) EUV stepper. The 4 : 1 reduction optics are shown in (b). The imaging
optical systems consist of four multilayer coated mirrors, three of which are aspheres. The numerical
aperture is 0.1, for printing 100 nm features at k1 = 0.77, with a partial coherence factor of σ = 0.7. It
is a ring field, step and scan system with a 1.5 mm by 26 mm chord at the wafer, with a ±0.5 µm depth
of focus. (Courtesy of D. Tichenor and R. Stulen, Sandia National Laboratories, and D. Sweeney,
Lawrence Livermore National Laboratory.36, 38)

about 1% of the incident laser light into an EUV band of 2.5% relative spectral bandwidth at
13.4 nm, and a solid angle of 2π sr.45 The conversion efficiency is about four times greater
at 11.2 nm, where the Mo-Be reflectivity peaks. Shown in Figure 10.10(b) are 50 nm, 60 nm,
and 70 nm wide lines printed as a line and space pattern with 1 : 2 duty cycle.44, 46 The images
were printed with the 0.088 NA Microstepper at 13.4 nm.

A pre-manufacturing (α-like) EUV stepper, known as the Engineering Test Stand (ETS),
has been designed and is under construction. It provides a better insight into the general
direction EUV lithography is going. A cut-away engineering CAD drawing is shown in
Figure 10.11(a). Following the laser plasma source is a series of collection–illumination
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optics, some multilayer coated and some glancing incidence, which in six parallel channels
collect one-third of a hemisphere of EUV radiation for mask illumination. With a planned
1.5 kW average power laser, this will provide about 5 W of in-band (2.5% spectral width)
EUV radiation at 13 nm within the collection solid angle of 2 sr.45

The four-element, 4 : 1 reduction optical system38 is shown in Figure 10.11(b). It is de-
signed for a numerical aperture of NAobj = 0.1, printing of 100 nm critical dimension (70 nm
isolated features) at k1 = 0.77, and a coherence factor σ of 0.7. It is a step and scan sys-
tem whose field has the shape of an arc (a ring field) rather than a narrow rectangle. The
arc is 1.5 mm wide and has a chord of 26 mm at the wafer. The design depth of focus is
±0.5 µm. Three of the mirrors are aspheric (M1, M2, and M4); mirror M3 is spherical. The
maximum departure from sphericity is about 10 µm. The mirrors are typically 10 cm in di-
ameter, cut from larger substrates. The system is telecentric at the wafer.¶ Specifications39

for the surface figures are 0.25 nm rms (λEUV/50), 0.20 nm rms for mid-spatial frequencies
(1 µm to 1 mm period surface roughness), and 0.10 nm rms for high spatial roughness. The
mid-spatial frequency specification is chosen to control scattering (flare) within the cam-
era’s field of view, which affects the image contrast. The high spatial frequency specifica-
tion is required to maintain high multilayer mirror reflectivity,37, 43 which affects the system
throughput. Follow-on β-tool and manufacturing steppers would require somewhat tighter
specifications.

Fabrication of early EUV metal oxide semiconductor (MOS) electronic devices is de-
scribed by K. Nguyen, G. Cardinale, and their colleagues.47 Similar efforts are underway in
Japan involving an EUV laboratory exposure tool based on a three aspherical mirror system
and use of synchrotron radiation.48 Led by H. Kinoshita, that effort is a collaboration among
the Himeji Institute of Technology, Hitachi, and Nikon.

Development of the requisite coatings,49, 50 optics, masks, and photoresist requires a va-
riety of specialized diagnostic or metrology tools,51 some of which are uniquely required due
to the resonant nature of the multilayer EUV coatings. For example, a new visible light inter-
ferometer, based on the use of single mode optical fibers, has been developed52 to a wavefront
accuracy of λvis/2000, or about 0.25 nm rms, for in-shop use in the fabrication of aspherical
substrates. In addition a tunable, at-wavelength interferometer has also been developed for
testing the assembled optical systems.53,54 This is important, as the multilayer coatings are
resonant phase structures and it is possible that phase front variations could be introduced
within the coatings. This phase shifting point diffraction interferometer has demonstrated a
wavefront accuracy of λeuv/330 at 13.4 nm wavelength, or 0.041 nm rms. It was described in
Chapter 8, Section 8.7. Optimization of multilayer coatings has required a specialized facility42

for measuring reflectivity to very tight specifications. To obtain the data in Figure 10.9(a) and
(b) required that wavelength be measured to an accuracy of 10−4 and reflectivity to 10−3,
with a spatial resolution of order 100 µm on the coated optical surface. Measurement of EUV
scattering from mid- and high-spatial-frequency roughness on multilayer coated optics has
required the development of a capability covering nine orders of magnitude.55 Defect inspec-
tion of masks and multilayer coated mask blanks requires a variety of new tools, some of
which must be actinic (at-wavelength) again, due to possible phase effects within the mul-
tilayer that would not be seen by non-actinic techniques. Early work using actinic methods
has been reported,56, 57 to be followed by correlation studies with more accessible non-actinic
tools.

¶Telecentric means that the chief rays at each point on the wafer are parallel. This ensures that the image
size at the wafer is not sensitive to defocus, and thus demagnification is constant across the wafer.
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Early results indicate that EUV lithography is making substantial progress toward demon-
strating its viability in the competition for a multi-generation lithography solution for feature
sizes35,58 below 100 nm. Most notable is progress in the figure and finish of aspherical optics,
development of uniform high reflectivity multilayer coatings, a host of specialized metrolo-
gies, and integration of these into a successful demonstration testbed. Additional work is
underway in the areas of photoresist development, mask fabrication and inspection tools, and
further options for the development of a commercial EUV source.

10.3 X-RAY PROXIMITY LITHOGRAPHY

Proximity soft x-ray lithography, known more succinctly as x-ray lithography, utilizes nom-
inal 0.7 nm to 1.2 nm wavelength radiation (1.0 keV to 1.8 keV photon energy) in an essen-
tially shadow casting technique just at the limits where diffraction becomes important. The
technique59 was first suggested by Spears and Smith of MIT in 1972. This was followed by
an intensive development effort at IBM.60−63 In its general manifestation it uses relatively
broadband bending magnet synchrotron radiation with relatively simple beamline optics, as
outlined in Figure 10.12.

The mask and wafer are maintained in close proximity, at a separation distance g, as
illustrated in Figure 10.12(a). The resolution, or more precisely the minimum printable line
width Lw, is dominated, to first order, by diffractive blurring at the finite wavelength λ and gap
g. The general scaling of minimum line width with wavelength and gap can be understood in
terms of a simple mask consisting of an absorption grating of period d, at a gap distance g from
the wafer. For wavelength λ � d, the grating will generate first orders (±1) at angles ±λ/d.
For a gap distance g this will cause a lateral spread of the pattern by an amount �d � 2gλ/d.
An acceptance criterion must be set relating �d to some fraction of d. This of course is done
with full cognizance that resist contrast and processing will be used to full advantage to print
sharp features as desired. For instance, if the spread �d is limited to some fraction ε of d,
such that �d = εd, then εd2 = 2gλ, or d = √

2/ε
√

gλ. If we take the minimum line width
as Lw = d/2, then we obtain the general scaling relation

Lw = α
√

gλ (10.4)

where α = 1/
√

2ε is a process dependent parameter of order unity. To accurately determine
the proportionality constant α, one must analyze the problem more thoroughly, allowing for
full diffractive effects, finite spectral bandwidth, finite mask pattern thickness, geometrical
blurring of the pattern due to the finite source size, and image spread within the recording
material due to photoelectron and Auger electron ranges as part of the energy absorption
process.§ Several groups have analyzed proximity lithography in more detail.64−73

Accurate diffraction calculations have been performed that exhibit interference effects
due to sharp edges, even with finite spectral bandwidth. The inclusion of a small amount of

§Recall from Chapter 1, Section 1.2, that absorption of radiation leads to emission of a photoelectron,
followed by a secondary readjustment of the atom whereby the core vacancy caused by photoemission
is filled by an outer level electron dropping in. For low Z atoms, such as carbon in photoresist, the
secondary process generally leads to the emission of a characteristic Auger electron. For a carbon
atom (284 eV K-electron binding energy) absorbing a 1 keV photon, this would lead to a 716 eV
photoelectron, followed by a 270 eV KLL Auger electron, both of which typically have a range
measured in nanometers.
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F IGURE 10.12. (a) Close-up view of the proximity mask, showing the absorber pattern on a thin
supporting membrane and a resist coated wafer, separated by a small gap g. (b) A typical x-ray
lithography station utilizing bending magnet radiation from an electron storage ring, a beamline to
transport the radiation to the mask, and a stepper to place and align the wafer for each exposure, and to
step the wafer to successive positions until all available fields have been exposed (Courtesy of
S. Ishihara, NTT73). (c) Typical spectral distribution of bending magnet radiation absorbed by the
photoresist after two mirror reflections and passage through two beryllium windows and a silicon
carbide mask substrate. In this embodiment (b) the final x-ray mirror rocks to scan the mask pattern.
Other x-ray steppers illuminate the full field, or vertically displace the final mirror.

geometrical blur (spatial coherence due to finite source size), perhaps 1
3 of the desired feature

size, is found to be beneficial in that it smooths the high spatial frequency ringing due to
diffraction.66, 67 Calculations and process control experiments for two-dimensional patterns
are presented by S. Hector, V. Pol, F. Cerrina, and colleagues.68 Allowing as well for electron
range69−71 and optimized resist processing, effective values of α below 1 are possible. For a
value α = 0.7, a mean wavelength of 1 nm, and a gap of 15 µm, Eq. (10.4) indicates that
line widths as small as 90 nm can be printed. Figure 10.13 shows graphs of achievable line
width verses photon energy for various values of the mask to wafer gap, as calculated by
F. Cerrina and his colleagues at Wisconsin.71 The calculations include the blurring effect of
photoelectron and secondary electron range.

A series of lines and spaces is shown in Figure 10.14, obtained by soft x-ray proximity
printing by J. Silverman74 and colleagues at IBM’s Advanced Lithography Facility in East
Fishkill, NY. The printed patterns show well-defined lines and spaces down to 100 nm. The
facility uses an Oxford Instruments compact (superconducting magnets) 0.7 GeV electron
storage ring.75 The beamline76 employs two mirrors, One is a stationary collimating mirror
that defines a horizontal stripe of radiation 50 mm wide by 3.6 mm (1σ ) high. A horizontal
beam uniformity of better than ±2% is achieved. The second mirror is a planar deflector, used
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F IGURE 10.13. Minimum printable linewidth as a
function of photon energy and mask to wafer gap.
The effect of photoelectron and Auger electron
range is included (from F. Cerrina,14,66 University
of Wisconsin, Madison.)

175 nm 150 nm 125 nm 100 nm

F IGURE 10.14. Lines and spaces and cross patterns printed with a 15 µm gap and 0.7 nm to 1.0 nm
wavelength radiation, and recorded with UV-4 photoresist. (Courtesy of J. Silverman, IBM.74)

to vertically scan the beam across the mask. Two beryllium windows are used for vacuum
isolation. The structure was obtained by over-etching a 70 nm photoresist image.74 This facility
achieves an uptime (available for exposures)74 greater than 98% of scheduled time, with a
beam lifetime of 30 h at 300 mA beam current, and a typical exposure time of 2 s. For the
results shown in Figure 10.14, a gold absorber pattern was used on a 2 µm thick silicon carbide
(SiC) membrane. For several reasons there is a movement toward tantalum compounds for the
absorber material, and possibly thin diamond films for the membrane. Figure 10.15 shows a
complex resist pattern printed with the NTT x-ray stepper in Atsugi-shi, Japan.77, 78

The simplicity of x-ray lithography, which accrues through the absence of reduction
optics, is offset by complexity in the mask. For DUV and EUV lithographies the mask pattern
is reduced optically, typically by a factor of four, and is deposited on a substantial substrate.
For x-ray lithography the mask is 1 : 1 with the wafer, and consists of an absorber pattern on
a thin membrane. Both applications place a greater burden on mask fabrication. Radiation
damage is also potentially greater due to the increased dose per unit area (1 : 1 vs. 4 : 1).
Typical mask absorber materials include high Z elements such as gold, tantalum, and tungsten,
and compounds thereof.71, 72 Silicon carbide (SiC) is a preferred thin membrane material
that combines high x-ray transmission just below the silicon K-edge at 1.84 keV (0.67 nm
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F IGURE 10.15. Resist pattern printed with x-ray
lithography showing 200 nm wide by 2 µm thick
lines above a base pattern of 0.5 µm lines and
spaces. (Courtesy of K. Deguchi, NTT/Atsugi-shi,
Japan.77, 78)

F IGURE 10.16. A 0.13 µm, 1 Gbit dynamic random access memory (DRAM) x-ray test site mask that
combines the ground rules and complexity of a 1 Gbit SRAM and a 4 Gbit DRAM. The chip area is
44 × 26 mm. The mask pattern is fabricated on a silicon carbide membrane. (Courtesy of
L. Brouchard, IBM Microlithographic Mask Development Center, Essex Junction, VT.)

wavelength) with high strength and stiffness. An example of a SiC supported x-ray mask
for use at the 0.13 µm node is shown in Figure 10.16. Stiffness is an important property of
the supporting membrane, as it helps to minimize potential distortion that might introduce
changes during application of the absorber pattern, by localized heating during exposure, or
by radiation induced stress. Thin diamond membranes are also of potential interest. Typical
mask dimensions are 20 mm by 20 mm, or even 20 mm by 50 mm, on a 2 µm thick membrane.
A thin protective cover is used to limit potential contact damage to the mask and to prevent
contamination.

X-ray lithography is a relatively mature technology, well advanced on many fronts, with
a substantial industrial infrastructure. Accomplishments72, 74, 79−81 in recent years include
(1) fabrication by IBM of nearly functional 64 Mb DRAM devices (with one unrepairable
defect) using x-ray lithography at the gate level (1995), (2) fabrication by Mitsubishi (see
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Cell plate (Ru) BST film

Storage node (Ru)

Poly-Si plug

Transfer gate
(WSi/Poly-Si)

Trench
isolation

0.3 µm

F IGURE 10.17. An SEM cross-sectional image of a
1 Gbit DRAM with 0.14 µm minimum feature size
fabricated with x-ray lithography. The memory cell
employs a Ru–BST–Ru stacked capacitor.
(Courtesy of T. Kitayama, Mitsubishi Electric
Corporation.72)

Figure 10.17) of a 1 Gb DRAM test site with 140 nm gates (1995), (3) fabrication of a 4
Gb DRAM test site with 240 nm pitch and four x-ray levels by a joint Toshiba/NTT team
(1996), (4) fabrication by IBM of a fully functional 64 kb static RAM (SRAM) with 200 nm
features (1994), (5) fabrication by NTT of CMOS logic devices with 12 kb SRAMs and 200
nm features (1995), (6) fabrication by Motorola of a fully functional 0.375 µm, 1 Mb SRAM
with three levels by x-ray lithography (1996), and (7) fabrication by IBM of 100 nm CMOS
test circuits, including ring oscillators with 16 psec delay times (1995), and (8) fabrication by
IBM of a fully functional 400 MHz PowerPC microprocessor with six million transistors, each
having 180 nm (post-etch) critical dimension.82 While poised for entry into manufacturing
with a technique that could span several generations, the entrance point has continued to
slip as improvements in UV optics and extensions to DUV, enhanced by clever optical and
processing techniques, have postponed the need for a post-optical advanced lithography. Thus
x-ray lithography continues to prepare for potential entry at a future node, perhaps at 130 nm
or 100 nm.
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HOMEWORK PROBLEMS

Homework problems for each chapter will be found at the website:
http://www.coe.berkeley.edu/AST/sxreuv



Appendix A

UNITS AND PHYSICAL
CONSTANTS

A.1 THE INTERNATIONAL SYSTEM OF UNITS (SI)

TABLE A.1. SI base units.1, 2

Quantity Name of unit Unit symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

TABLE A.2. SI prefixes.

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro µ

1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 femto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
101 deka da 10−24 yocto y
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TABLE A.3. Examples of derived units.

Quantity (symbol) Name of unit Unit symbol Equivalent

Plane angle (θ ) radian rad m/m = 1
Solid angle (�) steradian sr m2/m2 = 1
Velocity (v) m/s
Acceleration (a) m/s2

Frequency ( f ) hertz Hz s−1

Force (F) newton N kg · m/s2

Pressure (P) pascal Pa N/m2

Energy (E) joule J N · m, kg · m2/s2

Momentum (p) N · s, kg · m/s
Power (P) watt W J/s
Electric charge (q) coulomb C A · s
Electric potential (V ) volt V J/C, W/A
Resistance (R) ohm � V/A
Capacitance (C) farad F C/V
Magnetic flux (φ) weber Wb V · s
Inductance (L) henry H Wb/A
Electric field strength (E) V/m, N/C
Electric displacement (D) C/m2

Magnetic flux density (B) tesla T Wb/m2, N/(A · m)
Magnetic field strength (H ) A/m
Temperature (T ) degree Celsius ◦C K − 273.15
Intensity (I ) J · s−1 · m−2

Brightness (B) J · s−1 · m−2 · rad−2

TABLE A.4. Conversion factors.

Length angstrom 1 Å = 10−10 m
Area barn 1 barn = 10−28 m2

Volume liter 1 L = 10−3 m3 = 1000 cm3

Plane angle degree 1◦ = (π /180) rad � 17.45 mrad
arcminute 1′ = 1/60◦ = (π /10,800) rad � 290.9 µrad
arcsecond 1′′ = 1/60′ = (π /648,000) rad � 4.848 µrad

Mass atomic mass unit mu = 1.660,540,2(10)× 10−27 kg
1 dalton = 1 amu

Time minute 1 min = 60 s
hour 1 h = 60 min = 3600 s
day 1 d = 24 h = 86,400 s

Pressure standard atmosphere 1 atm = 101, 325 Pa
1 atm = 760 mmHg = 760 torr

bar 1 bar = 105 Pa
Acceleration gravitational accel. g = 9.806 65 m/s2

at earth’s surface
Energy electron volt 1 eV = 1.602,177,33(49) × 10−19 J

calorie 1 cal = 4.1868 J
Absorbed energy gray 1 Gy = 100 rad = 1 J/kg
Magnetic flux density gauss 1 G = 10−4 T = 10−4 Wb/m2

Wavelength in vacuum photon energy λ · h̄ω = hc = 1239.842 eV · nm
Molar definition atomic mass unit mu · NA = 1 g = 10−3 kg (exactly)
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A.2 PHYSICAL CONSTANTS3, 4

TABLE A.5.

Quantity Symbol Valuea Units

Speed of light in vacuum c 299,792,458 (exactly) m · s−1

Permeability of vacuum µ0 4π × 10−7 (exactly) N · A−2

Permittivity of vacuum ε0 1/(µ0c2) = 8.854 187 817... 10−12 F · m−1

Planck’s constant h 4.135,669,2(12) 10−15 eV · s
Planck’s constant/2π h̄ 6.582,122,0(20) 10−16 eV · s
Electron charge e 1.602,177,33(49) 10−19 C
Electron mass m 9.109,389,7(54) 10−31 kg
Electron rest energy mc2 0.510,999,06(15) MeV
Proton mass m p 1.672,623,1(10) 10−27 kg
Neutron mass mn 1.674,928,6(10) 10−27 kg
Atomic mass unit [m(12C)/12] mu 1.660,540,2(10) 10−27 kg
Rydberg constant (me4/32π2ε2

0 h̄2) R∞hc 13.605,698,1(40) eV
Bohr radius (4πε2

0 h̄2/me2) a0 0.529,177,249(24) 10−10 m
Classical electron radius(e2/4πε0mc2) re 2.817,940,92(38) 10−15 m
Thomson cross section (8πr2

e /3) σe 0.665,246,16(18) 10−28 m2

Fine-structure constant (e2/4πε0 h̄c) α 7.297,353,08(33) 10−3

Compton wavelength (h/mc) λC 2.426, 310,58(22) 10−12 m
Bohr magneton (eh̄/2m) µB 5.788,382,63(52) 10−5 eV · T−1

Nuclear magneton (e h̄/2m p) µN 3.152,451,66(28) 10−8 eV · T−1

Avogadro’s number NA 6.022,136,7(36) 1023 mol−1

Boltzmann constant (R/NA) κ 8.617,385(73) 10−5 eV · K−1

Stefan–Boltzmann constant [(π2/60)κ4/h̄3c2] σ 5.670,51(19) 10−8 W · m−2 · K−4

Universal (molar) gas constant R 8.314,510(70) J · mol−1 · K−1

Molar volume (ideal gas) (RT/P)
(at 273.15 K, 101,325 Pa) Vm 22,414.10(19) cm3 · mol−1

Loschmidt’s number (NA/Vm ) nL 2.686,763(23) 1025 m−3

Photon energy–wavelength product hc 1239.8424(04) eV · nm

a The numbers in parentheses indicate the uncertainties in the last digits. For example, h = 4.1356692(12) is
equivalent to h = 4.1356692 ± 0.0000012.
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Appendix B

ELECTRON BINDING ENERGIES,
PRINCIPAL K- AND L-SHELL

EMISSION LINES, AND AUGER
ELECTRON ENERGIES

TABLE B.1. Electron binding energies in electron volts for the elements in their natural forms.a

Element K 1s L12s L2 2p1/2 L3 2p3/2 M13s M2 3p1/2 M3 3p3/2 M4 3d3/2 M5 3d5/2 N14s N2 4p1/2 N3 4p3/2

1 H 13.6
2 He 24.6b

3 Li 54.7b

4 Be 111.5b

5 B 188b

6 C 284.2b

7 N 409.9b 37.3b

8 O 543.1b 41.6b

9 F 696.7b

10 Ne 870.2b 48.5b 21.7b 21.6b

11 Na 1070.8c 63.5c 30.4c 30.5b

12 Mg 1303.0c 88.6b 49.6c 49.2c

13 Al 1559.6 117.8b 72.9b 72.5b

14 Si 1838.9 149.7b 99.8b 99.2b

15 P 2145.5 189b 136b 135b

16 S 2472 230.9b 163.6b 162.5b

17 Cl 2822.4 270.2b 202b 200b

18 Ar 3205.9b 326.3b 250.6b 248.4b 29.3b 15.9b 15.7b

19 K 3608.4b 378.6b 297.3b 294.6b 34.8b 18.3b 18.3b

20 Ca 4038.5b 438.4c 349.7c 346.2c 44.3c 25.4c 25.4c

21 Sc 4492.8 498.0b 403.6b 398.7b 51.1b 28.3b 28.3b

22 Ti 4966.4 560.9c 461.2c 453.8c 58.7c 32.6c 32.6c

23 V 5465.1 626.7c 519.8c 512.1c 66.3c 37.2c 37.2c

24 Cr 5989.2 695.7c 583.8c 574.1c 74.1c 42.2c 42.2c

25 Mn 6539.0 769.1c 649.9c 638.7c 82.3c 47.2c 47.2c

26 Fe 7112.0 844.6c 719.9c 706.8c 91.3c 52.7c 52.7c

27 Co 7708.9 925.1c 793.3c 778.1c 101.0c 58.9c 58.9c

28 Ni 8332.8 1008.6c 870.0c 852.7c 110.8c 68.0c 66.2c

29 Cu 8978.9 1096.7c 952.3c 932.5c 122.5c 77.3c 75.1c

30 Zn 9658.6 1196.2b 1044.9b 1021.8b 139.8b 91.4b 88.6b 10.2b 10.1b

(Continued )
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TABLE B.1. (Continued )

Element K 1s L12s L2 2p1/2 L3 2p3/2 M13s M2 3p1/2 M3 3p3/2 M4 3d3/2 M5 3d5/2 N14s N2 4p1/2 N3 4p3/2

31 Ga 10367.1 1299.0b 1143.2c 1116.4c 159.5c 103.5c 103.5c 18.7c 18.7c

32 Ge 11103.1 1414.6b 1248.1b 1217.0b 180.1b 124.9b 120.8b 29.0b 29.0b

33 As 11866.7 1527.0b 1359.1b 1323.6b 204.7b 146.2b 141.2b 41.7b 41.7b

34 Se 12657.8 1652.0b 1474.3b 1433.9b 229.6b 166.5b 160.7b 55.5b 54.6b

35 Br 13473.7 1782.0b 1596.0b 1549.9b 257b 189b 182b 70b 69b

36 Kr 14325.6 1921.0 1730.9b 1678.4b 292.8b 222.2b 214.4 95.0b 93.8b 27.5b 14.1b 14.1b

37 Rb 15199.7 2065.1 1863.9 1804.4 326.7b 248.7b 239.1b 113.0b 112b 30.5b 16.3b 15.3b

38 Sr 16104.6 2216.3 2006.8 1939.6 358.7c 280.3c 270.0c 136.0c 134.2c 38.9c 20.3c 20.3c

39 Y 17038.4 2372.5 2155.5 2080.0 392.0b 310.6b 298.8b 157.7c 155.8c 43.8b 24.4b 23.1b

40 Zr 17997.6 2531.6 2306.7 2222.3 430.3c 343.5c 329.8c 181.1c 178.8c 50.6c 28.5c 27.7c

41 Nb 18985.6 2697.7 2464.7 2370.5 466.6c 376.1c 360.6c 205.0c 202.3c 56.4c 32.6c 30.8c

42 Mo 19999.5 2865.5 2625.1 2520.2 506.3c 411.6c 394.0c 231.1c 227.9c 63.2c 37.6c 35.5c

43 Tc 21044.0 3042.5 2793.2 2676.9 544b 445b 425b 257b 253b 68b 39c 39b

44 Ru 22117.2 3224.0 2966.9 2837.9 586.2c 483.5c 461.4c 284.2c 280.0c 75.0c 46.5c 43.2c

45 Rh 23219.9 3411.9 3146.1 3003.8 628.1c 521.3c 496.5c 311.9c 307.2c 81.4b 50.5c 47.3c

46 Pd 24350.3 3604.3 3330.3 3173.3 671.6c 559.9c 532.3c 340.5c 335.2c 87.6b 55.7c 50.9c

47 Ag 25514.0 3805.8 3523.7 3351.1 719.0c 603.8c 573.0c 374.0c 368.0c 97.0c 63.7c 58.3c

48 Cd 26711.2 4018.0 3727.0 3537.5 772.0c 652.6c 618.4c 411.9c 405.2c 109.8c 63.9c 63.9c

49 In 27939.9 4237.5 3938.0 3730.1 827.2c 703.2c 665.3c 451.4c 443.9c 122.7c 73.5c 73.5c

50 Sn 29200.1 4464.7 4156.1 3928.8 884.7c 756.5c 714.6c 493.2c 484.9c 137.1c 83.6c 83.6c

51 Sb 30491.2 4698.3 4380.4 4132.2 946c 812.7c 766.4c 537.5c 528.2c 153.2c 95.6c 95.6c

52 Te 31813.8 4939.2 4612.0 4341.4 1006c 870.8c 820.8c 583.4c 573.0c 169.4c 103.3c 103.3c

53 I 33169.4 5188.1 4852.1 4557.1 1072b 931b 875b 631b 620b 186b 123b 123b

54 Xe 34561.4 5452.8 5103.7 4782.2 1148.7b 1002.1b 940.6b 689.0b 676.4b 213.2b 146.7 145.5b

55 Cs 35984.6 5714.3 5359.4 5011.9 1211b 1071b 1003b 740.5b 726.6b 232.3b 172.4b 161.3b

56 Ba 37440.6 5988.8 5623.6 5247.0 1293b 1137b 1063b 795.7b 780.5b 253.5c 192178 .6c

57 La 38924.6 6266.3 5890.6 5482.7 1362b 1209b 1128b 853b 836b 247.7b 205.8 196.0b

58 Ce 40443.0 6548.8 6164.2 5723.4 1436b 1274b 1187b 902.4b 883.8b 291.0b 223.2 206.5b

59 Pr 41990.6 6834.8 6440.4 5964.3 1511.0 1337.4 1242.2 948.3b 928.8b 304.5 236.3 217.6

60 Nd 43568.9 7126.0 6721.5 6207.9 1575.3 1402.8 1297.4 1003.3b 980.4b 319.2b 243.3 224.6

61 Pm 45184.0 7427.9 7012.8 6459.3 — 1471.4 1356.9 1051.5 1026.9 — 242 242

62 Sm 46834.2 7736.8 7311.8 6716.2 1722.8 1540.7 1419.8 1110.9b 1083.4b 347.2b 265.6 247.4

63 Eu 48519.0 8052.0 7617.1 6976.9 1800.0 1613.9 1480.6 1158.6b 1127.5b 360 284 257

64 Gd 50239.1 8375.6 7930.3 7242.8 1880.8 1688.3 1544.0 1221.9b 1189.6b 378.6b 286 270.9

65 Tb 51995.7 8708.0 8251.6 7514.0 1967.5 1767.7 1611.3 1276.9b 1241.1b 396.0b 322.4b 284.1b

66 Dy 53788.5 9045.8 8580.6 7790.1 2046.8 1841.8 1675.6 1332.5 1292.6b 414.2b 333.5b 293.2b

67 Ho 55617.7 9394.2 8917.8 8071.1 2128.3 1922.8 1741.2 1391.5 1351.4 432.4b 343.5 308.2b

68 Er 57485.5 9751.3 9264.3 8357.9 2206.5 2005.8 1811.8 1453.3 1409.3 449.8b 366.2 320.2b

69 Tm 59398.6 10115.7 9616.9 8648.0 2306.8 2089.8 1884.5 1514.6 1467.7 470.9b 385.9b 332.6b

70 Yb 61332.3 10486.4 9978.2 8943.6 2398.1 2173.0 1949.8 1576.3 1527.8 480.5b 388.7b 339.7b

(Continued )
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TABLE B.1. (Continued )

Element K 1s L12s L2 2p1/2 L3 2p3/2 M13s M2 3p1/2 M3 3p3/2 M4 3d3/2 M5 3d5/2 N14s N2 4p1/2 N3 4p3/2

71 Lu 63313.8 10870.4 10348.6 9244.1 2491.2 2263.5 2023.6 1639.4 1588.5 506.8b 412.4b 359.2b

72 Hf 65350.8 11270.7 10739.4 9560.7 2600.9 2365.4 2107.6 1716.4 1661.7 538b 438.2c 380.7c

73 Ta 67416.4 11681.5 11136.1 9881.1 2708.0 2468.7 2194.0 1793.2 1735.1 563.4c 463.4c 400.9c

74 W 69525.0 12099.8 11544.0 10206.8 2819.6 2574.9 2281.0 1871.6 1809.2 594.1c 490.4c 423.6c

75 Re 71676.4 12526.7 11958.7 10535.3 2931.7 2681.6 2367.3 1948.9 1882.9 625.4 518.7c 446.8c

76 0s 73870.8 12968.0 12385.0 10870.9 3048.5 2792.2 2457.2 2030.8 1960.1 658.2c 549.1c 470.7c

77 Ir 76111.0 13418.5 12824.1 11215.2 3173.7 2908.7 2550.7 2116.1 2040.4 691.1c 577.8c 495.8c

78 Pt 78394.8 13879.9 13272.6 11563.7 3296.0 3026.5 2645.4 2201.9 2121.6 725.4c 609.1c 519.4c

79 Au 80724.9 14352.8 13733.6 11918.7 3424.9 3147.8 2743.0 2291.1 2205.7 762.1c 642.7c 546.3c

80 Hg 83102.3 14839.3 14208.7 12283.9 3561.6 3278.5 2847.1 2384.9 2294.9 802.2c 680.2c 576.6c

81 Tl 85530.4 15346.7 14697.9 12657.5 3704.1 3415.7 2956.6 2485.1 2389.3 846.2c 720.5c 609.5c

82 Pb 88004.5 15860.8 15200.0 13035.2 3850.7 3554.2 3066.4 2585.6 2484.0 891.8c 761.9c 643.5c

83 Bi 90525.9 16387.5 15711.1 13418.6 3999.1 3696.3 3176.9 2687.6 2579.6 939c 805.2c 678.8c

84 Po 93105.0 16939.3 16244.3 13813.8 4149.4 3854.1 3301.9 2798.0 2683.0 995b 851b 705b

85 At 95729.9 17493 16784.7 14213.5 4317 4008 3426 2908.7 2786.7 1042b 886b 740b

86 Rn 98404 18049 17337.1 14619.4 4482 4159 3538 3021.5 2892.4 1097b 929b 768b

87 Fr 101137 18639 17906.5 15031.2 4652 4327 3663 3136.2 2999.9 1153b 980b 810b

88 Ra 103921.9 19236.7 18484.3 15444.4 4822.0 4489.5 3791.8 3248.4 3104.9 1208b 1057.6b 879.1b

89 Ac 106755.3 19840. 19083.2 15871.0 5002 4656 3909 3370.2 3219.0 1269b 1080b 890b

90 Th 109650.9 20472.1 19693.2 16300.3 5182.3 4830.4 4046.1 3490.8 3332.0 1330b 1168b 966.4c

91 Pa 112601.4 21104.6 20313.7 16733.1 5366.9 5000.9 4173.8 3611.2 3441.8 1387b 1224b 1007b

92 U 115606.1 21757.4 20947.6 17166.3 5548.0 5182.2 4303.4 3727.6 3551.7 1439b 1271b 1043.0c

Element N44d3/2 N54d5/2 N64f5/2 N74f7/2 O15s O25p1/2 O35p3/2 O45d3/2 O55d5/2 P16s P26p1/2 P36p3/2

48 Cd 11.7c l0.7c

49 In 17.7c 16.9c

50 Sn 24.9c 23.9c

51 Sb 33.3c 32.1c

52 Te 41.9c 40.4c

53 I 50b 50b

54 Xe 69.5b 67.5b — — 23.3b 13.4b 12.1b

55 Cs 79.8b 77.5b — — 22.7 14.2b 12.1b

56 Ba 92.6c 89.9c — — 30.3c 17.0c 14.8c

57 La 105.3b 102.5b — — 34.3b 19.3b 16.8b

58 Ce 109b — — — 37.8 19.8b 17.0b

59 Pr 115.1b 115.1b — — 37.4 22.3 22.3

60 Nd 120.5b 120.5b — — 37.5 21.1 21.1

61 Pm 120 120 — — — — —

62 Sm 129 129 — — 37.4 21.3 21.3

63 Eu 133 127.7b — — 31.8 22.0 22.0

64 Gd 140.5 142.6b — — 43.5b 20 20

65 Tb 150.5b 150.5b — — 45.6b 28.7b 22.6b

(Continued )
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TABLE B.1. (Continued )

Element N44d3/2 N54d5/2 N64f5/2 N74f7/2 O15s O25p1/2 O35p3/2 O45d3/2 O55d5/2 P16s P26p1/2 P36p3/2

66 Dy 153.6b 153.6b — — 49.9b 29.5 23.1

67 Ho 160b 160b — — 49.3b 30.8b 24.1b

68 Er 167.6b 167.6b — — 50.6b 31.4b 24.7b

69 Tm 175.5b 175.5b — — 54.7b 31.8b 25.0b

70 Yb 191.2b 182.4b — — 52.0b 30.3b 24.1b

71 Lu 206.1b 196.3c 8.9b 7.5b 57.3b 33.6b 26.7b

72 Hf 220.0c 211.5c 15.9c 14.2c 64.2c 38b 29.9b

73 Ta 237.9c 226.4c 23.5c 21.6c 69.7c 42.2b 32.7b

74 W 255.9c 243.5c 33.6b 31.4c 75.6c 45.3b 36.8b

75 Re 273.9c 260.5c 42.9b 40.5c 83c 45.6b 34.6b

76 0s 293.1c 278.5c 53.4c 50.7c 84c 58b 44.5c

77 Ir 311.9c 296.3c 63.8c 60.8c 95.2b 63.0b 48.0c

78 Pt 331.6c 314.6c 74.5c 71.2c 101c 65.3b 51.7c

79 Au 353.2c 335.1c 87.6c 83.9c 107.2b 74.2c 57.2c

80 Hg 378.2c 358.8c 104.0c 99.9c 127c 83.1c 64.5c 9.6c 7.8c

81 Ti 405.7c 385.0c 122.2c 117.8c 136.b 94.6c 73.5c 14.7c 12.5c

82 Pb 434.3c 412.2c 141.7c 136.9c 147b 106.4c 83.3c 20.7c 18.1c

83 Bi 464.0c 440.1c 162.3c 157.0c 159.3b 119.0c 92.6c 26.9c 23.8c

84 Po 500b 473b 184b 184b 177b 132b 104b 31b 31b

85 At 533b 507b 210b 210b 195b 148b 115b 40b 40b

86 Rn 567b 541b 238b 238b 214b 164b 127b 48b 48b 26

87 Fr 603b 577b 268b 268b 234b 182b 140b 58b 58b 34 15 15

88 Ra 635.9b 602.7b 299b 299b 254b 200b 153b 68b 68b 44 19 19

89 Ac 675b 639b 319b 319b 272b 215b 167b 80b 80b — — —

90 Th 712.1c 675.2c 342.4c 333.1c 290b 229b 182b 92.5c 85.4c 41.4c 24.5c 16.6c

91 Pa 743b 708b 371b 360b 310b 232b 232b 94b 94b — — —

92 U 778.3c 736.2c 388.2b 377.4c 321b 257b 192b 102.8c 94.2c 43.9c 26.8c 16.8c

a Electron binding energies for the elements in their natural forms, as compiled by G.P. Williams, Brookhaven National
Laboratory, in Ref. 1, Chapter 1. The energies are given in electron volts relative to the vacuum level for the rare
gases and for H2, N2, O2, F2, and Cl2; relative to the Fermi level for the metals; and relative to the top of the valence
bands for semiconductors. Values are based largely on those given by J.A. Bearden and A.F. Barr, “Reevaluation
of X-Ray Atomic Energy Levels,” Rev. Mod. Phys. 39, 125 (1967); corrected in 1998 by E. Gullikson (LBNL,
unpublished). For further updates consult the Web site http://www-cxro.lbl.gov

b From M. Cardona and L. Lay, Editors, Photoemission in Solids I: General Principles (Springer-Verlag, Berlin,
1978).

c From J.C. Fuggle and N. Mårtensson, “Core-Level Binding Energies in Metals,” J. Electron. Spectrosc. Relat.
Phenom. 21, 275 (1980).
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TABLE B.2. Photon energies, in electron volts, of principal K and L shell emission lines.a

Element Kα1 Kα2 Kβ1 Lα1 Lα2 Lβ1 Lβ2 Lγ1

3 Li 54.3
4 Be 108.5

5 B 183.3
6 C 277
7 N 392.4
8 O 524.9
9 F 676.8

10 Ne 848.6 848.6

11 Na 1,040.98 1,040.98 1,071.1
12 Mg 1,253.60 1,253.60 1,302.2
13 Al 1,486.70 1,486.27 1,557.45
14 Si 1,739.98 1,739.38 1,835.94
15 P 2,013.7 2,012.7 2,139.1

16 S 2,307.84 2,306.64 2,464.04
17 Cl 2,622.39 2,620.78 2,815.6
18 Ar 2,957.70 2,955.63 3,190.5
19 K 3,313.8 3,311.1 3,589.6
20 Ca 3,691.68 3,688.09 4,012.7 341.3 341.3 344.9

21 Sc 4,090.6 4,086.1 4,460.5 395.4 395.4 399.6
22 Ti 4,510.84 4,504.86 4,931.81 452.2 452.2 458.4
23 V 4,952.20 4,944.64 5,427.29 511.3 511.3 519.2
24 Cr 5,414.72 5,405.509 5,946.71 572.8 572.8 582.8
25 Mn 5,898.75 5,887.65 6,490.45 637.4 637.4 648.8

26 Fe 6,403.84 6,390.84 7,057.98 705.0 705.0 718.5
27 Co 6,930.32 6,915.30 7,649.43 776.2 776.2 791.4
28 Ni 7,478.15 7,460.89 8,264.66 851.5 851.5 868.8
29 Cu 8,047.78 8,027.83 8,905.29 929.7 929.7 949.8
30 Zn 8,638.86 8,615.78 9,572.0 1,011.7 1,011.7 1,034.7

31 Ga 9,251.74 9,224.82 10,264.2 1,097.92 1,097.92 1,124.8
32 Ge 9,886.42 9,855.32 10,982.1 1,188.00 1,188.00 1,218.5
33 As 10,543.72 10,507.99 11,726.2 1,282.0 1,282.0 1,317.0
34 Se 11,222.4 11,181.4 12,495.9 1,379.10 1,379.10 1,419.23
35 Br 11,924.2 11,877.6 13,291.4 1,480.43 1,480.43 1,525.90

36 Kr 12,649 12,598 14,112 1,586.0 1,586.0 1,636.6
37 Rb 13,395.3 13,335.8 14,961.3 1,694.13 1,692.56 1,752.17
38 Sr 14,165 14,097.9 15,835.7 1,806.56 1,804.74 1,871.72
39 Y 14,958.4 14,882.9 16,737.8 1,922.56 1,920.47 1,995.84
40 Zr 15,775.1 15,690.9 17,667.8 2,042.36 2,039.9 2,124.4 2,219.4 2,302.7

41 Nb 16,615.1 16,521.0 18,622.5 2,165.89 2,163.0 2,257.4 2,367.0 2,461.8
42 Mo 17,479.34 17,374.3 19,608.3 2,293.16 2,289.85 2,394.81 2,518.3 2,623.5
43 Tc 18,367.1 18,250.8 20,619 2,424.0 — 2,536.8 — —
44 Ru 19,279.2 19,150.4 21,656.8 2,558.55 2,554.31 2,683.23 2,836.0 2,964.5
45 Rh 20,216.1 20,073.7 22,723.6 2,696.74 2,692.05 2,834.41 3,001.3 3,143.8

46 Pd 21,177.1 21,020.1 23,818.7 2,838.61 2,833.29 2,990.22 3,171.79 3,328.7
47Ag 22,162.92 21,990.3 24,942.4 2,984.31 2,978.21 3,150.94 3,347.81 3,519.59
48 Cd 23,173.6 22,984.1 26,095.5 3,133.73 3,126.91 3,316.57 3,528.12 3,716.86
49 In 24,209.7 24,002.0 27,275.9 3,286.94 3,279.29 3,487.21 3,713.81 3,920.81
50 Sn 25,271.3 25,044.0 28,486.0 3,443.98 3,435.42 3,662.80 3,904.86 4,131.12

(Continued)
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TABLE B.2. (Continued)

Element Kα1 Kα2 Kβ1 Lα1 Lα2 Lβ1 Lβ2 Lγ1

51 Sb 26,359.1 26,110.8 29,725.6 3,604.72 3,595.32 3,843.57 4,100.78 4,347.79
52 Te 27,472.3 27,201.7 30,995.7 3,769.33 3,758.8 4,029.58 4,301.7 4,570.9
53 I 28,612.0 28,317.2 32,294.7 3,937.65 3,926.04 4,220.72 4,507.5 4,800.9
54 Xe 29,779 29,458 33,624 4,109.9 — — — —
55 Cs 30,972.8 30,625.1 34,986.9 4,286.5 4,272.2 4,619.8 4,935.9 5,280.4

56 Ba 32,193.6 31,817.1 36,378.2 4,466.26 4,450.90 4,827.53 5,156.5 5,531.1
57 La 33,441.8 33,034.1 37,801.0 4,650.97 4,634.23 5,042.1 5,383.5 5,788.5
58 Ce 34,719.7 34,278.9 39,257.3 4,840.2 4,823.0 5,262.2 5,613.4 6,052
59 Pr 36,026.3 35,550.2 40,748.2 5,033.7 5,013.5 5,488.9 5,850 6,322.1
60 Nd 37,361.0 36,847.4 42,271.3 5,230.4 5,207.7 5,721.6 6,089.4 6,602.1

61 Pm 38,724.7 38,171.2 43,826 5,432.5 5,407.8 5,961 6,339 6,892
62 Sm 40,118.1 39,522.4 45,413 5,636.1 5,609.0 6,205.1 6,586 7,178
63 Eu 41,542.2 40,901.9 47,037.9 5,845.7 5,816.6 6,456.4 6,843.2 7,480.3
64 Gd 42,996.2 42,308.9 48,697 6,057.2 6,025.0 6,713.2 7,102.8 7,785.8
65 Tb 44,481.6 43,744.1 50,382 6,272.8 6,238.0 6,978 7,366.7 8,102

66 Dy 45,998.4 45,207.8 52,119 6,495.2 6,457.7 7,247.7 7,635.7 8,418.8
67 Ho 47,546.7 46,699.7 53,877 6,719.8 6,679.5 7,525.3 7,911 8,747
68 Er 49,127.7 48,221.1 55,681 6,948.7 6,905.0 7,810.9 8,189.0 9,089
69 Tm 50,741.6 49,772.6 57,517 7,179.9 7,133.1 8,101 8,468 9,426
70 Yb 52,388.9 51,354.0 5,937 7,415.6 7,367.3 8,401.8 8,758.8 9,780.1

71 Lu 54,069.8 52,965.0 61,283 7,655.5 7,604.9 8,709.0 9,048.9 10,143.4
72 Hf 55,790.2 54,611.4 63,234 7,899.0 7,844.6 9,022.7 9,347.3 10,515.8
73 Ta 57,532 56,277 65,223 8,146.1 8,087.9 9,343.1 9,651.8 10,895.2
74W 59,318.24 57,981.7 67,2443 8,397.6 8,335.2 9,672.35 9,961.5 11,285.9
75 Re 61,140.3 59,717.9 69,310 8,652.5 8,586.2 10,010.0 10,275.2 11,685.4

76 Os 63,000.5 61,486.7 71,413 8,911.7 8,841.0 10,355.3 10,598.5 12,095.3
77 Ir 64,895.6 63,286.7 73,560.8 9,175.1 9,099.5 10,708.3 10,920.3 12,512.6
78 Pt 66,832 65,112 75,748 9,442.3 9,361.8 11,070.7 11,250.5 12,942.0
79 Au 68,803.7 66,989.5 77,984 9,713.3 9,628.0 11,442.3 11,584.7 13,381.7
80 Hg 70,819 68,895 80,253 9,988.8 9,897.6 11,822.6 11,924.1 13,830.1

81 Tl 72,871.5 70,831.9 82,576 10,268.5 10,172.8 12,213.3 12,271.5 14,291.5
82 Pb 74,969.4 72,804.2 84,936 10,551.5 10,449.5 12,613.7 12,622.6 14,764.4
83 Bi 77,107.9 74,814.8 87,343 10,838.8 10,730.91 13,023.5 12,979.9 15,247.7
84 Po 79,290 76,862 8,980 11,130.8 11,015.8 13,447 13,340.4 15,744
85 At 8,152 7,895 9,230 11,426.8 11,304.8 13,876 — 16,251

86 Rn 8,378 8,107 9,487 11,727.0 11,597.9 14,316 — 16,770
87 Fr 8,610 8,323 9,747 12,031.3 11,895.0 14,770 1,445 17,303
88 Ra 8,847 8,543 10,013 12,339.7 12,196.2 15,235.8 14,841.4 17,849
89 Ac 90,884 8,767 10,285 12,652.0 12,500.8 15,713 — 18,408
90 Th 93,350 89,953 105,609 12,968.7 12,809.6 16,202.2 15,623.7 18,982.5

91 Pa 95,868 92,287 108,427 13,290.7 13,122.2 16,702 16,024 19,568
92 U 98,439 94,665 111,300 13,614.7 13,438.8 17,220.0 16,428.3 20,167.1
93 Np — — — 13,944.1 13,759.7 17,750.2 16,840.0 20,784.8
94 Pu — — — 14,278.6 14,084.2 18,293.7 17,255.3 21,417.3
95 Am — — — 14,617.2 14,411.9 18,852.0 17,676.5 22,065.2

a Photon energies in electron volts of some characteristic emission lines of the elements of atomic
number 3 ≤ Z ≤ 95, as compiled by J. Kortright, “Characteristic X-Ray Energies,” in X-Ray Data
Booklet (Lawrence Berkeley National Laboratory Pub-490 Rev. 2, 1999). Values are largely based
on those given by J.A. Bearden, “X-Ray Wavelengths,” Rev. Mod. Phys. 39, 78 (1967), which should
be consulted for a more complete listing. Updates may also be noted at the Web site http:/www-
cxro.lbl.gov/data-booklet/
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TABLE B.3. Curves showing Auger energies, in electron volts, for elements of atomic number 3 ≤ Z ≤ 92.
Only dominant energies are given, and only for principal Auger peaks. The literature should be consulted
for detailed tabulations, and for shifted values in various common compounds.1−3 (Courtesy of Physical
Electronics, Inc.1)
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Appendix C

ATOMIC SCATTERING FACTORS,
ATOMIC ABSORPTION

COEFFICIENTS, AND SUBSHELL
PHOTOIONIZATION

CROSS-SECTIONS
TABLE C.1. Atomic scattering factors f 0

1 and f 0
2 for several common elements in their natural form,

in the approximation �k · �rs → 0. As described in Chapter 2, Section 2.7, this approximation is
satisfied for forward scattering or for long wavelengths (greater than the Bohr radius), and denoted
here by the superscript zero. Also given are values for the absorption coefficient µ in cm2/g, as
described in Chapter 3, Section 3.2. Values are from Henke, Gullikson, and Davis.1 Their procedure
is to obtain µ as a function of energy by making a fit to the best available experimental data, for each
element as it is commonly found in nature. Values of f 0

2 (ω) are then obtained using a relationship
equivalent to Eq. (3.26) as given here in Chapter 3, Section 3.2. Values for f 0

1 (ω) are then calculated
using Kramers–Kronig relations, equivalent to that given as Eq. (3.85a) in Chapter 3, Section 3.8.

Energy (eV) f1 f2 µ (cm2/g)

30 1.075 3.035E–01 4.224E+05
70 1.052 5.768E–02 3.440E+04

100 1.033 2.759E–02 1.152E+04
300 1.006 2.570E–03 3.576E+02
700 1.001 3.720E–04 2.219E+01

1000 1.001 1.624E–04 6.778E+00
3000 1.000 1.202E–05 1.673E–01
7000 1.000 1.553E–06 9.262E–03

10000 1.000 6.580E–07 2.747E–03
30000 1.000 4.405E–08 6.130E–05

K 13.6 eV

Hydrogen (H)
Z = 1

Atomic weight = 1.008
2
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TABLE C.1. (Continued )

Energy (eV) f1 f2 µ (cm2/g)

30 1.787 4.396E–01 6.841E+04
70 1.669 2.497E–01 1.666E+04

100 0.647 1.591E–01 7.431E+03
300 4.333 1.150E+00 1.790E+04
700 4.217 2.571E–01 1.715E+03

1000 4.140 1.282E–01 5.986E+02
3000 4.026 1.360E–02 2.117E+01
7000 4.005 2.106E–03 1.405E+00

10000 4.003 9.384E–04 4.381E–01
30000 4.000 7.379E–05 1.148E–02

µ 
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m
2 /g

)

10 100 1000
E (eV)

10000

10 100 1000 10000

10 100 1000
E (eV)

10000
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Atomic weight = 9.012
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TABLE C.1. (Continued )
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TABLE C.1. (Continued )

TABLE C.2. Atomic subshell photoemission cross-sections, calculated for isolated atoms by Yeh and
Lindau.2
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TABLE C.2. (Continued )
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TABLE C.2. (Continued)
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TABLE C.2. (Continued )

100

10

1

0.1

0.01
10 100 1000

Total
4d

4p

4s

5p

5s6s

5p

4f

Photon energy (eV)

σ a
bs

 (
M

b/
at

om
)

Tungsten (W)
Z = 74

100

10

1

0.1

0.01
10

Total
4f

4p

4p

4s

5s 5p

5d

6s

100 1000
Photon energy (eV)

σ a
bs

 (
M

b/
at

om
)

Gold (Au)
Z = 79

REFERENCES

1. B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-Ray Interactions: Photoabsorption, Scattering,
Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nucl. Data Tables
54, 181 (1993). Current updates are maintained by E.M. Gullikson at http://www-cxro.lbl.gov/

2. J.-J. Yeh and I. Lindau, “Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters:
1 ≤ Z ≤ 103,” Atomic Data and Nucl. Data Tables 32, 1–155 (1985); J.-J. Yeh, Atomic Calculation
of Photoionization Cross-Sections and Asymmetry Parameters (Gordon and Breach, Langhorne, PA,
1993); I. Lindau, “Photoemission Cross Sections,” Chapter 1, p. 3, in Synchrotron Radiation Research:
Advances in Surface and Interface Science, Vol. 2 (Plenum, New York, 1992), R.Z. Bachrach, Editor;
J.-J. Yeh, “Metal/Silicon Interfaces and their Oxidation Behavior – A Photoemission Spectroscopy
Analysis,” Ph.D. Thesis in Applied Physics, Stanford University (1987).



Appendix D
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D.1 VECTOR AND TENSOR FORMULAS

A · (B × C) = B · (C × A) = C · (A × B) (D.1)

A × (B × C) = (A · C)B − (A · B)C (D.2)

∇ · ( f A) = f ∇ · A + A · ∇ f (D.3)

∇ × ( f A) = f ∇ × A + ∇ f × A (D.4)

∇ · (A × B) = B · (∇ × A) − A · (∇ × B) (D.5)

∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B (D.6)

∇ × (∇ × A) = ∇(∇ · A) − ∇2A (D.7)

∇ × ∇ f = 0 (D.8)

∇ · (∇ × A) = 0 (D.9)

∇ · (AB) = B(∇ · A) + (A · ∇)B (D.10)

440
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Integral relations for a vector field B over a volume V , an area A with (normal) vector
differential component dA, and line contour element s of local vector component ds. A circle
indicates an integral over a closed contour or over a closed surface:∫ ∫ ∫

V
∇ · B dV =

∫∫
©

A
B · dA (D.11)

(Gauss’s divergence theorem)

∫ ∫
A
(∇ × B) · dA =

∮
s

B · ds (D.12)

(Stokes’s theorem)

D.2 SERIES EXPANSIONS

Assuming x � 1 and m real, except where stated otherwise,

f (x) = f (s) + f ′(s)(x − s) + f ′′(s)

2!
(x − s)2 + · · ·

+ f n(s)(x − s)n

n!
(x − s) � 1

f (x) = f (0) + x f ′(0) + x2

2!
f ′′(0) + · · ·

sin x = x − x3

3!
+ x5

5!
− · · ·

cos x = 1 − x2

2!
+ x4

4!
− · · ·

tan x = x + x3

3
+ 2x5

15
+ · · ·

(
x2 <

π2

4

)

√
1 − x = 1 − x

2
− 1

222!
x2 − 1 · 3

233!
x3 + · · ·

(1 − x2)−1/2 = 1 + x2

2
+ 1 · 3

222!
x4 + · · ·

(1 + x)m = 1 + m

1!
x + m(m − 1)

2!
x2 + m(m − 1)(m − 2)

3!
x3 + · · ·

ex = 1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!

1

1 − x
= 1 + x + x2 + x3 + · · ·

esin x = 1 + x + x2

2!
− 3x4

4!
− 8x5

5!
− · · · x2 <

π2

4
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ecos x = e

(
1 − x2

2!
+ 4x4

4!
− 31x6

6!
+ · · ·

)
x2 <

π2

4

sinh x = x + x3

3!
+ x5

5!
+ · · ·

cosh x = 1 + x2

2!
+ x4

4!
+ · · ·

tanh x = x − x3

3
+ 2x5

15
− · · ·

J0(x) = 1 − x2

22(1!)2
+ x4

24(2!)2
− x6

26(3!)2
+ · · ·

J1(x) = x

2
− x3

231! 2!
+ x5

252! 3!
− x7

273! 4!
+ · · ·

For complex z = x + iy:

sin z = z − z3

3!
+ · · ·

cos z = 1 − z2

2!
+ · · ·

sinh z = z + z3

3!
+ z5

5!
+ · · ·

cosh z = 1 + z2

2!
+ z4

4!
+ · · ·

tanh z = z − z3

3
+ 2z5

15
− · · ·

ez = 1 + z + z2

2!
+ · · ·

D.3 TRIGONOMETRIC RELATIONSHIPS

e±iθ = cos θ ± i sin θ, θ real

sin(α ± β) = sin α cos β ± cos α sin β

cos(α ± β) = cos α cos β ∓ sin α sin β

tan(α ± β) = tan α ± tan β

1 ∓ tan α tan β
, tan

(π

4
+ β

)
= 1 + tan β

1 − tan β

sin 2α = 2 sin α cos α
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cos 2α =
{cos2 α − sin2 α

2 cos2 α − 1
1 − 2 sin2 α

cos
α

2
=

√
1

2
(1 + cos α)

sin
α

2
=

√
1

2
(1 − cos α)

2 sin α cos β = sin(α + β) + sin(α − β)

2 cos α cos β = cos(α + β) + cos(α − β)

2 sin α sin β = cos(α − β) − cos(α + β)

sin α + sin β = 2 sin 1
2 (α + β) cos 1

2 (α − β)

sin 3α = 3 sin α − 4 sin3 α

cos 3α = 4 cos3 α − 3 cos α

a

sin α
= b

sin β
= c

sin γ

a2 = b2 + c2 − 2bc cos α

tan2 θ + 1 = sec2 θ, 1 + cot2 θ = csc2 θ

sinh x = ex − e−x

2
, sinh(−x) = − sinh x

cosh x = ex + e−x

2
, cosh(−x) = cosh x

tanh x = sinh x/ cosh x

cosh2 x − sinh2 x = 1

In spherical coordinates the angle between two vectors is given by

cos � = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ2 − φ1)

where (θ1, φ1) and (θ2, φ2) are the respective polar and azimuthal angular pairs.

D.4 DEFINITE INTEGRALS

Assuming x real, a > 0:

∫ ∞

0
e−ax dx = 1

a
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∫ d

c
xe−ax dx = −e−ax

a2
(ax + 1)

∣∣∣∣
d

c

1√
2πσ

∫ ∞

−∞
e−x2/2σ 2

dx = 1

∫ ∞

0
(cos bx)e−a2x2

dx =
√

π

2a
e−b2/4a2

∫ ∞

0
xe−x2

dx = 1

2

∫ ∞

0
x2e−x2

dx =
√

π

4

∫ ∞

0
e−ax

{cos mx

sin mx

}
dx =

{ a
m

}
a2 + m2

∫ ∞

0

sin x

x
dx = π

2

∫ ∞

0

cos x

x
dx = ∞

∫ ∞

0

tan x

x
dx = π

2

∫ π

0
sin2 mx dx =

∫ π

0
cos2 mx dx = π

2

∫ ∞

0

sin2 x dx

x2
= π

2

∫ π

−π

cos nx cos mx dx =
{0 n �= m
π n = m

∫ π

−π

sin nx cos mx dx = 0

D.5 FUNCTIONS OF A COMPLEX VARIABLE

z = x + iy = r (cos θ + i sin θ ) = reiθ

ez = ex (cos y + i sin y)

eiz = cos z + i sin z
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√
i = ±

√
2

2
(1 + i)

sin z = eiz − e−i z

2i
, sin(−z) = − sin z

cos z = eiz + e−i z

2
, cos(−z) = cos z

sinh z = ez − e−z

2
= −i sin(i z)

cosh z = ez + e−z

2
= cos(i z)

tanh z = sinh z

cosh z

cos2 z + sin2 z = 1

cosh2 z − sinh2 z = 1

sin 2z = 2 sin z cos z

sin z = sin x cosh y + i cos x sinh y

= sin x cos iy + cos x sin iy

cos z = cos x cosh y − i sin x sinh y

= cos x cos iy − sin x sin iy

sinh z = sinh x cos y + i cosh x sin y

cosh z = cosh x cos y + i sinh x sin y

cos iy = cosh y

sin iy = i sinh y

d

dz
ez = ez

d

dz
sin z = cos z

d

dz
cos z = − sin z

d

dz
cosh z = sinh z
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d

dz
sinh z = cosh z

r =
√

a2 + b2

cos θ = a

r
= a√

a2 + b2

sin θ = b

r
= b√

a2 + b2

√
z = √

a + ib = r1/2eiθ/2 = r1/2

(
cos

θ

2
+ i sin

θ

2

)

√
a + ib = (a2 + b2)1/4

[√
1
2 (1 + cos θ ) + i

√
1
2 (1 − cos θ )

]

√
a + ib = (a2 + b2)1/4

[√
1

2

(
1 + a√

a2 + b2

)

+ i

√
1

2

(
1 − a√

a2 + b2

)]

√
a + ib = 1√

2

[√√
a2 + b2 + a + i

√√
a2 + b2 − a

]

similarly

√
a − ib = 1√

2

[√√
a2 + b2 + a − i

√√
a2 + b2 − a

]

Cauchy Integral Formula

∮
f (z)

z − z0
dz = 2π i f (z0)
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D.6 FOURIER TRANSFORM11–13

F(k) =
∫∫∫

f (r)e−ik·rdr

f (r) = 1

(2π )3

∫∫∫
F(k)eik·rdk

D.7 THE DIRAC DELTA FUNCTION

The Dirac delta function δ(x) has the properties that it is zero for all x except x = 0, where it
is infinite:

δ(x) =
{

0 x �= 0
∞ x = 0

with the normalization condition ∫
all x

δ(x) dx = 1

With a displaced origin the function is

δ(x − a) =
{

0 x �= a
∞ x = a

which has the sifting property ∫
all x

f (x)δ(x − a) dx = f (a)

Integrating by parts, one can show that the derivative function δ′(x − a) has the property∫
all x

f (x)δ′(x − a) dx = − f ′(a)

A shorthand notation for the delta function in three dimensions is, in Cartesian coordinates,

δ(r) ≡ δ(x) δ(y) δ(z)

D.8 THE CAUCHY PRINCIPAL VALUE THEOREM

The Cauchy principal value of an integral is defined as the integral over a restricted range that
avoids a contribution from an isolated singularity. Thus, for example, if a function f (x) has a
singularity at x = a, in the interval 0 < a < ∞, the principal value of the integral would be
written as

P
∫ ∞

0
f (x) dx = lim

δ→0

[∫ a−δ

0
f (x) dx +

∫ ∞

a+δ

f (x) dx

]
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As a specific example, we consider the function f (x) = 1/x , where x represents a physical
quantity with a small imaginary component ε. Forming real and imaginary components

1

x ∓ iε
= x

x2 + ε2
± i

ε

x2 + ε2

the first term is to behave like 1/x everywhere except at x = 0, in the limit that ε goes to
zero. Exactly at x = 0 this first term is zero, for arbitrarily small but finite ε. Thus this first
term represents the Cauchy principal portion of the function 1/x . The second imaginary term
behaves like a Dirac delta function in the limit that ε goes to zero. It can be integrated using a
standard trigonometric substitution. Performing this integration, one obtains the relationship

lim
ε→0

1

x ∓ iε
= P

(
1

x

)
± iπδ(x)

where P(1/x) behaves like the function 1/x everywhere except at x = 0, where it is zero.
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Appendix E

SOME INTEGRATIONS IN
k, ω-SPACE

In Chapter 2 the electric field radiated by an accelerated charge is calculated using Fourier–
Laplace transform techniques that involve a four dimensional integration in k, ω-space, es-
sentially a summation of responses at all frequencies ω and all wavenumbers k = 2π/λ in all
directions (i.e., the wave vector k). The radiated electric field at a position r and at a time t is
expressed in Chapter 2, Eq. (2.22) in integral form, as

E(r, t) = ie

εo

∫
k

∫
ω

ωvT (ω)e−i(ωt−k·r)

ω2 − k2c2

dω dk
(2π )4

(2.22)

To aid us in the k-space integration we utilize the vector coordinates shown in Figure
E.1, which is identical to Figure 2.3, with the addition that it shows explicitly the vector
electric field Ei associated with the incident wave that is to be scattered by a single free
electron. For a modest electric field, such that we can ignore the v × B term in the Lorentz
force, the acceleration of the electron is given by ma = − eEi , and in this harmonic analy-
sis where a = dv/dt = − iωv, the induced electron velocity is given by v = − ieE/mω, so
that Ei , a, and v all have the same vector direction. To perform the k-space integration in
Eq. [2.22] we note that the transverse component of velocity is given by vT = −k0 × (k0 ×v),
with scalar magnitude vT = |vT | = |v| sin �, where � is measured from the direction of ac-
celeration to the direction of observation k0. The k-space integration in Eq. [2.22] is thus
performed with � treated as a fixed quantity. In essence it represents the observation di-
rection r in E(r, t), while the integration is performed over the k-space coordinates. For
fixed polarization direction Ei and fixed observation direction k0, the angle � is constant
and thus vT passes through the k-space integrals. The integral expression for E(r, t) is
then

E(r, t) = ie

ε0

∫
ω

ωvT (ω)e−iωt
∫

k

[
eik·r

(ω + kc)(ω − kc)

dk
(2π )3

]
︸ ︷︷ ︸

a function G(ω; r)

dω

2π

where we have introduced an arbitarily named function G(ω; r) to represent the requisite
k-space integration in what follows. To perform the integration we use polar coordinates

449
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Ei, a, v

Θ
k0

t0′′

t0
′

F IGURE E.1. Vector coordinates for scattering calculations involving a point-source electron caused to
oscillate with an acceleration a and a velocity v by an incident electric field of polarization Ei . The
radiation is calculated for an observation direction k0. The angle � is measured from the direction of
acceleration a to the direction of observed scattering k0. The unit vectors are defined by k0 × t′0 = t′′0.
Polar coordinates (k, θ, φ) are oriented around k0.

oriented around k0, as introduced∗ in Chapter 2:

dk = k2 sin θ dθ dφ︸ ︷︷ ︸
d�

dk (2.23a)

where

0 ≤ k ≤ ∞ (2.23b)

0 ≤ θ ≤ π (2.23c)

0 ≤ φ ≤ 2π (2.23d)

so that for a vector r, at polar angle θ to k, the phase term that occurs in Eq. (2.22) becomes

k · r = kr cos θ (2.23e)

The first integral, G(ω; r), can then be evaluated as

G(ω; r) =
∫ ∞

0

∫ 2π

0

∫ π

0

eik·r

(ω + kc)(ω − kc)

k2 sin θ dθ dφ dk

(2π )3

which upon integration over φ becomes

G(ω; r) = −1

(2πc)2

∫ ∞

o

1(
k + ω

c

) (
k − ω

c

)
[∫ π

0

eikr cos θ ikr sin θ dθ

ikr

]
k2 dk

G(ω; r) = −1

(2πc)2

∫ ∞

0

1(
k + ω

c

) (
k − ω

c

) [∫ π

0

eikr cos θd(ikr cos θ )

−ikr

]
k2 dk

∗Recall that dk is not a vector, but rather shorthand notation for a volume element in differential space.
For instance, in rectangular coordinates dk = dkx dky dkz .
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Then using
∫ b

a eudu = eu |ba ,

G(ω; r) = −1

(2πc)2

∫ ∞

0

1(
k + ω

c

) (
k − ω

c

) [
eikr cos θ |πo

−ikr

]
︸ ︷︷ ︸

e−ikr −eikr

−ikr

k2dk

G(ω; r) = −i

(2πc)2r

∫ ∞

0

(e−ikr − eikr )(
k + ω

c

) (
k − ω

c

)k dk

G(ω; r) = i

(2πc)2r

{[∫ ∞

0

eikr k dk(
k + ω

c

) (
k − ω

c

)
]

−
[∫ ∞

0

e−ikr k dk(
k + ω

c

) (
k − ω

c

)
]}

To perform these integrations using the Cauchy integral formula (see Appendix D,
Ref. 9)

∮
f (z)

z − zo
dz = 2π i f (zo)

we need to extend the k-integration from −∞ to +∞. To achieve this we change variables
in the second integral above, replacing k by −k ′, so that

G(ω; r) = i

(2πc)2r

⎧⎪⎨
⎪⎩

[∫ ∞

0

eikr k dk(
k + ω

c

) (
k − ω

c

)
]

−

⎡
⎢⎣∫ −∞

0

eik ′r k ′dk ′(−k ′ + ω
c

) (−k ′ − ω
c

)
︸ ︷︷ ︸

⎤
⎥⎦

⎫⎪⎬
⎪⎭

(k ′− ω
c ) (k ′+ ω

c )

We note that the integration − ∫ −∞
0 can be replaced by + ∫ 0

−∞, so that the k-integration can
now be written compactly as

G(ω; r) = i

(2πc)2r

[∫ +∞

−∞

eikr k dk(
k + ω

c

) (
k − ω

c

)
]

which can now be evaluated by closing the contour integral and using the Cauchy integral
formula. Thus we identify f (k) = keikr/ (k + ω/c) and close the integration contour with a
very large semicircle in the upper half of the complex k-plane, such that the integrand goes to
zero along the added semicircular path. Note that in the complex k-plane we have k = kr +iki ,
so that eikr = eikr r e−ki r . For radiated fields at large distances r , the factor e−ki r goes to zero
for ki > 0. Thus we close the contour in the upper half plane where this added semicircular
path closes the contour but adds nothing to the integral.

Note that in Figure E.2 the poles at k = ω/c and −ω/c are shown shifted slightly off
axis to indicate wave decay (rather than growth) as the waves propagate in their respective
directions. This is justified by noting that there is always some absorption or scattering loss
in real physical systems.
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e+
ikr → 0 for large r

ki

kr
Pole at

k = –ω/c

Pole at
k = ω/c

F IGURE E.2. Integration in the complex k-plane.

The integration of G(ω; r) then becomes

G(ω; r) = i

(2πc)2r

∮
f (k) dk

k − ω
c︸ ︷︷ ︸

2π i f( ω
c )

Recalling that we defined f (k) = keikr/(k + ω
c ), we have

G(ω; r) = i

(2πc)2r

[
2π i

(ω
c )eiωr/c

ω
c + ω

c

]

G(ω; r) = −eiωr/c

4πc2r

Having completed the k-integrations involved in our function G(ω; r), we return to Eq. (2.22),
where the expression for E(r, t) now involves only a frequency integration

E(r, t) = ie

ε0

∫ ∞

−∞
ωvT (ω)e−iωt

[−eiωr/c

4πc2r

]
dω

2π

or

E(r, t) = e
4πεoc2r

∫ ∞
−∞ (−iω)vT (ω)e−iω(t−r/c)︸ ︷︷ ︸

d
dt [vT (ω)e−iω(t−r/c)]

dω
2π

(2.24)

E(r, t) = e
4πεoc2r

d
dt

∫ ∞

−∞
vT (ω)e−iω(t−r/c) dω

2π︸ ︷︷ ︸
vT (t− r

c )

where the last notation recognizes the transform of vT (ω) in the variable t ′ = t − r/c.
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Identifying the acceleration as

aT

(
t − r

c

)
= d

dt
vT

(
t − r

c

)
the electric field associated with the radiated wave can be written as

E(r, t) = eaT
(
t − r

c

)
4πε0c2r

(2.25)

which is the form given in Chapter 2 as Eq. (2.25). The physical interpretation of this expression
is described in the text of Chaper 2, following Eq. (2.25).



Appendix F

LORENTZ SPACE–TIME
TRANSFORMATIONS

In our studies of radiation from charged particles moving at velocities approaching that
of light, a number of interesting phenomena are observed, such as the searchlight effect
wherein radiation from the charged particle is constrained to a very narrow forward radia-
tion cone. Furthermore, the calculation of detailed angular radiation patterns, in the frame
of reference moving with the charged particle, and wavelength distributions are readily
accomplished.1 The results can then be transformed back to the laboratory, or observer,
frame of reference. For instance, the calculation of undulator radiation reduces to use of
the well-known formula for so-called dipole radiation from a simple oscillating electron.
With this approach we need solve Maxwell’s equations for only the simplest radiating sys-
tem, a small amplitude oscillating electron. This approach is not only simple to follow, but
gives valuable physical insights to the radiation process and the parameters that characterize
it.

In order to relate calculations in one frame of reference to those in another frame of
reference when the relative speed between the two approaches that of light, we must make
use of the Lorentz space-time transformations, which provide relationships between spatial
and temporal scales in the two frames of reference, and are consistent both with Einstein’s
postulates of special relativity and with all known experiments (see Ref. 2 for a discus-
sion of the Lorentz transformations and their reduction to Galilean transformations as v/

c → 0).
The Lorentz space-time transformations between coordinates (x, y, z, t) in frame of ref-

erence S and coordinates (x ′, y′, z′, t ′) in frame of reference S′, which moves at velocity v

with respect to S in the z, z′ direction (see Figure F.1), are as follows:

z = γ (z′ + βct ′) (F.1a)

t = γ

(
t ′ + βz′

c

)
(F.1b)

y = y′ and x = x ′ (F.1c)

454
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S′

S

X

X′

Z

Z′v

L′

λ′u
θ′

θ
0

F IGURE F.1. Two frames of reference S and S′ with
relative velocity v, which approaches the speed of
light in vacuum, c.

and

z′ = γ (z − βct) (F.2a)

t ′ = γ
(

t − βz
c

)
(F.2b)

y′ = y and x ′ = x (F.2c)

where c is the velocity of light in vacuum,

β ≡ v

c
(F.3)

and

γ ≡ 1√
1 − β2

(F.4)

Note that β < 1, and that for β approaching zero, γ approaches unity, and thus the Galilean
transformations are obtained, i.e., t = t ′ and z = z′ + vt ′.

We use these relationships to transform charged particle trajectories and radiation char-
acteristics between natural frames of reference. We find it convenient to have at hand angular
relationships that follow from Eqs (E.1–E.4), angle dependent Doppler shifts that follow
therefrom, and expressions for the well-known time dilation and (Lorentz) length contraction
characteristics of observations made between relativistically related coordinate systems.
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F.1 FREQUENCY AND WAVENUMBER RELATIONS

To develop relationships between frequency and wavelength as observed in the two coordinate
systems S and S′, we consider a propagating wave observed from both systems. For such a
wave the amplitude varies according to a phase factor

eiφ = ei(ωt−k·r)

where the wavenumber |k| = 2π/λ and where ω = 2π f . In our coordinate systems S and S′,
the phase can be written as

φ = ωt − kzz − kx x − ky y (F.5a)

φ′ = ω′t ′ − k ′
z z′ − k ′

x x ′ − k ′
y y′ (F.5b)

Since the phase has a particular value at some given space-time point (it might be at the crest
of wave amplitude), it must be the same in both coordinate systems, and thus we can set
Eq. (F.5a) equal to Eq. (F.5b), viz.,

ωt − kzz − kx x − ky y = ω′t ′ − k ′
z z′ − k ′

x x ′ − k ′
y y′

The desired frequency and wavenumber (wavelength) relationships can be obtained by substi-
tuting the Lorentz relationships [Eq. (F.2)] into the identical phase relationship above. Making
appropriate substitutions for t ′, z′, x ′, and y′ in the phase relationship, we have

ωt − kz x − kx x − ky y = ω′
[
γ

(
t − βz

c

)]
− k ′

z[γ (z − βct)] − k ′
x x − k ′

y y

or by rearranging terms

ωt − kzz − kx x − ky y = [ω′γ + γβck ′
z]t −

[
γ k ′

z + γω′ β
c

]
z − k ′

x x − k ′
y y

As this relationship must hold for arbitrary space-time position, we can match coefficients
term by term in the above equation. Doing so, we obtain

ω = γ (ω′ + βck ′
z) (F.6a)

kz = γ

(
k ′

z + βω′
c

)
(F.6b)

kx = k ′
x and ky = k ′

y (F.6c)

and the inverse transformations

ω′ = γ (ω − βckz) (F.7a)

k ′
z = γ

(
kz − βω

c

)
(F.7b)

k ′
x = kx and k ′

y = ky (F.7c)
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S

k = c
ω

kz

ky

S′

= c
ω′

kz′

θ θ′

ky′

k′

F IGURE F.2. The wave vector k for a wave propagating at an angle θ to the z-axis in the S frame of
reference, and the same wave as observed in the S′ frame of reference, with wave vector k′ at an angle
θ ′ to the (common) z-axis.

which relate wave propagation characteristics of frequency and wavenumber in two frames of
reference moving at relativistic speed with respect to each other. They are commonly referred
to as the energy–momentum relations because for a photon E = h̄ω and p = h̄k. Note that
the relationships between ω and ω′ are dependent on the angle of observation in that what
appears in Eqs. (F.6) and (F.7) is the axial component of the wave vector (k), i.e., kz .

The relationships take on quite a simple form if we decompose the wave vector in both
reference frames, and introduce the angles θ and θ ′, representing the propagation direction
measured from the common z, z′ axis. This is illustrated in Figure F.2.

Utilizing the vector identifications evident in Figure F.2, the expression relating ω and ω′

[Eq. (F.6a)] becomes

ω = γ (ω′ + βck ′
z) = γ

(
ω′ + βc

ω′

c
cos θ ′

)

ω = ω′γ (1 + β cos θ ′) (F.8a)

and from Eq. (F.7)

ω′ = γ (ω − βckz) = γ
(
ω − βc

ω

c
cos θ

)
or

ω′ = ωγ (1 − β cos θ ) (F.8b)

Equations (F.8a) and (F.8b) describe the relativistically correct form for the Doppler shift
(Refs. 3 and 4) of frequency when there is motion between the source and receiver (observer)
that approaches the velocity of light.

A familiar form of Eq. (F.8a) is that for a source ω′ = ωs moving toward the observer
directly along the z-axis, where θ ′ is zero and cos θ ′ is unity. Identifying the frequency ω = ωR

as that received in the observer’s frame of reference, one has

ω = ω′γ (1 + β)
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Noting that

γ = 1√
1 − β2

= 1√
1 − β

√
1 + β

one obtains the familiar form (Ref. 2)

ωR = ωS

√
1 + β

1 − β
(forward, θ = 0)

or equivalently

fR = fS

√
1 + β

1 − β

as is sometimes seen.

F.2 ANGULAR TRANSFORMATIONS

Angular transformations between the two frames of reference (Ref. 3) can be obtained from
the energy–momentum transformations, Eqs. (F.6) and (F.7). Again using the propagating
wave depicted in Figure F.2, we can write

cos θ = kz

k
= kzc

ω
=

γ
(

k ′
z + βω′

c

)
c

γ (ω′ + βck ′
z)

cos θ =
γ

[
ω′ cos θ ′

c + βω′
c

]
c

γ
[
ω′ + βc · ω′

c cos θ ′]
or

cos θ = cos θ ′ + β

1 + β cos θ ′ (F.9a)

Similarly

cos θ ′ = k ′
z

k ′ = k ′
zc

ω′ =
γ

(
kz − βω

c

)
c

γ (ω − βckz)

cos θ ′ =
γ

[
ω cos θ

c − βω

c

]
c

γ
[
ω − βc ω cos θ

c

]
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or

cos θ ′ = cos θ − β

1 − β cos θ
(F.9b)

which gives us equations relating θ and θ ′ as a function of β = v/c. In similar fashion we can
define sin θ ′ = k ′

y/k ′ to obtain

sin θ ′ = k ′
yc

ω′ = kyc

γ (ω − βckz)

sin θ ′ = (k sin θ )c

γ (ω − βck cos θ )

or

sin θ ′ = sin θ

γ (1 − β cos θ )
(F.10a)

Then defining sin θ = ky/k = kyc/ω and using Eq. (F.6), one finds in similar fashion that

sin θ = sin θ ′

γ (1 + β cos θ ′)
(F.10b)

Noting that tan θ = sin θ/cos θ and that tan θ ′ = sin θ ′/cos θ ′, one finds that

tan θ = sin θ ′

γ (cos θ ′ + β)
(F.11a)

tan θ ′ = sin θ

γ (cos θ − β)
(F.11b)

which could also be obtained by starting with tan θ = ky/kz , etc.
The tan θ relation is convenient for illustrating the searchlight effect characteristic of

synchrotron radiation from relativistic electrons for which γ � 1. For highly relativistic elec-
trons experiencing significant acceleration, even if the radiation pattern is rather broad – for
instance, 0 < θ ′ < π/4 in the electron (S′) frame of reference – Eq. (F.11a) indicates that all
this will be folded into a very narrow forward radiation cone, with half angle of order 1/2γ .



460 SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

F.3 THE LORENTZ CONTRACTION OF LENGTH

The Lorentz transformations contain information regarding differences of apparent length
of the same object seen from two frames of reference, moving relative to each other at a
relativistic speed. This applies not only to the traditional meter stick, but, more relevant to our
studies, to periodic magnet structures. Figure F.1 includes such an object with length L ′ in S′,
and substructure of periodicity λ′

u .
To understand the apparent differences in length, as seen in S and S′ at a given instant

of time, consider an object at rest in frame S with endpoints (z′
1, t ′) and (z′

2, t ′) in S′, and
(z1, t), (z2, t) in S. According to the Lorentz transformations, Eq. (F.1), the positions are
related by

z1 = γ (z′
1 + βct ′)

and

z2 = γ (z′
2 + βct ′)

Subtracting, we have

z1 − z2 = γ [z′
1 − z′

2 + βct ′ − βct ′]

and thus

z1 − z2 = γ (z′
1 − z′

2)

Defining L = z1 − z2 and L ′ = z′
1 − z′

2, we have

L = γ L ′

or

L ′ = L/γ (F.12)

which succinctly describes the Lorentz contraction of length. An object of length L as seen
in frame of reference S appears significantly shorter (L/γ ) in the frame of reference S′ that is
moving at a relative velocity approaching that of light. Similarly, a structure of periodicity λu

in S will be observed as one of periodicity λu/γ in S′. Note that β = v/c and γ = 1/
√

1 − β2,
so that for β approaching unity (v approaching c), γ is very large and the contraction factor
can be orders of magnitude. On the other hand, for non-relativistic velocities β approaches
zero, γ approaches unity, and there is little or no contraction.

F.4 TIME DILATION

We next ask, what is the relationship between time intervals as observed from a given position?
The position of observation is described as z in S, and as z′ in S′. Referring to the beginning
of the time interval as t ′

1, and the end as t ′
2 in S′, and as t1 and t2 respectively in S, we can

write from Eq. (F.1) that

t1 = γ

(
t ′
1 + βz′

c

)
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and

t2 = γ

(
t ′
2 + βz′

c

)

Subtracting, and referring to the time intervals as �t = t2 − t1 and �t ′ = t ′
2 − t ′

1, one has

�t = γ �t ′

or

�t ′ = �t/γ (F.13)

expressing algebraically what is known as time dilation. Equation (F.13) leads to the statement
that “(relativistically) moving clocks run slow.” In the famous twin paradox, although a time
interval might be �t = 1 second on earth, about the time of a heartbeat, the moving twin on
a relativistic rocketship sees the elapsed time as much shorter, of order 1 second/γ , far too
short for a heartbeat. Thus the relativistically moving twin ages more slowly.

F.5 TRANSFORMING dP ′/d Ω′ TO d P/d Ω

In the sections dealing with the transformation of radiated power per unit solid angle from
S′ to S, there are several places where the algebra becomes tedious and distractive. Here, we
have treated several of these items separately.

(1) The sin2Θ′ Factor: Dipole radiation involves a sin2 	′ dependence in the S′ frame. For
the fundamental with oscillation in the x ′-direction, this is written in θ ′, φ′ as

sin2 	′ = 1 − sin2 θ ′ cos2 φ′

From our section on the Lorentz transformations, Eq. (F.10a), in terms of time averaged
values γ ∗ and β∗ (see Chapter 5, Sections 5.4 and 5.5),

sin θ ′ = sin θ

γ ∗(1 − β∗ cos θ )

Noting the γ -relations developed earlier [Eqs. (5.26) and (5.67)], we have

β∗ � 1 − 1

2γ ∗2

The denominator of Eq. (F.10a) takes the form for small θ of order 1/γ :

1 − β∗ cos θ � 1 − β∗
(

1 − θ2

2 + · · ·
)

1 − β∗ cos θ � 1 −
(

1 − 1
2γ ∗2

) (
1 − θ2

2

)
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1 − β∗ cos θ � 1
2γ ∗2 + θ2

2

1 − β∗ cos θ � 1
2γ ∗2 (1 + γ ∗2θ2)

Substitution into Eq. (F.10a) gives

sin θ ′ � θ

γ ∗
(

1
2γ ∗2 (1 + γ ∗2θ2)

)
or

sin θ ′ � 2γ ∗θ
1 + γ ∗2θ2

(F.14)

Then Eq. (5.36) becomes

sin2 	′ = 1 − sin2 θ ′ cos2 φ′

sin2 	′ � 1 − (2γ ∗θ )2

(1 + γ ∗2θ2)2 cos2 φ

sin2 	′ � (1 + γ ∗2θ2)2 − 4γ ∗2θ2 cos2 φ

(1 + γ ∗2θ2)2

sin2 	′ � 1 + 2γ ∗2θ2(1 − 2 cos2 φ) + γ ∗4θ4

(1 + γ ∗2θ2)2 (F.15)

as was used in Eq. (5.44).
(2) Transformation from dΩ′ to dΩ: As a next step, we wish to Lorentz-transform the

solid angle

d
′ = sin θ ′dθ ′dφ′

to a θ, φ-coordinate system. Since φ and φ′ are in planes perpendicular to the relativistic
motion between the S and S′ frames, the simple relationship φ′ = φ is true. Hence,

dφ′ = dφ

By Eq. (F.14) we have a relation between θ and θ ′. Now, all that is needed is a relationship
between dθ ′ and dθ . Toward this end, we can again use Eq. (F.14). This time, we take a
derivative on both sides:

cos θ ′ dθ ′ � (1 + γ ∗2θ2)(2γ ∗dθ ) − 2γ ∗θ (2γ ∗2θ dθ )
(1 + γ ∗2θ2)2

cos θ ′ dθ ′ � 2γ ∗(1 − γ ∗2θ2)
(1 + γ ∗2θ2)2 dθ

To eliminate cos θ ′, we note that

cos2 θ ′ = 1 − sin2 θ ′ � 1 − (2γ ∗θ )2

(1 + γ ∗2θ2)2
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When written with a common denominator, expanded, and like terms collected, this
gives

cos θ ′ � 1 − γ ∗2θ2

1 + γ ∗2θ2

Combining equations involving cos θ ′ above, one has

1 − γ ∗2θ2

1 + γ ∗2θ2
dθ ′ � 2γ ∗(1 − γ ∗2θ2)

(1 + γ ∗2θ2)2
dθ

or

dθ ′ � 2γ ∗

1 + γ ∗2θ2
dθ (F.16)

The equation for solid angle then becomes

d
′ � sin θ ′dθ ′dφ � 4γ ∗2

(1 + γ ∗2θ2)2
· θ dθ dφ (F.17)

as was used in Eq. (5.45).
(3) The dΩ Integrals: In calculating the power radiated, it is necessary to integrate d P/d


[Chapter 5, Eq. (5.47)] over all solid angles. Because integration over φ contributes 2π

to the integral [see paragraph before Eq. (5.50a)], the integration reduces to

∫ π

0

∫ 2π

0

1 + γ ∗4θ4

(1 + γ ∗2θ2)5
θ dθ dφ = 2π

γ ∗2

∫ π

0

(1 + γ ∗4θ4)(γ ∗θ ) d(γ ∗θ )

(1 + γ ∗2θ2)5

Substituting

u = γ ∗θ

x = 1 + u2

dx = 2u du

the integrand becomes 1 + u4 = 1 + (u2)2 = 1 + (x − 1)2 = x2 − 2x + 2. Hence,

∫ π

0

∫ 2π

0

1 + γ ∗4θ4

(1 + γ ∗2θ2)5
θ dθ dφ = 2π

γ ∗2
· 1

2

∫ (1+π2γ ∗2)

1

(x2 − 2x + 2) dx

x5

∫ π

0

∫ 2π

0

1 + γ ∗4θ4

(1 + γ ∗2θ2)5
θ dθ dφ = π

γ ∗2

∫ ∞

1

(
1

x3
− 2

x4
+ 2

x5

)
dx

∫ π

0

∫ 2π

0

1 + γ ∗4θ4

(1 + γ ∗2θ2)5
θ dθ dφ = π

γ ∗2

[
1

(−2x2)
+ 2

(3x3)
+ 2

(−4x4)

]∞

1
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Therefore the integral taking us from Eq. (5.47) to Eq. (5.50) becomes∫ π

0

∫ 2π

0

1 + γ ∗4θ4

(1 + γ ∗2θ2)5
θ dθ dφ = π

3γ ∗2
(F.18)

REFERENCES

1. J.D. Jackson, “The Impact of Special Relativity on Theoretical Physics,” Physics Today 40, 34 (May
1987).

2. P.A. Tipler, Modern Physics (Worth, New York, 1978), pp. 21–23.
3. G. Joos, Theoretical Physics, (Hafner, New York, 1934), pp. 233–235.
4. L. Landau and E. Lifshitz, The Classical Theory of Fields (Addison-Wesley, Reading, MA, 1951),

p. 121.



Index

absorption
coefficient, 8, 61, 63, 90, 428
cross-section, 9, 64
edge nomenclature, 17
edges, K, L, M, 2, 3, 16
edges, typical values, 3
fraction, collisional, 226
length, 3, 63, 224
length, collisional, 226
lengths, typical values, 3
processes, 5

accuracy, interferometer, 331
adiabatic condition, 210
adiabatic energy equation, Eq,

(6.54), 208
Airy disk, 317
Airy pattern, 20, 317–18, 332, 352
alpha particle, 10
amplified spontaneous emission

(ASE), 269, 271
angular illumination, 364, 396,

398
aspheric optics, 404
astronomy, EUV and soft x-ray,

108–110
astronomy, x-ray, 108–110
atom to atom separation, 16, 18
atomic

cross-section for absorption, 64
density, 18
energy levels, 10, 16
mass unit, 10, 64, 418
scattering factor, 39, 48–53, 90,

100, 104, 428
size, 16
subshell photoionization cross-

sections, 9, 437–439
weight, 18

Auger electron, 6, 408, 426
Avogadro’s number, 18, 419

beamline, 409
beamline, efficiency, 315
bending magnet radiation, see

synchrotron radiation
binding energy. 5–7, 15–17,

420–423
biological applications, 372
biological structures, 369
black body, equivalent temperature,

245, 248
black body radiation, 242
Bohr energy levels, 10
Bohr radius, 4, 11
Bohr–Rutherford model, 10–11
Boltzmann constant, 193, 245,

419
Born approximation, 44
Borrmann effect, 103
boundary conditions at an interface,

67, 104
Bragg peaks, 102
Bragg’s law, 19, 48, 99, 101–103,

185
bremsstrahlung, 8, 118, 191–192
Brewster’s angle, 80–81, 115–116,

273
brightness, 165–168, 178, 182
Brillouin scattering, 101, 229

Cassegrain telescope, 110
cavity optics, 271
central radiation cone, 140

for finite K , 148
for finite electron beam

divergence, 165
chemical bonding, 6–7, 16
chemical mapping, 377
classical electron radius, 39, 59
closed electron shells, 248, 283
closed shell emission lines, 249

cluster seeded laser produced
plasma, 253

coherence, degree of, 301–306
coherence, longitudinal, 300, 303,

306
coherence, transverse, 300, 302,

304
coherent, fully, 302, 327
coherent radiation, 301

coherence length, 303
coherence properties of EUV/soft

x-ray laser radiation, 319
coherence properties of high

harmonic radiation, 260
coherence properties of undulator

radiation, 310–318, 333
coherence region, 302
coherence time, 302
coherent power, 313, 315, 318
complex degree of coherence,

301
spatial coherence, 300, 302,

304
collision, electron-ion, 197
collision frequency, electron-ion,

223, 225
collisional damping, transverse

wave in a plasma, 224
collisionally pumped lasers, 283
compact EUV lasers, 291
complex atomic scattering factor,

see atomic sacttering
factor

complex coherence factor, 322
Compton wavelength, 4
condenser lens, 396
conservation of charge, 27
conservation of energy, 208, 229
conservation of momentum, 206,

229
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conservation of particles, 205
continuity equation,, 205
continuum radiation, 242
conversion factors, 418
conversion of laser light to thermal

radiation, 258
coupling ratio, 163
critical angle, 70–71, 82, 87, 94
critical electron density, 196, 221
critical frequency, 221
critical harmonic number, see

synchrotron radiation,
wiggler

critical photon energy, 132
critical wavelength, 133
cross-section

absorption, 9, 64
photoionization, 9
scattering, 38
scattering,

bound electron, 42–43
differential, 41, 49, 51
free electron, 40
multi-electron atom, 49, 51
Rayleigh, 43
Thomson, 40

stimulated emission, 277
cryofixation, 367, 375, 372, 377,

378
crystallography, 19, 372
CuKα radiation, 107
current density, 27, 31, 57, 100
cyclotron frequency, 195, 196,

280

d-spacing, see multilayer mirrors,
405

dark field imaging, 379
Debye length, 193, 195, 215, 225
Debye sphere, number of electrons

in, 196, 225
Debye-Waller factor, 105
decay length, 63, 216, 224
deep ultraviolet (DUV), 111, 395
defect inspection, 407
deflection parameter, see

synchrotron radiation,
undulator, wiggler 143,
181

depopulation, 271
depth of focus, 361, 398
diffraction, 18–20, 101
diffraction, scalar theory of, 350
diffractive orders, 341, 346
diffraction half-angle, 352
diffraction limited radiation, 292,

305, 306, 312, 320, 321,
397, 402

diffraction pattern, circular pinhole,
352

diffracton pattern, zone plate, 356
dipole matrix element, 14
dipole radiation, 36–37, 135, 150
dipole radiation, atomic selection

rules, 15
dipole radiation, atomic transition

probability, 14, 50
dipole radiation, undulators, 135,

138
discharge plasmas, 189, 270, 292
discharge-driven lasers, 292
dispersion, 58

diagram, waves in plasma, 216,
228, 230, 231

relation, electron-acoustic wave,
215

relation, ion-acoustic wave, 219
relation, transverse wave in a

plasma, 221
relation, transverse wave in

vacuum, 30
relation, transverse wave in a

material, 58–61
theory, semi-classical, 42, 56–58

DNA, 369
Doppler broadened linewidth, 139,

163, 165, 179, 274, 277
Doppler shift, 135–136, 148, 158,

163, 175, 179
DRAM, 395, 402, 411, 412

E-beam direct write, 386, 403
E-beam projection, 403
Einstein A and B coefficients, 275
electron

acoustic waves, 213
beam divergence, 164
beam emmitance, 316
beam parameters, 162
beam patterning, 386, 387
beam phase space, 162
bending radius in a magnetic

field, 196, 280
binding energy, 16, 420
bound, 13
bunch, 152, 159, 163, 165, 169
collision frequency, 225
collision induced ionization, 5
current, in storage ring, 152, 159
cyclotron frequency, 196
density gradient, 231
density scale length, 238
energy, (γ ), 131
energy spread, 162
plasma waves, 213
primary, 5

radius, classical, 39, 59
range, 7, 409
resonant, 217
secondary, 5
sound speed, ae, 214
storage ring, 127
suprathermal, 192, 231, 242, 256,
temperature, 193, 289
thermal velocity, 216
valance, 16

elements important to living cells,
369

emission
lines, 15, 420
lines in plasmas, 254
photoelectron, 5
processes, 5
spectral line shape, 285
spontaneous, 14, 268
stimulated, 271

emittance, electron beam, 162, 178
energy fine structure, 15
energy level diagram, 16, 17, 270,

271, 285, 287
hydrogen-like lasing ions, 271
neon-like lasing ions, 285
nickel-like lasing ions, 287

energy levels, 16, 17
ESCA, electron spectroscopy for

chemical analysis, 381
Euler equations, 207
EUV interferometry, 330
EUV lasing, 291
EUV plasma emission, 253
EUV/soft x-ray laser, 273
evanescent wave, 71, 87
expectation value, 12, 13
exponential gain, 274, 285
extreme ultraviolet, 1

astronomy, 108–110
lasers, 267, 291–294
lithography, 110–113, 404–407
microscopy, 108–109, 385

F-number, 345
far field approximation, 351
Faraday rotation, 114–116
femtosecond

EUV lasers, 293
high harmonic generation, 259,

293
laser pulses, 185, 261, 321
synchrotron radiation, 185
x-ray generation, 185

field effect transistor (FET), 401
fields, scattered, 27
fields ratio, magnetic to electric in a

material, 62
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fields ratio, magnetic to electric in
vacuum, 35

figure and finish, 404
filter, low pass, 78
filter, notch, 78–79
fluorescence, 6
fluorescence microprobe, 117
free electron laser (FEL), 141, 153,

185
Fresnel zone plate lens, see zone

plate
Fresnel-Kirchhoff diffraction

formula, 350
fringe contrast, 333
fringe pattern, see interference

pattern

gain media, 273
gain narrowing, 285
gain-length product, 279
gas jet, laser produced plasma, 253
Gaussian distribution, 162, 163,

305
glancing incidence, 69–71, 74, 82,

86, 94
glancing incidence mirrors, 94, 116
gratings, 342
grazing incidence, see glancing

incidence
group velocity, 60, 223

harmonic generation, 141ff., 146,
154, 160, 170, 172ff.,
177–181, 233

harmonic, critical, 180–181
harmonic, merging, 177–182
harmonic, spectrum, 178–179, 235,

261
Heisenberg’s uncertainty principle,

126, 129–130, 304
helium-like ions, 246
high gain (single pass) lasers, 267
high harmonic generation, 259, 293
high harmonic phase matching,

261
holographic interferometer, 240
holography, 307
hot-dense plasmas, 189, 267
hydrogen-like (single electron)

carbon ion, 279
hydrogen-like ions, 246, 247, 249,

267, 270, 271, 272, 279

impact parameter, 8, 192, 225
index of refraction, see refractive

index
integrated circuit (IC), 395
intensity, 35, 62–63

intensity-wavelength thresholds,
234

interference, 65, 99–102, 240, 241,
331–333

interference coatings, multilayer, 98
interference pattern, 65, 239, 331,

332
interferometer, Bonse-Hart, 65
interferometer, holographic, 240
interferometer, Mach-Zehnder, 65
interferometer, point diffraction,

331
inverted population density, 270,

278
ion temperature, 289
ionization bottleneck, 248, 283
ionization energies, plasma ions,

247
ionization energy, 5–7, 16–17, 271

Kerr effect, 114, 116
Kirkpatrick-Baez mirror system,

95, 116, 317
Klimontovich equation, 199
knife-edge, 359, 399
Kramers-Kronig relations, 90–94

Lagrangian zonal calculations of
plasma transport, 236

Landau damping, 196, 216
Larmor radius, 131, 195, 196, 280
laser (origin of term), 268

argon fluoride (ArF), 396
atom interaction, 260
axial modes, 272
cavity end mirrors, 271–273
krypton fluoride (KrF), 396
light, absorption wavelength

trends, 258
light, conversion to thermal

radiation, 258
line width, 272, 277
plasma source, 253–254, 406
produced plasmas, 189–191,

250–259, 270, 406
spatial filtering, 318
transitions, 271
visible light, 271

Langmuir waves, 213
life sciences, microscopy

applications, 369
lifetime, 14, 270–272, 278, 283,

285, 287
line width, 14, 397, 408
lithography, 395
lithography, DUV, 110ff.
lithography, extreme ultraviolet,

110–113, 404–408

lithography, x-ray, 408–412
longitudinal mode selector, 272
Lorentz, angular transformation,

127, 458
Lorentz contraction, 135, 174,

460
Lorentz force, 39, 206
Lorentz transformation, 126, 135,

149, 150, 173, 454

macroscopic to atomic absorption
relationship, 64

magnetic field, 35, 62, 137, 196
magnetic materials, 114
magneto-optical effects, 114
magnetron sputtering, 106–107
malaria, 372
mask, 397, 404
mass absorption coefficient, 9, 61,

63, 90
Maxwell’s equations, 25, 56, 100,

199, 201, 207
Maxwell-Euler equations, 207
Maxwell-Klimontovich equations,

199
Maxwell-Vlasov equations, 201
Maxwellian velocity distribution,

193, 216
mercury arc, 396
metal oxide semiconductor (MOS),

407
microchip, 395
minimum feature sizes, 403
mirrors, glancing incidence, 94
mirrors, multilayer, see multilayer

mirrors
modulation transfer function

(MTF), 398
molecular labeling, 372, 376
momentum equation, 207
monochromator, 140, 315
multilayer asymmetry, �, 102
multilayer coatings, EUV

astronomy, 108
multilayer mirror, 98f., 288, 319,

332, 385, 405
applications, 107ff.
computational model, 104
fabrication, 106
higher order peaks, 102
magnetic materials, 115
optimal asymmetry, 103
scattering theory, 100

mutual coherence function, 301,
322

nanofabrication, 386
near thermal emission, 191, 246
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neon-like ions, 246, 267, 284
nickel-like ions, 267, 287
nickel-like lasers, 288
non-equilibrium, 269
non-linear processes, 194, 227, 228,

232
normalized degree of coherence,

322
numerical aperture, 343, 345, 356,

397–400

orbits, electron, 13
oscillation velocity, 232
oscillator strength, 50, 57, 271,

277

partial coherence factor, 398
partially coherent, 302
partially coherent illumination,

lithography angular
illumination, 398

partially coherent illumination,
microscopy, 365

particle distribution function, 199
Pauli exclusion principle, 13
penetration depth, at the critical

angle, 88
penetration depth, lossy medium,

82
penetration depth, over dense

plasma, 221
perfect gas relation, 209
periodic table of the elements,

inside back cover
phase coherent, 268, 301
phase contrast microscopy, 367,

377
phase matching techniques, 261
phase shift, 65
phase space product, 162, 272, 316
phase space volume, 162, 272, 316
phase velocity, 60, 222, 321
photo-absorption, 8, 9
photo-absorption cross-section, 9,

64
photo-electron, 5, 6, 108
photo-ionization, 6, 9
photoemission, 7, 381

microscopy, 108–109, 384
spectroscopy, 6, 381
spectromicroscopy, 385

photon energy to wavelength
conversion, 4, 418

photon flux, 128, 132, 134,
166–168, 183–184

to power conversion, 4
photoresist, 397
physical constants, 419

picosecond plasma emission
studies, 252

picosecond plasma interferometry,
240

pinhole
diffraction, 337, 352

degree of coherence, 329
incoherently illuminated, 329
spatial filter, 310, 319, 338

Planck distribution function, 244,
275

plane of incidence, 66
plasma

basic parameters, 195
collision mean free path, 195
collisionless, 210
continuum emission, 191–192,

242
cyclotron frequency, 196, 280
Debye screening distance, 193,

195
diagnostics, 113
diagnostics, multilayer mirrors,

113
electron-acoustic wave, 215
electron density, 195
electron temperature, 195
emission lines, 241ff., 246, 250,

254
expansion velocity, 190, 240
fluid description, 202
frequency, 214
hot dense, 189
ion acoustic wave, 219
kinetic description, 200
laser-produced, 189
magnetic field, 195
magnetized, 196, 227
microscopic description, 197
non-linear processes, 194, 227
overdense, 221
plasma frequency, 195, 214
pressure, 203–209, 211, 218
probing, interferometry, 238
refractive index, 223, 239
scale length, 213, 238
shadowgrams, 241
simulations, 234
temperature, 189, 193, 195, 209,

212, 214, 219, 245, 253,
275, 277, 289

transverse wave, 221
waves, 213, 217, 219

PMMA, 384
point diffraction interferometer, 330
point source, 302–304, 327
polarization

materials studies, 114

parallel, (p), 71, 77–81
perpendicular, (s), 71–76

polarizing angle, see Brewster’s
angle

population inversion, 267, 269, 283
power

dipole radiation, 36–37
laser, 318
photon flux conversion, 4
undulator, 138, 147ff.
wiggler, 182ff.

Poynting vector, 33–35
time averaged (in a material),

62–63, 88–89
time averaged (in vacuum), 38

Poynting’s theorem, 34
pressure, plasma, 203–209, 211,

218
protein crystallography, 19, 372

quantum mechanics, 12–17
quantum numbers, 13, 15
quantum theory, old, 12

radial charge distribution, atom, 17
radiated electric field, oscilling

electron, 33
radiation dose, 367, 368, 371
radiation pressure, 238
radiation trapping, 270
radiation

bending magnet, see synchrotron
radiation

incident, 18
laser, 267–294
plasma, 241–259
high harmonics, 259–261
synchrotron, see synchrotron

radiation
undulator, see synchrotron

radiation
wiggler, see synchrotron

radiation
radiative

decay rates, 286
equilibrium, 275
lifetimes, 272

radiofrequency (rf), 168
radius of curvature, electrons in a

magnetic field, 131, 196,
280

Raman scattering, 101, 229
Rayleigh resolution criterion, 357,

364
Rayleigh scattering cross-section,

43
recombination, 279
recombination lasing, 294
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reference wave, 65, 240, 308, 331
reflection

critical angle, 76
curves, 76, 79, 81, 105
multilayer mirror, 101, 103–106
normal incidence, 74
parallel polarization, 77–81
perpendicular polarization,

71–76
total external, 20, 60, 69–71

refraction, 19–20, 66–68, 84, 289
refractive index, 20, 52, 57–61, 99,

104, 115, 223
plasma, 223, 239
sign of β, 20, 60

relative spectral bandwidth, 147,
242, 272, 277, 315

relativistic contraction, 145
resist, 384, 397, 410
resonance absorption, 227
retarded time, 33
ribosomes, 369
Rydberg constant, 11, 419

saturation, 289
scanning soft x-ray microscope,

306, 337, 367, 377, 383,
385

scattering, 18–20, 38, 56, 99
by bound electrons, 41ff.
by a free electron, 39
by multi-electron atom, 44ff.
coherent, 52
cross-section, 38, 40, 42, 43, 49

for a bound electron, 42
for a free electron, 40
for a multi-electron atom, 49

of electrons, 7
factors, see atomic scattering

factors
forward, 50, 52, 56, 57
Rayleigh, 43
stimulated, 229
Thomson, 2–15, 40–41, 185

Schrödinger equation, 12
Schwarzschild optics, 109, 112,

404
searchlight effect, 126, 129, 138,

160
selection rules, quantum, 15
selective depopulation, 287
shells, K, L, M, 15
silica, fused, 2
silicon nitride, 3
simulated emission, 268, 277
Snell’s Law, 68
soft x-ray, 1, 2

astronomy, 108

lasers, 267
microscope, 366, 372–377
microscope, scanning, 307, 337,

366, 367, 377, 383, 385
microscopy, 365
plasma emission, 248

solar corona, 110
spatial and spectral filtering, 309
spatial and temporal coherence,

268, 301
spatial coherence, 304, 320
spatial distribution of charge in an

atom, 15
spatial filtering, 309

EUV and soft x-ray lasers, 318
undulator radiation, 310

spatial resolution, 357
spatially coherent illumination,

307, 368
spatially coherent power, 312–313
spatially coherent radiation, 322
specific heats, ratio of, 210
spectral bandwidth, 99, 140,

147–148, 152, 161ff.,
179, 242, 272, 277, 315

spectral brightness, 165–168, 178,
182, 243

spectroscopic notation, 13, 280
speed of light in vacuum, 26,

419
spin-orbit coupling, 15
spontaneous emission, 14, 268
Stefan-Boltzmann radiation law,

245
stepper, optical reduction camera,

396, 399
stereo image pair, 378
stimulated emission, 271
strong field laser-atom interaction,

260
suprathermal electrons, 192, 231,

242, 256
suprathermal x-rays in plasmas,

192, 232, 256
surface science, 6, 108
synchrotron radiation, 124ff.

bending magnet radiation, 126ff.,
177, 183, 185

angular divergence, 134
critical photon energy, 132
emission angle, 127
G1 and H2 functions, 132
photon flux, 132–134
polarization properties, 134
radius, 131

non-dimensional magnetic
strength for periodic
magnet, 142

searchlight effect, 126, 138,
160

time structure, 168
typical parameters, 128
undulator radiation

angle dependent power, 159,
160

angular dependence, 160, 167
brightness, 128, 165–168, 178
central radiation cone, 128,

139–140, 147–148,
152–156, 162–165, 167

condition, 141, 163–164
magnet parameter K, 143
electron beam parameters,

162, 163
equation, 145
harmonics, 141ff., 146, 154,

160, 170, 172ff.
helical, 171
photon flux, see power
polarization properties, 146,

170–172
power, 128, 138, 147ff.

in central cone (electron
current), 153, 155

in central cone (single
electron), 152

total power in the
fundamental, 161

total radiated power, 183
radiation pattern, 137–138,

147
spectral bandwidth, 140,

147–148, 152, 161ff.
spectral line shape, 164
spatial filtering, 310
spectral distribution, 164
total radiated power, 183
undulator condition, 141,

163–164
undulator equation, 145
wavelength tuning. 145,

311–319
to wiggler radiation transition,

177ff.
wiggler radiation

angular distribution, 182–184
critical harmonic number,

180–181
critical photon energy, 180
harmonic merging, 177–182
magnet parameter K, 181
photon flux, 182–184
power, 128, 182–184
radiation, 124, 128, 143, 177ff.
total radiated power, 183
transition to, 177ff.
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technology road map, 401, 403
telescope, Cassegrain, 110
temproal coherence length,

302–303, 319
thermal energy density, 203
thermal expansion velocity, 212
Thomas-Reiche-Kuhn sum rule,

51
Thomson scattering cross-section,

40, 185
three-wave mixing, 229
threshold for non-linear plasma

processes, 232
total external reflection, 20, 60,

69–71
total external reflection, critical

angle, 70–71, 82, 87,
94

transition
allowed, 15
energies of plasma ions, 249
lifetime, 14, 270, 272
probability, 14–15, 50, 271, 275
rates, 270

transverse (spatial) coherence, 300,
304, 306

transverse electromagnetic mode,
TEM00, 272

transverse mode control, 320
transverse mode selector, 272, 273,

309, 312, 318

uncertainty principle, 129, 304

undulator radiation, see synchrotron
radiation

upper excited state, 270

van Cittert-Zernike theorem, 321,
326

velocity distribution function, 197,
200

Vlasov equation, 201

wafer, 397, 400
waist diameter, focal region, 306
water window, 371
wave equation, 12, 26, 56–59
wave, electron-acoustic, 193, 213
wave, ion-acoustic, 219
wave, decay, 9, 60, 62, 87, 215
wave, transverse in plasma,

219–221
wavefront accuracy, 407
wavefront distortion, 331
wavelength tuning, undulator,

316
wiggler radiation, see synchrotron

radiation

x-ray, 1
crystallography, 1, 19, 370
emission spectra in plasmas, 254
fluorescence microprobe, 117
interferometry, 65, 240, 241, 331
lasers, 267
lithography, 408

microdiffraction, 118
microprobe, 116
microscope, (also see soft x-ray),

366
scanning, (also see soft x-ray),

367
photoelectron spectroscopy

(XPS), 381
proximity lithography, 408
soft, 1

Z-pinch discharge plasma, 254
zone plate lens, see zone plate
zone plate, 339

aspect ratio, 387
Bragg-Fresnel, 388
chromatic aberration, 363
depth of focus, 362
diameter, 344
diffraction efficiency, 348–349
diffraction pattern, 356
diffractive orders, 341, 346
F number, 345
fabrication, 384
focal intensity, 355
focal length, 342
focal plane, 355
formulae, 337
numerical aperture, 343, 345
outer zone width, 339, 344
resolution, 359
ring radii, 343
spectral bandwidth, 361ff., 363
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