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Foreword

“I think the next century will be the century of complexity”, Stephen Hawking in San Jose
Mercury News, Morning Final Edition, January 23 (2000)

During the recent years, several different measures defining complexity have been
proposed within the scientific disciplines of physics, biology, mathematics and com-
puter science. Such measures of complexity are generally context dependent. In
chemical physics, a set of statistical complexity measures have been introduced us-
ing the information theoretical tools centering around the electron probability den-
sity of N -electron system and its other characteristics. The monograph presents a
detailed description of such measures of complexity. Starting with the information
theoretical foundations this monograph discusses at length their applications in the
electronic structure of atoms and molecules including reactivity. The subject matter
of the title is covered by the leading research scientists in the field who present an
up-to-date account of their contributions, including future projections.

The following topics are dealt with by leading research groups from 9 countries
who are currently active in this area of research: Entropic Uncertainty Relationships
in Quantum Physics; Scaling properties of Information Theoretical Uncertainty-like
Measures; Derivation of Generalized Weizsäcker Kinetic Energy Functionals from
Quasiprobability Distribution Functions; Complexity in Atoms; Statistical Com-
plexity and Fisher-Shannon Information: Applications; Rényi Entropy and Com-
plexity; Entropy and Complexity Analyses of D-dimensional Quantum Systems;
Information Uncertainty, Similarity and Relative Complexity Measures; Atomic
and Molecular Complexities: Their Physical and Chemical Interpretations includ-
ing Relativistic Electron Density.

The monograph is intended for the practicing physical, theoretical and computa-
tional chemists, material scientists, bio physicists and mathematical physicists.

C.R. Rao, Sc.D., F.R.S.
National Medal of Science Laureate, USA

Eberly Professor Emeritus of Statistics, Penn State
Distinguished Professor Emeritus, CR RAO AIMACS
University of Hyderabad Campus, Prof CR RAO Road

Hyderabad 50046, India
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Preface

Information theoretical tools are being increasingly applied in several disciplines
of scientific enquiry ranging from chemistry, physics, biology, medicine, genetics,
electrical engineering, computer science, to linguistics, economics and other social
sciences. Recently, the useful intuitive concept of complexity has attracted consid-
erable attention. The system specific context and scale dependence, spread across
disciplines, has given rise to several a host of different measures of complexity. In
chemical physics, several structural and reactivity related properties and processes
can be analyzed in terms of the probability distribution function which describes the
uncertainty, randomness, disorder or delocalization, within an information theoret-
ical framework. The present monograph is a collective endeavor of nine research
groups in physics and chemistry actively engaged in the development and applica-
tions in this rapidly growing and truly interdisciplinary field of research. Each chap-
ter is planned as being self contained. The opening contribution of Iwo Bialynicki-
Birula and Łukasz Rudnicki entitled Entropic Uncertainty Relations in Quantum
Physics presents a critical study of the information theoretical uncertainty-like re-
lations covering various generalizations and extensions of the uncertainty relations
in quantum theory that involve the Rényi and the Shannon entropies. More direct
connection of such relationships to the observed phenomena is emphasized. The
contribution by Debajit Chakraborty and Paul W. Ayers entitled Derivation of Gen-
eralized von Weizsäcker Kinetic Energies from Quasiprobability Distribution Func-
tions focuses on the Fisher Information of the electronic distribution functions and
describes how generalizations of the Weizsäcker kinetic energy density functional
can be derived from the canonical momentum-space expression for the kinetic en-
ergy with further extension to higher-order electron distribution functions. In the
chapter written by C.P. Panos and coworkers entitled Atomic Statistical Complexity
a review of applications of the Shannon information entropy, Fisher measure, On-
icescu energy, and two of the simple statistical complexity measures on atoms are
presented using the Hartree-Fock density in position and momentum space. Inter-
esting correlations with the experimental properties such as the ionization potential
and static dipole polarizability are reported using such measures. The chapter en-
titled Statistical Complexity and Fisher-Shannon Information Applications by Ri-
cardo López-Ruiz and coworkers defines the currently most widely used statistical
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x Preface

measure of complexity, and is known as the LMC measure named after its main de-
velopers. In it, a variety of applications in discrete and continuous standard model
quantum systems are presented. The statistical indicators discern and highlight some
conformational properties of the model systems. J.S. Dehesa and coworkers review
the present status of the analytic information theory of quantum systems with non-
standard dimensionality in the position and momentum spaces in their chapter en-
titled Entropy and Complexity Analyses of D-dimensional Quantum Systems. Here
the power and entropic moments are used to study the most relevant information-
theoretic one-element Fisher, Shannon, Rényi, Tsallis as well as some composite
two-elements Fisher-Shannon, LMC shape and Cramér-Rao complexities measures
which describe the spreading measures of the position and momentum probabil-
ity densities well beyond the standard deviation. The chapter entitled Atomic and
Molecular Complexities—Their Physical and Chemical Interpretations by J.C. An-
gulo and coworkers further develops on the meaning, interpretation and applications
of the complexity measures by utilizing different order-uncertainty planes in the po-
sition and momentum electron densities of several atomic (neutrals, singly-charged
ions, isoelectronic series) and molecular (closed shells, radicals, isomers) systems.
The quantities sustaining such planes are the exponential and the power Shannon
entropies, the disequilibrium, the Fisher information and the variance. Each plane
gives rise to a measure of complexity, determined by the product of its components.
By means of extensive numerical examples an emphasis is placed on the necessity
to consider both position and momentum space probability density. In the chapter
entitled Rényi Entropy and Complexity by Á. Nagy and E. Romera the relation-
ship between the statistical complexity and the Rényi entropy is studied. A detailed
study on the uncertainty-like relations for the Rényi entropy including uncertainty
relations for single particle densities of many particle systems in position and mo-
mentum spaces is presented. The maximum Rényi entropy principle is used to gen-
eralize the Thomas-Fermi model. A relationship with the atomic radius and quantum
capacitance is discussed. The chapter entitled Scaling Properties of Net Information
Measures for Bound States of Spherical Model Potentials by K.D. Sen and S.H. Patil
reviews the results obtained on the scaling properties from dimensional analysis of
the position and momentum variances defining the quantum mechanical Heisenberg
uncertainty product as well as several composite information theoretical measures.
A test set of free and spherically confined model potentials has been included and
the main dimensionless variables on which the dynamical variables depend have
been listed. In their chapter entitled Chemical Information from Information Dis-
crimination and Relative Complexity Paul Geerlings and coworkers have presented
a review of their work which derives heavily from the Kullback-Leibler relative in-
formation measure in which a suitable choice of the reference prior density reveals
useful information. Interesting chemical insights, for example, on the periodicity
in Mendeleev’s table and the interesting reaction profiles can be extracted in this
manner. The investigation of atomic complexity measures is reported in terms of
the non-relativistic and relativistic shape electron densities so as to quantify the rel-
ativistic effects on the complexity measure. It is shown that a relative complexity
measure can be defined so as to reflect the diversity of electron density functions
with respect to a reference atom as the sub shells are filled across the periodic table.
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Chapter 1
Entropic Uncertainty Relations in Quantum
Physics

Iwo Bialynicki-Birula and Łukasz Rudnicki

Abstract Uncertainty relations have become the trademark of quantum theory
since they were formulated by Bohr and Heisenberg. This review covers various
generalizations and extensions of the uncertainty relations in quantum theory that
involve the Rényi and the Shannon entropies. The advantages of these entropic un-
certainty relations are pointed out and their more direct connection to the observed
phenomena is emphasized. Several remaining open problems are mentioned.

1.1 Introduction

In recent years we have seen many applications of the Rényi and Shannon entropies
in many fields from biology, medicine, genetics, linguistics, and economics to elec-
trical engineering, computer science, geophysics, chemistry, and physics. In particu-
lar, the Rényi entropy has been widely used in the study of quantum systems. It was
used in the analysis of quantum entanglement [1–5], quantum communication pro-
tocols [6, 7], quantum correlations [8], quantum measurement [9], and decoherence
[10], multiparticle production in high-energy collisions [11–13], quantum statisti-
cal mechanics [14], pattern formation [15, 16], localization properties of Rydberg
states [17] and spin systems [18, 19], in the study of the quantum-classical corre-
spondence [20], in electromagnetic beams [21], and the localization in phase space
[22, 23].

Our aim in this review is to use the Shannon and Rényi entropies to describe the
limitations on the available information that characterizes the states of quantum sys-
tems. These limitations in the form of mathematical inequalities have the physical
interpretation of the uncertainty relations. We will not enter here into the discussion
(cf. [24, 25]) of a fundamental problem: which (if any) entropic measure of uncer-
tainty is really most adequate in the analysis of quantum mechanical measurements.

I. Bialynicki-Birula (�)
Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46,
02-668 Warszawa, Poland
e-mail: birula@cft.edu.pl

K.D. Sen (ed.), Statistical Complexity,
DOI 10.1007/978-90-481-3890-6_1, © Springer Science+Business Media B.V. 2011
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2 I. Bialynicki-Birula and Ł. Rudnicki

The uncertainty relations discussed in this paper are valid as mathematical inequali-
ties, regardless of their physical interpretation. Since this is a review, we felt free to
use the results of our previous investigations. Of course, such self-plagiarism would
be highly unethical in an original publication.

1.2 Information Entropy as a Measure of Uncertainty

Statistical complexity, a tool presented and explored in this book is based on in-
formation entropy. This concept was introduced by Claude Shannon [26] in 1948
and grew up to have many applications. There are also several generalizations and
extensions which we will discuss in our contribution. We shall focus on the uncer-
tainty, a notion closely connected with the information entropy but a little bit wider
and having different meanings depending on a context. We shall use here the term
uncertainty as a measure of missing information. The use of the information entropy
as a measure of uncertainty becomes then very natural. All we have to do is to re-
verse the sign. The lack of information—negative information—is the uncertainty.
In simple terms, we can measure the capacity of an empty tank by measuring the
volume of water filling this tank. Therefore, the uncertainty or missing information
can be measured in exactly the same manner as the information is measured. We
shall exploit this point of view showing that the measure of uncertainty based on
the information entropy may be used to replace famous quantum mechanical uncer-
tainty relations. Moreover, we shall argue now that this method of expressing the
uncertainty relations is much closer to the spirit of quantum theory.

1.2.1 Standard Deviation

In classical physics the positions and momenta of every particles can be determined
without any fundamental limitations. In that case, when we talk about an uncertainty
of position or momentum of a particle, we mean an uncertainty caused by a lack of
precision of our measuring instruments. When we measure some observable Q we
usually repeat this measurement many times obtaining a distribution of values. We
apply then various standard procedures, well known to experimentalists, to extract
the “best value” of the measured quantity. A crude, but often a sufficient procedure is
to evaluate an average value 〈Q〉 of Q. We can also calculate the standard deviation:

σQ =
√

〈(Q− 〈Q〉)2〉, (1.1)

which we treat as a measure of uncertainty of 〈Q〉. It is the uncertainty connected di-
rectly with a given experimental setup and has no fundamental significance. A more
skilled experimentalist will be able to reduce this uncertainty.

In quantum physics we face a dramatic change because we have to deal with a
spread of measured values which is of fundamental nature. The uncertainty in most
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measurements (there are some exceptions) cannot be indefinitely decreased. This is
due, at least at this stage of our theoretical understanding, to the probabilistic nature
of the quantum world. For example, the state of a single nonrelativistic quantum
particle can be described by a wave function ψ(r). The square of the modulus of
this wave function ρ(r) = |ψ(r)|2 determines the probability distribution of the
position of the particle. Since the probability to find the particle anywhere must be
equal to 1, the function ψ(r) must be normalized according to:

∫

R3
d3r|ψ(r)|2 = 1. (1.2)

This probabilistic distribution of values at our disposal is not connected with some
faults of our measuring procedure but it is an intrinsic property—the spread of val-
ues of the position r cannot be avoided. The classical position rcl can at best be
associated with the average value

rcl = 〈r〉 =
∫

R3
d3rrρ(r). (1.3)

Having a probability distribution ρ(r) we can proceed according to the rules of
statistics and calculate the standard deviation, say σx , that characterizes the spread
of the values of the coordinate x,

σx =
[∫

R3
d3r(x − 〈x〉)2ρ(r)

]1/2

. (1.4)

After the Fourier transformation, we can obtain another description of the same
state

ψ̃(p)=
∫

R3

d3r

(2π�)3/2
e−ip·r/�ψ(r). (1.5)

The Fourier transform ψ̃(p) of a wave function, according to the rules of quantum
mechanics, gives the probability distribution in momentum space ρ̃(p) = |ψ̃(p)|2.
Note, that ρ̃(p) is not the Fourier transform of ρ(r). Due to the Plancherel theorem
for the Fourier transform this probability distribution is normalized since the original
function was normalized as expressed by (1.2). Using this probability distribution
we can calculate σpx the standard deviation of the px component of the momentum,

σpx =
[∫

R3
d3p(px − 〈px〉)2ρ̃(p)

]1/2

. (1.6)

Even though for different states both standard deviations σx and σpx can be ar-
bitrarily small when treated separately, they become correlated when calculated for
the same state. This correlation is usually expressed by the Heisenberg uncertainty
relation,

σxσpx ≥ �

2
. (1.7)
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The bound in the inequality (1.7) is saturated by Gaussian wave functions. Heisen-
berg explained this relation in the following words [27]:

“the more accurately the position is known, the less accurately is the momentum determined
and vice versa”.

Quantum mechanics gave an important reason to study the inherent incomplete-
ness (or uncertainty) of our information about quantum objects. However, in our
opinion, the expression of the uncertainty in terms of standard deviations is too
much ingrained in classical physics to be of importance at a more fundamental
level. We shall argue in the next section that the measure of uncertainty in terms
of information entropy is much more appropriate in the quantum world. We shall
prove the uncertainty relations in quantum mechanics expressed in terms of the in-
formation entropy. Finally, in the last section we introduce further generalizations of
these ideas. We begin with a critical analysis of the standard deviations as measures
of uncertainty.

1.2.2 Limitations on the Use of Standard Deviations

As we have already noticed, the standard deviation is a well known and widely ac-
cepted measure of uncertainty. However it is rarely mentioned that it is not an ideal
tool, failing even in very simple situations. The reason, why we should be care-
ful while using the standard deviation, is explained with the help of the following
examples [28].

1.2.2.1 Example I

Let us specify two regions on the real axis (see Fig. 1.1). The first region is the line
segment A= [L(N+1/N),L(N+1)] with its length equal to L(1−1/N) where L
is the unit length and N is a large number. The second region B is the line segment
with its length equal to L/N separated from the first region by the large distance
NL. In the next step let us assume that we have the probability distribution of the

Fig. 1.1 The particle is to be found mostly in a central region. In addition, there is a tiny probability
that the particle can be found far away
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form (the boxes in Fig. 1.1 represent the probability distribution):

ρ(x)=

⎧
⎪⎨
⎪⎩

1/L, x ∈A,

1/L, x ∈ B,

0, elsewhere.

(1.8)

The standard deviation of the variable x calculated in this case is:

σ 2
x (I)= L2

(
N − 1

N
+ 1

12

)
, (1.9)

and for sufficiently large N we obtain:

σx(I)≈ L
√
N. (1.10)

Therefore, σx tends to infinity with N → ∞, while common sense predicts that the
uncertainty should remain finite. So, why the uncertainty measured by the standard
deviation grows with N? It is simply the effect of a growing distance between the
two regions. Standard deviation is based on the second moment which is very sensi-
tive to the values of an observable lying far away from the average. This is the first
flaw of the standard deviation. Another one appears in the second example [28].

1.2.2.2 Example II

In the previous example the size of the space where the probability distribution
is constant is preserved. Now we omit this condition to present, one more time,
inadequateness of the standard deviation and prepare the reader for the solution of
this problem. Let us assume two different cases (see Figs. 1.2 and 1.3). In the case A
we take:

ρA(x)=
{

1/L, x ∈ [0,L],
0, elsewhere,

(1.11)

Fig. 1.2 The particle is localized with a uniformly distributed probability in a box of length L

Fig. 1.3 The particle is localized with equal probabilities in two smaller boxes each of length L/4
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in the case B we have:

ρB(x)=

⎧
⎪⎨
⎪⎩

2/L, x ∈ [0,L/4],
2/L, x ∈ [3L/4,L],
0, elsewhere.

(1.12)

It is easy to see that in the case A the size of the space where the particle can be
found is L, while in the case B this size is L/2. In the case B we know more
about position than in the case A. According to this obvious argument it is rather
disappointing that the uncertainty of the position is greater in the case B ,

σx(IIA)= L√
12

, (1.13a)

σx(IIB)=
√

7

4

L√
12

. (1.13b)

This is another manifestation of the fact that the gap between two regions (line
segment [L/4,3L/4]) where the particle cannot be found contributes to the standard
deviation.

1.2.3 Uncertainty of Measurements

In all natural sciences measurements play a fundamental role. Every measurement
has some uncertainty, so we want our theoretical tools to be directly correlated with
our knowledge about that uncertainty. On the other hand, as it has been aptly stressed
by Peres [29], “The uncertainty relation such as σxσp ≥ �/2 is not a statement about
the accuracy of our measuring instruments.” The Heisenberg uncertainty relations
in their standard form (1.7) completely ignore these problems. In what follows we
show how to incorporate the quantum mechanical restrictions on the information ob-
tained in an experiment. We shall consider, however, only the ideal situation when
the restrictions on the information gathered in the process follow from the statis-
tical nature of quantum mechanics. Other sources of information loss will not be
taken into account. Still, the real experimental errors will be, to some extent, rep-
resented by the assumed precision of the measurements. To start, we shall rephrase
our quotation from Heisenberg by using the notion of information:

“the more information we have about the position, the less information we can acquire about
the momentum and vice versa”.

1.2.4 Shannon Entropy

Since we know precisely how to measure information, we may try to give a rigorous
mathematical relation that will reflect this statement. Shannon connected the mea-
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sure of the information content with a probability distribution. The use of the infor-
mation entropy fits perfectly the statistical nature of quantum mechanical measure-
ments. All we have to do is to insert the set of probabilities obtained from quantum
mechanics into the famous Shannon formula for the information entropy. Consider-
ing our mathematical applications, we shall use this formula with natural logarithms,
not with logarithms to the base 2,

H = −
∑
k

pk lnpk. (1.14)

We shall now associate information about the experimental errors with the proba-
bilities pk . The proposal to associate the Shannon entropy with the partitioning of
the spectrum of a physical observable was made by Partovi [30]. As an illustration,
let us consider the measurements of the position. For simplicity, we shall consider a
one dimensional system and assume that the experimental accuracy δx is the same
over the whole range of measurements. In other words, we divide the whole region
of interest into bins—equal segments of size δx. The bin size δx will be viewed as
a measure of the experimental error.

Each state of a particle whose position is being measured can be associated with
a histogram generated by a set of probabilities calculated according to the rules
of quantum mechanics. For a pure state, described by a wave function ψ(x), the
probability to find the particle in the i-th bin is

qi =
∫ (i+1/2)δx

(i−1/2)δx
dx ρ(x). (1.15)

The uncertainty in position for the bin size δx is, therefore, given by the formula

H(x) = −
∞∑

i=−∞
qi lnqi. (1.16)

For the experimental setup characterized by the bin size δx the uncertainty of the
measurement is the lowest when the particle is localized in just one bin. The prob-
ability corresponding to this bin is equal to 1 and the uncertainty is zero. In all
other cases, we obtain some positive number—a measure of uncertainty. When the
number of bins is finite, say N , the maximal value of the uncertainty is lnN—the
probability to find the particle in each bin is the same, equal to 1/N .

The uncertainty in momentum is described by the formula (1.14) in which we
substitute now the probabilities associated with momentum measurements. Since
most of our considerations will have a purely mathematical character, from now
on we shall replace momentum by the wave vector k = p/�. In this way we get
rid of the Planck constant in our formulas. In physical terminology this means that
we use the system of units in which � = 1. According to quantum mechanics, the
probability to find the momentum kx in the j -th bin is

pj =
∫ (j+1/2)δk

(j−1/2)δk
dk ρ̃(k), (1.17)
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where ρ̃(k) is the modulus squared of the one-dimensional Fourier transform ψ̃(k)

of the wave function,

ψ̃(k)=
∫ ∞

−∞
dx√
2π

e−ikxψ(x), (1.18)

and δk is the resolution of the instruments measuring the momentum in units of �.
The uncertainty in momentum measured with the use of the Shannon formula is
constructed in the same way as the uncertainty in position,

H(k) = −
∞∑

j=−∞
pj lnpj . (1.19)

1.2.4.1 Examples

The uncertainties measured with the use of the formulas (1.16) and (1.19) do not
suffer from the deficiencies described by our examples I and II. One can easily check
that in the case I the uncertainty caused by the smaller region does not contribute in
the limit when N → ∞. In turn, in the case II when δx = L/4 the uncertainty in the
state A is equal to 2 ln 2 while in the state B it is equal to ln 2. Thus, as expected,
the position uncertainty in the state A is greater (we have less information) than in
the state B .

Now, we shall give one more very simple example that clearly shows the merits
of entropic definition of uncertainty. Let us consider a particle in one dimension
localized on the line segment [−a, a]. Assuming a homogeneous distribution, we
obtain the following wave function:

ψa(x)=
{

1/
√

2a, x ∈ [−a, a],
0, elsewhere.

(1.20)

The Fourier transform of ψa(x) is:

ψ̃a(k)=
√

1

πa

sin(ak)

k
. (1.21)

This leads to the following probability distribution in momentum space:

ρ̃a(k)= 1

πak2
sin2(ak). (1.22)

The standard uncertainty relation (1.7) for this state is meaningless because the sec-
ond moment of ρ̃a(k) is infinite. However the uncertainty in momentum measured
with the Shannon formula is finite. Taking for simplicity the bin size in momentum
as δk = 2π/a, we obtain the following expression for the probability to find the



1 Entropic Uncertainty Relations in Quantum Physics 9

momentum in the j -th bin:

pj = 1

πa

∫ (j+1/2)δk

(j−1/2)δk
dk

sin2(ak)

k2

= 1

π

∫ 2π(j+1/2)

2π(j−1/2)
dη

sin2(η)

η2

= 1

π

∫ 2π(2j+1)

2π(2j−1)
dη

sin(η)

η

= Si[(4j + 2)π]
π

− Si[(4j − 2)π]
π

, (1.23)

where Si is the integral sine function. The uncertainty in momentum is obtained
by evaluating numerically the sum (1.19) which gives H(k) = 0.530. To obtain the
position uncertainty, we take just two bins (δx = a), so that H(x) = ln 2. The sum of
these two uncertainties is about 1.223.

1.2.5 Entropic Uncertainty Relations

We have shown that the use of the Shannon formula gives a very sensible measure
of uncertainties that takes into account the resolution of measuring devices. The sit-
uation becomes even more interesting when we consider measurements on the same
quantum state of two “incompatible” properties of a particle. The term incompat-
ible has a precise meaning in terms of the experimental setup and is reflected in
the mathematical framework of quantum mechanics. In this study, we shall treat not
only the most important example of such incompatible properties—the position and
the momentum of a particle—but also angle and angular momentum.

As has been argued by Bohr and Heisenberg [31], it is impossible to measure
the position without loosing information about the momentum and vice versa. This
property is embodied in the standard Heisenberg uncertainty relation and we will
express it now in terms of Shannon measures of uncertainty.

H(x) +H(p) > 1 − ln 2 − ln

(
δxδp

h

)
. (1.24)

To stress the physical meaning of this relation, we reinserted the Planck constant. It
is clear that this inequality is not sharp since for large δxδp the right hand side be-
comes negative. However, in the quantum regime, when the volume of phase space
δxδp does not exceed the Planck constant h, we obtain a meaningful limitation on
the sum of the uncertainties in position and in momentum. When one uncertainty
tends to zero, the other must stay above the limit. In the last example considered in
the previous section the right hand side in (1.24) is equal to 1 − ln 2 = 0.307, while
the calculated value of the sum of two uncertainties was equal 1.223.
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The proof of this inequality was given in [32] and it proceeds as follows. First,
we use the integral form of the Jensen inequality for convex functions [33, 34]. The
function ρ lnρ is a convex function. Therefore, the value of a function evaluated
at the mean argument cannot exceed the mean value of the function so that the
following inequality must hold:

〈ρ lnρ〉 ≥ 〈ρ〉 ln〈ρ〉. (1.25)

Upon substituting here the probability distribution, we obtain:

1

δx

∫ (i+1/2)δx

(i−1/2)δx
dx ρ(x) lnρ(x)

≥
[

1

δx

∫ (i+1/2)δx

(i−1/2)δx
dx ρ(x)

]
ln

[
1

δx

∫ (i+1/2)δx

(i−1/2)δx
dx ρ(x)

]
, (1.26)

or after some straightforward rearrangements and with the use of (1.15)

−qi lnqi ≥ −
∫ (i+1/2)δx

(i−1/2)δx
dx ρ(x) ln[ρ(x)δx]. (1.27)

This form of the inequality is more satisfactory from the physical point of view since
ρ(x) has the dimension of inverse length and the dimensional quantities should not
appear under the logarithm. Adding the contributions from all the bins, we obtain:

H(x) ≥ −
∫ ∞

−∞
dx ρ(x) ln[ρ(x)δx]. (1.28)

Applying the same reasoning to the momentum distribution, we arrive at:

H(k) ≥ −
∫ ∞

−∞
dk ρ̃(k) ln[ρ̃(k)δk]. (1.29)

Adding these two inequalities, we get on the left hand side the sum of the uncer-
tainties in position and in momentum as in (1.24). What remains is to establish a
bound on the sum of the integrals appearing on the right hand side. This problem
has a long history. More than half a century ago a bound has been conjectured by
Hirschman [35] and Everett [36, 37]. Actually, Hirschman proved only a weaker
form of the inequality and Everett showed that the left hand side in (1.24) is sta-
tionary for Gaussian wave functions. The inequality was later proved by Bialynicki-
Birula and Mycielski [38] and independently by Beckner [39]. In this way we arrive
at the entropic uncertainty relation (1.24). We shall give a detailed derivation of this
inequality and its extensions in the next section.

The measure of uncertainties with the use of standard deviations requires a cer-
tain measure of the distance between events. Sometimes there is no sensible defini-
tion of a distance. The simplest example is the original application of the Shannon
information entropy to text messages. The value of H can be calculated for each
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text but there is no sensible measure of a distance between the letters in the alpha-
bet. Important examples are also found in physics. The simplest case is a quantum
particle moving on a circle. The configuration space is labeled by the angle ϕ and
the canonically conjugate variable is the angular momentum represented in quantum
mechanics by the operator M̂ = −i�∂/∂ϕ. Wave functions describing this system
are integrable periodic functions ψ(ϕ) or alternatively the coefficients cm in the
Fourier expansion of ψ(ϕ),

ψ(ϕ)= 1√
2π

∞∑
m=−∞

cm e
imϕ. (1.30)

Even though formally ϕ and M̂ obey canonical commutation relations, these rela-
tions are not mathematically consistent because ϕ cannot be treated as an operator—
multiplication by ϕ produces a function that is not periodic. Therefore, the notion of
a standard deviation of ϕ can only be used approximately for states for which Δϕ

is very small. Several, more or less natural methods, were introduced to deal with
this problem. One of them is to use periodic functions of ϕ instead of the angle it-
self (cf. [40] for a list of references). This leads to some uncertainty relations which
are mathematically correct but physically less transparent. The use of entropic mea-
sures of uncertainties solves this problem. The uncertainty in position on the circle
is defined as for position on an infinite line, except that now there is finite number
of bins N = 2π/δϕ. Thus, the Shannon entropy of the angle is:

H(ϕ) = −
N−1∑
n=0

qn lnqn, (1.31)

where

qn =
∫ (n+1)δϕ

nδϕ

dϕ |ψ(ϕ)|2. (1.32)

According to the rules of quantum mechanics, the probability to find the value �m of
angular momentum is pm = |cm|2. Therefore, the Shannon entropy for the angular
momentum is:

H(M) = −
∞∑

m=−∞
pm lnpm. (1.33)

The proof of the uncertainty relation for the angle and angular momentum entropies
is much simpler than for the position and momentum. It will be given later in the
more general case of the Rényi entropies. The uncertainty relation has the following
form:

H(ϕ) +H(M) ≥ − ln
δϕ

2π
, (1.34)
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or

H(ϕ) +H(M) ≥ lnN. (1.35)

This inequality is saturated for every eigenstate of angular momentum. Then, the
uncertainty in angular momentum vanishes and the uncertainty in position is exactly
lnN because the probability to find the particle in a given bin is 1/N .

1.3 Rényi Entropy

The Shannon information entropy has been generalized by Rényi [41–43]. The
Rényi entropy is a one-parameter family of entropic measures that share with the
Shannon entropy several important properties. Even though the Rényi entropy was
introduced in 1960, its substantial use in physics is more recent—it took place dur-
ing the last decade (cf. references listed in the Introduction).

Rényi entropy Hα is defined by the following formula:

Hα = 1

1 − α
ln

[∑
k

pαk

]
, (1.36)

where pk is a set of probabilities and α is a positive number. Rényi in [41–43]
restricted α to positive values but we may consider, in principle, all values. Some-
times it is useful to consider only the values α > 1 since we may then introduce a
conjugate positive parameter β satisfying the relation

1

α
+ 1

β
= 2. (1.37)

In the limit, when α → 1, the Rényi entropy becomes the Shannon entropy. To see
this, we have to apply the L’Hôpital rule to the definition (1.36) at the singular point
α = 1. Since the Shannon entropy is a special case of the Rényi entropy, we shall
proceed, whenever possible, with proving various properties of the Rényi entropy,
taking at the end the limit α → 1. This approach is particularly fruitful in the case
of entropic uncertainty relations because the proofs are in a way more natural for
the Rényi entropies than for the Shannon entropies.

Shannon entropy can be defined as a function H(pk) of the set of probabilities,
obeying the following axioms:

1. H(p1,p2, . . . , pn) is a symmetric function of its variables for n= 2,3, . . .
2. H(p,1 − p) is a continuous function of p for 0 ≤ p ≤ 1
3. H(tp1, (1 − t)p1,p2, . . . , pn) = H(p1,p2, . . . , pn) + p1H(t,1 − t) for 0 ≤

t ≤ 1

We presented the axioms in the form taken from Rényi [41–43] which we liked more
than the original axioms given by Shannon [26]. Sometimes an additional axiom is
added to fix the scale (the base of the logarithm) of the function H . For example by
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Fig. 1.4 Probability trees
representing the main idea of
the third axiom

requiring that H(1/2,1/2) = 1 we obtain the entropy measured in bits (logarithm
to the base 2).

The first two axioms are of a simple mathematical nature but the third axiom is
of crucial importance. This axiom may be figuratively expressed as the invariance
of the entropy with respect to breaking down the probability tree. This invariance
rule is illustrated in Fig. 1.4. It leads, in particular, to the very important property
that characterizes the physical entropy. The entropy is an extensive quantity—for a
composed system it must satisfy the additivity law. This law in terms of probabil-
ities can be expressed as follows. Given two independent probability distributions
(p1,p2, . . . , pn) and (q1, q2, . . . , qm), the entropy of the composed system must be
equal to the sum of the entropies for the subsystems,

H(p1q1,p1q2, . . . , p1qm,p2q1, . . . , p2qm, . . . ,pnq1, . . . , pnqm)

=H(p1,p2, . . . , pn)+H(q1, q2, . . . , qm). (1.38)

It turns out that by replacing the third axiom by the additivity law we substantially
increase the set of allowed functions. The most prominent of these generalized en-
tropies is the Rényi entropy. It is simple task to check that the Rényi entropy obeys
the additivity law. Indeed, from the distributive property of the logarithm we ob-
tain

1

1 − α
ln

[∑
kl

(pkql)
α

]
= 1

1 − α
ln

[∑
k

pαk

∑
l

qαl

]

= 1

1 − α
ln

[∑
k

pαk

]
+ 1

1 − α
ln

[∑
l

qαl

]
. (1.39)

Note that any linear combination (discrete or continuous) of Rényi entropies with
different values of α would obey the same additivity law. For example, we may take
a sum of two terms

1

1 − α
ln

[∑
k

pαk

]
+ 1

1 − β
ln

[∑
k

p
β
k

]
. (1.40)

A particular expression of this type was introduced in [44] and is very useful in
the context of entropic uncertainty relation. It is obtained by requiring that the
two parameters α and β are constrained by the relation (1.37). In this case, they
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can be expressed in terms of a single variable: α = 1/(1 − s), β = 1/(1 + s).
The new symmetrized entropy Hs is a one parameter average of two Rényi en-
tropies,

Hs = 1

2

(
1 − 1

s

)
ln

[∑
k

p
1/(1−s)
k

]
+ 1

2

(
1 + 1

s

)
ln

[∑
k

p
1/(1+s)
k

]
. (1.41)

Since Hs is a symmetric function of s, it is sufficient to consider only the positive
values 0 ≤ s ≤ 1. The Shannon entropy is recovered in the limit when s → 0.

The Rényi entropy is a decreasing function of α. For a given set of probabilities
it attains its maximal value at α = 0. The symmetrized Rényi entropy attains its
maximal value at s = 0. Starting from this value, as a symmetric function of s, it
drops down in both directions.

1.3.1 Rényi Entropy and the Uncertainty Relations

Our goal is now to generalize the uncertainty relations to the Rényi entropies. In
this section we shall consider only the measurements of position and momentum.
We have already defined the Shannon information entropies that contain information
about the precision of measurements. The definitions of the uncertainty in position
and momentum, as measured by the Rényi entropy, are obvious:

H(x)
α = 1

1 − α
ln

[ ∞∑
i=−∞

qαi

]
, (1.42)

H
(k)
β = 1

1 − β
ln

[ ∞∑
j=−∞

p
β
j

]
, (1.43)

where the probabilities qi and pj are given by the formulas (1.15) and (1.17). The
reason, why we have chosen the Rényi entropies with different parameters will be-
come clear later. For definiteness, we shall assume at this point that α ≥ β (later
this restriction will be lifted). This means that according to (1.37) 1 ≤ α < ∞ and
1/2 < β ≤ 1. Therefore, zα is a convex function, while zβ is concave. These prop-
erties enable us to use the Jensen inequality in the same way as we did before, and
arrive at:

(
1

δx

∫ (i+1/2)δx

(i−1/2)δx
dx ρ(x)

)α

≤ 1

δx

∫ (i+1/2)δx

(i−1/2)δx
dx[ρ(x)]α, (1.44a)

1

δk

∫ (j+1/2)δk

(j−1/2)δk
dk

[
ρ̃(k)

]β ≤
(

1

δk

∫ (j+1/2)δk

(j−1/2)δk
dkρ̃(k)

)β

. (1.44b)
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Summing (1.44a) and (1.44b) over the indices i and j we obtain:

(δx)1−α
∞∑

i=−∞
qαi ≤

∫

R

dx[ρ(x)]α, (1.45a)

∫

R

dk[ρ̃(k)]β ≤ (δk)1−β
∞∑

j=−∞
p
β
j . (1.45b)

At this point we invoke a powerful Babenko-Beckner inequality for (p, q) norms of
a function and its Fourier transform. This inequality was proved for restricted values
of α and β by Babenko [45] and for all values by Beckner [39]. In our notation, this
inequality reads:

(∫

R

dx [ρ(x)]α
)1/α

≤ n (α,β)

(∫

R

dk
[
ρ̃(k)

]β)1/β

, (1.46)

where

n (α,β)=
(α
π

)−1/2α
(
β

π

)1/2β

. (1.47)

This inequality enables us to put together the formulas (1.45a) and (1.45b). To this
end, we raise to the power 1/α both sides of (1.45a). Next, we raise to the power of
1/β both sides of (1.45b) and multiply the resulting inequality by n(α,β). In this
way we can obtain the following chain of inequalities:

[
(δx)1−α

∞∑
i=−∞

qαi

]1/α

≤
(∫

R

dx[ρ(x)]α
)1/α

≤ n(α,β)

(∫

R

dk[ρ̃(k)]β
)1/β

≤ n(α,β)

[
(δk)1−β

∞∑
j=−∞

p
β
j

]1/β

. (1.48)

Now, we take only the first and the last term of this chain and multiply both sides of
the resulting inequality by (α/π)1/2α to obtain:

[
(δx)1−α

√
α

π

∞∑
i=−∞

qαi

]1/α

≤
[
(δk)1−β

√
β

π

∞∑
j=−∞

p
β
j

]1/β

. (1.49)

Next, we evaluate the logarithms of both sides and multiply the result by a positive
number α/(α − 1). After a rearrangement of terms, with the use of the relationship
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(1.37), we arrive at the final form of the uncertainty relation (with Planck’s constant
reinserted) between position and momentum in terms of the Rényi entropies [44]:

H(x)
α +H

(p)
β ≥ −1

2

(
lnα

1 − α
+ lnβ

1 − β

)
− ln 2 − ln

δxδp

h
. (1.50)

We can lift now the restriction that α ≥ β . Owing to a symmetry between a function
and its Fourier transform we can write the same inequality (1.50) but with x and
p interchanged. After all, it does not make any difference from the mathematical
point of view, what is called x and what is called p, as long as the corresponding
wave functions are connected by the Fourier transformation. Therefore, we can take
the average of (1.50) and its counterpart with x and p interchanged and obtain the
following uncertainty relation for symmetrized entropies:

H(x)
s + H(p)

s ≥ 1

2
ln(1 − s2)+ 1

2s
ln

1 + s

1 − s
− ln 2 − ln

δxδp

h
. (1.51)

This relation is more satisfactory than (1.50) because the uncertainties of both quan-
tities x and p are measured in the same way. In the limit, when s → 0 we obtain
the uncertainty relation (1.24) for the Shannon entropies. The inequality (1.51) (or
its asymmetric counterpart (1.50)) is the best known uncertainty relation for the
entropies that takes into account finite resolution of measurements. However, this
inequality is obviously not a sharp one. For δxδp/h only slightly larger than 1 the
right hand side of (1.50) becomes negative while the left hand side is by definition
positive. For finite values of δxδp/h there must exist a better lower bound. Since the
Babenko-Beckner inequality (1.46) cannot be improved (it is saturated by Gaussian
functions), we conclude that Jensen inequalities (1.44a, 1.44b) used together are not
optimal. Of course, each of them can be separately saturated but when they are used
jointly one should somewhere include the information about the Fourier relation-
ship between the functions. An improvement of the uncertainty relations (1.50) or
(1.51) is highly desired but it does not seem to be easy. A recent attempt [46] failed
completely (see [47]).

1.4 Uncertainty Relations: From Discrete to Continuous

In this section we describe various types of uncertainty relations that depart from the
original Heisenberg relations for position and momentum much further than those
described so far. We shall also comment on different mathematical tools that are
used in proving these relations.

1.4.1 The Uncertainty Relations for N -level Systems

Pure states of an N -level system are described in quantum mechanics by normalized
vectors in the N -dimensional Hilbert space HN . We shall use the Dirac notation
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denoting vectors by |ψ〉 and their scalar products by 〈ψ1|ψ2〉. In this notation, the
normalization condition reads 〈ψ |ψ〉 = 1. Let us choose two orthonormal bases
{|ai〉} and {|bj 〉}, where i, j = 1, . . . ,N . We can then represent each vector |ψ〉 in
two ways:

|ψ〉 =
N∑
i=1

〈ai |ψ〉|ai〉 =
N∑
j=1

〈bj |ψ〉|bj 〉. (1.52)

The squares of the absolute values of the complex expansion coefficients are inter-
preted in quantum mechanics as the probabilities, say qi and pj , to find the states
represented by the vectors |ai〉 and |bj 〉, when the system is in the state |ψ〉,

qi = |〈ai |ψ〉|2, pj = |〈bj |ψ〉|2. (1.53)

The normalization of vectors and the orthonormality of the bases guarantees that the
probabilities qi and pj sum up to 1.

1.4.1.1 Deutsch Inequality

Having at our disposal two sets of probabilities {qi} and {pj } we can construct two
Shannon entropies:

H(a) = −
N∑
i=1

qi lnqi, H (b) = −
N∑
j=1

pj lnpj . (1.54)

Since we aim at finding some uncertainty relation we consider the sum of these
entropies:

H(a) +H(b) =
N∑
i=1

N∑
j=1

qipjQij , (1.55)

where

Qij = − ln(〈ai |ψ〉〈ψ |ai〉)− ln(〈bj |ψ〉〈ψ |bj 〉). (1.56)

In 1983 Deutsch [48] found a lower bound on the sum (1.55). He observed that for
a normalized vector |ψ〉 each Qij is nonnegative. Therefore, by finding the minimal
value of all Qij ’s we determine a lower bound on the sum (1.55). We shall present
here an expanded version of the Deutsch analysis. For each pair (i, j), the minimal
value of Qij is attained for some function ψij . This function is found by varying Qij

with respect to the wave function ψ with the normalization constraint 〈ψ |ψ〉 = 1.

δ

δ|ψij 〉 [Qij + κ〈ψij |ψij 〉] = 0, (1.57)
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where κ is a Lagrange multiplier. In this way we arrive at the equation for the vector
|ψij 〉:

|ψij 〉 = 1

κ

( |ai〉
〈ψij |ai〉 + |bj 〉

〈ψij |bj 〉
)
. (1.58)

Taking the scalar product of this equation with 〈ψij |, we obtain from the normal-
ization condition that κ = 2. To find the solution of (1.58) we multiply this equation
by the adjoined vectors 〈ai | and 〈bj |. In this way we obtain the following algebraic
equations for two complex variables a = 〈ψij |ai〉 and b = 〈ψij |bj 〉 with one fixed
complex parameter 〈ai |bj 〉.

|a|2 = 1

2
+ a〈ai |bj 〉

2b
, |b|2 = 1

2
+ b〈bj |ai〉

2a
. (1.59)

The last term in each equation must be real since the rest is real. Next, we divide both
sides of the first equation by those of the second. After some simple rearrangements,
we arrive at:

|a|2
|b|2 − 1 = a

b
〈ai |bj 〉 − a∗

b∗ 〈ai |bj 〉∗. (1.60)

Since both terms on the right hand side are real, they cancel out and we obtain
|a| = |b|. Inserting this into any of the two equations (1.59), we obtain

|a|2 = 1

2

[
1 ± |〈ai |bj 〉|

]
. (1.61)

The choice of the minus sign gives the maximal value of Qij but only in the sub-
space spanned by the vectors |ai〉 and |bj 〉. Choosing the plus sign, we obtain

|ψij 〉 = exp(iφ)√
2(1 + |〈ai |bj 〉|)

[|ai〉 + exp(−i arg〈ai |bj 〉)|bj 〉], (1.62)

where exp(iφ) is an arbitrary phase factor. We can insert this solution into (1.55),
and using the fact that this solution is minimizer, we obtain the inequality:

H(a) +H(b) ≥ −2
N∑
i=1

N∑
j=1

qipj ln

[
1

2
(1 + |〈ai |bj 〉|)

]
. (1.63)

This inequality will still hold if we replace each modulus |〈ai |bj 〉| by the maximal
value CB ,

CB = sup
(i,j)

|〈ai |bj 〉|. (1.64)
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After this replacement, we can do summations over i and j and arrive at the Deutsch
result [48]:

H(a) +H(b) ≥ −2 ln

[
1

2
(1 +CB)

]
. (1.65)

1.4.1.2 Maassen-Uffink Inequalities

Even though the bound in the Deutsch uncertainty relation is saturated when the
two bases have common vectors, there is room for improvement. Of course, the
improved inequality must coincide with (1.65) when it is saturated. An improved
relation was conjectured by Kraus [49] and it has the form:

H(a) +H(b) ≥ −2 lnCB. (1.66)

This inequality was later proved by Maassen and Uffink [50]. We shall present a
different version of the proof based on the Rényi entropy. The mathematical tools
needed to prove the inequality (1.66) are the same as those used for the entropies
with continuous variables. At the bottom of every uncertainty relation there is some
mathematical theorem. In the case of the Maassen-Uffink relation this role is played
by the Riesz theorem [51, 52] which says that for every N -dimensional complex
vector X and a unitary transformation matrix T̂ with coefficients tj i , the following
inequality between the norms is valid:

c1/μ‖X‖μ ≤ c1/ν‖T̂ X‖ν, (1.67)

where the constant c = sup(i,j) |tj i | and the coefficients μ and ν obey the relation

1

μ
+ 1

ν
= 1, 1 ≤ ν ≤ 2. (1.68)

The norms are defined as usual,

‖X‖μ =
[∑

k

|xk|μ
]1/μ

, (1.69)

but we do not use the traditional symbols (p, q) for the norms since this would
interfere with our usage of p and q to denote the probabilities.

To prove the inequality (1.66) we shall take xi = 〈ai |ψ〉 and

tj i = 〈bj |ai〉. (1.70)

From the resolution of the identity (
∑

i |ai〉〈ai | = 1), we obtain:

N∑
i=1

tj ixi =
N∑
i=1

〈bj |ai〉〈ai |ψ〉 = 〈bj |ψ〉. (1.71)
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Using the definitions (1.53), we can rewrite the inequality (1.67) in the form:

c1/μ

⎡
⎣

N∑
j=1

q
μ/2
j

⎤
⎦

1/μ

≤ c1/ν

[
N∑
i=1

p
ν/2
i

]1/ν

, (1.72)

where

c = sup
(i,j)

|tij | = sup
(i,j)

|〈ai |bj 〉| = CB. (1.73)

The parameters μ and ν differ by a factor of 2 from the parameters α and β appear-
ing in (1.37),

μ= 2α, ν = 2β. (1.74)

Next, we take the logarithm of both sides of the inequality (1.72) and with the use
of (1.74), we arrive at the uncertainty relation for the Rényi entropies:

H(a)
α +H

(b)
β ≥ −2 lnCB. (1.75)

When two observables associated with the two bases have a common vector then
CB = 1 and the right hand side in the last inequality vanishes. Thus, this uncertainty
relation becomes empty. In the limit α → 1, β → 1 this inequality reduces to the
Maassen-Uffink result (1.66).

1.4.1.3 Discrete Fourier Transform

In previous subsections we dealt with two orthonormal vector bases {|ak〉} and
{|bm〉}. We can expand every vector of the first basis in the second basis,

|ai〉 =
N∑
j=1

tj i |bj 〉, (1.76)

where tj i are the coefficients of the unitary transformation (1.70), and for each |ai〉

1 = 〈ai |ai〉 =
N∑
j=1

|tj i |2 ≤N sup
(j)

|tj i |2 ≤NC2
B. (1.77)

It follows from this inequality that CB ≥ 1/
√
N . There are bases, called mutually

unbiased bases, for which the sum (1.75) not only has the lowest possible value but
the moduli of the matrix elements are all the same,

|〈ai |bj 〉| = 1√
N
. (1.78)
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One can check by a direct calculation that for the observables associated with two
mutually unbiased bases, for every state represented by a basis vector, either |ai〉 or
|bj 〉, the sum of the Rényi entropies saturates the lower bound,

H(a)
α +H

(b)
β = lnN. (1.79)

Mutually unbiased bases were introduced by Schwinger [53]. More recently they
were studied in more detail [54] and were shown to be useful in the description of
entanglement and other fundamental properties of quantum systems. In the fourth
chapter we shall say more about the mutually unbiased bases. The most important
example of mutually unbiased bases is present in the discrete Fourier transforma-
tion. In this case, the two bases are related by the unitary transformation with the
coefficients:

fkl = 1√
N

exp

[
2πi kl

N

]
, (1.80)

which satisfy the conditions (1.78).
The physical interpretation of the inequality (1.79) is similar to the Heisenberg

uncertainty relation. Two observables A and B , characterized by the bases |ai〉 and
|bj 〉 cannot have simultaneously sharp values since they do not have common ba-
sis vectors. Moreover, every state described by a basis vector has the sum of the
uncertainties equal to the same value 1/

√
N . The observables A and B are finite-

dimensional analogs of canonically conjugate physical quantities.

1.4.2 Shannon and Rényi Entropies for Continuous Distributions

In a rather crude manner we can say that the entropies for continuous distributions of
probability are obtained by replacing the sums in the expressions (1.14) and (1.36)
by the integrals. We have already encountered such expressions ((1.28) and (1.29)),
in our discussion of the Shannon entropies for position and momentum. Naively, we
would like to define the Shannon entropy for a continuous probability distribution
ρ(X) in the form:

H(X) ?= −
∫

dXρ(X) lnρ(X), (1.81)

where X is some random variable. However, in most cases we encounter a problem
since X is a dimensional quantity and the result will depend on the unit that is used
to measure X. In order to obtain a correct formula, let us start with the original
Shannon definition for a discrete set of probabilities (1.14). Next, we insert in this
formula the discrete probabilities pk derived from some continuous distribution. For
example, let us choose the distribution function for position ρ(x). If ρ(x) does not
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change appreciably over the distance δx, the Shannon entropy defined by (1.15) and
(1.16) can be approximated by,

H(x) ≈ −
∞∑

k=−∞
δxρ(xk) ln[ρ(xk)δx], (1.82)

where xk = kδx.
We can write the right hand side as a sum of two terms

−
∞∑

k=−∞
δxρ(xk) ln[ρ(xk)L] − ln

δx

L
, (1.83)

where L is some fixed unit of length. The first term is a Riemann sum and in the
limit, when δx → 0, it tends to the following integral:

S(x) = −
∫

R

dx ρ(x) ln[ρ(x)L]. (1.84)

This integral may be called the entropy of the continuous distribution ρ(x) or the
continuous entropy.

The second term − ln(δx/L) measures the difference between H(x) and S(x).
This difference must tend to ∞ because the information measured by H(x) grows
indefinitely when δx → 0, while S(x) remains finite.

The same reasoning leads to the following definition of the Rényi entropy for a
continuous distribution

S(x)α = 1

1 − α
ln

(∫

R

dx[ρ(x)]αLα−1
)
. (1.85)

The difference between the Rényi entropies H(x)
α and S

(x)
α does not depend on α

and is, therefore, the same as for the Shannon entropies.

1.4.3 Uncertainty Relations for Continuous Entropies

We can formulate now uncertainty relations in terms of the Rényi and Shannon
entropies for continuous variables, although the operational meaning of these re-
lations is not as clear as for discrete bins. In the proof we shall make use of the
Babenko-Beckner inequality (1.46). This inequality may, at first, seem to violate the
requirement that it should be invariant under a change of the physical units used to
measure the probability distributions ρ(x) and ρ̃(k). However, it turns out that this
inequality is dimensionally correct. To see this, let us assume that we measure posi-
tion using the unit L. It follows from the definition of the Fourier transform (1.18)
that to keep this relation invariant, we have to choose 1/L as the unit of k. Now,



1 Entropic Uncertainty Relations in Quantum Physics 23

we multiply the left hand side of (1.46) by 1 written in the form L2−1/α−1/β . After
distributing the powers of L, we arrive at the inequality

(∫

R

dx[ρ(x)L]α/L
)1/α

≤ n(α,β)

(∫

R

dk[ρ̃(k)/L]βL
)1/β

. (1.86)

This inequality is not only explicitly dimensionally correct but it also shows its
invariance under a change of the unit. Taking the logarithm of both sides of this
inequality and using the relation (1.37), we arrive at the uncertainty relation for the
continuous Rényi entropies,

S(x)α + S
(k)
β = 1

1 − α
ln

(∫

R

dx[ρ(x)]αLα−1
)

+ 1

1 − β
ln

(∫

R

dk[ρ̃(k)]βL1−β

)

≥ −1

2

(
1

1 − α
ln
α

π
+ 1

1 − β
ln
β

π

)
. (1.87)

Due to the relation

α

1 − α
+ β

1 − β
= 0, (1.88)

the uncertainty relation is invariant under a rescaling of the wave function. In the
limit, when both α and β tend to 1, we obtain the uncertainty relation for the Shan-
non entropies proved in [38] and in [39],

S(x) + S(k) = −
∫

R

dx ρ(x) lnρ(x)−
∫

R

dk ρ̃(k) ln ρ̃(k)≥ 1 + lnπ. (1.89)

In evaluating this limit by the L’Hôspital rule we assumed that the wave function is
normalized,

∫

R

dx |ψ(x)|2 = 1. (1.90)

After an arbitrary rescaling of the wave function, the uncertainty relation takes on
the form:

S(x) + S(k) = −
∫

R

dx ρ(x) lnρ(x)−
∫

R

dk ρ̃(k) ln ρ̃(k)≥N2(1 + lnπ − 4 lnN),

(1.91)

where N is the norm of the wave function. We dropped in (1.89) the scale factor L
because the sum of the two integrals is invariant under a change of units.

1.4.3.1 Gaussian Wave Functions

Gaussian wave functions play a distinguished role in uncertainty relations. They sat-
urate the standard uncertainty relations expressed in terms of standard deviations.



24 I. Bialynicki-Birula and Ł. Rudnicki

They also saturate the uncertainty relations (1.87) expressed in terms of the Rényi
entropies for continuous variables. Thus, unlike their discrete counterparts (1.24)
or (1.50), the continuous uncertainty relations are sharp. Gaussians provide also
a direct link between the Shannon entropies for continuous variables and the un-
certainties measured by the standard deviation. Namely, the Gaussian distribution
function gives the maximal value of the Shannon entropy subjected to the condi-
tions of normalization and a given value σx of the standard deviation. To prove this
property we shall search for the maximum of the functional:

∫

R

dx[−ρ(x) lnρ(x)+ λx2ρ(x)+μρ(x)], (1.92)

where λ and μ are two Lagrange multipliers introduced to satisfy the constraints:

∫

R

dx ρ(x)= 1, (1.93a)

∫

R

dx x2ρ(x)= σ 2
x . (1.93b)

Varying the functional (1.92) with respect to ρ(x) we obtain the expression:

−1 − lnρ(x)+ λx2 +μ. (1.94)

From the requirement that this expression vanishes, we obtain a Gaussian distri-
bution. Finally, we determine the Lagrange multipliers λ and μ by imposing the
constraints (1.93a), (1.93b), and we obtain:

ρ(x)= 1√
2πσx

e−(x2/2σ 2
x ). (1.95)

This extremum is a true maximum since the entropy is a strictly concave functional
of ρ(x) [38].

1.5 Generalizations and Extensions

In this chapter we present a generalization of the entropic uncertainty relations to
cover mixed states and an extension of these relations to angular variables. We shall
also introduce uncertainty relations in phase space. Next, we return to the problem
of mutually unbiased bases, mentioned already in Sect. 1.4.1.3. Finally, we show a
connection between the entropic uncertainty relations and the logarithmic Sobolev
inequalities. Other extensions of mathematical nature of the entropic uncertainty
relations were recently published by Zozor et al. [55].
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1.5.1 Uncertainty Relations for Mixed States

Let us take a set of normalized wave functions ψi(x) that determine the probability
distributions ρi(x). Using these distributions we may define the probability distri-
bution for a mixed state:

ρmix(x)=
∑
i

λiρi(x). (1.96)

The sum may be finite or infinite. Alternatively, we may start from the density oper-
ator ρ̂ and define the probability density as the diagonal matrix element ρmix(x) =
〈x|ρ̂|x〉. The positive coefficient λi determines the probability with which the state
described by ψi(x) enters the mixture. The normalization condition Tr{ρ̂} = 1, or
the basic property of probabilities, require that

∑
i

λi = 1. (1.97)

For each ψi(x) we may introduce its Fourier transform ψ̃i(k) and then define the
probability distribution ρ̃i (k) in momentum space.

ρ̃mix(k)=
∑
i

λi ρ̃i(k). (1.98)

This function can also be viewed as the momentum representation of the density
operator, ρ̃mix(k)= 〈k|ρ̂|k〉.

We begin with the following sum of Babenko-Beckner inequalities (1.46) with
wave functions ψi(x) and ψ̃i(k) and with some weights λi :

∑
i

λi

(∫

R

dx|ρi(x)|α
)1/α

≤ n(α,β)
∑
i

λi

(∫

R

dk|ρ̃i (k)|β
)1/β

. (1.99)

To find the uncertainty relation for the mixed state we shall use now the Minkowski
inequality [33] as was done in [44]. For α ≥ 1 and for an arbitrary set of nonnegative
functions fi(x) the Minkowski inequality reads:

(∫

R

dx

∣∣∣∣
∑
i

fi(x)

∣∣∣∣
α)1/α

≤
∑
i

(∫

R

dx|fi(x)|α
)1/α

. (1.100)

Since for α ≥ 1 we have β ≤ 1, the Minkowski inequality gets inverted. Choosing
another set of nonnegative functions gi(k) we obtain:

∑
i

(∫

R

dk |gi(k)|β
)1/β

≤
(∫

R

dk

∣∣∣∣
∑
i

gi(k)

∣∣∣∣
β)1/β

. (1.101)
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Substituting now fi(x)= λiρi(x) in (1.100) and gi(k)= λiρ̃i(k) in (1.101) we ob-
tain two inequalities involving the densities for mixed states:

(∫

R

dx|ρmix(x)|α
)1/α

≤
∑
i

λi

(∫

R

dx|ρi(x)|α
)1/α

, (1.102)

and

∑
i

λi

(∫

R

dk|ρ̃i (k)|β
)1/β

≤
(∫

R

dk|ρ̃mix(k)|β
)1/β

. (1.103)

Putting together the inequalities (1.99), (1.102), and (1.103) we obtain the general-
ization of the Babenko-Beckner inequality for mixed states:

(∫

R

dx[nρmix(x)]α
)1/α

≤ n(α,β)

(∫

R

dk[ρ̃mix(k)]β
)1/β

. (1.104)

From this inequality we can prove the uncertainty relations (1.50) and (1.51) for
mixed states in the same manner as we have done it for pure states.

1.5.2 Uncertainty Relations for Angles and Angular Momenta

In Sect. 1.2.5 we gave the uncertainty relation for angle ϕ and angular momentum
M in terms of the Shannon entropy. Now we are going to prove this relation in a
more general case of the Rényi entropy. To this end we shall repeat and extend the
previous definitions.

1.5.2.1 The Uncertainty Relation for a Particle on a Circle

We have discussed this problem already in Sect. 1.2.5 and now we shall provide the
proofs of the uncertainty relations. The proof of the uncertainty relation (1.34) in
the general case of the Rényi entropy will be given in two steps.

First, we quote the Young-Hausdorff inequality for the Fourier series [44]:

(∫ 2π

0
dϕ|ψ(ϕ)|2α

)1/α

≤ (2π)1/4α−1/4β

( ∞∑
m=−∞

|cm|2β
)1/β

. (1.105)

The coefficients α and β fulfill the standard relations (1.37). Upon comparing the
left hand side in (1.105) with the definition (1.32), we see that we can use again the
Jensen inequality for convex functions to obtain:

δϕ1−αqαn = δϕ1−α

(∫ (n+1)δϕ

nδϕ

dϕ|ψ(ϕ)|2
)α

≤
∫ (n+1)δϕ

nδϕ

dϕ|ψ(ϕ)|2α. (1.106)
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Next, we do summation over n:

δϕ1−α
N−1∑
n=0

qαn ≤
∫ 2π

0
dϕ|ψ(ϕ)|2α. (1.107)

Putting the inequalities (1.105) and (1.107) together, we find:

(δϕ)1/α−1

(
N−1∑
n=0

qαn

)1/α

≤ (2π)1/4α−1/4β

( ∞∑
m=−∞

|cm|2β
)1/β

. (1.108)

This inequality will lead us directly to the final form of the uncertainty relation for
the Rényi entropy. To this end let us define the Rényi entropy for angle and angular
momentum in a following form:

H(ϕ)
α = 1

1 − α
ln

[
N−1∑
n=0

qαn

]
, (1.109)

H
(M)
β = 1

1 − β
ln

[ ∞∑
m=−∞

pβm

]
, (1.110)

where pm = |cm|2. Taking the logarithm of both sides of (1.108), multiplying by
β/(1 − β), and identifying the Rényi entropies (1.109) and (1.110), we obtain final
inequality:

H(ϕ)
α +H

(M)
β ≥ − ln

δϕ

2π
= lnN. (1.111)

As in the case of Maassen-Uffink result (1.79), the right hand side of the inequality
(1.111) is independent on the parameters α and β .

This uncertainty relation can be also applied to a different physical situation. Let
us consider the state vectors of a harmonic oscillator expanded in the Fock basis,

|ψ〉 =
∞∑
n=0

cn|n〉. (1.112)

Every such state can be described by a function of ϕ defined by [56]:

ψ(ϕ)=
∞∑
n=0

cne
imϕ. (1.113)

The only difference between this wave function and the wave function for a particle
on a circle is the restriction to nonnegative values of n. Therefore, the inequalities
(1.35) and (1.111) still hold but they have now a different physical interpretation.
The value of n determines the amplitude and the angle ϕ is the phase of the har-
monic oscillation. This interpretation is useful in quantum electrodynamics where n
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becomes the number of photons in a given mode and ϕ is the phase of the electro-
magnetic field.

1.5.2.2 The Uncertainty Relation for a Particle on the Surface of a Sphere

The uncertainty relation (1.111) may be called “the uncertainty relation on a cir-
cle”, because the variable ϕ varies from 0 to 2π . We may ask, whether there is an
uncertainty relation for a particle on the surface of a sphere. The answer is positive
[57] and to find the uncertainty relation we shall parameterize this surface by the
azimuthal angle ϕ ∈ [0,2π] and the polar angle θ ∈ [0,π]. The wave functions on a
sphere ψ(θ,ϕ) can be expanded into spherical harmonics:

ψ(θ,ϕ)= 1√
2π

∞∑
l=0

l∑
m=−l

clmY
m
l (θ,ϕ). (1.114)

This expansion gives us a set of probabilities |clm|2 which can be used to construct
the Rényi entropy for the square of the angular momentum, determined by l, and for
the projection of the angular momentum on the z axis, determined by m. As in the
case of a particle moving on a circle the two characteristics of the state—angular
position and angular momentum—are complementary.

There is one mathematical property of spherical harmonics that will help us to
derive the uncertainty relation. Namely, when m = l then for large l the function
Ym
l is to a very good approximation localized in the neighborhood of the equator

where θ = π/2. In other words, if we divide the θ range into equal parts with length
δθ then for every ε we can find sufficiently large l such that the following relation
holds (the modulus of the spherical harmonic does not depend on ϕ):

∫ π/2+δθ/2

π/2−δθ/2
dθ |Y l

l (θ, ϕ)|2 = 1 − ε. (1.115)

This property follows from the fact that |Y l
l (θ, ϕ)|2 = N | sin θ |2l . Of course, the

smaller is the value of δθ , the larger l is required to localize the wave function.
To define the Rényi entropies in the standard way we need the probability distri-

butions in angular momentum plm = |clm|2 and in the position on the sphere

qij =
∫ (i+1)δθ

iδθ

dθ sin θ
∫ (j+1)δϕ

jδϕ

dϕ |ψ(θ,ϕ)|2. (1.116)

From the argument about localizability of the wave function near the equatorial
plane we deduce that for a fixed (sufficiently large) value of l we can have the lo-
calization in one bin in the variable θ . Therefore, l and θ can be eliminated and
we are left with the uncertainty relation in the projection of the angular momentum
on the z axis and the azimuthal angle ϕ. The uncertainty relation in these variables
has already been established and it will have the same form (1.111) for the sphere.
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A complete proof of this fact is a bit more subtle and can be found in [57]. The in-
troduction of a preferred direction associated with the projection of the angular mo-
mentum is rather artificial and it would be interesting to find a rotationally invariant
form of the uncertainty relation. It would also be of interest to find generalizations
of the uncertainty relation (1.111) to more dimensions and to functions defined on
manifolds different from the surface of a sphere.

1.5.3 Uncertainty Relations in Phase Space

The next topic in this review is a “phase-space approach” to the uncertainty rela-
tions. We shall rewrite the sum of the Shannon entropies for position and momen-
tum in a more symmetric way and we shall extend this symmetric description to the
mixed states.

To this end we rewrite the sum of the expressions (1.16) and (1.19) for the Shan-
non entropies in the following, compact form:

H(x) +H(k) = −
∞∑

i=−∞

∞∑
j=−∞

fij ln(fij ), (1.117)

where:

fij = qipj =
∫ (i+1/2)δx

(i−1/2)δx
dx

∫ (j+1/2)δk

(j−1/2)δk
dk|ψ(x)ψ̃(k)|2. (1.118)

In this way, the uncertainty relation (1.24) becomes an inequality involving just one
function f1(x, k) = ψ(x)ψ̃(k)∗ defined on the phase space. This rearrangement is
not so trivial when we extend it to the mixed states. For a density operator ρ̂ we
define the function:

f (x, k)= 〈x|ρ̂|k〉. (1.119)

If the density operator represents a pure state, so that ρ̂ = |ψ〉〈ψ | we obtain the
previous case f (x, k) = f1(x, k) but for mixed states the function (1.119) is not a
simple product. Next, we define the two dimensional Fourier transform of f (x, k):

f̃ (λ,μ)= 1

2π

∫

R

dx e−iλx

∫

R

dk eikμf (x, k)

= 〈λ|
(∫

R

dx |x〉〈x|
)
ρ̂

(∫

R

dk |k〉〈k|
)

|μ〉

= 〈λ|ρ̂|μ〉 = 〈μ|ρ̂|λ〉∗ = f (μ,λ)∗, (1.120)

where we used the following representation of the Fourier transform kernels:

1√
2π

e−iλx = 〈λ|x〉, (1.121a)
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1√
2π

eikμ = 〈k|μ〉. (1.121b)

The quantities in parentheses in this formula are the resolutions of the identity and
were replaced by 1. Thus, the function f and its Fourier transform f̃ differ only in
phase,

|f | = |f̃ |, (1.122)

and we obtain:

H(x,k) =H(μ,λ). (1.123)

For the function f1 this is, of course, a trivial conclusion. Because of (1.123) the
uncertainty relation for the Shannon entropies becomes a relation that involves only
one entropy, defined in terms of a single function f . The price paid for this simpler
form of the uncertainty relation is the additional condition (1.122) that must be
obeyed by the function f (x, k).

1.5.4 Mutually Unbiased Bases

In Sect. 1.4.1.3 we have introduced the notion of mutually unbiased bases (MUB)
and we discussed the Maassen-Uffink lower bound for these bases. In this subsection
we are going to present several other uncertainty relations of this type. To this end,
we introduce in a D-dimensional Hilbert space HD a system of M orthonormal
bases Bm = {|bmi 〉, i ∈ 1, . . . ,D}, m ∈ 1, . . . ,M . Two bases Bm and Bn are mutually
unbiased bases if and only if [58] for each pair of vectors:

|〈bmi |bnj 〉|2 = 1

D
. (1.124)

One may ask how many mutually unbiased bases can be found in HD? In other
words how does the number Mmax depends on D. There is no general answer to this
question. It was found in [59] that if D is a prime number then Mmax =D + 1.

We have already given the uncertainty relations (1.79) for two MUB’s related
by the discrete Fourier transformation. A straightforward generalization of these
relations involves a sum over several MUB’s. Let us denote by H(m) the Shannon
entropy for the m-th base:

H(m) = −
D∑
i=1

pmi lnpmi , (1.125)

pmi = |〈bmi |ψ〉|2. (1.126)
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Adding the uncertainty relations (1.79) for every pair of MUB’s, we obtain [60]:

M∑
m=1

H(m) ≥ M

2
lnD. (1.127)

When D is a prime number and we put M =D + 1 then the relation (1.127) reads:

D+1∑
m=1

H(m) ≥ (D + 1)

2
lnD, (1.128)

but this bound is rather poor. Sánchez [61] found a better lower bound,

D+1∑
m=1

H(m) ≥ (D + 1) ln
D + 1

2
. (1.129)

The reader can find extensions of the uncertainty relations of this type in [60] and
[58]. Recently in [62] another refinement of the inequality (1.127) has been ob-
tained,

M∑
m=1

H(m) ≥M ln
MD

M +D − 1
. (1.130)

For M ≥ 1 + √
D this inequality is stronger than (1.127).

1.5.5 Logarithmic Sobolev Inequality

In this subsection we find a direct relation between the standard Heisenberg uncer-
tainty relation and the entropic uncertainty relation. This will be done with the use
of a different mathematical tool—the logarithmic Sobolev inequality and its inverse.
We start with the inequalities for the continuous entropy (1.84). The logarithmic
Sobolev inequality for the Shannon entropy proved in [63] reads:

S(x) ≥ 1

2
(1 + ln 2π)− 1

2
ln

[
L2

∫

R

dx
1

ρ(x)

∣∣∣∣
dρ(x)

dx

∣∣∣∣
2
]
. (1.131)

The important feature of this inequality is that we have only one function ρ(x).
Therefore, we do not need conjugate variables (momentum) to obtain a lower bound
of the Shannon entropy (1.84). On the other hand, the right hand side of (1.131)
depends on ρ(x), so it is a functional relation rather than an uncertainty relation.
In order to obtain an uncertainty relation, we shall exploit the inverse logarithmic
Sobolev inequality proved in [64]:

S(x) ≤ 1

2
(1 + ln 2π)+ lnLσx, (1.132)
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where σx is the standard deviation (1.4). Since this inequality involves only one
distribution function, we can write it also for the probability density in momentum
space ρ̃(k):

S(k) ≤ 1

2
(1 + ln 2π)+ ln(σk/L). (1.133)

Evaluating the exponential function of the sum of the inequalities (1.132) and
(1.133), we obtain a refined version of the Heisenberg uncertainty relation [38, 65]:

σxσk ≥ 1

2
exp(S(x) + S(k) − 1 − lnπ)≥ 1

2
. (1.134)

This uncertainty relation is stronger than the standard Heisenberg uncertainty rela-
tion. Whenever the sum of the Shannon entropies exceeds its lower bound 1 + lnπ ,
we obtain a stronger bound for σxσk than the standard 1/2. Note that the uncertainty
relation (1.134) holds for any pair of distributions. They do not have to be related
by the Fourier transformation of the wave functions.
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40. Řehaček J, Bouchal Z, Čelechovský R, Hradil Z, Sánchez-Soto LL (2008) Experimental test

of uncertainty relations for quantum mechanics on a circle. Phys Rev A 77:032110
41. Rényi A (1960) Some fundamental questions of information theory. MTA III Oszt Közl 251
42. Rényi A (1960) On measures of information and entropy. In: Proceedings of the 4th Berkeley

symposium on mathematics, statistics and probability, p 547
43. Rényi A (1970) Probability theory. North-Holland, Amsterdam

http://arxiv.org/abs/arXiv:quant-ph/0112178


34 I. Bialynicki-Birula and Ł. Rudnicki

44. Bialynicki-Birula I (2006) Formulation of the uncertainty relations in terms of the Rényi en-
tropies. Phys Rev A 74:052101

45. Babenko KI (1961) An inequality in the theory of Fourier integrals. Izv Akad Nauk SSSR, Ser
Mat 25:531 (in Russian)

46. Wilk G, Włodarczyk Z (2009) Uncertainty relations in terms of the Tsallis entropy. Phys Rev
A 79:062108

47. Bialynicki-Birula I, Rudnicki Ł (2010) Comment on “Uncertainty relations in terms of the
Tsallis entropy”. Phys Rev A 81:026101

48. Deutsch D (1983) Uncertainty in quantum measurements. Phys Rev Lett 50:631
49. Kraus K (1987) Complementary observables and uncertainty relations. Phys Rev D 35:3070
50. Maassen H, Uffink JBM (1988) Generalized entropic uncertainty relations. Phys Rev Lett

60:1103
51. Reed M, Simon B (1975) Methods of modern mathematical physics, vol II. Academic Press,

New York
52. Riesz M (1927) Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires. Acta

Math 49:465
53. Schwinger J (1960) Unitary operator bases. Proc Natl Acad Sci USA 46:570
54. Bengtsson I (2007) Three ways to look at mutually unbiased bases. In: Adenier G, Fuchs CA,

Khrennikov AYu (eds) Foundations of probability and physics. AIP Conf Proc, vol 889. AIP,
New York. arXiv:quant-ph/0610216

55. Zozor S, Portesi M, Vignat C (2008) Some extensions of the uncertainty principle. Physica A
387:4800–4808

56. Bialynicki-Birula I, Bialynicka-Birula Z (1976) Quantum electrodynamics of intense photon
beams. New approximation method. Phys Rev A 14:1101

57. Bialynicki-Birula I, Madajczyk J (1985) Entropic uncertainty relations for angular distribu-
tions. Phys Lett 108 A:384

58. Wehner S, Winter A (2009) Entropic uncertainty relations—a survey. arXiv:0907.3704v1
[quant-ph]

59. Ivonovic ID (1981) Geometrical description of quantal state determination. J Phys A 14:3241–
3245

60. Azarchs A (2004) Entropic uncertainty relations for incomplete sets of mutually unbiased
observables. arXiv:quant-ph/0412083v1

61. Sánchez J (1993) Entropic uncertainty and certainty relations for complementary observables.
Phys Lett A 173:233–239

62. Wu S, Yu S, Mølmer K (2009) Entropic uncertainty relation for mutually unbiased bases. Phys
Rev A 79:022104

63. Gross L (1975) Logarithmic Sobolev inequalities. Am J Math 97:1061–1083
64. Chafai D (2002) Gaussian maximum of entropy and reversed log-Sobolev inequality Sémi-

naire de probabilitiés. Strasbourg 36:194–200
65. Dodonov VV, Man‘ko VI (1989) Generalized uncertainty relations in quantum mechanics. In:

Markov MA (ed) Invariants and evolution of nonstationary quantum systems. Proceedings of
the Lebedev Physics Institute, vol 183. Nova Science, Commack

http://arxiv.org/abs/arXiv:quant-ph/0610216
http://arxiv.org/abs/arXiv:0907.3704v1
http://arxiv.org/abs/arXiv:quant-ph/0412083v1


Chapter 2
Derivation of Generalized von Weizsäcker
Kinetic Energies from Quasiprobability
Distribution Functions

Debajit Chakraborty and Paul W. Ayers

Abstract The Fisher Information of the electronic distribution functions is closely
related to the von Weizsäcker kinetic energy functional. We show how generaliza-
tions of the Weizsäcker kinetic energy density functional can be derived from the
canonical momentum-space expression for the kinetic energy and extend this result
to higher-order electron distribution functions.

2.1 Introduction

One of the biggest challenges in density-functional theory (DFT) and its many-
electron generalizations is formulating an approximate kinetic energy functional.
The Weizsäcker family of functionals [1–3] is particularly useful, at least at a theo-
retical level, because the form of the functional,

Tw[p] ∝
∫ ∇p(τ) · ∇p(τ)

8p(τ)
dτ (2.1)

is preserved, whether p(τ ) is a one-electron, two-electron, or many-electron dis-
tribution function. Moreover, for the N -electron distribution function, p(τ ) =
|Ψ (τ )|2, the Weizsäcker functional form is exact [4, 5]. In this book chapter we
will elucidate some properties of the Weizsäcker kinetic energy form, elucidating
its link to information theory (Fisher information) and also to the momentum-space
equation for the kinetic energy.

2.2 Fisher Information

The Fisher information, I [p], of a probability distribution function, p(x), measures
the local inhomogeneity of the system [6]. For a unimodal distribution, it is a mea-
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sure of the compactness of p(x). For a multimodal distribution, I [p] is a measure
of “peakiness.” As stressed by Frieden, nature seems to favor extreme values of the
Fisher information, and many of the laws and governing equations of physics can be
obtained by minimizing/maximizing the Fisher information subject to appropriate
physical constraints [7]. An early derivation of the Schrödinger equation by min-
imizing the Fisher information was given by Sears, Parr, and Dinur [5]. A recent
review by Nalewajski features the many ways Fisher information is used in quan-
tum chemistry and, more generally, molecular electronic structure theory [8].

Suppose that a probability distribution function depends parametrically on pa-
rameters θ . Denote the probability of observing data value x given that the parame-
ters have values θ as p(x|θ). In general, θ is a vector containing multiple parameters.
The Fisher information indicates how much information we gain about the value of
the parameters by measuring x. For one data value and one parameter, the Fisher
information is simply,

I [p] =
∫

p(x|θ)
(
∂ ln(p(x|θ))

dθ

)2

dx

=
∫

1

p(x|θ)
(
∂p(x|θ)
dθ

)2

dx. (2.2)

For multiple parameters, this expression generalizes to

I [p] =
∫ ∇θp(x|θ) · ∇θp(x|θ)

p(x|θ) dx. (2.3)

Owing to the Heisenberg momentum-position uncertainty principle, in quantum
mechanics we cannot measure the position of particles exactly. What can we say
about the true position of a particle if we observe it at the point x? Let θ be the
position of the particle; this is the quantity we are trying to estimate. The fluctuation
of the observed position of the particle from its true position must be translationally
invariant. This means that p(x|θ)= p(x− θ) [7]. Inserting this expression into (2.3)
and making the substitution y = x − θ gives

I [p] =
∫ ∇p(y) · ∇p(y)

p(y)
dy

=
∫

p(y)|∇(lnp(y))|2dy. (2.4)

This particular manifestation of the Fisher information is sometimes called the
Fisher information of locality, because it captures the inherent delocalization of
quantum mechanical particles [4].

The preceding derivation may be criticized in the context of molecular electronic
structure theory because when one makes the Born-Oppenheimer approximation,
the electronic coordinates x are no longer translationally invariant because the nu-
clei are at fixed positions in space. We will not worry about the epistemological issue
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in this paper, because (2.4) may be interpreted even if one questions the appropriate-
ness of this derivation in electronic structure theory. The Fisher information measure
from (2.4) measures the amount of local inhomogeneity in the system [6]. For a uni-
modal distribution, it is a measure of the compactness of p(x). For a multimodal
distribution, I [p] is a measure of “peakiness.”

As stressed by Frieden, nature seems to favor extreme values of the Fisher infor-
mation, and many of the laws and governing equations of physics can be obtained
by minimizing/maximizing the Fisher information subject to appropriate physical
constraints [7]. An early derivation of the Schrödinger equation from minimizing
the Fisher information was given by Sears, Parr, and Dinur [5].

In his prescient work, Fisher introduced the probability amplitude, |ψ(x)|2 =
p(x). In terms of the probability amplitude, (2.4) takes a form reminiscent of the
quantum mechanical kinetic energy,

I [ψ] = 4
∫

∇ψ∗(x) · ∇ψ(x)dx ∼ 8T [ψ]. (2.5)

This form is the starting point for the derivation of the Schrödinger equation from the
principle of extreme physical information [4, 5, 7]. Equation (2.5) is more general,
however, because ψ(x) does not have to be a wavefunction.

Now let us consider the Fourier transform of the probability amplitude,

�ψ(p)=
(

1

2π

)d/2 ∫
eip·xψ(x)dx,

ψ(x)=
(

1

2π

)d/2 ∫
e−ip·x�ψ(p)dp.

(2.6)

Using identities from Fourier analysis and defining the momentum-space probabil-
ity distribution function in the obvious way, p(p)= |�ψ(p)|2, we can write

I [ψ] = 4
∫

p · p|�ψ(p)|2dp ∼ 8T [ψ]. (2.7)

The derivation of (2.7) will be expounded upon later. For now it suffices to note
that a very similar derivation may be found in chapter three of Frieden’s book [7].
Equation (2.7) is intuitive: the amount of information that can be obtained about
position is proportional to the variance of the momentum. It is appealing that the
most common of all measures of uncertainty—the variance—Fourier transforms
into the Fisher information.

2.3 Kinetic Energy

Even though the electronic kinetic energy is readily computed from the N -electron
wavefunction,
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T [Ψ ] =
∫∫

· · ·
∫

Ψ ∗(r1, r2, . . . , rN)

(
N∑
i=1

−1

2
∇2
i

)

×Ψ (r1, r2, . . . , rN)dr1dr2 . . . drN

=
∫∫

· · ·
∫ N∑

i=1

1

2
∇iΨ

∗(r1, r2, . . . , rN)

× ∇iΨ (r1, r2, . . . , rN)dr1dr2 . . . drN, (2.8)

the problem of approximating the kinetic energy directly from the electron density
persists. In (2.8), and throughout the remainder of this article, atomic units (where
� =me = 1) are used.

It is impossible to review even a small fraction of the literature on kinetic en-
ergy density functionals. The discipline started with the work of Thomas and Fermi
[9, 10] followed soon after by von Weizsäcker [1]. In the late 1970’s, the gradi-
ent expansion approximation for kinetic energy of nearly uniform electron densities
was performed to high order, and shown to diverge for atomic and molecular elec-
tron densities [11, 12]. Most recent work has focused on approaches that incorpo-
rate information about the exact linear response function of the uniform electron gas
[13–16]. We refer the interested reader to recent articles with a review-like character
[14, 17–22].

We wish to focus on two aspects of kinetic energy functionals in this paper. First,
we will focus on the Weizsäcker functional. Many authors have suggested that the
Weizsäcker functional is a good starting point for kinetic energy functionals [13, 17,
23–35] partly because it ensures the correct behavior at the nuclear-electron cusps
and also in the asymptotic decaying tails of the electron density. The Weizsäcker
functional is, in its spin-resolved form,

T (1)
w [ρσ ] =

∑
σ=α,β

∫ ∇ρσ (r) · ∇ρσ (r)
8ρσ (r)

dr (2.9)

where the spin density is given by the expression

ρσ (r)= 〈Ψ |
N∑
i=1

|σ(i)〉δ(ri − r)〈σ(i)||Ψ 〉 (2.10)

and is normalized to the number of electrons with the specified spin,

Nσ =
∫

ρσ (r)dr. (2.11)

The electron density is nonnegative but because it is not normalized to one, it is not
a probability distribution function. For this reason, it is sometimes more convenient
to work with the so-called shape functions [36–39]

pσ (r)= ρσ (r)
Nσ

. (2.12)
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The Weizsäcker functional is then

T (1)
w [pσ ] =

∑
σ=α,β

Nσ

∫ ∇pσ (r) · ∇pσ (r)
8pσ (r)

dr. (2.13)

The shape function is usually denoted σ(r), but we will use the nonstandard notation
in (2.12) to avoid confusion with the spin index.

The second aspect of kinetic energy functionals we wish to focus on is the
momentum-space representation. In momentum space, the kinetic energy is a simple
and explicit functional of the momentum density,

T =
∑

σ=α,β

∫
1

2
(p · p)ρσ (p)dp. (2.14)

The momentum density is defined by an expression just like (2.10), but now the
Fourier-transformed wavefunctions (denoted �Ψ ; cf. (2.6)) are used,

Πσ (p)= 〈�Ψ |
N∑
i=1

|σ(i)〉δ(pi − p)〈σ(i)||�Ψ 〉. (2.15)

Notice that the momentum density is not the Fourier transform of the position den-
sity; this will be important later in our analysis when we try to approximate the
kinetic energy functional.

There is another perspective that is intermediate between the position-space and
momentum-space approach; this perspective is based on quasiprobability distribu-
tion functions [40–42]. In classical mechanics, one can generate a phase-space dis-
tribution function, f (r,p) that represents the probability of observing a particle at
the point r with momentum p. In quantum mechanics, the Heisenberg uncertainty
principle forbids measuring the position and momentum of a particle simultane-
ously, and there are innumerably many choices for f (r,p). Given a quasiprobability
distribution function, however, the local kinetic energy [43–46],

tσ (r)=
∫

1

2
(p · p)fσ (r,p)dp, (2.16)

and the total kinetic energy,

T =
∑

σ=α,β

∫
tσ (r)dr (2.17)

are readily evaluated.
The one-electron quasiprobability distribution function can be computed from

the one-electron reduced density matrix, [42, 46–48]

γσσ (r, r′)=Nσ

∫∫∫
· · ·

∫ ⎡
⎣
Ψ ∗(r′

1, r2, . . . , rN)
× (|σ(1)〉δ(r′

1 − r′)δ(r1 − r)〈σ(1)|)
×Ψ (r′

1, r2, . . . , rN)dr1dr′
1dr2 . . . drN

⎤
⎦ ,

(2.18)
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by the equation,

fσ (r,p)=
(

1

2π

)6 ∫∫∫
e−iτ ·pe−iθ ·(r−u)g(θ, τ )γσσ

(
u + 1

2
τ,u − 1

2
τ

)
dudθdτ,

(2.19)
where the function g(θ ,τ ) is any function that is well-behaved enough for the inte-
gral to exist that satisfies the constraints

g(θ, τ = 0)= g(θ = 0, τ )= 1,

(g(θ, τ ))∗ = g(−θ,−τ).
(2.20)

The most popular choice, g = 1, corresponds to the Wigner distribution [40].
Quasiprobability distribution functions for many-electron reduced density matrices
are computed from very similar formulas.

Every kinetic energy density functional is based on some choice, whether im-
plicit or explicit, for the momentum density and/or the quasiprobability distribution
function.

2.4 Generalized Weizsäcker Forms of the Kinetic Energy

Notice that the Weizsäcker kinetic energy functional, (2.13), strongly resembles the
form of the Fisher information, (2.4). Similarly, the exact kinetic energy functional,
(2.14) recalls the momentum-space formula for the Fisher information, (2.7). Is
there some way to, using the link to momentum space, improve the Weizsäcker
functional so that it is more accurate? Can formulating a momentum-density or
quasiprobability distribution version of the Weizsäcker functional give some insight
into the functional?

Since the Weizsäcker functional depends only on the electron density in posi-
tion space, the corresponding momentum density must also be a density functional.
Consider the momentum density of a “piece” of the electron density,

π(a)
σ (p)=

(
1

2π

)3/2 ∫
eip·r(ρσ (r))adr. (2.21)

A reasonable, if highly approximate, formula for the momentum density is then

Π̃(a)
σ (p)= 1

2

(
π(a)
σ (p)[π(1−a)

σ (p)]∗ + [π(a)
σ (p)]∗π(1−a)

σ (p)
)
. (2.22)

This form is motivated by the idea that the square root of the density has the units of
the wavefunction. So using the square root of the electron density instead of ψ(r)
in (2.6) seems analogous to the usual procedure for deriving the momentum density
and, moreover, is exact for one-electron systems; we will see that this is equivalent
to the Weizsäcker approximation. Equation (2.22) is just the generalization of this
idea, and we hoped that by optimizing the value of a we could obtain better results.
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Now we derive the kinetic energy density functional that is built from the ap-
proximate momentum-space density in (2.22),

T̃ (a)
σ =

∫
1

2
(p · p)Π̃a

σ (p)dp. (2.23)

Substituting in the definition of the approximate momentum density, this simplifies
to

T̃ (a)
σ = 1

4

(∫
(p · p)π(a)

σ (p)(π(1−a)
σ (p))∗dp + c.c.

)

= 1

4

(
1

2π

)3 ∫
(p · p)

[∫∫
ei(p·r)(ρσ (r))ae−i(p·r′)(ρσ (r′))1−adrdr′

]
dp + c.c.

(2.24)

Here c.c. denotes the addition of the complex conjugate of the preceding term. In-
terchanging the order of integration and using the Fourier transform form of the
derivative,

(−1)nδ(n)(x − x′)= 1

2π

∫
eip(x−x′)(ip)ndp (2.25)

gives

T̃ (a)
σ = −1

4

∫∫
δ(2)(r − r′)(ρσ (r))a(ρσ (r′))1−adrdr′ + c.c.

= −1

4

∫
(ρσ (r′))1−a∇2(ρσ (r′))adr′ + c.c.

= −1

2

∫
(ρσ (r′))1−a∇2(ρσ (r′))adr′. (2.26)

This formula simplifies to

T̃ (a)
σ = −a(a − 1)

2

∫
(ρσ (r′))1−a(ρσ (r′))a−2(∇ρσ (r′) · ∇ρσ (r′))dr′

− a

2

∫
∇2ρ(r)dr

= −a(a − 1)

2

∫ ∇ρσ (r′) · ∇ρσ (r′)
ρσ (r′)

dr′. (2.27)

The Laplacian term in the second line vanishes because of the rapidly decaying na-
ture of the electron density (which is, in turn, forced by the boundary conditions on
the electronic wavefunction). If we wish to interpret (2.23) and (2.27) as manifesta-
tions of the Fisher information, it is better to write instead

T̃ (a)
σ = −a(a − 1)

2
Nσ

∫ ∇pσ (r′) · ∇pσ (r′)
pσ (r′)

dr′. (2.28)
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The approximate kinetic energy functional T̃ (a)
σ is a parabola in a with maxi-

mum value at a = 1/2. The maximum value is precisely the Weizsäcker functional
[3, 49, 50]. Since the Weizsäcker functional is a lower bound to the true kinetic en-
ergy, the most accurate member of this family of generalized Weizsäcker functionals
is the conventional Weizsäcker functional itself.

Notice also that T̃ (0)
σ = T̃

(1)
σ = 0. This follows from (2.28) and the fact that the

following momentum density has zero kinetic energy,

Π̃(0)
σ (p)= Π̃(1)

σ (p)= 1

2

(
δ(p)

∫
eip·rρσ (r)dr + c.c.

)
. (2.29)

The reader may wonder why we did not consider the straightforward Fourier trans-
form of the electron density,

�ρ(p)= 1

2

(∫
eip·rρσ (r)dr + c.c.

)
. (2.30)

(Notice: this is not the ansatz in (2.21) and (2.22).) This momentum density gives
an entirely different, and seemingly absurd, value for the kinetic energy. Namely,

T̃σ [�ρσ ] =
∫

1

2
(p · p)�ρσ (p)dp

=
∫

1

2
(p · p)

(
1

2

)[(
1

2π

)3/2 ∫
eip·rρσ (r)dr + c.c.

]
dp

= −1

2
(2π)3/2

∫
δ(2)(r − 0)ρσ (r)dr

= −
√

2π3∇2ρσ (0). (2.31)

For an atom centered at the origin, this kinetic energy actually diverges. Distress-
ingly, this formula for the kinetic energy appears not to be translationally invariant,
but this reveals an oversight in the derivation—the integrand is too ill-conditioned to
permit interchange of the order of differentiation in the second step of (2.31)—rather
than a physical inconsistency. (In general, the Laplacian of the density is evaluated
at a point in space that is determined by the electron density itself.)

Returning to the Weizsäcker form, the density matrix corresponding to the
Weizsäcker functional is,

γ̃σσ (r, r′)= √
ρσ (r)ρσ (r′). (2.32)

This density matrix usually violates the Pauli principle (it is not N -representable)
because there are Nσ electrons in the first natural orbital [51]. This is why the cor-
rection to the Weizsäcker functional is often made using the Pauli potential [23, 24,
52, 53].

It is interesting, and disappointing, that even though the Weizsäcker model for
the density matrix, (2.32), is very simple, the quasiprobability distribution cannot
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generally be expressed in closed form, even for the simplest g(θ ,τ ) = 1 case (cor-
responding to the Wigner distribution). To understand this, consider that even for the
ground state of the hydrogen atom; the Wigner distribution has a very complicated
analytic form [54–56]. Thus, while the naïveté of the Weizsäcker form is obvious
from the mathematical form of the reduced density matrix, the momentum distribu-
tion function, Π̃(a)

σ (p), and quasiprobability distribution function have complicated
forms that seem to obscure the inappropriateness of this choice and for which, in
general, there is no explicit expression.

2.5 Extension to Many-Electron Distribution Functions

As attempts to find accurate, variational stable, explicit kinetic energy function-
als of the electron density have so far been unsuccessful, it is reasonable to con-
sider descriptors that contain more information that the electron density. In ab initio
quantum chemistry, there is a hierarchy of methods, starting with single-particle
methods, then electron pair methods, etc. There is also a hierarchy of k-density
functional theories based on the electron distribution functions, [3, 57, 58] starting
with the electron density (k = 1) and moving to the pair density (k = 2) and even
higher-order electron distribution functions. The most common of these “extended”
density-functional theories is based on electron pair density, [59–61]

ρ
(2)
σσ ′(r, r′)= 〈Ψ |

N∑
i=1

N∑
j=1
j �=i

|σ(i)σ ′(j)〉δ(ri − r)δ(rj − r′)〈σ ′(j)σ (i)||Ψ 〉. (2.33)

The theoretical properties of the kinetic energy functional of the pair density have
been thoroughly explored [3, 59, 62–64]; some practical formulas have also been
presented [2, 3, 65–73]. The most popular functional seems to be the two-electron
Weizsäcker function, [2, 3, 66, 74, 75]

T (2)
w [ρ(2)

σσ ′ ] =
∑

σ=α,β

1

Nσ − 1

∫∫ ∇1ρ
(2)
σσ (r1, r2) · ∇1ρ

(2)
σσ (r1, r2)

8ρ(2)σσ (r1, r2)
drdr′

=
∑

σ=α,β

Nσ

∫∫ ∇1p
(2)
σσ (r1, r2) · ∇1p

(2)
σσ (r1, r2)

8p(2)σσ (r1, r2)
drdr′

=
∑

σ=α,β

Nσ

2

∫∫ ∇τp
(2)
σσ (τ ) · ∇τp

(2)
σσ (τ )

8p(2)σσ (τ )
dτ. (2.34)
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The second equality in (2.34) uses the unit-normalized many-electron shape func-
tions,

pσσ ′(r, r′)=
⎧
⎨
⎩

ρσσ ′ (r,r′)
NσNσ ′ , σ �= σ ′,
ρσσ ′ (r,r′)
Nσ (Nσ−1) , σ = σ ′.

(2.35)

The third equality in (2.34) uses the 6-dimensional gradient. This form is especially
useful for extending the Weizsäcker functional to the higher-order electron distribu-
tion functions needed in general k-density functional theories,

T (k)
w [ρ(k)σ1σ2...σk

] =
∑

σ=α,β

Nσ

k

∫∫ ∇τp
(k)
σσ ···σ (τ ) · ∇τ p

(k)
σσ ···σ (τ )

8p(k)σσ ···σ (τ )
dτ. (2.36)

The extended Weizsäcker functionals from (2.36) form an increasing sequence of
lower bounds to the exact kinetic energy,

T (1)
w ≤ T (2)

w ≤ T (3)
w ≤ · · · ≤ T (N)

w = Texact (2.37)

with the k = N formula being exact for any N -electron distribution function that
arises from a real-valued wavefunction [3]. Unfortunately, this series of bounds con-
verges slowly [76].

Comparing (2.28) and (2.36) it is clear that the entire analysis from the previous
section can be extended to many-electron distribution functions. In particular, we
can define a k-particle spin-momentum probability distribution function by

π(a,k)
σ1σ2...σk

(P)=
(

1

2π

)3k/2 ∫
eiP·τ (p(k)σ1σ2···σk (τ ))

adτ,

Π̃(a,k)
σ1σ2···σk (P)= 1

2

(
π(a,k)
σ1σ2...σk

(P)[π(1−a,k)
σ1σ2...σk

(P)]∗

+ [π(a,k)
σ1σ2...σk

(P)]∗π(1−a,k)
σ1σ2...σk

(P)
)
.

(2.38)

One of the many possible expressions for the kinetic energy that can be written using
these approximate k-particle momentum distributions is,

T̃ (k)[Π̃(a,k)
σ1σ2···σk ] =

∑
σ=α,β

Nσ

k

∫
1

2
(P · P)Π̃(a,k)

σσ ···σ (P)dP. (2.39)

As before, the most accurate functional is obtained for a = 1/2, which is the Fourier-
transformed form of the extended Weizsäcker functional in (2.36).

The other aspects of the analysis of one-particle Weizsäcker kinetic energy func-
tional also generalize. For example, the k-electron reduced density matrix that is
implicit in (2.36) is

Γ̃
(k)
σ ···σ ;σ ···σ (τ, τ

′)=
(
Nσ

k

)√
p
(k)
σσ ···σ (τ )p(k)σσ ···σ (τ ′). (2.40)
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This density matrix is usually not N -representable because the maximum occupa-
tion number of a k-particle state is

(
Nσ

k

) 1
Nσ−k+1 [77–79]. The extended Weizsäcker

functionals can be exact only when the number of electrons of a given spin is equal
to the number of electrons in the functional, k.

2.6 Summary

The expression for the Fisher information in coordinate space is similar to the form
of the Weizsäcker kinetic energy functional; compare (2.4) and (2.13). The expres-
sion for the Fisher information in reciprocal (momentum) space is reminiscent of
the quantum mechanical kinetic energy; compare (2.7) and (2.14). These similari-
ties motivated us to find a momentum representation for the Weizsäcker functional
and to, moreover, attempt to generalize the Weizsäcker functional. The form of mo-
mentum distribution in (2.21) and (2.22) recovers the Weizsäcker functional for
a = 1/2. Unfortunately, even though this family of momentum densities gives a
generalized Weizsäcker function (2.28), all of the other functionals in this family
are less accurate than the Weizsäcker functional.

Is it possible to generalize (2.22) still further, so that we can perhaps obtain an
improved kinetic energy density functional? We tried to use the more general form,

˜̃
Π(a,b,c,d)
σ (p)= 1

2

(
(π(a)

σ (p))c[(π(b)
σ (p))d ]∗ + [(π(a)

σ (p))c]∗(π(b)
σ (p))d

)
,

ac+ bd = 1. (2.41)

We were unable to find the position-space representation of the kinetic energy func-
tional for this form. Perhaps some functionals in the extended family derived from
(2.41) are more accurate than the usual Weizsäcker form. We note that approxi-
mating the momentum density by simply Fourier transforming the spatial electron
density gives seemingly absurd, and certainly inaccurate, results.

The same reasoning applies to the extended Weizsäcker functionals that are
used in what is often called k-density functional theory, where the fundamental
descriptor of an electronic system is the k-electron distribution function. The ex-
tended Weizsäcker functionals are also proportional to the Fisher information of the
k-electron distribution function, and they also have a compact momentum-space
representation that follows directly from the momentum-space representation of
the Fisher information density via the probability amplitude. To our knowledge,
this is the first time that the momentum-space representation for the many-electron
Weizsäcker family of functionals has been presented. We find it intuitively appealing
that the second moment (ergo, the variance, and also the Weizsäcker kinetic energy)
of the momentum is closely related to the Fisher information of a many-electron
distribution function.
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Chapter 3
Atomic Statistical Complexity

C.P. Panos, K.C. Chatzisavvas, C.C. Moustakidis, N. Nikolaidis, S.E. Massen,
and K.D. Sen

Abstract Applications of the Shannon information entropy, Fisher measure, On-
icescu energy, and two of the simple statistical complexity measures on atoms are
presented using the Hartree-Fock density in position and momentum space. Inter-
esting correlations with the experimental properties such as the ionization potential
and static dipole polarizability are reported using the information measures. The
statistical complexity analysis reveals interesting insights into the shell structure
of electron density. The net Shannon information entropy is found to obey an ap-
proximate linear dependence on lnN , where N gives the number of particles in the
quantum system.

3.1 Introduction

Information-theoretical measures have been extensively used in recent years to
study a variety of quantum mechanical systems [1]. A large number of studies have
remained focused on atomic systems [2–20]. In this chapter we shall present a re-
view of the results obtained in this area by the Thessaloniki group. We shall begin
our presentation with the definition of the Shannon [21, 22], Fisher [23] and On-
icescu [24] information measures followed by two of the complexity measures de-
fined by Shiner, Davison, Landsberg (SDL) [25], and López-Ruiz, Mancini, Calbet
(LMC) [26–28], respectively. Following this, in each case, the applications of these
measures for atoms and other quantum systems will be discussed. Throughout our
calculations we have used the electron probability density derived from the wave
functions of Hartree-Fock (HF) quality [29].
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3.2 Shannon Information Entropy

The Shannon information entropy Sr of the electron density ρ(r) in coordinate space
is defined as

Sr = −
∫

ρ(r) lnρ(r) dr, (3.1)

and the corresponding momentum space entropy Sk is given by

Sk = −
∫

n(k) lnn(k) dk, (3.2)

where n(k) denotes the momentum density. The densities ρ(r) and n(k) are respec-
tively normalized to unity and all quantities are given in atomic units. The Shannon
entropy sum ST = Sr + Sk contains the net information and obeys the well known
lower bound due to Bialynicki-Birula and Mycielski [3] defining the entropic uncer-
tainty relation (EUR). It represents a stronger version of the Heisenberg uncertainty
principle of quantum mechanics, in the sense that the EUR leads to Heisenberg re-
lation, while the inverse is not true. Additionally, the right-hand side of Heisenberg
relation depends on the quantum state of the system, while EUR does not. Accord-
ingly, the entropy sum in D-dimensions satisfies the inequality [3, 30, 31]

ST = Sr + Sk ≥D(1 + lnπ). (3.3)

Individual entropies Sr and Sk depend on the units used to measure r and k respec-
tively, but their sum ST does not i.e. it is invariant to uniform scaling of coordinates.
Further, we note that ST , Sr and Sk obey the following rigorous inequalities [9]

Sr min ≤ Sr ≤ Sr max, (3.4)

Skmin ≤ Sk ≤ Skmax, (3.5)

ST min ≤ S ≤ ST max. (3.6)

The lower and the upper limits can be written, for density distributions normal-
ized to one

Sr min = 3

2
(1 + lnπ)− 3

2
ln

(
4

3
K

)
,

Sr max = 3

2
(1 + lnπ)+ 3

2
ln

(
2

3
〈r2〉

)
,

(3.7)

Skmin = 3

2
(1 + lnπ)− 3

2
ln

(
2

3
〈r2〉

)
,

Skmax = 3

2
(1 + lnπ)+ 3

2
ln

(
4

3
K

)
,

(3.8)

ST min = 3(1 + lnπ),

ST max = 3(1 + lnπ)+ 3

2
ln

(
8

9
〈r2〉K

)
,

(3.9)

where 〈r2〉 is the mean square radius and K is the kinetic energy.
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Fig. 3.1 Shannon
information entropy in
coordinate-space Sr ,
momentum space Sk and their
sum S, as functions of Z

3.2.1 Approximate Linearity of ST with lnN

For various quantum systems such as atoms, nuclei, atomic clusters and bosons in a
trap, it has been shown empirically [5, 6, 8] that an approximate relationship given
by ST = a + b lnN holds good. These are systems with widely ranging numbers of
particles N , from a few to millions, and have various sizes, with constituent particles
obeying different interactions and different statistics such as fermions and bosons.
The parameters a, b depend on the system under consideration. ST is connected
with the kinetic energy [7]. We illustrate the N -dependence of the Shannon entropy
sum using the numerical HF data on neutral atoms. In Fig. 3.1 we plot the Shannon
information entropy for both the coordinate-space Sr , and momentum-space Sk as
functions of the electron number Z. For the Sr values, we observe an average de-
creasing behavior carrying the shell structure. For atoms with the completely filled
shells, such as He, Ne, Ar, Kr there exist minima in the curve Sr(Z). This is due
to the fact that compared to the neighboring atoms, ρ(r) for these atoms is most
compact. The values of Sk show a monotonic increase with Z. Interestingly, the
behavior of Sk also reveals the local shell effect.

In the same figure we have displayed the total Shannon information entropy
S = ST which is a monotonically increasing function of Z with just two excep-
tions corresponding to Ni and Pd. These exceptions are due to the fact that Sr and
Sk depend on the arrangement of the electrons in shells. There is a delicate balance
between Sr and Sk resulting in the general rule that ST = Sr +Sk is a monotonic in-
creasing function of Z except in Ni and Pd where the electron arrangement in shells
is such that the decrease of the value of Sr cannot be balanced by a corresponding
increase of Sk . Thus the strict monotonicity of ST is broken in such cases. A shell
effect is also obvious in the behavior of ST i.e. minima at closed shells. Figure 3.2
illustrates the trend of S = ST as a function of lnZ. The corresponding linear fit
is also plotted in the same figure where S = 6.33 + 1.046 lnZ. It is noted that this
result is not new but has been already obtained using other wave functions in [8, 9].
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Fig. 3.2 The universal
relation S = a + b lnN for
atoms

In the present work we verify this result with RHF electron wave functions [29, 32]
and we employ this framework for new calculations.

For a variety of other applications of Shannon information entropy on electronic
structure we refer the reader to the literature [33–50].

3.3 The Fisher Information Measure

The Fisher information measure or intrinsic accuracy in position space is defined as

Ir =
∫ |∇ρ(r)|2

ρ(r)
dr, (3.10)

and the corresponding momentum space measure is given by

Ik =
∫ |∇n(k)|2

n(k)
dk. (3.11)

The individual Fisher measures are bounded through the Cramer-Rao inequality
[51, 52] according to Ir ≥ 1

Vr
and Ik ≥ 1

Vk
, where V ’s denote the corresponding

spatial and momentum variances respectively. The Fisher information, in position
space, measures the sharpness of probability density and for a Gaussian distribution
is exactly equal to the inverse of the variance. The Fisher measure in this sense is
complementary to the Shannon entropy and their reciprocal proportionality is, in
fact, utilized in obtaining a correlation with the experimental ionization potentials
in the next section. The Fisher measure has the desirable properties that it is always
positive and reflects the localization characteristics of the density more sensitively
than the Shannon information entropy [53, 54]. The lower bounds of Shannon sum
Sr + Sk and Fisher product IrIk get saturated for the Gaussian distributions. For a
variety of applications of the Fisher information measure we refer to the recent book
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Fig. 3.3 Net Shannon
information entropy ST and
the ionization potential as a
function of nuclear charge Z
of neutral atoms

[55] and for applications to the electronic structure of atoms, to the pioneering work
of Dehesa and coworkers [56–61].

In the context of density functional theory (DFT), Sears, Parr and Dinur [62] were
the first to underline the importance of Fisher information. These authors showed
explicitly that the quantum mechanical kinetic energy is a measure of the infor-
mation content of a distribution. The electron localization function [63] which has
been widely successful in revealing the localization properties of electron density in
molecules has been interpreted in terms of Fisher information [64, 65]. Recently, the
Euler equation of density functional theory has been derived [66] from the principle
of the minimum Fisher information within the time dependent versions. For the real
wave functions in the position and momentum space, it has been shown that [67] the
net or composite Fisher information measure, in D-dimensions, obeys the following
lower bound

IT = IrIk ≥ 4D2. (3.12)

3.3.1 Ionization Potential, Dipole Polarizability and IT

The important electronic properties of ionization potential and the static electric
dipole polarizability of atoms correlate well with the composite Fisher measure, IT .
In Fig. 3.3 we first plot ST and I.P. as functions of Z. It is observed that ST does
not perform as a sensitive information measure reproducing the details of the trends
in I.P. It does show the gross atomic periodicity in terms of the shell structure as
the humps.

In Fig. 3.4 the values of IT (instead of ST as in Fig. 3.3) and the inverse of I.P. are
plotted as functions of Z. Compared to Fig. 3.3 the two curves in Fig. 3.4, resemble
each other in far more details. It has been shown earlier that Ik behaves similarly to
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Fig. 3.4 Net Fisher measure
IT and the inverse ionization
potential as a function of
nuclear charge Z of neutral
atoms

I.P. for atoms [68]. The net Fisher information amplifies the details of correlation
by approximately two orders of magnitude. Our aim of plotting IT versus inverse
of I.P. is to show the similarities in the two curves in the upward direction and also
lay emphasis on the significance of the net Fisher information, IT . Very recently,
the idea of taking the relative Shannon entropy of an element within a group of the
periodic table with respect to the inert gas atom, located at the end of the group has
been proposed [69] in order to get a more sensitive quantum similarity measure of
density distributions. It would be interesting to investigate whether the correlations
found in Fig. 3.4 can be further improved by using such a similarity measure for
each group using the Fisher information according to

Ω(Z)= 1 −
[
IT (ref)

IT (Z)

]
, (3.13)

where Ω(Z) measures the distance in compactness of the element Z from the most
compact ideal gas atom in the same group, used as reference. A larger value of
Ω(Z) would correspond to smaller I.P.

In Fig. 3.5 we present Ω and [I.P.]−1 as functions of Z. It is found that the
correlation is more direct than that obtained in Fig. 3.4. This observation suggests
that Ω(Z) can be used as a measure of quantum similarity of atoms and opens up a
new application of the net Fisher information measure IT .

We shall now consider the correlation of the static dipole polarizability of atoms
with the information measures. The variation of polarizability αd of atoms with ST
is found to be essentially similar to that of ST versus I.P., as already given in Fig. 3.3.
In the background of this rather mild sensitivity of ST , we shall instead consider the
correlation of IT with the experimental estimates of polarizability αd . The experi-
mental values have been taken from the compilation of Miller and Bederson [70] for
atoms with Z = 1–88. The variation of IT and αd with Z for atoms with Z = 1–88
is shown in Fig. 3.6. The overall correlation is found to be excellent with the maxi-
mum polarizability elements of the alkali atoms immediately following the sharply
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Fig. 3.5 A plot of Ω and
[I.P.]−1 as functions of Z for
neutral atoms

Fig. 3.6 The variation of IT
and αd with Z for atoms with
Z = 1–88

increasing values of IT just after the inert gas atoms. The polarizability predicted
by IT for the alkaline atoms present themselves as the only examples which are not
sufficiently well discriminated against the neighbouring atoms, in this case, the al-
kali metal atoms. It appears that the compactness described by IT in going from the
valence electron configuration of (ns)1 to (ns)2 does not increase sharply enough
to quantitatively reflect the changes in polarizability from alkali to alkaline earth
atoms. For these examples it is advisable to carry out further computations of the
Fisher information using wave functions which include electron correlation effects.
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3.4 Statistical Complexity of Atoms

The concept of complexity in chemistry in the graph theoretical context is described
[71] in the literature. In this section we shall specifically discuss two of the statistical
complexity measures and apply them to atoms in the periodic table. There are vari-
ous measures of complexity in the literature. A quantitative measure of complexity
is useful to estimate the ability of a variety of physical or biological systems for
organization. According to [72] a complex world is interesting because it is highly
structured. Some of the proposed measures of complexity are difficult to compute,
although they are intuitively attractive, e.g. the algorithmic complexity [73, 74] de-
fined as the length of the shortest possible program necessary to reproduce a given
object. The fact that a given program is indeed the shortest one, is hard to prove. In
contrast, there is a class of definitions of complexity, which can be calculated easily
i.e. the simple measure of complexity Γα,β according to Shiner, Davison, Landsberg
(SDL) [25], and the statistical measure of complexity C, defined by López-Ruiz,
Mancini, Calbet (LMC) [26–28]. We shall be specially interested to know whether
the features of periodicity in terms of the shell structure of the radial density is re-
vealed by two of the simplest complexity measures, SDL and LMC when studied as
functions of the atomic number Z. In order to define these measures of complexity
we need to introduce the Onicescu information measure.

3.4.1 Onicescu Information Measure

The concept of information energy E was introduced by Onicescu [24] in an attempt
to define a finer measure of dispersion distribution than that of Shannon information
entropy . For a discrete probability distribution (p1,p2, . . . , pk), E is defined as

E =
k∑

i=1

p2
i , (3.14)

which is extended for a continuous density distribution ρ(x) as

E =
∫

ρ2(x) dx. (3.15)

So far, only the mathematical aspects of the concept have been developed, while the
physical aspects have been ignored. A recent study of E for atomic nuclei has been
carried out in [75].

The meaning of (3.15) can be seen by the following simple argument: For a
Gaussian distribution of mean value μ, standard deviation σ and normalized density

ρ(x)= 1√
2πσ

exp

[
− (x −μ)2

2σ 2

]
, (3.16)

relation (3.15) gives

E = 1

2πσ 2

∫ ∞

−∞
exp

[
− (x −μ)2

σ 2

]
dx = 1

2σ
√
π
. (3.17)



3 Atomic Statistical Complexity 57

E is maximum if one of the p′
i s equals 1 and all the others are equal to zero i.e.

Emax = 1, while E is minimum when p1 = p2 = · · · = pk = 1
k

, hence Emin = 1
k

(total disorder). The fact that E becomes minimum for equal probabilities (total dis-
order), by analogy with thermodynamics, is the reason it has been called information
energy, although it does not have the dimension of energy [76].

It is seen from (3.17) that the greater the information energy, the more concen-
trated is the probability distribution, while the information content decreases. Thus,
one can define a measure of information content analogous to Shannon’s S, by the
relation

O = 1

E
. (3.18)

Relation (3.15) is extended for a 3-dimensional spherically symmetric density dis-
tribution ρ(r):

Er =
∫ ∞

0
ρ2(r)4πr2 dr,

Ek =
∫ ∞

0
n2(k)4πk2 dk,

(3.19)

in position and momentum space respectively, where n(k) is the corresponding den-
sity distribution in momentum space.

Er has dimension of inverse volume, while Ek of volume. Thus the product ErEk

is dimensionless and can serve as a measure of concentration (or information con-
tent) of a quantum system. It is also seen from (3.17) that E increases as σ decreases
(or concentration increases) and Shannon’s information entropy (or uncertainty) S
decreases. Thus S and E are reciprocal. In order to be able to compare them, we
redefine the quantity O by

O = 1

ErEk

, (3.20)

as a measure of the information content of a quantum system in both position and
momentum spaces.

3.4.2 SDL Measure of Complexity

Landsberg [77] defined the order parameter Ω (or disorder Δ) as

Ω = 1 −Δ= 1 − S

Smax
, (3.21)

where S is the information entropy (actual) of the system and Smax the maximum
entropy accessible to the system. Thus, the concepts of entropy and disorder are
decoupled and it is possible for the entropy and order to increase simultaneously.
It is noted that Ω = 1 corresponds to perfect order and predictability, while Ω = 0
means complete disorder and randomness.
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In [25] a measure of complexity Γα,β was defined of the form

Γα,β =ΔαΩβ =Δα(1 −Δ)β =Ωβ(1 −Ω)α, (3.22)

which is called the “simple complexity of disorder strength α and order strength β”.
When β = 0 and α > 0 “complexity” is an increasing function of “disorder”, and we
have a measure of category I (Fig. 1 of [25]). When α = 0 and β > 0, “complexity”
is an increasing function of “order” and we have a measure of category III. When
both α and β are non-vanishing and positive (α > 0, β > 0), “complexity” vanishes
at zero “disorder” and zero “order” and has a maximum of

(Γα,β)max = ααββ/(α + β)(α+β), (3.23)

at Δ= α/(α + β) and Ω = β/(α + β). This is complexity of category II according
to [25].

Several cases for both α and β non-negative are shown in Fig. 2 of [25], where
Γα,β is plotted as function of Δ. In the present work we can find Δ = S/Smax or
Ω = 1 − Δ as function of Z. Thus we are able to plot the dependence of Γα,β on
the atomic number Z.

3.4.3 LMC Measure of Complexity

The complexity C is measured accordingly to the prescription due to Lopez-Ruiz,
Manchini and Calbet (LMC) [26, 78] as

C = ST ET , (3.24)

where ET =ErEk .
ST denotes the information content stored in the system and ET corresponds to

the disequilibrium of the system, i.e. the distance from its actual state to equilibrium,
according to [26]. Shiner, Davison and Landsberg (SDL) [25] and LMC measures
were criticised in [79–81]. A related discussion can be found in [18, 82].

In the light of its sensitivity to describe the localization property it is useful to
consider in the above equation I−1

T instead of ST , to define LMC complexity mea-
sure based on the net Fisher information. Thus a new definition of complexity mea-
sure (LMC-like) is the following

C =ET I
−1
T . (3.25)

We note here that a slightly different measure of shape complexity, e.g., in position
space [27, 83–85] can be defined as C = eSrEr , and has been used in the more
recent literature.

In Fig. 3.7(a), (b) we plot the complexity measure Γα,β in atoms for various
values of parameters α and β . It is seen that for all sets of α and β , Γα,β shows
qualitatively the same trend as function of Z, i.e. it fluctuates around an average
value and shows local minima for atoms with closed shells. These results compare
favourably with intuition, i.e. complexity is less at closed shells which can be con-
sidered more compact than neighbouring nuclei and consequently less complex. It
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Fig. 3.7 SDL measure of
complexity Γα,β for atoms,
for various values of α and β ,
as functions of Z

is noted that this result comes from a procedure which is not trivial, i.e. first we cal-
culate ρ(r) and n(k), second we find S = Sr + Sk from the Shannon definition and
Smax employing rigorous inequalities and third we obtain the complexity measure
introduced in [25].

In Fig. 3.8 we plot in the same footing the Onicescu information content O and
the ionization potential I.P. The first three maxima of O correspond to the fully
closed shells (He, Ne and Ar) where in the case of the next closed shell (Kr) a
local maximum exists. It is indicated that O and I.P. are correlated in the sense
that there is a similarity in the trend of values of O and I.P. as functions of Z.
This similarity is more obvious in regions of small Z where linear relations O =
a + b lnZ can be extracted for regions Li-Ne and Na-Ar. However, it seems that,
there is no universal relation between them. There are many entropic measures of
spread of probability densities e.g. S, E, etc., but researchers prefer S because of
its unique properties, while E was introduced by Onicescu as a sensitive measure
of information. However, S and E are different functionals of the density and their
relation is difficult to find.
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Fig. 3.8 Onisescu
information O and first
ionization potential I.P. (in
Hartree units) as functions
of Z

The dependence of Γα,β on Z for atoms has been calculated for the first time
in [78]. In the present section we calculate C(Z) employing the same RHF wave
functions in the same region 1 ≤ Z ≤ 54, for the sake of comparison. Our results
are shown in Figs. 3.9 and 3.10. We compare them with Γα,β(Z) shown in Fig. 3
of [78] for (α,β) = (1,1), (1,1/4), (1/4,0), (0,4). In all (six) cases we observe
that the measures of complexity show local minima at closed shells atoms, namely
for Z = 10 (Ne), 18 (Ar), 36 (Kr). The physical meaning of that behaviour is that the
electron density for those atoms is the most compact one compared to neighbouring
atoms. The local maxima can be interpreted as being far from the most compact
distribution (low ionization potential systems). This does not contradict common
sense and satisfies our intuition. There are also local minima for Z = 24 (Cr), 29
(Cu), 42 (Mo). Those minima are due to a specific change of the arrangement of
electrons in shells. For example, going from Z = 24 (Cr) with electron configura-
tion [Ar]4s13d5 to the next atom Z = 25 (Mn), with configuration [Ar]4s23d5, it is
seen that one electron is added in an s-orbital (highest). The situation is similar for
Z = 29 (Cu) and Z = 42 (Mo). The local minimum for Z = 46 (Pd) is due to the
fact that Pd has a 4d10 electron configuration with extra stability of electron density.
It has no 5s electron, unlike the neighbouring atoms. There are also fluctuations of
the complexity measures within particular subshells. This behaviour can be under-
stood in terms of screening effects within the subshell. The question naturally arises
if the values of complexity correlate with properties of atoms in the periodic table.
An example is the correlation of Onicescu information content O with the ioniza-
tion potential (Fig. 4 of [78]). A more detailed/systematic study is needed, which is
beyond the scope of the present report.

Our calculations in [78] show a dependence of complexity on the indices of dis-
order α and order β . In [78], we made a general comment that there are fluctuations
of complexity around an average value and atoms cannot grow in complexity as Z
increases. The second part of our comment needs to be modified. Various values
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Fig. 3.9 LMC measure of
complexity C as function
of Z

Fig. 3.10 LMC measure of
complexity C and SDL
measure Γ0,4 as functions
of Z

of (α,β) lead to different trends of Γα,β(Z) i.e. increasing, decreasing or approxi-
mately constant. In addition, in [82] we compare C(Z) with Γα,β(Z) and we find a
significant overall similarity between the curves Γ0,4(Z) and C(Z) by plotting C(Z)
and Γ0,4(Z) in the same Fig. 3.10. The numerical values are different but a high de-
gree of similarity is obvious by simple inspection. There is also the same succession
of local maxima and minima at the same values of Z. Less striking similarities are
observed for other values of (α,β) as well, e.g. Γ1,1(Z) and C(Z).

Concluding, the behavior of SDL complexity depends on the values of the pa-
rameters α and β . The statistical measure LMC displays an increasing trend as Z
increases. An effort to connect the aforementioned measures, implies that LMC
measure corresponds to SDL when the magnitude of disorder α � 0 and of order
β � 4. In other words, if one insists that SDL and LMC behave similarly as func-
tions of Z, then we can conclude that complexity shows an overall increasing be-
haviour with Z. Their correlation gives for atoms the strength of disorder a � 0 and
order β � 4.
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A final comment seems appropriate: An analytical comparison of the similarity
of Γα,β(Z) and C(Z) is not trivial. Combining (3.24) and (3.25) we find for the
SDL measure

Γα,β(Z)=
(

S

Smax

)α (
1 − S

Smax

)β

, (3.26)

while for the LMC one has

C = S · (ErEk). (3.27)

S and Smax depend on Z as follows

S(Z)= Sr(Z)+ Sk(Z)= 6.33 + 1.046 lnZ (3.28)

(almost exact fitted expression) [8, 9, 78], while

Smax(Z)= Sr max(Z)+ Skmax(Z)= 7.335 + 1.658 lnZ (3.29)

(a rough approximation). We mention that Sr , Sk , Er , Ek are known but different
functionals of ρ(r) and n(k) according to relations (3.1), (3.2) and (3.20) respec-
tively. It is noted that our numerical calculations were carried out with exact values
of Sr , Sk , Er , Ek , while our fitted expressions for S(Z), Smax(Z) are presented in
order to help the reader to appreciate approximately the trend of Γα,β(Z) and C(Z).
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Chapter 4
Statistical Complexity and Fisher-Shannon
Information: Applications

Ricardo López-Ruiz, Jaime Sañudo, Elvira Romera, and Xavier Calbet

Abstract In this chapter, a statistical measure of complexity and the Fisher-
Shannon information product are introduced and their properties are discussed.
These measures are based on the interplay between the Shannon information, or
a function of it, and the separation of the set of accessible states to a system from
the equiprobability distribution, i.e. the disequilibrium or the Fisher information,
respectively. Different applications in discrete and continuous systems are shown.
Some of them are concerned with quantum systems, from prototypical systems such
as the H-atom, the harmonic oscillator and the square well to other ones such as He-
like ions, Hooke’s atoms or just the periodic table. In all of them, these statistical
indicators show an interesting behavior able to discern and highlight some confor-
mational properties of those systems.

4.1 A Statistical Measure of Complexity. Some Applications

This century has been told to be the century of complexity [1]. Nowadays the ques-
tion “what is complexity?” is circulating over the scientific crossroads of physics,
biology, mathematics and computer science, although under the present understand-
ing of the world could be no urgent to answer this question. However, many differ-
ent points of view have been developed to this respect and hence a lot of different
answers can be found in the literature. Here we explain in detail one of these op-
tions.

On the most basic grounds, an object, a procedure, or system is said to be “com-
plex” when it does not match patterns regarded as simple. This sounds rather like
an oxymoron but common knowledge tells us what is simple and complex: simpli-
fied systems or idealizations are always a starting point to solve scientific problems.
The notion of “complexity” in physics [2, 3] starts by considering the perfect crystal
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and the isolated ideal gas as examples of simple models and therefore as systems
with zero “complexity”. Let us briefly recall their main characteristics with “order”,
“information” and “equilibrium”.

A perfect crystal is completely ordered and the atoms are arranged following
stringent rules of symmetry. The probability distribution for the states accessible to
the perfect crystal is centered around a prevailing state of perfect symmetry. A small
piece of “information” is enough to describe the perfect crystal: the distances and
the symmetries that define the elementary cell. The “information” stored in this
system can be considered minimal. On the other hand, the isolated ideal gas is com-
pletely disordered. The system can be found in any of its accessible states with
the same probability. All of them contribute in equal measure to the “information”
stored in the ideal gas. It has therefore a maximum “information”. These two simple
systems are extrema in the scale of “order” and “information”. It follows that the
definition of “complexity” must not be made in terms of just “order” or “informa-
tion”.

It might seem reasonable to propose a measure of “complexity” by adopting
some kind of distance from the equiprobable distribution of the accessible states of
the system. Defined in this way, “disequilibrium” would give an idea of the prob-
abilistic hierarchy of the system. “Disequilibrium” would be different from zero if
there are privileged, or more probable, states among those accessible. But this would
not work. Going back to the two examples we began with, it is readily seen that a
perfect crystal is far from an equidistribution among the accessible states because
one of them is totally prevailing, and so “disequilibrium” would be maximum. For
the ideal gas, “disequilibrium” would be zero by construction. Therefore such a dis-
tance or “disequilibrium” (a measure of a probabilistic hierarchy) cannot be directly
associated with “complexity”.

In Fig. 4.1 we sketch an intuitive qualitative behavior for “information” H and
“disequilibrium” D for systems ranging from the perfect crystal to the ideal gas.
This graph suggests that the product of these two quantities could be used as a
measure of “complexity”: C = H ·D. The function C has indeed the features and
asymtotical properties that one would expect intuitively: it vanishes for the perfect
crystal and for the isolated ideal gas, and it is different from zero for the rest of
the systems of particles. We will follow these guidelines to establish a quantitative
measure of “complexity”.

Before attempting any further progress, however, we must recall that “complex-
ity” cannot be measured univocally, because it depends on the nature of the descrip-
tion (which always involves a reductionist process) and on the scale of observation.
Let us take an example to illustrate this point. A computer chip can look very dif-
ferent at different scales. It is an entangled array of electronic elements at micro-
scopic scale but only an ordered set of pins attached to a black box at a macroscopic
scale.

We shall now discuss a measure of “complexity” based on the statistical de-
scription of systems. Let us assume that the system has N accessible states
{x1, x2, . . . , xN } when observed at a given scale. We will call this an N -system.
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Fig. 4.1 Sketch of the
intuitive notion of the
magnitudes of “information”
(H ) and “disequilibrium” (D)
for the physical systems and
the behavior intuitively
required for the magnitude
“complexity”. The quantity
C =H ·D is proposed to
measure such a magnitude

Our understanding of the behavior of this system determines the correspond-
ing probabilities {p1,p2, . . . , pN } (with the condition

∑N
i=1 pi = 1) of each state

(pi > 0 for all i). Then the knowledge of the underlying physical laws at this
scale is incorporated into a probability distribution for the accessible states. It is
possible to find a quantity measuring the amount of “information”. Under to the
most elementary conditions of consistency, Shannon [4] determined the unique
function H(p1,p2, . . . , pN) that accounts for the “information” stored in a sys-
tem:

H = −K

N∑
i=1

pi logpi, (4.1)

where K is a positive constant. The quantity H is called information. The redefini-
tion of information H as some type of monotone function of the Shannon entropy
can be also useful in many contexts as we shall show in the next sections. In the case
of a crystal, a state xc would be the most probable pc ∼ 1, and all others xi would
be very improbable, pi ∼ 0, i �= c. Then Hc ∼ 0. On the other side, equiprobability
characterizes an isolated ideal gas, pi ∼ 1/N so Hg ∼ K logN , i.e., the maximum
of information for a N -system. (Notice that if one assumes equiprobability and
K = κ ≡ Boltzmann constant, H is identified with the thermodynamic entropy,
S = κ logN ). Any other N -system will have an amount of information between
those two extrema.

Let us propose a definition of disequilibrium D in a N -system [5]. The intuitive
notion suggests that some kind of distance from an equiprobable distribution should
be adopted. Two requirements are imposed on the magnitude of D: D > 0 in order to
have a positive measure of “complexity” and D = 0 on the limit of equiprobability.
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The straightforward solution is to add the quadratic distances of each state to the
equiprobability as follows:

D =
N∑
i=1

(
pi − 1

N

)2

. (4.2)

According to this definition, a crystal has maximum disequilibrium (for the domi-
nant state, pc ∼ 1, and Dc → 1 for N → ∞) while the disequilibrium for an ideal
gas vanishes (Dg ∼ 0) by construction. For any other system D will have a value
between these two extrema.

We now introduce the definition of complexity C of a N -system [6, 7]. This is
simply the interplay between the information stored in the system and its disequi-
librium:

C =H ·D = −
(
K

N∑
i=1

pi logpi

)
·
(

N∑
i=1

(
pi − 1

N

)2
)
. (4.3)

This definition fits the intuitive arguments. For a crystal, disequilibrium is large but
the information stored is vanishingly small, so C ∼ 0. On the other hand, H is large
for an ideal gas, but D is small, so C ∼ 0 as well. Any other system will have an
intermediate behavior and therefore C > 0.

As was intuitively suggested, the definition of complexity (4.3) also depends on
the scale. At each scale of observation a new set of accessible states appears with its
corresponding probability distribution so that complexity changes. Physical laws at
each level of observation allow us to infer the probability distribution of the new set
of accessible states, and therefore different values for H , D and C will be obtained.
The straightforward passage to the case of a continuum number of states, x, can be
easily inferred. Thus we must treat with probability distributions with a continuum
support, p(x), and normalization condition

∫ +∞
−∞ p(x)dx = 1. Disequilibrium has

the limit D = ∫ +∞
−∞ p2(x)dx and the complexity could be defined by:

C =H ·D = −
(
K

∫ +∞

−∞
p(x) logp(x)dx

)
·
(∫ +∞

−∞
p2(x)dx

)
. (4.4)

As we shall see, other possibilities for the continuous extension of C are also possi-
ble.

Direct simulations of the definition give the values of C for general N -systems.
The set of all the possible distributions {p1,p2, . . . , pN } where an N -system could
be found is sampled. For the sake of simplicity H is normalized to the interval
[0,1]. Thus H = ∑N

i=1 pi logpi/ logN . For each distribution {pi} the normalized
information H({pi}), and the disequilibrium D({pi}) (4.2) are calculated. In each
case the normalized complexity C = H ·D is obtained and the pair (H,C) stored.
These two magnitudes are plotted on a diagram (H,C(H)) in order to verify the
qualitative behavior predicted in Fig. 4.1. For N = 2 an analytical expression for
the curve C(H) is obtained. If the probability of one state is p1 = x, that of the
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Fig. 4.2 In general,
dependence of complexity
(C) on normalized
information (H ) is not
univocal: many distributions
{pi} can present the same
value of H but different C.
This is shown in the case
N = 3

second one is simply p2 = 1 − x. The complexity of the system will be:

C(x)=H(x) ·D(x)

= − 1

log 2

[
x log

(
x

1 − x

)
+ log(1 − x)

]
· 2

(
x − 1

2

)2

. (4.5)

Complexity vanishes for the two simplest 2-systems: the crystal (H = 0; p1 = 1,
p2 = 0) and the ideal gas (H = 1; p1 = 1/2, p2 = 1/2). Let us notice that this curve
is the simplest one that fulfills all the conditions discussed in the introduction. The
largest complexity is reached for H ∼ 1/2 and its value is: C(x ∼ 0.11) ∼ 0.151.
For N > 2 the relationship between H and C is not univocal anymore. Many differ-
ent distributions {pi} store the same information H but have different complexity C.
Figure 4.2 displays such a behavior for N = 3. If we take the maximum complex-
ity Cmax(H) associated with each H a curve similar to the one for a 2-system is
recovered. Every 3-system will have a complexity below this line and upper the
line of Cmin(H) and also upper the minimum envelope complexity Cminenv. These
lines will be analytically found in a next section. In Fig. 4.3 curves Cmax(H) for the
cases N = 3, . . . ,10 are also shown. Let us observe the shift of the complexity-
curve peak to smaller values of entropy for rising N . This fact agrees with the
intuition telling us that the biggest complexity (number of possibilities of ‘com-
plexification’) be reached for lesser entropies for the systems with bigger number of
states.

Let us return to the point at which we started this discussion. Any notion of
complexity in physics [2, 3] should only be made on the basis of a well defined
or operational magnitude [6, 7]. But two additional requirements are needed in or-
der to obtain a good definition of complexity in physics: (1) the new magnitude
must be measurable in many different physical systems and (2) a comparative re-
lationship and a physical interpretation between any two measurements should be
possible.
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Fig. 4.3 Complexity (C = H · D) as a function of the normalized information (H ) for a system
with two accessible states (N = 2). Also curves of maximum complexity (Cmax) are shown for the
cases: N = 3, . . . ,10

Many different definitions of complexity have been proposed to date, mainly
in the realm of physical and computational sciences. Among these, several can be
cited: algorithmic complexity (Kolmogorov-Chaitin) [8–10], the Lempel-Ziv com-
plexity [11], the logical depth of Bennett [12], the effective measure complexity of
Grassberger [13], the complexity of a system based in its diversity [14], the ther-
modynamical depth [15], the ε-machine complexity [16], the physical complexity
of genomes [17], complexities of formal grammars, etc. The definition of complex-
ity (4.3) proposed in this section offers a new point of view, based on a statistical
description of systems at a given scale. In this scheme, the knowledge of the phys-
ical laws governing the dynamic evolution in that scale is used to find its accessible
states and its probability distribution. This process would immediately indicate the
value of complexity. In essence this is nothing but an interplay between the in-
formation stored by the system and the distance from equipartition (measure of a
probabilistic hierarchy between the observed parts) of the probability distribution
of its accessible states. Besides giving the main features of a “intuitive” notion of
complexity, we will show in this chapter that we can go one step further and to
compute this quantity in other relevant physical situations and in continuum sys-
tems. The most important point is that the new definition successfully enables us
to discern situations regarded as complex. For example, we show here two of these
applications in complex systems with some type of discretization: one of them is
the study of this magnitude in a phase transition in a coupled map lattice [18] and
the other one is its calculation for the time evolution of a discrete gas out of equi-
librium [19]. Other applications to more realistic systems can also be found in the
literature [20].
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4.1.1 Complexity in a Phase Transition: Coupled Map Lattices

If by complexity it is to be understood that property present in all systems attached
under the epigraph of ‘complex systems’, this property should be reasonably quanti-
fied by the measures proposed in the different branches of knowledge. As discussed
above, this kind of indicators is found in those fields where the concept of informa-
tion is crucial, from physics [13, 15] to computational sciences [8–11, 16].

In particular, taking into account the statistical properties of a system, the indi-
cator called the LMC (LópezRuiz-Mancini-Calbet) complexity has been introduced
[6, 7] in the former section. This magnitude identifies the entropy or information H

stored in a system and its disequilibrium D, i.e. the distance from its actual state
to the probability distribution of equilibrium, as the two basic ingredients for calcu-
lating its complexity. Hence, the LMC complexity C is given by the formula (4.3),
C(p̄)=H(p̄) ·D(p̄), where p̄ = {pi}, with pi > 0 and i = 1, . . . ,N , represents the
distribution of the N accessible states to the system, and k is a constant taken as
1/ logN .

As well as the Euclidean distance D is present in the original LMC complexity,
other kinds of disequilibrium measures have been proposed in order to remedy some
statistical characteristics considered troublesome for some authors [21]. In particu-
lar, some attention has been focused [22, 23] on the Jensen-Shannon divergence
DJS as a measure for evaluating the distance between two different distributions
(p̄1, p̄2). This distance reads:

DJS(p̄1, p̄2)=H(π1p̄1 + π2p̄2)− π1H(p̄1)− π2H(p̄2), (4.6)

with π1,π2 the weights of the two probability distributions (p̄1, p̄2) verifying
π1,π2 ≥ 0 and π1 + π2 = 1. The ensuing statistical complexity

CJS =H ·DJS (4.7)

becomes intensive and also keeps the property of distinguishing among distinct de-
grees of periodicity [24]. In this section, we consider p̄2 the equiprobability distri-
bution and π1 = π2 = 0.5.

As it can be straightforwardly seen, all these LMC-like complexities vanish both
for completely ordered and for completely random systems as it is required for the
correct asymptotic properties of a such well-behaved measure. Recently, they have
been successfully used to discern situations regarded as complex in discrete systems
out of equilibrium [19, 25–31].

Here, the local transition to chaos via intermittency [32] in the logistic map,
xn+1 = λxn(1 − xn) presents a sharp transition when C is plotted versus the param-
eter λ in the region around the instability for λ ∼ λt = 3.8284. When λ < λt the
system approaches the laminar regime and the bursts become more unpredictable.
The complexity increases. When the point λ = λt is reached a drop to zero occurs
for the magnitude C. The system is now periodic and it has lost its complexity. The
dynamical behavior of the system is finally well reflected in the magnitude C as it
has been studied in [7].
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When a one-dimensional array of such maps is put together a more complex
behavior can be obtained depending on the coupling among the units. Ergo the phe-
nomenon called spatio-temporal intermittency can emerge [33–35]. This dynamical
regime corresponds with a situation where each unit is weakly oscillating around
a laminar state that is aperiodically and strongly perturbed for a traveling burst. In
this case, the plot of the one-dimensional lattice evolving in time gives rise to com-
plex patterns on the plane. If the coupling among units is modified the system can
settle down in an absorbing phase where its dynamics is trivial [36, 37] and then ho-
mogeneous patterns are obtained. Therefore an abrupt transition to spatio-temporal
intermittency can be depicted by the system [38, 39] when modifying the coupling
parameter.

Now we are concerned with measuring C and CJS in a such transition for a
coupled map lattice of logistic type. Our system will be a line of sites, i = 1, . . . ,L,
with periodic boundary conditions. In each site i a local variable xni evolves in
time (n) according to a discrete logistic equation. The interaction with the nearest
neighbors takes place via a multiplicative coupling:

xn+1
i = (4 − 3pXn

i )x
n
i (1 − xni ), (4.8)

where p is the parameter of the system measuring the strength of the coupling
(0 <p < 1). The variable Xn

i is the digitalized local mean field,

Xn
i = nint

[
1

2
(xni+1 + xni−1)

]
, (4.9)

with nint(.) the integer function rounding its argument to the nearest integer. Hence
Xn
i = 0 or 1.
There is a biological motivation behind this kind of systems [40, 41]. It could rep-

resent a colony of interacting competitive individuals. They evolve randomly when
they are independent (p = 0). If some competitive interaction (p > 0) among them
takes place the local dynamics loses its erratic component and becomes chaotic
or periodic in time depending on how populated the vicinity is. Hence, for bigger
Xn
i more populated is the neighborhood of the individual i and more constrained

is its free action. At a first sight, it would seem that some particular values of p
could stabilize the system. In fact, this is the case. Let us choose a number of in-
dividuals for the colony (L = 500 for instance), let us initialize it randomly in the
range 0 < xi < 1 and let it evolve until the asymptotic regime is attained. Then the
black/white statistics of the system is performed. That is, the state of the variable xi
is compared with the critical level 0.5 for i = 1, . . . ,L: if xi > 0.5 the site i is con-
sidered white (high density cell) and a counter Nw is increased by one, or if xi < 0.5
the site i is considered black (low density cell) and a counter Nb is increased by
one. This process is executed in the stationary regime for a set of iterations. The
black/white statistics is then the rate β =Nb/Nw . If β is plotted versus the coupling
parameter p Fig. 4.4 is obtained.

The region 0.258 <p < 0.335 where β vanishes is remarkable. As stated above,
β represents the rate between the number of black cells and the number of white
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Fig. 4.4 β versus p. The
β-statistics (or BW density)
for each p is the rate between
the number of black and white
cells depicted by the system
in the two-dimensional
representation of its
after-transient time evolution.
(Computations have been
performed with Δp = 0.005
for a lattice of 10000 sites
after a transient of 5000
iterations and a running of
other 2000 iterations)

Fig. 4.5 Digitalized plot of
the one-dimensional coupled
map lattice (axe OX)
evolving in time (axe OY )
according to (4.8): if xni > 0.5
the (i, n)-cell is put in white
color and if xni < 0.5 the
(i, n)-cell is put in black
color. The discrete time n is
reset to zero after the
transitory. (Lattices of
300 × 300 sites, i.e.,
0 < i < 300 and 0 < n< 300)

cells appearing in the two-dimensional digitalized representation of the colony evo-
lution. A whole white pattern is obtained for this range of p. The phenomenon of
spatio-temporal intermittency is displayed by the system in the two borders of this
parameter region (Fig. 4.5). Bursts of low density (black color) travel in an irregular
way through the high density regions (white color). In this case two-dimensional
complex patterns are shown by the time evolution of the system (Fig. 4.5b–c). If the
coupling p is far enough from this region, i.e., p < 0.25 or p > 0.4, the absorbent
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Fig. 4.6 (•) C versus p. Observe the peaks of the LMC complexity located just on the borders of
the absorbent region 0.258 < p < 0.335, where β = 0 (×). (Computations have been performed
with Δp = 0.005 for a lattice of 10000 sites after a transient of 5000 iterations and a running of
other 2000 iterations)

region loses its influence on the global dynamics and less structured and more ran-
dom patterns than before are obtained (Fig. 4.5a–d). For p = 0 we have no coupling
of the maps, and each map generates so called fully developed chaos, where the in-
variant measure is well-known to be symmetric around 0.5. From this we conclude
that β(p = 0) = 1. Let us observe that this symmetrical behavior of the invariant
measure is broken for small p, and β decreases slightly in the vicinity of p = 0.

If the LMC complexities are quantified as function of p, our intuition is con-
firmed. The method proposed in [7] to calculate C is now adapted to the case of
two-dimensional patterns. First, we let the system evolve until the asymptotic regime
is attained. This transient is discarded. Then, for each time n, we map the whole lat-
tice in a binary sequence: 0 if xni < 0.5 and 1 if xni > 0.5, for i = 1, . . . ,L. This
L-binary string is analyzed by blocks of no bits, where no can be considered the
scale of observation. For this scale, there are 2no possible states but only some of
them are accessible. These accessible states as well as their probabilities are found
in the L-binary string. Next, the magnitudes H , D, DJS , C and CJS are directly
calculated for this particular time n by applying the formulas (4.3), (4.7). We repeat
this process for a set of successive time units (n,n+1, . . . , n+m). The mean values
of H , D, DJS , C and CJS for these m time units are finally obtained and plotted in
Figs. 4.6, 4.7.
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Fig. 4.7 (·) CJS versus p. The peaks of this modified LMC complexity are also evident just on the
borders of the absorbent region 0.258 < p < 0.335, where β = 0 (×). (Computations have been
performed with Δp = 0.005 for a lattice of 10000 sites after a transient of 5000 iterations and a
running of other 2000 iterations)

Figures 4.6, 4.7 show the result for the case of no = 10. Let us observe that the
highest C and CJS are reached when the dynamics displays spatio-temporal inter-
mittency, that is, the most complex patterns are obtained for those values of p that
are located on the borders of the absorbent region 0.258 < p < 0.335. Thus the
plot of C and CJS versus p shows two tight peaks around the values p = 0.256
and p = 0.34 (Figs. 4.6, 4.7). Let us remark that the LMC complexity C can be
neglected far from the absorbent region. Contrarily to this behavior, the magnitude
CJS also shows high peaks in some other sharp transition of β located in the region
0 <p < 25, and an intriguing correlation with the black/white statistics in the region
0.4 < p < 1. All these facts as well as the stability study of the different dynami-
cal regions of system (4.8) are not the object of the present writing but they could
deserve some attention in a further inspection.

If the detection of complexity in the two-dimensional case requires to identify
some sharp change when comparing different patterns, those regions in the param-
eter space where an abrupt transition happens should be explored in order to obtain
the most complex patterns. Smoothness seems not to be at the origin of complexity.
As well as a selected few distinct molecules among all the possible are in the basis
of life [42], discreteness and its spiky appearance could indicate the way towards
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complexity. As we show in the next section, the distributions with the highest LMC
complexity are just those distributions with a spiky-like appearance [19]. In this line,
the striking result here exposed confirms the capability of the LMC-like complexi-
ties for signaling a transition to complex behavior when regarding two-dimensional
patterns [18, 43].

4.1.2 Complexity Versus Time: The Tetrahedral Gas

As before explained, several definitions of complexity, in the general sense of the
term, have been presented in the literature. These can be classified according to
their calculation procedure into two broad and loosely defined groups. One of these
groups is based on computational science and consists of all definitions based on al-
gorithms or automata to derive the complexity. Examples are the algorithmic com-
plexity [9, 10], the logical depth [12] and the ε-machine complexity [16]. These
definitions have been shown to be very useful in describing symbolic dynamics of
chaotic maps, but they have the disadvantage of being very difficult to calculate. An-
other broad group consists of those complexities based on the measure of entropy or
entropy rate. Among these, we may cite the effective measure complexity [13], the
thermodynamic depth [15], the simple measure for complexity [26] and the metric
or K–S entropy rate [44, 45]. These definitions have also been very useful in describ-
ing symbolic dynamics in maps, the simple measure of complexity having been also
applied to some physical situation such as a non-equilibrium Fermi gas [46]. They
suffer the disadvantage of either being very difficult to calculate or having a simple
relation to the regular entropy.

Other definition types of complexity have been introduced. These are based on
quantities that can be calculated directly from the distribution function describing
the system. One of these is based on “meta-statistics” [47] and the other on the no-
tion of “disequilibrium” [7]. This latter definition has been referred above as the
LMC complexity. These definitions, together with the simple measure for complex-
ity [26], have the great advantage of allowing easy calculations within the context
of kinetic theory and of permitting their evaluation in a natural way in terms of
statistical mechanics.

As we have shown in the former sections, the disequilibrium-based complex-
ity is easy to calculate and shows some interesting properties [7], but suffers from
the main drawback of not being very well behaved as the system size increases, or
equivalently, as the distribution function becomes continuous. Feldman and Crutch-
field [21] tried to solve this problem by defining another equivalent term for dis-
equilibrium, but ended up with a complexity that was a trivial function of the en-
tropy.

Whether these definitions of complexity are useful in non-equilibrium thermo-
dynamics will depend on how they behave as a function of time. There is a general



4 Statistical Complexity and Fisher-Shannon Information: Applications 77

belief that, although the second law of thermodynamics requires average entropy
(or disorder) to increase, this does not in any way forbid local order from arising
[48]. The clearest example is seen with life, which can continue to exist and grow
in an isolated system for as long as internal resources last. In other words, in an
isolated system the entropy must increase, but it should be possible, under certain
circumstances, for the complexity to increase.

Here we examine how LMC complexity evolves with time in an isolated system
and we show that it indeed has some interesting properties. The disequilibrium-
based complexity [7] defined in (4.3) actually tends to be maximal as the entropy
increases in a Boltzmann integro-differential equation for a simplified gas.

We proceed to calculate the distributions which maximize and minimize the com-
plexity and its asymptotic behavior, and also introduce the basic concepts underly-
ing the time evolution of LMC complexity in Sect. 4.1.2.1. Later, in Sects. 4.1.2.2
and 4.1.2.3, by means of numerical computations following a restricted version of
the Boltzmann equation, we apply this to a special system, which we shall term
“tetrahedral gas”. Finally, in Sect. 4.1.2.4, the results and conclusions for this sys-
tem are given, together with their possible applications.

4.1.2.1 Maximum and Minimum Complexity

In this section, we assume that the system can be in one of its N possible accessible
states, i. The probability of the system being in state i will be given by the discrete
distribution function, fi ≥ 0, with the normalization condition I ≡ ∑N

i=1 fi = 1.
The system is defined such that, if isolated, it will reach equilibrium, with all the
states having equal probability, fe = 1

N
. Since we are supposing that H is normal-

ized, 0 ≤H ≤ 1, and 0 ≤D ≤ (N − 1)/N , then complexity, C, is also normalized,
0 ≤ C ≤ 1.

When an isolated system evolves with time, the complexity cannot have any pos-
sible value in a C versus H map as it can be seen in Fig. 4.2, but it must stay within
certain bounds, Cmax and Cmin. These are the maximum and minimum values of
C for a given H . Since C = D · H , finding the extrema of C for constant H is
equivalent to finding the extrema of D.

There are two restrictions on D: the normalization, I , and the fixed value of
the entropy, H . To find these extrema undetermined Lagrange multipliers are used.
Differentiating expressions of D, I and H , we obtain

∂D

∂fj
= 2(fj − fe), (4.10)

∂I

∂fj
= 1, (4.11)

∂H

∂fj
= − 1

lnN
(lnfj + 1). (4.12)
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Table 4.1 Probability values,
fj , that give a maximum of
disequilibrium, Dmax, for a
given H

Number of states with fj fj Range of fj

1 fmax
1
N

. . . 1

N − 1 1−fmax
N−1 0 . . . 1

N

Table 4.2 Probability values,
fj , that give a minimum of
disequilibrium, Dmin, for a
given H

n can have the values
0,1, . . . ,N − 2

Number of states with fj fj Range of fj

n 0 0

1 fmin 0 . . . 1
N−n

N − n− 1 1−fmin
N−n−1

1
N−n

. . . 1
N−n−1

Defining λ1 and λ2 as the Lagrange multipliers, we get:

2(fj − fe)+ λ1 + λ2(lnfj + 1)/ lnN = 0. (4.13)

Two new parameters, α and β , which are a linear combinations of the Lagrange
multipliers are defined:

fj + α lnfj + β = 0, (4.14)

where the solutions of this equation, fj , are the values that minimize or maximize
the disequilibrium.

In the maximum complexity case there are two solutions, fj , to (4.14) which are
shown in Table 4.1. One of these solutions, fmax, is given by

H = − 1

lnN

[
fmax lnfmax + (1 − fmax) ln

(
1 − fmax

N − 1

)]
, (4.15)

and the other solution by (1 − fmax)/(N − 1).
The maximum disequilibrium, Dmax, for a fixed H is

Dmax = (fmax − fe)
2 + (N − 1)

(
1 − fmax

N − 1
− fe

)2

, (4.16)

and thus, the maximum complexity, which depends only on H , is

Cmax(H)=Dmax ·H. (4.17)

The behavior of the maximum value of complexity versus lnN was computed
in [49].

Equivalently, the values, fj , that give a minimum complexity are shown in Ta-
ble 4.2. One of the solutions, fmin, is given by

H = − 1

lnN

[
fmin lnfmin + (1 − fmin) ln

(
1 − fmin

N − n− 1

)]
, (4.18)

where n is the number of states with fj = 0 and takes a value in the range n =
0,1, . . . ,N − 2.
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Fig. 4.8 Maximum, minimum, and minimum envelope complexity, Cmax, Cmin, and Cminenv re-
spectively, as a function of the entropy, H , for a system with N = 4 accessible states

The resulting minimum disequilibrium, Dmin, for a given H is,

Dmin = (fmin − fe)
2 + (N − n− 1)

(
1 − fmin

N − n− 1
− fe

)2

+ nf 2
e . (4.19)

Note that in this case fj = 0 is an additional hidden solution that stems from the
positive restriction in the fi values. To obtain these solutions explicitly we can de-
fine xi such that fi ≡ xi

2. These xi values do not have the restriction of positivity
imposed to fi and can take a positive or negative value. If we repeat the Lagrange
multiplier method with these new variables a new solution arises: xj = 0, or equiv-
alently, fj = 0.

The resulting minimum complexity, which again only depends on H , is

Cmin(H)=Dmin ·H. (4.20)

As an example, the maximum and minimum of complexity, Cmax and Cmin, are
plotted as a function of the entropy, H , in Fig. 4.8 for N = 4. Also, in this figure, it
is shown the minimum envelope complexity, Cminenv =Dminenv ·H , where Dminenv
is defined below. In Fig. 4.9 the maximum and minimum disequilibrium, Dmax and
Dmin, versus H are also shown.

As shown in Fig. 4.9 the minimum disequilibrium function is piecewise defined,
having several points where its derivative is discontinuous. Each of these function
pieces corresponds to a different value of n (Table 4.2). In some circumstances it
might be helpful to work with the “envelope” of the minimum disequilibrium func-
tion. The function, Dminenv, that traverses all the discontinuous derivative points in
the Dmin versus H plot is

Dminenv = e−H lnN − 1

N
, (4.21)



80 R. López-Ruiz et al.

Fig. 4.9 Maximum, minimum, and minimum envelope disequilibrium, Dmax, Dmin, and Dminenv
respectively, as a function of the entropy, H , for a system with N = 4 accessible states

and is also shown in Fig. 4.9.
When N tends toward infinity the probability, fmax, of the dominant state has a

linear dependence with the entropy,

lim
N→∞fmax = 1 −H, (4.22)

and thus the maximum disequilibrium scales as limN→∞Dmax = (1 − H)2. The
maximum complexity tends to

lim
N→∞Cmax =H · (1 −H)2 . (4.23)

The limit of the minimum disequilibrium and complexity vanishes, limN→∞Dminenv
= 0, and thus

lim
N→∞Cmin = 0. (4.24)

In general, in the limit N → ∞, the complexity is not a trivial function of the en-
tropy, in the sense that for a given H there exists a range of complexities between 0
and Cmax, given by (4.24) and (4.23), respectively.

In particular, in this asymptotic limit, the maximum of Cmax is found when
H = 1/3, or equivalently fmax = 2/3, which gives a maximum of the maximum
complexity of Cmax = 4/27. This value was numerically calculated in [49].

4.1.2.2 An out Equilibrium System: The Tetrahedral Gas

We present a simplified example of an ideal gas: the tetrahedral gas. This system is
generated by a simplification of the Boltzmann integro-differential equation of an
ideal gas. We are interested in studying the disequilibrium time evolution.
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Fig. 4.10 The four possible
directions of the velocities of
the tetrahedral gas in space.
Positive senses are defined as
emerging from the center
point and with integer
numbers 1, 2, 3, 4

The Boltzmann integro-differential equation of an ideal gas with no external
forces and no spatial gradients is

∂f (v; t)
∂t

=
∫

d3v∗
∫

dΩc.m.σ (v∗ − v → v′∗ − v′)|v∗ − v|
× [

f (v′∗; t)f (v′; t)− f (v∗; t)f (v; t)] , (4.25)

where σ represents the cross section of a collision between two particles with initial
velocities v and v∗ and after the collision with velocities v′ and v′∗; and Ωc.m. are all
the possible dispersion angles of the collision as seen from its center of mass.

In the tetrahedral gas, the particles can travel only in four directions in three-
dimensional space and all have the same absolute velocity. These directions are the
ones given by joining the center of a tetrahedron with its corners. The directions
can be easily viewed by recalling the directions given by a methane molecule, or
equivalently, by a caltrop, which is a device with four metal points so arranged that
when any three are on the ground the fourth projects upward as a hazard to the
hooves of horses or to pneumatic tires (see Fig. 4.10).

By definition, the angle that one direction forms with any other is the same. It
can be shown that the angles between different directions, α, satisfy the relationship
cosα = −1/3, which gives α = 109.47◦. The plane formed by any two directions is
perpendicular to the plane formed by the remaining two directions.

We assume that the cross-section, σ , is different from zero only when the angle
between the velocities of the colliding particles is 109.47◦. It is also assumed that
this collision makes the two particles leave in the remaining two directions, thus
again forming an angle of 109.47◦. A consequence of these restrictions is that the
modulus of the velocity is always the same no matter how many collisions a parti-
cle has undergone and they always stay within the directions of the vertices of the
tetrahedron. Furthermore, this type of gas does not break any law of physics and is
perfectly valid, although hypothetical.

We label the four directions originating from the center of the caltrop with num-
bers, 1, 2, 3, 4 (see Fig. 4.10). The velocity components with the same direction but
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Table 4.3 Cross sections, σ ,
for a particle in direction −1
colliding with particles in the
other remaining directions of
the tetrahedral gas

Collision of particles Cross section σ

(−1,−2)→ (3,4) 1

(−1,−3)→ (2,4) 1

(−1,−4)→ (2,3) 1

Other collisions 0

opposite sense, or equivalently, directed toward the center of the caltrop, are labeled
with negative numbers −1, −2, −3, −4.

In order to formulate the Boltzmann equation for the tetrahedral gas, and because
all directions are equivalent, we need only study the different collisions that a par-
ticle with one fixed direction can undergo. In particular if we take a particle with
direction −1 the result of the collision with another particle with direction −2 are
the same two particles traveling in directions 3 and 4, that is,

(−1,−2)→ (3,4). (4.26)

With this in mind the last bracket of (4.25) is,

f3f4 − f−1f−2, (4.27)

where fi denotes the probability of finding a particle in direction i. Note that the
dependence on velocity, v, of the continuous velocity distribution function, f (v; t),
of (4.25) is in our case contained in the discrete subindex, i, of the distribution
function fi .

We can proceed in the same manner with the other remaining collisions,

(−1,−3)→ (2,4),

(−1,−4)→ (2,3).
(4.28)

When a particle with direction −1 collides with a particle with direction 2, they do
not form an angle of 109.47◦; i.e., they do not collide, they just pass by each other.
This is a consequence of the previous assumption for the tetrahedral gas, which
establishes a null cross section for angles different from 109.47◦. The same can be
said for collisions (−1,3), (−1,4), and (−1,1). All these results are summarized
in Table 4.3.

Taking all this into account, (4.25) for direction −1 is reduced to a discrete sum,

df−1

dt
= (f3f4 − f−1f−2)+ (f2f4 − f−1f−3)+ (f2f3 − f−1f−4), (4.29)

where all other factors have been set to unity for simplicity.
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The seven remaining equations for the rest of directions can be easily inferred. If
we now make fi = f−i (i = 1,2,3,4) initially, this property is conserved in time.
The final four equations defining the evolution of the system are:

df1

dt
= (f3f4 − f1f2)+ (f2f4 − f1f3)+ (f2f3 − f1f4),

df2

dt
= (f3f4 − f1f2)+ (f1f4 − f2f3)+ (f1f3 − f2f4),

df3

dt
= (f2f4 − f3f1)+ (f1f4 − f3f2)+ (f1f2 − f3f4),

df4

dt
= (f2f3 − f4f1)+ (f1f3 − f4f2)+ (f1f2 − f3f4).

(4.30)

Note that the ideal gas has been reduced to the tetrahedral gas, which is a four-
dimensional dynamical system. The velocity distribution function, fi , corresponds
to a probability distribution function with N = 4 accessible states that evolve in
time.

4.1.2.3 Evolution of the Tetrahedral Gas with Time

To study the time evolution of the complexity, a diagram of C versus time, t , can
be used. But, as we know, the second law of thermodynamics states that the entropy
grows monotonically with time, that is,

dH

dt
≥ 0. (4.31)

This implies that an equivalent way to study the time evolution of the complexity
can be obtained by plotting C versus H . In this way, the entropy substitutes the
time axis, since the former increases monotonically with the latter. The conversion
from C vs. H to C vs. t diagrams is achieved by stretching or shrinking the entropy
axis according to its time evolution. This method is a key point in all this discussion.
Note that, in any case, the relationship of H versus t will, in general, not be a simple
one [50].

The tetrahedral gas, (4.30), reaches equilibrium when fi = 1/N for i = 1,2,3,4
and N = 4. This stationary state, dfi/dt = 0, represents the equiprobability towards
which the system evolves in time. This is consistent with the definition of disequilib-
rium in which we assumed that equilibrium was reached at equiprobability, fi = fe,
where D = 0.

As the isolated system evolves it gets closer and closer to equilibrium. In this
sense, one may intuitively think that the disequilibrium will decrease with time. In
fact, it can be analytically shown [19] that, as the system approaches to equilibrium,
D tends to zero monotonically with time:

dD

dt
≤ 0. (4.32)
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Fig. 4.11 Time evolution of the system in (H,D) phase space for two different initial conditions
at time t = 0: (a) (f1, f2, f3, f4) = (0.8,0.2,0,0) and (b) (f1, f2, f3, f4) = (0.5,0.5,0,0). The
maximum and minimum disequilibrium are shown by dashed lines

There are even more restrictions on the evolution of this system. It would be ex-
pected that the system approaches equilibrium, D = 0, by following the most direct
path. To verify this, numerical simulations for several initial conditions have been
undertaken. In all of these we observe the additional restriction that D approaches
Dmax on its way to D = 0. In fact it appears as an exponential decay of D towards
Dmax in a D versus H plot. As an example, two of these are shown in Fig. 4.11,
where Fig. 4.11(a) shows a really strong tendency towards Dmax. Contrary to intu-
ition, among all the possible paths that the system can follow toward equilibrium, it
chooses those closest to Dmax in particular.

We can also observe this effect in a complexity, C, versus H plot. This is shown
for the same two initial conditions in Fig. 4.12.

This additional restriction to the evolution of the system is better viewed by plot-
ting the difference Cmax − C versus H . In all the cases analyzed (see two of them
in Fig. 4.13) the following condition is observed:

d(Cmax −C)

dt
≤ 0. (4.33)

This has been verified numerically and is illustrated in Fig. 4.14, where this time
derivative, which always remains negative, is shown as a function of H for a grid of
uniformly spaced distribution functions, (f1, f2, f3, f4), satisfying the normaliza-
tion condition I . Two system trajectories are also shown for illustrative purposes.
The numerical method used to plot this function is explained in [19].
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Fig. 4.12 Time evolution of the system in (H,C) phase space for two different initial conditions
at time t = 0: (a) (f1, f2, f3, f4) = (0.8,0.2,0,0) and (b) (f1, f2, f3, f4) = (0.5,0.5,0,0). The
maximum and minimum complexity are shown by dashed lines

Fig. 4.13 Time evolution of the system in (H,Cmax −C) phase space for two different initial con-
ditions at time t = 0: (a) (f1, f2, f3, f4)= (0.8,0.2,0,0) and (b) (f1, f2, f3, f4)= (0.5,0.5,0,0).
The values Cmax −Cmin are shown by dashed lines

We proceed now to show another interesting property of this system. As shown
in Table 4.1, a collection of maximum complexity distributions for N = 4 can take
the form

f1 = fmax,

fi = 1 − fmax

3
, i = 2,3,4,

(4.34)
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Fig. 4.14 Numerical verification of d(Cmax −C)/dt ≤ 0. This time derivative is shown as a func-
tion of H . A grid of uniformly spaced, Δfi = 0.5, distribution functions, (f1, f2, f3, f4), satisfying
the normalization condition I , have been used. Two system trajectories for initial conditions, t = 0,
(f1, f2, f3, f4) = (0.8,0.2,0,0) and (f1, f2, f3, f4) = (0.5,0.5,0,0) are also shown for illustra-
tive purposes. It can be seen how the above-mentioned time derivative always remains negative

where fmax runs from 1/N (equiprobability distribution) to 1 (“crystal” distribu-
tion). The complexity of this collection of distributions covers all possible values
of Cmax.

There is actually a time evolution of the tetrahedral gas, or trajectory of the sys-
tem, formed by this collection of distributions. Inserting (4.34) in the evolution
(4.30), it is found that all equations are compatible with each other and the dy-
namical equations are reduced to the relation,

dfmax

dt
= 1

3
(4f 2

max − 5fmax + 1). (4.35)

This trajectory is denoted as the maximum complexity path.
Note that the equiprobability or equilibrium, fmax = 1/4, is a stable fixed point

and the maximum disequilibrium “crystal” distribution, fmax = 1, is an unstable
fixed point. Thus the maximum complexity path is a heteroclinic connection be-
tween the “crystal” and equiprobability distributions.

The maximum complexity path is locally attractive. Let us assume, for instance,
the following perturbed trajectory

f1 = fmax,

f2 = 1 − fmax

3
,

f3 = 1 − fmax

3
+ δ,

f4 = 1 − fmax

3
− δ,

(4.36)
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Fig. 4.15 The time evolution
of the system for three
different initial conditions,
t = 0, (f1, f2, f3, f4)=
(0.8,0.2,0,0),
(f1, f2, f3, f4)=
(0.5,0.5,0,0), and the
maximum complexity path
are shown. The minimum
complexity is shown by
dashed lines. It can be seen
how the system tends to
approach the maximum
complexity path as it evolves
in time toward equilibrium

whose evolution according to (4.30) gives the exponential decay of the perturba-
tion, δ:

dδ

dt
∼ −

(
4fmax + 2

3

)
δ, (4.37)

showing the attractive nature of these trajectories.

4.1.2.4 Conclusions and Further Remarks

In the former section, the time evolution of the LMC complexity,C, has been studied
for a simplified model of an isolated ideal gas: the tetrahedral gas. In general, the
dynamical behavior of this quantity is bounded between two extremum curves, Cmax

and Cmin, when observed in a C versus H phase space. These complexity bounds
have been derived and computed. A continuation of this work applied to the study
of complexity in gases out of equilibrium can be found in [51, 52].

For the isolated tetrahedral gas two constraints on its dynamics are found. The
first, which is analytically demonstrated, is that the disequilibrium, D, decreases
monotonically with time until it reaches the value D = 0 for the equilibrium state.
The second is that the maximum complexity paths, Cmax, are attractive in phase
space. In other words, the complexity of the system tends to equilibrium always
approaching those paths. This has been verified numerically, that is, the time deriva-
tive of the difference between Cmax and C is negative. Figure 4.15 summarizes the
dynamical behavior of the tetrahedral gas. The different trajectories starting with
arbitrary initial conditions, which represent systems out of equilibrium, evolve to-
wards equilibrium approaching the maximum complexity path.

Whether these properties are useful in real physical systems can need of a fur-
ther inspection, particularly the macroscopical nature of the disequilibrium in more
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general systems, such as to the ideal gas following the complete Boltzmann integro–
differential equation. Another feature that could deserve attention is the possibility
of approximating the evolution of a real physical system trajectory to its maximum
complexity path. Note that in general, for a real system, the calculation of the max-
imum complexity path will not be an easy task.

4.2 The Statistical Complexity in the Continuous Case

As explained in the former sections, the LMC statistical measure of complexity [7]
identifies the entropy or information stored in a system and its distance to the equi-
librium probability distribution, the disequilibrium, as the two ingredients giving the
correct asymptotic properties of a well-behaved measure of complexity. In fact, it
vanishes both for completely ordered and for completely random systems. Besides
giving the main features of an intuitive notion of complexity, it has been shown that
LMC complexity successfully enables us to discern situations regarded as complex
in discrete systems out of equilibrium: one instance of phase transitions via inter-
mittency in coupled logistic maps [18] or via stochastic synchronization in cellular
automata [43], the dynamical behavior of this quantity in a out-equilibrium gases
[19, 51, 52] and other applications in classical statistical mechanics [31, 53].

A possible formula of LMC complexity for continuous systems was suggested
in formula (4.4). Anteneodo and Plastino [49] pointed out some peculiarities con-
cerning such an extension for continuous probability distributions. It is the aim of
this section to offer a discussion of the extension of LMC complexity for contin-
uous systems and to present a slightly modified extension [54] of expression (4.4)
that displays interesting and very striking properties. A further generalization of this
work has been done in [55, 56].

In Sect. 4.2.1 the extension of information and disequilibrium concepts for the
continuous case are discussed. In Sect. 4.2.2 the LMC measure of complexity is
reviewed and possible extensions for continuous systems are suggested. We proceed
to present some properties of one of these extensions in Sect. 4.2.3.

4.2.1 Entropy/Information and Disequilibrium

Depending on the necessary conditions to fulfill, the extension of an established
formula from the discrete to the continuous case always requires a careful study and
in many situations some kind of choice between several possibilities. Next we carry
out this process for the entropy and disequilibrium formulas.
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4.2.1.1 Entropy or Information

As we know, given a discrete probability distribution {pi}i=1,2,...,N satisfying pi ≥ 0
and

∑N
i=1 pi = 1, the Boltzmann-Gibss-Shannon formula [4] that accounts for the

entropy or information, S, stored in a system is defined by

S({pi})= −k

N∑
i=1

pi logpi, (4.38)

where k is a positive constant. If we identify H with S, then some properties of this
quantity are: (i) positivity: H ≥ 0 for any arbitrary set {pi}, (ii) concavity: H is con-
cave for arbitrary {pi} and reaches the extremal value for equiprobability (pi = 1/N
∀i), (iii) additivity: H(A∪B)=H(A)+H(B) where A and B are two independent
systems, and (iv) continuity: H is continuous for each of its arguments. And vice
versa, it has been shown that the only function of {pi} verifying the latter proper-
ties is given by (4.38) [4, 57]. For an isolated system, the irreversibility property is
also verified, that is, the time derivative of H is positive, dH/dt ≥ 0, reaching the
equality only for equilibrium.

Calculation of H for a continuous probability distribution p(x), with support on
[−L,L] and

∫ L

−L
p(x)dx = 1, can be performed by dividing the interval [−L,L] in

small equal-length pieces Δx = xi − xi−1, i = 1, . . . , n, with x0 = −L and xn = L,
and by considering the approximated discrete distribution {pi} = {p(x̄i)Δx}, i =
1, . . . , n, with x̄i a point in the segment [xi−1, xi]. It gives us

H ∗ =H({pi})

= −k

n∑
i=1

p(x̄i) logp(x̄i)Δx − k

n∑
i=1

p(x̄i) log(Δx)Δx. (4.39)

The second adding term of H ∗ in the expression (4.39) grows as logn when n goes
to infinity. Therefore it seems reasonable to take just the first and finite adding term
of H ∗ as the extension of H to the continuous case: H(p(x)). It characterizes with
a finite number the information contained in a continuous distribution p(x). In the
limit n→ ∞, we obtain

H(p(x))= lim
n→∞

[
−k

n∑
i=1

p(x̄i) logp(x̄i)Δx

]

= −k

∫ L

−L

p(x) logp(x)dx. (4.40)

If p(x) ≥ 1 in some region, the entropy defined by (4.40) can become negative.
Although this situation is mathematically possible and coherent, it is unfounded
from a physical point of view. See [58] for a discussion on this point. Let f (p,q) be
a probability distribution in phase space with coordinates (p, q), f ≥ 0 and dp dq

having the dimension of an action. In this case the volume element is dp dq/h with
h the Planck constant. Suppose that H(f ) < 0. Because of

∫
(dp dq/h)f = 1, the
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extent of the region where f > 1 must be smaller than h. Hence a negative classical
entropy arises if one tries to localize a particle in phase space in a region smaller
than h, that is, if the uncertainty relation is violated. In consequence, not every
classical probability distribution can be observed in nature. The condition H(f )= 0
could give us the minimal width that is physically allowed for the distribution and so
the maximal localization of the system under study. This cutting property has been
used in the calculations performed in [53].

4.2.1.2 Disequilibrium

Given a discrete probability distribution {pi}i=1,2,...,N satisfying pi ≥ 0 and∑N
i=1 pi = 1, its Disequilibrium, D, can be defined as the quadratic distance of

the actual probability distribution {pi} to equiprobability:

D({pi})=
N∑
i=1

(
pi − 1

N

)2

. (4.41)

D is maximal for fully regular systems and vanishes for completely random ones.
In the continuous case with support on the interval [−L,L], the rectangular func-

tion p(x)= 1/(2L), with −L< x <L, is the natural extension of the equiprobabil-
ity distribution of the discrete case. The disequilibrium could be defined as

D∗ =
∫ L

−L

(
p(x)− 1

2L

)2

dx =
∫ L

−L

p2(x) dx − 1

2L
. (4.42)

If we redefine D omitting the constant adding term in D∗, the disequilibrium reads
now:

D(p(x))=
∫ L

−L

p2(x) dx. (4.43)

D > 0 for every distribution and it is minimal for the rectangular function which
represents the equipartition. D does also tend to infinity when the width of p(x)
narrows strongly and becomes extremely peaked.

4.2.2 The Continuous Version Ĉ of the LMC Complexity

As shown in the previous sections, LMC complexity has been successfully calcu-
lated in different systems out of equilibrium. However, Feldman and Crutchfield
[21] presented as a main drawback that C vanishes and it is not an extensive vari-
able for finite-memory regular Markov chains when the system size increases. This
is not the general behavior of C in the thermodynamic limit as it has been suggested
by Calbet and López-Ruiz [19]. On the one hand, when N → ∞ and k = 1/ logN ,
LMC complexity is not a trivial function of the entropy, in the sense that for a given
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H there exists a range of complexities between 0 and Cmax(H), where Cmax is given
by expression (4.23).

Observe that in this case H is normalized, 0 < H < 1, because k = 1/ logN .
On the other hand, non-extensitivity cannot be considered as an obstacle since it is
nowadays well known that there exists a variety of physical systems for which the
classical statistical mechanics seems to be inadequate and for which an alternative
non-extensive thermodynamics is being hailed as a possible basis of a theoretical
framework appropriate to deal with them [59].

According to the discussion in Sect. 4.2.1, the expression of C for the case
of a continuum number of states, x, with support on the interval [−L,L] and∫ L

−L
p(x)dx = 1, is defined by

C(p(x))=H(p(x)) ·D(p(x))

=
(

−k

∫ L

−L

p(x) logp(x)dx

)
·
(∫ L

−L

p2(x) dx

)
. (4.44)

Hence, C can become negative. Obviously, C < 0 implies H < 0. Although this sit-
uation is coherent from a mathematical point of view, it is not physically possible.
Hence a negative entropy means to localize a system in phase space into a region
smaller than h (Planck constant) and this would imply to violate the uncertainty
principle (see discussion of Sect. 4.2.1.1). Then a distribution can broaden without
any limit but it cannot become extremely peaked. The condition H = 0 could indi-
cate the minimal width that p(x) is allowed to have. Similarly to the discrete case,
C is positive for any situation and vanishes both for an extreme localization and for
the most widely delocalization embodied by the equiprobability distribution. Thus,
LMC complexity can be straightforwardly calculated for any continuous distribution
by (4.44). Anyway, the positivity of C for every distribution in the continuous case
can be recovered by taking the exponential of S [60] and redefining H according to
this exponential, i.e. H = eS . To maintain the same nomenclature than in the prece-
dent text we continue to identify H with S and we introduce the symbol Ĥ = eH .
Then the new expression of the statistical measure of complexity C is identified as
Ĉ in the rest of this section and is given by [54]

Ĉ(p(x))= Ĥ (p(x)) ·D(p(x))= eH(p(x)) ·D(p(x)). (4.45)

In addition to the positivity, Ĉ encloses other interesting properties that we describe
in the next section.

4.2.3 Properties of Ĉ

The quantity Ĉ given by (4.45) has been presented as one of the possible extensions
of the LMC complexity for continuous systems [54]. We proceed now to present
some of the properties that characterize such a complexity indicator.
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4.2.3.1 Invariance under Translations and Rescaling Transformations

If p(x) is a density function defined on the real axis R,
∫

R p(x)dx = 1, and α > 0
and β are two real numbers, we denote by pα,β(x) the new probability distribution
obtained by the action of a β-translation and an α-rescaling transformation on p(x),

pα,β(x)= αp(α(x − β)). (4.46)

When α < 1, pα,β(x) broadens whereas if α > 1 it becomes more peaked. Observe
that pα,β(x) is also a density function. After making the change of variable y =
α(x − β) we obtain∫

R
pα,β(x) dx =

∫

R
αp(α(x − β)) dx =

∫

R
p(y)dy = 1. (4.47)

The behaviour of H under the transformation given by (4.46) is the following:

H(pα,β)= −
∫

R
pα,β(x) logpα,β(x) dx = −

∫

R
p(y) log(αp(y)) dy

= −
∫

R
p(y) logp(y)dy − logα

∫

R
p(y)dy

=H(p)− logα. (4.48)

Then,

Ĥ (pα,β)= eH(pα,β) = Ĥ (p)

α
. (4.49)

It is straightforward to see that D(pα,β)= αD(p), and to conclude that

Ĉ(pα,β)= Ĥ (pα,β) ·D(pα,β)= Ĥ (p)

α
αD(p)= Ĉ(p). (4.50)

Observe that translations and rescaling transformations keep also the shape of the
distributions. Then it could be reasonable to denominate the invariant quantity Ĉ as
the shape complexity of the family formed by a distribution p(x) and its transformed
pα,β(x). Hence, for instance, the rectangular Π(x), the isosceles-triangle shaped
Λ(x), the Gaussian Γ (x), or the exponential Ξ(x) distributions continue to belong
to the same Π , Λ, Γ or Ξ family, respectively, after applying the transformations
defined by (4.46). Calculation of Ĉ on these distribution families gives us

Ĉ(Π)= 1, (4.51)

Ĉ(Λ)= 2

3

√
e ≈ 1.0991, (4.52)

Ĉ(Γ )=
√
e

2
≈ 1.1658, (4.53)

Ĉ(Ξ)= e

2
≈ 1.3591. (4.54)

Remark that the family of rectangular distributions has a smaller Ĉ than the rest
of distributions. This fact is true for every distribution and it will be proved in
Sect. 4.2.3.4.
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4.2.3.2 Invariance under Replication

Lloyd and Pagels [15] recommend that a complexity measure should remain essen-
tially unchanged under replication. We show now that Ĉ is replicant invariant, that
is, the shape complexity of m replicas of a given distribution is equal to the shape
complexity of the original one.

Suppose p(x) a compactly supported density function,
∫ ∞
−∞ p(x)dx = 1. Take n

copies pm(x), m= 1, . . . , n, of p(x),

pm(x)= 1√
n
p(

√
n(x − λm)), 1 ≤m≤ n, (4.55)

where the supports of all the pm(x), centered at λ′
ms points, m = 1, . . . , n, are all

disjoint. Observe that
∫ ∞
−∞ pm(x)dx = 1

n
, what make the union

q(x)=
n∑

i=1

pm(x) (4.56)

to be also a normalized probability distribution,
∫ ∞
−∞ q(x) dx = 1. For every pm(x),

a straightforward calculation shows that

H(pm)= 1

n
H(p)+ 1

n
log

√
n, (4.57)

D(pm)= 1

n
√
n
D(p). (4.58)

Taking into account that the m replicas are supported on disjoint intervals on R, we
obtain

H(q)=H(p)+ log
√
n, (4.59)

D(q)= 1√
n
D(p). (4.60)

Then,

Ĉ(q)= Ĉ(p), (4.61)

what completes the proof of the replicant invariance of Ĉ.

4.2.3.3 Near-Continuity

Continuity is a desirable property of an indicator of complexity. For a given scale
of observation, similar systems should have a similar complexity. In the continuous
case, similarity between density functions defined on a common support suggests
that they take close values almost everywhere. More strictly speaking, let δ be a
positive real number. It will be said that two density functions f (x) and g(x) defined
on the interval I ∈ R are δ-neighboring functions on I if the Lebesgue measure of
the points x ∈ I verifying |f (x)−g(x)| ≥ δ is zero. A real map T defined on density
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functions on I will be called near-continuous if for any ε > 0 there exists δ(ε) > 0
such that if f (x) and g(x) are δ-neighboring functions on I then |T (f )−T (g)|< ε.

It can be shown that the information H , the disequilibrium D and the shape
complexity Ĉ are near-continuous maps on the space of density functions defined on
a compact support. We must stress at this point the importance of the compactness
condition of the support in order to have near-continuity. Take, for instance, the
density function defined on the interval [−1,L],

gδ,L(x)=

⎧
⎪⎨
⎪⎩

1 − δ if − 1 ≤ x ≤ 0,
δ
L

if 0 ≤ x ≤ L,

0 otherwise,

(4.62)

with 0 < δ < 1 and L> 1. If we calculate H and D for this distribution we obtain

H(gδ,L)= −(1 − δ) log(1 − δ)− δ log

(
δ

L

)
, (4.63)

D(gδ,L)= (1 − δ)2 + δ2

L
. (4.64)

Consider also the rectangular density function

χ[−1,0](x)=
{

1 if − 1 ≤ x ≤ 0,
0 otherwise.

(4.65)

If 0 < δ < δ̄ < 1, gδ,L(x) and χ[−1,0](x) are δ̄-neighboring functions. When δ → 0,
we have that limδ→0 gδ,L(x)= χ[−1,0](x). In this limit process the support is main-
tained and near-continuity manifests itself as following,[

lim
δ→0

Ĉ(gδ,L)
]

= Ĉ(χ[−1,0])= 1. (4.66)

But if we allow the support L to become infinitely large, the compactness condi-
tion is not verified and, although limL→∞ gδ,L(x) and χ[−1,0](x) are δ̄-neighboring
distributions, we have that[(

lim
L→∞ Ĉ(gδ,L)

)
→ ∞

]
�= Ĉ(χ[−1,0])= 1. (4.67)

Then near-continuity in the map Ĉ is lost due to the non-compactness of the sup-
port when L → ∞. This example suggests that the shape complexity Ĉ is near-
continuous on compact supports and this property will be rigorously proved else-
where.

4.2.3.4 The Minimal Shape Complexity

If we calculate Ĉ on the example given by (4.62), we can verify that the shape
complexity can be as large as wanted. Take, for instance, δ = 1

2 . The measure Ĉ

reads now

Ĉ(g
δ= 1

2 ,L
)= 1

2

√
L

(
1 + 1

L

)
. (4.68)
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Thus Ĉ becomes infinitely large after taking the limits L → 0 or L → ∞. Remark
that even in the case gδ,L has a finite support, Ĉ is not upper bounded. The density
functions, g

(δ= 1
2 ),(L→0) and g

(δ= 1
2 ),(L→∞)

, of infinitely increasing complexity have

two zones with different probabilities. In the case L → 0 there is a narrow zone
where probability rises to infinity and in the case L → ∞ there exists an increas-
ingly large zone where probability tends to zero. Both kind of density functions
show a similar pattern to distributions of maximal LMC complexity in the discrete
case, where there is an state of dominating probability and the rest of states have the
same probability.

The minimal Ĉ given by (4.68) is found when L= 1, that is, when gδ,L becomes
the rectangular density function χ[−1,1]. In fact, the value Ĉ = 1 is the minimum of
possible shape complexities and it is reached only on the rectangular distributions.
We sketch now some steps that prove this result.

Suppose

f =
n∑

k=1

λkχEk
(4.69)

to be a density function consisting of several rectangular pieces Ek , k = 1, . . . , n,
on disjoint intervals. If μk is the Lebesgue measure of Ek , calculation of Ĉ gives

Ĉ(f )=
n∏

k=1

(
λ

−λkμk

k

)
·
(

n∑
k=1

λ2
kμk

)
. (4.70)

Lagrange multipliers method is used to find the real vector (μ1,μ2, . . . ,μn;λ1, λ2,

. . . , λn) that makes extremal the quantity Ĉ(f ) under the condition
∑n

k=1 λkμk = 1.
This is equivalent to studying the extrema of log Ĉ(f ). We define the function
z(λk,μk)= log Ĉ(f )+ α(

∑n
k=1 λkμk − 1), then

z(λk,μk)= −
n∑

k=1

μkλk logλk + log

(
n∑

k=1

μkλ
2
k

)
+ α

(
n∑

k=1

λkμk − 1

)
. (4.71)

Differentiating this expression and making the result equal to zero we obtain

∂z(λk,μk)

∂λk
= −μk logλk −μk + 2λkμk∑n

j=1 μjλ
2
j

+ αμk = 0, (4.72)

∂z(λk,μk)

∂μk

= −λk logλk + λ2
k∑n

j=1 μjλ
2
j

+ αλk = 0. (4.73)

Dividing (4.72) by μk and (4.73) by λk we get

2λk∑n
j=1 μjλ

2
j

+ α − 1 = logλk, (4.74)

λk∑n
j=1 μjλ

2
j

+ α = logλk. (4.75)
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Solving these two equations for every λk we have

λk =
n∑

j=1

μjλ
2
j for all k. (4.76)

Therefore f is a rectangular function taking the same value λ for every interval Ek ,
that is, f is the rectangular density function

f = λ · χL with λ= 1∑n
i=1 μi

= 1

L
, (4.77)

where L is the Lebesgue measure of the support.
Then Ĉ(f )= 1 is the minimal value for a density function composed of several

rectangular pieces because, as we know for the example given by (4.68), Ĉ(f ) is
not upper bounded for this kind of distributions.

Furthermore, for every compactly supported density function g and for every
ε > 0, it can be shown that near-continuity of Ĉ allows to find a δ-neighboring den-
sity function f of the type given by expression (4.69) verifying |Ĉ(f )− Ĉ(g)|< ε.
The arbitrariness of the election of ε brings us to conclude that Ĉ(g) ≥ 1 for every
probability distribution g. Thus, we can conclude that the minimal value of Ĉ is 1
and it is reached only by the rectangular density functions.

4.3 Fisher-Shannon Information Product. Some Applications

4.3.1 Fisher-Shannon Information: Definition and Properties

The description of electronic properties by means of information measures was in-
troduced into quantum chemistry by the pioneering works [61–65]. In particular
Shannon entropy [66] and Fisher information [67] have attracted special attention
in atomic and molecular physics. (See e.g. [68–97].) It is known that these two in-
formation measures give complementary descriptions of the concentration and un-
certainty of the probability density: Sρ (Iρ ) can be seen as a global (local) measure
of spreading. In this context, the Fisher-Shannon information product was found
as a link between these information measures to improve the characterization of a
probability density function in terms of information measures [77].

The single-electron density, the basic variable of the density functional theory
[98] of D-dimensional many-electron systems is given by

ρ(r)=
∫

|Ψ (r, r2, . . . , rN)|2dDr2 . . . d
DrN (4.78)

where Ψ (r1, . . . , rN) denotes the normalized wavefunction of the N -electron sys-
tem and ρ(r) is normalized to unity. The spreading of this quantity is best measured
by the Shannon information entropy

Sρ = −
∫

ρ(r) lnρ(r)dDr, (4.79)



4 Statistical Complexity and Fisher-Shannon Information: Applications 97

or equivalently by the Shannon entropy power [60, 66]

Jρ ≡ 1

2πe
e

2
D
Sρ . (4.80)

On the other hand the Fisher information [60, 67] of ρ(r) is given by

Iρ =
∫ |∇ρ(r)|2

ρ(r)
dDr. (4.81)

The sharpness, concentration or delocalization of the electronic cloud is measured
by both quantities. It is known that these two information measures give comple-
mentary descriptions of the smoothness and uncertainty of the electron localization:
Sρ and Iρ are global and local measures of smoothness, respectively [60–67, 77].

For completeness let us point out that the aforementioned information measures,
which refer to an unity-normalized density ρ1(r) ≡ ρ(r), are related to the corre-
sponding measures of the N -normalized density ρN(r) by

SρN = −N lnN +NSρ and IρN =NIρ (4.82)

for the Shannon and Fisher quantities, respectively.
The information product concept Pρ was originally defined in [77] as

Pρ ≡ 1

D
JρIρ, (4.83)

and it was applied in the study of electronic properties of quantum systems during
last years. (See, e.g. [77, 90, 93, 94, 96, 99–101].) Next we will put forward some
mathematical properties which have been obtained in [77, 82, 102, 103] for the
Fisher-Shannon information product Pρ .

4.3.1.1 Scaling Property

The Fisher information and the Shannon entropy power transform as

Iργ = γD−1Iρ; Jργ = γ−(D−1)Jρ (4.84)

under scaling of the probability density ρ(r) by a real scalar factor γ ; i.e. when
ργ (r)= γDρ(γ r). This indicates that they are homogeneous density functionals of
degrees 2 and −2, respectively. Consequently, the information product Pρ = 1

D
JρIρ

is invariant under this scaling transformation, i.e.

Pργ = Pρ. (4.85)

4.3.1.2 Uncertainty Properties

The Fisher information Iρ and the Shannon entropy power Jρ satisfy the uncertainty
relationship [60]

1

D
JρIρ ≥ 1. (4.86)



98 R. López-Ruiz et al.

Remark that when one of the involved quantities decreases near to zero, the other has
to increase to a large value. Moreover, it is closely linked to the uncertainty relation

〈r2〉〈p2〉 ≥ D2

4 , where 〈r2〉 is defined in terms of the charge position density ρ(r)
as 〈r2〉 = ∫

r2ρ(r)dDr, and 〈p2〉 is given in terms of the momentum density Π(p)
in an analogous way, where Π(p) is defined by means of the Fourier transform of
Ψ (r1, . . . , rN), Φ(p1, . . . ,pN), as

Π(p)=
∫

|Φ(p,p2, . . . ,pN)|2dDp2 . . . d
DpN. (4.87)

The Fisher information has been used as a measure of uncertainty in quantum
physics. (See e.g. [82, 103–112].) It has been shown to fulfill the Stam inequali-
ties [113]

Iρ ≤ 4〈p2〉; Iπ ≤ 4〈r2〉, (4.88)

and the Cramer-Rao inequalities [60, 102, 112, 114, 115]

Iρ ≥ D2

〈r2〉 ; Iπ ≥ D2

〈p2〉 (4.89)

for the general single-particle systems. The multiplication of each pair of these in-
equalities produces

D4

〈r2〉〈p2〉 ≤ IρIπ ≤ 16〈r2〉〈p2〉, (4.90)

valid for ground and excited states of general systems, which shows the close con-
nection between the Heisenberg-like uncertainty product and the product of the po-
sition and momentum Fisher informations.

Indeed, taken into account 1/D〈r2〉 ≥ Jρ [116] one has that

4

D2
〈p2〉〈r2〉 ≥ 1

D
JρIρ ≥ 1 (4.91)

and
4

D2
〈p2〉〈r2〉 ≥ √

PρPπ ≥ 1. (4.92)

It is straightforward to show that the equality limit of these two inequalities is
reached for Gaussian densities.

An special case is given by a single-particle in a central potential. In this frame-
work an uncertainty Fisher information relation was obtained in [103]:

IρIπ ≥ 4D2
[

1 − (2l + 1)|m|
2l(l + 1)

]2

(4.93)

and Fisher information in position space was derived in [82] as

Iρ = 4〈p2〉 − 2(2l + 1)|m|〈r−2〉 (4.94)

where l and m are the orbital and magnetic quantum numbers. Taking into account
the duality of the position and momentum spaces as well as the separability of the
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wavefunction, one can express the Fisher information of the momentum distribution
density as

Iπ = 4〈r2〉 − 2(2l + 1)|m|〈p−2〉. (4.95)

On the other hand, the radial expectation values 〈p2〉 and 〈r−2〉 (〈r2〉 and 〈p−2〉)
are related [82, 103] by

〈p2〉 ≥ l(l + 1)〈r−2〉, (4.96)

〈r2〉 ≥ l(l + 1)〈p−2〉, (4.97)

and combining above expressions the fisher uncertainty-like relation (4.93) is ob-
tained.

4.3.1.3 Nonadditivity Properties

The superadditivity of the Fisher information and the subadditivity of the Shannon
information of a probability density, can be used to prove [77] that

IW ≥NIρ, (4.98)

SW ≤NSρ, (4.99)

where

IW =
∫ |∇|Ψ (r1, . . . , rN)|2|2

|Ψ (r1, . . . , rN)|2 dr1 . . . drN (4.100)

and

SW =
∫

|Ψ (r1, . . . , rN)|2 ln |Ψ (r1, . . . , rN)|2dr1 . . . drN (4.101)

for general N -fermion systems in three dimensions. The D-dimensional generaliza-
tion is obvious. We will show the proof below.

Let ρ(r) a probability density on Rt , that is, ρ(r) non-negative and
∫
ρ(r)dr = 1.

We will suppose that Fisher information and Shannon information of ρ(r) exits.
Corresponding to any orthogonal decomposition Rt = Rr ⊕ Rs , t = r + s, the
marginal densities are given by:

ρ1(x)=
∫

Rr

ρ(x,y)dry, ρ2(y)=
∫

Rs

ρ(x,y)dsx (4.102)

then [117]

Iρ ≥ Iρ1 + Iρ2 (4.103)

property which is known as superadditivity of Fisher information, and

Sρ ≤ Sρ1 + Sρ2 (4.104)

which is known as subadditivity of Shannon information. Both inequalities saturate
when ρ(x,y)= ρ1(x)ρ2(y) [117].
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On the other hand, let us consider an N -fermion system and denote the ith-
electron density by

ρi ≡ ρ(ri )=
∫

|Ψ (r1, . . . , ri , . . . , rN)|2dr1 . . . dri−1dri+1 . . . drN, (4.105)

for i = 1, . . . ,N . Then, taken into account that the wavefunction is antisymmetric
and (4.103) and (4.104), the wavefunction Fisher information fulfills

IW =
∫ |∇|Ψ (r1, . . . , rN)|2|2

|Ψ (r1, . . . , rN)|2 dr1 . . . drN ≥
N∑
i=1

Iρi =NIρ, (4.106)

and the wavefunction Shannon information fulfills:

SW =
∫

|Ψ (r1, . . . , rN)|2 ln |Ψ (r1, . . . , rN)|2dr1 . . . drN ≤
N∑
i=1

Sρi =NSρ.

(4.107)

Inequalities (4.106) and (4.107) are equalities when |Ψ (r1, . . . , rN)|2 = ρ(r1) . . .

ρ(rN).
These properties have allowed us to generalize the following uncertainty rela-

tionships:

• The Stam’s uncertainty relation for wave functions normalized to unity [77, 113]
is generalized via the inequality (4.106) by

NIρ ≤ IW ≤ 4N〈p2〉 (4.108)

• The Shannon information uncertainty relation for wave functions normalized to
unity [116] is generalized via inequality (4.107) by

3N(1 + lnπ)≤ −
∫

|Ψ (r1, . . . , rN)|2 ln |Ψ (r1, . . . , rN)|2dr1 . . . drN

−
∫

|Φ(p1, . . . ,pN)|2 ln |Φ(p1, . . . ,pN)|2dp1 . . . dpN (4.109)

≤N(Sρ + Sπ) (4.110)

where Sρ(Sπ) denotes the Shannon information of the single-particle distribution
density in position (momentum) space.

4.3.2 Fisher-Shannon Product as an Electronic Correlation
Measure

The Fisher-Shannon information product was earlier employed [77] as a tool for
studying the electron correlation in atomic systems, in particular in two electron
isoelectronic series. The application of this indicator to the electronic shell structure
of atoms has received a special attention for systems running from on-electron atoms
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to many-electron ones as those corresponding to the periodic table (see, e.g. [93, 94,
96, 99, 102]).

Many electron systems such as atoms, molecules and clusters show the electron
correlation phenomenon. This feature has been characterized in terms of the correla-
tion energy [118], which gives the difference between the exact non-relativistic en-
ergy and the Hartree-Fock approximation, as well as by some statistical correlation
coefficients [119], which asses radial and angular correlation in both the position
and momentum density distributions. Some information-theoretic measures of the
electron correlation in many electron systems have been proposed during last years
[77, 120–130]. Here we will focus on the Fisher-Shannon Information Product as a
measure of electron correlation.

The Fisher-Shannon Information Product has been studied in two types of two-
electron systems [77] which differ in the Coulomb- and oscillator-like form of the
electron-nucleus interaction. The Hamiltonian of such a system is

H = −1

2
∇2

1 − 1

2
∇2

2 + V (r1)+ V (r2)+ 1

|r1 − r2| , (4.111)

where V (ri) denotes the electron-nucleus interaction of the ith-electron. V (ri) =
Z/ri for He-like ions (Z being the nuclear charge) and V (ri)= 1

2ωr
2
i for the Hooke

atoms. The Hooke atom is especially well suited for the understanding of correlation
phenomena because of its amenability to analytical treatment.

4.3.2.1 He-Like Ions

In the bare coulomb field case (BCF), i.e. without Coulombic interelectronic interac-
tion in the Hamiltonian, the ground state wave function of He(Z) is a single Slater
determinant and the charge density is a hydrogenlike one, so JρZ = e

2π1/3
1
Z2 and

IρZ = 4Z2, so PBCF = KBCF with KBCF � 1.237333. To consider the inclusion
of electronic interaction we will work with the 204-terms Hylleraas type functions
of Koga et al. [131] for the ground states of H−, He, Li+, Be2+, B3+, and Ne8+
(Z = 1–5, 10).

In Fig. 4.16 we have compared the dependence of the information product PρZ on
the nuclear charge Z for He-like ions with the bare coulomb field information prod-
uct. It is apparent the monotonic decrease of PρZ when Z increased, asymptotically
approaching the bare or no-correlation value PBCF = KBCF and showing that the
electron correlation effect gradually decreases with respect to the electron-nucleus
interaction when the nuclear charge of the system is raised up.

4.3.2.2 Hooke’s Atoms

For the bare oscillator-field case (BOF), it is known that Jρω = 1/(2ω) and Iρω =
6ω, so that the information product PBOF = 1. On the other hand the Schrödinger
equation of the entire Hooke atom can be solved analytically for an infinite set of os-
cillator frequencies [132]. The use of relative and center of mass coordinates allows
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Fig. 4.16 The ratio
PρZ/PBCF of the information
product for the He-like ions
and the information product
for bare two-electron atoms
as a function of the nuclear
charge Z. The points
correspond to the values of
He(Z) ions with Z = 1–5
and 10. The solid line has
been drawn only to guide the
eye

Fig. 4.17 The information
product Pρω/PBOF for the
Hooke atoms with the
oscillator strength ω = 0.5,
0.1, 0.03653727, 0.01734620,
0.009578420, and
0.005841700 and the bare
oscillator field information
product PBOF . The solid line
has been drawn only to guide
the eye

the Hamiltonian to be separable so that the total wavefunction for singlet states is
given by Ψ (r1, σ1, r2, σ2)= ξ(R)Φ(u)τ (σ1, σ2), where τ(σ1, σ2) is the singlet spin
wave function, ξ(R) and Φ(u) being the solutions of the Schrödinger equations

(
−1

4
∇2
R +ωR2

)
ξ(R)=ERξ(R), (4.112)

(
−∇2

u + 1

4
ωu2 + 1

u

)
Φ(u)=EuΦ(u), (4.113)

respectively, and the total energy E =ER +Eu.
The computed results for the Fisher information and entropy power of these sys-

tems are shown in Fig. 4.17 for several ω values, (namely, 0.5, 0.1, 0.03653727,
0.01734620, 0.009578420, and 0.005841700). For these particular values the
ground state solution can be obtained [132] as

ξ(R)=
(

2ω

π

)3/4

e−ωR2
and Φ(u)= e− ωr2

4 Qn(r) (4.114)

where Qn(r) is a polynomial whose coefficients can be determined analytically.
Cioslowski et al. [133] quantify the domains of the weakly correlated regime of

this system which corresponds to the values of ω greater than ωc � 4.011624 ×
10−2, and the strongly correlated regime that encompasses the values of ω smaller
than ωc.
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In Fig. 4.17 we have drawn Pρω/PBOF as a function of the oscillator electron-
nucleus strength ω. It is apparent that the value of the electron density functional
Pρω/PBOF (dots) is always bigger than unity, when the electron-electron repulsion
becomes very small with respect to the oscillator electron-nucleus interaction, the
points approach to the value 1, indicating the decrease of the relative importance of
electron correlation when the strength ω is increased.

4.3.3 Fisher Information for a Single Particle in a Central
Potential

As another application, let us consider the Fisher information in the position space
(for momentum space is analogous) of a single-particle system in a central potential
V (r), defined by

Iρ =
∫ |∇ρ(r)|2

ρ(r)
dr (4.115)

where ρ(r) = |ψ(r)|2 and where ψ(r) is the bound solutions of the Schrödinger
equation

[
−1

2
∇2 + V (r)

]
ψ(r)=Eψ(r). (4.116)

For bounded states the solution of above equation is given by

ψnlm(r)=Rnl(r)Ylm(Ω) (4.117)

where Rnl(r) is the radial part of the function and Ylm(Ω) is the spherical harmonic
of order l that is given by

Ylm(Ω)= 1√
2π

eimφΘlm(cos θ) (−l ≤m≤ l and 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π)

(4.118)

where Θlm(x) are given in terms of the associated Legendre functions of the first
kind Pm

l (x):

Θlm(x)=
√

2l + 1

2

(l −m)!
(l +m)!P

m
l (x). (4.119)

So the Fisher information for a single particle in a central potential is given by

Iρnlm = 4
∫

|∇ρ
1/2
nlm(r)|2

=
∫ ⎡

⎣Θ2
lm(θ)

(
∂R2

nl(r)

∂r

)2

+ 1

r2
R2
nl(r)

(
∂Θlm(θ)

∂θ

)2
⎤
⎦dr, (4.120)

on the other hand the kinetic energy is given by:
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〈p2〉nlm =
∫

|∇ψnlm(r)|2 =
∫ [(

∂Rnl(r)

∂r

)2

|Ylm(Ω)|2
]
dr

+
∫ [

1

r2
R2
nl(r)

(
∂Θlm(θ)

∂θ

)2

+ 1

r2

1

sin2 θ
R2
nl(r)Θ

2
lm(θ)m

2

]
dr

(4.121)

thus

Iρnlm = 4〈p2〉nlm − 2〈r−2〉nlm(2l + 1)|m|. (4.122)

4.3.3.1 Hydrogen Atom

For this system the potential is V (r)= −1/r and the expectation values 〈p2〉nlm =
1
n2 and 〈r−2〉nlm = 2

(2l+1)n3 thus

Iρnlm = 4

n2

(
1 − |m|

n

)
. (4.123)

4.3.3.2 Isotropic Harmonic Oscillator

In this case the potential is V (r) = 1
2ω

2r2 and the expectation values 〈p2〉nlm =
ω(2n+ l + 3

2 ) and 〈r−2〉nlm = ω
(2l+1)

Iρnlm = 4ω

(
2n+ l + 3

2
− |m|

)
. (4.124)

4.4 Applications to Quantum Systems

4.4.1 Formulas in Position and Momentum Spaces

Here, we summarize the formulas and the nomenclature that will use in all this
section.

The measure of complexity C has been defined as

C =H ·D, (4.125)

where H represents the information content of the system and D gives an idea of
how much concentrated is its spatial distribution.

The simple exponential Shannon entropy, in the position and momentum spaces,
takes the form, respectively,

Hr = eSr , Hp = eSp , (4.126)
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where Sr and Sp are the Shannon information entropies,

Sr = −
∫

ρ(r) logρ(r) dr, Sp = −
∫

γ (p) logγ (p) dp, (4.127)

and ρ(r) and γ (p) are the densities normalized to 1 of the quantum system in posi-
tion and momentum spaces, respectively.

The disequilibrium is:

Dr =
∫

ρ2(r) dr, Dp =
∫

γ 2(p) dp. (4.128)

In this manner, the final expressions for C in position and momentum spaces are:

Cr =Hr ·Dr, Cp =Hp ·Dp. (4.129)

Second, the Fisher-Shannon information, P , in the position and momentum
spaces, is given respectively by

Pr = Jr · Ir , Pp = Jp · Ip, (4.130)

where the first factor

Jr = 1

2πe
e2Sr/3, Jp = 1

2πe
e2Sp/3, (4.131)

is a version of the exponential Shannon entropy, and the second factor

Ir =
∫ [∇ρ(r)]2

ρ(r)
dr, Ip =

∫ [∇γ (p)]2

γ (p)
dp, (4.132)

is the Fisher information measure, that quantifies the narrowness of the probability
density.

4.4.2 The H-atom

The atom can be considered a complex system. Its structure is determined through
the well established equations of Quantum Mechanics [134, 135]. Depending on the
set of quantum numbers defining the state of the atom, different conformations are
available to it. As a consequence, if the wave function of the atomic state is known,
the probability densities in the position and the momentum spaces are obtained, and
from them, the different statistical magnitudes such as Shannon and Fisher informa-
tions, different indicators of complexity, etc., can be calculated.

These quantities enlighten new details of the hierarchical organization of the
atomic states. In fact, states with the same energy can display, for instance, different
values of complexity. This is the behavior shown by the simplest atomic system,
that is, the hydrogen atom (H-atom). Now, we present the calculations for this sys-
tem [94].

The non-relativistic wave functions of the H-atom in position space (r = (r,Ω),
with r the radial distance and Ω the solid angle) are:

Ψn,l,m(r)=Rn,l(r)Yl,m(Ω), (4.133)
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where Rn,l(r) is the radial part and Yl,m(Ω) is the spherical harmonic of the atomic
state determined by the quantum numbers (n, l,m). The radial part is expressed
as [135]

Rn,l(r)= 2

n2

[
(n− l − 1)!
(n+ l)!

]1/2 (2r

n

)l

e− r
n L2l+1

n−l−1

(
2r

n

)
, (4.134)

being L
β
α(t) the associated Laguerre polynomials. Atomic units are used here.

The same functions in momentum space (p = (p, Ω̂), with p the momentum
modulus and Ω̂ the solid angle) are:

Ψ̂n,l,m(p)= R̂n,l(p)Yl,m(Ω̂), (4.135)

where the radial part R̂n,l(p) is now given by the expression [136]

R̂n,l(p)=
[

2

π

(n− l − 1)!
(n+ l)!

]1/2

n222l+2l! nlpl

(n2p2 + 1)l+2
Cl+1
n−l−1

(
n2p2 − 1

n2p2 + 1

)
,

(4.136)

with C
β
α (t) the Gegenbauer polynomials.

Taking the former expressions, the probability density in position and momentum
spaces,

ρ(r)= |Ψn,l,m(r)|2, γ (p)= |Ψ̂n,l,m(p)|2, (4.137)

can be explicitly calculated. From these densities, the statistical complexity and the
Fisher-Shannon information are computed.

Cr and Cp (see expression (4.129)) are plotted in Fig. 4.18 as function of the
modulus of the third component m of the orbital angular momentum l for different
pairs of (n, l) values. The range of the quantum numbers is: n ≥ 1, 0 ≤ l ≤ n − 1,
and −l ≤m≤ l. Figure 4.18(a) shows Cr for n= 15 and Fig. 4.18(b) shows Cr for
n= 30. In both figures, it can be observed that Cr splits in different sets of discrete
points. Each one of these sets is associated to a different l value. It is worth to note
that the set with the minimum values of Cr corresponds just to the highest l, that is,
l = n− 1. The same behavior can be observed in Figs. 4.18(c) and 4.18(d) for Cp .

Figure 4.19 shows the calculation of Pr and Pp (see expression (4.130)) as func-
tion of the modulus of the third component m for different pairs of (n, l) values. The
second factor, Ir or Ip , of this indicator can be analytically obtained in both spaces
(position and momentum). The results are [82]:

Ir = 4

n2

(
1 − |m|

n

)
, (4.138)

Ip = 2n2
{

5n2 + 1 − 3l(l + 1)− (8n− 3(2l + 1))|m|
}
. (4.139)

In Fig. 4.19(a), Pr is plotted for n = 15, and Pr is plotted for n = 30 in
Fig. 4.19(b). Here Pr also splits in different sets of discrete points, showing a be-
havior parallel to the above signaled for C (Fig. 4.18). Each one of these sets is also
related with a different l value. It must be remarked again that the set with the mini-
mum values of Pr corresponds just to the highest l. In Figs. 4.19(c) and 4.19(d), the
same behavior can be observed for Pp .
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Fig. 4.18 Statistical complexity in position space, Cr , and momentum space, Cp , vs. |m| for
different (n, l) values in the hydrogen atom. Cr for (a) n = 15 and (b) n = 30. Cp for (c) n = 15
and (d) n= 30. All values are in atomic units

Then, it is put in evidence that, for a fixed level of energy n, these statistical
magnitudes take their minimum values for the highest allowed orbital angular mo-
mentum, l = n− 1. It is worth to remember at this point that the mean radius of an
(n, l = n− 1) orbital, 〈r〉n,l , is given by [137]

〈r〉n,l=n−1 = n2
(

1 + 1

2n

)
, (4.140)

that tends, when n is very large, to the radius of the nth energy level, rBohr = n2,
of the Bohr atom. The radial part of this particular wave function, that describes the
electron in the (n, l = n− 1) orbital, has no nodes. In fact, if we take the standard
deviation, (Δr) = 〈(r − 〈r〉)2〉1/2, of this wave function, (Δr) = n

√
2n+ 1/2, the

ratio (Δr)/〈r〉 becomes 1/
√

2n for large n. This means that the spatial configuration
of this atomic state is like a spherical shell that converges to a semiclassical Bohr-
like orbit when n tends to infinity. These highly excited H-atoms are referred as
Rydberg atoms, that have been intensively studied [138] for its importance in areas
as astrophysics, plasma physics, quantum optics, etc., and also in studies of the
classical limit of quantum mechanics [139].
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Fig. 4.19 Fisher-Shannon information in position space, Pr , and momentum space, Pp , vs. |m|
for different (n, l) values in the hydrogen atom. Pr for (a) n= 15 and (b) n= 30. Pp for (c) n= 15
and (d) n= 30. All values are in atomic units

We conclude this section by remarking that the minimum values of these statis-
tical measures calculated from the quantum wave functions of the H-atom enhance
our intuition by selecting just those orbitals that for a large principal quantum num-
ber converge to the Bohr-like orbits in the pre-quantum image. Therefore, these
results show that insights on the structural conformation of quantum systems can be
inferred from these magnitudes, as it can also be seen in the next sections.

4.4.3 The Quantum Harmonic Oscillator

As suggested in the previous section, a variational process on the statistical measures
calculated in the H-atom could select just those orbitals that in the pre-quantum im-
age are the Bohr-like orbits. Now, we show that a similar behavior for the statistical
complexity and Fisher-Shannon information is also found in the case of the isotropic
quantum harmonic oscillator [93].

We recall the three-dimensional non-relativistic wave functions of this system
when the potential energy is written as V (r) = λ2r2/2, with λ a positive real con-
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stant expressing the potential strength. In the same way as in the H-atom (4.133),
these wave functions in position space (r = (r,Ω), with r the radial distance and Ω

the solid angle) are:

Ψn,l,m(r)=Rn,l(r)Yl,m(Ω), (4.141)

where Rn,l(r) is the radial part and Yl,m(Ω) is the spherical harmonic of the quan-
tum state determined by the quantum numbers (n, l,m). Atomic units are used here.
The radial part is expressed as [140]

Rn,l(r)=
[

2n!λl+3/2

Γ (n+ l + 3/2)

]1/2

rle− λ
2 r

2
L
l+1/2
n (λr2), (4.142)

where Lβ
α(t) are the associated Laguerre polynomials. The levels of energy are given

by

En,l = λ(2n+ l + 3/2)= λ(en,l + 3/2), (4.143)

where n = 0,1,2, . . . and l = 0,1,2, . . . . Let us observe that en,l = 2n + l. Thus,
different pairs of (n, l) can give the same en,l , and then the same energy En,l .

The wave functions in momentum space (p = (p, Ω̂), with p the momentum
modulus and Ω̂ the solid angle) present the same form as in the H-atom (4.135):

Ψ̂n,l,m(p)= R̂n,l(p)Yl,m(Ω̂), (4.144)

where the radial part R̂n,l(p) is now given by the expression [140]

R̂n,l(p)=
[

2n!λ−l−3/2

Γ (n+ l + 3/2)

]1/2

ple− p2

2λ L
l+1/2
n (p2/λ). (4.145)

Taking the former expressions, the probability density in position and momentum
spaces,

ρλ(r)= |Ψn,l,m(r)|2, γλ(p)= |Ψ̂n,l,m(p)|2, (4.146)

can be explicitly calculated. From these densities, the statistical complexity (see
expression (4.129)) and the Fisher-Shannon information (see expression (4.130)) are
computed. It is shown in Sect. 4.4.3.1 that these quantities are independent of λ, the
potential strength, and also that they are the same in both position and momentum
spaces, i.e. Cr = Cp and Pr = Pp .

In Fig. 4.20, Cr (or Cp) is plotted as function of the modulus of the third compo-
nent m, −l ≤ m ≤ l, of the orbital angular momentum l for different l values with
a fixed energy. That is, according to expression (4.143), the quantity en,l = 2n + l

is constant in each figure. Figure 4.20(a) shows Cr for en,l = 15 and Fig. 4.20(b)
shows Cr for en,l = 30. In both figures, it can be observed that Cr splits in different
sets of discrete points. Each one of these sets is associated to a different l value. It
is worth noting that the set with the minimum values of Cr corresponds just to the
highest l, that is, l = 15 in Fig. 4.20(a) and l = 30 in Fig. 4.20(b).

Figure 4.21 shows P as function of the modulus of the third component m for dif-
ferent pairs of (en,l = 2n+ l, l) values. The second factor, Ir or Ip , of this indicator
can be analytically obtained in both spaces (position and momentum) [82]:
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Fig. 4.20 Statistical complexity in position space, Cr , and momentum space, Cp , vs. |m| for
different energy en,l -values in the quantum isotropic harmonic oscillator for (a) en,l = 15 and
(b) en,l = 30. Recall that Cr = Cp . All values are in atomic units

Fig. 4.21 Fisher-Shannon information in position space, Pr , and momentum space, Pp , vs. |m|
for different energy en,l -values in the quantum isotropic harmonic oscillator for (a) en,l = 15 and
(b) en,l = 30. Recall that Pr = Pp . All values are in atomic units

Ir = 4(2n+ l + 3/2 − |m|)λ, (4.147)

Ip = 4(2n+ l + 3/2 − |m|)λ−1. (4.148)

Let us note that Ir and Ip depend on λ, although the final result for Pr and Pp are
non λ-dependent (see Sect. 4.4.3.1). In Fig. 4.21(a), Pr (or Pp) is plotted for en,l =
15, and Pr is plotted for en,l = 30 in Fig. 4.21(b). Here, Pr also splits in different
sets of discrete points, showing a behavior similar to that of C in Fig. 4.20. Each one
of these sets is related with a different l value, and the set with the minimum values
of Pr also corresponds just to the highest l, that is, l = 15 and l = 30, respectively.

As in the H-atom, we also see here that, for a fixed level of energy, let us say
en,l = 2n + l, these statistical quantities take their minimum values for the high-
est allowed orbital angular momentum, l = en,l . It is worth remembering at this
point that the radial part of this particular wave function, that describes the quan-
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tum system in the (n= 0, l = en,l) orbital, has no nodes. This means that the spatial
configuration of this state is, in some way, a spherical-like shell. In Sect. 4.4.3.2, the
mean radius of this shell, 〈r〉n,l,m, is found for the case (n= 0, l = en,l,m). This is:

〈r〉n=0,l=en,l ,m ≡ 〈r〉n=0,l=en,l �
√
λ−1(en,l + 1)

(
1 +Θ(e−1

n,l )
)
, (4.149)

that tends, when en,l � 1, to the radius of the N th energy level, rN = √
λ−1(N + 1),

takingN = en,l in the Bohr-like picture of the harmonic oscillator (see Sect. 4.4.3.2).
Then, we can remark again that the minimum values of the statistical measures

calculated from the wave functions of the quantum isotropic harmonic oscillator
also select just those orbitals that in the pre-quantum image are the Bohr-like orbits.

4.4.3.1 Invariance of C and P under Rescaling Transformations

Here, it is shown that the statistical complexities Cr and Cp are equal and inde-
pendent of the strength potential, λ, for the case of the quantum isotropic harmonic
oscillator. Also, the same behavior is displayed by Pr and Pp .

For a fixed set of quantum numbers, (n, l,m), let us define the normalized prob-
ability density ρ̂(t):

ρ̂(t)= 2n!
Γ (n+ l + 3/2)

t2le−t2
[
L
l+1/2
n (t2)

]2|Yl,m(Ω)|2. (4.150)

From expressions (4.141), (4.142) and (4.146), it can be obtained that

ρλ(r)= λ3/2ρ̂(λ1/2r), (4.151)

where ρλ is the normalized probability density of expression (4.146). Now, it is
straightforward to find that

Hr(ρλ)= λ−3/2H(ρ̂), (4.152)

and that

Dr(ρλ)= λ3/2D(ρ̂). (4.153)

Then,

Cr(ρλ)= C(ρ̂), (4.154)

and the non λ-dependence of Cr is shown.
To show that Cr and Cp are equal, let us note that, from expressions (4.144),

(4.145) and (4.146), the normalized probability density γλ(p) for the same set of
quantum numbers (n, l,m) can be written as

γλ(p)= λ−3/2ρ̂(λ−1/2p). (4.155)

Now, it is found that

Hp(γλ)= λ3/2H(ρ̂), (4.156)
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and that

Dp(γλ)= λ−3/2D(ρ̂). (4.157)

Then,

Cp(γλ)= C(ρ̂), (4.158)

and the equality of Cr and Cp , and their non λ-dependence are shown.
Similarly, from expressions (4.130), (4.131), (4.147) and (4.148), it can be found

that Pr = Pp , and that these quantities are also non λ-dependent.

4.4.3.2 Bohr-Like Orbits in the Quantum Isotropic Harmonic Oscillator

Here, the mean radius of the orbital with the lowest complexity is calculated as
function of the energy. Also, the radii of the orbits in the Bohr picture are obtained.

The general expression of the mean radius of a state represented by the wave
function Ψn,l,m is given by

〈r〉n,l,m ≡ 〈r〉n,l = n!
Γ (n+ l + 3/2)

1

λ1/2

∫ ∞

0
t l+1e−t

[
L
l+1/2
n (t)

]2
dt. (4.159)

For the case of minimum complexity (see Figs. 4.20 or 4.21), the state has the quan-
tum numbers (n= 0, l = en,l). The last expression (4.159) becomes:

〈r〉n=0,l=en,l = (en,l + 1)!
Γ (en,l + 3/2)λ1/2

, (4.160)

that, in the limit en,l � 1, simplifies to expression (4.149):

〈r〉n=0,l=en,l�1 �
√
λ−1(en,l + 1)

(
1 +Θ(e−1

n,l )
)
. (4.161)

Now we obtain the radius of an orbit in the Bohr-like image of the isotropic
harmonic oscillator. Let us recall that this image establishes the quantization of the
energy through the quantization of the classical orbital angular momentum. So, the
energy E of a particle of mass m moving with velocity v on a circular orbit of radius
r under the harmonic potential V (r)=mλ2r2/2 is:

E = 1

2
mλ2r2 + 1

2
mv2. (4.162)

The circular orbit is maintained by the central force through the equation:

mv2

r
=mλ2r. (4.163)

The angular momentum takes discrete values according to the condition

mvr = (N + 1)� (N = 0,1,2, . . .). (4.164)

Combining the last three equations (4.162)–(4.164), and taking atomic units, m =
� = 1, the radius rN of a Bohr-like orbit for this system is obtained

rN =
√
λ−1(N + 1) (N = 0,1,2, . . .). (4.165)

Let us observe that this expression coincides with the quantum mechanical radius
given by expression (4.161) when en,l =N for N � 1.
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4.4.4 The Square Well

Statistical complexity has been calculated in different atomic systems, such as in
the H atom (Sect. 4.4.2) and in the quantum harmonic oscillator (Sect. 4.4.3). The
behavior of this statistical magnitude in comparison with that of the energy dis-
plays some differences. Among other applications, the energy has a clear physical
meaning [134] and it can be used to find the equilibrium states of a system. In
the same way, it has also been shown that the complexity can give some insight
about the equilibrium configuration in the ground state of the H+

2 molecule [100].
In this case, Montgomery and Sen have reported that the minimum of the statistical
complexity as a function of the internuclear distance for this molecule is an accu-
rate result comparable with that obtained with the minimization of the energy. This
fact could suggest that energy and complexity are two magnitudes strongly corre-
lated for any quantum system. But this is not the general case. See, for example,
the behavior of both magnitudes in the previous sections for the H-atom and for
the quantum isotropic harmonic oscillator. In both systems, the degeneration of the
energy is split by the statistical complexity, in such a way that the minimum of com-
plexity for each level of energy is taken on the wave function with the maximum
orbital angular momentum. Therefore, energy and complexity are two independent
variables.

In this section, we wonder if there exists a quantum system where degeneration of
the complexity can be split by the energy. The answer will be affirmative [141]. We
show it in two steps. First, a new type of invariance by replication for the statistical
complexity is established, and, second, it is seen that the energy eigenstates of the
quantum infinite square well fulfill the requirements of this kind of invariance. From
there, it is revealed that the degeneration of complexity in this quantum system is
broken by the energy.

Different types of replication can be defined on a given probability density. One
of them was established in [54]. Here, a similar kind of replication is presented,
in such a manner that the complexity C of m replicas of a given distribution is
equal to the complexity of the original one. Thus, if R represents the support of
the density function p(x), with

∫
R p(x)dx = 1, take n copies pm(x), m= 1, . . . , n,

of p(x),

pm(x)= p(n(x − λm)), 1 ≤m≤ n, (4.166)

where the supports of all the pm(x), centered at λ′
ms points, m = 1, . . . , n, are all

disjoint. Observe that
∫

R pm(x)dx = 1
n

, what makes the replicas union

qn(x)=
n∑

i=1

pm(x) (4.167)

to be also a normalized probability distribution,
∫

R qn(x) dx = 1. For every pm(x),
a straightforward calculation shows that the Shannon entropy is

S(pm)= 1

n
S(p), (4.168)
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and the disequilibrium is

D(pm)= 1

n
D(p). (4.169)

Taking into account that the m replicas are supported on disjoint intervals on R,
we obtain

S(qn)= S(p), (4.170)

D(qn)=D(p). (4.171)

Then, the statistical complexity (C = eS ·D) is

C(qn)= C(p), (4.172)

and this type of invariance by replication for C is shown.
Let us see now that the probability density of the eigenstates of the energy in the

quantum infinite square well display this type of invariance. The wave functions rep-
resenting these states for a particle in a box, that is confined in the one-dimensional
interval [0,L], are given by [142]

ϕk(x)=
√

2

L
sin

(
kπx

L

)
, k = 1,2, . . . . (4.173)

Taking p(x) as the probability density of the fundamental state (k = 1),

p(x)= |ϕ1(x)|2, (4.174)

the probability density of the kth excited state,

qk(x)= |ϕk(x)|2, (4.175)

can be interpreted as the union of k replicas of the fundamental state density, p(x),
in the k disjoint intervals [(m− 1)L/k,mL/k], with m = 1,2, . . . , k. That is, we
find expression (4.167), qk(x)= ∑k

i=1 pm(x), with

pm(x)= 2

L
sin2

(
kπx

L
− π(m− 1)

)
, m= 1,2, . . . , k, (4.176)

where in this case the λm’s of expression (4.166) are taken as (m− 1)L/k. There-
fore, we conclude that the complexity is degenerated for all the energy eigenstates
of the quantum infinite square well. Its value can be exactly calculated. Considering
that L is the natural length unit in this problem, we obtain

C(p)= C(qk)= 3

e
= 1.1036 . . . . (4.177)

In the general case of a particle in a d-dimensional box of width L in each di-
mension, it can also be verified that complexity is degenerated for all its energy
eigenstates with a constant value given by C = (3/e)d .

Here we have shown that, in the same way that the complexity breaks the energy
degeneration in the H-atom and in the quantum isotropic harmonic oscillator, the
contrary behavior is also possible. In particular, the complexity is constant for the
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whole energy spectrum of the d-dimensional quantum infinite square well. This
result is due to the same functional form displayed by all the energy eigenstates of
this system. Therefore, it suggests that the study of the statistical complexity in a
quantum system allows to infer some properties on its structural conformation.

4.4.5 The Periodic Table

The use of these statistical magnitudes to study the electronic structure of atoms is
another interesting application [64, 89, 143–148]. The basic ingredient to calculate
these statistical indicators is the electron probability density, ρ(r), that can be ob-
tained from the numerically derived Hartree-Fock atomic wave function in the non-
relativistic case [143, 144], and from the Dirac-Fock atomic wave function in the
relativistic case [145]. The behavior of these statistical quantifiers with the atomic
number Z has revealed a connection with physical measures, such as the ionization
potential and the static dipole polarizability [89]. All of them, theoretical and phys-
ical magnitudes, are capable of unveiling the shell structure of atoms, specifically
the closure of shells in the noble gases. Also, it has been observed that statistical
complexity fluctuates around an average value that is non-decreasing as the atomic
number Z increases in the non-relativistic case [144, 145]. This average value be-
comes increasing in the relativistic case [145]. This trend has also been confirmed
when the atomic electron density is obtained with a different approach [149]. In
another context where the main interactions have a gravitational origin, as it is the
case of a white dwarf, it has also been observed that complexity grows as a function
of the star mass, from the low-mass non-relativistic case to the extreme relativistic
limit. In particular, complexity for the white dwarf reaches a maximum finite value
in the Chandrasekhar limit as it was calculated by Sañudo and López-Ruiz [150].

An alternative method to calculate the statistical magnitudes can be used when
the atom is seen as a discrete hierarchical organization. The atomic shell structure
can also be captured by the fractional occupation probabilities of electrons in the
different atomic orbitals. This set of probabilities is here employed to evaluate all
these quantifiers for the non-relativistic (NR) and relativistic (R) cases. In the NR

case, a non-decreasing trend in complexity as Z increases is obtained and also the
closure of shells for some noble gases is observed [96, 151].

For the NR case, each electron shell of the atom is given by (nl)w [152], where
n denotes the principal quantum number, l the orbital angular momentum (0 ≤ l ≤
n − 1) and w is the number of electrons in the shell (0 ≤ w ≤ 2(2l + 1)). For the
R case, due to the spin-orbit interaction, each shell is split, in general, in two shells
[153]: (nlj−)w− , (nlj+)w+ , where j± = l ± 1/2 (for l = 0 only one value of j is
possible, j = j+ = 1/2) and 0 ≤w± ≤ 2j± + 1. As an example, we explicitly give
the electron configuration of Ar(Z = 18) in both cases,

Ar(NR) : (1s)2(2s)2(2p)6(3s)2(3p)6, (4.178)

Ar(R) : (1s1/2)2(2s1/2)2(2p1/2)2(2p3/2)4(3s1/2)2(3p1/2)2(3p3/2)4. (4.179)
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For each atom, a fractional occupation probability distribution of electrons in
atomic orbitals {pk}, k = 1,2, . . . ,Π , being Π the number of shells of the atom,
can be defined. This normalized probability distribution {pk} (∑pk = 1) is easily
calculated by dividing the superscripts w± (number of electrons in each shell) by Z,
the total number of electrons in neutral atoms, which is the case we are considering
here. The order of shell filling dictated by nature [152] has been chosen. Then, from
this probability distribution, the different statistical magnitudes (Shannon entropy,
disequilibrium, statistical complexity and Fisher-Shannon entropy) is calculated.

In order to calculate the statistical complexity C = H ·D, with H = eS , we use
the discrete versions of the Shannon entropy S and disequilibrium D:

S = −
Π∑
k=1

pk logpk, (4.180)

D =
Π∑
k=1

(pk − 1/Π)2. (4.181)

To compute the Fisher-Shannon information, P = J · I , with J = 1
2πe e

2S/3, the
discrete version of I is defined as [96, 151]

I =
Π∑
k=1

(pk+1 − pk)
2

pk
, (4.182)

where pΠ+1 = 0 is taken.
The statistical complexity, C, as a function of the atomic number, Z, for the

NR and R cases for neutral atoms is given in Figs. 4.22 and 4.23, respectively. It
is observed in both figures that this magnitude fluctuates around an increasing av-
erage value with Z. This increasing trend recovers the behavior obtained by using
the continuous quantum-mechanical wave functions [144, 145]. A shell-like struc-
ture is also unveiled in this approach by looking at the minimum values of C taken
on the noble gases positions (the dashed lines in the figures) with the exception
of Ne(Z = 10) and Ar(Z = 18). This behavior can be interpreted as special ar-
rangements in the atomic configuration for the noble gas cases out of the general
increasing trend of C with Z.

The Fisher-Shannon entropy, P , as a function of Z, for the NR and R cases
in neutral atoms is given in Figs. 4.24 and 4.25, respectively. The shell structure
is again displayed in the special atomic arrangements, particularly in the R case
(Fig. 4.25) where P takes local maxima for all the noble gases (see the dashed lines
on Z = 2, 10, 18, 36, 54, 86). The irregular filling (i.f.) of s and d shells [152] is also
detected by peaks in the magnitude P , mainly in the R case. In particular, see the
elements Cr and Cu (i.f. of 4s and 3d shells); Nb, Mo, Ru, Rh, and Ag (i.f. of 5s and
4d shells); and finally Pt and Au (i.f. of 6s and 5d shells). Pd also has an irregular
filling, but P does not display a peak on it because the shell filling in this case does
not follow the same procedure as the before elements (the 5s shell is empty and the
5d is full). Finally, the increasing trend of P with Z is clearly observed.
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Fig. 4.22 Statistical complexity, C, vs. Z in the non relativistic case (CNR). The dashed lines
indicate the position of noble gases. For details, see the text

Then, it is found that P , the Fisher-Shannon entropy, in the relativistic case
(Fig. 4.25) reflects in a clearer way the increasing trend with Z, the shell struc-
ture in noble gases, and the irregular shell filling of some specific elements. The
same method that uses the fractional occupation probability distribution is applied
in the next section to another many particle system, the atomic nucleus, that has also
been described by a shell model.

4.4.6 Magic Numbers in Nuclei

Nucleus is another interesting quantum system that can be described by a shell
model [154]. In this picture, just as electrons in atoms, nucleons in nuclei fill in
the nuclear shells by following a determined hierarchy. Hence, the fractional occu-
pation probabilities of nucleons in the different nuclear orbitals can capture the nu-
clear shell structure. This set of probabilities, as explained in the above section, can
be used to evaluate the statistical quantifiers for nuclei as a function of the number
of nucleons. In this section, by following this method, the calculation of statistical
complexity and Fisher-Shannon information for nuclei is presented [155].

The nuclear shell model is developed by choosing an intermediate three-
dimensional potential, between an infinite well and the harmonic oscillator, in which
nucleons evolve under the Schrödinger equation with an additional spin-orbit inter-
action [154]. In this model, each nuclear shell is given by (nlj)w , where l denotes
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Fig. 4.23 Statistical complexity, C, vs. Z in the relativistic case (CR ). The comments given in
Fig. 4.22 are also valid here

the orbital angular momentum (l = 0,1,2, . . .), n counts the number of levels with
that l value, j can take the values l + 1/2 and l − 1/2 (for l = 0 only one value of
j is possible, j = 1/2), and w is the number of one-type of nucleons (protons or
neutrons) in the shell (0 ≤w ≤ 2j + 1).

As an example, we explicitly give the shell configuration of a nucleus formed by
Z = 20 protons or by N = 20 neutrons. In both cases, it is obtained [154]:

{
(Z = 20)
(N = 20)

}
: (1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)6(2s1/2)2(1d3/2)4. (4.183)

When one-type of nucleons (protons or neutrons) in the nucleus is considered,
a fractional occupation probability distribution of this type of nucleons in nuclear
orbitals {pk}, k = 1,2, . . . ,Π , being Π the number of shells for this type of nucle-
ons, can be defined in the same way as it has been done for electronic calculations
in the atom in the previous section. This normalized probability distribution {pk}
(
∑

pk = 1) is easily found by dividing the superscripts w by the total of the cor-
responding type of nucleons (Z or N ). Then, from this probability distribution, the
different statistical magnitudes (Shannon entropy, disequilibrium, statistical com-
plexity and Fisher-Shannon entropy) by following expressions (4.180–4.182) are
obtained.

The statistical complexity, C, of nuclei as a function of the number of nucleons,
Z or N , is given in Fig. 4.26. Here we can observe that this magnitude fluctuates
around an increasing average value with Z or N . This trend is also found for the
electronic structure of atoms (see previous section), reinforcing the idea that, in
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Fig. 4.24 Fisher-Shannon entropy, P , vs. Z, in the non relativistic case (PNR). The dashed lines
indicate the position of noble gases. For details, see the text

Fig. 4.25 Fisher-Shannon entropy, P , vs. Z, in the relativistic case (PR). The comments given in
Fig. 4.24 are also valid here
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Fig. 4.26 Statistical complexity, C, vs. number of nucleons, Z or N . The dashed lines indicate
the positions of magic numbers {2,8,20,28,50,82,126,184}. For details, see the text

general, complexity increases with the number of units forming a system. However,
the shell model supposes that the system encounters certain ordered rearrangements
for some specific number of units (electrons or nucleons). This shell-like structure
is also unveiled by C in this approach to nuclei. In this case, the extremal values
of C are not taken just on the closed shells as happens in the noble gases positions
for atoms, if not that they appear to be in the positions one unit less than the closed
shells.

The Fisher-Shannon entropy, P , of nuclei as a function of Z or N is given in
Fig. 4.27. It presents an increasing trend with Z or N . The spiky behavior of C pro-
voked by the nuclear shell structure becomes smoother for P , that presents peaks
(changes in the sign of the derivative) only at a few Z or N , concretely at the num-
bers 2,6,14,20,28,50,82,126,184. Strikingly, the sequence of magic numbers is
{2,8,20,28,50,82,126,184} (represented as dashed vertical lines in the figures).
Only the peaks at 6 and 14 disagree with the sequence of magic numbers, what
could be justified by saying that statistical indicators work better for high numbers.
But in this case, it should be observed that the carbon nucleus, CN=6

Z=6 , and the silicon
nucleus, SiN=14

Z=14 , apart from their great importance in nature and industry, they are
the stable isotopes with the greatest abundance in the corresponding isotopic series,
98.9% and 92.2%, respectively.

Then, the increasing trend of these statistical magnitudes with Z or N , and the
reflect of the shell structure in the spiky behavior of their plots are found when using
for their calculation the fractional occupation probability distribution of nucleons, Z
or N . It is worth to note that the relevant peaks in the Fisher-Shannon information
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Fig. 4.27 Fisher-Shannon entropy, P , vs. the number of nucleons, Z or N . The dashed lines
indicate the positions of magic numbers {2,8,20,28,50,82,126,184}. For details, see the text

are revealed to be just the series of magic numbers in nuclei. This fact indicates
again that these statistical indicators are able to enlighten some structural aspects of
quantum many-body systems.

Acknowledgements R.L.-R. thanks Prof. Sen for his invitation to prepare and to present this
chapter in this book.
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Chapter 5
Entropy and Complexity Analyses
of D-dimensional Quantum Systems

J.S. Dehesa, S. López-Rosa, and D. Manzano

Abstract This chapter briefly reviews the present knowledge about the analytic
information theory of quantum systems with non-standard dimensionality in the po-
sition and momentum spaces. The main concepts of this theory are the power and
entropic moments, which are very fertile largely because of their flexibility and
multiple interpretations. They are used here to study the most relevant information-
theoretic one-element (Fisher, Shannon, Rényi, Tsallis) and some composite two-
elements (Fisher-Shannon, LMC shape and Cramér-Rao complexities) measures
which describe the spreading measures of the position and momentum probability
densities farther beyond the standard deviation. We first apply them to general sys-
tems, then to single particle systems in central potentials and, finally, to hydrogenic
systems in D-dimensions.

5.1 Introduction

The physics of D-dimensional quantum systems, with D not necessarily equal to
3, is of fundamental interest in field theory [1], superstring theory and quantum
cosmology [2–5]; the idea that the universe is trapped on a membrane in some high-
dimensional space-time may explain why gravity is so weak, and could be tested
by high-energy particle accelerators. The D-dimensional physics is also very rele-
vant to mathematical modelling numerous three-dimensional physical phenomena
related to a wide variety of fields ranging from nanotechnology [6–8], quantum
computation [9, 10], plasma physics [11], to quantum chemistry and atomic and
molecular physics [12–15]. The atomic physics in D dimensions, where the rota-
tion symmetry is O(D), has been shown [1] to simplify as D → ∞ and it can be
solved for large D by an expansion in 1

D
(see. e.g. [12, 16]). Let us only mention

its relevance in dimensional scaling or dimensional perturbation methods, where
the energy spectrum of three-dimensional systems may be obtained in some situa-
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tions by generalizing them to some lower or higher dimensions where the particular
system is analytically solvable and then by using an interpolation or extrapolation
procedure [12, 13]; this new approach, which exploits exact solutions obtainable
in the limit of one- or infinite-dimension, has given high accuracy for the electron
correlation energy with far less effort than using conventional methods, at least for
two-electron systems, as Dudley L. Herschbach (1986 Nobel Prize in Chemistry)
and his collaborators have shown. Let us also point out that in chemistry two di-
mensions are often better than three, since surface-bound reactions can be proved
in greater detail than those in a liquid solution as Gerhard Ertl (2007 Nobel Prize in
Chemistry) and collaborators have realized in numerous contributions to the field of
surface chemistry [17–19]. Moreover, the theory of chaos and fractals [20, 21] has
shown an increasing interest in the framework of non-integer dimensions. Fractional
dimensionality have also been applied to nanostructured systems, such as excitons in
anisotropic or confined quantum well structures to account for the effective medium
and the anisotropy of their interactions [6].

This chapter is an introductory tour to the information theory of D-dimensional
quantum systems, where the emphasis is put not so much on the conceptual descrip-
tion of the information-theoretic measures (see other chapters of this volume for this
purpose) but on their analytical determination. We gather a number of results ob-
tained in the last two decades relative to the measures of spreading and uncertainty
of the D-dimensional quantum one- and many-body systems under consideration,
which quantify the spatial delocalization of the single-particle density of the system
in different and complementary ways. We start in Sect. 5.2 with the power moments
and the entropic moments of such a density, which do not only characterize the den-
sity itself but also describe numerous fundamental and/or experimental measurable
quantities of the system. Then, we provide (i) some variational expressions for the
Rényi and Tsallis entropies in terms of a given power moment, which allow us to
correlate these measures with other physical quantities; (ii) the uncertainty relations
associated to the spreading measures beyond the celebrated Heisenberg relation and
(iii) some bounds and inequalities satisfied by the Cramér-Rao, Fisher-Shannon and
LMC shape complexities.

In Sect. 5.3 we show more accurate results for single-particle systems with
D-dimensional central potentials, such as the recently discovered uncertainty re-
lations relative not only to the power moments but also the Fisher information. In
Sect. 5.4, following the reductionist Weisskopf’s aphorism “To understand hydro-
gen is to understand all physics”, we study in full detail the information-theoretic
properties of D-dimensional hydrogenic systems which include hydrogenic atoms
and ions, exotic atoms, antimatter atoms, Rydberg atoms, ions and molecules, ex-
citons and donors in some semiconductors, among others. Moreover, one- and two-
dimensional hydrogenic atoms have been used as qubits in the realization of quan-
tum computation. On the other hand, the position and momentum D-dimensional
hydrogenic wavefunctions play a relevant role in quantum chemistry for Sturmian
approaches and to conform complete orthonormal sets for many-body problems;
e.g., for three-body problems (hydrogen molecular ion, helium atom, . . . ) [14, 22].
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Let us also point out that the existence of hydrogenic systems with dimensionality
other than 3 have been observed for D < 3 [7] and suggested for D > 3 [23, 24]. We
will realize at the end that we should perhaps paraphrase the previous aphorism as
“To understand hydrogen, we must understand all of physics” in Kleppner’s words
[25]; indeed, there still exist numerous information-theoretic open issues in the hy-
drogenic problem. Finally some conclusions are given and various open problems
are pointed out.

5.2 Information-Theoretic Analysis of Many Particle Systems

Here we study the spatial delocalization or spreading of the single-particle density
of a many-particle system by means of its power, logarithmic and entropic moments
and the related Rényi and Tsallis entropies and the complexity measures together
with their associated uncertainty relations.

5.2.1 Power, Logarithmic and Entropic Moments

A D-dimensional n-particle system is described in quantum mechanics by means
of its wavefunction Ψ (r1, r2, . . . , rn;σ1, σ2, . . . , σn), with r = (x1, x2, . . . , xD) and
where (ri , σi) denotes the position-spin coordinates of the ith-particle, which is
assumed to be normalized and antisymmetrized in the pairs (ri , σi). The physical
and chemical properties of these systems are controlled [26] by means of the spatial
delocalization or spreading of the single particle density ρ(r) defined as

ρ(r)=
∑

σ∈{− 1
2 ,+ 1

2 }D

∫
|Ψ (r, r2, . . . , rn;σ1, σ2, . . . , σn)|2dr2 . . . drn (5.1)

which is normalized to unity. The power moments {〈rα〉}, the logarithmic moments
{〈rα ln r〉} and the frequency or entropic moments {Wα[ρ] ≡ 〈ρα−1〉} provide dif-
ferent ways to characterize the density ρ(r). The symbol 〈f (r)〉 denotes the expec-
tation value

〈f (r)〉 :=
∫

RD

f (r)ρ(r)dr. (5.2)

Similarly, the properties of the system can be analyzed in momentum space by
means of the momentum density γ (p) defined in terms of the Fourier-transformed
Ψ̂ (p1,p2, . . . ,pn;σ1, σ2, . . . , σn) as in (5.1). This density can be completely char-
acterized by the three following sets of moments: {〈pα〉}, {〈pα lnp〉} and {Uα[γ ] ≡
〈γ α−1〉}.

For specific values of α, these moments are physically meaningful and, at
times, experimentally accessible. Let us point out here that for D = 3: (i) the
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Langevin-Pauli diamagnetic susceptibility χ = −α2
fs

〈r2〉
6 , αfs being the fine struc-

ture constant, (ii) the electron-nucleus attraction constant which is also related
to the nuclear magnetic screening constant or diamagnetic screening factor, is
given by EeN = −Z〈r−1〉, Z being the nuclear charge, (iii) the electron kinetic

energy Te = 〈p2〉
2 , (iv) the Breit-Pauli relativistic correction to the kinetic energy

Trel = −αfs
〈p4〉

8 , (v) the height of the peak of the Compton profile J (0) is h= 〈p−1〉
2 .

The logarithmic expectation values have been shown to be relevant for atomic sys-
tems, not only in an information-theoretic framework [27], but also in physical
phenomena such as electron-electron coalescence [28] and elastic electron scatter-
ing [29], where e.g. 〈ln r〉 = d〈rα〉

dα
|α=0 determines the behaviour of the phase shifts

at high energy and low angular momenta. Moreover, the entropic moments 〈ρα〉 and
the modified moments 〈rαρ〉 have been used to develop ant to interpret all energy
components in the density-functional theory of the ground state of atoms [30–32].
Let us point out that the moments 〈ρα〉 describe, up to a proportionality factor, the
atomic Thomas-Fermi (α = 5

3 ) and the Dirac exchange (α = 4
3 ) energies; see [33,

34] for their connection with other atomic density functionals, and [35] for the exis-
tence conditions. Finally let us mention that both power and entropic moments have
been used as uncertainty measures as we discuss later on.

Remark that W1[ρ] = 1, because ρ(r) is a probability density function and that
Wq [ρ] is finite when q < 0 only if ρ(r) is of bounded support. Moreover, when ρ(r)
is bounded, Wq [ρ] tends to the (Lebesgue) measure of its support μL{r : ρ(r) > 0}
when q → 0+. In addition, this quantity has the following mathematical properties
[36]:

• If ρ(r) is bounded, then Wq [ρ]<∞ for any q > 1
• If Wq [ρ]<∞ for some q < 1, then Wq ′ [ρ]<∞ for any q ′ ∈ (q,1)
• If ρ(r) is of finite support, then Wq ′ [ρ]<∞ for any q ′ ∈ [q,1)

The power and entropic moments of D-dimensional systems have been found to
be mutually related by means of analytical inequalities of variational origin [37, 38].
The entropic moments of order q of a D-dimensional density ρ(r) are, according to
(5.2), given by

Wq [ρ] = 〈ρq−1〉 =
∫

RD

[ρ(r)]qdr. (5.3)

They are bounded from below in terms of the power moments 〈rα〉 and 〈rβ〉 as

Wq [ρ] ≥ F1(α,β, q,D)

(
〈rβ〉q(α+D)−D

〈rα〉q(β+D)−D

) 1
α−β

, (5.4)

for q > 1 and α > β >
−D(q−1)

q
, and as

Wq [ρ] ≥ F2(α,β, q,D)

(
〈rα〉−q(β+D)−D

〈rβ〉−q(α+D)−D

) 1
α−β

, (5.5)
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for q > 1 and β < α < −D(q−1)
q

, and where Fi(α,β, q,D), i = 1 and 2, are given
by

F1(α,β, q,D)= qq(α − β)2q−1

[ΩDB(
q(β+D)−D
(α−β)(q−1) ,

2q−1
q−1 )]q−1

{
[q(β +D)−D]q(β+D)−D

[q(α +D)−D]q(α+D)−D

} 1
α−β

(5.6)

and

F2(α,β, q,D)= qq(α − β)2q−1

[ΩDB(
−q(α+D)+D
(α−β)(q−1) ,

2q−1
q−1 )]q−1

×
{

[−q(α +D)+D]−q(α+D)+D

[−q(β +D)+D]−q(β+D)+D

} 1
α−β

, (5.7)

where ΩD = 2πD/2

Γ (D2 )
is the surface area of the sphere, and B(x, y)= Γ (x)Γ (y)

Γ (x+y)
denotes

the beta function of Euler. In addition, the entropic moment Wq [ρ] with 0 < q < 1
is upper-bounded by means of the expectation values (〈rα〉, 〈rβ〉) as

Wq [ρ] ≤G(α,β, q,D)
[
〈rα〉−q(β+D)+D〈rβ〉q(α+D)−D

] 1
α−β

(5.8)

for α > D(1−q)
q

> β , where G(α,β, q,D) is given by

G(α,β, q,D)= qq(α − β)2q−1

[ΩDB(
q(α+D)−D
(α−β)(1−q)

,
−q(β+D)+D
(α−β)(1−q)

)]q−1

×
{

[−q(β +D)+D]q(β+D)−D

[q(α +D)−D]q(α+D)−D

} 1
α−β

. (5.9)

Expressions similar to the inequalities (5.4)–(5.8) can be derived in momentum
space between the qth-order entropic moment Uq [γ ] ≡ 〈γ q−1〉 and the expectation
values 〈pα〉 and 〈pβ〉.

It is also possible to obtain the converse inequalities in both reciprocal spaces;
that is, expressions which provide lower and upper bounds to a given power moment
by means of two entropic moments [33]. It has been found the lower bounds

〈rk〉 ≥ LD(a, b, k)

(
{Wb[ρ]}a(D+k)−D

{Wa[ρ]}b(D+k)−D

) 1
D(a−b)

; k > 0 (5.10)

for any a > b > D
D+k

, and the upper bounds

〈rk〉 ≤MD(a,b, k)
(
{Wa[ρ]}D−b(D+k){Wb[ρ]}a(D+k)−D

) 1
D(a−b) ; k < 0 (5.11)

whereLD(a, b, k) and MD(a,b, k) are known functions of the parameters a, b and k
[33].
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All these inequality-based expressions can be used and have been used to bound
and estimate both information-theoretic measures (see Sect. 5.2.2) and fundamental
energies. Let us here apply them to bound the Dirac exchange and the exact kinetic
energy of a D-dimensional many-electron system. The Dirac exchange energy in
the plane-wave approximation (e.g. Thomas-Fermi model) is given by

Eex(D)= −CDW1+ 1
D

[ρ] with CD = 4D

D2 − 1

(
D

2ΩD

) 1
D

. (5.12)

From (5.8) and (5.12) we obtain that the Dirac exchange energy is bounded from
above as

Eex(D)≤ −CDF2

(
α,β,1 + 1

D
,D

)[
〈rα〉−β(1+ 1

D
)−1

〈rβ〉−α(1+ 1
D
)−1

] 1
α−β

(5.13)

for α(D + 1)+D < 0. In the three-dimensional case, this inequality simplifies as

Eex(D = 3) := −CeW 4
3
[ρ] ≤ −CeF2

(
α,β,

4

3
,3

)[
〈rα〉− 4β

3 −1

〈rβ〉− 4α
3 −1

] 1
α−β

(5.14)

for β < α < − 3
4 and with Ce = 3

4 (
3
π
)1/3 = 0.73856. This inequality allows us to

find very accurate upper bounds to the Dirac exchange energy of atomic systems.
Indeed, for α = −1 and β = −2 it gives

Eex(D = 3)≤ − 4Ce

54/3π1/3

( 〈r−1〉5

〈r−2〉
) 1

3

, (5.15)

which gives the best known upper bound to the indirect Coulomb energy of atomic
systems. See also [39–41].

Let us now consider the exact kinetic energy T , which is known [42–44] to be
lower-bounded by the entropic moment of order 1 + 2

D
as

T ≥KDW1+ 2
D

[ρ], with KD = 2πD

D + 2

[
Γ

(
D

2
+ 1

)] 2
D

. (5.16)

From (5.4), (5.6) and (5.16) we find [45] the following family of lower bounds:

T ≥ CD(α,β)

(
〈rβ〉α(1+ 2

D
)+2

〈rα〉β(1+ 2
D
)+2

) 1
α−β

(5.17)

with CD(α,β) = KDF1(α,β, q = 1 + 2
D
,D) for α > β > − 2D

D−2 . This expression
extends and generalizes to D dimensions many other related three-dimensional ones
(see [45] for a detailed discussion). In particular, for α = 2 and β = 0 we have the
bound

T ≥ D2(D!) 2
D

2(D + 1)2
1

〈r2〉 ; D ≥ 1 (5.18)
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in terms of the mean square radius, and for α = 0 and β = −1 we find the bound

T ≥ (D!) 2
D (D − 2)

21+ 2
D

〈r−1〉2; D ≥ 2. (5.19)

Then, for three-dimensional systems we have the bounds

T ≥ 9 · 32/3

16 · 21/3

1

〈r2〉 � 0.92867

〈r2〉 (5.20)

and

T ≥ 1

2 · 31/3
〈r−1〉2 � 0.34668〈r−1〉2. (5.21)

On the other hand, from the Pitt-Beckner inequality it is possible to find [45, 46]
the following inequality between the expectation values 〈pα〉 and 〈r−α〉 of D-
dimensional systems:

〈pα〉 ≥ 2α
[
Γ (D + α

4 )

Γ (D − α
4 )

]2

〈r−α〉; 0 ≤ α <D, (5.22)

which for α = 2 allows us to obtain another bound for the kinetic energy; namely,

T ≥ (D − 2)2

8
〈r−2〉; D ≥ 2. (5.23)

Let us also quote here the Daubechies’ lower bound [47] of 〈pα〉 in terms of
the entropic moments Wq [ρ], not yet sufficiently well explored, of a D-dimensional
many-electron system:

〈pα〉 ≥ Cα,DW1+ α
D

[ρ], (5.24)

where

Cα,D = [2kdK2(D,α)]− α
D

1 + α
D

, with kd =
[
D2D−1πD/2Γ

(
D

2

)]−1

, (5.25)

and

K2(D,α)= Γ

(
D

α

)
inf
a>0

[
a−D

α

(∫ ∞

a

due−u(u− a)n−1
)−1

]
(5.26)

which, taking into account (5.12), allows us to correlate the mean momentum ex-
pectation value with the Dirac exchange energy of the system.

Finally, it is interesting to mention that the kinetic energy can also be accu-
rately bounded from below by means of the logarithmic moments of ρ(r) in various
forms [45].

5.2.2 Shannon, Rényi and Tsallis Entropies

Here we will gather some known results relative to the bounds to the Shannon, Rényi
and Tsallis entropies of D-dimensional systems in terms of the power, logarithmic
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and/or entropic moments of the single-particle density ρ(r), and various mutual
inequalities.

The Rényi entropies are defined [48] in terms of the entropic moments Wq [ρ] as

Rq [ρ] := 1

1 − q
lnWq [ρ] = 1

1 − q
ln

∫

RD

[ρ(r)]qdr, (5.27)

and the Tsallis entropies [49] (also called Havrda-Charvát entropies [50]) are given
by

Tq [ρ] := 1

q − 1
[1 −Wq [ρ]] = 1

q − 1

{
1 −

∫

RD

[ρ(r)]qdr
}

(5.28)

with q > 0 and q �= 1. Moreover, it can be shown that

Tq [ρ] = −DqWx[ρ]|x=1 (5.29)

where Dqf (x)= (f (qx)−f (x))/(qx−x) is the Jackson derivative of the function
f (x).

When q tends to 1, both entropies reduce to the (Boltzmann-Gibbs) Shannon
entropy

S[ρ] := −
∫

RD

ρ(r) lnρ(r)dr. (5.30)

It is interesting to remark that these quantities are global measures of spreading
of the density ρ(r) because they are power (Rényi, Tsallis) and logarithmic (Shan-
non) functionals of ρ(r). The Shannon entropy is the only one satisfying all the
hypotheses of Shannon theorem [51] as well as some other important criteria [52].
It can be expressed [33] in terms of the entropic moments Wq [ρ] as the limit

S[ρ] = − lim
q→1

dWq [ρ]
dq

. (5.31)

Moreover, the Shannon entropy becomes the well-known thermodynamical en-
tropy in the case of a thermal ensemble. It is worth nothing that, unlike the more
familiar entropy −∑

i pi lnpi (also due to Shannon) of a probability on a discrete
sample space, in the continuous case S[ρ] can have any values in [−∞,∞], and it
can also be undefined (i.e. of the form ∞ − ∞). Any sharp peaks in ρ(r) will tend
to make S[ρ] negative, whereas positive values for S[ρ] are provoked by a slowly
decaying tail; hence the Shannon entropy S[ρ] is a measure of how localized the
density ρ(r) is [53].

The Rényi entropies are additive while the Tsallis entropies are non-negative,
extremal at equiprobability, concave for q > 0 and pseudoadditive (i.e. Tq [ρ1 ⊗
ρ2] = Tq [ρ1] + Tq [ρ2] + (1 − q)Tq [ρ1]Tq [ρ2]). Remark that the Tsallis expression
may be seen as a linearization of the Rényi expression with respect to Wq [ρ]. Let
us also point out that the second order Tsallis entropy, i.e.

T2[ρ] = 1 −W2[ρ] = 1 −
∫

RD

[ρ(r)]2dr (5.32)
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is the simplest entropy, providing a good alternative of the Shannon entropy in many
cases. In fact, it is more than that; it refers directly to the experimental results of mu-
tually complementary measurements, so opposite to the Shannon entropy which is
applicable when the measurements exhibit a preexisting symmetry [54]. It is called
linear or linearized entropy [55], having been used not only as an impurity measure
of the quantum state but also as measures of decoherence, entanglement, complexity
and mixedness of three-dimensional quantum systems.

Extending previous tridimensional results [27], it was variationally shown that
the Shannon entropy S[ρ] has the following class of upper bounds [56]

S[ρ] ≤AD(α,β)+ β ln〈rα〉 + (D − αβ)〈ln r〉; ∀β > 0, α >−D (5.33)

in terms of the expectation values 〈rα〉 and 〈ln r〉, with

AD(α,β)= β + ln
ΩDΓ (β)

|α|ββ . (5.34)

For the particular case β = D
α

, this inequality provides the following upper bound
(see also [57]) in terms of radial expectation values 〈rα〉:

S[ρ] ≤AD

(
α,

D

α

)
+ D

α
ln 〈rα〉; ∀α > 0. (5.35)

Some instances of this expression are the upper bounds

S[ρ] ≤D + ln

(
ΩD(D − 1)!

DD
〈r〉D

)
(5.36)

for α = 1, and

S[ρ] ≤ D

2
[1 + ln(2π〈r2〉)] (5.37)

for α = 2, in terms of the mean radius or centroid 〈r〉 and the second-order central
moment 〈r2〉, respectively. Moreover, for a given 〈r2〉 the Shannon entropy is maxi-

mum for a Gaussian density of covariance matrix R = 〈r2〉
D
I , where I is the identity

matrix.
A second type of variational upper bound to S[ρ] has been also found [56]

to depend on the mean logarithmic radius 〈ln r〉 and the logarithmic uncertainty
Δ(ln r)= (〈(ln r)2〉 − 〈ln r〉2)1/2; it has the expression

S[ρ] ≤ BD + lnΔ(ln r)+D〈ln r〉, (5.38)

with

BD = 1

2
+ ln

(√
2πΩD

); ΩD = 2πD/2

Γ (D2 )
. (5.39)

Moreover, Angulo et al. [33] have found a class of upper bounds in terms of the
mean logarithmic radius 〈ln r〉 and the entropic moment Wq [ρ]:

S[ρ] ≤ 1

1 − β(q − 1)
[BD(q,β)+ β lnWq [ρ] +D〈ln r〉], 1 ≤ q ≤ 1 + 1

β
,

(5.40)
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where

BD(q,β)≡ qβ + ln
ΩDΓ (β)

D|q − 1|(qβ)β . (5.41)

This interesting inequality allows us to correlate the Shannon entropy with the
Dirac exchange K0 and Thomas-Fermi T0 energies

K0 = 34/3

4π1/3
W 4

3
[ρ]; T0 = 35/3

10
W 5

3
[ρ] (5.42)

in the three-dimensional case, obtaining

Sρ ≤ C1 + 3

2
lnK0 + 9

2
〈ln r〉 (5.43)

for q = 4
3 and β = 1, and

Sρ ≤ C2 + 6

5
lnT0 + 27

5
〈ln r〉 (5.44)

for q = 5
3 and β = 2

3 , respectively. A numerical Hartree-Fock study for all ground
state neutral atoms of the periodic table has shown [33] that these two inequalities
are quite accurate. Greater accuracy can be obtained for other choices of the param-
eter β for each specific atom.

It is interesting to point out that the D-dimensional maximum entropy problem
inherent to the previous bounds (5.18)–(5.26) has a unique solution [57] whenever
it exists. The existence conditions are given in [57]. Moreover, the usefulness of this
maxent problem to explain the main characteristics of the periodic table, such as
periodicity and shell structure, is discussed in [58].

Let us now tackle the maximum-Rényi-entropy or maxrent problem which pro-
vides variational upper bounds to the Rényi entropy Rq [ρ] defined by (5.27). When
the only constraint is a radial expectation value 〈rk〉, it is possible to find the upper
bounds given by

Rq [ρ] ≤ 1

1 − q
ln
{
L1(q, k,D)〈rk〉−D

k
(q−1)} (5.45)

in terms of 〈rk〉 with k = 1,2, . . . , and the upper bounds given by

Rq [ρ] ≤ 1

1 − q
ln
{
L2(q, k,D)〈r−k〉−D

k
(q−1)} (5.46)

in terms of 〈r−k〉 with k = 1,2, . . . but subject to the condition k < D
q
(q − 1). The

functions Li(q, k,D), i = 1 and 2, have the expressions

L1(q, k,D)= qk

D(q − 1)+ kq

⎧
⎨
⎩
kΓ (D/2)[ D(q−1)

D(q−1)+kq
]Dk

2π
D
2 B(

q
q−1 ,

D
k
)

⎫
⎬
⎭

q−1

(5.47)

and

L2(q, k,D)= qk

D(q − 1)− kq

⎧
⎨
⎩
kΓ (D/2)[D(q−1)−kq

D(q−1) ]Dk
2π

D
2 B(D

k
− 1

q−1 ,
q

q−1 )

⎫
⎬
⎭

q−1

. (5.48)
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We have used the variational bounds [38] to the entropic moments Wα[ρ] with
a single expectation value 〈rk〉 as constraint. These bounds (5.45)–(5.48) extend
and generalize similar bounds obtained in the one-dimensional [59, 60] and three-
dimensional [61] cases used in various contexts, ranging from finances to atomic
physics.

The maximum-Tsallis-entropy or maxtent problem with the constraint 〈rk〉 fol-
lows in a similar manner. We find the lower bounds

1 + (1 − q)Tq [ρ] ≥ L1(q, k,D)〈rk〉−D
k
(q−1) (5.49)

in terms of 〈rk〉 with k = 1,2, . . . , and the lower bounds

1 + (1 − q)Tq [ρ] ≥ L2(q, k,D)〈r−k〉Dk (q−1) (5.50)

in terms of 〈r−k〉 with k = 1,2, . . . and k <
−D(q−1)

q
. The functions Li(q, k,D)

are given by (5.47) and (5.48), respectively. The maxtent problem is discussed in
[57] in the three-dimensional case and its usefulness to interpret various physical
phenomena of the periodic table have been recently shown in [58].

Finally, let us comment that expressions similar to the position inequalities
(5.33)–(5.50) are also valid in momentum space for the corresponding quantities
in this space.

5.2.3 Fisher Information

In this section we will gather a number of results, necessarily of inequality type,
about the Fisher information of D dimensional systems in terms of the power and
entropic moments of the single-particle density ρ(r).

The (translationally invariant) Fisher information of the D-dimensional density
ρ(r) is defined by

I [ρ] :=
∫

RD

ρ(r)|∇D lnρ(r)|2dr = 4
∫

RD

∣∣∣∇D

√
ρ(r)

∣∣∣
2
dr (5.51)

where ∇D denotes the D-dimensional gradient. The corresponding quantity for the
momentum-space probability density γ (p) will be denoted by I [γ ].

This concept was firstly introduced for one-dimensional random variables in sta-
tistical estimation [62] but nowadays it is playing a increasing role in numerous
fields [63], in particular, for many-electron systems, partially because of its formal
resemblance with kinetic [63–67] and Weiszäcker [26, 68] energies. The Fisher in-
formation, contrarily to the Rényi, Shannon and Tsallis entropies, is a local measure
of spreading of the density ρ(r) because it is a gradient functional of ρ(r). The
higher this quantity is, the more localized is the density, the smaller is the uncer-
tainty and the higher is the accuracy in estimating the localization of the particle.
It has, however, an intrinsic connection with Shannon’s entropy via the de Bruijn
identity [69, 70] as well as a simple connection with the precision (variance V [ρ])
of the experiments by means of the celebrated Cramér-Rao inequality [69–71]

I [ρ] × V [ρ] ≥D2. (5.52)
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The notion of Fisher information has been shown to be very fertile to identify,
characterize and interpret numerous phenomena and processes in atomic and molec-
ular physics such as e.g., correlation properties in atoms, spectral avoided crossings
of atoms in external fields [72], the periodicity and shell structure in the periodic
table of chemical elements [73] and the transition state and other stationary points
in chemical reactions [74]. Moreover, it has been used for the variational charac-
terization of quantum equations of motion [63] as well as to rederive the classical
thermodinamics without requiring the usual concept of Boltzmann’s entropy [75].

Extending previous three-dimensional bounds to Fisher information of atomic
systems [68, 76], it has been found by use of Redheffer-Weyl’s inequality that the
Fisher information of D dimensional systems is bounded from below [73] as

I [ρ] ≥ (β +D − 1)2
〈rβ−1〉
〈r2β〉 , for β ≥ max{−D + 1,−1} (5.53)

and

I [ρ] ≥ 〈r−2〉
[
(D − 2)2 + (β + 1)2〈rβ−1〉2

〈r2β〉〈r−2〉 − 〈rβ−1〉2

]
, β ≥ −1 (5.54)

in terms of the radial expectation values 〈rα〉, and as

I [ρ] ≥ 〈r−2〉
[
(D − 2)2 + 〈r−2〉2

〈r−2(ln r)2〉〈r−2〉 − 〈r−2 ln r〉2

]
(5.55)

in terms of the radial and logarithmic expectation values.
On the other hand, Frieden’s variational principle of extreme physical informa-

tion [63] and, in particular, the minimization problem of the Fisher information
(minfin problem) allows us [57] to find that the D-dimensional density ρF (r)≡ g(r)
which minimizes the Fisher information (5.51) subject to the m constraints 〈fk(r)〉,
fulfills the differential equation

[∇Dg(r)
g(r)

]2

+ 2∇D

[∇Dg(r)
g(r)

]
+ λ0 +

m∑
k=1

λkfk(r)= 0. (5.56)

The general solution of this equation is very difficult, even for a single constraint
of the type 〈rα〉. In the case of D = 3, this problem has been partially solved [68]
for a single constraint 〈rα〉 with α = −1 and 2, and for two constraints of the types
(r−1, r−2) and (r−2, r2). Let us here give the lower bound

I [ρ] ≥ 4〈r−1〉. (5.57)

This inequality is saturated by the exponential minimized density

g(r)= 1

π
〈r−1〉3 exp(−2〈r−1〉r) (5.58)

which has very interesting information-theoretic properties [57]. These properties
have allowed us [58] to nicely interpret the shell structure of the atomic systems.
The extension of these three-dimensional bounds to D dimension is a yet unsolved
problem.
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5.2.4 Uncertainty Relations

In this Section we shall give the uncertainty relations corresponding to the power
logarithmic and entropic moments together with those associated to the Rényi,
Shannon and Tsallis entropies and the Fisher information. These relations are dif-
ferent mathematical formulations of the quantum-mechanical uncertainty principle
which describes a characteristic feature of quantum mechanics and states the limi-
tations to perform measurements on a system without disturbing it. Moreover, since
the two canonically conjugate observables involved in the uncertainty relations here
considered—position and momentum—do not commute, both observables cannot
be precisely determined in any quantum state of the system.

The D-dimensional position-momentum uncertainty relation is the Heisenberg-
like inequality [77]

〈rD/α〉α〈pD/β〉β ≥ ααββ
Γ 2(1 + D

2 )

Γ (1 + α)Γ (1 + β)
eD−α−β; α > 0, β > 0 (5.59)

obtained by using information-theoretic methods.
For α = β =D/2, this expression simplifies to the familiar D-dimensional form

of Heisenberg inequality

〈r2〉〈p2〉 ≥ D2

4
(5.60)

which shows that the more accurately the position is known, the less accurately is
the momentum determined, and vice versa.

For completeness let us quote here that (5.59) for D = 3 can be cast in the form

〈ra〉1/a〈pb〉1/b ≥
(

πab

16Γ ( 3
a
)Γ ( 3

b
)

)1/3 (
3

a

) 1
a
(

3

b

) 1
b

e1− 1
a
− 1

b ; a > 0, b > 0

(5.61)

which for the specially interesting case a = b > 0 takes the form

〈ra〉〈pa〉 ≥
{(

27π

16aΓ ( 3
a
)

) 1
3 (ae

3

)1− 2
a

}a

, a > 0. (5.62)

Note that for a = 2 this inequality reduces to (5.60) with D = 3.
For alternative forms of these two inequalities in terms of variances or even in

terms of moments around a point other than the origin, see (2.9) et sequel of [78].
In addition, from the Pitt-Beckner inequality (5.22) for (〈pa〉, 〈r−a〉) and its ver-

sion for (〈p−a〉, 〈ra〉) given by

〈p−a〉 ≤ 2−a

[
Γ (D−a

4 )

Γ (D+a
4 )

]2

〈ra〉, 0 ≤ a <D (5.63)



142 J.S. Dehesa et al.

one obtains the uncertainty inequality

〈ra〉 1
a 〈p−a〉− 1

a ≤ 2

[
Γ (D+a

4 )

Γ (D−a
4 )

] 2
a

, 0 ≤ a <D (5.64)

which generalizes various uncertainty relations of similar type found in the literature
[73, 76]. See also [79] for some slight improvements in the D = 3 case. Moreover,
since we may exchange roles of r and p in (5.61), we can write

〈r−a〉 ≤ 1

2a

[
Γ (D−a

4 )

Γ (D+a
4 )

]2

〈pa〉, 0 ≤ a ≤D. (5.65)

Then, from (5.61) and (5.63) we have another uncertainty relation given by

〈r−a〉〈p−a〉 ≤ 1

22a

[
Γ (D−a

4 )

Γ (D+a
4 )

]4

〈ra〉〈pa〉, (5.66)

valid for 0 ≤ a < D. Similar uncertainty relations can be obtained for the modified
moments 〈rαρ〉 and 〈pαγ 〉 by means of the results of Sect. 3 of Folland and Sitaran
[78].

There are quantitative formulations of the uncertainty principle more stringent
than (5.59). With the same procedure used to obtain the relation (5.59) but using
logarithmic moments instead of power moments, one obtains the logarithmic un-
certainty inequality [27]

Δ(ln r)Δ(lnp)≥ Γ 2(D2 )

8π
exp[D − 1 −D(〈ln r〉 + 〈lnp〉)] (5.67)

where

Δ(ln r)≡ (〈(ln r)2〉 − 〈ln r〉2)1/2 (5.68)

denotes the logarithmic uncertainty. For D = 3 we have

Δ(ln r)Δ(lnp)≥ 1

32
exp[2 − 3(〈ln r〉 + 〈lnp〉)]. (5.69)

Moreover, the logarithmic sum involved in (5.67) satisfies Beckner’s uncertainty
relation [80]

〈ln r〉 + 〈lnp〉 ≥ψ

(
D

4

)
+ ln 2 (5.70)

where ψ(x) = Γ ′(x)/Γ (x) is the Psi or digamma function. This expression can
alternatively be obtained by taking the limit a → 0 in the uncertainty product
〈ra〉〈p−a〉 with the values (5.22) and (5.69) for 〈ra〉 and 〈p−a〉, respectively.

Another generalization of the (power-moments-based) Heisenberg-like uncer-
tainty relation was obtained by Rajagopal [81] by use of the entropic moments in
position and momentum spaces. He extended to D dimensions and improve the
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one-dimensional results of Maassen-Uffink [82], obtaining the following entropic-
moment-based uncertainty relation (see also [83, 84]):

{Wα+1[ρ]}− 1
α × {Wβ+1[γ ]}− 1

β ≥
[
π(1 + 2α)1+ 1

2α

1 + α

]D
(5.71)

which is valid for α ≥ − 1
2 and β = − α

1+2α . For α = β = 0 it reduces to the
(Shannon-entropy-based) entropic uncertainty relation

S[ρ] + S[γ ] ≥D(1 + lnπ) (5.72)

first derived by Hirschman [85] and later improved independently by Beckner [80]
and Bialynicki-Birula and Mycielski [53]. This expression indicates that the total
uncertainty in position and momentum cannot be decreased beyond the value given
by (5.72). The entropic uncertainty relation can be recast into the form

J [ρ] × J [γ ] ≥ 1

4
(5.73)

where the position Shannon entropic power is defined by

J [ρ] := 1

2πe
e

2
D
S[ρ] (5.74)

and similarly for the momentum Shannon entropy power J [γ ]. Let us point out here
that the Shannon-entropy sum S[ρ] + S[γ ] has shown its usefulness for numerous
physical issues (e.g., to study the correlation energy of atomic systems [86]), having
been postulated a new entropy maximization principle based in it by Gadre [87].
This author and his collaborators [88] have numerically shown some interesting
properties of this entropy sum for atoms in a Hartree-Fock framework: they obtain
a minimum value for the ground state which is scale invariant while the individual
entropies are not.

The expressions (5.28) and (5.71) have allowed Rajagopal [81] to obtain the
Tsallis-entropy-based uncertainty relation as

{1 + (1 − p)Tp[ρ]}−1
2p × {1 + (1 − q)Tq [γ ]} 1

2q ≥
( q
π

) D
4q

(p
π

)−D
4p

(5.75)

with 1
p

+ 1
q

= 2. Note that in the limit of (p, q) going to unity, this expression
transforms into the entropic uncertainty relation (5.70). Finally, let us quote here the
Rényi-entropy-based uncertainty relation found by Bialynicki-Birula [89] and inde-
pendently by Zozor and Vignat [90]. They have obtained it in the one-dimensional
case as

Rα−1[ρ] +Rβ−1[γ ] ≥ − 1

2(1 − α)
ln
α

π
− 1

2(1 − β)
ln
β

π
, (5.76)

for α > β . The extension to D dimensions has been recently found by Zozor et al.
[91].

Finally, let us discuss the uncertainty relations which involve the Fisher informa-
tions. Since the fifties [92] it is known that the Stam inequalities

I [ρ] ≤ 4〈p2〉; I [γ ] ≤ 4〈r2〉, (5.77)
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link the position (momentum) Fisher information and the momentum (position) ra-
dial expectation value 〈p2〉 (respectively 〈r2〉). See also [73] for its generalization
to finite many-electron systems. Recently, the Fisher-information-based uncertainty
relations

I [ρ] × I [γ ] ≥ 4D2 (5.78)

has been found [93] to hold not only for one-dimensional [94] but also for D-
dimensional real-valued wavefunctions. For further information see Sect. 5.3, where
the lower bound 4D2 is further improved for all wavefunctions of central potentials.

5.2.5 Complexity Measures

Here we consider the Cramér-Rao, Fisher-Shannon and LMC shape complexities
of a D-dimensional quantum system. We will gather their known analytical re-
sults, without making any emphasis on their meaning and physical and chemical
significances. In the latter case, see other contributions of this volume (particu-
larly [96]). These information-theoretic measures of spreading of the quantum-
mechanical probability density characterizing the physical state of our system, are
composed by two single quantities of local (Fisher information) and/or global (vari-
ance, Shannon entropy) types. They have a common property: vanishing for the
two extreme probability densities which corresponds to perfect order and maximum
disorder.

The LMC shape complexity CLMC[ρ] is defined [97–99] as the product

CLMC[ρ] :=D[ρ] exp(S[ρ]), (5.79)

where

D[ρ] ≡W2[ρ] =
∫

ρ2(r)dr (5.80)

is the second-order entropic moment (5.3), heretoforth the disequilibrium because it
quantifies the departure of ρ(r) from equiprobability, and S[ρ] denotes the Shannon
entropy (5.30) which measures the randomness or global spreading of the distribu-
tion.

The Fisher-Shannon complexity is given by the product

CFS[ρ] := I [ρ] × J [ρ] (5.81)

where I [ρ] and J [ρ] denote the (local) Fisher information (5.51) and the (global)
Shannon entropy power (5.74) of ρ(r). The former ingredient measures the local
internal disorder of the distribution, quantifying the concentration of the quantum-
mechanical probability cloud around the maxima of ρ(r). The Shannon entropy
power J [ρ] is another global measure of the total spreading of the density all over
its domain of definition.

The Cramér-Rao complexity CCR[ρ] is defined as

CCR[ρ] := I [ρ] × V [ρ] (5.82)
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which has a local ingredient, the Fisher information, and a global spreading measure
of the density ρ(r), the variance (which measures the concentration of the probabil-
ity cloud around the centroid). So, contrary to the two previous complexities, this
quantity does depend on a specific point of the definition domain of ρ(r); namely,
its centroid.

It has been shown (see [96] and [71] for further details) that these complexities
have the following lower bounds

CLMC[ρ] ≥ 1, (5.83)

CFS[ρ] ≥D, (5.84)

CCR[ρ] ≥D2 (5.85)

in position space, and similar bounds in momentum space for the corresponding
momentum complexities. These inequalities can be improved either by taking into
account some known data (as e.g. some power moments) or by referring to spe-
cific quantum systems (as e.g. the D-dimensional particle in a box [100] and the
D-dimensional hydrogenic system [71]). In particular, let us quote here that the
Cramér-Rao inequality (5.85) has been improved by

CCR[ρ] ≥D2 + (D − 1)〈r−1〉[(D − 1)〈r2〉〈r−1〉 − 2D〈r〉] (5.86)

in terms of the radial expectation values 〈rα〉 with α = −1, 1 and 2. Moreover, the
three complexity measures satisfy some (not yet fully accomplished) uncertainty
relations. Let us point out here the corresponding relation for the LMC shape com-
plexity [71]:

CLMC[ρ] ×CLMC[γ ] ≥ eDΓ 2(D2 )(D + α)(D + β)

〈rα〉D/α〈pβ〉D/β

×
(

D

D + 2α

)1+D
α
(

D

D + 2β

)1+D
β

(5.87)

for α,β >−D
2 . See [71, 96] for further details.

Just recently, a generalized statistical measure based on Rényi entropies has been
introduced and characterized by a detailed study of its mathematical properties
[101]. It extends the LMC shape complexity previously discussed.

5.3 Entropy Analysis of Quantum Systems with Central
Potentials

Here we survey the recent work on the spreading and uncertainty measures (power
moments, Shannon entropy, Fisher Information) of single-particle systems moving
in spherically symmetric potentials by means of entropic ideas and methods ex-
tracted from information theory. The associated uncertainty relations are also dis-
cussed.
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We start with some basic characteristics of the D-dimensional problem of a spin-
less particle in a central potential VD(r). The quantum-mechanical wavefunctions
have, in atomic units, the form ΨD(r, t) = ψD(r) exp(−iEDt), where (ED,ψD)

denote the physical eigenfunctions of the Schrödinger equation [102, 103]
[
−1

2
∇2
D + VD(r)

]
ψD(r)=EDψD(r) (5.88)

where the D-dimensional position vector r = (r, θ1, θ2, . . . , θD−1) ≡ (r,ΩD−1) in
polar hyperspherical coordinates, where r denotes the hyperradius of the particle,
and the Laplacian operator is expressed as

∇2
D = 1

rD−1

∂

∂r
rD−1 ∂

∂r
− Λ2

D−1

r2
, (5.89)

Λ2
D−1 being the D-dimensional generalization of the squared angular momentum

operator which only depends on the D − 1 angular coordinates ΩD−1 of the hyper-
sphere in the form

Λ2
D−1 = −

D−1∑
i=1

(sin θi)i+1−D

(
∏i−1

i=j−1 sin θj )2
∂

∂θi

[
(sin θi)

D−1 ∂

∂θi

]
. (5.90)

This operator is known to fulfill the eigenvalue equation [104, 105]

Λ2
D−1 Yl,{μ}(ΩD−1)= l(l +D − 2)Yl,{μ}(ΩD−1) (5.91)

where Y -symbol describes the hyperspherical harmonics characterized by the D−1
hyperangular quantum numbers (l ≡ μ1,μ2,μ3, . . . ,μD−1 ≡m)≡ (l, {μ}), which
are natural numbers with values l = 0,1,2, . . . , and l ≡ μ1 ≥ μ2 ≥ μ ≥ · · · ≥
μD−2 ≥ |μD−1| ≡ |m|. These mathematical objects have the explicit expression
[102, 106–108]

Yl,{μ}(ΩD−1)=Nl,{μ}eimφ
D−2∏
j=1

C
(αj+μj+1)

μj−μj+1
(cos θj )(sin θj )

μj+1 (5.92)

with the normalization constant

N2
l,{μ} = 1

2π

D−2∏
j=1

(αj +μj )(μj −μj+1)!Γ 2(αj +μj+1)

π21−2αj−2μj+1Γ (2αj +μj +μj+1)
(5.93)

where αj = (D − j − 1)/2, φ ≡ μD−1, Cλ
n(t) denotes the Gegenbauer or ultras-

pherical polynomial of degree n and parameter λ, and with the values 0 ≤ θj ≤ π

(j = 1,2, . . . ,D − 2) and 0 ≤ φ ≤ 2π . Moreover, these hyperfunctions satisfy the
orthonomalization condition∫

SD−1

dΩD−1Y ∗
l′,{μ′}(ΩD−1)Yl,{μ}(ΩD−1)= δl,l′δ{μ},{μ′}. (5.94)

The eigenfunctions Ψ (r) of the problem (5.88)–(5.89) can be separated out as

ΨEl{μ}(r)=Rnl(r)Yl,{μ}(ΩD−1) (5.95)
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where the radial eigenfunction Rnl(r), according to (5.88), satisfies the following
radial Schrödinger equation

[
−1

2

d2

dr2
− D − 1

2r

d

dr
+ l(l +D − 2)

2r2
+ VD(r)

]
Rnl(r)=EDRDl(r). (5.96)

Then, the probability to find the particle between r and r + dr is given by

ρEl{μ}(r)dr = |ΨEl{μ}(r)|2dr = |Rnl(r)|2rD−1dr × |Yl,{μ}(ΩD−1)|2dΩD−1
(5.97)

where the solid angle dΩD−1 has the expression

dΩD−1 =
⎛
⎝
D−2∏
j=1

(sin θj )
2αj dθj

⎞
⎠dφ. (5.98)

Taking the Fourier transform of ΨEl{μ}(r) in (5.95), we obtain that the momen-
tum wavefunctions Ψ̂El{μ}(p) can also be written in the form

Ψ̂El{μ}(p)=MEl(p)Yl,{μ}(Ω̂D−1) (5.99)

where (p, Ω̂D−1) denote the spherical polar coordinates in momentum space, p =
|p| and Ω̂D−1 ≡ (θ̂1, θ̂2, . . . , θ̂D−2, φ). So, the probability that the particle has the
momentum value between p and p + dDp is

γEl{μ}(p)dp = |MEl(p)|2pD−1dp × |Yl,{μ}(Ω̂D−1)|2dΩ̂D−1. (5.100)

The spreading of the probability density ρ(r) all over the D-dimensional space
is usually quantified by means of radial expectation values

〈f (r)〉 =
∫

RD

f (r)ρEl{μ}(r)dr =
∫ ∞

0
f (r)|Rnl(r)|2rD−1dr (5.101)

and, more appropriately, by the use of information-theoretic quantities of global
(Shannon, Rényi and Tsallis entropies) and local (Fisher information) types. All
these quantities cannot be calculated unless we know the analytical form of the
central potential. Nevertheless, we can go farther. The power moments 〈rα〉 of the
particle for central potentials VD(r) such that r2VD(r)= 0 when r → 0, satisfy the
hypervirial relation [109] (see also (4.1.3) of [103])

2

(〈
rα

dVD(r)

dr

〉
+ 2α〈rα−1VD〉 − 2αED〈rα−1〉

)

+ 1

2
(α − 1)[(2L+ 1)2 − (α − 1)2]〈rα−3〉 = (2L+ 1)2C2

l δα,−2L,

α ≥ −2L (5.102)

where we have used the small distance behaviour of the regular wavefunction at the
origin:

lim
r→0

r−lRl(r)= Cl (5.103)
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and Cl ≡Nl,{μ} denotes the normalization constant of the radial position wavefunc-
tion, and L = l + D−3

2 . Note that Cl is related to the lth derivative to the radial
wavefunction at the origin:

Cl = 1

l!
dlRl(0)

drl
. (5.104)

In particular, C0 = R0(0), the value of the S-wave radial wavefunction at the
origin. Moreover, the relevant power moments (〈p2〉, 〈r−2〉) are mutually related
[110] as

〈p2〉 = JR(D)+ l(l +D − 2)〈r−2〉
= JR(D)+

[
L(L+ 1)− 1

4
(D − 1)(D − 3)

]
〈r−2〉 (5.105)

with the radial integral

JR(D)=
∫ ∞

0

[
dRnl(r)

dr

]2

rD−1dr. (5.106)

A similar expression can be written down for the pair (〈r2〉, 〈p−2〉). Let us also
highlight that, since the radial integral JR(D) is non-negative, we have the radial
uncertainty-like inequalities

〈p2〉 ≥
[
L(L+ 1)− 1

4
(D − 1)(D − 3)

]
〈r−2〉 (5.107)

and

〈r2〉 ≥
[
L(L+ 1)− 1

4
(D − 1)(D − 3)

]
〈p−2〉. (5.108)

Note that the inequality (5.107) extends the general inequality given by [110]

〈p2〉 ≥
(
D − 2

2

)2

〈r−2〉 (5.109)

(see also [73]). The inequalities (5.107)–(5.108) can be improved [95] as

〈p2〉 ≥ L(L+ 1)〈r−2〉,
〈r2〉 ≥ L(L+ 1)〈p−2〉.

(5.110)

A further improvement [95] has been recently obtained as

〈p2〉 ≥
(
L+ 1

2

)2

〈r−2〉,

〈r2〉 ≥
(
L+ 1

2

)2

〈p−2〉.
(5.111)

These two inequalities improve for central potentials various similar uncertainty
inequalities of general validity; see [95] for a detailed discussion and explanation.
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The Shannon entropy (5.30) of the particle in the D-dimensional central potential
has been shown to be discomposed [108, 111] into two parts:

S[ρ] ≡ Sn,l,{μ} = Sn,l[R;D] + Sl,{μ}[Y,D], (5.112)

where

Sn,l[R;D] = −
∫

rD−1R2
n,l(r) lnR2

n,l(r)dr (5.113)

denotes the radial Shannon entropy, and

Sl,{μ}[Y ;D] = −
∫

|Yl,{μ}(ΩD−1|2 ln |Yl,{μ}(ΩD−1|2dΩD−1 (5.114)

gives the angular or spatial Shannon entropy. Observe that the angular part does
not depend on the potential VD(r), while the radial component is independent from
the magnetic quantum numbers μ1,μ2, . . . ,μD−1. In momentum space, the corre-
sponding Shannon entropy of the central potential is given by

S[γ ] ≡ Sn,l,{μ}[γ ] = Sn,l[M;D] + Sl,{μ}[Y ;D], (5.115)

where the radial momentum Shannon entropy is

Sn,l[M;D] = −
∫ ∞

0
pD−1M2

n,l(p) lnM2
n,l(p)dp. (5.116)

The angular contribution to the position and momentum Shannon entropies is
given by the entropic integral (or entropy) of hyperspherical harmonics Sl,{μ}[Y ;D]
expressed by (5.114). It has been found [112] to have the following value

Sl,{μ}[Y ;D] = ln(2π)+
D−2∑
j=1

E
[
C̃
(αj+μj+1)

μj−μj+1

]

− 2
D−2∑
j=1

μj+1

[
ψ(2αj +μj +μj+1)−ψ(αj +μj )

− ln 2 − 1

2(αj +μj )

]
(5.117)

in terms of the quantum numbers (l, {μ}) and the dimensionality D, where E[ρn]
denotes the entropy of the polynomials pn(x) orthogonal with respect to the weight
function ω(x) on the interval (a, b)

E[pn] := −
∫ b

a

p2
n(x) lnp2

n(x)ω(x)dx, (5.118)

and C̃
(λ)
n (x) denotes the Gegenbauer polynomial orthonormal with respect to the

weight function ωλ(x) = (1 − x2)λ− 1
2 on the interval [−1,+1]. The orthonormal

Gegenbauer polynomial C̃(λ)
n (x) is related to the orthogonal Gegenbauer polynomial

C
(λ)
n (x) by the relation

C̃(α)
n (x)= C

(α)
n

hn
; with h2

n = 21−2λπΓ (n+ 2λ)

[Γ (λ)]2(n+ λ)n! . (5.119)
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For further details about the information-theoretic properties of the hyperspher-
ical harmonics, see [112, 113]. Let us underline that the radial part of the Shannon
entropy of D-dimensional central potentials in both position and momentum spaces
requires the knowledge of the corresponding radial eigenfunctions to go ahead, but
the angular part (i.e. the entropy of the hyperspherical harmonics) is under control.

The Fisher information of the D-dimensional central potentials, defined by
(5.51), has been analogously shown [110, 114] to have form

I [ρ] = I [R;D] + 〈r−2〉I [Y ;D] (5.120)

in position space, and

I [γ ] = J [M;D] + 〈p−2〉I [Y ;D] (5.121)

in momentum space. Here, the radial parts are given by

I [R;D] = 4
∫ ∞

0

[
R′
nl(r)

]2
rD−1dr = 4〈p2〉 (5.122)

and

J [M;D] = 4
∫ ∞

0

[
M ′

nl(p)
]2
pD−1dp = 4〈r2〉 (5.123)

in position and momentum spaces, respectively. The angular part is given by

I [Y ;D] = −2|m|(2l +D − 2) (5.124)

in both spaces. Then, we have finally the nice expressions

I [ρ] = 4〈p2〉 − 2|m|(2l +D − 2)〈r−2〉 (5.125)

and

I [γ ] = 4〈r2〉 − 2|m|(2l +D − 2)〈p−2〉 (5.126)

for the position and momentum Fisher informations in terms of the pairs of radial
expectation values (〈p2〉, 〈r−2〉) and (〈r2〉, 〈p−2〉), respectively.

From here it is straightforward to write down the position-momentum inequali-
ties

I [ρ] ≥ 4

(
1 − 2|m|

2L+ 1

)
〈p2〉 (5.127)

and

I [γ ] ≥ 4

(
1 − 2|m|

2L+ 1

)
〈r2〉 (5.128)

where we have combined the exact expressions (5.125)–(5.126) and the radial
uncertainty-like inequalities

〈p2〉 ≥
(
L+ 1

2

)2

〈r−2〉; 〈r2〉 ≥
(
L+ 1

2

)2

〈p−2〉 (5.129)

(which improve for central potential the general inequalities (5.63) and (5.65) with
a = 2).
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Let us now state the uncertainty relations associated to the second-order power
moments (〈r2〉, 〈p2〉), or Heisenberg-like relation, and to the Fisher information of
a particle in a D-dimensional central potential, which have been recently found [95,
110, 115]. First, the general Heisenberg-like inequality (5.60) transforms [110] into
the following expression

〈r2〉〈p2〉 ≥
(
l + D

2

)2

=
(
L+ 3

2

)2

(5.130)

for central potentials, where L = l + D−3
2 is a generalized angular momentum as

previously mentioned. This relation, which saturates for the (nodeless) ground-state
wavefunction of the isotropic harmonic oscillator, provides a higher (so, better)
value for the lower bound of the Heisenberg-like product.

It is worth highlighting that the general logarithmic, entropy, Rényi and Tsallis
uncertainty relations given by (5.67)–(5.76) have not yet been improved for central
potentials. In contrast, the position and momentum Fisher informations of central
potentials satisfy [110] the following relation

I [ρ] × I [γ ] ≥ 16

[
1 − (2l +D − 2)|m|

2l(l +D − 2)

]2

〈r2〉〈p2〉, (5.131)

which illustrates the uncertainty character of the Fisher-information product I [ρ] ×
I [γ ]. Moreover, from (5.130) and (5.131), we finally have the Fisher-information-
based uncertainty relation [115]

I [ρ] × I [γ ] ≥ 16

[
1 − (2l +D − 2)|m|

2l(l +D − 2)

]2 (
l + D

2

)2

(5.132)

which extends and improves a similar relation previously obtained in three [116]
and D [110] dimensions. Here again the equality is reached for the ground-state
oscillator wavefunctions. It is also worth noting that for S states (i.e. when l = 0),
this inequality simplifies as

I [ρ] × I [γ ] ≥ 4D2. (5.133)

In fact, it was proved for general one-dimensional states with even real-valued wave-
functions [94] and, just recently, for general D-dimensional states with general real-
valued wavefunctions [93]. Finally for completeness, let us consider the Cramér-
Rao inequality (5.52) for general systems, I [ρ] × V [ρ] ≥ D2, which is equivalent

to the variance-based Heisenberg uncertainty relation V [ρ]×V [γ ] ≥ D2

4 at least for
real valued wavefunctions. Moreover, the expressions (5.125)–(5.126) together with
(5.111) have allowed us to find [45] the following relation between the Cramér-Rao
product and the Heisenberg-like product 〈r2〉〈p2〉:

〈r2〉I [ρ] ≥ 4

(
1 − 2|m|

2L+ 1

)
〈r2〉〈p2〉. (5.134)

Then, taking into account the D-dimensional Heisenberg relation (5.130) for central
potentials we have [45] that

〈r2〉I [ρ] ≥ 4

(
1 − 2|m|

2L+ 1

)(
L+ 3

2

)2

(5.135)
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in position space, and

〈p2〉I [γ ] ≥ 4

(
1 − 2|m|

2L+ 1

)(
L+ 3

2

)2

(5.136)

in momentum space. These Cramér-Rao relations improve for central potentials
the general Cramér-Rao inequality (5.85); hence providing a higher (better) lower
bound to the D-dimensional Cramér-Rao complexity CCR[ρ]. Note that the lower
bound given by (5.135) and (5.136) equals D2 for S states. Moreover, these inequal-
ities behave as uncertainty relations although in the same space, indicating that the
wigglier is the quantum-mechanical wavefunction of the system, the less concen-
trated around the centroid the associated probability density is, and vice versa.

Furthermore, from (5.127) and the Stam inequality (5.77) we can bound the ki-

netic energy T (= 〈p2〉
2 ) in both senses as

1

8
I [ρ] ≤ T ≤ 1

8

2L+ 1

2L+ 1 − 2|m|I [ρ], (5.137)

in terms of the position Fisher information I [ρ]. Similarly, from (5.128) and the
Stam inequality (5.77) we find

1

8
I [γ ] ≤ 〈r2〉 ≤ 1

4

2L+ 1

2L+ 1 − 2|m|I [γ ], (5.138)

which allows us to bound numerous physical quantities related to 〈r2〉 in terms of the
momentum Fisher information I [γ ]. This is the case, for instance, of the Langevin-

Pauli diamagnetic susceptibility χ = −αFS 〈r2〉
6 , αFS being the fine structure constant.

5.4 Entropy and Complexity Analyses of Hydrogenic Systems

Here we describe the analytic information-theoretic properties of the ground and ex-
cited states of a D-dimensional hydrogenic system in both position and momentum
spaces. This system [113, 117, 118] is composed of a negatively-charged particle
moving around a positively charged core which electromagnetically binds it to its
orbital, i.e. moving in the Coulomb potential

VD(r)= −Z

r
, (5.139)

where Z is the charge of the core, and r = |r|. It includes (models) a large diversity
of physical systems and quantum phenomena [113] in quantum cosmology, nan-
otechnology, quantum computation, quantum field theory, D-dimensional physics
and quantum chemistry. The existence of hydrogenic systems has been observed for
D ≤ 3 and suggested for D > 3 [23].

The physical solutions of the D-dimensional hydrogenic problem (5.88) with the
potential (5.139) are the wavefunctions [113]

Ψn,l,{μ}(r)=Rn,l(r)Yl,{μ}(ΩD−1), (5.140)
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where the hyperspherical harmonics are given by (5.92) and the radial part is given
as

Rn,l(r)=
(
λ−D

2η

) 1
2
[
ω2L+1(̃r)

r̃D−2

] 1
2

L̃
(2L+1)
η−L−1(̃r) (5.141)

where η = n+ D−3
2 , the grand orbital angular momentum quantum number L= l+

D−3
2 , 2L+ 1 = 2l+D− 2, the parameter λ= η

2Z , and r̃ = r
λ

. The symbols L(α)
m (x)

and L̃
(α)
m (x) denotes the usual and orthonormal, respectively, Laguerre polynomials

with respect to the weight ωα(x)= xαe−x on the interval [0,∞), so that

L̃(α)
m (x)=

[
m!

Γ (m+ α + 1)

] 1
2

L(α)
m (x). (5.142)

Then, the electronic probability density of the D-dimensional hydrogenic system
in position space is

ρ(r)= |Ψn,l,{μ}(r)|2 =R2
n,l(r)|Yl,{μ}(ΩD−1)|2. (5.143)

Similarly, in momentum space, the wavefunctions of the system are the Fourier
transforms of the position wavefunction (5.140), given rise to the expression

Ψ̃n,l,{μ}(p)=Mn,l(p)Yl,{μ}(ΩD−1), (5.144)

where the radial momentum wavefunction is

Mn,l(p)=
(η

2

)D
2
(1 + y)

3
2

(
1 + y

1 − y

)D−2
4 √

ω∗
L+1(y)C̃

(L+1)
η−L−1(y), (5.145)

with η − L − 1 = n − l − 1 and y = 1−η2p̃2

1−η2p̃2 , p̃ = p
Z

. The symbols C
(α)
m (y) and

C̃
(α)
m (y) denote the usual and orthonormal, respectively, Gegenbauer polynomials

with respect to the weight function ω∗
α(y)= (1 − y2)α− 1

2 on the interval [−1,+1].
Then, the momentum probability density of the D-dimensional hydrogenic sys-

tem has the expression

γ (p)= |Ψ̃n,l,{μ}(p)|2 =M2
n,l(p)|Yl,{μ}(Ω̂D−1)|2. (5.146)

The position and momentum D-dimensional wavefunctions (5.140) and (5.144),
respectively, reduce to the corresponding three-dimensional wavefunctions (see e.g.
[119–122]. Let us now study the spreading of both position and momentum densities
given by (5.143) and (5.146), respectively, by means of the power and logarithmic
moments, some information-theoretic measures (Shannon entropy, Fisher informa-
tion), and the LMC shape complexity measures. The associated uncertainty relations
are also given.
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5.4.1 Power and Logarithmic Moments

The spreading of the position probability density ρ(r), which controls all the macro-
scopic physical and chemical properties of the hydrogenic system, is conventionally
measured by means of the power moments

〈rα〉 :=
∫

RD

rαρ(r)dr =
∫ ∞

0
rα+D−1R2

n,l(r)dr. (5.147)

Taking into account the expression (5.141) for the radial wavefunction Rn,l(r), it
has been found that they have [113, 123] the values

(
2Z

η

)α

〈rα〉 = Γ (2L+ α + 3)

2ηΓ (2L+ 2)
3F2

( −η+L+ 1, −α − 1, α + 2
2L+ 2,1

∣∣∣∣1

)

= 1

2n+D − 3

(n− l − 1)!
(n+ l +D − 3)

×
n−l−1∑
i=0

(
α + 1

n− l − i − 1

)2
Γ (α + 2l +D + i)

i! , (5.148)

valid for α > −2l −D. Moreover, these quantities satisfy [109] the recursion rela-
tion

Z

η2
〈rS−1〉 = 2S − 1

S
〈rS−2〉 − 1

Z

S − 1

4S

[
(2L+ 1)2 − (S − 1)2

]〈rS−3〉, (5.149)

for S >−2L. Then, in particular, we have the values 〈rα〉, with α = 1 and 2,

〈r〉 = 1

2Z
[3η2 −L(L+ 1)],

〈r2〉 = η2

2Z2
[5η2 − 3L(L+ 1)+ 1].

(5.150)

So, the familiar variance of ρ(r) is given by

V [ρ] := 〈r2〉 − 〈r〉2 = η2(η2 + 2)−L2(L+ 1)2

4Z2
(5.151)

which extends to D dimensions the known value (see e.g. [122]) of the real hydro-
genic atom.

In momentum space we can operate similarly to quantify the spreading of the
probability density γ (p) by means of the momentum power moments or radial mo-
mentum expectation values 〈pα〉 given by

〈pα〉 :=
∫

RD

pαγ (p)dp =
∫ ∞

0
pα+D−1M2

n,l(p)dp. (5.152)

The use of (5.145) for the radial momentum wavefunction Mn,l(r) has allowed
us to find [124] the values
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〈pα〉 = 21−2νZα
√
π

k!ηα−1

Γ (k + 2ν)Γ (ν + α+1
2 )Γ (ν + 3−α

2 )

Γ 2(ν + 1
2 )Γ (ν + 1)Γ (ν + 3

z
)

× 5F4

( −k, k + 2ν, ν, ν + α+1
2 , ν + 3−α

2
2ν, ν + 1

2 , ν + 1, ν + 3
2

∣∣∣∣1

)
(5.153)

valid for −2l−D ≤ α ≤ 2l+D+2, where ν ≡ L+1 = l+ D−1
2 and k = n− l−1.

Let us remark that the generalized hypergeometric function 5F4(1), as 3F2(1), is a
single sum since it involves a terminating and Saalschutzian (balanced) hypergeo-
metric function. See also [121]. For α = 0 and 2, we have the expectation values

〈p0〉 = 1 and 〈p2〉 = Z2

η2
. (5.154)

Moreover, they satisfy the reflection formula [113]
( η
Z

)2−α 〈p2−α〉 =
( η
Z

)α 〈pα〉 (5.155)

which is not trivial for α �= 1. The momentum expectation values with odd α are not
so simple; in particular, for α = −1 see also [125].

Alternative measures of spreading of the position and momentum electron den-
sities are provided by the logarithmic moments

〈ln r〉 =
∫
(ln r)ρ(r)dr (5.156)

and

〈lnp〉 =
∫
(lnp)γ (p)dp, (5.157)

respectively. We have found [124] the values

〈ln r〉 = lnη+ 2η− 2L− 1

2η
+ψ(η+L+ 1)− ln 2 − lnZ (5.158)

and

〈lnp〉 = − lnη+ 2η(2L+ 1)

4η2 − 1
− 1 + lnZ, (5.159)

also respectively.

5.4.2 Shannon Entropy and Fisher Information

Here, we will show the best measures (according to certain criteria) of the global
or bulk extent (Shannon entropy) and the local concentration or gradient content
(Fisher information) of the position and momentum electron densities of the D-
dimensional hydrogenic systems.

According to (5.30) the position Shannon entropy S[ρ] ≡ Sn,l,{μ}[ρ] has a ra-
dial (Snl[R;D]) and an angular (Sl,{μ}[Y ;D]) part. The latter one is given by
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(5.117) in terms of the entropic integral of the orthonormal Gegenbauer polynomials

E[C̃(αj+μj+1)

μj−μj+1
]. The radial Shannon entropy has been shown to have the following

value [108, 111]

Snl[R;D] =A(n, l,D)+ 1

2η
E1

(
L̃
(2L+1)
η−L−1

)
−D lnZ (5.160)

where

A(n, l,D)= 3η2 −L(L+ 1)

η
− 2l

[
2η− 2L− 1

2η
+ψ(η+L+ 1)

]

+ (D + 1) lnη− (D − 1) ln 2. (5.161)

The symbols L̃(α)
m denote the orthonormal Laguerre polynomials, and E1(p̃n) de-

notes [126] the entropic integral of the polynomial orthonormal p̃n(x) with respect
to the weight function ω∗

λ(x)= xλe−x on the interval [0,∞):

E1(p̃n)= −
∫ ∞

0
xω∗

λ(x)p̃
2
n(x) ln p̃2

n(x)dx. (5.162)

Then, the combination of (5.30), (5.117) and (5.160) has led [113] us to the fol-
lowing expression for the total Shannon entropy of the D-dimensional hydrogenic
system in terms of the hyperquantum numbers (n, l, {μ}) characterizing the state
under consideration:

S[ρ] =A(n, l,D)+B(l, {μ},D)+ 1

2η
E1

(
L̃2L+1
η−L−1

)

+
D−2∑
j=1

E
(
C̃
αj+μj+1
μj−μj+1

)
−D lnZ (5.163)

where A is given by (5.161) and B has the value

B(l, {μ},D)= ln 2π − 2
D−2∑
j=1

μj+1

[
ψ(2αj +μj +μj+1)

−ψ(αj +μj )− ln 2 − 1

2(αj +μj )

]
. (5.164)

The entropic integrals E(C̃) and E1(L̃) of the orthonormal Gegenbauer and La-
guerre polynomials are given by (5.118) and (5.162) respectively. They have not yet
been calculated in an analytical way, except for very special cases (e.g. the ground
and circular states). For their numerical evaluation, a recent algorithm [127] has
been developed which computes them very accurately. Let us only point out here
the exact value of the position Shannon entropy

S[ρg.s.] = ln

(
(D − 1)D

2D
π

D−1
2 Γ

(
D + 1

2

))
+D −D lnZ (5.165)

for the hydrogenic ground state (g.s.).
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Operating similarly in momentum space, we have obtained [113] the following
value for the total momentum Shannon entropy

S[γ ] = F(n, l,D)+B(l, {μ},D)+E
(
C̃
(L+1)
η−L−1

)

+
D−2∑
j=1

E
(
C̃
(αj+μj+1)

μj−μj+1

)
+D lnZ (5.166)

where

F(n, l,D)= − ln
ηD

22L+4
− (2L+ 4)[ψ(η+L+ 1)−ψ(η)]

+ L+ 2

η
− (D + 1)

[
1 − 2η(2L+ 1)

4η2 − 1

]
. (5.167)

It is worth noting that this quantity only depends on the entropic integral of the
orthonormal Gegenbauer polynomials. This Gegenbauer functional can be numeri-
cally computed by means of the highly efficient algorithm of Buyarov et al. [127];
however, its analytical calculation is a formidable task, not yet done save for a few
cases (e.g. for ground and circular states). In particular, we found [113] the value

S[γg.s.] = ln
22D+1π

D+1
2

(D − 1)DΓ (D+1
2 )

+D lnZ

+ D + 1

D(D − 1)
− (D + 1)

[
ψ(D − 1)−ψ

(
D − 1

2

)]
(5.168)

for the momentum Shannon entropy of the D-dimensional hydrogenic ground state.
Let us now consider the position Fisher information I [ρ] given by (5.51), which

measures the gradient content of the electron density ρ(r) of the D-dimensional hy-
drogenic system in a quantum mechanical state characterized by the hyperquantum
numbers (n, l, {μ}). We have previously shown that this quantity can be expressed
in the form (5.125) in terms of the expectation values 〈p2〉 and 〈r−2〉. Since

〈p2〉 = Z2

η2
, and 〈r−2〉 = 2Z2

η3

1

2L+ 1
(5.169)

we have the following value [113, 114]

I [ρ] = 4Z2

η3
[η− |m|], D ≥ 2, (5.170)

for the total position Fisher information of the D-dimensional hydrogenic system.
The momentum Fisher information I [γ ] of our system can be similarly calcu-

lated by means of (5.126) in terms of the expectation values (〈r2〉, 〈p−2〉) together
with the expressions (5.150) for 〈r2〉 and the value

〈p−2〉 = η2

Z2

8η− 3(2L+ 1)

2L+ 1
. (5.171)
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We have found consequently the value

I [γ ] = 2η2

Z2
[5η2 − 3L(L+ 1)− (8η− 6L− 3)|m| + 1]; D ≥ 2, (5.172)

for the total momentum Fisher information of the D-dimensional hydrogenic state
(η, l, {μ}).

5.4.3 Uncertainty Relations

Here we shall give the uncertainty relations associated with the following spread-
ing/uncertainty measures of the D-dimensional hydrogenic system: the power mo-
ments (〈r2〉, 〈p2〉), the logarithmic moments (〈ln r〉, 〈lnp〉), the Shannon entropies
(S[ρ], S[γ ]) and the Fisher information (I [ρ], I [γ ]). In addition, we provide the
Cramér-Rao products in position (〈r2〉I [ρ]) and momentum (〈p2〉I [γ ]) spaces. Let
us begin with the Heisenberg uncertainty relation. To find it for the appropriate
canonically conjugate radial coordinates, we have to consider the pair (r,pr) where
pr is the so-called radial momentum operator [128]

pr = −i�
1

r
D−1

2

∂

∂r
r
D−1

2 = −i�

(
∂

∂r
+ D − 1

2r

)
= p2 − L(L+ 1)

r2
(5.173)

which is manifestly hermitian. So, pr has the expectation 〈pr 〉 = 0 and the second
order moment

〈p2
r 〉 = 〈p2〉 −L(L+ 1)〈r−2〉 = Z2

η2

[
1 − 2

η

L(L+ 1)

2L+ 1

]
. (5.174)

Then, the radial momentum standard deviation Δpr becomes

Δpr =
√

〈p2
r 〉 − 〈pr 〉2 = Z

η

[
1 − 2

η

L(L+ 1)

2L+ 1

]
(5.175)

and, from (5.150), the standard deviation of the radial position is

Δr =
√

〈r2〉 − 〈r〉2 = 1

2Z

[
η2(η2 + 2)−L2(L+ 1)2

] 1
2 (5.176)

so that we have, finally, the Heisenberg uncertainty product as

ΔrΔpr = 1

2η

{
1

η(2L+ 1)

[
η2(η2 + 2)−L2(L+ 1)2

]

× [η(2L+ 1)− 2L(L+ 1)]
}1/2

(5.177)

which does not depend on the nuclear charge Z.
On the other hand, from (5.158) and (5.159) we have the following logarithmic

uncertainty relation:
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〈ln r〉 + 〈lnp〉 = 2n− 2l − 1

2n+D − 3
+ (2n+D − 3)(2l +D − 2)

(2n+D − 3)2 − 1
− ln 2 − 1 +ψ(n+ l +D − 2). (5.178)

Note that it does not depend on Z, and for the ground state (i.e. when n = 1,
l = 0) this relation simplifies as

(〈ln r〉 + 〈lnp〉)(g.s.)= − 1

D
− ln 2 +ψ(D), (5.179)

which fulfills the general logarithmic uncertainty relation (5.70).
Now, let us see the Shannon-entropy-based or entropic uncertainty relation.

From (5.163) and (5.166) we have that the Shannon entropy sum is given by

S[ρ] + S[γ ] =A(n, l,D)+ F(n, l,D)+ 2B(l, {μ},D)+ 1

2η
E1

(
L̃
(2L+1)
η−L−1

)

×E(C̃
(L+1)
η−L−1)+ 2

D−2∑
j=1

E
(
C̃
(αj+μj+1)

μj−μj+1

)
(5.180)

where the terms A, B and F are explicitly given by (5.161), (5.164) and (5.167),
respectively. The entropic integrals Ei(p̃n), i = 0 and 1, are given by (5.118) and
(5.162), respectively. In particular, the uncertainty entropy sum for the ground state
has the value

S[ρg.s.] + S[γg.s.] = ln

(
4D+1πD

D

)
+ 2

D − 1

+ D2 − 1

D
− (D − 1)

[
ψ(D − 1)−ψ

(
D − 1

2

)]
(5.181)

which certainly fulfills the entropic uncertainty relation (5.72) valid for general sys-
tems.

The position-momentum Fisher-information-based uncertainty relation of the
hydrogenic state (n, l, {μ}) can be obtained from (5.170) and (5.172), yielding the
value

I [ρ] × I [γ ] = 8

η
(η− |m|)[5η2 − 3L(L+ 1)− |m|(8η− 6L− 3)+ 1]; D ≥ 2.

(5.182)

Here again, this uncertainty product does not depend on the potential strength
(nuclear charge Z), and for the ground state (g.s.) it boils down to

I [ρg.s.] × I [γg.s.] = 4D(D + 1) (5.183)

which clearly satisfies not only the Fisher-information-based uncertainty relation
(5.78) valid for general systems but also the corresponding expression (5.132) valid
for systems moving in arbitrary central potentials. The uncertainty-like relations of
the D-dimensional hydrogen atom seem to have been recently found [129].
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Finally, from (5.150) for 〈r2〉 and (5.170) for I [ρ] one has [113] that the position
Cramér-Rao product of an arbitrary hydrogenic state (n, l, {μ}) is given by

〈r2〉I [ρ] = 2

η
[5η2 − 3L(L+ 1)+ 1](η− |m|). (5.184)

And from the values (5.154) for 〈p2〉 and (5.172) for I [γ ], one has

〈p2〉I [γ ] = 2[5η2 − 3L(L+ 1)− |m|(8η− 6L− 3)+ 1] (5.185)

for any ground and excited states of D-dimensional hydrogenic system. It is worth
noting that both Cramér-Rao products do not depend on the nuclear charge Z. More-
over, they fulfill not only the general Cramér-Rao relations (5.85) but also the cor-
responding relations (5.135) and (5.136) valid for arbitrary central potentials.

5.4.4 Complexity Measures

Here, the LMC shape complexity of the ground and excited states of the D-
dimensional hydrogenic system is shown [130]. According to its definition given
by (5.79), this quantity has two ingredients: the disequilibrium D = 〈ρ〉 and the en-
tropic power N [ρ] = exp(S[ρ]). The former quantity can be calculated by use of
(5.141) and (5.143) obtaining the expression

〈ρ〉 :=
∫

RD

ρ2(r)dr = 2D−2

ηD+2
ZDK1(D,η,L)×K2(l, {μ}) (5.186)

where

K1(D,η,L)=
∫ ∞

0
x−D−5

{
ω2L+1(x)

[
L̃
(2L+1)
η−L−1(x)

]}2
dx (5.187)

and

K2(l, {μ})=
∫

SD−1

|Yl,{μ}(ΩD−1)|4dΩD−1. (5.188)

The entropic power N [ρ] can be straightforwardly written down from the ex-
pression (5.163) for the position Shannon entropy S[ρ], or alternatively from the
expression (5.160) for the radial position Shannon entropy Snl[R;D] and the ex-
pression (5.117) for the angular component Sl,{μ}[Y ;D]. In turn, we have the value

CLMC[ρ] := 〈ρ〉 exp(S[ρ])
= 2D−2

ηD+2
K1(D,η,L)K2(l, {μ})

× exp
{
A(n, l,D)+ 1

2η
E1

[
L̃
(2L+1)
η−L−1

]
+ Sl,{μ}[Y ;D]

}
(5.189)

for the LMC shape complexity of hydrogenic state (n, l, {μ}) in position space,
where A and E1(p̃n) are given by (5.161) and (5.162), respectively. Let us highlight
that this complexity measure does not depend on the nuclear charge Z.
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The explicit expression for this quantity is not known except for some special
cases, such as e.g. the ground state (g.s.); in this case we can easily shown [130]
that

CLMC[ρg.s] =
( e

2

)D
(5.190)

for the LMC shape complexity of the D-dimensional hydrogenic ground state, as
previously found [71, 131]. See [130] for further details and to find the explicit
values of this quantity in other quantum states.

Finally, let us also mention here that the LMC shape complexity and the Fisher-
Shannon and Cramér-Rao complexities of real (D = 3) hydrogenic systems in both
ground and excited states have been explicitly discussed [118] in terms of their
quantum numbers (n, l,m). Let us just point out that the Fisher-Shannon complexity
is shown to quadratically depend on the principal quantum number n.

5.5 Conclusion and Open Problems

This work has surveyed the present status of the analytic D-dimensional informa-
tion theory of the general quantum systems, the single systems in arbitrary central
potentials and the hydrogenic systems. We have shown the present results, to the
best of our knowledge, about not only the power, logarithmic and entropic mo-
ments but also the indirect one-ingredient (Rényi, Shannon and Tsallis entropies,
and the Fisher information) and two-ingredient (Cramér-Rao, Fisher-Shannon and
LMC shape complexities) information-theoretic measures of these systems, together
with their associated uncertainty relations.

We have identified a number of open problems. First, the conditions that a set of
real numbers must satisfy so that a density exists having them as entropic moments
are not yet known. Second, the behaviour of the D-dimensional systems in external
fields has not been studied yet, although some results in presence of electric fields
have been published [15, 132]. Third, it would be very interesting to calculate the
direct spreading measures of the D-dimensional systems so as to be able to mutually
compare them in a proper way; in particular, by calculating the ensemble spreading
lengths in the sense of Hall [133]. Fourth, to include the relativistic effects because
the conceptual importance of information is greatest in the interplay between di-
mensionality and the relativistic effects that is laid on atomic wavefunctions. It is
in this interplay that one finds the origin of the physical phenomena. Some authors
[10, 134–137] have begun to explore this fairly wild territory in both Klein-Gordon
and Dirac cases. Fifth, to study the information-theoretic measures of many-electron
systems moving on a D-dimensional hypershere [138]. Finally, it would be physi-
cally interesting to improve the Rényi, Shannon and Tsallis uncertainty relations for
central potentials.
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Chapter 6
Atomic and Molecular Complexities: Their
Physical and Chemical Interpretations

J.C. Angulo, J. Antolín, and R.O. Esquivel

Abstract Within the present work on the meaning, interpretation and applications
of the complexity measures, different order-uncertainty planes embodying relevant
information-theoretical magnitudes are studied in order to analyse the information
content of the position and momentum electron densities of several atomic (neu-
trals, singly-charged ions, isoelectronic series) and molecular (closed shells, radi-
cals, isomers) systems. The quantities substaining those planes are the exponential
and the power Shannon entropies, the disequilibrium, the Fisher information and the
variance. Each plane gives rise to a measure of complexity, determined by the prod-
uct of its components. In the present work, the values of the so-called López-Ruiz,
Mancini and Calbet (LMC), Fisher-Shannon (FS) and Cramér-Rao (CR) complex-
ities will be provided in both conjugated spaces and interpreted from physical and
chemical points of view. Computations for atoms were carried out within a Hartree-
Fock framework, while for molecules by means of CISD(T)/6-311++G(3df, 2p)
wave functions. In order to have a complete information-theoretical description
of these systems, it appears relevant to consider simultaneously the results in both
spaces.

6.1 Introduction

There has been a tremendous interest in the literature to apply information theory to
the electronic structure theory of atoms and molecules [1, 2]. The concepts of un-
certainty, randomness, disorder or delocalization, are basic ingredients in the study,
within an information theoretical framework, of relevant structural properties for
many different probability distributions appearing as descriptors of several chemi-
cal and physical systems and/or processes.

Following the usual procedures carried out within the Information Theory for
quantifying the aforementioned magnitudes concerning individual distributions,
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some other extensions have been done in order to introduce and to apply the con-
cepts of ‘similarity’ [3–5] or ‘divergence’ [6–9] between two distributions, as com-
parative measures. Quantum similarity theory was originally developed in order to
establish quantitative comparisons between molecular systems by means of their
fundamental structure magnitudes: electron density functions. Applications of this
important theory have been one of the cornerstones of recent chemical research in
molecules [10–12].

Some pioneering efforts relating Information Theory to electronic structure and
properties of molecules can be already found in the seminal papers by Daudel in
the framework of loge theory [13, 14], subsequently followed by Mezey [15] and
reexamined later by Nalewajski [16]. The studies of Mezey [17] and Avnir [18] on
symmetry and chirality-related problems in molecules, and in other very diverse
fields (e.g. image and texture analysis), are also examples of applications of infor-
mational measures on specific aspects of shape, disorder and complexity.

This kind of measures and techniques, which in fact characterize most of the
information theory aims and tools, have been widely employed in recent years also
within the atomic and molecular physics framework. The present work includes a
survey of some of those applications for obtaining relevant information on different
properties of atomic and molecular systems, including structural and experimental
ones.

The role played by the two conjugated variables, namely position and momen-
tum, appears fundamental for a complete description of the atomic and molecu-
lar information features. For example, it is shown that, in spite of their simplicity
among the many-body systems, the atomic ones posses a highly enough level of or-
ganization and hierarchy so as to be considered as an appropriate benchmark for the
suggested complexity study. As should be expected, the same is true also for much
more complex systems such as molecules.

The relevancy of the above concepts motivates the search for an appropriate
quantification, giving rise to a variety of density functionals, each one with its own
characteristics and properties which make them more or less useful attending to the
specific problem we are dealing with.

Diverse information measures for probability distributions of arbitrary dimen-
sionality have been widely applied with the aim of describing a great variety of
systems or processes in many different scientific fields. One of the pioneering and
most well-known of such measures is the variance [19], but later on many others
have been also considered for these kind of applications. Among them, it should be
emphasized the role played by the Shannon entropy S [20]

S(ρ)≡ −
∫

ρ(r) lnρ(r)dr (6.1)

and the Fisher information I [21, 22]

I (ρ)≡
∫

ρ(r)|∇ lnρ(r)|2dr (6.2)

of a distribution ρ(r). In fact, S is a basic quantity in statistical thermodynamics
[23] and it is the essential tool on the application of the ‘Maximum Entropy’ tech-
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nique based on Jaynes’ principle. More recently, Fisher information appeared as a
fundamental magnitude for deriving important laws of e.g. density functional the-
ory [24, 25] or quantum mechanics [26–28] by means of the extremization Frieden
principle [22]. The numerous applications of tools based on both S and I suggest
the relevancy of using them in a complementary way, attending to their main char-
acteristics and properties as will be described later.

6.1.1 Complexity: Meaning and Definitions

Another relevant concept within information theory, in some cases strongly related
to the aforementioned measures, is the so-called ‘complexity’ of a given system or
process. The study of complexity in physical, chemical, biological and social sys-
tems or processes is a topic of great contemporary research interest. A quantitative
measure of complexity is useful to estimate the ability of systems for organization
and it is also proposed as a general indicator of structure or correlation.

Fundamental concepts such as entropy or information are frequently present in
the proposals for characterizing complexity, but it is known that other ingredients
capturing not only randomness are also necessary. In fact one would wish also to
detect, for instance, clustering or pattern.

There is not a unique and universal definition of complexity for arbitrary distri-
butions, but it could be roughly understood as an indicator of pattern, structure and
correlation associated to the system that the distribution describes. Nevertheless.
many different mathematical quantifications exist under such an intuitive descrip-
tion. This the case of the algorithmic [29–31], Lempel-Ziv [32] and Grassberger
[33] complexities, as well as the logical and thermodynamical depths by Bennett
[34] and Lloyd and Pagels [35], respectively, all of them with diverse scientific ap-
plications, as long as other complexity definitions [36]. Some of them share rigorous
connections with others as well as with Bayes and information theory [37].

Complexity is used in very different fields (dynamical systems, time series, quan-
tum wave functions in disordered systems, spatial patterns, language, analysis of
multi-electronic systems, cellular automata, neuronal networks, self-organization,
molecular or DNA analyses, social sciences, etc.) [38–40]. Although there is no
general agreement about the definition of what complexity is, its quantitative char-
acterization is a very important subject of research and has received considerable
attention over the past years [41, 42].

The characterization of complexity cannot be univocal and must be adequate for
the type of structure or process we study, the nature and the goal of the description
we want and for the level or scale of the observation that we use. Thus it is inter-
esting to combine the properties of the new proposals to characterize complexity
and test them on diverse and known physical systems or processes. Fundamental
concepts such as information or entropy are frequently present in the proposals for
characterizing complexity, but some other ingredients capturing not only uncertainty
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or randomness can also be searched. One wishes also to capture some other proper-
ties such as clustering, order or organization of the systems or process. Some of the
definitions and relations between the above concepts are not clear; and even less un-
derstood is how disorder or randomness takes part in the aforementioned properties
of the system and vice versa.

The initial form of complexity is designed in such a way that it vanishes for the
two extreme probability distributions (lesser complex ones), corresponding to per-
fect order (represented by a Dirac-delta) and maximum disorder (associated with
a highly flat distribution). Most of those definitions take into account elements of
Bayesian and information theories. Some of the more recent ones consist of the
product of two factors, measuring, respectively, order and disorder on the given sys-
tems or, equivalently, localization and delocalization [43, 44]. They will be referred
to as product-complexities.

These product complexity measures have been criticized and consequently mod-
ified, leading to powerful estimators successfully applied in a wide variety of
fields [45–50]. Fundamental concepts such as entropy or information are frequently
present in the proposals for characterizing complexity, but it is known that other in-
gredients capturing not only randomness are also necessary. In fact one would wish
also to detect, for instance, clustering or pattern.

Even restricting ourselves to the aforementioned product complexity measures,
there is no unique definition for complexity. The reason is that there exist differ-
ent candidates for being one of the coupled factors which give rise to complexity.
The most popular ones are well-known to play a relevant role in an information-
theoretical framework. Among them, let us mention the Shannon entropy S, the
disequilibrium D, the Fisher information I and the variance V , which will be de-
fined below. Much work has been done using these quantities as basic measures, not
only for quantifying the level of spreading of distributions but also for many other
applications, such as, for instance, maximum-entropy estimation and reconstruction
of an unknown distribution from very limited information on it.

Other authors have recently dealt with some particular factors of the complexity
measures. In particular, Shannon entropy has been extensively used in the study of
many important properties of multielectronic systems, such as, for instance, rigorous
bounds [51], electronic correlation [52], effective potentials [53], similarity [54] and
maximum entropy [55, 56] and minimum cross entropy approximations [57].

More recently, Fisher information has been studied as an intrinsic accuracy mea-
sure for specific atomic models and densities [58, 59] and also for quantum me-
chanics central potentials [27]. Also, the concept of phase space Fisher information,
where position and momentum variables are included, was analyzed for hydrogen-
like atoms and the isotropic harmonic oscillator [60]. The net Fisher information
measure is found to correlate well with the inverse of the ionization potential and
dipole polarizability [59].

Quantum similarities and self-similarities D for neutral atoms were computed
for nuclear charges Z = 1–54 only in the position space [61, 62], but afterwards a
more complete analysis including Z = 1–103 neutral systems and singly charged
ions has been done in position and momentum spaces [5].
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Some studies on similarity, using magnitudes closely related to D or to relative
Shannon entropies, have been also reported [4, 63]. Very recently a comparative
analysis of I and D shows that they both vary similarly with the nuclear charge Z
within the neutral atoms, exhibiting the same maxima and minima, but Fisher infor-
mation presents a significantly enhanced sensitivity in the position and momentum
spaces in all systems considered [64].

6.1.1.1 LMC Complexity

Among the more recent and successful definitions of complexity, especially remark-
able is the one provided by López-Ruiz, Mancini and Calbet [43], to be denoted by
C(LMC) due to its pioneering authors, which satisfies as others do the condition
of reaching minimal values for both extremely ordered and disordered limits. Ad-
ditional relevant properties are the invariance under scaling, translation and replica-
tion.

The initial definition of the LMC complexity (also known as ‘shape complexity’)
has been criticized [41] and modified [48] in order to the aforementioned properties
to be satisfied, giving rise to the expression

C(LMC)≡D · eS =D ·L, (6.3)

of a distribution ρ(r). It is built up as the product of two relevant quantities within
an information-theoretical framework: the ‘disequilibrium’ D [3, 65, 66],

D(ρ)≡
∫

ρ2(r)dr (6.4)

which quantifies the departure of ρ(r) from equiprobability, and the aforementioned
Shannon entropy S as measure of randomness or uncertainty on the distribution.
The usefulness of C(LMC) has been shown in different fields, allowing detection
of periodic, quasiperiodic, linear stochastic and chaotic dynamics [43, 49, 50].

6.1.1.2 Fisher-Shannon Complexity

It appears also interesting to look for statistical complexities involving also a local
information measure. This can be achieved by replacing one of the LMC global fac-
tors by a ‘local’ measure of intrinsic accuracy. In this sense, the main properties of
Fisher information I make this quantity to be an appropriate candidate with the aim
of defining a complexity measure in terms of complementary global and local fac-
tors. Very recently, the Fisher-Shannon complexity C(FS) has been defined [64, 67]
in terms of both Fisher information and Shannon entropy and, consequently, provid-
ing a measure which combines the global and local characters, and also preserving
the desirable properties for any complexity measure as previously described. The
Fisher information I itself plays a fundamental role in different physical problems,
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such as the derivation of non-relativistic quantum-mechanical equations by means
of the minimum I principle, as it also does for the time-independent Kohn-Sham
equations and the time-dependent Euler equation [25, 68].

The FS complexity in the n-dimensional space is defined in terms of the power
Shannon entropy J ≡ 1

2πe e
2S/n and the Fisher information I as

C(FS)≡ I · J (6.5)

where definition of J is chosen in order to preserve general complexity properties,
such as the scaling invariance and the minimum value n because of the dimension of
the space. In contrast with the LMC complexity, and apart from the explicit depen-
dence on Shannon entropy, C(FS) replaces the disequilibrium global factor by the
Fisher local one. The C(FS) expression arises from the isoperimetric n-dimensional
inequality I · J ≥ n [6, 69, 70] providing a universal lower bound to FS complexity.
Among the main applications carried out, it should be remarked those concerning
with atomic distributions in position and momentum spaces where FS complexity
is shown to provide relevant information on atomic shell structure and ionization
processes [64, 67, 71, 72] as well as in molecular systems [73].

6.1.1.3 Cramér-Rao Complexity

Aside of the C(LMC) and C(FS), in the present work we will also analyze the
‘Cramér-Rao’ complexity C(CR), given also as the product of a local and a global
measure, keeping the first one as the Fisher information I , and replacing the Shan-
non entropy exponential by the variance V , giving rise to

C(CR)≡ I · V, (6.6)

product which has been considered in different contexts [71, 72, 74]. Especially
remarkable is the existence of a lower bound, in spite of the factors being of very
different origin as well as their definition in terms of the distribution, emphasizing
again the strong connection between both the local and global level of uncertainty.

6.1.1.4 Generalized Rényi-like Complexities

Let us study a generalization of the LMC and FS complexities by replacing the
Shannon entropy functional by a more general and powerful magnitude as the Rényi
entropy. Hence we deal with a one-parameter (to be denoted by α) generalized com-
plexity which weights different regions of the position or momentum spaces accord-
ing to the value of α. The LMC and FS complexities are particular cases of these
Rényi complexities.

In particular, the so-called ‘shape Rényi complexity’ (SR) is characterized as a
difference between the α-order Rényi entropy and the second order one (expressed
in terms of the disequilibrium, D), and it has been extended to continuous systems
[75], theoretically studied and tested for the binary symmetric channel (BSC) and
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the logistic map [50]. A more extended family of generalized complexity measures
has been proposed, and rigorous bounds, geometrical properties and several appli-
cations have been also studied [76]. Moreover, the ‘Fisher Rényi complexity’ (FR)
is defined by simply replacing the Shannon entropy with the Rényi entropy in the
expression of the Fisher-Shannon complexity. Some rigorous properties for this en-
tropic product, also called Fisher-Rényi product, and similar ones have been recently
obtained [77]. Previous applications of both the SR and FR complexities are very
scarce in the literature. To the best of our knowledge, the first time in which the SR
and FR complexities were considered and analysed for atomic systems was in [78],
apart from recently derived results [77], mainly concerning with uncertainty-like
relationships but not with the atomic structure and the shell-filling process.

In this chapter we consider both generalized Rényi complexities, SR and FR,
in order to study their behavior for atomic systems, in particular the neutral atoms
throughout the whole Periodic Table of elements. In spite of their simplicity as com-
pared to others quantum-mechanical systems, they display a strongly organized and
hierarchical structure.

The concept of Rényi complexity arises from the Rényi entropy, widely used in
the literature when affording different problems within an information-theoretical
framework. The Rényi entropy [79] plays a similar role to those of other density
functionals as descriptors of the uncertainty on a distribution, including very well-
known ones such as the Shannon [20] and the Tsallis [80] entropies.

The Rényi entropy of order α for the distribution ρ(r) is defined as

R(α) ≡ 1

1 − α
lnωα (6.7)

where the quantity ωα is the so-called ‘α-order frequency moment’ of ρ(r) [81],
given by

ωα ≡
∫

ρα(r)dr, (6.8)

which has also been employed in diverse fields, being especially remarkable in Den-
sity Functional Theory for some specific α values [82] (e.g. Thomas-Fermi kinetic
and exchange energies), as well as the own disequilibrium [43, 83]. The normaliza-
tion to unity of the distribution can be expressed as ω1 = 1.

The allowed range of values for the characteristic parameter α of the Rényi en-
tropy is determined by the convergence conditions on the integral in (6.8), being
imposed by the short- and long-range behaviors of the distribution ρ(r). Apart from
the necessary (but not sufficient) condition α > 0 for the finiteness of R(α), the par-
ticular value α = 1 appears as a limiting case, because both the numerator and the
denominator in (6.7) vanish, the limit giving rise to

R(1) = S = −
∫

ρ(r) lnρ(r)dr, (6.9)

that is, the Rényi entropy of order 1 is the Shannon entropy S or, in other words,
the Rényi entropy R(α) represents an extension or generalization of the Shannon
entropy.



174 J.C. Angulo et al.

The power α of the distribution in (6.8), where ωα is defined, allows to enhance
or diminish, by increasing or decreasing its value, the contribution of the integrand
over different regions to the whole integral and, consequently, to the frequency mo-
ments and the Rényi entropy R(α). Higher values of α make the function ρα(r) to
concentrate around the local maxima of the distribution, while the lower values have
the effect of smoothing that function over its whole domain. It is in that sense that
the parameter α provides with a powerful tool to get information on the structure of
the distribution by means of the Rényi entropy.

Another relevant particular case of the Rényi entropy and the frequency moments
corresponds to α = 2, giving rise to the disequilibrium D as the second-order fre-
quency moment ω2, namely

D =
∫

ρ2(r)dr, (6.10)

which measures the ‘level of departure from uniformity’ of the distribution [43, 83].
According to its definition and that of R(α) it is immediate to observe that R(2) =
− lnD, establishing a link between the Rényi entropy and the disequilibrium.

For the LMC and FS complexities, the Shannon entropy S is employed as a
measure of information in one factor, the other factor (measuring order) being the
disequilibrium D and the Fisher information I for the LMC and FS complexities,
respectively. A ‘generalized’ version is obtained when the Shannon entropy contri-
bution is replaced by the Rényi entropy R(α), giving rise to generalized complexity
measures which will be referred as ‘Shape Rényi complexity’ SR(α) and ‘Fisher-
Rényi complexity’ FR(α), defined as

SR(α) ≡D · exp
{
R(α)

}
, (6.11)

with the exponential Rényi entropy being also denoted as L(α) ≡ exp{R(α)}, and

FR(α) ≡ I · J (α), (6.12)

where

J (α) = 1

2πe
exp

{
2

n
R(α)

}
(6.13)

is the ‘α-order power entropy’ of the n-dimensional distribution.
Some comments are in order: (i) the particular cases SR(1) and FR(1) corre-

sponding to α = 1 provide, respectively, the expressions of the LMC and FS com-
plexities, (ii) all relevant invariance properties of LMC and FS also hold for arbitrary
α > 0, (iii) the weighting effect of the parameter α over specific regions, as previ-
ously mentioned for the Rényi entropy, now translates into the associated complex-
ities, and (iv) attending to its definition, the composing factors of the second order
shape Rényi complexity are the inverse of each other, and consequently SR(2) = 1.

Other Rényi products have been also considered in the literature, for which dif-
ferent properties such as, e.g., bounds and uncertainty-like relationships are known
for very specific α ranges [77]. The analysis of those properties is beyond the scope
of the present work, wherein a much wider interval for the α parameter is consid-
ered.
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6.1.2 Selected Relationships and Rigorous Properties
on Complexities

Most of the research on complexities and its corresponding conclusions have been
obtained, so far, by numerically quantifying their values, and much less attention
has been paid to their theoretical properties and exact meaning within an statistical
framework, valid for any arbitrary n-dimensional distribution [84]. In the present
section, different product-complexities are investigated, obtaining results such as
rigorous bounds, uncertainty-like inequalities, relationships among different com-
plexities. Additionally statistical interpretations will be provided. For the sake of
completeness, some of these analytical results on product-complexities will be nu-
merically analyzed for the one-particle densities of atomic systems in both conju-
gated spaces.

Let us consider an arbitrary n-dimensional distribution ρ(r), whose normaliza-
tion is given by

∫
ρ(r)dr = 1 (6.14)

and the integration is performed over the n-dimensional space Rn. Consequently, the
vector r consists of n components, which can be expressed equivalently in Carte-
sian or spherical coordinates, namely r = (x1, . . . , xn)= (r, θ1, . . . , θn−2, φ), where
r = |r| is the modulus of the spatial vector.

It is usual to deal additionally with the corresponding distribution γ (p) in the
conjugated space. Many properties and characteristics of both densities ρ(r) and
γ (p) are well-known to be strongly related. Such is the case, for instance, of the one-
particle densities of many-particle systems (e.g. atoms, molecules), in which ρ(r)
quantify the mass density around location r and γ (p) the linear momentum distri-
bution around the momentum vector p. Different relationships involving quantities
associated with both complementary densities are of capital importance through the
concept of uncertainty of the system.

For illustration, an analysis of different relationships among information-theore-
tical quantities will be carried out later for atomic systems. Consequently we will
deal with densities whose domain is the three-dimensional (n= 3) space. Studies on
complexity measures have been also done in previous works, mainly by computing
their numerical values [40]. However, studies on rigorous relationships among dif-
ferent complexities and/or other information magnitudes, valid for arbitrary systems
and dimensionalities, are very scarce.

In what follows, atomic units (a.u.) will be considered for variables, densities,
functionals and complexities (i.e. � = |m| = e = 1 and, consequently, also the Bohr
radius a0 = 1) when carrying out the numerical analysis for atomic and molecular
systems. Fixing the system of units is essential for a proper description of different
quantities, according to their definition.

It is also worthy to mention that (i) the product distribution f (r,p) ≡ ρ(r)γ (p)
will be also considered in order to have a more complete informational description
of the system, and (ii) in some cases (e.g. atomic systems), it will be sufficient to deal
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with the spherically averaged densities ρ(r) and γ (p), for which the independent
variable range is the non-negative real line [0,∞).

Let us consider the frequency or entropic moments, denoted as functions of the
characteristic parameter ‘q’ as ωr(q) ≡ ∫

ρq(r)dr, strongly related to the Rényi
[79] and Tsallis [80] entropies, denoted as Rr(q) and Tr(q) respectively:

Rr(q)= lnωr(q)

1 − q
, (6.15)

Tr(q)= 1 −ωr(q)

q − 1
, (6.16)

and similarly for the corresponding quantities in momentum and product spaces
(denoted with the subscripts ‘p’ or ‘rp’ instead of ‘r’) by only replacing ρ(r) by
γ (p) or f (r,p). At times, subscripts will be omitted in equations and definitions,
understanding their validity for any arbitrary space.

The LMC, FS and CR definitions allow one to observe the small complexity
values for extreme distributions, because the Shannon entropy approaches −∞ for
highly concentrated distributions (and consequently L → 0), while the disequilib-
rium and the Fisher information go to zero as the distribution spreads uniformly
over its domain.

Contrary to the case of the isolated factors which define C(LMC), namely, the
disequilibrium and the exponential Shannon entropy, not many rigorous properties
and/or relationships are known on complexity [84]. Concerning the aforementioned
factors, it is worth noting, among others, the variational upper and/or lower bounds
on each factor in terms of radial expectation values of the density [85, 86].

The Fisher information and the power Shannon entropy determine the so-called
Fisher-Shannon plane, where the definition of the power entropy is based on well-
known inequalities on such a product [69].

Cramér-Rao complexity emerges when, as done in [72], the product of a local and
a global measure is considered, involving, on one hand, the Fisher information I as
the local one and, on the other, the variance V of the distribution for measuring the
degree of deviation from the mean value. Such a complexity corresponds essentially
to the ‘Cramér-Rao product’, giving rise to [72]

C(CR)≡ I · V (6.17)

for which the inequality C(CR)≥ n2 is also known [6, 69].
Now, additional rigorous properties on the aforementioned complexities will be

shown, being valid for arbitrary n-dimensional distributions. In some cases (as is
well known for the Fisher-Shannon and Cramér-Rao complexities), there exist lower
bounds given as universal constant values (not necessarily dependent on the dimen-
sionality). In the LMC case, however, such a value has been only shown to exist
for the one-dimensional case [46] (i.e. for densities having as domain the real line),
what is generalized for arbitrary dimensionality in the present section. Other results
are here expressed as bounds in terms of expectation values and/or density function-
als. For the sake of completeness, a numerical analysis will be also carried out for
the one-particle densities of atomic systems within a Hartree-Fock framework.
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6.1.2.1 Lower Bound on the LMC Complexity

Starting with López-Ruiz, Mancini and Calbet complexity C(LMC) = D · eS , let
us first observe that it can be also expressed in terms of frequency moments ω(q).
In doing so, it is convenient to define the function

f (q)≡ lnω(q) (6.18)

which, due to the normalization constraint, takes the particular value f (1)= 0. Ad-
ditionally, let us write the LMC complexity as C(LMC)= exp{lnD + S}.

Attending to the definition of S and D, it is easy to check that S = −f ′(1), i.e.
minus the slope of the function f (q) at q = 1, and

lnD = lnω(2)= f (2)= f (2)− f (1)

2 − 1
(6.19)

where the normalization constraint has been taken into account. Last equality is
written in order to point out that lnD represents the slope of the straight line con-
necting points of the function f (q) at q = 1 and q = 2. Finally, and having in mind
the convexity of f (q) (or equivalently, the log-convexity of frequency moments
ω(q) as can be easily shown by using Hölder’s inequality), it is concluded that the
single exponent on C(LMC) written as above is non-negative and, consequently,
that C(LMC)≥ 1.

Moreover, from this proof it is immediately concluded that equalityC(LMC)= 1
is only reached for uniform distributions with a finite volume support. In doing so,
it is enough to observe that equality is only possible for a linear f (q) over the
range 1 ≤ q ≤ 2. Such a linearity translates on frequency moments as ω(q)=Dq−1

(where the values ω(1)= 1 and ω(2)=D have been considered). This means that
∫ (

ρ(r)
D

)q

dr = 1

D
. (6.20)

The non-dependence on ‘q’ of the right-hand-side requires the fraction on the inte-
gral to take only the values 0 or 1. Then, the density has the constant value ρ(r)=D

on its whole support Λ (apart from, at most, a zero-measure set of points), being the
volume of the support 1/D in order to keep the normalization condition.

It is remarkable that lowest LMC complexity corresponds to step distributions
over a finite set Λ, which are precisely the maximum-entropy ones among those
with domain Λ. Then, they necessarily minimize the disequilibrium also, as it is
well-known when dealing with finite-size domains.

In summary, uniform distributions simultaneously minimize the disequilib-
rium D (i.e. localization) and maximize the Shannon entropy, and consequently the
exponential entropy L (i.e. delocalization). But the joint effect of the two opposite
ones on each factor of the C(LMC) complexity is dominated by the minimizer one
(i.e. the disequilibrium), giving rise to the minimum LMC complexity for uniform
densities.
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6.1.2.2 Fisher-Shannon Complexity as Perturbed Power Entropy

Let us now concentrate on the Fisher-Shannon complexity C(FS)= I · J , in which
the localization factor, namely the Fisher information I , has a local character, in the
sense that it constitutes a sensitive measure of the variation of the gradient along the
domain of the distribution. Such a measure is of different character than the other
component, defined in terms of a global measure as the Shannon entropy.

The inequality I · J ≥ n [87], which provides a lower bound to the product of
both quantities, is consequently written in terms of the Fisher-Shannon complexity,
as

Cr(FS)≥ n, (6.21)

Cp(FS)≥ n, (6.22)

Crp(FS)≥ 2πen2, (6.23)

where ‘n’ is the dimension of the space, and last inequality contains an additional
factor apart from the product of complexities in conjugated spaces because of the
definition of the power entropy Jrp in the product space due to its Shannon en-
tropy Srp = Sr + Sp . It is worthy to mention that the above inequalities are valid
for arbitrary distributions on n-dimensional spaces, in the same line as the lower
bound C(LMC) ≥ 1 previously obtained for LMC complexities independently of
the space we are dealing with.

In spite of the different characteristics of the two main components of the Fisher-
Shannon complexity C(FS) = I · J , it is known a result which provides a connec-
tion between both information measures I (ρ) and J (ρ), which as we are going to
show can be also expressed and interpreted in terms of complexities. The above
mentioned connection arises from the so-called effect of Gaussian perturbation,
and it provides information on the variation suffered by the information content of
a distribution ρ when adding a very small Gaussian one. Concerning the Fisher and
Shannon measures, it is known that

d

dε
S(ρ + √

ερG)

∣∣∣∣
ε=0

= 1

2
I (ρ), (6.24)

as shown by de Bruijn [6], where ρG denotes the standard Gaussian distribution with
mean 0 and variance 1. In this sense, the Fisher information could be understood as a
measure of the variation of Shannon entropy of the starting density under a Gaussian
perturbation.

Keeping in mind this result, let us consider the power entropy of the perturbed
distribution ρε ≡ ρ + √

ερG, namely

J (ρε)= 1

2πe
e

2
n
S(ρε). (6.25)

Carrying out the same derivation and limiting operations as in (6.24), but on the
power entropy J (ρε) instead of the Shannon entropy S(ρε), it is immediate to check
that

C(FS)= n
d

dε
J (ρ + √

ερG)

∣∣∣∣
ε=0

, (6.26)
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which gives rise to an additional interpretation of the Fisher-Shannon complexity:
it represents the variation of the power entropy J of a given density ρ when per-
turbed by a Gaussian distribution ρG. So, the interpretation of the Fisher infor-
mation according to the process of Gaussian perturbation, as shown in (6.25), is
now extended to the interpretation, for the same process, in terms of FS complex-
ity (a product-complexity involving simultaneously two information measures) as
shown in (6.26).

6.1.2.3 Lower Bounds on the Cramér-Rao Complexity

Concerning the Cramér-Rao complexity C(CR), we next show that it can be also
bounded from below in terms of radial expectation values of the density. This kind
of upper and/or lower bounds are extensively found in the literature for different
density functionals, such as the Shannon entropy [86] or frequency moments [85],
but this is not the case for complexities, since they are formed through a product of
two different factors, what involves a lot the bounding procedure as compared to its
application for single density functionals.

Here we are going to take advantage of the non-negativity of the so-called relative
Fisher information between two functions. For simplicity, we will restrict ourselves
to the case of spherically symmetric densities, which only applies to atoms.

In doing so, let us consider the non-negative integral
∫

ρ(r)
(
d

dr
ln
ρ(r)

f (r)

)2

dr ≥ 0 (6.27)

where f (r) is a function (not necessarily normalized to unity), on which some con-
ditions will be imposed below. By only carrying out the processes of derivation and
squaring in (6.27), and defining

F(r)≡ f ′(r)
f (r)

(6.28)

it is not difficult to find the relationship

Īr ≥ −〈F 2(r)〉 − 2〈F ′(r)〉 − 2(n− 1)

〈
F(r)

r

〉
(6.29)

where Īr refers to the Fisher information of the spherically averaged density ρ(r),
and the function F(r) has to fulfill the condition rn−1ρ(r)F (r)|∞0 = 0 for the finite-
ness of the expectation values on ρ(r).

So, for an appropriate choice of F(r) the above expression provides a lower
bound on the Fisher information in terms of expectation values of the density. Let
us consider a choice of F(r) for which the right-hand-side of (6.29) consists of a
rational function in which the denominator is the variance Vr = 〈r2〉 − 〈r〉2 and,
consequently, the inequality transforms into a lower bound of the Cramér-Rao com-
plexity Cr(CR). Such a F(r) is given by

F(r)= −αβrα−1 − νγ rγ−1. (6.30)



180 J.C. Angulo et al.

First, we optimize the resulting bound on the parameters (β, ν) and then we consider
the particular case (α = 2, γ = 1), giving rise to

Cr(CR)≥ n2 + (n− 1)〈r−1〉[(n− 1)〈r2〉〈r−1〉 − 2n〈r〉]. (6.31)

Some comments are in order: (i) a similar bound for the corresponding quantity
in conjugated space is obtained by considering the momentum density, and (ii) some
radial moments (in both spaces) are specially relevant from a physical point of view.
It is well known [88], for instance that, for many-electron systems, 〈r−1〉 is es-
sentially the electron-nucleus attraction energy, 〈r2〉 is related to the diamagnetic
susceptibility [88], 〈p−1〉 is twice the height of the peak of the Comptom profile
[89], and 〈p2〉 is twice the kinetic energy [89]. So, these physically relevant and/or
experimentally accessible quantities provide also information on the Cramér-Rao
complexity of the system.

6.1.2.4 Complexities of Hydrogen-like Systems

It is worth noting that, contrary to the multi-electronic systems, none of the three
complexities depends on the nuclear charge Z for one-electron systems (hydrogenic
atoms), although the individual factors do (e.g. Dr is proportional to Z3 and Ir to
Z2, and inversely in conjugated space). In this sense, it is interesting to observe that
such complexities can be analytically determined, their values being

Cr(LMC)= e3

8
= 2.5107, (6.32)

Cr(FS)= 2e

π1/3
= 3.712, (6.33)

Cr(CR)= 3, (6.34)

Cp(LMC)= 66

e10/3
= 2.3545, (6.35)

Cp(FS)= 48(2π)1/3

e29/9
= 3.5311, (6.36)

Cp(CR)= 12

(
1 − 64

9π2

)
= 3.354. (6.37)

As observed before, the multi-electronic character of the systems makes their
complexities increase considerably as compared to those of the corresponding one-
electron ions.

6.1.2.5 Uncertainty-like Relationships for Complexities

It is natural to look also for the existence of uncertainty-like relationships (i.e. in-
volving the same density functionals simultaneously in both conjugated spaces)
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on the complexities considered in the present work. It appears very interesting to
find rigorous and universal relationships among conjugated complexities, in a sim-
ilar fashion to those verified, for instance, by the Shannon entropy (Bialynicki-
Birula and Mycielski (BBM) lower bound Sr + Sp ≥ n(1 + lnπ) [90]), the vari-
ance (Heisenberg uncertainty principle [91]), the Fisher information [92] and the
Rényi [93] and Tsallis [94] entropies. In all cases, the uncertainty inequality pro-
vides a constant lower bound (sometimes dependent on dimensionality) on the sum
or product of the aforementioned conjugated information factors.

Apart from those inequalities on density functionals, there also exist uncertainty-
like relationships between products of expectation values, as shown for instance in
[95] for the radial ones.

So, in spite of existing well known uncertainty inequalities on most of the in-
dividual factors composing complexities, that is not the case (to the best of our
knowledge) of the complexities themselves. The main reason is that, usually, the
two inequalities associated with each factor work in opposite directions, making
consequently impossible to combine both together in order to obtain a coherent
bound on the whole complexity.

In this section, different uncertainty-like complexity inequalities are obtained,
all of them of universal validity. This means that they hold for any pair of functions
related via Fourier transform in the same way as the one-particle densities in the
conjugated spaces do.

Let us also remark that, for the particular case of analyzing products of com-
plexities Cr · Cp , such a study is equivalent to consider the product or phase space
complexity Crp . However, the simple product operation of complexities is not at all
the only way of getting uncertainty-like relationships, appearing also interesting to
deal with quotients of complexities or of some of their powers, among others.

In this sense, it is worthy to mention that the ratio between the Fisher-Shannon
and Cramér-Rao complexities on a given space can be bounded in terms of the
so-called uncertainty products, expressed in terms, as mentioned above, of radial
expectation values of both conjugated spaces. In doing so, let us consider the ratio
C(FS)/C(CR) (in any space) which, attending to the definition of both complexi-
ties, turns out to be J/V in the same space. For simplicity, let us consider the posi-
tion space ratio Jr/Vr , keeping in mind that all results obtained below will be also
valid for the conjugated quantities. The BBM inequality between Shannon entropies
can be written in terms of the power entropies as Jr · Jp ≥ (πe)n−1/2, giving rise to
a lower bound on the numerator Jr in terms of the power entropy Jp . On the other
hand, upper bounds on the power entropy Jp in terms of any non-negative order
radial expectation value 〈pα〉 are also well known [86]. Both inequalities together
provide a lower bound on Jr in terms of 〈pα〉 with α > 0.

Concerning the denominator Vr on the studied ratio, it is straightforward to ob-
tain from its definition that 1/Vr ≥ 1/〈r2〉. Finally, combining the results of both
lower bounds, the relationship

Cr(FS)≥ e1− 2
α

2

(n
α

)2/α
(
αΓ (n/2)

2Γ (n/α)

)2/n 1

〈r2〉〈pα〉2/α
Cr(CR) (6.38)
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is obtained, and similarly in the conjugated space by exchanging the involved vari-
ables. Let us finally remark an uncertainty-like inequality on the LMC complexity
product Cr(LMC) · Cp(LMC) = Crp(LMC) in terms of uncertainty products of
radial expectation values of arbitrary orders. In order to obtain it, let us remem-
ber that the factors appearing in the product space complexity consist of (i) the
exponential entropy on rp-space, bounded from below by means of BBM inequal-
ity, and (ii) the disequilibriums (i.e. second-order frequency moments Dr = ωr(2)
and Dp = ωp(2), as explained in Sect. 6.1.1.4), which are known both to be
bounded from below in terms of two arbitrary radial expectation values of the as-
sociated density [85]. Choosing the normalization as one radial constraint in both
spaces, the resulting bound on the uncertainty LMC complexity product results
in

Cr(LMC) ·Cp(LMC)≥ enΓ 2(n/2)(n+ α)(n+ β)

(
n

n+ 2α

)1+ n
α

×
(

n

n+ 2β

)1+ n
β 1

〈rα〉n/α〈pβ〉n/β (6.39)

for radial expectation values with orders α,β >−n/2 in n-dimensional conjugated
spaces. This result confirms the existence of a strong relationship between complex-
ity uncertainty and uncertainty products in terms of radial expectation values. So,
the knowledge of an uncertainty product imposes a constraint on the minimal value
the LMC complexity product can reach.

6.1.3 Applications in Many-Electron Systems

The main aim of the present chapter is to analyze the above defined LMC, FS and
CR complexities associated to the one-particle densities in both conjugated spaces,
namely position ρ(r) and momentum γ (p) densities, as well as the product or
phase-space distribution f (r,p) ≡ ρ(r)γ (p), for a significant number of atomic
and molecular systems.

The analysis of information-theoretical properties of many-electron systems has
been a major area of inquiry, studied by means of different procedures and quanti-
ties, in particular for atomic and molecular systems in both spaces. It is worthy to
remark the pioneering works of Gadre et al. [96, 97] where the Shannon entropy
plays a fundamental role, as well as the more recent ones concerning electronic
structural complexity [40, 98], the connection between information measures (e.g.
disequilibrium, Fisher information) and experimentally accessible quantities such
as the ionization potentials or the static dipole polarizabilities [59], interpretation
of chemical phenomena from the Shannon entropy in momentum space [99, 100],
applications of the LMC complexity [49, 50] and the quantum similarity measure
[61] to the study of neutral atoms, and their extension to the FS and CR complexities
[64, 72] as well as to ionized systems [52, 67, 71, 101].
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The applications on a global set of 370 atomic systems and 92 molecules will
be carried out in order to gain insight not only on the information content of those
systems, but also to interpret the complexity values in terms of physical and chem-
ical properties. Also the associated informational planes substended by the factors
composing each complexity will allow to obtain relevant interpretations on the main
physical processes and characteristics of the distributions here studied.

The study on atomic systems is done in Sect. 6.2 for the neutral ones, and in
Sect. 6.3 for those involved in ionization processes or belonging to one of the
so-called ‘isoelectronic series’. The informational analysis for the molecules here
considered is contained in Sect. 6.4. In all cases, the appropriate numerical frame-
works are taken into account for an accurate description, as well as the more rel-
evant physical and chemical characteristics in order to better interpret the results
obtained.

6.2 Atomic Complexity and Shell Structure

In this section, several applications on a global set of 103 neutral atoms, i.e. through-
out the whole Periodic Table, are carried out in order to gain insight not only on
the information content of those systems, but also on the associated informational
planes substended by the factors composing each complexity. Their analysis will
allow to obtain relevant interpretations on the main physical processes and charac-
teristics of the distributions here studied.

In doing so, Near-Hartree-Fock wavefunctions [102, 103] will be employed to
compute the atomic densities and the associated information measures and planes
as well as complexities. The one particle density in position space ρ(r) as well as
the total wavefunction is expressed in terms of Slater-type orbitals, from which the
Fourier transform provides the corresponding quantities in momentum space, in-
cluding the one particle density γ (p). For atomic systems in the absence of external
fields (as is the case of this work) it is sufficient to deal with the spherically averaged
densities ρ(r) and γ (p).

Previous complexity studies for atoms have been carried out, but most of them
are only for nuclear charges Z = 1–54 [40, 98]. Recent complexity computations,
using relativistic wave functions in the position space, were also done [104]. Some
other complexity works simply take the position density, not the momentum one, as
basic variable [105]. In this sense, it is worthy to point out the different behaviors
displayed by some of these quantities in position and momentum spaces for atomic
systems, as recently shown [4, 64].

In particular, it has been shown that it is not sufficient to study the above measures
only in the usual position space, but also in the complementary momentum space, in
order to have a complete description of the information theoretical internal structure
and the behaviour of physical processes suffered by these systems.
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Fig. 6.1 LMC and FS complexities for neutral atoms with nuclear charge Z in position (left) and
momentum (right) spaces. Atomic units (a.u.) are used

6.2.1 Comparison Between Atomic LMC and FS Complexities

First, let us compare the LMC and FS complexities for those systems, as done in
Fig. 6.1 for position and momentum spaces ((a) and (b), respectively). It is remark-
able, attending to the curves displayed in these figures, the similar structure of LMC
and FS complexities in both spaces, in spite of their strongly different definition,
mainly due to the information measure accompanying the Shannon factor, namely
the ‘global’ disequilibrium for LMC and the ‘local’ Fisher information for FS. It is
worthy to point out not only the almost identical magnitude orders of both complex-
ities, but also the strong correlation between their structure, characterized by the
number and location of extrema, and the shell-filling process as well as the groups
the atoms belong to. Last comment is supported by the fact that both complexities in
the two conjugated spaces display local minima for noble gases as well as for some
atoms involved in the so-called ‘anomalous shell-filling’ (being specially relevant
the systems Z = 24, 29, 46). Similar comments can be done concerning maximal
values.

Attending to the factors which compose complexities, it is also interesting to
analyze the individual contribution of each one to the total complexity. For illus-
tration, the ‘disequilibrium-Shannon plane’ is shown in Fig. 6.2, drawn in terms of
(D,L), as components of the LMC complexity, in position and momentum spaces
(Figs. 6.2(a) and 6.2(b), respectively). Both figures again reveal the shell-filling pat-
terns, much clearly in momentum than in position space. In fact, the different pieces
of curves in momentum space belong to disjoint exponential entropy (Lp) values.
Adding a new subshell makes Lp to increase, the disequilibrium Dp decreasing
within each subshell. Opposite behaviors are displayed in position space concerning
not only monotonicity, but also location of regions within the planes where heavy
atoms concentrate around: high disequilibrium in position space and high disorder
(entropy) in the momentum one.
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Fig. 6.2 Disequilibrium-Shannon plane (D,L) for neutral atoms with nuclear charge Z in position
(left) and momentum (right) spaces. Atomic units (a.u.) are used

Fig. 6.3 CR complexity for neutral atoms with nuclear charge Z in position (upper left), momen-
tum (upper right) and product (lower) spaces. Atomic units (a.u.) are used

6.2.2 Atomic CR Complexity

Concerning Cramér-Rao complexity C(CR), main numerical results for atomic sys-
tems are displayed in Fig. 6.3 for position, momentum and product spaces.

In analyzing their structure as functions of the nuclear charge Z it is interesting
to observe that most of the minima of Cr(CR) and all of Cp(CR) are the same of
the LMC and FS complexities, previously specified. In fact, shell structure patterns
are very similar for the three complexities, in spite of being determined by four
quantities (S, D, I and V ) of very different character. The same also occurs for
some of those isolated factors in all spaces, such as e.g. the exponential entropy L

and the variance V , which figures are not shown for the sake of shortness.
The Cramér-Rao (I,V ) information plane is shown in Fig. 6.4 for the two conju-

gated spaces, in order to check to which extent each composing factor is responsible
of the shell-filling pattern displayed. In position space (Fig. 6.4(a)), adding a new
subshell makes Fisher information Ir to appreciably increase, its values belong-
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Fig. 6.4 Cramér-Rao plane (I,V ) for neutral atoms with nuclear charge Z in position (left) and
momentum (right) spaces. Atomic units (a.u.) are used

ing to disjoint intervals determined by the valence subshell. However, the variance
Vr ranges over a unique interval for all systems without distinguishing their shell
structure, but displaying a monotonically decreasing behavior (with few exceptions)
within each specific subshell. Just the opposite behaviors for the corresponding mo-
mentum quantities Ip and Vp are observed in Fig. 6.4(b), in what ranges of values
and monotonicity is concerned.

It is worthy to notice how the three complexity measures here considered are
able to provide information not only on randomness or disorder, but also on the
structure and organization of the atomic systems. The same is not always true for
the individual factors, appearing relevant to deal simultaneously with the localiza-
tion and randomness factors, as well as the complementary conjugated spaces, in
order to have a more complete description of the information content of atomic sys-
tems.

Summarizing the results of this section, (i) a complete description of the infor-
mation-theoretic characteristics of atomic systems requires the complementary use
of position and momentum spaces, (ii) LMC and FS complexities provide similar
results (qualitatively and quantitatively) for all neutral atoms in both spaces, display-
ing periodicity and shell-filling patterns as also CR complexity does, and (iii) such
patterns of the localization-delocalization planes in one space are inverse to those of
the conjugated space.

6.2.3 Generalized Atomic Complexities

The next purpose is to analyze numerically the Shape Rényi and Fisher-Rényi com-
plexities of the one-particle densities in position and momentum spaces, ρ(r) and
γ (p) respectively, for neutral atoms. The Shape Rényi complexity in position and
momentum spaces, to be denoted by SR

(α)
r and SR

(α)
p respectively, are shown for

these atomic systems in Figs. 6.5(a) (position) and 6.5(b) (momentum), for diverse
values of the parameter α within the range 0.4 ≤ α ≤ 3.6, corresponding to the
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Fig. 6.5 Shape Rényi complexity SR(α) with α = 0.4, 0.8, 1.0, 1.6, 2.0, 2.4, 3.6 in (a) position
space and (b) momentum space, for neutral atoms with Z = 1–103. Atomic units (a.u.) are used

different curves displayed. It is worthy to point out that for atomic systems the ex-
ponential long-range behavior of the position space density [106] allows any non-
negative value α > 0, while the momentum space one as p−8 [107] imposes the
constraint α > 3/8 = 0.375.

A first look at Fig. 6.5 allows to observe relevant differences between the struc-
tural characteristics of the Shape Rényi complexity SR(α) after comparing the
curves corresponding to both conjugated spaces. The position space measure SR(α)

r

(Fig. 6.5(a)) displays a much richer structure when dealing with very low values of
α, reaching a higher smoothness and monotonicity as α increases. In those cases
where the presence of local extrema is more apparent, a detailed analysis of their
location reveals that they correspond either to closed shell systems or to atoms suf-
fering the so called ‘anomalous shell-filling’. These two characteristics depend on
the occupation number of the outermost or the valence atomic subshell, where the
aforementioned exponential behavior of ρ(r) makes the density values to be very
small as compared to those of the core region. Consequently, powering the density
to a small α value enhances the contribution of the valence region, revealing the
properties associated to the shell-filling process. Specially relevant is the strength
for systems with ‘s’ valence subshell as compared to other values of the angular
momentum quantum number. It is additionally observed that changes of the SR(α)

in both spaces when increasing the nuclear charge (i.e. between consecutive sys-
tems) become smaller as far as considering heavier atoms, being much apparent for
light ones.

The same study in momentum space (Fig. 6.5(b)) provides similar conclusions
in what concerns the location of extrema and its interpretation in terms of the shell
structure. The main difference when comparing to the position space curves is that
such a structure is displayed independently of the α value consider, being much
more apparent again for lower α’s. Nevertheless, even for high α values that struc-
ture can be also observed under a much smaller scale. Again the reason for finding
this behavior can be understood having in mind that the valence region is populated
by low speed electrons, represented in terms of the momentum density γ (p) by its
value around the origin (i.e. close to p = 0). The momentum density in that region
reaches high enough values in order to provide information on the valence electrons
even without carrying out the enhancement operation by lowering the α parameter.
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Fig. 6.6 Fisher-Rényi complexity FR(α) with α = 0.4, 0.8, 1.0, 1.6, 2.0, 2.4, 3.6 in (a) position
space and (b) momentum space, for neutral atoms with Z = 1–103. Atomic units (a.u.) are used

Similar comments to those arising from the analysis of the figure corresponding
to the Shape Rényi complexity SR(α) in both conjugated spaces remain also valid
for the Fisher-Rényi complexity FR(α) as observed in the Fig. 6.6, at least in what
concerns location of extrema and level of structure in each space. The Fig. 6.6 is
composed similarly as the Fig. 6.5, i.e. position space (Fig. 6.6(a)) and momentum
space (Fig. 6.6(b)). At this point it is worthy to remember the very different char-
acter of the factors involved as measures of order for each complexity, namely the
disequilibrium and the Fisher information respectively. In spite of such a difference,
the complexities themselves display a very similar structure for all the α values here
considered. Nevertheless, a detailed analysis reveals the aforementioned ‘local sen-
sitivity’ of the Fisher-Rényi complexity FR(α) as compared to the Shape Rényi one
SR(α) in the magnitude of their variations for closed shells and anomalous shell-
filling systems, specially in the momentum space, much less visible in the position
one.

It should be pointed out the role played by the Rényi complexities SR and FR as
compared to the individual factors composing them. It is well known the monotonic
and structureless behavior of e.g. the disequilibrium Dr or the Fisher entropy Ir in
position space [64], as also recently observed for the Rényi entropy R(α)

p with α > 1
[108].

The study of the Figs. 6.5 and 6.6 reveals not only the interest of considering
different values of the Rényi parameter α in order to obtain a more complete in-
formation on the density structure in different atomic regions from the Rényi-like
complexities, but also the usefulness of dealing simultaneously with both position
and momentum spaces.

Far beyond the Shape Rényi and Fisher-Rényi atomic complexities as descriptors
of the shell-filling pattern and information content, it appears also relevant the study
of the contribution to the whole complexity of each of its composing factors, in order
to analyse the location of all atomic systems here considered in the corresponding
order-disorder plane. In this way, systems belonging to similar complexity values
can be also classified attending to their disequilibrium/order on one hand, and to
their uncertainty/disorder on the other.
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Fig. 6.7 Fisher-Rényi plane
I − J (α) in position space,
with α = 0.4, 0.8, 1.0, 1.6,
2.0, 2.4, 3.6, for neutral atoms
with Z = 1–103. Atomic
units (a.u.) are used

For illustration, the corresponding I − J (α) and D − L(α) planes are shown in
Figs. 6.7 and 6.8, respectively, in the position space for the first case (i.e. Ir −J

(α)
r in

Fig. 6.7) and in the momentum one for the other (i.e. Dp −L
(α)
p in Fig. 6.8). Similar

conclusions are obtained for the other planes: for a given space, both planes look
similar, the differences being mainly associated to the global and local character
of the involved factors, as will be explained when discussing the Figs. 6.7 and 6.8
in detail. Nevertheless, it should be remarked that momentum space planes appear
more involved than the position ones. As mentioned in the previous section, the in-
formation content of the atomic systems is mainly governed by the nuclear region in
position space and by the valence subshells in the momentum one. Adding electrons
to the atomic systems is a process which follows rules (shell-filling pattern) not as
simple as merely increasing the nuclear charge. Such a difference is also displayed
in the corresponding information planes.

Figure 6.7 displays the Fisher-Rényi plane in position space, for different values
of the parameter α. The main two comments arising from the analysis of this figure
are: (i) as previously observed for the position space complexities, the atomic shell
structure is displayed, also in the information planes, for low α values, the curves
being very smooth and almost monotonic for higher ones; the location of peaks
corresponding to local extrema are associated to the characteristics of the atomic
shell-filling, and (ii) all curves display a similar trend of large Fisher information
and low power entropy for heavy atoms, which can be interpreted as a relevant in-
crease of gradient at the origin as the electron cloud concentrates around the nuclear
region when the nuclear charge increases, while in other regions the electron density
spreads almost uniformly, increasing consequently the power entropy.

The aforementioned involvement in momentum space as a consequence of the
shell-filling process is clearly observed in Fig. 6.8, where the location of the dif-
ferent atomic systems in the momentum D − L(α) plane for a given value of the
parameter α are displayed as a ‘cloud’, instead of a curve as in previous figures
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Fig. 6.8 Shape Rényi plane
D−L(α) in momentum space
with α = 0.4, 1.0, 2.0, 3.6, for
neutral atoms with
Z = 1–103. Atomic units
(a.u.) are used

(apart from the trivial case α = 2 with a constant SR(α) product). Nevertheless, it
is observed a general trend for each α value, in the sense that heavy systems con-
centrate around the upper-left region, corresponding to low disequilibrium and high
exponential entropy (i.e. low order and high uncertainty). Additionally, the distance
between consecutive systems becomes shorter as increasing their nuclear charge. In
what concerns the dependence on α, it is observed that the clouds are ordered from
above to below as increasing α, belonging to different bands, parallel to the unity
product line.

A comparison between Figs. 6.7 and 6.8 perfectly shows the complementary
character of the two conjugated spaces as well as that of the contributing individual
factors to the whole complexity in both information planes. In this sense, it is worthy
to remark that heavy systems are located, in the position space plane, in the lower
right corner, corresponding to a high localization and a low entropy. Opposite trends,
however, are observed in momentum space.

As in the complexity figures, it is also possible to distinguish the shell-filling
patterns for low α in momentum space, more clearly for inner subshells (i.e. 1s,
2s, 2p). Nevertheless, the same can be also observed for additional subshells by
employing an appropriate scale in the figure.

6.2.4 Bounds on Complexity

It should be expected that the higher C(LMC) values are, the more far from uni-
formity the density is. To have an idea on the validity of this remark as well as on
the comparison of complexity to unity, we show in Fig. 6.9 the values of LMC com-
plexity of position and momentum densities, ρ(r) and γ (p) respectively, for neutral
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Fig. 6.9 LMC complexities
C(LMC) in position and
momentum spaces for neutral
atoms with nuclear charge
from Z = 1 to Z = 103.
Atomic units (a.u.) are used

Fig. 6.10 Fisher-Shannon
complexities C(FS) in
position and momentum
spaces for neutral atoms with
nuclear charge from Z = 1 to
Z = 103. Atomic units (a.u.)
are used

atoms with nuclear charge from Z = 1 to Z = 103. The discontinuities in the curves
correspond to their decomposition according to the different periods conforming the
whole Periodic Table, as also done for drawing the curves in other figures.

It is clearly observed that, apart from being all values in both spaces above unity,
there appear different pieces in each curve corresponding to electronic filling of
specific subshells, displaying monotonic behaviors which are opposite when com-
paring both conjugated spaces. This can be interpreted in terms of the uncertainty
principle (which will be also analysed in next sections), in such a way that a higher
delocalization in one space is associated to a higher localization in the conjugated
one.

Additionally, higher values of complexity for heavy atoms are due to the lost of
uniformity because of the increase in the level of shell structure, image with exactly
corresponds to the intuitive notion of complexity of a system.

The numerical analysis of Fig. 6.10 for C(FS) is now carried out similarly as
done in Fig. 6.9 for C(LMC), by considering exactly the same systems and spaces.
Now, the lower bound is established by the three-dimensional (n = 3) space as do-
main of the distributions. Similar comments to those of the previous figure, on the
behavior in terms of the nuclear charge Z, can be also done.

In Fig. 6.11, a numerical computation of Cp(CR) (momentum space) and the
particular bound given by (6.31) including momentum expectation values is dis-
played for dimension n = 3. It is clearly observed the similar trends followed by
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Fig. 6.11 Cramér-Rao
complexity Cp(CR) in
momentum space, and lower
bound in terms of radial
expectation values, for neutral
atoms with nuclear charge
from Z = 1 to Z = 103.
Atomic units (a.u.) are used

Fig. 6.12 Fisher-Shannon
complexity Cr(FS) in
position space and lower
bound in terms of
Cramér-Rao complexity
Cr(CR), for neutral atoms
with nuclear charge from
Z = 1 to Z = 103. Atomic
units (a.u.) are used

the exact complexity and its lower bound. Both curves display a structure strongly
related to the shell-filling process. A similar figure is obtained for the corresponding
quantities in position space, being consequently also valid the same comments as
given above.

A numerical analysis of the inequality between FS and CR complexities is carried
out (in position space) in Fig. 6.12, for the particular case α = 1. As in previous
figures, it is again observed the similar shape displayed by both the exact Fisher-
Shannon complexity and its lower bound in terms of Cramér-Rao complexity and
the chosen uncertainty product.

6.3 Ionization Processes and Atomic Complexity

This section is devoted to the analysis, by means of complexities, information planes
and their basic ingredients, of specific kinds of ionization processes. Most usually,
the study if performed by considering a neutral atom and by analyzing the evolution
of the aforementioned quantities after the ionization of the initial system. Such an
ionization can be performed in two different ways: (i) by adding or removing an
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electron of the neutral system while keeping fixed the nuclear charge, what gives rise
to a singly-charged ion (Sect. 6.3.1), or (ii) by modifying the nuclear charge keeping
fixed the number of electrons, the resulting system belonging, consequently, to the
same isoelectronic series of the neutral atom (Sect. 6.3.2). Different behaviors will
be discussed attending to the aforementioned ionization processes.

6.3.1 Singly Charged Ions

In this section the LMC, FS and CR complexities are analyzed for singly charged
ions with a number of electrons up to N = 54, that is with a global charge
Q = Z −N = ±1, Z being the nuclear charge. These quantities, together with the
previously discussed values for neutral atoms within such N range, provide us with
information on how complexity progresses in mono-ionization processes [67, 71].
In doing, we are considering a global of 150 systems (53 cations, 43 anions and
54 neutral atoms), the computations being performed by employing the accurate
wavefunctions of [102].

6.3.1.1 LMC and FS Complexities of Singly-Charged Ions

A similar comparison between LMC and FS complexities as done previously for
neutral atoms in both conjugated spaces has been also carried out for anions and
cations in the two spaces. Conclusions raised by the analysis of these quantities for
ions are almost identical to those provided when discussing the Fig. 6.1 for neutral
atoms, in what concerns similarity between C(LMC) and C(FS) values as well
as their connection with the shell-filling process by means of the location of their
extrema, most minima of complexity corresponding to noble gases or the anomalous
shell-filling set of atoms.

6.3.1.2 CR Complexity of Singly-Charged Ions and Neutral Atoms

Concerning the Cramér-Rao complexity C(CR), its evolution throughout the ioniza-
tion is clearly displayed in Fig. 6.13, where its value is provided for the three con-
sidered species (anions, cations and neutrals) in order to determine to which extent
the ionization processes (by adding or removing electrons keeping fixed the nuclear
charge Z) modify the atomic complexity. For illustration, this comparison is car-
ried out for the Cramér-Rao complexity Crp(CR) in the product space as shown in
Fig. 6.13. Again, it is clearly observed the correlation of complexity with the atomic
shell structure for all species. Additionally, it is appreciated that (i) complexity in-
creases as the system loses an electron, and (ii) maxima are clearly associated to ‘s’
valence subshells (those involved in ionization) while minima correspond to noble
gases or some anomalous ‘d’ subshells filling.
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Fig. 6.13 CR complexity in
product space for neutral
atoms and singly charged
ions with nuclear charge Z.
Atomic units (a.u.) are used

Fig. 6.14 Cramér-Rao plane (I,V ) in position (left) and momentum (right) spaces, for neutral
atoms and singly charged ions with nuclear charge Z. Atomic units (a.u.) are used

The Cramér-Rao informational plane subtended by the constituent factors (I,V )
also provides interesting results interpreted according to the atomic shell structure.
Figure 6.14 displays this plane in both conjugated spaces ((a) for position and (b) for
momentum) for the systems here considered. Apart from the faithful reproduction
of shell structure, it is worthy to remark that, as shown in Fig. 6.14(a), systems of
large Z are highly localized and organized in position space while the light ones
appear much more delocalized. Location at the position (Ir ,Vr) plane after an ion-
ization process slightly changes for heavy atoms as compared to the lighter ones.
Additionally, for fixed nuclear charge Z complexity Cr(CR) decreases following
the sequence anion-neutral-cation, that is as losing electrons, being the changes as-
sociated to ‘s’ electrons considerably higher to those of ‘p’ or ‘d’ subshells.

Exactly the opposite trends to those discussed in position space are observed in
the momentum one, as shown in Fig. 6.14(b): large Z systems are now less localized
and with a greater variance than the light ones, and losing electrons makes the vari-
ance to increase and Fisher information to decrease, just the reciprocal that happens
in position space.
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6.3.2 Isoelectronic Series: Dependence of Complexity on the
Nuclear Charge

After carrying out the analysis of complexity dependence on the outermost sub-
shells, as done in the previous section by considering ionization processes, let us
now focus in the atomic core as source of the attractive forces and their effects on
complexity values.

6.3.2.1 Composition and Number of Isoelectronic Series

We start by considering a neutral atom, that is a system with identical values of
the nuclear charge Z and the number of electrons N , from which we give rise to a
set of cations by progressively increasing one-by-one the nuclear charge Z keeping
fixed the number of electrons (or, equivalently, starting from a global charge Q ≡
Z − N = 0 until reaching a maximum positive value, being Qmax = 20 in the nu-
merical application here considered). Such a set of cations together with the neutral
atom is known as an ‘isoelectronic series’, characterized by the fixed number of
electrons N as well as the maximum value Qmax. Studying the previously consid-
ered complexity measures for a given isoelectronic series provides information on
their dependence on the nuclear charge Z for fixed N electrons. In this section, such
a study will be carried out for nine isoelectronic series, namely those correspond-
ing to N = 2–10, within a Hartree-Fock framework [109]. Each series consists of
21 members (a neutral atom and 20 cations), giving rise consequently to analyze
complexities of a global of 189 atomic systems.

6.3.2.2 LMC Complexity and Information Plane

In Fig. 6.15 the disequilibrium-Shannon plane (D,L) is shown in position, mo-
mentum and product spaces (Figs. 6.15(a), 6.15(b) and 6.15(c), respectively) for the
isoelectronic series N = 2–10. For the individual spaces (position and momentum),
each series roughly follows a linear trajectory in a double logarithmic scale. In fact,
the Helium series (N = 2) displays an almost constant C(LMC) = D · L line in
both spaces, what means that increasing the nuclear charge produces, as should be
expected, a higher localization D and a lower uncertainty, both effects compensating
each other proportionally and providing an almost constant product which defines
LMC complexity. Concerning product space, the corresponding Disequilibrium-
Shannon plane (D,L) is shown in Fig. 6.15(c). It is worthy to notice the strong
changes in the slopes of all series as compared to those of the isolated spaces. While
product entropy does not suffer drastic changes, localization appears very differ-
ent within each series. Additionally, shell-filling patterns are clearly displayed, with
systems having 2s as valence subshell having a higher complexity than those char-
acterized by the 2p one. It is also remarkable that the N = 2 series display a very
different behavior as compared to the other series. This can be interpreted by taking
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Fig. 6.15 Disequilibrium-Shannon plane (D,L) in position (upper left), momentum (upper right)
and product (lower) spaces, for isoelectronic series with N = 2–10 electrons. Atomic units are used

into account that those systems are the unique ones here considered consisting only
on a core shell. From all these comments it should be concluded that the product
space plane is relevant in order to obtain an interpretation of the Disequilibrium-
Shannon plane values in terms of shell structure.

In position space, systems with large nuclear charge Z for any isoelectronic se-
ries display a highly localized structure (large D) as shown in Fig. 6.15(a). In such
a large D area, trajectories are almost linear which correspond to an almost con-
stant product measure. Deviations from this linear shapes are better observed for
low nuclear charge systems, possessing a greater complexity. Biggest position space
complexities correspond to neutral systems, with a relatively lower localization and
greater uncertainty as compared to its cations. All those comments are just the oppo-
site ones in momentum spaces, as can be readily realized by observing Fig. 6.15(b).
Heavy systems are characterized by a low localization and high entropy in momen-
tum space, and neutrals deviate from isoproduct lines as possessing a higher level
of structure. It is worthy to remark also that spacing between consecutive systems
within each isoelectronic series decrease as increasing Z, because of a higher sim-
ilarity between systems with large nuclear charge as compare to those with low Z,
which progressively separate among themselves.

6.3.2.3 FS Complexity and Information Plane

A similar analysis has been also carried out for the Fisher-Shannon plane (I, J ) in
position, momentum and product spaces (Fig. 6.16). It is worthy to remember the
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Fig. 6.16 Fisher-Shannon plane (I, J ) in position (upper left), momentum (upper right) and prod-
uct (lower) spaces, for isoelectronic series with N = 2–10 electrons. Atomic units are used

rigorous lower bound to the associated FS complexity C(FS) = I · J ≥ constant
(the constant being 3 for the conjugated spaces and 18πe for the product space)
in order to verify such a bound for the systems here considered. The straight line
I · J = constant drawn in the plane by using a double logarithmic scale divides it
into an ‘allowed’ (upper) and a ‘forbidden’ (lower) parts. Parallel lines to that one
represent isocomplexity points, and higher deviations from this frontier are associ-
ated to greater FS complexities. Such a parallel shape is roughly displayed by all
isoelectronic series in both position and momentum spaces, as shown respectively
in Figs. 6.16(a) and 6.16(b). Similar comments to those provided on discussing
Fig. 6.15 in what concerns location areas of systems at the plane, distances within a
series between consecutive systems, deviation from minimal complexity values and
opposite behaviors in conjugated spaces are also valid for the position and momen-
tum (I, J ) planes as concluded by analyzing Figs. 6.16(a) and 6.16(b).

For the sake of brevity, results on the Cramér-Rao plane (I,V ) are not displayed,
but conclusions obtained from their values are the same as those just discussed for
disequilibrium-Shannon and Fisher-Shannon planes.

6.4 Molecular Complexities and Chemical Properties

With the purpose of organizing and characterizing the complexity features of the
molecular systems under study, several reactivity properties have been computed
[73], such as the ionization potential (IP), the total dipole moment (μ), the hard-
ness (η) and the electrophilicity index (ω). The ionization potential was obtained
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by use of the Koopmans theorem [110, 111] by calculating the HOMO and LUMO
orbital energies at the B3LYP/6-311++G(3df, 2p) level of theory. The hardness η
was obtained within the conceptual DFT framework [82, 112], through

η = 1

2S
= εLUMO − εHOMO

2
(6.40)

where ε denotes the frontier molecular orbital energies and ‘S’ the softness of the
system. In general terms, hardness and softness are good descriptors of chemical
reactivity, the former measures the global stability of the molecule (larger values of
η means less reactive molecules), whereas the S index quantifies the polarizability
of the molecule [113–116], thus soft molecules are more polarizable and possess
predisposition to acquire additional electronic charge [117]. The chemical hardness
η is a central quantity for use in the study of reactivity and stability, through the hard
and soft acids and bases principle [118–120].

The electrophilicity index [121], ω, allows a quantitative classification of the
global electrophilic nature of a molecule within a relative scale. Electrophilicity
index of a system in terms of its chemical potential and hardness is given by the
expression

ω = μ2

2η
. (6.41)

The electrophilicity is also a good descriptor of chemical reactivity, which quantifies
the global electrophilic power of the molecules [117].

The electronic structure calculations performed in the present study, for the
whole set of molecules, were obtained with the Gaussian 03 suite of programs [122]
at the CISD/6-311++G(3df, 2p) level of theory. The molecular information quanti-
ties (S,D, I) in both conjugated spaces were obtained by employing advanced soft-
ware together with 3D numerical integration routines [123, 124] and the DGRID
suite of programs [125]. All quantities calculated are given in atomic units through-
out this work.

The molecular set chosen for the study includes different types of chemical or-
ganic and inorganic systems (aliphatic compounds, hydrocarbons, aromatic, alco-
hols, ethers, ketones). The set represents a variety of closed shell systems, rad-
icals, isomers as well as molecules with heavy atoms such as sulphur, chlorine,
magnesium and phosphorous. The geometries needed for the single points calcula-
tions above referred were obtained from standard databases [126]. The molecular
set might be organized by isoelectronic groups as follows (‘N ’ stands for the total
number of electrons):

N = 10 NH3 (ammonia)
N = 12 LiOH (lithium hydroxide)
N = 14 HBO (boron hydride oxide), Li2O (dilithium oxide)
N = 15 HCO (formyl radical), NO (nitric oxide)
N = 16 H2CO (formaldehyde), NHO (nitrosyl hydride), O2 (oxygen)
N = 17 CH3O (methoxy radical)
N = 18 CH3NH2 (methyl amine), CH3OH (methyl alcohol), H2O2 (hydrogen per-

oxide), NH2OH (hydroxylamine)
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N = 20 NaOH (sodium hydroxide)
N = 21 BO2 (boron dioxide), C3H3 (radical propargyl), MgOH (magnesium hy-

droxide), HCCO (ketenyl radical)
N = 22 C3H4 (cyclopropene), CH2CCH2 (allene), CH3CCH (propyne), CH2NN

(diazomethane), CH2CO (ketene), CH3CN (acetonitrile), CH3NC (methyl
isocyanide), CO2 (carbon dioxide), FCN (cyanogen fluoride), HBS (hydro-
gen boron sulfide), HCCOH (ethynol), HCNO (fulminic acid), HN3 (hy-
drogen azide), HNCO (isocyanic acid), HOCN (cyanic acid), N2O (nitrous
oxide), NH2CN (cyanamide)

N = 23 NO2 (nitrogen dioxide), NS (mononitrogen monosulfide), PO (phosphorus
monoxide)

N = 24 C2H4O (ethylene oxide), C2H5N (aziridine), C3H5 (allyl radical), C3H6
(cyclopropane), CF2 (difluoromethylene), CH2O2 (dioxirane), CH3CHO
(acetaldehyde), CH3CO (acetyl radical), CHONH2 (formamide), FNO (ni-
trosyl fluoride), H2CS (thioformaldehyde), HCOOH (formic acid), HNO2
(nitrous acid) NHCHNH2 (aminomethanimine), O3 (ozone), SO (sulfur
monoxide)

N = 25 CH2CH2CH3 (npropyl radical), CH3CHCH3 (isopropyl radical), CH3OO
(methylperoxy radical), FO2 (dioxygen monofluoride), NF2 (difluoroamino
radical), CH3CHOH (ethoxy radical)

N = 26 C3H8 (propane), CH3CH2NH2 (ethylamine), CH3CH2OH (ethanol),
CH3NHCH3 (dimethylamine), CH3OCH3 (dimethyl ether), CH3OOH
(methyl peroxide), F2O (difluorine monoxide)

N = 27 CH3S (thiomethoxy)
N = 30 ClCN (chlorocyanogen), OCS (carbonyl sulfide), SiO2 (silicon dioxide)
N = 31 PO2 (phosphorus dioxide), PS (phosphorus sulfide)
N = 32 ClNO (nitrosyl chloride), S2 (sulfur diatomic), SO2 (sulfur dioxide)
N = 33 OClO (chlorine dioxide)
N = 34 CH3CH2SH (ethanethiol), CH3SCH3 (dimethyl sulfide), ClO2 (chlorine

dioxide), H2S2 (hydrogen sulfide), SF2 (sulfur difluoride)
N = 38 CS2 (carbon disulfide)
N = 40 CCl2 (dichloromethylene), SO (sulfur monoxide)
N = 46 MgCl2 (magnesium dichloride)
N = 48 S3 (sulfur trimer), SiCl2 (dichlorosilylene)
N = 49 ClS2 (sulfur chloride)

For this set of molecules we have calculated different information and complexity
measures, i.e. D, L, S (Shannon entropy), I , C(LMC), C(FS), in each of the
conjugated spaces as well as in the product space.

In contrast with the atomic case, where the complexities possess a high level of
natural organization provided by periodical properties [4, 64, 71, 72] the molecular
case requires some sort of organization which could be affected by many factors
(structural, energetic, entropic, etc.). So that several types of molecular systems,
ordered according to the main chemical properties of interest, i.e., the total energy,
the dipole moment, the ionization potential, the hardness and the electrophilicity, are
here analyzed by establishing a chemical interpretation of the different complexity
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Fig. 6.17 LMC (red circles) and FS (blue triangles) complexities in product (upper left), position
(upper right) and momentum (lower) spaces for the set of molecules 1 to 92 ordered as their energy
increase. Atomic units (a.u.) are used

measures. From a numerical point of view, a common feature to be noticed in all
cases studied below is that there exists a strong structural similarity between the
Crp(LMC) and Crp(FS) measures.

6.4.1 Complexity and Molecular Energy

In Fig. 6.17(a) the Crp(FS) and Crp(LMC) values for all molecules are charac-
terized by an increasing energetic behavior, i.e., molecules to the left side of the
figure possess lower energies whereas molecules at the right side correspond with
higher molecular energies. It may be observed that both complexity measures in the
product space (rp) possess a similar behavior, i.e., both indicating a clear region of
lower complexity (molecules with lower energies) and a region of higher complex-
ity (molecules with higher energies). Then, we can establish for this particular set
of molecules that the total energy governs the molecular complexity behavior in a
simple manner.

In order to analyze the contribution of each conjugated space to the complexity
measures LMC and FS previously discussed, the C(LMC) and C(FS) measures
in position and momentum spaces are displayed in Figs. 6.17(b) and 6.17(c), re-
spectively. The most remarkable feature that one may observe from these figures is
the close resemblance between the two complexity measures in momentum space
(Fig. 6.17(c)), whereas in position space the C(FS) measure shows more compli-
cated patterns of uncertainty (J ) and organization (I ). In contrast, the Cr(LMC)
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Fig. 6.18 LMC (red circles)
and FS (blue triangles)
complexities in product space
for the set of molecules 1 to
92 ordered as their number of
electrons increase. Atomic
units (a.u.) are used

measure seems to be less sensitive to energetic changes, mainly in the region of
lower energy molecules.

6.4.2 Molecular Complexity and Number of Electrons

In Fig. 6.18 we have plotted the complexity values for the Crp(LMC) and Crp(FS)

measures constrained by the number of electrons (molecules are ordered from left
to right according with their number of electrons in an increasing manner). We
may observe from Fig. 6.18 that both complexity measures behave in a similar
fashion, i.e. molecules with low number of electrons (N < 26) possess low com-
plexities whereas molecules with larger number of electrons (N > 26) possess
larger complexity values. A few exceptions may be noticed from Fig. 6.18, for
molecules with low number of electrons and higher complexities which correspond
to molecules containing heavier atoms (phosphorous, magnesium or sulphur); then,
establishing that complexity also depends on the atomic number of the atom form-
ing part of the molecular systems. This general observation will be analyzed be-
low.

6.4.3 Molecular Complexity and Hardness

In Fig. 6.19 we have plotted the complexity values for the set of molecules con-
strained by increasing hardness values (molecules to the left posses lower hardness
values and higher to the right). The main observation is again that both complex-
ities behave in the same way, both indicating a clear relationship with the hard-
ness and hence with the chemical reactivity of the molecules. We mentioned above
that η is a central quantity for the study of reactivity and global molecular stability
through the hard and soft acids and bases principle. Therefore we can observe from
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Fig. 6.19 LMC (red circles)
and FS (blue triangles)
complexities in product space
for the set of molecules 1 to
92 ordered as their hardness
increase. Atomic units (a.u.)
are used

Fig. 6.19 that molecules that are more stable chemically (global stability) possess
low complexity values, i.e. chemical reactivity seems to be directly related to the
complexities in that higher values correspond with less stable molecules, with very
few exceptions which correspond to molecules with heavier atoms as we mentioned
before.

6.4.4 Molecular Complexity and Ionization Potential

Another way of assessing the chemical stability of the molecules in relation with
their complexities may be analyzed through the ionization potential (IP) values and
this might be observed from Fig. 6.20 where molecules with high IP values (more
stable molecules) are located to the right of the figure. We note that stability is
related with the molecular complexities in that higher complexity values correspond
with more reactive molecules.

Fig. 6.20 LMC (red circles)
and FS (blue triangles)
complexities in product space
for the set of molecules 1 to
92 ordered as their ionization
potential increase. Atomic
units (a.u.) are used
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Fig. 6.21 LMC (red circles)
and FS (blue triangles)
complexities in product space
for the set of molecules 1 to
92 ordered as their
electrophilicity increase.
Atomic units (a.u.) are used

6.4.5 Molecular Complexity and Electrophilicity

The electrophilicity index is other useful indicator of chemical reactivity which
quantifies the global electrophilic power of the molecules (predisposition to acquire
an additional electronic charge). In Fig. 6.21 we have plotted the complexity values
in the product space for the set of molecules constrained by increasing electrophilic-
ity values. We may observe that molecules with higher capacity to acquire molecular
charge (less stable) possess higher complexity values.

6.4.6 Information Planes in Molecules

In the search of more pattern and organization we have found useful to impose one
more constrain to the molecules through isoelectronic common features and so it
is interesting to analyze the contribution of each one of the information measures
D and L to the total LMC complexity. This is done in Figs. 6.22(a) and 6.22(b) in
their respective conjugated spaces through the information plane (D-L) for some of
the isoelectronic molecular series with N = 22, 24, 25, 26 electrons. Figure 6.22 de-
picts the complexity measures in r and p spaces in a double-logarithmic scale which
show a division in the D-L plane into two regions. The left area is the forbidden re-
gion by inequality D · L ≥ 1 [84], and parallel lines to it represent isocomplexity
lines showing that an increase (decrease) in uncertainty, L, along them is compen-
sated by a proportional decrease (increase) of disequilibrium (order), and higher
deviations from this frontier are associated to greater LMC complexities. Each iso-
electronic series follows a trajectory in the D-L plane that can be easily analyzed.

For instance, the isoelectronic series corresponding to 26 electrons (green circles
in both figures) shows an almost constant line in both spaces, indicating that the
effect of increasing the energy (towards the left and upper region of the Fig. 6.22(a)
in r-space and the right and lower region of the Fig. 6.22(b) in p-space) produces
more uncertainty L and consequently less order (disequilibrium D). On the other
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Fig. 6.22 Disequilibrium-Shannon plane (D,L) for isoelectronic series of 22 (blue triangles), 24
(red triangles), 25 (black boxes) and 26 (green circles) electrons, in position (left) and momentum
(right) spaces. Double logarithmic scale. Lower bound (DL = 1) is depicted by the dashed line.
Atomic units (a.u.) are used

Fig. 6.23 Fisher-Shannon plane (I, J ) for isoelectronic series of 22 (blue triangles), 24 (red tri-
angles), 25 (black boxes) and 26 (green circles) electrons, in position (left) and momentum (right)
spaces. Double logarithmic scale. Lower bound (DL = 1) is depicted by the dashed line. Atomic
units (a.u.) are used

hand, systems that are not in the isocomplexity lines belong to molecules with
higher complexity values which possess heavier atoms, as we have discussed above.
This behavior means that in position space, the higher complexity is due to higher
disequilibrium values whereas in momentum space it is due to higher uncertainty
values. It is also worthy to note that all isocomplexity lines representing the iso-
electronic molecular series with N = 22, 24, 25, 26 electrons show large deviations
(higher LMC complexities) from the rigorous lower bound as it may be observed
from Fig. 6.22 in both conjugated spaces.

Continuing with the analysis of the pattern and organization of isoelectronic se-
ries we have analyzed the contribution of each one of the information measures I
and J to the total FS complexity. This is done in Figs. 6.23(a) and 6.23(b) in their
respective conjugated spaces through the information plane (I -J ) for some of the
isoelectronic molecular series with N = 22, 24, 25, 26 electrons.
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Figure 6.23 shows the results in r and p spaces which indicate a division of the
I -J plane into two regions. At this point it is worth mentioning that the rigorous
lower bound to the associated FS complexity C(FS) = I · J ≥ constant (the con-
stant being 3 for the conjugated spaces and 18πe for the product space) is verified
for the systems here considered. The straight line I · J = constant drawn in the
plane by using a double logarithmic scale divides it into an allowed (upper) and a
forbidden (lower) parts. Parallel lines to that one represent isocomplexity points, and
higher deviations from this frontier are associated to greater FS complexities. Over
these lines an increase (decrease) in uncertainty (J ) gets balanced by a proportional
decrease (increase) of accuracy (I ). Such a parallel shape is displayed by all iso-
electronic series in both position and momentum spaces, as shown in Figs. 6.23(a)
and 6.23(b) respectively.

Each isoelectronic series in Fig. 6.23 follows a trajectory in the I -J plane that can
be easily analyzed. For instance, the isoelectronic series corresponding to 26 elec-
trons (green circles in both figures) shows an almost constant line in both spaces,
showing that the effect of increasing the energy (towards the left and upper region
of the Fig. 6.23(a) in r-space and the right and lower region of the Fig. 6.23(b),
in p-space, produces more uncertainty J and consequently less organization (accu-
racy I). On the other hand, systems that are not in the isocomplexity lines belong
to higher complexity molecules as we have previously discussed, which possess
heavier atoms as it may be observed from Fig. 6.23. It is also worth noting that all
isocomplexity lines representing the isoelectronic molecular series with N = 22, 24,
25, 26 electrons show large deviations (higher FS complexities) from the rigorous
lower bound (I · J = 3) as it may be observed from Fig. 6.23 in both conjugated
spaces.

In spite of the fact that not all information products are good candidates to form
complexity measures that preserve the desirable properties of invariance under scal-
ing, translation and replication, it appears interesting to analyze other planes which
might be useful to analyze patterns of order-organization although the product fails
to be invariant under scale transformation. Thus, in Fig. 6.24 we have plotted the
(I,D) planes in their respective conjugated spaces for some of the isoelectronic
molecular series with N = 22, 24, 25, 26 electrons. The results in r and p spaces
show an interesting linear behavior with a positive slope for all isoelectronic molec-
ular series, meaning that as the molecular order increases (higher D) their organiza-
tion also increases (higher I ). Interestingly, Fig. 6.24 shows that these planes are not
only useful to detect molecular patterns of order-organization but also molecules of
higher complexity (SO, HBS, H2CS) which do not obey the above mentioned linear
behavior. According to the results shown in these figures, molecules with heavier
atoms possess more complexity patterns that do not fit with the simple description
of order-organization. It is also interesting to note that whereas for these molecules
the latter is true in position space (Fig. 6.24(a)), in momentum space the linear pat-
tern of order-organization seems to be obeyed.

Beyond the practical use of employing information planes to study patterns
of uncertainty-order (L-D), uncertainty-organization (J -I ) or order-organization
(D-I ), it is chemically interesting to investigate the role of the chemical structure
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Fig. 6.24 Fisher-Disequilibrium plane (I,D) of the isoelectronic series of 22 (blue triangles), 24
(red triangles), 25 (black boxes) and 26 (green circles) electrons, in position (left) and momentum
(right) spaces. Atomic units (a.u.) are used

Fig. 6.25 Fisher-Disequilibrium plane (I,D) for the isoelectronic series of 25 (left) and 26 (right)
electrons, in position space. Atomic units (a.u.) are used

of the analyzed molecules in terms of the different information planes and their
corresponding interpretations. For instance, by representing the (D,L) plane in po-
sition space for the isoelectronic series of 25 and 26 electrons, we may analyze how
the different chemical structures are linked to order and uncertainty in this case. Fig-
ure 6.25 shows such information for the 25 and 26 electrons series, and we may note
that molecules that are much more ordered (less uncertainty) possess chemical struc-
tures that include heavier atoms. It so happens also that this order (increasing Dr )
corresponds to an increase in energy. We may note also that isomeric molecules
in both series possess the same information content in terms of order-uncertainty
which provides a new chemical perspective on the relation between molecular ener-
getic content and the order (disorder) of the corresponding chemical structures,

Finally, we have found useful to analyze the particular case of three isoelectronic
isomers: HCNO (fulminic acid), HNCO (isocyanic acid) and HOCN (cyanic acid) in
order to analyze their chemical properties with respect to their complexity values in
product space. From an experimental side it is known that cyanic and isocyanic acids
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Table 6.1 Chemical properties for the isomers HCNO, HNCO and HOCN in atomic units (a.u.)

Molecule Name Energy Ionization Potential Hardness Electrophilicity

HCNO Fulminic acid −168.134 0.403 0.294 0.020

HNCO Isocyanic acid −168.261 0.447 0.308 0.031

HOCN Cyanic −168.223 0.453 0.305 0.036

Table 6.2 Complexity values in product space for the isomers HCNO, HNCO and HOCN in
atomic units (a.u.)

Molecule Name Irp Drp Crp(LMC) Crp(FS)

HCNO Fulminic acid 135.999 0.0070 76.453 229.303

HNCO Isocyanic acid 132.848 0.0068 74.159 223.889

HOCN Cyanic 133.718 0.0069 75.922 225.656

are isomers of fulminic acid (H-C=N-O) which is an unstable compound [127].
From Tables 6.1 and 6.2 we may corroborate that this is indeed the case in that
fulminic acid possess larger values for all complexity measures and according to
our discussion above in terms of chemical properties this is indeed a more reactive
molecule (unstable).

6.5 Concluding Remarks

Different information-theoretical quantities as well as complexities defined as the
product of a couple of localization-delocalization factors have been shown to pro-
vide relevant information on the atomic and molecular systems. In the atomic case,
not only on the shell structure and organization of a great variety of atomic systems,
but also on ionization processes and their dependence on both the nuclear charge and
the number of electrons. In the case of molecules, many different chemically rele-
vant and/or experimental quantities have been shown their strong connection with
the complexity values in both spaces. In doing so, it appears necessary to deal si-
multaneously with the conjugated position and momentum space electron densities,
being also important to consider the product space in order to get a more detailed
and complete description of such systems. The method here employed for carrying
out the present study is also applyable to the analysis of additional multifermionic
systems, as well as physical or chemical processes, such as reactions or polarization
among others. Some of these subjects are now being studied and will be presented
hopefully elsewhere.

It has been also shown the interest of studying the associated information planes
subtended by two information functionals, which for the atomic case clearly display
the characteristic shell-filling patterns throughout the whole periodic table, while in
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the molecular one their interpretation according to important quantities in a chemi-
cal description. It still remains open the question of the existence of additional func-
tionals, planes and complexities providing further information on the atomic and
molecular structure and/or chemical and physical processes, among others. Such is
the case, for instance, of some generalizations of the complexity as those analyzed
here based on the concept of Rényi entropy, which allows a deeper study of specific
regions within the domain of the associated densities. Additional generalizations are
actually being defined and analyzed, such as those arising from the Tsallis entropy
in a similar fashion as done with the Rényi entropy.

A complementary concept to that of the complexity itself is the ‘relative com-
plexity’, for which different definitions can also be considered. The main aim of in-
troducing this concept is to define a double-density functional in order to compare,
quantitatively, the levels of complexity associated to the systems under comparison.
Such an application is carried out in a similar way as done with the divergences for
quantifying the similarity/dissimilarity of different systems attending to the infor-
mation content of their characteristics distributions. The present work has not been
restricted to a purely numerical study of information measures and complexities,
but also within a mathematical framework including numerous relevant properties
and relationships among complexities, as well as universal bounds. Most of them
are expressed as bounds, at times very tight, shown to be very useful for the study
of many electron systems.
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Chapter 7
Rényi Entropy and Complexity

Á. Nagy and E. Romera

Abstract Several important properties of the Rényi entropy and Rényi entropy
power are presented. Uncertainty relations for the Rényi entropy including uncer-
tainty relations for single particle densities of many particle systems in position
and momentum spaces are discussed. Connection between Fisher information and
Rényi entropy is studied. The Fisher-Rényi information plane and entropic product
are presented.

Position and momentum space Rényi entropies of order α are presented for
ground-state neutral atoms with atomic numbers Z = 1–103. It is emphasized that
the values of α ≤ 1 (α ≥ 1) stress the shell structure for position-space (momentum-
space) Rényi entropies. Position and momentum space relative Rényi entropies
of order α are presented for ground-state neutral atoms with atomic numbers
Z = 1–103. Simple hydrogen-like model densities are used as the reference. A re-
lationship with the atomic radius and quantum capacitance is also discussed.

The relationship between the statistical complexity and the Rényi entropy is stud-
ied. A recently introduced, one-parameter extension of the LMC complexity is pre-
sented.

The maximum Rényi entropy principle is used to generalize the Thomas-Fermi
model. A simple relation between the dimension and the Rényi parameter is empha-
sized.

7.1 Introduction

Recently, there has been a growing interest in using information concepts in several
fields of science. Shannon information [1] has been applied in describing atomic
and molecular properties [2–14] for several decades. Recently, Fisher information
[15] has proved to be a very useful tool in analyzing atoms and molecules [16–31].
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Although Rényi entropy has been introduced by Rényi [32] as early as 1961, this
kind of entropy has only recently obtained a wide range of application e.g. in
the analysis of quantum entanglement [33–35], quantum communication protocols
[36, 37], quantum correlations [38], quantum revivals [39] or localization proper-
ties [40].

This chapter summarizes recent results on Rényi entropy. Section 7.2 contains the
definition of the Rényi entropy and the relative Rényi entropy and presents impor-
tant uncertainty relations. Application of Rényi information in studying atoms and
molecules has started only recently. The present authors published the first study of
Rényi entropy and the relative Rényi entropy for atoms [41, 42]. These results are
summarized in Sect. 7.3. Section 7.4 presents the Fisher-Rényi product [43]. Rényi
information is a component of different complexity measures. Complexity measures
are considered a hot topic, an efficient tool for analyzing systems. The relationship
between complexity [44] and Rényi entropy is discussed in Sect. 7.5. In Sect. 7.6
the Thomas-Fermi model is generalized using the maximum Rényi entropy princi-
ple [45]. It also gives a physical meaning of the Rényi parameter. The last section is
devoted to a summary and proposition of future directions.

7.2 Rényi Entropy and Rényi Entropy Power

Rényi entropy is a one-parameter extension of Shannon entropy. The Shannon en-
tropy has the form

Sf = −
∫

f (x) lnf (x)dx (7.1)

for a continuous distribution f (x). The probability distribution f (x) can be asso-
ciated with a wave function ψ(x) as f (x) = |ψ(x)|2. The Shannon entropy can be
written as

Sg = −
∫

g(p) lng(p)dp, (7.2)

where the probability distribution g(p) is given by the momentum space wave func-
tion φ(p), the Fourier transform of the wave function ψ(x) as g(p)= |φ(p)|2.

There exists an entropic uncertainty relation in the form

Sf + Sg ≥ ln (eπ). (7.3)

This relation was conjectured by Hirschman [46] and proved by Bialynicki-Birula
and Mycielski [47] and by Beckner [48]. The above equations can be readily gener-
alized to arbitrary dimensions.

Rényi entropy of order α for a D dimensional probability density function
f (r1, . . . , rD) normalized to one is defined by

Rα
f ≡ 1

1 − α
ln
∫

f α(r)dr for 0 < α <∞, α �= 1, (7.4)
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where r stands for r1, . . . , rD . The Rényi entropy tends to the Shannon entropy when
α → 1:

Sf = −
∫

f (r) lnf (r)dr. (7.5)

Rényi entropy is a nonincreasing function of α [49].
Consider a D-variable function Ψ (r1, . . . , rD) and its conjugate Fourier trans-

form Φ(p1, . . . , pD) and the corresponding distribution functions |Ψ |2 and |Φ|2.
Bialynicki-Birula derived an uncertainty relation [50] for the Rényi entropy sum:

Rα
|Ψ |2 +R

β

|Φ|2 ≥ f (α,β),
1

α
+ 1

β
= 2, (7.6)

f (α,β)= D

2

[
1

α − 1
ln
(α
π

)
+ 1

β − 1
ln

(
β

π

)]
. (7.7)

This uncertainty relation reaches the Shannon entropic uncertainty relation (7.3) in
the limit α → 1.

The Rényi entropy power of index α is defined by

Nα
f ≡

(
α

2α − 1

) 2α−1
α−1 1

2π
exp

(
2

D
Rα
f

)

= β1/(1−β) 1

2π
exp

(
2

D
Rα
f

)
(7.8)

where β satisfies the equation α−1 + β−1 = 2.
The Rényi uncertainty relation (7.6) can be expressed in terms of Rényi entropy

power in a compact form:

Nα
|Ψ |2N

β

|Φ|2 ≥ 1/4. (7.9)

The Rényi entropy power is an extension of Shannon entropy power, that is,

Nα
f → Nf = 1

2πe e
2
D
Sf if α → 1. In this limit the uncertainty relation (7.6) reaches

the Shannon entropic uncertainty relation [47] N|Ψ |2N|Φ|2 ≥ 1/4.
Scaling of the function as Ψλ(r1, . . . , rD)= λD/2Ψ (λr1, . . . , λrD), the Rényi en-

tropy power scales

Nα
|Ψλ|2 = λ−2Nα

|Ψ |2 . (7.10)

The Rényi entropy power has also the property [49]

Nα
f >Nα′

f , α < α′. (7.11)

As special cases the Rényi and Shannon information powers satisfy the inequalities
[43]:

Nα
f ≥Nf ,

1

2
< α ≤ 1 (7.12)

and

Nα
f ≤Nf , α ≥ 1. (7.13)
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The inequality (7.11) can be readily proved by taking into account that the Rényi

entropy is a nonincreasing function of α [49] and c(α) = ( α
2α−1 )

2α−1
α−1 is a nonin-

creasing function for α > 1/2. Then using the definition of the Rényi entropy power
(7.8) we immediately obtain that the Rényi entropy power is a nonincreasing func-
tion of α. We also notice that c(α) > e−1 and Rα

f > Sf for 1
2 < α < 1, and that

c(α) < e−1 and Rα
f < Sf for α > 1.

7.3 Atomic Rényi and Relative Rényi Entropies

The atomic Rényi entropies were numerically calculated [41] with the density ob-
tained from ground-state Roothaan-Hartree-Fock (RHF) wave functions [51, 52].
The calculations were performed for atomic numbers Z = 1–103 and for several
values of α. The upper panels of Figs. 7.1 and 7.2 present position-space Rényi en-
tropy for different values of α including the case α = 1 (Shannon) and α = 0.5 vs
atomic number of neutral atoms. We can clearly observe the shell structure of atoms
for α ≤ 1. For α ≥ 2 there is no sign of a shell structure [41].

Calculation were performed also in momentum space. The upper panels of
Figs. 7.3 and 7.4 present the momentum-space Rényi entropy for different values
of α including the case α = 1 (Shannon) vs atomic number of neutral atoms. Com-
plementary to the position-space results, we can clearly see the shell structure of
atoms for α ≥ 1. For α < 1 no shell structure can be found [41].

To explain the results presented on Figs. 7.1–7.4 simple analytic model calcula-
tions were done [41]. The limit α → 1 gives the Shannon case for which Sagar et
al. [53] used cusp- and asymptotic-constrained model densities. Consider the model
density

ρmod(r)= b3

8π
exp (−br). (7.14)

Then the Rényi entropy has the form

Rα
ρ,mod = 3 lnα

α − 1
− ln

b3

8π
. (7.15)

The choice b = 2
√

2I gives a model density with correct asymptotic behaviour,
while taking b = 2Z gives a model density with a correct cusp. I is the ionization
energy. The first term in both Rα

ρ,asymp and Rα
ρ,cusp are the same. The difference

is in the second term: the second term contains the information on the asymptotic
behaviour and the cusp, respectively. It is remarkable that the order α appears only
in the first term, the term which is the same in both Rα

ρ,asymp and Rα
ρ,cusp .

The limit α → 1 gives the Shannon information:

Sρ,asymp = 3 − ln
2
√

2I 3/2

π
(7.16)
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Fig. 7.1 Position space (a) Rényi entropy Rα
ρ , (b) model asymptotic Rényi entropy Rα

ρasym
and

(c) relative Rényi entropy with model density ρasym; with α = 0.5 for the ground state of neutral
atoms with Z = 1–103. Noble gasses are indicated by vertical dotted lines

and

Sρ,cusp = 3 − ln
Z3

π
. (7.17)

The results in (7.16) and (7.17) were first derived in [53]. If α → ∞ the first term
in (7.15) goes to zero in both Rα

ρ,asymp and Rα
ρ,cusp and neither of them depends on

α any more. Expression (7.15) suggests that the α-dependence is stronger for small
values of α.

In the momentum space Sagar et al. [53] applied the density

γ (p)= 8

π2

a5

(a2 + p2)4
, (7.18)

which is obtained from the Fourier transform of the model wave function

ψ(r)= a3/2

π1/2
exp (−ar). (7.19)

Then the Rényi entropy in the momentum space

Rα
γ = 1

1 − α
ln

∫
γ α(p)dp (7.20)
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Fig. 7.2 Position space (a) Rényi entropy Rα
ρ , (b) model asymptotic Rényi entropy Rα

ρasym
and

(c) relative Rényi entropy with model density ρasym; with α = 1 for the ground state of neutral
atoms with Z = 1–103. Noble gasses are indicated by vertical dotted lines

has the form

Rα
γ = 1

1 − α
ln

[
8α

π2α
4π

∫ ∞

0

a5α

(a2 + p2)4α
p2dp

]
. (7.21)

The integration leads to the result

Rα
γ = 1

1 − α
ln

[
8α+1π

3
2 −2αΓ (4α + 1/2)Γ (8α − 3)

Γ (8α)Γ (4α − 1)

]
+ 3 lna. (7.22)

Substituting

a = √
2I (7.23)

into (7.22) we arrive at the expression

Rα
γ,asymp = 1

1 − α
ln

[
8α+1π

5
2 −3αΓ (4α + 1/2)Γ (8α − 3)

Γ (8α)Γ (4α − 1)

]
+ ln

2
√

2I 3/2

π
.

(7.24)

Applying a = Z we are led to the result

Rα
γ,cusp = 1

1 − α
ln

[
8α+1π

5
2 −3αΓ (4α + 1/2)Γ (8α − 3)

Γ (8α)Γ (4α − 1)

]
+ ln

Z3

π
. (7.25)
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Fig. 7.3 Momentum space (a) Rényi entropy Rα
γ , (b) model asymptotic Rényi entropy Rα

γasym
and

(c) relative Rényi entropy with model density γasym; with α = 1 for the ground state of neutral
atoms with Z = 1–103. Noble gasses are indicated by vertical dotted lines

Here we again see that the first term in both Rα
γ,asymp and Rα

γ,cusp are the same. The
difference is in the second term: the second term contains the information on the
asymptotic behaviour and the cusp, respectively. The order α appears only in the
first term, the term which is common in both Rα

γ,asymp and Rα
γ,cusp .

The limit α → 1 gives the Shannon entropy:

Sγ,asymp = ln
π3

8
+ 4

(
2 ln 2 − 5

6

)
+ ln

2
√

2I 3/2

π
(7.26)

and

Sγ,cusp = ln
π3

8
+ 4

(
2 ln 2 − 5

6

)
+ ln

Z3

π
. (7.27)

The results in (7.26) and (7.27) were first derived in [53]. If α → ∞ we obtain

R∞
γ,asymp = ln

π3

8
+ ln

2
√

2I 3/2

π
(7.28)

and

R∞
γ,cusp = ln

π3

8
+ ln

Z3

π
. (7.29)

The middle panels of Figs. 7.1–7.2 and 7.3–7.4 present the Rényi entropies
Rα
ρ,asymp and Rα

γ,asymp . The values obtained from the model densities show a very
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Fig. 7.4 Momentum space (a) Rényi entropy Rα
γ , (b) model asymptotic Rényi entropy Rα

γasym
and

(c) relative Rényi entropy with model density γasym; with α = 2 for the ground state of neutral
atoms with Z = 1–103. Noble gasses are indicated by vertical dotted lines

clear shell structure for α ≤ 1 (position space) and α ≥ 1 (momentum space), re-
spectively. The agreement is better for smaller α in the position space and for larger
α in the momentum space.

The fact that the results obtained from these simple analytical models give such a
good description of the accurate values suggests that this model wave functions and
densities include the main information, that is, the most important aspects of the true
accurate wave functions and densities, namely, the cusp and asymptotic behaviour.

It is very interesting that the limit value of α where the shell structure appears (or
disappears) is α = 1, that is, the Shannon case.

The shell structure is more dominant for very small α in case of the position-
space Rényi entropies and very large α in case of the momentum-space Rényi en-
tropies. Also the agreement between the accurate Rényi entropies and results ob-
tained from the model density with correct asymptotic behaviour is better for smaller
α in the position space and for larger α in the momentum space. It means that small
α in the position space (or large α in the momentum space) stress the asymptotic
part of the density. On the other hand, in case of large α in the position space (or
small α in the momentum space) the cusp part of the density dominates. That is dif-
ferent values of α amplify the shell structure in different manner. We can conjecture
that other properties are amplified by other value of α.

We calculated the position-space and momentum-space Rényi entropies from
accurate and model densities for ground-state anions and cations [41]. We found
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excellent agreement between the values arising from the accurate densities and the
model densities with correct asymptotic behaviour and arrived at the same conclu-
sion for ground-state anions and cations: the values of α ≤ 1 (α ≥ 1) stress the shell
structure for position-space Rényi entropies (momentum-space Rényi entropies).

To gain more insight into the relationship of the model and accurate densities and
the Rényi entropies corresponding to them, we studied relative Rényi entropies [42].

The relative Rényi entropy of order α is associated with two probability density
functions g(r) and f (r):

Rα
f,g = 1

α − 1
ln
∫

f α(r)
gα−1(r)

dr (7.30)

provided that the integral on the right exists and α > 0. The limit α → 1 gives the
relative or Kullback-Leibler entropy:

IKL(f,g)=
∫

f (r) ln
f (r)
g(r)

dr. (7.31)

The relative entropy is a measure of the deviation of f (r) from g(r), which is called
the reference density. In a recent paper [54] relative entropy were studied in atomic
systems using hydrogen-like model density as reference. We extended their investi-
gation to the relative Rényi entropy [42].

The relative Rényi entropy is zero if f = g, and it measures the deviation of the
density ρ(r) from ρasymp(r) or ρcusp(r) and γ (p) from γasymp(p) or γcusp(p).

We calculated the position space relative Rényi entropy with the model densities
ρcusp for α ≤ 1 [42]. We can observe a shell structure only for α = 1, no shell
structure can be found if α < 1. The relative Rényi entropy is close to 0 for small
atomic numbers, that is, the deviation of the density from the cusp model density
is not large. For larger atomic numbers the relative Rényi entropy is also larger
showing a larger deviation from the cusp model density. The calculations cannot
be performed for α > 1, because the integral (7.30) does not exist for cusp model
densities [42].

The bottom panels of Figs. 7.1–7.2 present the position space relative Rényi en-
tropy with the model densities ρasymp for the values of α = 0.5 and 1. One can see
the shell effect for all values of α. The position space relative Rényi entropy is much
smaller for the model densities ρasymp than for the model densities ρcusp . That is,
in the position space the deviation of the density from the asymptotic model density
is much smaller than from the cusp model density.

The bottom panels of Figs. 7.1–7.3 present the momentum space relative Rényi
entropy with the model densities γasymp for the values of α = 1 and 2. We can
see the shell effect for all values of α. In the momentum space there is not much
difference in the relative Rényi entropies obtained by the two model densities.

We mention in passing that there is a relationship between the relative Rényi
entropies and the atomic radius and the quantum capacitance. The quantity

〈r〉a =
∫

rρHOMO(r)dr (7.32)
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has turned to be a good measure of the atomic radius [54], where ρHOMO is the
unity normalized density of the highest occupied orbital. The quantum capacitance
is defined as [55–57]

CI = 1

I −A
= 1

η
, (7.33)

that is, the inverse of the hardness η. I and A are the ionization potential and the
electron affinity, respectively.

Recently, Sagar et al. [54] demonstrated a linear relation between Shannon en-
tropy and relative Shannon entropy with atomic radii and capacitance. We have
numerically checked [42] that a linear regression of position space Rényi entropy
and relative Rényi entropy for the values α = 0.5,0.82,0.86 and 0.98 with the ca-
pacitance produce excellent fits for Alkali metals (Li, Na, K, Rb), Alkali earths (Be,
Mg, Ca, Sr) and second row P-state (Al, Si, S, Cl). So this facts supports the consid-
eration [54] of the capacitance in terms of entropies and consequently in terms of
localization properties of the atomic valence density.

7.4 Fisher-Rényi Product

The Fisher information of the probability density function f is given by

If ≡
∫ |∇f (r)|2

f (r)
dr. (7.34)

There hold the Stam uncertainty relations

I|Ψ |2 ≤ 4σ 2
|Φ|2 , (7.35)

where σ 2
|Φ|2 is the variance of the distribution in the momentum space and

I|Φ|2 ≤ 4σ 2
|Ψ |2, (7.36)

where σ 2
|Ψ |2 is the variance of the distribution in the position space.

When the D dimensional probability density f (r) is scaling by a scalar factor λ
as fλ(r) = λDf (λr), the Rényi entropy power (see (7.10)) and Fisher information
[58] transform as follows:

Nα
fλ

= λ−2Nα
f and Ifλ = λ2Iλ. (7.37)

Now, we take the product of the Fisher information and the Rényi entropy power

Pα
f = 1

D
Nα
f If with α ∈ (1/2,1] (7.38)

as an extension of the Fisher-Shannon product [25] with the important properties

(i) Pα
fγ

is invariant under scaling transformation fλ = λDf (λr), i.e. Pα
fλ

= Pα
f ,

(ii) there holds an uncertainty property

Pα
f ≥ 1, (7.39)



7 Rényi Entropy and Complexity 225

(iii) Pα
f is a nonincreasing function of α

Pα
f > Pα′

f ≥ 1 with α ∈ (1/2,1] (7.40)

for any probability density.

Now, we can combine the Stam uncertainty relations (7.35) and (7.36) to obtain
a Stam type uncertainty relation for Rényi information

Nα
|Ψ |2 ≥ D

4σ 2
|Φ|2

, α ∈ (1/2,1] (7.41)

in the position space, and

Nα
|Φ|2 ≥ D

4σ 2
|Ψ |2

, α ∈ (1/2,1] (7.42)

in the momentum space.
Inequalities (7.41) and (7.42) can straightforwardly be extended to different pa-

rameters:

Nα
|Ψ |2 >Nα′

|Ψ |2 ≥ D

4σ 2
|Φ|2

, 1/2 < α < α′ ≤ 1 (7.43)

and

Nα
|Φ|2 >Nα′

|Φ|2 ≥ D

4σ 2
|Ψ |2

, 1/2 < α < α′ ≤ 1. (7.44)

Let us point out that taking into account the Shannon uncertainty relation
N|Ψ |2N|Φ|2 ≥ 1/4 and inequality (7.12) we obtain a Rényi uncertainty relation:

Nα
|Ψ |2N

α
|Φ|2 ≥ 1/4, α ∈ (1/2,1]. (7.45)

This inequality has been recently found by different means by Zozor et al. [59].
Except in the case α = 1 (for which above inequalities saturates for Gaussians)

the relations given by (7.39), (7.41) and (7.45) are not sharp.
Consider now an N particle system and denote the single particle densities in

position and momentum spaces by

ρ(r)=
∫

|Ψ (r, r2, . . . , rN)|2dr2 . . . drN (7.46)

and

γ (p)=
∫

|Φ(p,p2, . . . ,pN)|2dp2 . . . dpN, (7.47)

respectively. Note that the density is normalized to one. We also introduce the posi-
tion space single particle Fisher-Rényi product

Pα
ρ = 1

D
Nα
ρ Iρ with α ∈ (1/2,1] (7.48)
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and the momentum space single particle Fisher-Rényi product

Pα
γ = 1

D
Nα
γ Iγ with α ∈ (1/2,1]. (7.49)

The relations (7.39)–(7.45) can readily be transcribed in terms of the correspond-
ing one-particle probability densities ρ(r) and γ (p) by [43]

Pα
ρ ≥ 1, P α

γ ≥ 1 with α ∈ (1/2,1], (7.50)

and for different parameters:

Pα
ρ > Pα′

ρ ≥ 1 with 1/2 < α < α′ ≤ 1 (7.51)

and

Pα
γ > Pα′

γ ≥ 1 with 1/2 < α < α′ ≤ 1. (7.52)

On the other hand, the superadditivity and subadditivity of the Fisher and Shan-
non informations, respectively, have been used to prove the validity of Stam’s uncer-
tainty [60, 61] relation and Shannon uncertainty [4, 61] relation for single-particle
densities in position and momentum spaces. Using the one-particle densities in po-
sition and momentum spaces, the inequalities take the form:

Iρ ≤ 4σ 2
γ , Iγ ≤ 4σ 2

ρ (7.53)

and

NρNγ ≥ 1/4. (7.54)

Note, that the relationship between the single particle and N -particle variance is
σ 2

|Ψ |2 = Nσ 2
ρ in coordinate space and there is a similar expression for momentum

space. Now, using the uncertainty relations and the inequalities (7.41),(7.42) and
(7.12) it is fulfilled that

Nα
ρ ≥ D

4σ 2
γ

, Nα
γ ≥ D

4σ 2
ρ

, α ∈ (1/2,1] (7.55)

and

Nα
ρ N

α
γ ≥ 1/4, α ∈ (1/2,1]. (7.56)

We remark that to our best knowledge, relation (7.56) is the first Rényi uncertainty
relation valid for monoparticle densities in conjugate spaces for N ≥ 2 [43]. For
α = 1 we recover the Shannon uncertainty relation which is sharp, and which satu-
rates for Gaussian functions.

As we have just seen there exists a link between Fisher and Rényi information.
It is the generalization of the Fisher-Shannon connection proposed by Vignat et al.
[58]. We also defined the Fisher-Rényi information plane and suggested that we can
characterize density probabilities considering the location in this information plane
[43]. Moreover, the information product scaling property shows that densities under
a scaling transformation belong to the same curve in that plane.
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7.5 Complexity and Rényi Entropy

Now we turn to study the relationship between the complexity and Rényi entropy.
There are several measures of complexity (see other chapters of this monograph).
Here we consider the LMC complexity [44].

Consider the Rényi entropy with α = 2. From (7.4) follows that

R2
ρ = − ln

(∫
ρ2dr

)
= − ln 〈ρ〉. (7.57)

This quantity is closely related to the position-space disequilibrium

Dρ =
∫

ρ2dr = 〈ρ〉, (7.58)

namely,

R2
ρ = − lnDρ (7.59)

and there is a similar expression for the momentum space:

R2
γ = − lnDγ . (7.60)

The quantity D, also known as quantum self-similarity [62–64], information en-
ergy [65] or linear entropy [66, 67] is a measurable quantity [68]. D expresses the
distance from equilibrium.

Consider the complexity measure defined by [44]

CLMC =HD, (7.61)

where

H = eS (7.62)

and S is the Shannon entropy. Making use of (7.59) expression (7.61) can also be
written as [69]

lnCLMC = S + lnD = S −R2. (7.63)

From the expressions of Rényi entropy obtained from the model densities (7.15),
(7.24) and (7.25) we immediately see that the logarithm of the complexity is a con-
stant (does not depend on the atomic number or the ionization potential). The accu-
rate values, however, are not constant and show a clear shell structure. This reflects
that the model densities do not provide a good approximation when the values of
α is around 1 or 2. We mention that in recent papers [31, 70] the Z-dependence
of the complexity is studied and a fit has been presented as a function of atomic
number.

Romera et al. [71] have recently introduced a generalized, α-dependent measure
of complexity. The new measure C(α)

f is defined by

C
(α)
f =H

(α)
f Qf , with H

(α)
f = e

R
(α)
f . (7.64)

In the limit α → 1 C
(α)
f tends to the original LMC complexity.
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C
(α)
f has the properties:

(i) C
(α=2)
f = 1,

(ii) C
(α)
f is invariant under scaling transformation, fλ = λDf (λr), i.e. C(α)

fλ
= C

(α)
f ,

(iii) C
(α)
f ≥ 1 for α < 2,

(iv) C
(α)
f ≤ 1 for α > 2, and

(v) C
(α)
f is a nonincreasing function of α.

One can easily see that when α goes to 1, a lower bound for the original LMC
complexity is obtained.

We emphasize that the Fisher-Rényi entropy can also be considered a measure
of complexity. The hydrogen atom has recently been used as a test system [71]
to study the different measures of statistical complexity: the Fisher-Rényi entropy
product and the generalized statistical complexity. It was found that for each level
of energy, both indicators take their minimum values on the orbitals that correspond
to the highest orbital angular momentum. Hence, in the same way as happens with
the Fisher-Shannon and the statistical complexity, these generalized Rényi-like sta-
tistical magnitudes break the energy degeneration in the H-atom.

Finally, we want to point out that a two-parameter family of complexity measures
C̃(α,β)

C̃
(α,β)
f = e

R
(α)
f −R

(β)
f , 0 < α,β <∞, (7.65)

based on the Rényi entropies was introduced and characterized by a detailed study
of its mathematical properties in [89]. The whole family is identified by two param-
eters, α and β . For the special case of β going to infinity, it is remarkable that the
new complexity measure is the product of a global quantity by a local information
of the density distribution.

7.6 Maximum Rényi Entropy Principle and the Generalized
Thomas-Fermi Model

In this section we explore how the maximum Rényi entropy principle can be applied
to generalize the Thomas-Fermi model [45]. Earlier the principle of extreme phys-
ical information [16] was used to derive the Euler and the Kohn-Sham equations
of the density functional theory [19, 20]. First, the derivation of the Euler equation
of the density functional theory is summarized. Consider a system of N electrons
moving in a local external potential v. Imagine a system of non-interacting electrons
having the same density ρ(r) as that of the original interacting electrons. The kinetic
energy Ts[ρ] of the non-interacting system is defined by the Levy-Lieb [72, 73] con-
straint search as

Ts[ρ] = min
Φ→ρ

〈Φ|T̂ |Φ〉 = 〈Φ[ρ]|T̂ |Φ[ρ]〉, (7.66)
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where T̂ is the kinetic energy operator and the minimum is searched over the non-
interacting wave functions Φ having the density ρ. Then the Euler equation can
be derived minimizing the non-interacting kinetic energy Ts[ρ] with the constraints
that the density is fixed (the same as the interacting one). In this section the density
is normalized to the number of electrons N :

Ts[ρ] +
∫

vKS(r)ρ(r)dr −μ

∫
ρ(r)dr. (7.67)

The Lagrange multipliers vKS(r) and μ are the Kohn-Sham potential and the chem-
ical potential, respectively. The variation of this expression with respect to the den-
sity ρ leads to the Euler equation of the density functional theory:

δTs[ρ]
δρ(r)

+ vKS(r)= μ. (7.68)

Though (7.66) gives the formal definition of the non-interacting kinetic energy, its
exact form as a functional of the density is unknown. There are, however, several
approximations for it. The simplest one is the Thomas-Fermi functional [74, 75]:

TT F [ρ] = CTF

∫
ρ(r)5/3dr, (7.69)

with

CTF = 3

10
(3π2)2/3. (7.70)

The Thomas-Fermi functional was generalized for arbitrary dimension [76–80].
The kinetic energy of a D dimensional system has the form

TD[ρ] = CD

∫
ρ(r)1+2/Ddr, (7.71)

with

CD = D

2(D + 2)

(
D

2KD

)2/D

. (7.72)

The factor KD can be given by the recurrence relation

KD+2 = KD

2πD
, (7.73)

with

K1 = 1

π
(7.74)

and

K2 = 1

2π
. (7.75)

The maximum Rényi entropy principle is a generalization of the maximum en-
tropy principle developed by Jaynes [81, 82]. In Jaynes’ principle the Shannon
entropy is maximized under proper conditions including the normalization of the
probability density. The maximum Rényi entropy principle has been used recently
to generalize the Thomas-Fermi model [45]. The extremum of the Rényi entropy of
order α is searched under the conditions:
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1. The density is normalized to 1. A Lagrange multiplicator ν is introduced.
2. The density is kept fixed. This requirement is taken into account by a local poten-

tial w(r). This constraint is used to ensure that the density of the non-interacting
system be equal to that of the interacting one.

Then, the extremum of the functional

Rα
f − ν

∫
f (r)dr +

∫
w(r)f (r)dr (7.76)

is considered. The variation leads to the equation:

δRα
f

δf
− ν +w(r)= 0. (7.77)

The functional derivative of the Rényi entropy (7.4) is

δRα
f

δf
= α

1 − α

f α−1
∫
f αdr

. (7.78)

Then (7.77) takes the form:

α

1 − α

f α−1
∫
f αdr

+w(r)= ν (7.79)

or it can also be written as

cf α−1 + w̃(r)= ν̃ (7.80)

with

w̃ = c(1 − α)

α
w

∫
f αdr, (7.81)

ν̃ = c(1 − α)

α
ν

∫
f αdr (7.82)

and c is any constant. Comparing (7.80) with (7.69) we immediately see that the
Thomas-Fermi case recovers with the choice α = 5/3 and c = cT F . Equation (7.80)
is a generalization of the Thomas-Fermi model derived from the maximum Rényi
entropy principle. The Thomas-Fermi model was worked out for the free-electron
gas and can be applied in systems with slowly changing densities. It is frequently
used even today, for example to study the structure of the new artificial atoms or
quantum dots [83], Bose-Einstein condensates in traps [84], systems under pressure
[85], simulations in chemical and biological systems [86].

Here we use the Thomas-Fermi kinetic energy functional not the original
Thomas-Fermi model itself, that is, the Thomas-Fermi model in a more general
sense. Comparing (7.80) with (7.71) we can recover the D-dimensional Thomas-
Fermi model. We are led to the simple relationship between the dimension D and
the parameter α

α = 1 + 2

D
. (7.83)
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In this case there is a physical meaning of the Rényi parameter α as it is related to
the dimension.

The relationship between the kinetic energy and Shannon information entropy
(that is, α = 1) was studied earlier. Massen and Panos [87] fitted numerical values
for several nuclei and atomic clusters and found that

S = aT + bT ln (cT ), (7.84)

where a, b and c are constants.
Recently, we have extended this kind of investigation to cover several other val-

ues of α. The Thomas-Fermi model is a crude approximation for atoms (though it
is correct in the limit of large atomic numbers). Applying the generalization pre-
sented here, we studied the relation between the kinetic energy functional and the
Rényi entropy of order α for neutral atoms with Z = 1–36. The Rényi entropy can
be approximated with the kinetic energy as

Rα
ρ = a(α) lnT + b(α), (7.85)

where the parameters can be found in [45].
Finally, we utilize the fact that limα→∞Rα

ρ = − ln‖ρ‖∞ = − lnρ(0). It fol-
lows from ‖ρ‖p ≡ (

∫
ρpdr)1/p and ‖ρ‖∞ ≡ sup |ρ| [88], where we made use of

the fact that the ground state density of atoms is a non-increasing function of r .
Consequently, one finds that when α goes to infinity expression (7.85) gives us
− lnρ(0) = a(∞) lnT + b(∞). Thus, there is a relation between the value of the
density at the nucleus ρ(0) and the kinetic energy ρ(0)= ZT −a(∞)e−b(∞).

7.7 Summary and Future Directions

This chapter is devoted to summarize several properties of the Rényi entropy. It is
emphasized that there exist uncertainty relations for the Rényi entropy sum. There
are relations for the Rényi entropy sum arising both from the many particle and for
single particle densities. The Fisher information and the Rényi entropy can be com-
bined to define the Fisher-Rényi product and information plane. Several properties,
including inequalities are derived.

Position and momentum space Rényi entropies of order α are presented for
ground-state neutral atoms. It is found that the values of α ≤ 1 (α ≥ 1) stress the
shell structure for position-space (momentum-space) Rényi entropies. Position and
momentum space relative Rényi entropies of order α are also presented. A relation-
ship with the atomic radius and quantum capacitance is also discussed.

The maximum Rényi entropy principle is used to generalize the Thomas-Fermi
model. In this case there is a physical meaning of the Rényi parameter α as it is
related to the dimension. An approximate expression between the Rényi entropy and
the logarithm of the kinetic energy of atoms and as a special case an approximate
relation between the density at the nucleus and the kinetic energy are presented.

The link between complexity and Rényi entropy is emphasized. A generalized
statistical complexity based on the Rényi entropy is defined. This is a one-parameter
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extension of the original LMC complexity. A further, two-parameter extension of the
complexity measure has just taken place [89].

We can conclude that the Rényi entropy is an important quantity to character-
ize complex systems. It is a fundamental ingredient of two essential measures of
complexity: the LMC complexity and the Fisher-Rényi product. Moreover, properly
defined combinations of two Rényi entropies give a one-parameter (or even a two-
parameter) family of complexity measures. Further studies in these directions are in
progress.
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Chapter 8
Scaling Properties of Net Information Measures
for Bound States of Spherical Model Potentials

K.D. Sen and S.H. Patil

Abstract Using dimensional analysis of (a) the position and momentum vari-
ances which define the quantum mechanical Heisenberg uncertainty product, and
(b) several composite information theoretical measures, the scaling properties of
the various information theoretical uncertainty-like relationships are derived for
the bound states corresponding to a set of non-relativistic spherical model poten-
tials, V (r). The potentials considered are described by (1) adding a/r2 term to
(i) the isotropic harmonic oscillator, V1(r) = 1

2kr
2 + a

r2 and to (ii) the Coulom-

bic hydrogen-like potentials, V2(r)= −Z
r

+ a

r2 (2) the exponential cosine screened
Coulomb potentials generated by multiplying the superposition of (i) Yukawa-
like, −Z e−μr

r
, and (ii) Hulthén-like, −Zμ 1

eμr−1 , potentials by cos(bμr) followed

by addition of the term a/r2 where a and b ≥ 0, μ is the screening parameter
and Z, in case of atoms, represents the nuclear charge, along with their generalized
forms, V3(r)= −[Z e−μr

r
+∑

i ciZ
e−siμr

r
] cos(bμr)+ a

r2 , and V4(r)= −[Z μ
eμr−1 +∑

i ciZ
siμ

esiμr−1 ] cos(bμr) + a

r2 , (3) the Pöschl-Teller, V5(r) = −Z sech2(μr), and

the Morse potentials, V6(r) = Z[e−2μ(r−r0) − 2e−μ(r−r0)], (4) two soft-Coulomb
potentials which describe an electron moving in the central field due to a smeared
nuclear charge described by Z and β > 0 according to V7(r)= − Z

(rn+βn)1/n
, (5) the

spherically confined Hydrogenic-potential, V8(r) = −Z
r

for r < R; and = ∞ for
r ≥ R, (6) the superposition of the power potential of the form V9(r) = Zrn +∑

i Zir
ni , where Z, Zi , n, ni are parameters, in the free state as well as in the addi-

tional presence of a spherical penetrable and impenetrable boundary wall located at
radius R, and (7) the Hydrogen-like atoms in the presence of strong parallel and per-
pendicular magnetic (B) and electric (F ) fields, V10(r)= −Z

r
+ 1

2B
2(x2 +y2)+Fz.

As an illustrative example we consider the superposition of the power potential of
the form V (r)= Zrn +∑

i Zir
ni where Z, Zi , n, ni are parameters yielding bound

states for a particle of massM . The uncertainty product and all other net information
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measures are shown here to depend only on the parameters [si] defined by the ratios
Zi/Z

(ni+2)/(n+2). Under the imposition of a spherical impenetrable boundary of ra-
dius R over the polynomial potential, parametric dependence becomes [si , t1] where
t1 is given by RZ1/(n+2). Introduction of a finite potential, Vc at the radial distance
r ≥ R results in a complete set of scaling parameters given by [si , t1, t2], where
t2 = Vc/(Z)

2/(n+2). Analogous results on the scaling property of the uncertainty-
like information theoretical measures are tabulated for the chosen set of spherical
model potentials. Significance of the scaling properties will be discussed. Illustra-
tive numerical tests of the scaling behavior will be presented.

8.1 Introduction

The uncertainty relations are the basic properties of quantum mechanics [1, 2], in
particular, we have the Heisenberg uncertainty principle for the product of the un-
certainties in position and momentum,

σxσp ≥ 1

2
�,

σ 2
x = 〈(x − 〈x〉)2〉, σ 2

p = 〈(px − 〈px〉)2〉,
(8.1)

in terms of Planck’s constant. The uncertainty product has many interesting prop-
erties for different potentials, for example, the product for bound states in homoge-
neous, power potentials is independent of the strength of the potentials. While the
uncertainty principle is by definition expressed in terms of the quantum mechanical
expectation values, there exist other interesting uncertainty-like relationships [3, 4]
expressed in terms of the information theoretical measures [5–16] defined by the
probability. Several numerical studies have been carried out using the continuous
electron probability density distributions in the atomic and molecular structure the-
ory [17–48]. Here we will consider some general properties for the bound states
in superpositions of power potentials with a finite barrier. It is observed that the
dimensionality and scaling properties lead to interesting properties of the uncer-
tainty product, and densities with implications for entropies and information. The
scaling properties corresponding to a test-set of spherical potentials listed in the
abstract have been studied earlier [54–68] by us following a similar dimensional
analysis. A comprehensive summary of the results so obtained are also compiled
in a tabular form. The aim of such a study is to ascertain how the parameters in
the potential describe the various information-theoretical uncertainty-like measures
expressed through the electron probability density as the key parameter. Finally, il-
lustrative numerical tests of the scaling behavior will be presented in the case of
spherically confined hydrogen atom inside an impenetrable cavity with interesting
results.
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8.2 Heisenberg Uncertainty Relations

Here we analyze some dimensionality properties and their implications for the un-
certainty relations for the bound states in superpositions of power potentials with a
finite barrier.

8.2.1 Superpositions of Power Potentials with a Finite Barrier

Consider a potential of the form

V (r)=
[
Zrn +

∑
i

Zir
ni

]
θ(R − r)+ Vcθ(r −R) (8.2)

where Z, Zi , n, ni , R, Vc are parameters (n, ni may not be integers) with θ being the
Heaviside theta function, in which there are bound states for a particle of mass M .
Specifically, we have

V1(r)= [−kr2 + λr4]θ(R − r)+ Vcθ(r −R) (8.3)

for a symmetric double well potential,

V2(r)=
[

1

2
kr2 + a

r2

]
θ(R − r)+ Vcθ(r −R) (8.4)

for a modified s.h.o., and

V3(r)=
[
−Z

r
+ λr

]
θ(R − r)+ Vcθ(r −R) (8.5)

for a confined hydrogenic system. The Schrödinger equation for the potential in
(8.2) is

− �
2

2M
∇2ψ +

[(
Zrn +

∑
Zir

ni

)
θ(R − r)+ Vcθ(r −R)

]
ψ =Eψ. (8.6)

8.2.2 Dimensionality and Uncertainty Relations

The basic dimensional parameters in our Schrödinger equation are �
2/M , Z, Zi ,

R, Vc. Of these,

si = M

�2
Zi

(
�

2

MZ

)(
ni+2
n+2 )

, t1 =R(MZ/�2)1/(n+2),

t2 = Vc(M/�2)(�2/MZ)2/(n+2)

(8.7)

are the dimensionless parameters. Now we consider the deviations

σ 2
r = 〈(r − 〈r〉)2〉, σ 2

p = 〈(p − 〈p〉)2〉. (8.8)
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For our potential in (8.6), the dimensionality properties imply that the deviations are
of the form

σr = (�2/MZ)1/(n+2) g1(si , ti ), σp = �(MZ/�2)1/(n+2) g2(si , ti), (8.9)

so that the uncertainty product is

σrσp = �g1(si , ti)g2(si , ti), si = M

�2
Zi

(
�

2

MZ

)(
ni+2
n+2 )

,

t1 =R(MZ/�2)1/(n+2), t2 = Vc(M/�2)(�2/MZ)2/(n+2).

(8.10)

This implies that the uncertainty product depends only on the dimensionless param-
eters si, ti . It may also be noted that the bound state energies are of the form

E = (�2/M)(MZ/�2)2/(n+2)g3(si , ti ). (8.11)

These results follow from just the dimensionality properties of the parameters.
It is interesting to note that one can analyze the minimum uncertainty in terms

of the scaled parameters. For example, in the case of a hydrogen atom with a fi-
nite barrier potential, one can obtain the minimum uncertainty by keeping Vc fixed
but varying RZ. Alternatively, one can keep R fixed but vary Vc . These considera-
tions can be extended to the superpositions of power potentials with a finite barrier
potential in terms of the scaled variables si and ti .

8.3 Scaling Properties and Entropies

We will now consider some scaling properties for bound states in a superposition
of power potentials, and their implications for Shannon entropy [5, 6] and other
properties.

8.3.1 Scaling Properties

For the Schrödinger equation in (8.6), the energy E and eigenfunction ψ are func-
tions of the form

E :E(�2/M,Z,Zi,R,Vc), ψ :ψ(�2/M,Z,Zi,R,Vc, r). (8.12)

Multiplying (8.6) by M/�2, and introducing a scale transformation

r = λr′ (8.13)

one gets

−1

2
∇′2ψ + (M/�2)

[
Zλn+2r ′n +

∑
Ziλ

ni+2r ′ni
]
θ(R/λ− r ′)ψ

+ (M/�2)λ2Vcθ(r
′ −R/λ)ψ = (M/�2)λ2Eψ. (8.14)
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Taking

λ=
(

�
2

MZ

)1/(n+2)

, (8.15)

it leads to

−1

2
∇′2ψ +

[
r ′n + M

�2

∑
Zi

(
�

2

MZ

)(
ni+2
n+2 )

r ′ni
]
θ
(
R(MZ/�2)1/(n+2) − r ′)ψ

+ M

�2
(�2/MZ)2/(n+2)Vcθ

(
r ′ −R(MZ/�2)1/(n+2))ψ

= M

�2

(
�

2

MZ

)2/(n+2)

Eψ. (8.16)

Comparing this with (8.6), we obtain

E

(
�

2

M
,Z,Zi,R,Vc

)
= (�2/M)λ−2E(1,1,Ziλ

ni+2M/�2,R/λ,Vcλ
2M/�2),

ψ

(
�

2

M
,Z,Zi,R,Vc, r

)
=Aψ(1,1,Ziλ

ni+2M/�2,R/λ,Vcλ
2M/�2, r ′),

r = λr ′, λ= (�2/MZ)1/(n+2). (8.17)

Taking ψ(1,1,Ziλ
ni+2M/�2,R/λ,Vcλ

2/�2, r ′) to be normalised, the normaliza-
tion of the wave function ψ(�2/M,Z,Zi,R,Vc, r) leads to

1 =A2
∫

|ψ(1,1,Ziλ
ni+2M/�2,R/λ,Vcλ

2M/�2, r ′)|2d3r

=A2λ3 ⇒ A= λ−3/2 = (MZ/�2)
3

2(n+2) , (8.18)

so that

ψ

(
�

2

M
,Z,Zi,R,Vc, r

)
= λ−3/2ψ(1,1,Ziλ

ni+2M/�2,R/λ,Vcλ
2M/�2, r ′),

λ= (�2/MZ)1/(n+2), r ′ = r/λ. (8.19)

For obtaining the wave function in the momentum space, we take the Fourier trans-
form of the wave function in (8.19), leading to

f (�2/M,Z,Zi,R,Vc,p)= 1

(2π�)3/2

∫
d3re−ip·r/�ψ(�2/M,Z,Zi,R,Vc, r).

(8.20)

Using the relation in (8.19) and changing the integration variable to r ′, we get

f (�2/M,Z,Zi,R,Vc,p)= λ3/2f (1,1,Ziλ
ni+2M/�2,R/λ,Vcλ

2M/�2,p′),
λ= (�2/MZ)1/(n+2), p′ = λp. (8.21)

From the relations in (8.19) and (8.21), one has for the corresponding position and
momentum densities,
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ρ(�2/M,Z,Zi,R,Vc, r)= λ−3ρ(1,1, si , t1, t2, r
′),

γ (�2/M,Z,Zi,R,Vc,p)= λ3γ (1,1, si , t1, t2,p
′),

λ= (�2/MZ)1/(n+2), si = λni+2MZi/�
2, t1 =R/λ,

t2 = Vcλ
2M/�2, r ′ = r/λ, p′ = λp, (8.22)

with si , ti being the scaled parameters.

8.3.2 Shannon Entropy Sum

The Shannon entropies [5, 6] in the position space and momentum space, are

Sr = −
∫

ρ(r)[lnρ(r)]d3r, Sp = −
∫

γ (p)[lnγ (p)]d3p. (8.23)

Using the relations in (8.22), we get for these entropies

Sr(�
2/M,Z,Zi,R,Vc)= 3 lnλ+ Sr(1,1, si , t1, t2),

Sp(�
2/M,Z,Zi,R,Vc)= −3 lnλ+ Sp(1,1, si , t1, t2),

(8.24)

which imply that the Shannon entropy sum ST = Sr + Sp satisfies the relation

ST (�
2/M,Z,Zi,R,Vc)= ST (1,1, si , t1, t2), si = M

�2
Zi

(
�

2

MZ

)(
ni+2
n+2 )

,

t1 =R(MZ/�2)1/(n+2), t2 = Vc(M/�2)(�2/MZ)2/(n+2). (8.25)

Therefore, for given values of the parameters Z,Zi,R,Vc, the Shannon entropy
sum depends only on Zi/Z

(ni+2)/(n+2), t1, t2. This result is significant in relation to
the uncertainty-like relationship [3]

ST = Sr + Sp ≥N(1 + lnπ), (8.26)

which is the strongest statement of Uncertainty Principle known for an N -
dimensional system in quantum mechanics.

8.3.3 Fisher Information

The Fisher information measures [7–9] for position and momentum are

Ir =
∫ [∇ρ(r)]2

ρ(r)
d3r, Ip =

∫ [∇γ (p)]2

γ (p)
d3p. (8.27)

Using the relations in (8.22), one obtains

Ir (�
2/M,Z,Zi,R,Vc)= 1

λ2
Ir (1,1, si , t1, t2),

Ip(�
2/M,Z,Zi,R,Vc)= λ2Ip(1,1, si , t1, t2),

(8.28)
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which together imply that the Fisher information product IrIp satisfies the relation

Irp(�
2/M,Z,Zi,R,Vc)= Irp(1,1, si , t1, t2), Irp = IrIp,

si = M

�2
Zi

(
�

2

MZ

)(
ni+2
n+2 )

, t1 =R(MZ/�2)1/(n+2),

t2 = Vc(M/�2)(�2/MZ)2/(n+2). (8.29)

Here, for given values of the parameters Z,Zi,R,Vc , the Fisher information prod-
uct depends only on Zi/Z

(ni+2)/(n+2), t1, t2.

8.3.4 Rényi Entropy

The Rényi entropies [12–14] in position and momentum spaces are

H(r)
α = 1

1 − α
ln

∫
[ρ(r)]αd3r, H (p)

α = 1

1 − α
ln
∫

[γ (p)]αd3p. (8.30)

With the relations in (8.22), we get for these entropies,

H
(r)
α (�2/M,Z,Zi,R,Vc)= 3 lnλ+H

(r)
α (1,1, si , t1, t2),

H
(p)
α (�2/M,Z,Zi,R,Vc)= −3 lnλ+H

(p)
α (1,1, si , t1, t2),

(8.31)

which imply that the Rényi entropy sum H
(T )
α =H

(r)
α +H

(p)
α satisfies the relation

H(T )
α

(
�

2

M
,Z,Zi,R,Vc

)
=H(T )

α (1,1, si , t1, t2), si = M

�2
Zi

(
�

2

MZ

)(
ni+2
n+2 )

,

t1 =R(MZ/�2)1/(n+2), t2 = Vc(M/�2)(�2/MZ)2/(n+2). (8.32)

Therefore, as in other cases, for given values of the parameters Z,Zi,R,Vc , the
Rényi entropy sum depends on Zi/Z

(ni+2)/(n+2), t1, t2.

8.3.5 Onicescu Energies

The Onicescu energies [15] in position and momentum spaces are

Er =
∫

[ρ(r)]2d3r, Ep =
∫

[γ (p)]2d3p. (8.33)

Using the relations in (8.22), we get

Er(�
2/M,Z,Zi,R,Vc)= 1

λ3
Er(1,1, si , t1, t2),

Ep(�
2/M,Z,Zi,R,Vc)= λ3Ep(1,1, si , t1, t2),

(8.34)
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which imply that the Onicescu energy product Erp =ErEp satisfies the relation

Erp(�
2/M,Z,Zi,R,Vc)=Erp(1,1, si , t1, t2), si = M

�2
Zi

(
�

2

MZ

)(
ni+2
n+2 )

,

t1 =R(MZ/�2)1/(n+2), t2 = Vc(M/�2)(�2/MZ)2/(n+2). (8.35)

In this case also, for given values of the parameters Z,Zi,R,Vc, the Onicescu en-
ergy product depends on Zi/Z

(ni+2)/(n+2), t1, t2.

8.3.6 Tsallis Entropy

The Tsallis entropies [16] in position and momentum spaces are

Tr = 1

q − 1

[
1 −

∫
[ρ(r)]qd3r

]
, Tp = 1

m− 1

[
1 −

∫
[γ (p)]md3p

]
,

1

q
+ 1

m
= 2. (8.36)

We consider the integral terms

Jr(�
2/M,Z,Zi,R,Vc)=

∫
[ρ(r)]qd3r,

Jp(�
2/M,Z,Zi,R,Vc)=

∫
[γ (p)]md3p.

(8.37)

Using the relations in (8.22), we get

Jr(�
2/M,Z,Zi,R,Vc)= λ3−3qJr(1,1, si , t1, t2),

Jp(�
2/M,Z,Zi,R,Vc)= λ3m−3Jp(1,1, si , t1, t2).

(8.38)

Then one obtains for the ratio,

Jp/r (�
2/M,Z,Zi,R,Vc)= Jp/r(1,1, si , t1, t2), Jp/r = J

1/2m
p

J
1/2q
r

,
1

m
+ 1

q
= 2,

si = M

�2
Zi

(
�

2

MZ

)(
ni+2
n+2 )

, t1 =R(MZ/�2)1/(n+2),

t2 = Vc(M/�2)(�2/MZ)2/(n+2). (8.39)

Therefore in this case also, for given values of the parameters Z,Zi,R,Vc, the ratio
of Tsallis entropies depends on Zi/Z

(ni+2)/(n+2), t1, t2.
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8.3.7 Statistical Complexity Measure

A couple of statistical measures of complexity [49–52] has been used to study the
complexity of electronic systems. A given measure becomes significant when a rig-
orous bound on it is known to exist. In this letter, we focus on the LMC (López-
Ruiz-Mancini-Calbet) complexity [49, 50], CLMC , with the aim of deriving a gen-
eral lower bound for it.

Consider a D-dimensional distribution function f (r), with f (r) nonnegative and∫
f (r)dr = 1; r stands for r1, . . . , rD . The Shannon entropy [5, 6] and the Shannon

entropy power are defined as

Sf = −
∫

f (r) lnf (r)dr, (8.40)

Hf = eSf , (8.41)

respectively. The so called disequilibrium D has the form

Df =
∫

f 2(r)dr. (8.42)

The definition of the LMC complexity measure is [49, 50]

CLMC =H.D. (8.43)

The form of CLMC is designed such that it vanishes for the two extreme proba-
bility distributions corresponding to perfect order (H = 0) and maximum disorder
(D = 0). It is known [49, 50] that the complexity corresponding to probability dis-
tributions given by rectangular, triangular, Gaussian and exponential functions in
one-dimensional position space is given by 1, (2/3)(e1/2), (e1/2)/2, and e/2, re-
spectively. The rectangular probability distribution, by definition, corresponds to
the minimum statistical complexity. We shall now derive the lower bound for CLMC

corresponding to a given one-electron density.

8.3.8 Lower Bound on LMC Complexity

To derive a lower bound for the LMC complexity we cite Theorem 2 in the ref-
erence [53]. The position-space entropy S̃ of an N -electron system in a physical
state characterized by the (normalized to N ) one-electron density  (r) fulfills the
inequality

S̃ + 〈lng(r)〉 ≤N ln

(∫
g(r)dr
N

)
, (8.44)

where g(r) is an arbitrary positive function. From the relationship between the Shan-
non entropies coming from densities normalized to 1 and N [53]:

Sf = S̃ 

N
+ lnN (8.45)
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Table 8.1 A compilation of the definitions of quantum mechanical uncertainty principle, informa-
tion theoretical uncertainty-like relationships and LMC statistical complexity measure

Heisenberg Uncertainty Measure σ 2
r σ

2
p = 〈(r − 〈r〉)2〉〈(p − 〈p〉)2〉,

Shannon Information Entropy Sum Sr = − ∫
ρ(r) lnρ(r) dr

Sp = − ∫
ρ(p) lnρ(p) dp

ST = Sr + Sp ≥D(1 + lnπ)

Fisher Information Measure Product Ir = ∫ |∇ρ(r)|2
ρ(r) dr, Ip = ∫ |∇ρ(p)|2

ρ(p) dp

Onicescu information product Er = ∫ [ρ(r)]2dr, Ep = ∫ [γ (p)]2dp

Rényi entropy sum H
(r)
α = 1

1−α
ln

∫ [ρ(r)]αdr

H
(p)
α = 1

1−α
ln

∫ [γ (p)]αdp

Tsallis entropy ratio T
(r)
n = 1

n−1 [1 − J
(r)
n ], T (p)

q = 1
q−1 [1 − J

(p)
q ]

J
(r)
n = ∫ [ρ(r)]ndr, J (p)

q = ∫ [γ (p)]qdp

Jp/r = (J
(p)
q )1/2q

(J
(r)
n )1/2n

Fisher Shannon Plane Nr = 1
πe
e2Sr /3, Np = 1

πe
e2Sp/3, NrIr and NpIp

Statistical Complexity Measure Cr = eSr Er , Cp = eSpEp

and taking g = f 2, we obtain the inequality

Sf + ln

(∫
f 2(r)dr

)
≥ 0. (8.46)

From the definition of the LMC complexity (8.43) we obtain the upper bound

lnCLMC ≥ 0 (8.47)

or

CLMC ≥ 1. (8.48)

It is to be noted that the scaling properties of CLMC in either the position or momen-
tum space are identical to that of the Heisenberg Uncertainty product and the other
composite information theoretical measures such as the sum of Shannon entropy,
ST and the Fisher information product IrIp .

The various information theoretical measures considered by us [54–68] have
been compiled in Table 8.1.

In Table 8.2 we present the scaling properties of the Heisenberg uncertainty prod-
uct corresponding to a selected group of potentials studied till date by us [54–68]
using the procedure described under Sect. 8.3 wherein the new results have been pre-
sented for the spherically symmetric polynomial potential with finite barrier heights.
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Table 8.2 A compilation of the scaling properties of the various measures of uncertainty and
complexity as listed under Table 8.1

VHydrogenic(r)= −Z
r

+ a

r2 σ 2
r σ

2
p = �

2 g1(Ma/�2)g2(Ma/�2)

VMod. Yukawa(r)

= −[Z e−μr

r
+∑

i ciZ
e−si μr

r
] cos(bμr)+ a

r2

f1(�
2μ/MZ,Ma/�2, ci , si , b)

× f2(�
2μ/MZ,Ma/�2, ci , si , b)

VMod. Hulthen(r)

= −[Z μ
eμr−1 +∑

i ciZ
siμ

esiμr−1 ] cos(bμr)+ a
r2

σ 2
r σ

2
p = �

2f1(�
2μ/MZ,Ma/�2, ci , si , b)

× f2(�
2μ/MZ,Ma/�2, ci , si , b)

VTruncated Coulomb(r)= −[ Z

(rq+βq )
1
q

] σrσp = �g1(s)g2(s), s = MZβ

�2

V3D HO(r)= kr2

2 + a

r2 σrσp = �(2n+ l′ + 3/2)

× [1 − 2Ma/�2

(l′+1/2)(2n+l′+3/2) ]1/2

VPöschl-Teller(r)= −Z sech2(μr) σrσp = �g1(s)g2(s), s = �μ√
MZ

VMorse(r)= Z[e−2μ(r−r0) − 2e−μ(r−r0)] g4(s1, s2)g5(s1, s2), s1 = �μ/
√
MZ,

s2 = r0
√
MZ/�

VSum of Power(r)= Zrn +∑
i Zir

ni g1(si )g2(si ), si = M

�2 Zi(
�

2

MZ
)(

ni+2
n+2 )

VBH(r) = − Ze2

4πε0r
+ eB

m
Lz + e2B2

2m r2 sin2 θ

+ eF r cos θ

f1(s1)f2(s2), s1 = B�
3(4πε0)

2

Z2m2e3 ,

s2 = F�
4(4πε0)

3

Z3e5m2

8.4 Conclusions

Using the dimensional analysis, we have studied the scaling properties of the
Heisenberg Uncertainty principle and a set of information theoretical uncertainty-
like relationships for the bound states corresponding to several useful model poten-
tials in chemical physics. Such results enrich our understanding of the potential →
electron probability density → uncertainty-like bounds defined in the position and
momentum spaces describing the physical systems. Further, except in a very limited
number of potentials where the exact solutions are known, the presently derived
results can be used to test the accuracy of the approximate wave functions.
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Chapter 9
Chemical Information from Information
Discrimination and Relative Complexity

Alex Borgoo, Paul Geerlings, and K.D. Sen

Abstract Following the spirit of the Hohenberg-Kohn theorems of DFT, the atomic
and molecular density functions are used as the key parameters to extract chemical
information. The functional form of the Kullback-Leibler relative information mea-
sure permitted the construction of density functionals, which along with the choice
of a good reference density, for example, noble gas elements, is shown to reveal the
periodicity in Mendeleev’s table. Similarly, the specific choice of the transition state
as reference, leads to valuable information on the chemically interesting reaction
profiles. The investigation of atomic complexity measures is reported in terms of
the non-relativistic and relativistic shape electron densities. Such an analysis leads
to the interesting result that the atomic complexity derived from the relativistic elec-
tron density increases with atomic number whereas a saturation value is attained
when the non-relativistic density is employed. It is shown that a relative complex-
ity measure can be defined which reflects the diversity of electron density functions
with respect to a reference atom as the sub shells are filled across the periodic ta-
ble.

9.1 Introduction

The density functional theory (DFT) forms the basis of the most widely used com-
putational tools in quantum chemistry today. The DFT is based on the Hohenberg-
Kohn theorems [1]. According to its most common understanding, the N -electronic
system is completely specified by its ground state electron density function. In other
words an atom’s or a molecule’s energy—and in fact any other physical property—
can be determined by evaluating a density functional. However, the construction of
a functional,which corresponds to a given physical property, has proven to be very
difficult. Moreover, to the present day no general and systematic way for construct-
ing such functionals has been established. Although energy functionals, which are
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accurate enough for numerous practical purposes, have been around for some time
now, the complicated rationale and the everlasting search for even more accurate
energy functionals are proof of the difficulties encountered when constructing such
functionals. In the domain of conceptual DFT, where chemical reactivity is inves-
tigated, a scheme for the construction of functionals, based on derivatives of the
energy with respect to the number of electrons and/or the external potential, has
proven very successful [2, 3]. In such studies, an intimate connection between the
electronic probability density and the statistical thermodynamics principles is es-
tablished. To the extent that the quantum mechanical uncertainty principle dictates
the electronic probability distribution of atoms and molecules, it is hardly surpris-
ing that the ideas for the construction of chemically interesting functionals have
also originated from information theory and statistical mathematics. This connec-
tion is generally to be attributed to the existence of several information theoretical
uncertainty-like measures defined in terms of the electron density function, rather
than the quantum mechanical expectation values. Information theoretical concepts
found their way into chemistry during the seventies of last century. They were intro-
duced to investigate experimental and computed energy distributions from molecu-
lar collision experiments. The purpose of the information theoretical approach was
to measure the significance of theoretical models and conversely to decide which
parameters should be investigated to gain the best insight into the actual distribu-
tion. For an overview of this approach to molecular reaction dynamics, we refer to
Levine’s work [4]. Although the investigated energy distributions have little relation
with electronic wave functions and density functions, the same ideas and concepts
found their way to quantum chemistry and the chemical reactivity studies which
are an important study field of it. As mentioned above, this was stimulated by the
fact that atoms and molecules can be described by their density function, which is
ultimately a probability distribution. Since the first applications of information the-
oretical concepts in quantum chemistry described in the pioneering work of Sears,
Parr and Dinur [5] many applications of information theoretical concepts to investi-
gate wave functions and density functions, have been reported. In [6] Gadre gives a
detailed review of the original ideas behind and the literature on “Information The-
oretical Approaches to Quantum Chemistry”. To motivate our work in this field I
paraphrase the author’s concluding sentence:

“Thus it is felt that the information theoretical principles will continue to serve as powerful
guidelines for predictive and interpretive purposes in quantum chemistry.”

One of the most important and basic cornerstones of chemistry is the periodic
table of elements revealing the periodicity of atomic properties starting with e.g. the
shell structure of atoms. Its recovery on the basis of the electron density alone can
be considered a significant result. In an information theoretical context, the peri-
odicity revealing functional can be interpreted as a quantification of the amount of
information in a given atom’s density function, missing from the density function
of the noble gas atom which precedes it in the periodic table. In the same spirit,
the concept of complexity has been taken under consideration for the investigation
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of electron density functions. Complexity has appeared in many fields of scientific
inquiry e.g. physics, statistics, biology, computer science end economics [7]. At
present there does not exist a general definition which quantifies complexity, how-
ever several attempts have been made. For us, two of these stands out due to its
functional form and their link with information theory. In this chapter we present
a review of the work done in the Brussels group which illustrates how a variety of
chemically interesting information theoretical functionals of electron density could
be constructed. In all cases, extensive quantitative tests are presented in order to test
the suitability of such constructions.

Throughout this chapter it becomes clear that different information and complex-
ity measures can be used to distinguish electron density functions. Their evaluation
and interpretation for atomic and molecular density functions gradually gives us
a better understanding of how the density function carries physical and chemical
information. This exploration of the density function using information measures
teaches us to read this information.

Before going into more details about our research [8–11] several concepts should
be formally introduced. For our research, which deals with applications of func-
tional measures to atomic and molecular density functions, a brief discussion of
these measures should suffice. The theoretical sections are followed by an in depth
discussion of our results. In the concluding section we formulate general remarks
and some perspectives.

9.2 Shannon’s Measure: An Axiomatic Definition

In 1948 Shannon constructed his information measure—also referred to as “en-
tropy”—for probability distributions according to a set of characterizing ax-
ioms [12]. A subsequent work showed that, to obtain the desired characterization,
Shannon’s original four axioms should be completed with a fifth one [13]. Different
equivalent sets of axioms exist which yield Shannon’s information measure. The
original axioms, with the necessary fifth, can be found in [14]. Here we state the set
of axioms described by Kinchin [6, 15].

For a stochastic event with a set of n possible outcomes (called the event space)
{A1,A2, . . . ,An} where the associated probability distribution P = {P1,P2, . . . ,Pn}
with Pi ≥ 0 for all i and

∑n
i=1 Pi = 1, the measure S should satisfy:

1. the entropy functional S is a continuous functional of P ;
2. the entropy is maximal when P is the uniform distribution i.e. Pi = 1/n;
3. the entropy of independent schemes are additive i.e. S(PA + PB) = S(PA) +

S(PB) (a weaker condition for dependent schemes exists);
4. adding any number of impossible events to the event space does not change the

entropy i.e. S(P1,P2, . . . ,Pn,0,0, . . . ,0)= S(P1,P2, . . . ,Pn).
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It can be proven [15] that these axioms suffice to uniquely characterize Shannon’s
entropy functional

S = −k
∑
i

Pi logPi, (9.1)

with k a positive constant. The sum runs over the event space i.e. the entire prob-
ability distribution. In physics, expression (9.1) also defines the entropy of a given
macro-state, where the sum runs over all micro-states and where Pi is the probability
corresponding to the i-th micro-state. The uniform distribution possesses the largest
entropy indicating that the measure can be considered as a measure of randomness
or uncertainty, or alternatively, it indicates the presence of information.

When Shannon made the straightforward generalization for continuous probabil-
ity distributions P(x)

S[P(x)] = −k

∫
P(x) logP(x)dx, (9.2)

he noticed that the obtained functional depends on the choice of the coordinates.
This is easily demonstrated for an arbitrary coordinate transformation y = g(x), by
employing the transformation rule for the probability distribution p(x)

q(y)= p(x)J−1 (9.3)

and the integrandum

dy = J dx, (9.4)

where J is the Jacobian of the coordinate transformation and J−1 its inverse. The
entropy hence becomes∫

q(y) log(q(y)) dy =
∫

p(x) log(p(x)J−1) dx, (9.5)

where the residual J−1 inhibits the invariance of the entropy. Although Shannon’s
definition lacks invariance and although it is not always positive, it generally per-
forms very well. Moreover, its fundamental character is emphasized by Jaynes’s
maximum entropy principle, which permits the construction of statistical physics,
based on the concept of information [16, 17]. In the last decade several investiga-
tions of the Shannon entropy in a quantum chemical context have been reported.
Those relevant to our research are discussed in more detail below.

9.3 Kullback-Leibler Missing Information

Kullback-Leibler’s information deficiency was introduced in 1951 as a generaliza-
tion of Shannon’s information entropy [18]. For a continuous probability distribu-
tion P(x), relative to the reference distribution P0(x), it is given by

ΔS[P(x)|P0(x)] =
∫

P(x) log
P(x)

P0(x)
dx. (9.6)
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As can easily be seen from expression (9.5), the introduction of a reference prob-
ability distribution P0(x) yields a measure independent of the choice of the coor-
dinate system. The Kullback-Leibler functional quantifies the amount of informa-
tion which discriminates P(x) from P0(x). In other words, it quantifies the dis-
tinguishability of the two probability distributions. Sometimes it can be useful to
see ΔS[P(x)|P0(x)] as the distance in information from P0 to P , although strictly
speaking the lack of symmetry under exchange of P(x) and P0(x) makes it a di-
rected divergence.

Kullback-Leibler’s measure is an attractive quantity from a conceptual and for-
mal point of view. It satisfies the important properties positivity, additivity, invari-
ance, respectively:

1. ΔS[P(x)|P0(x)] ≥ 0;
2. ΔS[P(x, y)|P0(x, y)] = ΔS[P(x)|P0(x)] + ΔS[P(y)|P0(y)] for independent

events i.e. P(x, y)= P(x)P (y);
3. ΔS[P(y)|P0(y)] =ΔS[P(x)|P0(x)] if y = f (x).

Besides the lack of symmetry, the Kullback-Leibler functional has other formal lim-
itations e.g. it is not bound, nor is it always well defined. In [19] the lack of these
properties was addressed and the Jensen-Shannon divergence was introduced as a
symmetrized version of Kullback-Leibler’s functional. In [20] the Jensen-Shannon
distribution was first proposed as a measure of distinguishability of two quantum
states. Chatzisavvas et al. investigated the quantity for atomic density functions [21].

For our investigation of atomic and molecular density functions, as carrier of
physical and chemical information, we constructed functionals based on the defini-
tion of information measures. In the Sects. 9.5–9.11 below, the research is discussed
in depth.

9.4 Fisher Information

The Fisher information was originally introduced in statistical estimation the-
ory [22]. Fisher’s functional was constructed to express the amount of information a
data sample, with a given parametric distribution model, contains about the parame-
ters. We limit ourselves to the relevant so-called diagonal form of Fisher’s measure
and write for an univariate probability distribution P(x)

I [P(x)] =
∫ [∇P(x)]2

P(x)
dx. (9.7)

This functional is also known as the “intrinsic accuracy” and it measures the “nar-
rowness” of the probability distribution.

As stated in [5], Fisher’s measure for accuracy or narrowness (9.7) and Shan-
non’s measure for randomness or spread (9.2), can be considered as two sides of
the same coin. Since the first application by Parr, Sears and Dinur [5], where the
quantum mechanical kinetic energy was expressed as an information measure of
the electron density function, numerous studies involving Fisher’s functional have
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been reported. Whilst a thorough mathematical treatment of the Fisher information
measure lies beyond the scope of this thesis, the fact that the measure provides a
functional which can be interpreted and linked with physical properties is of great
interest. The functional, like others in this chapter, provides a way of analyzing the
density function.

9.5 Reading Chemical Information from the Atomic Density
Functions

9.5.1 Introduction

This section contains a detailed description of our research on the recovery of the
periodicity of Mendeleev’s Table. The novelty in this study is that we managed to
generate the chemical periodicity of Mendeleev’s table in a natural way, by con-
structing and evaluating a density functional. As reported earlier in [23], the com-
parison of atomic density functions on the basis of a quantum similarity index (using
the δ(r1 − r2) operator), masks the periodic patterns in Mendeleev’s table. On the
other hand, the importance of the periodicity, as one of the workhorses in chemistry,
can hardly be underestimated. Due to the Hohenberg-Kohn theorems, the electron
density can be considered as the basic carrier of information, although, for many
properties it is unknown how to extract the relevant information from the density
function. This prompted us to investigate whether the information measures, which
gained a widespread attention by the quantum chemical community, could be used
to help extract chemical information from atomic density functions in general and
help to regain chemical periodicity in particular.

Gadre and Sears for example studied the near Hartree-Fock information entropy
S = − ∫

ρ(r) logρ(r) dr and its analogue in momentum space [24]. Fazal presented
an overview of computations on the Shannon entropy of the 1-normalized density
S = − ∫

σ(r) logσ(r) dr [25]. Nagy and Parr [26] argued that information entropy
gives a measure for the quality of an approximate electron wave function. Finally
the important work of Nalewajski and Parr [27] should be mentioned, pointing out
that the Kullback-Leibler entropy deficiency promotes Hirshfeld’s [28] stockholder
procedure as a natural way to generate atomic charges.

In this study we used ground state density functions obtained from the numerical
LS-dependent Hartree-Fock scheme For a thorough discussion on atomic density
functions and a code to calculate them, we refer to [29].

9.5.2 Construction and Evaluation of the Functional

A point of major interest in recent literature on the information theory approach is
the information discrimination (9.6). Use of this functional necessitates the choice
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of a reference density P0(x). Still concentrating on the electron density as an infor-
mation carrier we chose P0(x) in a way which bears analogy to the way Sanderson
formulated his electronegativity scale [30]. Sanderson based his reasoning on the
average electron density of a given atom A

EDA = ZA

4
3πr

3
A

, (9.8)

where ZA is the atomic number and rA the covalent radius. The corresponding value
for a (hypothetical) noble gas atom with the same number of electrons, obtained by
linear interpolation between the noble gases, is denoted as ED0. The ratio

SA = EDA

ED0
(9.9)

was called the stability ratio for atom A and put in relation with the electronega-
tivity of atom A on the basis of the compactness of the electron cloud, reflecting,
in a present-day terminology, its shape. In the same vein we considered as refer-
ence density in (9.6) the renormalized noble gas density of the row preceding the
considered atom. The quantity to be evaluated then becomes

ΔS
ρ
A ≡ΔS[ρA(r)|ρ0(r)] =

∫
ρA(r) log

ρA(r)
NA

N0
ρ0(r)

dr, (9.10)

with ρ0(r) the density of the reference noble gas, scaled by the factor NA

N0
to yield

upon integration the same number of electrons as in atom A, characterised by ρA(r).
It is easily seen that the integrand in (9.10) can be rewritten in a way that the shape
functions σA(r) and σ0(r), appear in ΔS

ρ
A

ΔS
ρ
A ≡ΔS[ρA(r)|ρ0(r)] =

∫
ρA(r) log

σA(r)
σ0(r)

dr. (9.11)

Figure 9.1 indicates that a ΔSρA versus Z plot reveals periodicity to some extent.
Intuitively we can consider the data as reflecting the difference between the informa-
tion content of an atom when the information of the inner (completely filled) shells
has been removed, by putting it in the reference density. So essentially information
on the valence electrons is displayed, the noble gas considered having the same core
as the atom under consideration.

Note however that in (9.11) an explicit dependency of ΔSρA on NA is observed
as ρA(r) = σA(r)NA. This behavior might be at the origin of the similar steepness
of the curves belonging to first, second, third and fourth row atoms.

It is tempting to eliminate the NA dependency, easily justified by building the
theory directly in terms of shape functions, yielding

ΔSσA ≡ΔS[σA(r)|σ0(r)] =
∫

σA(r) log
σA(r)
σ0(r)

dr. (9.12)

Figure 9.2 now shows that periodicity is more pronounced coupled to the fact
that the distance between points in a given period is decreasing gradually from first
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Fig. 9.1 Kullback-Leibler information (9.11) versus Z for atomic densities with the noble gas of
the previous row as reference

Fig. 9.2 Kullback-Leibler information (9.12) versus Z for atomic shape functions with the noble
gas of the previous row as reference
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to fourth row. One hereby regains one of the basic characteristics of the Periodic
Table namely that the evolution in (many) properties through a given period slows
down when going down in the Table. The decrease in slope of the four curves is a
further illustration.

9.5.3 Conclusion

As reported earlier in [23], LS-dependent numerical Hartree-Fock densities for
atoms H-Xe combined in a similarity index with a Dirac-delta function separation
operator yield a nearest neighbour dominated similarity, masking periodicity. Intro-
duction of the information discrimination concept with reference to the noble gas
atom of the previous row leads to periodicity, with more pronounced results when
densities are replaced by shape functions throughout. The present study also high-
lights the importance of the choice of the reference used to discriminate information
in (9.12), which in our work has been fixed as the noble gas density of the previ-
ous row in the periodic table. As shown above the chemically intuitive choice of
the reference density plays a key role in unmasking the periodicity in the table of
Mendeleev.

The final result can be translated in the gain of information that valence electrons
bear in their shape as compared to that of the noble gas with the same core. This
result indicates the importance of the shape function as carrier of physical informa-
tion.

9.6 Information Theoretical QSI

9.6.1 Introduction

Continuing the search for periodic patterns based on similarity measures motivated
by the results obtained in an information theoretical frame work in Sect. 9.5, we will
now combine the ideas from quantum similarity and information theory to construct
an information theoretical similarity measure.

9.6.2 Construction of the Functional

In Sect. 9.5 we reported on the information entropy of atomic density and shape
functions respectively defined as (9.11) and (9.12). As motivated above we set the
density function of the reference equal to the density of the noble gas preceding the

atom under investigation in the periodic table, scaled by the factor NA

N0
, where NA
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and N0 are the number of electrons, respectively of atom A and its reference. In this
way the reference density ρ0(r) and ρA(r), the density of atom A, yield the same
number of electrons upon integration. In the previous section we demonstrated that
these quantities reflect the periodic evolution of chemical properties in the Periodic
Table and that Kullback’s interpretation can be formulated in terms of chemical
information stored in the density functions when we make this particular choice for
the prior densities.

Following the conclusions in the previous section, one can see that it would be
interesting to compare the information entropy, evaluated locally as

ΔS
ρ
A(r)≡ ρA(r) log

ρA(r)
NA

N0
ρ0(r)

, (9.13)

for two atoms by use of a quantum similarity measure (QSM). To that purpose
the integrand in expression (9.12) is considered as a function, which gives the
information entropy locally—at a given point r. The construction of the corre-
sponding QSM becomes straightforward by considering the overlap integral (with
Dirac-δ as separation operator) of the local information entropies of two atoms A
and B

ZAB(δ)=
∫

ρA(r) log
ρA(r)

NA

N0
ρ0(r)

ρB(r) log
ρB(r)

NB

N0′ ρ0′(r)
dr. (9.14)

Now a quantum similarity index (QSI) can be defined by normalizing the QSM,
i.e. QSI = ZAB√

ZAA

√
ZBB

. The QSM and the normalized QSI give a quantitative way of
studying the resemblance in the information carried by the valence electrons of two
atoms. The obtained QSI trivially simplifies to a shape based expression

SI(δ) =
∫
ΔSσA(r)ΔS

σ
B(r)dr√∫

ΔSσA(r)ΔS
σ
A(r)dr

√∫
ΔSσB(r)ΔS

σ
B(r)dr

. (9.15)

The simplification can be generalized from the local information discrimination
ΔS

ρ
A(r) to any expression Fρ(r), which is linear in ρ (thus satisfying Fρ(r) =

NFσ (r)), as follows:
∫
F
ρ
A(r)F

ρ
B (r)dr√∫

F
ρ
A(r)F

ρ
A(r)dr

√∫
F
ρ
B(r)F

ρ
B (r)dr

=
∫
Fσ
A (r)F

σ
B (r)dr√∫

Fσ
A (r)F

σ
A (r)dr

√∫
Fσ
B (r)F

σ
B (r)dr

.

(9.16)

In agreement with the fact that the shape function completely determines the
properties of a system, the relevance of the QSI as a tool to compare physical prop-
erties of atomic electron density functions is confirmed. This characteristic distin-
guishes the QSI above, together with the Carbó QSI from other similarity measures.
(For a recent overview about other similarity indices we refer to [31] and Hodgkin-
Richards [32].)
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Fig. 9.3 A selection of the results for ZB = 82 of the Information entropy QSI. The change of
reference atom is still visible, but the periodicity is not regained

9.6.3 Evaluation of the Functional

In this section the results of the QSM and QSI, evaluated for shape functions of all
pairs of atoms in the periodic table are discussed.

The evaluation of the information theory based QSM reveals a picture corre-
sponding to the periodicity of Mendeleev’s Table, which can be distinguished by for
example selecting the results involving the density of Pb in Fig. 9.3. The results cor-
respond to the evolution of chemical properties first of all in the sense that for each
period the QSM increases gradually from the first column to the last. Ionization en-
ergy and hardness are properties which reveal a similar evolution throughout [33].
Secondly in the sense that neighbouring atoms with large nuclear charge differ less
than neighbouring light atoms, e.g. the difference between the QSM values of two
atoms in the first period is large in comparison to the difference in QSM between
two neighbouring Lanthanides. The periodicity is regained throughout by the choice
of the reference atoms, as it yields low QSM values for atoms similar to the cho-
sen prior. One notes however that the QSM does not reveal results, which reach
maxima when a given atom is compared with another atom of the same group.
Moving to the QSI, the periodicity of the QSM is lost due to the normalization
as illustrated by selection of results involving Pb in Fig. 9.4. The change of prior
is still visible (gaps) at the positions where the prior changes, but the normaliza-
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Fig. 9.4 A selection of the results of the information entropy QSI for Zb = 82. The change of
reference atom is still visible, but the periodicity is not regained

tion blends out the clear periodic evolution of the QSM in graph 9.3. This leads to
the conclusion that the normalization, which yielded the nearest neighbour effect
for the Carbó, which were reported in [23], can overwhelm the characteristics of a
QSM.

Changing the point of view, we can opt to investigate which atom of a given pe-
riod of the table belongs to a certain column and in which way the atoms should
be ordered within the period. This can be done by investigating the QSI with the
top atoms of each column as prior. Formulated in terms of Kullback-Leibler infor-
mation discrimination the following is evaluated. For instance, when we want to
investigate the distance of the atoms Al, Si, S and Cl from the N -column (group
Va), we consider the information theory based QSI in expression (9.14), where the
reference densities ρ0 and ρ0′ are set to ρN , ρA to ρAl , ρSi , ρP , etc. respectively
and ρB to ρP , i.e. we compare the information contained in the shape function of
N to determine that of P, with its information on the shape function of Al, Si, S,
Cl. Due to the construction a 1. is yielded for the element P and the other values
for the elements to the left and to the right of the N -column decrease, as shown in
Fig. 9.5. This pattern is followed for the periods 3 up to 6, taking As, Sb and Bi as
reference, with decreasing difference along a given period in accordance with the
results above. Note that the difference from 1. remains small, due to the effect of the
renormalization used to obtain the QSI.
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Fig. 9.5 Results of the information theory based QSI with the atom on top of the column as prior.
The symbol in the legend indicates the period of the investigated atom and the nuclear charge
Z-axis indicates the column of the investigated atom. (For example Ga can be found as a square
Z = 5)

9.6.4 Conclusion

In this study we reported on the development and calculation of a new information
theory based quantum similarity measure (QSM) and the corresponding quantum
similarity index (QSI) for atoms, using their density functions and shape functions.
We showed that a QSM constructed with the Kullback-Leibler information defi-
ciency looses its periodic character upon normalization. One might say that the nor-
malisation renders the QSI insensitive to certain characteristics, clearly present in
the QSM. To regain the periodicity with the information theory based QSM, the
choice of the reference for each atom as the density of the noble gas of the previous
row, normalized to the same number of electrons in the atom under investigation,
is crucial. The results of the QSM are in agreement with chemical intuition in the
sense that the difference in QSM of two successive light atoms is large in compari-
son to the difference in QSM of two successive heavy atoms, which reflects that light
atoms next to each other in the table differ more than neighbouring heavy atoms. In
particular, when looking at the results of Lanthanides and Actinides we find high
similarities indeed. This interpretation is not regained by looking at the QSI, with
the prior set to the noble gas atoms. It is rewarding that the comparison of informa-
tion content of the shape function of a given top atom in a column with the atoms of
the subsequent period(s) reveals another periodicity pattern.
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9.7 Relativistic Effects on the Fisher Information

9.7.1 Introduction

The Shannon information entropy (9.2) and Fisher information measure (9.7) of a
probability distribution are two of the most investigated measures of information.
In this section they will be used to investigate the shape function of atoms. We
shall thus refer all the information measures to the shape function. The Shannon
information is then defined as

S = −
∫

σ(r) logσ(r) dr. (9.17)

We note here that S is a global measure of the spread of the probability density σ(r).
We shall denote the integrand in (9.17) as s(r). The Fisher information (intrinsic
accuracy) in the position space is defined as

I =
∫ [∇σ(r)]2

σ(r)
dr. (9.18)

The quantity I measures the ‘narrowness’ of the electron distribution and presents
itself as a local measure of the oscillations in σ(r). The integrand in (9.18) will
be denoted by i(r). An equivalent form of I has been proposed for atomic and
molecular systems [34], which is given by

I ′ = −
∫

[∇2σ(r)]log[σ(r)]dr. (9.19)

The integrand in (9.19) will be denoted by i′(r), distinguishing it from i(r). Fur-
ther, using an identity based on Green’s theorem [35, 36], it has been shown [34]
that (under the assumption that −σ(r) logσ(r) is strongly decaying) an interesting
relationship holds between the Shannon entropy density s(r) and the “potential” de-
rived from the Fisher information integrands i(r) in (9.18) and i′(r) in (9.19). More
specifically,

−σ(r) log [σ(r)] = −σ(r)+ 1

4π

∫
i(r′)

|(r − r′)|dr′ − 1

4π

∫
i′(r′)

|(r − r′)| dr′ (9.20)

and

S = −1 + 1

4π

∫ ∫
i(r′)

|r − r′| drdr′ − 1

4π

∫ ∫
i′(r′)

|r − r′| drdr′, (9.21)

have been derived. The local function −σ(r) logσ(r) is said to be strongly decay-
ing if it falls faster than 1/r and its derivative decays faster than 1/r2. Numeri-
cal tests for the ground state atoms with atomic number Z = 2–18 have been pre-
sented in [34], employing numerical Hartree-Fock densities, confirming the validity
of (9.21).
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In this study, we present the first calculations of expressions (9.18) and (9.19)
for atoms Z = 1–103, using the relativistic Dirac-Fock (DF) wave functions [37].
In addition to testing (9.21), (9.20) has been studied, focusing on the evaluation at
the nucleus r = 0. In particular, we write

−σ(0) log [σ(0)] = −σ(0)+ 1

4π

∫
i(r′)

r′ dr′ − 1

4π

∫
i′(r′)

r′ dr′. (9.22)

This equality can be used to evaluate the difference between the two Fisher infor-
mation potentials (second and third terms) at r = 0 directly as σ(0)[1 − log (σ (0)].
Thus, the effective potential difference at the nucleus due to the density (i(r)− i′(r))
is completely defined in terms of the shape function at the nucleus. This result as-
sumes further significance in the light of the importance of Fermi-contact interac-
tion in the measurements of hyperfine interactions in atoms, molecules and solids
[38, 39]. The Fermi-contact term, which is directly proportional to σ(0), is partic-
ularly sensitive to relativistic effects as a result of orbital and bond length contrac-
tions.

9.7.2 Calculations

In the present work, we have used the MDF/GME program of Desclaux and Indel-
icato [37] including both the magnetic and retardation part of the Breit interaction
in the self-consistent process, but not the vacuum polarization under the option of
a point nucleus. For the details about the DF density functions we refer to [40].
We employed both the finite and point nucleus options to generate the DF densi-
ties. We used the Z-dependent mesh with the “RHOMIN” parameter of the loga-
rithmic mesh [22] as −16.0. The non-relativistic HF densities are similar to those
employed earlier [41] and are generated using Koga-Roothaan-Hartree-Fock wave
functions [42, 43]. All the necessary integrals have been computed using numerical
quadrature on the spherically averaged electron density.

9.7.3 Results and Conclusions

In Fig. 9.6, we displayed the results of our calculations of the equivalent I and
I ′ for neutral atoms with nuclear charge Z = 1–103. These numbers are based on
DF density functions using a finite nucleus. The two sets of results are found to
be in excellent numerical agreement. This numerical test confirms the equivalence
of the two forms of the Fisher information measures in (9.18) and (9.19) for all
atoms. In Fig. 9.7, we compared the I values determined from the point nucleus
DF densities as well as the finite nucleus ones with those of the HF (point nucleus)
densities for neutral atoms. From this plot it is clear that the relativistic effects lead
to a significant non-linear increase in I for atoms with Z ≥ 40. A good linear fit
to the non-relativistic HF estimates was obtained as I = 8.3088Z − 12.454, with
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Fig. 9.6 A plot of I (x) and I ′ (o) vs. Z for neutral atoms using the finite nucleus DF densities

Fig. 9.7 A plot showing comparison of I for all neutral atoms using the finite nucleus DF densities
(x) and point nucleus DF densities (o) with those derived from HF density (+)
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Fig. 9.8 A plot of the radial distribution of the potential difference, 1
4π

∫
i(r′)

|r−r′ | dr′ −
1

4π

∫
i′(r′)
|r−r′ | dr′ for Xe comparing the HF (Thin/Solid) and the finite nucleus DF (Thick/Dashed) es-

timate to show the local effects due to the relativistic interactions. The standard radial distribution
function 4πr2[σ(r)] (Thick/Dotted) for the finite nucleus DF density has been plotted alongside to
show that the shell boundaries are represented as the maxima in the difference of Fisher potential
curves

correlation coefficient of 0.9999. The observed trend is attributed to the nearly lin-
ear dependence on Z of the Weizsäcker kinetic energy, which is a functional of
the shape function σ(r) and is proportional to the Fisher measure [5] in (9.18).
For heavy atoms, the relativistic effects appear to break this linearity. A compari-
son of Fisher information using point nuclei with those using finite nuclei within
the DF model shows that the finite nucleus densities lead to slightly reduced val-
ues of the Fisher information. This is probably related to the presence of more
rapidly changing behavior of the electron density near the nucleus in case of the
point nucleus DF model (see below). In Fig. 9.8, we present a case study for Xe
of the local variation of the radial distribution of the difference in the two Fisher
information potentials, given by the second and third terms in the right hand side
of (9.20). Here, the HF estimates have been compared with those derived from the
finite nucleus DF density. The DF densities lead to an enhancement of the corre-
sponding integrand at smaller radial distances. It is striking how the detailed fea-
tures of the shell effects are clearly revealed by the radial distribution function of
the difference in Fisher potential. Moreover, comparison with the radial distribu-
tion function of the shape function, 4πr2σ(r), displayed in Fig. 9.8 shows that
the shell boundaries are marked by the locations of maxima in the radial density
distribution of the difference in Fisher potentials. In Fig. 9.9, we have plotted the
quantity −4πr2[σ(r) logσ(r) − σ(r)] for Xe. As expected this curve reproduces
quantitatively the radial density distribution of Fisher potential difference plotted
in Fig. 9.8. This provides the numerical verification of the identity in (9.20) at
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Fig. 9.9 A plot of the density function, −4πr2[σ(r) logσ(r)− σ(r)] for Xe, comparing the HF
(Thin/Solid) and finite nucleus DF (Thick/Dashed) results. The results are quantitatively the same
as those displayed in Fig. 9.8

Table 9.1 Equivalence of (9.22) of the HF estimates of the difference in Fisher potentials due to
(i(0) and i′(0)) with σ(0)[1 − ln(σ (0))] for a representative set of atoms [He, Ne, Ar, Xe, Rn, Li,
Na, K, Rb, I]

Atom σ(0) σ (0)− logσ(0) i′(0) i(0) i − i′(0)

He 1.79795 0.743187 0.960499 1.70369 0.743187

Ne 61.9919 −193.849 251.368 57.5189 −193.849

Ar 213.32 −930.673 1122.73 192.057 −930.673

Kr 895.538 −5191.81 5977.51 785.694 −5191.81

Xe 2059.77 −13657 15440.6 1783.57 −13657

Li 4.6052 −2.4278 6.85062 4.42281 −2.4278

Na 75.7962 −252.253 322.195 69.9421 −252.253

K 238.931 −1069.5 1284.05 214.549 −1069.5

Rb 947.59 −5547.12 6377.67 830.557 −5547.12

I 1982.35 −13067.7 14785.3 1717.55 −13067.7

all radial points. In Table 9.1, we have presented the numerical results of the dif-
ference of the Fisher potentials due to i(r) and i′(r) in (9.20) evaluated at the
nuclear position, r = 0, with the corresponding estimates of σ(0)[1 − logσ(0)]
for a representative set of atoms. Here we only provide numerical results corre-
sponding to HF densities. This is due to the fact that the Dirac j = 1/2 wave
functions diverge as

√
(1 −Zα2); therefore there is no total electron density at

the DF point nucleus. The equivalence of −4πr2[σ(r) logσ(r) − σ(r)] and the
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difference between the radial distribution of the Fisher potentials at all other ra-
dial points has already established in Figs. 9.8 and 9.9. An equivalence at the
nucleus similar to that of the HF results in Table 9.1 can be obtained from DF
density functions by integrating the density over the volume of the finite nu-
cleus. We have not carried out such calculations in the present work as there ex-
ist several possibilities of modelling the finite nuclear volume. Our observations
in Figs. 9.8 and 9.9 and in Table 9.1, suggest that the probability distribution
−4πr2[σ(r) logσ(r)− σ(r)] can be used equivalently to represent the radial distri-
bution of the difference of the two Fisher potentials i(r)

|r−r′| − i′(r)
|r−r′| in (9.20). More

interestingly, for any electronic system the difference in the Fisher potential at the
nucleus is completely defined in terms of the value of the shape function at this
point. The important effects on the effective electrostatic property given by the dif-
ference of the potential due to the Fisher densities i(r) and i′(r) can therefore be
probed using the quantity −σ(r) log[σ(r)] + σ(r), which is much simpler to cal-
culate. In this manner, the effect of the overall bonding interactions, including the
long range effects, can be readily calculated by studying the corresponding changes
in the potential difference. The results reported in this section provide an infor-
mation theoretical interpretation of the observation [44] that the electron density
(shape function) at the nucleus, through Kato’s cusp condition [45], enables the
ground state electron density function to carry information on all the other proper-
ties [1].

9.8 Two Complexity Measures

Until present no general definition of complexity is available and one has to use a
definition which is workable for the situation at hand. Here we will introduce two
complexity measures, which we employed for an investigation of atomic density
functions.

9.8.1 LMC Complexity Measures

Most measures from information theory are constructed with the idea to quantify
the randomness of a probability distribution. For example the outcome of a pro-
cess described by a uniform probability distribution is harder to predict compared to
one determined by a sharp normal distribution, where the expected outcome would
be indicated by the peak of the distribution. In a conceptually related approach to
the analysis of systems described by probability distributions another type of mea-
sure has been developed. These new measures serve to quantify structure, where
structure most generally refers to “the relationship between a system’s components”
[46]. In this picture more correlation between constituents implies more structure.
In the literature the quantities that have been constructed to quantify structure are
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Fig. 9.10 Intuitive
qualitative plot of the
behavior of the LMC
measure. (Reproduced
from [48])

often referred to as complexity measures or statistical complexity measures. Un-
like some other concepts like entropy (or information) in information theory, there
is no universal applicable definition of complexity and in the literature there are
numerous different definitions available which are built to be adequate for specific
types of structure. Different approaches can be found e.g. in the domains of in-
formation theory and computation theory. What is important for this thesis is that
complexity measures provide functionals which are applicable to investigate density
functions. Some complexity measures recently appeared in the context of quantum
chemistry [21, 47].

One way to construct a new complexity measure, is to build a functional, which
satisfies certain exact requirements. This is the approach adopted by Lopéz-Ruiz,
Mancini and Calbet for their measure CLMC . In their paper [48], the authors argue
that a statistical complexity measure should yield zero in both the case of perfect
order and in a situation of maximal randomness. In the original LMC work an in-
tuitive plot is given of the complexity measure is supposed to evolve between per-
fect order and maximal randomness. In that picture, here reproduced in Fig. 9.10,
the authors modeled perfect order by a perfect crystal and maximal randomness
with an ideal gas. The plot shows the expected asymptotic behavior for the ex-
tremes.

LMC start by constructing a measure for a discrete probability distribution (i.e.
with a finite number of possible outcomes of the random variable and correspond-
ing probabilities pi ) and they proposed to achieve the desired behavior by writing
the complexity as a product of an information measure H and a measure disequilib-
rium D.

CLMC =H.D. (9.23)

The former, modeled by Shannon’s entropy H = −∑
pi logpi , yields zero in the

case of a probability distribution with a unique outcome for the random variable (i.e.
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perfect order), whilst reaching its maximum for a uniform distribution (i.e. maximal
randomness), whereas the latter, modeled by D = ∑

(pi − 1/N)2, expresses the
“departure from equilibrium”. At maximum randomness, clearly D = 0. The clever
choice of H and D do indeed give a vanishing complexity for the extremes of order
and randomness.

The generalization to continuous probability distributions is made by replacing
the Shannon entropy expression by its continuous counterpart − ∫

ρ(r) logρ(r) dr
and by taking D = ∫

ρ2(r) dr for the disequilibrium [7, 48]. In our work where the
complexity was evaluated for atomic density functions ρ(r) (see Sect. 9.9), we used
the “exponential power Shannon entropy” [7, 12]

H = 1

2πe
e

2
3S, (9.24)

where the Shannon information entropy in position space S is given by expres-
sion (9.2). The obtained form of the LMC complexity measure satisfies particular
properties [7].

The disequilibrium for continuous distributions, on a finite interval [−L,L], can
be found by first considering the straightforward generalization of the discrete ver-
sion

D′ =
∫ L

−L

(
p(x)− 1

2L

)2

dx =
∫ L

−L

p2(x) dx − 1

2L
(9.25)

and then omitting the constant − 1
2L , giving

D =
∫ L

−L

p2(x) dx. (9.26)

This yields a D > 0, which attains its minimum for the constant rectangular dis-
tribution i.e. corresponding to maximum randomness. Note that this quantity also
appears as the self similarity in the context of quantum similarity.

9.8.2 SDL Complexity Measures

In a different effort to construct a complexity measure, Landsberg [49] defined the
parameters order Ω and disorder Δ as

Ω = 1 −Δ= 1 − S

Smax
, (9.27)

where the maximum Shannon entropy value Smax is given by [50]

Smax = 3

2
(1 + logπ)+ 3

2
log

(
2

3
〈r2〉

)
. (9.28)

According to this definition Ω = 1 corresponds to perfect order and predictability,
whereas complete disorder and randomness yields Ω = 0.
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In [51] a measure of complexity Γα,β was defined as

Γα,β =ΔαΩβ =Δα(1 −Δ)β =Ωβ(1 −Ω)α, (9.29)

which is referred to as the “simple complexity of disorder strength α and order
strength β”. Three categories of complexity measures are distinguished according
to the values of α and β . If β = 0 and α > 0 the measure belongs to category I. When
α > 0 and β > 0 it belongs to category II and it belongs to category III when α = 0
and β > 0. In the first category, complexity is an increasing function of disorder
whereas in the third category it is an increasing function of order. In category II
complexity vanishes both at zero order and zero disorder, respectively, and has a
maximum given by

(Γα,β)max = ααββ

(α + β)(α+β)
at Δ= α

α + β
and Ω = β

α + β
. (9.30)

The SDL and LMC measures have been critically analyzed in terms of their gen-
eral applicability. We refer the readers to the published literature on this debate [46,
52, 53]. Recently both the LMC and the SDL complexity measures were applied in
a quantum chemical context. In the next section we employ both to analyze atomic
density functions as probability distributions.

9.9 Complexity of Atomic Densities

9.9.1 Introduction

Surprisingly, inspite of its simplicity the complexity measures introduced in
Sect. 9.8 have been applied, only very recently [21, 47], in a quantum chemical
frame work for the analysis of the electronic structural complexity of atoms using
the non-relativistic Hartree-Fock (HF) wave functions [54] for atoms with atomic
number Z = 2–54. It is interesting to study the trends in the complexity measures
with specific reference to the nature of interaction, e.g. the relativistic effects in
atoms. In this section, we present the first calculations of CLMC and Γα,β for atoms
with atomic number Z = 1–103 using the relativistic Dirac-Fock (DF) wave func-
tions [37] in the position space. We shall compare these results with the correspond-
ing complexity measures for all atoms derived from the non-relativistic HF wave
functions [42, 43] in order to ascertain the influence of relativistic interactions on
complexity. The present work thus also extends the previous non-relativistic HF
calculations [21, 47] of the two complexity measures [7, 48, 49, 51] for atoms
with Z = 1–103, which, in our case, are derived from the non-relativistic Koga–
Roothaan–HF wave functions [42, 43, 55]. We shall be particularly concerned with
the complexity measures of the heavy atoms (Z > 54) wherein the relativistic ef-
fects are well known to be dominating over the electron-electron correlation ef-
fects [56–58]. We note here that electron correlation effects have been neglected in
the present work.
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Fig. 9.11 A plot of the disequilibrium, D as a function of atomic number, Z, derived from the
non-relativistic Hartree-Fock (squares) and relativistic Dirac-Fock densities (circles). The densities
are each normalized to unity

9.9.2 Construction of the Functional

The functionals evaluated in this study, are defined in the expressions (9.23)
and (9.30), where the atomic shape function σ(r) acts is the relevant probability
distribution.

9.9.3 Results and Conclusions

In the present work, the relativistic DF densities used are similar to those used
in [40]. In Fig. 9.11, we have compared the variation of D from (9.26), which ap-
pears in the LMC definition (9.23), as a function of Z resulting from the DF and HF
wave functions for the neutral atoms (Z = 1–103). The quantity D represents the
quantum self similarity [40, 59], information energy [60], or linear entropy [61, 62].
Most significantly, it is also an experimentally measurable quantity [63]. For a given
atom it expresses the extent of charge concentration in it. As shown in Fig. 9.11,
while both HF and DF densities show increase in D as Z is varied, the relativistic
effects make a significant non-linear departure as compared to the linear behavior,
for atoms with Z ≥ 20. In the context of disequilibrium this amounts to a signif-
icantly larger rate of change of D with Z for the DF atoms at large Z values. In
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Fig. 9.12 A plot of the exponential power Shannon entropy, H , as a function of atomic number,
Z, derived from the non-relativistic Hartree-Fock (squares) and relativistic Dirac-Fock densities
(circles). The densities are each normalized to unity

Fig. 9.12, we have displayed H as defined in (9.24) in terms of the exponential
power entropy. As discussed in our earlier work [64], the shell structure is revealed
in both the cases with the relativistic DF estimates (smaller) showing stronger lo-
calization as Z increases. In Fig. 9.13, the LMC complexity, CLMC , as calculated
using DF densities have been compared with the corresponding HF estimates. The
shell structure is more clearly revealed as regions of comparable complexity. The
relativistic values are found to be more sensitive to the changes due to the occu-
pation of the outer valency sub-shells. This is indicated by sudden change in the
slope of CLMC as Z increases. While the complexity within the lanthanide series
is found to slowly increase with Z, the actinide atoms show a sharper rise in com-
plexity along the series. This is attributed to the more readily accessible (larger D)
5f6d7s orbitals which are relatively closer in energy than 4f5d6s orbitals. In fact,
for the non-relativistic atom the complexity is found to even decrease in the re-
gion Z = 60–80, after which it remains nearly constant. The plot in Fig. 9.13 of
CLMC derived from the non-relativistic HF densities suggests that atoms can not
grow in complexity as Z increases. On the other hand, CLMC estimated from the
DF densities clearly indicate that CLMC increases sharply at large Z suggesting that
the relativistic effects dominantly contribute to the complexity of atoms growing
with Z.
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Fig. 9.13 A plot of the LMC complexity measure, CLMC , as a function of atomic number, Z,
derived from the non-relativistic Hartree-Fock (squares) and relativistic Dirac-Fock densities (cir-
cles)

In Fig. 9.14, we have plotted the simple SDL complexity measures, Γα,β in ex-
pression (9.30) defined by the four sets of (α,β) values given by (1,1), (1,1/4),
(1/4,0), and (0,4), respectively. Among them, the SDL measure Γ0,4 derived from
the HF as well as the DF densities lead to an increase in complexity under category
III [51], i.e. the complexity is an increasing function of order. However, relative
to the HF data the DF results display a significantly sharper increase in Γ0,4 as Z
increases. This particular measure of SDL complexity behaves very similar to the
LMC measure obtained in Fig. 9.13. Thus, our results on DF atoms lead to the
CLMC as well as Γ0,4 showing the similar trend of increasing complexity with Z.

In conclusion the two measures show dissimilar trends for the non-relativistic
HF results when all atoms in the periodic table are included in the test set. More
specifically, the non-relativistic HF densities lead to decreasing LMC complexity
with increasing Z beyond Z ≥ 54, a trend which is clearly reversed when the rel-
ativistic effects are included to calculate CLMC and Γα,β using the DF densities.
The DF densities are found to dramatically increase the values of disequilibrium
D for large Z in a sharp nonlinear manner in comparison to their non-relativistic
estimates which follow a linear trend. The use of DF density is essential to recon-
cile the results derived from the two complexity measures in the region of large Z
values (Z ≥ 54). The only assumption made in arriving at the this conclusion is that
both the measures, CLMC and Γα,β , vary similarly with Z, which is reasonable. The
result that the complexity of Dirac-Fock atom increases with Z as supported by two
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Fig. 9.14 A plot of the SDL complexity measures, Γα,β , as a function of atomic number, Z,
derived from the non-relativistic Hartree-Fock (squares) and relativistic Dirac-Fock densities (cir-
cles). The four SDL complexity measures are defined by the four sets of (α,β) values given by
(1,1), (1,1/4), (1/4,0), and (0,4), have been displayed. The Γ0,4 follows the trends similar to
CLMC plotted in Fig. 9.13 as a function of Z

intrinsically different measures of complexity measures CLMC and Γ0,4 is the main
result of this study.

9.10 Relative Complexity Measures

It is interesting to extend the definition of statistical complexity of an atom A with
respect to atom B and thus introduce the definition of relative complexity accord-
ing to

CRel =HR.DR, (9.31)

where HR and DR define the relative information content and the relative disequi-
librium, respectively. In particular,

HR = 1

2πe
e

2
3S

R

, (9.32)

where the relative entropy is defined, as earlier,

SR =
∫

σA(r) log
σA(r)
σB(r)

dr, (9.33)
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Fig. 9.15 Variation of relative complexity with a pre-assigned prior given by Z = 5, 13, 21, 31,
39, 49, 57, 71, 81, and 89 as atom B . In each curve, the atom A is defined by Z, Z + 1, Z + 2,
until the sub-shell is completely filled

and the relative disequilibrium is evaluated as

DR[A,B]√
DR[A,A]√DR[B,B] , (9.34)

where

DR[A,B] =
∫

σA(r)σB(r) dr. (9.35)

For a given set of structurally related atoms, the CRel values with respect to a com-
mon prior shape density, σB could be treated as measuring the diversity within the
group. In Fig. 9.15, we have plotted the CRel values by choosing the prior shape den-
sity corresponding to the atoms with Z = 5, 13, 21, 31, 39, 49, 57, 71, 81, and 89
as atom B . For a given choice of B , the shape density corresponding to the atom A

is given by A = B(Z), Z + 1, Z + 2, . . . . In all 10 sets of atoms A are chosen as
a given sub-shell in them gets filled up successively beyond the ground state elec-
tronic structure of the prior atom B . For example, in the first set, the 2p sub-shell
gets filled up successively along the series 2p1 → 2p6. All calculations have been
performed using the relativistic DF densities. It is found that the relative complexity
increases in a linear fashion within the group. The rate of increase within a group
decreases as the prior atom becomes heavier, indicating that a constant diversity, i.e.
a relatively flat CRel is gradually attained in moving towards the heavier end of the
periodic table.
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9.11 Information Theoretical Investigation of Reaction Paths

9.11.1 Introduction

From the construction of the functional which generated the chemical periodicity
in Mendeleev’s table (see Sect. 9.5), we obtained a generic method for construct-
ing a functional which can be used to distinguish density functions. In the present
application we will use the advantage of the reference choice to construct a simple
functional which reveals reaction profiles. The aim is to obtain profiles which reflect
the progress of the reaction, in a similar way as is done by energy profiles.

In this study the Kullback-Leibler information deficiency will be evaluated as a
functional of the one-normalized density function for several processes: the internal
rotation and resulting rotational isomerization in nitrous acid (HO–NO) and hydro-
gen peroxide (HO–OH), symmetric and asymmetric vibrational modes of the water
molecule, and an intramolecular (HO-N=S → O=N-SH) and intermolecular (HO-
N=S · · · OH2 → O=N-SH · · · OH2) proton transfer reaction. To analyze the specific
role of the atoms during these processes, Hirshfeld’s stockholder partitioning [28]
of the electron density, which permits the evaluation of atomic contributions to the
Kullback-Leibler information deficiency, has been introduced. Finally we report the
information theoretical analysis of a more complex chemical reaction, the bimolec-
ular nucleophilic substitution (SN2) reaction. Some of these processes have been
used before, for benchmarking the concepts and principles of conceptual DFT [2].

9.11.2 Construction of the Functionals

For the purpose of investigating chemical processes we introduce a single coordi-
nate (bond length, bond angle, or dihedral angle) or the intrinsic reaction coordinate
(IRC) characterizing the minimum energy path. We write ΔSξ for a given coordi-
nate value ξ as:

ΔSKL[σξ (r)|σ0(r)] =
∫

σξ (r) log
σξ (r)
σ0(r)

dr, (9.36)

where σξ (r) is the shape function for a given value of the reaction coordinate ξ and
σ0(r) corresponds to the selected reference. In the case of the rotational and the
vibrational motions, the shape function of the equilibrium configuration has been
taken as reference. For the chemical reactions the shape function of the transition
state (TS) has been chosen. Now the result of (9.36) can be interpreted as a measure
of the information which distinguishes the shape function at position ξ from the TS
shape function or alternatively as the distance in information between the TS and
the system for an arbitrary value of ξ .

Hirshfeld’s stockholder partitioning [28] for atoms in molecules (AIM) is closely
linked with information theory. Nalewajski showed that [27] the minimum entropy
deficiency principle of Kullback and Leibler applied to the problem of defining AIM
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yields the Hirshfeld definition—by relating the molecular density function to that of
the promolecule and by assuming that the AIM densities preserve as much informa-
tion as possible about the isolated atoms. In this context, the contribution of atom A

to ΔSξ is given by

ΔSAKL[σA
ξ (r)|σA

0 (r)] =
∫

σA
ξ (r) log

σA
ξ (r)

σA
0 (r)

dr, (9.37)

where σA
ξ (r) and σA

0 (r) are the atom A’s Hirshfeld contributions to the total shape
function and to shape function for atom A in the TS. To obtain proper probability
distributions the atomic Hirshfeld density functions were normalized to unity. The
confrontation of the different atomic information deficiencies indicate which atomic
shape function differs in information from its TS counterpart. As discussed below,
by identifying the atomic regions where the local contributions increase or decrease
one gets an idea of the role the atoms play as the rotational, vibrational or chemical
process advances. Note that the sum of the atomic information deficiencies differs
from the global one, by a term which can be interpreted as an entropy of mixing [65].

9.11.3 Methodology and Implementation

The geometry optimization and the electron densities were calculated using the hy-
brid exchange–correlation functional B3LYP [66, 67] combined with a standard 6-
311G(d, p) basis set [68] available in the Gaussian03 program [69]. In order to dis-
criminate between a minimum and a saddle points on the potential energy surface a
vibrational analysis was carried out. The minimum energy paths in going from re-
actants to products were calculated through the Intrinsic Reaction Coordinate (IRC)
procedure [70, 71] using a gradient step size of 0.10 amu1/2 bohr.

The information theory concepts were implemented in the program STOCK, part
of BRABO package [72, 73]. For a detailed discussion of the implemented numer-
ical techniques we refer to [74]. To evaluate the integrals in (9.36) and (9.37) the
structure, at a given ξ needs to be aligned with the reference structure. This proce-
dure was carried out aligning the center of mass (CM) of both structures, and fixing
the last degree of freedom by minimizing the mean root square deviation of the dis-
tances between the corresponding nuclei. Other alignments were tested but revealed
the same tendencies in the resulting profiles.

9.11.4 Results and Discussion

9.11.4.1 Internal Rotations: HO–NO and HO–OH

The rotational isomerization cis ↔ trans of HO–NO is graphically represented in
Fig. 9.16(a). This process is a typical example of a double-well energy profile, as
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Fig. 9.16 Schemes of the studied processes: (a) internal rotation, (b) vibrational modes in H2O,
(c) intramolecular, and (d) intermolecular proton transfer reactions

displayed in Fig. 9.17(a). The planar cis and trans are stable conformers (minima)
whereas the non-planar gauche conformation is a first-order saddle point or TS.
The shape function of this gauche conformation will serve as our reference for the
evaluation of (9.36). For the construction of the profiles we evaluated the energy and
information deficiency in (9.36) using a step of 10° along the torsional angle within
the range 0° (cis)≤ α ≤ 180° (trans). The energy profile in Fig. 9.17(a) shows that
the energetically unstable gauche conformation is positioned midway between the
planar isomers (α = 90°).
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Fig. 9.17 Energy, global ΔSKL(ξ) and local ΔSA information deficiencies profiles along the
torsional coordinate of HO–NO ((a) and (c)) and HO–OH ((b) and (d))

From Fig. 9.17(a) it is clear that the choice of the gauche conformer as the refer-
ence implies a minimum when the energy profile reaches its maximum. We also see
that the small stability difference between cis and trans is reflected in ΔSKL.

As a second example we investigate the internal rotation process of HO–OH,
which is characterized by a non-planar gauche stable conformer, connected to planar
cis and trans conformations through two barriers. This process is a typical example
of a double-barrier energy profile. Choosing the gauche conformation as reference
reveals a profile with a close resemblance to the energy profile, as can be seen in
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Fig. 9.17(b). One notices that the large energy difference between the planar con-
formers is recovered in the ΔSKL profile.

The atomic information deficiency of Hirshfeld’s density for atom A, ΔSAKL(ξ),
is studied for both rotational isomerization processes. This quantity can be separated
in two contributions: a delocalization and a localization component [75], as given
by

ΔSAKL(ξ)=
∫

σA
ξ (r) logσA

ξ (r) dr −
∫

σA
ξ (r) logσA

0 (r) dr, (9.38)

where σA
ξ (r) and σA

0 (r) are the shape functions of the subsystem A at IRC co-
ordinate value ξ and the TS, respectively. The first term in (9.38) is a reference
independent term, which can be identified as the Shannon information entropy (cf.
Sect. 9.2) of the subsystem’s shape function, whereas the second term is a reference
dependent term which gives information about the localization of the subsystem’s
density at IRC value ξ , with respect to the density of the reference. Starting with
HO–NO, in Fig. 9.17(c) one observes the following: (i) the shape function of the
O1 atom is more delocalized in the trans isomer than in the cis isomer whereas the
opposite tendency is observed for the O2 atom; (ii) the information deficiency of
the N atom is higher in the cis conformer than in the other planar structure; (iii) the
atomic contribution corresponding to the hydrogen atom does not change signifi-
cantly along the torsional coordinate. These results together with the global ΔSξ
indicate that the process where the unstable isomer reaches any of the stable isomers
is driven by an increase of the delocalization. Moreover, it allows to understand the
similarity of the energy barriers of the forward and the backward processes. Mov-
ing to HO–OH, in Fig. 9.17(d) for the local contributions, the equivalence of both
H atoms and both O atoms is clearly reflected. The large difference between the
H and the O atoms can be linked to the alignment of the CM. Indeed, since the
CM of both structures are aligned, the density rotates around it. The fact that the O
atoms are closer to the CM and have more diffuse electron distributions (due to the
presence of the lone pairs electron) can then explain the large difference between
the H and the O profiles. The small differences in global and local information en-
tropy for the stable gauche and the unstable trans isomers are a consequence of
the similarity in the shape functions, whereas these are different for gauche and cis
conformers.

9.11.4.2 Molecular Vibrations: Stretching and Bending of a Water Molecule

In this section we analyze the information entropy along the coordinates for the vi-
brational modes for H2O as given in Fig. 9.16(b). Figure 9.18(a), (c), and (e) show
the energy and the global information deficiency profiles for the three vibration
modes of H2O. As before the choice of the equilibrium structure as reference en-
sures that the minimum in information deficiency corresponds to the minimum of
the energy profile.
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Fig. 9.18 Energy, global ΔSKL(ξ) and local ΔSA information deficiencies along the vibrational
coordinates of H2O: (a) and (b) asymmetric stretching; (c) and (d) symmetric stretching; (e) and
(f) symmetric bending
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An analysis of the information deficiency profiles of the Hirshfeld atoms in
molecules (AIM) helps to understand the role atoms play along the vibrational co-
ordinate. In Fig. 9.18(b), (d), and (f) we give the profiles of the atomic information
deficiency for the three modes. In the asymmetric mode we notice that the ΔS for
the O atom remains small throughout the process, whereas the corresponding results
in the symmetric process are significantly larger (approximately a factor of 2). This
can be linked with the comparatively small changes in the external potential of the
asymmetric stretching [76, 77] and the fact that the CM is located close to the O
atom. By comparing the profiles of the H atoms it is clear that the results reflect the
symmetry of the considered process.

After investigating two elementary processes, we can conclude that the global
ΔSξ in (9.36) reflects the behavior of the energy profile. We now consider that it
may be a useful complementary tool for the description of chemical reactions. The
results at the local level could indicate that the analysis of the information profiles
of the Hirshfeld AIM help to understand the role the atoms play within a chemical
reaction.

9.11.5 Chemical Reactions

9.11.5.1 Intramolecular Proton Transfer: HO-N=S → O=N-SH

First we investigate the intramolecular proton transfer reaction HO-N=S → O=N-
SH, sketched in Fig. 9.16(c), to test whether the information deficiency profile re-
veals known properties of this chemical reaction. By choosing the TS as the ref-
erence we obtain a correspondence of the energy and information deficiency ex-
trema, as seen in Fig. 9.19(a). The confrontation of the thermodynamic driving force
ΔE◦ =E(P )−E(R) (the energy difference between product and reactant) and the
energy barrier ΔE �= =E(T S)−E(R) (the energy difference between TS and reac-
tant) with the information distance between the TS and the reactants, ΔSξ [σR|σT S],
and the information distance between the TS and the products, ΔS[σP |σT S], quoted
in Table 9.2, indicates an interesting link with the renowned Hammond postulate
(HP) [78]. The HP is a classic concept in physical organic chemistry, which asserts
that the transition state of an elementary reaction step will be localized closer to
the reactant or product, depending on which has the highest energy [78]. As can be
seen from the energetic data given in Table 9.2, O=N-SH is more stable by about
7 kcal/mol than HO-N=S and the energy barrier for the forward and reverse pro-
cesses are about 27 and 34 kcal/mol respectively. This, on one hand, suggests that
the O atom is a better proton donor than the S atom and that the N=O double bond is
stronger than the double bond formed between N and S atoms. On the other hand, an
early transition state is expected according to the HP. Consistent with the energetic
data and the HP, the ΔSξ [σR|σT S] and ΔS[σP |σT S] show that the TS contains more
information about the reactants than about the products.
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Fig. 9.19 Energy, global ΔSKL(ξ) and local ΔSA information deficiencies along the intrinsic
reaction coordinate of an intramolecular (HO-N=S→O=N-SH) ((a) and (c)) and intermolecular
(HO-N=S· · ·OH2 → O=N-SH · · · OH2) ((b) and (d)) proton transfer reactions

Analyzing the atomic profiles, given in Fig. 9.19(c), we see that the ΔSξ values
of the N atom remains small in both the reactant and the product regions. This can
be expected since the density around the nucleus, closest to the CM, undergoes
the smallest influence, although the N atom switches single and double bonding
between O and S atoms, respectively. For both the O and S atoms one notices a
difference between the left and the right side of the TS, which can be understood
since the electron reorganization which takes place on the left is less significant than
for the process on the right, indicating that the through-bond interactions are more
important in the product side than in the reactant side as pointed out in reference
[79, 80].
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Table 9.2 Reaction energy (ΔE◦), energy barrier for the forward (ΔE �=
forward) and reverse

(ΔE �=
reverse) processes. Information deficiency with the transition state (TS) as reference of the reac-

tant (ΔS[σR,σT S ]) and the product (ΔS[σP ,σT S ]). Energy values are given in kcal/mol. Reaction
A is HO-N=S → O=N-SH, reaction B is HO-N=S· · ·OH2 → O=N-SH· · ·OH2 and reaction C is
OH− + CH3-F → HO-CH3 + F−

Reaction ΔE◦ ΔE
�=
forward ΔE

�=
reverse ΔSξ [σR,σT S ] ΔSξ [σP ,σT S ]

A −7.00 26.46 33.46 0.28 0.86

B −2.59 11.56 14.15 0.68 1.12

C −36.75 7.85 44.60 1.83 3.44

9.11.5.2 Intermolecular Proton Transfer:
HO-N=S ··· OH2 → O=N-SH ··· OH2

The process we consider here is obtained by the assistance of a water molecule in
the reaction analyzed above, as displayed Fig. 9.16(d). In Fig. 9.19(b), one observes
that the choice of the TS as reference assures the minimum of the profile to coincide
with the maximum in the energy profile. By comparing the energetic data reported
in Table 9.2 for this reaction with the intramolecular proton transfer discussed in the
previous section, we see that the presence of a water molecule decreases the energy
barrier (for the forward reaction) by 14.9 kcal/mol and the thermodynamic driving
force by 4.4 kcal/mol. Again, the ΔSξ values, quoted in Table 9.2, indicate that the
TS contains more information about the reactants than about the products, which is
in agreement with the HP.

After investigating the profiles of the local information deficiencies, correspond-
ing to the Hirshfeld AIM partitions, depicted in Fig. 9.19(d), we report two obser-
vations. First, the profiles indicate that the electron reorganization taking place in
both the forward and the reverse processes are equally important, certainly when
compared to the difference noticed in the intramolecular proton transfer process. In
other words, the through bond interactions drive both the forward and the reverse
processes. Second, by comparing the results of the HO-N=S backbone with those of
the intramolecular process, we can identify a delocalization effect on the backbone,
induced by the H2O molecule. This favors the proton transfer from a kinetic point
of view.

9.11.5.3 Nucleophilic Substitution at Carbon Center (SN2) Reaction:
OH− + CH3-F → HO-CH3 + F−

In the final example we analyze the SN2 reaction displayed in Fig. 9.20(a). The
reaction starts with a [F-CH3 · · · OH]− ion–molecule complex which arises from the
backside attack of the OH− group on the C atom. After reaching the TS, the system
relaxes toward the products by repositioning the F atom, driven by the formation of
a hydrogen bond.
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Fig. 9.20 (a) Scheme for SN2 reaction; (b) energy and information deficiency along the reac-
tion path; (c) bond distances and angle profiles, and (d) atomic contributions for the information
deficiency associated to the SN2 reaction

For the electronic structure calculations of this reaction we follow the study by
Gonzales et al. [81], where it is stated that the hybrid exchange–correlation func-
tional B3LYP [66, 67] performs better than other functionals for describing the
structure of the stationary points and it gives the best energetic values for the SN2 re-
action. The authors also stressed the necessity to include diffuse functions in the ba-
sis set. We used the aug-cc-pVTZ basis set [82, 83]. We start the discussion of the re-
sults by comparing the energy and the information deficiency profiles, as presented
in Fig. 9.20(b). One can distinguish the correspondence of the minimum of ΔSξ and
the maximum of the energy, which is guaranteed by choosing the TS as reference
in (9.36). The data collected in Table 9.2 show that the TS contains more informa-
tion about the reactants (ΔSξ = 1.8276), than about the products (ΔSξ = 3.4442).
We found an energy barrier of 7.85 kcal/mol for the forward reaction and a barrier of
44.60 kcal/mol for the reverse reaction. This indicates that the Hammond’s behavior
of the reaction is again reflected in the information profile.

The steep slopes around the minimum in the information deficiency profile can
be linked with the behavior of the geometrical parameters, plotted in function of the
IRC in Fig. 9.20(c). One notices indeed that, in the vicinity of the TS (IRC = 0), the
distances between the nuclei vary significantly, while the angle remains practically
constant (θFCO ≈ 178°), which indicates that the behavior of the profile around
the TS is governed by the bond-formation and bond-breaking processes. Further
analyzing the information profile in Fig. 9.20(b), one notices a small bump close to
the reactant side and a plateau after IRC = 9. The first feature can be linked to the
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rapid variation of the FCO angle in the beginning of the process. The second feature
seems to correspond with the sudden drop in energy for IRC > 9.

In Fig. 9.20(d), we plotted the results of the atomic information deficiency values
along the IRC. Note that we left the results for the three H atoms (H1, H2, H3)
bonded to the C atom out of the graph, since they only revealed minor values which
is in agreement with the fact that they do not directly participate in the reaction.
The local contributions reflect the importance of the electron reorganization in the
product side, which permits the stabilization of the final structure. On the other
hand, it is interesting to note that the global behavior is mainly determined by the
contributions of the F and O atoms. These centers follow the same tendency until F
leaves the quasi linear FCO framework to reach the hydrogen bonding structure (at
IRC = 3), which can be deduced from the behavior of the geometrical parameters
given in Fig. 9.20(c).

9.11.6 Conclusion

In this section we demonstrated the value of the Kullback-Leibler information de-
ficiency by analyzing profiles for several benchmark processes and chemical re-
actions. To obtain the profiles we evaluated the Kullback-Leibler information de-
ficiency for a significant set of IRC values. The choice of the transition state as
reference in the Kullback-Leibler’s information deficiency ensures that the informa-
tion deficiency and the energy profiles simultaneously reach an extremum. We have
been able to identify important chemical properties in the information deficiency
profiles. In particular the recovery of results consistent with Hammond’s postulate
strongly indicates that the information deficiency carries valuable chemical infor-
mation. Evaluating Kullback-Leibler’s measure for Hirshfeld’s atoms-in-molecules
shape functions, revealed that, when choosing the corresponding atomic shape func-
tion of the transition state as reference, the results indicate the most electron reor-
ganizing sites, which can help to understand the role different atomic regions play
during a chemical reaction.

9.12 Concluding Remarks

Vested in the spirit of the Hohenberg-Kohn theorems of DFT, we investigated atomic
and molecular density functions to try and devise a way to extract chemical in-
formation from them. In our search several functionals from information theory
have proven to be particularly successful. In particular the functional form of the
Kullback-Leibler measure permitted the construction of density functionals, which
help us to read chemical information from the density function.

The main success of our results based on the Kullback-Leibler information dis-
crimination, is based on the choice a good reference. For example, it is the specific
choice of the reference as noble gas elements, which helped to reveal the periodicity



9 Chemical Information from Information Discrimination 289

in Mendeleev’s table and it is the choice of the transition state as reference, which
revealed chemically interesting reaction profiles.

The investigation of complexity measures, which came to quantum chemistry
more recently, throughout the periodic table showed that these functionals too have
revealed features of the atomic electronic structure, indicating their potential to in-
vestigate the chemical information carried in density functions and shape functions.
It is shown that a relative complexity measure can be defined which reflects the di-
versity of electron density with respect to a prior atom as a given sub-shell is filled
across the periodic table.
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