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Preface

FDL is the premier European forum to present research results, to exchange 
 experiences, and to learn about new trends in the application of specification and 
design languages as well as of associated design and modeling methods and tools 
for complex, heterogeneous HW/SW embedded systems. Modeling and  specification 
concepts push the development of new methodologies for design and verification 
to system level; thus providing the means for model driven design of complex 
information processing systems in a variety of application domains. The aim of 
FDL is to cover several related thematic areas and to give an opportunity to gain 
up-to-date knowledge in this fast evolving, essential area in system design and 
verification.

FDL’07 was the tenth of a series of successful events that were held in Lausanne, 
Lyon, Tübingen, Marseille, Frankfurt am Main, Lille and Darmstad. FDL’07 was 
held between September 18 and 20, 2007 at the ‘Casa de Convalescència’, the main 
Congress facilities of the ‘Universitat Autònoma de Barcelona’ in the city center of 
Barcelona, the capital city of Catalonia, Spain.

The high number of submissions to the conference this year allowed the Program 
Committee to prepare a high quality conference program.

The book includes a selection of the most relevant contributions based on the 
review made by the program committee members and the quality of the contents of 
the presentation at the conference. The original content of each paper has been revised 
and improved by the authors following the comments made by the reviewers.

FDL’07 was organized again around four thematic areas (TA) that cover 
essential aspects of system-level design methods and tools. The book follows the 
same structure:

Part I, C/C++ Based System Design, contains seven chapters covering a 
comparison between Esterel and SystemC, modeling of asynchronous circuits, 
TLM bus models, SystemC debugging, quality analysis of SystemC test 
benches and SystemC simulation of a custom configurable architecture.

Part II, Analog, Mixed-Signal, and Heterogeneous System Design, includes 
three chapters addressing heterogeneous, mixed-signal modeling, extensions to 
VHDL-AMS for partial differential equations and modeling of configurable CMOS 
transistors.

v



Part III, UML-Based System Specification and Design, presents six contributions 
comparing AADL with MARTE, modeling real-time resources, proposing model trans-
formations to synchronous languages, mapping UML to SystemC, defining a SystemC 
UML profile with dynamic features and generating SystemC from StateCharts.

Part IV, Formalisms for Property-Driven Design, is composed of three  chapters 
presenting methods for monitoring logical and temporal assertions, for transactor-
based formal verification and a case study in property-based synthesis.

The collection of contributions to the book provides an excellent overview of the 
latest research contributions to the application of languages to the specification, 
design and verification of complex Embedded Systems. The papers cover the most 
important aspects in this essential area in Embedded Systems design.

I would like to take this opportunity to thank the member of the program com-
mittee who made a tremendous effort in revising and selecting the best papers 
for the conference and the most outstanding among them for this book. Specially, 
the four Topic Chairs, Frank Oppenheimer from OFFIS, responsible of C/C++ 
Based System Design, Sorin Huss from TU Darmstad, responsible of Analog, 
Mixed-Signal, and Heterogeneous System Design, Pierre Boulet from Lille 
University, responsible of UML-Based System Specification and Design and 
Dominique Borrione from TIMA, responsible of Formalisms for Property-
Driven Design. I would like to thank also all the authors for the extra work made 
in revising and improving their contributions to the book.

The objective of the book is to serve as a reference text for researchers and 
designers interested in the extension and improvement of the application of design 
and verification languages in the area of Embedded Systems.

Eugenio Villar
FDL’07 General Chair
University of Cantabria
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C/C++ Based System Design



Chapter 1
How Different Are Esterel and SystemC

Jens Brandt1 and Klaus Schneider2

Abstract In this paper, we compare the underlying models of computation of the 
system description languages SystemC and Esterel. Although these languages have 
a rather different origin, we show that the execution/simulation of programs written 
in these languages consists of many corresponding computation steps. As a conse-
quence, we identify different classes of Esterel programs that can be easily translated 
to SystemC processes and vice versa. Moreover, we identify concepts like preemp-
tion in Esterel that are difficult to implement in a structured way in SystemC.

Keywords Synchronous Languages, SystemC, Models of Computation

1.1 Introduction

System description languages like SystemC [11, 13] and synchronous languages 
[1, 8] like Esterel [2, 4, 5, 12] are becoming more and more popular for the effi-
cient development of modern hardware-software systems. The common goal of 
these languages is to establish a model-based design flow, where different design 
tasks like simulation, verification and code generation (for both hardware and 
software) can be performed on the basis of a single system description.

While the overall goal of SystemC and Esterel is therefore the same, there are 
many differences between these languages. In particular, these languages have 
 different underlying models of computation.

As a synchronous language, the execution of an Esterel program is divided into 
macro steps that correspond with single reactions that are triggered by a common 
clock of a hardware circuit. Each macro step is divided into finitely many micro-
steps that are all executed in zero time and within the same variable environment. 

E. Villar (ed.) Embedded Systems Specification and Design Languages, 3
© Springer Science + Business Media B.V. 2008
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Hence, the execution of Esterel programs are driven in a cycle-based fashion. Due 
to the instantaneous reaction of microsteps, causality problems may occur if actions 
modify variables whose values are responsible for triggering the action. In order to 
analyze the causality of programs, a fixpoint iteration may be performed to com-
pute the reaction of a macrostep. It is well-known that this fixpoint iteration is the 
ternary simulation [6] of the corresponding hardware circuits. However, it has to be 
remarked that Esterel compilers usually perform this fixpoint analysis at compile 
time, so that (1) more efficient code is generated and (2) it is known at compile time 
that the iteration finally terminates with known values.

SystemC follows the discrete-event semantics that are well-known from hard-
ware description languages like VHDL [9] and Verilog [10]. A SystemC program 
consists of a set of processes that run in parallel. SystemC distinguishes thereby 
between three classes of processes, namely ‘methods’, asynchronous processes and 
synchronous processes. Methods are special cases of asynchronous processes that 
do not have wait statements. Asynchronous processes are triggered by events, i.e., 
by changes of the variables on which the process depends, and they are executed as 
long as variable changes are seen. For this reason, the execution of the asynchro-
nous processes is also a fixpoint computation that terminates as soon as a fixpoint 
of the variables’ values is found. After this, the synchronous processes are executed 
once to complete the simulation cycle.

As can already be seen from the above coarse description, the execution of syn-
chronous languages like Esterel and SystemC have more in common as may have 
been expected if only their main paradigms were considered. Clearly, there are also 
many differences between these languages:

● The semantics of Esterel is given in form of a very concise structural operational 
semantics that can be directly used as specification of a simulator. In contrast, 
the semantics of SystemC is only given in terms of natural language (except for 
some attempts like [14, 15, 22]).

● In Esterel, most statements are reduced to a small core language for which hard-
ware and software generation is available. No significant blow-up is obtained by 
this reduction (this is due to the so-called write-things-once-principle). In con-
trast, SystemC is an extension of C++ by constructs required to describe hard-
ware systems like built-in concurrency, wait/interrupt mechanisms, and special 
data types like bitvectors. As a consequence, hardware synthesis is only availa-
ble for a rather small subset of SystemC.

● Esterel offers comfortable preemption statements for aborting or suspending 
other statements. A first attempt towards preemption statements will be obtained 
by SystemC’s watching statement, that does however not yet reach the power of 
Esterel’s abortions.

● Esterel has special variables that model events. These variables take a default 
value unless they are assigned another value in the current macrostep.

● Esterel has a fully orthogonal set of statements. In particular, concurrency is an 
ordinary statement that can be combined with all other statements, while in 
SystemC programs consist of a set of processes that implement sequential code.
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● SystemC offers different kinds of abstraction levels like ‘untimed functional’, 
‘timed functional’, ‘bus cycle-accurate’, and ‘cycle-accurate’ modeling to support 
refinements from transaction levels down to register-transfer level descriptions.

Hence, there are also many differences between these languages. Some of theses 
difference may, however, only exist in the current versions of these languages and 
may disappear in later versions.

In this paper, we outline the differences and similarities of synchronous 
 languages like Esterel and SystemC. In particular, we define classes of systems that 
can be easily described in both languages in a way that allows one to structurally 
translate these descriptions into each other. This is the result of the similarities that 
we have identified between the two languages. On the other hand, the differences 
we will outline in the following may be interesting for those who work on later 
versions of both languages. With this paper, we therefore hope to stimulate the 
 discussion between the communities of SystemC and synchronous languages.

The rest of the paper is organized as follows: In the next section, we describe the 
languages SystemC and Esterel in more detail. In Section 1.3, we compare the exe-
cution of Esterel and SystemC programs in more detail and show that there are 
some correspondences. These correspondences give rise to define simple classes of 
programs that can be easily translated between both languages. In addition to this, 
we list differences between the two languages that lead to problems for the transla-
tion between the languages in Section 1.4. Finally, we conclude with a short 
 summary in Section 1.5.

1.2 Esterel and SystemC

In this section, we give a rough overview of the main concepts and paradigms of 
Esterel and SystemC. Section 1.3 outlines then some similarities between the lan-
guages, while Section 1.4 outlines some major differences.

1.2.1 Esterel

Esterel [2, 4, 5, 12] is a synchronous language [1, 8] that can be used both for hard-
ware and software synthesis. As usual for synchronous languages, the computation 
of an Esterel program is divided into single reactions. Within each reaction, new 
inputs are read and new outputs are generated for these inputs with respect to the 
current state of the program. Moreover, the reaction determines the next state of the 
program that is used in the next reaction step.

The state of the program is determined by the current values of the variables and the 
current set of active control flow locations of the program. Control flow locations are 
statements like the pause statement where the control flow may rest for one unit of time. 
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Since Esterel statements include the parallel statement S
1

�� S
2
, it may be the case that 

the control flow may rest at several control points at the same point of time.
Besides the usual statements like assignments, conditionals, sequences and 

loops, Esterel provides also many statements to implement complex concurrent 
behaviours. In particular, there are four kinds of abortion statements that run some 
Esterel code while observing an abortion condition in each macro step. If the condi-
tion holds, then the code is aborted and the abortion statement terminates. Other 
preemptive statement are suspension statements that suspend the execution of an 
Esterel statement if a given condition holds in a macro step.

It is very important that variables do not change during the macro step, i.e., all 
microsteps are viewed to be executed in zero time. Therefore, all microsteps are 
executed at the same point of time with the same variable environment. As a 
 consequence, the values of the variables are uniquely defined in each macro step.

Due to the instantaneous reaction, synchronous programs may suffer from 
 causality conflicts [3, 18, 19]. These causality conflicts occur if an assignment 
modifies the value of a variable that is responsible for the execution of the assign-
ment. Compilers check the causality of a program at compile time with algorithms 
that are essentially the same as those used for checking the speed independence of 
asynchronous circuits via ternary simulation [6]. These algorithms essentially 
 consist of a fixpoint computation that starts with unknown values for the output 
variables, and successively replaces these unknown values by known ones. While 
this analysis is usually done at compile time, we consider this fixpoint iteration in 
the following as being part of the execution that is performed within a macro step. 
This is done to outline similarities to the execution of SystemC programs.

Several generations of compilation techniques [7, 20, 24] have been developed for 
Esterel that can be used to generate hardware circuits at the gate level as well as  software 
in sequential programming languages from the same Esterel program. Moreover, 
some of these compilation techniques have already been formally verified [16, 17].

1.2.2 SystemC

SystemC is a language used for the simulation of complex hardware software sys-
tems. SystemC simulations may run up to 1,000 times faster than corresponding 
descriptions given in hardware description languages like VHDL and Verilog due 
to the higher level of abstraction that is used in SystemC. SystemC supports several 
levels of abstractions, which allows one to describe completely untimed systems 
down to cycle-accurate descriptions of hardware circuits at the gate level.

SystemC is not a self-contained language; instead, it is a class library for the well-
known C++ programming language [23]. SystemC extends C++ by typical data types 
used for hardware circuits like bitvectors and arithmetic on binary numbers with a 
specified bit-width. Moreover, SystemC offers concurrency in a similar way as hard-
ware description languages, i.e., SystemC programs consist of a set of concurrent 
processes. To this end, SystemC features three different kinds of process types:
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● Methods are triggered by signal events. Methods are entirely executed in a single 
simulation cycle and correspond to combinatorial circuits, i.e., their execution 
does not take time.

● Asynchronous processes are also triggered by signal events, but they may not be 
entirely executed within one simulation cycle. Instead, the control may stop at 
wait statements and may rest there until it is triggered by a new event.

● Synchronous processes are triggered by clocks. Like asynchronous processes, 
synchronous processes may not be entirely executed within one simulation 
cycle, and the control may stop at wait statements of the process. In contrast to 
asynchronous processes, the execution of synchronous processes is only trig-
gered by the next clock event.

Although SystemC shares with VHDL the discrete-event based semantics, it does not 
have the possibility to assign signal assignments with delay. Hence, progress of time is 
only driven by clocks. Between these simulation steps, the output signal updates that 
are due to assignments of synchronous processes are not committed immediately. 
Instead, they are deferred to the beginning of the next simulation step. In contrast to this, 
local variables can always be modified, and the effect becomes visible without delay.

1.3 Similarities Between SystemC and Esterel

From a general point of view, SystemC and synchronous languages are based on 
different models of computation: While SystemC has a discrete-event based seman-
tics, synchronous languages rely on a global clock triggering the overall execution, 
i.e., a cycle-based semantics. However, a closer look to the features of each lan-
guage reveals that there are similarities that allow us to define a common core of 
both languages. In particular, the integration of synchronous processes in SystemC 
provides some hooks to establish links between both worlds.

First of all, consider when variables change. In Esterel, there are immediate and 
delayed assignments that change the value of a variable immediately or only at the 
next macrostep. Similarly, the asynchronous processes of SystemC immediately 
update variable values, while the assignments of synchronous processes are com-
mitted only before the next simulation cycle.

However, synchronous languages follow the paradigm of perfect synchrony, i.e. 
all variable assignments are made simultaneously in a macrostep. This has the con-
sequence that all variables can only have one value per clock cycle.

The perfect synchrony also has another consequence. Programs may not be 
 executed in the order given by the programmer. Data dependencies of the program 
may require to execute the statements in a completely different order than specified 
by the programmer. Thus, the simulator does not simply execute the code of a 
 synchronous program once, but it reiterates the execution and deduces from 
iteration to iteration the value of more signals until no further values can be 
deduced. As an example, consider a sequence in which the following operations are 
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 performed: assign a a value depending on b and c, then assign b a value depending 
on c and finally assign c some constant value. Without reordering (which is gener-
ally not applicable), the simulator needs three iterations to compute all outputs.

Figure 1.1 compares the execution of a SystemC and an Esterel program. There 
are apparent similarities in the execution of both types of programs: Both of them 
start with the determination of the time of the next step. In SystemC, this is deter-
mined by the next changing clock signal, whereas the logical time of Esterel just 
requires to wait for the next clock tick. Then, both simulators enter an iteration. 
In SystemC, the methods and asynchronous processes are executed as long as some 
signals change. In Esterel, there is a similar condition. The outputs are computed in 
a fixpoint operation that incrementally computes all signals of the current step. 
Subsequently, actions with immediate effects are executed, which are followed by 
the updates caused by delayed actions. Both in SystemC and Esterel, these updates 
stem from the previous clock cycle. If the iterative part of a step is finished, the 
SystemC simulator executes the synchronous processes that have been scheduled in 
the previous step. Similarly, the Esterel compiler executes the code at the currently 
active control flow locations with the determined signal values. Both programs now 
schedule processes and produce delayed actions for the next clock cycle.

This comparison shows that Esterel and the synchronous part of SystemC basi-
cally follow the same overall execution scheme. However, as already mentioned 
above, the execution of the individual processes is generally different. SystemC 
processes are sequential and thus, they are executed as specified by the program-
mer, while Esterel is inherently parallel, and its execution follows the data depend-
encies. Hence, a synchronous program cannot be directly translated to SystemC, 
since causility problems must be considered.

function SystemCStep()
 // determine next changing clock signal

do
  // execute activated sc_methods and sc_threads
  // update outputs of sc_methods and sc_threads
  // update outputs of previous sc_threads

while (signals change);
 // execute scheduled sc_threads

function EsterelStep()
 // proceed to next macrostep

do
  // execution: determining current signals
  // update immediate outputs;
  // update delayed outputs of previous step

while (fixpoint not reached);
 // execution: prepare next macrostep

Fig. 1.1 Comparing the execution of SystemC and Esterel programs
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Nevertheless, for most programs that appear in real-world applications, the 
 problems are not as difficult as outlined before. With restricting to a subclass of 
synchronous programs that covers most important applications, a direct structural 
mapping is possible. Basically, the following classes can be distinguished.

● Programs that contain only delayed action: No problems occur if programs 
that solely contain delayed actions are translated. For this class of programs, 
the iterative part is almost redundant: Only the outputs from the previous 
step must be committed once. The fixpoint iteration can be completely omit-
ted, since no actions manipulate them in the course of the current step and 
thus, they are all known in advance. The actual execution of the program 
code is done after the loop, which is equivalent to SystemC synchronous 
processes.

● Programs requiring only one fixpoint iteration: In principle, the condition for the 
input set of programs does not have to be as strict as described above: The only 
thing that must be guaranteed is that a single iteration of is enough to determine 
the output values. In this case, the execution scheme is again analogous and a 
directly translated program shows the same behavior. Hence, programs may 
contain immediate actions which must be however set before their usage in the 
step. In particular, the individual threads of a program have to be executed in the 
right order that respects inter-thread data dependencies.

● All other programs: The set of programs for a translation does not need to 
be restricted at all. The causality analysis of synchronous programs can be 
 simulated in SystemC with the help of asynchronous processes. Each program 
fragment (i.e. either equations or the result of the compilation method presented 
in the next section) is wrapped in an asynchronous process that contains all used 
variables in its sensitivity list. Like this, its execution is triggered each time a 
value changes. Note that Esterel program that are not causally correct, may 
result in SystemC programs that have a nonterminating simulation cycle: 
Asynchronous processes may infinitely often trigger each other and thus, 
 simulate an oscillating wire in the circuit design they represent.

1.4 Differences Between SystemC and Esterel

The previous section showed that synchronous processes in SystemC and Esterel 
programs share a common core, which can comprehend many practical systems. 
While most elements of SystemC can be mapped more or less directly to Esterel, 
some problems arise for the other way around due to the rich set of control flow 
statements Esterel provides.

First, problems occur due to the Esterel’s orthogonal use of parallelism. Since 
parallel and sequential code can be arbitrarily mixed in Esterel but not in SystemC, 
threads in synchronous programs must be reorganized. Second, there are many 
preemption constructs in Esterel, which are all based on some primitive abortion 
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and suspension statements. As SystemC does not provide preemption, this part 
must be also removed before a translation to SystemC code.

Recently, we developed a new compilation scheme for our Esterel-variant 
Quartz, which compiles programs to an intermediate code, which represents a small 
synchronous programming languages without complicated control flow statements 
[20, 21]. The basic building block of this format is a job. Such a job J = (x,S

x
) is a 

pair, where x is a label and S
x
 a code fragment. These jobs resemble synchronous 

processes in SystemC. The overall idea of compilation is as follows: In a first step, 
for each control flow location � of the program, a job (�,S

�
) is computed that has to 

be executed if the control flow resumes the execution from location �.
Definition 1. [Job Code Statements] The following list contains the job code 
statements. S, S

1
, and S

2
 are also job code statements, � is a location variable, x is 

an event variable, y is a state variable, σ is a Boolean expression, and λ is a lock 
variable:

● nothing (empty statement)
● y = τ and next(y) = τ (assignments)
● init(x) (initialize local variable)
● schedule(�) (resumption at next reaction)
● reset(λ) (reset a barrier variable)
● fork(λ) (immediately fork job λ)
● barrier(λ,c) (try to pass barrier λ)
● if(σ) S

1
else S

2
 (conditional)

● S
1
;S

2
 (sequence)

The atomic statements nothing, y = τ, and next(y) = τ have the same meaning as 
in ordinary synchronous programs. The meaning of conditionals and sequences 
is also the same. The statement init(x) replaces a local variable declaration. The 
schedule(�) statement inserts the job corresponding to control flow location � to 
the schedule of the next step. The statements reset(λ), fork(λ), and barrier(λ, c)
are used to implement concurrency based on barrier synchronization. The state-
ment barrier(λ,c) first increments the integer variable λ and then compares it 
with the constant c. If λ ≥ c holds, it immediately terminates, so that a further 
statement S can be executed in a sequence barrier(λ,c);S. If λ < c holds, the execution 
fails, so that the code behind the barrier is not yet executed. Executing reset(λ)
simply resets λ = 0. The statement fork(λ) immediately executes the job �λ
that is associated with λ.

As explained in detail in [20], the compilation of preemption statements first 
computes the normal execution that is performed when no abortion takes place. 
Then, as a post-processing, the potential preemption behavior is added to all jobs. 
To this end, each location &ell; inside the abort statement’s body the corresponding 
job S

�
 is protected by the abortion and suspension guards so that the statements are 

not executed if a preemption condition hols.
Figure 1.2 contains a small example that illustrates how Quartz code can be 

translated to SystemC. The lower left part of the figure lists the job code of the 
module and the right hand-side shows how it can be used for the translation to 
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SystemC. The fine-grained parallelism used by the threads of �
a
 and �

b
 is mapped 

to coarse-grained parallelism of SystemC.
Figure 1.3 shows another example, which extends the previous one. It illustrates 

how preemption statements are removed by the compilation into JobCode. The 
translation to SystemC is not affected by this part, as only additional conditional 
statement are inserted, which do not pose significant problems.

Obviously, the various kinds of preemption statements in Esterel are powerful 
and convenient components used to program complex concurrent behaviors. The 
translation as performed by the Job code compilation is a solution, but it would be 
better if SystemC could benefit from the same programming possibilities as imper-
ative synchronous languages. While the watching statement provides rudimentary 
abortion functionality, a complete support of all abortion and suspension variants 
would be desirable.

Moreover, fine-grained parallelism would be a second important extension 
of SystemC, from which a translation of imperative synchronous programs 
would benefit.

module Wait(event a, b, r, &o)
 loop{

�a : await(a); || �b : await(b);
   emit next(o);

�r : await(r);
 }

�0 : reset(λ1);
  schedule(�a);
  schedule(�b);
�a : if(¬a) schedule(�a) else fork(λ1);
�b : if(¬b) schedule(�b) else fork(λ1);
�r : if(r){
   reset(λ1);
   schedule(�a);
   schedule(�b);
  } else
   schedule(�r);
λ1 : barrier(λ1, 2);
  emit next(o);
  schedule(�r);

void Wait ::�0(){
 r.write(false);�a.write(true);�b.write(true);
}
void Wait ::�a(){
 while(true){
  wait_until(�a.delayed() );
  wait_until(a.delayed() );

�a.write(false);
 }}
void Wait ::�b(){
 while(true){
  wait_until(�b.delayed() );
  wait_until(b.delayed() );

�b.write(false);
 }}

void Wait ::�r(){
 wait_until(r.delayed() );

�a.write(true);�b.write(true);
}
void Wait ::λ1(){
 wait_until(!�a.delayed()&&!�b.delayed() );

r.write(true);
 wait();

r.write(false);
 �r();
}

Fig. 1.2 Module Wait in Quartz, Job Code (left) and SystemC (right)
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1.5 Summary

In this paper, we identified similarities of the execution of SystemC and Esterel 
programs. Despite their different paradigms, we identified a class of programs that 
can be easily translated from one language to the other. Furthermore, we investi-
gated language features that cause problems in a transformation process: In particu-
lar, preemption and fine-grained parallelism as in Esterel programs were identified 
as major differences, which might be interesting extensions of SystemC.
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Chapter 2
Timed Asynchronous Circuits Modeling 
and Validation Using SystemC

Cédric Koch-Hofer and Marc Renaudin

Abstract ASC is a SystemC library designed for modeling asynchronous circuits. 
In order to respect the semantic of asynchronous circuits, the synchronization 
primitives of ASC rely on SystemC immediate notification. In this paper we present 
a time model which allows us to properly trace ASC processes activity. This time 
model is not restricted to ASC and could be used to model asynchronous circuits 
using a CSP based modeling language. Moreover, this time model can be used for 
validating timed models of circuits mixing synchronous and asynchronous parts. 
This time model is therefore used for designing the tracing facilities of ASC. This 
paper also presents a patch of the OSCI SystemC simulator allowing to properly 
validate ASC models. As relevant examples, two versions of the Octagon intercon-
nect are modeled and verified using the ASC library.

Keywords Asynchronous Circuits, SystemC, Time Model, Simulation and Validation

2.1 Introduction

With advances in digital VLSI technologies, asynchronous design styles are becom-
ing more and more popular. The intrinsic properties of asynchronous circuits are 
well adapted to new interconnects paradigms like “Network on Chip” [1] (NoC). 
An Asynchronous circuit [2] use a local handshaking protocol to synchronize data 
transfers between its components. Therefore, there are no longer any problems with 
NoC clock management, and the integration of cores with different clock frequen-
cies is properly managed [3]. Moreover, asynchronous NoCs take advantage of the 
benefits of asynchronous circuits such as low power consumption, communication 
robustness…
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Today, the lack of tools for the design of asynchronous circuits are the principal 
inhibitors for their adoption [4]. Two families of tools are available. The first family 
of tools uses graphical description as input. Examples of such tools are: Petrify [5], 
minimalist [6], 3D [7]. These kinds of tools allow the production of very efficient 
small circuits; nevertheless they can not be used for designing complex systems like 
NoC. The second family of tools uses programming languages as input. Examples 
of such languages are: CHP [8], Balsa [9] and Tangram [10]. These modeling lan-
guages do not support standard CAD tools and are not adequate to model synchro-
nous circuits. However, these facilities are required for the design of an 
Asynchronous NoC interconnecting the synchronous components of a “Globally 
Asynchronous Locally Synchronous” [11] (GALS) “System on Chip” 
(SoC). Moreover, the design frameworks associated with these modeling languages
do not allow us to properly codesign the hardware and software part of a SoC.

In order to leverage these problems, we have developed ASC [12], an extension 
of the SystemC [13] language for modeling asynchronous circuits. The semantic of 
ASC is based on CSP [14]. Indeed, an ASC model is composed of a set of concur-
rent processes communicating via synchronous point-to-point channel. This 
SystemC library also includes a set of operators and statements for accurately mod-
eling the basic components of an Asynchronous Network on Chip.

The standard tracing facilities defined by SystemC are based on changes of vari-
able values between different simulation times or between two different delta-
cycles [13]. By this way, it is not possible to trace several communications occurring 
over an ASC channel if they happen in the same delta-cycle. For example, Fig. 2.1 
illustrates what happens if standard tracing facilities of SystemC are used for 
tracing the variable var. In this example the foo::process sends two chars to the 
bar::process. Nevertheless, only the last change of value can be recorded by 
the standard tracing facilities of SystemC. Indeed, the ASC channels use immediate 
notification to synchronize their connected processes and therefore multiple com-
munications can be executed during a delta-cycle over the same channel. Thus, 
standard SystemC tracing facilities only display the last change of value and can 
not be used for validating ASC models.

Fig. 2.1 Trace with SystemC tracing facilities
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An obvious solution resolving this problem could be adding latencies in ASC 
channels. However, this solution adds extra dependencies on the order of execution 
of the processes, not allowing proper ASC processes delay insensitivity checking 
In fact, tracing activities of such a distributed system requires using a time model 
not based on a single common clock.

The “Lamport clocks” [15] is a time model commonly used for synchronizing 
activities of distributed systems. In this time model each process has its own local 
clock. The messages exchanged by the processes are used for synchronizing their 
local clocks. In this paper we present a time model, called AST (Asynchronous 
SystemC Time), based on “Lamport clocks” allowing proper tracing of ASC proc-
esses activity. More generally, this time model can be used for tracing activities of 
any models of asynchronous circuits specified with a modeling language based on 
CSP.

Previous works [16–18] on timing models for asynchronous circuits use models 
at the gate level. They are used to perform static analysis of latencies of the circuit 
components. For example, they use min-max algorithm, Monte-Carlo simula-
tion… for checking that the delay limits are respected. Thus, these models manip-
ulate very low level abstraction entities like signals. These models of time are 
therefore not suited to handle high level language constructs like processes, 
channels…

A SystemC framework based on “Lamport clocks” time model is presented in 
[19]. However, they do not use it for tracing activities of channels but for improving 
simulation speed. Indeed, the “Lamport clocks” time model is used in this frame-
work to efficiently manage the execution of the SystemC processes on a distributed 
simulation platform. The execution of these processes is synchronized according to 
the time stamp of the packets received by the processes.

The ASC library enables us to model any class of asynchronous circuits (QDI 
[20], micro-pipeline [21]…). Thus, we want to be able to validate any kind of asyn-
chronous circuits modeled using ASC. For properly checking the delay insensitivity 
of an ASC model of a Delay Insensitive (DI) asynchronous circuit, all the valid 
scheduling of the processes should be tested. Hopefully, the specification of the 
SystemC scheduler [13] is non-deterministic. However, the system has to be simu-
lated with a particular implementation of the scheduler. For example, the SystemC 
reference simulator [22] is deterministic. In order to leverage this problem, we have 
developed a patch for this simulator allowing a non-deterministic scheduling of the 
processes.

This paper also presents how the AST time model was used to define the tracing 
facilities of ASC. To demonstrate the relevance of this approach, this paper finally 
presents how ASC is used to model and validate two versions of an asynchronous 
Octagon interconnect [23].

The organization of the paper is as follows. Section 2.2 presents the AST time 
model. The ASC library is introduced in Section 2.3. As illustrative examples, 
Section 2.4 describes the two ASC versions of Octagon interconnect. Finally, con-
clusions and future works on the ASC library are presented in Section 2.5.
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2.2 Time Model

A model of asynchronous circuits based on CSP is a set of processes which com-
municate with one another by exchanging messages via synchronous point-to-point 
channels. In this kind of distributed system, all processes are running concurrently 
and it is therefore difficult (even impossible) to say that one of two events occurred 
first. As in [15], our goal is to adapt and extend the relation “happened before” in 
order to define a partial ordering of the events happening in such a system. At the 
end, we want to be able to assign a coherent time stamp to each event occurring in 
this kind of system. For example, Fig. 2.2 shows different events occurring when 
executing a CSP model of an asynchronous circuit composed of three processes (P

0
,

P
1
 and P

2
). Figure 2.2 also illustrates the time stamps associated to these events. The 

different kind of events and their relationship are described formally in Sub-section 
2.2.1. The rules for computing the time stamp of these events are presented in Sub-
section 2.2.2.

A nice property of this time model is that it can be easily extended. For example 
in Sub-section 2.2.3 we present an extension of this time model allowing interfac-
ing these asynchronous clocks with the clock of a synchronous circuit.

2.2.1 Partial Ordering

In the AST time model, the execution of a CSP model of an asynchronous circuit 
is represented by a set of processes P = {p

0
, p

1
…} and a set of channels CH = {ch

0
,

ch
1
…}. A process p

i
 is defined by the sequence of events p

i
 = (e

0
, e

1
…) occurring 

in this process during its execution. The first event of a process p
i
 is its “initialization”

Fig. 2.2 Time stamping of CSP 
processes’ events
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init
i
. When a process p

i
 terminates, its last event is its “termination” end

i
. A channel 

ch
k
 is specified by a couple ch

k
 = (p

i
, p

j
) where p

i
 and p

j
 are the processes using ch

k
.

p
i
 and p

j
 are connected to ch

k
 by an active port and by a passive port, respectively. 

It can be noticed that in this time model the direction of the data communicated 
through the channel is not relevant. A communication c = {sca

i
, scp

j
, ecp

j
, eca

i
}

between two processes p
i
 and p

j
 over a channel ch

k
 = (p

i
, p

j
) is defined by the fol-

lowing four events:

● sca
i
 and eca

i
: beginning and termination of the communication c for the process 

p
i

● scp
j
 and ecp

j
: beginning and termination of the communication c for the process 

p
j

A process p
j
 connected to a channel ch

k
 = (p

i
, p

j
) can probe it. The probing action 

is atomic and generates one, and only one, of the two following events:

● pp
j
: this event, called a “positive probe”, happens if the process p

i
 has initiated a 

communication on the channel ch
k
.

● np
j
: this event, called a “negative probe”, occurs if the process p

i
 does not initi-

ated a communication on the channel ch
k
.

In our formalism a task t
i,l
 is a sequence of instructions of a process p

i
. In standard 

CSP, it is not possible to perform a set of tasks in parallel in the same process. 
In order to leverage this restriction most of the modeling language for asynchronous 
circuits based on CSP defines a parallel composition operator. This operator enables 
concurrently execution of a set of tasks T

i
 = {t

i,0
, t

i,1
…} in the same process p

i
. Each 

task t
i,l
 is concurrently executed by a sub-process p

m
. The main process p

i
 is blocked 

until the termination of all these sub-processes. Execution of this composition 
operator is characterized by the following two events:

● cti
i
: this event, called “concurrent tasks initialization”, occurs when a set of con-

current tasks are triggered by process p
i
.

● ctt
i
: this event, called “concurrent tasks termination”, happens when all the sub-

processes triggered by process p
i
 for executing a set of concurrent tasks have 

terminated.

The sequence of events (e
i
, e

i
’…) defining a process p

i
 respects the order of occur-

rences of its events. We are assuming that two events in the same process can not 
happen at the same time, and therefore the sequence of events (e

i
, e

i
’…) respects a 

total ordering. However, our goal is to define an ordering relation on the set E = {e,
e’…} of all the events. For this purpose, we define the “happened before” relation 
� : E Æ E. This relation is defined by the following conditions:

(C0)  If e
i
 and e

i
’ are events in the same process, and e

i
 occurs before e

i
’, then 

e
i
� e

i
’

(C1) ∀ e, e’, e”∈ E, (e � e’ ∧ e’ � e”) Þ e � e”
(C2)  If {sca

i
, scp

j
, ecp

j
, eca

i
} is a communication between processes p

i
 and 

p
j
, then sca

i
� ecp

j
, scp

j
� ecp

j
 and ecp

j
� eca

i
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(C3)  If c = {sca
i
, scp

j
, ecp

j
, eca

i
} is a communication between processes p

i

and p
j
, and pp

j
 is a “positive probe” by the process p

j
 of the communi-

cation c, then sca
i
� pp

j
 and pp

j
� scp

j

(C4)  If np
j
 is a “negative probe” done by the process p

j
 on the channel ch

k
 = 

(p
i
, p

j
), and {sca

i
, scp

j
, ecp

j
, eca

i
} is a communication between proc-

esses p
i
 and p

j
 via the channel ch

k
, then ecp

j
� np

j
 or np

j
� sca

i

(C5)  If init
m
 is the initialization event of a sub-process p

m
 created for per-

forming a concurrent task t
i,l
, and cti

i
 is the “concurrent task initializa-

tion” generated by the composition operator which triggered the 
process p

m
, then cti

i
� init

m

(C6)  If end
m
 is the termination event of a sub-process p

m
 created for perform-

ing a concurrent task t
i,l
, and ctt

i
 is the “concurrent task termination” 

generated by the composition operator which triggered the process p
m
,

then end
m

� ctt
i

Obviously, in this kind of system an event can not occur before itself ∀ e Œ E, ¬(e �
e). Moreover, the asymmetric property of the relation � can be easily demonstrated. 
Thus, the relation � defines a strict partial ordering of E.

2.2.2 Computing Time of Events

The AST time model associates a time stamp to each event. The value of this time 
stamp is defined by a function clk : E → N respecting the strict partial ordering �.
This last function represents the logical time of the system and it is defined accord-
ing to the logical local time of each process. The logical time of a process p

p
 is 

defined by a function clk
p
 : E

p
→ N where E

p
⊆ E is the set of all the events occur-

ring in p
p
. The time stamp clk(e

p
) = clk

p
(e

p
) of an event e

p
∈ E

p
 occurring in a proc-

ess p
p
 is computed with the help of the following computation rules:

(R0) If e
p
 = ∅ is an event which has never happened, then clk(∅) = 0

(R1)  If e
p
 = init

i
 is the initialization of the process p

i
 and this process is not 

a sub-process, then clk
i
(init

i
) = 0

(R2)  If e
p
 = init

m
 is the initialization of the process p

m
, and this process is a 

sub-process triggered by the event cti
i
 of the process p

i
, then clk

m
(init

m
)

= clk
i
(cti

i
) + 1

(R3)  If e
p
 = end

i
 is the last event of the process p

i
, and le

i
 is the last event 

occurring in p
i
 before end

i
, then clk

i
(end

i
) = clk

i
(le

i
) + 1

(R4)  If e
p
 = sca

i
 is the beginning of a communication performed by a proc-

ess p
i
 over a channel ch

k
 = (p

i
, p

j
), and np

j
 is the last negative probe of 

the process p
j
 of the channel ch

k
, and le

i
 is the last event occurring in p

i

before sca
i
, then clk

i
(sca

i
) = max(clk

i
(le

i
), clk

j
(np

j
) ) + 1

(R5)  If e
p
 = scp

j
 is the beginning of a communication performed by a proc-

ess p
j
 over a channel (p

i
, p

j
), and le

j
 is the last event occurring in p

j

before scp
j
, then clk

j
(scp

j
) = clk

j
(le

j
) + 1
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(R6)  If e
p
 = ecp

j
 is the end of a communication {sca

i
, scp

j
, ecp

j
, eca

i
} per-

formed by a process p
j
 over a channel (p

i
, p

j
), then clk

j
(ecp

j
) = 

max(clk
i
(sca

i
), clk

j
(scp

j
) ) + 1

(R7)  If e
p
 = eca

i
 is the end of a communication {sca

i
, scp

j
, ecp

j
, eca

i
} performed 

by a process p
i
 over a channel (p

i
, p

j
), then clk

i
(eca

i
) = clk

j
(ecp

j
) + 1

(R8)  If e
p
 = pp

j
 is a positive probe of the communication {sca

i
, scp

j
, ecp

j
,

eca
i
} performed by a process p

j
, and le

j
 is the last event occurring in p

j

before pp
j
, then clk

j
(pp

j
) = max(clk

j
(le

j
), clk

i
(sca

i
) ) + 1

(R9)  If e
p
 = np

j
 is a negative probe performed by a process p

j
 of a channel 

ch
k
 = (p

i
, p

j
), and {sca

i
, scp

j
, ecp

j
, eca

i
} is the last communication on 

the channel ch
k
, and le

j
 is the last event occurring in p

j
 before np

j
, then 

clk
j
(np

j
) = max(clk

j
(le

j
), clk

j
(ecp

j
) ) + 1

(R10)  If e
p
 = cti

i
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As explained in [15], the function clk : E → N respects the strict partial ordering �
if the following condition is respected:

Clock Condition. ∀ e, e’ ∈ E, (e � e’ ⇒ clk(e) < clk(e’) )

The lack of space does not allow us to give details of the proof of the clock condi-
tion. Briefly, this proof consists of proving that all the conditions defining the rela-
tion � are respected by the previous computation rules defining the function clk : 
E → N.

2.2.3 Interfacing with Synchronous World

One of the goals on ASC is to model circuits composed of asynchronous and syn-
chronous components. For being able to trace activities of such system, our time 
model must be able to take into account its synchronous time. In order to leverage 
this problem, we extend the set of processes P of the AST time model with a new 
process p∆ ∈ P. This process represents the system’s global clock of the synchro-
nous parts. Indeed, at the end of each global clock cycle, an event ge∆ occurs in the 
process p∆.

To preserve the coherency of the � relation we extend it with the following 
condition:

(C7)  If e
i
 is an event occurring in p

i
 and ge∆ is an event occurring in p∆

before e
i
, then ge∆ � e

i

(C8)  If ge∆ is an event occurring in p∆ and e
i
 is an event occurring in p

i

before ge∆, then e
i
� ge∆
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The computation rules of the time stamp also have to be updated. Firstly, we add 
the following computation rule:

(R12)  If e
p
 = ge∆ is the end of a clock cycle happening in the process p∆, and 

le∆, le
0
, le

1
 … are the last event happening in processes p∆, p

0
, p

1
 … of 

P = {p∆, p
0
, p

1
 …} before ge∆, then clk∆(ge∆) = max(clk∆(le∆), clk

0
(le

0
),

clk
1
(le

1
)…) + 1

Secondly, we update the rules (R2) to (R11) for taking into account the local time 
of the process p∆. For example, for the rule (R2), if we take the same hypothesis and 
if le∆ is the last event occurring in p∆ before init

m
, then clk

m
(init

m
) = max(clk

i
(cti

i
),

clk∆(le∆) ) + 1. The other rules (R3) to (R11) are updated in the same way.

2.3 ASC Library

An ASC model is composed of a set of ASC modules interconnected via predefined 
ASC ports and ASC channels. New methods and operators are also defined by 
ASC enabling parallel communication and non-deterministic choice.

The ASC tracing facilities are composed of several functions. These functions are 
used to trace communications and events happening in the ASC channels. The gener-
ated output trace file can not be directly used by the standard CAD tools, but it can be 
converted in standard VCD trace file [24] with the ast2vcd tool we have developed.

For being able to properly validate an ASC model, we have developed a patch 
of the OSCI SystemC simulator. The resulting simulator allows us testing different 
interleaving of the processes execution.

2.3.1 ASC Modeling Language

ASC defines two different kinds of module. The container modules are used to 
define the hierarchical structure of the system. They can contain other modules, 
channels and ports. The ASC process modules specify the behavior and the concur-
rent aspects of an asynchronous circuit. The behavior of a process module is 
defined by its process method.

The ports are the communication interfaces of ASC processes. An ASC port is 
unidirectional (input or output) and can be connected to at most one ASC channel. 
The emission of data through an output port is done with its send method. The 
receive method of the input port connected to an output port allows to get the data 
sent by an output port. A handshaking protocol is used to synchronize the commu-
nication between two ASC ports. They are two different kinds of port: active and 
passive. An active port initiates the handshaking protocol and a passive port
acknowledges it. A passive port has a special method called probe allowing it to 
check if its connected active port has initiated a communication or not.



2 Timed Asynchronous Circuits Modeling and Validation Using SystemC 23

The channels are the mediums used by the ASC processes to communicate and 
synchronize their executions. A pull and a push channel interconnects an active 
input port to a passive output port and an active output port to a passive input port, 
respectively. These channels implement the communication and synchronization 
primitives offered by the ASC ports. Indeed, the previous methods of these ports 
(send, receive and probe) just forward their procedure call to the methods of their 
connected channels.

To synchronize its execution, an ASC process can use its idle methods. A first 
version of this method is used to wait until at least one of its passive ports is ready 
to communicate. A second version is used to wait that a set of parallel communica-
tions have been completed. A parallel communication is triggered with the par_
receive or par_send methods of the ASC ports, and a set of parallel communications 
is constructed with the overloaded operator //.

The two new statements as_choice_nd and as_guard are provided by the ASC 
library. The as_choice_nd defines a non-deterministic choice over a set of guarded 
commands. A guard of a non-deterministic choice is specified with the statement 
as_guard.

2.3.2 Tracing Facilities

A trace file respecting the AST time model is created with the function as_create_
ast_trace_file. This function takes as a parameter the name of the output trace file 
and returns a pointer on this trace file. This pointer can be used by the as_trace
function to define the ASC channels to trace. This pointer can also be used with 
the as_set_time_unit function to set the time resolution used for performing 
the simulation. Finally, a trace file shall be closed by calling the function 
as_close_ast_trace_file.

An ASC channel has a template parameter defining the DATA carried out by this 
channel. Any kind of channel can be traced with the as_trace function. Currently, 
the value of a data transferred over a traced channel will be reported only if its type 
belongs to one of the following C++ types: bool, char, short, int, long, long long,
unsigned char, unsigned short, unsigned int, unsigned long, unsigned long long,
float, double. However, ASC tracing facilities can be easily extended to handle 
specific user data types. Indeed, the as_trace function can be overloaded in order 
to handle any kind of data.

The ast2vcd takes as input an ASC trace file and produces a VCD output trace 
file. For each traced ASC channel ch is defined the following VCD signals:

● Data: represents the data transferred during a communication.
● sca, scp, eca, ecp: represent the events defining a communication.
● p: the call to the probe method of the channel. The value of the channel is equal 

to the result of the probe.
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Figure 2.3 shows the VCD and the AST traces generated by the simulation of the two 
ASC processes p0 and p1. These two processes are connected via an ASC channel ch.
All the events represented in this figure, except sca’, happen at the simulation time 0 
nanosecond (NS). However, in the resulting VCD, these events do not happen at 0 
NS. Indeed, to represent the AST time stamp and make the trace readable, the events 
occurring at the same SystemC simulation time, but at different AST times, are sepa-
rated by ε time steps. In order to know at which SystemC simulation time an AST 
event occurs, the SystemC simulation clock is represented by the sc_clock signal. The 
ε value is automatically computed by ast2vcd. It takes care that each AST event 
occurs after its SystemC simulation time and before the next sc_clock signal.

2.3.3 ASC Simulator

Because DI asynchronous circuits are not sensitive to delays, the execution order of 
the processes modeling such circuits should not have any impact on the correctness. 
For checking this fundamental property of a DI asynchronous circuit, the selection 
of a process to execute among the set of runnable processes should be 
non-deterministic.

Fig. 2.3 Traces with ASC tracing facilities
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The current implementation of the SystemC kernel simulator [22] uses two 
pseudo-fifo lists for managing the set of runnable processes. The first one contains 
the runnable sc_method and the second one the runnable sc_thread. These pseudo-
fifo are divided into two lists: get_list and push_list. The get_list is used by the 
scheduler for selecting the new process to execute. The push_list is used for insert-
ing a new runnable process into the pseudo-fifo. During an evaluation phase, all the 
processes which are in the get_list of the sc_method pseudo-fifo are firstly exe-
cuted. Secondly, all the processes which are in the get_list of the sc_thread pseudo-
fifo are executed. Finally, if the push_list are not empty, they are swapped with their 
corresponding get_list. These three steps are repeated until the two get_list are 
empty at the beginning of the first step. Thus, we can see that this scheduling algo-
rithm is deterministic and do not allow us to test different interleaving of processes 
execution.

As illustrated in Fig. 2.4, the patch that we have defined merges the two pseudo-
fifos into one priority queue. We have also defined a new common class for the sc_
thread and the sc_method defining their priority of execution. When a process is 
becoming runnable, a new priority is affected to this process and then it is inserted 
into the priority queue. The priority value is computed by a pseudo random genera-
tor. In order to be able to replay a simulation, the seed of this pseudo random gen-
erator can easily be determined. When the active process execution finished, the 
scheduler chooses the process in the priority queue with the lowest priority. By this 
way, we are able to test different interleaving of processes execution.

Another promising solution for this problem is presented in [25]. It presents a 
method and tools enabling to efficiently generating the different scheduling allowed 
by the scheduler specification. They use dynamic partial-order reduction techniques 
to avoid the generation of two schedulings that have the same effect on the system’s 
behavior.

Fig. 2.4 SystemC simulator 
scheduler
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2.4 Octagon NoC with ASC

The Octagon [23] interconnect was developed by STMicroelectronics to efficiently 
interconnect eight CPUs on a single chip. This interconnect is composed of 8 nodes 
and 20 bidirectional links. However, in our version of the Octagon, each bidirec-
tional link is replaced by two unidirectional links. The resulting configuration of the 
system is illustrated in Fig. 2.5. In this figure, the integer associated to each node 
is the address used by a CPU for sending a packet to another CPU. Each node uses 
an algorithm based on the Octagon topology and on arithmetic properties to route 
its incoming packets to the right output.

The first ASC version of the Octagon operates in packet switching mode. Figure 
2.6 exhibits the ASC code of the nodes used in this version of the Octagon. These 
nodes wait for a new packet on one of the four input ports. When at least one packet 
is available, the nodes perform a non-deterministic choice over the set of input ports 
ready to transmit a new packet. A packet is then received on the selected input port. 
Finally, this packet is forwarded to an output port according to the routing Octagon 
algorithm.

The second ASC version of the Octagon operates in circuit switching mode. 
In this version there are two different kinds of packet: request packet and response 
packet. The request packets are sent by a CPU which is willing to access a resource 
of another CPU. When a request packet is received by a CPU, it sends a response packet 
to the CPU which sent this request packet.

Fig. 2.5 Octagon NoC 
confguration
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The ASC code of the routers used in this version of the Octagon is summed up 
in Fig. 2.7. When one of these nodes receives a new request packet, it stores which 
input port (l_in_dir) transmitted the packet. As for the previous version, the packet 
is then transmitted through the right output port. However, this time the node does 
not restart to wait for a packet on all its input ports, but it waits on the input port 
associated to the output port (l_out_dir) which was used to send the packet. In this 
way the next packet received by this node can only be the response packet of the 
previous request packet. When this last response packet is received, it is forwarded 
through the output port corresponding to the input port which received the request 
packet. Thus, in this mode, the entire path between the CPU which sends the 
request and the CPU which receives it is reserved for the response packet.

In a first step, the ASC tracing facilities enabled us to validate the functional 
behavior of the two versions of the Octagon. For example, they helped us to check 
the behavior of the routers and to understand how dead-locks were happening in 
such a NoC. To this end, we have replaced the CPUs with traffic generator proc-
esses and traffic consumer processes. In a second step, we added latencies to the 

void node::process() { 
  idle(in_ip | in_clk | in_cclk | in_frt);

  as_choice_nd( 
    as_guard(in_ip.nb_probe(), IP), 
    as_guard(in_clk.nb_probe(), CLK), 
    as_guard(in_cclk.nb_probe(), CCLK), 
    as_guard(in_frt.nb_probe(), FRT))) 
  { 
     case IP: in_ip.receive(pkt); 
     case CLK: in_clk.receive(pkt); 
     case CCLK: in_cclk.receive(pkt); 
     case FRT: in_frt.receive(pkt); 
  } 

  switch( (pkt.adr – this->adr) mod 8 ) { 
    case 0: out_ip.send(pkt); break; 
    case 1: 
    case 2: out_clk.send(pkt); break; 
    case 6: 
    case 7: out_cclk.send(pkt); break; 
    default: out_frt.send(pkt); break; 
}}

Fig. 2.6 Packet switching 
router

void node::process() { 
  receive_req(l_pkt_req, l_in_dir); 
  l_out_dir = route(l_pkt_req.adr_dest);
  forward_req(l_pkt_req, l_out_dir); 
  receive_rsp(l_pkt_rsp, l_out_dir); 
  forward_rsp(l_pkt_rsp, l_in_dir); 
}Fig. 2.7 Circuit switching 

router
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different components (consumers, producers and routers) and to the ASC channels. 
By this way, we were able to analyze the congestions and latencies of the NoC 
under different pattern of traffic (uniform, hot-spot and random).

2.5 Conclusion

This paper presented a time model which can be used to validate asynchronous cir-
cuit models using a language based on CSP. This time model was used to define the 
tracing facilities of the ASC library. These tracing facilities produce traces of the 
ASC process activities over their connected channels, which can then be used to 
generate standard VCD. However, the VCD format is not really adapted to asyn-
chronous circuits. Thus, we are currently investigating other trace formats like SCV. 
We are also evaluated the time model on complex multiple clock systems.

Finally, modeling and validating asynchronous logic with the ASC library is the 
first step towards the synthesis. Our final goal is to be able to synthesize these 
models with the TAST framework [26]. We are currently formally defining the 
synthesis process of ASC based models to efficiently generate gate level asynchro-
nous circuits.
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Chapter 3
On Construction of Cycle Approximate 
Bus TLMs

Martin Radetzki and Rauf Salimi Khaligh

Abstract Transaction level models (TLMs) can be constructed at different levels 
of abstraction, denoted as untimed (UT), cycle-approximate (CX), and cycle accu-
rate (CA) in this contribution. The choice of a level has an impact on simulation 
accuracy and performance and makes a level suitable for specific use cases, e.g. vir-
tual prototyping, architectural exploration, and verification. Whereas the untimed 
and cycle-accurate levels have a relatively precise definition, cycle-approximate 
spans a wide space of modelling alternatives between UT and CA, which makes 
it a class of levels rather than a single level. In this contribution we review these 
modelling alternatives in the context of SystemC and with focus on bus models, 
provide quantitative measurements on major alternatives, and propose a CX model-
ling level that allows to obtain almost cycle accuracy and a simulation performance 
significantly above CA models.

Keywords Transaction-level modelling, SystemC, embedded systems

3.1 Introduction

Transaction level modelling has become a widely used technique in embedded systems 
and system on chip design. A variety of system design languages such as SystemC [7] 
and SpecC [5] can be used for modelling at transaction level. However, transactions 
and many other typical elements of transaction level models (TLMs) are not available 
as syntactic language features. The TLM creators instead have to create the transaction 
level abstractions themselves, using language features such as channels and interfaces. 
This is supported by mostly informal descriptions of the TLM methodology, e.g. [6], 
and by methodology-specific libraries, e.g. the SystemC TLM library [10].
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Methodologies and libraries leave degrees of freedom to implement TLMs in 
different ways. This has the positive effect that the transaction level in fact spans 
multiple (sub-)levels of abstraction, facilitating trade-offs between simulation accu-
racy and performance. However, these levels, subsequently denoted as untimed 
(UT), cycle-approximate (CX) and cycle accurate (CA), are not formally defined 
but rather characterized by model properties. The lack of a formal definition makes 
it difficult to describe how to systematically construct TLMs at a given level.

Despite this drawback, there exist relatively precise and consistent characteriza-
tions of UT and CA, as we will show in Section 3.2. CX models, however, can 
cover a wide range between UT and CA, and there appears to be no consensus on 
the characteristics of a favourable CX model. We will attempt the definition of such 
a model based on the consideration of modelling alternatives. For this purpose, we 
use the following non-orthogonal criteria characterizing TLMs in addition to their 
timing accuracy:

● The underlying communication mechanism, which can be a subprogram call 
with transfer of control flow (blocking) or message passing with data flow 
(potentially non-blocking).

● The use of concurrency in the model, namely the presence or absence of indi-
vidual threads in the modelled master, slave, and bus components. A component 
with (without) a thread is called passive (active).

● The programming abstraction provided to the users of a bus model, including no 
abstraction (direct access to port/channel), procedural application programming 
interface (API), communication mechanisms that could be adopted from concur-
rent/distributed systems (e.g. RPC, CORBA).

● The bus features covered by the model, including single transfers, bursts, locked 
transfers, split transfers, wait states (inserted by slave), busy cycles (inserted by 
master), bus phases and pipelining, in-order or out-of-order completion of trans-
fers, and arbitration policy.

● The modelling mechanism used for arbitration, in particular the use of events to 
trigger arbitration (no events, one event, multiple events).

● The use cases of a particular model, including verification, exploration, virtual 
prototyping.

In the next section, we review the related work with respect to the above criteria. 
Section 3.3 presents considerations and alternatives towards accurate CX models, 
and Section 3.4 investigates their performance.

3.2 Related Work

Donlin [4] presents the transaction level terminology used by the SystemC TLM 
working group. It includes a Programmer’s View (PV) characterized by untimed 
communication and the use case of providing a functionally accurate representation 
of hardware subsystems to software programmers. A Programmer’s View with 
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Time (PV + T) results from annotating a PV model with time and approximate 
arbitration. A Cycle Accurate (CA) view is characterized by fully bus protocol 
compliant arbitration and timing accurate to the level of individual cycles.

In the OCP terminology [9], three TLM layers are defined: The Transfer Layer 
(L-1) is characterized by cycle-true behaviour and use for verification and precise 
simulation. At the Transaction Layer (L-2), modelling abstracts from the details of 
a bus protocol but can take properties like split transactions and pipelining into 
account. The Messaging Layer (L-3) is untimed and enables 1:1 connections 
between initiators and targets, abstracting from bus address mapping.

The SpecC related taxonomy from [3] takes into account the timing accuracy of 
computation as orthogonal to the communication timing aspect and defines cycle-
timed, approximately-timed and untimed levels for both dimensions. Considering 
the communication dimension only and focusing on TLM models, we can identify 
an untimed component-assembly model (CAM) which models communication 
between system components by message passing, a bus arbitration model (BAM) 
with arbitration policy modelling that approximates timing by one wait statement 
per transaction, and a cycle-timed bus-functional model (BFM).

The GreenBus approach [8] makes a significant step towards a constructive defi-
nition of transaction levels. It identifies three levels of granularity called transac-
tions, atoms, and quarks. A transaction is a sequence of uninterruptible phases 
(atoms), and each atom is a collection of payload values (quarks). A PV model 
approximates timing at transaction boundaries, a bus accurate (BA) model at atom 
boundaries, and a cycle callable (CC) model must model all quark updates with 
cycle accuracy. An untimed model is not defined.

From these considerations, it is apparent that there still exists no unified terminol-
ogy in the TLM field. Table 3.1 classifies the modelling levels described in the afore-
mentioned approaches with respect to their bus communication timing properties.

The UT approaches have in common the primary use case of virtual system pro-
totyping and that they result in a purely functional simulation. This limits the availa-
ble choices with respect to our characterization criteria as well as the impact of the 
remaining choices on the simulation result. Subtle differences exist – for example, 
the SpecC approach features message passing and active slaves at the CAM level 
whereas SystemC PV uses function calls from masters into passive slaves – but these 
should not have impact on the functional result of simulation nor the non-existent 
timing (whereas an impact on simulation performance is likely). Another such dif-
ference is whether bus structure, addressing scheme, and approximate arbitration are 
modelled (SystemC PV) or not (point-to-point connections in OCP L-3).

Table 3.1 Overview of transaction levels

Accuracy UT CX CA

SystemC TLM PV PV + T CA
OCP L-3 L-2 L-1
Cai/SpecC CAM BAM BFM
GreenBus – PV(+T), BA CC
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A similar situation can be observed at the CA level. The primary use cases are 
verification reference and precise performance analysis. The property of cycle 
accuracy strongly restricts the modelling space. All bus features must be modelled, 
communication is necessarily by non-blocking data flow between concurrent com-
ponents, and arbitration is typically performed in each cycle. A detailed investiga-
tion of CA model code often reveals that some interface abstraction is provided, but 
“under the hood” the model implements communication at the level of the signals 
used in the bus protocol, even if these are bundled in a TLM channel. For example, 
Table 3.1 in [8] shows the direct correspondence between GreenBus quarks and 
protocol signals. In the SystemC based AMBA cycle accurate simulation interface 
(CASI) [2], the CA AHB channel uses a data structure whose attributes are identi-
cal to the AHB signals. A proposal for more abstract protocol modelling based on 
hierarchical state machines has been made in [13].

At the CX level with the primary use case of system exploration and perform-
ance (bus throughput or latency) estimation, a much wider range of modelling 
alternatives exist. Within the SystemC TLM and GreenBus PV + T models, timing 
is approximated at the granularity of transactions, arbitration abstracts from the 
precise bus arbitration policy, and transactions cannot be pre-empted. Thus, fea-
tures such as split transfers cannot be modelled. On the other hand, the SpecC BAM 
and GreenBus BA models permit pre-emption of transactions and subsequent bus 
re-arbitration. Thereby, more precise simulation can be obtained at the cost of lower 
simulation performance compared to PV + T.

An interesting approach to CX modelling is presented in [14], where transac-
tions are simulated with the optimistic assumption of not being pre-empted. If this 
assumption turns out to false at a later simulation time, the transaction duration is 
extended by the duration of pre-empting transactions. This yields a 100% accurate 
simulation with respect to the authors’ measure of timing accuracy. However, the 
data of a burst transfer are transmitted in a single operation at the beginning of the 
transaction modelling that transfer. This means that individual data transfers are not 
cycle accurate and the interleaving of data from pre-empting transfers cannot be 
simulated, which may affect data-dependent functionality.

In the remainder of this contribution, we investigate whether a CX model can be 
designed to cover a maximum of bus features and to come as close as possible to 
cycle accuracy, including accuracy of the data transfers. We will also investigate 
modelling decisions that optimize simulation performance without impacting accu-
racy. The resulting model can provide rather accurate estimates for the purpose of 
system exploration, complementing the significantly less accurate yet faster PV + 
T models.

3.3 Modelling Alternatives and Decisions

Since we target a SystemC model implementation, we will use the SystemC TLM 
terminology in the following but keep the term CX for our model.
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3.3.1 Concurrency

In most PV and PV + T models, slaves are passive and masters are active components. 
This limits the achievable accuracy because master and slave cannot operate concur-
rently. For example, a master cannot prepare data for the next transaction while a slave 
processes the master’s current transaction request. To avoid this possible deviation from 
detailed system timing, we choose to make slaves active components in our CX model.

Another modelling alternative pertains to the modelling of the bus as an active 
or passive component. This is closely related to arbitration modelling, discussed at 
the end of Section 3.3.

3.3.2 Communication Mechanisms

PV and PV + T models typically employ transfer of control flow (blocking subprogram 
calls) as a mechanism for communication between master and slave. This is in conflict 
with the desired concurrency of master and slaves. Therefore, we use data flow to pass 
messages between communicating blocks. However, for large message payloads such as 
burst data, we use a shared memory implementation where only a pointer to the shared 
data is passed as part of the message. Thereby, copying of the payload is avoided and 
simulation performance increased. Access conflicts on the shared memory are avoided 
by limiting access by the communication partners (master, slave, bus model) to disjoint 
phases of the transaction. The dynamic memory management is handled by the master’s 
port, hidden from the user, to avoid memory leaks and dangling pointers. Memory is 
allocated upon start of a transaction and freed when the master has obtained the last data 
of a transaction response according to the programming model (cf. next subsection).

We have tried to avoid a suspected overhead due to repeated creation and dele-
tion of memory blocks by reusing a pool of such blocks. This had no significant 
impact on simulation speed; possibly because such optimization is already imple-
mented in the C++ runtime library’s heap management.

Another modelling choice must be made between use of standard TLM channels 
(tlm_fifo) to connect masters and slaves with the bus model vs. direct connection 
to interfaces exported by the bus. The latter option is likely to be more efficient 
because it avoids the overhead of storing and retrieving messages in/from a tlm_
fifo. Moreover, the master’s interface method calls will go directly into the bus 
model, enabling an implementation that reduces the number of context switches 
during simulation. Both variants have been implemented and their resulting simula-
tion performance is compared in Section 3.4.

3.3.3 Programming Abstraction

In most PV and PV + T models, subprogram calls serve as a well-understood pro-
gramming abstraction of communication operations. However, subprogram calls 
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cannot be used between concurrent or distributed model objects. Remote procedure 
calls (RPC) are a mechanism that could be adapted from distributed programming; 
however, in the presence of return parameters, they would block the master which 
would compromise the accuracy of our model. Mechanisms like CORBA enable 
non-blocking communication, but they are too heavyweight for use in a fast trans-
action level simulation.

As a compromise, we have adapted for the purpose of TLM the active object
design pattern known from concurrent object-oriented programming, see Fig. 3.1. 
A key concept of this pattern is the future object which is immediately returned as 
result of a non-blocking subprogram call. In our adaptation, the call models a non-
blocking communication operation and the future object can later be used by the 
master to obtain results from that operation (the transaction response) at its own 
discretion. Beyond that, the future object is also used to allow the master to delay 
the supply of values that belong to the transaction request to a time after request 
initiation. Thereby we can accurately model that the master may supply (retrieve) 
bus word number i up to (starting from) the i-th cycle after the start of a burst trans-
fer instead of providing or receiving all burst data at the beginning or at the end of 
a transaction.

Another active object concept is the guard which can be defined individually per 
operation at the slave side, cf. Fig. 3.1. We utilize the guard as a programming 
abstraction of a bus feature that allows a slave to split a transfer that cannot be 
served immediately, and to resume that transfer when appropriate. As an efficiency 
improvement over [12], we have modelled an event-based resume mechanism to 
avoid polling the guard in each cycle during which a transaction is split. Moreover, 
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put transaction get transaction

(SPLIT)

get

execute

false

f : Future tx : Transaction

value

guard?

read

value

B : Bus

statusset_

value

Fig. 3.1 Active object pattern for TLM
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the models presented in this contribution facilitate for the first time the splitting of 
burst transfers at the granularity of the transaction that models the transfer rather 
than single bus word transfers.

3.3.4 Bus Features

The most basic bus features are single bus word read and write transfers (single
transfers). Successive transfers to consecutive addresses can be combined into a 
burst transfer. Burst transfers may have a fixed or user-defined length. They may 
be pre-emptible or not (locked). The burst address sequence may wrap around at 
block boundaries (wrapping burst) or not. We model all these transfers and their 
properties in an object-oriented way as C++ transaction classes and attributes (data 
members). Details about this modelling style can be found in [11].

Another feature found in most high performance buses is pipelining. To employ 
pipelining, transfers are decomposed into phases, and different phases of subse-
quent transfers are allowed to execute in parallel. We model the phase as a state 
attribute of a transaction which is controlled by the bus model. Pipelining can be 
modelled in a cycle accurate way by introducing a number of stages into the bus 
model as shown in [13]. Our CX model covers pipelining within a single transac-
tion (which is relevant for burst transactions), but neglects it at the boundary 
between different transactions for performance reasons.

We model split transfers using the guard mechanism for abstraction as presented 
in the previous subsection. The OCP L-2 model is the only other CX model known 
to have built-in split transfers. An advantage of our model is that thanks to the pro-
gramming abstraction, the designer of a bus master model is relieved of taking care 
of the split transfer handling.

3.3.5 Arbitration Modelling

This subsection is concerned with the mechanisms employed for modelling arbi-
tration; the discussion is largely independent of arbitration policy. In CA models, 
a time or clock triggered arbitration process is executed once per cycle. An effi-
cient CX model can limit arbitration under the assumption of a time-invariant 
arbitration protocol because the grant decision does not change unless the state of 
the waiting and active transactions changes. Re-arbitration needs to be performed 
only in simulation cycles in which a new transaction arrives to the bus or in which 
the currently active transaction is finished or split (allowing a waiting transaction 
to be granted the bus).

Re-arbitration can be modelled with one or a combination of the following meth-
ods: If the bus model exports an interface, the interface methods, executed with the 
masters’ processes, may perform arbitration without the need for a simulation process 
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context switch. This comes at the cost of multiple re-arbitration if multiple masters 
issue transactions in the same cycle, and it is not possible if communication is via 
channels (e.g. tlm_fifo). In this case, the bus model needs a process that is triggered 
by incoming transaction messages and performs arbitration actively (cf. M1, M2 in 
Fig. 3.2). Since each channel has an event of its own, this requires the overhead of 
creating or-event-lists to activate the arbitration process in SystemC. The number 
of events can be reduced to one for all incoming transactions by implementing the 
bus model itself as channel with interface methods that trigger an internal re-arbi-
tration event (cf. event in Fig. 3.2). Split or finished transactions can trigger the re-
arbitration event or an individual event.

3.4 Simulation Performance Results

The basic experimental setup used for performance evaluation of the bus models 
includes two masters of different priority and one slave. The high priority master 
issues transactions of increasing burst length that may be split by the slave, a RAM 
model. The parameters of the bus model are chosen to reflect the cycle timing of 
the AMBA AHB protocol [1], and priority based arbitration has been modelled. All 
models have been compiled with the same options and have been simulated on a 
computer with Pentium M 1.66 GHz.

With this setup, four different bus models have been simulated: A model CX1 at 
the PV + T abstraction and a cycle-accurate model CA as reference points, and two 
cycle-approximate versions, CX2 and CX3 using different choices of the identified 
alternatives. CX2 is a model using tlm_fifos as channels while CX3 implements the 
TLM interfaces by itself, using a single arbitration event.

3.4.1 Comparison of Different Models

Figure 3.3 shows the simulation performance, measured in the number of 32 bit bus 
words whose transmission is simulated per second of CPU time, for the four models 
and for bursts of different size. No transactions have been split in this simulation. All 
models exhibit a performance that increases with the burst size due to less simulation 
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M1

M2
event

active waiting arbitration trigger

Fig. 3.2 Arbitration triggering mechanisms
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overhead for arbitration and switching between transactions per transmitted bus 
word. We can see that the performance of the models CX2 and CX3 is consistently 
higher (by an average factor of about 5) than CA, and that CX1 (PV + T) exceeds 
CX2 and CX3 performance by an average factor of about 10. Only at very short 
burst length CX3 performance exceeds CX1; the reason is that CX1 lacks some of 
the optimizations that have been made in CX3.

At short burst length, model CX3 has a significant advantage over CX2, which 
diminishes towards larger bursts. The reason for this model behaviour is that the CX3 
optimization of avoiding tlm_fifos and using just a single event is more significant 
when simulating short bursts requiring a higher rate of channel accesses and events.

3.4.2 Pre-emption Dependency

Different from PV + T, models CX2 and CX3 can simulate the pre-emption of 
transactions. To measure the effect of pre-emption on simulation performance, we 
have parameterized the slave model so that it randomly splits transactions. The 
percentage of bus word transfers which are split (i.e., multiple splits of a single 
transaction are possible) has been varied from 0% to 50%. Figure 3.4 shows the 
resulting simulation performance for model CX2. Performance degrades with 
increasing pre-emption ratio. It is reduced by a factor of up to 10 for long bursts 
and 50% pre-emption, compared to the non-preemptive case. Performance degradation
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becomes less as transfer size decreases because re-arbitration due to a transfer split 
more often coincides with re-arbitration due to a request by the other master. Since 
the latter has to be simulated anyway, the split does not cause a simulation overhead 
in this case.

The same measurement has been performed using model CX3, with results 
shown in Fig. 3.5. Performance is generally higher compared to CX2, and the deg-
radation factor due to pre-emption of bursts is down to a maximum of about 3. This 
is again due to the optimized implementation of model CX3, which also reduces 
the overhead of performing re-arbitration in the case of transaction pre-emption and 
completion.

3.4.3 Bus Component and Congestion Dependency

In order to evaluate simulation performance in the presence of more than two mas-
ters, model CX3 has been simulated in a setup with a number of masters varying 
from 1 to 16. The number of slaves also varies; in each of the simulations performed 
it corresponds to the number of masters so that n masters are simulated together with 
n slaves and the bus model. The masters have different static priorities. In the simu-
lated scenario, the masters are synchronized so that for each simulated transfer size 
in the range of 1 to 64 words, all masters can complete their transfers of a given 
transfer size and then together move on to the next transfer size.

Figure 3.6 depicts the model’s simulation performance under the constraint that 
the slaves do not split transfers. Generally, simulation performance decreases as the 
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number of masters increases. This is due to an increased average overhead for arbi-
tration and due to the fact that in the presence of more masters, transfers of lower-
priority masters tend to be pre-empted more often by the higher priority masters. The 
spread between the curves for 1 master and 16 masters is by a factor of about 2.
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Figure 3.7 shows simulation performance for a similar scenario but with 25% of 
all transfers being split by a slave.

3.5 Conclusions

We have shown the design of a cycle-approximate model that covers all bus features 
and represents bus transfers by abstract transactions in an almost cycle-accurate 
way. The simulation performance of this model is between the performance of a 
cycle-accurate model and the performance of a PV + T model that does not cover 
transaction pre-emption. We argue that modelling at an accuracy level between PV 
+ T and CA is useful for architectural exploration because it permits significantly 
more precise estimation than PV + T. Therefore, a CX abstraction level should 
complement the other levels instead of being dropped, which appears to have hap-
pened in SystemC TLM standardization.
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Chapter 4
Combinatorial Dependencies in Transaction 
Level Models

Robert Guenzel1, Wolfgang Klingauf1, and James Aldis2

Abstract Transaction-level modeling (TLM) allows for the design of virtual 
prototypes, providing considerably faster simulation speed than RTL models. 
But combinatorial dependencies are often inexactly modeled in terms of cycle 
accuracy, leading to imprecise simulation results. If, however, precise results are 
desired, additional coding and simulation effort is required. As a result, simula-
tion performance drops down. This paper surveys the existing techniques to model 
combinatorial dependencies in TLM and presents a novel approach based on 
synchronization layers. Experimental results with SystemC prove our technique to 
enable higher simulation speed than the surveyed approaches, without inheriting 
their disadvantages.

Keywords Transaction-level modeling, SystemC, Combinatorial dependencies, 
Cycle accuracy

4.1 Introduction

Transaction-level modeling (TLM) enables designers to raise the abstraction level 
of system models, narrowing the productivity gap significantly [3, 5, 6]. With TLM, 
hardware and software can be described in a variety of ways, ranging from untimed 
models to cycle accurate models with the interfaces being just as abstract as the 
model requires [4].

The scope of this paper is cycle accurate TLM (CATLM), which promises 
busses and networks on chip to be simulated magnitudes faster than with RTL 
models, while achieving the same accuracy of simulation results. To this end, it is 
vital to fully take combinatorial dependencies into account, when extracting more 
abstract CATLM models from RTL models.
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Most of the recent languages or language extensions supporting CATLM are 
based on discrete event simulators (DES), like SystemVerilog, SpecC or SystemC. 
DES use the concept of delta-cycles as infinitesimally small amounts of time. 
A single simulation time step can consist of many delta-cycles, whose number 
depends on the quantity of consecutive signal updates and event notifications during 
a simulation time step.

A major problem in CATLM is combinatorial calculation, such as combinatorial 
arbitration in busses.

In CATLM, modules are connected via channels as an abstraction of RTL wires. 
Processes that read values from such TLM channels are not aware of the process 
execution order, so that they cannot know whether modules that write to the chan-
nel are already executed at the current simulation time step. Thus, the reading 
module cannot identify the value to be valid.

Figure 4.1a shows an example of combinatorial arbitration (IBM CoreConnect 
OPB [7]) in RTL. All masters issue their requests at the same point of simulated 
time but each in another delta-cycle, denoted as ∆. In RTL the grant signals get 
re-evaluated with every change of one of the request signals and thus produce false 
intermediate results.

A poor CATLM implementation of the OPB arbiter would equally grant each 
incoming request, as it does not know whether higher priority request will arrive 
during the same cycle (Fig. 4.1b). If one does, the new grant to the higher priority 
master implies the removal of the grant to the lower priority one, which complicates 
the code, rendering it less abstract as necessary. Ideally a grant call should only 
appear once per cycle to obtain maximum simulation speed. To this end, the simula-
tion process that reads all the input channels, calculates the result of the arbitration, 
and does the grant call, should only execute after all input channels carry a stable 
request value for the recent cycle. So this process has to be synchronized with all 
the input channels. In other words it must not be executed before all processes that 
might request access to the bus have been executed (Fig.4.1c).

a b c

Fig. 4.1 OPB combinatorial arbitration
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In today’s system-level design languages, however, this kind of manually con-
trolled partial process execution order is not supported.

Section 4.2 will show how the problem is tackled throughout academia and 
industry. In Section 4.3 we will introduce a novel solution for the synchronization 
problem and finally Section 4.4 compares all the approaches and we conclude in 
Section 4.5.

4.2 Known Solutions

In this section already existing solutions to the synchronization problem are 
described and their advantages and disadvantages are discussed. Three important 
terms that will be used throughout this section are alteration calls (AC), readout 
calls (RC) and the length of a combinatorial chain. In CATLM interface method 
calls (IMCs) can be classified as either calls that alter the state of the connected 
channel (AC) or that read the state of the connected channel (RC).

A combinatorial chain is considered a sequence of combinatorial dependencies. 
For example if a signal c is combinatorially calculated out of signals a and b, the 
length of the chain from a to c is one. If there is also a signal d which gets calcu-
lated out of a signal e and the aforementioned signal c, the length of the chain from 
a to d is two.

To simplify matters, we assume that there are events that get notified if a 
CATLM channel changed its internal state, so the connected modules can react 
to these changes. This assumption is true for many recent TLM frameworks 
[8, 9, 11].

4.2.1 Explicit Retraction

The most naive way solving the synchronization problem is to implement a retrac-
tion just like in RTL simulations: Processes will always assume that RCs return 
stable values and perform the corresponding ACs. Afterwards they will listen to an 
event indicating a change of the channel state, and in case it occurs will redo the 
AC with updated content or have to explicitly retract their previous AC (e.g. an 
OPB arbiter would have to retract a grant call). Since ACs have an immediate influ-
ence on the module(s) connected to the channel, the modules have to be imple-
mented expecting multiple transfers over a channel during a single clock cycle. 
This introduces a certain amount of implementation overhead and in case of large 
or branching combinatorial chains the retraction can consume a severe amount of 
simulation time, as it leads to many recalculations. Furthermore, explicit retraction 
limits the way in which the CATLM module internal behavior can be more abstract 
than the RTL module behavior, since they have to be able to handle glitch-like com-
munication, just as RTL modules do.
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4.2.2 Negative Edge Exploitation

As introduced in [6] the synchronization between combinatorially dependent mod-
ules can be done using the negative edge of the clock. Using this methodology, RCs 
that are supposed to return stable values should be executed at the negative edge of 
the clock used, since all connected channels will get updated at the rising edge 
of the clock. This scheme works well in small systems and introduces close to no 
implementation or simulation overhead, but absolutely fails when combinatorial 
chains exceed the length of one, because the designer simply runs out of negative 
edges.

4.2.3 Delta-Cycle Waiting

Another approach to synchronization is waiting until the value to be read by an RC 
is known to be stable. Here we assume that all modules know for each of their input 
ports the number of delta-cycle (after the clock edge has been seen) until the input 
can be considered valid.

If this information is available as a number ranging from zero (the delta-cycle of 
the clock edge) to infinity, each module can determine the maximum and minimum 
of these numbers namely n

min
 and n

max
. Since in DES a single process cannot deter-

mine from which event it was started, a module process supposed to perform the 
RCs and the resulting AC will start due to the occurrence of any one of the state 
change events from one of its inputs and then wait for n

max
−n

min
 + 1 delta-cycles, 

thereby ensuring that all the inputs are stable regardless which one started the proc-
ess. As a consequence, the delta-cycle in which the module will perform the AC 
will occur n

max
 + 1 or n

max
−n

min
 + 1 + n

max
 delta-cycles after the clock edge or in 

between those two values depending whether the process was started by the earli-
est, the latest or some other event. The uncertainty of the delta-cycle in which the 
AC occurs is called delta-cycle jitter.

4.2.4 Time Waiting

These drawbacks of delta-cycle waiting were also identified by the OCP-IP 
SLDWG [9] and were overcome by waiting for time instead of delta-cycles.

Here a module does not need to be aware of the delta-cycles after the clock edge 
after which the inputs are stable, but the time at which inputs are stable. Thus, 
inputs that are stable an arbitrary number of delta-cycles after the clock edge are 
treated to be stable a small fraction of simulated time after the clock edge. That 
means that ACs that originate in combinatorial modules occur a measurable time 
after the clock edge. So again n

min
 and n

max
 can be identified and the time to wait 
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after the occurrence of any input channel change event can be calculated as (n
max

−
n

min
 + 1)*(period fraction). As a result, the delta-cycle wait loops of the former 

method can be replaced by single timed waits, reducing the simulation overhead 
significantly.

The major drawback of this approach is, that now a delay that is not a multiple 
of the clock period is introduced, which has no equivalent in the RTL model or even 
silicon. These additionally added latencies complicate the comparison between 
RTL and CATLM traces.

It is important to note that both the delta-cycle and the time waiting technique 
rely on an information distribution mechanism that allows modules to receive and 
send information when channels get stable values.

4.2.5 Always Transmitting

A fourth way of synchronizing is used by the cycle accurate simulation interface 
(CASI) of ARM’s RealView ESL API [1]. In this approach every module performs 
all its ACs during a clock cycle, either altering the state of the target channel or indi-
cating that nothing is to be changed. As a consequence, combinatorial modules can 
simply wait for all input channels to be updated before issuing ACs themselves. 
Of course this introduces a significant simulation overhead, especially when there 
are only infrequent real updates to channels and therefore many ‘no-change’-calls.

4.2.6 Cycle Based Simulation

Cycle based RTL or gate level hardware simulators are able to reorder event and 
process executions due to the known process execution dependencies based on sig-
nal sensitivities [10]. Thereby all simulation processes are executed at most once 
per cycle. In other words all processes are synchronized to each other. However, in 
CATLM the simulator cannot create such a static process execution order because 
of the fact that a CATLM process can read channels without being directly or indi-
rectly sensitive to any of the channel’s events. Hence, the simulator does not know 
which AC on a channel might affect a certain process without executing it.

4.2.7 Comparison

In conclusion, explicit retraction should be avoided as it prevents the designer to 
raise the abstraction of the internal behavior sufficiently above RTL. Negative edge 
exploitation is not an adequate generic approach as it limits combinatorial chains to 
length one. The delta-cycle waiting approach produces correct results by a fair 
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amount of code overhead but introduces an unacceptable simulation overhead, 
while the time waiting approach requires only small code and simulation overhead 
but produces undesirable delays. Finally the always transmitting technique provides 
accurate simulation results and is well suited for designs in which each module 
communicates intensively, but leads to significant simulation performance losses if 
modules communicate only infrequently (see Section 4.4 for experimental 
results).

Section 4.2.6 showed that knowledge about process execution dependencies 
may also help solving the synchronization problem.

4.3 A Novel Synchronization Approach

The comparison of combinatorial calculation techniques in transaction-level mode-
ling points out, that all examined approaches either lack simulation performance or 
introduce a considerable overhead in terms of development effort.

The most appealing approaches are the delta-cycle waiting and time waiting 
techniques, as they introduced only a small implementation overhead. Both achieve 
synchronization by moving the call of the RC to a delta-cycle in which it is known 
that the RC will return a stable value. While delta-cycle waiting creates exact simu-
lation results, its major disadvantage is that the simulation overhead quickly 
becomes significant.

An ideal solution should both provide the accuracy of the delta-cycle wait and 
perform as fast as the timed wait.

In the following our approach based on synchronization layers is presented, 
which meets these requirements and is based on process execution reordering simi-
lar to cycle based simulation.

4.3.1 Basic Definitions

Before we describe our approach in detail, some definitions are needed:
As stated in Section 4.2 for each channel ch in a CATLM system there is a set 

of ACs denoted as AC(ch) and a set of RCs denoted as RC(ch). For each given chan-
nel in a CATLM model applies that a channel can be read and written:

 AC(ch) ≠ Ø & RC(ch) ≠ Ø. (4.1)

Furthermore for each c Œ AC(ch) there is a set of RCs whose return values get 
altered by calling c, which is denoted as a(c, ch). There may be IMCs that are AC 
as well as RC, which is only allowed if the call does not alter the value it returns, 
in other words:
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 c Œ AC(ch) Ç RC(ch) fi c Ï α(c, ch) (4.2)

For each module m in a given CATLM model there is a set of ports that are owned 
by this module, denoted as π(m).

Each p Œ π(m) is bound to exactly one channel ch, so that each IMC on p affects 
ch. Function con(p) returns the channel which p is connected to, function par(p)
returns the module that owns the port p.

For each IMC c and channel ch, π(c, ch) returns all ports which are connected 
to ch and may issue c. Because IMCs in CATLM have a mapping to RTL signals, 
and RTL signals may not have more than one driver,

 c Œ AC(ch) fi p (c, ch) = 1. (4.3)

A combinatorial dependency between an RC and an AC in a module can be defined 
as a pair of triples ( (m,p,c),(m,q,d) ) where m is a module, p Œ π(m) and c Œ
RC(con(p) ) and c has to return a stable value before d Œ AC(con(q) ) with q Œ π(m)
can be called.

In the following m, p, c, d and q are always defined as before if not stated 
otherwise.

For each such triple t = (m,p,c) let t(t) be the set of all triples (m,q1,d1)…
(m,qn,dn) that fulfill the aforementioned property.

So t is basically the set of ACs that will be directly executed after the RC c on 
port p of module m has been called.

The set of combinatorial modules in a given CATLM model mod is called 
k(mod), and for each m Œ k(mod) there is at least one triple t = (m,p,c) such that: 
t(t) Ï ∆.

4.3.2 Synchronization Layers

The novel synchronization approach will be based on synchronzation layers that 
can be defined as a property of a triple (m,p,c) with m Œ κ(mod), p Œ π(m) and c Œ
AC(con(p) ) È RC(con(p) ). This property can be assigned to a triple t by SL(t,
newsl), where newsl is a non-negative integer and can be read from a triple t by 
SL(t). If a synchronization layer of a triple is not assigned yet, SL(t) will return 0.

Figure 4.2 shows a simple system with two combinatorial arbiters. Masters issue 
requests on their channels and arbiters combinatorially forward the higher priority 
request to their outputs. The target will accept requests and signals this acceptance 
within the same cycle. The target is implemented in a way that it only expects a 
single request per cycle, which enables a high simulation performance as internal 
housekeeping can be kept small. We assume that the masters and arbiters use an AC 
named startReq to put a request on a channel. The target and the arbiters use an 
RC named getReq to get a request from a channel. The numbers annotated on channels
and ports in Fig. 4.2 represent the desired execution sequence of those ACs and 



52 R. Guenzel et al.

RCs. The numbers of the channels and output ports relate to ACs, while the num-
bers of the input ports relate to the RCs. The semantic is that a call with number x
has to be called before a call of number y > x, thereby ensuring that ACs on a chan-
nel are always called before RCs. We denote these numbers as synchronization 
layers.

With the definitions from Section 4.3.1 the following functions can be defined:
function setSLp(p, c, newSL);
 p is port; c is RC; newSL is integer;

setSLm (par(p), p, c, newSL+1) ;
end;
function setSLm(m, p, c, newSL);
 m is module; p is port; c is RC; newSL is integer;

if (SL(m,p,c)<newSL)
SL( (m,p,c), newSL);

for each (m,q,d) Î t(m,p,c) do
if (SL(m,q,d)<newSL)

setSLch(con(q), d, newSL);
SL( (m,q,d), newSL);

end;
function setSLch(ch, c, newSL);
 ch is channel; c is AC; newSL is integer;

for each d Î a(c, ch) do
for each p Î p(d,ch) do

setSLp(p, d, newSL);
end;
The function setSLch informs all ports that are connected to a channel at which 
synchronization layer the return values of RCs are updated, while the function setSLp
forwards this information from a port to the module that owns the port. The function 
setSLm stores the provided synchronization layer information for a triple (m, p, c)
with m Î k(mod), p Î p(m) and c ÎRC(p) and assigns the synchronization layer to 
all triples (m, q, d) Î t( (m,p,c) ) and also informs the channel that is connected to 
q about the synchronization layer at which d will be called. Note that a synchroniza-
tion layer of a triple is only updated when the new value is larger than the old 
value.

Fig. 4.2 Synchronization layer determination
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Given the functions setSLp, setSLm and setSLch, all synchronization layers can 
be determined by calling setSLch(ch,c,0) for each AC c of each channel ch.

This will inform all channels that their ACs will occur on synchronization layer 
0. In fact, this is only correct for channels whose ACs are not called due to combi-
natorial dependencies. So if the function selects a channel whose inputs get set due 
to combinatorial dependencies first, false SL information will be distributed. 
However, this false information will then be overridden by the correct information 
as soon as the channel whose ACs are not called due to combinatorial dependencies 
gets initialized with setSLch(ch,c,0). It is important to notice that the if-clause in 
function setSLm prevents correct information to be overridden.

Thus, the numbers shown in Fig. 4.2 will be determined by applying 
setSLch(ch,c,0) to each AC c of each channel ch in the model, provided that the sets 
t and a are set up correctly in the arbiters and channels.

4.3.3 Use of Synchronization Layers

Now we can use the synchronization layer information as follows:
At start of simulation a global synchronization layer is set to zero. Whenever a 

simulation process reaches a point at which it is about to do RCs followed by ACs 
without simulation time passing in between (i.e. there exists a combinatorial 
dependency between the RCs and the ACs), the process will check whether the 
global synchronization layer is equal to or larger than the highest synchronization 
layer of the RCs the module wants to perform. If the check fails, the process will 
be suspended and the simulation continues with another runnable process. Now an 
arbitrary number of delta-cycles may pass, in which other processes may become 
runnable and will be executed. During this time other processes may also be sus-
pended because their synchronization layer check fails. When there are no more 
processes ready to run (which is normally the point of time at which the simulation 
time is increased), the global synchronization layer gets incremented. All sus-
pended processes related to the new synchronization layer number are now started 
again. Due to these wake ups, other processes may get started, suspended due to the 
synchronization layer checks, and again an arbitrary number of delta-cycles may 
pass. When there are no more runnable processes, the synchronization layer gets 
incremented again, which should wake up the processes that want to execute on this 
new synchronization layer. This sequence is repeated until there are no more run-
nable processes and no more synchronization layer related suspended processes. 
Then, and only then the synchronization layer is reset to zero and the simulation 
time is advanced.

For example if the process of Arbiter2 in Fig. 4.2 wakes up because of the event 
from ch4, which happens at synchronization layer zero, it does not know which 
event started it. So it will check the global synchronization layer and find it zero. If 
it wants to make sure that the value on channel 4 is stable, it will suspend and re-
awake at synchronization layer one. But since it knows it needs both a stable value 
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from ch5 and ch4 to arbitrate correctly, it will not do this, but suspend and re-awake 
at synchronization layer 2.

4.3.4 Incorporation into DES

To examine the concept of synchronization layers, it has to be used within a DES. 
The following explanations refer to SystemC but can also be mapped onto other 
DES.

SystemC and C++ offer simple means by which p, con and par (in all their varia-
tions) can be determined and so we implemented a set of small base classes for ports, 
channels and modules from which the designer can derive its own modules, ports and 
channels. Thereby the synchronization layer information distribution as described in 
Section 4.3.2 gets enabled automatically. The information that must be added by the 
designer is the definition of a and t and the synchronization layer checks, but the base 
classes for the channels and modules offer simple APIs for that.

The SystemC kernel execution is shown in Fig. 4.3. The dark shaded boxes, 
arrows and texts show the standard kernel execution according to [2], while the 
light shaded box shows the necessary additions to use the synchronization layers. 
We added those changes using a small kernel extension that only needs one addi-
tional line of code in the standard SystemC kernel, while the rest of the extension 

Fig. 4.3 Extended SystemC kernel execution
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is kernel external. Note that the transition marked as 1. ends in Increase Time in the 
standard execution.

Before sc_start() the synchronization layer information is distributed as 
described in Section 4.3.2. During simulation and before simulation end the behav-
ior of the modified SystemC kernel matches the one described in Section 4.3.3.

4.4 Experimental Results

To verify the performance valuation mentioned in Section 4.2, we implemented a 
simple, scalable test scenario. The test system comprises of an adjustable number 
of arbiters, which combinatorially arbitrate between two masters, and are connected 
as shown in Fig. 4.2. To increase the number of arbiters in the system of Fig. 4.2, 
the output of arbiter 2 is connected to the first input of the first additional arbiter, 
while its second input will be driven by a new master. The outputs of the new arbi-
ters are connected to further new arbiters or to the target module, thus extending the 
arbiter chain shown in Fig. 4.2. This simple design is a worst case scenario for syn-
chronization, as the first input of each arbiter is always driven through the longest 
possible combinatorial chain, while the other input is always driven directly by a 
clocked process. The system was implemented using all but the negative edge 
exploitation approach, because it does not support chain lengths longer than one.

Each master issues a request, waits for the acceptance of the request and then 
waits a randomized number of clock cycles. This sequence is repeated until each 
master has successfully sent out 100,000 requests.

So besides the adjustable number of arbiters and therefore an adjustable combi-
natorial chain length, the other test parameters where the size of the data within a 
request and the average number of clock cycles to wait between consecutive requests 
(denoted as the break in the following). The complete test comprised of about 3,000 
different configurations, but due to space restriction we will show only the most 
important ones here.

Figure 4.4 shows how simulation time changes with increasing length of the 
combinatorial chain from master 1 to the target. For all measurements the average 
latency between consecutive requests was 7.5 clock cycles and the data size was 64 
bit. As stated in Section 4.2 the delta-cycle waiting approach leads to large simula-
tion times, when chain lengths exceed three stages.

So with short chains only, the difference between the approaches is minimal, but 
gets significant as soon as there is at least a chain of length 4 or many parallel com-
binatorial modules in the system.

Figure 4.5 shows how simulation time depends on the length of the break 
between consecutive requests. It can be seen, that the always transmitting technique 
is strongly affected by that, while the other approaches are not. The reason is that 
with increasing break length, the number of ‘no-change’ transfers increases, stress-
ing the simulation execution. On the other hand, in systems where each module 
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communicates at nearly every clock edge always transmitting is an adequate alter-
native to timed waiting or synchronization layers.

Figure 4.6 shows the number of lines of code which were necessary to imple-
ment the behavioral parts of the modules and channels. By that we mean just the 
code inside interface method calls and simulation processes, the rest of the code is 
neglected. Explicit retraction introduces by far the most code overhead, while the 

Fig. 4.4 Experiment: simulation time depending on combinatorial chain length

Fig. 4.5 Experiment: simulation time depending on break length
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other approaches all share about the same amount of code. The reason is that with 
explicit retraction, a lot of effort has to be spend on being able to compensate tem-
poral mis-arbitration due to communication ‘glitches’.

In summary, always transmitting fails when module communication happens 
only infrequently, delta cycle waiting fails with long combinatorial chains and 
explicit retraction introduces a significant code overhead. The two techniques that 
provided best performance, that scale best when combining chain length and break 
lengths and that introduce only a small code overhead are therefore timed waiting 
(as expected in Section 4.2) and our synchronization layer approach.

But since the timed waiting technique introduces undesirable simulated time 
delays, we favor the use of synchronization layers, in case the system comprises of 
many combinatorial modules.

4.5 Conclusion

In this paper we discussed the problem of modeling combinatorial dependencies 
accurately at the transaction level. We described various solutions that have been 
proposed and compared them to each other.

Out of this comparison came the idea for a novel approach, which we presented 
and evaluated as the synchronization layer approach. Experiments showed that the 

Fig. 4.6 Analysis: lines of behavioral code
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novel approach can compete with the best performing already existing solutions, 
while avoiding their disadvantages.
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Chapter 5
An Integrated SystemC Debugging 
Environment*
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Abstract Since its first release the system level language SystemC had a signifi-
cant impact on various areas in VLSI-CAD. One remarkable benefit of SystemC 
lies in the support of abstraction levels beyond RTL. But being able to implement 
complex System-on-Chip (SoC) designs in SystemC raises the necessity of new 
techniques to support debugging, system exploration, and verification.

We present an integrated debugging environment that facilitates designers in 
simulating, debugging, and visualizing their SystemC models combining high-level 
debugging with visualization features. Our work mainly focuses on developing an 
easy to handle interface which supports debugging and system exploration of 
SystemC designs.

Keywords High-level Debugging, SystemC, Graphical Debugging Environment, 
System Level Design, System Exploration and Visualization

5.1 Introduction

SystemC is a C++ based system level description language that facilitates sys-
tem architects to specify their designs using a broader spectrum of abstraction 
levels than traditional hardware description languages (HDL), like VHDL or 
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Verilog, do. Equivalently to HDLs, cycle accurate operations as well as word 
and bit level data types are supported. But also untimed algorithmic descriptions 
can be included into a model raising the abstraction level, e.g. to transaction 
level modelling (TLM). Thus, pure functional and even object-oriented code can 
be used for specifications where the compiled model can be executed with 
higher performance than an HDL simulation can do. All these features make 
SystemC an excellent approach for modelling SoCs and allow implementing 
HW/SW co-designs at various abstraction levels. For more details concerning 
SystemC see [14].

Currently, the SystemC standard does not define a sophisticated debugging 
interface, nor it provides any visualization support. Even though the simulation 
kernel offers an interface to access signal values and interconnection structure, 
a direct communication with the kernel requires additional C++ code in the 
model. This forces a designer to gain advanced knowledge of many details 
regarding the system and SystemC itself. Another point is that with growing 
integration of SW components in HW designs, also size and complexity of the 
considered system tend to increase. Thus it becomes less obvious where to start 
and which blocks to observe in a debugging process. Furthermore, language 
features such as multi-threading and event-based communication increase the 
program complexity and introduce nondeterminism in the system behavior. 
Consequently, many of the features mentioned above potentially complicate 
debugging SystemC models.

In this paper we introduce an integrated debugging environment (IDE) for 
SystemC. Besides simulation control and data hiding our approach extends the data 
introspection capabilities of SystemC. It is non-intrusive and does not alter the 
simulated model, nor the simulation kernel, or additional libraries (C++ STL, 
SCV). Our solution supports SystemC aware debugging [15] with visualization 
capabilities [9]. The user debugs and visualizes a design at arbitrary levels of 
abstraction working at the functional level (e.g. finite-state machines, algorithms, 
data-flow graphs) or the system level that means at the level of SystemC concepts 
(e.g. signals, ports, events, processes, modules). The debugger kernel is based on 
the Open Source debugger GDB [10] while the visualization makes use of the visu-
alization engine from Concept Engineering [4]. The visualization engine generates 
different views of the model, supporting cross probing and annotation of the visual-
ized context. During a debug session the user has various possibilities to explore 
dynamic and static debugging information, and to control the simulation. Thus, he 
gets a fast and concise insight into the observed SystemC model which accelerates 
and eases defect (also colloquial bug) detection, understanding, localization and 
correction.

The rest of this chapter is organized as follows. Section 5.2 discusses related 
approaches and tools which allow debugging SystemC designs. In Section 5.3 the 
general architecture of our IDE is described in more detail while Section 5.4 con-
siders the provided debugging interface and the graphical frontend and its debug-
ging support. In Section 5.5 we illustrate some IDE features exemplarily and 



5 An Integrated SystemC Debugging Environment 61

demonstrate their feasibility using a short example. Finally, Section 5.6 concludes 
the paper and gives a perspective on future work.

5.2 Related Work

Debugging SystemC models requires hybrid techniques that grant access to 
design components quickly but also allow evaluating ordinary C++ code. 
Unfortunately, C++ fragments cannot be reached by using SystemC data intro-
spection techniques. And even though there are commercial and academical 
tools, supporting SystemC debugging, only few of them offer an advanced visual 
interface to the designer that has features like data hiding and cross probing to the 
source code level.

RealView Debugger Suite [1] comprises a complete integrated development 
suite that allows to implement, to simulate, to debug, and to analyze SystemC/C++ 
designs. It addresses architectural analysis as well as SystemC component debug-
ging at low level and at transactional level where especially the debugging of 
embedded applications (running on remote targets such as ARM processors) is sup-
ported. Platform Architect [5] targets system-level design and verification based on 
the Eclipse development framework [6]. It utilizes a native simulation environment 
which is specially adopted to fit SystemC needs. The integrated debugger offers 
specific commands supporting source-level and simulation breakpoints and 
QThread debugging. Additionally, the user can initiate a graphical transaction trac-
ing of SystemC events, threads, and interface method calls activations. Contrary to 
our approach both commercial solutions come with their own vendor-specific 
SystemC kernel which prevents the easy integration into an already existing design 
flow.

The GRACE++ system [16] uses SystemC simulation results to create Message 
Sequence Charts in order to visualize and analyze inter-process communication. 
Various filters help to reduce information complexity. The approach presented in 
[3] applies the observer pattern [8] to connect external software to the SystemC 
simulation kernel. This general method facilitates loose coupling but requires pos-
sibly undesired modifications of the kernel.

One of the first approaches accomplishing SystemC design visualization has 
been introduced in [11]. The implementation uses the SystemC kernel to analyze 
models during execution. An interactive graphical backend facilitates the design 
visualization. Even though models can be specified using C++ features, but analy-
sis and visualization are limited to SystemC objects. Only the data flow can be 
viewed, no behavioral information is available. Since this approach has to execute 
the model without further information of declarations, it is not aware of detailed 
positional information regarding the objects. Hence, cross probing facilities are 
very restricted.

Another approach that facilitates designers in visualizing SystemC models is 
[7]. Since it is based on data introspection too, it shares many restrictions with [11]. 
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One major difference to [11] is the usage of an own graphical user interface that 
has been especially designed for this approach but does not support features like 
cross probing or path fragment navigation.

Contrary to the works described above, SystemCXML [2] and LusSy [12] do not 
use data introspection for the purpose of analysis. While the extraction of the hierarchy 
in SystemCXML is done via Doxygen, LusSy uses PINAPA [13]. The visualiza-
tion is realized as graph structures. But while LusSy generates a graphical output 
showing the control flow graph of processes only, SystemCXML limits the visuali-
zation to data flow graphs.

None of the listed tools and approaches includes the following set of features:

● Work with the OSCI SystemC kernel
● Support high-level debugging
● Provide a highly developed visualization of SystemC designs

From this a small set of requirements can be derived, to support high-level SystemC 
debugging:

● Non-intrusiveness to prevent the model, the SystemC kernel and additional 
libraries from being altered

● Advanced commands implementing a high-level debugging interface
● Visualization that allows for abstraction, with direct linkage to all lower abstrac-

tion levels defined in the design

All mentioned works do not meet the requirements in terms of non-intrusive debug-
ging and visualization facilities.

5.3 Debugging Environment

Our IDE consists of three components. Each of these components realizes a partic-
ular task. As sketched in Fig. 5.1 our debugging flow starts at the original system 
description which is being compiled to an executable.

Fig. 5.1 Architecture of the IDE
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The executable can be run in the debugger. In parallel the system description is 
statically analyzed by the visualizer. The intermediate representation (IR) that is 
generated after analysis can be used to render the model inside the graphical back-
end. RTLVision from Concept Engineering is used for this purpose. After passing 
the SystemC elaboration phase successfully the debugger waits for user commands. 
Those commands can be used to show or to hide details inside the visualization 
back-end, as well as to control the simulation of the executed model. All commands 
that influence the graphical view are directly propagated to the visualizer. Being 
aware of the model structure the visualizer assembles commands and maps 
SystemC components to the appropriate graphical symbols. Thus, RTLVision can 
be instructed to switch to specific parts of the design and to update signal values 
during execution.

The communication between the visualizer of our environment and RTLVision 
is realized using TCP/IP. Thus a system engineer has a comfortable and secure way 
sharing his knowledge with other colleagues far away. The exchange of data among 
the visualizer and the debugger kernel is done using a protocol based on socket 
communication.

5.4 Debugging Features

This section introduces the features our IDE offers for debugging SystemC applica-
tions. First, the debugging capabilities provided at system level are summarized. 
Second, the visualization interface is detailed.

5.4.1 Debugging Interface

System level debugging requires various kinds of high-level information that 
should be fast and easy retrievable. There, defects occur at different abstraction 
levels that influence the appropriate debugging procedure and the used tools.

At functional level the defect is located at the source code level that means mainly 
in low-level program details such as an erroneous implemented algorithm or a faulty 
memory management. Because of SystemC C++ conformance due to a class library, 
each standard C++ debugger can be applied at this level. For that reason, our debug-
ger kernel is based on the Open Source debugger GDB. GDB provides various fea-
tures which include for example stopping and continuing the simulation, or examining 
the actual program stack, local variables, the memory, or source files.

At the more abstract system level the architecture and/or the interaction between 
the different parts of a SystemC design are responsible for defects such as a wrong 
communication between components (e.g. a specific protocol) or the faulty integra-
tion of an (third-party) IP block. C++ debugging features are not sufficient to retrieve 
such defects quickly. Hence, the IDE enables the user to debug a SystemC design at 
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system level. Here, high-level breakpoints (e.g. breakpoints on events or processes), 
the retrieval of static and dynamic simulation information (e.g. signal paths, or state 
of scheduling queues), and the graphical design representation provide comprehen-
sive debugging support. A number of commands allow to interactively control the 
visualization of a SystemC design and its simulation state. This additional abstraction 
further simplifies and thus accelerates debugging. To explore the static system 
 structure as well as the dynamic behavior, the IDE offers two command types:

● Examining commands. These commands allow getting a fast insight into the 
parts of a design relevant for the actual debug session while non-relevant data 
are explicitly excluded.

● Monitoring commands. Commands of this type support the user in obtaining 
different data about the simulation state (such as signal values, or process activa-
tions) logged over a specified simulation time.

Examining and monitoring commands do not only have a direct impact on the exe-
cution of the model. They also alter the visualization of the design. The given set 
of commands can be used to follow critical paths being observed for incorrect 
behavior. But since these commands do not rely on the stimuli generated by a cer-
tain test bench, they can be used for system exploration as well. Table 5.1 assem-
bles a list of visualized high-level debugging commands.

An important requirement for all monitoring commands is a fast tracing of 
requested values where the impact on the simulation performance should be mini-
mized. Retrieving current values directly by patching several SystemC kernel 
methods would be the fastest, easiest, and most obvious approach. But to meet the 
requirement of a non-intrusive solution, we use library interposition and preload a 
shared library (libscpatch.so in Fig. 5.2). This library overwrites the corresponding 
kernel methods with methods using callbacks to forward needed debugging infor-
mation. To activate preloading the LD_PRELOAD environment variable has to be 
set. Thus, the dynamic linker is instructed to search our library first, thus using the 
patched methods.

Table 5.1 Visualized debugging commands

Examining commands
vlsb Visualize the specified channel and all connected modules.
vlsio_rx Highlight I/O ports matching the given regular expression of the specified module.
vlsm Highlight all SystemC modules in the given hierarchy.
vzp Visualize the given process and all its driving and driven signals.

Monitoring commands
vlsv Label the specified signal or port with the current value that it holds at a specific 

 time stamp.
vrmv Remove the label of the specified signal or port.
vtrace Trace the given signal or port and record its value at each simulation time step until 

 the specified time is reached, then tracked values are attached as label.
vtrace_at Trace the given signal or port and record its value at the specified simulation time, 

 then the tracked value is attached as label.
vpt Visualize the trigger events for the given process.
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5.4.2 Graphical Interface

The graphical interface for what RTLVision is used, bridges different abstraction 
levels. Since our approach bases on the GDB debugger, text return messages pro-
posing changes regarding the system state can be very detailed. The graphical 
interface bypasses this problem by rendering the structure of the simulated model 
to three different views, as can be seen in Fig. 5.3. The schematic view shows 
modules as functional blocks that can be collapsed and signals as interconnecting 
wires. The cone view limits the set of currently displayed objects to a critical path. 
Both views are bidirectionally connected to a source code view. The advantages of 
these visualization features in our approach are:

● Annotation of SystemC names and declaration names
● Hierarchical visualization
● Cross probing
● Path fragment navigation
● Module exploration

All these features are controlled by the IDE observing the simulator that proposes 
each state change to RTLVision. A state change alters the current display by:

● Highlighting signals, modules or ports
● Expanding or collapsing module hierarchies
● Annotating values to signals and ports

5.5 Practical Application

This section shows the practical application of our proposed debugging features. Some 
provided features are highlighted in the first part of this section while the second part 
demonstrates the successful and efficient debugging of a faulty RISC-CPU design.

5.5.1 Feature Illustration

To illustrate the utilization of our IDE we used the RISC-CPU design that is pro-
vided with the OSCI SystemC v2.0.1 library package [14]. Fig. 5.3 shows an 
 example debug session simulating this design. The different views allow exploring 

Fig. 5.2 Preloading kernel methods
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the RISC-CPU design at various abstraction levels. Static and dynamic debugging 
information are presented by different colorings, info boxes, labels, and dedicated 
displays in the GUI, and as text output in the debugger console. Thus, the developer 
gets a quick and concise insight into the overall CPU design structure and its 
behavior.

The following two commands illustrate the provided visualized debugging func-
tionality exemplarily.

The vlsb command (Table 5.1) visualizes the specified channel and all con-
nected modules in the cone view of RTLVision. In case of a failure related to a 
specific signal the user gets a quick overview about all its connections. Thus, 
architects can focus on error search to the relevant modules only which helps 
accelerating debugging. Fig. 5.4 sketches the visualization output after calling 
vlsb with two signals of the RISC-CPU design in order to check their bindings to 
the right ports:

(gdb) vlsb “ram_cs”
(gdb) vlsb “next_pc”

The vtrace_at command (Table 5.1) is a typical representative of the monitor-
ing command type. It traces the given signal or port and records the actu al value 
at the specified simulation time stamp. The logged value is attached as label text 

Fig. 5.3 Example debug session
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Fig. 5.4 Debug command vlsb

Fig. 5.5 Debug command vtrace_at

in RTLVision and can be displayed in an info box additionally. Monitoring dedi-
cated signal values during simulation is very helpful when the user does not 
exactly know what is going wrong and when the defect infection occurs. Fig. 5.5 
illustrates the visualized tracing of the top-level signal addr in the RISC-CPU 
design at different time stamps to check whether the right addresses are for-
warded to the RAM:

(gdb) vtrace_at “addr” 42000
(gdb) vtrace_at “addr” 46000
(gdb) vtrace_at “addr” 50000
(gdb) c
…
(gdb) vlsb “addr”

Table 5.2 underlines the efficiency of our non-intrusive, patch-free approach 
using library interposition (Section 5.4.1) while illustrating the performance of the 
vtrace command (Table 5.1). So, the observation of 750,000 data sets over 125 
signals leads to a slow down of factor 4 compared to a trace-free simulation while 
the tracing of 50 signals increases the simulation time about 80%.
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5.5.2 Example Debug Session

To show the efficiency and feasibility of our solution we want to investigate why a 
small program works faulty on the RISC-CPU design. For this purpose, we use 
several exploration and visualization features (Section 5.4.1) to locate the defect 
quickly. First, the following program is simulated on the RISC-CPU which indi-
cates its incorrect processing.

1: ldpid 0
2: movi R5, 10
3: movi R6, 6
4: movi R7, 2
5: add R4, R5, R6
6: mul R4, R7, R4

After the initialization statement the three registers R5, R6, and R7 are loaded 
with the integer values 10, 6, and 2, respectively. Then, R5 and R6 register contents 
are added and the result is multiplied with the register content of R7, subsequently. 
Thus, after program execution the value 32 has to be stored in register R4. Instead, 
the register dump shows that R4 contains the value 8:

REG DUMP ============================== 
R4(0x00000008) R5(0x0000000a)
R6(0x00000006) R7(0x00000002)

We start a debug session to find the failure cause. For simplification reasons we 
suppose that the ALU works correctly. Furthermore, the right integer values seem 
to be loaded into the registers, as seen in the register dump above. So, we assume 
that the defect has to be searched in the controlling of the ALU where the ALU 
is implemented by the module instance IEU. To get the right control signal the 

Table 5.2 Exemplary performance slow down

  Slowdown over simulation time
 (# observed data sets)

# of traced signals 1,000 ns 2,000 ns 3,000 ns

 0 1.0 1.0 1.0
 5 1.3 1.3 1.4
 (10,000) (20,000) (30,000)
 50 1.8 1.8 1.8
 (100,000) (200,000) (300,000)
 75 2.3 2.6 3.0
 (150,000) (300,000) (450,000)
100 3.0 3.2 3.6
 (200,000) (400,000) (600,000)
125 3.2 3.9 4.0
 (250,000) (500,000) (750,000)
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vlsio_rx command (Table 5.1) is applied at first. We suppose that the name of the 
attached control port includes the string code:

(gdb) vlsio_rx “IEU” “code”
Using the path fragment navigation feature in RTLVision subsequently shows that 
the only port reported by the vlsio_rx command is connected to the signal alu_op
(Fig. 5.6).

Fig. 5.6 Tracking down the op-code signal

Besides, we should trace the program counter represented by the signal 
program_counter to observe the program execution. Consequently, we initiate a 
monitoring of the two interesting signals using the vtrace command (Table 5.1) and 
continue simulation:

(gdb) vtrace “program_counter” 110000
(gdb) vtrace “alu_op” 110000
(gdb) c
After simulation has stopped we investigate the traced behavior. To focus the error search 
onto the relevant design parts only, the vlsb command (Table 5.1) is applied (Fig. 5.7):

(gdb) vlsb “program_counter”
(gdb) vlsb “alu_op”
Knowing that the reset phase ends after 30 ns the first operation code of interest is 
transferred from the decoder unit (module instance IDU) to the ALU at 35.5 ns. The 
reported value 0x0 corresponds to the ldpid command in our example program. From 
49.5 ns till 91 ns the operation code holds 0x3. The traced values of the program coun-
ter indicate that this code corresponds to the three movi commands (line 2 to 4) load-
ing registers R5, R6, and R7 with integer values. The next operation code 0x4 is 
transferred at 91.5 ns which should notify the add command. But as we know from the 
processor specification the operation code for additions has to be indicated by 0x3.
Looking into the source code of the instruction decoder using the source code view in 
RTLVision shows the wrong operation code in line 161 causing the error:

153 case 0x01: // add R1, R2, R3
…
161 alu_op.write(4); // WRONG CODE!
Fixing this statement and a subsequent simulation reports the correct result in 
 register R4.
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A conventional debug procedure would set several breakpoints on the right positions 
into the instruction decoder and the ALU. On any stop of these breakpoints we then had 
to print out the transferred operation code and the actual program counter. This can turn 
out to be a time consuming task where the printed values are split over and merged with 
the usual trace output in the debugger console. Thus, a fast and simple observation of 
interesting program details is made very difficult which complicates debugging.

5.6 Conclusion

In this work we introduced an integrated debugging environment (IDE) where the 
debugger kernel is based on the Open Source debugger GDB and the visual interface 
utilizes an available visualization tool. The special feature of our environment is its 
non-intrusive usability that means it does not alter any code (SystemC kernel, exist-
ing models, additional libraries) to enable using arbitrary SystemC designs in the 
IDE. We demonstrated the advantages of our debugging features applying them to 
the RISC-CPU design of the SystemC library.

Future work will improve the provided debugging and exploration functionality 
especially regarding an explicit TLM support. One of the main goals is to fit the 
debugging environment to the specific needs of the application being developed (e.g. 
CPU design).

Acknowledgments We would like to thank Lothar Linhard and Gerhard Angst from Concept 
Engineering, who supported this work.

Fig. 5.7 Exploring traced signals
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Chapter 6
Measuring the Quality of a SystemC Testbench 
by Using Code Coverage Techniques

Daniel Große1, Hernan Peraza1, Wolfgang Klingauf2, and Rolf Drechsler1

Abstract The system description language SystemC enables to quickly create 
executable specifications at adequate levels of abstraction for both hardware/soft-
ware integration and fast design space exploration. Besides the modelling of a sys-
tem, verification has become a dominant factor in circuit and system design. Since 
SystemC is a versatile language based on C++, testbenches at different abstraction 
levels can easily be built. But the fault coverage of a manually developed testbench 
is hard to quantify. In this paper, an approach for measuring the quality of SystemC 
testbenches is presented. The approach is based on dedicated code coverage tech-
niques and identifies all the parts of a SystemC model that have not been tested. 
Experimental results show the applicability of our methodology.

Keywords SystemC, Testbench Quaility, Coverage

6.1 Introduction

To cope with the design complexity of hardware/software systems that consist of 
up to one billion transistors, raising the level of abstraction in modelling has been 
exercised during the past years in the computer aided design community. In this 
context, C/C++-based languages have found entrance into industry. Here, the sys-
tem description language SystemC is the de facto standard and was standardized by 
the IEEE [13]. Additionally to the inherent SystemC feature of specifying hardware 
and software in one language the concept of Transaction Level Modeling (TLM) [2] 
is supported by SystemC. TLM allows describing the communication in a system 
in terms of abstract operations (transactions).
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Besides the modelling aspect the verification – i.e. ensuring the correct func-
tional behaviour – is the most challenging problem. Since complete formal verifi-
cation methods are only applicable to medium sized designs, simulation-based 
techniques are used most frequently [6, 17]. Here system level languages like 
SystemC already offer some features for verification and are therefore superior to 
traditional Hardware Description Languages (HDLs). For example, in SystemC 
the testbench can easily be integrated as part of the model and all features of C++ 
can be used for the generation of tests. Also the result analyzer that is typically 
build to check the response of the Device Under Verification (DUV) is a SystemC 
module. As an add-on for SystemC the SystemC Verification (SCV) library has 
been introduced [15]. Besides advanced verification features like data introspec-
tion and transaction recording the SCV library enables constraint-based 
randomization.

However, all these verification features do not include a measure how thorough 
the design was executed during the simulation. As the size of the testbench grows 
the designer needs a reliable feedback about its quality.

In this paper, an approach for SystemC to measure the quality of the testbench 
is presented. Our analysis is based on dedicated code coverage techniques that we 
have developed for SystemC models. By exploiting automated code instrumenta-
tion based on a SystemC parser, for each test run a coverage report is generated that 
presents the user all statements in the model that have not been executed during 
simulation. The report is based on the analysis of the exercised control flow state-
ments. It includes exact source code references to unexecuted code blocks in com-
bination with SystemC specific information like process context and hierarchy 
information.

The rest of this paper is structured as follows. Related work is described in the 
next section. In Section 6.3 we present our approach. We start with the overall flow 
and continue with a detailed description of the three phases of our approach. Along 
the way we provide an example to show the effects of each phase. Case studies for 
two SystemC designs are presented in Section 6.4. The first design is a RISC CPU 
and the second design is a TLM-based video processor. Finally, in Section 6.5 the 
paper is summarized.

6.2 Related Work

In software testing code coverage techniques have been used to measure the frac-
tion of code that has been exercised by a test case [1]. From this domain coverage 
methods have been derived and extended for HDLs. For Verilog or VHDL several 
approaches and tools exist (for an overview see e.g. [16]). However, to the best of 
our knowledge no code coverage method to measure the quality of a SystemC test-
bench has been proposed. Note, that approaches based on standard C++ coverage 
tools (like e.g. the GNU COVerage tool gcov [7]) have several drawbacks. On the 
one hand the SystemC kernel is also included in the coverage analysis. On the other 
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hand SystemC specific data like e.g. context information or hierarchy information 
is only implicitly available and has to be extracted manually.

In the following we present an approach to overcome such limits.

6.3 Measuring the Quality of a SystemC Testbench

In this section the code coverage-based approach for measuring the quality of the 
testbench is introduced. Our approach consists of three phases: SystemC analysis, 
code instrumentation and coverage analysis. Before the details on the three phases 
are given the overall flow is presented. Throughout the description of the phases a 
simple example is used to demonstrate the effects of each phase.

6.3.1 Overall Flow

The overall flow of our approach is depicted in Fig. 6.1. In the analysis phase the 
SystemC code of the DUV is parsed, analyzed and transformed into an Abstract 
Syntax Tree (AST) representation. This AST is traversed in the consecutive code 
instrumentation phase. During the traversal the original SystemC DUV is aug-
mented with SystemC specific code that enables the collection of coverage infor-
mation during simulation. Then, the rewritten SystemC DUV, the coverage library 
of our approach and the SystemC libraries are compiled into an executable. By run-
ning this executable simulation is performed and the data structures available 
through our coverage library are filled.

Finally, in the coverage analysis phase the collected data is interpreted and the 
coverage report is generated. By the report the verification engineer is informed 
which statements have not been executed due to the tests defined in the testbench. 
This information is presented with exact source code references to unexecuted 

Kernel running

SystemC
source code

SystemC
libraries

gccInterpretation

Augmented
DUV

code generation

Output

Analysis

CompilationSimulationCoverage Analysis
Report
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Fig. 6.1 Overall flow of our approach
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blocks in the original SystemC DUV including hierarchy. Furthermore the fre-
quency of the execution of statement blocks can be given for further analysis.

In the following we describe the three phases in more detail.

6.3.2 SystemC Analysis

For the transformation of the SystemC DUV into an AST the front-end from [5, 8] 
is used that is part of the design environment SyCE [3]. The parser of the front-end 
was build with PCCTS (Purdue Compiler Construction Tool Set) [14]. PCCTS 
enables the description of the SystemC syntax in form of a grammar, provides 
facilities for AST construction and finally generates a parser. Note that the front-
end has an exact source code reference including character positions of each token. 
Therefore, a special C++ pre-processor has been implemented to allow for identifi-
cation of the SystemC macros before they are expanded. The correct source code 
information annotated to each node in the AST is very important for our approach. 
Without this information only a non-reliable feedback for the verification engineer 
would be possible. In the following the analysis phase is demonstrated by an 
example.

pcout

clock

en
reset

din

le

pcincPC

Fig. 6.2 Program counter

Example 1 Since we use a program counter of a RISC CPU also as example for 
the other phases we give some details on this module. Fig. 6.2 shows the program 
counter (PC) with all its inputs and outputs. In order to address the 2,048 entries 
of the program memory, the PC has an 11 bit register which holds the address of 
the current instruction. Output pcout holds this address. pcinc outputs the address 
increased by one. An address can be loaded into the PC via the input din, if the 
input le (load enable) is set to 1. Using the reset signal, the PC can be set to 0. On 
every positive edge of the clock signal the current address is increased if the input
en (enable) is set to 1. In Fig. 6.3 the method that computes the next_state of the 
PC is shown. This method is sensitive to the positive clock. pc is the internal regis-
ter of the PC module. Figure 6.4 depicts a sample of the AST of this method, which 
has been generated by our tool. Please note that for each AST node only a fragment 
of the available information is shown. The second number in each line corresponds 
to the line number of the parsed element.
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 9 void prog_count::next_state() {
10 if (reset.read()) { 
11   pc = 0; //reset to adress 0  
12  } else {
13     if (en.read()) {
14      if (le.read()) {
15       pc = din; //load address 
16      } else {
17        // increase counter 
18        pc = pc.read() + 1; 
19      } 
20     } else {
21       pc = pc.read();  
22     } 
23  } 
24 } 

Fig. 6.3 Parts of original SystemC DUV

 1 10 IF 
 2 10  LPAREN 
 3 10  ID == "reset" 
 4 10  DOT 
 5 10     ID == "read" 
 6  10  LPAREN 
 7 10     RPAREN 
 8 10  RPAREN 
 9 10  LCURLY 
10  11     ASSIGNEQUAL 
11  11       ID == "pc" 
12  11       OCTALINT 
13 11     SEMICOLON 
14 12     RCURLY 
15 12  ELSE 
16 12  LCURLY 
17 13   IF 
18 13    LPAREN 
19 13      ID == "en" 
20 ... 

Fig. 6.4 AST of next_state method

As can be seen, the structure of the SystemC program is reflected and this repre-
sentation is well suited for code instrumentation.

6.3.3 Code Instrumentation

In the code instrumentation phase the SystemC DUV is augmented with according 
instructions to allow for coverage analysis. The main steps in this phase are 
described in the following.
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6.3.3.1 Coverage Library

First, the global variable cov is defined that holds an instance of our coverage class 
COVER. This class provides data structures like hash tables for coverage statistics 
as well as wrapper functions to take care of the control flow inside the methods of 
the DUV. Furthermore, the class has methods to analyze the collected coverage data 
and to generate the report for the user.

6.3.3.2 AST Traversal and Code Instrumentation

While traversing the AST, first the member functions that belong to a SystemC mod-
ule are identified. Then, in each function the conditions of the control flow statements 
are substituted with wrapper functions. The idea is to perform a call-back during the 
simulation and thereby notifying the coverage class which control branch has been 
taken. The following control statements are distinguished: IF, IF/ELSE, SWITCH-
CASE, FOR loop, WHILE loop. Next, the wrapper functions are explained.

6.3.3.3 Wrapper Functions

For the IF, IF-ELSE, FOR loop and WHILE loop the condition of the control state-
ment is replaced by a wrapper function call. The arguments of the wrapper func-
tions are:

1. The condition of the control statement (as Boolean and string).
2. The type of control statement.
3. Start position and end position of the block(s) that are executed if the control 

condition evaluates to true/false.
4. File name of the current method.
5. Class name if available.
6. Current method name.
7. This pointer, in case of a member function. The this pointer is used to distinguish 

between several instances of the same module.

The following example demonstrates the application of a wrapper function for an 
IF-ELSE control statement.

Example 2 Consider again the program counter in Fig. 6.3 and focus on the if 
statement in line 10 and the corresponding else-branch starting in line 12. The 
condition of the if statement is the expression reset.read(). This expression is 
replaced by the wrapper function wrapperStatement(…). The instrumented code is 
depicted in Fig. 6.5. The first and second arguments of this function hold the condi-
tion as a Boolean and as a string, respectively. The third argument reflects the type 
of the condition statement – here tIFELSE. Then, the next four numbers mark the 
if-block, i.e. the if-block starts in line 10 at the absolute character position 125 and
ends in line 12 at character position 203. The next two numbers give the same 
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information for the else-block, but only the end position of the else-block is used; 
the else-block ends in line 22 at character position 419. Then, the file name where 
the method is implemented (prog_count.cc), the class name (prog_count), the 
method name (next_state) and the this pointer are given.

In a SWITCH-CASE statement at the beginning of each CASE-block we instru-
ment a wrapper function that has as additional argument the value of the current 
case. After a SWITCH-CASE statement a wrapper function call is instrumented 
that enables the propagation of all possible CASE values. Note that the approach is 
able to handle also nested variants of all types of control statements.

In the next section the coverage analysis phase is explained.

6.3.4 Coverage Analysis

After the compilation of the instrumented SystemC code the coverage analysis is exe-
cuted during simulation. Based on the instrumented wrapper functions the instance of 
the cover class collects all the coverage data. The main data structures in the cover 
class are based on Standard Template Library (STL) maps. As unique keys the argu-
ments of the wrapper functions are transformed into a string representation. To each 
coverage point we associate two counters to track the frequency of the evaluation of 
the corresponding condition to true or false. For case statements obviously only one 
counter is needed. Finally, in the coverage report that is started by a call from sc_main
after the end of the simulation, the coverage data is analyzed. For IF, IF/ELSE a warn-
ing is generated if the condition was always true/false and thus a block was never exe-
cuted. In case of FOR loops or WHILE loops we inform the user if the condition was 
false all the time and therefore the loop body was skipped. For SWITCH-CASE state-
ments each case is identified that was never activated. In total this allows to argue about 
the quality of the tests defined by the testbench. If blocks have been identified that have 
been never executed these blocks are dead code or the testbench has to be improved.

 1 #include "cover.h" 
 2 #include "label.h" 
 3 extern COVER *cov; 
 4  
 5 #include "prog_count.h"
 6 ... 
 7 void prog_count::next_state(){
 8 if (cov->WrapperStatement(reset.read(), 

"reset.read()",tIFELSE,10,125,12,203,22,419,
"prog_count.cc", "prog_count", "next_state", 
this)){

 9   pc = 0;  
10 } else {
11 ... 

Fig. 6.5 Instrumented code of the next state method
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In the following example the results of the coverage analysis are shown for the 
program counter.

Example 3 A testbench has been written for the program counter shown in Fig. 
6.3. The testbench includes three tests. We applied our approach for this example. The 
automatically generated coverage report is shown in Fig. 6.6. As can be seen the sce-
nario to load a value into the program counter by setting load enable to one was not 
executed. We added another test for this behaviour and thereby closed this gap.

<< COVERAGE REPORT >> 

IF-ELSE Statement: *IF-BLOCK NOT EXECUTED*
  File name: prog_count.cc
  Class: prog_count 
  Instance: pc 
  Func. Member: next_state 
  Condition: le.read() 
  IF start: line 14 pos 246 
  IF end:   line 16 pos 322 
  count total: 87 
  count TRUE: 0 count FALSE: 87 

Fig. 6.6 Coverage report for program counter

6.4 Case Studies

In this section we apply the approach to two examples. The first example is a hard-
ware oriented model, a RISC CPU is considered. The second example is a system 
for colour region recognition in video data.

6.4.1 Hardware Model: RISC CPU

Before we apply our method to the RISC CPU the basic data of the CPU is briefly 
reviewed (see [9] for more details).

6.4.1.1 Specification

In Fig. 6.7 the components of the RISC CPU are shown. The CPU has been 
designed as Harvard architecture. The data width of the program memory and the 
data memory is 16 bit. The size of the program memory is 4 kB and the size of the 
data memory is 128 kB. The length of an instruction is 16 bit. We briefly describe 
the five different classes of instructions in the following: six load/store instructions, 
eight arithmetic instructions, eight logic instructions, five jump instructions and 
five other instructions. For the RISC CPU a compiler has been implemented which 
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generates object code from an assembler program. This object code runs on the 
SystemC model, i.e. the model of the CPU executes an assembler program.

6.4.1.2 Testbench Quality

Based on successful simulation of each component the designer starts with the simu-
lation at the system level. For this purpose usually a high-level testbench is created 
that enables a black-box test of the design. For the CPU such a testbench corre-
sponds to the execution of a set of assembler programs including the analysis of the 
simulation results. In the following we describe how the high-level testbench was 
created and how this process was improved by our approach. The SystemC model 
of the RISC CPU was automatically instrumented with code to analyze coverage. 
The following non-trivial assembler program was formulated to test the CPU.

Fig. 6.7 RISC CPU including data and program memory
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Example 4 The assembler program shown in Fig. 6.8 converts a set of numbers 
into gray-code. The gray code encodes numbers such that in the binary encoding 
adjacent numbers have a hamming distance of 1. The number n of elements to be 
converted is given in the data memory at address 0. After clearing the register R[6] 
and R[2], n is loaded into register R[3]. Then, in the loop each single number is 
converted. The idea is to invert each bit if the next higher bit of the input value (read 
from the data memory into register R[4]) is set to one. Therefore the input is shifted 
by one and a bitwise XOR operation is performed. The result R[6] of the conversion 
is stored in the data memory to the same position as the input.

 1 LDL R[6], 0 
 2 LDH R[6], 0 
 3 LDL R[2], 0
 4 LDH R[2], 0 
 5 LDD R[3],R[2] 
 6  loop1: 
 7 ADD R[2],R[2],R[1] 
 8 LDD R[4],R[2] 
 9 ADD R[5],R[4],R[0] 
10 SHR R[5],R[5] 
11 XOR R[6],R[4],R[5] 
12 STO R[2],R[6] 
13 SUB R[3],R[3],R[1] 
14 JNZ loop1 
15 HLT

Fig. 6.8 Assembler program for gray code

After simulation of the gray code program on the CPU our approach reported 
unexecuted code fragments in the following modules: stack_point, mux4, mux5,
mux6, mux7 and alu. The handling for the cases of push and pop operations in the 
stack_point module was not tested, since the inputs from the control unit to this 
module have been zero during the complete simulation. To test this behaviour 
another program that uses push and pop instructions has to be added.

For the multiplexor modules we found that in the method do_select which 
describes the functionality of a multiplexor only the ELSE-block for the select 
condition was simulated. For the CPU this observation corresponds to the fact that 
the select inputs of the multiplexors have been zero all the time and thus only one 
data input was routed to the multiplexor output. As can be seen in Fig. 6.7 all mul-
tiplexors belong to the data path of the CPU. To also test the effects on the CPU in 
case of data coming through the other input, a different data path has to be acti-
vated. The multiplexor mux5 is part of the stack pointer data path and thus was 
tested by using stack pointer operations (see above). For mux4 and mux6 the alter-
native data path is activated by adding a program that uses sub-routine calls. For 
mux7 we set the select input to one by an additional program that uses I/O 
instructions.

In case of the ALU several CASE statements of the main SWITCH statement 
have not been executed since not all operations of the ALU are activated by the 
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considered assembler programs. Therefore we created another program to check to 
remaining arithmetic operations.

In total by adding additional assembler programs to the testbench the quality of 
the testbench was improved. Here our approach supported the verification engineer 
by directly pointing to untested functionality of the RISC CPU.

6.4.2 High-Level Model: Colour Region Recognition

In the second example we applied our approach to a high-level SystemC model of 
a video processor System-on-Chip. In contrast to the RISC CPU (which has been 
implemented as an RTL design), this model resides at the transaction-level of 
abstraction.

6.4.2.1 Specification

The configurable model EmVid consists of a set of SystemC cores that can be inte-
grated to build a video processor. For video input and output, abstract TLM channels 
are used. The video processing IP cores use the SystemC High-level Interface 
Protocol (SHIP) [10] for data exchange over these channels. Communication with 
the main memory (DDR RAM) is established by ST’s TAC protocol [12]. In the fol-
lowing, we consider a System-on-Chip for colour region recognition that is based on 
EmViD cores. The system processes video frames in real-time and draws rectangles 
around detected regions. A high-level schematic of the system is shown in Fig. 6.9. 
The system has been configured as a pipelined architecture and for the connection 

Fig. 6.9 Colour region recognition schematic
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of the DDR RAM an IBM CoreConnect On-Chip Peripheral Bus (OPB) is used. The 
complete transaction-level interconnect (including an OPB simulation model) is set 
up using the GreenBus TLM fabric [11]. EmViD can be found on [4].

The video processing starts by reading in an MPEG video as video input. 
Then, dilation and erosion is performed. In the labelling stage the regions are 
recognized and the rectangles are added. Afterwards the core outputs the image 
to a display.

6.4.2.2 Testbench Quality

As a concrete application we decided to detect skins in the video data. We set the 
colour range for the recognition accordingly. The system segmentates the processed 
video data in the labelling phase. Therefore adjacent pixels are analyzed and the 
image is partitioned into a set of regions using the defined colour information.

In the overall video processor system the high-level testbench consists of the 
video data (coming from video files or a camera). We applied our approach to the 
system. We simulated the system with different video files and observed that 
depending on the video data different parts of the system have not been executed. 
For example, in the morph_segm module (labelling phase) the segmentation algo-
rithm checks the minimum region size with an IF-condition. For video data that 
contains no skins or very small areas no regions are detected. Here, our approach 
presents directly the SystemC file with the exact source code position of the never 
executed block(s). Note that this improves the debugging during the development 
of such high-level models significantly.

Moreover, analyzing the results of nested control structures, our approach helps 
the verification engineer to test the design thoroughly. To give an example, the seg-
mentation algorithm is realized as a state machine with 47 states, which are tra-
versed in different (partial) execution orders depending on the video input data. 
With the output of the coverage analysis, untaken control paths can be discovered 
and the stimulus video material can be adjusted accordingly.

6.4.2.3 Further Design Analysis

During the analysis of the video processor model, we also experimented with dif-
ferent communication architecture configurations for the design. As one might 
expect, some architectures are better suited than others to meet efficiency require-
ments such as a given frame rate. In particular, when connecting all components to 
a shared bus with fixed-priority scheduling (here, the OPB), the overall video 
processing performance highly depends on the priority allocation.

We utilized the ability of our coverage analysis to count the number of execu-
tions for the various processes in the model in order to identify the location of 
communication bottlenecks in design configurations with poor frame rates. Table 6.1 
presents some results of the experiments.
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The column “#ex video” shows the total number of video frames successfully 
sent from the video input component (mpeg decoder) to the video output compo-
nent (display controller). The column “#ex detect.” shows the total number of video 
frames processed by the region detection. From these numbers the overall frame 
rates have been calculated (columns “FPS video” and “FPS detect.”).

Row 1 and row 2 show the frame rates we got with a bus-only model. While in row 
1, the bus access priorities were assigned in ascending order according to the sequence 
of video processing stages in the model, in row 2 we assigned a higher priority to the 
region detection components than to the video display data path. 
As expected, the frames per second processed for region detection goes up, but as an 
unintentional side effect due to higher bus workload, the number of video frames dis-
played per second drops down. Rows 3 and 4 show the results we achieved with a 
mixed bus/pipeline model as depicted in Fig. 6.9. Here, we could considerably increase 
the video display frame rate by just swapping the bus access priorities of two compo-
nents. With this setup, ~25 frames per second full resolution live video display is 
achieved while the region detection runs at the high rate of ~50 frames per second.

6.5 Conclusions

In this paper, we have presented an approach to measure the quality of a testbench 
for a SystemC design. The approach is based on dedicated code coverage tech-
niques using a SystemC front-end. Thus, a reliable feedback for untested parts of 
the design is presented to the user. This data includes exact source code information 
in combination with SystemC specific information, like process context and mod-
ule hierarchy. In summary, our approach helps to create a high quality testbench. 
The experiments showed that our approach is suitable for both RTL and TLM 
designs. Moreover, the TLM example revealed that our analysis methodology also 
can support design space exploration.
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Chapter 7
SystemC-Based Simulation of the MICAS 
Architecture

Dragos Truscan1, Kim Sandström2, Johan Lilius1, and Ivan Porres1

Abstract We present our approach in using SystemC for simulating a custom 
configurable architecture, MICAS. However, there are certain aspects of the 
architecture, like configuration specific information or programming interface, 
which cannot be directly represented using SystemC concepts. Thus, we define a 
C++-based specification language for MICAS that allows us to specify additional 
properties of the architecture at simulation level and furthermore, to combine these 
properties with the SystemC executable specification.

Keywords System-on-Chip (SoC), Service Oriented Architecture (SOA), SystemC 
simulation, executable specification

7.1 Introduction

Due to the increasing complexity of system specifications simulation has become a 
necessary tool for system designers. Simulation enables the evaluation of system 
specifications against requirements, at early stages of the development, before pro-
ceeding to hardware implementation. The approach eliminates costs and shortens 
the design life cycle of new products. According to Moretti [1], most of the inte-
grated circuits developed today require at least one return to early phases of the 
development, due to errors.

In recent years, SystemC [3] has become one of the most popular languages for 
system-level modeling and simulation. SystemC is an extension of C++, in which 
the hardware components (i.e., modules) of the architecture are specified as C++ 
classes. A given architectural configuration is represented, at simulation level, as 
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module instances interconnected at port level. SystemC advocates reuse at code and 
component level, allowing the reuse of the developed components from one design 
to another. The approach facilitates the use of component libraries for rapid creation 
of new designs.

In our work, we have employed SystemC to provide executable specifications of 
a configurable architecture, namely MICAS [4]. MICAS is configurable not only 
because different hardware configurations can be built by adding new components, 
but also because the programming interface of a given configuration can be custom-
ized, at design time, to facilitate the application mapping on the architecture. The 
MICAS design flow uses a component library from which SystemC specifications 
of MICAS resources can be instantiated at simulation time. However, there are cer-
tain aspects of MICAS that cannot be directly modeled in SystemC. For instance, 
upon instantiation different modules added to a given MICAS configuration have to 
be adorned with configuration specific information, like address spaces, IRQ num-
bers, etc. Such information is not typically stored in a component library in order to 
increase the reusability of component specifications. Similarly, the programming 
interface that is designed for a specific configuration cannot be stored in the compo-
nent library, but rather has to be generated for each configuration in part.

In order to integrate configuration specific information with the SystemC exe-
cutable specification of a given configuration, we define a C++-based specification 
language for MICAS. This language enables us to express additional properties of 
the architecture in an executable form, easy to integrate within the MICAS simula-
tion framework.

We proceed, in Section 7.2, with a general overview of the MICAS architecture 
and of its design process. Then, we introduce, in Section 7.3, a C++-based specifi-
cation language for the MICAS architecture. In Section 7.4 we show how this lan-
guage is used to describe MICAS configurations and how the resulting specification 
is integrated with the SystemC simulation framework of MICAS. We also discuss 
the customizations applied to the MICAS Simulation library such that the simula-
tion model of a given configuration can be automatically generated. We conclude 
with final remarks.

7.2 The MICAS Architecture

Microcode Architecture For a System On a Chip (SoC) (MICAS) [4] is a novel 
concept developed at Nokia Research Center, Helsinki, Finland, which proposes 
both a SoC architecture for sequential data streaming processing systems (e.g., 
multimedia applications, personal video recorders, media streaming applications, 
etc.) and a method for controlling the hardware accelerators of such architectures. 
Several goals are pursued in MICAS:

● Separation of the data- and control-flows of the architecture, by using dedicated 
hardware units (HW processes) to assist data processing tasks and controllers to 
drive the activity of these units.



7 SystemC-Based Simulation of the MICAS Architecture 89

● Decentralization of the control communication from the “main processor” of the 
system, typically running a real-time operating system (RTOS), and the distri-
bution of this communication to dedicated controllers, which only control 
“local” resources.

● The use of microcode (i.e., software running on controllers) to control the func-
tionality of the HW processes and of the data streaming between them. The 
microcode provides a hardware abstraction layer (HAL) of the architecture, 
which allows one to create data streams between HW processes and to invoke 
the functionality of a given HW process using a standard interface.

7.2.1 Hardware Architecture

An overview of the MICAS architecture is given in Fig. 7.1. A MICAS configura-
tion comprises several domains. A domain represents a collection of hardware 
processing elements situated on the same physical silicon chip and controlled by 
the same controller. Domains provide fast processing speed for dedicated tasks. 
They are interconnected by off-chip external networks using for instance, serial, 
Bluetooth or WLAN technology.
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Fig. 7.1 Generic view of the MICAS architecture
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The organization of domains is hierarchical, following a master-slave relationship. 
Typically, one domain of a given MICAS configuration is connected to a general 
purpose processor running an RTOS, like Symbian [2]. Such a domain is called mas-
ter domain. Domains connected to a master domain are regarded as slave domains.

Each MICAS domain may contain several programmable hardware components, 
HW processes, which implement dedicated tasks in hardware. HW processes are 
universally interconnected via buses and may be grouped into clusters. There may be 
three types of HW processes inside a MICAS domain: bridges, sockets and modules.
Buses belonging to different clusters may be connected to each other through bridges. 
Sockets mediate and transform the on-chip communication into off-chip communica-
tion, whereas modules implement dedicated processing tasks over streams of data.

7.2.2 Programming Interface

The MICAS programming interface defines a set of services that can be used to 
invoke complex functionality of a given MICAS configuration. The services are 
defined per domain and are implemented as a consistent combination of (data) 
streams between HW processes. Domain controllers serve as a control interface to 
any external entity (i.e., MICAS domain or RTOS). Any request for a service from 
the external environment is handled by the controller, which implements the streams 
of a given service by dispatching the corresponding microcommands to the appropri-
ate HW processes. The concept of subservice of a service is used in MICAS to 
depict a service from a remote domain that is used by a service in a given domain.

7.2.3 The MICAS Design Process

An overview of the MICAS design process is given in Fig. 7.2. Starting from the 
Application Requirements one identifies the services (i.e., Service List) that a 
given MICAS configuration has to provide. These services represent the program-
ming interface of that particular configuration.

In the Service Specification phase, each service is specified in terms of data 
streams. In turn, each stream is implemented as a combination of microcommands 
used to program the corresponding HW processes. Based on the microcommands 
required to implement the streams, HW processes are added to the domain under 
design in the Hw Configuration phase.

Three artifacts are produced after the completion of the previous phases:

● Service Description – specification of the services of a given configuration, and 
their implementation in terms of streams and microcommands;

● Structural Configuration – the hardware components of the configuration and 
their interconnections;

● Functional Configuration – configuration specific properties (address spaces, 
IRQs, etc.) of the selected hardware components.
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All these three artifacts serve as input to the Simulation phase along with the 
executable specifications of the selected hardware components. However, out of 
these artifacts, only the Structural Configuration of the architecture can be 
specified using SystemC, more specifically via the main.cpp file. A different 
approach has to be employed for the remaining two artifacts in order to specify 
them in an executable form, easy to integrate with the simulation environment. To 
address this issue we define a C++-based specification language for the MICAS 
architecture.

7.3 A C++-Based Specification Language for MICAS

The MICAS C++-based specification language models MICAS resources using 
type definitions. A struct data type is used to define these resources, while 
the fields of each struct type are used to represent their properties. The 
approach allows the use of MICAS resources as properties of other MICAS 
resources.

7.3.1 Specifying the Functional Configuration

At the highest level, a MICAS configuration is composed of several domains. Thus, 
a Domain data type is defined as follows:
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struct Domain {
 std::string name;
 unsigned int domain_id;
 Bus* busList[10];
 int b_no;
 Process* processList[10];
 int m_no;
 struct Process* master_domain_socket;
 struct Process* master_domain_ctrl_socket;
 struct Process* slave_domain_socket;
 struct Process* slave_domain_ctrl_socket;
 unsigned int DPRAM_int;
 unsigned int int_ctrl_reg_addr; };
A name and a numeric domain_id are used to identify the domain during the simu-
lation. The domain contains a number (m_no) of processes stored in the process-
List array, each of them being characterized in turn by specific information. In 
addition, a number (b_no) of buses are present in each domain, and they are similarly 
stored using a busList array. The external connections of the domain are modeled 
directly by the sockets present in that domain, specifying whether these sockets are 
connected to a master or to a slave domain. The socket description may be seen as a 
“routing table” for the inter-domain communication. In our current MICAS implemen-
tation, we have assumed that a domain may have at most two sockets communicating 
with its master or slave domains respectively, but a more general approach may be 
followed. We recall that domains have a hierarchical relationship to each other, being 
possible for each domain to have a master domain and, at the same time, being itself 
master to another (slave) domain. Two sets of pointers are modeling this information. 
The master_domain_socket and the master_domain_ctrl_socket are 
used to indicate to the controller the socket through which the data and respectively, 
the control communication with the master domain has to be directed. Similarly, a pair 
slave_domain_socket – slave_domain_ctrl_socket indicates to the 
controller the sockets through which the data and the control communication, respec-
tively, with the slave domain has to be forwarded. A null pointer in one of these 
fields indicates that no master and respectively, no slave domain are connected to the 
domain in question.

The processor running the RTOS is connected to the MICAS master domain 
through a DPRAM module using an interrupt-based mechanism. We model it as 
a separate entry (DPRAM_int), not only because this is a high-priority inter-
rupt, but also to allow specifying explicitly if an RTOS is connected to a 
domain. A non-valid value assigned to this field indicates that no RTOS is con-
nected to the domain in question.

Finally, each controller has an interrupt controller, through which it communicates 
via a control bus. When an interrupt is raised by any of the HW processes in the domain, 
the corresponding interrupt number is passed to the controller via a control register, 
whose address is modeled by the int_ctrl_reg_addr field.
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Each HW process included in the processList of a given domain is char-
acterized by its own set of properties, as shown in the following type 
definition:

struct Process{
 std::string name;
 enum micas_process_type type;
 unsigned int ctrl_reg_addr;
 unsigned int master_reg_addr;
 unsigned int slave_reg_addr;
 unsigned int irq;
 unsigned int slave_data_buffer;
 unsigned int master_data_buffer; };
The name is used during the simulation for debugging purposes, whereas a type
property specifies whether the HW process is a module, a bridge or a socket, based 
on the definition of the micas_process_type enumeration, which we omit 
here. Based on its placement relative to the other elements in a domain, a HW proc-
ess is characterized by other types of information, like address spaces used for 
communication purposes. HW processes are controlled by the controller via a con-
trol bus, to which the HW process is connected by a control register. To be able to 
uniquely identify each HW process on the bus, each control register is assigned a 
unique identifier, the control_register_address. When the controller 
issues a command to a given HW process, in fact it writes the command identifier 
to the address of the control register.

The communication on the data bus between different HW processes is handled 
in a similar fashion. Each HW process is connected to the bus through a master or 
slave interface, and in addition, it has an unique identifier with respect to that bus. 
Thus, two such identifiers are defined master_reg_addr and slave_reg_
addr, respectively. The communication between HW processes and the controller 
is done via an interrupt-based mechanism. The domain controller uses an interrupt 
controller for receiving interrupt signals from HW processes. Each module has a 
unique identifier (i.e., irq) corresponding to the interrupt signal to which it is 
assigned.

Similarly to HW processes, buses are stored in a busList, containing elements 
with the following structure:

struct Bus {
std::string name;
unsigned int maxCap;
unsigned int avCap; };

Beside the name, the total capacity of the bus (maxCap) and the available capacity 
at a given moment (avCap) are included as properties.

One decision that we took was to group all the generated information in a single 
file, rather than create separate files for each domain description. Therefore, at 
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simulation time, the controllers of different domains will share this information 
from the same file. We do not consider this to be an impediment, since the gener-
ated information is read only, and thus, it does not pose the problem of arbitrating 
the access to it. As such, all the domain descriptions included in a given MICAS 
configuration are grouped in a domainList array.

Domain* DomainList[];

7.3.2 Specifying Service Description

A service represents an atomic piece of functionality provided by a given MICAS 
domain. Each domain provides its own service list (i.e., service-Table), in 
which a number (s_no) of services are stored.

struct Domain {
 Service* serviceList[10]
 unsigned int s_no; };
The Service type is characterized by a name, a list of CompositeStreams
(i.e., consistent combinations of streams), a pointer to a subservice from a 
remote domain, and an allocated flag to be used at run-time for keeping track 
if the service is enabled at a given moment in time. The definition of the Service
is shown below.

struct Service {
 std::string name;
 struct Subservice *subservice;
 CompositeStream* compositeStreams[10];
 unsigned int allocated; };
In turn, the Subservice is characterized by the identifier (remote_
domain_id) of the remote domain from which it can be accessed and the 
service identifier (remote_service_id) in that remote domain. In addition, 
pointers to the local control sockets (local_ctrl_socket) are provided to 
indicate to the controller where to “route” the commands for using a given sub-
service, and from or to what socket (local_socket) it can access or send the 
data provided by the service. The Subservice definition is given in the 
following.

struct Subservice {
 unsigned int remote_domain_id;
 unsigned int remote_service_id;
 Process* local_socket;
 Process* local_ctrl_socket; };
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A service is supported by one or many composite streams depicting the data-flow 
perspective of that service. In turn, each composite stream is implemented by a 
number (b_no) of basic streams, included in the basicStreams array.

struct CompositeStream {
 std::string name;
 struct BasicStream* basicStreams[10];
 int b_no; };
Abasic stream (i.e., a data-flow between two HW processes) provides an intrinsic
perspective on the associated control-flow needed to setup these HW processes. 
Thus, there is a need for thoroughly characterizing the properties of each basic 
stream. As such, a basic stream is specified by a name, a category and a 
capacity. In addition, each stream transfers data over a physical bus, between 
a source HW process (src_process) and a destination HW process (dst_
process). The latter are represented as pointers to the corresponding elements. 
From a control perspective, a basic stream is equivalent to one or many HW process 
commands that trigger the data transfers over the bus. These commands are gath-
ered in the microcommands array and executed every time the basic stream is 
triggered.

struct BasicStream {
 std::string name;
 enum category cat;
 unsigned int Capacity;
 struct Bus *bus;//pointer to the bus //transporting the 
stream

 struct Process *src_process;
 struct Process *dst_process;
 Microcommand* microcommands[10];
 unsigned int m_no; };
The Microcommand is characterized by a name and an implementation (impl).
In turn, the implementation consists of a command identifier (command), which is 
a numeric value to be written by the controller to the control register (master_
address) of the master HW process. The microcommand will also specify the 
address (slave_address) of the slave HW process to which the master process 
is to communicate over the bus.

struct Microcommand {
 std::string name;
 struct impl {
  unsigned int command;
  Module* slave_address;
  Module* master_address;
  } impl; };
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We mention that these type definitions and their data structures are independent of 
the specific configurations that can be created in MICAS. They are intended only 
to provide a common framework to specify the MICAS architecture in C++. These 
type definitions may be regarded as a textual language for specifying MICAS con-
figurations at simulation level.

7.4 Generating the Simulation Model

A graphical specification language [5] is used to create MICAS configurations and 
to design the services provided by a given configuration. For instance, Fig. 7.3 
presents the hardware configuration of an Audio domain, while Fig. 7.4 depicts the 
stream definition of an encodeAudio service provided by this domain.

From the graphical specifications of MICAS configurations, the simulation code 
is generated automatically using the C++-based specification language of MICAS. 
See [5] for more details.

Interrupt controller
interrupt_controller

Bus1
bus

Interrupt SFR register
interrupt_SFR_register

SFR Bridge
sfr_bridge

SFR Register_SoundRecorder
module_SFR_register

SoundRecorder
soundRecorder

SFR Register_AudioEncoder
module_SFR_register

AudioEncoder
encoder

SFR Register_Socket3
module_SFR_register

Socket3
socketSlave

socket_control_sfr_reg
socket_control_SFR_register

MCU3
microcontroller

0

1

2

3

Fig. 7.3 MICAS domain model example
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7.4.1  Specifying Functional Configuration and Service 
Description

The generated code has two parts, declaration and initialization, similar to a C++ 
program. In the declaration part, the MICAS components of a given configuration 
are instantiated using the C++ data types defined previously. The following code 
represents the declaration of the domain shown in Fig. 7.3.

Domain Audio;
Module Audio_Socket3;
Module Audio_socket_control_sfr_reg;
Module Audio_AudioEncoder;
BasicStream Audio_S11;
Microcommand mc_S11_Audio_record_sound_wav;
Microcommand mc_S11_Audio_transmit_data_to_domain;
BasicStream Audio_S13;
Microcommand mc_S13_Audio_encode_wav_2_mp3;
Microcommand mc_S13_Audio_transmit_data_to_domain;
CompositeStream Audio_encodedAudio;
Module Audio_SoundRecorder;
Bus Audio_Bus1;
BasicStream Audio_S12;
Microcommand mc_S12_Audio_record_sound_wav;
CompositeStream Audio_unencodedAudio;
Service Audio_encodeAudio;
Service Audio_plainAudio;
In the initialization part, the properties of each instantiated component are initial-
ized with data extracted from the MICAS models. Due to the large size of the gen-
erated code, we only show the properties of the Socket3 process, of the service 
encodeAudio, and of the S13 basic stream.

Audio_Socket3.name = “Socket3”;
Audio_Socket3.master_ctrl_reg_addr = 10;
Audio_Socket3.slave_reg_addr = 1;
Audio_Socket3.slave_data_buffer = 32;

AudioEncoder
Encoder

SoundRecorder
SoundRecorder

Socket3
Socket

S13 : mp3S12 : wav

Fig. 7.4 Streams of the encodeAudio service
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Audio_Socket3.master_data_buffer = 32;
Audio_Socket3.irq = 2;
Audio_Socket3.type = SOCKET;
……
Audio_encodedAudio.name = “encodedAudio”;
Audio_encodedAudio.basicStreams[0] = &Audio_S12;
Audio_encodedAudio.basicStreams[1] = &Audio_S13;
Audio_encodedAudio.b_no = 2;
……
Audio_S13.name = “S13”;
Audio_S13.bus = &Audio_Bus1;
Audio_S13.src_module = &Audio_AudioEncoder;
Audio_S13.dst_module = &Audio_Socket3;
Audio_S13.Capacity = 100;
Audio_S13.cat = MP3;
Audio_S13.microcommands[0] = 
&mc_S13_Audio_encode_wav_2_mp3;

Audio_S13.microcommands[1] = 
&mc_S13_Audio_transmit_data_to_domain;

Audio_S13.m_no = 2;

7.4.2 Specifying the Structural Configuration

As previously mentioned, the structural perspective of a given MICAS configura-
tion is modeled at simulation-level using the SystemC language. The MICAS
Simulation library is used for providing ready-built SystemC specifications of 
MICAS resources. Following this approach, only the top-level configuration file of 
the SystemC model has to be generated in order to obtain the hardware simulation 
model of a given MICAS configuration.

In order to integrate, at run-time, the structural and functional information of the 
configuration, the SystemC module specifications stored in the library have been cus-
tomized to also take into account, at initialization time, the functional configuration and 
the service description of a given MICAS configuration.

7.4.2.1 Providing Reusable Module Specifications

SystemC promotes reuse of module specifications allowing the instantiation of the 
same module for implementing (simulating) several hardware components in the 
same configuration. However, each module instance has to be made “aware” of its 
configuration settings in terms of assigned address spaces, IRQ numbers, parame-
ters, etc. This information has to be passed to instances at instantiation time, or fol-
lowing the SystemC terminology, at elaboration time.
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Using the information provided by the functional configuration and by the serv-
ice description, respectively, we configure, at elaboration time, SystemC module 
instances with specific information. The approach enables the reuse of the same 
SystemC module specification in several architectural configurations. For instance, 
if two MICAS modules VideoEncoder and AudioEncoder are used in a configura-
tion, each of them as part of a different MICAS domain, a generic SystemC 
encoder module can be used to simulate both components. Thus, the encoder has 
to be instantiated once for each of the two MICAS modules, and the functional 
information specific to each MICAS module has to be passed to its corresponding 
instance.

A couple of customizations have been applied to the components of the MICAS 
Simulation library. Firstly, we have defined a mechanism that enables us to pass the 
configuration properties to module instances at elaboration time. Secondly, the SystemC 
processes implementing the module behavior have been customized to take the func-
tional configuration and the service description into account during simulation.

Passing information to module instances. As mentioned previously, each 
SystemC module specification is basically a C++ class. As such, beside the 
SystemC specific constructs, one can define additional properties of that class, like 
attributes and methods.

In the previous section, we have declared several C++ data types (e.g., Domain,
Process, Bus, etc.), each of them specifying the functional properties of a spe-
cific type of MICAS hardware resource. We integrate each such data type with the 
corresponding SystemC module by declaring a mymodule attribute of the module 
class. For instance, classes specifying MICAS processes contain a Process
mymodule attribute, whereas classes specifying bus modules have a Bus
mymodule attribute. An example is given in the following:

SC_MODULE (socketMaster){
 SC_CTOR (socketMaster){
 ……
 }
 public:
 Process mymodule; };
During the elaboration phase, when modules are instantiated in the main.cpp
file, the information is passed to a given module instance in the following way:

socketMaster Socket1(“Master_Socket1”);
Socket1.mymodule = *this_domain->moduleList[Socket1_id];
We have followed a similar approach in case of the modules implementing MICAS 
controllers, with the difference that the entire functional configuration of a domain 
is passed to the controller (MCU1.mymodule = *this_domain;) as an 
attribute. We have employed this approach since the domain controller manages the 
resources of the entire MICAS domain and therefore, it requires access to the prop-
erties of all domain resources.
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Customizing module behavior. Having configuration information passed to 
SystemC modules also requires the customization of the SystemC processes that 
are modeling the behavior of each module, such that they take into account the 
fields of the mymodule data structure.

For instance, a socketMaster module uses two methods (transfer_
over_socket() and transfer_to_slave()) to specify its internal proc-
esses, as shown below:

void transfer_to_slave();
void transfer_over_socket ();
SC_CTOR (socketMaster){
 SC_METHOD (transfer_over_socket);
 sensitive_pos (Clk);
 SC_CTHREAD (transfer_to_slave, Clk.pos () ); }
The transfer_over_socket() method manages the data transfer from the 
socket over the external socket network, while the transfer_to_slave()
method handles data transfers on the local bus.

Each process has a corresponding implementation, situated in the .cpp file of 
the module specification. For the sake of example, an excerpt of the code imple-
menting the transfer_to_slave() process is shown below. The presented 
code reads the control register address of a MICAS component (mymodule.
master_ctrl_reg_addr) and writes it to the M_MData port of the socket-
Master instance.

void socketMaster::transfer_to_slave() {….
 M_MData.write(mymodule.master_ctrl_reg_addr);
 …. }
Therefore, using the functional properties of the module as variables, instead of 
having them hardcoded in the process specification, enables us to reuse the same 
process in a generic manner.

7.4.3 The SystemC Top-Level File

Based on the previous customizations of the MICAS Simulation library, the proc-
ess of generating the SystemC top-level file for a given configuration is fully auto-
mated. The SystemC code corresponding to the MICAS domain presented in Fig. 
7.3 is shown below:

 //main.cpp
 #include “microcontroller.h”
 #include “interrupt_SFR_register.h”
 #include “AHB_bus.h”
 #include “bus.h”
 #include “soundRecorder.h”
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 #include “socketSlave.h”
 #include “encoder.h”
 #include “inverter.h”
 #include “interrupt_controller.h”
 #include “sfr_bridge.h”
 #include “module_SFR_register.h”
 #include “socket_control_SFR_register.h”
 #include “config1.h”

 namespace MicasSystem {
  namespace Audio {
   microcontroller MCU3(“Audio_MCU3”);
   socket_control_SFR_register 
socket_control_sfr_reg(“Audio_socket_control_sfr_reg”);

   socketSlave Socket3(“Audio_Socket3”);
   interrupt_controller Interrupt_controller(
     “Audio_Interrupt_controller”);
   encoder AudioEncoder(“Audio_AudioEncoder”);
   soundRecorder SoundRecorder(“Audio_SoundRecorder”);
   sfr_bridge SFR_Bridge(“Audio_SFR_Bridge”);
   module_SFR_register SFR_Register_Socket3(
     “Audio_SFR_Register_Socket3”);
   module_SFR_register SFR_Register_SoundRecorder(
     “Audio_SFR_Register_SoundRecorder”);
   bus Bus1(“Audio_Bus1”);
   module_SFR_register SFR_Register_AudioEncoder(
     “Audio_SFR_Register_AudioEncoder”);
   interrupt_SFR_register Interrupt_SFR_register(
     “Audio_Interrupt_SFR_register”);
 } // Audio namespace end
} // MicasSystem namespace end

 int sc_main(int argc, char* argv[]) {
  sc_clock TestClk (“TestClock”, 10, SC_NS, 0.5);
  initialize();
  { using namespace MicasSystem::Audio;
   MCU3.Clk(TestClk);
   socket_control_sfr_reg.Clk(TestClk);
   Socket3.Clk(TestClk);
   Interrupt_controller.Clk(TestClk);
   AudioEncoder.Clk(TestClk);
   SoundRecorder.Clk(TestClk);
   SFR_Bridge.Clk(TestClk);
   SFR_Register_Socket3.Clk(TestClk);
   SFR_Register_SoundRecorder.Clk(TestClk);
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   Bus1.Clk(TestClk);
   SFR_Register_AudioEncoder.Clk(TestClk);
   Interrupt_SFR_register.Clk(TestClk);
   Domain* this_domain = domain_list[Audio_id];
   MCU3.mydomain = *this_domain;

socket_control_sfr_reg.socket_ctrl_register_addr = 
 this_domain->

    moduleList[socket_control_sfr_reg_id]->master_ctrl_reg_addr;
Socket3.mymodule = *this_domain->moduleList
 [Socket3_id];

   SFR_Register_Socket3.module_sfr_register_addr =
    this_domain->moduleList[Socket3_id]->master_ctrl_reg_addr;

AudioEncoder.mymodule = 
 *this_domain->moduleList[AudioEncoder_id];

   SFR_Register_AudioEncoder.module_sfr_register_addr =
    this_domain->moduleList[AudioEncoder_id]
   ->master_ctrl_reg_addr;

SoundRecorder.mymodule = 
 *this_domain->moduleList[SoundRecorder_id];

   SFR_Register_SoundRecorder.module_sfr_register_addr =
    this_domain->moduleList[SoundRecorder_id]
   ->master_ctrl_reg_addr;

   Interrupt_SFR_register.int_ctrl_SFR_
  register_addr =

    this_domain->int_ctrl_reg_addr;
   //connect ports
   …… }
 {//connect domains
 ……
 }//end ELABORATION PHASE
 int n = 600000000;
 if( argc > 1 ) std::stringstream(argv[1], std::
stringstream::in) >> n;

 sc_start (n); //START SIMULATION
 return 0; } // sc_main end

7.5 Conclusions

We have presented a C++-based specification language for the MICAS architecture 
that is used to integrate, at simulation time, the configuration related properties with 
the SystemC-based specification of the MICAS hardware. The approach favors the 
use of simulation libraries and enhances support for automation.
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We have shown how the defined language can be used to model various charac-
teristics of the MICAS configurations and how it can be integrated with the SystemC 
specification of a given configuration. In addition, we have discussed the customiza-
tions applied to the components of the MICAS Simulation library, such that the 
simulation model of a given MICAS configuration can be automatically generated.

We mention that although the process of upgrading the library required some addi-
tional effort, the benefit of the approach is twofold: (a) it enables for different instances 
of the same module specification not only to be instantiated in several architectural 
settings, but also to reuse the same module for implementing different MICAS com-
ponents; (b) it facilitates the automated generation of the simulation model.
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Chapter 8
Heterogeneous Specification with HetSC 
and SystemC-AMS: Widening the Support 
of MoCs in SystemC

F. Herrera1, E. Villar1, C. Grimm2, M. Damm2, and J. Haase2

Abstract This chapter provides a first general approach to the cooperation of 
SystemC-AMS and HetSC (Heterogeneous SystemC ) heterogeneous specification 
methodologies. Their joint usage enables the development of SystemC specifica-
tions supporting a wide range of Models of Computation (MoCs). This is becoming 
more and more necessary for building complete specifications of embedded sys-
tems, which are increasingly heterogeneous (they include the software control part, 
digital hardware accelerators, the analog front-end, etc.). This chapter identifies 
the syntactical and semantical issues involved in the specifications which include 
facilities from both, SystemC-AMS and HetSC methodologies. This work, which 
is an extension of the paper presented in FDL’07 [7], considers the availability and 
suitability of the MoC interface facilities provided by both methodologies, espe-
cially those of SystemC-AMS, which will be proposed for future standardization. 
Some practical aspects, such as the current set of MoCs covered by the methodologies 
and the compatibility on the installation of their associated libraries are also cov-
ered by this chapter. A complete illustrative example is used to show HetSC and 
SystemC-AMS cooperation.

Keywords Heterogeneity, Models of Computation, System-Level Design, SystemC.

8.1 Introduction

Support for heterogeneity has become an important feature for specification 
methodologies that aim to cope with the current complexity of embedded systems. 
In this context, heterogeneity is the ability of the specification methodology to 
enable the building of models with parts specified under different MoCs [1].
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Each design domain adopts a specification methodology which usually corre-
sponds to a specific model of computation (MoC). One of the most characteristic 
points associated with the MoC is the handling of time. For instance, analog models 
(Continuous Time (CT) models [2] handle strict-time information, that is, specifi-
cation events have an associated time tag representing physical time and fixing 
strict order relationships among them. In contrast, concurrent software models 
often neglect such detail in the time domain and consider only partial order rela-
tionships among the events associated to the code.

The development of a system-level heterogeneous specification methodology is, 
to a great extent, a unification work. Some works developed interfaces between 
different languages, i.e., to connect hardware description languages (HDLs) with 
high-level programming languages [3]. This enabled certain decoupling between 
different design teams, which can fix the connection points and work separately. 
However, a system-level specification methodology has to enable the generation, 
understanding, edition and simulation of the specification of the whole system. This 
is a unification work which involves finding common points for the specification 
and simulation methodologies handled by the different design communities.

An effort to develop a common specification and simulation framework was 
done. Relevant examples are Metropolis [4] and Ptolemy II [5]. These frameworks 
enable specification under different MoCs, approaching the separation of computa-
tion and communication in different ways. Both provide support for graphical 
specification, while Java adopts the role of underlying implementation language.

Up to now, the focus of this unifying work has tended to be the language itself. 
The lack of a unified system specification language has been identified as one of 
the main obstacles bedevilling SoC designers [6]. A common specification lan-
guage is a major aid in generating a specification methodology which aims to com-
bine and achieve coherence among traditionally different and separated design 
approaches. SystemC has started to play a role as unifying system-level language 
for embedded system design. Becoming an IEEE standard is a symptom of its 
acceptance and of a stated syntax and unambiguous semantic for the language con-
structs which are used by SystemC-based methodologies.

In this context, several proposals have appeared for building heterogeneous specifi-
cations in SystemC. This chapter shows how two of them, HetSC and SystemC-AMS 
can be jointly used to enable models based on the SystemC language and comprising 
a wide spectrum of MoCs. This work is based on [7], which is improved and extended 
here. After this introduction, Section 8.2 reviews previous work on heterogeneous 
specification in SystemC. The main focus is on the HetSC and SystemC-AMS speci-
fication methodologies. Section 8.3 deals with general issues about the interoperability 
of these methodologies. First, some practical issues concerning the installation and the 
scope of the libraries are discussed. Then, how the SystemC-AMS and HetSC con-
structs are mixed in the same specification is explained. Reviewing and understanding 
how the existing facilities provided by the two methodologies for MoC connection can 
be used and combined serves later to propose improved connections. Section 8.4, pro-
vides an illustrative example of the previous concepts. Last section ends with the main 
conclusions and advances further steps of the research on this topic.
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8.2 Heterogeneous Specification in SystemC

Although the SystemC core language supports hardware specification (RTL and 
Behavioural) and a generic Discrete Event (DE) modelling, there is a set of MoCs 
which are not sufficiently supported by the core language. Such support must 
include new specification facilities, MoC rule checkers, report tools, etc. Several 
works have attempted to cover such deficiencies. In the following subsections these 
works are overviewed. Most of these methodologies are supported by an associated 
library; however, they extend SystemC in different ways.

8.2.1 SystemC-AMS

SystemC-AMS [8] is a specification methodology developed by the OSCI 
SystemC-AMS working group which provides support for analog and mixed-signal 
specification. This involves supporting the Synchronous Dataflow (SDF), discrete-
time (DT) and continuous time (CT) MoCs. Among the CT MoCs, it is possible to 
specify linear behavioral models by means of transfer functions (TF). Currently, 
two views are supported for TFs: the numerator-denominator (ND) view and the 
zero-pole (ZP) view. In addition, the specification of linear electrical networks 
(LEN), which enable a circuit level description, is also supported.

SystemC-AMS is extensible by other models of computation through a synchro-
nization layer. Solvers for the MoCs supported are layered over the synchronization 
layer. The design of the synchronization layer of SystemC-AMS and the MoCs 
provided are oriented to a system-level modelling where simulation speed is a more 
important factor than a very fine simulation accuracy.

The synchronization layer supports directed communication and only a simple syn-
chronization; on user specified events or in fixed time steps. In this way, the simulation 
of linear networks with SystemC-AMS can be orders of magnitudes faster than the 
more general numerical integration for non-linear networks [9]. From the specification 
point of view, SystemC-AMS offers a new set of facilities, such as new kinds of mod-
ules (SCA_SDF_MODULE), ports (sca_sdf_in, sca_sdf_out, etc.), channels (sca_sdf_
signal), and other MoC specific facilities, such as the sca_elec_node, sca_elec_port,
etc. Linear behavioural models are embedded in SDF modules, while LENs are 
enclosed in SystemC modules. SystemC-AMS provides converter ports and facilities to 
enable different MoCs to communicate (i.e. DE with SDF, SDF with LEN, etc).

8.2.2 HetSC

HetSC [10] is a methodology for enabling heterogeneous specifications of complex 
embedded systems in SystemC. MoCs supported include untimed MoCs, such as 
Kahn Process Networks (KPN), its bounded fifo version (BKPN), Communicating 
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Sequential Processes (CSP) and Synchronous Dataflow (SDF). Synchronous 
MoCs, such as Synchronous Reactive (SR) and Clocked Synchronous (CS) and the 
timed MoCs already supported in SystemC are also included. HetSC aims at a 
complete system-level HW/SW codesign flow. Indeed, the methodology has been 
checked in terms of system-level profiling and software generation [11].

The HetSC methodology defines a set of specification rules and coding guide-
lines for each specific MoC, which makes the designer task more systematic. The 
support of some specific MoC requires new specification facilities providing the 
specific semantic content and abstraction level required by the corresponding 
MoCs. The HetSC library, associated with the HetSC methodology, provides this 
set of facilities to cover the deficiencies of the SystemC core language for hetero-
geneous specification. In addition, some facilities of the HetSC library help to 
detect and locate MoC rule violations and assist the debugging of concurrent speci-
fications. One of the main contributions of HetSC is its efficient support of abstract 
MoCs (untimed and synchronous). This is because they are directly supported over 
the underlying discrete event (DE) strict-time simulation kernel of SystemC. New 
abstract MoCs do not require additional solvers since the new MoC semantic is 
embedded in the implementation of the new specification facilities (usually chan-
nels) related to the abstract MoC. When the new MoC can be abstracted from the 
DE strict-time MoC, then, it is possible to find a mapping of internal events of the 
new specification facility, i.e., a channel, over the strict-time axis of the DE base 
MoC. This makes it feasible to write the implementation of such a channel by using 
SystemC primitives, such as SystemC events, which control when things happen 
within the channel and, therefore, in the processes related by the channel.

8.2.3 SystemC-H

SystemC-H [12] is a methodology that proposes a general extension of the SystemC 
 kernel for the support of different MoCs. This methodology proposes the extension of the 
SystemC kernel by including a solver for each MoC. The current scope of the SystemC-
H library covers the SDF and CSP untimed MoCs. For instance, SystemC-H provides a 
solver for static scheduling of SDF graphs which enables schedulability analysis and 
provides a 75% speed-up respect to DE [12]. However, this extension is not always 
worthwhile. Indeed, the speed-up for some abstract MoCs can be negligible [13]. In addi-
tion, the effects of Amdahl law can make simulation speed-ups vanish. For instance, in 
[12] the speed-up of a mixed DE-SDF example decreases to 13%. This suggests that 
providing a specific solver for each MoC can be not always worthy. In cases like these, 
it can be more efficient to let several MoCs to share the same simulation kernel. This is 
the approach of HetSC, where similar speed-ups to those of [12] were reported for the 
dynamic approach to SDF for large-grain SDF specifications [14]. Another problem of 
this approach is that the way the extension is proposed requires modifying the standard 
kernel of the library. In contrast, SystemC-AMS and HetSC methodological libraries rely 
on the SystemC standard library, which remains untouched.
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8.2.4 SysteMoC

SysteMoC [15] focuses on providing a methodology with the ability to extract and 
analyze the MoC employed in the SystemC design. This is understood to be a pre-
requisite for the rest of the design activities. In order to achieve this, the SysteMoC 
library provides support for a basic MoC called Funstate. Specifications written 
under this MoC express their communication behaviour under the finite state 
machine (FSM) MoC. This enables the automatic extraction and analysis of the 
MoC employed, only by analyzing communication FSMs together with the topol-
ogy of the specification.

8.3 HetSC/SystemC-AMS Interoperability

8.3.1 Installation and Scope

Figure 8.1 describes the installation requirements of the SystemC user. Apart from 
the SystemC core library, the SystemC-AMS and HetSC libraries have to be 
installed on top of the SystemC core library. There is flexibility with respect to the 
development platform (i.e., Linux, Unix and Windows-Cygwin are supported).

There is no compatibility problem in the installation of HetSC and SystemC-
AMS libraries. In this work, the HetSC library is extended with some specific 
facilities for enabling an easier connection of HetSC and SystemC-AMS parts. 
These HetSC facilities use some SystemC-AMS facilities through forward declara-
tions. This prevents obliging an installation order between HetSC and SystemC-
AMS libraries, making the installation procedure easier. Once such an installation 
has been done, the development system is ready for compiling and executing 
SystemC specifications written under a wide range of MoCs. The user only has to 
include the SystemC-AMS and HetSC libraries in the source code of the heteroge-
neous specification.

HetSC
Library

OSCI SystemC
Library

C++ Compiler 

SystemC-AMS
Library

#include <systemc-ams.h>
#include “systemc.h” 

int sc_main(..) { 
…
}

Fig. 8.1 SystemC-AMS and HetSC libraries are installed over the SystemC library
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Figure 8.2 shows the supported MoCs. The cooperation of SystemC-AMS and 
HetSC provides a complementary MoC support. While SystemC-AMS provides 
support for analog MoCs and static synchronous data flow, untimed and synchro-
nous MoCs are supported by HetSC and SystemC core facilities.

This is also an efficient configuration for the support of a wide spectrum of 
MoCs. The reason is that specific solvers are provided only for a set of MoCs where 
the simulation speed up is significant. This set corresponds to analog MoCs, where 
the simulation speed ups can be of orders of magnitude. Bearing in mind the limited 
speed-ups reported in [10, 12, 13], untimed and synchronous MoCs can be satisfac-
torily supported directly over the SystemC kernel. The exception would be fine 
grain SDF specifications, where the speed up of a static SDF compared to a 
dynamic SDF could be significant. Specifications without CT parts but with syn-
chronous hardware (RTL or behavioural) could also justify a cycle-accurate simula-
tor. However, the study of these exceptions is not in the scope of this work.

8.3.2 Syntactical and Semantical Issues

There are some basic issues to consider in a general discussion of the connection 
between HetSC and SystemC-AMS. In terms of the resulting structure, two parts 
can be distinguished in the specification. One corresponds to the AMS part, while 
the other corresponds to the HetSC part.

From the syntactical point of view, the SystemC-AMS part will be identified by 
SCA_SDF_MODULEs and/or SCA hierarchical modules. This part presents a hier-
archical heterogeneity where the underlying MoC is the static synchronous data-
flow (SDF) MoC. The HetSC part is characterized, in general, by an amorphous 
heterogeneity. This means that the HetSC specification permits mixing MoC facili-
ties in a flat hierarchy. Nevertheless, the HetSC specifier will often make use of 
module hierarchy for separating parts of the system under different MoCs. Thus, in 
many cases, module partition will correspond with MoC boundaries.

From the semantical point of view, there is a basic consideration. While HetSC 
directly relies on the DE strict-time simulation kernel, SystemC-AMS relies on a 
synchronization layer, which provides support for the solvers. In SystemC-AMS, 
CT descriptions are always embedded in dataflow clusters [8]. That is, the most 
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Fig. 8.2 MoCs spectrum provided by the cooperation of SystemC-AMS and HetSC



8 Heterogeneous Specification with HetSC and SystemC-AMS 113

important solver is the SDF one which, from the point of view of time semantics, 
is the basis for the analog MoCs. The time axis in SystemC-AMS is actually sliced 
by each SDF cluster in strict-time delays called cluster periods (T

cluster
), which 

depends on the sample period (T) and rates of the cluster SDF graph. Thus, with 
respect to the premises of [14], the SDF approach of SystemC-AMS is not an 
untimed SDF. Internally, modules of the cluster can be viewed as a strict-time timed 
approach to the SDF MoC (denoted as T-SDF here), which enables a static execu-
tion of the AMS processes at each cluster period. More important for the purpose 
of this work, from an external point of view, the cluster can be conceived as a 
timed-clocked synchronous (CS) block which triggers at each cluster period. Thus, 
the cluster period must be taken into account to synchronize the DE part with the 
SystemC-AMS part.

Since every MoC supported by HetSC is abstracted over the DE strict-time sim-
ulation kernel and every SystemC-AMS MoC is clustered in the T-SDF MoC, the 
problem is reduced to providing a SystemC/SystemC-AMS connection, which is 
basically a DE/T-SDF connection. In SystemC-AMS, this connection is done by 
means of SystemC signals (sc_signal channels) and a set of SystemC-AMS con-
nection facilities (sca_scsdf_in, sca_scsdf_out, sca_sc2v, sca_sc2r, etc.). Each of 
these connection facilities are based on the sampling and/or update of a SystemC 
signal at each cluster time. Therefore, an immediate conclusion is that these ele-
ments can be directly employed to combine HetSC and SystemC-AMS.

Such direct usage of the sc_signal and the DE/SystemC-AMS connection facili-
ties is immediate in some HetSC/SystemC-AMS connections. On the left hand side 
of Fig. 8.3, a HetSC part under a synchronous reactive MoC (SR MoC) is repre-
sented. Both in Figs. 8.3 and 8.5 the graphical representation used in HetSC meth-
odology is employed. There is a simple reactive chain composed of a generator 
process (GP) which triggers a reactive process (RP). This RP is also a border proc-
ess (BP), since it writes to a SystemC signal channel (sc_signal), which is con-
nected to a SystemC-AMS part. Its connection with the SystemC-AMS part by 
means of a signal channel is syntactically and semantically compatible with the SR 
MoC rules. These rules and, specifically, perfect synchrony, are respected since the 
write access to the SystemC signal is non-blocking. This enables the reactive chain 
to be computed consuming one or more simulation delta cycles, but without requir-
ing a SystemC time advance. This is the way in which perfect synchrony is imple-
mented in HetSC.

sc_signaluc_SR

BP SCA_SDF
_MODULE

sca_scsdf_in

GP RP

LEN
networksca_sc2r

Fig. 8.3 Connection of HetSC and SystemC-AMS parts by means of a border process
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From the SystemC-AMS part, the connection is coherent too. In the connection to 
a SCA_SDF_MODULE, the value of the sc_signal is read at each cluster time. This 
value can be read as many times as necessary, as the consumption rate of the sca_
scsdf_in port determines. Another possibility is the connection to a linear electrical 
network (LEN MoC of SystemC-AMS) by means of a converter facility, for instance, 
a sca_sc2r in Fig. 8.3. This facility enables the update of its associated resistance 
value whenever the sc_signal channel is written. Then, this updated resistance value 
is employed by the LEN solver in the following cluster times to solve the differential 
equation corresponding to the electrical network the converter facility belongs to.

The time stamp information of the HetSC SR slot is irrelevant to the effect of the 
HetSC SR MoC itself (the only necessary condition is that each slot has to happen 
at different time stamps). However, it is important to the effect of the (HetSC) SR 
MoC/(SystemC-AMS) LEN MoC connection, since it tells when the differential 
equation system is updated, before or after a given cluster time. For instance, in Fig. 
8.4, the time stamps of the SystemC-AMS cluster computations are represented as 
black dots. Their time stamps are equally spaced. The time stamps of the SR time 
slots are represented as white dots. As mentioned, there is still consistency in the 
SR part if slot time stamps are not equally separated. However, actual time stamps 
of SR slots affect the relationship of the SR part with the timed SystemC-AMS part. 
For example, the first two cluster computations, C1 and C2, use the signal value 
updated in the slot S1, while the cluster computation C3 uses the signal value 
updated in the slot S3. If the S2 slots moves to a time stamp before C2, then, 
although this is no relevant to the effects of the SR part, it affects the SystemC-
AMS part, since C2 takes the value updated in S2.

The set of MoCs abstracted from the DE MoC and supported by HetSC is rich 
enough to consider specific connections which cannot be directly handled by only 
a SystemC signal plus SystemC-AMS connection facility. For instance, the connec-
tion of a KPN MoC with a LEN MoC involves fifo channel semantics on one side 
and electrical nodes on the other side. It would be convenient to count on some 
connection facility which enables such direct connection, without the explicit inter-
mediation of the SystemC signal (sc_signal).

In order to get such a direct connection, both in syntactical and semantical terms, 
the SystemC signal-SystemC-AMS connection facility can be conveniently com-
plemented and wrapped by one of the basic concepts employed in HetSC for the 
connection of MoCs, the border process. Externally, the connection facility can take 

SystemC time stamp

HetSC SR slots 

SystemC-AMS SDF Cluster Times

S1 S2 S3

C1 C2 C3

Tcluster Tcluster

Fig. 8.4 Strict time information in the HetSC/SystemC-AMS connection
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the shape of a HetSC border channel (BC). Figure 8.5 shows a border channel (uc_
inf_fifo_sca_sdf ), which enables a direct connection between a KPN MoC and a 
T-SDF MoC. It is built as a hierarchical channel which on the one hand exports the 
write interface of an uc_inf_fifo channel, while on the other hand offers a T-SDF 
port (sca_sdf_out) port. Internally, it uses a border process which consumes fifo 
tokens, whose values are used to update the internal SystemC signal. The signal is 
connected to a converter port (sca_scsdf_in) of an inner SystemC-AMS module. In 
addition, BCs provide a scalable way to construct these direct connections since it 
does not require the SystemC-AMS kernel to be changed.

BCs provides a semantical solution for the untimed/timed connection which 
arises when untimed MoCs of HetSC are connected to SystemC-AMS MoCs. In the 
(HetSC) SR-(SystemC-AMS) T-SDF example the solution was based on sampling 
(read) and updating (write) signals and considering the relationship of the actual 
time stamps of HetSC SR slots and the cluster period of the SystemC-AMS part. 
The connection of SystemC-AMS with untimed HetSC MoCs is more complex 
because of the differences in terms or communication semantics. HetSC untimed 
MoCs handle a different behaviour in terms of the destructive and non-destructive 
semantics of the write and read accesses.

For instance, a KPN part, expects that writing to a (fifo) channel provokes the 
accumulation of tokens within the channel in case they cannot be immediately 
transferred, thus they are never lost. This is a non-destructive write semantic. It also 
expects to consume instead of peeking or sampling the data present in the channel, 
that is, a destructive read. This communication semantic, typical from untimed 
MoCs has to be coherently connected with the T-SDF part, which writes and reads 
at a fixed pace (determined by the cluster period and port rates) with a non-accu-
mulative (destructive) write and sampling (non-destructive) read semantic. Then, 
some kind of adaptation has to be introduced to convert consumption in sampling 
(and vice versa) and production in writing (and vice versa). Actually, this type
of adaptation is not comprised by any of the SystemC-AMS connection facilities. 
Such adaptation can be explicitly written, i.e. as a HetSC border process. The BC 
enables the packaging of such adaptation in a specification primitive. For 
instance, in the uc_inf_fifo_sca_sdf is a BC. In this BC, when to consume fifo 
tokens is defined by means of a sampling period, which, in general, can be different 
from the cluster period. The BC can also raise an error if the internal fifo gets empty 
when a new sampling is given.

sc_signaluc_inf_fifo

uc_inf_fifo_sca_sdf<T>

cons_T

SDA_SDF
_MODULE

sca_sdf_out

sca_scsdf_in

Fig. 8.5 Structure of a uc_inf_fifo_sca_sdf channel
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8.4 Example

In order to demonstrate the previous general concepts, an example has been developed. 
This example is available in [16]. It consists of a soundboard, which is shown in 
Fig. 8.6. The system has an audio input and an audio output. The audio input undergoes 
three stage filtering. The first filter is a noise filter to remove any signal component 
over 22 kHz. The second one is a 10-channel equalizer. The last one is an integrator, 
which, at the same time, controls the general volume and filters the DC component of 
the audio output. The system has other inputs, as well as the audio input. A dial enables 
selection of the equalizer channel, while another dial tunes the gain of the selected 
channel in dBs (in a [-10 dB, 10 dB] range). A state display shows the current state of 
the equalization, while an edition display shows the currently selected channel and the 
currently edited equalization profile. This profile is not applied till the set button is 
pressed. Then, the state display changes to reflect this equalization profile. If the cancel
button is pressed instead, then the edition display and the edition equalization profile 
return to the initial state (0 dB for every channels). Another dial controls the general 
gain of the system (also in a [-10 dB, 10 dB] range). It does not depend on the set
button. That is, its change immediately updates the system gain.

Figure 8.7 depicts how this has been solved using HetSC and SystemC-AMS 
together. The system is enclosed in a SystemC module (soundboard). This top 
module contains another SystemC module (panel_control), which contains the 
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HetSC part of the system and uses the HetSC library specification facilities. The 
soundboard module also contains three modules which use SystemC-AMS facili-
ties. In this case, the testbench model (testbench module) is composed of four 
modules which only use HetSC facilities. In another version, part of the testbench 
(the audio input) was specified using SystemC-AMS specification facilities). In this 
sense, several combinations were possible leading to the same result.

In Fig. 8.7, the correspondence with the MoCs employed is depicted with dashed 
lines. In the testbench module, two processes (left_hand and right_hand) model the 
handling of dials and buttons of the soundboard. The two processes are synchro-
nized through a rendezvous channel, to ensure the left hand edits the equalizer pro-
file before the right hand pushes the set button and raises the general volume. 
Because of this, this part is a CSP network. In addition, each of the processes is an 
autonomous process generating a SR reactive chain. Dial turn and button press are 
modelled as writes to uc_SR channels. The reactive chain which controls the gen-
eral volume is pure in that it is composed only of generator and reactive SR proc-
esses. The reactive process converts the dial events (turning left or right), which 
mean plus 1 dB or minus 1 dB, considering the bounds of the [-10 dB, 10 dB] range, 
in a control SystemC signal which affects the value of a resistor composing the 
integrator module. A similar thing happens with the channel equalization control. 
However, here there is not a pure reactive chain, since the two reactive processes 
are border processes, as they also write to infinite fifo HetSC channels (uc_inf_fifo),
proper of the KPN MoC. For instance, one is used to pass the new equalization 
profile to the state display when the set button is pressed.
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noise_filter integrator
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Fig. 8.7 SystemC-AMS-HetSC specification
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In the analog part, the noise filter is modelled through a SystemC-AMS SDF mod-
ule (noise_  filter). This module has an input port, to read the s_in external signal which 
provides the audio samples. It is designed as a second order Butterworth low pass filter 
with a cut frequency of 22 kHz, which is modelled under the LN-TF MoC of SystemC-
AMS, using the ND view. The other two blocks are modelled at a circuit level, under 
the LEN MoC. The equalizer_array module encloses an array of ten equalizer cells. 
Each of them is an active band pass filter centred at the channel frequency. This filter 
is described as a circuit with three resistors, two capacitors and a model of operational 
amplifier (OA) which considers the gain, the input and output resistance. Each equal-
izer cell is instantiated taking the capacitor values as the parameter for centring each 
filter at the channel frequency (32 Hz for channel 0, 64 Hz for channel 1 and so on till 
16 kHz for channel 9). The output of each equalizer cell is connected to a resistor 
instance of type sca_sc2r, controlled by one of the signals of the Rch_ctrl signal array. 
These resistors are connected to the same electrical output node, where the contribu-
tion of each equalizer cell is added. This node is used as input to the integrator module. 
This module is also described as a circuit which also instantiates the previously men-
tioned OA model, a capacitor, and a resistor controlled by the Rgen_ctrl signal, to 
control the gain of the integrator and, thus, of the whole system.

In both, the HetSC and SystemC-AMS parts, elements are employed to connect 
MoCs. For instance, BPs connect KPN and SR MoCs in the HetSC part, and a 
sca_sdf2v instance connects the noise filter to the equalizer array. In Fig. 8.7, the 
connections between the HetSC and the SystemC-AMS part have been highlighted 
with thicker arrows. Specifically, the audio input samples are transferred to the 
soundboard module through an instance of the uc_inf_fifo_sca_sdf channel intro-
duced in the previous section. This border channel enables a direct connection 
between the untimed part, which generates the samples, and the SystemC-AMS 
input converter port of the noise filter. The connection of the SR reactive chains to 
the LEN part of the model is placed between the lower part of the control_panel
module and the equalizer_array and integrator analog modules. For instance, the 
reactive process triggered by the turn events of the general volume dial is indeed a 
border process which writes the Rgen_ctrl SystemC signal. A similar thing happens 
with the non pure reactive chain, which drives an array of ten signals (each one for 
its corresponding equalizer channel). Each of these signals controls the value of a 
SystemC-AMS sca_sc2r primitive.

A time domain simulation and two frequency analyses have been performed. The 
time domain simulation is dumped to data and waveform files. The first frequency 
analysis is done in the middle of the time domain simulation. At this time, the sound-
board response corresponds to that of the initial state (0 dB gain for every channel 
and for the general volume). The second frequency analysis is done at the end of the 
time domain simulation, once a manual  configuration has been performed and the 
set button pressed. Additional results of the simulation are two data files, with the 
frequency response of the equalizer (thus, the equalization profile) at different points 
of the simulation time. The result has been post-processed with Octave specification 
execution, just to reflect the change on the equalization profile (Fig. 8.8). Other out-
puts of the system are two log files which reflect the activity of the displays.
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This specification took around 2,500 SystemC code lines including test bench 
modules and around 30 man-hours (ignoring learning time). The simulation time 
was less than 53 s in an Intel PIV 2.8 GHz, Linux 2.6.3 development platform. This 
illustrates how fast the system-level specification and analysis of such heterogene-
ous system can be done using HetSC and SystemC-AMS. The example has been 
checked for three configurations of development platforms, reflected in Table 8.1.

8.5 Conclusions and Future Work

This work addresses how the HetSC and SystemC-AMS specification methodolo-
gies can be used together. With their cooperation, a wide range of MoCs, from 
untimed to analog ones, are efficiently covered. This is a key feature in enabling the 
early system-level specification of embedded systems. The installation and compat-
ibility of the HetSC and SystemC-AMS libraries has been checked. Furthermore, 
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Table 8.1 Host configurations where the example has been compiled and executed

OS GCC SystemC SystemC-AMS HetSC

Linux 2.6.3/32 bits 3.3.2 2.1v1 0.15RC1/RC2 1.2
Linux 2.6.3/32 bits 4.0.0 2.2.0 0.15RC4 1.2
Linux 2.6.3.2/64 bits 4.1.2 2.2.0 0.15RC4 1.2
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the syntactical and semantical issues related to the connection have been discussed. 
SystemC-AMS is based on a timed SDF MoC, where AMS clusters can be concep-
tually seen as timed-clocked synchronous blocks from the DE part. SystemC-AMS 
provides facilities for this AMS/DE connection which are based on the sampling 
and update of the SystemC signal. Since HetSC MoCs are abstracted from the 
underlying DE strict-time MoC, the connection of any HetSC MoC with any 
System-AMS MoC can be reduced to a SystemC DE/SystemC-AMS connection. 
Thus, SystemC-AMS facilities for the DE/AMS connection can be used. Moreover, 
the HetSC border channel can be conveniently used to provide direct connections 
among specific untimed and synchronous (HetSC) MoCs and analog (SystemC-
AMS) MoCs, hiding the intermediation of DE signals in the connection of MoCs 
that do not employ such specification primitives and encapsulating the detection of 
error situations which consider the cluster period, the time conditions of HetSC 
part, etc. The immediate evolution of this work can be found [17], where converter 
channels are introduced. These channels incorporate concepts of polymorphic sig-
nals [18], releasing from any manual engagement in the system refinement. As well 
as adaptations on the time and communication domain, converter channels also 
introduce adaptations at the data type domain. Finally, this work implicitly states 
the need for a formal environment in order to obtain a common understanding of 
the interoperation of this kind of methodologies.
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Abstract This paper proposes VHDL-AMS syntax extensions that enable descrip-
tions of AMS systems with partial differential equations. We named the extended 
language VHDL-AMSP. An important specific need for such extensions arises 
from the well known MEMS modelling difficulties where complex digital and 
analogue electronics interfaces with distributed mechanical systems. The new 
syntax allows descriptions of new VHDL-AMS objects, such as partial quantities, 
spatial coordinates and boundary conditions. Pending the development of a new 
standard, a suitable pre-processor has been developed to convert VHDL-AMSP 
into the existing VHDL-AMS 1076.1 standard automatically. The pre-processor 
allows development of models with partial differential equations using currently 
available simulators. As an example, a VHDL-AMSP description for the sensing 
element of a MEMS accelerometer is presented, converted to VHDL-AMS 1076.1 
and simulated in SystemVision.

Keywords Hardware description language, VHDL-AMS, mixed-technology model-

ling, partial differential equations, MEMS

9.1 Introduction

VHDL-AMS is a hardware description language designed to support modelling at 
various abstraction levels in mixed, electrical and non-electrical physical domains 
as well as mixed, digital and analogue components [1]. These features make it 
straightforward for VHDL-AMS to be used as the modelling language in MEMS 
design. Since MEMS systems are combinations of subsystems from both the elec-
trical and mechanical domains, the field of MEMS design is interdisciplinary in 
nature. Several VHDL-AMS based MEMS models have already been reported in 
literature, such as a yaw rate sensor [2] and a vibration sensor array [3].

E. Villar (ed.) Embedded Systems Specification and Design Languages, 123
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Although VHDL-AMS is a very powerful and flexible mixed physical domain 
modelling tool, it faces a challenge in MEMS related applications. The current 
VHDL-AMS (IEEE 1076.1) can only describe the continuous parts of a system by 
using differential and algebraic equations (DAEs). Support for partial differential 
equations (PDEs) was intentionally left out in the development of VHDL-AMS 
standard due to the complexity [4]. This limits accurate modelling of system blocks 
that include distributed physical effects [5]. However, simulation of single-domain 
characteristics of micro devices is usually performed by solving PDEs with 
geometry-related boundary conditions [6]. Such blocks are currently modelled in 
VHDL-AMS mainly by reduced-order models (ROMs) [2, 3]. Because of the size 
of a MEMS device, distributed effects are not negligible and may even play vital 
roles, for which reduced-order MEMS models are often not accurate enough. Thus 
an implementation of PDEs in VHDL-AMS is in demand. Suggestions have been 
made to extend other AMS-HDLs, such as Modelica [7] and Verilog-AMS [8], to 
add PDE support.

Some attempts have already been made to implement PDEs within the existing 
limits of VHDL-AMS. A transmission line example [5] and a system with electro-
thermal coupling [9] are modelled using VHDL-AMS 1076.1. The way is to 
 discretize the equations with respect to spatial variables and leave the time deriva-
tives to be handled by VHDL-AMS [5]. The problem with this approach is that the 
discretization is done manually. When some modifications are made to the system, 
a series of equations have to be rewritten which makes the modelling very 
 inefficient. New language extensions for PDE support have also been raised [5, 9] 
but currently no simulator can handle the new operators.

The work presented in this paper implements PDEs in VHDL-AMS in such a 
way that pending the development of a corresponding standard, PDEs can be writ-
ten directly but no new simulators are needed. Necessary language constructs have 
been adopted from previous work [5, 9] and some improvements have been made. 
A translation pre-processor has been developed to convert the extended language 
(VHDL-AMSP) into VHDL-AMS 1076.1 automatically so that models with PDEs 
can be simulated using currently available simulators. Using this new method 
VHDL-AMS models that describe systems with distributed physical effects can 
now be built and simulated more efficiently.

The proposed methodology is expected to have particular advantages in mixed 
mechanical-electrical systems with tight control feedback loops, of which the MEMS 
block is an integral part. For example, the work presented in a recent paper [10] 
intends to develop new and innovative control and interface systems, technologies 
and circuits for MEMS physical sensors. The primary methodology is based on the 
incorporation of micro-mechanical sensing elements (e.g. for accelerometers and 
gyroscopes) in high-order Σ∆ modulator (SDM) loops. The loop filter consists of 
mechanical and electronic integrators; the former is constituted by the micromachined 
sensing element which is, to a first order approximation, a second order transfer func-
tion. The tools currently used for simulating such a complex and highly coupled 
system are primarily system level tools, such as Matlab/Simulink. The lumped 
parameter model of the sensing element captures only the first mechanical mode. 
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However, when designing higher-order electro-mechanical SDM loops, higher 
order mechanical modes may well be of considerable significance for the stability 
and performance of the control loop. Consequently, having a distributed mechani-
cal model using partial differential equations would be a significant breakthrough 
for the design of such devices. To demonstrate the efficiency of our approach, the 
sensing element of such a MEMS accelerometer in SDM loop has been modelled 
in VHDL-AMSP, translated to VHDL-AMS 1076.1 and simulated. Simulation 
results show that high-order behaviour of the cantilever beam has been captured, 
which is not possible in conventional methodologies.

9.2 VHDL-AMS Extensions for PDE Support

The extensions outlined below support equations that may contain high-order 
 partial derivatives describing systems in a multidimensional space.

9.2.1 Partial Quantity

With the keyword partial, a partial quantity is defined as a physical variable which 
has a continuous value not only over a period of time but also over a hypercube in 
a multidimensional space. It is declared as:

partial quantity q : real;

The corresponding BNF (Backus-Naur Form) notation is:

partial_quantity_declaration ::=
partial quantity identifi er_list : subtype_indication;

Partial quantities may act as interfaces between entities as well as appear in archi-
tecture bodies.

9.2.2 Spatial Coordinate

With the keyword coordinate, spatial coordinate is declared over which a partial 
quantity is distributed. Multiple coordinate declarations will form a hypercube in 
space. The declaration can define a range in space and the discretization step size. 
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The range is obligatory as it defines the hypercube, but the step size is optional. It 
is up to the designer to decide whether to use default step size or to give a fixed 
value. The following is an example of a spatial coordinate declaration:

coordinate x : real range 0.0 to 10.0 step 0.1;

Two new grammar productions have been added to the language BNF:

coordinate_declaration ::= coordinate identifi er_list : subtype_indication;
step_size ::= step simple_expression

The existing range construct is extended by the new step construction as:

range ::= range_attribute_name [step_size]
| simple_expression direction simple_expression [step_size]

9.2.3 Partial Derivatives

As suggested in the papers by Nikitin et al. [5, 9], a new language attribute name is 
introduced as ′dot(x). If q is a partial quantity and x is a coordinate, q′dot(x) represents 
the derivative of q with respect to x. Unlike the example given in the paper [9] where 
a high-order derivative is represented by multiple ticks, e.g. q″ dot(x) for the second 
order, VHDL-AMSP uses the same notation as VHDL-AMS, namely q′dot(x)′dot(x).
This kind of representation is in the spirit of the existing VHDL-AMS 1076.1 standard 
and q′dot(x) as a whole is still a partial quantity. A partial quantity can also have a 
derivative with respect to time, using the attribute ′dot, so items like q′dot(x)′dot are 
valid. Multidimensional derivatives are supported, such as q′dot(x)′dot(y) where x and y
are two coordinates. Since there is no predefined attribute name and attribute designator 
in VHDL-AMS, this extension does not affect the language BNF.

9.2.4 Simultaneous Statement with Partial Derivatives

A simple example is:

q′dot(x) == A * q′dot;
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which represents 
∂
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Partial differential equations can also appear in simultaneous if or case state-
ments. High-order derivatives or derivatives of more than one spatial coordinate can 
also be described in a simultaneous statement.

9.2.5 Boundary Conditions

A boundary condition is defined as a special simultaneous statement as shown 
below. The expression after the keyword at specifies the spatial boundary where the 
conditions should apply. Conditions are written in the form of simultaneous state-
ments. An example is:

boundary x at 0.0 is
begin
q == 0.0;
q′dot(x) == 0.0;
end BOUNDARY;

The corresponding production in the language BNF is:

simultaneous_boundary_statement ::=
 [boundary_label:]

boundary coordinate_name at simple_expression is begin
 simultaneous_statement {simultaneous_statement}

end boundary [boundary_label];

9.3 Translation to VHDL-AMS 1076.1

We have developed a translation pre-processor to automatically convert VHDL-
AMSP models into VHDL-AMS 1076.1. The pre-processor can be used as a tenta-
tive measure to implement PDEs in VHDL-AMS pending the development of an 
appropriate standard. The translation pre-processor uses a modified version of a 
VHDL-AMS parser [11] where the modifications incorporate the new syntax into 
the parser and allow syntax analysis by recursive scanning of the parse tree. During 
the scanning, new language constructs can be identified and replaced by necessary 
VHDL-AMS 1076.1 constructs. How the new constructs are converted into existing 
constructs is demonstrated below, using the examples from Section 9.2.
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In the declaration part of the model, a partial quantity is converted into a quantity 
vector by the same name. The vector size is determined by the coordinate’s range 
and step, i.e. range/step. The coordinate won’t appear in the output file but a differ-
ential coefficient (dx in the example) will be declared as a constant, which has the 
value of the step size. The declaration part will therefore contain:

quantity q : real_vector (0 to 100);
constant dx : real:=0.1

In the architecture part, a PDE will be replaced by a series of DAEs. Finite differ-
ence approach [12] is used as the discretization method. Note that the discretization 
only applies to the middle part of a hypercube space while the borders will be 
described by boundary conditions. The PDE in Section 9.2.4 will be discretized as:

(q(2)-q(1) )/dx == A*q(1)′dot;
(q(3)-q(2) )/dx == A*q(2)′dot;
(q(4)-q(3) )/dx == A*q(3)′dot;
…

The boundary statements in Section 9.2.5 are translated into simple simultaneous 
statements:

q(0) == 0.0;
(q(1)-q(0) )/dx == 0.0;

These DAEs are solvable by a VHDL-AMS 1076.1 simulator.

9.4 MEMS Accelerometer in a SD Control Loop

Figure 9.1 shows the block diagram of a MEMS accelerometer in fifth-order SDM 
control loop [10]. Like most conventional modelling approaches, the micro-
 mechanical sensing element is modelled as a second-order spring damping system:

Mz t Cz t Kz t F t�� �( ) ( ) ( ) ( )+ + =  (9.1)

where M is the proof mass, C and K are effective damping and spring factor respec-
tively, z(t) is the relative displacement and F(t) is the feedback force. The frequency 
response of the lumped model is shown in Fig. 9.2.
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Fig. 9.1 MEMS accelerometer in SDM loop

Fig. 9.2 Frequency response of the lumped model

The proof-mass displacement is converted to electronic signal by differential 
capacitive position sensing. The electronic signal is then passed through a third-
order low-pass filter, which is implemented with distributed feedback structure. 
The filtered signal is digitized by a 1-bit quantizer and the output is the digital 
 signal. The electrostatic feedback force is generated by a DAC. Such a SDM 
 control loop has the advantages of increased dynamic range, linearity and band-
width [10] thus it has attracted great research interests.

In actual situation, the sensing element consists of a MEMS cantilever beam 
located between two plate electrodes (Fig. 9.3). Instead of moving as a lumped 
mass, the cantilever beam itself vibrates and has higher frequency modes. It has 
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been proved that higher-order resonant frequencies can affect the performance of 
an SDM loop [13]. However, as shown in Fig. 9.2, such behaviour cannot be 
 captured by the conventional lumped model.

9.5 VHDL-AMSP Model of the Sensing Element

9.5.1 Model Description

Figure 9.3 shows the sensing element of an accelerometer in SDM control loops. 
The feedback force is acting on the base of the cantilever (non-collocated dynamics) 
[13] and the cantilever beam is only deformed by distributed electrostatic force. The 
governing equation of this model is:

EI
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where y(x,t) is the relative displacement at position x and time t, E is the Young’s 
modulus, I is the moment of inertia, c

D
 is the damping factor, r is the material’s 

density, S is the cross sectional area and F
e
(x,t) is the electrostatic force.

The boundary conditions at the clamped end and the free end are shown in Eqs. 
9.3 and 9.4 respectively [14],
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Fig. 9.3 MEMS cantilever beam as the sensing element
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where q, M and Q denote the slope angle, the bending moment and the shear force 
respectively, L is the length of the beam.

The initial condition is simply:

y(x,0)=0 (9.5)

The electrostatic force F
e
(x, t) is given by:
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where e is the permittivity of the gap, A is the area of the electrode, d
0
 is the spacing 

between the beam and the electrode and V
0
 is the amplitude of the applied AC 

voltage.
The distributed capacitance between the cantilever and the electrode is given by:
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The output voltage can be calculated as:

V t
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C C
Vout

s s

s s

( ) sin( )=
−
+

1 2

1 2
0 wt  (9.8)

For small displacement cases, it can be assumed that y2<< d2
0
. The above equation 

could be simplified as:

V t
y t

d
V tout ( )

( )
sin( )= −

0
0 w  (9.9)

where y (t) is the average beam position.

9.5.2 VHDL-AMSP Code

The VHDL-AMSP model of the cantilever beam presented below provides an 
example of how the elements discussed in Section 9.2 are implemented. y is the 
partial quantity which represents the deflection of the beam and FE is also a par-
tial quantity which represents the electrostatic force. x is the spatial coordinate. 
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Boundary conditions have been applied and typical values are used for the 
constants.

library IEEE;
use IEEE.ENERGY_SYSTEMS.all;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MECHANICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;
entity COMB_DRIVE is
 generic(E:real; –-Young’s modulus
  I:real; –-moment of inertia
  rou:real; –-densigy
  L:real; –-length of beam
  d0:real; –-gap spacing
  K:STIFFNESS; –-effective spring stiffness
  D:DAMPING; –-effective damping
  S:real; –-cross sectional area
  C:real; –-cantilever damping
  A:real; –-electrode area
  ep0:real; –-permittivity
  M:MASS);
 port(terminal PROOF_MASS:TRANSLATIONAL);
end entity COMB_DRIVE;
architecture BCR of COMB DRIVE is
 constant N:real:=5.0;
 partial quantity y:real;
 partial quantity FE:real;
 coordinate x:real range 0.0 to L step L/N;
 quantity z across F0 through PROOF_MASS to TRANS-
LATIONAL_REF;
begin
  M*z’DOT’DOT+D*z’DOT+K*z==F0;
  –-movement of proof mass
  E*I*y’dot(x)’dot(x)’dot(x)’dot(x)+ROU*S*y’dot’dot
    +C*y’dot(x)’dot(x)’dot(x)’dot(x)’dot==FE;
  –-dynamics of cantilever
  FE==0.5*ep0*A*(1.0/( (d0-y)**2)-1.0/( (d0+y)**2) );
  –-electrostatic force
  BOUNDARY x at 0.0 is
  begin
   y==z;
   y’dot(x)==0.0;
  end BOUNDARY;
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  –-boundary condition at clamped end
  BOUNDARY x at L is
  begin
   y’dot(x)’dot(x)==0.0;
   y’dot(x)’dot(x)’dot(x)==0.0;
  end BOUNDARY;
  –-boundary condition at free end
end architecture BCR;

9.5.3  Output from the Translation Pre-Processor –VHDL-AMS 
1076.1 Code

In the output from the translator shown below, partial quantity y and FE each has 
been replaced by a quantity vector. The beam is discretized into five sections where 
the number of sections is calculated as range/step. The differential coefficient dx
represents the step size. From the PDE and the boundary conditions, two sets of six 
DAEs are created to describe the distributed behaviour of the beam. The comments 
in the code below were added manually for clarity.

library IEEE;
use IEEE.ENERGY_SYSTEMS.all;
use IEEE.ELECTRICAL_SYSTEMS.all;
use IEEE.MECHANICAL_SYSTEMS.all;
use IEEE.MATH_REAL.all;
entity COMB_DRIVE is
  generic(…);
  port(terminal PROOF_MASS:TRANSLATIONAL);
end entity COMB_DRIVE;
architecture BCR of COMB DRIVE is
 constant N:real:=5.0;
 constant dx:real:=L/N;
 quantity y:real vector(0 to 5):=(others=>0.0);
 quantity FE:real vector(0 to 5):=(others=>0.0);
 quantity z across F0 through PROOF_MASS to TRANS-
LATIONAL_REF;
begin
  M*z’DOT’DOT+D*z’DOT+K*z==F0;
  –-movement of proof mass
  FE(0)==0.5*ep0*A*(1.0/( (d0-y(0) )**2)-
1.0/( (d0+y(0) )**2) );
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  –-electrostatic force for clamped end
  FE(1)==0.5*ep0*A*(1.0/( (d0-y(1) )**2)
-1.0/( (d0+y(1) )**2) );
  –-electrostatic force for section 1
  FE(2)==0.5*ep0*A*(1.0/( (d0-y(2) )**2)
-1.0/( (d0+y(2) )**2) );
  –-electrostatic force for section 2
  FE(3)==0.5*ep0*A*(1.0/( (d0-y(3) )**2)
-1.0/( (d0+y(3) )**2) );
  –-electrostatic force for section 3
  FE(4)==0.5*ep0*A*(1.0/( (d0-y(4) )**2)
-1.0/( (d0+y(4) )**2) );
  –-electrostatic force for section 4
  FE(5)==0.5*ep0*A*(1.0/( (d0-y(5) )**2)
-1.0/( (d0+y(5) )**2) );
  –-electrostatic force for section 5
  y(0)==z;
  –-dynamics of clamped end
  E*I*(y(3)-4.0*y(2)+6.0*y(1)-3.0*y(0) )/dx**4
   +ROU*S*y(1)’DOT’DOT+C*(y(3)’DOT-4.0*y(2)’DOT
   +6.0*y(1)’DOT-3.0*y(0)’DOT)/dx**4==FE(1);
  –-dynamics of section 1
  E*I*(y(4)-4.0*y(3)+6.0*y(2)-4.0*y(1)+y(0) )/dx**4
   +ROU*S*y(2)’DOT’DOT+C*(y(4)’DOT-4.0*y(3)’DOT
   +6.0*y(2)’DOT-4.0*y(1)’DOT+y(0)’DOT)/
dx**4==FE(2);
  –-dynamics of section 2
  E*I*(y(5)-4.0*y(4)+6.0*y(3)-4.0*y(2)+y(1) )/dx**4
   +ROU*S*y(3)’DOT’DOT+C*(y(5)’DOT-4.0*y(4)’DOT
   +6.0*y(3)’DOT-4.0*y(2)’DOT+y(1)’DOT)/
dx**4==FE(3);
  –-dynamics of section 3
  E*I*(-2.0*y(5)+5.0*y(4)-4.0*y(3)+y(2) )/dx**4
   +ROU*S*y(4)’DOT’DOT+C*(-2.0*y(5)’DOT+5.0*y(4)
’DOT
   -4.0*y(3)’DOT+y(2)’DOT)/dx**4==FE(4);
  –-dynamics of section 4
  E*I*(y(5)-2.0*y(4)+y(3) )/dx**4+ROU*S*y(5)’DOT’DOT
   +C*(y(5)’DOT-2.0*y(4)’DOT+y(3)’DOT)/
dx**4==FE(5);
  –-dynamics of section 5
end architecture BCR;
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9.5.4 Simulation Results

The VHDL-AMS 1076.1 description generated by the translation pre-processor has 
been simulated by SystemVision from Mentor Graphics [15] and simulation results 
showing the frequency response of average beam position are presented in Fig. 9.4. 
It is clear that higher-order resonant modes have been captured.

9.6 Conclusion

This paper proposes extensions to efficiently implement general partial differential 
equations in VHDL-AMS. The current version of VHDL-AMS (IEEE 1076.1) can 
only support ordinary derivatives with respect to time and faces difficulties when 
applied to the modelling of distributed systems. In the proposed VHDL-AMSP 
language, new constructs are introduced to describe PDEs in a direct form. A trans-
lation pre-processor has been developed to convert VHDL-AMSP models into 
VHDL-AMS 1076.1 automatically, such that models with PDEs can be simulated 
using currently available simulators. The added PDE support enhances the ability 

Fig. 9.4 Frequency response of the distributed beam model
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of VHDL-AMS to model MEMS systems where distributed behaviour is essential. 
The efficiency of this new approach has been investigated by VHDL-AMSP based 
modelling and simulation of the sensing element of a MEMS accelerometer in 
high-order SDM loop. Simulation results show that VHDL-AMSP model could 
describe the distributed behaviour of a system which is not possible in current 
VHDL-AMS 1076.1 language.
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Chapter 10
Mixed-Level Modeling Using Configurable 
MOS Transistor Models

Jürgen Weber1, Andreas Lemke1, Andreas Lehmler1, Mario Anton1,
and Sorin A. Huss2

Abstract This contribution presents an approach to mixed-level modeling using 
configurable MOS transistor models as part of a behavioral model. All effects 
of the complete MOS transistor model can be specifically enabled or disabled in 
the configurable model. By activating only the effects required for the behavioral 
model, simulation times can be reduced significantly with very little effort. The 
new method is demonstrated by partitioning the MOS level-1 transistor model 
according to effects and implementing a configurable MOS level-1 transistor model 
in Verilog-A. Several examples of use will show the reduction in simulation time. 
The proposed approach can be used with any type of transistor model and is easily 
integrated in circuit simulators such as SPICE.

Keywords mixed-level modeling, Verilog-A, behavioral model, configurable, MOS
transistor, virtual test

10.1 Introduction

The generation of behavioral models [1] is becoming more and more significant in 
the development of integrated circuits. In modern mixed-signal system design 
flows, a top-down design methodology followed by bottom-up verification [6, 3] is 
used. In the bottom-up method, the specific transistor level components of the 
entire design will be realized first, after that the components will be connected to 
larger units, and finally verified by simulation. In integrated circuit design, behavioral
models are needed in different applications. Since no unified modeling strategies 
that cover all application ranges (executable specifications, top-down and bottom-up 
methodology, customer models and virtual tests [7, 5]) have been established yet, 
custom-designed solutions with the largest coverage of the different requirements 
must be used. The component based mixed-level modeling approach [8] is an efficient
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modeling method. It applies the concept of mixed-level simulations also at the 
component level. Thus it is possible to describe the circuit behavior at required 
points with the highest precision but with the additional advantage of substantially 
decreasing the simulation time, with specific simplifications. In transistor models, 
which are used in this method, properties which are redundant for behavioral models 
are included. These are realized with BSIM, EKV, or other higher SPICE or 
SPECTRE level models, which use different regions of operation that are described 
using equations within the model. For example, in virtual tests the full description 
of the primitives is not necessary in most cases.

In this article, a method will be introduced which describes how transistor 
models can be partitioned and characteristics can be activated or deactivated with 
the goal of reducing the number of equations used, thus achieving better performance. 
Furthermore, MOSFET-HDL models which can be universally implemented in a 
multitude of modelling applications, for example in the development process (top-
down methodology) or in the virtual test, can be generated.

To demonstrate this method, a boost converter, which is realized with mixed-
level modelling, is used. In practical applications, low-level MOSFET models are 
rarely used. In the majority of cases BSIM or EKV are established here. The dem-
onstrator, which is introduced in this article, is based on EKV models. Because of 
its complexity, level-1 models are used to demonstrate the new method instead. 
This MOSFET behavioural model is realized in Verilog-A and then simulated 
using CADENCE SPECTRE. The basics of a level-1 model are defined Section 10.2. 
In Section 10.3, the realisation of the MOSFET behavioral models in Verilog-A is 
introduced, with a demonstration of this method in Section 10.4.

10.2 MOSFET Level-1 Model

In the MOSFET level-1 model three regions of operation are defined according to 
the voltage differences between the gate, source, and drain terminals. These regions 
are listed in Table 10.1.

If the gate-source voltage V
GS

 is less than the threshold voltage V
th
, no conduct-

ing channel can exist. In that case the transistor is in the cut-off region, where for 
the drain current I

D
� 0 holds independent of the drain-source voltage V

DS
. If V

GS

exceeds the threshold voltage V
th
, a channel is formed and current can flow. The 

resulting current I
D
 is approximately proportional to V

DS
 (for small V

DS
). Thus, this 

region is called the linear region. If V
DS

 is increased beyond V
DS,sat

= V
DS

 – V
th
, the 

channel is pinched off at the drain side and I
D
 rises only slowly. The transistor is in 

the saturation region. Assuming an ideal charge distribution in the channel, the 
drain current can be approximated using Sah’s Model [2].

Table 10.1 Regions of operation in the MOSFET level-1 model

Cut-off region V
GS

 < V
th

Linear region V
GS

≥ V
th

∧ 0 ≤ V
DS

 < V
DS,sat

Saturation region V
GS

≥ V
th

∧ V
DS

≥ V
DS,sat
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The slow rising of I
DS

 in the saturation region is caused by channel length modu-
lation. This is described in the Shichman-Hodges model [2]. The equations for an 
NMOSFET in its different regions of operation can now be stated as follows:
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Figure 10.1 shows the equivalent circuit of the MOSFET level-1 model.
In addition to the drain current source I

D
 according to Eq. 10.1, series resist-

ances, capacitances and bulk diodes are included. The threshold voltage is a func-
tion of the source-bulk voltage V

SB
. This behavior is called body effect and 

described by the following equation in the level-1 model:

V VT Vth BS= + − −0 g( | |Φ Φ )  (10.2)

In modern technologies the short channel effect shifts the threshold voltage of MOS 
transistors with short channel lengths [2]. This effect is not included in the original 
MOSFET level-1 model. For the model presented in Section 10.3 the short channel 
effect was added to Eq. 10.1 using the factor

... ( ( )∗
Φ ∗

Φ ∗
∗1

1
+

+
l

L

L

eff

eff
VDS  (10.3)

as proposed in [2].
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Fig. 10.1 MOSFET level-1 model equivalent circuit
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10.3 Variable MOSFET HDL Model

In this section a configurable Verilog-A transistor model is developed from the 
level-1 MOSFET model. In a configurable model the various effects of the model 
can be enabled as needed with all others being disabled. Thus, the size of the Jacobian 
matrix is minimized and the computational effort reduced. Based on the level-1 
model, the calculation of the drain current, the body effect, and the presence of the 
capacitors, resistors, and diodes of Fig. 10.1 are made configurable. The variants 
for the drain current calculation are listed in Table 10.2.

Furthermore, the components of the MOSFET behavioral model given in Table 
10.3 can be selected.

In the following, three versions of the configurable level-1 model are presented: 
a static model using preprocessor statements that disable parts of the source code 
before compilation, a static model using parameters, and a dynamic model that can 
be reconfigured during runtime.

10.3.1 Static MOSFET Model Using Preprocessor Statements

Preprocessor statements such as ifdef [9] are used to select sections of the source 
code of the model. The advantage of this is having only these selected sections in 
the compiled model. However, the selection has to be made before compilation and 
it is global for all instances of the transistor. The following source code illustrates 
this approach:

‘ifdef res_nodal
 - With series resistances

Table 10.2 Drain current calculation in the Verilog-A model

Variant Description

0 Voltage controlled resistance
1 Without channel length
2 Modulation
3 With channel length modulation
 With short channel effect

Table 10.3 Selectable components of the MOSFET Verilog-A model

Component Description

res_nodal Series resistances
cap_gate Gate capacitances
cap_sub Junction capacitances
dio_sub Substrate diodes
threshold Body effect
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‘else
 - No series resistances
‘endif

An additional advantage of this approach is the changing of the circuit topology by 
adding or removing internal nodes of the transistor. An example of this is the series 
resistances component of the model. The series resistances require introducing 
internal nodes into the model. Only with preprocessor statements is it possible to 
have their declaration electrical Bi, Di, Si, Gi; optional. In the remaining source 
code the internal nodes (Si, Di, etc.) and the pins (D, S, etc.) are used, 
respectively.

‘ifdef res_nodal
vds = V(Di, Si);

‘else
vds = V(D, S);

‘endif

10.3.2 Regions of Operation

To switch between the different regions of operation of the transistor, the variable 
region is introduced.

if ( (vgs <= vtho) || (vds <= 0) )
region = 1;

else if ( (vds < (vgs-vtho) ) && (vgs>vtho) )
region = 2;

else
region = 3;

10.3.3 Calculation of the Drain Current

In the behavioral model, four methods of calculating the drain current (cf. Table 
10.2) are available. The most simple variant (var = 0) assumes that the transistor 
operates in the linear region only. The drain current is calculated as I
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V
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) * V
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). This corresponds to a voltage controlled resistor with
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Another variant (var = 1) is the calculation based on the assumption of an ideal charge 
distribution in the channel (Sah’s Model). Channel length modulation is taken into 
account with var = 2 and calculated according to Eq. 10.1 (Shichman-Hodge model). 
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This effect is controlled by the parameter λ. The final variant (var = 3) adds 
the short channel effect as given in Eq. 10.3. The following source code shows the 
implementation of the variants of the drain current calculation in Verilog-A:

if (var == 0) begin
case(region)

1: id = ‘ids;
2: id = beta * (vgs - vtho) *vds;
3: id = beta * (vgs - vtho) *vds;
default: id = ‘ids;

endcase
end
if (var == 1) begin

case(region)
1: id = ‘ids;
2: id = beta*( (vgs-vtho)-(vds/2) )*vds;
3: id = (beta/2)*(pow( (vgs-vtho),2) );
default: id =‘ids;

endcase
end
if (var == 2) begin
early_effect = 1 + lambda * vds;

case(region)
1: id = ‘ids;
2: id = beta*( (vgs-vtho-(vds/2) )*vds*early_effect;
3: id = (beta/2)*(pow( (vgs-vtho),2) )*early_effect;
default: id = ‘ids;

endcase
end
if (var == 3) begin

case(region)
1: id = ‘ids;
2: id = beta *( (vgs-vtho)-(vds/2) )*vds *(1+lambda*( (1/(2e5*Leff) )+1)*vds);
3: id = (beta / 2)*(pow( (vgs-vtho), 2) ) *(1+lambda*( (1/(2e5*Leff) )+1)*vds);
default: id = ‘ids;

endcase
end

10.3.4 Drain Current Assignment

If the series resistances component of the model is used, the drain current is 
assigned to the internal nodes Di and Si. Otherwise it is assigned to the external 
nodes D and S.
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‘ifdef res_nodal
I(Di,Si)<+ id;

‘else
I(D,S)<+ id;

‘endif

10.3.5 Series Resistances

The series resistances connect the external nodes to the internal nodes. The model 
uses the effective resistances of the drain R

D
 and the source R

S
. The resistances of 

the bulk and the gate are not taken into account.

‘ifdef res_nodal
V(S, Si) <+ I(S, Si) *RS;
V(D, Di) <+ I(D, Di) *RD;

‘endif

10.3.6 Gate Capacitances

Gate capacitances are calculated in the three regions of operation depending on C
ox

and the terminal voltages as described in [2]. Overlap capacitances are included as 
well. Switching the capacitances between the regions of operation can cause con-
vergence difficulty in the simulation. This problem is solved using the transition
statement that provides smooth switching but also increases the computational 
effort.

‘ifdef cap_gate
if (region == 1) begin

cgsk=0; cgdk=0; cgbk=cox;
end
if (region == 2) begin

cgsk=( (2*cox)/3)*(1-pow( ( (vgs-vtho-vds) / (2* (vgs-vtho)-vds) ),2) );
cgdk=( (2*cox)/3)*(1-pow( ( (vgs-vtho) / (2* (vgs-vtho)-vds) ),2) );
cgbk=0;

end
if (region == 3) begin

cgsk=(2*cox)/3; cgdk=0; cgbk=0;
end

qgs = (transition(cgsk)+ ‘cgso*W)* vgs;
qgd = (transition(cgdk)+ ‘cgdo*W)* vgd;
qgb = (transition(cgbk)+ ‘cgbo*L)* vgb;

‘ifdef res_nodal
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I(Gi,Di) <+ ddt(qgd);
I(Gi,Si) <+ ddt(qgs);
I(Gi,Bi) <+ ddt(qgb);

‘else
I(G,D) <+ ddt(qgd);
I(G,S) <+ ddt(qgs);
I(G,B) <+ ddt(qgb);

‘endif
‘endif

10.3.7 Junction Capacitances

Junction capacitances arise from the pn junctions at the interfaces from source and 
drain to substrate. These capacitances are voltage dependent, cf. [2].
‘ifdef cap_sub

fbp =‘FC*‘mj;
if (vbd <= fbp)

cbd=‘cj*‘Abd *(1-(vbd*1/‘PB) );
else

cbd=( (‘cj*‘Abd)/pow( (1-‘FC),1+‘mj) ) *(1-(1+‘mj)*‘FC+‘mj*vbd/‘PB);
if (vbs <= fbp)

cbs =‘cj*‘Abs*(1-(vbs*1/‘PB) );
else

cbs=( (‘cj*‘Abs)/pow( (1-‘FC),1+‘mj) )*(1-(1+‘mj)*‘FC+‘mj* vbs/‘PB);
‘ifdef res_nodal

I(Bi,Si) <+ ddt(cbs * vbs);
I(Bi,Di) <+ ddt(cbs * vbs);

‘else
I(B,S) <+ ddt(cbs * vbs);

I(B,D) <+ ddt(cbs * vbs);
‘endif

‘endif

10.3.8 Substrate Diodes

Substrate diodes are located between the internal nodes of bulk and drain and 
source, respectively. By using $vt, the temperature voltage calculated by the simu-
lator is accessed. The reverse saturation current ‘is is used for both I

S,S
 and I

S,D
.

‘ifdef dio_sub
ibd = ‘is*(limexp(vbd /$vt)-1.0);
ibs = ‘is*(limexp(vbs /$vt)-1.0);
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‘ifdef res_nodal
I(Bi,Di) <+ ibd ;
I(Bi,Si) <+ ibs ;

‘else
I(B,D) <+ ibd ;
I(B,S) <+ ibs ;

‘endif
‘endif

10.3.9 Body Effect

The threshold voltage is mainly dependent on the bulk-source voltage (body effect). 
As a model parameter the zero-bias threshold voltage vt0 is passed.

‘ifdef threshold
vtho = vt0+(gamma*( (sqrt(abs(phi-vbs) ) )-(sqrt(phi) ) ) );

‘else
vtho = vt0;

‘endif

10.3.10 Static MOSFET Model Using Instance Parameters

In the static MOSFET model using instance parameters, the if-else statement is used 
instead of preprocessor statements. The individual functions of the model are enabled 
and disabled by instance parameters so that each transistor instance is configured indi-
vidually. This is an advantage of this method as opposed to preprocessor statements. 
As a disadvantage, the computational effort increases slightly in the simulation.

parameter integer res_nodal = 0;
if (res_nodal == 1)
 - With series resistances
else
 - No series resistances
end

10.3.11 Dynamic MOSFET Model

In some applications such as the virtual test, several tests are grouped and must 
be simulated in one simulation run. Thus, a MOSFET model is required that can be 
reconfigured dynamically during runtime. This is implemented by replacing the 
parameters of the static model with variables.
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integer res_nodal;
if (res_nodal == 1)
 - With series resistances
else
 - No series resistances
end

These variables can be switched individually for each instance by the test bench. 
The following source code shows an example of a test bench that activates the 
series resistances of an instance after 10,000 units of time.

I_top.I_inv.I_NMOS1.res_nodal = 0;
# 10000
I_top.I_inv.I_NMOS1.res_nodal = 1;

end

Currently, AMS-Designer and Spectre do not support analog statements in Verilog-
A that use variables inside of if clauses. Therefore, these statements, e.g. to calcu-
late currents of capacitances using ddt or currents of diodes using limexp, have to 
be kept outside of if clauses. Thus, the maximum possible reduction in simulation 
time cannot be achieved with the dynamic models. For that reason, in the following 
section the static model using instance parameters is used.

10.4 Results

In this section, the use of configurable MOSFET behavioral models within mixed-
level modeling is demonstrated on a boost converter and the results are discussed.

10.4.1 DC Behaviour with a Configurable MOSFET Model

Figure 10.2 shows the simulated output characteristic of the NMOS with varied 
settings for the configurable MOSFET behavioral model.

The capacitances (gate and junction capacitances) do not influence the DC 
behaviour. The same applies to the substrate effect, because bulk and source are 
connected together.

10.4.2 Implementation of the Configurable MOSFET Model

The following aspects have to be considered during the configuration of the config-
urable MOSFET behavioral model:
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Application of the circuit (testbench), operation point of the circuit and the tran-
sistor, respectively, simulation type (DC, transient, etc.), required accuracy of the 
simulation, purpose of the simulation (virtual test, development phase, system sim-
ulation, etc.). To choose the correct settings, circuitry knowledge is necessary. The 
settings are made directly at the transistor symbol in the schematic editor, as shown 
in Fig. 10.3.

The following examples show the proceeding for various simulation tasks.

10.4.3 Boost Converter

In the following example, a boost converter is introduced. The circuit was taken 
from an antenna driver IC for passive-entry-go systems. This type of circuit 
presents a problem for system simulations because of its complexity it requires a 
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Fig. 10.2 MOSFET characteristic of varied settings for the variable MOSFET HDL model
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Fig. 10.3 Configuration of the behavioural model at the symbol
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lot of processing and thus, substantially increases the simulation time. The behavioral
description of the converter was generated for two different abstraction levels: 
firstly, a simplified model created by applying meet-in-the-middle design method-
ology [4] and, secondly, a complex HDL model created using bottom-up 
strategies. Both behavioral models include a driver stage, which is implemented at 
transistor level with configurable MOSFET HDL models. In Fig. 10.4, a block 
diagram of the simplified HDL model of the boost converter is shown.

A simplified model for the gate control of the output driver with an over current
detection, a voltage divider, control logic and the driving stage are implemented 
in this block diagram. Conversely, in the complex HDL model all sub-blocks of 
the transistor circuit are included. This includes, for example, the error amplifier, 
the compensation stage, the ramp generator, the over current detection, the voltage 
divider, the control logic, and the driver stages. The block diagram is shown in 
Fig. 10.5.

This type of model is optimal for the development of transistor models, since the 
complete control loop is mapped in the model. Analysis of stability and compensa-
tion of the control loop, respectively, are now possible.

The driver stage consists of four buffers, which are used for the gate control of 
the four output transistors and a sensor transistor, which is responsible for the over 
current detection (see Fig. 10.6). The performance benefit and the model difference 
of the HDL models in comparison to the original transistor circuit are shown in 
Table 10.4.

Here the run-up, as can be seen in the simulation results in Fig. 10.7, was tested.
In the driving stages all functions of the variable MOSFET HDL models were 

enabled during simulation. The model difference was calculated using the Euclidean 
distance. Within the circuit design, the complex behavioral model was used which 
allows the user, for example, to optimize/stabilize the compensations of the circuit. 
With suitable settings of the MOSFET HDL model functions, only a limited 
performance benefit is achieved. This is because the simulation activities occur 
mostly in the control loop instead of the driving stage.

Fig. 10.4 Block diagram simplified model
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The components of the control loop, such as the error amplifier, are partly 
described with Laplace functions in Verilog-A. Table 10.5 shows the results in 
comparison to the original transistor circuit. During a system simulation and a test 
simulation, respectively, the simple behavioral models which include the primary 
functions like current and voltage switch-off as well as all digital control functions 
to switch on and off the stage are often used. In the following example, a simulation 
task checks the current switch-off of the converter. Here the converter must be regu-
lated first to the steady-state voltage and then the threshold of the current switch-off 
can be determined by allowing the load current to rise slowly.

Here, as opposed to the complex behavioral models, a higher performance ben-
efit is achieved since most of the simulation activities occur in the driver stage (see 
Table 10.6)

Table 10.4 Performance and accuracy of the boost converter models

Model level Performance Difference

Complex model 92 × 7.2%
 181 × 13.4%
Simplified model  

complex model simplified model original

100.0 200.0 300.0 400.0
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simplified modelsimplified modelsimplified model
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Fig. 10.7 Simulation results boost converter (simplified, complex, original)

Table 10.5 Results of the complex boost converter models 
with suitable settings of the MOSFET-HDL model function

Model level Performance Difference

Complex model 123 × 9.4%
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10.5 Conclusions

In this article, a method was discussed detailing how to partition MOSFET models. 
It also demonstrated how to activate or deactivate their characteristics, with the goal 
of achieving an improved performance. This method was demonstrated using 
MOSFET behavioral models which were implemented on the basis of level-1 
MOSFET calculations. Additionally, the models have to offer selectable options 
such as short channel effect or simplifications which allow use of the transistor as 
a voltage-controlled resistor. The model characteristics, which can be activated or 
deactivated, were described individually in the source code. The model was created 
using Verilog-A and simulated with SPECTRE (CADENCE). Three different sce-
narios, and the pros and cons found for each, were used to demonstrate the correct 
selection of the MOSFET model characteristics. In conclusion, the configurable 
MOSFET HDL models were applied in a simulation example. For this example, the 
simulation time and the model error rate were determined using various simulation 
tasks. An improved simulation time by a factor of 719 and an error rate of 16.1% 
was achieved. A disadvantage was detected with convergence problems appearing 
several times. However, this problem was corrected by choosing suitable simulator 
settings.

It is a well known fact that using original simulator transistors (e.g. EKV, BSIM) 
is faster than adopting the most complex stage of expansion for MOSFET HDL 
models. To counteract this, CADENCE implemented a C-Compiler for Verilog-A 
in its latest simulator version. However, it is seen that improved simulation time 
occurs using the optimal MOSFET HDL models rather the original EKV transis-
tors. To achieve improved performance it is desired to include the models, which 
are described in this article, in the simulator. In this article, a MOS HDL model 
based on the level-1 model was realized, but this just serves to demonstrate the 
method. It would make sense to use such a method in all MOSFET model types. 
Circuitry knowledge is required of the modeler to be able to determine the optimal 
settings needed for the model characteristics.

Acknowledgments This work has been carried out within the BMBF project “Verification of 
analog circuits” (VeronA).

Table 10.6 MOSFET-HDL models configurations

Variante M × 1,3,5,7 M × 2,4,6,8 HV1,2,3,4,5

var  1 1 2
res_nodal No No Yes
cap_gate No No Yes
cap_sub No No Yes
dio_sub No No Yes
threshold No No Yes
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Chapter 11
Modeling AADL Data Communications 
with UML MARTE

Charles André, Frédéric Mallet, and Robert de Simone

Abstract The emerging OMG UML Profile for Modeling and Analysis of Real-
Time Embedded systems (MARTE) aims, amongst other things, at providing a 
referential Time Model subprofile where semantic issues can be explicitly and 
formally described. As a full-size exercise we deal here with the modeling of imme-
diate and delayed data communications in AADL. It actually reflects an important 
issue in RT/E model semantics: a propagation of immediate communications may 
result in a combinatorial loop, with ill-defined behavior; introduction of delays may 
introduce races, which have to be controlled. We describe here the abilities of the 
MARTE time model in this respect.

Keywords MARTE, UML, AADL, Timed MoCC

11.1 Introduction

The modeling phase in Real-Time Embedded design is increasingly required to 
support various types of timing analysis prior to final code production and testing. 
AADL [7] and MARTE [5] are two such modeling formalisms, in part similar in 
their objectives. They both provide independent descriptions of the functional 
applications and the execution platforms, and the possible allocation of the former 
onto the latter. They also support the description of both the structural organization 
of systems, and to some extent of their dynamic behaviors.

Our belief here is that AADL relies on a number of assumptions that make the 
definition of dynamic behaviors visibly simple, but largely implicit and informal – 
with the risk of ambiguity or misdesign, which various analysis tools then try to spot 
and identify. Conversely, MARTE explicit Time model with powerful logical time 
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constraints allows precise specification of the scheduling aspects of application elements. 
Multiform logical time supported by MARTE, is inspired from the theory of tag 
systems [1]. Time relations and constraints between various “clocks” can be stated so 
as to represent the time activations of concurrent tasks. Clock constraints can thus be 
viewed in a way similar to the Object Constraint Language [6], as providing fancy 
particular constructions of Timed Models of Computations and Communications 
(MoCC). These MoCC are to be defined by a model architect and should be transpar-
ently used by the end-user of the modeling framework. Synchronous, time-triggered 
or purely asynchronous formalisms are simple – and extreme – examples of that.

In this paper, we use MARTE to make explicit part of the MoCC underlying 
AADL. AADL applications comprise threads, often of periodic nature – with dis-
tinct periods – connected through event or data ports. As can be seen here, the same 
model provides structural information – the thread connections – together with a 
crude abstraction of behaviors usually needed for schedulability analysis – the 
relative speeds of threads. AADL thread modeling thus requires the conjunct of two 
MARTE models – one behavioral and one structural – with the relevant logical 
clocks defining the relative ordering of dispatch events for the threads according to 
the desired semantics.

Data communications can be immediate or delayed. Delayed communications 
are needed in particular to break down cycle propagation of data. They implicitly 
impose a partial order on how various threads – and their containing processes – 
can be executed/simulated in a simultaneous step. The issues of priority inversion 
involved here are dealt with in [4].

When the flow contains data-port, the communication essentially amounts to 
sampled production/consumption of a data value shared between two tasks. 
Operations are performed at the pace of the – often periodic – tasks, and the scheme 
is event-less. In particular, data can be written or read several times if ever the rela-
tive speeds of the tasks demand it. Such a communication pattern is not readily 
present in UML – and thus MARTE. Modeling AADL data-port communications in 
MARTE is the prime goal of this paper. The operational semantics is made explicit, 
and the various protocols – immediate/delayed – can be constructed in a formal way. 
The hope is that such construction can then allow, by analytic techniques, to prevent 
non-determinism and pathological priority inversions to occur, in a way that is pre-
dicted and guaranteed rather than monitored by non-exhaustive model simulations.

11.2 Background

11.2.1 Time in MARTE

The metamodel for time and time-related concepts is described in the “Time mode-
ling” chapter of the UML profile for MARTE, available at the OMG site. The time 
chapter is briefly described in another paper [2].
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In MARTE, Time can be physical, and considered as continuous or discretized,
but it can also be logical, and related to user-defined clocks. Time may even be 
multiform, allowing different times to progress in a non-uniform fashion, and pos-
sibly independently to any (direct) reference to physical time. The time structure
is defined by a set of clocks and relations on these clocks. Here clock is not a 
device used to measure the progress of physical time. It is rather a mathematical 
object lending itself to formal processing. A clock that refers to physical time is 
called a chronometric clock. A distinguished chronometric clock called idealClk is 
provided in the MARTE time library. This clock represents the “ideal” physical 
time used, for instance, in physical and mechanics laws. At the design level most 
of the clocks are logical ones.

The mathematical model for a clock is a 5-tuple (I,�,D,l,u) where I is a set of 
instants,� is an order relation on I, D is a set of labels, l :I→D is a labeling func-
tion, u is a symbol, standing for a unit. For a chronometric clock, the unit can be 
the SI time unit s (second) or one of its derived units (ms, µs … ). The usual unit 
for logical clocks is tick, but clockCycle, executionStep may be chosen 
as well. Since instants of a clock are fully ordered, (I, ≺) is an ordered set.

Clock are a priori independent. They become dependent when their instants are 
linked by instant relations imposing either coincidence between instants (coinci-
dence relation ≡) or precedence (precedence relation �). Clock relations are a 
convenient way to impose many – often infinitely many – instant relations. 
Examples of clock relations are given in Section 11.3.2.

A Time Structure is a 4-tuple (C, R, D, l) where C is a set of clocks, R is a 
relation on ∪

a, b∈C, a π b (Ia
 × I

b
), D is a set of labels, l :I

C 
→ D is a labeling function. 

I
C
 is the set of the instants of a time structure. I

C
 is not simply the union of the sets 

of instants of all the clocks; it is the quotient of this set by the coincidence relation 
induced by the time structure relations represented by R. A time structure specifies 
a poset (I

C 
, �

C
).

During a design we introduce several (logical) clocks that are progressively 
constrained. This causes strengthening of the ordering relation of the application 
time structure.

11.2.2 AADL Inter-Thread Communications

As a demonstration of the expressiveness of MARTE, we take as an example the 
inter-thread data communication semantics of AADL.

In AADL, the communications can be immediate (Fig. 11.1a) or delayed
(Fig. 11.1b). The threads are concurrent schedulable units of sequential execu-
tions. Several properties can be assigned to threads; the one of concern here is 
the dispatch protocol. We actually consider only periodic threads, associated 
with a period and a deadline, specified as chronometric time expressions (e.g.,
period = 50 ms or frequency = 20 Hz). By default, when the deadline is not 
specified it equals the period.
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11.3 The Explicit Modeling of AADL Communication Aspects

11.3.1 Application and Clock Refinement

A first difference with AADL is that MARTE differentiates the algorithm from the 
underlying structure. The algorithm is represented as an activity diagram (Fig. 11.2, left-
most part). The structure is modeled as a composite structure diagram (Fig. 11.2, 
right-most part). Each part has its own causality constraints. MARTE refinement 
mechanism, and its associated clock constraints, allows for making explicit relations 
amongst the clocks of both parts. In MARTE, activation conditions of all application 
model elements are represented by clocks identified with the appropriate stereotypes, 
for instance TimedProcessing. As a starting point, we consider the clocks of 
each element as independent, and then the context (dependencies and refinement) 
constrains these clocks. Finally, a timing analysis tool may resolve the constraints to 
determine a (family of) possible schedule. We strive to avoid over-specification 
and keep the model as generic as possible, adding only required constraints. 
From the algorithmic point of view, the actions read_data and control are 
CallBehaviorAction that execute a given behavior repetitively according to 
their activation condition (clocks ^d and ^c respectively).

11.3.2 Introducing Clock Constraints

From the structural point of view, the threads t1 and t2 are also associated with 
clocks (^t1 and ^t2 respectively). These purely logical clocks represent the 
 dispatches of the threads. In AADL, the period of a thread is expressed as a 
chronometric time expression and therefore, at some point, we need to establish 
relations between these clocks and chronometric clocks. This aspect is addressed 
in Section 11.3.5, but we need to set up some causality relations first.

Thread

Component property
(e.g., frequency,

subprogram...)

immediate connection

delayed connection

Legendt1
fd

a Immediate b Delayed

read_data

t1
fd

read_data

t2
fc

control

t2
fc

control

Fig. 11.1 AADL inter-thread data communication
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Deciding that a given behavior (e.g., read_data) is executed by a periodic 
thread (e.g., t1) implies that each thread dispatch (modeled by clock ^t1) causes 
and therefore precedes a new execution of subprogram read_data, and that this 
execution must complete before the deadline (the next dispatch by default). In 
MARTE, we differentiate atomic behaviors, for which the execution time is con-
sidered negligible as compared to the period, from non-atomic ones. If we consider 
the behaviors as atomic, the association of a behavior with a thread is simply 
expressed with the constraint given by Eq. 11.1. Note that this constraint is not 
symmetrical since t1 may cause d, but not the converse.

^t1 alternatesWith ^d (11.1)

If the execution time is not negligible, each action can be represented by two events, 
the start (e.g., ds for d, cs for c) and the finish (e.g., df for d, cf for c), and a 
duration. In this case, we need three constraints to express that the behavior read_
data is repetitively executed on thread t1 (Eqs. 11.2–11.4).

^t1 alternatesWith ^ds (11.2)

^t1 alternatesWith ^df (11.3)

^ds isFasterThan ^df (11.4)

The first two constraints express that the behavior starts and finishes between two 
consecutive dispatches of thread t1. The last constraint, which reads clock ^ds is 

Fig. 11.2 Application/execution platform in MARTE
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faster than clock ^df, specifies that the action  read_data starts before it  finishes; 
it is sufficient to impose that it finishes within the same cycle of execution.

The next constraint comes from the communication itself. We use a UML data 
store to mean that the action read_data can overwrite the existing value (in the 
object node) without generating a new token and this very same value can be read 
several times by the action control (non depleting read). In UML, there must be 
at least one writing before any reading (Eq. 11.5).

^d[1] precedes ^c[1] (11.5)

Let ^wr be the (logical) clock for significant writings in the data store. There could 
be several consecutive writings in the datastore before one reading. In that case, only 
the last one is considered significant. Let ^rd be the corresponding (logical) clock for 
significant readings from the data store. When the same value is read several times, 
only the first reading is considered to be significant. Furthermore, AADL assumes that 
communicating threads must have common dispatches. A simple way to achieve that 
is if all threads start their execution at the same time (they are in phase). The AADL 
standard considers three cases: synchronous threads with the same period, 
oversampling (the period of control is evenly divided by the period of read_
data), undersampling (the period of read_data is evenly divided by the period 
of control). Let q1 and q2 be natural numbers such that fd/fc = q1/q2. They 
represent the relative periods of read_data and control. Section 11.3.6  discusses 
how to compute q1 and q2 in the general case. When the threads are synchronous 
(Eq. 11.6), q1 = q2 = 1. When oversampling (Eq. 11.7), q1 = 1 and q2 > 1. When 
undersampling (Eq. 11.8), q1 > 1 and q2 = 1. max(q1,q2) is called the hyper-
period. In Eq. 11.7 (resp. Eq. 11.8), the binary word [3] following the keyword 
filteredBy expresses that each instant of ^t1 (resp. ^t2) is synchronous with 
every q2th (resp. q1th) instant of ^t2 (resp. ^t1).

^t1 ≡ ^t2 (11.6)

^t1 ≡ ^t2 filteredBy (1.0q2-1) (11.7)

^t2 ≡ ^t1 filteredBy (1.0q1-1) (11.8)

Selecting the significant writings and readings consists in choosing one every q1th

instant of ^d (Eq. 11.9) and one every q2th instant of ^c (Eq. 11.10).
Additionally, Eq. 11.11 states that each significant writing must precede its 

related significant reading.

^wr isPeriodicOn ^d period q1 (11.9)

^rd isPeriodicOn ^c period q2 (11.10)

^wr alternatesWith ^rd (11.11)
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We restrict our comparison to the three cases considered by the AADL standard. 
However, in Subsection 11.3.6 we elaborate on the general case.

We have defined all general constraints. In particular, note that contrary to Eqs. 
11.7–11.10 do not specify which instant is chosen as a significant writing or reading. 
The actual instant depends on the semantics of the communication. The following 
two subsections study the three different cases (synchronous, oversampling, under-
sampling) with both an immediate and a delayed communication, each subsection 
gives stronger constraints compatible with Eqs. 11.9–11.11.

11.3.3 Immediate Communication

An immediate communication means that the result of the sending thread (here 
read_data) is immediately available to the receiving thread (here control).
When threads are synchronous (Fig. 11.3a), this is denoted by ^wr ≡ ^d and ^rd 
≡ ^c, or more precisely by ^wr ≡ ^df and ^rd ≡ ^cs. In case of oversampling (Fig. 
11.3b), the result of the action read_data must be written in the object node 
early enough so that the first (for each q2-long hyper-cycle) execution of the action 
control can use it. This is denoted by ^wr ≡ ^d and ^rd ≡ ^c filteredBy 
(1.0q2-1). The latter constraint is stronger than Eq. 11.10, it implies it. In case of 
undersampling (Fig. 11.3c), AADL specifies that the execution of the first (for each 
q1-long hyper-cycle) execution of the action read_data must complete before 
the execution of the action control. This is stated by ^rd ≡ ^c and ^wr ≡ ^d fil-
teredBy (1.0q1-1).

read_data

control

c undersampling
(q1= 3, q2=1)

b oversampling
(q1=1, q2=3)

a synchronous
(q1= q2=1)

wr (sample)

rd (sample)

Fig. 11.3 Immediate communications

11.3.4 Delayed Communication

A delayed communication means the result of the sending thread is made available 
only at its next dispatch while the receiving thread only reads after its own dispatch 
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and ultimately when the data is required. The dispatches of the sending and the 
receiving threads are not necessarily all synchronous, even if there must synchro-
nize at some point. When the thread are synchronous (Fig. 11.4a), the constraint is 
denoted by Eqs. 11.12, 11.13. Note that δ4 offers the possibility to delay the actual 
execution of read_data. The thread t1 can either be idle or be executing another 
action before starting to execute read_data. Eq. 11.12 states that 
(∃d4∈�)("k∈�*)(^wr[k] ≡ ^t1[d4 + k]).

 (∃d4∈�))(^wr≡ ^t1 filteredBy 0d4 (1) ) (11.12)

^rd≡ ^c (11.13)

For oversampling (Fig. 11.4b), the result is available for the first execution of the 
action control of the next q2-long hyper-cycle. This leaves lots of freedom to 
schedule the action read_data anywhere within the current hyper-cycle. We 
keep the relation Eq. 11.12 while Eq. 11.13 is replaced by Eq. 11.14.

^rd≡ ^c filteredBy (1.0q2-1) (11.14)

For undersampling (Fig. 11.4c), the result of the last execution (for each q1-long
hyper-cycle) of the action read_data is available for the action control at the 
next hyper-cycle. This is denoted by combining Eq. 11.15 with Eq. 11.13.

 (∃d4∈�)(^wr ≡ ^t1 filteredBy 0d4 (1.0q1-1) ) (11.15)

Note that the relations are not fully symmetrical. This is due to the AADL seman-
tics that changes the rule depending on the kind of communication.

Up to here, we have only defined logical constraints. In some cases, these con-
straints are strong enough to get a total order, and thus a possible schedule, on all 
instants belonging to the defined clocks. For instance, in the delayed synchronous 
case, whenever the first execution of read_data occurs, the first significant writing 
occurs at the very next dispatch. However, in some other cases, we need additional 

read_data

control

c undersampling
(q1=3, q2=1)

b oversampling
(q1=1, q2=3)

a synchronous
(q1=q2=1)

rd

wr

Fig. 11.4 Delayed communications
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stronger constraints to get a schedule. These constraints reflect additional choices 
that are mainly implicit in the AADL semantics. Depending on these choices we get 
different deterministic schedules. These cases are studied in the next section.

11.3.5 Getting a Schedule

Figure 11.3 shows that for immediate communications, the constraints given define 
a total order between instants of ^d and ^c in both the synchronous and the over-
sampling cases. Combining our constraints we get the same result analytically. One 
question remains whether or not both executions (read_data and control) can 
be performed within the period of thread t2. If not, there is no possible schedule, 
otherwise, the schedule is given by Fig. 11.5, assuming both threads are executed 
on the same process.

For delayed communications, additional constraints are required to get a deter-
ministic schedule. Several criteria can be considered, for instance, the size of the 
buffer used for the communication, or applying a well-known scheduling policy, 
like Earliest Deadline First (EDF).

An apparent easy way to force a total order is to project the logical clocks onto 
chronometric clocks. Logical clocks only give an order amongst instants (some-
times partial), while chronometric clocks give an absolute position in time. The use 
of chronometric clocks is implied in AADL because of the units used to describe 
either the frequency (Hz) or the period (s). In MARTE, we create models of 
chronometric clocks by discretizing idealClk (Section 11.2.1).

For instance, we create three chronometric clocks c100, c10 and c30 of respective 
frequency 100, 10 and 30 Hz (Eqs. 11.16–11.18). Note that these are relations, 
whence the definition of the 30 Hz-clock from c10.

Fig. 11.5 Schedules with immediate communications
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Now, we replace the three equations (Eqs. 11.6–11.8) by the three following 
constraints. ^t1 ≡ ̂t2 ≡ c10 (synchronous), ^t1 ≡ c10 and ^t2 ≡ c30 (oversam-
pling), ^t1 ≡ c30 and ^t2 ≡ c10 (undersampling). The only additional  information 
we have here is the distance (expressed in seconds) between two  consecutive dis-
patches. This information is useful for comparing the duration of executions with 
the period of the threads; however it does not change in any way the causality rela-
tions expressed.

 c
100

≡ idealClk discretizedBy 0.01 (11.16)

 c
10

≡ c
100

 filteredBy (1.09) (11.17)

 c
10

≡ c
30

 filteredBy (1.02) (11.18)

For the immediate undersampling, we can infer from the specified constraints that, 
for each hyper-cycle, the first execution of read_data must complete before the 
execution of control. However, we cannot decide when to execute control
relatively to other executions of read_data. We need another criterion. For instance, 
we choose to minimize the actual size of the buffer used for the communication. To get 
this buffer as small as possible (size = 1), we have to schedule  control before the 
second execution of read_data. Were we to schedule according to an EDF policy 
we would get another schedule, see Fig. 11.5.

For a delayed communication, we just have partial orders and we need additional 
criteria. For synchronous threads, the use of an EDF policy is of no help. However, 
reducing the size of the communication buffer gives a schedule (top-most part of 
Fig. 11.6). For oversampling, both criteria are compatible and we get the second 
schedule on Fig. 11.6. For undersampling, we get two different schedules depending 
on whether we apply an EDF policy or we attempt to reduce the buffer size.

Fig. 11.6 Schedules with delayed communications
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11.3.6 Generalization

We can generalize the constraints to get only two sets of constraints, one for the 
immediate communication and one for the delayed communication.

In this section we do not restrict to the three special cases addressed in the 
AADL standard. This generalization does not assume that the frequencies of the 
threads are natural numbers; it just assumes that they are rational numbers. It also 
assumes that in the notation of our binary words Y.x0 = Y, for any binary word Y
and any bit x.

Let fd = nr/dr and fc = nc/dc, fd/fc = (nr*dc)/(nc*dr) with nr,nc,dr,dc
∈�*. Let r1 = nr*dc and r2 = nc*dr. We choose q1 and q2 such as q1 = r1/
gcd(r1, r2) and q2 = r2/gcd(r1, r2). Note, that we still have fd/fc = q1/q2
and that the constraints given by Eqs. 11.14 and 11.15 are general. However, Eqs. 
11.6–11.8 are replaced by a single one, Eq. 11.19.

^t1 filteredBy (1.0q1−1) ≡ ^t2 filteredBy (1.0q2−1) (11.19)

Again, these constraints are purely logical. In the general case, these constraints are 
not strong enough to identify deterministically the significant writings and readings. 
If we take for instance, the case where q1 = 2 and q2 = 5 (Fig. 11.7). If we apply 
the AADL semantics, we can only say that, within an hyper-cycle (of period 
lcm(q1,q2)), the first execution of read_data produces the sample for the first 
control, but we cannot know what sample is used by other executions of control.
In particular, there is no relation between t1[2*n+ 1] and t2[5*n+ 2].

To get a deterministic behavior, we need to give more constraints. For instance 
we can project our clock to chronometric clocks and we model as an example the 
case where fd = 10 Hz and fc = 25 Hz. We proceed by using the clock c100 defined 
in Eq. 11.16 and we add two new constraints (Eq. 11.20-11.21).

read_data

control

general (q1=2, q2=5), immediate

wr (sample)

rd (sample)

t1[2*n] t1[2*n+1]

t2[5*n] t2[5*n+1] t2[5*n+2] t2[5*n+3] t2[5*n+4]

Fig. 11.7 Immediate communications and purely logical clocks (q1 = 2, q2 = 5)
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^t1 ≡ c
10

 (11.20)

^t2 ≡ c
100

 filteredBy (1.03) (11.21)

With such constraints, we get a total order (Fig. 11.8) and then there are two possi-
ble cases.

The first case appears when duration(read_data) + duration
(control) ≥ 0.02 s. Then, we exactly get the result presented in Fig. 11.8, 
where, within a hyper-cycle, the third execution of control uses the sample com-
puted by the first execution of read_data and the fourth execution of control
uses the sample computed by the second execution of read_data.

In the second case, if duration(read_data) + duration(control) 
<0.02 s, the third execution of control should use the sample computed by the 
second execution of read_data. However, note that such systems that very much 
depend on the exact duration of tasks are not very robust.

If we now take a look at the situation with a delayed communication (Fig. 11.9), 
there are several possible interpretations of a generalized AADL semantics. The 
simplest interpretation is that the data is made available (written in the object node) 
at the first dispatch (of the sending thread) following the execution of the behavior 
that has produced it (read_data). And the data is read at the first dispatch of the 
receiving thread following the writing (see Fig. 11.10).

A second interpretation (see Fig. 11.11) could be that the data is read at the first 
dispatch of the receiving thread following the actual production of the data (not 
waiting for the following dispatch of the sending thread). This interpretation leads 
to make the second significant reading synchronous with the third instant of 
control (for each hyper-cycle) instead of the fourth as in Fig. 11.10. These cases 
are studied in detail in [2].

Note these two interpretations can all be valid and deterministic. It is just a 
matter of making explicit the semantics. The first interpretation is very simple to 
implement and the second one requires being able to control very tightly the 
 communication times.

read_data

control

wr (sample)

rd (sample)

0s 0.1s

0s 0.04s 0.08s 0.12s 0.16s

0.2s

0.2s

Fig. 11.8 Immediate communications and chronometric clocks (q1 = 2, q2 = 5)
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Fig. 11.9 Logical clocks (q1 = 2, q2 = 5)

Fig. 11.10 First interpretation with delayed communications (q1 = 2, q2 = 5)

A UML object node has two interesting attributes: it has an upper bound, possibly 
unlimited, and it can order events, by default according to a FIFO policy. Thus, 
there is no reason to assume that the threads are in phase, the sending thread writes 
(and possibly overwrites) tokens in the object node, while the receiving thread 
reads them when required. Our definition of the significant writings and readings 

Fig. 11.11 Second interpretation with delayed communications (q1 = 2, q2 = 5)
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helps defining when the token is the same – the content must be overwritten – and 
when the token is different, which implies that a new token must be created. 
Actually, the occurrence of ^wr should create a new token.

11.4 Conclusion

We have briefly introduced the Time model of MARTE and we have illustrated its 
use on an example taken from AADL. We think that our clock constraint language 
could be used to make formal the semantics of UML-like graphical representations 
that is often partially implicit. In this language, we borrowed some notations on 
binary words from the N-synchronous approach but in our case we do not limit our-
selves to synchronous relations. We have implemented a constraint parser that has 
been made available with the XMI of the Time subprofile on the OMG website. This 
parser can be used to parse constraints extracted from UML models. Some analytic 
tools should reduce the constraints or compute new ones and put them back in the 
models. For now, all these formal computations are manual but we intend to trans-
form our constraints into languages amenable to clock computations (time automata 
or synchronous languages like Signal or Esterel). Ultimately, our constraint lan-
guage could be used to drive a UML simulator, in a constructive way, according to 
the model time semantics rather than an untimed event-driven semantics.
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Chapter 12
Software Real-Time Resource Modeling

Frédéric Thomas1, Sébastien Gérard1, Jérôme Delatour2,
and François Terrier1

Abstract Setting up truly flexible design processes becomes an important chal-
lenge to face with the increasing complexity, the shorter time to market constraints 
and the constant evolution of Real-Time Embedded (RTE) software requirements. 
One promised solution is the model driven development (MDD) based on the princi-
ple of separating the application description from its platform specific implementa-
tion. Nowadays, this is often done through dedicated model transformations which 
implicitly represent the platform model. Specific transformations have shown their 
limits as soon as we want to optimize the implementation. In this context, a good 
compromise could be to make explicit a platform model. This is one of the chal-
lenges addressed by the Object Management Group (OMG) through the definition 
of the standard profile for Modeling and Analysis of Real-Time and Embedded sys-
tems (MARTE). In particular, the capabilities to model software real-time embedded 
resources will allow describing explicitly the RTE software multitasking platform 
characteristics. It will ease their integration in a flexible design process (both to pro-
duce implementation and to perform accurate scheduling of performance analysis).

Keywords Platform modeling, MARTE, UML profile, software modeling, 
multitasking

12.1 Introduction

Real-time embedded (RTE) application design methodologies are classified under 
two headings: sequential-based design (also called loop design) and multitasking-
based design. The first category calls for designing applications as a set of ordered 
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sequential actions, whereas the second category aims at designing applications as a 
set of units that execute concurrently and interact (i.e. communicate and synchro-
nize) via specific mechanisms such as semaphores and messages. Our work falls 
under the second heading. Most multitasking-based approaches rely on a specific 
multitasking execution platform, called a real-time operating system (RTOS). This 
latter runs on top of a hardware platform and offers to designers the well-suited 
constructs needed to support both features, concurrency (e.g. task, thread and proc-
ess) and interactions (e.g. mailbox, shared memory and semaphore).

Like the software/system engineers, real-time embedded system (RTES) engi-
neers are faced with the challenge of developing more and more complex systems, 
achieving higher quality at a lower cost, and in a shorter time. Within this context, 
reusability, maintainability and portability become major issues in RTES design 
processes. The usage of RTOS platforms was an initial, “architectural” response to 
these problems by enabling the development of applications independently of their 
hardware computing platforms. The RTES design community has made efforts for 
standardizing application programming interfaces (APIs) of RTOS, as for example 
POSIX Std 1003.1 [1], OSEK/VDX-OS [2] and ARINC-653 [3]. Usage of such 
standards for designing multitasking-based applications has fostered reuse of appli-
cations in different software contexts. Nevertheless, they cannot answer all portabil-
ity problems. Platform is a great concern for RTE system designers since their 
performances are passed directly on to the applications. A unique, standard and uni-
versal implementation is thus a dream. Few RTOS APIs are actually conformant to 
a given standard. Moreover, standard APIs provide intentional degrees of freedom 
for the implementation. Hence, systematic, standalone and syntax transformations 
(e.g. code generation) based on standard APIs fail to deal with engineer needs.

For some years, the IT community has proposed a new development approach 
said to be model-driven. This initiative places the model paradigm and the use of 
model transformations at the center of the development process. One promised 
solution is to separate the application description from its platform specific imple-
mentation. The most mature formulation of this vision at present is the Model-
Driven Architecture (MDA) approach [4]. This latter is promoted by the Object 
Management Group (OMG). MDA involves a Y-chart design process in which a 
platform-independent model (PIM) of the software is transformed into a platform 
specific model (PSM); given a platform description model (PDM). All these mod-
els are described in the Unified Modelling Language (UML) [5]. We propose to 
investigate the MDA approach to design RTE systems. Thus, we want to model 
RTE multitasking execution platform with UML.

Due to its general purpose, UML lacks certain key native artifacts for describing 
concrete and precise RTE multitasking concepts such as task, semaphore, and mail-
box. This lack has been full by a new OMG standard dedicated to modeling and 
analysis of real-time and embedded systems, MARTE [6]. In that context, this 
paper presents the Software Resource Model (SRM) UML profile dedicated to 
characterize RTE multitasking execution platform.

After a quick tour around related work for software execution platform modeling 
with UML, we show how to achieve this goal thanks to MARTE and how it can 
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help application design in a model-driven style. Finally, we will give some conclu-
sions and will elaborate on some possible future work.

12.2 Related Work

Much work has already been done on platform modeling. This section is therefore 
divided into two sub-sections: one dedicated to related research on characterizing 
execution platforms and the other to model such platforms with UML.

12.2.1 Characterizing RTE Software Platforms

The MDA guide [4] provides the following generic definition of the platform con-
cept: “A platform is a set of subsystems and technologies that provide a coherent 
set of functionalities through interfaces and specified usage patterns, which any 
application supported by that platform can use without concern for the details of 
how the functionality provided by the platform is implemented”. Although this is 
a very broad and high-level definition which leaves a large scope for interpreta-
tion, it does make clear that the MDA guide considers a platform as a support for 
the execution of software applications. This correlate well with the industrial intui-
tive definition of “platform” which refers to machines or systems such as frame-
works, middleware, virtual machines and RTOS, which are built to support an 
execution process.

According to B.Selic in [7], this “enabling execution” concept consists of pro-
viding resources (i.e., mechanisms) and services (i.e., functionalities) to be used by 
one or more software applications. Resources are structural entities offering serv-
ices that may be qualified by non-functional properties (e.g., latency, worst case 
execution and pool size). These properties reflect the offered execution characteris-
tics and the platform performances.

A. Sangiovanni-Vincentelli emphasizes in [8] that resources and services are 
provided by application programming interfaces (APIs). An API should provide a 
complete and accurate description of the platform, so that any application that is 
consistent with this interface is guaranteed to be processable via that platform. 
Hence, the API may be considered as a representation of this “enabling execution”
concept.

We can thus summarize previous discussion on to characterizing execution plat-
forms as follows: an execution platform is “an abstraction layer in the design flow 
which interfaces through its API a set of resources (i.e., types and instances) com-
posed of a set of services and a set of usage patterns, either with other platform 
resources or with other client systems called applications”. The language used to 
model such execution platforms must therefore allow modeling of specific RTE 
types, along with predefined instances and usage patterns.
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12.2.2 Execution Platform Modeling with UML

UML 2.0 [5] is now widely used for software development and is emerging as a 
possible solution for enhancing RTE system development [9]. UML provides lin-
guistic concepts to describe types (i.e., resources), instance specifications (i.e., 
resource instances), and behavioral features (i.e., services). Moreover, UML pro-
vides means to describe usage patterns as “collaborations” and “collaboration uses” 
within composite diagrams. Since explicit platform models can have an arbitrarily 
complex structure, we can also use UML 2.0’s composite structures to break down 
a complex design into smaller parts. In such a view, the concepts of connector and 
port may be useful to describe the binding of applications with platforms [7]. 
Finally, state-machine and activity diagrams may be associated with encapsulated 
classifiers to define their behaviours.

UML native concepts nevertheless need to be extended to cover the semantics of 
RTE concepts. For that precise purpose, UML provides a lightweight extension 
mechanism called profile (see Section 12.18 of [5]). A UML profile consists of 
“stereotypes” and “constraints”. Stereotypes may have properties called “tags” and 
are used to define extensions to existing UML language constructs (metaclasses). 
They likewise enable use of platform/domain-specific terminology and notation. 
Constraints are used to restrict or to specify the usage of the stereotypes within the 
context of a UML model. When they are written in Object Constraint Language 
(OCL) [5], constraints can be checked automatically on UML models applying a 
profile. They then provide support for checking static semantic rules.

A large number of UML extensions for real-time and embedded designs have 
already been proposed. In [10], the UML Profile for Schedulability, Performance and 
Time (SPT), standardized by the OMG, proposes mainly concepts for two kinds of 
analysis: RMA-based schedulability analysis, and performance analysis based on lay-
ered queuing theory. For platform modeling, SPT provides only high-level concepts. 
This lack has been one of the OMG motivations for a new RTE profile, MARTE.

In [11], P. Kukkala proposes a model-driven methodology based on both UML 
and a specific profile to describe applications and platforms. This methodology 
does not only allow the description of platform structures but also the binding of 
applications with platforms. The proposed profile does not, however, take into 
account the operating system as a platform.

In [12], R. Chen proposes a UML profile for specification of embedded system 
platforms. This profile provides domain-specific classifiers and relationships to sup-
plement the SPT approach. However, it does not include means to describe platform 
services, and essentially enables to annotate resources. Such an approach may not 
allow automating completely the binding of the application with the platform.

In [7], B. Selic describes a straightforward but relatively general UML profile 
for platform modeling and deployment of relationships between platforms and 
applications. Although this model enables a systematic approach to factor crucial 
platform characteristics, the proposed profile does not provide specific concepts to 
model RTE execution resources such as tasks and semaphores.
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Related work has resulted in UML extensions that make notation and semantics 
more suitable for highly abstract real-time concept modeling with UML. But, all this 
work does not provide enough detailed artifacts to describe both resources and serv-
ices provided by software execution platforms. A complete explicit model will facili-
tate and automate binding of an application with its RTOS execution platform. We 
have consequently proposed a new UML 2.0 profile for that purpose, the UML profile 
for Software Resource Modeling (SRM). This latter is part of the MARTE standard.

The MARTE specification consists of three main packages described in figure 
12.1. The first package defines the foundational concepts of MARTE. It provides 
basic model constructs for non-functional properties, time and time-related con-
cepts, allocation mechanisms and generic resources, including concurrent resources. 
These foundational concepts are then refined in both other packages to respectively 
comply with modelling and analyzing concerns of real-time embedded systems.

The second package provides a generic basis for different quantitative analysis sub-
domains. This Generic Quantitative Analysis Modeling package is further generalized 
into two packages: one for schedulability analysis, to predict whether a set of software 
tasks meets its timing constraints; and another for performance analysis, to determine 
if a system with non-deterministic behaviour can provide adequate performance.

The third, “Real-Time Embedded Design modelling” package provides support 
for modelling high-level model constructs to depict real-time embedded features of 
applications, but also for enabling the description of detailed software and hardware 
execution platforms. The SRM profile deals with the software execution part.

RTE analysis model

Foundations

GQAM
(Generic Quantitative Analysis)

SAM
(Schedulability

Analysis
Modeling)

PAM
(Performance

Analysis
Modeling)

RTE design model

« import »

Time
NFPs

(Non-FunctionalProperties)

Alloc
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GCM
(GeneralComponentModel)

GRM
(Generic Resource modeling)« import »

RTeMocc
(Real-Time Model of computation &

Communication)

HRM
(Hw Resource

Modeling)

SRM
(Sw Resource

Modeling)

« import »

« import »

« import »

import »« « import »

« import »

« import »

Fig. 12.1 Overview of the UML MARTE profile
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12.3 Software Resource Modeling

There are currently no formal ways for designing UML profiles. We have designed 
our profile in two stages. The first stage aims at defining all concepts required to 
cover a specific domain. The output of this stage is called the “domain model” of 
the profile. It is considered as a specification of the domain-specific language. The 
second stage then consists in designing the previous language specification in terms 
of UML extensions, i.e., defining UML stereotypes, their properties and additional 
constraints. Thus, that section is organized as follows: the first subsection is an 
outline of the SRM domain view, the second is an overview of the SRM UML pro-
file and the last two present some SRM Profile usage examples.

12.3.1 Outline of the SRM Domain View

The SRM profile is based on the “resource-service” modeling pattern proposed for 
platform modelling in [7] and [10]. That pattern allows describing resources which 
own properties and provide services. Some properties and services play roles. Such 
roles are modelled as resources attributes. Figure 12.2 illustrates that pattern on a 
software resource. A software resource owns some attributes. Among those 
attributes some are used to identify the resource. Those are referenced by the “iden-
tifierElements” meta-property. A software resource provides also services. Some 
may be used either to create or to delete the resource. Those are respectively refer-
enced either by the “createServices” or by the “deleteServices” meta-properties.

The whole domain model has been built on the basis of a detailed analysis of 
main RTOS API standards [1–3], and certain industrial standards (e.g. [13, 14]). 
An overview of domain resources is shown in Tables 12.1–12.3. Real-time embedded 
software concepts may be classified according to following concerns:

● Concurrent execution (i.e., parallel execution) contexts such as an interrupt and 
a task

● Interactions between concurrent contexts for either communication or synchro-
nization purposes (e.g., mailbox and semaphore mechanisms)

ResourceService

Resource

SwResource

createServices

0..*

providedServices1.*

deleteServices

0..*

ResourceProperty
identifierElements

0..*

0..* ownedProperties

Fig. 12.2 An example of the “resource-service” modeling pattern
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● Hardware and software resource brokering concepts, such as driver or memory 
management

12.3.2 SRM Profile Overview

Figure 12.3 provides on overview of the profile architecture resulting from the 
design of the previous SRM domain view in terms of UML extensions.

The SRM profile provides a broad range of modeling capabilities covering all 
RTOS concerns and with a low-level of details to enable generative approaches 
where models are used to generate parts of the application. Due to space limitations 
of this paper, it is out of the scope of the paper to describe in very details the SRM 
profile. Both next sections are therefore respectively dedicated to an overview of its 
typical modeling capabilities and its main expected use cases.

Table 12.1 Concurrency resources

Resource Semantics

SchedulableResource Encapsulated sequences of actions which execute 
      concurrently.

MemoryPartition Virtual address space.
InterruptResource A computing context to execute user-delivered 

      routines (i.e., entry point) connected to asynchronous signals.
Alarm An executing context for a user routine, which must be 
      connected to a timer.

Table 12.2 Interaction resources

Resource Semantics

MessageComResource Communication resource used to exchange messages.
SharedDataResource Resource used to share the same area of memory 

      among concurrent resources.
NotificationResource Resource supporting control flow by notifying the 

      occurrences of conditions to awaiting concurrent resources.
MutualExclusionResource Resource that synchronizes access to shared variables.

Table 12.3 Brokering resources

Resource Semantics

MemoryBroker Resource that manages memory allocation, memory 
      protection and memory access.

Scheduler Resource that orchestrates the execution of multiple 
      schedulable resources.

DeviceBroker Resource that enables interfacing of hardware peripheral 
      devices with the software execution support.
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12.3.3 Modeling Examples

SRM concepts mainly extend the Classifier metaclass of UML (Fig. 12.7 shows a 
typical extension). Any UML “Classifier” submetaclass can thus be extended by 
these stereotypes (e.g., “Class”, “Interface”, “Component” and “AssociationClass”). 
Figures 12.4 and 12.5 illustrate the usage of “Class” and “Component” extensions. 
Figure 12.6 illustrates the use of an “AssociationClass” to describe interactions 
among concurrent resources. Since the “InteractionResource” stereotype extends the 
UML Classifier metaclass, an UML “AssocationClass” may be stereotyped as 
any “InteractionResource” substereotype (e.g., “NotificationResource”, “Message 
ComResource”, and “MutualExclusionResource”). In this example, the execution  support 
provides concurrency resources (“Alarm” and “Task”) to compute instructions.  

« profile »
SRM

« profile »
SW_Concurrency

« profile»
SW_Brokering

« profile »
SW_Interaction

« profile »
SW_ResourceCore

«

« import » « import »

import »

Fig. 12.3 SRM profile overview

+ yield()

Deadline : Integer

« SchedulableResource »
Task

« SchedulableResource »
deadlineElements = Task::Deadline
yieldService = Task::yield()

« SchedulableResource »
Task +yield()

« interface »
TaskService« SchedulableResource »

yieldService = TaskService::yield()

Fig. 12.4 Example of class extension

Fig. 12.5 Example of component extension
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These resources are described as UML classes and respectively stereotyped as 
“Alarm” and “SchedulableRessource”. In this example, an “Alarm” resource may 
interact with a “SchedulableResource” by mean of an event mechanism stereo-
typed “NotificationResource”.

Since predefined instances are associated with one or more classifiers in the 
UML metamodel, platform providers must first define their classifiers. These clas-
sifiers should be stereotyped. This means that an extension of the UML 
“InstanceSpecification” metaclass is not mandatory.

task

0..1

« SchedulableResource »
Task

« Alarm »
Alarm

« NotificationResource »
Event

VxWorks Platform

« profile »
SRM

+priorityElements : TypedElement [0..*]
+stackSizeElements : TypedElement [0..*]
+activateService : Operation [0..*]
+createService : Operation [0..*]

« stereotype »
SchedulableResouce

« metaclass »
UML::kernel::Classes::Classifier

+taskSpawn(initPriority: Integer)
+taskActivate()

+stackSize: Integer;
+priority: Integer;

« SchedulableResource »
VxWorksTask « SchedulableResource »

priorityElements = [priority, initPriority]
stacksizeElements = [stackSize]
createService = [taskSpawn]
activateService = [taskSpawn, taskActivate]

« apply »

Fig. 12.6 Example of an association class

Fig. 12.7 Examples of tagged values
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Stereotype tags allow users to specify resource feature taxonomies. For example 
in Fig. 12.4, the “Deadline” property is referenced by the “DeadlineElements” 
stereotype property to clarify its taxonomy. It shows explicitly in the model that one 
of the attributes of this class plays the role of a deadline. This is the attribute named 
“Deadline”. Such a modeling approach allows tools to distinguish properties and to 
permit automatic model transformations (e.g., code generation).

Note that there are no constraints on the tagged value owner. In the second part 
of Fig. 12.5, the “TaskService” interface owns a “yield” operation. This operation 
is tagged as a “yieldServices” via the “SchedulableResource” stereotype. But this 
stereotype is not applied to the interface, which means that, within the context of a 
“task”, the service to call to release the computing resource is the “yield” operation 
of the “TaskService” interface.

Note also that both multiple tagged values for the same tag and multiple tags for 
the same feature are allowed. With this approach, the user can formally express 
multiple semantics for the same feature through multiple tags. Figure 12.6 describes 
a “taskSpawn()” service as both task creating and task activating services. In the 
same way, to activate a task, the user can either call the “taskSpawn()” service or the 
“taskActivate()” service. This also allows users to express the same semantics for 
multiple features through use of the same tag (see “priorityElements” in Fig. 12.7).

12.3.4 Main SRM Use Cases

Figure 12.8 shows the main use cases in which the SRM profile is likely to be 
involved. Potential key users of this description include “software designers” engaged 
in defining real-time system software architectures, “platform providers” who 
develop and sell real-time operating systems, and “methodology providers” who 
specify processes where platform modelling is important (e.g., an MDA Y-chart).

Software
Designer

Describe platform
model library

Bind application model with
platform model

« include »

SRM UML Profile

Execution Platform 
Provider

Methodology
Provider

Describe
multitasking

model
Model

transformation

Code generation

« extend »

« include »

« extend »

« extend »

Fig. 12.8 Typical SRM use cases diagram
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« model »
RobotController

trajectoryControl()
odometry()

MotionController

setSpeed()
getSpeed()
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driver

0..1
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« SchedulableResource »
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« entryPoint »
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« apply »
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« import »
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« import »

Fig. 12.9 An OSEK/VDX-OS design

Figure 12.9 depicts a specific example of a robotic application built to run on the 
OSEK/VDX-OS RTOS [2]. This design is a basic robot motion controller. It is typi-
cal of the processes involved in RTES design. The example used here does not refer 
to a specific methodology, but is intended to illustrate the previously described 
SRM use cases.

In our example, the software designer describes the logical “RobotController” 
model. This model does not use the SRM profile in order to be independent of the 
target platform. Platform independence refers to the fact that a given design can be 
ported without change, from one platform to another.

The SRM profile is normally used to describe the platform model library, as is 
usually done by the platform provider. The platform model library includes 
resources and resource instances provided by the execution platform. For instance, 
the platform provider indicates that the “OSEK/VDX” RTOS provides a specific, 
structured type named “BasicTask”. A UML class is used to show that the platform 
provider stereotypes that class as a “SchedulableResource” to indicate that this 
“BasicTask” concept owns the semantics of a concurrent execution resource man-
aged by a specific scheduler. The platform provider also specifies that the integer 
attribute named “priority” is the priority property of that schedulable resource.

Finally, the application may be bound with the execution platform to produce a 
multitasking model. To do that, the application design may import the previous 
defined platform model library to instantiate predefined types and use predefined 
instances. Binding is described via a UML 2.0 dependency stereotyped with a spe-
cific stereotype. In the case of a schedulable resource, the stereotype “entryPoint” 
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is used to specify that the “trajectoryControl” operation body is the code which has 
to be executed in the context of that schedulable resource.

Based on this description, the methodology provider can define tools to auto-
matically generate the OSEK/VDX configuration file described in OIL language 
[15]. For each UML “InstanceSpecification” whose classifier is stereotyped 
“SchedulableResource”, an OIL Task declaration block can be generated. As the 
priority is explicitly referenced, tools are able to give the task priority value. Figure 
12.10 is an example of the possible generated code.

Moreover, a software designer may wish to reuse and port a part of an applica-
tion description to run on top of a new RTOS. Figure 12.11 illustrates such a use 
case with an ARINC-653 RTOS [3]. In this example, methodology provider tools 
must transform each UML “InstanceSpecification” of the OSEK/VDX “BasicTask” 
into a UML “InstanceSpecification” of an ARINC-653 process. The transformation 

01. OIL VERSION = “2.5” : “RobotController”;

02. … 

03. CPU cpu{ 

04.         TASK t1_trajectoryControl{ 

05.                      PRIORITY = 10; 

06.         }; 

07. } 

08. … 

Fig. 12.10 Extract from an OSEK/VDX configuration file
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Fig. 12.11 An ARINC-653 design
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pattern is generic, since both entities are described with the same 
“SchedulableResource” stereotype. The methodology provider can thus write a 
generic transformation rule to port an application from one platform to another: 
Each UML “InstanceSpecification” whose classifier is stereotyped 
“SchedulableResource” in the source RTOS must be transformed into a UML 
“InstanceSpecification” whose classifier is stereotyped “SchedulableResource” in 
the target RTOS. Such a rule can be easily written in any language for model trans-
formation as for example ATL [16]. Tagged attributes and tagged operations can be 
transformed in the same way.

12.4 Conclusion and Future Work

In this paper, we have proposed a means for modeling software execution platforms 
with UML. This is done within the scope of providing model-driven processes that 
afford reusability, portability and maintainability of RTE applications. We have 
focused on an application built on an RTOS. We have thus sought to provide mod-
eling artifacts for modeling existing standardized RTOS APIs, in order to be able 
to automatically produce code for interfacing the application with these APIs.

In this paper, we firstly defined the platform concept and investigated the state 
of the art related to UML-based platform modeling. This revealed that UML was 
lacking in certain means for describing efficiently and precisely the software execu-
tion platforms. We therefore concluded that more concrete concepts were required 
to enable automatic model transformations (e.g., through code generation). For this 
reason, we have proposed within MARTE a UML profile, called Software Resource 
Modeling (SRM). This profile provides both fine details and a broad range of mod-
eling capabilities. It also provides artifacts that can be used to write generic model 
transformations. Such transformations can be used to generate code and assist for 
porting RTE applications to several multitasking platforms.

The main advantage of using the SRM profile is that this is not a new RTE API 
but instead a standard framework for modeling existing execution platform APIs. 
While the execution platforms discussed in this paper work are mainly RTOS, the 
SRM profile can also be used to describe APIs of other execution platforms such 
as RTE frameworks or virtual machines.

The SRM profile is part of the new UML profile for Modeling and Analysis of 
Real-Time Embedded systems (MARTE) adopted by the OMG consortium. Thus, 
the SRM profile is a standardized framework for describing RTE execution 
platforms.

Future research will deal with the transformations using the SRM profile. Efforts 
will thus focus on usage pattern description and behavior modeling for the purpose 
of obtaining an accurate description of the execution platform.

Acknowledgments The authors do thank J.P. Babau for its valuable contribution to the SRM 
profile.
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Chapter 13
Model Transformations from a Data Parallel 
Formalism Towards Synchronous Languages

Huafeng Yu1, Abdoulaye Gamatié2, Eric Rutten3, and Jean-Luc Dekeyser4

Abstract The increasing complexity of embedded system designs calls for 
highlevel specification formalisms and for automated transformations towards 
lowerlevel descriptions. In this paper, a metamodel and a transformation chain are 
defined from a high-level modeling framework, Gaspard, for data-parallel systems 
towards a formalism of synchronous equations. These equations are translated in 
synchronous data-flow languages, such as Lustre, which provide designers with 
formal techniques and tools for validation. In order to benefit from the meth-
odological advantages of re-usability and platform-independence, a Model-Driven 
Engineering approach is applied.

Keywords MDE, model transformation, Gaspard, synchronous languages, 
 embedded system

13.1 Context and Motivation

13.1.1 MDE and Data-Parallel Applications

Data-parallel applications, such as mobile multimedia processing, high-definition 
TV and radar/sonar signal processing, play an increasingly important role in embed-
ded systems. These applications generally concern computations on multidimen-
sional data structures. But these applications become more and more complex. As a 
result, their design and validation turn out to be dramatically complicated. 
Furthermore, the productivity problem is a great constraint for the development of 
these applications. More efficient modeling and design methods are highly needed.
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Nowadays, among intensive research activities to address such problems, 
Model-Driven Engineering (Mde) [17] based methods can be mentioned. Well-
defined modeling specifications lead to rapid design as well as concise and clear 
documentation, and their automated transformations enable to generate Platform-
Specific Models (Psm) and even executable code conveniently. The re-usability and 
modularity of their models, Intellectual Properties (IPs) and the hierarchical mode-
ling make the production of these applications more efficient and rapid.

13.1.2 The GASPARD Methodology for Data-Parallel Computing

Gaspard [15] is a Mde based development environment and methodology for data-
parallel applications. It proposes concepts, which feature high level data parallel-
ism, data flow and control flow mixing, hierarchical and repetitive application and 
architecture modeling, etc. The inherent data-parallel formalism of Gaspard is 
adopted by Marte (Modeling and Analysis of Real-Time and Embedded systems) 
[16], which is an Omg (Object Management Group) standard for the modeling and 
analysis of real-time embedded systems. Gaspard concerns software/hardware 
co-modeling and model transformations. More precisely, it enables to model software 
applications, hardware architectures, their association and IP deployment through 
a predefined metamodel in a unique modeling environment. This modeling stays at 
a high abstraction level and is platform independent. Gaspard enables as well 
transformations from these models to Psm models.

Gaspard metamodel is partially based on the concept of the Y-chart (see Fig. 13.1 
and [15]). Models for application and hardware architecture are defined separately. 
Then, application models can be mapped on architecture models. The obtained 
models are associated with software or hardware IPs during the deployment. All 
these models are platform-independent, and in general they are not associated with 
particular technologies, but they can still be associated with an execution, simula-
tion, validation or synthesis technology. Model transformations are performed from 
deployed models to specific languages (synchronous languages and others, which 
are not detailed here and are shadowed in the Fig. 13.1, such as Fortran, SystemC
and Vhdl). These characteristics of Gaspard help to reduce the system design 
complexity.

In the following, we briefly present main features of the high-level metamodel 
of Gaspard.

● Application focuses on the description of data dependencies between the appli-
cation components. These components and dependencies completely describe 
the functional behaviour with potential data-parallelism.

● Architecture specifies the hardware architecture at a high abstraction level. 
It enables to dimension hardware resources in the same way as in application.

● Association allows one to express how the application is projected on the 
hardware architecture with the consideration of task and data parallelism.
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● Deployment (represented by the box tagged as “Deployed” in Fig. 13.1) enables 
to chose a specific target platform for code generation from Gaspard models. 
This is achieved by importing IPs.

13.1.3 Motivation: Connecting GASPARD to Validation Tools

The Gaspard methodology, dedicated to the data-parallel application design, 
adopts a top-down approach, which goes from the high abstraction level to low 
implementation levels. Moreover, the correctness of the design and implementation 
is highly required as well. However, Gaspard Uml models are limited by formal 
semantics, which is necessary for the formal validation of the system design. Hence 
a map from these models on formal methods is needed. Synchronous languages are 
well known for their formal aspects and their richness in terms of tools for validation, 
verification and automatic code generation. Therefore, the connection of these two 
technologies is encouraged because it offers the opportunity to benefit from the 
capability of Gaspard in the specification of data-parallelism and also from the 
power of formal aspects of synchronous languages. This paper presents how MDE 
transformations contribute to bridge these different abstraction levels from Gaspard

Fig. 13.1 Y-chart according to Gaspard
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to synchronous languages (Lustre [9] is considered here for illustration). 
Furthermore, the automated transformation reduces potential error occurrences 
caused by the manual translation. Previous works ([1, 5]) have exploited the sim-
ulation of Gaspard specifications in Ptolemy II and also their projections into 
Kahn process network for the distributed execution, but they were not imple-
mented with the Mde approach and did not aim at the formal validation and 
verification.

13.2 Data Parallelism and Synchronous Approach

13.2.1 Data-Parallel Application Design: GASPARD

This paper only addresses software application modeling and its deployment. Basic 
application models of Gaspard [3] can be summarized by the following 
grammar:

Task ::= < Interface, Body > (r1)
Interface ::= < in : {Port}, out : {Port} > (r2)
Port ::= < type, size > (r3)
Body ::= Taskh | Taskr | Taske (r4)
Taske ::= < some function call > (r5)
Taskr ::= < {Tiler}, (r, Task), {Tiler} > (r6)
Tiler ::= < F, o, P > (r7)
Taskh ::= < {Task}, {(Task, array, Task)} > (r8)

All Gaspard tasks share a few common features (rule (r1) ): an interface (rule (r2)
where {} denotes a set) that specifies input/output ports (typed by in or out in rule 
(r2) and defined in rule (r3) ) from which each task respectively receives and pro-
duces multidimensional arrays; and a body (rule (r4) ), which depends on the type 
of task as follows:

● Elementary task (rule (r5) ). The body corresponds to an atomic computation 
block. Typically, it consists of a function or an IP.

● Repetitive task (rule (r6) ). It expresses the data-parallelism in a task. The instances
of the associated repeated task are assumed to be independent and schedulable 
following any order, even in parallel. The attribute r (in the rule (r6) ) denotes the 
repetition space, which indicates the number of repetitions. It is defined itself as a 
multidimensional array with a shape. Each dimension of this repetition space can 
be seen as a parallel loop and the shape of the repetition space gives the bounds of 
the loop indices of the nested parallel loops [3]. In addition, each task instance 
consumes and produces sub-arrays with the same shape. These sub-arrays are 
referred to as patterns. The way patterns are constructed is defined via tilers (rule 
(r7) ), which are associated with each array. A tiler extracts (resp. stores) patterns 
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from (resp. in) an array based on certain information it contains: F: a fitting matrix 
(how array elements fill patterns); o: the origin of the reference pattern; and P: a 
paving matrix (how patterns cover arrays).

● Hierarchical task (rule (r8) ). It is represented by a hierarchical acyclic graph in 
which each node consists of a task, and edges are labeled by arrays exchanged 
between task nodes.

An application is a hierarchical task in which the top-level of the hierarchy is com-
posed of a single task, which plays a similar role to “main” in a C program.

The Gaspard application metamodel is defined according to the above basic 
concepts. The whole software application is modeled as an ApplicationModel, in 
which ApplicationComponents model hierarchical tasks (see detailed examples in 
[18]). Instances of other ApplicationComponent, called ApplicationComponentInst
ance, can be composed in it. These instances have PortInstances. Connectors are 
used to connect PortInstances and/or Ports. Internal structures, such as Elementary,
Compound and Repetitive, are defined in an ApplicationComponent according to its 
inside component instances.

● Elementary points out that the ApplicationComponent is an elementary task, 
which is a black box in Gaspar d.

● Repetitive indicates that the ApplicationComponent is a repetitive task. The 
Connectors which connect ApplicationComponent’s ports and PortInstances of 
its internal instance are Tilers.

● Compound corresponds to a hierarchical task and expresses task parallelism. All 
the ComponentInstances inside this component run in parallel.

13.2.2 The Synchronous Approach

The synchronous approach [2] proposes formal concepts that favor the trusted design 
of embedded systems. Its basic assumption is that computation and communication are 
instantaneous, referred to as synchrony hypothesis. There are different synchronous 
languages, which have strong mathematical foundations, such as Lustre, Lucid
synchrone and Signal. These languages are well-adapted for data-flow-oriented 
applications. All these languages are associated with tool-sets that have been success-
fully used in several critical domains (e.g. avionics, automotive, nuclear power plants).

In this paper, Lustre is taken as the example (see a segment of Lustre code in 
Fig. 13.2) for the introduction of some basic concepts in synchronous languages. 
A node is a basic functionality unit in Lustre. Each node gives the same results with 
the same inputs thanks to its determinism. Nodes have modular declarations that 
enable their reuse. Each node has an interface (input at line (l1) and output at 
(l2)), local definition (l3), and equations (line (l5) and (l6) ). Variables are 
called signals in Lustre. Equations are signal assignments. Furthermore only 
unique assignments are allowed for signals. In these equations, there are possibly 
node invocations (l5) that are declared outside this node. Obviously, in Lustre,
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modularity and hierarchy are inbuilt. The composition of these equations, denoted 
by “;”, means their parallel execution w.r.t. data-dependencies. The node has the 
same meaning independent of the equation order.

13.3 A Synchronous Equational Metamodel

The metamodel proposed here aims at three synchronous data-flow languages at the 
same time. These languages have considerable common aspects, which enable their 
code generation with the help of only one metamodel. In addition, because of the 
obvious differences between Gaspard and synchronous languages, an intermediate 
model is necessary to bridge the gap between them as well. A synchronous model 
is therefore proposed, which follows the synchronous modeling of data-intensive 
applications [8]. It aims to be generic enough to target the synchronous data-flow 
languages mentioned earlier and to be adequate to express data-parallel applica-
tions. So, it is not intended to have exactly the same expressivity as these languages. 
But this is not the case of the Signalmeta metamodel [4], which is specifically 
dedicated to the Signal language. This metamodel completely defines all program-
ming concepts in Signal. It has been specified in the Generic Modeling 
Environment (Gme), developed at Vanderbilt University.

13.3.1 Signal

In the proposed metamodel, all input, output or local variables are called 
Signals(see Fig. 13.3). Each Signal is associated with a SignalDeclaration,
which declares the name and type of the Signal. It is associated with at least one 
SignalUsage. The latter represents one operation on Signal. If the Signal
is an array, a SignalUsage can be an operation on a pattern of this array. Hence, 
if the array has several patterns, the Signal is associated to the same number of 
SignalUsage correspondingly. Each of these SignalUsages has an 
IndexValueSet, which is a set of IndexValue of the associated Signal.
A SignalUsage is associated with at least one Argument of equations, which 
indicates their inputs/outputs.

node node_name (A1:intˆ4)   (l1) 
returns(A3:intˆ4);    (l2) 
var A2:intˆ4;     (l3) 
let      (l4) 
A2 = a_function(A1);    (l5) 
A3 = A1+A2;     (l6) 

tel      (l7) 

Fig. 13.2 An example of Lustre code
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13.3.2 Equation

Equations (Fig. 13.4) indicate the relations between their inputs and outputs, 
which are called Arguments here. An Equation has an EquationRightPart
and at most one EquationLeftPart. The latter has Arguments as Equation
outputs. EquationRightPart is either an Array Assignment or an 
Invocation. Array Assignment has Arguments and indicates that the 
Equation is an array assignment. Invocation is a call to another Node (see 
the following subsection Node). In an Invocation, Function-Identifier
indicates the called function.

13.3.3 Node

Synchronous functionalities are modeled as Nodes (see Fig. 13.4). A Node has no 
more than one Interface, LocalDeclaration, NodeVariables, an 
EquationSystem and some Implementations and CodeFiles. 
NodeVariables is the container of Signals and SignalUsages. Each 
input/output Signal is associated with a SignalDeclaration, which belongs 
to the Interface, while local Signals’ SignalDeclarations belong to 
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Fig. 13.3 Extract of the synchronous metamodel: Signal



190 H. Yu et al.
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Fig. 13.4 Extract of the synchronous metamodel: Node, Equation

LocalDeclaration. EquationSystem is the node body that fulfills the  
functionality through a composition of at least one synchronous Equation. All 
Nodes are grouped in a Module, which represents the whole application. It con-
tains one Node as the main Node of the application. Each Node is either defined 
in the Module or linked to an external function through IP deployment.
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13.3.4 Remarks

Nodes that are not defined in the Module should be deployed. The equiva-
lents of these nodes are Gaspard elementary tasks. An Implementation
associated with a Node contains the information of the external function. 
Parameters of external function are represented by PortImplementations.
Their orders are defined in the Implementation so that parameters are 
passed correctly to the application. An Implementation is associated with 
at least one CodeFile, which represents the implementation of the external 
function.

Synchronous models, which conform to this metamodel, act as intermediate 
models between data-parallel applications and data-flow languages. Their parallel 
compositions preserve the parallelism, and their modularity and re-usability ensure 
hierarchical compositions of original Gaspard models. This modeling is also 
generic enough so that it will not suffer from the complexity and particularity of 
target languages. Moreover it enables potential improvements, for instance, the 
integration of application control inspired by [13].

13.4 Model Transformations

Only Gaspard models with the infinite dimension at the highest hierarchy can be 
transformed into synchronous models. The infinite dimension is translated by a 
logical time in the reactive style of synchronous languages. So in synchronous 
models, there are no more infinite dimensions. The multidimensional arrays are 
translated into array-type signals. Parallelism in Gaspard can be easily modeled in 
synchronous models with the help of the composition operator defined in synchro-
nous languages.

Transformations of Gaspard models into synchronous specifications (typically, 
Lustre programs) consist of two steps: firstly, a transformation of Gaspard mod-
els into synchronous models; and then, the generation of synchronous code from 
synchronous models obtained from the first step.

13.4.1 From GASPARD Models to Synchronous Models

Some basic transformations are first given. Componentsand Compon-
entInstances are transformed into Nodes and Equations respectively. 
Ports, PortInstances and DefaultLink connectors in a Component are 
transformed into Signals, whereas Tiler connectors are transformed into 
Equations as well as Nodes.
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13.4.1.1 Transformation Rules

All the rules can be represented through a tree structure (see Fig. 13.5). The unique 
initial (root) rule is GModel2SModel. It transforms a whole deployed Gaspard
application into a synchronous module. This rule then calls its sub-rules:

GTiler2SNode, GApplication2SNode, GACI2SNode, etc. GApplication2SNode has 
also three sub-rules: GRepetitive2SEquationSystem, GCompound2SEquationSystem
and GElementary2SEquationSystem. Note that not all rules are given in the Fig. 13.5 
due to lack of space (see [18] for details). In the following, only rules presented in the 
Fig. 13.5 are described. Among them, GTiler2SNode and GRepetitive2SEquationSystem
are a little more detailed. The other rules are constructed in the same way.

● GTiler2SNode (see Fig. 13.6 in which each element is numbered). It is a rule for 
the transformation of tiler connectors into synchronous input or output tiler 
Nodes. An input tiler Node is taken as an example for the construction of a 
synchronous node. First of all, the Node (numbered 1) is created and is associ-
ated with its Module. The Port and PortInstance connected by this tiler 
are then transformed into input and output Signals respectively. One Port
corresponds to one input signal, and one PortInstance corresponds to sev-
eral output signals, whose quantity, n, is calculated from the repetition space 
defined in its connected ComponentInstance. The input signal is associated 
with n SignalUsages (4) and an output signal is associated with a 
SignalUsage (8). Interface (2) is then created and associated with 
SignalDeclarations (3, 9) that are associated with signals. Note that there 
are no LocalDeclarations in this node. Next, an EquationSystem con-
tains n Equations (5). In each Equation, the EquationLeftPart has an 
Argument (6) which is associated with a SignalUsage of an input signal. 
EquationRightPart is directly an ArrayAssignment. Its Argument
(7) is associated with a SignalUsage (8) of a corresponding output.

Fig. 13.5 Hierarchy of the transformation rules
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● GApplication2SNode. It transforms application components into Nodes.
However, all the elements in these Nodes are generated by its three sub-rules, 
which transform internal structures in the Component into an 
EquationSystem.

● GACI2SNode. It transforms the unique main ApplicationComponentIns
tances into a synchronous Node. It is the main instance of the application.

● GRepetitive2SEquationSystem. (Fig. 13.7) In this rule, an EquationSystem is 
first created. And then three types of Equation are created: input tiler 
Equations, repeated task Equation and output tiler Equations. Tiler
connectors are transformed into input/output tiler Equations, which are invo-
cations to Nodes generated by GTiler2SNode, and the internal 
ComponentInstance is transformed into repeated task Equation. A rele-
vant repeated task Node is then created, in which n equations invoke the task 
node corresponding to the component that declares the internal component 
instance. Note that hierarchical composition in Gaspard models is preserved in 
synchronous models by node invocations.

● GCompound2SEquationSystem. Each internal ComponentInstance is trans-
formed into an equation. Connectors between these ComponentInstances
are transformed into local Signals.

● GElementary2SEquationSystem. No Equation is created because its owner 
Node is implemented externally and Deployment models are used to import 
its external declarations. However an Interface is created according to the 
component’s ports.
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Fig. 13.6 Transformation of the tiler
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13.4.1.2 Implementation of the Transformation Chain

Gaspard models are specified in the graphical environment MagicDraw, and are 
exported as Eclipse Modeling Framework (Emf) [6] models. Emf is a modeling 
framework and code generation facility. In the following transformation phase, 
these models are transformed into Emf Gaspard models. These two previous trans-
formations will not be detailed here. Then Emf Gaspard models are transformed 
into Emf synchronous equational models, which are finally used to generate syn-
chronous language code (e.g. Lustre code). An automated model transformation 
chain is then defined through the concatenation of these transformations from 
MagicDraw Uml models to data-flow languages (Fig. 13.8).

These transformations were implemented with the help of specifications, stand-
ards and transformation languages. Some of them are briefly presented in this 
paper. Mof Qvt [14] is the Omg standard on model query and transformation, 
which is respected in transformations presented here. Several other transformation 
languages and tools, such as Atl [10] and Kermeta [12] already exist. Atl is a 
model transformation language (a mixed style of declarative and imperative con-
structions) designed w.r.t. Qvt. Kermeta is a metaprogramming environment 
based on an object-oriented Domain Specific Language. But these two languages 
lack of extension capability especially when some external functions are needed to 
be integrated into the transformation. Emft (Eclipse Modeling Framework 
Technology) project was initiated to develop new technologies that extend or com-
plement Emf. Its query component offers capabilities to specify and execute queries 
against EMF model elements and their contents. The MoMoTE tool (MOdel to 
MOdel Transformation Engine), which is based on the Emft Query and is inte-
grated into Gaspard, is a Java framework that allows to perform model to model 
transformations. It is composed of an Api and an engine. It takes input models that 
conform to some metamodels and produces output models that conform to other 
metamodels. A transformation by MoMoTE is composed of rules that may call 
sub-rules. These rules are integrated into an Eclipse plugin. In general, one plugin 
corresponds to one transformation. During model transformations, these plugins 
are automatically invoked one by one.

TilerTiler

Node

... ... ...

Node Node Node

Repetitive task

Task

Fig. 13.7 Transformation of the repetitive task
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13.4.2 Synchronous Code Generation from Models

The implemented code generation from synchronous models is template based. 
Emf Jet [7] and MoCodE are used to build code generators (three generators for 
three data-flow languages). Jet is a template based code generation tool. User 
defined templates in Jet are used to generate Java implementation classes. Then, 
the latter can be called to generate target code. MoCodE (MOdels to CODe 
Engine), which works with Jet, is also a tool integrated into Gaspard. It consists 
of an Api with an engine that enables to perform model to text transformation. It 
takes a set of models as inputs, and then its engine recursively takes out elements 
from input models and executes a corresponding Java implementation class on 
them. These Java classes finally generate target code.

13.5 An Application Example

Examples of matrix processing, which averages the patterns from inputs, are intui-
tive, but they are typical to show the transformation and the application domain. 
One of the examples implemented is illustrated in Fig. 13.9, which takes a flow of 
(4, 4)-array, and produces a flow of (2, 2)-array. For each step in the flow, the aver-
age computing block has four repetitions, each of which takes a (2, 2)-sub-arrays 
from the input array, then carries out the computing, and produces a (1, 1)-sub-
array. Finally all of the (1, 1)-arrays from the four repetitions then construct the 
output (2, 2)-array of the application.

The deployment of the matrix average IP (TASK) is illustrated in Fig. 13.10. 
This deployment indicates where to find the Lustre code that implements this IP. 
The physical Lustre code is represented by the CodeFile, and it is associated to 
the elementary task by the component AbstractSoftwareImplementatio
n, which is composed of at least one SoftwareImplementations. This 
means one elementary task may have several different implementations (in different 
languages or through different algorithms). The SoftwareImplementation
contains the deployment information, for example, the elementary function name, 

Model Transformation Code generation Code

UML model

Magic Draw

UML model Lustre

SynchronousEclipse EMF

Gaspard model Synchronous
equational model

Fig. 13.8 The detailed transformation chain
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the language of its implementation. Other deployment information, such as ports, 
etc., can be found through the references (portImplementedBy, imple-
mentedBy) between AbstractSoftwareImplementation and 
ElementaryComponent.

The transformation chain and the generated code is illustrated in the video 
located in [11]. The extract of the generated code can also be found in [18].

<<Applicationcomponent>>
MatrixAverage

<<ElementaryComponent>>
<<ApplicationComponent>>

t : TASK [(2,2)]

[(2,2)]

[(2,2)]
[(4,4)]

<<Tiler>>
{fitting = “((1,0), (0,1))”,
origin = “(0,0)”,
paving = “((2,0), (0,2))”}

<<Tiler>>
{fitting = “((1,0), (0,1))”,
origin = “(0,0)”,
paving = “((1,0), (0,1))”}

[(1,1)]

Fig. 13.9 An example of matrix average computation

<<ElementaryComponent>>
<<ApplicationComponent>>

TASK

<<AbstractSoftwarelmplementation>>
asiTask

<<implementedBy>>

<<manifest>>

{functionName = “TASK1”,
language = Lustre}

<<SoftwareImplementation>>
siTask

<<CodeFile>>
cfTask

{filePath = “./eclipse/runtimeConfiguration/demo/exLustre/”}

<<portlmplementedBy>>

i1 : Integer [(2,2)] o1 : Integer [(1,1)]

i1

<<portlmplementedBy>>

o1

Fig. 13.10 The deployment of the matrix average IP
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13.6 Conclusions and Perspectives

In this paper, we proposed a synchronous metamodel and presented model transfor-
mations from data-intensive applications specified in Gaspard into synchronous 
languages, particularly the Lustre language, through a Mde approach. The code 
in java and rules of the implemented transformations adds up to about 5,000 lines 
in Eclipse.

Some illustrative examples of the transformation have been implemented. Due 
to space problem, only one is showed in this paper. Other more complicated exam-
ples can be found in [18].

Simulation and validation issues are also addressed with the generated code. 
Functional simulation and verification of deadlock absence on the original design 
have been carried out. Whereas the synchronizability analysis requires the introduc-
tion of clocks in Gaspard. One of the future work concerns the integration of con-
trol (inspired by [13]) in Gaspard models and their transformation into synchronous 
languages for automatic verification. More analysis details can be found in [8, 18]. 
Finally, the way all these analysis results can be exploited by Gaspard users is a 
challenging perspective from a practical point of view.
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Chapter 14
UML and SystemC – A Comparison 
and Mapping Rules for Automatic 
Code Generation

Per Andersson and Martin Höst

Abstract Today embedded system development is a complex task. To aid the engi-
neers new methodologies and languages are emerging. During the development the 
system is modeled using different tools and languages. Transformations between the 
models are traditionally done manually. We investigate the automation of this proc-
ess, specifically we are looking at automatic UML to SystemC transformation. In this 
paper we compare UML and SystemC, focusing on communication modeling. We 
also present mapping rules for automatic SystemC code generation from UML. The 
mapping has been implemented in our UML to SystemC code generator.

Keywords code generation, UML, systemC

14.1 Introduction

Today there is a never ending demand for new functionality to be included in 
embedded systems such as mobile phones. This leads to increased design complex-
ity. To overcome the increased system complexity new design methodologies, such 
as model driven architecture, have been introduced. In parallel with this, new lan-
guages, i.e. SystemC [2, 3], for system level modeling and simulation have also 
emerged. Combining new methodologies and new languages is a promising 
approach to manage the increasing system complexity. This is the focus of the 
MARTES (Model-Based Approach for Real-Time Embedded Systems develop-
ment) project.1 In the project we investigate how UML and SystemC can be used 
together when the ideas of Model Driven Architecture are applied. One of the tasks 
of the project is to investigate how transformations from UML to SystemC can be 
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automated and supported by tools. During this research we are developing a proto-
type tool, which manage the UML to SystemC transformations and code genera-
tion, as an add-in to the Telelogic TAU UML2 modeling tool.2 This part of the 
MARTES project is carried out in close cooperation between Lund University and 
Telelogic. In this research there are a number of decisions that needs to be taken 
related to the detailed requirements on the developed tool. It is crucial to take the 
right decisions concerning what functionality to include in the tool. This is achieved 
by developing the tool iteratively. Different versions are developed after each other, 
and every version is evaluated in order to decide what additional functionality to 
include in the next version. Evaluations are a very important part of the develop-
ment of the tool. The evaluations are being carried out together with other partners 
in the MARTES project, in the context of case studies in industrial projects. In this 
paper we present the work and results from developing the first version of our UML to 
SystemC code generator. We start with a summary of related work in Section 14.2. 
We compare the constructs and semantics of UML and SystemC in Section 14.3. 
Based on this comparison we have developed a set of mapping rules which are 
detailed and motivated in Section 14.4. Our implementation of the mapping rules 
is presented in Section 14.5 and practical experience can be found in Section 14.6. 
Finally the paper is concluded in Section 14.7.

14.2 Related Work

Earlier publications on UML to SystemC mapping [4, 7] suggest that, to a large 
extent, there is a one to one relation between concepts in the two languages. For 
example a UML class is mapped to a SystemC module. This is not always desira-
ble, sometimes UML classes are used for data encapsulation and in these cases they 
should remain as classes in the SystemC model. Only UML classes with ports, 
and/or with architecture should be mapped to SystemC modules.

Riccobene et al. [7] address this by exposing all SystemC details in the UML 
model through a SystemC profile. Their approach is to use UML as an implementa-
tion language for SystemC. In addition to making all standard SystemC types avail-
able at the UML level they also extend actions in state machines to handle 
SC_THREAD and SC_METHOD synchronization. With their approach, the engi-
neers must tag their UML model by adding relations to the intended SystemC ele-
ments. This is similar to the last part in our design process. In our design process 
engineers start with an abstract UML model, which is refined in three steps. This is 
further explained in Section 14.5. One difference compared to their work is that we 
intend to automate most of this part in our process, minimizing the design effort. 
Another problem with bringing too many of the SystemC details into the UML 
model is the semantic differences between the languages, as discussed in Section 

2 www.telelogic.com
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14.3. This will lead to problems during co-simulation of pure UML models with 
models applying the SystemC profile. It will also be problematic to generate code 
for different targets, i.e. hardware and software. As far as we know no one has pub-
lished a semantic comparison of these two languages.

14.3 Language Comparison

In this section we compare the UML and SystemC languages. The comparison is 
based on UML 2 [1, 6] and SystemC 2.2 [2, 3]. The purpose of the comparison is 
to find and motivate mapping rules for automatic SystemC code generation from 
UML. The focus is on concepts which are equivalent in both languages as well as 
concepts and constraints which are only present in one of the two languages. When 
we refer to concepts which are similar in both languages we use the notation UML 
name/SystemC name, for example class/module. Also we refer to a class which 
inherits from sc_module as a SystemC module and any class inheriting from sc_
interface as a SystemC interface.

14.4 Composition

UML and SystemC are similar from a structural point of view. Both languages have 
the concepts of package/name space which can be used to group most other lan-
guage constructs. In real models packages/name spaces are mainly used to group 
declarations of classes/modules. A package/name space cannot be instantiated. Any 
instantiations done in a package/name space will result in one instance in the sys-
tem, with limited visibility to the package/name space. In this paper we focus the 
discussion around the small system shown in Figs. 14.1 and 14.2.

Game

Ping

p1p1

IPing

IPong

<<interface>>
IPing

signal Ping(Integer value)

Pong

p2p2

IPong

IPing

<<interface>>

IPong

signal Pong(Integer value)

Fig. 14.1 Structure in a UML design
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We will later show the SystemC code generated from it. In this system the pack-
age Game encapsulates the declarations of the classes Ping and Pong as well as the 
interfaces IPing and IPong. A SystemC module is very similar to a UML class. In 
fact a SystemC module is defined as a C++ class with some predefined methods 
and attributes. Thus a SystemC module can have attributes and methods and also it 
can inherit from one or more classes and/or modules. There are a few properties 
which can be assigned to a UML class which cannot be expressed in the SystemC 
language. One such is abstract, but this can be emulated by making one of the 
methods in the class abstract. We believe the minor limitations of a SystemC mod-
ule are negligible in practical use, so we treat UML classes as equivalent to 
SystemC modules. Both UML classes and SystemC modules can contain refer-
ences to other objects making it is possible to communicate between classes by 
method calls. This is however not the intended means to model communication in 
neither language. Instead communication should pass through ports connected 
using connectors/channels. A port is part of an class/module and defines its com-
munication interface. In UML a port has a required and a realized interface indicat-
ing which signals it will send and receive. Both the required and realized interface 
can be composed of a list of UML interfaces. Some tools also allow signal lists. In 
SystemC a sc_port must have exactly one SystemC interface. The interface details 
which methods the module will call on the connected channel. A SystemC port 
corresponds to the required interface of a UML port. The equivalent of the UML 
realized interface is a SystemC sc_export. A SystemC sc_export is part of a module 
and has exactly one interface, which details the calls the module will implement.

14.5 Communication

The way communication is commonly modeled is quite different in UML and 
SystemC. In UML communication is modeled using signals, asynchronous messages 
that can carry data. The signals are sent through the ports of a class. The destination 
of a signal is determined by the connectors of the model. In Fig. 14.2, any signal sent 
from the object ping will be forwarded to the object pong. At the receiving object the 
signal is stored in a queue, from where it later will be consumed by the behavior of 
this class. A UML connector only provides routing information for signals, it does 
not model the communication mechanism, i.e. a network or a bus. If this is to be 
included in the model it must be done using classes. Note also that a UML connectors 
are primarily a relation between two objects and not between classes. A UML port 
can have several connectors, and a connector connects exactly two ports.

SystemC channels are a central part of communication modeling in SystemC. 
They implement the behavior of the communication mechanism, as follows. During 

ping:Ping
p1p1

pong:Pong
p2p2

Fig. 14.2 Communication in a UML design



14 UML and SystemC 203

initialization each port is connected to a channel. At this time the port saves a refer-
ence to the channel. Later during simulation the ports will be transparent, forward-
ing any operation to the channel (this is done by overriding the – > operation). This 
design implies some constraints; a port may only connect to a channel which imple-
ment its interface, and also a port can only connect to one channel. By default there 
is no limit to how many ports that can connect to a channel, but it is possible for a 
channel to limit the number of ports connecting to it. Since a message sending is 
realized as a method call in a channel, it is not possible for two modules to com-
municate without an intermediate channel. Also SystemC does not allow ports to 
be used to make methods in a module available to other modules. For this purpose 
sc_export was added to the language. Using sc_export a module can encapsulate a 
channel and export its interface to other modules. This makes it possible for a 
sc_port in one module to connect to a sc_export in another module without creating 
any intermediate channel.

14.6 Mapping Rules

Considering the difference in communication modeling it is clear that there does 
not exist a trivial, one to one mapping from UML to SystemC. Some UML con-
structs are however so similar to SystemC that we suggest that they should be 
replaced with the corresponding SystemC construct during the mapping process. 
Table 14.1 lists some of these constructs. We base our SystemC code generator to 
a large extent on Telelogic’s C++ code generator [8]. This is possible since SystemC 
is a library and a simulation engine implemented on top of C++. The implementa-
tion of our code generator is explained further in Section 14.5. In this section we 
focus on the mapping rules that are unique for SystemC and refer to [8] for details 
regarding mapping of the parts of the UML language not covered here.

The asynchronous communication of UML signals implies that there must exist 
a message queue somewhere in the communication. In UML this is located in the 
receiving class. When comparing to the predefined channels in SystemC, sc_fifo 
comes closest. However, there are some limitations which make it less suitable.

First, in a UML state machine it is possible to wait for one of several signals, 
i.e. several transitions, with different triggers, from the same state. When the state 
machine is in such state, the triggering signals might arrive on different ports. This 
leads to the need to do blocking reads on several fifo queues at the same time. 

Table 14.1 Mapping rules for equivalent 
concepts

UML SystemC

Package Name space
Active class sc_module
Class with ports sc_module
Other classes C++ class
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This is not possible. In SystemC it is possible to wait for one of several events to 
occur, but when the call to wait returns it is not possible to determine which event 
that actually occurred. The concept of events in SystemC is similar to the wait() and 
notify() synchronization mechanism found in, for example, Java. The second prob-
lem with sc_fifo is its limitation to connect only one sender and one receiver. This 
is the same constraint as a UML connector. The problem is that several UML con-
nectors can connect to the same port, but a SystemC port can only connect to one 
channel. A UML connector does not provide any message queue; instead it con-
nects the sending port with the queue inside the receiving class. This has the same 
semantic as connecting a SystemC port to a channel, assuming that the channel will 
provide a message queue.

The observation that a UML connector has the same semantic as connecting a 
SystemC port to a channel is one motivation for our mapping. We map a UML con-
nector to code which connects the sending modules port with the channel contain-
ing the message queue of the receiving module. For this to work, we need a channel 
which implements a message queue and allows multiple connecting senders. Also, 
to solve the first problem with sc_fifo, this queue should be shared among all ports 
of the receiving module. There is no SystemC channel which meets these needs, so 
we generate one for each generated SystemC module. The channel will handle all 
incoming signals to the module.

The structure of a generated SystemC module is shown in Fig. 14.3. The module 
is composed of one or more threads, one channel, and one or more ports and/or 
exports. When a message arrives at a sc_export, a method in the channel will be 
invoked and the message will be stored in the channels message queue. The threads 
in the module will later consume the message using the channels blocking read() 
method. The threads can also send messages through a sc_port. A message sent 
through a sc_port will arrive at a sc_export of another module.

Table 14.2 lists the UML sources for different SystemC constructs. How we gener-
ate the components of the SystemC module will be detailed below. For each realised 
interface of the UML class we generate one sc_export and connect it to the modules 

sc_module

sc_channel

message
queue

SC_THREAD

read()

sc_port

..
.

sc_port

sc_export

..
.

sc_export

Fig. 14.3 The structure of a 
generated SystemC module
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channel. The channel implements all realized interfaces with one method for each 
signal. The method stores the parameters of the signal in the channels message queue. 
This queue is implemented using a C++ std::deque. The channel also provides an 
blocking read, used by the modules threads, i.e. the methods generated from the state 
machine of the active UML class. To clarify, let us look at an example. The UML 
diagram in Fig. 14.2 will generate the SystemC code shown in Fig. 14.4.

In the first two lines the module instances are created. Lines three and four connect 
the ports and exports of the generated module instances. Lines three and four are 
generated from the UML connector. Commonly line one and two will be attributes in 
a module and line three and four will be part of that modules constructor.

Next we will examine the SystemC declaration of module Ping, shown in Fig. 
14.5. This originates from the UML view in. The UML port p1 is mapped to a 
sc_port and a sc_export at line 3–4. The interfaces IPing and IPong are generated 
from the UML interfaces. This mapping is detailed below. Lines 6–16 contain the 
declaration of the SystemC channel, which contains the message queue of the Ping 
module. The channel is instantiated at line 17. The method Ping at line 15 origi-
nates from the UML signal Ping and is part of the IPing interface inherited at 
line 8. The implementation is on lines 21–26. At line 30, in the constructor of Ping, 
p1_export is bound to the channel instance Ping_channel. With the generated code 
Figs. 14.4 and 14.5, the module instance pong can send a Ping signal carrying the 
value three, using the syntax p2_port- > Ping(3).

14.7 Interfaces and Signals

The mapping of UML classes, ports and channels detailed above is not enough to 
generate code which compile. The SystemC interfaces and data structures for stor-
ing signals in the message queue are missing. These are generated from the UML 

Table 14.2 The table lists SystemC parts and the UML constructs they are created from

SystemC part UML source

sc_port Port, required interface
sc_export Port, realized interface
sc_channel Interface, signal
sc_interface Interface, signal
constructor of sc_module Port, channel, state machine. Attribute initialization have 

more sources
SC_THREAD State machine

1 Ping ping("Ping");
2 Pong pong("Pong");
3 ping.p1_port(pong.p2_export);
4 pong.p2_port(ping.p1_export);Fig. 14.4 Code generated from 

Fig. 14.2
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interfaces and signal. For each UML interface a SystemC interface will begener-
ated. The generated interface will contain one method for each signal in the UML 
interface. The method will have the same parameters as the original signal. In addi-
tion to the method each signal will also generate a class with one attribute for each 
signal parameter. The code generated from the UML interface IPing in Fig. 14.1 is 
shown in Fig. 14.6.

1 SC_MODULE(Ping ){
2 public:
3 sc_export<IPing> p1_export;
4 sc_port<IPong> p1_port;
5 /*--- channel ---*/
6 class Channel_class:
7 public sc_channel,
8 public IPing{
9 private:

10 std::deque<UML_signal *> queue;
11 sc_event e;
12 public:
13 Channel_class(sc_module_name name);
14 UML_signal *read();
15 void Ping(int value);
16 };
17 Channel_class Ping_channel;
18 /*--- state machine behavior ---*/
19 void Ping_thread();
20 };
21 void Ping::Channel_class::Ping(int
22 value){
23 queue.push_back( new
24 Ping_signal(value));
25 e.notify();
26 }
27 Ping(sc_module_name name):
28 sc_module(name),
29 Ping_channel("Ping_channel"){
30 p1_export(Ping_channel);
31 SC_HAS_PROCESS(Ping);
32 SC_THREAD(Ping_thread);
33 }

Fig. 14.5 Code generated from Fig. 14.1

M2
pp

A, B
M3

pp

A, C

M1
pp A, B, CFig. 14.6 UML classes with 

 interface lists
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In SystemC a port and export can only have one interface and for a port to con-
nect to an export/channel its interface must be implemented by the channel. Now 
look at Fig. 14.7.

UML port M1::p has three realised interfaces A, B, C. Ports M2::p and M3::p 
have required interfaces A, B and A, C. Port M1::p will be mapped to an SystemnC 
export while M2::p and M3::p will generate SystemC ports. The generated export 
and ports need one interface each, here named if1, if2, and if3. A trivial attempt 
would be for the generated interfaces to inherit directly from from A, B and C, i.e. 
class if1:A, B, C{}, class if2:A, B{}, and class if3:A, C{}. Now neither if2 nor if3 
is a subtype of if1 and the ports can not connect to the export. A working solution is 
for if1 to inherit form if2 and if3. But now, due to the double inheritance, if1 will 
contain two instances of A. Also, with this mapping an exports interface will change 
as ports connect to it making it unpractical to generate code for parts of a system, or 
to distribute IP-cores in binary form, since they need to be recompiled when used.

To solve this we suggest that one UML port should be mapped to several 
SystemC ports, one for each interface it requires. The list of realized interfaces can 
still be mapped to one export with one interface, i.e. class if1:A, B, C{}. With this 
mapping M2 will have two ports, one for interface A and one for B. Both can con-
nect to M1::p. This solves the problems mentioned above while preserving the type 
hierarchy among interfaces in the UML model.

14.8 Mapping Process

During initial system modeling, a pure UML model is used. Though it is possible 
to define a set of mapping rules from a pure UML model directly into SytemsC 
code, it would give the engineer little influence on the mapping and most likely a 
less satisfactory result. Instead we divide the mapping into three steps, as depicted 
in Fig. 14.8.

ll models are available and editable. This makes it possible for the engineer to 
have full control over the relevant details for the system under development and 
have the tool manage all remaining details.

1 class IPing: public sc_interface{
2 public:
3 virtual void Ping(int value)= 0;
4 class Ping_signal: public UML_signal{
5 public:
6 int value;
7 inline Ping_signal(int value):
8 value(value){}
9 };

10 };

Fig. 14.7 Code generated from Fig. 14.1
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Step 1, vertical refinement transformation: In this step an initial UML descrip-
tion is refined to a UML description, which follows a UML profile for SystemC. 
This step will, at least partly, be carried out manually. To minimize the design effort 
it should not be required to tag the whole model. This means that a set of default 
values for the SystemC specific attributes of the UML profile, must be defined. The 
default values will in most cases provide a satisfactory mapping in the following 
transformation steps.

Step 2, vertical refinement transformation: In this step the model is transformed 
into a new UML description that only includes UML constructs with direct represen-
tations in SystemC, i.e. classes, attributes, inheritance, etc. Other constructs such as 
state machines are translated to the target language. During this step we transform 
each state machine to a class with methods that implement the behavior of the states 
and transitions. In the first version of the tool, the resulting model will be a un-timed 
functional model. The mapping rules for UML classes, ports, channels, signals and 
interfaces are given in Section 14.4. A complete list of UML constructs which are 
removed during this transformation is beyond the scope of this paper. In addition to 
removing UML only concepts, we also make all relations in the model explicit. When 
a class is made active in UML it implies that the class will have its own thread of 
execution. In SystemC this is realized using SC_THREAD or SC_METHOD which 
implies that the class is an instance of the SystemC class sc_module. During this 
transformation all such implicit relations are made explicit. For example, we add a 
generalization relation to the SystemC class sc_module from all active UML classes. 
In the first version of the tool the resulting model is a un-timed functional model.

Step 3, horizontal transformation: In this step the UML model resulting from 
step 2 is transformed into a corresponding SystemC code. This transformation is a 
one to one correspondence between the UML model to the resulting SystemC code, 
i.e. this is a “pretty print” of the UML model. This step is implemented using the 
existing C++ code generator from Telelogic and thus reuse its support for scope 
rules, header-file inclusion and make file generation without any modifications. If 
the generated code is to be read by humans it is desirable to use the common 
SystemC macros when applicable. This requires a slight customization of the syn-
tax of the generated code. We do this using an agent, a mechanism which makes it 
possible for third party executables to interact with the C++ Code generator in 
Telelogic Tau G2. Our agent generates SystemC like module declarations, instead 
of a C++ class declarations, SC_MODULE(MyModule){…} instead of class 
MyModule:public sc_module{…}.

UML, pure

UML, SystemC profile

UML, SystemC explicit SystemC

 Fig. 14.8 Our three step code generation
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14.9 Experimental Validation

The mapping rules and code generator presented in this paper have been use by 
VTT to extend their workload-based performance simulation [5]. The automatic 
mapping from UML to SystemC makes it possible to partially reuse existing UML 
application models, removing the need for separate work load models. VTTs expe-
rience is that our SystemC code generator is useful in practice and simplifies the 
engineers work in their model based design flow, see [5].

14.10 Conclusions

Combining new methodologies and new languages is a promising approach to over-
come the increased complexity of today’s embedded systems. This is the driving force 
in the MARTES project. In this paper we compare UML and SystemC. The comparison 
reveals that the communication is modeled quite different in the two languages. Based 
on our observations we present mapping rules for automatic SystemC code generation 
from a UML model. We also present our transformation technique, composed of two 
vertical and one horizontal transformations. Using our transformation technique it is 
possible to reuse large parts of a code generator for other target languages similar to the 
target languages of the code generator, i.e. the implementation of our SystemC code 
generator uses a large part of Telelogic’s C++ code generator.
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Chapter 15
An Enhanced SystemC UML Profile 
for Modeling at Transaction-Level

S. Bocchio1, E. Riccobene2, A. Rosti1, and P. Scandurra2

Abstract This chapter describes a UML2 profile for the SystemC language, 
which takes into account the language improvements as specified in the IEEE 
1666 SystemC Standard and effectively provided in the SystemC 2.2 simulator as 
foundation for Transaction-Level Modeling (TLM). The profile is a set of mod-
eling constructs which lift both the structural and behavioral features of SystemC 
to UML level. It is part of a model-driven HW-SW co-design methodology based 
on the UML2, a SystemC UML profile for the HW side, and a multi-threaded C 
UML profile for the SW side, which allows modeling of the system at higher levels 
of abstraction (from a functional executable level to Register Transfer Level) and 
supports automatic code-generation/back-annotation from/to UML models.

Keywords Embedded systems, system-level design, SystemC, UML, UML profiles

15.1 Introduction

To increase the design productivity and tackle the ever growing system complexity, 
the Electronic Design Automation (EDA) communities are pushing a shift in design 
entry level for the Embedded Systems (ES) and Systems on Chip (SoC) develop-
ment. New more abstract design methodologies and languages – far beyond the 
capabilities of existing HW description languages, like VHDL and Verilog, operat-
ing at the low Register-Transfer-level (RTL) – are needed in order to handle a 
design task which should allow the convergence of both HW and SW facets, as well 
as better reuse and integration of pre-designed components (the Intellectual 
Properties).
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Recently, the Unified Modeling Language (UML) [15] and its extension mecha-
nism is receiving significant interest in the hardware community, since it allows 
UML customization towards the definition of a family of languages targeted to 
specific application domains (telecommunications, aerospace, real time computing, 
automotive, System-on-Chip, etc.) and levels of abstraction. This is confirmed by 
several standardization activities controlled by the OMG, such as: the Schedulability, 
Performance, and Timing Analysis (SPT) profile [17]; the recent UML for SoC 
Forum (USoC) [18] in Japan founded by Fujitsu, IBM/Rational, and CATS to 
define a set of UML extensions to be used for SoC design; the SysML proposal [24] 
which extends UML towards the Systems Engineering domain, and the MARTE 
(Modeling and Analysis of Real-Time Embedded systems) initiative [16].

Along the same research line, we can mention the recent model-driven HW-SW 
co-design methodology in [2, 5]. According to the emerging Model Driven 
Engineering (MDE) approach, a new design flow is proposed for ES development. 
It is based on the UML 2.0 to be used in a platform-independent manner to provide 
a first high-level functional specification of the whole system, a SystemC UML 
profile to be used for the HW description at several abstraction levels on top of the 
RTL level, and a multi-threaded C UML profile to specify the SW application. 
Moreover, to foster this methodology in a systematic way and combine all the 
involved notations together in a seamless manner, in [6] a design process, called 
UPES (Unified Process for Embedded Systems), is defined by extending the con-
ventional Unified Process (UP) of UML, together with the UPES sub-process, 
called UpSoC, for refining the HW platform model. Furthermore, a HW/SW 
co-design environment [4] was developed on top of the UML visual modeling 
Enterprise Architect (EA) tool [9], to assist the designer across the refinement steps 
in the UML modeling activity regarding the HW part, from a high-level functional 
model of the system down to the RTL level, and supports forward and reverse engi-
neering of C/C++/SystemC code.

The SystemC UML profile [6, 25] is the key point of this model-driven 
co-design methodology for ES. It is a consistent set of modeling constructs which 
lift both the structural and behavioral features (including processes, events and time 
features) of SystemC to UML level, while providing unification in the overall UML 
modeling activity. This last starts from the definition of an abstract UML model (or 
PIM – platform independent model) describing the general functionality of the sys-
tem, and continues with subsequent refinements of the PIM (or of portions of it) 
into platform specific models (or PSMs) through a sequence of model transforma-
tions. For the HW components, this sequence of PSMs goes from a high level 
functional un-timed/timed model of the system down to a transaction-level model, 
to a behavioral model, to a bus-cycle accurate (BCA) model, to a final RTL model 
for the synthesis of an end-product integrated into a chip. The UML profile for 
SystemC allows using UML at PSM level, provides unification between PIM and 
PSMs, and allows automatic encoding of PSMs into final SystemC code.

The choice of SystemC as implementation language is intentional, and mainly 
due to the fact that SystemC is becoming one of the most important system-level 
languages for SoC design. In 2006, SystemC received a major revision (2.2) and 
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became IEEE Standard [5]. This last revision includes new structural (sc_export
and sc_event_queue) and behavioral (dynamic processes, fork/join synchroni-
zation, etc.) features required for modeling at transaction-level according to the 
OSCI [19] standard TLM 1.0 API.

To align the SystemC profile with the standard IEEE [25] and support refine-
ment towards implementation in SystemC 2.2 according to the OSCI TLM stand-
ard, the SystemC UML profile described in [1] has to be reviewed. In this chapter, 
we present a UML2 profile for the SystemC 2.2 release. It extends the profile in [6, 
25] with the new improvements specified in the IEEE 1666 SystemC Standard. The 
structural features of the SystemC UML profile in [1] have been extended including 
the new features of ports connection and event queue handling, while for the behav-
ioral part, we extend the SystemC Process State Machines (an extension of the 
UML state machine formalism introduced as part of the SystemC profile to model 
the reactive and concurrency behavior of SystemC processes) with the new 
enhancements in SystemC 2.2 for dynamic processes, i.e. processes created at run-
time as children processes of running processes. This last extension required to fix 
some UML state machines semantic variation points to capture the operational 
semantics of the dynamic SystemC processes. This new profile allows for modeling 
at Transaction-Level (TLM) of abstraction with the OSCI TLM 1.0 library. 
Moreover, according to the reviewed version of the profile, the code generator of 
the HW-SW co-design environment in [4] has been updated to guarantee straight-
forward generation of efficient SystemC 2.2 code from diagrammatical UML mod-
els developed by using the SystemC profile.

The remainder of this chapter is organized as follows. Section 15.2 sketches 
some fundamentals of the SystemC 2.2 language assuming the reader familiar with 
the SystemC language. Section 15.3 introduces basic concepts underlying the 
SystemC UML profile along with the enhanced structural and behavioral features 
of the profile. Section 15.4 describes the code generation facility for diagrammati-
cal models developed using the SystemC UML profile, while Section 15.5 presents 
some case studies. Related work and conclusions are given in Sections 15.6 and 
15.7, respectively.

15.2 SystemC Background

The SystemC language is an open standard that is imposing as the reference lan-
guage in ESL (Electronic System Level) design; it is controlled by the OSCI group 
[19] made of different companies in the EDA area.

SystemC is defined in terms of a C++ class library for modeling in terms of C++ 
programs, and provides an event-based and discrete-timed simulation kernel.

SystemC provides constructs for modeling the system structure (sc_module
andsc_channel), the communication (sc_port,sc_interface,sc_event),
the concurrent behavior through processes (sc_method and sc_thread
processes) and a set of data types for hardware data.
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In 2006, SystemC received a major revision (2.2) and became IEEE Standard 
[25]. This last revision includes new structural features (sc_export and sc_
event_queue) and behavioral features (dynamic processes, fork/join synchroni-
zation, etc.) required for modeling at transaction-level towards hardware-software 
implementation according to the OSCI TLM standard.

SystemC has been involved into several SoC design flows at industrial level, 
exceeding, for its expressivity, the capabilities of traditional Hardware Description 
Languages (HDLs). It permits to design at system level supporting different 
abstraction levels (un-timed/timed functional, TLM, behavioral, BCA, and RTL), 
thus allowing design refinement in a unique modeling environment.

15.3 The SystemC UML Profile

A UML profile is to be intended as a dialect of the UML for a particular platform or 
application domain. The UML profiles mechanism is a standard way of customizing 
the UML by adding a set of stereotypes, tags and constraints. Stereotypes define how 
the syntax and the semantics of an existing metaclass of the UML metamodel are 
extended for a specific domain terminology or purpose. Tag values are user-defined 
properties of a stereotype to add further attributes to the extended metaclass. 
Constraints are expressed as formulas in the Object Constraint Language (OCL) and 
serve to add static semantic restrictions to the extended UML modeling element.

For defining profiles, UML2 is endowed with a standard graphical notation 
which is easily supported by UML visual modeling tools. A profile is denoted as a 
package with the keyword «profile». Within the profile package, a class of the 
UML metamodel that is extended by a stereotype is labeled as a conventional class 
with the keyword «metaclass». A stereotype is denoted as a class with the key-
word «stereotype». The extension relationship between a stereotype and a 
metaclass is depicted by an arrow with a solid black triangle pointing toward the 
metaclass box. When applied to an element in a UML model, a stereotype is shown 
as a keyword consisting in the name of the stereotype within a pair of guillemets, 
near the symbol of the UML element or with a special icon defined for it (if any) 
in place of the conventional symbol for the element.

A UML2 profile for SystemC 2.0 already exists [1]. In the next two sections, an 
extension of this profile is presented (we assume the reader familiar with SystemC 
2.0) in a lightweight manner by describing some new structural features (sc_
export and sc_event_queue) and behavioral features (dynamic processes 
and fork/join synchronization) capturing the semantics as specified in the IEEE 
1666 SystemC standard and implemented in the SystemC 2.2 execution engine [5]. 
This extension is dictated by the necessity to align the profile definition with the 
standard IEEE [5] in order to include the new SystemC constructs for modeling 
systems, communication, hardware and software at the transaction-level, and sup-
porting refinement towards hardware-software implementation according to the 
OSCI TLM standard.
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15.3.1 Enhanced Structural Features

In SystemC 2.2, a port (sc_port) may be bound to a channel either directly, or 
indirectly by being bound to another port (according to a parent-to-child module 
relationship) or to a sc_export port (export, in brief). Figure 15.1 shows the 
sc_port and sc_export stereotypes. Note that, a further tag policy (an element 
of the enumeration type sc_port_policy) has been added to the sc_port stere-
otype; it is used to determine the rules for binding multi-ports and the rules for 
unbound ports, as specified in the new SystemC version.

An export defines a set of services (as identified by the interface type of the 
export) that are provided by the module exposing the export. Providing an interface 
through an export is an alternative to a module which simply implements the inter-
face. The use of explicit exports exposed by a module instance allows a single 
module to provide multiple interfaces in a structured manner: the underlying inter-
faces are implemented somewhere within the module, e.g. by a child channel 
instance.

The sc_export stereotype maps the notion of SystemC export port directly to 
the notion of UML port, plus some constraints. An export port can have exactly one 
provided interface – the type of the export – and no required interfaces. An export 
can only be bound to a channel derived from the type of the export or to another 
export (provided that this export itself is directly or indirectly bound to a channel) 
with a type derived from the type of the export. Similarly to the sc_port notation, 
an export port is shown as a small square symbol with the port name and the key-
word «sc_export» nearby. Alternatively, an export can also be shown as a small 
triangle icon with the port name. In both cases, the provided interface is shown by 
a circle or ball, labeled with the name of the interface, attached by a solid line to 
the export port.

In the new profile definition, the semantics of connectors sc_connector and 
sc_relay_connector has been extended in order to represent three new pos-
sible bindings: port-to-export, export-to-channel, and export-to-export. To be precise, 
the sc_connector stereotype, originally provided as extension of the UML 
connector to explicitly bind a port to a channel (port-to-channel), now can be used 
to directly bind a port to an export provided that the export exposes the interface 

Fig. 15.1 sc_export and sc_port stereotypes
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required by the port. Similarly, a sc_relay_connector, originally defined to 
represent the parent-to-child port binding, now is also used to bind an export to a 
channel, and also to bind an export to another export. Both connectors are binary, 
i.e. a connector specifies a link that enables communication between two instances 
only. All connectivity rules are provided in terms of OCL constraints defined over 
the involved classes of the UML metamodel. Figure 15.2 shows an example of 
application of these stereotypes in a UML class diagram to model the hierarchical 
structure of a Top module made of two sub-modules, Caller and Middle, con-
nected via a port-to-export binding.

Figure 15.3 shows the sc_event_queue stereotype definition together with 
the one for the sc_event stereotype. They represent SystemC events in terms of 
special UML signals whose notification generates signal events (instances of the 

Fig. 15.2 Example of structural modeling with sc_esport
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class SignalEvent in the UML metamodel) to be put in the input pool of the 
processes to be activated/resumed. In particular, the sc_event_queue stereo-
type denotes a structured signal, namely, an event queue which can have multiple 
notifications pending. For an event queue only delta-cycle delayed and timed noti-
fications are allowed. A sc_event_queue cannot be used in most contexts 
requiring a sc_event but can be used to define the static sensitivity of processes. 
The mechanism used to queue event notifications shall be implementation-defined, 
with the proviso that an event queue must provide a single default event that is 
notified once for every notify action for the event queue. Effective user-named 
signal instances are declared with the stereotype keyword «sc_event» within the 
attribute compartment of a module’s class or a channel’s class. The label for a 
trigger on a state machine transition denoting a sc_event signal may explicitly 
indicates the name of the specific sc_event instance whose notification causes 
the triggering of the transition. The same notation is used for a sc_event_queue
structured signal.

15.3.2 Enhanced Behavioral Features

Processes are the basic mechanism in SystemC for representing concurrent behavior. 
Two kinds of processes are available: methods and threads. Clocked threads are a 
specialization of threads. Each kind of process has a slight different behavior, but 
basically all processes: run concurrently, are sequential, and are activated (if termi-
nated or simply suspended) on the base of their own sensitivity, which consists of 
an initial list of zero, one or more events – the static sensitivity of a process – and 
can dynamically change at run time realizing the so called dynamic sensitivity
mechanism.

The SystemC UML profile defines two processes stereotype «sc_method»
and «sc_thread» (see [1] for details); both extend the Operation and the 
StateMachine UML metaclasses. This double extension allows us to associate 
an operation to its behavior specified in terms of a (method) state machine. Special 
state and action stereotypes are added to support the behavioral features mentioned 

Fig. 15.3 sc_event_queue stereotype
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above. These stereotypes and their associated OCL constraints lead to a variation 
of the UML state machine formalism: the SystemC Process State Machines. This 
formalism allows modeling the control flow and the reactive behavior of processes 
(methods and threads) within modules, dealing with concurrency, synchronization 
and timing aspects.

A process state machine can contain the definition of local variables. Two particular 
states (initial and final) are used to model start and termination of the process behavior. 
The behavior is modeled by states, transitions, and actions. States can contain simple 
actions or activity which must obey the syntactic rules and take the semantics of the 
C++/SystemC language (the action or surface language). The semantics of basic 
C/C++ control structures, like if conditions, while loops, etc., is captured in terms 
of stereotyped choice pseudostates (see for example the while loop in Fig. 15.4).

The example in Fig. 15.4 also shows a static_wait-stereotyped state. 
It captures the SystemC semantic of a wait() statement with no arguments. 

Fig. 15.4 Example of thread process state machine
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In general, to model the dynamic sensitivity mechanism of a thread process two 
possible wait-stereotyped states are available (see Fig. 15.5): the first one is a wait on 
the static sensitivity list, the second is a wait on a dynamic sensitivity list character-
ized by an event condition e*. Figure 15.6 shows how a wait(e*) call is 
modeled in UML for all possible forms of the event e*: a single timed event, a 
single signal event, a single event with timeout, an AND-list of signal events, an 

Fig. 15.5 Static and dynamic wait
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OR-list of signal events, AND-list of signal events with timeout, and OR-list of 
signal events with timeout. Similar constructs have been defined to model the 
dynamic sensitivity mechanism of a method process.

We choose to use the state machines with respect to other UML behavioral dia-
grams (like the activity diagrams) because this kind of diagram provides a behavio-
ral pattern appropriate for modeling the reactive and hierarchical behavior of 
SystemC processes, which can be activated by triggering external synchronization 
events. Moreover, according to the OMG specification [15], state machines are 
sequential as far as their internal behavior is concerned, but any state machine is 
concurrent with respect to the other state machines of the system. Indeed, UML 
state machines can be used for modeling simple functions that execute under the 
control of processes, and it is also possible to represent the SystemC synchroniza-
tion mechanism for suspending/resuming a process in terms of stereotyped states 
and events.

We extend here the SystemC process state machines by adding specialized 
submachine states and orthogonal regions within a state machine to model the 
notion of process hierarchy expressed in SystemC in terms of dynamic processes.
A dynamic process is a process created at run-time during execution, as child proc-
ess of a method process or a thread process, or a clocked thread process. A dynamic 
process can in turn create other processes dynamically. The SystemC 2.2 release 
supports the notion of dynamic process by introducing the concept of spawned 
process, i.e. a process (a child process) created by another process (the parent proc-
ess) by invoking the predefined function sc_spawn. In the Systemc UML profile, 
the dynamic creation of such a process – a dynamic spawned process- is denoted in 
the state machine diagram associated to the parent process by means of a subma-
chine state1 labeled with the stereotype «sc_spawn» (see Fig. 15.7 for the 
stereotype definition). The state machine referenced by the submachine state 
specifies the functionality of that dynamic process.

After the creation of a spawned process, the parent process and the new child 
process proceed in parallel, unless a specific synchronization schema is explicitly 
provided by the designer by means of notification of events. This natural asynchro-
nism is reflected at UML level in the state machine diagram of the parent process 
by the use of orthogonal regions. To be precise, a process state machine which 
dynamically creates processes is represented by a state machine with two or more 
regions (see Fig. 15.8). One region contains the behavior specification of the parent 
process, while the others contain exactly one «sc_spawn» submachine state each. 
The overall process creation (i.e. the invocation of the SystemC sc_spawn
function) is denoted by a fork vertex in the parent region with two outgoing transi-
tions: one entering in the «sc_spawn» submachine state of the child process, and 
one entering in some state of the parent region to continue the specification of the 
parent process behavior after the process creation. Therefore, the submachine state 

1 In UML, a submachine state specifies the insertion of the specification of a submachine state 
machine. The state machine that contains the submachine state is the container.
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(and therefore its reference process state machine) is exclusively entered via a fork 
vertex departing from the parent region, and can be exited either as a result of 
reaching its final state (normal case) or via a join vertex in the parent region (in the 
case of a fork/join schema, see the last paragraph below). No entry/exit points can 
be defined for a «sc_spawn» submachine state.

A special case of synchronism for thread processes is when the parent process 
wants to wait for the termination of a child process, for example, to get any return 

Fig. 15.7 sc_spawn stereotype
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values from the child process execution and then resumes and continues its own 
execution. In this case, the parent process has to wait for the terminated_
event of the underlying child process instance that is automatically notified when 
the child process terminates.

The sc_spawn’s tagged values are used to specify some spawn options which 
determine certain properties of the spawned process instance. In particular, as for 
thread and method processes, the sensitive and dont_initialize (false, by 
default) tags are used to declare the static sensitivity list (if any) and the initializa-
tion status of the spawn process, respectively. The boolean tag spawn_method
being set to true indicates that the spawned process is a method process, and there-
fore the associated process state machine shall be a method state machine. By 
default, this tag is set to false, i.e. by default a spawned process is a thread process. 
It is not possible to spawn a dynamic clocked thread process.

A spawned process, in contrast to ordinary processes, allows the passing of argu-
ments and a return value to and from it. UML2 supports the concept of parameter-
ized behavior for all the kinds of behavior in UML (activities, state machines, etc.); 
this means that when a process state machine is invoked as behavior of a spawned 
process, its parameters (if any) are created and appropriately initialized (by the 
caller process) according to their direction in and inout. When the state machine 
of the spawned completes its execution, a value or set of values is returned corre-
sponding to each parameter with direction out, inout, or return.

SystemC 2.2 introduces also the macros SC_FORK and SC_JOIN to be used in 
pairs within a thread process to enclose a set of calls to the function sc_spawn.
The parent thread control leaves the fork-join construct when all the spawned proc-
esses are terminated; this means that during the execution of the spawned processes 
the parent process is not running. We use the UML fork/join pseudo-states to model 
these macros, as shown in Fig. 15.9: a pair of fork/join for two spawned processes; 

Fig. 15.9 sc_fork and sc_join
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both the fork/join bars are within the region of the parent (thread) process. After 
termination of the two spawned processes, the parent thread continues to execute.

15.4 Generating SystemC Code from Model Patterns

We developed a prototype tool based on the EA [9] UML visual modeling tool as 
front-end for consolidated lower level co-design tools (see [4]). This tool consists 
of two major parts: a development kit (DK) with design and development compo-
nents, and a runtime environment (RE) represented by the SystemC execution 
engine. The DK consists of a UML2 modeler supporting the UML profile for 
SystemC and a UML profile for multi-thread C, and translators for forward/reverse 
engineering to/from C/C++/SystemC.

We further extended the SystemC code generator by including new code genera-
tion rules for the enhanced structural and behavioral features of the profile. The task 
of the generator is to inspect the elements in the UML model via their connections 
and create the corresponding modules structures and processes behavior in 
SystemC. In particular, from the process state machines, the generator follows and 
combines specific model patterns. The result is a complete working code, without 
the need for post-generation code modifications or additions.

15.5 Case Studies

We have developed several different case studies, some taken from the SystemC 
distribution like the Simple Bus design, and some of industrial interest. The Simple 
Bus case study is a well-known transaction-level example, designed to perform also 
cycle-accurate simulation. It is made of about 1,200 lines of code that implement a 
high performance, abstract bus model. We modeled the Simple Bus system in a 
forward engineering flow in order to test the code generator. The UML description 
using our SystemC profile consists of about 15 diagrams among class diagrams and 
process state machines.

To test the expressive power of the profile in representing a variety of architec-
tural and behavioral aspects, we modeled the On Chip Communication Network 
(OCCN) API [13], a parameterized and configurable SystemC library of about 
14,000 lines of code. The OCCN design has been imported automatically from the 
C++/SystemC code into the EA-based modeler by the reverse engineering facility, 
then refined using the modeling constructs of the SystemC UML profile. We have 
used this example to test the reverse engineering flow.

In [3], we present an example related to a system composed of a VLIW proces-
sor developed in ST, called LX, with some dedicated hardware for an 802.11b 
physical layer transmitter and receiver described at instruction level. The UML 
model of this application is a function library encapsulated in a UML class which 
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provides, through ports, the I/O interface of the SW layer to the HW system. This 
class is then translated to C/C++ code and the resulting code is executed by the LX 
ISS wrapped in SystemC for HW/SW co-simulation at cycle accurate level. The 
UML wrapper of the LX ISS is modeled with the SystemC UML profile, in order 
to generate a SystemC wrapper for the ISS and to allow a HW/SW co-simulation 
at transaction or cycle-accurate level.

15.6 Related Work

The possibility to use UML 1.x for system design started in 1999 [11, 12]. The 
general opinion, at that time, was that UML was not mature enough as a system 
design language. Nevertheless significant industrial experiences and research 
developments on how to use UML within a system design process started, trying to 
solve the limitations of the language. As part the OMG profile initiatives mentioned 
in the introduction, we here reference some relevant works for UML modeling and 
code generation in the area of embedded systems and SoC design.

YAML [23] is one the first tool based on UML which provides a skeleton-based 
generation of SystemC code. In [10] an extension of UML 1.x is presented to 
design embedded real-time applications. UML is conceived as a specification lan-
guage that allows describing different facets of the system. The proposed approach 
relies on the concept of platform based design. The fundamental idea is to adapt 
UML for the design of embedded software, providing a proper notation and an 
associated semantics to use UML diagrams for modeling different facets of the 
system. The methodology specifies a set of UML diagrams to capture the function-
ality (use cases, class, state machines, activity and sequence diagrams) and to refine 
it by adding proper MOCs. However, no code generation facility is provided. 
Another approach to the unification of UML and SoC design is the HASoC 
(Hardware and Software Objects on Chip) [8] methodology based on the UML-RT 
profile [17, 21]. The design process starts with an uncommitted model and after a 
committed model is derived by partitioning the system into software and hardware, 
and then mapped onto a system platform. From these models a SystemC skeleton 
code can be also generated, but to provide a finer degree of behavioral validation, 
detailed C++ code must be added by hand to the skeleton code. All the works 
mentioned above could greatly benefit from the use of new constructs available in 
the UML2.

A Model Driven Architecture (MDA) [14] approach for SoC design is presented 
in [7] in the specific context of Intensive Signal Processing. The application and the 
architecture are specified in UML as separate platform independent models; 
according to the Y chart diagram concept, it is then possible to apply model trans-
formations and deploy platform specific models, among which SystemC.

SysML [24] is a conservative extension of UML2 for a domain- neutral repre-
sentation (i.e. a PIM model as in MDA [14]) of system engineering applications. 
It can be involved at the beginning of the design process, in place of the UML, for 
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the requirements, analysis, and functional design workflows. So it is in agreement 
with our UML profile for SystemC, which can be thought (and effectively made) a 
customization of SysML rather than UML. Similar considerations also apply to the 
MARTE proposal [16]. The standardization proposal [18] by Fujitsu, in collaboration
with IBM and NEC, has evident similarities with our SystemC UML profile, like 
the choice of SystemC as a target implementation language. However, their profile 
support neither constructs for modeling behavior nor a time model.

Recently, a set of papers deal again with the issue of SystemC code generation 
from UML diagrams. In [22], for example, the authors propose the use of UML 
activity diagrams to model data flows. This approach is similar to our one with the 
difference of using activities diagrams instead of state machines for modeling the 
system behavior. Code generation is supported for the Handel-C language. In [20], 
a mapping from SysML to SystemC is proposed. Their aim is to obtain a SystemC 
code that resembles the behaviour of the original UML model, whereas we extend 
the UML accordingly to the SystemC execution semantics.

15.7 Conclusions

We extend the UML2 profile for SystemC [1] in order to capture the advanced fea-
tures of the SystemC IEEE Std [25] concerning ports connection, event queue han-
dling and concurrent aspects of dynamic and hierarchical processes. The main 
target of this UML profile is to provide a means for SW and HW engineers to 
improve the current industrial SoC design flow joining the capabilities of UML and 
SystemC to operate at system-level. This enhanced SystemC UML profile allows 
modeling at TLM level and, specifically, at a certain number of TLM sub-lev-
els through the OSCI TLM 1.0 API, as well as the new TLM 2.0 proposal. As 
future work, we are exploring the possibility to define a formal refinement methodol-
ogy with precise abstraction/refinement patterns for modeling at transaction-level, 
thus enabling users to efficiently develop SoC virtual prototypes at UML level 
before physical implementation and making the UML-based environment the ideal 
framework for high-level system modeling and validation.
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Chapter 16
SC2 StateCharts to SystemC: Automatic 
Executable Models Generation

Marcello Mura and Marco Paolieri

Abstract The recent development of embedded systems calls for the necessity of a 
complete framework for design and simulation of applications that span through all 
levels of system design. Desirable characteristics of such a framework are rapidity 
of use, simplicity and reusability. For this purpose we already introduced a genera-
tor that converts specifications written with a subset of StateCharts to behavioral 
SystemC [16, 17]. We present here the new version of our tool: most of the limita-
tions of the previous versions have been overcome, the considered subset of the 
StateCharts formalism has been extended and the target has been changed from 
behavioral to Register Transfer Level (RTL) SystemC. A major enhancement of this 
new version is the possibility of obtaining various module instances starting from a 
single specification, which is vital in some contexts (e.g. Wireless Sensors Networks 
simulation). The semantics chosen for our StateCharts diagrams is clearly described. 
The generation of executable models, as well as the kernel template of the generated 
code, are discussed in detail.

16.1 Introduction

The possibility of generating customized simulators to model a relevant subset of 
systems in a very effective way could open interesting scenarios in early design 
phases (even before Hardware/Software partitioning [12]), especially when intrin-
sic complexity related to the projects is such that people with different expertise 
need to cooperate. In fact within this kind of framework it is possible to design, in 
a very short time, virtual prototypes that can be used for requirements  formalization 
and validation. Moreover systems under development could be extensively tested 
from the very beginning up to advanced design stages with the same tool, incre-
mentally integrating the model level of definition. Functional and non-functional 
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properties can be analyzed, e.g. using such kind of instruments we analyzed power 
consumption of a networking protocol in [14, 15] and of the cache memory of a 
microprocessor in [16].

In our work the emphasis is on the model: our main contribution is in fact a 
model-based generator of simulators that – starting from dynamic information 
about a system expressed with a convenient subset of the StateCharts formalism – 
generates well structured RTL SystemC code for simulation. The framework is 
organized in a way that it is possible to iteratively refine models up to a point that 
the generated code is very near to the synthesizable level. During this process 
results can be compared, allowing for an easier development process.

In Section 16.2 related work is described. The semantics of the StateCharts dia-
lect we use are presented in Section 16.3 and compared with the most important 
variants. The methodology for extracting information from UML diagrams and 
using it to create SystemC models is briefly outlined in Section 16.4. Section 16.5 
presents a major innovation of our work: the possibility of performing multi-
instance simulation. A small example showing the most noticeable features of our 
framework as well as the introduction of a shell console is illustrated in Section 
16.6. Conclusions and further work are outlined in Section 16.7.

16.2 Related Work

In the past ten years there has been a consistent research effort on this subject, lead-
ing also to commercial software products. I-Logix StateMate [1] generates execut-
able models starting from UML diagrams, MATLAB Stateflow [2], does the same 
starting from a concurrent FSM formalism similar to that of StateCharts. In [4] the 
translation of StateCharts into Hierarchical Finite State Machines (HFSMs) is 
explored in order to build test cases for the corresponding VHDL realization. 
StateCharts formalism is also very appropriate for the formal validation of models. 
In particular, automatic translation into Promela/SPIN, a language used for auto-
matic model checking, was presented in [5, 10, 13]; recently an interesting approach 
to this problem was reported in [9]. The present research effort aims at building a 
framework for the generation of simulators. It differs from the commercial products 
([1, 2]) first of all for the choice of SystemC as a target language for the generated 
models [11] so that they can be inserted in already existing SystemC simulation 
frameworks. It has simpler semantics allowing for an easier customization. As a 
result the simulator code is clearly structured and easy to understand and manage. 
Moreover it is possible to use the generated model as an entry point for successive 
refinement phases leading possibly to HW synthesis. The output can be reduced to 
a minimum, therefore simulations are quicker and this greatly extends the range of 
applicability (i.e. contexts in which simulations for long periods of time are neces-
sary). The use of SystemC is particularly indicated for modeling purposes, e.g. in 
[18] and in [20] SystemC code is generated starting from UML representations, 
with the final purpose of creating a hardware synthesis. Differences between these 
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works and our generator are evident. In [18] Transaction Level Modeling (TLM) 
SystemC code is generated; in [20] a simple one-to-one binding between specifica-
tions and generated code is studied. As a result the expressiveness of the modeling 
language is reduced and models need to be conceived in a way that is very near to 
SystemC generated code. We started from the concepts explained in our previous 
work [16, 17] but the tool has been completely modified. The template of the gener-
ated code is very different (from behavioral to RTL SystemC) and this has a clear 
impact on the performance of generated code. The subset of StateCharts semantics 
represented is extended with insertion of hierarchical states, history and interlevel 
transitions. Moreover the possibility of generating multiple interacting instances 
from a single model is provided. This innovative contribution represents a major 
enhancement as it allows easy generation of executable models for a wide range of 
multi-instances domain (e.g. networking where a lot of indistinguishable devices 
may operate).

16.3 Statecharts Semantics Overview

StateCharts are a formalism introduced more than twenty years ago [7] and represent 
a very powerful instrument for the design of systems. They are derived from FSMs 
with some extensions such as the concept of hierarchy, the possibility of modeling 
concurrency, of broadcasting communication to all the concurrently running machines 
and of adding code to complete behavioral description of states. In particular code 
may be inserted such that it is executed when a transition triggers (action), when 
entering a state (entry-activity), while in a state (do-activity) or when exiting a state 
(exit-activity). Since their introduction there have been many attempts to give well 
defined semantics to StateCharts. The main issue was to define declarative semantics 
(e.g. [19]) – possibly a denotational one with a  compositional approach –  corresponding 
to the operational one that was firstly proposed. Given that StateCharts are not an 
official language, in a short time a large number of variants were developed. In [3] 
the possible different aspects were  analyzed and a summary of more than 20 different 
semantics developed for the formalism was given. Even later some more approaches 
were taken, the most remarkable one being the semantics behind StateMate [1] that 
was clearly exposed in [6].

When dealing with StateCharts it is therefore necessary to explicitly specify the 
semantical choices that have been adopted. We decide to focus on clarity and on 
usability of the formalism. For this reason only a subset of the semantics defined in 
[6] has been chosen. The basic idea that has been followed is that of using 
StateCharts in order to facilitate the notation of Concurrent FSMs and to make it 
more readable. Therefore every operation defined in StateCharts has its immediate 
counterpart in terms of concurrent state machines. While this on one side reduces 
the expressivity of the formalism, on the other keeps a strict contact with possible 
implementations and allows to use diagrams created for the simulator in later phase 
of development as a reference point or even – once the framework will be  completed 
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– for HW synthesis. With reference to the possible options summarized in [3] we 
have decided not to use Perfect Synchrony Hypothesis; therefore events happening 
in a time instant are accounted for in the following one. This in order to maintain 
Causality, to avoid Self-Triggering, Instantaneous States and consequently multi-
ple entrance or exits to/from states and infinite sequence of transitions in a single 
time instant. It is easy to notice that because of this decision transitions happening 
simultaneously are constrained to be in different parallel components of the 
StateCharts. The effect of a transition can also be contradictory to its cause without 
any problem as the two refer to two different time instants. This approach (in 
accordance with [6] and in opposition to [19]) is particularly suited to the HW con-
text as confirmed by the fact that a similar approach is found in HDLs (e.g. VHDL). 
Another central point is that of Interlevel Transitions and the use of History. On 
one side semantics comprising these aspects tend to have problems in terms of 
compositionality, because information regarding internal states needs to be 
exported. On the other side they allow to model in an intuitive way complex sys-
tems reducing the number of states. Therefore we have decided to support these 
characteristics in our model, the designer is free to use them or not depending on 
the kind of model and the level of the design procedure.

Negated Triggers and in general Logical Composition of Triggers are sup-
ported by our semantics, reverse polish notation is used. We do not use any 
implicit State Reference: if the entrance, presence in a state and exit needs to be 
usable by other parts of the StateCharts, explicit events should be put respectively 
in entry, do and exit activities. This choice allows quicker simulations as a lot of 
redundancies are removed. Discrete Events are used, i.e., events are valid only in 
the instant they appear; given that Instantaneous States are not allowed in our 
semantics, duration of events is not an issue. The only priority scheme we have is 
that ancestor states transitions have priority over descendant states ones; non 
preemptive interrupt is used to this end. Transitions happen in null time, time can 
pass only within states. A timer has been used with the keyword timer(t) with the 
obvious meaning that after time t elapsed while in a given state the transition hav-
ing the timer as a trigger executes.

Determinism of the model is left to the designer. In our formalism it is possible 
to specify non-deterministic behavior (e.g. two different events triggering two 
 different transitions happen in the same instant). Whereas non-determinism is 
 considered by some one of the main drawbacks of the formalism, it allows 
 representing several aspects of complex systems. The increase in complexity 
( possible exponential explosion of states) is well compensated by the extended 
expressiveness. A central aspect is the injection of external code by means of 
Actions and Activities. This may involve adding complex behavior and complex 
processing of variables. Given that a full concurrent environment is provided, racing 
condition on variables may appear. Blocking racing is not hard, but may not be the 
best solution, in particular when the order of execution of the accesses to variables 
does not influence its final value. In our semantics different accesses to the same 
variable in the same instant are put in sequence (in random order). There is the pos-
sibility – for debugging purposes – of detecting racing conditions.
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16.4 Generation of Simulators

The overall framework has been developed exploiting a compiler like structure: it 
can be seen as composed of a front-end in charge of extracting all the useful infor-
mation from the XMI – exported from the Poseidon1 UML suite – and turning it 
into an Intermediate Representation (IR), and a back-end part where the IR is trans-
formed in the SystemC code of the simulator. This kind of approach guarantees the 
possibility to easily adapt SC2 to different XMI dialects just by modifying the front-
end or obtaining the simulator’s source code in another programming language just 
changing the back-end. Whereas the compiler-like structure has been inherited 
from [17] both the IR and the final template are deeply different and represent 
innovative contributions as will be detailed in the following sections.

16.4.1 Front End and Intermediate Representation

We decided to define IR through an XML-grammar, for the following reasons:

● It is easier to make transformation between different XML representations.
● Tools for parsing, syntax checking and translation of XML are available and free 

(e.g. we used Saxon2).
● XML Schema Definition (XSD) makes it possible to define a well-structured 

XML grammar and to validate it against any input XML file.

Whereas in our previous tools the IR was represented in Graph eXchange Language 
(GXL), we now decided to radically change approach. Taking into strict considera-
tion the fact that no standard XML format for Statecharts exists we defined our own 
grammar – able to fully describe the Statecharts formalism – fitting the complete 
semantics. Moreover we provide – using XML Schema – debugging features, giv-
ing the possibility to validate a StateCharts model before the code generation proc-
ess starts. As a first step we defined the grammar in the Backus-Naur Form (BNF) 
as shown in Fig. 16.1. Grammar definition was performed taking into consideration 
the compilation process. The StateCharts diagrams are seen as composed by a list 
of FSMs and additional information. Additional information consists of the varia-
bles used inside the FSMs and the events triggered – that must be declared before-
hand. FSMs are considered as a list of states and a list of transitions. A state can be 
either a simple state, a FSM – in case of hierarchical states – or a parallel execution 
of multiple states. It is apparent that the symbol < andstate > in Fig. 16.1 is ines-
sential, but it has been inserted in order to export some redundant information and 
make the automatic generation easier. Simple states and transitions are further 

1 http://www.gentleware.com
2 http://saxon.sourceforge.net/
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decomposed into atomic components as clearly shown. It is possible to use logical 
combination of events – expressed in reverse polish notation – as triggers.

The structure described above has been directly defined in terms of XSD rules. 
Having an XML Schema of the IR it is possible to validate syntactical and gram-
matical correctness of any instance through an already existing XML Schema vali-
dator (e.g. we used Saxon). This is a key feature – and represents an enhancement 
with respect to our previous releases and available solutions – as it allows early 
identification of a wide class of mistakes before compilation of SystemC code 
speeding up the debugging process. Whereas in previous versions information was 
only gathered from StateCharts diagram and variables were automatically recog-
nized, in order to enhance capabilities of our models we use also Class diagrams. 
They serve for separating different parts of the model and give the possibility to 
have more details in declaration of variables and events. Information from Class 
Diagrams is collected in the < additionalInfo > element of the BNF grammar.

16.4.2 Back End and Generated Code

The previously described IR contains information for generation of all SystemC 
code. The process happens through a series of Extensible Stylesheet Language 
Transformation(XSLT) [8] passes that represents the most natural way to translate 
an XML format. The simulator is coded at RTL level. In Fig. 16.2 a piece of pseu-
docode illustrating the template of each < fsm > is shown. There is a one-to-one 
mapping between the number of < fsm > instances in the grammar in Fig. 16.1 and 
the number of such SC METHODs in the executable model. In case the StateCharts 
have a flat structure (i.e. without hierarchy) the number of < fsm > s is equal to the 
number of concurrent machines. In case hierarchy is used there is one more < fsm > 
for each substate – i.e. simple state or machine – in the model. This greatly reduces 
the number of SC METHODs running concurrently as on our first release there 

<statecharts> ::= <fsmList><additionalInfo> 
<additionalInfo> ::= <varList><eventList> 

<fsmList> ::= <fsm>|<fsmList><fsm> 
<varList> ::= var|<varList>var 
<eventList> ::= event|<eventList>event 

<fsm> ::= <stateList><transitionList> 
<stateList> ::= <state>|<stateList><state> 
<transList> ::= <trans>|<transList><trans> 

<state> ::= <fsm>|<andstate>|<simplestate> 
<andstate> ::= <fsmList> 

<simplestate> ::= entry_act do_act exit_act 
<trans> ::= source destination trigger guards action

Fig. 16.1 StateCharts Backus Naur Form grammar



were as many SC THREADs as states. Reduction in complexity is even more robust 
as in [16] we found that it is possible to create a better performing system using two 
SC METHODs instead of each SC THREAD.

The SystemC model code is organized in SC MODULEs. Each SC MODULE 
corresponds to an Independent Concurrent State Machine (i.e. not forming an 

Fig. 16.2 Pseudo-Code template for each < fsm > in the StateCharts. timer blocks (1), events 
blocks (2), internal signals to propagate across substates (3) are the main sections of code devoted 
to management of states. The switches for selecting the appropriate exit activity (4), action (5) and 
entry activity (6) corresponding to a transition are highlighted in the bottom part
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ANDSTATE). Inputs and Outputs – i.e. variables and events – of these SC 
MODULEs are accurately defined, reducing therefore the number of ports (i.e. high 
simulation efficiency). The code is split into two parts (A and B in Fig. 16.2), the 
first one describes behavior while inside a state, the other during transitions. The 
operations inside the states are executed at the rising edge of the clock. At every 
clock cycle all the do activities are executed. Timer blocks – one per each outgoing 
transition triggered by a timer (t) – and events blocks – one per each outgoing tran-
sition triggered by an event – are checked. If conditions for a transition hold, the 
appropriate signal is toggled and it causes in the following cycle the execution of 
the code managing the transition. This code is very clear: a group of switches evalu-
ates current state, transition code and next state in order to execute the right exit 
activity – dependent on current state –, action – dependent on transition code – and 
entry activity – dependent on next state. This ensures that transitions happen in null 
time and all the related code is executed in the same instant according to StateCharts 
semantics.

Hierarchy is treated with the use of multiple FSM SC METHODs in the same 
SC MODULE. There is no theoretical limitation on the depth of hierarchy. Anyway 
abuse of this possibility will slow down performance (as the number of concurrent 
SC METHODs increases). The clock is used by the first level of hierarchy, then 
each other level is sensitive to an “internal clock” triggered by the immediately 
lower hierarchical level. With this solution if a state has multiple hierarchy levels, 
all the levels are executed in consecutive cycles in the same time instant. This is not 
possible using only one clock. Restoring the initial state on exiting hierarchical 
machines is performed only if no history is present otherwise the last valid state is 
kept for the next entrance.

Management of events and variables is complicated by the presence of hierar-
chy. Even though we found a mechanism that ensures no time instants are lost in 
taking execution across the hierarchical levels, elapsing of cycles can cause errone-
ous processing of events. For dealing with such issue we designed a generic module 
that needs to be instantiated for each event. Events are represented by a logic one 
on the corresponding signal. Modules sample on the clock negative edge – so that 
elapsing of cycles does not have any impact – the OR of signals from all the FSMs 
that can fire the corresponding event.

This solution has a price in terms of higher complexity as every instantiated 
module for management of events costs one more SC METHOD. As long as 
variables are concerned there is the problem of multiple writing accesses to the 
same variable. Therefore a generic module (working as a bus arbiter) is neces-
sary to take care of updating the variable value whenever a modification is 
required. If more modifications are required at the same instant only one can be 
performed (non deterministically chosen). Given that the application for our 
tools started from power estimation of complex systems – i.e. multiple states can 
give a contribute to power consumption in the same instant – there is the possi-
bility of using a different kind of variable that can accept multiple inputs in the 
same clock cycle, resulting in the sum of the inputs. A module (i.e. a multi input 
adder) manages these of variables.
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16.5 Multi-instantiation

We found that an important requirement that was not met by our previous versions 
[16, 17] and similar works [18, 20] is the possibility of creating multiple instances 
starting from a single model. This same exigence holds for many environments 
(e.g. systems following the client-server paradigm). Variables and events should 
be divided into two groups, those that are global and serve all the simulator and 
those that are only used by the instance that includes them. This way it is possible 
to make the instances work autonomously one to the other and interact only when 
they share access to global fields. As an example – in the context of wireless com-
munication – all the devices wake up and listen when a beacon event is triggered, 
but in case of a single device communication the event that triggers its change of 
state should not trigger any other device. Our modular template allows for easy 
generation of multiple instances. In fact the issue is reduced to a routing problem, 
as the proper signals must be routed to the proper modules.

Global signals (variables) are routed everywhere therefore they are easily man-
aged. Such a division requires the user to separate the variables/events inside the 
classes. The variables and the events that are declared public have global scope in 
the simulator, whereas those private are only visible inside the particular instance. 
On the other hand variables and events that are declared public can be accessed by 
all the machines. In the case of wireless communication systems – as an example – 
the channel and the synchronization signals are public, events causing a radio to 
transmit a message (or variables that indicate the length of the message) are obvi-
ously local to the instance that generates them. Classes are linked to StateCharts 
representing their behavior, in this way it is possible to group multiple instances 
functionalities just representing their behavior once. This is a major enhancement 
as in our previous works it was necessary to replicate StateCharts to have more 
instances, and moreover the management of events and variables of these replicas 
was cumbersome.

When generating the simulator it is possible to give one or more UML files as 
input. Each file contains a class diagram with the declaration of events/variables 
and the corresponding StateCharts diagrams. The framework creates an instantiata-
ble object per file and it is possible to create as many instances of each one as 
needed. The variables/events in the class diagrams are checked per name, public 
variables/events of different files that have the same name are all grouped as a sin-
gle variable. The main limitation of this scheme is that for the moment it is not 
possible to define relationships between single instances when the sharing of varia-
bles is involved. It is possible, e.g., to define a public channel variable that can be 
used by all the instances, but it is not possible to decide that two particular instances 
share a variable, whereas four others share another one. In order to obtain such 
behavior it is necessary to create a complex StateCharts that through some guard 
condition can decide in which way to operate. This is of course not optimal as it 
causes a noticeable increase in the number of events and variables, and complicates 
the design phase. We are planning to improve this aspect in the future.
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16.6 A Simple Example

It is also useful to illustrate another new feature of our tool: the console shell. 
Whereas in previous versions it was necessary to create State Machines on top to 
pass events and act on variables, now it is possible to do these operations from the 
console line. This enhances usability of the tools specially when models are created 
as inserting various debugging patterns is much quicker (does not require modifying 
diagrams, creating the model and compiling it). The console is an interface between 
the user and the SystemC simulation engine. In order to illustrate all the concepts 
explained above we show a simple example (see Figs. 16.3 and 16.4). The scenario 
is that of pressure and temperature monitors. The environment is represented as a 
global machine. We just introduced an exemplary simple machine that changes tem-
perature and pressure parameters following a simple pattern.

Monitors can access the pressure and temperature variables and have visibility over 
the events fired by the global machine, but they work independently one to the other. 
It is possible to instantiate as many monitors as desired. The number of < fsm > for 
this example is three for the environment (global) and five for each instance of the 
monitors. Therefore 3 + 5 × #instances SC METHODs are necessary. It is necessary 
to add one SC METHOD per distinct variable and event.

Enter Command:
fire on_signal[1] 10 
added firing event on_signal[1] time 10 
LIST COMMAND INSERT EVT: on_signal[1] 
Enter Command: 
fire sample_evt[2] 10 
added firing event sample_evt[2] time 10 
LIST COMMAND INSERT EVT: sample_evt[2] 
Enter Command: 
fire read_evt[1] 11 
added firing event read_evt[1] time 11 
LIST COMMAND INSERT EVT: read_evt[1] 
Enter Command: 
go 15 
... ... ... ... ... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... ... ... ... ... 
fsm: device[1] ENTRY state: IDLE time: 10 
fsm: device[2] ENTRY state: READING time: 10 
... ... ... ... ... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... ... ... ... ... 
time :10 THE PRESSURE IS 10 
time :10 THE TEMPERATURE IS 0 
... ... ... ... ... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... ... ... ... ... 
fsm: device[1] ENTRY state: READING time: 11 
... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ...

Fig. 16.3 A brief example showing the use of the console shell is shown. Means of firing events 
(fire command) for the various instances and running the simulator (go command) are illustrated. 
Important lines have been extracted from output
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It is very difficult to give an accurate performance comparison between this tool 
and older versions, as they operate in distinct way, and they can deal with a different 
subset of the formalism. Using flat hierarchy machines (the only ones manageable 
by our previous version) simplified events management is possible, but clarity of 
the models is underpinned. Moreover performance of the resulting simulator 
depends also on the kind of model. Therefore we give some general indication sug-
gesting that the new approach is very beneficial in terms of performance. In Fig. 
16.5 reduction in number of concurrent processes running is clearly shown. As far 
as execution time is involved the weight of a SC METHOD is about one third that 
of a SC THREAD.

16.7 Conclusions and Future Work

In this paper we discussed the new version of our tool. A lot of innovations have 
been introduced in the whole process and as a result the representable subset of 
StateChart is greatly extended (e.g. hierarchical states, history, interlevel transi-
tions). Moreover an XML grammar for StateCharts has been designed and used as 
Intermediate Representation in the process of model generation. Resulting models 
are more powerful and new interesting features have been inserted as the possibility 
of instantiating multiple objects from a single model and the creation of a shell 
internal to the model for improving its easy of use.

Future work will involve refinement of template in order to map it to a VHDL 
synthesizable code, optimization to improve performance and improvement of the 

Fig. 16.4 StateCharts of an example. Monitoring devices can be instantiated, whereas the envi-
ronment has global scope
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mechanism for multiinstantiation. In particular we will work on finding a mecha-
nism for minimizing the concurrent SC METHODs running in case of StateCharts 
with hierarchy and on overcoming the limitation in model instantiation.

Acknowledgement The authors would like to thank Professor Marc Engels for his precious 
advices, his kind support and his valuable feedback.

Fig. 16.5 Comparison in the number of generated concurrent processes per state in the model. 
The line has been drawn considering multi-instantiation in an average case



16 SC2 StateCharts to SystemC: Automatic Executable Models Generation 239

References

 1. http://www.ilogix.com/sublevel.aspx?id = 74.
 2. http://www.mathworks.com/products/stateflow/.
 3. M. Von Der Beek. A comparison of StateChart variants. In Formal Techniques in Real-Time 

and Fault tolerant Systems, 1994.
 4. F. Fummi, M. G. Sami, and F. Tartarini. Use of Statecharts-Related description to achieve test-

able design of control subsystems. In Proc. GLSVLSI, 1997.
 5. S. Gnesi, D. Latella, and M. Massink. Modular semantics for a UML statechart diagrams ker-

nel and its extension to multicharts and branching time model-checking. Journal of Formal 
Aspects of Computing, 51, 2002.

 6. D. Harel and A. Naamad. The STATEMATE semantics of StateCharts. ACM Transactions on 
Software Engineering and Methodologies, 1995.

 7. D. Harel. Statecharts: A visual formulation for complex systems. Science of Computer 
Programming, 1987.

 8. M. Kay. XSLT 2.0 Programmer’s Reference (Programmer to Programmer). WROX, 3 edition, 
Aug. 2004.

 9. D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural subset of UML 
statechart diagrams using the spin model-checker. Journal of Logic and Algebraic Programming,
11, 1999.

10. J. Lilius and I. P. Paltor. vUML: A tool for verifying UML models. ase.
11. Grant Martin. SystemC and the future of design languages: Opportunities for users and 

research. In Proc. SBCCI, 2003.
12. G. De Micheli and R. K. Gupta. Hardware/Software co-design. In IEEE Proceedings, Mar. 

1997.
13. E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing statecharts in promela/

spin. In Proc. WIFT, 1998.
14. M. Mura. Ultra-low power optimizations for the ieee 802.15.4 networking protocol. In Proc. 

MASS, 2007.
15. M. Mura, M. Paolieri, F. Fabbri, L. Negri, and M. G. Sami. Power modeling and power analy-

sis for IEEE 802.15.4: a concurrent state machine approach. In Proc. CCNC, 2007.
16. M. Mura, M. Paolieri, L. Negri, and M. G. Sami. Statecharts to SystemC: a high level hardware 

simulation approach. In Proc. GLVLSI, 2007.
17. L. Negri and A. Chiarini. StateC: a power modeling and simulation flow for communication 

protocols. In Proc. FDL, Sept. 2005.
18. K. D. Nguyen, Z. Sun, P. Thiagarajan, and W. Wong. Model-driven SoC design via executable 

UML to SystemC. In Proc. RTSS.
19. A. Pnueli and M. Shalev. What is in a step: on the semantics of StateCharts. In Proc. TACS,

1991.
20. Chen Xi, Lu JianHua, Zhou ZuCheng, and Shang YaoHui. Modeling SystemC design in UML 

and automatic code generation. In Proc. ASP-DAC, 2005.



Part IV
Formalisms for Property-Driven Design



Chapter 17
Asynchronous On-Line Monitoring of Logical 
and Temporal Assertions

K. Morin-Allory1, L. Fesquet1, B. Roustan2, and D. Borrione1

Abstract PSL is a standard formal language to specify logical and temporal 
properties under the form of assertions. This paper presents the synthesis of PSL 
assertions into asynchronous hardware monitors that can be linked to the circuit 
under monitoring. The checker synthesis is based on a systematic interconnection 
of asynchronous primitive monitors corresponding to PSL operators. The asyn-
chronous monitors are implemented with quasi delay insensitive logic which gives 
reliable and robust monitors in the case of truly asynchronous events, temperature 
or voltage variations. These monitors are applicable to a wider range of verification 
tasks such as the communications among globally asynchronous modules or in safe 
or secure applications.

Keywords PSL, SVA, hardware monitors, asynchronous circuits

17.1 Application Context

New design paradigms are required for large systems on a chip, among which the 
systematic use of software and hardware “platforms”, and rigorous specification, 
verification and test methods. In this context, the use of declarative assertions, to 
specify the expected functional and temporal properties of modules and/or their 
environment, is recognized as a valuable, time saving technique [12] that can be 
carried across description levels and serve a wide range of usages. Assertions are 
useful for specifying constraints for correct IP utilization, the results delivered by 
IPs, the correct expected design behaviors, etc. As a Boolean property expected to 
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be true, an assertion can be evaluated by simulation, emulation or formal verifica-
tion. An assertion can also be seen as a high level functional specification for a 
 circuit primarily intended for snooping on events over time.

Several formalisms have been developed to ease writing temporal and logical 
properties, among which SystemVerilog Assertions and PSL are IEEE standards 
[13, 14]. Synthesizing an asserted property as a monitor, and interconnecting the 
design and the monitor, is a common technique to design validation and online cir-
cuit testing that promises to become increasingly useful for large embedded 
systems.

The on-going work reported in this paper aims at automatically generating truly 
asynchronous and synthesizable monitors from PSL assertions, for online checking 
of circuits in normal operation. Moreover, the monitors can easily be simulated and 
emulated on a hardware platform. The design debugging on a FPGA board is also 
an obvious application of our method, with the advantage of permitting full opera-
tion speed.

In this context, many applications are foreseen. Some examples are given 
below:

● Monitoring large systems built from synchronous IP’s: one difficulty in debug-
ging “globally asynchronous locally synchronous” systems is the correctness of 
communications. Asynchronous monitors are needed to pinpoint erroneous 
transactions between modules that belong to different clock domains.

● Monitoring inherently asynchronous events, guaranteeing that an appropriate 
response is given, irrespective of the events delay.

● Safely monitoring circuits in harsh environments thanks to the intrinsic robust-
ness of asynchronous logic.

● Monitoring secure chips, such as cryptoprocessors, in order to detect side-
 channel attacks using fault injections.

17.2 State of Art

FOCS from IBM [1, 6] was, to our knowledge, the first tool to automate the genera-
tion of register-transfer level (RTL) monitors from PSL, producing VHDL or 
Verilog code that can be linked to the design at hand for checking on a clock cycle 
basis. Although primarily intended for on-line simulation, including mixed signal 
simulation by other parties [2], monitors produced by FOCS are synthesizable, and 
can be fed to a model checker. The principles for building syntax directed monitors 
for clock synchronized “foundation language” PSL expression [7] and SERE’s 
[9, 15] have been disclosed with a particular emphasis on debugging feature [8, 15]. 
A more formal automata theoretic construction of monitors, the so-called “temporal 
testers”, are also built in a compositional way [17]. Cimatti et al. [10] propose 
another modular encoding to turn PSL properties into nondeterministic Büchi 
automata. Other tools are now provided by the main CAD companies, that interface 
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several verification engines (simulation, emulation, formal verification); various 
libraries of predefined checkers (CheckerWare [3], OVL [4]) are supported in addi-
tion to the standard assertion languages.

To the best of our knowledge, all synthesized checkers are clock synchronized. 
Checkers that pretend crossing multiple clock domains, e.g. [5], appear to be hard-
wired special purpose modules rather than generated from general assertions. Yet, at 
system level, one needs to write properties that are triggered by asynchronous events, 
such as interrupts, or that check communication protocols among globally asynchro-
nous modules. The early published solutions generate software checkers linked to 
design models in C++ or in SystemC, that are verified by simulation [11].

17.2.1 A Modular Construction

The method we propose is modular. We started with the method initially developed 
in [7] for synchronous designs. We thus created a completely new library of primi-
tive digital asynchronous components for the basic PSL temporal operators, and an 
interconnection technique based on hand-shaking protocols. The novelty of our 
approach lies in the fact that the advancement of time is seen as a sequence of 
events on arbitrary signals instead of occurrences of a single master clock ticks. 
Signal changes, rather than clock ticks, are thus considered the points in time when 
PSL formulas are to be evaluated. This paper is an extension of an early article [16] 
with some experimental results.

17.2.2 Asynchronous Logic Benefits for Monitoring

While in synchronous circuits a clock globally controls activity, asynchronous cir-
cuits activity is locally controlled using communicating channels able to detect the 
presence of data at their inputs and outputs. This is consistent with the so-called 
handshaking or request/acknowledge protocol. One transition on a request signal 
activates another module connected to it. Therefore, signals must be valid at all 
times. Asynchronous circuit synthesis must be more strict, i.e. hazard-free. In order 
to have very reliable monitors, we choose to implement Quasi-Delay Insensitive 
(QDI) circuits [18]. Indeed, these circuits are very robust to Process, Temperature 
and (strong) Voltage variations. Moreover, they offer nice properties such as modu-
larity or low-power consumption.

In contrast to synchronous circuits, the QDI circuit synchronization is made 
locally with two asynchronous signals: a request signal and an acknowledge signal. 
This is done with a Muller gate which implements a “rendezvous” between these 
two signals. When all inputs of a Muller gate (Fig. 17.1) are equal, the output takes 
the input value. When inputs are different, the output holds its previous value (see 
Table below).
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17.3 Property Specification Language

We briefly recall how properties are written, to underline the subtle differences 
between the synchronous and asynchronous interpretation of PSL formulas. 
A property is built on three types of building blocks: the Boolean expressions, the 
sequential expressions (SERE) that define finite-length regular patterns (called 
sequences) of Boolean expressions and subordinate properties that express 
 relationship among Boolean or SERE expressions. Various operators called 
Foundation Language (FL) operators express temporal relationships: until, 
always, before, … In this paper we focus on the FL operators. Our work is 
based on the formal semantics of the operators, defined on traces, and given in 
[13]. To make this paper self contained, and understandable, we briefly give an 
intuitive  definition on a small example.

Consider the following property P1.
PSL property P1 is
 Always A → next(B until C);

Property P1 means that for each evaluation cycle such that ‘A’ holds, at the fol-
lowing evaluation cycle B must remain ‘1’ until C holds.

The PSL semantics are defined on a trace, and some evaluation cycle. In a syn-
chronous design, the evaluation cycle can be clock driven (@ clock’event 
and clk=‘1’), but in an asynchronous design, the evaluation cycle may be event 
driven. Thus, for a same trace a property can hold or fail. The two waveforms on 
Fig. 17.2 illustrate two evaluations on a same trace for property P1.

Top waveform: At clock edge #2 and #7, A holds. Starting from the next evalu-
ation cycle (#3 and #8) B must hold until C is‘1’. The property is not verified since 
B does not hold at #8: the second evaluation fails and the whole assertion is not 
verified.

Bottom waveform: For this waveform, the evaluation cycle is event driven: each 
time there is an event on one of the signals involved in the property, the property is 

A 0 0 1 1
B 0 1 0 1
Z 0 Z−1 Z−1 1

Fig. 17.1 A Muller gate
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evaluated. At event #7, A is asserted, and on the next event B is ‘1’ and remains ‘1’ 
until the end of the trace. Since C is ‘0’, the property is pending: an extension of 
the trace may lead to an error or not.

The asynchronous solution we propose supports both evaluation cycles.

17.4 Monitor Generation

The monitors we build reflect the four satisfaction levels for a property : hold 
strongly, hold, pending and fail [13]. When implemented in hardware, the monitor 
outputs display the property satisfaction level, and the indication that the answer is 
no longer pending may be used as an interrupt to trigger further actions.

A monitor for a property P is built as a module that takes as inputs the reset, the 
synchronization signals (clock, hand-shake, etc.), a signal Start that triggers the 
evaluation, and the signals of the design under verification (DUV) that are operands 
of the temporal operators in P (see Fig. 17.3). The three monitor outputs have the 
following significance:

● Checking: a 1 indicates that output Valid is effective at the next synchronization 
time;

● Valid: provides the evaluation result (1 means absence of error, 0 means error);
● Pending: a 1 indicates that the monitor has been started and that the satisfaction 

result is pending; this is significant for strong operators.

A

B

C

A

B

C

1

1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 10

fail

Pending

Fig. 17.2 A synchronous and an asynchronous evaluation of P1
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The synthesis method relies on:

● A library of primitive monitors, one for each PSL operator of the “foundation 
language”.

● A systematic connection procedure to build complex monitors from primitive 
ones, based on the PSL expression syntax tree.

Operators that take one or two integer parameters, such as next or next_a, have 
 corresponding generic monitors with the same parameters. In addition some 
 operators have several variants: weak or strong, overlapping or non overlapping 
(e.g. before), in effect corresponding to several primitive monitors. All primitive 
monitors have, maximally, the interface shown on Fig. 17.3: there may be 1 or 2 
operand inputs, there may be a pending output or not.

Figure 17.4 illustrates the construction of the monitor for property. In this  monitor, 
we have chosen to add an event driven synchronization block. For each primitive 
monitor, this block takes as input the operand of the primitive monitor and all the 
signals involved in the sub-formula as synchronization signals: e.g. the operator 
“next” takes no operand as input (connected to ‘1’), and B, C as  synchronization 
signals since they are involved in the subformula of P1: next(B until C). This 
synchronization block can be substituted by any synchronization block even by a 
clock driven synchronization block.

Fig. 17.3 Interface of a monitor
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Fig. 17.4 Property monitor for P1
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As an example of library primitives, the imply operator is presented. The 
 property semantics are first expressed as a Petri Net (see Fig. 17.5). The primitive 
monitor is then synthesized from this Petri Net description into a gate netlist includ-
ing standard logical gates and Muller gates. This approach fits naturally with 
 asynchronous logic, where an arbitrary number of modules can be assembled by 
means of the handshake protocol, preserving delay insensitivity.

Figure 17.6 shows the sub-circuits (identified with dashed lines) corresponding 
to the places in the Petri net. The three boxes contain a very simple structure which 

C1
C2

C3

Started

CSA

CSBn

CSBn

START

ACK_START

A

A

CHECKING
CSB

ACK_A

ACK_A
_

_

lost

ack_csb

ack_csb

recognized

Fig. 17.5 Petri net of the imply operator

Fig. 17.6 Monitor of the imply operator
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implements a rendezvous between a state signal (similar to a token in a Petri Net) 
and a condition signal allowing a transition between two states. This is realized 
with a 3-input Muller gate and an inverter. For instance, the 3-input Muller gate, 
located in the Started box, is set to 1 when the current state is Started. The transition 
to states recognized and lost is conditioned by the value of signal A.

Assume that all the Muller gate outputs are set to 0, except the output of C1 (the 
monitor is in state Started). Assume that A is ‘1’. All the inputs of C2 are 1 (the 
acknowledgment signal of the following state is also 1) and the output of gate C2
goes up. The acknowledgment signal, connected to the inverted value of the Muller 
gate output, resets the preceding Started state. This is interpreted as a state change 
from Started to Recognized.

Last, the monitor output Checking is directly computed with the gate C2.

17.5 FPGA Implementation

17.5.1 Implementation of Assertion Monitors

To implement PSL assertions in a digital system, the designer follows the standard 
design flow (HDL description, synthesis, place and route) as illustrated on Fig. 
17.7. The PSL assertions are extracted from the system specification. Once the PSL 
assertions have been extracted, the monitors are automatically generated by our 
dedicated platform HORUS, resulting in a netlist of property monitors. This 
checker netlist is then merged with the IP to be monitored using HORUS. The next 
steps follow the standard design flow and target FPGAs as well as ASICs.

Monitors implemented in ASIC are primarily devoted to on-line testing of the 
circuit in operation. In FPGA, the monitors can be used to detect design errors at 
the hardware or software level, the primary interest being several orders of magni-
tude in the verification speed compared to a simulation execution.

17.5.2 A Bus Snoop-System for Software Verification

To demonstrate the hardware asynchronous monitor principles on a real system, an 
experimental platform, based on an Altera FPGA (a Stratix 1s40), has been 
designed. The implemented architecture is described in Fig. 17.7. The Nios-Avalon 
architecture is based on a standard Avalon bus and has an UART serial interface, a 
Nios processor with a RAM and a boot ROM. The hardware monitors are  connected
to the bus through a small interface in order to snoop the data transactions about 
which the PSL properties are written. The interface also allows the Nios processor 
to scan the state (Pending, Hold, Fail) of the monitors. Figure 17.7  displays an 
experiment with one asynchronous monitor.
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A host computer is used to load the hardware on the FPGA (with a JTAG link 
not represented on Fig. 17.8). Then, the software is downloaded through the UART 
link and executed on the Nios processor.

Each monitor snoops its own set of signals on the Avalon Bus, and evaluates a 
particular property. After monitors are started, as long as all hardware monitors are 
in pending state, the Nios executes its program normally. When a monitor detects a 
Hold or Fail condition, an interrupt is generated and the Nios processor executes an 
exception handler. The interrupt routine performs appropriate actions for debug, 
e.g. read the state of the implied monitor and display it on the host computer.

17.6 Conclusion

This article aims to synthesize asynchronous checkers, described in an assertion 
language such as PSL or SVA, not only for debugging during simulation or emula-
tion but also for ASIC online monitoring. The main advantages of asynchronous 
checkers are their intrinsic robustness to process, temperature and voltage  variations 
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Fig. 17.7 Design flow of the Horus platform
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thanks to the QDI logic. In these conditions, an abnormal behavior of the monitored 
circuit can be detected even if its power supply voltage is not high enough to ensure 
a correct functioning. Indeed, the asynchronous monitor functional correctness is 
warranted in a large voltage range (typically from 1.2 to 0.4 V for a 130 nm CMOS 
process). This can be used for monitoring critical IPs in safe or secure applications. 
Moreover, the delay insensitivity allows a reliable verification of transactions 
between modules that belong to different clock domains. The monitor generation is 
based on a systematic interconnection of asynchronous primitive monitors corre-
sponding to PSL operators of the “foundation language”. This approach has been 
successfully prototyped on standard FPGA platforms. Further works will address 
the monitor generation of SEREs.
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Chapter 18
Transactor-Based Formal Verification 
of Real-Time Embedded Systems

D. Karlsson, P. Eles, and Z. Peng

Abstract With the increasing complexity of today’s embedded systems, there is 
a need to formally verify such designs at mixed abstraction levels. This is needed 
if some components are described at high levels of abstraction, whereas others are 
described at low levels. Components in single abstraction level designs commu-
nicate through channels, which capture essential features of the communication. 
If the connected components communicate at different abstraction levels, then 
these channels are replaced with transactors that translate requests back and forth 
between the abstraction levels. It is important that the transactor still preserves the 
external characteristics, e.g. timing, of the original channel. This chapter proposes a 
technique to generate such transactors. According to this technique, transactors are 
specified in a single formal language, which is capable of capturing timing aspects. 
The approach is especially targeted to formal verification.

Keywords Transactor, formal verification, petri-net, regular expressions, 
 embedded systems

18.1 Introduction

Developers of embedded systems face an ever-increasing complexity of their 
designs. At the same time, they also face an ever-decreasing time-to-market. 
A common way to deal with this challenge is to divide the design into several 
 components, each component with its own responsibilities and functionality.

This divide-and-conquer technique is usually combined with an iterative top-
down approach, where the system is initially defined at a high level of abstraction, 
leaving out most low-level details. The design is then gradually refined and more 
and more details are put into place. During this process, some parts of the system 
will be described at high level and other parts at low level.
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This situation, together with the fact that verification and test consume a signifi-
cant part of the total development cost, stresses the need for efficient verification 
methods that target systems described at mixed abstraction levels.

The above-mentioned problem is traditionally solved in an unsystematic  manner, 
where developers rewrite properties and modify the system in an ad hoc manner in 
order to match the mixed level model. Lately, a more systematic approach, involv-
ing transactors, has been proposed [4, 5].

The key issue of the problem lies in the fact that two (or more) components 
described at different abstraction levels cannot communicate with each other, since 
they, in principle, use different protocols. One component uses a more high-level 
protocol than the other. A transactor is a mechanism that bridges this gap by trans-
lating the high-level requests into their low-level ditto and vice versa. Moreover, 
evaluations have shown that using a transactor-based verification approach is more 
effective than a traditional RTL verification flow with respect to both fault and 
assertion coverage [1]. Using transactors moreover helps in reusing testbenches as 
well as assertions in the refinement process.

A few works have been performed in the area of automatically generating this 
type of transactors, based on protocol conversion techniques [2, 3]. Bombieri et al. 
[4] start from a master-bus-slave communication framework that contains informa-
tion on how communication is carried out at different abstraction levels on the 
specified infrastructure (bus). From this framework, the authors extract a master, 
bus or a slave transactor from a high to low level or vice versa. Their extraction 
algorithm is based on Extended Finite State Machines. It does, however, not handle 
timing aspects explicitly and is only applicable on bus-based protocols.

Balarin et al. [5] use Sequential Extended Regular Expressions (SERE) to spec-
ify the relation between the two interfaces of the transactor and to automatically 
generate the corresponding transactor. The transactors are generated in a program-
ming language such as C++, Verilog or SCE-MI, in order to facilitate integration 
with existing simulation tools. The approach supports to a lesser extent formal 
methods, and it completely lacks the support for time.

Protocols are often described using various kinds of regular expression-like lan-
guages. Although SEREs [5] in principle are sufficiently expressive, they do not 
support the notion of time. Timed Regular Expressions [6], on the other hand, lack 
several useful features, such as variables and conditions.

The approach proposed in this chapter combines SEREs with timed regular 
expressions by adding a timing feature on top of SEREs. We call the resulting lan-
guage Timed SERE (TSERE). By doing this, we are able to create transactors suit-
able for formal verification in a component-based real-time setting with mixed 
abstraction levels. The approach moreover widens the scope of responsibility of 
transactors from a pure protocol converter to a semirefined communication 
channel.

The chapter is organised into seven sections. Section 18.1 introduces and moti-
vates transactor-based verification. Next, Section 18.2 provides an overview of the 
proposed approach. Section 18.3 presents the Petri-net based design representation 
that is used throughout the chapter, and Section 18.4 defines the Timed Sequential 
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Extended Regular Expression language that is used for specifying transactors. 
Section 18.5 describes the mechanism to generate timed Petrinets from the formal 
description and Section 18.6 presents a few case studies. Section 18.7 concludes the 
chapter.

18.2 Overview

In the proposed approach, a system consists of several communicating components, 
as indicated in Fig. 18.1. Each component implements a well-defined functionality, 
and they interact with other components and the rest of the system through ports, 
depicted in the figure with circles at the edges of the component.

Channels are inserted between communicating components. The channels 
model the protocol, delays, noise and other peculiarities that can occur in the com-
munication. They are hence only an artefact for high-level models, that will not 
occur or be synthesised in the final implementation. Channels can, from a model-
ling point of view, be regarded as a special type of components, and are depicted 
with dotted lines.

During the development phase, it is often desirable to check if certain temporal 
logic properties are satisfied in the system. Such analysis can be obtained by feed-
ing a model of the system into a model checking tool together with properties to be 
verified. This procedure gives a formal proof whether the properties are satisfied in 
the system or not [7].

At the same time, the components are iteratively refined and more and more 
details are added to the system. This naturally leads to a situation where some parts 
of the system are more refined than others. However, it is still desirable to occasion-
ally verify the system to ensure that the recently performed refinement steps did not 
violate any, possibly critical, properties.

When refining the components, the interfaces of those components are simulta-
neously refined. However, the interfaces are shared or connected with other com-
ponents, that are not yet refined. This creates an incompatibility of interfaces 
between the involved components and channels. In order to overcome this problem, 
the channel is replaced by a transactor between the incompatible interfaces, as 

Fig. 18.1 Targeted system topology
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demonstrated in Fig. 18.2. A transactor can thus be seen as a channel connecting 
components at different levels of abstraction, or a semi-refined channel. The trans-
actor shall encapsulate the same external behaviour as the channel it replaces with 
respect to delays, noise, etc.

The transactor takes high-level requests and translates them into low-level ones, 
and vice versa. It is described in Timed Sequential Extended Regular Expressions 
(TSERE), which is both intuitive and sufficiently expressive for this purpose. The 
TSEREs (and thereby also the transactors) are given either by the designer himself, 
or, in a standardised context, by a third-party provider.

The example in Fig. 18.3 will be used to explain the approach in more detail. 
A sender repeatedly sends messages to a receiver over a channel. At a high level of 
abstraction (Fig. 18.3(a)), it takes 2 time units for the message to be transported 

Fig. 18.2 System at mixed abstraction level with transactor

(a) Both components
at high level

(b) Both components
at low level

(c) Sender at high
level, Receiver at low

level

Fig. 18.3 Explanatory example
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between the two components. This delay is implemented in the channel intercon-
necting the components.

At a low level of abstraction (Fig. 18.3(b) ), the message is refined into two: 
address and data. The protocol that the sender and receiver have agreed upon states 
that these messages should be sent sequentially with 1 time unit in between. 
It moreover takes 1 time unit for each message to reach the receiver. The sender 
thus sends the data at the same time as the address reaches the receiver. It should 
be noted that the total timeframe for sending a message in the two abstraction levels 
is the same. In both cases, this takes 2 time units. Thus, the channel preserves its 
external behaviour between abstraction levels.

At one moment, during the refinement phase, only one of the components is 
refined. Assume that this component is the receiver (Fig. 18.3 (c) ). At this stage, 
the sender and receiver adhere to different protocols and cannot communicate with 
either of the high-level or low-level channels. Instead, the channel is replaced with 
a transactor that translates the high-level message into the stipulated sequence of 
low-level ones. The transactor consequently has to analyse the message from the 
sender and divide it into two. The first message should contain the destination 
address, whereas the second one should contain the data. The transactor then 
 forwards the two pieces to the receiver with 1 time unit difference.

The transactor can be said to be a mix of the two versions of the channel. It, 
however, also contains additional protocol information not explicit in the channels, 
e.g. how to split the high-level message and the time separation between the address 
and data transmission. Therefore, the information captured in the channels is not 
sufficient for formulating the TSEREs. In addition, the transactor respects the 
 external timing behaviour of the channels.

18.3 Verification Flow and Design Representation

This section introduces the verification flow and the Petri-net based design repre-
sentation used in this chapter.

18.3.1 Verification Flow

Figure 18.4 presents the overall verification flow where the work described in this 
chapter is put into context. The flow centers around a component-based verification 
methodology [7], which accepts three entities as input: a mixed-level model, trans-
actor and Timed Computation Tree Logic (TCTL) properties [8].

The mixed-level model is obtained from traditional refinement steps of a high-
level model. The designer then writes TSEREs describing the communication dis-
crepancies arisen from the mixed abstraction levels in the semirefined design and 
generates a transactor out of them (the focus of this chapter). The TCTL formulas 
express the real-time properties to be verified.
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In the verification methodology, an abstraction of the model is first obtained 
with respect to the components and channels referred to by the properties. The 
abstracted model is then input to the UPPAAL model checker [9], by first translat-
ing the Petri-net model [10] into Timed Automata [11], the input language of 
UPPAAL. If the result of the model checking was false, the model might need to 
be refined (relative to the abstraction done in the verification methodology, not the 
design itself) based on diagnostic information obtained from the model checker. In 
case the refinement of the abstraction fails, the properties are concluded not to 
be satisfied. If, on the other hand, the model checking result was true, it can be 
 concluded that the properties hold in the model.

18.3.2 The Design Representation: PRES+

The components as well as the system as a whole are assumed to be modelled in a 
design representation called Petri-net based Representation for Embedded Systems 
(PRES+) [10]. It is a Petri-net based representation with the extensions listed 
below. Figure 18.5 shows an example of a PRES+ model.

1. Each token has a value and a timestamp associated to it.
2. Each transition has a function and a time delay interval associated to it. When a 

transition fires, the value of the new token is computed by the function, using the 
values of the tokens which enabled the transition as arguments. The timestamp 
is increased by an arbitrary value from the time delay interval. If the time delay 
interval is not explicitly stated, it is assumed to be [0..0]. In Fig. 18.5, the func-
tions are marked on the outgoing edges from the transitions.

3. The PRES+ net is forced to be safe, i.e. one place can at most accommodate one 
token. A token in an output place of a transition disables the transition.

4. The transitions may have guards. A transition can only be enabled if the value 
of its guard is true (transitions t

4
 and t

5
).

Fig. 18.4 Verification flow
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Places without incoming arcs are called in-ports, and places without outgoing arcs 
are called out-ports. A common name for in-ports and out-ports respectively, is 
ports. Components are subnets of the whole model, delimited by ports.

18.4 Timed Sequential Extended Regular Expressions

The proposed approach introduces Timed Sequential Extended Regular Expressions 
(TSEREs) for the specification of transactors. TSEREs consist of three types of 
entities: basic entities, terms and operators.

18.4.1 Basic Entities

Basic entities cannot be standalone TSEREs, but constitute a part of terms. They are 
used as building blocks for storage, communication and computation. The three 
categories of basic entities are shown below:

1. Variables: a, b, c

Variables are used to store and retrieve values. Variables are associated to a 
datatype. Unless explicitly stated otherwise, the datatype used in all examples is 
integer. The scope of a variable stretches from its first occurrence to the end of 
the sequence (see the sequence operator below) of that first occurrence.

2. Port labels: !send, ?rec

Port labels are used to define the interaction with other components. ! denotes 
the sending of a (possibly empty) message on the subsequent out-port, and ?
denotes receiving of a message from the specified in-port.

3. Arithmetic expressions: (a + b) · 3

Arithmetic expressions perform a computation on other basic entities, following 
standard syntax. This entity allows expressing data processing.

Fig. 18.5 A simple PRES+ net
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18.4.2 Terms

Terms describe an action by combining basic entities. There are three different 
types of terms, listed below:

1. Assignments: a ← 3, !send ← 0, b ← ?rec

The variable or out-port on the left-hand side of the arrow is updated to the value 
of the variable, in-port or arithmetic expression on the right-hand side.

2. Guards: a = 4, ?rec > 10

Guards compare the value of a variable or in-port with the evaluation of an 
arithmetic expression. If the guard evaluates to true, nothing happens. Otherwise, 
the TSERE fails (or, loosely speaking, reaches a dead end).

3. Delays: [0..0], [3..5]

Delays denote the passing of time. They are expressed as intervals, with the 
connotation that an arbitrary amount of time from the interval may elapse. This 
feature is crucial in the context of real-time systems.

18.4.3 Operators

In addition to terms, TSEREs can be recursively combined to express more com-
plex behaviour with the following operators. Assume α and β being arbitrary 
TSEREs.

1. Sequence: α; β

α occurs immediately before β.

2. Choice: α + β

Either α or β occurs.

3. Concurrency: α | β, α|n

α and β occur concurrently. The concurrency operator is not considered to have 
occurred until both α and β have fully occurred. α|n denotes n concurrent copies 
of α.

4. Iteration: αn, α∞, α*, α+

The iteration operators denote a sequence of recurring α. The length of that 
sequence depends on the type of iteration. αn denotes a sequence of length n
and n = ∞ signifies an infinitely long sequence. Such a sequence can only be 
escaped if placed inside the choice operator. α* denotes a sequence where n
is arbitrarily chosen between 0 ≤ n ≤ ∞, and in the case of α+, n is arbitrarily 
chosen from 1 ≤ n ≤ ∞.
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18.4.4 Example

Returning to the example introduced in Fig. 18.3, the high-level and low-level 
channels and the transactor can be expressed with the following TSEREs:

1. High-level channel: (m ← ?send; [2..2]; !rec ← m)∞

2. Low-level channel: (a ← ?sndaddr; [1..1]; !recaddr ← a; d ← ?snddata; [1..1]; 
!recdata ← d)∞

3. Transactor: (m ← ?send; [1..1]; !recaddr ← m.addr; [1..1]; !recdata ←
m.data)∞

The infinite iteration on the whole expression is necessary to enable the transactor 
to process several requests. Without the iteration, the transactor and channels would 
stop working after the first request.

As another example, consider a variant of the low-level channel where either the 
address and data are sent simultaneously, or we receive a reset request. Equation 
18.1 shows the corresponding TSERE.

( ( (a ← ?sndaddr; [1..1]; !recaddr ← a) | (d ← ?snddata; [1..1]; 
 !recdata ← d) ) + ?reset)∞ (18.1)

If statements can be expressed using guards together with the choice operator. In 
combination with iteration, this structure allows formulating bounded loops, as 
demonstrated in Eq. 18.2.

 αn ⇔ i ← 0; ( (i < n; α; i ← i + 1)∞ + (i = n) ) (18.2)

18.5 Transactor Generation

To generate a transactor is a two-step process. First, the behaviour of the transactor must 
be described with TSEREs. This must be done in such a way that each highlevel request 
is mapped onto low-level ones, while preserving the external behaviour, e.g. timing. 
Once a TSERE for the transactor is developed, that TSERE is automatically translated 
into an equivalent PRES+ model. This section provides details on how this is done.

Regular expression based languages have a very strong relation with finite 
automata (and therefore also with PRES+), which makes such conversion relatively 
straight-forward [12]. Each basic entity, term and operator is mapped onto a PRES+ 
pattern, which directly reflects the semantics of that entity. The patterns have one 
entry place and one exit place, indicated in figures by a loose incoming and out-
going arc respectively. A token arriving in the entry place of a pattern enables the 
execution of that pattern, i.e. the occurrence of its corresponding TSERE. After 
executing the pattern/expression, a token should, by convention, be put in the exit 
place to indicate its completion. Figure 18.6 presents the patterns corresponding to 
basic entities, Fig. 18.7 the patterns corresponding to the terms and Fig. 18.8 the 
patterns corresponding to the operators.
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(a) Variables: a

(c) Arithmetic expressions: (a + b) · 3

(b) Port labels: !send, ?rec

Fig. 18.6 PRES+ patterns for TSERE basic entities

(a) Assignments: a ← 3, !send ← 0, b ← ?rec

(b) Guards: a = 4, ?rec > 10 (c) Delays: [3..5]

Fig. 18.7 PRES+ patterns for TSERE terms

18.5.1 Patterns for Basic Entities

Variables are represented by a place (Fig. 18.6(a) ), initially without a token. When 
the variable is assigned a value for the first time, and the variable enters its scope, 
a token containing the initial value is put in the place. From that point on, a token 
shall always reside in that place during the whole lifetime of the variable. The last 
term in the sequence, where the scope of possibly several variables ends, should 
consume the tokens in the places corresponding to those variables. Not storing val-
ues when not needed reduces statespace, and therefore mitigates the effects of 
statespace explosion. This is important for efficient model checking.
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Port labels are also modelled with a single place (Fig. 18.6(b) ). These places 
will serve as ports of the transactor. ? labels serve as in-ports and ! labels as out-
ports. Therefore, the transactor can only consume tokens from ? label ports, and 
analogously only put tokens in ! label ports.

Arithmetic expressions are modelled in two stages: fetching variable values and 
computation (Fig. 18.6(c) ). The value of each variable involved in the expression 
must be explicitly fetched and stored in a temporary place. This arrangement is 
due to the fact that PRES+ transitions only are associated to one function. Without 
the fetching steps, the involved variables would change values to the value of the 
expression, which is not the desired behaviour.

The fetching of variable values is realised by transitions t
1
 and t

2
 in Fig. 

18.6(c), for variables a and b respectively. The transitions consume the token 
from the variable place and immediately put it back with the same value. In the 
case of ? port labels, the token is never put back. A copy of the value is moreo-
ver stored in a temporary place, a’ and b’ respectively. These tokens are then 
used in the final computation stage, transition t

3
, instead of directly accessing 

the variable places. The fetching stages and the final computation stage are 
connected in a sequence with the help of intermediate places, p

1
 to p

4
. The 

result of the expression is located in the exit place of the arithmetic 
expression.

(a) Sequence: α; β

(b) Choice: α + β

(c) Concurrency: α ⏐ β, α⏐n

(d) Possibly infinite
iteration: α∞ α∗, α+

Fig. 18.8 PRES+ patterns for TSERE operators
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18.5.2 Patterns for Terms

Assignments are realised in a similar way as variable fetching, with the difference that 
the value of the token is updated (Fig. 18.7(a) ). The new value is located in the entry 
place in the case of arithmetic expression, or, in the case of a constant, the transition 
function is set to that constant. Attention must be paid to if the assignment denotes 
the initial assignment to the variable in question or not. If it is, there is no token in the 
variable place to be consumed and consequently there shall not be an arc from the 
place to the transition. If the assignment is an update of an already initialised variable, 
the token must, on the contrary, be consumed before the update is actuated. In the case 
of ! port labels, tokens are never consumed from within the transactor. As an optimi-
zation when the new value is an arithmetic expression, the assignment can be merged 
with the computation stage of the  arithmetic expression.

Guards are implemented as variable fetching without creating a temporary copy, 
with the addition that the transition guard is set to the TSERE guard expression 
(Fig. 18.7(b) ).

Delays are modelled with a transition with the time delay interval stipulated by 
the TSERE delay expression (Fig. 18.7(c) ). The modelling of delays is preferably 
optimised by moving the time delay interval to the first transition of the subsequent 
TSERE, if such exists.

18.5.3 Patterns for Operators

The operator patterns combine several subpatterns to form a more complex behav-
iour. In Fig. 18.8, the subpatterns are drawn as clouds with arrows from/to its entry 
and exit places. The resulting complex pattern is also assigned entry and exit places, 
indicated in the figures in the same way as with the terms.

Sequences are realised by merging the exit place of the first subpattern with the 
entry place of the second (Fig. 18.8(a) ). The entry place of the first subpattern 
becomes the entry place of the whole sequence, and the exit place of the second 
subpattern becomes the exit place of the whole sequence. In this way, when the 
first subpattern has finished executing, a token is put in the shared middle place, 
which enables the execution of the second subpattern.

In the pattern for the choice operator (Fig. 18.8(b) ), the entry and exit places of 
the subpatterns are merged, so that all subpatterns share the same entry place and the 
same exit place. When a token appears in the entry place, this leads to the enabling 
of all subpatterns, out of which one is chosen randomly. If the first term of a subpat-
tern is a guard that evaluates to false, that subpattern can naturally not be chosen.

When a token arrives in the entry place of the concurrency pattern (Fig. 18.8(c) ), the 
entry places of each subpattern must also be marked to enable the execution of each 
corresponding subpattern. This is achieved by introducing an additional transition (t

1
)

with the entry places of all subpatterns as output and the entry place of the whole pattern 
as input. A similar, but contrary, construct is also inserted at the exit places (t

2
),
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implementing the synchronisation of the subpatterns upon their completion. The con-
currency operator is not considered completed until all subexpressions are completed.

Iteration is accomplished by connecting the exit place of the subpattern to its 
entry place via a transition (t

1
 in Fig. 18.8(d) ). This procedure can, in the case of 

α∞ and α*, be optimised by instead merging the entry and exit places of the subpat-
tern. The entry place of the subpattern is also the entry place of the iteration. For α*

iterations, the exit place is the same as the entry place, whereas for α+ the exit place 
of the iteration is the exit place of the subpattern. α∞ iterations do not have an exit 
place due to their infinite nature. Finite loops are implemented based on Eq. 18.2.

When a PRES+ model has been generated for the whole TSERE, an initial token 
is put in the entry place of the final model, to indicate the first term.

18.5.4 Examples

Let us continue the sender and receiver example introduced in Fig. 18.3, and where 
the TSEREs for the channels were listed in Section 18.4.4. Figure 18.9 provides the 

(a) The generated transactor from Fig. 18.3 (c)

(b) The PRESS+ model corresponding to Eq. 18.1

Fig. 18.9 Examples of PRES+ models generated from TSEREs
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PRES+ models resulting from the presented approach, including certain 
optimizations.

The core of the transactor is a sequence of reading and writing on ports com-
bined with simple arithmetic expressions (Fig. 18.9(a)). Transitions t

2
 and t

4
 model 

the variable fetching stages of the arithmetic expressions, while transitions t
3
 and t

5

combine the computation stages with the assignment on ports recaddr and recdata
respectively (optimization). The delays are moreover added to the first transitions 
in the subsequent terms, in this case t

2
 and t

4
. It should moreover be noted how the 

scope of variable m is modelled. Transition t
1
 realises the first assignment to m,

therefore it only puts a token with the initial value in place m. As transition t
5
 is the 

last transition in its scope, it consumes the token, no matter it needs the value or 
not. Transition t

6
 models the infinite loop.

Figure 18.9(b) presents the PRES+ model corresponding to Eq. 18.1. Inside the 
iteration, there is a choice between either two concurrent statements or a single 
reading of reset. If the reset is not immediately present, the two concurrent 
sequences are launched. If the reset is present, there is a non-deterministic choice 
between the two options. The loop is in this figure optimised in the sense that the 
exit place of the choice operator is merged with its entry place.

18.6 Case Studies

The proposed approach has been applied on two examples: the example from Fig. 
18.3 and an AMBA-based protocol. The models were formally verified on high, 
low and mixed levels of abstraction using a Linux machine with an Intel Pentium 
4, 2.8 GHz processor and 2 GB of memory. The AMBA example was moreover 
verified with different configurations on the number of masters (M) and slaves (S). 
Both examples were checked for the same two properties: no deadlock and that sent 
messages will arrive at their destinations.

Tables 18.1 and 18.2 present the verification times in seconds for the respective 
example. The tables moreover indicate the sizes of the TSEREs, which define the 
channels/transactors, as the number of terms and operators in the expression. The 
size of the entire verified PRES+ model is indicated by the number of transitions. 
These numbers only give a hint to the size of the examples and are not directly 
related to verification time. These results indicate the reasonableness of the 
proposed approach.

Table 18.1 Results from the example given in Fig. 18.3

Abstraction level No deadlock Sent will arrive

High 0.12 s 0.13 s
Low 0.06 s 0.09 s
Sender high – receiver low 0.11 s 0.06 s
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18.7 Conclusions

This chapter has presented an approach to generate transactors for real-time 
embedded systems, suitable for formal verification. The approach assumes a 
design where components communicate over channels, and that those channels 
capture all the characteristics of the communication. During the development, 
more and more components are refined leading to a model with mixed abstraction 
levels. In such models, the components cannot directly communicate due to 
 protocol discrepancies. In order to overcome these discrepancies, the channels 
interfacing components of different abstraction levels are replaced with transac-
tors. The behaviour of the transactors, i.e. the mapping of requests between 
abstraction levels, is described using TSEREs, which are automatically converted 
into the design representation used, PRES+. The resulting PRES+ model can then 
be analysed by a formal  verification tool.
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Chapter 19
A Case-Study in Property-Based Synthesis: 
Generating a Cache Controller from 
a Property-Set

Martin Schickel, Martin Oberkönig, Martin Schweikert, and Hans Eveking

Abstract Property-based synthesis has become a more prominent topic during 
the last years, being used in multiple areas like, e.g. formal verification and design 
automation. We will show how a property-based formal specification of a cache 
controller for a MIPS core can be used to automatically generate a functional 
implementation of that controller and how additional performance information 
about the complete system can be gained from doing so.

Keywords Property Based Design, Synthesis, Formal Verification, Cando-Objects

19.1 Introduction

The integration of design and verification effort has strongly improved during the 
last decade. Many EDA companies require their designers to include assertions into 
the hardware descriptions – a technique known as assertion-based design (ABD). 
Also, formal specifications, consisting of properties and assertions, are no longer 
only developed during the verification of a design, but also before and during its 
creation. Looking at this development, the obvious question is whether those for-
mal specifications used to verify designs can also be used to automatically generate 
hardware implementing the properties, thereby assuring a golden model which is 
correct by construction.

In the last years, some significant progress has been made in this area, enabling 
the automatic generation of prototype models from ever larger and more complex 
sets of properties. In using this approach, we can assure that a design verified using 
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a complete set of properties will be working exactly as the golden model generated 
from them, thereby formally relating the until now unrelated specification lan-
guages for models and verification.

In the following sections we will discuss the results of our experiments with a 
set of properties describing the functionality of a cache controller for a MIPS. 
Using these properties we wanted to reach two different goals:

Firstly, we wanted to know whether it was possible to generate a functioning 
simulation model of the cache controller and simulate it together with a MIPS core. 
Secondly, we wanted to see whether we would be able to derive information about 
the behavior of a system consisting of a MIPS core and a cache controller adhering 
to the property-set we had.

We used the CandoGen-tool [1] from Darmstadt University described, e.g. in 
[2] by Schickel et al. This tool is capable of generating VHDL-descriptions of so-
called Cando-Objects from sets of finite properties written in PSL [3, 4] or ITL 
[5]. These Cando-Objects are in essence black-boxed designs whose behavior is 
restricted by the properties they were generated from (hence their name: “Can do 
anything not disallowed”).

However, there have been other efforts to automatically synthesize executable 
hardware from properties: the ProSyd project and BlueSpec.

The ProSyd project was founded to research possible improvements in property-
based system design. One of the deliverables was a tool capable of synthesizing 
functioning hardware from arbitrary PSL properties. The tool first constructs a 
finite state machine from the properties, and then translates the machine into a 
hardware description language. While the results are very good when the properties 
only describe a system’s control path, the used methods’ complexity is unsuitable 
for the generation of data paths [6]. Since our properties include the data path, this 
tool is unsuitable for us.

BlueSpec is a company founded by Arvind Mithal from MIT. It utilizes the 
patented term-rewriting-system [7] to translate properties written in  BlueSpec-
SystemVerilog into functioning hardware. This method is known to be highly 
 efficient and often produces results better than human designers, but it requires the 
user to write properties in a different style than that used when writing verification 
properties. Therefore verification properties cannot be used for synthesis using 
this method. Since our properties were verification properties written in another 
language (i.e. PSL and ITL), this tool was also unsuitable.

19.2 The Cache Controller Properties

For our experiment we had obtained a MIPS core from opencores.org [8] and a set 
of properties describing the functionality of a simple cache controller, which had to 
be transparent in order to use the non-modified MIPS design. The set of cache 
properties describes a fully associative cache model (i.e. the definition of cache-hit
was basically ‘any cache-cell has valid data for a given address’). A least recently 
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used (LRU) policy was specified as well as a write-through technique. The size of 
the cache was determined to be eight cache lines of eight 32 bit-instructions (8 × 
256 bit), but could not only be used to cache instructions, but also to cache data 
needed during the pipeline’s execution step.

The properties for the cache can be categorized in five functional groups:

● Manager &- Cacheline validity correct?
● WriteData &- Write Instructions handled correctly?
● Replacement &- LRU algorithm working correctly?
● Instruction &- Read Instruction handled correctly?
● Memory &- Read Data handled correctly?

One example property is illustrated in Fig. 19.1. It describes the reset behavior 
of the memory group. It is written in VHDL-flavored ITL.

19.3 Experimental Results

All the properties could be transformed into VHDL descriptions of a working 
 circuit model incorporating all the described functionality. The transformation 
runtimes are listed in Table 19.1.

The time spent on the properties in the manager group was fairly long. This can 
be explained by CandoGen’s current internal use of BDDs which may become 
rather complex when the number of variables grows larger than 300 as is the case 
when checking whether a cache-hit has occurred. This is due to the BDD-explosion 
which occurs prominently when shift- and multiplication operations are concerned. 
The effects might be countered by using AIGs [9] to replace or complement the 
BDD-representation of the circuits. A hybrid AIG/BDD-system might combine the 
strengths of both representation methods.

property reset is 
assume:  at t:   reset=’1’; 
prove:   at t+1: wait_for_mem=’0’; 
         at t+1: update_least_recent_mem=’0’; 
         at t+1: update_cache_info_mem=’0’; 
         at t+1: mem_req_read=’0’; 
end property; 

Table 19.1 Model generation data

Module #Props Lines of code Runtime (min)

Manager 4 93 321
WriteData 4 89 5
Replacement 5 135 2
Instruction 5 239 46
Memory 6 134 13

Fig. 19.1 Sample property
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The generated VHDL models could then be connected to form the complete 
cache controller and be simulated together with the MIPS core. To do so, the cache 
controller was connected to the core’s memory interface as shown in Fig. 19.2. The 
dotted lines mark the original connections.

The simulation of small precompiled and preloaded programs during the course 
of directed testing worked well and showed a full functionality of the cache, 
 reducing the average memory access latency.

The last step was the verification or formal deduction of system level properties. 
Since one of the most prominent properties of a cache is the acceleration of  memory 
accesses, we decided to write properties to examine the memory access speedup. 
On the original design, it can be proven, that any memory access has the same 
latency as was specified within the memory description.

When the cache controller is attached to the design, this property does not hold 
anymore. A counter-example shows that when consecutive areas of memory are 
addressed the memory access may be completed more quickly. By relaxing the 
property to allow for completion within a certain timeframe we can quickly deter-
mine the effect of the cache to be between −3 to +1 cycles latency. The latter results 
from the cache’s property to read complete cache lines, which may prove proble-
matic when memory accesses are sufficiently random. The proof of these properties 
was completed within negligible time (less than 1 min per property).

19.4 Conclusion

We have shown that it is possible to automatically generate hardware from proper-
ties and used the generated model during simulation and to prove system  properties. 
Future research will include synthesizability of complete processor cores from 
 verification properties.

Cache Register

Cache Controller

DataAccess

Bus Ctrl. InstrFetch

Fig. 19.2 Connection of controller to MIPS core
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