


Embedded System Design



Embedded System Design

Modeling, Synthesis and Verification

Daniel D. Gajski  • Samar Abdi
Andreas Gerstlauer  • Gunar Schirner



All rights reserved.

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written
  

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media, LLC 2009

Springer is part of Springer Science+Business Media (www.springer.com) 

ISBN 978-1-4419-0503-1 e-ISBN 978-1-4419-0504-8
DOI 10.1007/978-1-4419-0504-8

Library of Congress Control Number: 20099931042

2010, AIR Bldg.

Computer Engineering

1 University Station C0803

USA 

Daniel D. Gajski

University of California, Irvine
Center for Embedded Computer Systems

Irvine, CA 92697-2620
USA 
gajski@uci.edu

2010, AIR Bldg.
University of California, Irvine
Center for Embedded Computer Systems

Irvine, CA 92697-2620
USA 

Samar Abdi

sabdi@uci.edu

Andreas Gerstlauer

University of Texas at Austin

Department of Electrical & 

Austin, TX 78712

gerstl@ece.utexas.edu

2010, AIR Bldg.
University of California, Irvine
Center for Embedded Computer Systems

Irvine, CA 92697-2620
USA 

Gunar Schirner

hschirne@uci.edu



Preface

RATIONALE
In the last twenty five years, design technology, and the EDA industry in partic-
ular, have been very successful, enjoying an exceptional growth that has been
paralleled only by advances in semiconductor fabrication. Since the design
problems at the lower levels of abstraction became humanly intractable and
time consuming earlier then those at higher abstraction levels, researchers and
the industry alike were forced to devote their attention first to problems such
as circuit simulation, placement, routing and floorplanning. As these prob-
lems become more manageable, CAD tools for logic simulation and synthesis
were developed successfully and introduced into the design process. As de-
sign complexities have grown and time-to-market have shrunk drastically, both
industry and academia have begun to focus on levels of design that are even
higher then layout and logic. Since higher levels of abstraction reduce by an
order of magnitude the number of objects that a designer needs to consider, they
have allowed industry to design and manufacture complex application-oriented
integrated circuits in shorter periods of time.

Following in the footsteps of logic synthesis, register-transfer and high-level
synthesis have contributed to raising abstraction levels in the design method-
ology to the processor level. However, they are used for the design of a sin-
gle custom processor, an application-specific or communication component or
an interface component. These components, along with standard processors
and memories, are used as components in systems whose design methodol-
ogy requires even higher levels of abstraction: system level. A system-level
design focuses on the specification of the systems in terms of some models
of computations using some abstract data types, as well as the transformation
or refinement of that specification into a system platform consisting of a set
of processor-level components, including generation of custom software and
hardware components. To this point, however, in spite of the fact that sys-



vi EMBEDDED SYSTEM DESIGN:

tems have been manufactured for years, industry and academia have not been
sufficiently focused on developing and formalizing a system-level design tech-
nology and methodology, even though there was a clear need for it. This need
has been magnified by appearance of embedded systems, which can be used
anywhere and everywhere, in plains, trains, houses, humans, environment, and
manufacturing and in any possible infrastructure. They are application specific
and tightly constrained by different requirements emanating from the environ-
ment they operate in. Together with ever increasing complexities and market
pressures, this makes their design a tremendous challenge and the development
of a clear and well-defined system-level design technology unavoidable.

There are two reasons for emphasizing more abstract, system-level method-
ologies. The first is the fact that high-level abstractions are closer to a designer’s
usual way of reasoning. It would be difficult to imagine, for example, how a
designer could specify, model and communicate a system design by means of
a schematic or hundred thousand lines of VHDL or Verilog code. The more
complex the design, the more difficult it is for the designer to comprehend its
functionality when it is specified on register-transfer level of abstraction. On
the other hand, when a system is described with an application-oriented model
of computation as a set of processes that operate on abstract data types and
communicate results through abstract channels, the designer will find it much
easier to specify and verify proper functionality and to evaluate various imple-
mentations using different technologies. The second reason is that embedded
system are usually defined by the experts in application domain who understand
application very well, but have only basic knowledge of design technology and
practice. System-level design technology allows them to specify, explore and
verify their embedded system products without expert knowledge of system
engineering and manufacturing.

It must be acknowledged that research on system design did start many years
ago; at the time, however, it remained rather focused to specific domains and
communities. For example, the computer architecture community has consid-
ered ways of partitioning and mapping computations to different architectures,
such as hypercubes, multiprocessors, massively parallel or heterogeneous pro-
cessors. The software engineering community has been developing methods
for specifying and generating software code. The CAD community has focused
on system issues such as specification capture, languages, and modeling. How-
ever, simulation languages and models are not synthesizable or verifiable for
lack of proper design meaning and formalism. That resulted in proliferation
of models and modeling styles that are not useful beyond the modeler’s team.
By introduction of well-defined model semantics, and corresponding model
transformations for different design decision, it is possible to generate models
automatically. Such models are also synthesizable and verifiable. Furthermore,
model automation relieves designers from error-prone model coding and even



PREFACE vii

learning the modeling language. This approach is appealing to application ex-
perts since they need to know only the application and experiment with a set of
design decisions. Unfortunately, a universally accepted theoretical framework
and CAD environments that support system design methodologies based on
these concepts are not commercially available yet, although some experimental
versions demonstrated several orders of magnitude productivity gain. On the
other hand, embedded-system design-technology based on these concepts has
matured to the point that a book summarizing the basic ideas and results devel-
oped so far will help students and practitioners in embedded system design.

In this book, we have tried to include ideas and results from a wide variety
of sources and research projects. However, due to the relative youth of this
field, we may have overlooked certain interesting and useful projects; for this
we apologize in advance, and hope to hear about those projects so they may
be incorporated into future editions. Also, there are several important system-
level topics that, for various reasons, we have not been able to cover in detail
here, such as testing and design for test. Nevertheless, we believe that a book
on embedded system techniques and technology will help upgrade computer
science and engineering education toward system-level and toward application
oriented embedded systems, stimulate design automation community to move
beyond system level simulation and develop system-level synthesis and verifi-
cation tools and support the new emerging embedded application community
to become more innovative and self-sustaining.

AUDIENCE
This book is intended for four different groups within the embedded system
community. First, it should be an introductory book for application-product
designers and engineers in the field of mechanical, civil, bio-medical, electri-
cal, and environmental, energy, communication, entertainment and other ap-
plication fields. This book may help them understand and design embedded
systems in their application domain without an expert knowledge of system
design methods bellow system-level. Second, this book should also appeal to
system designers and system managers, who may be interested in embedded
system methodology, software-hardware co-design and design process man-
agement. They may use this book to create a new system level methodology or
to upgrade one existing in their company. Third, this book can also be used by
CAD-tool developers, who may want to use some of its concepts in existing or
future tools for specification capture, design exploration and system modeling,
synthesis and verification. Finally, since the book surveys the basic concepts
and principles of system-design techniques and methodologies, including soft-
ware and hardware, it could be valuable to advanced teachers and academic



viii EMBEDDED SYSTEM DESIGN:

programs that want to teach software and hardware concepts together instead
of in non-related courses. That is particularly needed in today’s embedded
systems where software and hardware are interchangeable. From this point,
the book would also be valuable for an advanced undergraduate or graduate
course targeting students who want to specialize in embedded system, design
automation and system design and engineering. Since the book covers multi-
ple aspects of system design, it would be very useful reference for any senior
project course in which students design a real prototype or for graduate project
for system-level tool development.

ORGANIZATION
This book has been organized into eight chapters that can be divided into four
parts. Chapter 1 and 2 present the basic issues in embedded system design
and discuss various system-design methodologies that can be used in capturing
system behavior and refining it into system implementation. Chapter 3 and 4
deal with different models of computations and system modeling at different
levels of abstraction as well as system synthesis from those models. Chapter 5,
6, and 7 deal with issues and possible solutions in synthesis and verification
of software and hardware component needed in a embedded system platform.
Finally, Chapter 8 reviews the key developments and selected current academic
and commercial tools in the field of system design, system software and system
hardware as well as case study of embedded system environments.

Given an understanding of the basic concepts defined in Chapter 1 and 2,
each chapter should be self-contained and can be read independently. We have
used the same writing style and organization in each chapter of the book. A
typical chapter includes an introductory example, defines the basic concepts, it
describes the main problems to be solved. It contains a description of several
possible solutions, methods or algorithms to the problems that have been posed,
and explains the advantages and disadvantages of each approach. Each chapter
also includes relationship to previously published work in the field and discusses
some open problems in each topic.

This book could be used in several different courses. One course would be
for application experts with only a basic knowledge of computers engineering.
It would emphasize application issues, system specification in application ori-
ented models of computation, system modeling and exploration as presented
in Chapter 1 - 4. The second course for embedded system designers would
emphasize system languages, specification capture, system synthesis and veri-
fication with emphasis on Chapter 3, Chapter 4, and Chapter 7. The third course
may emphasize system development with component synthesis and tools as de-
scribed in Chapter 5 - Chapter 8. In which ever it is used, though, we feel that



PREFACE ix

this book will help to fill the vacuum in computer science and engineering cur-
riculum where there is need and demand for emphasis on teaching embedded
system design techniques in addition to supporting lower levels of abstraction
dealing with circuit, logic and architecture design.

We hope that the material selection and the writing style will approach your
expectations; we welcome your suggestions and comments.

Daniel Gajski, Andreas Gerstlauer, Samar Abdi, Gunar Schirner



Acknowledgments

This book was in the making for many years: from concepts to methodologies
to experiments. Many generations of researchers at the Center for Embedded
Systems at UCI participated in finding and proving what works and what does
not. We would like to thank the members of the first generation that established
basic principles of embedded systems: Frank Vahid, Sanjiv Narayan, Jie Gong
and Smita Bakshi. We would also like to acknowledge the second generation
that brought us SpecC and System on Chip Environment: Jianwen Zhu, Rainer
Doemer, Lukai Cai, Haobo Yu, Sequin Zhao, Dongwan Shin, and Jerry Peng.
And the third generation that made Embedded System Environment available:
Lochi Yu, Hansu Cho, Yongyun Hwang, Ines Viskic. In addition, we would like
to acknowledge the NISC team: Mehrdad Reshadi, Bita Gorjiara and Jelena
Trajkovic for their high-level synthesis contributions and Pramod Chandraria
for his work on design drivers.

We would also like to thank Quoc-Viet Dang, who helped us with book
formatting, figure creation, generation, and without whom this book would not
be possible. We also want to thank our editors Matt Nelson and Brian Thill
who made the sentences readable and ideas flow without interruptions. We also
want to thank Simone Lacina from grafikdesign-lacina.de for an excellent and
artistic cover.

However, the highest credits go to Grace Wu and Melanie Kilian for making
our center work flawlessly while we were working and thinking about the book.

Last but not the least, we would like to thank Carl Harris from Springer
for encouragement and asking at every conference in the last 5 years the same
question: "When is the Orange book coming?"



Contents

Preface v
Acknowledgments xi
List of Figures xix
List of Tables xxv

1. INTRODUCTION 1
1.1 System-Design Challenges 1
1.2 Abstraction Levels 3

1.2.1 Y-Chart 3
1.2.2 Processor-Level Behavioral Model 5
1.2.3 Processor-level structural model 7
1.2.4 Processor-level synthesis 10
1.2.5 System-Level Behavioral Model 13
1.2.6 System Structural Model 14
1.2.7 System Synthesis 14

1.3 System Design Methodology 18
1.3.1 Missing semantics 20
1.3.2 Model Algebra 21

1.4 System-Level Models 23
1.5 Platform Design 27
1.6 System Design Tools 29
1.7 Summary 32

2. SYSTEM DESIGN METHODOLOGIES 35
2.1 Bottom-up Methodology 35
2.2 Top-down Methodology 37
2.3 Meet-in-the-middle Methodology 38



xiv EMBEDDED SYSTEM DESIGN:

2.4 Platform Methodology 40
2.5 FPGA Methodology 43
2.6 System-level Synthesis 44
2.7 Processor Synthesis 45
2.8 Summary 47

3. MODELING 49
3.1 Models of Computation 50

3.1.1 Process-Based Models 52
3.1.2 State-Based Models 58

3.2 System Design Languages 65
3.2.1 Netlists and Schematics 66
3.2.2 Hardware-Description Languages 66
3.2.3 System-Level Design Languages 68

3.3 System Modeling 68
3.3.1 Design Process 69
3.3.2 Abstraction Levels 71

3.4 Processor Modeling 72
3.4.1 Application Layer 73
3.4.2 Operating System Layer 75
3.4.3 Hardware Abstraction Layer 78
3.4.4 Hardware Layer 80

3.5 Communication Modeling 83
3.5.1 Application Layer 84
3.5.2 Presentation Layer 88
3.5.3 Session Layer 90
3.5.4 Network Layer 92
3.5.5 Transport Layer 93
3.5.6 Link Layer 94
3.5.7 Stream Layer 98
3.5.8 Media Access Layer 99
3.5.9 Protocol and Physical Layers 100

3.6 System Models 102
3.6.1 Specification Model 103
3.6.2 Network TLM 104
3.6.3 Protocol TLM 106
3.6.4 Bus Cycle-Accurate Model (BCAM) 107
3.6.5 Cycle-Accurate Model (CAM) 108



Contents xv

3.7 Summary 109

4. SYSTEM SYNTHESIS 113
4.1 System Design Trends 114
4.2 TLM Based Design 117
4.3 Automatic TLM Generation 120

4.3.1 Application Modeling 122
4.3.2 Platform Definition 123
4.3.3 Application to Platform Mapping 124
4.3.4 TLM Based Performance Estimation 126
4.3.5 TLM Semantics 130

4.4 Automatic Mapping 132
4.4.1 GSM Encoder Application 134
4.4.2 Application Profiling 135
4.4.3 Load Balancing Algorithm 138
4.4.4 Longest Processing Time Algorithm 142

4.5 Platform Synthesis 146
4.5.1 Component data models 147
4.5.2 Platform Generation Algorithm 148
4.5.3 Cycle Accurate Model Generation 151
4.5.4 Summary 152

5. SOFTWARE SYNTHESIS 155
5.1 Preliminaries 156

5.1.1 Target Languages for Embedded Systems 157
5.1.2 RTOS 159

5.2 Software Synthesis Overview 162
5.2.1 Example Input TLM 164
5.2.2 Target Architecture 166

5.3 Code Generation 167
5.4 Multi-Task Synthesis 173

5.4.1 RTOS-based Multi-Tasking 173
5.4.2 Interrupt-based Multi-Tasking 176

5.5 Internal Communication 181
5.6 External Communication 182

5.6.1 Data Formatting 183
5.6.2 Packetization 185
5.6.3 Synchronization 186
5.6.4 Media Access Control 191



xvi EMBEDDED SYSTEM DESIGN:

5.7 Startup Code 193
5.8 Binary Image Generation 194
5.9 Execution 195
5.10Summary 196

6. HARDWARE SYNTHESIS 199
6.1 RTL Architecture 201
6.2 Input Models 204

6.2.1 C-code specification 204
6.2.2 Control-Data Flow Graph specification 205
6.2.3 Finite State Machine with Data specification 207
6.2.4 RTL specification 208
6.2.5 HDL specification 209

6.3 Estimation and Optimization 211
6.4 Register Sharing 216
6.5 Functional Unit Sharing 220
6.6 Connection Sharing 224
6.7 Register Merging 227
6.8 Chaining and Multi-Cycling 229
6.9 Functional-Unit Pipelining 232
6.10Datapath Pipelining 235
6.11Control and Datapath Pipelining 237
6.12Scheduling 240

6.12.1RC scheduling 243
6.12.2TC scheduling 244

6.13Interface Synthesis 248
6.14Summary 253

7. VERIFICATION 255
7.1 Simulation Based Methods 257

7.1.1 Stimulus Optimization 260
7.1.2 Monitor Optimization 262
7.1.3 SpeedUp Techniques 263
7.1.4 Modeling Techniques 264

7.2 Formal Verification Methods 265
7.2.1 Logic Equivalence Checking 266
7.2.2 FSM Equivalence Checking 268



Contents xvii

7.2.3 Model Checking 270
7.2.4 Theorem Proving 273
7.2.5 Drawbacks of Formal Verification 275
7.2.6 Improvements to Formal Verification Methods 275
7.2.7 Semi-formal Methods: Symbolic Simulation 276

7.3 Comparative Analysis of Verification Methods 276
7.4 System Level Verification 278

7.4.1 Formal Modeling 280
7.4.2 Model Algebra 282
7.4.3 Verification by Correct Refinement 283

7.5 Summary 285

8. EMBEDDED DESIGN PRACTICE 287
8.1 System Level Design Tools 287

8.1.1 Academic Tools 289
8.1.2 Commercial Tools 296
8.1.3 Outlook 299

8.2 Embedded Software Design Tools 300
8.2.1 Academic Tools 301
8.2.2 Commercial Tools 303
8.2.3 Outlook 305

8.3 Hardware Design Tools 306
8.3.1 Academic Tools 308
8.3.2 Commercial Tools 314
8.3.3 Outlook 319

8.4 Case Study 319
8.4.1 Embedded System Environment 320
8.4.2 Design Driver: MP3 Decoder 324
8.4.3 Results 327

8.5 Summary 333

References 335

Index 349



List of Figures

1.1 Y-Chart 3
1.2 FSMD model 5
1.3 CDFG model 6
1.4 Instruction-set flow chart 8
1.5 Processor structural model 9
1.6 Processor synthesis 11
1.7 System behavioral model 13
1.8 System structural model 15
1.9 System synthesis 16
1.10 Evolution of design flow over the past 50 years 17
1.11 Missing semantics 20
1.12 Model equivalence 22
1.13 SER Methodology 23
1.14 System TLM 25
1.15 System CAM 26
1.16 Platform architecture 28
1.17 General system environment 29
1.18 System tools 31
2.1 Bottom-up methodology 36
2.2 Top-down methodology 37
2.3 Meet-in-the-middle methodology (option 1) 39
2.4 Meet-in-the-middle methodology (option 2) 40
2.5 Platform methodology 41
2.6 System methodology 42
2.7 FPGA methodology 43



xx List of Figures

2.8 System-level synthesis 44
2.9 Processor synthesis 46
3.1 Kahn Process Network (KPN) example 54
3.2 Synchronous Data Flow (SDF) example 56
3.3 Finite State Machine with Data (FSMD) example 60
3.4 Hierarchical, Concurrent Finite State Machine (HCFSM) example 61
3.5 Process State Machine (PSM) example 64
3.6 System design and modeling flow 69
3.7 Model granularities 71
3.8 Processor modeling layers 73
3.9 Application layer 74
3.10 Operating system layer 75
3.11 Operating system modeling 76
3.12 Task scheduling 77
3.13 Hardware abstraction layer 79
3.14 Interrupt scheduling 80
3.15 Hardware layer 81
3.16 Application layer synchronization 86
3.17 Application layer storage 87
3.18 Application layer channels 88
3.19 Presentation layer 89
3.20 Session layer 91
3.21 Network layer 92
3.22 Communication elements 93
3.23 Link layer 95
3.24 Link layer synchronization 96
3.24 Link layer synchronization (con’t) 97
3.25 Media access layer 99
3.26 Protocol layer 100
3.27 Physical layer 101
3.28 System models 102
3.29 Specification model 104
3.30 Network TLM 105
3.31 Protocol TLM 106
3.32 Bus Cycle-Accurate Model (BCAM) 107
3.33 Cycle-Accurate Model (CAM) 108



List of Figures xxi

3.34 Modeling results 110
4.1 A traditional board-based system design process. 114
4.2 A virtual platform based development environment. 115
4.3 A model based development flow of the future. 116
4.4 TLM based design flow. 117
4.5 Modeling layers for TLM. 118
4.6 System synthesis flow with given platform and mapping. 120
4.7 A simple application expressed in PSM model of computation. 122
4.8 A multicore platform specification. 123
4.9 Mapping from application model to platform. 124
4.10 Computation timing estimation. 125
4.11 Communication timing estimation. 128
4.12 Synchronization Modeling with Flags and Events. 128
4.13 Automatically Generated TLM from system specification. 131
4.14 System synthesis with fixed platform. 133
4.15 Application example: GSM Encoder 134
4.16 Application profiling steps. 135
4.17 Profiled statistics of GSM encoder. 137
4.18 Abstraction of profiled statistics into an application graph. 138
4.19 Creation of platform graph. 139
4.20 Flowchart of load balancing algorithm for mapping generation. 140
4.21 Platform graph with communication costs. 142
4.22 LPT cost function computation. 143
4.23 Flowchart of LPT algorithm for mapping generation. 145
4.24 System synthesis from application and constraints. 146
4.25 Flowchart of a greedy algorithm for platform generation. 149
4.26 Illustration of platform generation on a GSM Encoder example. 150
4.27 Cycle accurate model generation from TLM. 152
5.1 Synthesis overview 155
5.2 Software synthesis flow 163
5.3 Input system TLM example 164
5.4 Generic target architecture 166
5.5 Task specification 169
5.6 Software execution stack for RTOS-based multi-tasking 173
5.7 Multi-task example model 175
5.8 Software execution stack for interrupt-based multi-tasking 177



xxii List of Figures

5.9 Interrupt-based multi-tasking example 178
5.10 Internal communication 181
5.11 External communication 183
5.12 Marshalling example 184
5.13 Packetization 185
5.14 Chain for interrupt-based synchronization 187
5.15 Events in interrupt-based synchronization 188
5.16 Polling-based synchronization 190
5.17 Events in polling-based synchronization 190
5.18 Transferring a packet using bus primitives 191
5.19 Binary image generation 195
5.20 ISS-based Virtual platform 196
6.1 HW synthesis design flow 199
6.2 High-level block diagram 201
6.3 RTL diagram with FSM controller 202
6.4 RTL diagram with programmable controller 203
6.5 CDFG for Ones counter 206
6.6 FSMD specification 207
6.7 RTL Specification 208
6.8 Square-root algorithm (SRA) 212
6.9 Gain in register sharing 217
6.10 General partitioning algorithm 218
6.11 Variable merging for SRA example 219
6.12 SRA datapath with register sharing 220
6.13 Gain in functional unit sharing 221
6.14 Functional unit merging for SRA 222
6.15 SRA design after register and unit merging 224
6.16 SRA Datapath with labeled connections 225
6.17 Connection merging for SRA 227
6.18 SRA Datapath after connection merging 227
6.19 Register merging 228
6.20 Datapath schematic after register merging 229
6.21 Modified FSMD models for SRA algorithm 230
6.22 Datapath with chained functional units 231
6.23 SRA datapath with chained and multi-cycle functional units 232
6.24 Functional unit pipelining 234



List of Figures xxiii

6.25 Datapath pipelining 236
6.26 Control and datapath pipelining 239
6.27 C and CDFG 241
6.28 ASAP, ALAP, and RC schedules for SRA 243
6.29 RC algorithm 245
6.30 TC algorithm 245
6.31 ASAP, ALAP, and RC schedules for SRA 246
6.32 Distribution graphs for TC scheduling of the SRA example 247
6.33 HW Synthesis timing constraints 249
6.34 FSMD for MAC driver 250
6.35 Custom HW component with bus interface 251
6.36 A typical bus protocol 252
6.37 Transducer structure 253
7.1 A typical simulation environment 257
7.2 A test case that covers only part of the design. 261
7.3 Coverage analysis results in a more useful test case. 262
7.4 Graphical visualization of the design helps debugging. 263
7.5 A typical emulation setup. 263
7.6 Logic equivalence checking by matching of cones. 266
7.7 DeMorgan’s law illustrated by ROBDD equivalence. 267
7.8 Equivalence checking of sequential design using product FSMs. 269
7.9 Product FSM for with a reachable error state. 270
7.10 A typical model checking scenario. 270
7.11 A computation tree derived from a state transition diagram. 271
7.12 Various temporal properties shown on the computation tree. 272
7.13 Proof generation process using a theorem prover. 273
7.14 Associativity of parallel behavior composition. 273
7.15 Basic laws for a theory of system models. 274
7.16 Symbolic simulation of Boolean circuits. 277
7.17 System level models. 279
7.18 A simple hierarchical specification model. 280
7.19 Behavior partitioning and the equivalence of models. 280
7.20 Equivalence of models resulting from channel mapping. 281
7.21 Model refinement using functionality preserving transformations.284
8.1 Metropolis framework 289
8.2 SystemCoDesigner tool flow 290



xxiv List of Figures

8.3 Daedalus tool flow 292
8.4 PeaCE tool flow 293
8.5 SCE tool flow 295
8.6 NISC technology tools 310
8.7 The SPARK Synthesis Methodology 311
8.8 xPilot Synthesis System 313
8.9 ESE tool flow 320
8.10 System level design with ESE front end 321
8.11 SW-HW synthesis with ESE back end 323
8.12 MP3 decoder application model 324
8.13 MP3 decoder platform SW+4 326
8.14 Execution speed and accuracy trade-offs for embedded sys-

tem models 328
8.15 MP3 manual design quality 329
8.16 Automatically generated MP3 design quality 330
8.17 Development productivity gains from model automation 331
8.18 Validation productivity gain from using TLM vs. CAM 332



List of Tables

3.1 Processor models 82
3.2 Communication layers 84
4.1 A sample capacity table of platform components. 147
6.1 Input logic table 209
6.2 Output logic table 209
6.3 Variable usage 213
6.4 Operation usage 214
6.5 SRA connectivity 215
6.6 Connection usage table 226
7.1 A comparison of various verification schemes. 278



Chapter 1

INTRODUCTION

In this chapter we will look at the emergence of system design theory, prac-
tice and tools. We will first look into the needs of system-level design and the
driving force behind its emergence: increase in design complexity and widen-
ing of productivity gap. In order to find an answer to these challenges and find a
systematic approach for system design, we must first define design-abstraction
levels; this will allow us to talk about design-flow needs on processor and sys-
tems levels of abstraction. An efficient design-flow will employ clear and clean
semantics in its languages and modeling, which is also, required by synthesis
and verification tools. We will then analyze the system-level design flow and
define necessary models, define each model separately and its use in the sys-
tem design flow. We will also discuss the components and tools necessary for
system design. We will finish with prediction on future directions in system
design and the prospects for system design practice and tools.

1.1 SYSTEM-DESIGN CHALLENGES
Driven by ever-increasing market demands for new applications and by tech-

nological advances that allow designers to put complete many-processor sys-
tems on a single chip (MPSoCs), system complexities are growing at an almost
exponential rate. Together with the challenges inherent in the embedded-system
design process with its very tight constraints and market pressures, not the least
of which is reliability, we are finding that traditional design methods, in which
systems are designed directly at the low hardware or software levels, are fast
becoming infeasible. This leads us to the well-known productivity gap gener-
ated by the disparity between the rapid paces at which design complexity has
increased in comparison to that of design productivity [99].

© Springer Science + Business Media, LLC 2009 

1D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,
DOI: 10.1007/978-1-4419-0504-8_1,



2 Introduction

One of the commonly-accepted solutions for closing the productivity gap as
proposed by all major semiconductor roadmaps is to raise the level of abstrac-
tion in the design process. In order to achieve the acceptable productivity gains
and to bridge the semantic gap between higher abstraction levels and low-level
implementations, the goal now is to automate the system-design process as
much as possible. We must apply design-automation techniques for modeling,
simulation, synthesis, and verification to the system-design process. However,
automation is not easy if a system-abstraction level is not well-defined, if com-
ponents on any particular abstraction level are not well-known, if system-design
languages do not have clear semantics, or if the design rules and modeling styles
are not clear and simple. In the following chapters, we will show how to answer
for those challenges through sound system-design theories, practices, and tools.

On the modeling and simulation side, several approaches exist for the vir-
tual prototyping of complete systems. These approaches are typically based
on some variant of C-based description, such as C-based System-Level De-
sign Languages (SLDLs) like SystemC [150] or SpecC [171]. These virtual
prototypes can be assembled at various levels of detail and abstraction.

The most common approach in the system design of a many-processor
platform is to perform co-simulation of software (SW) and hardware (HW)
components. Both standard and application-specific processors are simulated
on nstruction-set level with an Instruction Set Simulator (ISS). The custom
HW components or Intellectual Property (IP) components are modeled with a
timed functional model and integrated together with the processor models into
a Transaction-Level Model (TLM) representing the platform communication
between components.

In algorithmic-level approaches in designing MPSoCs, we use domain-
specific application modeling, which is based on more formalized models of
computation, such as process networks or process state machines. These mod-
eling approaches are often supported by graphical capture of models in terms
of block diagrams, which hide the details of any underlying internal language.
On the other hand, the code can be generated in a specific target language such
as C by model-based-design tools from such graphical input.

Such simulation-centric approaches enable the horizontal integration of var-
ious components in different application domains. However, approaches for
the vertical integration for system synthesis and verification across component
or domain boundaries are limited. At best, there are some solutions for the C-
based synthesis of single custom hardware units. But no commercial solutions
for synthesis and verification at the system level, across hardware and software
boundaries, currently exist.

In order to understand system-level possibilities more fully, however, we
must step back and explain the different abstraction levels involved in system
design.



Abstraction Levels 3

Behavior
(F u n c t i o n )

S t ru c t u re
(N e t l i s t )

P hy s ic al
(L a y o u t )

Logic
C ir cu it

P r oce s s or
S y s t e m

F( . . . )

F( . . . )

F( . . . )

F( . . . )

FIGURE 1.1 Y-Chart

1.2 ABSTRACTION LEVELS
The growing capabilities of silicon technology over the previous decades has

forced design methodologies and tools to move to higher levels of abstraction.
In order to explain the relationship between different design methodologies on
different abstraction levels, we will use the Y-Chart, which was developed in
1983 in order to explain differences between different design tools and different
design methodologies in which these tools were used [60].

1.2.1 Y-CHART
The Y-Chart makes the assumption that each design, no matter how complex,

can be modeled in three basic ways, which emphasize different properties of
the same design. As shown in Figure 1.1, the Y-Chart has three axes repre-
senting three aspects of every design: behavior (sometimes called functionality
or specification), design structure (also called netlist or a block diagram), and
physical design (usually called layout or board design). Behavior represents a
design as a black box and describes its outputs in terms of its inputs over time.
The black-box behavior does not indicate in any way how to build the black
box or what its structure is. That is given on the structure axis, where the black
box is represented as a set of components and connections. Naturally, the be-
havior of the black box can be derived from its component behaviors and their
connectivity. However, such a derived behavior may be difficult to understand
since it is obscured by the details of each component and connection. Physical



4 Introduction

design adds dimensionality to the structure. It specifies the size (height and
width) of each component, the position of each component, as well as each port
and connection on the silicon chip, printed circuit board, or any other container.

The Y-Chart can also represent design on different abstraction levels, which
are identified by concentric circles around the origin. Typically, four levels are
used: circuit, logic, processor, and system levels. The name of each abstraction
level is derived from the types of the components generated on that abstraction
level. Thus the components generated on the circuit level are standard cells
which consist of N-type or P-type transistors, while on the logic level we use
logic gates and flip-flops to generate register-transfer components. These are
represented by storage components such as registers and register files and by
functional units such as ALUs and multipliers. On the processor level, we gen-
erate standard and custom processors, or special-hardware components such
as memory controllers, arbiters, bridges, routers, and various interface compo-
nents. On the system level, we design standard or embedded systems consisting
of processors, memories, buses, and other processor components.

On each abstraction level, we also need a database of components to be used in
building the structure for a given behavior. This process of converting the given
behavior into a structure on each abstraction level is called synthesis. Once a
structure is defined and verified, we can proceed to the next lower abstraction
level by further synthesizing each of the components in the structure. On the
other hand, if each component in the database is given with its structure and
physical dimensions, we can proceed with physical design, which consists of
floorplanning, placement, and routing on the chip or PC board. Thus each
component in the database may have up to three different models representing
three different axes in the Y-Chart: behavior or function; structure, which
contains the components from the lower level of abstraction; and the physical
layout of its structure.

Fortunately, all three models for each component are not typically needed
most of the time. Most of the methodologies presently in use perform design or
synthesis on the system and processor levels, where every system component
except standard processors and memories is synthesized to the logic level, before
the physical design is performed on the logic level. Therefore, for the top three
abstraction levels, we only need a functional model of each component with
estimates of the key metrics such as performance, delay, power, cost, size,
reliability, testability, etc. Once the design is represented in terms of logic
gates and flip-flops, we can use standard cells for each logic component and
perform layout placement and routing. On the other hand, some components
on the processor-and-system levels may be obtained as IPs and not synthesized.
Therefore, their structure and physical design are known, at least partially, on
the level higher than logic level. In that case, the physical design then may
contain components of different sizes and from different levels of abstraction.



Abstraction Levels 5

In order to introduce system-level design methodologies we must look first
at the design process on each of processor and system abstraction levels.

FSM

s3

x =  |a|;  y  =  |b| x =  (a *  b) +  z

s1 s2

z =  m ax(x,y)

FIGURE 1.2 FSMD model

1.2.2 PROCESSOR-LEVEL BEHAVIORAL MODEL
We design components of different granularity on each abstraction level.

On the processor level, we define and design computational components or
processing elements (PEs). Each PE can be a dedicated or custom component
that computes some specific functions, or it can be a general or standard PE that
can compute any function specified in some standard programming language.
The functionality or behavior of each PE can be specified in several different
ways.

In the early days of computers, their functionality was specified with mathe-
matical expressions or formulas. The functionality of a PE can be also specified
with an algorithm in some programming language, or with a flow chart in graph-
ical form. Some simple control functionality, such as controllers or component
interfaces, can be specified using the dominant model of computer science,
called a Finite State Machine (FSM). A FSM is defined with a set of states
and a set of transitions from state to state, which are taken when some input
variables reach the required value. Furthermore, each FSM generates some val-
ues for output variables in each state or during each transition. A FSM model
can be made clock-accurate if each state is considered to take one clock cycle.
In general, a FSM model is useful for computations requiring several hundred
states at most.

The original FSM model uses binary variables for inputs and outputs. This
FSM model can be extended using standard integer or floating-point variables
and computing their values in each state or during each transition by a set of
arithmetic expressions or programming statements. This way we can extend



6 Introduction

the FSM model to the model of a Finite State Machine with Data (FSMD)
[61]. For example, Figure 1.2 shows a FSMD with three states, S1, S2, and
S3, and with arcs representing state changes under different inputs. Each state
executes a computation represented by one or more arithmetic expressions or
programming statements. For example, in state S1, the FSMD in Figure 1.2
computes two functions, x = |a| and y = |b|, and in state S3 it computes the
function z = max (x, y). A FSMD model is usually not clock-accurate since
computation in each state may take more than one clock cycle.

IF

IF

B B 1

B B 2 B B 3

Y

YN

N

FIGURE 1.3 CDFG model

As mentioned above, a FSMD model is not adequate to represent the com-
putation expressed by standard programming languages such as C. In general,
programming languages consist of if statements, loops, and expressions. An
if statement has two parts, then and else, in which then is executed if the
conditional expression given in the if statement is true, otherwise the else part
is executed. In each of the then or else parts, the if statement computes a set
of expressions called a Basic Block (BB). The if statement can also be used in
the loop construct to represent loop iterations, which are executed as long as the
condition in the if statement is true. Therefore, any programming-language
code can be represented by a Control-Data Flow Graph (CDFG) consisting of
if diamonds, which represent if conditions, and BB blocks, which represent
computation [151]. Figure 1.3 shows such a CDFG, this one representing a loop
with an if statement inside the loop iteration. In each iteration, the loop con-



Abstraction Levels 7

struct executes BB1 and BB2 or BB3 depending on the value of the if statement.
At the end, the loop is exited if all iterations are executed.

A CDFG shows explicitly the control dependencies between loop statements,
if statements, and BBs, as well as the data dependences among operations
inside a BB. It can be converted to a FSMD by assigning a state to each BB
and one state for the computation of each if conditional. Note that each state
in such a FSMD may need several clock cycles to execute its assigned BB
or if condition. Therefore, a CDFG can be considersd to be a FSMD with
superstates, which require multiple clock cycles to execute.

A standard or custom PE can be also described with an Instruction Set
(IS) flow chart that describes the fetch, decode, and execute stages of each
instruction. A partial IS flow chart is given in Figure 1.4. The fetch stage
consists of fetching the new instruction into the Instruction Register (IR)
(IR←Mem[PC]) and incrementing the Program Counter (PC ← PC + 1).
In the decode stage, we decode the type and mode of the fetched instruction. In
Figure 1.4, there are four types of instructions: register, memory, branch, and
miscellaneous instructions. In the case of memory instructions, there are four
modes: immediate, direct, relative, and indirect. Each mode contains load and
store instructions. Each instruction execution is in turn described by a BB, which
may take several clock cycles to execute, depending on the processor imple-
mentation structure. For example, the memory-store instruction with indirect
addressing computes an Effective Address (EA) by fetching the next instruction
pointed to by the PC and uses it to fetch the address of the memory location
in which the data will be stored (EA ← Mem[Mem[PC]]). Then it stores
the data from the Register File (RF) indicated by the Src1 part of the instruc-
tion (RF [Src1]) into the memory at location EA (Mem[EA] ← RF [Src1]).
Finally, it increments the PC (PC ← PC + 1) and goes to the fetch phase.

The above-described IS flow chart can be converted to a FSMD, where each
of the fetch, decode, and execute stages may need one or more states or clock
cycles to execute.

In addition to FSMD, CDFG, and IS flow-chart models, other representations
can be used to specify the behavior of a PE. They provide differing types of the
information needed for the synthesis of PEs. The guideline for choosing one
over the other is that more detailed information makes PE synthesis easier.

1.2.3 PROCESSOR-LEVEL STRUCTURAL MODEL
A processor’s behavioral model, whether defined by a program in C, CDFG,

FSMD, or by an IS, can be implemented with a set of register-transfer compo-
nents; such a structural model usually consists of a controller and a datapath.
A datapath consists of a set of storage elements (such as registers, register files,
and memories), a set of functional units (such as ALUs, multipliers, shifters, and



8 Introduction

IR ← M e m [P C ]
P C ← P C +I

3     2    1    0
T y p e

Re g i s t e r  I n s t r u c t i o n s
M e m o r y  I n s t r u c t i o n s

M o d e  
3     2    1    0

RF [D e s t ] ← M e m [P C ]
P C  ← P C +1L/S

1         0

B r a n c h  In s t r u c t i o n s
M i s c .  In s t r u c t i o n s

Lo a d  D i r e c t  

L/S
1         0

E A  ← M e m [P C ]
RF [D e s t ] ← M e m [E A ]

P C  ← P C +1

E A  ← M e m [P C ]
M e m [E A ] ← RF [Sr c 1]

P C  ← P C +1

Lo a d  

St o r e  
L/S

1         0

Re l a t i v e  

E A  ← M e m [P C ] + RF [Sr c 2]
RF [D e s t ] ← M e m [E A ]

P C  ← P C +1
Lo a d  

St o r e  A R ← M e m [P C ] + RF [Sr c 2]
M e m [A R] ← RF [Sr c 1]

P C  ← P C +1
L/S

1         0

In d i r e c t  

E A  ← M e m [M e m [P C ]] 
RF [D e s t ] ← M e m [E A ]

P C  ← P C +1
Lo a d  

St o r e  E A  ← M e m [M e m [P C ]] 
M e m [E A ] ← RF [Sr c 1]

P C  ← P C +1

Im m e d i a t e  

FIGURE 1.4 Instruction-set flow chart

other custom functional units), and a set of busses. All of these register-transfer
components may be allocated in different quantities and types and connected
arbitrarily through busses or a network-on-chip (NOC). Each component may
take one or more clock cycles to execute, each component may be pipelined,
and each component may have input or output latches or registers. In addition,



Abstraction Levels 9

B1
B2

A L U M e m o r y

R F  /  S c r a t c h  p a d

M U L

B3

A G

PC

CW

Status

...

c o n s t

o f f s e t

s t a t u s

a d d r e s s

C M e m

FIGURE 1.5 Processor structural model

the entire datapath can be pipelined in several stages in addition to compo-
nents being pipelined by themselves. The choice of components and datapath
structure depends on the metrics to be optimized for particular implementation.

An example of such a datapath is shown in Figure 1.5. It consists of a set
of registers and a Register file (RF) or a Scratchpad memory. These storage
elements are connected to the functional units ALU and MUL, and to a Memory
by three busses, B1, B2, and B3. Each of these units has input and output
registers. An ALU can execute an arithmetic or logic operation in one clock
cycle from its input to its output register, while a two-stage pipelined multiplier
MUL needs three clock cycles from its input to its output register. On the other
hand, Memory is not pipelined and requires two clock cycles from its address
register to the output data register. In addition to pipelined functional units such
as the MUL, the whole datapath itself is pipelined. In such pipelined datapath
each operation may take several clock cycles to execute. For example, it takes
three clock cycles from the RF through the ALU input register, the ALU output
register, and back to the RF. On the other hand, it takes five clock cycles through
the MUL, since the MUL is pipelined itself. In order to speed up the execution
for complex expressions such as a(b+ c), the datapath allows (b+ c) to be sent
directly to the MUL through a data-forwarding path without going back to RF.
In Figure 1.5, such a path is shown going from the ALU output into the left
input register of the MUL. At the same time, this path can also be implemented
by a connection from the ALU output register to the left MUL input. In this
case, we need a short bus, usually implemented with a selector, to select the
ALU output register or the MUL input register as the left inputs to the MUL. A
similar selector is also shown for the Memory-address input, which may come
from the address register or the MUL output register.

The controller defines the state of the processor clock cycle per clock cycle
and issues the control signals for the datapath accordingly. The structure of the



10 Introduction

controller and its implementation depends on whether the processor is a stan-
dard processor (such as Xeon, ARM, or a DSP) or a custom-design processor
or Intellectual Property (IP) function specifically synthesized for a particular
application and platform. In the case of a standard processor, the controller is
programmable with a program counter (PC), program memory (PMem), and an
address generator (AG) that defines the next address to be loaded into the PC.
On each clock cycle, an instruction is fetched from the program memory at the
address specified by the PC, loaded into an instruction register (IR), decoded,
and then the decoded control signals are applied to the datapath for instruction
execution. The results of the conditional evaluation, called status signals, are
applied to the AG for selection of the next instruction. Like the datapath, the
controller can be pipelined by introducing a status register and pipelining in-
structions from the PC to the IR, through the Datapath and status register and
then back to the PC.

In the case of specific IPs or IF components, the controller could be imple-
mented with hardwired logic gates. In terms of digital-design terminology, the
PC is then called a State register, the program memory is called output logic,
and the AG is called next-state logic.

In the case of specific custom processors, the controller can be implemented
with programmability concepts typical of standard processors, and control sig-
nal generation of IP implementations. This is shown in Figure 1.5, in which
program memory is replaced with control memory (CMem) and instruction
register with control word register (CW). CMem stores decoded control words
instead of instructions. Figure 1.5 also illustrates how the whole processor is
pipelined, including the control and datapath pipelining. On each clock cycle,
one control word is fetched from CMem and stored in the CW register. Then
the data in the RF are forwarded to a functional unit input register in the next
clock cycle, and after one or more clock cycles, the result is stored in the output
register and/or in the status register. Finally, in the next clock cycle, the value in
the status register is used to select the new address for the PC, while the result
from the output register is stored back into the RF or forwarded to another input
register.

Selecting components and the structure of a PE and defining register-transfer
operations performed in each clock cycle is the task of processor-level synthesis.

1.2.4 PROCESSOR-LEVEL SYNTHESIS
Synthesis of standard processors starts with the instruction set (IS) of the

processor. In order to achieve the highest processor performance this process
is done manually since standard processors try to achieve the highest perfor-
mance and minimal power consumption at minimal cost. The second reason for
synthesizing processors manually is to minimize the design size and therefore



Abstraction Levels 11

Processor model

Component +  connection selection
Cy cle-a ccu r a te sch ed u ling

V a r ia b le b ind ing
O per a tion B ind ing

B u s B ind ing
Contr oller  S y nth esis

P r ocessor

Processor st ru ct u re

M od el R ef inement

B1
B2

A L U M e m o r y

R F  /  S c r a t c h  p a d

M U L

B3

A G

PC

CW

Status

...

c o n s t

o f f s e t
s t a t u s
a d d r e s s

C M e m
IF

IF

B B 1

B B 2 B B 3

Y

YN

N

FIGURE 1.6 Processor synthesis

fabrication cost for high-volume production. In contrast, the design or synthesis
of a custom processor or a custom IP starts with the C code of an algorithm,
which is usually converted to the corresponding CDFG or FSMD model be-
fore synthesis and ends up with a custom processor containing the number and
type of components connected as required by the given behavioral model. This
generation is usually called high-level synthesis or register-transfer synthesis
or occasionally just processor synthesis. It consists of five individual tasks.

(a) Allocation of components and connections. In processor synthesis, the
components are selected from the register-transfer library. It is impor-
tant to select at least one component for each operation in the behavioral
model. Also, it may be necessary to select components that implement some
frequently-used functions in the behavioral model. The library must also
include a component’s characteristics and its metrics, which will be used
by the other synthesis tasks. The connectivity among components can be
added after binding and scheduling tasks; that way we end up with minimal
connectivity. However, we do not know the exact connectivity delays during
binding and scheduling. Therefore, it is convenient to also add connections,
buses, or a network on a chip, which will allow us to estimate more precisely
all the delays.



12 Introduction

(b) Cycle-accurate scheduling. All operations required in the behavioral
model must be scheduled into cycles. In other words, for each operation,
such as a = b op c, the variables b and c must be read from their storage
components and brought to the input of a functional unit that can execute
operation op, and after operation op is executed in the functional unit the
result must be brought to its storage destination. Furthermore, each BB
in the given behavioral model may be scheduled into several clock cycles
where some of the operations can even be scheduled in the same clock cycle
if the datapath structure allows such parallelism. Note that each operation
by itself may take several clock cycles in a pipelined datapath.

(c) Binding of variables, operations and transfers. Each variable must be
bound to a storage unit. In addition, several variables with non-overlapping
life-times can be bound to the same storage units to save on storage cost.
Operations in the behavioral model must be bound to one of the functional
units capable of executing this operation. If there are several units with such
capability, the binding algorithm must optimize the selection. Storage and
functional unit binding also depends on connectivity binding, since for every
variable and every operation in each clock cycle there must be a connection
between the storage component and the functional unit and back to a storage
component to which variables and operation are bound.

(d) Synthesis of controller. The controller can be programmable with a read-
write program memory or just a read-only memory for fixed-functionality
IPs. The controller can be also implemented with logic gates for small
control functions. As mentioned earlier, the program memory can store
instructions or just control words which may be longer then instructions but
require no decoding.

(e) Model refinement. A new processor model can be generated in several
different styles with complete, partial, or no binding. For example, the
statement a = b + c executing in state (n) can be written:

(1) without any binding:
a = b + c;

(2) with storage binding of a to RF(1), b to RF(3), and c to RF(4):
RF(1) = RF(3) + RF(4);

(3) with storage and functional unit binding with + bound to ALU1:
RF(1) = ALU1(+,RF(3),RF(4));

(4) or with storage, functional unit, and connectivity binding:
Bus1 = RF(3); Bus2 = RF(4); Bus3 = ALU1

(+,Bus1,Bus2); RF(1) = Bus3;



Abstraction Levels 13

A structural model can be also written as a netlist of register-transfer compo-
nents, in which each component is defined by its behavior from the component
library.

Tasks (a), (b), and (c) can be performed together or in any specific order, but
they are interdependent. If they are performed together, the synthesis algorithm
becomes very complex and unpredictable. One strategy is to perform allocation
first, followed by binding and then scheduling. Another possibility is to do a
complete allocation first, followed by storage binding, while combining unit
and connectivity binding with scheduling.

Any of the above tasks can be performed manually or automatically. If they
are all done automatically, we call the above process processor-level or high-
level synthesis. On the other hand, if (a) to (d) are performed manually and
only (e) is done automatically, we call the process model refinement. Obviously,
many other strategies are possible, as demonstrated by the number of design-
automation tools available that perform some of the above tasks automatically
and leave the rest for the designer to complete.

c1

P5

P3

P4

dP1

P2

d

c2

FIGURE 1.7 System behavioral model

1.2.5 SYSTEM-LEVEL BEHAVIORAL MODEL
Processor-level behavioral models such as the CDFG can be used for speci-

fying a single processor, but will not suffice for describing a complete system
that consist of many communicating processors. A system-level model must
represent multiple processes running in parallel in SW and HW. The easiest
way to do this is to use a model which retains the concept of states and transi-
tions as in a FSM but which extends the computation in each state to include
processes or procedures written in a programming language such as C/C++.
Furthermore, in order to represent a many-processor platform working in paral-
lel or in pipelined mode, we must introduce concurrency and pipelining. Since
processes in a system run concurrently, we need a synchronization mechanism
for data exchange, such as the concept of a channel, to encapsulate data com-



14 Introduction

munication. Also, we need a model which supports hierarchy, so as to allow
designers to write complex system specifications without difficulty. Figure 1.7
illustrates such a model of hierarchical sequential-parallel processes, which is
usually called a Process State Machine (PSM). This particular PSM is a system-
level behavior or system specification, consisting of processes P1 to P5. The
system starts with P1, which in turn triggers process P2 if condition d is true, or
another process consisting of P3, P4, and P5 if condition d is not true. P3 and
P4 run sequentially and in parallel with P5, as indicated by the vertical dashed
line. When either P2 is finished or the sequential-parallel composition of P3,
P4, and P5 is finished, the execution ends.

1.2.6 SYSTEM STRUCTURAL MODEL
A system-level structural model is a block diagram or a netlist of system

components used for computation, storage, and communication. Processing
Elements (PEs) can be standard processors or custom-made processors. They
can also be application-specific processors or any other imported IPs or special-
functions hardware components. Storage components are local or shared mem-
ories which may also be included in other processing components. Commu-
nication Elements (CE) are buses or routers possibly connected in a Network-
on-Chip (NOC). If input-output protocols of some system component do not
match, we will need to insert Interface Components (IF) such as transducers,
bridges, arbiters, and interrupt controllers. Figure 1.8 shows a simple system
platform consisting of a CPU processor with a local memory, an IP component,
a specially-designed custom HW component (HW), and the shared memory
(Mem). They are all connected through two buses, the CPU bus and IP bus.
Since CPU and IP buses use different protocols, a special IF unit (Bridge) is
included. The HW unit has the IF for the CPU bus protocol already built into
it. Since the CPU bus has CPU and HW components competing for the bus,
a special IF component (Arbiter) is added to grant bus access to one of the
requesting components.

A system structural model is generated from the given behavioral model by
the process called system synthesis.

1.2.7 SYSTEM SYNTHESIS
System synthesis starts with system-level behavioral model, such as the one

shown in Figure 1.7, and generates the system structure, which consists of stan-
dard or custom PEs, CEs, and SW/HW IF components, as shown in Figure 1.8.
Standard components, including their functionality and structure, can be found
in the system-level component library, while custom components must be de-



Abstraction Levels 15

Br
idg

e

P1 P3

CPU M e m

H W I P

P5

C 1,  C 2C 1,  C 2
Ar

bit
er

P4P2

C 1,  C 2C 1,  C 2CPU B u s I P B u s

FIGURE 1.8 System structural model

fined and synthesized on the processor level before they can be included in the
library. According to the given definition, the behavioral model is a usually a
composition of two objects: processes and channels. The structural model, on
the other hand, uses different objects: processes are executed by PEs such as
standard processors, custom processors, and IPs, and channels are implemented
by buses or NoCs with well-defined protocols. The behavioral model can be
converted into an optimized system platform by the following set of tasks, as
shown in Figure 1.9:

(a) Profiling and estimation. Synthesis starts by profiling the application code
in each process and collecting statistics about types and frequency of op-
erations, bus transfers, function calls, memory accesses, and about other
statistics that are then used to estimate design metrics for the optimization
of the platform or application code. These estimated metrics include per-
formance, cost, bus traffic, power consumption, memory sizes, security,
reliability, fault tolerance, among others;

(b) Component and connection allocation. Next, components from the library
of standard and custom processors, memories, IPs, and custom-functionality
components must be allocated and connected with buses through bridges or
routers. It is also possible to start with a completely defined platform, which
is very useful for application and system software upgrades and product
versioning;

(c) Process and channel binding. Processes are assigned to PEs, variables
to memories (local and global), and channels to busses. This requires an
optimized partitioning of processes, variables, and connection traffic to min-
imize the platform-design metrics;



16 Introduction

(d) Process scheduling. Parallel processes running on the same PE must be
statically or dynamically scheduled. This requires generating a real-time
operating system for dynamic scheduling;

(e) IF component insertion. Required IF components must be inserted into
the platform from a library or synthesized on the processor level before
being added to the library. Such additional SW IF components include
system firmware components such as device drivers, routing, messaging and
interrupt routines, and HW IF components to connect platform components
with incompatible protocols and facilitate communication synchronization
or message queuing. Examples of these HW IF components would include
interrupt controllers and memory controllers.

(f) Model refinement. The final step in converting a behavioral model into an
optimized system platform consists of refining the behavioral model into
a structural model in order to reflect all the platform decisions, as well as
adding newly synthesized SW, HW, and IF components.

Profiling + Estimation
C omp one nt A lloc ation

M od e l R e fine me nt

Proc e ss + C h anne l B ind ing
S W / H W  I F  D e finition

S y ste m

S c h e d u ling
C onne c tion A lloc ation

c1

P5

P3

P4

dP1

P2

d

c2

Br
idg

e

P1 P3

CPU M e m

H W I P

P5

C 1,  C 2C 1,  C 2

Ar
bit

er

P4P2

C 1,  C 2C 1,  C 2CPU B u s I P  B u s

FIGURE 1.9 System synthesis

The above tasks can be performed automatically or manually. Tasks (b)-
(e) are usually performed by designers, while tasks (a) and (f) are better done
automatically since they require too many pain-staking and error-prone statis-
tical accounting or code construction. Once the refinement is performed, the



System Design Methodology 17

structural model can be validated by simulation quite efficiently since all the
component behaviors are described by high-level functional models. More for-
mal verification of the behavioral and structural models is also possible if we
formalize the refinement rules.

In order to generate a cycle-accurate model, however, we must replace each
functional model of each component with a cycle-accurate structural model for
custom HW or IS model for standard processors executing compiled application
code. Once we have this model, we can refine it further into a cycle-accurate
model by performing RTL synthesis for custom processors or custom IFs, and
by compiling the processes assigned to standard processors to the instruction-set
level and inserting an IS simulator to execute the compiled instruction stream.
We also have to synthesize system software or firmware for the standard and
custom processors. After RTL/IS refinement, we end up with a cycle-accurate
model of the entire system. This model can be downloaded to a FPGA board by
using standard CAD tools provided by the board supplier. This way we can ob-
tain a system prototype. If all synthesis and refinement tasks are automated, the
system prototype can be generated in a few weeks, depending on the expertise
of the system and application designers.

Specs

A l g o r i t h m s

Capture &  
S i m ul ate

Specs

A l g o r i t h m s

D es c ri b e &  
S y n th es i z e

E x ecu t a b l e 
Spec

A l g o r i t h m s

S pec i f y ,  E x pl o re 
&  R ef i n e

A r ch i t ect u r e
N et w o r k
SW /H W
L o g i c
P h y si ca l

S W ? S W ?

D esi g n
L o g i c
P h y si ca l

D esi g n
L o g i c
P h y si ca l

M a n u f a ct u r i n g M a n u f a ct u r i n g M a n u f a ct u r i n g

1 9 6 0 's 1 9 8 0 's 2 0 0 0 's

Functionality

S i m ulate S i m ulate

D e s cr i b e

A l g o r ith m s

C onne ctiv ity
P r otocols

P e r f or m ance

T im ing

S ys te m  G ap

FIGURE 1.10 Evolution of design flow over the past 50 years



18 Introduction

1.3 SYSTEM DESIGN METHODOLOGY
Design flow has been changing with the increase in system complexity over

the past half-century. We can indicate several periods which resulted in drastic
changes in design flow, tools, and methodology, as shown in Figure 1.10.

(a) Capture-and-Simulate methodology (1960s to 1980s). In this method-
ology, software and hardware design was separated by a so-called system
gap. SW designers tested some algorithms and occasionally wrote the
requirements document and the initial specification. This specification
was given to the HW designers, who began the system design with a
block diagram based off of it. They did not, however, know whether
their design would satisfy the specification until the gate-level design was
produced. When the gate netlist was captured and simulated, designers
could determine whether the system worked as specified. Usually this
was not the case, and therefore the specification was usually changed to
accommodate implementation capabilities. This approach started the myth
that specification is never complete. It took many years for designers to
realize that a specification is independent from its implementation, meaning
that specification can be always upgraded, as can its implementation.

The main obstacle to closing the system gap between SW and HW , and
therefore between specification and implementation, was the design flow
in which designers waited until the gate level design was finished before
verifying the system specification. In such a design flow there were too
many levels of abstraction between system specification and gate level
design for SW designers to get involved.

Since designers captured the design description at the end of the design
cycle for simulation purposes only, this methodology is called capture-
and-simulate. Note that there was no verifiable documentation before the
captured gate level design, since most of the design decisions were stored
informally in the designers’ minds.

(b) Describe-and-Synthesize methodology (late 1980s to late 1990s).
The 1980s brought us tools for logic synthesis which have significantly
altered design flow, since the behavior and structure of a design were
both captured on the logic level. Designers specified first what they
wanted in Boolean equations or FSM descriptions, and then the synthesis
tools generated the implementation in terms of a logic-level netlists. In
this methodology therefore, the behavior or function comes first, and
the structure or implementation comes afterwards. Moreover, both of



System Design Methodology 19

these descriptions are simulatable, which is an marked improvement over
Capture-and-Simulate methodology, because it permits much more efficient
verification; it makes it possible to verify the descriptions’ equivalence
since both descriptions can in principle be reduced to a canonical form.
However, today’s designs are too large for this kind of equivalence checking.

By the late 1990s, the logic level had been abstracted to the Register-Transfer
Level (RTL) with the introduction of cycle-accurate modeling and synthesis.
Therefore, we now have two abstraction levels (RTL and logic levels) and
two different models on each level (behavioral and structural). However,
the system gap still persists because there was not relation between RTL and
higher system level.

(c) Specify, Explore-and-Refine methodology (early 2000s to present). In
order to close this gap, we must increase the level of abstraction from
the RTL to the system level (SL) and to introduce a methodology that
includes both SW and HW. On the SL, we can start with an executable
specification that represents the system behavior; we can then extend the
system-level methodology to include several models with different details
that correspond to different design decisions. Each model is used to prove
some system property: functionality, application algorithms, connectivity,
communication, synchronization, coherence, routing, performance, or
some design metric such as performance, power, and so on. So we must
deal with several models in order to verify the impact of design decisions
on every metric starting from an executable specification down to the
RTL and further to the physical design. We can consider each model as
a specification for the next level model, in which more implementation
detail is added after more design decisions are made. We can label this a
Specify-Explore-Refine (SER) methodology [63, 100], in that it consists of
a sequence of models in which each model is a refinement of the previous.
Thus SER methodology follows the natural design process in which de-
signers specify the intent first, then explore possibilities, and finally refine
the model according to their decisions. SER flow can therefore be viewed
as several iterations of the basic Describe-and-Synthesize methodology.

In order to define a reasonable SER methodology, we need to overview the
status of methodologies presently in use, their shortcomings, and how to
upgrade them to the system level. More detailed explanations will be given
in Chapter 2.



20 Introduction

case X i s
w h en  X1=>

     .
     .
     .

w h en  X2=>

F i n i t e  s t a t e  
m a c h i n e

C o n t r o l l e r

3.4 15
2.7 15
--
--

L o o k -u p  t a b l e

M e m o r y

FIGURE 1.11 Missing semantics

1.3.1 MISSING SEMANTICS
With the introduction of system-level abstraction, designers must generate

even more models. One obvious solution is to automatically refine one model
into another. However, that requires well-defined model semantics, or, in other
words, a good understanding what a given model means. This is not as simple
as it sounds, since design methodologies and the EDA industry have been dom-
inated by simulation-based methodologies in the past. For example, the models
written in Hardware Description Languages (HDLs) (such as Verilog, VHDL,
SystemC, and others) are simulateble, but they are not really synthesizable or
verifiable. They can result in ambiguities that make automated synthesis and
verification impossible, due to the unclear semantics involved. Only a well-
defined subset of these languages may be synthesizable or verifiable.

As an example of this problem, we can look in Figure 1.11 at a simple case
statement available in any hardware or system modeling language. This type
of case statement can be used to model a FSM in which every case such as X1,
X2, ..., represents a state in which all its next states are defined. This type of
case statement can also be used to model a look-up table, in which every case
X1, X2, ..., indicates a location in the memory that contains a value in the table.
Therefore, we can use the same case statement with the same variables and
format to describe two completely different components. Unfortunately, FSMs
and look-up tables require completely different implementations: a FSM can
be implemented with a controller or with logic gates, while a look-up table is
usually implemented with some kind of memory. It is also possible to implement
a FSM with a memory or a table using logic gates. However, this would not be
a very efficient implementation, and it would not be acceptable to any designer.
So a model which uses case statements to model FSMs and tables is good for



System Design Methodology 21

simulation but not for implementation because neither a designer nor a synthesis
tool can determine which type of structure was described by the case statement.

The lesson is that contemporary modeling languages allow modelers to de-
scribe the design in many different ways and to use the same description for
different designs details. But for automatic refinement, synthesis, and verifica-
tion, we need clean and unambiguous semantic which uniquely represents all
the system concepts in a given model. Such a clean semantic is missing from
most of the simulation-oriented languages. In order to have well-defined se-
mantics, we need to introduce some form of formalism to models and modeling
languages.

1.3.2 MODEL ALGEBRA
We can see than that in order to find an acceptable methodology and develop

adequate system design tools, we need to clearly define the semantics of the
different design models and the rules for model refinement. Generally speak-
ing, every model is a set of objects and composition rules. In order to find an
adequate model structure, we can look to some standard, well-defined algo-
rithmic structures such as arithmetic algebra, which consists of objects such as
numbers and operations such as addition and multiplication; we can represent
this as, numbering here

Algebra :< objects, operations >

Algebra’s composition rules allow for the creation of hierarchical expressions
such as a ∗ (b + c) and their transformation. For example, by multiplying a
with the (b + c) we get a new expression numbering here

a ∗ (b + c) = a ∗ b + a ∗ c

The equivalence of these two expressions allows designers to perform op-
timization using arithmetic algebra rules. The expression on the left requires
one multiplier and one adder and may take two clock cycles, assuming each
operation takes one clock cycle. On the other hand, the expression on the right
requires two multipliers and one adder; it may also take two clock cycles to
complete. In this case, the expression on the left requires fewer resources for
the same execution time. In case we are limited to only one adder and one multi-
plier, the expression on the right would take three clock cycles. In this case, the
expression on the left would execute faster for the given resources. Thus, arith-
metic algebra allows for the creation of expressions and their transformation to
equivalent expressions for the optimization of some design metrics.

We can also create model algebra consisting of modeling objects and com-
position rules similar to those of arithmetic algebra, in that numbering here

ModelAlgebra :< objects, compositions >



22 Introduction

P1

P2 P3

P1

P2 P3

PE 1 PE 2

=

FIGURE 1.12 Model equivalence

The most important objects for a model are processes or behaviors and com-
munication channels. Using model algebra composition rules, objects can be
composed hierarchically in sequential and concurrent fashion. The left side
of Figure 1.12 for example shows a sequential composition of process P1 fol-
lowed by a concurrent composition of processes P2 and P3. After deciding
that the system platform will have two processing elements, PE1 and PE2, and
mapping P1 and P2 to PE1, and P3 to PE2, the original model must be refined
to reflect these platform and mapping decisions. The necessary transforma-
tions include the introduction of another level into the hierarchy to reflect the
given platform architecture and a new communication channel for data transfer.
The new channel, in addition to transferring data, preserves the sequentiality
of P1 and P3, since data is transferred after P1 finished and P3 can not start
before data becomes available. Thus the model on the right side is equivalent to
the model on the left side. Thus, model algebra allows creation of models and
proving their equivalence by allowing model transformations that preserve their
execution semantics. In other words, model algebra is an enabling technology
for system synthesis and verification.

Model algebra also enables the development of a Specify-Explore-Refine
(SER) methodology, as shown in Figure 1.13. With model algebra in place, we
can define the semantic and style of each model and define a model transforma-
tion or refinement for each design decision. Therefore, after some estimation
and exploration, a design decision can be made which will in turn result in a
model transformation that preserves execution equivalence. A model transfor-
mation usually results in the replacement of one object by several other objects
or in a re-composition of some objects. In case of system-level design, as shown
in Figure 1.13, we start with the system executable specification, generate sev-
eral intermediate models, and end up with a cycle-accurate model that can be
downloaded to a FPGA board with standard FPGA tools or synthesized into an
ASIC with adequate ASIC tools.



System-Level Models 23

System specification 
mod el

C ycl e accu r ate 
impl ementation mod el

SER

Intermediate models

Design decisions

M odel  r ef inem ent

R ep l a cem ent  or  
r e-com p osit ion

FIGURE 1.13 SER Methodology

1.4 SYSTEM-LEVEL MODELS
In the most common industrial-system design flow today, designers are using

different modeling styles and different numbers of models to demonstrate the
validity of their software or hardware. The key question facing a designer is
how many models are really needed. At one extreme is the argument that we
need one model for each level of abstraction and each design metric. Since
different metrics are used by different design groups, this strategy will result in
many incompatible models in the same organization and will eventually break
down the product design flow. At the other extreme, some designers claim that
one model is good enough for several abstraction levels and many metrics. This
strategy generates a very complex and overly-detailed model, while degrading
its comprehensibility and, therefore decreasing design productivity.

In order to identify the minimum number of models necessary for system
design, we must look into the profiles and expertise of the designers of such
systems. There are three types of designers: application, system, and imple-
mentation designers.

Application designers have a good knowledge of their application domain,
application structures, and application algorithms, but only a basic knowledge
of system design and technology;

System designers have a good knowledge of system organizations, multi-
processor architectures and their operations, and system-level SW and HW, but
overview knowledge of application and implementation technology;



24 Introduction

Implementation designers have a specialized knowledge of specific com-
ponents, implementation methods and technology on abstraction levels below
than the system level, but minimal knowledge of application or overall system
operation.

According to these three levels of design expertise, at least three system
models are necessary for system design:

(a) Specification Model (SM) is used by application designers to prove that
their algorithms work on a given system platform. They also modify it
for more efficient task and channel partitioning, mapping, and scheduling
once a possible platform is defined. This model is also used for adding new
features, functions, and upgrades after the initial deployment of the product
into the market.

(b) Transaction-Level Model (TLM) is used by system designers to estimate
design metrics (such as performance, cost, traffic, communication, power
consumption, reliability, among others) and to explore different implemen-
tations (component selection, connectivity, system firmware, operating-
system selection, and different types of interfaces).

(c) Cycle-Accurate Model (CAM) is used by HW designers to verify the cor-
rectness of the generated system HW components (such as custom pro-
cessors, interfaces, memory controllers, interrupt controllers, bridges, ar-
biters, and similar components) and by SW designers to verify the system
firmware (such as task scheduling, data transfer, synchronization, interrupt
procedures, and routing).

Given the ongoing advances in technology and systems, the distinction be-
tween HW and SW designers is blurring; every embedded system includes both
hardware and software, and furthermore, what is in hardware today could be
moved to software in the next version of the product and vice versa. Any of
above three essential models can be used by either of the application, SW or
HW groups depending on the company’s organization. Since the above models
are defined according to designers’ expertise, we may want to explore what
each of these models contains and how it is used.

The SM contains the application code and the system requirements, as shown
in Figure 1.7, in which the application code is defined by a PSM model of com-
putation. This model is used to specify application algorithms and to optimize
the application code for mapping to a platform when the platform is defined. In
other words, the application code must be broken down into processes commu-
nicating through channels in a way that will optimize local communication and
minimize long-distance communication after platform mapping. Similarly, the
application code must be divided into processes whose computation structure
will match the PE types in the platform so as to facilitate performance opti-



System-Level Models 25

mization. In the same way, the application code can be restructured to match
other design metrics. This code restructuring may take several iterations.

Platform architecture consists of a set of PEs and a set of CEs selected from
the library or defined by the user, as shown in Figure 1.8. The platform ar-
chitecture can be given with the SM or defined partially or completely during
the system synthesis process shown in Figure 1.9. More components or con-
nections can be added or modified at a later stage for the optimization of some
metrics. During synthesis, processes are mapped to the architecture’s PEs, that
is, its CPUs, HW components, and IPs. Variables are mapped to memory com-
ponents, either local to PEs or shared. Channels between processes are mapped
to routes consisting of buses and bridges, as described in the previous sections.

CPU Bus

P1 P3

O S

P5

CP
U M e m

I PH W

I P Bus

Br i d g e

P4P2

FIGURE 1.14 System TLM

The given or generated platform with its mapped application processes and
channels defines the system structure after system synthesis, as shown previ-
ously in Figure 1.9. This system structure is usually modeled with a TLM,
which Figure 1.14 illustrates. This TLM has the same components as Fig-
ure 1.9 but with added bus interface functions and with channels combined into
buses. Channels C1 and C2 use the CPU bus and the IP bus through the bridge,
which converts the CPU bus protocol into IP bus protocol. On the system soft-
ware side, the CPU has the operating system (OS) model added, as well as
communication drivers for the CPU bus.

The TLM can be un-timed or timed. For the timed TLM, we need to profile
the application code and generate performance estimates for each process on
its corresponding component, in addition to estimating the time needed to send
each message on its corresponding route. For example, for a message sent from



26 Introduction

P3 to P5, we must add time estimates for the message transfer over the CPU
bus, protocol conversion in the bridge and the transfer over the IP bus.

As mentioned earlier, a TLM is used to explore different SM structures,
different platform architectures, each with different numbers and types of com-
ponents and different SM mappings to platform architectures. For example,
we may want to restructure a SM for a given platform and a given mapping.
On the other hand, for any given SM and component library, we may try to
generate an optimal platform for some given metric. Similarly, for a given SM
and platform, we may try to find an optimal mapping for a given metric. In
an extreme case, we may want to simultaneously optimize the SM structure
or application code, platform architecture, and the mapping for one or several
metrics. As mentioned earlier, TLMs allow us to perform quickly and with
reasonable accuracy each of these disparate optimization scenarios, which will
be described in more detail in Chapter 4.

CP
U Mem

B r i d g e

H W I P

A r b i t er
HAL
R T O S
EXE I C

Program

FIGURE 1.15 System CAM

A TLM serves for exploration of the platform structure and estimation of
system quality metrics. It is a system-level model. In order to generate a
prototype or a product we need to lower the abstraction level to the processor
level and generate a CAM of the entire system, example of which is shown
in Figure 1.15. From a TLM model, we can generate the CAM by refining
the functionality of each component to the cycle-accurate or register-transfer
level (RTL) description. For custom HW components we need to generate RTL
using processor-level synthesis that has been described in Figure 1.6. For IF
components such as arbiters, interrupt controllers, memory controllers, and CD
components, such as bridges and routers, we can use the same processor-level



Platform Design 27

synthesis. In case of IP components we can replace functional description with
the RTL description that is provided by the IP suppliers. In case of standard
processors we can compile application and system code into an instruction
stream to be executed on the processor’s RTL model or IS model. In case of
system prototyping, the instruction stream is executed on the processor available
on the prototyping board. CAM model also includes models of system SW
including communication drivers, libraries, and RTOS.

Depending on the prototype target, the CAM must include all files that will
be needed by the respective FPGA board design tools. These files and the CAM
model are exported to the FPGA design environment where implementation de-
signers compile the SW and perform synthesis for the HW components. Finally,
a bit-stream is generated that directly programs the FPGA with the prototype.
This programmed FPGA typically has a hyper-terminal user interface that can
be used to debug the prototype.

In a different scenario, a CAM can co-simulate with an instruction-set sim-
ulator and a hardware-description language simulator. In this case, an ISS is
inserted and all the SW code is compiled into binaries and simulated with the
inserted ISS while the hardware is simulated on the RTL level in Verilog or
VHDL with an appropriate co-simulator.

Each of these different model types, SM, TLM, and CAM, has a place in
every system design-flow. Their roles in different design methodologies will
be elaborated in Chapter 2 and Chapter 3.

1.5 PLATFORM DESIGN
Today’s platforms come in a variety of forms and shapes. Usually they have

one or more standard processors, a processor for multi-media, several differ-
ent specialty IPs, and a multitude of special IFs for different communication
standards. Although platforms today use a variety of components, platform
structure is not standardized. System-design automation is possible if we can
limit the number of components and the structure of each platform.

In order to do that we can identify a small number of necessary component
types:

(a) processing components (PEs), such as standard or custom processors, for
computation tasks;

(b) storage components, such as local and global memories, for data storage;

(c) communication components (CEs), such as transducers and bridges, for
the communication of data, temporary buffering of data, and translation of
one communication protocol into another;



28 Introduction

(d) interface components (IFs), such as arbiters for bus traffic regulation, DMA
controllers for speeding up memory traffic, interrupt controllers for synchro-
nization, UARTs, and others.

Bus2Bus1 Bus3

A r b i t e r  1

P E  1 AP E  1 A

T r a n sd uc e r 2-3

A r b i t e r  2

A r b i t e r  3
P E  1 BP E  1 B

M e m o r y  1M e m o r y  1

P E  2A
( M a st e r )
P E  2A
( M a st e r )

P E  3AP E  3A

M e m o r y  3M e m o r y  3

Interrupt1.1

Interrupt2 .1

P E  2B
( S l a v e )
P E  2B
( S l a v e )

T r a n sd uc e r 1 -2T r a n sd uc e r 1 -2 Interrupt2 .2

Interrupt3 .1
Interrupt3 .2

I FI FI FI F

FIGURE 1.16 Platform architecture

These four component types could be sufficient for any platform, although
some others (analog components, sensors) may be added for specific application
functions. Basic connectivity can be accomplished with buses and transducers
to convert one protocol into another if necessary. Transducers can also be used
for routing if they can compute possible routes or if the routing is encoded in the
message. Such transducers are sometimes called routers; they can be combined
into a variety of networks-on-chips (NOCs).

Using components (a) through (d) we can construct any system platform.
Figure 1.16 gives an example of such a platform. It consists of three buses,
Bus1, Bus2, and Bus3, with an arbiter on every bus. Bus1 has two PEs, PE
1A and PE 1B, and one memory. Bus2 has also two PEs, PE 2A and PE 2B,
where PE 2A is the bus muster. Bus3 on the other hand has one PE and one
memory. There are two transducers: Transducer 1-2 between Bus1 and Bus2,
and Transducer 2-3 between Bus2 and Bus3. In order for PE 1A to send a
message to PE 3A, the message must be routed through both transducers.

We can build any platform structure using PEs as computation components,
memories as storage components, and buses as connectivity components. We



System Design Tools 29

can build more complex system connectivity structures by using transducers as
routers and building complex NoCs with such transducers. Finally, we conclude
that four component types (a) through (d) are sufficient to build a platform of any
complexity. The simplicity of the platform construction rules as demonstrated
in Figure 1.16 enables system design automation for modeling, synthesis, and
verification.

Model A

Model B

E s t i m a t i on
t ool

E s t i m a t i on
t ool

S y n t h es i s
t ool

S y n t h es i s
t ool

C om p on en t
li b r a r y

C om p on en t
li b r a r y

S i m u la t i on
t ool

S i m u la t i on
t oolG U I V er i f y

t ool
V er i f y
t ool

ti

R ef i n em en t
t ool

R ef i n em en t
t ool

Transforms:
t1
t2
.
.
.

tn

FIGURE 1.17 General system environment

1.6 SYSTEM DESIGN TOOLS
In order to explore system design automation, we must look at basic system

design needs and some possible generic system tools. Using a Specify-Explore-
Refine methodology, system models can be generated automatically as long as
for every design decision we can define a sequence of transformations that
will refine the given model accordingly. Therefore, for every pair of models
(such as Model A and Model B in Figure 1.17), we may make several design
decisions at once and apply a transformation sequences to refine the model. The
tool that performs that refinement is called the refinement tool. Obviously, we
can verify that the applied transformations will preserve execution equivalence
using a verify tool that will verify each sequence of transformations. The new
Model B can be also simulated and the results compared with the results from
Model A by way of a simulation tool.



30 Introduction

The design decisions which guide the refinement are made by the designer
through a GUI, which also includes selecting the proper components for the de-
sign refinement from a component library. The refinement tool may also select
components during the refinement transformations when a functional descrip-
tion is replaced with a structural description. In order for a designer to make
correct design decisions, an estimation tool provides the values of different met-
rics obtained from Model A. The same metrics are also provided to a synthesis
tool which can make design decisions automatically in case the designers are
not available or are not experienced enough to do so. This synthesis tool uses
different algorithms to optimize a design according to the given requirements
and metrics provided by the estimation tool.

This kind of general environment is easy to visualize or implement as long
as the abstraction levels of Model A and Model B do not differ significantly in
abstraction levels and Model B can be derived from model A through set of
well-defined design decisions and the corresponding transformations. In the
case that the two models are written without clear and well-defined semantics,
or without a well thought-out transformation sequence, model-based synthesis
and verification is not possible.

In order to develop good automation tools, we must look at the system design
process in general, and the system models that we described in the previous
sections in particular. We identified three basic models: SM, TLM, and CAM
for three types of system designers. Therefore, we will need at least two types
of tools:

(a) a front-end tool, which is a tool for application developers who want to
test their product concepts. It captures system behavior with a MoC in a
standard language such as C, C++, SystemC, Matlab, UML or a similar
graphic representation as an input, and it generates a functional or a timed
TLM to use in design-space exploration;

(b) a back-end tool, which is a tool for SW and HW system and implementation
designers to use in creating the SW and HW details for a given platform and
for a particular application. Such tool may take the TLM model from the
front-end and generate a CAM or PCAM in a HDL for the HW and an IS
model for the SW, to be used for co-simulation with a HDL/IS co-simulator.
The HW model can be synthesized with RTL tools while the compiled SW
instruction stream can be downloaded to selected processors in the prototype
or the final implementation of the system platform.

This sort of generic system-development tool is shown in Figure 1.18. It
consists of a Front-End stage and a Back-End stage, which are supported by
two types of interfaces.

The Front-End consists of two elements, System Capture and Platform De-
velopment. System capture may be a graphical user interface which captures



System Design Tools 31

Decision
U ser  

I nt er f a ce 
( DU I )

V a l i d a t ion
U ser  

I nt er f a ce 
( V U I )

TIMED

C r e a t e

Ma p

C o m p i l e

R e p l a c e

S e l e c t

P a r t i t i o n

C o m p i l e

De b u g g e r

S t i m u l a t e

V e r i f y

Application Tools : Compilers/Debuggers Commercial Tools : F P G A,  AS I C

C Y C L E 
A C C U R A TE

V e r i f y

S i m u l a t e

C h e c k

C o m p i l e

Front – E nd
System Capture + Platform Development

SW  Development +  H W  Development
B a c k  – E nd  

TLM

C A M

FIGURE 1.18 System tools

the definition of the platform architecture and the product application code with
a SM. The Platform Development tool generates timed TLMs of the platform
architecture which executes the product application captured by the capture
tool. In order to generate a timed TLM, the Front-End tool uses an estimator
for estimating computation time for each PE and communication time for each
message on a particular message route. Such timed TLMs provide reliable
metrics for early exploration of design choices. In addition, TLMmay provide
estimates of other metrics, such as power, cost, and reliability. If these metrics
are not satisfactory, a designer may change the type and number of components,
the number and type of connections, and/or the mapping of the application code
onto different PEs and CEs. The TLM generated by the Platform Development
tool models the platform structure and HW, as well as SW components such as
RTOS.

In the Back-End, the HW Development component is used to generate a
cycle-accurate or RTL description of the HW components, which can be further
refined by commercially-available tools for ASIC or FPGA manufacturing.
SW Development generates the firmware necessary to run communication and
application SW on the platform.



32 Introduction

The Validation User Interface (VUI) is used to debug and validate the devel-
oped SW and HW. To do this it uses standard tools such as compilers, debuggers,
simulators, and verifiers. These validations can be done on both the TLM and
CAM levels, with different validation tools for each level.

Decision User Interface (DUI) is used by designers to evaluate the quality
of the metrics generated by the estimators and to make decisions concerning
platform creation, component and connectivity selection, task scheduling, SW
and HW component partitioning, model creation, and other system design de-
cisions. The DUI must therefore be supported by a component database which
stores models of different components on different abstraction levels. Simi-
larly, the DUI may include a synthesis tool that can generate some of design
decisions and optimize the platform for some given metrics in order to speed
up system development.

The benefit of an increase in abstraction levels and possible automation is a
productivity increase of several orders of magnitude. Since models are gener-
ated automatically, designers do not have to learn modeling languages or spend
time in model development. Designers make only design decisions while the
models get refined automatically. Since there is no manual involvement from the
designer, models preserve well-defined semantics and are, therefore, synthesiz-
able and verifiable with automatic tools. Furthermore, such model automation
facilitates the trend towards globally-distributed design teams, since any design
change introduced at any location can be estimated and verified automatically
at any other location. It also enables cooperation between component suppliers
and product integrators, as, for instance, in the automotive market, where many
suppliers provide hundreds of electronic control units to car manufacturers for
integration into a vehicle; model automation enables efficient negotiation and
coordinated discussion regarding integrators requirements and component sup-
plier offerings. In addition to the productivity benefits, the main benefit of
model automation is that it does not require high-level design expertise, which
allows many application experts without detailed knowledge of embedded sys-
tem design to develop systems and upgrades for their products. This also speeds
up the deployment of products to the market since long redesign processes can
be avoided.

1.7 SUMMARY
The concepts presented so far seem reasonable but the main question still

remains: "Do they work?" Let’s look at them one at the time.
We described a methodology that is based on well-defined models, design

decisions, and model transformations. Simple models and clear semantics
worked in the past as an enabler for the progress to the next level of abstraction.



Summary 33

For example, in 1960s, we had many different logic design styles, from resistor-
transistor logic (RTL), to diode-transistor logic (DTL), to transistor-transistor
logic (TTL), and so on. Real progress in design productivity only came when
we reduced the number of components on the chip to two types of transistors,
P-type and N-type, and incorporated them into CMOS logic, which is still in
use today.

Another example of simple and clear semantics comes from the experiences
in layout design. The real progress in layout floorplanning, placement and
routing algorithms, and layout tools was made when we reduced logic gates to
standard cells and routing to channel routing. Again, this simplification made
layout tools more efficient and acceptable by designers. Logic synthesis pro-
vides another example of efficiency introduced by a clear and simple semantics;
here the real progress was made when number of components was reduced to
simple NAND, NOR, and NOT gates. It also worked on RTL level, when the
controller design was reduced to the FSM model for a datapath structure that was
manually specified by the designer. Unfortunately, the definition of a simple
and clear semantics for the processor-level design, consisting of a custom con-
troller and a custom datapath, is still not available. There are many C-to-RTL
synthesis tools based on FSMD models with a variety of synthesis algorithms
providing results of varying quality. This indicates that there is still a need for a
clarifying and simplifying high-level synthesis methodology and the accompa-
nying tools. On the next abstraction level, the system level automation is still in
its infancy. In order to automate system design, which would be the ideal, we
needed to simplify even more the components, models, and tools involved. For
that reason, we described a possible strategy called model algebra to properly
define models and refinements.

As proof for the success of this approach, we point to several academic
and commercial system tools that have been developed for automatic model
generation, synthesis, and verification. The preliminary evidence testifies that
these tools result in productivity improvements of several orders of magni-
tude. In addition, the clear semantics we advocate allow easy management
of globally-distributed projects, since upgrades made anywhere in the world
can be checked and verified everywhere. They also allows for easy product
versioning and the timely creation of product derivatives, which will result in
shorter time-to-market and more profitability.

As mentioned above, the complexities of embedded systems are forcing the
design and design automation communities to rethink the design flow, modeling,
synthesis, and verification of such systems. In addition, these complexities are
also requiring a more substantial and deeper change in industry and academia.
The distinction between HW and SW is disappearing. What is in software in one
product could be in hardware in the next version of the same product. Therefore,
designers of systems must be equally knowledgeable in both: SW and HW.



34 Introduction

Likewise, academia must start teaching courses in which the implementation
of computing and communication concepts is presented in SW and HW in the
same course. That requires the restructuring of many courses, particularly in
computer science and computer engineering programs. In the long run, the
computer science and computer engineering departments at our universities
will be combined.

Similarly, the disappearing difference between SW and HW requires changes
in the organizational structure of system design and manufacturing companies in
any application domain. The present separation of application, system design,
and SW and HW groups is not efficient. Likewise, the current simulation-
based design flow is not sustainable since it requires designers to first learn
the modeling language, develop models, and then verify the design, which all
together takes too long and decreases design productivity. The system-design
methodology of the near future must be based on solid scientific principles to
enable its easy use and deployment.

In addition, the design and tool community must start changing their view
of generic design practices to concentrate on applications’ embedded systems
and their specific needs. The 1000x productivity will not come without some
serious experiments. After several years of work, we are glad to see the light at
the end of the tunnel. In the succeeding chapters, we will present system design
practices that have been proven in some real success stories though always with
the understanding that more work lies ahead.



Chapter 2

SYSTEM DESIGN METHODOLOGIES

In this chapter we will look at different design methodologies, or design
flows, for multi-processor systems. Design methodologies have evolved to-
gether with manufacturing technology, design complexity, and design automa-
tion. Improvements in technology have increased design complexity to the point
that designers are no longer capable of making complex designs manually. To
solve this problem, design automation tools, also known as computer-aided
design (CAD) tools, were introduced. In order to make CAD tools more effi-
cient and design algorithms more manageable, design-automation researchers
as well as tool developers were forced to introduce more stringent design rules,
parameterize components and minimize component libraries. As design com-
plexities continued to increase, tool developers created new design abstraction
levels and tried to use the same design strategy from the circuit level, to the
logic level, to the processor level, and finally to the system level.

In this chapter, we will explain some basic system design methodologies
related to the different abstraction levels in the Y-chart we introduced in Chap-
ter 1.

2.1 BOTTOM-UP METHODOLOGY
Bottom-up methodology started even before CAD tools were invented. It is

still in use in much of the industry today, at least partially, because it follows an
intuitive methodology of building parts before assembling the whole product.
In a typical bottom-up methodology, designers develop components and then
store them in a library for use on the next-higher abstraction level.

As we can see in Figure 2.1, we have libraries of transistor, logic, RTL, and
processor components. Components in each of the libraries are used to build

© Springer Science + Business Media, LLC 2009 

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,
DOI: 10.1007/978-1-4419-0504-8_2,

35



36 System Design Methodologies

components in the library on the next abstraction level. On the Circuit level,
we use transistors and develop circuits and their layouts for the basic logic
components such as gates, flip-flops, bus drivers, and others. These compo-
nents become standard cells for higher level design and layout tasks. These
standard cells, with their functionality, structure, and layout, are stored in the
Logic component library for use on the Logic level in Figure 2.1. On the logic
level, we create register-transfer components such as registers, register files,
ALUs, multipliers, and other components for processor micro architecture us-
ing Boolean expressions or FSM and FSMD models. After logic synthesis of
these RTL components, we perform the placement and routing with standard
cells for each component and store them in the RTL component library. On
the Processor level, we start with C code or an Instruction set and generate the
structure of processing elements (PEs) or communication elements (CEs). At
this level we also perform floorplanning, placement, and routing of these PEs
or CEs using the components from RTL library, and store them in Processor
library. On the System level, we start with a model of computation (MoC)
and generate the system structure consisting of multiple PEs and CEs from the
Processor component library. Finally, we perform the system layout by using
the component layouts from the Processor library. Note that each component
library has functional, structural, and layout models for each component in the
library. So by creating components and storing them in libraries, we can then
apply them in each successive abstraction level.

Behavior
(F u n c t i o n )

S t ru c t u re
(N e t l i s t )

P hy s ic al
(L a y o u t )

Logic
C ir cu it

P r oce s s or
S y s t e m

F( . . . )

F( . . . )

F( . . . )

F( . . . )

P r oce s s or
com p on e n t s

R T L
com p on e n t s

Logic
com p on e n t s

T r a n s is t or
com p on e n t s

FIGURE 2.1 Bottom-up methodology

The advantage of bottom-up methodology is that abstraction levels are clearly
separated, each with its own library. This allows for globally-distributed loca-



Top-down Methodology 37

tions for design on each abstraction level, and for easier management of design
on each abstraction level, since each group supplies a component library for the
next level of abstraction. The disadvantage of this approach, however, is that
the libraries must include all possible components with all possible parameters
and that these must be optimized for the metrics required by any present and
possible future applications. This is a very difficult and never-ending task since
it is very difficult to anticipate on the lower abstraction level all the needs on
the next higher abstraction level.

2.2 TOP-DOWN METHODOLOGY
In contrast to bottom-up methodology, top-down methodology does not at-

tempt a component or system layout until the entire design is finished. A
top-down methodology begins with a particular MoC and generates from it a
system platform or system structure in which every component has its param-
eters and required metric values defined, but not its structure or layout. On the
next level of abstraction, each PE or CE component is further decomposed into
smaller RTL components. For example, in Figure 2.2, PE and CE components
that were generated on the System level are decomposed into RTL components
with their parameters and required metrics defined.

Behavior
(F u n c t i o n )

S t ru c t u re
(N e t l i s t )

P hy s ic al
(L a y o u t )

System

F( . . . )

F( . . . )

F( . . . )

F( . . . )

P r o c esso r
c o mp o n en ts

R T L
c o mp o n en ts

L o g i c
c o mp o n en ts

T r a n si sto r
c o mp o n en ts

Start

FIGURE 2.2 Top-down methodology

In this case, each functional unit, such as the ALU, has all its functions spec-
ified, as well as its delay and power requirements. After those are determined,
each of the RTL components is further decomposed into logic components or



38 System Design Methodologies

gates. Finally, each logic component is broken down into a transistor netlist,
in which each transistor layout represents a basic cell. All such basic cells,
for the entire system, are placed on silicon and connected accordingly using
placement and routing methods and tools. Such top-down methodologies were
in use in design of early computers but today’s designs are too complex for such
a complete top-down methodology.

In general, top-down methodology leaves placement and routing for the last
step by avoiding the layouts on other levels of abstraction. Unfortunately, the
system and component metrics are not known until the last step and therefore
it is very difficult to optimize the whole design. The design decomposition or
synthesis has to be repeated over and over again without designers really know-
ing whether optimization is going in the right direction. In order to avoid too
many design iterations, designers need the concept of metric closure in which
different metric values from lower levels of abstraction are used to annotate
design on higher level of abstraction. In this case designers can estimate op-
timized metric values on the lower level of abstraction during the next design
iteration on the higher levels of abstractions. Unfortunately, metric closures are
difficult to achieve since metric estimations are as difficult as performing real
designs.

2.3 MEET-IN-THE-MIDDLE METHODOLOGY
Most designers today use some kind of meet-in-the-middle methodol-

ogy [124, 160] in order to take advantage of the benefits of both bottom-up
and top-down methodologies, while also minimizing their drawbacks. This is
convenient because the design standards and CAD tools on the lower levels
of abstractions are well understood and developed, but on the processor and
system level they are not. While there are some tools on the processor level,
almost none, with exception of general simulation tools, exist on the system
level. A meet-in-the-middle methodology allows a designer to take advantage
of the tools available for lower level abstractions while also reducing design
layouts on higher abstraction levels.

In general, a meet-in-the middle methodology applies a top-down methodol-
ogy to higher abstraction levels and a bottom-up methodology to lower abstrac-
tion levels [124, 160]. The main distinguishing feature of this approach is how
these styles meet. As shown in Figure 2.3, a meet-in-the-middle methodology
could start with a MoC and synthesize the system platform with virtual PEs
and CEs which are after that synthesized with RTL components from the RTL
library. These PEs and CEs also include commercially available IPs which are
also supplied as netlists of RTL components. Therefore, all PEs and CEs are
decomposed into RTL components from the library. Each RTL component has



Meet-in-the-middle Methodology 39

Behavior
(F u n c t i o n )

S t ru c t u re
(N e t l i s t )

P hy s ic al
(L a y o u t )

System

F( . . . )

F( . . . )

F( . . . )

F( . . . )

P r o c esso r
c o mp o n en ts

R T L
c o mp o n en ts

L o g i c
c o mp o n en ts

T r a n si sto r
c o mp o n en ts

Start

FIGURE 2.3 Meet-in-the-middle methodology (option 1)

its own structure and layout layout generated through some bottom-up method-
ology in the library. These RTL component layouts are combined through
floorplanning, and routing into the layout of the multi-core platform. For ex-
ample, ALU components in such a library would be limited to lengths of 8, 16,
32, 64 bits, and nothing in between.

Therefore, with such a meet-in-the-middle methodology, we do physical
design or layout three times: once for standard cells, a second time for RTL
components and a third time for the entire system platform, using the layout
of these RTL components. This mixed methodology has the advantages of
both bottom-up and top-down methodologies, since RTL components with their
metrics are available from the libraries while the system is synthesized top-
down from the RTL components. However, this approach has the drawback of
requiring designers to do layout more than once. Moreover, system optimization
is more difficult using already-made RTL components because they may not be
tuned to the requirements of each PE or CE in the targeted system platform.

Another possibility for a meet-in-the-middle methodology would be to per-
form system layout with logic components or standard cells, as shown in Fig-
ure 2.4. As with the first meet-in-the-middle methodology we described, this
one starts with a MoC and synthesizes the system platform with virtual PEs
and CEs. Those PEs and CEs are then synthesized with RTL components,
which themselves are further synthesized with logic components. Commer-
cially available IPs that are described on the RTL level are also synthesized
with RTL and logic synthesis tools that generate logic components netlists.
Therefore, every IP component, as well as the synthesized PEs and CEs, are



40 System Design Methodologies

Behavior
(F u n c t i o n )

S t ru c t u re
(N e t l i s t )

P hy s ic al
(L a y o u t )

System

F( . . . )

F( . . . )

F( . . . )

F( . . . )

P r o c esso r
c o mp o n en ts

R T L
c o mp o n en ts

L o g i c
c o mp o n en ts

T r a n si sto r
c o mp o n en ts

Start

FIGURE 2.4 Meet-in-the-middle methodology (option 2)

decomposed into logic components from the Logic component library. Since
each logic component has a layout as a standard cell, they are finally combined
through floorplanning and routing into the layout of a multi-core platform.

In this case, we do physical design or layout only twice: once for generating
standard cells and a second time for the entire system platform, using the stan-
dard cells layouts. This mixed methodology has an advantage in that only the
standard cell layout has to be upgraded with the introduction of a new fabrica-
tion technology. The RTL component layouts, which are much more complex
and in higher numbers do not need to be upgraded. An additional benefit is
that the whole design is flattened to standard cells and the layout is performed
only once. However, a system layout using standard cells is more complex than
it would be with RTL components, and the design metrics are less predictable
and controllable since standard cells for each RTL component may not be all
in one place. Furthermore, using such inaccurate metrics makes it difficult to
perform any system optimization on higher abstraction levels.

2.4 PLATFORM METHODOLOGY
The three design methodologies presented in the previous sections represent

ideal cases of three different design concepts. In reality, design methodologies
differ from company to company and even between different groups in the same
company. They are also very much product oriented [165]. In this case, system
design usually starts with an already-defined platform, usually one defined by a



Platform Methodology 41

Behavior
(F u n c t i o n )

S t ru c t u re
(N e t l i s t )

P hy s ic al
(L a y o u t )

System

F( . . . )

F( . . . )

F( . . . )

F( . . . )

P r o c esso r
c o mp o n en ts

R T L
c o mp o n en ts

L o g i c
c o mp o n en ts

T r a n si sto r
c o mp o n en ts

Start

FIGURE 2.5 Platform methodology

well-known platform supplier or defined locally inside the company as shown in
Figure 2.5. Such platforms may have already some standard components, such
as memories and standard processors with well-defined layouts. The system
platform may also be upgraded with the addition of custom components that will
be synthesized with processor and RTL synthesis tools, after which the layout of
these custom components can be obtained through standard cells. Furthermore,
imported IPs are also converted to standard cell layout. Therefore, every custom
component or imported IP can be defined with a netlist of standard cells, which
is combined with netlists of other custom components for the combined standard
cells layout. Such standard cell layout is then combined on the System level
with layouts of standard processor and memory components into the system
platform layout. When using such a platform, we perform physical design or
layout three times: once for standard cells, then we use standard cells for the
layout of custom components, and finally we use processor component layouts
for the final platform layout.

In order to simplify platform design, some platforms have system layout
for all standard processor components finalized with some space left open for
the standard cell layout of custom components. When using such a platform,
therefore, we perform layout only two times: once for standard cells and second
time we use standard cells for the layout of custom components.

This mixed methodology has advantages from both bottom-up and top-down
methodologies since standard processor components are available from the
libraries and custom components can be inserted for application optimization.
However, this approach has the weakness of requiring us to do layout more than



42 System Design Methodologies

once. Also, custom components have to be adapted to reflect the structure and
layout requirements of the given platform.

Behavior
(F u n c t i o n )

S t ru c t u re
(N e t l i s t )

P hy s ic al
(L a y o u t )

System

F( . . . )

F( . . . )

F( . . . )

F( . . . )

P r o c esso r
c o mp o n en ts

R T L
c o mp o n en ts

L o g i c
c o mp o n en ts

T r a n si sto r
c o mp o n en ts

Start

FIGURE 2.6 System methodology

The platform methodology can be upgraded to a system-level methodology
by introduction of standard architecture cells and retargetable compilers. An
architecture cell contains a parametrizable programmable processor such as
one shown in Figure 1.5. The parameters include number, type and size of
components, component connectivity, and the number of pipeline stages in
the functional units, controller and the datapath. Such a standard architecture
cells can be pre-synthesized with standard cells and inserted into the library
of Processor components or generated on demand. A typical system-level
methodology based on such architecture cells is shown in Figure 2.6. It starts
with a MoC and generates the platform architecture consisting of standard or
custom architecture cells. Since all the architecture cells have the layout model
in the library the final system layout is obtained by combining the layouts of
architecture cells.

This methodology has advantage of dealing only with two highest abstrac-
tion layers. Therefore, it is well-suited for application experts with minimal
knowledge of system and processor design. However, it requires a retargetable
compiler to cover different architecture cells.



System-level Synthesis 43

Behavior
(F u n c t i o n )

S t ru c t u re
(N e t l i s t )

P hy s ic al
(L a y o u t )

System

F( . . . )

F( . . . )

F( . . . )

P r o c esso r
c o mp o n en ts

R T L
c o mp o n en ts

L o g i c
c o mp o n en ts

Start

FIGURE 2.7 FPGA methodology

2.5 FPGA METHODOLOGY
Field-Programmable-Gate-Array (FPGA) methodology is based on the

FPGA substrate, which consists of a multitude of 4-bit ROM cells called Look-
up Tables (LUTs). These LUTs can implement any 4-variable Boolean function.
Therefore, in this methodology, every RTL component in the RTL component
library must be decomposed into these 4-variable functions. Then, the Proces-
sor components are synthesized out of available RTL components.

In other words, a FPGA methodology shown in Figure 2.7 uses a top-down
methodology on both the System and Processor levels, in which standard and
custom PEs and CEs are all expressed in terms of LUTs. A system design starts
by mapping an application onto a given platform and then synthesizing custom
components down to RTL components which are defined in terms of LUTs.
Standard processors components in the Processor library are already defined in
terms of LUTs. Once all components in the platform are defined, we flatten
the whole design to LUTs and BRAMs and perform the placement and routing
with the tools provided by FPGA suppliers.

This type of top-down system design has the same weaknesses as any top
down methodology in that it is difficult to optimize the whole design by flat-
tening the whole design just to basic LUT cells. Furthermore, designers do not
know how the FPGA supplier-provided layout tools will map and connect all
the LUTs and BRAMs.



44 System Design Methodologies

Component
l i b r a r i es

P CA M B oa r d

A ppl i c a ti on

O pti mi z a ti on

Component
mod el s

P l a tf or m

T L M S i mu l a ti on

E s ti ma ti on

M a ppi ng

M od el  G ener a ti on

S W ,  H W ,  I F  s y nth es i s

FIGURE 2.8 System-level synthesis

2.6 SYSTEM-LEVEL SYNTHESIS
In the previous sections we described several basic strategies in system de-

sign. However, system design flow has been changing alongside fabrication
technologies and automation tools over the last 50 years. The changes started
with lower levels of abstraction, which are well understood today. However,
the higher levels of abstraction are still under investigation and discussion. In
this section and the next, we will describe briefly the synthesis process from
a behavioral description to a structural description on system and processor
levels.

As shown in Figure 2.8, system-level synthesis starts with an application
written in some MoC such as a set of sequential and parallel processes com-
municating through message-passing channels. Such a MoC must execute on
a platform of multiple standard and custom processors connected through an
arbitrary network. This type of platform can be defined partially or completely
after estimating some characteristics of the application in terms of performance,
cost, power, utilization, configurability, and other considerations. Platform def-
inition can be done manually or automatically.



Processor Synthesis 45

Once the platform is defined, an application must be partitioned and each
partition assigned to a processor or IP in the platform. In order to verify that
the application executes on the platform and satisfies all the requirements, we
need to generate a simulatable and possibly verifiable model such as a timed
Transaction-Level Model (TLM). After simulation, the design can be optimized
if it does not satisfy the requirements by changing the platform, the application
code, or the algorithms used in that code. We can also change the mapping
of the application to the platform. For example, we can minimize external
communication by grouping heavily communicating processes and assigning
the whole group to one processor. It is also possible to assign performance-
demanding processes to different processors or specialized IPs, or to pipeline
performance-demanding processes if possible.

After we obtain a satisfactory application code, platform, and mapping, we
can synthesize each component. Three types of components are needed: custom
SW, HW, or IF components. SW components are for scheduling of processes
such as different types of RTOS, and for communication and interfacing across
the platform. HW components are various custom processors and custom hard-
ware units, as described in the previous chapter. We also need communication
components such as bridges and transducers for protocol conversion, and inter-
face components such as bus arbiters and interrupt controllers.

Having synthesized these platform components, we need to generate a CAM
model that contains binaries for downloading to processors and RTL descrip-
tions for the HW parts in the platform. This can be done automatically or
manually. Such a CAM is downloadable to standard FPGA boards for sys-
tem prototyping, whose results can be used for final optimization of the whole
design.

Details on each of these tasks will be given in the chapters that follow.

2.7 PROCESSOR SYNTHESIS
On the processor level, the components are synthesized as standard pro-

cessors, custom processors, and custom hardware units, which are sometimes
called IPs. The standard and custom processors are usually defined by their
instruction sets. Custom processors can be also defined by the algorithm or
the programming language code that they execute. They are programmable
so that new algorithms and the code can be added or existing one modified.
Custom hardware units or IP are usually not programmable. They are used as
accelerators to execute special functions for a particular application, such as
multimedia applications.

As shown in Figure 2.9 the synthesis process starts with a given Specification
in a programming language, which is compiled into some Tool model such as



46 System Design Methodologies

Tool model

R TL
c omp on en t

li b r a r y

S p ec i f i c a t i on

R TL  model

M odel g en er a t i on

R TL  t ools

C omp i la t i on

E s t i ma t i on

S i mu la t i on

H L S

A lloc a t i on B i n di n g S c h edu li n g O p t i mi z a t i on

FIGURE 2.9 Processor synthesis

CDFG or a FSMD or a three-address code. This formal model can be used for
Estimation of the future processor architecture and its metrics. It can be also
used for some partial or complete allocation, binding, and scheduling. Proces-
sor synthesis, sometimes called High-Level Synthesis (HLS), takes the formal
model and performs Allocation, Binding and Scheduling. The Allocation task
selects necessary and sufficient components from the RTL component library
and defines their connectivity. The Binding task defines binding of variables
to registers, register files, and memories, operations to specific functional units
and register-to-register transfers to specific buses. Scheduling assigns opera-
tions and register transfers to clock cycles. These three tasks compete with
each other, so a completely optimized design is not easy to achieve. That is
why estimation and pre-HLS comes handy. Pre-allocation helps in partial or
full definition of processor architecture. This way we can avoid the clock-cycle
estimates; since many or all of the register-to-register delays are known ahead
of time, there is no need to wait until the end of HLS to find out the clock cycle
time. Pre-binding may bind frequently-used variables to fast registers, register
files, or a scratch-pad memory to avoid lengthily delays caused by loading and
storing to the main memory. Pre-scheduling can assign key inner loops to high-
speed, pipelined functional units or it can pre-schedule such loops to specific
paths in a pipelined datapath.



Summary 47

Once HLS is finished we need to generate a RTL Model of the processor that
can be synthesized with standard RTL synthesis tools.

2.8 SUMMARY
In this chapter, we explained the differences between top-down, bottom-up,

and meet-in-the-middle methodologies by exposing their taxonomizing struc-
tures. We also highlighted some features of key ASIC and FPGA methodolo-
gies. We also detailed one methodology branch, synthesis, explaining how the
process might work on both the processor and system levels.

However, we have to acknowledge that there are many more design method-
ologies, almost one for every group, product, and company [103, 47, 63, 100,
129, 195, 184]. They may start with different specifications, may use other
models for verification of different concepts and metrics, and they may need
a different type of outputs. However, all design methodologies must address
the basic system needs and issues we have introduced in this chapter These
methodology issues will be discussed in more detail in the succeeding chapters.



Chapter 3

MODELING

At the core of any design methodology are models at various steps of the flow.
Models provide an abstract view of the design at any given time, representing
certain aspects of reality while hiding others that are not relevant or not yet
known. As such, design models at each level of abstraction provide the basis for
applying analysis, synthesis or verification techniques. However, as discussed
in previous chapters, tools for automation of these design processes beyond
simulation can only be applied if models and corresponding abstraction levels
are well-defined with clear and unambiguous semantics. In doing so, modeling
concepts and techniques can have a large influence on the quality, accuracy and
rapidity of results. Hence, modeling is concerned with defining the level and
organization of detail to be represented, i.e., the objects, composition rules and,
eventually, transformations, such that meaningful observations can be made,
desired requirements are explicitly specified, and design automation tools can
be applied.

As explained in previous chapters, system behavior is generally described
as a set of concurrent, hierarchical processes that operate on and exchange data
via variables and channels. On the other hand, a system platform consists of a
set of system components connected by a network of busses. Components in a
platform realize system behavior by executing processes, storing variables and
sending messages over channels. Hence, various components provide differ-
ent aspects of system computation and communication, whether in software,
hardware, or in a combination of both. In system modeling, we therefore need
to develop models at varying levels of detail. Furthermore, we have to define
models for each component as well as for the whole system.

As discussed previously, different models are needed at different steps in
the design process. There are abstract system models for application designers
who must develop algorithms and verify that they will work correctly on the

© Springer Science + Business Media, LLC 2009 

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,
DOI: 10.1007/978-1-4419-0504-8_3,

49



50 Modeling

platform under the given constraints. More detailed models are needed for
system designers who must architect the platform The most detailed model
is needed for implementation designers who need to verify correctness of the
software and hardware implementation.

In this chapter, we will discuss concepts and techniques for modeling of sys-
tems at various levels of abstraction. We first present Models of Computation
(MoCs) and design languages, which together provide the foundation for defin-
ing system behavior and models throughout the design flow. Based on these
general principles, we then describe details of computation and communication
modeling in the system components. The basic system component for compu-
tation is a processor with functionality that can be separated into application,
operating system, hardware abstraction and hardware layers. Communication
functionality can be modeled as stacks of network and protocol layers that are
inserted into processors and CEs to realize drivers and interface hardware. In
the end, we will show how these concepts and layers are combined into system
models for application, system, and implementation designers in the form of
a Specification Model (SM), a Transaction-Level Model (TLM) and a Cycle-
Accurate Model (CAM), respectively.

3.1 MODELS OF COMPUTATION
A Model of Computation (MoC) is a generalized way of describing system

behavior in an abstract, conceptual form [130, 101, 117]. As a result, MoCs
are the basis for both humans and automated tools to reason about behavior and
the requirements and constraints of computations to be performed. Typically,
MoCs are represented in a formal manner, using, for example, mathematical
functions over domains, set-theoretical notations, or combinations thereof. This
establishes a well-defined semantics and allows formal techniques to be applied.
Different MoCs can thereby have various degrees of supported features, com-
plexity and expressive power. Hence, the analyzability and expressiveness of
behavioral models is in the end determined by their underlying MoCs.

MoCs are generally based on a decomposition of behavior into pieces and
their relationships in the form of well-defined objects and composition rules. In
the process, MoCs are inherently tied to abstracted definitions of functionality,
i.e., processing of data, and order, i.e., notions of time and concurrency. Models
of time at higher levels of abstraction typically define a partial order in which a
relative sequence of concurrent executions is only specified for a subset of the
events in the system, purely based on causality and inherent dependencies. In
a physical implementation at lower levels, by contrast, every event is attached
to a precise instant in real time, which imposes a total order on the execution of
the system. To define the order, composition rules establish the dependencies



Models of Computation 51

between objects in the form of data and/or control flow. Examples at either end
of the spectrum can include shared variables for unordered data flow or syn-
chronization mechanisms such as events for data-less control flow and ordering
only.

Arguably the most common MoC is an imperative model, as realized by
sequential programming languages such as C or C++. In an imperative MoC,
behavior is described as a sequence of statements that operate on and change
program state. Imperative models can be graphically represented in the form
of flow charts or activity diagrams [23]. Both statements and state can be de-
composed into hierarchical structures using procedural or object-oriented pro-
gramming methods. Statements communicate solely through manipulations of
shared memory. For that reason, statements are strictly ordered in time based
on the sequence in which they are defined. Note that modern compilation tech-
niques can relax this requirement and extract concurrency or optimize the state
space by splitting imperative code into basic blocks and abstracting inter- and
intra-block dependencies into CDFGs. In contrast, functional or logical pro-
gramming models follow a declarative style and are directly based on variants
of a dataflow MoC (see Section 3.1.1 below) with ordering based on explicit
dependencies only.

All imperative, functional or logical programming models describe the trans-
formative aspects of systems as pure functionality that maps inputs to outputs.
In embedded systems, however, time is usually a first-order property. Such
systems are reactive in the sense that they continuously interact with their en-
vironment. The relationship, relative ordering and interleaving of outputs and
inputs is part of the definition of their behavior. Therefore, so-called syn-
chronous languages [18] follow an approach where concurrency and ordering
is explicitly specified in the code instead of relying on extracted or implicit
scheduling of operations. Program statements are composed into concurrent
blocks that communicate through signals to exchange sequences of values and
events. Furthermore, such languages divide the time model into a sequence of
discrete steps and mandate that all operations and events within each step hap-
pen simultaneously and instantaneously, i.e., in zero time at the ticks of a set of
logical clocks. A conceptually discrete time model where all delays assumed
to be zero establishes a total order and makes synchronous languages fully
deterministic, allowing for proofs of correctness. Examples of synchronous
languages include Esterel [21], which follows an imperative style to define
block behavior and is based on an underlying finite state machine MoC (see
Section 3.1.2). By contrast, Lustre [85] follows a functional (declarative) style
based on a dataflow model (see Section 3.1.1) in which all blocks execute con-
currently and in lockstep.

On top of basic, fine-grain programming models that are composed out of
objects at the level of individual statements or operations, higher-level MoCs can



52 Modeling

be defined to reason about interactions between complete coarse-grain blocks
of code. Such MoCs can be broadly subdivided into process-based and state-
based models. Process-based models are data oriented and are typically used in
system behavioral models to describe desired application functionality. State-
based models, on the other hand, focus on explicitly exposing and representing
control flow. They are used for control-dominated applications and for modeling
of designs at the implementation level. Throughout the design flow, a variety of
such MoCs can then be used to describe designs. Note, however, that MoCs only
capture behavioral aspects. Any system model will therefore have to combine
MoCs with capabilities to represent structural aspects of the design as well.

3.1.1 PROCESS-BASED MODELS
Process-based MoCs represent computation as a set of concurrent processes.

Processes are internally described in an imperative form using sequential pro-
gramming models. In other words, the overall system is modeled as a set of
blocks of code that execute in parallel and are generally independent of each
other. Thus, process-based MoCs focus on explicitly exposing available con-
currency. They are untimed and ordering is only limited by data flow between
processes as is the case, for example, in a producer-consumer type of relation-
ship. As such, they are applicable for modeling of functionality at the input of
system design flows, specifically for streaming applications where interactions
are dominated by data dependencies.

Different process-based MoCs then vary in the semantics of communica-
tion they support to exchange data and establish dependencies between pro-
cesses. As realized by various operating systems (e.g., Posix threads [29]),
languages (e.g., Java threads [79]) or parallel programming environments (e.g.,
the Message Passing Interface, MPI [80]), general-purpose process models typ-
ically support a broad set of Inter-Process Communication (IPC) mechanisms
with universal semantics. Low-level and implementation-oriented thread-based
models are built on shared memory and shared variable semantics with the sub-
sequent need for additional mechanisms (such as semaphores, mutexes or criti-
cal sections) to explicitly synchronize accesses to shared resources [119]. Alter-
natively, in message-passing models, each process has a separate local memory
space and processes exchange blocks of data in a synchronous, rendezvous-
style or asynchronous, queue-based fashion. In the synchronous case, message
senders are always blocked until the receiver is ready to accept the data. In the
asynchronous case, messages are buffered and senders may or may not block,
depending on the buffer fill state.

Definitions of concurrency and communication in process-based models di-
rectly translate into properties such as deadlocks and determinism. Deadlocks
can arise if there is a circular dependency between two or more processes where



Models of Computation 53

each process holds an exclusive resource that the next one in the chain is wait-
ing for. For example, a process might wait for a semaphore that is blocked
by another process and vice versa. Deadlocks can be prevented or avoided by
statically ensuring that chains can never occur or by dynamically breaking them
at runtime.

Determinism is related to the outputs of a model for a given set of inputs.
If a model is deterministic, the same inputs will always produce the same
results. By contrast, if a model is non-deterministic, its behavior is, for at least
some inputs, undefined. Note that non-determinism is different from random
behavior. In the random case, different outputs will appear with a certain
probability, whereas non-determinism will not give any guarantees at all. Non-
determinism makes it hard to ensure that the behavior is correct if a specific result
is desired. Especially during validation, it is generally not feasible to produce
all possible outcomes. Randomized simulations can alleviate this problem yet
still not provide guarantees. A fully deterministic model, on the other hand,
will guarantee results but might instead lead to overspecification. For example,
truly concurrent processes have to be non-deterministic in the order in which
they execute. This provides an implementation with the necessary degree of
freedom to choose a specific schedule.

To cope with these issues and propose varying solutions, different process-
based MoCs have been developed over the years. Depending on their rigor, the
most common process-based models can be roughly subdivided into process
networks, dataflow models and process calculi.

PROCESS NETWORKS
Specialized process-based MoCs have been proposed that provide deter-

ministic properties on a global scale while still allowing for non-deterministic
execution of individual processes. This is generally achieved by ensuring that
the order of process execution cannot affect overall behavior of the system. For
example, in a Kahn Process Network (KPN) [104], processes are only allowed
to communicate via uni-directional and point-to-point asynchronous message-
passing channels, where messages (also called tokens) can be of arbitrary type.
Channels are unbounded, and as such, senders can never block. Conversely,
receivers always block until a complete message is available. Since processes
can only wait for a single channel and cannot check whether data is available
without blocking, they have to decide in each step whether to wait for a channel
and which channel to wait for next. Therefore, the sequence of channel accesses
is predetermined and processes cannot change their behavior depending on the
order in which data arrives on their inputs. Hence, the behavior of the overall
system is deterministic and does not depend on the order in which processes
are scheduled. Note that a KPN can have deadlocks but is defined to regularly
terminate on a global one when all processes are blocked while waiting for



54 Modeling

messages. Again, global deadlock and termination conditions do not depend
on the chosen schedule.

P1 P3

P2 P4

FIGURE 3.1 Kahn Process Network (KPN) example

In a KPN, however, the chosen scheduling strategy will influence other prop-
erties such as completeness or memory requirements. For example, Figure 3.1
shows a simple KPN with two processes P1 and P2 producing data that is con-
sumed by process P3. In addition, a fourth process P4 only depends on data
from P2. In such a pure KPN model, processes are connected via unbounded
FIFO queues with infinite buffers. Any KPN implementation, on the other
hand, must run within the limited physical memory of a real machine. In this
respect, the order in which processes are executed will determine the amount
of memory needed. For example, if processes are executed in a round-robin
fashion but P1 and P2 produce tokens at a faster rate than they can be pro-
cessed by P3 and P4, tokens will unnecessarily accumulate on the arcs. This
can be avoided by only running processes whenever their data is needed. In
such demand-driven scheduling, arcs between processes are essentially treated
as synchronous message-passing channels with zero buffering. Note that this
can create unnecessary backwards dependencies, which can potentially lead to
artificial deadlocks.

Consider a variant in which P3 does not consume any tokens at all or is
blocked in a local deadlock with another process. In this case, a demand-driven
scheduling would not execute P2, effectively blocking P4 and the independent
stream in between them as well. In contrast, a data-driven scheduling runs
processes whenever they are ready. It would keep P1, P2 and P4 running but
would also indefinitely accumulate tokens on the P1-P3 and P2-P3 arcs.

In general, KPNs are Turing complete and it is undecidable by any finite
time algorithm whether they terminate (halting problem) or can at least run in
bounded memory. Not being able to determine if and in what order processes
have to be run when reaching full write buffers, any scheduling strategy must
choose between a complete or a bounded execution. A complete execution
runs processes as long as they are ready but might require unbounded mem-



Models of Computation 55

ory. A bounded execution imposes limits on buffer sizes and will block senders
when reaching buffer limits. Thus, a bounded execution may be incomplete and
may potentially create artificial deadlocks leading to early termination. A data-
driven scheduling algorithm prefers completeness and hence non-termination
over boundedness. A demand-driven scheduling prioritizes boundedness over
completeness and even non-termination. In practice, hybrid approaches are
employed [154]. In Parks’ algorithm, processes are executed until buffers be-
come full, gradually increasing buffer sizes whenever an artificial global dead-
lock occurs. As such, the algorithm prefers non-terminating over bounded and
bounded over complete execution. Note, however, that there are KPNs where
a complete, bounded schedule exists that neither algorithm will find [68].

DATAFLOW
Overall, KPNs generally require both dynamic scheduling with runtime con-

text switching and dynamic memory allocation. For these reasons, their prac-
tical and efficient realization is difficult to achieve. To improve on the short-
comings of KPNs, extensions with restricted semantics have been developed.
In a dataflow model, processes are broken down into atomic blocks of execu-
tion, called actors. Avoiding the need for context switches in the middle of
processes, actors execute, or fire, once all their inputs are available. On every
execution, an actor consumes the required number of tokens on all of its inputs
and produces resulting tokens on all of its outputs. In the same way as KPNs,
actors are connected into a network using unbounded, uni-directional FIFOs
with tokens of arbitrary type. More formally, a dataflow network is a directed
graph where nodes are actors and edges are infinite queues. Dataflow networks
are deterministic and have the same termination semantics as KPNs.

Dataflow models map well onto concepts of block diagrams with continuous
streaming of data from inputs to outputs. As a result, they are widely used
in the signal processing domain and as the basis for many commercial tools
such as LabView [96] and Simulink [95]. However, in their general form,
questions as to their schedulability, boundedness and completeness, remain. For
example, termination due to deadlocks is typically not desired in these types of
applications, yet non-termination cannot be analyzed or guaranteed. Therefore,
variants of dataflow that further restrict semantics of atomic execution have
been developed. For example, Synchronous Data Flow (SDF) [120] models
have found widespread adoption. In an SDF graph, the number of tokens
consumed and produced by an actor per firing is constant and fixed. Hence,
the amount of data flowing through the system is predetermined and can not
dynamically change depending on, for example, elapsed time or received token
values. Therefore, the graph can be statically scheduled in a fixed order. As a
consequence, statically scheduled SDF graphs are bounded and required buffer



56 Modeling

sizes are known before runtime. Note, however, that the choice of schedule
might still influence overall memory requirements.

a b c

d

1 122
2

2

2

1

FIGURE 3.2 Synchronous Data Flow (SDF) example

Figure 3.2 shows an example of a simple SDF system with four actors, a, b,
c and d. On every execution, actor a produces two tokens; actor b consumes
three tokens (one on the arc from a and two on the arc from d) and produces
two (on the arc for c); actor c consumes one of b’s tokens and sends a token to
d; and finally, actor d both consumes and produces two tokens on each of its
input and output arcs. Note that the graph is initialized by placing two tokens
on the arc between c and d. Such initialization tokens are necessary to resolve
any deadlocks that might exist in the raw graph, as is the case for this example.

To schedule such an SDF graph, we first determine the relative execution
rates of actors by solving the system of linear equations relating production and
consumption rates on each arc. For the example shown in Figure 3.2, we get
so-called balance equations

2a = b

2b = c

b = d

2d = c

which reduce to 4a = 2d = c = 2b. Picking the solution with the smallest
rates, we have to execute c four times and b and d each two times for every
execution of a. Note that if the system of linear equations is inconsistent and
not solvable other than by setting all rates to zero, the SDF graph can not be
statically scheduled and would otherwise (if scheduled dynamically) lead to
accumulation of tokens.

After computation of execution rates, we can determine a schedule to be
executed periodically by simulating one iteration of the graph until its initial
state is reached again. Note that if a deadlock is reached during this process,
initialization tokens (as described above) will have to be placed on some arcs
for a valid schedule to exist. Any scheduling and simulation algorithm can then
be used to determine a firing order and many different schedules can usually be
generated for each graph. Schedules will vary in the sizes of buffers required
during their execution.



Models of Computation 57

For example, a simple list scheduling of Figure 3.2 could result in an actor
order of adbccdbcc. This schedule will accumulate at any time a maximum of
2 tokens on each arc for a total memory requirement of 8 token buffers. By
contrast, a schedule of a(2db)(4c) would require a total of 12 token buffers, but
would potentially result in a smaller code size as the actors db and c are executed
within local loops. In general, depending on code generation and compiler
optimizations, a single-appearance schedule in which each actor invocation
appears only once (such as the second one above) can lead to a reduction in
code size, potentially at the expense of buffer requirements. All in all, SDF
approaches allow for efficient implementation of models in which dependencies
between blocks can be statically fixed.

PROCESS CALCULI
A further restriction of dataflow models and a formalization of process-based

execution into a sound mathematical calculus framework is provided by mod-
els such as Communicating Sequential Processes (CSP) [90] or the Calculus
of Communicating Systems (CCS) [141]. As in a demand-driven schedul-
ing of KPNs, communication between processes in such models is limited to
rendezvous-style, synchronous message-passing. Similar to the concept of a
model algebra introduced in Chapter 1, this strict semantics allows an algebra
of processes to be developed based on a definition of corresponding objects,
operations and axioms. Objects in a process algebra are processes {P,Q,...}
and channels {a,b,...}. Operations are process compositions such as parallel
(P ‖ Q), prefix/sequential (a → P ), or choice (P + Q) operators. Finally,
axioms define basic truths such as indemnity (� ‖ P = P ) or commutativity
(P + Q = Q + PorP ‖ Q = Q ‖ P ). Models can then be written as process
algebraic expressions and manipulated or compared, e.g., to prove equivalence,
by successively applying axioms or derived theorems. Due to their rigorous
semantics, process calculi have been used as the basis for many parallel pro-
gramming or design languages, among them OCCAM [121] or Handel-C [38],
both of which are based on a CSP model.

In summary, process-based models have the general advantage of explicitly
exposing concurrency by focusing only on dependencies due to the flow of
data through the system. Implementation-oriented solutions have the fewest
restrictions but also provide little to no guarantees or opportunities for analysis
and optimization. At the other end, SDF models are statically fixed and can be
implemented very efficiently. Note that Data Flow Graphs (DFGs), as used, for
example, to represent dependencies in expressions or basic blocks of a CDFG,
are further restricted variants of SDF in which graphs have to be both directed
and acyclic, and actors representing operations are only allowed to produce
and consume a single value per arc and firing. On the other hand, extended



58 Modeling

variants of SDF, such as Boolean [118] or Cyclo-Static Dataflow [22], relax
some of the restrictions in order to become Turing complete or increase the
scope. In between implementation-oriented and static models, KPNs and, to
a more limited extend, process calculi provide even greater flexibility while
still being at least partially analyzable (e.g., in terms of determinism) when
modeling dynamic behavior, as found, for example, in many modern multimedia
applications.

3.1.2 STATE-BASED MODELS
State-based models generally describe behavior in the form of states and

transitions between states. As such, they are primarily focused on an explicit
representation of the status of computation at any time, where a state is a snap-
shot of the union of all memory and essentially reflects history. In addition,
state-based models explicitly represent the flow of control as transitions be-
tween different states Imperative models, flow charts and CDFGs, by contrast,
only encode state implicitly (in the form of associated global variables).

State-based models were originally developed to describe the stepwise oper-
ation of a machine in an abstracted, formalized manner. Specifically, they are
almost exclusively the basis for modeling of synchronous hardware down to a
cycle-by-cycle level. In addition, state-based models are often used to specify
the abstract behavior of control-dominated, reactive applications that are driven
by actions in response to events.

State-based models that represent computation are usually finite in the num-
ber of states and transitions. As a result, they are not Turing complete. Yet, they
are powerful enough to describe large classes of computation. In addition, their
finite nature makes them amendable to analysis and optimization through for-
mal methods to check, for example, equivalence, minimization or reachability
of states.

FINITE STATE MACHINES
The most fundamental model of computer science is a Finite State Machine

(FSM) or finite automaton. An FSM is formally defined as a quintuple

< S, I,O, f, h >

where S represents a set of states, I represents a set of inputs, O represents a set
of outputs, and f and h are the next-state and output functions, respectively [62].
The next state function f : S × I → S defines for every state and every input
the transition to the next state of the FSM. An FSM is deterministic if there is
one and only one next state for every input and state. On the other hand, an
FSM is non-deterministic when f is a multivalued function. The output function



Models of Computation 59

h defines the output values of the FSM depending on the state and optionally
input values. In a so-called Mealy FSM, the output function h : S × I → O
is transition-based and outputs are defined for every state and every input. In
contrast, a Moore FSM is state-based and the output function h : S → O does
not depend on the inputs but only on the current state. Note that a Moore FSM
is equivalent to a Mealy FSM in which incoming transitions for every state have
the same output. Therefore, a Mealy FSM can be converted into a Moore FSM
by splitting states depending on the different outputs generated when entering
the state.

An FSM can be efficiently stored in tabular form. However, FSM models
quickly become too large to be processed by humans or tools and are useful
for computations represented by several hundred states. On the software side,
FSMs are often used as automata to recognize or represent language grammars
or regular expressions. On the hardware side, FSMs are used as abstracted
representations for analysis and optimization of sequential circuits that are im-
plemented in the form of a state register, next state and output logic. In this
case, FSM models are cycle-accurate and each state corresponds to one clock
cycle.

The original FSM model uses binary variables for inputs and outputs, where
function h assigns constants of 0s and 1s to output variables. Consequently, an
FSM has to include a new state for every distinct condition to be encountered and
remembered, e.g., when counting the number of times an event has occurred. To
avoid this state explosion and reduce complexity, a Finite State Machine with
Data (FSMD) introduces standard integer or floating point variables, which
allows each state or transition to be associated with an expression over these
variables [38]. Formally, a FSMD is a sixtuple

< S, I,O, V, f, h >

that extends the FSM definition with a set of variables V and modifies the next
state function f : S× I×V → S×V and output function h : S× I×V → O
to define mappings that include variable values. Note that FSMs are a subset of
FSMDs, i.e., every FSM is also a FSMD. Conversely, FSMDs can be translated
into equivalent FSMs by expanding every possible variable value into a separate
state.

Figure 3.3 shows an example of a counter modeled as a FSMD that increments
a variable v whenever input event c occurs. The FSMD has three states s1, s2,
and s3 and seven transitions representing state changes under different inputs
and conditions. In this case, start state s1 initializes v to zero and then enters
the waiting state s2. In state s2, the FSMD does not perform any operation, and
it will stay in this state as long as c is zero. Once c becomes true, the FSMD
transitions to state s3 and continuously increments v until c goes back to zero,
at which point the FSMD transitions back to s2. Finally, when receiving input



60 Modeling

s3s2

s1
rr

c  =  0 c  =  1
c  =  1

c  =  0

v  : =  0

v : =  v +  1

FIGURE 3.3 Finite State Machine with Data (FSMD) example

event r in either s2 or s3, the FSMD is reset and restarted by transitioning back
to state s1. As is the case for most embedded, reactive systems, the FSMD
executes indefinitely and does not terminate. In general, a state machine can
declare an explicit end state if it is meant to be embedded in a larger context.

The FSMD model is widely used to represent hardware implementations
of RTL processors consisting of a controller and a datapath [3]. In this case,
each state executes in one clock cycle. States and transitions of the core FSM
thereby describe the implementation of the controller. On the other hand,
variables, expressions and conditions describe the operations performed by the
datapath in each cycle. In a similar manner, FSMDs can be used to provide a
state-oriented view of imperative programming models. Transitions and states
describe the control flow of the program where each state computes a set of
expressions corresponding to the statements in the code. Note that in this case,
the FSMD are usually not cycle accurate since states can represent whole basic
blocks that may require several clock cycles to execute. Furthermore, note that
imperative models are more vividly represented by a CDFG describing control
and data dependencies between and within basic blocks, respectively.

HIERARCHICAL AND CONCURRENT STATE MACHINES
Hierarchy and concurrency are further mechanisms to manage complexity

of the state space. In a hierarchical state machine, states can be complex, so-
called super states, which internally consist of a complete state machine each.
Consequently, individual FSMDs are hierarchically composed into a so-called
Super State FSMD (SFSMD). In an SFSMD, entering a super state is equivalent
to entering the start state of the SFSMD contained within. Super states can be
exited by defining an end state in the child SFSMD. Whenever a super state
reaches it end state and exits, the parent SFSMD will transition to and enter
a specified other of its super states. As an alternative to explicit end states in
children, a parent SFSMD can declare a transition between super states that will
exit a child SFSMD whenever a specified condition becomes true, independent
of which substate the child is in at that time. As such, hierarchy allows both



Models of Computation 61

to organize complexity and potentially reduce the number of transitions in the
state diagrams.

Concurrency allows complex state machines to be decomposed into mul-
tiple, separate FSMDs running in parallel. Concurrent FSMDs can thereby
communicate through a set of shared signals, variables and events. Interactions
between state machines are usually based on a model that operates concurrent,
communicating FSMDs in a synchronous, lock-step fashion. By ensuring that
FSMDs all transition and update or check signals at the same time, it can be
guaranteed that they will not miss each other’s events and hence can safely
exchange information.

When combining both hierarchy and concurrency, so-called Hierarchical and
Concurrent Finite State Machine (HCFSM) models emerge, such as the ones
pioneered in Harel’s graphical StateCharts language [86] and used for Unified
Modeling Language (UML) state diagrams [23]. In the original StateCharts,
each hierarchical super state can be either a so-called AND- or OR-composition
of substates. OR states are used to describe regular hierarchy in which a parent
state is at any given time in either one (but only one) of its substates. In contrast,
AND states describe a concurrent composition where being in a parent state
means that the system is at the same time in all of its substates.

c /  v  : =  v  +  1

v  : =  0

r
s1

s

s2

s3

s4d  /  ed  /  e

FIGURE 3.4 Hierarchical, Concurrent Finite State Machine (HCFSM) example

Figure 3.4 shows an example of a HCFSM as a variation on the counter
FSMD presented earlier in Figure 3.3. At the top level, the system is modeled
as an OR composition that starts execution in initialization state s1. Upon
receiving the start signal s, the HCFSM enters the concurrent composition of
state machines s2, s3 and s4. The left state machine starts in state s2 and
essentially implements an edge detection that transitions between s2 and s3 and
issues an event e depending on the presence or absence of event d. In parallel,
s4 implements a simple counter that increments v on every occurrence of c. At
the same time, the hierarchical combination of s2, s3 and s4 can be aborted by
an event r that transitions from whatever state the combined super state is in
back to the start state s1.

As discussed above, HCFMs execute concurrent state machines in a lock-
step, synchronized fashion. Different HCFSM models can vary in the details



62 Modeling

of their semantics, specifically depending on when and for how long gener-
ated events take effect. Introduced as a purely graphical notation, the original
StateCharts description did leave many of these issues open. As a result, a
wide variety of interpretations have been proposed over the years. Notably, the
semi-official semantics as realized by Harel’s own Statemate tool set follows an
approach in which events that are posted in one step are valid in and only in the
next step [87]. Together with additional rules about, among others, priorities
of conflicting transitions, this makes Statemate models deterministic in their
externally observable behavior.

Statemate thereby offers two different, so-called synchronous and asyn-
chronous execution modes. In the synchronous mode, steps are executed at
regular intervals, sampling all inputs, executing transitions and posting events
for the next interval in each. This corresponds directly to a hardware imple-
mentation with a network of synchronous state machines connected in a Moore
fashion. In the asynchronous mode, global steps can each consist of a sequence
of microsteps, where microsteps are assumed to execute in zero time. External
inputs are only sampled at the beginning of each global cycle while internal
events are propagated through a chain of microsteps until the system stabilizes
and no more events are generated. As long as there are no cyclic dependencies,
this mode can emulate the propagation of signals among immediately reactive
Mealy machines embedded within common, global clock cycles.

In the presence of combinatorial cycles, however, the sequence of microsteps
might never terminate. Worse, each microstep performs state updates, which
in turn might enable additional transitions in the next microstep, leading to
superfluous or multiple transitions of state machines within each global step.
Clearly, this behavior does not correspond to reality.

In all cases, none of the Statemate modes is strictly synchronous as required
for precise modeling of interconnected Mealy machines. As discussed previ-
ously in the context of synchronous languages (at the beginning of Section 3.1),
for models to be fully deterministic, events within each global cycle all have to
occur at the same instant and within zero time [18]. In that case, combinatorial
cycles can lead to global inconsistencies or non-determinism. To deal with
such issues, truly synchronous languages either generally reject models with
cycles at compile time (e.g., as is the case for Lustre [85]) or require that a
unique fixed-point solution exists in every global step (as realized, for example,
in Esterel [21]). Likewise, note that strictly synchronous variants of HCFSM
models have been developed by providing a dedicated synchronous interpre-
tation (Argos [125]) or by using the StateCharts-like notation as a graphical
frontend for Esterel (SyncCharts [6]).



Models of Computation 63

PROCESS STATE MACHINES
To avoid the need to maintain a global time, models exist that compose con-

current, communicating FSMDs asynchronously in the same manner as is done
in process networks (see Section 3.1.1). This then requires more complex hand-
shaking protocols or mechanisms such as message-passing in order for FSMDs
to be able to communicate reliably. For example, while leaving many semantic
details undefined, UML state diagrams [23] as yet another variant of HCFSMs
are generally based on an unrestricted asynchronous execution model in which
concurrent state machines must explicitly coordinate their execution through
event queues wherever necessary, e.g., to synchronize accesses to shared vari-
ables. As such, UML state diagrams are in the general case non-deterministic.
However, their state-based nature allows other formal models, such as Petri
Nets [142], to be superimposed on such asynchronous HCFSMs. Similar to
process calculi (see Section 3.1.1), state-oriented mathematical models like
Petri Nets abstract away actual functionality and only focus on representing in-
teractions and relationships necessary to analyze concurrency, synchronization,
determinism and properties such as boundedness, reachability or liveness.

Combining synchronous and asynchronous approaches to concurrency, so-
called Globally Asynchronous Locally Synchronous (GALS) models, such as
Co-Design Finite State Machines (CFSMs) [11] have been proposed. GALS
models maintain local clocks for FSMDs within each block yet allow dif-
ferent blocks in the overall system to progress independently. Such models
match the typical clock distribution in modern, complex system architectures.
Nevertheless, at the leaves of the hierarchy, behavior is still described in an
implementation-oriented form as clocked state machines communicating over
signals or wires.

Taking these ideas further, we can develop a sound combination of process-
and state-based approaches by fully integrating concepts of process networks
(see Section 3.1.1) into HCFSM models. For example, in a Program State Ma-
chine Model (PSM) [63], leaves of the hierarchy contain complete asynchronous
processes described in a sequential, imperative programming language. In the
original SpecSyn language, behavioral VHDL code was used as the basis for
describing processes [185].

In a PSM model, such so-called program states can then be composed hier-
archically following a HCFSM style. At each level, either a sequential state-
machine or a concurrent but asynchronous composition of program states is
supported. When entering a program state, execution either starts with the first
statement of the process code or, in the case of a superstate, by entering the
set of start states in the same manner as a HCFSM. In contrast to HCFSMs,
however, processes and hence program states have an explicit and clean notion
of completion. Superstates can be exited in two ways: a so-called Transition-



64 Modeling

Immediately (TI) arc is equivalent to a transition in an HCFSM (such as r in
Figure 3.4) that originates from the superstate to one of its siblings and can
be taken at any time, independent of the internal sub-state(s) the superstate is
in. On the other hand, a Transition-On-Completion (TOC) arc is defined as a
transition to a sibling of the superstate that is taken at the same time that the
substates internally reach a declared end state. A leaf state completes whenever
its process exits (i.e., reaches its end or explicitly returns). Furthermore, the
end state of a concurrent superstate is reached when all of its substates have
completed.

As mentioned above, concurrent processes of a PSM run asynchronously
to each other at any level. In the original SpecSyn model, processes can only
communicate through a set of basic shared variables, events and signals. Thus,
models are generally non-deterministic and have to explicitly implement any
protocols necessary to synchronize and coordinate process execution. As a re-
sult, processes are generally a mix of computation and communication code. To
improve on this situation, later extensions of the PSM model support the sepa-
ration of communication from computation into distinct objects. For example,
the SpecC model, while also being based on C instead of VHDL, introduced
the concepts of channels for encapsulation of communication and of clearly
defined interfaces as the boundary for separation of process from channel func-
tionality [63].

S
P P

c1
P5

P3

P4

dP1

P2
d

…
c1.r ecei v e(d,e);
a =  42;
w h i l e (a<10 0 )
{  b  =  b  +  a;
i f  (b  >  50 )
c =  c +  d;

el s e
c =  c +  e;

a =  c;
}

c1.s en d(a);
…

c2

FIGURE 3.5 Process State Machine (PSM) example

Figure 3.5 shows an example of an extended Process State Machine (PSM)
model. At the leaves, the model consist of five processes, P1 through P5, that
are described in standard C or C++ form. As before, the system S starts by
executing process P1 and, depending on input d, either transitions to process
P2 or enters the concurrent superstate PP. Inside PP, the sequenc of process P3
followed by P4 runs in parallel to process P5. Concurrent processes exchange
data by sending and receiving messages over channels c1 and c2. PP completes
once both P5 and P4 are finished executing. Upon completion of either P2 or
PP, S enters its end state, which transparently follows to TOC arc of S to one



System Design Languages 65

of its siblings. Note that the example does not show any TI arcs, which were
already previously seen in Figure 3.4. Nevertheless, in contrast to plain HCFSM
models, clean completion semantics of PSMs results in a well-defined modular
composability.

In summary, PSM models provide a powerful combination of both process-
based and state-based concepts. Asynchronous process networks provide a
means to describe dynamic, data-oriented application behavior limited only by
the flow of data and data dependencies across computations. On the other hand,
concepts of states and transitions allow explicit modeling of reactive, control-
oriented systems in addition to providing a representation of implementation is-
sues such as program state, data storage, operation scheduling or cycle-accurate
behavior. At all levels, hierarchy and concurrency support organization and
management of complexity through separation of concerns. In addition, sep-
aration of computation and communication supports further orthogonalization
of concerns and enables coarse-grain, asynchronous concurrency and flexibil-
ity while still providing means, including libraries of message-passing or other
communication channels, to maintain global determinism. All in all, combined
PSM-type models are able to support the complete system design process all
the way from specification of abstract system behavior down to cycle-accurate
implementation of hardware or software components.

3.2 SYSTEM DESIGN LANGUAGES
In order for a design to be simulated, analyzed and verified by the designer,

it needs to be represented in a formalized, machine-readable manner - that is,
in some form of design language. Each design language carries very specific
syntax and semantics [55]. The syntax of a language defines its grammar as
a set of valid strings over an alphabet. While design languages are typically
textual, some have an optional or exclusively graphical syntax (e.g. a flow chart
as a graphical representation of an imperative program or the purely graphical
StateCharts language). The semantics of a language subsequently defines the
meaning of strings written in the language by mapping the syntax into an un-
derlying semantic model, such as a mathematical domain [167] or an abstract
state machine model [158, 82].

A description of a design in such a design language is then called a design
model. When referring to models, we need to distinguish between a design
model as an instance of a syntactically valid description written in the language,
the semantic model underlying a language, and an MoC that defines a formal
class of execution models where language-specific details such as data types and
formats are abstracted away. For example, a MP3 decoder design model can be
described as an instance of a KPN MoC captured in the syntax and semantics



66 Modeling

of the SystemC language. Typically, the same MoC can be represented in
a variety of languages. Conversely, the same design language can represent
different MoCs if it has a broad, basic semantic model that other MoCs map to.
For example, while differing in their concrete syntax and detailed semantics,
sequential programming languages such as C or C++ all support an imperative
MoC, yet can also capture FSMs or FSMDs [184]. Note, however, that support
for different MoCs in different languages varies, and specialized languages exist
that are tied to a specific MoC, e.g., the graphical StateCharts language, which
directly realizes a HCFSM model.

3.2.1 NETLISTS AND SCHEMATICS
Over the years, many new design languages have emerged to capture the

necessary and sufficient semantics at each new level of abstraction. Early on,
one of the first concepts that was formally modeled and captured was the notion
of a netlist. Netlist models are purely structural representations of the design as
a set of components and their connectivity. As such, netlist models are the basis
for describing block diagrams used in early tools for computer-aided schematic
entry and editing. Such schematic editors support simple automatic design
rule checks to ensure, for example, that connections are only made between
component ports that are compatible in terms of direction, signal and logic
levels. Hence, their main role is documentation of block diagrams to facilitate
communication between different design teams.

Some of the first design languages were developed for description of netlists
at the gate level, such as the Electronic Design Interchange Format (EDIF).
However, the concept of a netlist for structural representations is universal and
has been carried over into corresponding new languages at each level. Today, at
the system level, variants of the Extensible Markup Language (XML) are com-
monly used to capture netlists of system platforms. For example, the SPIRIT
consortium defines the IP-XACT standard [172] for XML-based exchange and
assembly of system-level IP components.

3.2.2 HARDWARE-DESCRIPTION LANGUAGES
After capturing netlists and schematics, interest arose in representing not only

the structure of designs but also their design behavior. By adding capabilities
for describing the behavior of every component in a netlist, languages gained
execution semantics and could be simulated to validate the design. In order
to remain general, most widely used design languages are based on a very
basic discrete-event execution model. In a discrete event MoC, the system is
represented as an ordered sequence of events where each event is a (value, tag)



System Design Languages 67

tuple that marks a change of state in the system at a certain point in simulated
time [163]. Depending on the value and tag types supported by a specific
language, events can be used to model arbitrary state changes. For example, a
signal is defined as a sequence of voltage changes on a wire.

On the one hand, many different designs objects and classes of MoCs can be
mapped to such a universal event model and represented in a single language
with a small set of basic primitives. On the other hand, as described in Chap-
ter 1, while this expressibility might be desirable for simulation purposes, there
is a trade-off with the unambiguousness needed for analysis, synthesis and ver-
ification, typically restricting corresponding use of such general languages to a
well-defined subset with well-defined and unique interpretation.

In the early stages, these ideas were applied to the description of hardware
blocks at the gate level. Later on, they were transferred to the Register-Transfer
Level (RTL). This resulted in the definition of so-called Hardware-Description
Languages (HDLs) such as VHDL [7] or Verilog [180]. For example, at the
RT level, the design is described as a microarchitecture consisting of functional
and storage units connected by wires. Each RT component, such as a register or
an ALU, will eventually consist of logic gates, while its behavior is inherently
modeled in the form of Boolean expressions. Since logic gates and consequently
RT units respond to the signal changes at their inputs over time, a mechanism is
needed to indicate when inputs change and when this change propagates to the
outputs. Therefore, an event-driven execution behavior was added to trigger
evaluation of a component on every input change and subsequently propagate
the new results to all components connected at the outputs. This process of
event propagation and evaluation is repeatedly performed to simulate the design
behavior over time. All together, event-driven execution allowed for the first
time to completely simulate a digital circuit in the computer.

For simulation of HDL models, a so-called discrete event simulator internally
maintains a logical simulated time and a queue of events ordered by their time
stamps. In each simulation cycle, the simulator dequeues all events with the
current time stamp and triggers execution of processes waiting for those events.
Each component in the design is thus associated with a process describing its
functionality. Once triggered, the process body is executed to compute internal
state changes and a set of new values on its output signals. The simulator
then inserts the events generated by each process into its queue and advances
time to start the next simulation cycle. Note that to model delays, processes
can post events at future points in time or can wait for time to advance in the
middle of their execution. Furthermore, in more recent languages, processes
can dynamically change their sensitivity and wait for and post arbitrary events
throughout their execution. Hence, many HDLs can also model abstracted
behavior of process networks beyond simple components connected only by
wires.



68 Modeling

3.2.3 SYSTEM-LEVEL DESIGN LANGUAGES
As we move to the system level, it becomes important not only to model

the hardware side of a design, but also parts of the system implemented in
software. As a result, new languages have been developed that add capabilities
to describe software in a native manner. Due to the large body of legacy code,
a natural choice is to include software in the form of standard C code, either
by combining C with an existing HDL (SystemVerilog [174]) or by adding
hardware modeling capabilities to C or C++ through extensions (SpecC [65])
or via libraries (SystemC [81]).

In all cases, and in the same way as previous HDLs, such System-Level
Design Languages (SLDLs) are based on a discrete event driven execution
model that supports necessary concepts for concurrency, hierarchy, timing and
synchronization. In addition, SLDLs are supplemented with support for rich,
abstract data types, process- and state-based computation, and libraries of com-
munication channels. For example, the SpecC language implements a PSM
MoC with C-based processes composed hierarchically in an arbitrary parallel,
pipelined, sequential or state machine fashion. Furthermore, SpecC introduced
the concept of native channels with a library providing, among others, message-
passing, handshake, queue and semaphore type communication. SystemC, on
the other hand, started out as a C++-based HDL with parallel processes and
signals but later gained similar abstract channel concepts and libraries.

In addition, there are proprietary and standardized approaches that aim to
provide metalanguages for formally capturing heterogeneous models including
associated requirements and constraints [12, 5]. In all cases, such SLDLs allow
us to describe complete systems and their applications within a single framework
all the way from abstract specification of high-level MoCs down to processor
implementations at the RT level.

3.3 SYSTEM MODELING
System design in general describes the process of going from a high-level

system specification of the desired functionality down to a system implemen-
tation at the RT or instruction-set level. As outlined in Chapter 1, however,
the semantic gap between specification and implementation is too large to be
closed in a single step. Following a top-down or meet-in-the-middle approach,
the system design process is therefore broken into a series of smaller steps. At
the core of this process are definitions of system models to represent and pass
design information from one step to the next.



System Modeling 69

Specification Model

I m plem entation Model

Model n

Model n+1

R efinem ent

O ptim .  A lg or ith m

G U I

D B

...

...

D es ig n D ecis ions

FIGURE 3.6 System design and modeling flow

3.3.1 DESIGN PROCESS
Realizing a Specify-Explore-Refine (SER) methodology based on model al-

gebra principles described in Chapter 1, a general design flow can be established
in which an initial specification is gradually brought down to a final implementa-
tion through successive, stepwise refinement of design models (Figure 3.6 [71]).
In each design step, a refinement tool takes the input model and implements a
set of design decisions in order to generate an output model at the next lower
level of abstraction. In the process, tools insert a new layer of computation
and/or communication detail that reflects and represents the given decisions.
For example, to implement communication between software and hardware,
refinement tools generate drivers and interrupt handlers inside a model of the
processor hardware.

Design decisions can thus come from the designer, typically entered in-
teractively through a Graphical User Interface (GUI), or from an automated
algorithm. In both cases, decisions are made to optimize a set of design met-
rics, e.g., to simultaneously minimize system cost and area while not exceeding
a maximum latency and power consumption. In general, both refinement and
decision-making can be manual or automated.



70 Modeling

Within such a design process, each system model at the same time documents
the output of a design step and specifies the input to the next following stage.
Hence, a model serves as both:

(a) A description of some aspect of reality such that one can reason about it, i.e.,
a virtual prototype of already decided system details that allows validation
of design decisions through simulation or analysis.

(b) A specification of the desired functionality to be implemented in further
stages of the design process, i.e., a description of system features that still
need to be build and decided.

Note that both cases are usually combined in a single model where different
parts of the model represent different aspects operated on by different tools.

From a documentation point of view, models have to be capable of capturing
complex systems in all their relevant detail. Precise and complete representa-
tions of implementation details have to be defined such that effects of design
decisions on design quality can be clearly observed, measured and/or predicted.
At the system level, for example, virtual prototypes of the platform should allow
software to be developed before the actual hardware is available.

Models for simulation are thereby only a first step. In addition, models
should also enable formal methods to be applied for static analysis and verifi-
cation of design properties, e.g., to guarantee response times in a hard real-time
environment. Especially also under the aspect of serving as a specification for
further synthesis, models have to be defined with unambiguous semantics, such
that application of corresponding tools becomes possible in the first place.

Combining documentation and specification aspects, each design model is
an abstracted representation of a design instance. A model is associated with a
corresponding abstraction level that defines the granularity of implementation
detail represented in the model. As design progresses, we gradually move down
in the level of abstraction by adding more and more implementation detail. Due
to the lack of detail at higher levels, models simulate faster, but the accuracy of
results is limited, typically resulting in a trade-off as we move up in abstraction.
Therefore, the ideal design process should support a variety of levels with
different trade-offs, both to break the design flow into smaller steps and for
efficient design space exploration. For example, in the early stages, designers
want to rapidly prune the design space of clearly infeasible solutions. As such,
early models have to be fast but accurate only in relative, not absolute, terms.
Then, as the design space continues to shrink, we can gradually afford to spend
more and more time on slower but increasingly accurate simulation until a final
solution is confirmed.



System Modeling 71

3.3.2 ABSTRACTION LEVELS
As described in Chapter 1 and Chapter 2, there are four main abstraction

levels representing circuit, logic, processor and system levels. Within each
level, there are many different implementation details to be considered and
design steps to be performed. This requires main abstraction levels to be divided
into several intermediate levels and corresponding design models to be defined
for each. Specifically, in relation to system design we need to be concerned
with the implementation details within the upper system and processor levels.

Following the separation of computation and communication, we can first
and foremost distinguish between largely orthogonal computation and com-
munication details [107, 72]. Both can range from purely functional, fully
untimed descriptions down to cycle-accurate levels. On the communication
side, transaction-level approaches have recently become popular as an interme-
diate approach for modeling of communication detail above the cycle-accurate
level [31, 77, 109]. Similar concepts can also be applied on the computation
side.

Computation

Co
m
m
un

ic
at
io
n

A B

C

D F

Un-
t i m e d

A p p r o x i m a t e -
t i m e d

C y c l e -
t i m e d

Un-
t i m e d

A p p r o x i m a t e -
t i m e d E

C y c l e -
t i m e d A . S p e c i f i c a t i o n M o d e l  ( S M )

B . T i m e d  F u nc t i o na l  M o d e l
C . T r a ns a c t i o n-L e v e l  M o d e l  ( T L M )
D . B u s  C y c l e -A c c u r a t e  M o d e l  ( B C A M )
E . C o m p u t a t i o n C y c l e -A c c u r a t e  

M o d e l  ( C C A M )
F . C y c l e -A c c u r a t e  M o d e l  ( C A M )

FIGURE 3.7 Model granularities

Figure 3.7 [31] shows the range of granularities of computation and com-
munication for various levels of abstraction. For example, a behavioral system
specification at the origin of the graph (A) is untimed in both computation and
communication with only a causal ordering between processes. Annotating
computation with execution models and estimated or measured delays results
in a timed functional model (B). By also further refining communication down to
timing-accurate bus transactions, we reach a Transaction-Level Model (TLM)
of the system at point C. As such, a TLM includes timed models of computation
and communication behavior for the processors in the system.



72 Modeling

Going into the design process at the processor level, Bus-Functional Mod-
els (BFMs) of processors (which are assembled into a Bus Cycle-Accurate
Model (BCAM) of the system) can be obtained by refining interfaces down to
state machines that drive and sample bus wires on a cycle-by-cycle basis (D).
Alternatively, implementing only computation in the processors down to a mi-
croarchitecture at the RT or timed instruction-set level, leads to a Computation
Cycle-Accurate Model (CCAM), shown as point E in the graph. Finally, the
combined Cycle-Accurate Model (CAM) at the lowest level (F) is cycle-timed
in both computation and communication.

As mentioned before, a methodology is defined as a set of models and trans-
formations in between. A specific system design methodology is then estab-
lished through the path that is taken to go from an untimed specification at point
A all the way to a final cycle-accurate implementation at point F. To that effect,
the path taken determines the intermediate system models that are available, as
well as the amount, type and order of refinements to be performed throughout
the design process. For example, in a general design methodology (see Chap-
ter 1), design starts with a specification model (A) and progresses through an
intermediate TLM (B) to reach the final CAM (F), where computation and com-
munication refinement are performed together in two steps, at both the system
and processor levels.

3.4 PROCESSOR MODELING
On the computation side, the basic system component is a processor. Com-

putation processes of the system behavioral model are mapped onto proces-
sors, each of which runs a piece of the application code. Processor types
can range from programmable general-purposes processors over customizable
Application-Specific Integrated Processors (ASIPs) down to fully custom hard-
ware units [184]. In the most complicated case of a software processor, we can
typically distinguish several layers of computation implementation (Figure 3.8).
In the embedded case, the behavior of the system and hence of its components
is not only defined by their functionality but also, of equal importance, by their
timing. Thus, both aspects have to be considered throughout the design process.
Since all of these layers significantly contribute to the functional or, more im-
portantly, overall timing behavior of a processor, an accurate processor model
has to include all of them [166, 24].

At the specification level, the application is modeled as a network of com-
municating processes. Inside the processes, basic application algorithms are
typically described in an imperative programming language such as C. How-
ever, application code in itself is untimed. To introduce the notion of time,
information about execution delays on the given target processor has to be in-



Processor Modeling 73

serted into the code. This back-annotation can be performed at varying levels
of granularity. Such back-annotated application code then has to be augmented
with a model of its execution environment such that effects of running the code
on a given platform are accurately described.

P1 P2

OS
HW

DrvDrv I S RI S RH A L

p2.c

B u s Interrupts

FIGURE 3.8 Processor modeling layers

In the case of a software processor, as shown in Figure 3.8, application pro-
cesses usually run on top of an operating system (OS), which provides dynamic
scheduling and multi-tasking services. On the other end, application and OS
software has to run on top of the actual processor hardware, which realizes phys-
ical bus interfaces and interrupts (including processor suspension and interrupt
timing) for communication with the external world. In between, a hardware
abstraction layer (HAL) provides canonical interfaces, such as bus drivers and
interrupt service routines (ISRs) for accessing the processor hardware from the
software (i.e., application and OS) side.

Note that in general, all layers together determine the final execution order
and have a large influence on the overall timing behavior of the application
running in the processor. Hence, models of all layers and their relevant details
need to be developed and integrated into the design process. To that effect,
Figure 3.8 shows the most general case of a software processor with all layers.
By contrast, models of other processors, such as custom hardware units, are
derived as specialized versions of this general model by not including OS or
hardware abstraction layers.

3.4.1 APPLICATION LAYER
As mentioned previously, at the highest application layer, computation func-

tionality running on a processor is generally described as a hierarchical set of
communicating processes. Processes at the leaves of the hierarchy encapsulate
basic algorithms, e.g., in the form of standard ANSI C code. Processes can be
composed hierarchically in an arbitrary serial-parallel fashion. Furthermore,
processes communicate via shared variables, events or abstract channels pro-
viding high-level, typed communication primitives such as message-passing,
queues or semaphores.



74 Modeling

App

P2 C1

P1

P3C2

Logical time

5 1 00process P1() 
{

…
w a i t f or( 5 );
…

}

FIGURE 3.9 Application layer

For example, Figure 3.9 shows an application layer with three processes
P1, P2 and P3, where P2 and P3 are spawned to run concurrently after P1 is
finished. During their execution, P2 and P3 exchange messages over channels
C1 and C2. Furthermore, P3 communicates with other processors in the system
through two external ports.

To provide the necessary concepts of concurrency, communication and tim-
ing, such application descriptions are typically modeled in a C-based SLDL
such as SystemC or SpecC. With such an application specification, the designer
is essentially provided with a high-level, abstract model for programming the
complete platform across different processors.

To achieve desirable high simulation speeds, the application model is ex-
ecuted on the event-driven SLDL simulation kernel running natively on the
simulation host. In the process, application code is compiled into native host
instructions to directly emulate its functional behavior using the fastest possi-
ble host execution. In order to provide additional feedback about the timing
behavior, application processes have to be back-annotated with execution tim-
ing, which models and simulates the delays of running application code on the
chosen target processor in the final design (see Chapter 4).

As shown in Figure 3.9, back-annotation is performed by inserting wait-for-
time statements into the code as supported by the timing model of the underlying
SLDL. Depending on the available data and the use case, such waitfor state-
ments can be inserted at different levels of granularity ranging from basic blocks
up to the level of functions or whole processes. Each option thereby results in a
specific speed/accuracy trade-off. For example, back-annotation at the function
or process level cannot represent dynamic effects of data-dependent control flow
in the code. Instead, whole blocks of code are associated with a single, static
delay number based on worst-case or average-case assumptions. On the other
hand, back-annotation at the basic block level accurately models control flow
dependencies but is slower due to the larger number of waitfor statements to
be simulated.

There is a multitude of sources for obtaining execution delay numbers to be
back-annotated into the application code. In general, delays can be acquired



Processor Modeling 75

either through estimation or measurement. Estimation of execution time is a
topic that has been studied extensively with approaches that range from purely
static, worst-case estimation techniques [194] to profiling-based solutions [31]
that aim to deduce estimates from analysis or simulation of the source code,
respectively. In terms of delay measurements, cycle counts for the code can be
gained by compiling the code for the target processor and tracing its execution
either on the real processor or in a corresponding timing-accurate ISS. Lastly,
hybrid approaches exist that compile code down to an intermediate level in
order to apply analysis and estimation techniques at a level closer to the imple-
mentation [93].

3.4.2 OPERATING SYSTEM LAYER
In the application layer, computation processes are modeled as running truly

concurrently. In reality, however, we have to assume that processors can only
execute a single thread of control or a limited number of threads at any given
time. With the operating system layer, the goal is therefore to introduce ac-
curate representations of the scheduling of parallel processes on the inherently
sequential processors.

OSA p p

T a s k
P2

C1

P1

T a s k
P3C2

OS M o d e l

FIGURE 3.10 Operating system layer

As a first step, processes are grouped into tasks where all processes within
a task are arranged in a fixed order according to a pre-defined static schedule.
As shown in Figure 3.10, for example, processes P2 and P3 are converted into
tasks with static scheduling combining all sub-processes into one sequential
piece of code each. In a second step, remaining tasks are then considered to
be dynamically scheduled during runtime, typically by a Real-Time Operating
System (RTOS). To accurately reflect and specify these dynamic scheduling
and RTOS effects and needs, an abstracted model of the RTOS is inserted into
the processor’s operating system layer [75]. In the process, tasks (e.g., P2
and P3 in Figure 3.10) are refined to run on top of the OS model by inserting
the necessary OS calls for task management (creation and deletion), synchro-
nization (event handling) and timing (delay modeling). In addition, existing
application channels (e.g., C1 and C2, Figure 3.10) are refined into a model



76 Modeling

of Inter-Process Communication (IPC) that is properly integrated with the OS
model by inserting appropriate OS calls for implementation of synchronization.

The operating system layer and OS model describe expected RTOS behavior,
including the desired scheduling algorithm and scheduling parameters, both for
validation during simulation as well as for further synthesis. To that effect, the
concept of OS modeling in general is based on the idea that at the specifica-
tion level, as shown in Figure 3.11(a), processes are executed directly on the
underlying simulation kernel. Simulations run at native speeds but the concur-
rency model of the simulator does not match the actual scheduling algorithm
implemented in the real RTOS.

Application

S L D L

C h anne ls

T1 T2

(a) Specification

Application

R TO S
M od e l

C h anne ls

T1 T2

S L D L

(b) TLM

Application

I ns tr u ction S e t S im u lator

R T O S C om m .  &  S y nc.  AP I

S L D L

(c) Implementation

FIGURE 3.11 Operating system modeling

To get accurate results, application software is therefore traditionally simu-
lated in ISS models of processors instead (Figure 3.11(c)). For this purpose, the
application code is cross-compiled for the target processor and linked against
the real target RTOS libraries. The resulting final target binary is then executed
by an ISS, which in turn can be integrated into an SLDL environment for co-
simulation with the rest of the system [20, 70]. Such ISS approaches can be
very accurate, but as a result of their accuracy, can also be slow, especially if
multiple processors have to be co-simulated together in a cycle by cycle fashion.

The goal of high-level RTOS modeling is thus to provide a solution that
combines the speed of native application execution (Figure 3.11(a)) with the
accuracy of an ISS model (Figure 3.11(c)). Instead of running the real operating
system with all of its associated overhead, an abstracted RTOS model is inserted
as an additional layer that sits between the application and the underlying sim-
ulation kernel (Figure 3.11(b)). The OS model abstracts away unnecessary
implementation details and focuses solely on modeling key concepts relating
to multi-tasking, preemption, interrupt handling and inter-process communi-
cation and synchronization. As such, the RTOS model adds only a negligible
simulation overhead. On the other hand, it provides accurate feedback about



Processor Modeling 77

all important OS effects early on in the design process and at a high level of
abstraction.

Internally, the OS model wraps around and replaces the underlying SLDL
event handling with its own primitives. As mentioned above, tasks and channels
are refined to call the equivalent OS model services and are not allowed to access
the simulation kernel directly. Instead, the OS model selectively relays calls
to the kernel, ensuring that at any given time only one task is active and all
other tasks are blocked at the SLDL level. Whenever the OS model is called,
either by a task, a channel or from an asynchronous event such as an interrupt
handler, a re-scheduling and task switch is triggered. The OS model then
blocks the current task and selects, dispatches and releases a new task based
on its internally re-implemented scheduling algorithm. For example, an OS
model that emulates a priority-based scheduling will block a low-priority task
calling the OS if in the meantime a higher priority task has been activated by
an asynchronous external interrupt. By replacing delay models (i.e., waitfor
statements) with an appropriate wrapper, an OS model can therefore simulate
task preemption accurately within the granularity of the given back-annotation.

c1.recv()
c1.s en d ()

Bus

b u s .recv()

P2 P3

S1

T i m e

t0

t1

t2
t3

t5

t8

t6

t4

t7

t0

t1

t2

t3

t4

t5

t6

t7

t8

w a i t f o r() w a i t f o r()

w a i t f o r()

w a i t f o r()w a i t f o r()

w a i t f o r()

I n t

P1

w a i t f o r()

c1.recv()

c1.s en d ()

Bus

b u s .recv()

T a s k  P2 T a s k  P3

o s .w a i t f o r()

o s .w a i t f o r()

o s .w a i t f o r()

I n t

o s .w a i t f o r()

o s .w a i t f o r()

o s .w a i t f o r()

o s .w a i t f o r()

P1

C 1

S1

C 1

(a) Application (b) OS

FIGURE 3.12 Task scheduling



78 Modeling

Figure 3.12 shows the resulting execution schedules for the example previ-
ously introduced in Figure 3.9 and Figure 3.10. Execution starts at time t0 with
process P1, which in turn spawns processes P2 and P3 at time t1. In the un-
scheduled case (Figure 3.12(a)), P2 and P3 are running truly concurrently and
their simulated execution times overlap unless there is some causal dependency
between them. For example, at time t2, process P3 is blocked and waits for a
message from P2, which arrives over channel C1 at time t3. Similarly, at time
t4, P3 enters the bus driver to wait for external data from another processor
in the system. At time t5, an external interrupt to signal availability of data
arrives. The corresponding interrupt service routine is executed and releases a
semaphore S1 in the bus driver. The driver in turn receives the external data
and finally resumes execution of P3 at time t6. All throughout, P2, on the other
hand, runs continuously, uninterrupted by any of the events in the system.

Once the OS model has been inserted (Figure 3.12(a)), execution of tasks P2
and P3 is interleaved according to the selected scheduling algorithm. In this
example, priority-based scheduling is employed where task P3 has a higher
priority than task P2. Hence, P3 executes unless it is waiting on some event.
P2 is switched in and can run only when P3 blocks on a call to C1 or the bus
driver. Later, once C1 or S1 are released, P3 is reactivated, P2 is suspended,
and execution switches back to P3 until P3 ends and P2 can finish its remaining
execution. All combined, the OS layer and OS model accurately reflect the
execution sequence and timing as realized and observed on the real processor,
up to the significantly delayed end of execution at time t8. Note, however, that
the task switch from P2 to P3 at time t6 does not happen directly upon release
of S1 by the asynchronously triggered interrupt handler. In reality, the OS
would immediately preempt P2 to switch in the just reactivated high-priority
task P3. In contrast, the OS model can only do so once P2’s waitfor expires
and simulation control returns to the OS. Thus, there is an inherent inaccuracy in
modeling preemption at higher levels as determined by the intrinsically coarser
granularity of the time model.

Finally, note that the OS model offers its services for task management, event
handling, and delay modeling through a canonical API that is independent of
the interface format of any specific target RTOS. This allows refinement and
insertion of corresponding API calls to be performed automatically. Further-
more, during backend software synthesis (Chapter 5), such canonical API calls
can then be automatically converted into calls to the actual API of the selected
target RTOS.

3.4.3 HARDWARE ABSTRACTION LAYER
The Hardware Abstraction Layer (HAL) provides the lowest level of func-

tionality that is implemented in software. As such, its border marks the bound-



Processor Modeling 79

ary between the processor hardware and the software running on top of it. In
other words, all layers thus far down to and including the HAL are implemented
in software whereas all layers outside of the HAL are realized in hardware.
Again, this is for the general case of a software processor. In the case of a
custom hardware unit, neither HAL nor OS layers exist, and all functionality is
implemented in hardware.

Basic HAL templates are typically stored in the PE database, containing pre-
defined functionality for abstracting access to the processor hardware into a set
of canonical interfaces and services. For example, a HAL model in the database
will include the hardware-specific driver code for transferring arbitrary blocks
of bytes over the processor bus interface. Likewise, the HAL contains templates
of low-level interrupt handlers that are properly associated with corresponding
hardware interrupt sources.

HALO SAp p

T a s k
P2

C1

P1

T a s k
P3C2

O S  M o d e l

I n t A I n t B I n t C

U s r I n t 2U s r I n t 1

Dr
ive

r
Dr

ive
r

I n t D

B u s  
T LMAc

ce
ss

s a m p l e .s e n d (v1);

void s e n d (…) {    
i n t r . r e c e i ve ();
b u s .m a s t e r W r i t e (0x A000,

&t m p , 
l e n );

}

FIGURE 3.13 Hardware abstraction layer

On top of the HAL templates stored in the database, models of the drivers
for communication with the external world can then be developed and inserted.
Details of these communication models will be described in Section 3.5. In
general, as shown in Figure 3.13, models of the drivers are inserted into the OS
layer, where they are integrated with the rest of the processor model, i.e., the OS
model and the low-level bus access code in the HAL. In the process, low-level
interrupt handler templates in the HAL (e.g., IntA through IntC in Figure 3.13)
are filled with required code. Furthermore, necessary user-level interrupt tasks
(UsrInt1 and UsrInt2) are generated and registered with low-level handlers and
the OS model.

Together, these drivers describe the implementation of application channel
calls (such assend()or receive()) down to the level of external interrupts and
bus read() or write() transactions. As a result, HAL models of processors
are connected by and communicate with each other through bus models at the
level of individual interrupts and bus transactions. As mentioned previously
and as will be described in more detail in Section 3.5, such bus TLMs provide



80 Modeling

an abstracted implementation of bus communication beyond individual pins
and wires.

3.4.4 HARDWARE LAYER
With the final hardware layer, an accurate model of the actual processor hard-

ware is included. The processor hardware model specifically captures details
of physical bus interfaces and of interrupt handling behavior to suspend regular
execution and handle exceptions whenever an external interrupt is received.
Note that in the HAL, interrupts are handled concurrently to the application
and OS code, and the execution of interrupt handlers overlaps with those of
the tasks. For example, Figure 3.14(a) shows the schedule of execution for
the HAL model from Figure 3.13. While tasks P1 and P2 are serialized and
interleaved by the OS model (see Section 3.4.2), the handler for interrupt IntC
occurring at time t1 is executed in parallel to the tasks. When finishing, the IntC
handler releases a semaphore, which triggers a task switch from P1 to P2 in
the OS model until P2 blocks again and task P1 is resumed. In the end, overall
task execution finishes at time t2.

time

TP1

I n tC

t1 t2

TP2

t3

(a) HAL

time

TP1

I n tC

t1 t2

TP2

t3

(b) Hardware

FIGURE 3.14 Interrupt scheduling

In reality, however, the processor hardware interleaves interrupt processing
with execution of regular code. As shown in Figure 3.14(a), when the interrupt
occurs at time t1, the processor hardware suspends execution of all tasks to
execute the IntC handler in its own context. Only after IntC is finished will the
hardware resume task execution, at which point the OS can execute the interrupt-
triggered switch from P1 to P2. As a result, end of task execution in the real
processor is delayed until time t3 instead of t2. Since interrupt processing and
the interrupt load on the processor can therefore have a significant effect on
overall timing, corresponding models need to be included and considered in the
design process [198].

For this purpose, the hardware layer as shown in Figure 3.15 adds a separate
model of the processor’s hardware interrupt logic. When receiving an external
event on one of its external interrupt ports (INTA through INTC, for the example



Processor Modeling 81

HWHA LO SA p p

T a s k
P2

C1

P1

T a s k
P3C2

O S  M o d e l

A
cc
es
s

HW
I n t

I n t A I n t B I n t C

U s r I n t 2U s r I n t 1

D
riv
er

D
riv
er

I n t D

B u s  
T L M

I N T A
I N T B
I N T C
I N T D

FIGURE 3.15 Hardware layer

in Figure 3.15), the hardware interrupt logic suspends execution of the complete
processor software including HAL, OS and application layers. Replicating the
processor’s behavior for interrupt nesting and interrupt priorities, the interrupt
logic then calls the appropriate interrupt handler (e.g. IntC in Figure 3.15). The
handler in turn notifies a user-level interrupt task, e.g., UsrInt1 or UsrInt2, and
returns. Upon return of the interrupt handler, the HW interrupt logic resumes
execution of HAL, OS and application software, and the OS model re-schedules
tasks such that interrupt-triggered high-priority jobs (e.g., UsrInt1 or UsrInt2)
can potentially preempt any currently running task (e.g., P2 or P3).

Note that even though interrupt handlers behave in essentially the same fash-
ion as high-priority tasks, scheduling strategies for tasks and interrupts in gen-
eral are different, as is the case for a round-robin OS that runs in a processor
with prioritized interrupt sources. Therefore, interrupt handling behavior has
to be modeled separately. In essence, hardware and OS layers implement a
hierarchal scheduler in which a primary interrupt scheduler in the hardware
exercises control over the secondary OS-internal task scheduler, each with its
own respective scheduling strategy that accurately represents reality.

Next to the core processor suspension functionality, the HW layer also in-
cludes any interrupt controllers and other peripherals (e.g., timers) immediately
associated with the processor. The interrupt controller together with the suspen-
sion logic then determines the overall interrupt behavior and interrupt schedul-
ing strategy. If interrupt controllers are programmable, the HAL will include
the necessary code for setting up and properly associating interrupt handlers
with external interrupt sources according to user-selected parameters such as
priorities.



82 Modeling

In relation to its external bus interfaces, the hardware layer can provide two
different levels of communication detail. As in the case of the HAL, models
of processor hardware at the transaction level communicate with each other
through abstracted models of busses and interrupts at a granularity of complete
transactions, providing accurate feedback for fast simulation purposes. On
the other hand, pin-accurate processor models are needed for integration into
structural system netlists and for further synthesis of hardware processors (see
Chapter 6). A so-called Bus-Functional Model (BFM) therefore extends the
processor hardware layer by including a cycle-accurate model of external bus
and interrupt protocols, accurately driving and sampling bus wires according to
the timing diagrams of the bus. More details about bus interface descriptions
at different levels can be found in Section 3.5. Note that, apart from their
external bus models, transaction-level and bus-functional models of processors
are equivalent.

TABLE 3.1 Processor models

O
S H
A
L H
W ISS

Features
Target approx. c om pu tati on  ti m i n g
Tas k  m appi n g,  d y n am i c  s c h ed u l i n g
Tas k  c om m u n i c ati on ,  s y n c h ron i z ati on
I n terru pt h an d l ers ,  d ri v ers
H W  i n terru pt h an d l i n g,  i n t. s c h ed u l i n g
C y c l e-ac c u rate c om pu tati on

A ppl .

In summary (Table 3.1 [166]), a model of system computation as imple-
mented by custom or standard processors can be constructed in a layer-based
fashion. With each layer, new features and aspects of computation behavior
are specified and can hence be observed. Basic algorithmic functionality, in-
cluding execution timing, is modeled at the application layer. The operating
system layer adds dynamic scheduling and OS effects. At the hardware abstrac-
tion layer, interrupt handlers and bus drivers for external communication are
inserted. Finally, the hardware layer adds a model of the processor hardware
and interrupt logic.

In the end, a processor model at the hardware level provides a complete and
full-featured description of computation running in its execution environment.
Transaction level versions of hardware processor models serve as a fast yet
accurate virtual prototypes for simulation in close to real time. Bus-functional
processor models, on the other hand, are structurally accurate for system inte-
gration and hardware synthesis. As a reference, all such high-level processor



Communication Modeling 83

models are compared against a traditional bus-functional ISS model of the same
processor (see Chapter 5), which can be fully cycle accurate at the expense of
slow simulation speeds.

3.5 COMMUNICATION MODELING
Communication needs and principles have been studied extensively in the

general-purpose networking community. The networking community early on
developed the ISO/OSI 7-layer model [98] to reason about networks and to serve
as a guideline and outline of requirements and implementations. The model
divides the functionality generally required to implement any network into seven
different layers. Layers are grouped and ordered based on orthogonality. Each
layer defines the functionality implemented by it and the semantics supported
at its interface. Layers are stacked on top of each other and each layer provides
services to layers above by using services of the layer below. As such, the model
provides a clear separation of concerns and allows for a structured process when
designing new networks.

The ISO/OSI model has proven to be very valuable for reasoning about the
design process in the networking world. Based on the observation that system
communication is not inherently different from any general-purpose commu-
nication, we can adopt the ISO/OSI model as a basis for organizing system
communication functionality, the communication design process, and commu-
nication modeling. In doing so, however, layers need to be tailored to specific
system design requirements. For example, lower media access layers have to
be split in order to reflect the separation between functionality implemented
in hardware and software. Furthermore, layering has to take into account the
special features and restrictions of on-chip and off-chip busses employed in the
embedded world. Note that in the context of this book, the term bus is used
broadly in the sense that it can refer to a wide variety of physical communica-
tion media, including, for example, serial, point-to-point or network-oriented
busses such as RS232, CAN, Ethernet or wireless protocols.

Table 3.2 [74] summarizes the results of this process. Next to related original
ISO/OSI numbers, the table lists for each layer semantics provided at the in-
terface to the layer above, functionality realized inside, and corresponding pro-
cessor layers into which this functionality is eventually inserted. Note that pre-
sentation, session, transport and network layers form the network-level drivers
that are implemented next to the OS. Link, stream, and media access layers,
on the other hand, are implemented as low-level drivers and interrupt handlers
directly on top of the processor HAL. Finally, the protocol layer implements
the actual physical bus interface in the processor hardware.



84 Modeling

TABLE 3.2 Communication layers

Layer Semantics Functionality Implementation OSI

Application Channels, variables Computation Application 7

Presentation End-to-end typed
messages

Data formatting OS 6

Session End-to-end untyped
messages

Synchronization,
multiplexing

OS 5

Transport End-to-end data
streams

Packeting, flow
control

OS 4

Network End-to-end data
packets

Subnet bridging,
routing

OS 3

Link Point-to-point logical
links

Station typing,
synchronization

Driver 2b

Stream Point-to-point
control/data streams

Multiplexing,
addressing

Driver 2b

Media access Shared medium byte
streams

Data slicing,
arbitration

HAL 2a

Protocol Media (word/frame)
transactions

Protocol timing Hardware 2a

Physical Pins, wires Driving, sampling Interconnect 1

Taken as a whole, Table 3.2 outlines the needs and requirements for imple-
mentation of system communication. In order to support the design process
for arbitrary communication architectures, we need to develop models of all
communication layers and their relevant functionality. Details of layers and
such models will be discussed in the following sections.

It should be noted, however, that the ISO/OSI model was only ever intended
to aid in reasoning about communication stacks and their requirements. It was
not meant to provide a reference for implementation of such functionality in
the same layered manner. Thus, while layers serve as a basis for development
and organization of communication models, any implementation, and hence
any further synthesis of models, should consider the complete stack as a sin-
gle specification for possible merging of functionality and optimization across
layers.

3.5.1 APPLICATION LAYER
As discussed previously for the computation side, the application layer pro-

vides the designer with a high-level programming model for describing system



Communication Modeling 85

behavior. In this model communication semantics can vary widely in terms of
required or desired data and control flow. At the application level, a rich and
powerful set of high-level communication semantics should therefore be sup-
ported. Typical examples of commonly used application-level communication
primitives include:

(a) Pure events that establish one-way synchronization (i.e., control flow tran-
sitions) but do not carry data.

(b) Shared variables, which only hold data and do not include any synchroniza-
tion.

(c) Synchronous and asynchronous message-passing channels, which combine
data transfers with, respectively, two-way or one-way synchronization (con-
trol flow). In the synchronous case, sender and receiver block until both are
available to exchange data. In the asynchronous case, only the receiver
side is blocking, waiting if necessary for data from the sender to become
available. The sender, on the other hand, may or may not block. Asyn-
chronous implementations can use buffers to decouple the sender from the
receiver, such that a sender is independent and will only block if no buffer
space is available. The amount of buffering, however, is implementation-
dependent and, in general, no guarantees are made on the sender side. Note
that in an extreme case, asynchronous message-passing can be implemented
synchronously without any buffering.

(d) Queues as a special case of asynchronous message-passing with well-
defined, fixed buffer sizes to implement and guarantee a specific queue
depth.

(e) Complex and user-defined channels with extended semantics, such as
semaphores or mutexes widely used for advanced synchronization in the
software world.

In all cases, application designers expect communication primitives to provide
guaranteed delivery. As such, all provided and supported primitives are assumed
to be reliable, lossless and error-free. Communication design thus needs to en-
sure that these primitives are implementable on any given target communication
architecture, even if underlying physical communication media are unreliable.

In general, a system specification can contain communication in the form
of any of the application-level primitives described above. In contrast, actual
implementations of communication stacks can typically only support system-
level communication using a canonical, restricted set of primitives. In the course
of mapping system behavior onto processors, the application layer therefore
has to translate all communication between system components into primitives
supported by the following design process.



86 Modeling

P1

P2

(a) Behavioral model

PE2

P2

B R c v

PE1

P1

B S n d

� �

(b) Synchronization

FIGURE 3.16 Application layer synchronization

To begin with, the application layer has to insert any necessary synchroniza-
tion to guarantee that original execution semantics are preserved. Consider,
for example, a system behavior in which two processes P1 and P2 are com-
posed sequentially (Figure 3.16(a)). Mapping P1 and P2 to PE1 and PE2,
respectively, results in them running in parallel on the inherently concurrent
processors. Thus, the implicit sequential transition from P1 to P2 has to be
converted into explicit synchronization between the PEs. As shown in Fig-
ure 3.16(b), an additional process BSnd on PE1 transfers control to PE2 by
sending a message over a newly inserted channel C1 as soon as B1 finishes.
Process BRcv on PE2, on the other hand, ensures that B2 does not start until the
synchronization message on C1 has been received and hence, as desired, until
B1 on PE1 has finished.

In addition to transitions, the system behavior might contain shared variables
between processes. If, as shown in Figure 3.17(a), two processes P1 and P2
are mapped to different processors, storage represented by the shared variable
v1 in between needs to be moved into local memories of one or more system
components. In a distributed implementation (Figure 3.17(b)), a local copy of v1
is created in each accessing PE. Local copies are kept synchronized by inserting
messages to exchange updated variable values at synchronization points. For
example, in Figure 3.17(b), updates of v1 are merged into previously generated
synchronization messages. Together with passing control from P1 on PE1 to
P2 on PE2, BSnd and BRcv hence transfer any necessary updates of v1 via
channel C1.

In other implementations, variables are mapped specifically into a chosen
single PE. In a memory-mapped I/O implementation, variables are mapped
into the local memory of a processor, typically one of the processors access-
ing the variable. For example, in Figure 3.17(c), v1 is mapped into the HW
PE where it becomes a local register. A memory interface providing external
methods for reading and writing the register is then created in the HW such
that the CPU and other PEs can access v1 over the network. Alternatively, in a



Communication Modeling 87

P2P1 c1

v1

(a) Behavioral model

PE2

P2

B R c v

PE1

P1

B S n d

���
v1

v1

(b) Distributed message-passing

HWC P U

P1 c1

v1

P2

(c) Memory-mapped I/O

HWC P U

P1 c1

M e m
v1

P2

(d) Shared memory

FIGURE 3.17 Application layer storage

shared memory implementation (Figure 3.17(d)), v1 is mapped into a dedicated
memory component. Again, the memory provides an interface for other PEs
(i.e., CPU and HW ) to randomly access any variables stored inside.

Similar to shared variables, complex channels supported at the application
level (such as queues, semaphores or mutexes) might have storage or com-
putation requirements as part of their implementation. As such, they have to
be similarly resolved into basic channel primitives supported by the follow-
ing design process. For example, Figure 3.18(a) shows two processes, P1 and
P2, communicating through a queue channel, which requires both storage and
computation to manage internal buffers and realize its external enqueuing and
dequeueing functionality. As part of the application layer, such channels are
translated into a client-server implementation. A separate server process is cre-
ated to implement channel storage and functionality. Accesses to the channel
by other client processes are translated into a Remote Procedure Call (RPC)
to the server that emulates the original channel interface and semantics. Fig-
ure 3.18(b) shows an example where the additional server process is mapped
into a dedicated, separate Queue hardware. Processes P1 and P2 in HW1 and
HW2 then access the Queue via basic message-passing channels C1 and C2,
respectively. On the other hand, the server process can be mapped into one of
the accessing PEs instead. For example, in Figure 3.18(c), the queue process is



88 Modeling

CQueue
P1 P2

(a) Behavioral model

QueueH W 1

C1P1

H W 2

P2C2

(b) Dedicated PE

HW1

C1

HW2

P2P1

(c) Local processes

FIGURE 3.18 Application layer channels

mapped into HW1, where it becomes an additional local process next to P1. In
this case, the server communicates locally with P1 and accepts external requests
for read accesses from P2 on HW2, again over a basic message-passing channel
C1.

After resolving synchronization, storage and complex channel requirements,
communication at the output of the application layer is reduced down to basic
message-passing and memory access primitives. This canonical set of primi-
tives can then be further implemented on a given target communication archi-
tecture by the following layers of the communication stack.

3.5.2 PRESENTATION LAYER
The presentation layer is responsible for formatting of data and for conversion

of abstract datatypes found in the application into untyped blocks of bytes to be
transferred over the network. Generally, data is stored in different layouts in the
local memories of the different PEs. Layout of data items in a PE is dependent
on the PE’s architecture and the target compiler/synthesizer used to translate
application code into a PE-specific implementation. The data layout of a PE is
sufficiently described by the following parameters:



Communication Modeling 89

(a) Bitwidth of a machine character, i.e., of the smallest addressable unit.

(b) Size (in machine characters) of each basic/primitive datatype.

(c) Alignment (in machine characters) of each basic/primitive datatype.

(d) Endianess (little or big).

Given this information, the exact layout of data in the PE’s memory can be
derived for all primitive or complex data types, such as arbitrary combinations
of structures and arrays.

When exchanging data over the network, a common format of the data on the
network has to be chosen for each pair of communicating partners. Similarly,
a common layout of data in a shared memory accessed by two PEs has to
be defined. In general, the format of data on the network or in the memory
is equally defined by a set of character width, endianess, size and alignment
parameters.

The data layout on the network or in the memory can be the same as in
both, one or none of the involved PEs. If any network or memory parameter
is different from the PE’s characteristics, the presentation layer has to perform
the necessary conversion for all accesses. By contrast, the presentations layer
is empty and data can be copied one-to-one only if all parameters are the same.

tAdslCard
card
l i n e

tCard
ch ar i d
s h o rt  cu rP w r
s h o rt  m ax P w r

tL i n e
i n t  f e cC o u n t e r
f l o at  s n r
s h o rt  b i t R at e

4 2
1 5 2
3 7 5

0
4 5 .8
6 4 0

(a) Application data structure

byte
id c u r P w r m a x P w r f e c C o u n t e r s n r b it R a t e

(b) Network byte stream

FIGURE 3.19 Presentation layer

Figure 3.19 shows an example of an application-level abstract data structure
(Figure 3.19(a)) being marshaled into a stream of bytes to be transferred over the
network (Figure 3.19(b)). At the application level, the tAdslCard data structure



90 Modeling

consists of two members (card and line) which are of tCard and tLine type,
each containing several items of basic character, integer and floating-point data
type. In the local PE memory, structures and their members are laid out to
conform to PE parameters such as the requirement to align all items on word
or double-word boundaries. In contrast, on the network level, the presentation
layer transmits items byte by byte in the specified order and with given sizes
(1 byte per char, 2 bytes per short and 4 bytes per int or float for this example),
excluding in this case any empty bytes used for padding and alignment in the
PE memory.

Note that the layout of data on the network or in memories can either be
globally defined for the whole system or adapted differently for each pair of
communicating PEs. In the former case, the layout can be optimized to re-
duce overall data traffic globally. For example, traffic is minimized by setting
alignment and size parameters such that no byte padding is performed and all
data types only occupy their minimally necessary space. In the latter case, the
layout can be matched individually to one or both of the PEs, simplifying or
completely avoiding presentation layer implementations.

All in all, the presentation layer translates typed messages and memory ac-
cesses between different endpoints at the application level into untyped mes-
sages and byte-wise accesses to be implemented by the layers below.

3.5.3 SESSION LAYER
In general, the system application can define as many channels as desired

between any two endpoints. In order to reduce resource requirements in the
following layers, the session layer is responsible for merging groups of channels
into sessions and multiplexing them over a reduced set of end-to-end transports.
After data formatting performed by the presentation layer, messages are untyped
and resulting byte streams can therefore be safely multiplexed over a single
transport channel. As such, the session layer is responsible for selecting the
end-to-end channel used to transport messages of each application stream and
to implement all the necessary means to separate and distinguish messages of
different streams going over a single transport. Note that in the case of system
communication considered in this book, channel selection/merging is optional
and without loss of generality, the session layer can be skipped.

If two channels are accessed sequentially with a pre-defined, fixed and non-
overlapping sequence of messages in both communication endpoints, they can
be merged unconditionally into a single stream. Figure 3.20(a), for example,
shows a case where two sequential processes (P1 on the CPU and P2 in HW2)
communicate over two channels, C1 and C2. Since processes can only ex-
change messages over one channel at a time, the session layer merges them
by simply connecting both ports on both processes to a single shared channel



Communication Modeling 91

CPU

C2

H W 1

P3 P4P1

C4

C3

H W 2

P2
C1

(a) Application channels

HW1CPU

HW2

P3 P4P1

C4

C3

C4

���	�

C3

C4

P2
C2

C3

C1

C2

C1

(b) Network transports

FIGURE 3.20 Session layer

C12 in between (Figure 3.20(a)). On both sides, message are then identified as
originally belonging to either C1 or C2 simply by their order in the sequence of
messages going back and forth over C12 (i.e., the first message always being
C1 and the second C2).

In the case of concurrently accessed channels, messages cannot be identified
by their order in the stream. For example, in Figure 3.20, channels C3 and
C4 are fed by two concurrent processes P3 and P4 in HW1. As a result,
messages may arrive in any order or may even overlap on the CPU side. Hence,
when transferred over a single channel, messages originating from C3 or C4
cannot be directly distinguished. Instead, such concurrent channels can only be
merged if additional headers are prepended to each message in order to identify
messages belonging to different sources. In an embedded implementation,
however, the additional overhead for handling and transmission of message
headers is typically not justified and any such addressing realization is better
deferred to lower layers (see Section 3.5.8).

In the end, the session layer handles the merging of channels by transmitting
messages from different sources over a reduced set of end-to-end streams such



92 Modeling

that overall complexities and resource requirements in implementation of later
layers below will be minimized.

3.5.4 NETWORK LAYER
The network layer splits the overall network into smaller subnets where

different subnets can subsequently be implemented using different underlying
media. In order to connect subnets and route packets between them, the network
layer inserts additional Communication Elements (CEs) in between. In the
process, the network layer transforms end-to-end transports of upper layers
into logical point-to-point links between individual stations forming the overall
network structure.

CPU

C2
P1

H W

P2
C1

(a) End-to-end transports

HW

P2
C2

C1

C PU

P1
C2

C1

L2A

L1A

CE L2B

L1B

(b) Point-to-point links

FIGURE 3.21 Network layer

For example, in Figure 3.21, end-to-end channels C1 and C2 between CPU
and HW PEs (Figure 3.21(a)) are each split into two logical links, L1A/L1B
and L2A/L2B, respectively. In between, a CE routes and translates between
links such that subnets on either side can each be implemented over different
underlying busses.

We can generally distinguish two types of CEs, transducers and bridges,
depending on the layer at which their functionality is realized. As shown in
Figure 3.22(a), a transducer operates according to a store-and-forward principle.
It receives blocks of data on one side (PE1), temporarily stores them in an
internal buffer and does not send anything out on the other end (PE2) until
the complete packet has been received and buffered. As a result, transducers
synchronize and exchange address and data items with each side separately.
Thus, transducers break end-to-end transport paths presented to higher layers



Communication Modeling 93

into independent point-to-point segments that are routed over disconnected
logical links.

Transducer

Address
D a t a

Address
D a t a

P E 2P E 1

S y n c h ro n i z a t i o n

S y n c h ro n i z a t i o n

(a) Tranducer

Bridge

Address

D a t a

Address
D a t a

P E 2
(s l a v e )

P E 1
(m a s t e r )

S y n c h ro n i z a t i o n
(s l a v e ) (m a s t e r )

(b) Bridge

FIGURE 3.22 Communication elements

A bridge, on the other hand, connects two busses directly at the protocol
level and as such is transparent to upper layers. Bridges do not perform any
buffering of data and do not participate in any higher-level protocol functions.
Instead, as shown in Figure 3.22(b), end-points have to bypass the bridge to
perform any necessary synchronization before the actual transfer through the
bridge. A bridge always has exactly two interfaces: a master side and a slave
side. As shown in Figure 3.22(b), a bridge serves transaction requests received
on its slave (PE2) side by performing corresponding shadow transactions on its
master (PE1) side, interleaving the master transaction into the slave transaction
in the process. Therefore, a bridge has to be able to split each slave protocol
transaction in two parts: listening for addresses and serving data. For a read
transaction as shown here, the bridge receives a slave request and performs
the corresponding master transaction before answering the slave side with the
obtained data.

Note that a bridge can only connect two busses that are sufficiently tim-
ing and protocol compatible. In contrast, a transducer can connect any two
(or more) busses in any master and/or slave combination. Due to the lack of
buffering, synchronization and routing, however, bridges are generally cheaper
and simpler to implement. In either case, the network layer inserts any neces-
sary transducers or bridges in order to correctly and optimally connect different
busses in the system.

3.5.5 TRANSPORT LAYER
The transport layer sits on top of the network layer, and together, they are

responsible for transmitting messages between communication endpoints over



94 Modeling

the network of logical links and CEs. Depending on the topology, the network
might have to perform buffering of data in intermediate transducers. In order
to reduce the required sizes of these buffers, the transport layer splits large
messages into smaller chunks (packets). Packets get transferred one at a time
from station to station, such that intermediate stations only have to buffer one
packet, rather than the whole message, at any time.

Part of the transport layer implementation is the selection of the maximum
packet size. In order to reduce buffer sizes, packets should be small. However,
since the underlying layers will incur overhead (headers and synchronization)
for each packet, there is a trade-off between buffer sizes and packet overhead.
Packet sizes can be fixed or variable. In the fixed case, packets have to be padded
with empty data if the message does not fill the last packet completely. In the
case of variable sizes, a header has to be prepended to the packet to indicate
the size of the payload. Note that no packeting is necessary if the packet size
is bigger than the size of the largest message.

Since intermediate buffering in the network decouples endpoints and destroys
any synchronicity, the transport layer also has to potentially restore any such
bidirectional end-to-end dependencies. If the application requires synchronous
data transfers and if there are buffers in the path between endpoints, the transport
layer will have to perform additional end-to-end synchronization by exchanging
acknowledge messages at the end of each message.

Finally, in combination with the network layer, switching and routing of
packets over the CEs in the network have to be implemented. Each transducer in
the network has to be able to determine which end-to-end path a certain packet
belongs to, either by allocating a dedicated incoming and outgoing link for
each separate end-to-end path, or by adding identifying headers with endpoint
addresses to each packet. Based on the association with end-to-end paths, a
decision can then be made in the transducers as to where to route each incoming
packet. If there is only one possible path between a pair of endpoints, routing
is straightforward. In all other cases, packets can either be routed statically or
dynamically using, respectively, a pre-determined, fixed route or a route that is
dynamically computed during runtime based on information about the current
or estimated network status.

3.5.6 LINK LAYER
The link layer provides logical links for point-to-point packet transfers be-

tween adjacent (directly connected) stations of the network. For each packet
transfer it can be observed that:

(a) One station is the sender and the other station is the receiver of the data.



Communication Modeling 95

(b) One station is the master (which actively initiates/controls the transfer) and
the other station is the slave (which passively waits and answers transfer
requests).

Note that sender/receiver and master/slave designations for stations are inde-
pendent of each other. Moreover, stations can have varying designations for
each transfer they perform, even between the same partners. For example, sta-
tion often have to switch between sending and receiving. But stations can also
switch between master and slave mode. In the case of a typical master/slave
bus, designations of stations as masters and/or slaves are fixed. By contrast,
in node-based, network-oriented busses such as CAN, RS232 or Ethernet, a
station is usually a master when actively sending and a slave when passively
receiving data. Master/slave behavior is thus coupled to the direction of the
data transfer.

ready?

t i m e

FIGURE 3.23 Link layer

Given these observations, the link layer is responsible for implementing syn-
chronization from slaves to masters before performing the actual data transfers
through lower layers (Figure 3.23). The link layer has to implement a mecha-
nism to notify the master that the slave is ready before the master is allowed to
initiate the transfer. Note that if there are different logical sources of requests
(e.g. multiple logical links from the same slave station), separate synchroniza-
tion has to be implemented for each source such that the master can safely
determine which request it is allowed to initiate.

If it is guaranteed that a slave will always be ready to answer requests, syn-
chronization is not needed, as is the case for memories or memory-mapped
I/O in hardware slaves (i.e., HW-internal registers mapped onto the bus, as
seen in Figure 3.17(c), Section 3.5.1). A further exception is the case where
full two-way synchronization is built into the low-level protocol, such as in an
RS232 bus with hardware handshaking. In such cases, no explicit synchroniza-
tion is necessary and the link layer is empty. In all other cases, a dedicated
synchronization mechanism from slave to master becomes necessary.

In cases where two communication partners are fixed in terms of their mas-
ter/slave assignments (e.g. HW/SW communication where CPUs can only be
bus masters), the most efficient way of synchronizing the two partners is to
include a separate, out-of-band connection between the components, purely for
synchronization purposes. Examples of separate signaling mechanisms from
slave to master include typical interrupts, which are, for example, supported by
most standard processors.



96 Modeling

PE1

Interrupt
handler

Master I/O

intFlagS0

S1
R/W  D a t a

S e t
i n t F l a g ?

PE2

Slave I/O

S0

S1R/W  D a t a

T r a n s f e r
r e q u e s t ?

G e n e r a t e  i n t e r r u p t

B U S

(a) Dedicated interrupts

PE1
Interrupt
handler

Master I/O

intFlagS0

S1
R/W  D a t a

S e t
i n t F l a g ?

PE2

Slave I/O

S0

S1R/W  D a t a

T r a n s f e r
r e q u e s t ?

G e n e r a t e  i n t e r r u p t

B U S

rdyFlag

S e t
Re a d
r d y F l a g

(b) Shared interrupts

FIGURE 3.24 Link layer synchronization

In the simplest, most straightforward interrupt implementation, a dedicated
interrupt connection is available for and assigned to each logical link between
components. In this case, two components synchronize via an event on the
dedicated interrupt connection. As shown in Figure 3.24(a), on the slave side
(PE2), the link layer implementation first sends the interrupt in state S0 before
entering state S1 to wait (through the slave bus interface) for the data transfer to
be initiated and performed by the master. On the master side (PE1), a dedicated
interrupt detection and handling logic running concurrently to the main thread
continuously listens for events on the interrupt input and sets a local intFlag,
indicating that the slave is ready whenever an interrupt is received. The link
layer in the master then always first waits (state S0) until the intFlag is set before
resetting the flag and performing the actual data transfer (state S1) through its
bus mastering interface.



Communication Modeling 97

PE1

Master I/O

S0

S1
R/W  D a t a

r d y F l a g ?
PE2

Slave I/O

S0

S1R/W  D a t a

T r a n s f e r
r e q u e s t ?

B U S

rdyFlag

S e t
Re a d
r d y F l a g

(c) Slave polling

PE1
Master I/O

S0

S1
R/W  D a t a

r d y F l a g ?
PE2

Slave I/O

S0

S1R/W  D a t a

T r a n s f e r
r e q u e s t ?

B U S

W r i t e  r d y F l a g

Master I/O

Slave I/O

rdyFlag

(d) Flag in master

FIGURE 3.24 Link layer synchronization (con’t)

In cases where master/slave settings for communication partners are fixed but
not enough interrupt connections are available, interrupts can be shared across
different links. For example, Figure 3.24(b) shows a case where the same
master interrupt input has multiple slave sources attached to it. Compared to
an implementation with dedicated interrupts, each slave (e.g., PE2) has a local
ready flag. When sending an interrupt event in state S0, a slave always sets its
local rdyFlag. In addition, the slave maps the rdyFlag onto the bus such that
its contents can be queried by the master. Whenever an event is received on
the master side (PE1), the interrupt handler reads and resets the ready flags of
all associated slaves to determine which slave(s) have waiting requests. Based
on these results, the interrupt handler then sets the corresponding local flag(s)
in the master. Thus, any enabled link layer transitions from state S0 to S1 are
triggered as previously described for the case of dedicated interrupts.



98 Modeling

If no separate, out-of-band synchronization connections are available (or are
otherwise used), synchronization can be implemented via polling of slaves, as
shown in Figure 3.24(c). Similar to the shared interrupt implementation, each
slave (e.g., PE2) has a local rdyFlag that can be queried by the master and is
set by the slave’s link layer (state S0) before each data transfer (state S1). On
the master side (PE1), however, no concurrent interrupt handler is available.
Instead, the master link layer has to periodically check (poll) the rdyFlag in the
slave. The master can only enter state S1 and start the data transfer once the flag
has been set and the slave is ready. Note that polling is performed by reading
the flag in the slave over the normal data bus. While waiting for the slave to
become ready, slave polling will therefore incur a constant bus load (and hence
overhead), as determined by the chosen polling period.

Finally, in cases where communicating components can switch between mas-
ter and slave mode or have both types of bus interfaces, synchronization can be
implemented directly over the bus used for normal data transfers. As shown in
Figure 3.24(d), synchronization is implemented by a slave-ready flag (rdyFlag)
in the master (PE1) that can be written by the slave (PE2) over the inverted pair
of bus interfaces. The link layer in the slave first sets (state S0) the flag in the
master by writing to it over the normal data bus. On the master side, the link
layer first waits for the flag to be set (state S0) before performing the actual
transfer (states S1 on both sides).

Note that the synchronization implementation in Figure 3.24(d) is specifically
required (and sufficient) for distributed, networked, and node-based busses,
such as Ethernet or CAN, where no interrupts are available and where a master
can not actively receive or request data. Such synchronization via master flags
can also be beneficial in cases of regular master/slave busses if communication
partners already implement both types of interfaces. In contrast to an interrupt-
based implementation, no specific interrupt detection and generation logic is
necessary. Furthermore, in contrast to polling, which introduces a regularly
triggered bus load, bus traffic overhead for synchronization is minimized.

In summary, using any of the available mechanisms to match application
requirements and target architecture capabilities, the link layer implements all
synchronization as it is necessary to realize logical links and packet transfers
between master and slave stations in the network. As a result, the link layer
separates point-to-point packet transfers into control transactions for synchro-
nization and data streams for implementation in lower layers.

3.5.7 STREAM LAYER
The stream layer is responsible for multiplexing of different data streams

going over an underlying shared medium. In order to merge multiple data
sources, the stream layer has to be able to separate data packets from different



Communication Modeling 99

streams corresponding to different logical links mapped to the same medium.
Data packets are separated by assigning them addresses, where different packet
streams carry different addresses. Note that packet transfers in the same stream
are already separated in time and can hence share the same address. Based on a
packet’s address, stream layer implementations on both sides can then internally
distribute the packet from the right source and to the right destination.

In the most straightforward case, each packet stream going over a shared
medium/bus is assigned a unique physical bus address. Data transactions on
the shared medium carry the stream’s address to distinguish them from each
other. Note that a PE/CE might be assigned multiple addresses if there are
multiple concurrent and overlapping streams going in and out of it, either to
different partners or even between the same pair of PEs/CEs.

In cases where there are not enough physical addresses available, the same
physical address can be shared among multiple concurrent packet transfers go-
ing in and out of a PE/CE. At minimum, however, each pair of communicating
stations on a shared bus requires a different physical address. In order to distin-
guish packets of different streams in case of shared physical addresses, a stream
ID has to be prefixed to the packet data and transferred as part of the packet
header.

All combined, resolution of addressing together with splitting of packet trans-
fers into control and data transactions by the link layer results in unified streams
of control events and data blocks being exchanged between stations at the output
of the stream layer.

3.5.8 MEDIA ACCESS LAYER
The Media Access (MAC) layer is the first layer to provide an immediate

abstraction of the shared underlying medium. At its canonical interface, the
MAC layer represents the underlying bus as a single, shared medium over which
packet data in the form of untyped blocks of bytes can be transferred. Internally,
the media access layer slices the data blocks into different transactions supported
by the underlying bus protocol. For example, Figure 3.25 shows the byte stream
originally generated by the presentation layer (see Figure 3.19, Section 3.5.2)
being split into bus word write transactions strictly two bytes at a time.

StoreWord StoreWord StoreWord StoreWord StoreWord StoreWord StoreWord StoreB y te

B y te  s tre a m

B u s  
P ri m i ti v e s

FIGURE 3.25 Media access layer

The MAC layer is thus responsible for using available protocol transactions
(e.g. burst modes) in an effective and optimal manner. Together with the pro-



100 Modeling

tocol, the media access layer also handles proper access control and locking
(i.e., arbitration) to resolve and manage conflicting (overlapping) accesses to
the shared medium by different streams. In general, arbitration can be per-
formed in either a centralized or distributed fashion. In the case of a centralized
scheme, additional arbiter components are part of the system busses and are
inserted into the system architecture as part of the protocol layer implemen-
tation. By contrast, in a distributed arbitration, bus protocol implementations
contain additional support for resolving conflicting accesses internally among
themselves.

Note that while its interface to higher layers is canonical and independent of
the underlying medium, the implementation of the media access layer depends
to a large extent on the actual protocol characteristics such as the data widths
and transaction types supported by the bus. As such, the MAC layer is the first
bus-specific layer. Hence, its interface separates and translates between target-
dependent aspects in lower layers and application-specific code in higher layers.

3.5.9 PROTOCOL AND PHYSICAL LAYERS
At its interface to higher layers, the protocol layer provides services to trans-

fer groups of bits over the actual bus. The protocol layer thereby provides
support in the form of services or primitives for all transaction types supported
by the bus. Different transactions can thereby, for example, vary in the size of
words or frames being transferred. The interface provided by the protocol layer
is therefore highly dependent on the underlying bus in terms of number, types,
semantics, and parameters of supported bus primitives.

time

 Bus Arb.  n+1 Bus Arb n+2
Ad d r.  C y c l e  n-1 Ad d r.  C y c l e  n+1
D a t a  C y c l e  n-2 D a t a  C y c l e  n-1

Bus Arbitration

D ataW rite C y c l e
Ad d re ssC y c l e

FIGURE 3.26 Protocol layer

Internally, the protocol layer implements the state machines to perform access
control, synchronization and data transfers for each supported bus primitive or
transaction type. For example, Figure 3.26 shows how a bus write transaction is
implemented by a protocol layer state machine as a sequence of bus arbitration,
address and data write cycles. Note that the protocol layer is typically stored
in some bus database and is a direct implementation of the bus protocol as
described, for example, in the form of timing diagrams in the datasheet of a
bus.

Finally, the physical layer is responsible for the transmission of raw bits over
a physical communication channel. It defines and implements the represen-



System Models 101

time

HGRANT
HC NTRL
HAD D R
HW D ATA
HRE AD Y

0x2 7 000000

HC L K
HRE Q

Arbitration Cycle Ad d res s  Cycle D ata Cycle

nonseq.  w or d
0xA 000 0000

0x2F00 9 8 01

FIGURE 3.27 Physical layer

tation of bits on the physical medium. In case of a typical bus, the physical
layer introduces the pins and wires of the bus and defines the corresponding
voltages and bit timing. For each protocol cycle, the physical layer then drives
and samples the wires correspondingly such that communication partners can
exchange the selected bit values over a physical distance. For example, Fig-
ure 3.27 shows the refinement of the general protocol layer state machine from
Figure 3.26 (in this case, for the example of an AMBA AHB bus [4]). For
each arbitration, address or data cycle in the protocol layer, the physical layer
performs the required signal transitions on each wire of the bus. In a protocol
layer arbitration cycle, the physical layer raises the HREQ request signal and
samples the HGRANT wire coming from the arbiter. Likewise, in the address
and data protocol cycles, the physical layer is reponsible for driving and sam-
pling the HCNTL control and HADDR or HWDATA address or data wires of
the bus, respectively.

On the whole, protocol and physical layers implement external interfaces
used to connect system components together. Hence, in the process of insert-
ing protocol and physical layers, the wiring of component ports to bus signals
is resolved, generating the final system netlist at the output of the overall com-
munication design flow.

All together, organization of communication functionality into stacks of com-
munication layers as described in the previous sections is the basis for develop-
ing corresponding models of system communication. Layers are separated by
well-defined interfaces and each layer defines a set of features and aspects of
communication behavior that need to be modeled. Similar to processor layers
(Section 3.4), a model of system communication can be constructed in a layer-
based fashion. With each new layer, additional communication functionality
is described and specified, all the way from high-level application primitives
down to bus transactions and eventually bus pins and wires.



102 Modeling

3.6 SYSTEM MODELS
Given the layering of computation and communication functionality de-

scribed in Section 3.4 and Section 3.5, we can construct a variety of system
models, depending on how many layers are implemented in the system compo-
nents. As a result, we can define a new system model with each new computation
or communication layer inserted into the design. In addition, we can construct
models with only partial features of each layer or merge features of different
layers and combine them in one model.

In general, as outlined throughout Section 3.4 and in Table 3.2, communica-
tion layers are implemented inside matching computation layers depending on
the relationship and inherent dependencies of the former on services provided
by the latter. For example, the link layer becomes part of the OS layer where it
can rely on interrupt servicing mechanisms provided by the OS and the HAL.
Therefore, when constructing system models, communication layers are gener-
ally inserted either after or together with the corresponding computation layers
that hold them.

Cycle Accurate Model
T ran s acti on  L ev el Models
S p eci f i cati on  Model

7. A p p l i c at i o n
6. P r e s e n t at i o n
5. S e s s i o n
4. T r an s p o r t
3. N e t w o r k
2b. L i n k  +  S t r e am
2a. M e d i a A c c e s s
2a. P r o t o c o l
1. P h y s i c al

A d d r e s s
D at a

C o n t r o l

T L M 

MP

CAM

H W

A p p

O S

H A L

7. A p p l i c at i o n
6. P r e s e n t at i o n
5. S e s s i o n
4. T r an s p o r t
3. N e t w o r k
2b. L i n k  +  S t r e am
2a. M e d i a A c c e s s
2a. P r o t o c o l
1. P h y s i c al H W

O S

H A L

A p p

FIGURE 3.28 System models

As shown in Figure 3.28, we can generally distinguish three different classes
of models needed for different types of designers: specification models for
application programmers, Transaction-Level Models (TLMs) for system de-
signers, and Cycle-Accurate Models (CAMs) for implementation designers.

Application designers define the system specification as system behavior
described in different MoCs, typically in some form of a hierarchical, sequen-



System Models 103

tial/parallel composition of processes communicating through abstract variables
and message-passing channels. The specification model then provides the ap-
plication designer with feedback about the match between the desired behavior
and the requirements and restrictions imposed on a potential target platform in
terms of needed processors and memories.

System designers subsequently define the details of the system architecture
and the implementation of the application on the platform. Application pro-
cesses and variables are mapped to PEs and processes on different processors
communicate with each other through channels mapped onto busses. System
designers require models that allow them to validate corresponding design de-
cisions by incorporating resulting layers of functionality. As previously shown
in Table 3.2, the level of communication layers in the model thereby deter-
mines the semantics of system communication required between components.
Models for system designers are TLMs on an abstraction level above pins and
wires. Depending on the number of layers inserted into components, a variety
of TLMs can be generated. With each new layer, component interfaces are re-
fined to communicate through services usually provided by the next lower layer.
Instead, however, components in a TLM communicate through system channels
that provide equivalent interfaces, services and semantics. Such TLM channels
thereby describe communication between components in an abstracted form,
encapsulating functionality of all layers that are not yet represented.

For example, in a TLM down to and including the network layer, individual
stations in the network communicate by exchanging packets with their imme-
diate neighbors over logical point-to-point links. On the other hand, a TLM at
the interface to the protocol layer will include models of bus channels at the
granularity of individual bus read/write transactions.

Finally, implementation designers define and validate the implementation of
components at their microarchitecture level. Consequently, they need models
that are cycle-accurate. In a CAM, final protocol and physical layers are inserted
and individual bus address, data and control signals, pins and wires are observ-
able. Furthermore, hardware and software components are further refined down
to cycle-accurate RTL or instruction-set descriptions, respectively.

3.6.1 SPECIFICATION MODEL
The specification model describes the desried system functionality to be

implemented at the input of the system design process. As such, a specification
model is equivalent to a description of system behavior in a generic, process-
and state-based MoC such as a PSM. For example, Figure 3.29 shows a simple
specification model with processes P1 and P2 that communicate via a set of
abstract, typed message-passing channels in between them.



104 Modeling

Abstract
M P C h an n e l

Abstract
M P C h an n e l

P2P1

FIGURE 3.29 Specification model

The specification model can be used by application designers to prove the
validity, feasibility and requirements of the application behavior. Through
profiling or other analysis, the specification model can provide initial feedback
about basic implementation-independent characteristics. Such specification
metrics can be used both to optimize the application and to drive the system
design and exploration process.

Furthermore, processes can be annotated with estimates of their execution
time or energy profile on a given set of target processor candidates. As such,
the specification model can include initial performance, power consumption or
other quality metrics of the application running on a potential target platform, all
with little to no additional overhead compared to a purely functional simulation
of the application only. This provides application designers with early feedback
about effects of application characteristics, such as the amount of available
parallelism, on target plaform capabilities and requirements, such as the number
and type of available processors.

All together, the specification model serves as the basis for developing ap-
plications both in terms of their behavior as well as considering their overall
implementability at the very start of the system design and exploration process.

3.6.2 NETWORK TLM
The network TLM is the first model that reflects the overall topology of

the system architecture and the final communication network. The model is a
netlist of PEs, memories and CEs connected by abstract, universal bus channels
(Figure 3.30). In the network TLM, processes, variables and complex chan-
nels of the system behavior are mapped onto PEs, memories and busses of the
system platform. As a result, the network TLM contains application layers for
both computation and communication. Processes are grouped under applica-
tion layers of processors according to the given mapping. Application layers
of communication resolve synchronization, storage and complex channels be-
tween processes down to the level of canonical primitives supported by lower
layers.



System Models 105

Serial Bus
M P  M o d el

P2

A p p lic at io nA p p .

M ast er Bus
M P  M o d el

Slav e Bus
M P  M o d elBrid g e

P resen t at io n
Sessio n
T ran sp o rt
N et w o rk

Dr
ive

r
P resen t at io n
Sessio n
T ran sp o rt
N et w o rkN et w o rk

T ran sd uc er

P1

A p p lic at io nA p p .

O S

C PU H W

H W

FIGURE 3.30 Network TLM

Application layers are then integrated into a network-level model of the
computation and communication platform. OS layers of all software processors
are introduced. On the HW side, OS layers do not exist, and initial versions of
the hardware layer are inserted instead. Finally, communication functionality is
implemented down to and including the network layer, inserting presentation,
session, transport and network layers into the components. In the process,
models of transducers that break the network into segments and route data are
added. Note that on the CPUs, inserted layers are integrated with the OS model
to become the drivers for implementation of reliable end-to-end communication
with other processors.

Component models in the network TLM communicate via point-to-point
logical links implemented over abstract, universal bus channels that each repre-
sent one segment of the network. A universal bus channel provides services for
multiple simultaneous packet transfers, blockwise memory accesses and event
notifications. Using the channel, components within a segment can communi-
cate by performing transfers with message-passing semantics. At its interface,
the bus channel allows components to use an arbitrary number of logical ad-
dresses in order to establish corresponding logical links and memory interfaces
with their neighbors.

Internally, the code in the universal channel is independent of the implemen-
tation of the bus. Instead, it provides the functionality of link, stream, media
access, protocol and physical layers in an abstract manner at a granularity of
blocks of data or events. The bus channel can include estimated timing for each
individual transfer based on the bus bandwidth in relation to the size of the data
block. Since it is operating at a level of whole blocks, however, the universal
bus channel cannot take into account effects of interleaving and scheduling of
overlapping bus transfers as regulated in reality by arbitration on any underly-
ing shared medium. Hence, the overall timing estimation within each network
segment and across the whole system is approximate. Yet, since bus traffic is



106 Modeling

simulated at a coarse granularity, the network TLM can provide rapid and early
feedback about network segmentation and resulting network traffic.

3.6.3 PROTOCOL TLM

Stream &  M A C

N etw o rk
Link

Stream
M A C

L i n k
Stream
M A C

P1

A p p l i c ati o nA p p .
P res en tati o n
Ses s i o n
T ran s p o rt
N etw o rk

Dr
ive

r

L i n k
Stream
M A C

Dr
ive

r

P2

A p p l i c ati o nA p p .
P res en tati o n
Ses s i o n
T ran s p o rt
N etw o rk
L i n k
Stream
M A C

I n terru p t
T L M

Seri al  B u s
T L M

Sl av e B u s
T L M

M as ter B u s
T L M

H A L

C PU

O S

H W

H W

H W
B r i d g e

T r a n s d u c e r

FIGURE 3.31 Protocol TLM

The protocol TLM provides an abstract, virtual prototype of the system that
more accurately reflects the complete system computation and communication
structure. The protocol TLM implements all application-specific functionality
down to and including the HAL and MAC layers. It only abstracts away target-
specific details of pre-defined hardware including protocol and physical layer
bus interfaces. As shown in Figure 3.31, the protocol TLM adds link, stream
and MAC layer implementations in each PE, memory, and CE. In the process,
actual models of bridge CEs are introduced.

More specifically, on the CPUs, all drivers are generated on top of the MAC
instance that, together with the HAL, is taken out of the PE database. Generated
drivers include interrupt handlers and interrupt tasks integrated into the OS.
As shown previously in Figure 3.14(a), Section 3.4.4, the CPU in the protocol
TLM can include a transaction-level model of the hardware layer that accurately
describes external interrupt scheduling and processor suspension.

Components in the protocol TLM communicate over bus channels that rep-
resent and abstract the actual physical medium of each bus segment. Bus TLM
channels provide timed yet abstract implementations of all supported bus pro-
tocol transactions, such as byte, word, double-word or burst reads and writes.
As such, exact semantics and interfaces of bus TLM channels are specific to a



System Models 107

certain bus being modeled. Bus protocol channels can thereby model the known
timing and effects of arbitration accurately at the level of individual transactions.
In addition to bus channels, the TLM contains interrupt channels that abstract
the interrupt wires and interrupt detection and generation into event transfers
used by the link layer for implementation of any necessary synchronization.

Since modeling of physical wires and signals imposes a heavy overhead in
event-driven simulation, the protocol TLM executes significantly faster than
a corresponding BCAM (see Section 3.6.4 below). On the other hand, since
all user-defined implementation detail is represented and all computation and
communication parameters are known, the protocol TLM can provide accurate
results about all design decisions to the implementation designer. Hence, the
protocol TLM simulation provides fast and detailed measurable feedback about
the effects of each of the layer implementations in terms of bus traffic, interrupt
handling overhead or processor load.

3.6.4 BUS CYCLE-ACCURATE MODEL (BCAM)

P1

ApplicationA p p .
P r e s e ntation
S e s s ion
T r ans por t
N e tw or k

Dr
ive

r

L ink
S tr e am
M AC

Dr
ive

r

H A L

C PU

O S

P r otocol
P h y s icalH W

S tr e am  &  M AC
P r otocol
P h y s ical

P r otocol
P h y s ical

B r i d g e

N e tw or k
L ink
S tr e am
M AC

L ink
S tr e am
M AC

P r otocol
P h y s ical

P r otocol
P h y s ical

T r a n s d u c e r

P2

ApplicationA p p .
P r e s e ntation
S e s s ion
T r ans por t
N e tw or k
L ink
S tr e am
M AC

H W

P r otocol
P h y s icalH W

A d d r e s s
D a t a

C o n t r o l

A d d r e s s
D a t a

C o n t r o l
S e r i a l

I n t e r r u p t

Ar
bi
te
r

FIGURE 3.32 Bus Cycle-Accurate Model (BCAM)

The Bus Cycle-Accurate Model (BCAM) implements all layers of compu-
tation and communication functionality in all PEs, memories and CEs of the
system (Figure 3.32). Compared to the TLM, the BCAM includes additional
implementations of protocol and optionally physical layers. As a result, the
BCAM is structurally accurate and its components communicate via cycle-



108 Modeling

accurate descriptions of system busses and interrupt lines. As part of the bus
structure, the BCAM can include additional bus components such as multiplex-
ers, repeaters or arbiters. Note that depending on whether the physical layer is
included, a BCAM may or may not be pin-accurate. In the pin-accurate version,
the BCAM describes the complete system netlist as a set of blocks connected by
signals. Otherwise, physical layers are not included and components commu-
nicate through transactions at the level of individual, abstracted address, data
and control cycles.

In contrast to other models, actual transitions and events on the busses can
be observed in the BCAM on the basis of individual bus cycles. Hence, the
BCAM provides limited additional accuracy to model cycle-by-cycle behavior
needed in cases of advanced busses with support for split transactions or for pre-
emption of transfers by high-priority masters. Note, however, that the BCAM
requires significant additional overhead for simulation of individual events in
every cycle.

The BCAM is the basis for cycle-accurate implementation of components in
the backend hardware and software synthesis processes. In the BCAM, func-
tionality of all layers is known. The BCAM therefore serves as a specification
for implementation of all computation and communication in hardware and/or
software.

3.6.5 CYCLE-ACCURATE MODEL (CAM)

Protocol
ISS

C P U

Ph y s i ca lH W

R T L

A d d r e s s
D a t a

C o n t r o l

A d d r e s s
D a t a

C o n t r o l
Se r i a l

In t e r r u p t

Ar
bi
te
r

C PU _C lk

B ri d g e _C lkB r i d g e

T_C lkT r a n s d u c e r

H W _C lkH W

I/F

H A L
O S
A p p .

Bin
ary

FIGURE 3.33 Cycle-Accurate Model (CAM)

The Cycle-Accurate Model (CAM) is the result of the hardware and software
synthesis process in the backend (see Chapter 5 and Chapter 6) and hence the
final result of the system design process. As shown in Figure 3.33, models of all



Summary 109

components in the system architecture are refined down to their cycle-accurate
representations. On the software side, behavioral CPU models in the BCAM are
replaced with ISS models that execute final binaries with target-specific object
code for application, OS and HAL, including all drivers and interrupt handlers.
ISS models are encapsulated in a wrapper that integrates the software simulator
into the system by relaying all external bus and interrupt accesses through
corresponding instances of protocol and physical layer hardware models.

On the hardware side, protocol and physical layers are replaced with cycle-
accurate FSMs that drive and sample bus wires to implement all bus protocol
transactions. Upper layers, up to and including the application itself, on the
other hand, are synthesized into corresponding FSMD models of their hard-
ware implementation at the RT level. For external bus accesses, main FSMDs
communicate with bus interface FSMs through a register and signal interface.

Finally, bridge and transducer CEs are similarly synthesized into cycle-
accurate state machine models. Bridges are realized as a product state ma-
chine that translates between two protocols at the level of common bus cycles.
Transducers, on the other hand, contain FSMs for each bus interface and a main
FSMD that implements queues and buffers for independent synchronization
and forwarding of data transfers between interfaces.

All in all, the CAM provides implementation designers with an environment
for validation of component realizations at the RTL architecture level. In addi-
tion, the CAM allows for a cycle-accurate simulation of the complete system
as a final signoff before further logic and physical synthesis.

3.7 SUMMARY
In this chapter we presented concepts and techniques for modeling of both

system computation and communication at various levels of detail. Starting
with the system behavior described in terms of different MoCs and captured
in a system design language, system functionality is gradually refined down to
an implementation by inserting new layers of implementation detail with each
design step. In the process, processor and communication layers are combined
into complete system models at different levels of abstraction. Each abstraction
level thus includes different design decisions and provides validation of different
design metrics. All in all, the flow of well-defined system models provides the
basis for an automated design process with support for synthesis and verification
in each step.

As typical modeling results in Figure 3.34 show, we can generally observe a
trade-off between simulation speed and accuracy of results when modeling sys-
tems at varying levels of abstraction. The graphs here show both the simulation
times (Figure 3.34(a)) and the average error in simulated frame delays (Fig-



110 Modeling

0.01

0.1

1

10

100

1000

10000

100000

Spec. TLM (Net) TLM (Prot) BCAM CAM

Si
m

ul
at

io
n 

Ti
m

e 
[s

] MP3
JPEG
GSM

(a) Simulation performance

0

5

10

15

20

25

Spec. TLM (Net) TLM (Prot) BCAM CAM

Av
er

ag
e 

Er
ro

r [
%

] MP3
JPEG
GSM

(b) Accuracy

FIGURE 3.34 Modeling results

ure 3.34(b)) obtained during validation of several realistic, industry-strength
design examples, such as an MP3 decoder, a JPEG encoder and a GSM voice
encoder/decoder for mobile phone applications. In all cases, results confirm
that simulation times generally increase exponentially while accuracy increases
linearly, as more implementation detail is added with lower levels of abstraction.

A traditional CAM running cycle-accurate software ISSs next to hardware
RTL models is 100% cycle-accurate but slow. Note that ISS approaches exist
that are significantly faster but provide only approximated or no timing [88,
146]. On the other hand, a purely functional specification simulates at native
speeds but with no accuracy. In between, TLMs at various levels support
trade-offs between speed and accuracy. Specifically, a protocol TLM can be
as accurate as a BCAM for systems that do not utilize busses with complex
arbitration schemes such as preemption or split transactions. A network TLM
can provide the same accurate feedback only if there is no arbitration and busses



Summary 111

each have a single master only. In both cases, TLMs simulate at much higher
speeds compared to a BCAM or CAM.

As such, TLMs are ideal candidates for virtual prototyping of the design
and corresponding rapid, early design space exploration. Complementing tra-
ditional CAM simulations, a variety of TLMs at different levels of detail enable
gradual pruning of the design space as design progresses from a specification
down to its final implementation. In addition, note that simulations with an
arbitrary combination of cycle-accurate or behavioral component models are
possible at both the protocol TLM and BCAM/CAM level. Such mixed-level
co-simulations allow for further speed and accuracy trade-offs by validating
structural component implementations embedded in a fast behavioral simula-
tion of the system environment.



Chapter 4

SYSTEM SYNTHESIS

Synthesis is one of the key automation techniques for improving productivity
and developing efficient implementations from a design specification. Synthesis
refers to the creation of a detailed model or blueprint of the design from an
abstract specification, typically a software model of the design. Synthesis takes
different forms during different stages of the design process. In hardware system
design, several synthesis steps automate various parts of the design process.
For instance, physical synthesis automates the placement of transistors and the
routing of interconnects from a gate level description, which itself has been
created by logic synthesis from a register transfer level (RTL) model. The same
principle of translation from higher level model to a lower level model applies
to system synthesis.

Embedded system designs consist of both software and hardware. Although
the synthesis principle stays the same, the number of design decisions increases
substantially and their impact becomes less predictable. This makes the system
synthesis process more complicated than it is for hardware synthesis alone. To
meet this complexity, designers can adopt a model based approach, in which
they create unified models of both the software and hardware in the design.
Such system level models do not distinguish between software and hardware.
Instead, they capture the functionality of the application and the structure of the
computational platform. Typically, these models are executable, so they may
be validated by simulation.

In Chapter 3, we looked at different modeling abstractions for embedded
systems. We saw that the system platform consists of processing elements such
as CPUs, DSPs, and custom HW IPs, connected via a network of buses, links,
routers, and bridges. The application is mapped on this platform. We also
defined formal rules and semantics for models at various abstraction levels in-
cluding specification, TLM and CAM. In a model based design approach, we

© Springer Science + Business Media, LLC 2009 

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,
DOI: 10.1007/978-1-4419-0504-8_4,

113



114 System Synthesis

define system synthesis as the generation of a TLM from a specification model.
Therefore, formal model semantics are essential for identifying synthesis re-
quirements and developing synthesis procedures.

In this chapter we will present methods and techniques for system synthe-
sis. We will first examine trends in system design, including past board-based
methods and state of the art virtual platform based design. We will then present
a model based approach that enables automatic system synthesis, and the three
techniques central to this approach: model generation, mapping generation and
platform generation. These techniques can be used to automate the synthesis
of embedded systems from a high level specification model.

4.1 SYSTEM DESIGN TRENDS
Traditional system design starts with a platform definition as shown in Fig-

ure 4.1. The platform architect defines the type of processors and their com-
munication architecture at a high level, taking into account the application
characteristics. For example, in multimedia codec designs, digital signal pro-
cessors (DSPs) are typically used. For control intensive applications, embedded
processors may be used. The number of processors depends on the number of
independent tasks or available parallelism in the application. Without an eval-
uation model, the platform architect depends on his or her experience and the
application profile to make these decisions. Very often though, the platform
may be chosen based on legacy considerations. When the product is updated
for the next generation, new components may be added to the platform for the
additional product features.

Once the platform is defined, it is passed on to the hardware engineers who
implement the platform and deliver the board. The hardware engineers develop
HDL models of any custom blocks and configure the processors and other IPs.
Once the hardware becomes available, the software developers can develop the
system software.

Traditional system design requires the development of boards and board sup-
port packages (BSPs) before the application’s SW development could begin.
Typically, designers define the platform architecture and the mapping of appli-

FIGURE 4.1 A traditional board-based system design process.



System Design Trends 115

cation functions to different components of the architecture. Then, HW and
system SW are developed to produce the board and BSPs. Finally, application
SW is created using the BSPs and downloaded to the board to produce the sys-
tem prototype. Both the application SW and the HW/BSP development take
several months, which means that the prototype is not ready until more than a
year after specification.

The single most common reason for delays in traditional board-based design
methodology is its sequential development of hardware and software. That the
software depends on hardware availability also leads to verification issues. For
instance, if a bug is found during software development, the software engineers
typically place the blame on buggy hardware. Conversely, the hardware engi-
neers contend that the bug is due to the software team’s poor understanding or
improper use of the hardware. Such problems may lead to unnecessary interac-
tions between the design teams, ad-hoc decisions and wasted time, resulting in
a product delivery that may be seriously delayed. Virtual platform based design
methodology which in Figure 4.2 breaks down, is one way to avoid the delays.

A virtual platform based design methodology begins with the idea that a
model of the hardware platform may be used for software development, rather
than a prototyping board. This model is called a virtual platform (VP). The
benefit of a VP is that it takes less effort and less time to develop than a proto-
typing board because abstract models of the components may be used to create
the VP. The internal micro-architecture of the processing elements may not
be defined in a VP. However, the VP must provide a programmable model of
all software processors and functional models of all custom hardware compo-
nents. Typically, these models are at a level of abstraction higher than cycle
accurate, though they still provide visibility into the processor registers and bus
transactions for debugging and run-time analysis of the embedded software.

Virtual platforms are usually implemented using C/C++ models of the pro-
cessors. The hardware peripherals are modeled as remote function calls, which
provides the simulation speed that is crucial for rapid embedded software devel-
opment. With the advent of system level design languages, such as SystemC,

FIGURE 4.2 A virtual platform based development environment.



116 System Synthesis

VPs for multicore architectures can be modeled. Since the embedded SW can
then be developed on the VP, it can be done in parallel with the hardware.
Thus, the VP serves as a common golden reference for the development of
both the embedded software and the hardware modules. Since the software is
available earlier, it may even be used for realistic debugging of the hardware
modules. The result is that the board and its support package (BSP) as shown
in Figure 4.2. This methodology shortens overall prototyping time. However,
development of VPs must still be done by engineers with expertise in SystemC
and platform modeling. Another disadvantage is that any changes to the plat-
form must be implemented manually in the VP. During product upgrades, the
embedded software may need to be rewritten and tested for the new platform.
This is a significant undertaking, given the move to multicore platforms and the
rise in the software content of embedded systems.

These shortcomings have led to a need for system level technologies for
design of embedded systems. A model-based design methodology, as shown
in Figure 4.3, can succeed beyond what is possible with a virtual platform
based methodology. The key model for this new approach is the TLM [31].
If the semantics of the TLM are well defined, it is possible to automatically
generate the TLM from a high level, graphical description of the platform
and application. Unlike the previous methodologies, in a model based design
methodology, application development and porting is not postponed to the end
of the design cycle. Instead, it is inputted in the design process, driving the
selection of the platform as well as the generation of the embedded software
and hardware.

Using this model based method, the application may be defined using C/C++
models. However, other languages and models of computation such as UML
and Stateflow may be used for different application domains. The platform may
either be defined by the application developer of derived automatically from the
application profile. Next, a mapping from the application to the platform is cre-

TLM
G e n . TLM

A S I C /
F P G A
To o l s

B o a r d
+  B S P
+  A p p

S W  G e n .

H W  G e n .
P r o t o t y p e

P l a t f o r m  

C / Mo C

A p p l i c a t i o n
D e v e l o p e r

S W  D e c i s i o n s

H W  D e c i s i o n s

FIGURE 4.3 A model based development flow of the future.



TLM Based Design 117

ated. Based on this mapping, an executable TLM of the system is automatically
generated.

With well defined TLM synthesis semantics and software/hardware design
decisions, designers will be able to automatically generate the embedded soft-
ware and RTL hardware description from the TLMs. Furthermore, modification
of the system architecture or application is possible even late in the design pro-
cess because new TLM, HW and system SW will be generated automatically.

4.2 TLM BASED DESIGN
TLMs are central to the model based design methodology shown in Fig-

ure 4.4. The input to the design process is the system specification model. The
specification consists of an application model mapped to a software/hardware
platform. The application model is a purely functional model without any im-
plementation details; typically, it is an executable model that may be compiled
natively on the host machine for early functional validation. Various models
of computation may be used to define the application, including stateflow for
control-intensive reactive systems, dataflow for multimedia applications, con-
current sequential processes (CSP) [90], Petri-nets [142], and Message Passing
(MP) models [80] for concurrent and distributed applications.

The platform description, on the other hand, is not executable. Instead, it
defines all the component instances and their connectivity using a declarative
language. The components include software and hardware processors, buses,
bridges, and memories. The software platform includes real-time operating sys-

Component
M od el s

Component
L i b r a r y

S pec i f i c a ti on

P CA M

S W /H W  S y nth es i s

S y s tem S y nth es i s

T L M s

FIGURE 4.4 TLM based design flow.



118 System Synthesis

tems (RTOS) and drivers for common peripherals and networking. A mapping
is defined from the computational elements of the application to the proces-
sors in the platform. If the application is concurrent, then the communication
elements are mapped to buses or routes in the platform. Several detailed deci-
sions need to be made while defining this mapping, as we shall see later in this
chapter.

The system synthesis tool generates the model in correspondence with the
application and its mapping on the platform. In some cases, if the mapping
or platform is not defined, the synthesis tool may be required to generate the
appropriate mapping or platform, based on the application. In almost all design
scenarios, it is important to maintain a database of components that may be
used to define the platform. Such a database contains the data models of the
components. In other words, the characterization of intellectual property (IP)
blocks may be used to assemble the platform. The various characteristics of the
components are modeled here, including their configuration settings, metrics
and services.

The output of system level synthesis is the TLM. There are various types of
TLMs possible, depending upon the design methodology and the availability
of component models. In Chapter 3, we discussed several TLMs at different
abstraction levels. The ideal TLM is one that provides a reasonable balance
between the speed of execution and the accuracy of the design performance
estimation.

Cycle Accurate Model
T ran s acti on  L ev el Models
S p eci f i cati on  Model

7. A p p l i c at i o n
6. P r e s e n t at i o n
5. S e s s i o n
4. T r an s p o r t
3. N e t w o r k
2b. L i n k  +  S t r e am
2a. M e d i a A c c e s s
2a. P r o t o c o l
1. P h y s i c al

A d d r e s s
D at a

C o n t r o l

T L M 

MP

CAM

H W

A p p

O S

H A L

7. A p p l i c at i o n
6. P r e s e n t at i o n
5. S e s s i o n
4. T r an s p o r t
3. N e t w o r k
2b. L i n k  +  S t r e am
2a. M e d i a A c c e s s
2a. P r o t o c o l
1. P h y s i c al H W

O S

H A L

A p p

FIGURE 4.5 Modeling layers for TLM.



TLM Based Design 119

Since we can create several possible abstractions for TLMs, we need a way
to categorize them and to define their semantics according to well known com-
munication design concepts. The OSI standard [98] is one such categorization
criteria; it proposes seven well-defined different layers for networks. Figure 4.5
shows the positioning of the specification model, the TLM, and the Cycle-
Accurate Model (CAM) with respect to these OSI defined network layers.

If we apply the OSI standard, a data communication between two processes
assigned to two processing elements in a platform must satisfy the requirements
of these seven network layers. The specification model corresponds to the ap-
plication layer or abstraction, in which there is no notion of a platform. Two
processes in the Specification model communicate through abstract channels
using send and receive functions which transfer data from one location to an-
other. These abstract channels do not need any implementation details, such as
routing paths or addressing. Each channel instance represents a unique point-
to-point transaction media for the processes in the application. Furthermore,
the abstract channels may also have abstract types, including base types, arrays
or structures. In other words, no aspect of the communication is modeled other
than the abstract data transfer at the specification level.

At the other end of the OSI spectrum, the CAM communication model be-
longs to the physical abstraction layer. Each pin and signal in the system is
modeled explicitly. Data transactions can be observed as the wiggling of bits
on signals that connect two processing elements or on a shared bus. Each
transaction is addressed if a shared bus is used. Furthermore, cycle accuracy is
observed in the bus transactions. The bus protocol defines the control, data and
address signals, as well as the sequence of ordered events in the signals. There-
fore, the CAM accurately represents the system on a detailed signal level and
takes into account signal changes in each clock cycle. It is used to synthesize
the system with standard design automation and software tools.

A TLM can be made more or less accurate by including more or fewer net-
work layers, A TLM may model only a subset of functions in a particular layer,
depending on the metrics to be estimated. Communication modeling is one of
the most important TLM features. Communication can be modeled at several
different abstraction levels by selecting certain features and not others. For
the purpose of this chapter, we have chosen the TLM that models communi-
cation at the network layer. Therefore, all decisions involving packeting and
routing are implemented in the TLM. However, lower level decisions, such as
synchronization and addressing, are abstracted. The transactions take place at
the packet level, in which each packet is a byte array of given size. Each bus,
link, router, and bridge in the platform is also modeled explicitly.

With well defined semantics for the specification, TLM, and CAM, it is
possible to automatically generate models and synthesize the embedded system.
We must establish the synthesis semantics before we can define the synthesis



120 System Synthesis

requirements and algorithms. In the following sections, we will discuss methods
and algorithms for system synthesis based on different design scenarios.

4.3 AUTOMATIC TLM GENERATION
The typical platform-based system level design process starts with the def-

inition of a platform of processing elements connected to the communication
architecture. The platform is usually chosen to optimize the execution of a
given application. The application tasks are mapped to processing elements
and the abstract channels are mapped to buses or routes in the communication
architecture. A model of the application, mapped to the platform is then cre-
ated to evaluate the performance. This model estimates various metrics of the
design such as delay, power consumption, and reliability. Once these metrics
are obtained, the designer evaluates if they meet the constraints defined in the
specification. If the constraints are not satisfied, the designer optimizes the
application, platform or mapping. The model is then regenerated to re-check
for constraint satisfaction.

This synthesis flow, as shown in Figure 4.6, must be supported by various
languages, automation tools, libraries, as well as a design environment. In pre-
vious chapters, we discussed the languages and models of computation needed
to specify application models. However, these languages and representations
are not suitable to define the system platform. Therefore, we need a language,
preferably graphical, to input the platform netlist. Since the platform compo-
nents require configuration, we must define properties and parameters for each
component. The specification environment should also allow the the mapping
from the application to the platform to be defined. Therefore, the application
model must be expressed in a form such that a mapping of application objects
may be made to the objects in the platform definition. For example, functions,

Application M apping P latf or m

T L M  G e ne r ation

TLM E s tim ation M e tr ics

O ptim iz ation

C ons tr aints

C om pone nt
M od e ls

S y s te m  L e v e l S pe cif ication

FIGURE 4.6 System synthesis flow with given platform and mapping.



Automatic TLM Generation 121

tasks or processes in the application model may be mapped to software or hard-
ware processors in the platform. The specification environment should allow
the user to specify such a mapping.

Once the platform components are selected and the mapping is defined, the
TLM of the design is generated. Data models of the platform components are
needed in order to create a TLM. These data models have different parameters
for different components in the platform. Furthermore, the parameters of the
data models are also dependent on the type of metrics that we want to evalu-
ate in the TLM. For instance, if we are interested in evaluating the execution
performance of the system, we need to provide the delays associated with each
operation of the processors and buses. However, if we want to estimate power
consumption in the TLM, we must provide power dissipation parameters in the
data model. At the very least, some basic information concerning the structural
compatibility of the components must be described in the data model. For in-
stance, the data model may specify that an ARM processor may only connect
to an AMBA bus [4]. Such information in the data model will allow the de-
signer to perform sanity checks while creating the platform. As a result, the
designer will prevented from, for example, connecting an ARM processor to
any arbitrary bus in the platform. Similarly, other compatibility parameters,
such as supported operating systems or maximum number of threads, may also
be defined in the component model.

The optimization phase of the system design process, shown in Figure 4.6,
requires the definition of design constraints. Such constraints are extremely
important in embedded systems, int contrast to traditional PC based systems.
Almost all embedded systems must be designed to operate under constraints.
Typically, there exist real-time constraints on the design, which we can classify
as either hard or soft. For example, in automotive systems, the brakes must
be applied on the wheels within a strict time delay after the pedal is pressed.
This is a case of a hard real time constraint. On the other hand, during video or
audio decoding, the delay between the decoding of two frames must meet some
specified deadline. However, if the frame is not decoded in time, the quality of
output may suffer, but it is not a life-threatening situation and may be tolerated.
Such constraints are soft-real time constraints. For portable devices, similar
constraints may exist for other metrics, such as power and energy consumption.
In all cases, the constraint may be defined as a bound on a given metric or set
of metrics.

In a model based methodology, a timed TLM of the design is used to check
if it satisfies the given performance constraints. However, manual development
of a timed TLM is difficult and time consuming. Therefore, we need methods to
automatically generated TLMs. In this section, we will discuss automatic TLM
generation from platform definition and the mapping of application model to the
platform, and TLM generation. We will go into the details of communication



122 System Synthesis

and computation timing estimation to provide a sample of metric estimation
techniques.We then will discuss the semantics of TLMs in a popular system level
design language, called SystemC [81]. The SystemC TLM semantics allow
automatic generation of TLMs from the definition of application to platform
mapping.

4.3.1 APPLICATION MODELING
The design process starts with a given application. Typically, the applica-

tion is specified using an executable model written in a well defined model of
computation, such as those described in Chapter 3. Figure 4.7 shows a typi-
cal application model specified in the program state machine (PSM) model of
computation. The PSM model gives the application developer the ability to
specify concurrency, hierarchy, and abstract communication. It also allows the
developer to create different flows of execution at different hierarchy levels.
These flows of execution could involve sequential processing as seen in the
relationship between P3 and P4 processes, or concurrent execution as shown in
the relationship between P5 and processes P3 or P4. Finally, a PSM model may
include a state machine execution flow as seen at the top level of the hierarchy.

The processes at the leaf level are symbolic representations of functions that
may be specified using common programming languages such as C and C++.
Even legacy code (usually available in C) can be inserted in leaf-level processes.
Processes use channels for communication amongst themselves; the channels,
therefore, capture data dependence between the behaviors. Communication
channels enable an object oriented method of composing and connecting pro-
cesses because they clearly separate computation from communication. This
is a useful separation because the design of processors is orthogonal to the de-
sign of communication architecture. As a result of the separation, processes
can be the input to synthesis of the processors and channels can be the input
to synthesis of communication architecture. Furthermore, computation and

c1

P5

P3

P4

dP1

P2

d

c2

FIGURE 4.7 A simple application expressed in PSM model of computation.



Automatic TLM Generation 123

communication can be debugged, modified or optimized independently of each
other. The clear separation of computation and communication, therefore, sim-
plifies model based design.

4.3.2 PLATFORM DEFINITION
Once we complete application modeling, we must implement it on a given

platform. The platform is the set of software and hardware services that are
provided to the application. In order to better understand the relationship of the
application to the platform, let us take the example of a simple software pro-
cessor. The application model is the code, written in some high level language,
which must be executed on the processor. The processor definition includes
an instruction set, which may be thought of as a set of services provided by
the processor micro-architecture. A compiler transforms the application model
into a sequence of instructions (services) so that it may be executed on the pro-
cessor. The concept of an embedded system platform is similar in principle,
though it is more complex than a single processor.

Figure 4.8 shows a typical embedded platform consisting of multiple CPUs
(CPU1 and CPU2), a hardware accelerator (HW IP), and memory (Mem). The
communication architecture of the platform consists of two buses (Bus1 and
Bus2) connected by an interface component. The platform is usually composed
from a set of components and a set of connections selected from the library or
defined by the user. In general, these components can be embedded processors,
memories, custom hardware units, or third party IPs. The communication ar-
chitecture for the proposed platforms is also very flexible. The designer may use
system level interconnects such as shared buses (with centralized or distributed

In
te
rfa

ce

CPU1 M e m

H W  I P CPU2

Ar
bi
te
r

B u s 1 B u s 2In
te
rfa

ce

CPU1 M e m

H W  I P CPU2

Ar
bi
te
r

B u s 1 B u s 2

FIGURE 4.8 A multicore platform specification.



124 System Synthesis

arbitration), bridges, serial links or network on chip. The platform architecture
can be completely or partially defined and more components and connections
can be added at a later design stage for the optimization of a particular metric.
Therefore, in a model based design methodology, the platform can be easily
updated for generating a new TLM.

4.3.3 APPLICATION TO PLATFORM MAPPING
So far we discussed the application modeling and platform definition steps

for TLM generation. However, before the TLM can be generated, the appli-
cation must be mapped to the platform. Figure 4.9 shows the mapping of the
application model (in Figure 4.7) to the platform (in Figure 4.8). Note that
the application has been transformed from a PSM computation model in Sec-
tion 4.3.1 to a concurrent set of communicating processes. This transformation
step is necessary because it allows a well defined mapping of objects in the
application model to the objects in the platform.

The model of computation used to specify the application, for mapping, is a
subset of the PSM model, in which the hierarchy is restricted to a single level of
concurrent processes. This restriction is practical because the computation plat-
form is a set of independent processing elements that may execute in parallel.
Therefore, a one-to-one or many-to-one mapping of application processes to
processing elements is possible without concern for execution flow dependence
between the processes. Similarly, the communication in the PSM may be trans-
formed. While the data communication channels in the PSM are preserved,
new channels may be added to represent synchronization. An example of the
synchronization channel is C3, which is added between processes P1 and P2.

In
te
rfa

ce

C3C3

P1 P3

CPU1 M e m

H W  I P CPU2

P5

C 1C 1

Ar
bi
te
r

B u s 1 B u s 2

P2 P4

C 2C 2

FIGURE 4.9 Mapping from application model to platform.



Automatic TLM Generation 125

Note that the PSM application model in Figure 4.7 defined control dependence
from P1 to P2. In the transformed application model, P1 and P2 are expressed
as concurrent processes. However, channel C3 introduces control dependence
from P1 to P2, in order to preserve the original execution order in the PSM
model.

This mapping has well defined rules. Processes map to processing elements
(PEs) such as CPUs, HW components, and IPs. Channels between processes are
mapped to routes consisting of buses, bridges, and interfaces. For the channel to
be implemented, a valid route must exist between the PEs hosting the respective
communicating processes. A set of possible routes for each application channel
can be easily generated by analyzing the platform. The designer can then select
the route for each channel and perform the mapping.

Besides the general mapping principles described above, there may be other
application and platform dependent restrictions in mapping. For instance, the
processor may define a maximum number of processes that may be mapped to
it, as in the case of hard IP, in which the mapping is implicit because the IP
model defines the processes executing on it. Likewise, the address space of the
bus may restrict the number of channels mapped to it. For example, a dedicated
serial link may not allow more than a single channel to be mapped to it.

B1

B2

ALU Memory

RF / Scratch pad

MUL

B3

AG

PC

CW


Status

...const

offset

status

address

CMem

Processor Model

IF

IF

BB1

BB2 BB3

Y

YN

N

Process CDFG

IF

IF

BB1

BB2 BB3

Y

YN

N

Timed Process

wait (t1)

wait (t2) wait (t3)

Estimation
Engine

FIGURE 4.10 Computation timing estimation.



126 System Synthesis

4.3.4 TLM BASED PERFORMANCE ESTIMATION
As mentioned earlier, various metrics may be evaluated by simulating the

TLM. These metrics help the designer evaluate design decisions such as plat-
form component selection and application to platform mapping. One important
criteria for selecting the mapping is the performance of the system. Timing an-
notation in the TLM can provide us with delay estimates for the system. The
timing must be annotated for both computation operations and the communi-
cation functions in the TLM.

COMPUTATION ESTIMATION
Timing estimation is not easy to perform because heterogeneous multiprocessor
platforms are increasingly being used in system design to deal with the growing
complexity and performance demands of modern applications. Each compo-
nent model may be written in a different language or at a different abstraction
level so it is often not practical, or even feasible, to compose them. Cycle
accurate component models, for example, do provide accuracy but may not be
available for the whole platform. Often, as in the case of legacy hardware, a C
model of the component is impractical to build. Furthermore, cycle accurate
instruction set simulation models (ISS) for processors, and RTL models for
custom HW, are too slow for efficient design space exploration. Although ISS
models use an instruction set abstraction, the mapped application is interpreted
by ISS at run time, which slows down simulation. The difficulty of estimating
the timing of a heterogeneous multiprocessor platform, however, can be over-
come using native compiled timed TLMs to bypass the problem of interpreted
models by annotating the application code with accurate delay estimates. This
annotation is done at the basic block level during TLM generation. Hence,
the timed TLMs provide performance estimates that are cycle approximate but
simulate at speeds close to those of application models.

Timed TLMs make use of how the timing annotation of an application code
can be measured with various degrees of accuracy by incorporating different
features of a processing element (PE) such as operation scheduling policy,
cache size and policy and so on. The PE model is a set of these parameter
values. While generating the timed TLM, each basic block in the application
is analyzed to compute the estimated number of cycles needed to execute it on
the given PE. The number and combination of parameters used to model the
PE, determine the accuracy of the estimation. Therefore, several timed TLMs
are possible depending on the detail of the PE modeling. The more detailed
the PE model, the longer is the time to compute execution delay. A tradeoff
must be made to achieve the optimal abstraction for the PE model. The most
important parameters for PE modeling are operation scheduling policy, data
path structure, memory delay and branch delay.



Automatic TLM Generation 127

Computation timing may be estimated and annotated automatically during
TLM generation [93]. The timing annotation process is shown in Figure 4.10.
Automatically generating timed TLMs allows the designer to estimate the co-
mutation delays early in the design cycles. Timing annotation consists of adding
timing information to the application code based on its mapping to a given pro-
cessing element. The application code in each process is converted into a CDFG
representation as shown in Figure 4.10. Then, a retargetable PE model is used
to analyze the execution of each basic block of process code on the given PE.
This analysis provides an estimated delay for each basic block in the process.
The basic blocks are then annotated with the estimated delay to produce a timed
process model. This compiled estimation technique can be applied to any appli-
cation code mapped to any type of processing element for which a data model
exists. Therefore, TLM estimation is fast, retargettable and usually provides
more accuracy than even instruction set simulation models.

COMMUNICATION ESTIMATION
Communication delay is the other critical part of the system performance. Com-
munication delay becomes very relevant if the platform has a complex bus or
network architecture. A high degree of data dependence between processes also
contributes to the communication delay. Very often, designers are interested
in end to end communication delays between processes. In other words, the
designer wants to know how long it takes to send data from the sender PE to the
receiver PE over the given communication architecture. If the sender PE and
the receiver PE are not connected directly, the transaction may take place over
a route consisting of several buses and intermediate buffers. Therefore, the end
to end delay is effectively the sum of the delays on each bus segment. There-
fore, it is important for us to model the delay in each bus segment accurately,
in order to be able to reliably estimate the end to end delays. The principle of
retarget-able estimation, as discussed above, may also be used for bus delay
modeling.

Figure 4.11 shows the principle of bus delay modeling at the transaction
level. Note that our notion of buses includes shared buses, network links,
crossbars and serial buses. At the transaction level, we are not interested in
the implementation or interconnect topology. Rather, we are interested in the
types of services that the bus provides for communication. We categorize these
services into synchronization, arbitration and data transfer. Arbitration may
further be subdivided into two events: acquiring the bus (Get Bus) and releasing
the bus (Release Bus). The order of actions for a given transaction is fixed as
shown by the channel send function in Figure 4.11. The two communicating
processes first synchronize, then the master PE attempts to reserve the bus by
calling the arbitration function Get Bus. Once the bus is acquired, the data
transfer is made. Finally, the master PE releases the bus to be used by other



128 System Synthesis

contending PEs. As we can use the PE model for computation delay estimation,
we can use a bus protocol model for communication delay estimation. We will
now look into the various delays that occur during a bus transaction, and describe
ways of computing them based on TLM modeling techniques and bus protocol
model.

SYNCHRONIZATION MODELING
Synchronization is required for two processes to exchange data reliably through
a channel. The sender process must wait until the receiver process is ready to re-
ceive. Similarly, the receiver process must not read the data until the sender has
written it. This is one of the most common forms of blocking synchronization
and is known as double handshake or rendezvous synchronization. There are
several ways of implementing double handshake synchronization in hardware
and software. However, at the transaction level, we may use higher level prim-

PE1 p1 p2

Tx1

PE3
Tx3

PE4

Application + Platform

Untimed Bus1

Estimation Engine

T imed Bus1

Bus1

PE2

Bus2

Tx2

Bu
s3

S end (  )  {
S y n c h r o n i z e (  ) ;
G e t _ B u s (  ) ;
T r a n s f e r (  ) ;
R e l e a s e _ B u s (  ) ;

}

S end (  )  {
S y n c h r o n i z e (  ) ;
w a i t  ( t 1) ;
G e t _ B u s (  ) ;
w a i t  ( t 2 ) ;
T r a n s f e r (  ) ;
w a i t  ( t 3 ) ;
R e l e a s e _ B u s (  ) ;
w a i t  ( t 4 ) ;

}

Protocol M od e l

FIGURE 4.11 Communication timing estimation.

P 1  ( s l a v e ) P 2 ( m a s t e r )
S y n c .
F l a g t e s t r e a d y
�� 

r e a d y

d a t a  
t r a n s f e r

����� ���tim
e

e v e n t

FIGURE 4.12 Synchronization Modeling with Flags and Events.



Automatic TLM Generation 129

itives such as flags and events to model the synchronization. Such modeling
constructs are sufficient to estimate the approximate delays for cycle accurate
synchronization.

Synchronization in the bus channel may be modeled with a set of flags and
events. Each flag-event pair corresponds to a unique application level channel
that is routed through the given bus segment. The flags and events may be stored
in a synchronization table in the bus channel and are indexed by the channel
ids. The mechanism for double handshake synchronization is illustrated in
Figure 4.11. Synchronization between two processes takes place by one process
setting the flag and the other process checking and resetting the flag. Once the
flag has been reset, the transacting processes are said to be synchronized.

We refer to the component that sets the synchronization flag as the slave,
while the component that tests and resets the flag is the master. Typically,
in computer system design software processors act as masters while hardware
peripherals act as slaves on the bus. We will refer to the process mapped to the
slave PE as the slave process, while the process mapped to the master PE will
be referred to as the master process. Note that for any transaction, one process
should be the master and the other slave. The slave and master processes for
a given transaction are determined at design time. In Figure 4.11, we assume
that P1 is the slave process and P2 as the master process. Hence, P1 sets the
synchronization flag and P2 tests the flag when it is ready to start the transaction.
If the flag is already set, the data transfer is initiated. However, if the flag is not
set, P2 must wait for an event notification from P1 to know when the flag is set.
The event notification is needed if P2 becomes ready before P1. P1 notifies
this event when it sets the flag. Once P2 reads the flag as set, it recognizes that
P1 is ready and resets the flag. This completes the synchronization phase by
which two processes prepare to transact data.

ARBITRATION MODELING
After synchronization, the master component will attempt to reserve the bus
for data transfer. This is necessary since the bus may be a shared resource, and
multiple transactions attempted at the same time must be ordered sequentially.
The master process makes an arbitration request to the bus arbiter. The arbiter
resolves multiple bus requests and allows only one master to access the bus at any
given time. The simplest way of modeling the arbiter is to use a mutual exclusion
object, commonly known as a mutex. An arbitration request corresponds to a
mutex lock operation. Once the transaction is complete, the process releases
the bus with a mutex unlock operation.

Although mutexes are convenient ways of modeling arbiters, the function-
ality of the mutex may differ significantly from a real bus arbiter. If multiple
lock requests are made to a mutex, the resolution policy may depend upon the
implementation of the mutex object in the respective programming language.



130 System Synthesis

However, bus arbiters have different types of resolution policies depending on
the given bus protocol. Therefore, the arbiter component must be modeled
uniquely for each bus. Some of the common arbitration policies include fixed
priority, round robin (RR), and first come first serve (FCFS). We can model
each of these policies using priority queues and status flags for the master com-
ponents on the bus. The timing for making the arbitration request and releasing
the bus is fixed and may be obtained from the database. The run-time delays
for request resolution is also computed by the arbiter model.

DATA TRANSFER MODELING
After synchronization and arbitration, the sender process is ready to write the
data on the bus. Due to the limited number of bus signals, the data transfer
takes place in several parts, known as bus cycles. In each bus cycle, a fixed
number of bytes are transferred on the bus; the number of bytes is known as
the bus word size. However, for functional modeling purposes in the TLM, we
may assume that the entire data structure is transferred in a single transaction.
This transfer may be modeled as a memory copy. Although, this does not result
in an exact representation of cycle accurate bus protocol, it provides a close
approximation. We may use analytical methods to compute the actual transfer
time depending on the size of the data.

For each channel transaction, we know the size of the data to be written or
read. The simplest approximation of transfer delay can be determined as the
product of the bus cycle time and the number of bus words for the given data
size. This delay holds true if the bus permits only single word transactions
to occur at any one time. However, some buses may support more optimized
modes, such as burst or pipelining. In order to understand these bus modes, we
must consider the various phases of a bus cycle. A bus cycle, at its most basic,
may be divided into an address phase and a data phase. For a burst transaction,
the bus is reserved by the master for several cycles. Then, the addressing is done
only once and the data words are transferred consecutively without repeating
the addressing. In the case of pipelined transfer, the data phase of the first
transaction may overlap with the address phase of the next transaction. These
optimized transfer modes may reduce the total transfer time by almost half.

Using the methods described above, we can generate timed TLMs that pro-
vide estimation of both computation timing as well as communication timing
for heterogeneous embedded designs [2].

4.3.5 TLM SEMANTICS
It is crucial to establish TLM semantics in any design flow for several reasons.

If the TLM’s objects and composition rules are defined clearly, it is possible to



Automatic TLM Generation 131

develop methods to automatically generate TLMs from the given mapping of
an application to a platform. The TLM acts as a high speed executable model
that encompasses all the system level design decisions. But the importance
of TLM semantics is not limited to simulation; they also make it possible
to synthesize cycle accurate models as well. These cycle accurate models
include embedded software and RTL hardware for implementing the embedded
system with standard CAD tools available in the market. Finally, well defined
verification semantics allow the designer to check the functional equivalence
of the TLMs with the original application model, making the designs generated
from TLMs more reliable.

Figure 4.13 shows the TLM that has been generated from the mapping de-
fined in fig:sys:SampleMap. Notice that both application and platform objects
are captured in the TLM. We will describe the semantics of TLMs using Sys-
temC, though they may be described in any system level design language. The
PEs are modeled as modules at the top level in the SystemC representation. The
buses are modeled as SystemC channels with well defined methods for common
bus operations such as synchronization, arbitration, and reading/writing mem-
ory. Interfaces are also represented as SystemC modules with internal buffers
modeled as FIFO channels. Memories are modeled as SystemC modules with
arrays that are indexed by memory address [123].

To capture the software platform, the operating system (OS) is modeled
as a channel instantiated inside the CPU. The OS channel provides common
services like scheduling and inter-process communication (IPC), as well as crit-
ical section and timing functions. The hardware abstraction layer (HAL) is also
modeled as a channel to provide an implementation of all the application level

Bus1

P1 P2

O S

CP
U1 M e m

P3

Bus2

I n t e r f a c e

P4
O S

Bus1

P1 P2

O S

CP
U1 M e m

P3

Bus2

I n t e r f a c e

P4
O S

FIGURE 4.13 Automatically Generated TLM from system specification.



132 System Synthesis

channels. The application processes are modeled as SystemC threads inside
the CPU modules. The application threads, local to a CPU, may communicate
using the communication services of the OS. Inter-PE communication takes
place through the hardware abstraction layer, which in turn uses the respective
bus channel methods. It must be noted that at the TLM abstraction level, we do
not distinguish between hardware and software. This simplifies system level
design because we can then use a uniform modeling style for TLMs.

Well defined semantics, such as those described above, allow for the au-
tomatic generation of a TLM from the given mapping of an application to a
platform. There are several advantages to this. Clearly, the primary benefit
of automatic TLM generation is that it saves time for model development and
manual optimizations. The manual optimizations can also be made at a much
higher abstraction, preferably using a graphical interface, and the TLM code
can be generated automatically. Another advantage is that manually written
models are not easily verifiable because it is difficult to establish correlation
between objects in any two independently written models. Even if modeling
rules are imposed, there are higher chances for human errors in following the
rules for writing verifiable models. Automatically generated models, however,
follow well defined rules, making it possible to correlate objects between any
two models, This enables equivalence verification of application models and
TLMs.

In this section, we considered a scenario in which the application model,
platform definition and mapping were all specified. The TLMs were generated
from the specification in order to evaluate the design choices. If the specified
constraints were met, the decisions were finalized. If the constraint check
failed, the application, platform and mapping were optimized manually until
the constraints were satisfied. However, other design scenarios are possible in
which the mapping or even the platform is undefined. In such cases, we need
automatic methods to generate the most suitable mapping or platform definition
from the given application and constraints.

The subsequent sections consider these scenarios and present algorithms and
heuristics to generate the mapping and the platform. Typically, such heuristics
help the designer produce an initial design decision. The designs are typically
refined manually using a model-in-the-loop design flow based on automatically
generated TLMs.

4.4 AUTOMATIC MAPPING
One of the most common problems in system synthesis is to determine the

optimal mapping from the application to the platform. Often, the platform
components are fixed, due either to legacy reasons or to availability. Only a few



Automatic Mapping 133

parameters of the platform may be configurable. Changing the platform entails
huge overhead because it affects all the models as well as tool chain. Therefore,
designers try to exercise their optimization options by modifying the mapping
instead.

As we saw in the previous section, there are well defined rules for mapping
application objects to platform objects. Even with those rules, however, there
will be several mapping possibilities if there are several objects in the application
and the platform. For instance, if there are N processes in the application, and
M fully connected processors in the platform, the total number of possible
mappings is N !/(M ! ∗ (N −M)!) For only 6 processes and 3 processors, that
turns out to be 20 possible mappings! For any large application and reasonably
complex platform, it is infeasible to create and evaluate all possible mappings.
Therefore, automatic mapping generation algorithms are needed at the system
level.

This problem of determining the optimal mapping has long been studied in
various contexts beyond system level synthesis. Often, the problem is formu-
lated as a cost minimization consideration. In such approaches, a cost function
is created to compute the goodness of a mapping solution. The problem is to
find the minimal cost mapping solution from all possible mappings. Various
evolutionary algorithms have been proposed to solve this problem, with mixed
results. In the context of system synthesis, the fundamental bottlenecks are the
high number of possible solutions and the extensive time required to evaluate
the cost function or performance of the design. Therefore, the most practical ap-

Application

M apping

P latf or m

T L M  G e ne r ation

TLM E s tim ation M e tr ics

O ptim iz ation

C ons tr aints

C om pone nt
M od e ls

S y s te m  L e v e l S pe cif ication

M apping  G e ne r ation

FIGURE 4.14 System synthesis with fixed platform.



134 System Synthesis

proach to solving the mapping problem is to develop heuristics based mapping
algorithms.

In this section, we will discuss some useful mapping heuristics and algo-
rithms that operate on graph based representations of applications and platforms.
First we will present an example application to demonstrate our mapping al-
gorithms. We will describe basic techniques for application profiling and the
creation of a weighted application graph. Then we will discuss two algorithms
that take the application graph and platform as an input and produce a feasible
application to platform mapping.

4.4.1 GSM ENCODER APPLICATION
In order to demonstrate our mapping and platform generation algorithms, we

will be using a GSM encoder application [76]. The GSM encoder is an audio
conversion application used widely in cellular phone designs, so it is an ideal
representative design driver from the multimedia domain.

The GSM encoder application specification is illustrated in Figure 4.15 using
a PSM model of computation. The top level encoder process is a hierarchical
composition of five leaf level processes: LP Analysis, Open Loop, Closed
Loop, Codebook Search, and Update. The model also shows the data com-
munication between the processes with thick straight edges. The thin curved
edges show the control flow such as conditional execution and loops.

The input to the encoder is the raw speech data in commonly used wav format.
This input is divided into frames, which are further subdivided into sub-frames.

Encoder

U p da t e

C odeb ook  
S ea rch

C l os ed-l oop
P i t ch  s e a rch

O p en L oopL P _A na l y s i s

2 s
ub

 fra
me

s
2x

 pe
r fr

am
e

FIGURE 4.15 Application example: GSM Encoder



Automatic Mapping 135

In the first step, LP Analysis, the parameters of a low pass (LP) filter are
extracted. The contribution of the LP filter is then subtracted from the input
speech. Next, using the past history of excitations, all the possible delay values
of the pitch filter are searched for a match closest to the required excitation.
The search is divided into an open-loop and a closed-loop search. A simple
open-loop calculation of delay estimates is done twice per frame.

In each sub-frame, a closed-loop analysis-by-synthesis search is per-
formed around the previously obtained estimates. This analysis is done in order
to obtain the exact filter delay and gain values. The long-term filter contribu-
tion is subtracted from the excitation. The remaining residual comprises the
input to the codebook search. For each subframe an extensive search through
a fixed codebook is performed for the closest matching code vector. For each
subframe, the coder then produces a block of 13 parameters for transmission.
Finally, using the calculated parameters the reconstructed speech is synthesized
in order to update the memories of the speech synthesis filters, reproducing
the conditions that will be in effect at the decoding side.

4.4.2 APPLICATION PROFILING

Profiling

S im u l a t ion

I ns t r. A p p l

S t a t ic  A na l y s i s

B a s i c  B lo c k  
C ou nt e rs

I ns t ru m e nt a t ion

A p p li c a t ion

Profile d  A p p .

FIGURE 4.16 Application profiling steps.



136 System Synthesis

Profiling is the first step in mapping generation. It analyzes the input model
in terms of different metrics that characterize the application; these metrics
will be used later for automatic decision making. To illustrate profiling, we
will be using the execution delay of the application as the metric to be profiled.
Application profiling is similar to timing analysis in TLMs, as discussed in Sec-
tion 4.3.4. However, since the mapping is not available, the profiling measures
only raw metrics such as the number of operations and data transactions.

A typical instrumentation-based profiling flow is illustrated in Figure 4.16.
In an instrumentation-based profiling approach the application is first instru-
mented with counters that are incremented at the end of basic blocks. Then,
a sample input is used to execute this instrumented model. At the end of the
simulation, the counters provide us with an execution count for each block
level in the application model. In the second step, the application characteris-
tics are calculated by statically analyzing the code together with the collected
execution counters per basic block. Specification characteristics are computed
hierarchically for each process, channel and variable in the application model.
The profiling characteristics are classified into three categories: Computation,
Communication, and Storage [32].

In each category, we compute both static and dynamic metrics. Static com-
putation characteristics are defined as the number of operations in the code of
each module. They represent the code complexity which is related to code size
and the implementation complexity of the control unit in general. The static
operation characteristics of a hierarchical module equal the sum of the charac-
teristics of all its child/instantiated modules. In contrast, dynamic computation
characteristics are the number of operations executed by each module during
simulation. Dynamic operations represent the computational complexity in the
system which is related to its performance. The characteristics of a hierarchical
module equal the sum of the characteristics of its child module. Static char-
acteristics are derived directly by analyzing the input model whereas dynamic
characteristics depend on data collected during simulation.

Application hot spots can be identified using dynamic computation metrics.
Hot spots are sections of code that consume a significant amount of computation
from the overall application. Hot spot sections are generally good candidates
for acceleration in hardware. In addition, the profiler extracts the control in-
formation from the application to identify the applications call graph and code
structure.

Besides computation, communication profile of the application is also needed
to make mapping decisions. Traffic characteristics represent the complexity of
the communication in the application. They are measured as the amount and
type of data exchanged between processes. The profiler provides separate input
and output traffic characteristics. As processes communicate through variables
and channels connected to their ports, traffic characteristics are attached to



Automatic Mapping 137

process ports, and therefore also to the variables and channels that are connected
to the ports. Furthermore, traffic characteristics are also attached to processes.

Static traffic characteristics are the number of connected ports of a certain
type. They represent connectivity complexity, which relates to the message
passing traffic incurred between two dependent processes in order to make the
output of a process available at the inputs of the next process. In contrast,
dynamic traffic characteristics are defined as the number of times a port or a
variable/channel of a certain type is accessed during simulation. An access is
generated whenever a statement in the code reads from a port variable, writes to
a port variable, or calls a port interface method. Dynamic traffic characteristics
represent access complexity which relate to the traffic incurred for a shared
memory implementation of communication between dependent processes.

Figure 4.17 shows a selection of profiling results for our sample GSM en-
coder. We report metrics for computation in each process and the communi-
cation on each data dependence edge. For computation, the number of total
operations is shown for each process in the encoder. The figure shows that the
Codebook search, with 646 Million Operations, is the most compute intensive
process.

The pie chart in Figure 4.17 shows the detailed profiling results for the Code-
book process itself by breaking down the percentage of the total computations
for each type of operation. This profile data helps us evaluate the demand in
the number and types of functional units that can most optimally implement the
process. We can see that for the Codebook search, most operations are integer
multiplications followed by integer additions and a small percentage of integer
divisions. Therefore, mapping the Codebook search process to a processor that
has ALUs, multipliers and dividers to support the operations would be ideal.

Encoder
8,802

2 72

79 ,54 4

69 ,112

0

163

U p da t e
4 3 .6M O p

C odeb ook
64 6.5M O p

C l o s ed-l oop
4 78.7M O p

O p en L oop
3 3 7.1M O p

L P _A na l y s i s
3 77.0M O p

2 s
ub

 fra
me

s
2x

 pe
r fr

am
e

31
5,5

68

( * ,  i nt ),  
46 .2 0 %

( + ,  i nt ),  
3 3 .5 0 %

( / ,  i nt ),  
9.1 0 %

ot h ers ,  
4.1 0 %

FIGURE 4.17 Profiled statistics of GSM encoder.



138 System Synthesis

The labels on the communication edges quantify the amount of data that is
transferred between the encoder processes. The profiling reveals high traffic
between the modules closed loop and update (315kBytes). The Codebook has
significant communication (79K with the closed loop, and 69K with the update
module). This indicates that it would be preferable to map Closed Loop and
Update to processors that are connected in the platform with a fast bus or link.

Overall, the computation and communication statistics collected during pro-
filing provide us with a quantitative analysis of the computation and commu-
nication demands of the various processes and channels. Although, this data
in itself is not sufficient to make optimal design decisions, it does help with
creating a preliminary mapping, which may be refined later. We will now look
at a few algorithms that can be used to automatically create a mapping from the
application to the platform, based on the profiled statistics.

4.4.3 LOAD BALANCING ALGORITHM
The first mapping algorithm we will discuss is the load balancing algorithm.

The basic idea of this algorithm is to go over a sorted list of processes and map it
to the least loaded PE in the platform. But before we present the algorithm, we
must formulate the problem using graphical representations of the application
and the platform. Graph based representations will help us define the problem
mathematically.

The application graph can be easily obtained from the profiled application as
shown in Figure 4.18. The leaf level processes are translated into nodes. The
node labels correspond to the process names as shown. We also assign weights
to the nodes based on the number of operations (in millions) executed in the
process, as reported by the profiler. For simplicity, we have rounded the node
weights to the nearest integer.

Encoder
8,802

2 72

79 ,54 4

69 ,112

0

163

U p da t e
4 3 .6M O p

C odeb ook
64 6.5M O p

C l os ed-l oop
4 78.7M O p

O p en L oop
3 3 7.1M O p

L P _A na l y s i s
3 77.0M O p

2 s
ub

 fra
me

s
2x

 pe
r fr

am
e

31
5,5

68

L P
3 7 7

O P
3 3 7

C I
4 7 9

C B
6 4 7

U P
4 4

8.8

0.1 6

0.2 7

80

3 2 0

6 9

FIGURE 4.18 Abstraction of profiled statistics into an application graph.



Automatic Mapping 139

Two nodes, say x and y, in the application graph are connected by a directed
edge, in this case from x to y, if process x sends data to process y. The weight of
the edge is the number kilobytes of data transacted, as reported by the profiler.
As in the case of node weights, we have rounded the edge weights to the nearest
integer for simplicity.

It must be noted that we have not taken control dependencies into account
while creating the application graph because adding the control dependencies
may make the application graph unduly complex. Furthermore, it would make
the mapping algorithm significantly more difficult. Therefore, for simplicity,
we are not considering the effects of concurrency when generating the mapping.

As with the application graph, we need to create the platform graph to sim-
plify the platform input for mapping generation. The conversion from the
platform definition to the platform graph is also very straightforward as shown
in Figure 4.19. Each PE in the platform is represented as a unique node in the
platform graph. Each node is assigned a weight, as they were in the application
graph. The node weight is the computation speed of the particular PE type,
measured in millions of operations per second.

The platform shown in Figure 4.19 has three PEs of three different types:
CPU, HW, and DSP. The three PEs have different computation speeds, as
shown by the node weights in the platform graph. The HW is assumed to be
a specialized implementation of which ever process is mapped to it. Although
the numbers are estimated, they are based on the general relative performance
of the three types of processing elements.

The edges in the platform graph represent the possibility of sending data from
one processing element to another as determined by the analysis of the platform
for feasible communication paths. Recall that for direct communication on any
segment, we need one component to be the master and the other to be the

In
te
rfa

ce

CPU Me m

H W  I P D SP

Ar
bi
te
r

B u s 1 B u s 2
M

M

S

S S

In
te
rfa

ce

CPU Me m

H W  I P D SP

Ar
bi
te
r

B u s 1 B u s 2In
te
rfa

ce

CPU Me m

H W  I P D SP

Ar
bi
te
r

B u s 1 B u s 2
M

M

S

S S

CPU
1 5 0

H W
2 0 0

D S P
1 0 0

FIGURE 4.19 Creation of platform graph.



140 System Synthesis

slave. We can see on the platform definition that CPU is the master on Bus1
while HW is the slave. Therefore, a direct communication path exists between
CPU and HW. The interface can be used for communication between CPU
and DSP, via the Interface. This is true because the Bus1 master CPU can
communicate to the Bus1 slave Interface. Similarly, the Interface, which is
also the slave on Bus2, can communicate with the Bus2 master, DSP. However,
no communication is possible between HW and DSP. HW cannot communicate
with the Interface because they are both slaves on Bus1. Therefore, we do not
add an edge between HW and DSP in the platform graph. Note that edges in
the platform graph do not have any weights associated with them because we
do not consider communication costs in the load balancing algorithm.

Select unmapped 
p w i th  max  #o ps

A dd all P E s  to
f e a s i b l e  (p)

Select leas t lo aded 
P E  i n f e a s i b l e  (p)

M appi ng
p to  P E  

f ea s i b le?

M ap p t o  P E ;  
U pdate P E  lo ad

A r e all 
f uncti o ns  
mapped?

R emo v e P E  f r o m
f e a s i b l e  (p)

I s  f e a s i b l e  (p) 
empty ?

M appi ng  f a i led D o ne

Star t

Y es

Y e sY e s

N o

N o N o

FIGURE 4.20 Flowchart of load balancing algorithm for mapping generation.



Automatic Mapping 141

The purpose of using a load balancing algorithm is to create a many-to-one
mapping from the nodes of the application graph to the nodes of the platform
graph. The heuristic used to create the mapping attempts to evenly distribute
the computation load for each PE in the platform. We define the computation
load as the total number of operations divided by the speed of the PE.

Therefore, we can say

Load(PE) = ΣMOps(p)/Speed(PE), such that p is mapped to PE

Next we define the set of feasible mappings for a given process p. We say
that processor PE is in feasible(p) if there does not exist any other process
q, such that p is connected to q in the application graph and q is mapped to a
processor that is not connected to PE in the platform graph.

Using the functions load and feasible, we may define the load balancing
algorithm as shown in Figure 4.20. We start by selecting the most computa-
tionally intensive unmapped process, say p, to the least loaded PE. We initialize
the feasible list by including all the PEs in the list. If there are unloaded PEs
(without any processes mapped to it), then we select the fastest PE for map-
ping. Otherwise, we select the PE with the minimum load. Before mapping,
we check if the mapping from p to PE is feasible. If it is feasible, we store the
mapping, update the PE load and select the next unmapped process. However,
if the mapping is infeasible, we remove the PE from the list feasible(p) and
repeat the mapping attempt by selecting the next least loaded PE in the feasible
list.

Let us illustrate the algorithm using the example application graph in Fig-
ure 4.18 and the platform graph in Figure 4.19, as inputs. We start by taking
the most computationally intensive process, CB, and map it to HW, which is
the fastest PE. Therefore, we have

Load(HW ) = Mops(CB)/Speed(HW ) = 647/200 = 3.24

Next, we pick process CL and map it to CPU. This gives us

Load(CPU) = Mops(CL)/Speed(CPU) = 479/150 = 3.19

CPU is, therefore, less loaded than HW, but DSP is still unloaded. Next,
we consider process LP to map to DSP. However, LP communicates with CB,
which is mapped to HW. Since there is no communication link between HW
and DSP, we cannot map LP to DSP, so we must map LP to the next least
loaded PE, which is CPU. As a result, we get

Load(CPU) = [Mops(CL) + Mops(LP )]/Speed(CPU)

= [647 + 377]/150 = 6.83



142 System Synthesis

Next, we consider the unmapped process OP. Since OP does not communi-
cate with CB, it is feasible to map it to DSP, giving us

Load(DSP ) = Mops(OP )/Speed(DSP ) = 337/100 = 3.37

Finally, we can map the last process UP to the least loaded PE, which is
HW because UP does not communicate with OP. As a result, the algorithm
terminates with CL and LP mapped to CPU; CB, UP mapped to HW ; and OP
mapped to DSP.

Although the load balancing algorithm uses a reasonable heuristic, there are
drawbacks to using it. For example, it is possible that the algorithm may not
terminate with a mapping solution. It is very sensitive to the order in which
processes are selected for mapping. Mapping a set of processes may make it
impossible to map the remaining processes. More crucially, this algorithm does
not take communication into account while creating the mapping which may
lead to poor design for communication intensive applications. We will next
consider a mapping algorithm that attempts to minimize the overall execution
time while taking communication delays into account.

4.4.4 LONGEST PROCESSING TIME ALGORITHM
Depending on the application and the mapping decisions, the communication

delay may become significant. In such cases, we cannot ignore the effects of
communication mapping on the overall execution time. The key drawback of
the load balancing algorithm is that it does not take communication timing into
account; it only considers the feasibility of communication. Therefore, design-
ers need a new heuristic for mapping decisions that accounts for communication
cost along with computation cost.

In
te
rfa

ce

CPU Me m

H W  I P D SP

Ar
bi
te
r

B u s 1 B u s 2
M

M

S

S S

In
te
rfa

ce

CPU Me m

H W  I P D SP

Ar
bi
te
r

B u s 1 B u s 2In
te
rfa

ce

CPU Me m

H W  I P D SP

Ar
bi
te
r

B u s 1 B u s 2
M

M

S

S S

CPU
1 5 0

H W
2 0 0

D S P
1 0 01 0 0

3 0 0 2 0 0

FIGURE 4.21 Platform graph with communication costs.



Automatic Mapping 143

The algorithm we will present here to meet this need is called the longest
processing time (LPT) algorithm. In multiprocessor scheduling, several vari-
ants of this algorithm have been used to map tasks in a program to a set of
processors [108]. The same principle can be used to solve the mapping prob-
lem at the system level. The key idea in LPT is to choose the processes for
mapping in decreasing order of their number of operations (hence the name).
Furthermore, this algorithm computes the cost function for mapping a process
p to each PE, called C (p, PE). The process p is then mapped to the PE at
the minimal cost. The computation overhead of mapping is also taken into ac-
count by the LPT algorithm. Hence, we need additional communication costs
in the platform graph that will help determine the best mapping of inter-process
communication to buses and routes in the platform.

Figure 4.21 shows a platform graph with communication costs. The platform,
which we will use as an illustrative example, is derived from the platform in
Figure 4.19. In the original platform, we did not have a communication path
from HW to DSP, because HW was a slave on Bus1. In order to create a
communication path from HW to DSP, we have added a direct memory address
(DMA) component on Bus1. The DMA is a master on Bus1, as shown, so it can
communicate with both HW and DSP, via the Interface component. The HW
can send the data to the DMA, which in turn can forward it to the DSP.

The edge weights reflect the connection speed between the processors. Given
nodes x and y in the platform graph, the weight of edge (x, y) is the effective
speed of data transaction between PEs x and y in kilobytes per second. Since
CPU and HW are connected directly on Bus1, they have the fastest transaction
speed. The data from CPU to DSP must be buffered at the Interface, making
the transactions between the two slower. Finally, transactions between HW and
DSP must go though DMA and Interface, so they are the slowest in the platform.

T(P E1)

T(P E3)

T(P E2)

E(p,  P E1)

E(p,  P E2)

E(p,  P E3)

Ti m e0
S y s t e m  
En d  Ti m e

C(p,  P E2)

- C(p,  P E3)

C(p,  P E1)

FIGURE 4.22 LPT cost function computation.



144 System Synthesis

Before we delve into the LPT algorithm, we must first introduce the mapping
cost function that the algorithm uses. Figure 4.22 shows a snapshot of a step in
the mapping algorithm. It assumes that we have three processing elements in
the platform, PE1, PE2 and PE3. In this step of the algorithm, we are attempting
to map process p to one of the PEs. The X-axis shows the linear time. Variable
T(PE) represents the current execution end time for the PE. In other words,
this is the time taken by the PE to execute all the processes mapped to it. The
system end time is the maximum T(PE) for all the PEs in the platform, since
all the PEs are assumed to be executing in parallel.

Variable E(p, PE) keeps the time estimated to execute process p on PE.
This includes the computation time as well as the total communication time.
The computation time is calculated simply by dividing the weight of node
p in the application graph by the weight of node PE in the platform graph.
The communication time is assumed to be negligible for all the local inter-
process communication inside PE. If the communicating processes are mapped
to different PEs, we calculate the communication time by dividing the size of
communicated data by the communication speed. More precisely, assume we
are given processes p1 and p2, mapped to PE1 and PE2. The communication
time between p1 and p2 would then be the weight of edge (p1, p2) in the
application graph divided by the weight of edge (PE1, PE2) in the platform
graph. The total communication time for process p is calculated by adding all
the communication times with neighbors of p in the application graph.

The cost of mapping p to PE, C(p, PE) is the extra time added to the
system end time as a result of the mapping. This time is illustrated for the three
possible mappings in Figure 4.22. The time may be negative as in the case of
C(p, PE3). So we can say that

C(p, PE) = T (PE) + E(p, PE)− SystemEndT ime

The LPT algorithm has a fairly straightforward greedy approach. Figure 4.23
shows the flowchart for the algorithm. As discussed earlier, we start with a
sorted list of computationally intensive processes in the application. In other
words, the nodes in the application graph are sorted in decreasing order of their
weights. At the beginning, we do not have any communication costs to be
measured since no mapping has been performed; the only cost considered then
is computation time. Therefore, we can initialize by mapping the process with
the highest number of operations to the fastest PE.So in the example shown in
Figure 4.18, we can map CB to HW.

The remaining unmapped processes are mapped in a loop as shown in the
flowchart. For each process p, and each PE, we calculate the cost function
C(p, PE) as described earlier. Then, we select the PE that gives the minimum
cost function and map p to it. Once the process is mapped, we must update
the execution end time for all the PEs as well as the overall system end time.



Automatic Mapping 145

This is because the variable T(PE) may be modified if a process mapped to PE
communicates with p. Once all the T(PE) values have been updated, we can
obtain the system end time. The cost function computation, mapping and timing
updates are repeated until all the processes have been mapped. The solution
for mapping the application in Figure 4.23 to the platform in Figure 4.21 can
be produced simply by following the algorithm steps; we have left this as an
exercise for the reader.

Since the LPT algorithm uses a simple greedy heuristic, it is computationally
very efficient. Given an application with N processes and a platform with
M PEs, we can sort the processes in O(NlogN) time. The cost function
for each PE can be calculated in O(N) time, because we must inspect if the
communicating processes for a chosen process p are mapped to another PE.
Therefore the cost computation for all PEs can be done in O(N∗M). Finally, the

Select unmapped 
p w i th  max .  #O ps

M ap p to  P E  w i th  
mi n.  C  (p,  P E )

U pdate co mpleti o n 
ti mes

A r e all 
pr o ces s es  
mapped?

D o ne

Star t

Y es

N o

M ap p w i th  max .  
#O ps  to  f a s tes t P E

FIGURE 4.23 Flowchart of LPT algorithm for mapping generation.



146 System Synthesis

loop is executed N times, which gives us a total time complexity of O(N 2∗M).
Therefore, the LPT algorithm runs in polynomial time.

In this section, we discussed algorithms for mapping a given application to
the platform. However, in some system design cases, the platform itself may
not be given. In the next section, we will discuss such a design scenario and
present heuristics and algorithms for constructing a platform from the given
application graph.

4.5 PLATFORM SYNTHESIS
In the previous section, we discussed the automatic generation of mapping

decisions based on the given application and platform. In some design cases,
the platform itself may not be defined a priori. Often, designers use common
knowledge and their experience to select the best possible platform for the given
application. However, as applications become more complex, designing the op-
timal platforms for them becomes increasingly difficult. Designers, therefore,
need methods and tools to automatically generate the optimal platform from a
given application.

The characteristics of a platform’s components are defined in the component
model database, as shown in Figure 4.24. The platform generator analyzes the
application and the design constraints, and then selects components from the

Application

M apping P latf or m

T L M  G e ne r ation

TLM E s tim ation M e tr ics

O ptim iz ation

C ons tr aints

C om pone nt
M od e ls

S y s te m  L e v e l S pe cif ication

P latf or m  G e ne r ation

FIGURE 4.24 System synthesis from application and constraints.



Platform Synthesis 147

database to be instantiated in the platform. Since the platform components are
chosen based on the application, the mapping is implicit. For example, if a
process p in the application is best executed by component PE, then an instance
of PE is added to the platform. Therefore, it is implicit in the selection of PE
that process p will be mapped to it.

The platform selected by the platform generator may not be the most optimal;
however, in the absence of any given decisions, the generated platform may be
suitable to at least initialize the process of design optimization. For optimiza-
tion, we can use the same model-in-the-loop approach that we have used to this
point. The application and the automatically generated platform and mapping
are used to generate the TLM of the system. The TLM may be simulated to
obtain metric estimates. These estimates may be compared to the constraints,
which lead to an optimization of the application, platform, or mapping. The
optimization loop is shown with thicker arrows in Figure 4.24.

TABLE 4.1 A sample capacity table of platform components.

PE Type
( C o s t )

S peed C a pa c i t y 
( * 3  s ec )

CPU (2) 1 0 0 6 0 0
D S P (1 ) 5 0 3 0 0
H W   (5 ) 20 0 1 20 0

PE Type
( C o s t )

S peed C a pa c i t y 
( * 3  s ec )

CPU (2) 1 0 0 6 0 0
D S P (1 ) 5 0 3 0 0
H W   (5 ) 20 0 1 20 0

4.5.1 COMPONENT DATA MODELS
As we mentioned earlier, we use the component data models, along with the

application and constraints, to generate the platform. A simple example of one
part of a component data model is shown in Table 4.1. We consider three types
of components here, namely CPU, DSP, and HW. The two given characteristics
of each component are the relative cost and speed. The cost may refer to the
dollar amount for purchasing the IP or the development cost for building it.
DSP is the cheapest component followed by a general purpose embedded CPU.
HW is the most expensive component because of the significant effort needed to
develop and verify it; though the speed of the component is typically inversely
proportional to its cost. That is to say, custom hardware may be expensive to
develop, but it executes the process much faster than a CPU or DSP would.

The last column in Table 4.1 specifies the capacity of the components. By
capacity we refer to the millions of operations that can be performed by the
component under the given timing constraints. For illustration purposes, the
timing constraint has been defined as 6 seconds. Therefore the system to be



148 System Synthesis

designed must complete the execution in less than 6 seconds. The capacity
figures for the PEs are obtained by multiplying the speed of the PEs with the
timing constraint, which again is 6 seconds. Note that the capacity numbers
cannot be stored in the database. They must be computed based on the given
timing constraint. Similar capacity numbers can be used for other metrics such
as energy and bandwidth.

4.5.2 PLATFORM GENERATION ALGORITHM
Before we discuss the details of the platform generation algorithm, we must

introduce a few terms that are used in the algorithm. As in the previous algo-
rithms, we consider the computational cost of the process to be the weight of
the process node in the application graph. We define the available computation
capacity in the PE as Slack(PE). Therefore, we can say

Slack(PE) = Capacity(PE)−ΣMOps(p), for all p mapped to PE

The platform generation algorithm also considers the communication while
generating the implicit mapping. If a given process p has a high amount of
communication to the already mapped processes in PE, then the algorithm
attempts to map p to PE. The reasoning is that communication costs the least
if it is local to a processor. Therefore, to take communication into account,
we define the closeness factor C(p, PE) between process p and processor PE.
In context of the application graph, we define C(p, PE) as the sum of all the
weights of the edges between p and its neighbors mapped to PE. So we can say

C(p, PE) = ΣComm(p, q), for all q mapped to PE

Figure 4.25 shows the flowchart of a greedy algorithm for platform gener-
ation. The basic principle is to traverse the set of processes and map them to
the closest processor or the one with the maximum slack available. If no such
processor is found, the processor that can execute the given process at the lowest
cost is selected from the database and instantiated.

We start with a list of application processes that is sorted in decreasing order
of computation cost. Clearly, the first process, p, cannot be mapped anywhere
since no processor exists in the platform yet. It is therefore mapped to the least
cost processor, say PE, such that Capacity(PE) ≥ MOps(p). After the
initialization, the remaining processes are mapped in the main loop. There are
two checks performed, as mentioned earlier. The closeness factor is considered
first for mapping, failing which, the available slack is considered. It must be
noted that the computational cost of any process should not be higher than the
capacity of all the processors in the database. In such a case, a platform cannot
be found. If this is the case, the designer may want to modify the constraint,



Platform Synthesis 149

split the application, or add faster components to the database. Once all the
processes are mapped, the platform is generated and the algorithm terminates.
For the sake of simplicity, we will consider a single bus platform. If PEs with
incompatible interfaces are instantiated, then multiple buses may be instantiated
and connected with an interface.

We will illustrate the greedy platform generation algorithm using the GSM
voice encoder application, whose application graph is repeated here in Fig-
ure 4.26(a). We will be using the component database shown in Table 4.1.

The first process selected is CB with 647 MOps. The only processing element
with the capacity to execute CB under the given 6 second constraint is HW.
Therefore, we add HW0 as an instance of HW to the platform, and map CB to

Select PE with 
m a x .  C(p, PE)

D o n e

Sta r t

Y e s

N o

Select f i r s t 
u n m a pped  p

Ca n  p b e 
m a pped  to  

PE?

Select PE with 
m a x .  Sla ck (PE)

Ca n  p b e 
m a pped  to  PE?

A d d  PE with m in .  
ca pa city >M O ps (p);

M a p p to  PEM a p p to  PE,
U pd a te Sla ck (PE)

A r e a ll 
pr o ces s es  
m a pped ?

Y e s

N o

Y e s

N o

FIGURE 4.25 Flowchart of a greedy algorithm for platform generation.



150 System Synthesis

LP
3 7 7

O P
3 3 7

C l
4 7 9

U P
4 4

C B
6 4 7

8 . 8

6 9

8 0

0 . 1 6

0 . 2 7

3 2 0

(a) Application graph

CPU
10 0

H W
20 0

D S P
5 0CB , CI , UP

L P

O P

1 2

4

(b) Generated platform with map-
ping

FIGURE 4.26 Illustration of platform generation on a GSM Encoder example.

it. The variable Slack(HW0) is updated as follows

Slack(HW0) = Capacity(HW )−MOps(CB) = 1200 − 647 = 553

Next we consider the most computationally intensive unmapped process CI.
We can see that

C(CI,HW0) = Comm(CI,CB) = 80, and MOps(CI) < Slack(HW0)

Since CI may also fit in HW0, we map it and update the slack of HW0 as
follows

Slack(HW0) = Capacity(HW )− [MOps(CB) + MOps(CI)]

= 1200 − [647 + 479)] = 74

Next we consider process LP with MOps 377. Since LP cannot fit into
HW, we select the cheapest component that can execute LP under the given
constraints, which is CPU. Therefore, we create an instance of CPU called
CPU0 and add it the platform. The slack is updated as follows

Slack(CPU0) = Capacity(CPU)−MOps(LP ) = 600− 377 = 223

The next most compute intensive process is OP with 337 MOps. Again,
we find that neither CPU0 nor HW0 can accommodate OP. Therefore, a new
instance CPU1 of type CPU is added to the platform. We map OP to CPU1
and update its slack as follows

Slack(CPU1) = Capacity(CPU)−MOps(OP ) = 600 − 337 = 263



Platform Synthesis 151

Finally, we are left with process UP which has only 44 MOps, so we can map
it to any of the processors in the platform. However, based on the closeness
heuristic in the greedy algorithm, we must map UP to the PE with which it has
the most communication. The closeness factors are computed as follows for
each PE

C(UP,HW0) = Comm(UP,CB) + Comm(UP,CI)

= 69 + 320 = 389

C(UP,CPU0) = Comm(UP,LP ) = 0

C(UP,CPU1) = Comm(UP,OP ) = 0

Therefore, we must of course map UP to HW0. As a result, we get the
mapped platform graph shown in Figure 4.26(b). Consequently, there are three
components in the platform connected with a common bus, since both CPU and
HW type components can be connected to the same bus. This is an illustrative
example of how platform generation can be done automatically using a greedy
algorithm.

To sum up, in this section, we discussed the methods for automatic plat-
form generation, as well as how to implicitly create the mapping. The system
synthesis algorithms, discussed so far, allow the designer to make some useful
system level design decisions. However, once the TLM is generated, a back
end synthesis flow is needed to generate the final implementation model. The
next section provides an overview of the back end flow, which is then discussed
in greater depth in the following chapters.

4.5.3 CYCLE ACCURATE MODEL GENERATION
So far, we have discussed the system level design decisions required to create

a platform and map the application to the platform. We saw how the TLM can
be used to evaluate the system level design decisions. However, the system level
decisions, in most cases, are still too abstract and incomplete to implement the
design in that state. In order to implement the design, a synthesizable pin-
cycle accurate model (PCAM) of the system must be created. This model is
supported by traditional FPGA and ASIC design tools for manufacturing. The
crucial point is that if we have created the TLM according to well defined
synthesis semantics, we can easily generate the CAM from the TLM.

As shown in Table 4.1, there are three steps to CAM generation; software
synthesis, hardware RTL synthesis and interface synthesis. For software syn-
thesis, a RTOS and HAL library is used to automatically generate the system
software stack for each software processor in the design. This system software
is application and platform specific; it presents a programming interface to the
application processes which is identical to the TLM’s. The application code



152 System Synthesis

and the system software can be compiled into a single binary for download to
the specific SW processor.

If there are custom hardware components in the design, it is possible to
generate hardware C models that can be synthesized into equivalent RTL models
using traditional high level synthesis tools. The RTL output of these tools is
integrated back into the CAM. Alternately, a pre-designed RTL IP component
may be used directly in the CAM. Finally, interface synthesis tools can be used
to automatically synthesize RTL hardware description of all interfaces between
buses in the platform. The interface synthesis tools need a cycle accurate model
of the relevant bus protocols, which may be obtained from a library.

The generated CAM can be used for either an ASIC flow or FPGA flow.
Commercial ASIC design tools for logic and physical synthesi can be used
to produce the layout from the CAM. The CAM can also be used for logic
simulation at the cycle level. Alternately, commercial FPGA design tools may
be used for prototyping the design from the CAM. Therefore the CAM, which
is synthesized from the TLM, can be used for multiple types of implementation.

4.5.4 SUMMARY
In this chapter we discussed the methodologies and techniques for system

synthesis. As the abstraction level of design and modeling is raised beyond
the traditional cycle accurate level, system synthesis will become a neccessity,

FIGURE 4.27 Cycle accurate model generation from TLM.



Platform Synthesis 153

not a luxury. Virtual platform based development is a first step in realizing
the goal of automatic system synthesis. While virtual platforms allow the
concurrent development of hardware and software, we advocate that a model
based methodology, which improves on the promise of virtual platforms, be
developed with the help of system synthesis tools.

To this end, we discussed system synthesis in the context of TLMs, showing
how TLMs can be automatically generated from a given mapping of the appli-
cation to a platform. We delved into the details of timed TLM generation for
evaluating the performance of a system. The performance data obtained from
the TLM execution can be used to check for constraints and to optimize the
design to meet those constraints. We also looked at methods to automatically
create a mapping if no initial mapping is available, and discussed algorithms
and heuristics for automatic synthesis of the platform from a given application
model and library of components.

Although this approach permits us to make several critical design decisions
at the system level, we need CAMs for the final system implementation and
manufacturing. If the TLM semantics are well defined, they can serve as a
starting point for CAM generation. In the following chapters, we will discuss
the principles of embedded software synthesis and the hardware RTL synthesis
methods which enable the generation of this CAM.



Chapter 5

SOFTWARE SYNTHESIS

This chapter describes software synthesis. As discussed in the previous
chapter and shown in Figure 5.1, software synthesis, together with hardware
synthesis and interface synthesis, is part of the component synthesis. We should
recall that system synthesis produces a system model to describe the system’s
components and their communication. The bottom portion of the flow uses the
system model as an input and generates an implementation for each component.
Hardware synthesis, which we describe in the next chapter, generates an RTL
description of custom hardware components. Software synthesis, topic of this
chapter, produces binary code for programmable processing elements.

Software development dominates the design cost of modern complex multi-
processor systems. The amount of software embedded in designs is increasing,

HDL 
R T L

B i n a r y  
C o d e

Ha r d w a r e  
S y n t h e s i s

S o f t w a r e  
S y n t h e s i s

I n t e r f a c e  
S y n t h e s i s

S y s t e m  S y n t h e s i s

S y s t e m  M o d e l

M o d e l  o f  C o m p u t a t i o n

FIGURE 5.1 Synthesis overview

© Springer Science + Business Media, LLC 2009 

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,
DOI: 10.1007/978-1-4419-0504-8_5,

155



156 Software Synthesis

partly due to increased design complexity, but also as a result of a shift toward
software-centric implementations, which designers prefer because software al-
lows them to flexibly and efficiently implement complex features. While em-
bedded software was traditionally implemented manually, this method is too
time consuming to meet today’s time-to-market requirements. The extensive-
ness of implementation detail causes long development times, especially as em-
bedded software is tightly coupled to the underlying hardware. Manual code
development is tedious and error prone. To increase productivity, a method for
automatically generating embedded software is much preferred.

5.1 PRELIMINARIES
The main challenges for developing embedded software stem from its tight

coupling to the underlying hardware and external processes. This coupling may
be at different levels. At one level embedded software drives and control cus-
tomized hardware accelerators that are integrated to the platform. At another
level, the complete embedded system is often part of a physical control process,
such as an anti-lock brake system. There, embedded software can implement
a control loop of the physical process though reading from sensors (e.g. mea-
suring tire rotation speed) and controlling of actuators (e.g. setting the applied
brake pressure). In both cases the software is specific to the underlying hard-
ware. Specialized software drivers are necessary to access the custom hardware
components (such as accelerators, sensors, and actuators). Already this small
view into an embedded system indicates challenges of embedded software that
is tightly coupled to a heterogeneous underlying hardware platform. In order
to efficiently meet diverse requirements, an embedded system uses specialized
components (hardware accelerators, processors, DSPs) with distinct communi-
cation schemes, which we must carefully account for in the software synthesis
stage.

As a result of the tight coupling, timeliness is a very important aspect in
embedded software. By embedding the device in a physical process, time
constraints extend to the software implementation. Often embedded software
has to obey real-time constraints. In a real-time system, correctness is not only
determined by functionality, but also by the time in which in which the result is
produced. In other words, generating a functionally correct value is only half
of the solution. The system has to produce the functionally correct value within
the specified time frame. This does not necessarily imply fast execution, but
rather an execution within a predictable time.

Additional challenges stem from concurrency. Embedded systems often
have to simultaneously react onto different external stimuli. For example, con-
sider a telephone line card that provides your home with telephone service and



Preliminaries 157

ADSL for fast Internet access. Its processor runs many tasks in parallel: it
monitors the line for any phone activity (e.g. off-hook), manages the ADSL
connection, keeps track of performance-monitoring statistics, communicates
with the central controller, in addition to managing many other tasks. Con-
currency makes software development challenging in expressing concurrent
algorithms and maintaining safe communication between flows of execution.
More so, the concurrent execution of software poses challenges as it requires
alternating between flows of execution (e.g. by using an operating system),
which complicates maintaining real-time constraints.

Naturally, embedded software has to obey resource constraints in order to
meet the product requirements. Constraints limit, for example, memory con-
sumption, available computing power, consumable energy, power dissipation,
and other resources.

A systematic approach to embedded software development is needed to ad-
dress the overlapping challenges of coupling, timeliness, concurrency, and re-
source constraints. Software synthesis is one possible solution. Before intro-
ducing the steps involved in software synthesis, we will touch on some req-
uisites, including programming languages for embedded systems, as well as
overviews of real-time operating systems and traditional embedded software
development.

5.1.1 TARGET LANGUAGES FOR EMBEDDED SYSTEMS
Embedded systems can be programmed in a wide range of languages such

as assembly, C, C++, and Java. They differ in many aspects, for example in the
abstraction level at which the program is written and with that the granularity
of control over the processor.

Assembly (e.g. [192]) is the lowest level language from the set above. This
language is basically a symbolic representation of the processor’s machine code
and only minimally abstracts the processors complexity. It provides very fine-
grained control of the processor internals. For example, assembly allows direct
control of the processor registers and instructions. However, with this fine-
grained control, assembly programs are very verbose, which makes it unsuitable
for larger projects. As a further complication, the assembly language is specific
to the processor’s Instruction Set Architecture (ISA), so two processors may
use a different assembly. The differences in assembly languages significantly
increase the learning effort when developing code for different processors.

The C language [106] provides a higher abstraction than assembly. It is
a general purpose programming language, designed for easy compilation to
efficiently map language constructs to the processor’s assembly. It provides
low-level features such as bit-wise activities and also allows direct access to
memory management. Furthermore, C requires minimal run-time support, by



158 Software Synthesis

which we mean the support code necessary for running any program. Although
C offers low-level features, it is mostly independent from the processor’s ar-
chitecture. Portably written standard compliant C code can be compiled to
a variety of processors. To ensure portability, the code has to follow coding
guidelines. MISRA [8] is one example of a C language coding standard for
portable applications in the automotive domain. Overall, the higher abstraction
level of C make this language more convenient and efficient for development
than assembly.

C++ [173] is a general purpose language which began as an enhancement
to C. C++ is backwards compatible with C, retaining C’s fairly low-level fea-
tures while adding higher-level concepts, such as classes, inheritance virtual
functions, and operator overloading. These higher level constructs facilitate
object-orientated programming, which make C++ attractive for large projects.
C++ is used in a range of applications, from embedded systems to large desktop
applications. Typically only a subset of C++ is used in embedded systems to
avoid large runtime overhead and to ensure efficient execution on the target.
[44] shows an example of coding guidelines defining for embedded system
programming.

Java [54] was created to meet a different set of criteria: portability, relia-
bility, and longevity. Java can be described as a simplified derivative of C++.
It omits many of the more complicated C++ constructs, including templates,
namespaces, multiple inheritance, and operator overloading. Java can also
hide complexities such as memory management and pointer arithmetic from
the user. On one hand, these simplifications limit programming flexibility, but
on the other hand, they prevent unnecessary mistakes caused by developers’
misemployment of that flexibility.

Java was originally implemented with an interpreter to make its object code,
the Java byte code, portable. This interpreter, the Java Virtual Machine or JVM,
is part of the language, so a compiled Java program should run on any machine/-
platform with a JVM, ensuring Java’s portability. However, a purely interpreted
approach like this has the drawback of slow execution speed. To overcome this
speed limitation, Java programs can also be compiled for a specific processor.
Such approaches may for example use ahead-of-time compilation, much like the
traditional C++ compilation process, or just-in-time compilation, in which the
Java code is compiled while executing on the target processor itself. To further
improve speed, some embedded processors now support Java accelerators in
addition to their native-machine code (for example ARM’s Jazelle technology
[159]).

The Java language contains constructs for concurrency and communication.
Its standardized runtime environment, provides interfaces for thread manage-
ment, communication and synchronization primitives. To hide the complexities
of manual memory management, it utilizes an automatic garbage collector to



Preliminaries 159

recover unused memory blocks. However, the original Java specification does
not facilitate real-time computing, with the main challenge being the garbage
collection. To address real-time requirements, the Real-Time Java Specifica-
tion [17] provides vital extensions to the Java language, for example defining
predictable memory allocation schemes.

While each of these languages had unique capabilities and drawbacks for
coding embedded systems, C is currently the one used most predominantly,
though C++ and Java have gained popularity. With the quality of C compiler
results and the increasing complexity of projects, assembly language is rarely
used for an entire application. Instead, developers use assembly for special
code that requires direct access to the processor registers (for example within
processor startup, or for context switching), or for hand optimizing small timing
critical code sections. The versatility and popularity of C as a target language for
programming embedding systems recommends it as our focus for this chapter.

5.1.2 RTOS
The languages assembly, C and C++ do not inherently provide support for

concurrency. Concurrency, however, is an integral part of embedded systems.
To enable concurrent execution, embedded applications are often executed on
top of an Real-Time Operating System (RTOS), which makes an RTOS an
essential part of the embedded software.

Like a general purpose operating system, an RTOS is a software layer above
the bare processor that controls the concurrent execution of applications and
provides various services for communication and synchronization.. An RTOS
differs from a general purpose operating system in many aspects. The most
predominant difference is in timing behavior. A general purpose OS is typically
geared toward fairness, to give all running processes a fair amount of execution
time. With an RTOS, on the other hand, the goal is predictability, to enable
timely execution within predicable bounds.

A real-time operating system is an operating system that facilitates the con-
struction of real-time systems. We use the word "facilitate" because the RTOS
by itself does not guarantee real-time behavior. It provides its services within a
predicable time and offers predictable algorithms for scheduling flows of execu-
tion. Therefore, properly designed software together with a properly configured
RTOS enables the construction of a real-time system. We distinguish between
two categories of real-time systems, hard and soft real-time systems, based on
the potential consequence of missing a deadline. In a hard real-time system,
missing a deadline may lead to catastrophic consequences to the controlled en-
vironment. Examples of this type of real-time system include plant control and



160 Software Synthesis

medical applications. In a soft real-time system, missing a real-time constraint
is tolerable if overall service quality remains acceptable. Media applications
typically fall into this category.

An RTOS offers a wide range of essential system services. An RTOS pro-
vides services for task management as well as for Inter Task Communication
(IPC). Task management creates, terminates, and controls tasks, while IPC
enables tasks to exchange information and synchronize with each other (e.g.
mailbox, queue and event). An RTOS offers services to control resource shar-
ing (e.g. mutex, and semaphore). Memory management is another important
embedded system programming. To this end, the RTOS provides deterministic
mechanisms for memory allocation. An RTOS also provides timing support
for a timed execution (e.g. for periodic triggering of tasks or timeout support).
Finally, an RTOS enables communication with external devices and offers in-
terrupt management. In some cases, an RTOS can provide a diverse set of
standard drivers, such as IP communication stack, flash management drivers,
or file system support.

RTOS implementations come from a variety of sources. Proprietary com-
mercial kernels include, for example, QNX Neutrino RTOS and WindRiver’s
VxWorks. There are also a number of free RTOS implementations such as
eCos, RTEMS, and uC/OS-II. Others are soft real-time extensions of time-
sharing operating systems, like for example RT-Linux and Windows CE. There
are also numerous specialized and research RT kernels. Each of these RTOS
implementations has own unique features, common for all of them is enabling
concurrent execution within an embedded system.

An RTOS’s ability to manage its various responsibilities is dependent on
supported scheduling algorithms. In general, a scheduling algorithm determines
the order in which different flows of execution are given access to a resource.
Hence, the scheduling algorithm decides in which order to execute tasks that are
ready for execution. Scheduling algorithms can be characterized according to
various properties. [30] describes and analyzes scheduling algorithms in detail.
Some classification properties for scheduling algorithms are:

Preemptive / Non-preemptive characterizes whether a task can be interrupted
in the middle of its execution. When using a preemptive scheduling algo-
rithm, a running task may be interrupted in its execution at any point in
time according to the scheduling policy. With a non-preemptive algorithm,
a task may not be interrupted within its execution and scheduling may only
occur when operating system services are invoked. As a result, a task once
started will execute until completion if it does not call any operating system
services.

Static / Dynamic refers to whether task scheduling parameters can be updated
during runtime. When using a static algorithm, the task scheduling param-



Preliminaries 161

eters are fixed once the task is released. In a dynamic approach, such
parameters may change during the lifetime of the task.

Off-line / On-line characterizes when scheduling decisions are made. In an
off-line approach, the complete schedule for all tasks is determined before
releasing any task, and is stored and executed by a task dispatcher at run-
time. In an on-line approach, scheduling decisions are made at run-time, as
each task is released.

Off-line scheduling algorithms are often used in hard real-time systems. Us-
ing a pre-defined schedule created by an off-line algorithm significantly eases
real-time system analysis and allows deterministic execution since every execu-
tion sequence is known before hand. Furthermore, executing from a pre-defined
schedule minimizes runtime overhead as no scheduling decisions are made at
runtime. However, an off-line algorithm can be brittle and inflexible as it can
only handle what is completely known before starting execution. On-line al-
gorithms, on the other hand, allow flexibly adjusting to changes in the system,
however at the cost of higher runtime overhead. On-line algorithms are widely
used in current RTOS implementations. Examples of the scheduling policies
typically available in an RTOS are:

Priority-based scheduling. In priority-based scheduling, the task order is de-
termined by task importance. The designer assignees a priority to each task
defining its importance. At any given time, the highest priority task from
the set of ready to run tasks is selected. Priority-based scheduling is often
used, as it is flexible and easy to implement. Other scheduling policies can
be implemented by priority distribution. Priority-based scheduling is a on-
line approach, typically used with a preemptive policy. Dynamic priority
changes may be allowed during task execution.

Earliest Deadline First (EDF). In an EDF schedule, the task with the earliest
deadline is scheduled first. The on-line algorithm requires task deadlines to
be available during execution time. Each ready task, is added to a priority
queue based on its deadline expiry. The process that is closest to its deadline
is dispatched to the processor.earliest deadline first

Rate Monotonic (RM). In an RM schedule, tasks are assigned priorities in
descending order according to the length of the period, in which the task
with the shortest period will be assigned the highest priority. Therefore, a
frequently running task gets preference over rarely running tasks.

Round Robin (RR). RR assigns tasks to the CPU based on time slices and
tasks take turns. Using an RR schedule, each task is assigned a fixed time
slice which defines the amount of processor time the task may take to execute



162 Software Synthesis

contiguously. After a task has used up it’s time slice it is put into the back
of the scheduling queue and the RR scheduler assigns a new task to the
processor. After all ready tasks had their chance to execute on the processor,
the original task can execute again. RR scheduling emphasizes fairness,
as each task is guaranteed a predefined amount of processor time. Some
operating systems offering priority-based scheduling use an RR schedule
for tasks with identical priority (e.g. WindRiver VxWorks).

The list above outlines a small selection of scheduling algorithms. A more
comprehensive description can be found in [30].

5.2 SOFTWARE SYNTHESIS OVERVIEW
Software synthesis deals with programmable components, such as proces-

sors. It uses information captured in the system TLM to generate the embedded
software and to produce a complete binary for each programmable component
in the system. If all code leading to the final binary is generated automatically,
we can eliminate the tedious and error-prone process of manual code writing.
In addition, an automatic generation demands less processor-and-platform spe-
cific knowledge from the designer, and hence enables the designer to target a
wider range of architectures. Moreover, software synthesis reduces the effort
required for system validation because each synthesis step can be individually
verified, thus reducing the validation effort for the system as a whole. Overall,
automatic software synthesis significantly increases productivity by reducing
the time necessary for the development and debugging of software code.

Figure 5.2 shows a more detailed flow for software synthesis. It uses the
system TLM, which reflects system-wide architecture decisions, as an input
and generates a target binary for each core. Software synthesis is divided into
code generation and Hardware-dependent Software (HdS) generation. Code
generation produces flat C code out of the hierarchical model captured in the
SLDL. It converts module hierarchies into a set of C functions. Instance-specific
variables are translated into a set of data-structure instances. Additionally, code
generation also resolves the connectivity between modules into flat C code.

The second component of software synthesis, HdS generation, produces all
the drivers and support code necessary to execute the above-generated C code
on a given hardware platform, in particular, the critical aspects of multi-tasking,
internal communication, external communication, and binary generation. HdS
generation addresses the issue of multi-tasking to concurrently execute tasks
on the same processor, typically by utilizing an off-the-shelf RTOS to schedule
the tasks. HdS generation also uses this multi-tasking solution to manage the
internal communication, which is the information exchange between tasks on



Software Synthesis Overview 163

Software  Synthesis

Code Generation
H dS  Generation

SW  D B
- R T O S
- W r a p p e r
- H A L

C ross C om p il er and  L ink er

T L M

C  C od e B u il d , C onfig .

T arg et B inary

V irtu al  P l atform  E x ec .H ard ware P l atform  E x ec .

Communucation
M ul ti-ta s k ing

B inar y  I mag e

FIGURE 5.2 Software synthesis flow

the same processor. The most critical aspect of HdS, however, is external
communication, for which it generates drivers so that a task on the processor can
communicate with other processing elements. This includes synchronization
with external components via polling, interrupts, or other methods.

After generating the task code and the supporting HdS, the final aspect is
binary image generation, which procures the target binary to execute on the
processor. Binary generation is a two stage process. First, HdS generation
creates build and configuration files and second, a standard cross compiler and
linker, directed by these build and configuration files, produces the final target
binary.

HdS generation produces build and configuration files that control the build
process (e.g. Makefile), which select and configure database components. As
and example, the configuration files select an RTOS implementation from the
database and configure it for execution on the selected processor. They also
select specifically for the target platform a Hardware Abstraction Layer (HAL),
which consists of low-level drivers for the timer, programmable interrupt con-
troller (PIC), and bus accesses.

Once these build process defining configuration files are generated, cross
compilation and linking produces the final target binary for the processor. This
process uses a cross compiler specific to the target processor. It compiles
the generated code (i.e. from code generation and HdS generation), as well the
selected SW database components, into a binary suitable for the target processor.



164 Software Synthesis

The produced binary is then ready for execution on the target processor. The
binary may be executed on the actual processor, for example on an FPGA-
prototyping board, if the target hardware implementation description is avail-
able. Alternatively, for early evaluation if the target hardware platform is not
available, the binary may be executed on an ISS-based virtual platform. An
ISS-based virtual platform can be a TLM, as described in Chapter 3, in which
the abstract processor model is replaced with an instance of an ISS. The ISS in-
terprets the target binary of the generated software. The SW executed within the
ISS has access to all registers and memory mapped I/O components equivalent
to the hardware platform. From a software point, such a virtual platform already
provides a very close match to an execution on the final hardware. Hence, an
ISS-based virtual platform allows early validation of the final target binary.

This concludes the overview of software synthesis flow outlining the path
from an abstract input model to execution of the final target binary. Before
going into detail for each step, we will now introduce a possible input model,
which we will use throughout the chapter.

5.2.1 EXAMPLE INPUT TLM
Figure 5.3 shows a sample system TLM as a possible input to the soft-

ware synthesis. The TLM can be generated by system synthesis as we have
described in Chapter 4. Alternatively, the TLM can be manually developed
following guidelines for synthesizable semantics and features as we have de-
scribed in Chapter 3. The approach for software synthesis and the amount of
independent decision making depends on the abstraction level present in input

CoreH A LO S
CP U

T a s k
B2

C1

B1

T a s k
B3C2

R T O S  M O D E L

H W
I n t

T i m erP I C

S o u r c e
S t a t u s
M a s k

Co n t r o l
L o a d
V a l u e

I N T C
I N T B
I N T A

H W 1
B4

H W 2
B5

I N T

I N T

T L M

S y s I n t

Dr
ive

r
Dr

ive
r

M
AC

I N T A I N T B I N T C

U s rI n t 1 U s rI n t 2

M A C

D r i v e r

M A C

D r i v e r

S e m 1
S e m 2

FIGURE 5.3 Input system TLM example



Software Synthesis Overview 165

system TLM. As described in previous chapters, abstract models with varying
degree of implementation detail are possible. When using a very abstract in-
put model, which captures few implementation details, many implementation
decisions need to be made during the software synthesis itself. On the other
hand, a less abstract model, which reflects more implementation details, on the
other hand, is better suited for software synthesis. To simplify software synthe-
sis, the system TLM should reflect system decisions. These are decisions that
affect the compositions of platform components and their interaction. In case,
the system TLM reflects all system decisions, software synthesis can extract
those decisions and generate a software implementation for them. Our example
TLM in Figure 5.3 is a more detailed abstract model, that captures many system
decisions.

The system TLM in Figure 5.3 contains two hardware units (HW1 and HW2)
and a processor, which is accompanied by a Timer and a PIC. All components
are connected to the processor bus. Three modules are mapped to the processor:
B1, B2 and B3. Two of these modules are wrapped in tasks, TaskB2 and TaskB3,
as they execute concurrently. The tasks communicate with each other through
channels C1 and C2. In addition, both task communicate externally. TaskB2
communicates with B5 mapped to HW2, while TaskB3 communicates with B4
mapped to HW1.

A set of half-channels models the communication between the tasks on the
processor and the modules mapped to the hardware units. We use the term "half
channel" to indicate that a callable interface is only provided on one side of the
channel. The other side is not callable and instead may by itself call another
channel.half channel On the processor side, communication occurs through
the half channels Driver and MAC. The latter connects to the processor bus.
Matching half-channels are inside the hardware components HW1 and HW2.
In this example, both hardware units share the same interrupt, INTC. Both
their interrupt lines connect to connected to INTC at PIC. The PIC, in turn,
connects to the processors interrupt input, INT. The processor model contains
an interrupt chain, which connects the processor interrupt to the appropriate
driver. In the shown example, one interrupt chain starts with SysInt, followed
by INTC, UsrInt2, and finally connects with Sem2 via Driver.

The processor TLM is constructed in layers. It starts on the outside with
the Core layer, followed by HAL and OS, with CPU as the innermost layer.
Using this layering scheme as a classification, software synthesis produces an
implementation for everything inside the HAL when creating a binary for the
target processor.

To derive the embedded software from the TLM, software synthesis has to
implement all SLDL language elements used inside the HAL (e.g. modules,
tasks, channels and port mappings) on the target processor. The TLM is captured



166 Software Synthesis

in an SLDL, and predominant SLDLs (e.g. SystemC, SpecC) are C or C++
extensions. Therefore, one possibility is to compile the selected portion of the
TLM directly into binary code for the target microprocessor. However, such
a direct compilation would produce a highly inefficient implementation. The
microprocessor’s basic SW would need to support the execution semantics of the
SLDL, and therefore a large simulation kernel for the SLDL would be included
in the compiled code, which may not be feasible considering the embedded
system’s resource constraints.

The reason for the large simulation kernel is rooted in the complexity of an
SLDL. An SLDL is mainly geared toward modeling and simulation of designs
at the system level. In order for them to be generally applicable and to handle
a wide range of system architectures, much overhead is introduced to support
system level features (such as hierarchy, concurrency, communication). This
much overhead might be affordable when executing on the simulation host.
However, not all features expressible in the SLDL are necessarily needed for
the target software code. Considering the limited memory space and execution
power of embedded processors, a direct compilation of the SLDL to the target
micro processor is not suitable. Instead, software synthesis has to generate
compact and efficient software code for implementation.

5.2.2 TARGET ARCHITECTURE
In the example input TLM above, we focus on a single processor system

for ease of explanation. In more general, however, software synthesis targets
a multi-core platform, as outlined in Figure 5.4. Such a platform may contain
many processing elements, such as standard processors (e.g. Proc 1, Proc N)
or hardware accelerators (e.g. HW1). Each processor may also contain local
memory where its code is stored. Each processor may have a PIC, which allows
the processor to listen to many incoming interrupt sources. In addition, each
processor may have a local timer to perform time-related tasks, such as periodic
execution or keeping track of time outs. A platform’s processor is connected
to the system through its processor bus. This allows communication with local

PIC
H W  IP1

Pr o c  1

Processor Bus 1

HALI n t .
R T O S

D r i v e r s
S W  Ap p l i c a t i o n

M e m

PIC

Pr o c  N

HALI n t .
R T O S

D r i v e r s
S W  Ap p l i c a t i o n

M e m

...
CE

.
.
.

...

FIGURE 5.4 Generic target architecture



Code Generation 167

hardware components. Also, processors on the same bus can communicate with
each other through global memory. More complex communication topologies
are constructed with a Communication Element (CE), which connects one or
more buses.

Using the decisions contained in the TLM, an automatic software synthesis
generates the code for each processor. As outlined before, this involves gener-
ating the task code, support code for multi-tasking and internal communication,
as well as driver code for external communication. The driver code implements
communication with external hardware accelerators, external memory, and with
the communication elements. In short, software synthesis generates all code to
execute the applications distributed over the multi-core architecture.

The following sections focus on the synthesis for a single processor. The
same procedure would be repeated for each processor. To allow communication
between PEs, it is essential that the communication code inside communicating
PEs implements matching system- wide decisions, as, for example, PEs would
need to agree in the addresses they use. To achieve matching implementations, it
is most beneficial to capture system-wide decisions already in the input system
model (e.g. as decided by system synthesis). Then, software synthesis (as
well as hardware synthesis) can generate matching implementations for each
component and the complete multi-core embedded system can be constructed.

The next sections describe the synthesis process bottom up in detail. In Sec-
tion 5.3, we start with code generation, which produces code for each task on the
processor. Then, Section 5.4 outlines how multi-task synthesis creates code for
the concurrent execution of these tasks. Section 5.5 shows how communication
synthesis creates the drivers for internal communication while external com-
munication is shown in Section 5.6. Finally, Section 5.8 describes combining
all generated code to the target SW image.

5.3 CODE GENERATION
Code generation is the first step of software synthesis. It generates sequential

code in the target language for each task within a programmable component.
To produce the sequential task code, code generation uses the model of the
application that is captured within the system TLM. The system TLM contains
a representation of the application, consisting of a module hierarchy and a set
of channels. The module hierarchy captures the application behavior. Modules
declare communication interfaces with ports and channels connected to these
channels express the communication. Hence, the system TLM contains a trans-
lation of the application originally described in the input MoC for convenient
analysis, development, and synthesis. In the software synthesis stage, code
generation then translates the application module hierarchy in the TLM into the



168 Software Synthesis

target language for programming the processor. For the examples that follow
in this chapter, we chose C as a target language.

Code generation translates the application module hierarchy into the target
programming language. The TLM’s application modules use system-level fea-
tures of the SLDL, such as hierarchy, concurrency, and communication encap-
sulation, which are not natively present in target language C. Code generation
must construct these SLDL features out of the available language constructs in
order to implement them on the target processor. For example, it translates the
hierarchical composition of modules in the SLDL into flat C-code containing
functions and data structures. Attention is needed for module local variables,
as ANSI-C does not provide such an encapsulation. A module’s local vari-
ables can be added to a module-representing structure. Then, for each module
instance, an instance of a particular structure is created. Communication be-
tween modules need to be addressed too. For modules within the same task,
their communication can be represented as function arguments. Modules in
different tasks can communicate via inter-process communication. On top of
these translations, SLDL specific extensions, such as bit vectors and events,
have to be implemented on the target.

The main idea of the conversion process from SLDL to ANSI-C is to convert
a module or channel into a C struct and a set of C functions. The module
hierarchy can then be translated into a C struct hierarchy. In some ways, this
translation process is similar to the one by early C++ to C compilers, when
translating a C++ class hierarchy to flat C code. We now present simplified
rules for code generation’s conversion process. These rules apply equally to
modules and channels. To facilitate a more straight-forward explanation, we
will focus on the modules. The rules for C code generation are as follows:

Rule 1: Each module is converted into a C struct.

Rule 2: The structural hierarchy among modules is represented in a C struct

hierarchy. Child modules are instantiated as struct members inside
the parent struct.

Rule 3: Variables that are defined inside a module are converted into data
members of the module representing C struct.

Rule 4: Ports of a module are converted into data members of the module
representing C struct.

Rule 5: Methods inside a module are converted into global functions. An
additional parameter that represents the module instance to which the
function belongs is added to each global function.

Rule 6: A static struct instantiation for the whole processing element is
added at the end of the output C code. It contains the structs of



Code Generation 169

1 SC MODULE(B1){
2 int A;
3 sc port<iChannel> myCh;
4 SC CTOR(B1){}
5 void main(void) {
6 A = 1;
7 myCh−>chCall(A∗2);
8 }
9 };

10

11 SC MODULE(TaskB2){
12 CH1 ch11, ch12;
13 B1 b11, b12;
14 SC CTOR(TaskB2):
15 ch11("ch11"), ch12("ch12"),
16 b11("b11"), b12("b12") {
17 b11.myCh(ch11); // connect ch11
18 b12.myCh(ch12); // connect ch12
19 }
20 void main(void) {
21 b11.main();
22 b12.main();
23 }
24 };
LISTING 5.1 SystemC task specification

all converted modules. Thus, it allocates the data used by the PE’s
software. Port mappings for modules and channels inside the task are
established in this struct initialization.

A simple example will help us illustrate the application of these rules and to
explain the code-generation process. Figure 5.5 depicts a module hierarchy for
conversion and Listing 5.1 shows the corresponding SystemC code. Listing 5.2
outlines the output ANSI-C code.

TaskB2
b1 1

b1 2

ch1

ch2

FIGURE 5.5 Task specification

In the example shown in Figure 5.5, TaskB2 consists of two instances of mod-
ule B1, namely b11 and b12, that execute sequentially. Each module instance
is connected to its own channel instance of type CH1. So, module instance b11



170 Software Synthesis

1 struct B1 {
2 struct CH1 ∗myCh; /∗ port iChannel∗/
3 int a;
4 };
5 struct TaskB2 {
6 struct B1 b11, b12;
7 struct CH1 ch11, ch12;
8 };
9 void B1 main(struct B1 ∗This) {

10 (This−>a) = 1;
11 CH1 chCall(This−>myCh, (This−>a)∗2);
12 }
13 void TaskB2 main(struct TaskB2 ∗This){
14 B1 main(&(This−>b11));
15 B1 main(&(This−>b12));
16 }
17 struct TaskB2 taskB2= {
18 {&(taskB2.ch11),0/∗a∗/}/∗b11∗/,
19 {&(taskB2.ch12),0/∗a∗/}/∗b12∗/,
20 {} /∗ch11∗/, {} /∗ch12∗/
21 };
22 void TaskB2() {
23 TaskB2 main( &task1);
24 }

LISTING 5.2 ANSI-C task code

connects to channel instance ch11 and b12 to ch12. For brevity, the example
does not show other modules within the task and also omits communication
outside the task.

Listing 5.1 outlines same example as an SystemC specification contain-
ing two modules B1 and TaskB2. B1 is defined in lines 1-9 starting with
SC MODULE(B1). The module contains a local variable A (line 2) and a port
myCh (line 3). The port indicates that module B1 requires an interface and
that it will call methods of that interface. Later, a channel or module, which
provides the required interface, can be bound to that port. In the main() method
of module B1, it accesses the local variable and calls the method chCall() on its
port (line 7). Depending on the binding of the port, a channel implementation
will be called. Both instances of module B1 are port bound to an instance of
CH1. Therefore, the port call in line 7 will result in the execution of method
chCall() in one channel instance of CH1.

The declaration of TaskB2 extends from line 11 through 24, beginning with
SC MODULE(TaskB2). It contains two instances of B1, namely b11 and b12.
Line 13 shows their instantiation. Line 16 defines the names of the child modules
with b11("b11"), b12("b12"). TaskB2 also contains two instances of channel



Code Generation 171

CH1, namely ch11 and ch12 (line 12). The constructor of TaskB2 (lines 17 and
18) connects the channel instances to the ports of b11 and b12. For example,
b11.myCh(ch11), line 17, connects ch11 to the port of module instance b11.
In its method main() starting with line 20, TaskB2 sequentially calls the main
methods of b11 and b12.

Listing 5.2 shows the output ANSI-C code. It defines a C struct for each
module, a global function for each module method, and instantiates a global
struct for the module data and port mapping. We can find examples of the
applied code generation rules within the listings:

Rule 1: Module B1 is converted into struct B1 (lines 1-4). Module TaskB2
is converted into struct TaskB2 (lines 5-9).

Rule 2: In the input code, module TaskB2 contains two instances b11 and b12
of module B1 (line 13 in Listing 5.1). Correspondingly, the struct

TaskB2 contains two instances of struct B1 with the names b11 and
b12, as shown in line 6 of the output C code.

Rule 3: The module local variable, int A, defined in module B1 (line 2 in the
input) is converted to an identical data member inside struct B1. See
line 3 in Listing 5.2.

Rule 4: The port of module B1 (line 3 in Listing 5.1) is represented by a pointer
to the connected channel inside the struct B1 (line 2, Listing 5.2)

Rule 5: The method main inside module B1 is converted to a global function
B1 main() in the output C code (line 9). One additional parameter
(struct B1 *this) is added referencing the context. This param-
eter is needed to distinguish between different instances of the same
module, as, for example, module local variables may have distinct
values in different instances. To distinguish between these instances,
the generated global function (B1 main()) is called with a pointer to
the module representing struct instance. See the calls in lines 14,
15. They differ in the argument that passes the context. One refers to
the instance b11 (This->b11), and the other to b12 (This->b12).
The code inside B1 main(), which accesses data member of B1, is
converted to use references to data members inside the struct B1.
For example, inside function B1 main(), the variable A in the input
code is now used as (This→A) in the output code (line 8 in List-
ing 5.2). As a result, each instance of B1 in the output code retains
its own copy of the local variables. For example, the local variable A
is initialized with 0 for both instances.

Rule 6: The data used by task TaskB2 is statically allocated through the in-
stantiation of the top level struct TaskB2 (see lines 17 to line 21



172 Software Synthesis

in Listing 5.2). The initial values for data members inside struct

TaskB2 are all set at this time.
The port mapping information is also recorded at this point. In our
example, module B1 contains one port. The mapping for the instance
b11 is set in line 18 in Listing 5.1. It refers to channel instance
ch11, which is also a member of struct TaskB2. This approach in
implementing port mapping has the advantage of being set at compile
time rather than at runtime. It therefore reduces the runtime overhead
to a minimum. Other, more dynamic approaches may result in a
higher runtime overhead.

Please note that our example implements an optimization for calls to channel
methods. In our case, the call to the method chCall() (line 7, Listing 5.1) is
translated directly to a function call with a context pointer (line 11, Listing 5.2).
This optimization is possible because all instances of B1 map the port myCh
to instances of the same channel, namely CH1. Therefore, the method imple-
mentation is identical, and the global function CH1 chCall() representing the
channel method can be called directly. In a more general case, two instances
of the module may map to different channels which both implement the same
interface. Separate global functions would then need to be called. In that case, a
significantly more elaborate solution involving virtual function tables would be
necessary. We are omitting this case here for brevity, but a detailed description
more general translation can be found in [197].

The outlined procedure assumes that the code inside a module is C compliant,
with the exception of calls to ports. This simplifies the code generation to resolve
SLDL specific-features, as described above. A significantly more complex
approach would be required if the full C++ language feature set were to be
supported inside module methods. Then, for example, C++ libraries would
have to be re-implemented or converted into C, which could render the solution
infeasible in terms of effort and memory footprint.

Language complexity is the main challenge to the solution outlined above.
It requires a parser for the SLDL that can extract module hierarchy and connec-
tivity. SystemC being a library extension of C++ allows a very flexible model
construction, which may complicate parsing. For example, static and dynamic
object allocation (via new()) have to be detected, and object accesses via pointer
or value has to be supported. Port connectivity, to give a further example, is
typically captured in the constructor. However, mapping can also occur in any
hierarchy of method calls as long as mapping is completed at the end of the
elaboration phase. Supporting this freedom can make efficient model parsing
infeasible. In order to enable an efficient synthesis process, only a subset of
SLDL features can be allowed and strict model guidelines are required.



Multi-Task Synthesis 173

5.4 MULTI-TASK SYNTHESIS
When multiple tasks are mapped to the same processor, they have to be

scheduled to alternate their execution. Multi-task generation produces code
that uses an underlying multi-task engine in order to manage and schedule such
tasks.

The following pages focus on two possible approaches for dynamic multi-
tasking: RTOS-based multi-tasking and interrupt-based multi-tasking. The
approach predominantly-used is RTOS-based multi-tasking, in which user tasks
are executed on top of an off-the-shelf RTOS and scheduled by the RTOS
scheduler. Sometimes performance and resource constraints hinder using a
complete RTOS. In such a case, an alternative of interrupt-based multi-tasking
can be applied. Here the generated application executes on a bare processor
using interrupts and does not require any operating system. Interrupt-based
multi-tasking, however, is only suitable for systems with few tasks. Resource
constraints permitting, an RTOS-based solution is preferred for its flexibility,

5.4.1 RTOS-BASED MULTI-TASKING
As we introduced in Section 5.1.2, embedded systems frequently use an

RTOS for dynamic scheduling of tasks. We call this "RTOS-based multi-
tasking." For this, off-the-shelf RTOSes are popular with developers because
they typically are reliable, well-tested operating systems that offers great flexi-
bility. In addition they often come with significant tool support from the RTOS
vendor. Often, they are highly configurable to tailor the OS to the application
needs. Through configuration, the memory footprint can be minimized to fit
the needs of the embedded system being designed.

Figure 5.6 shows a generic software stack for RTOS-based multi-tasking.
The stack constists of HAL, interrupts, RTOS, RAL, and application.

HALI n t e r r u p t s
R T O S

R T O S  Ab s t r a c t i o n  La y e r
D r i v e r s
S W  Ap p l i c a t i o n

FIGURE 5.6 Software execution stack for RTOS-based multi-tasking

At the bottom, the HAL abstracts the physical hardware of the processor
from the software that is running on top. It hides differences in hardware
programming so that the operating-system code can be mostly independent
from the underlying hardware. For example, the HAL provides facilities for



174 Software Synthesis

saving and restoring the processor’s internal state. The operating system uses
these facilities to switch between tasks. The HAL implements low-level drivers
for communication on the processor bus. It provides a communication interface
with the PIC for registering interrupt handlers and for evaluating the interrupt
status. It also supplies facilities to program timer module.

At the same level as the HAL, Interrupts are used for synchronization with
external devices. Above HAL and Interrupts, the RTOS provides services for
task management, communication, timing management.

On top of the RTOS, an RTOS Abstraction Layer (RAL) can be used in order
to provide a canonical OS interface. It abstracts from a particular OS’s function
names and parameters. As a result, the canonical OS interface limits inter-
dependency between synthesis and the actual target RTOS. This significantly
reduces effort for customizations within the synthesis flow when supporting
a wide range of RTOS implementations. RTOS-implementations may differ
in the API they use. Standardized APIs (e.g. POSIX, OSEK, ITRON) exist,
which target specific application domains. In addition, many RTOS-specific
and proprietary APIs are in use (uCOS-II, vxWorks, eCos, RTEMS). To ensure
a sufficiently generic RAL, many RTOS APIs have to be investigated so that
common primitives for task scheduling, communication and synchronization
can be chosen. These become the basis for multi-task synthesis. Typically,
RTOSes provide a very similar set of basic primitives, such as task creation,
semaphores, and timing delay. Wrapping them results in a very thin abstraction
layer. In the case that a required primitive should not be available in a particular
RTOS, an emulation has to be constructed out of available primitives.

One layer above the RAL, Drivers implement application-specific commu-
nication with external components, using services from RAL (e.g. for internal
communication), HAL (bus access for communication), as well as Interrupts
(for synchronization with external components). Finally, the SW Application
executes on top of the stack. It directly uses only communication Drivers and
services of the RAL.

Multi-task synthesis converts concurrent tasks within the system TLM into
RTOS-based tasks executing on top of the outlined software stack. It involves
generating task-management code to dynamically create tasks and then wait-
ing for their termination as a part of the parent’s execution. Each task itself
uses the sequential task code produced by code generation (as we explained in
Section 5.3).

Figure 5.7 depicts a portion of a system TLM as an example for RTOS-based
multi-task synthesis. The same example is shown in Listing 5.3 in its SystemC
specification. Finally, Listing 5.4 outlines the output code.

The input model shows the mapping of modules to tasks. The example in
Figure 5.7 contains two parallel executing tasks TaskB2 and TaskB3. They
execute within the module B2B3.



Multi-Task Synthesis 175

OSC P U
B2B3
T a s k B2 T a s k B3

R T OS

FIGURE 5.7 Multi-task example model

Listing 5.3 outlines the SystemC definition of module B2B3. It instantiates
the child tasks in lines 4 and 5. In the constructor, lines 6 - 11, the task parameters
are defined. Parameters contain task name, priority, and stack size. The main()
method of B2B3 starts in line12. It releases first the child tasks using the
release)( function. As a result, TaskB2 and TaskB3 start executing concurrently
to B2B3. Consequently, B2B3 then waits until each task finishes using the join()
function.

Listing 5.4 shows an excerpt of the output ANSI-C code implementing this
example on the target. The basic outline follows the principles for code gen-
eration explained in Section 5.3. It contains global functions and structures
representing the modules. During synthesis, the task-control information is ex-
tracted from the TLM and the synthesis generates task management calls using
the RAL API. The release statements in the TLM (line 12, 13 in Listing 5.3) are
replaced with taskCreate() calls, which dynamically create and release tasks;

1 SC MODULE(B2B3) {
2 public:
3 sc port<iRTOS> rtos;
4 TaskB2 taskB2;
5 TaskB3 taskB3;
6 SC CTOR(B2B3):
7 taskB2("taskB2", 5, 4096),
8 taskB3("taskB3", 2, 4096) {
9 taskB2.rtos(rtos);

10 taskB3.rtos(rtos);
11 }
12 void main(void) {
13 taskB2.release();
14 taskB3.release();
15 taskB2.join();
16 taskB3.join();
17 }
18 };
LISTING 5.3 Multi-task example SystemC code



176 Software Synthesis

1 struct B2B3{
2 struct TaskB2 task b2;
3 struct TaskB3 task b3;};
4 void ∗TaskB2 main(void ∗arg){
5 struct TaskB2 ∗this=(struct TaskB2∗)arg;
6 /∗ ...∗/
7 }
8 void ∗TaskB3 main(void ∗arg){
9 struct TaskB3 ∗this=(struct TaskB3∗)arg;

10 /∗ ... ∗/
11 }
12 void ∗B2B3 main(void ∗arg){
13 struct B2B3 ∗this= (struct B2B3∗)arg;
14 os task handle task b2, task b3;
15 task b2 = taskCreate(TaskB2 main,
16 &this−>taskB2, 5, 4096);
17 task b3 = taskCreate(TaskB3 main,
18 &this−>taskB3, 2, 4096);
19

20 taskJoin(task b2);
21 taskJoin(task b3);
22 }

LISTING 5.4 Multi-task example ANSI-C code

see lines 17-20 in Listing 5.4. For task creation, the task’s parameters, such as
priority and stack size, are extracted (lines 4, 5 in Listing 5.3) and passed as
arguments to taskCreate(). The task then executes the flattened C code as pro-
duced by the code generation explained before. The implementation of the task
management itself is hidden inside the RAL. After task creation, B2B3 main()
waits for the completion of the created tasks by using the taskJoin() function in
lines 20 and 21.

The output code shown above uses the RAL services independently from the
actual RTOS. During the synthesis, the designer can select a suitable RTOS.
Later, in binary image creation, which we will describe in Section 5.8, the
selected RTOS, together with a specialized abstraction layer, will be included
in the final binary.

5.4.2 INTERRUPT-BASED MULTI-TASKING
Interrupt-based multi-tasking is an alternative option for dynamic scheduling.

For some specific processing elements, an execution on top of an RTOS may
not be desirable. This may be the case when the processing element consist
of very few tasks, when the code is targeted to execute on a DSP, or when



Multi-Task Synthesis 177

strict memory footprint limitations rule out utilizing an RTOS. In such cases,
interrupt-based multi-tasking can target a bare processor, on which concurrent
software execution is performed without any RTOS. Instead, interrupts are
utilized to provide multiple flows of execution.

HALI n t e r r u p t s

R T O S  Ab s t r a c t i o n  La y e r
(e m u l a t i o n )

D r i v e r s
S W  Ap p l i c a t i o n

FIGURE 5.8 Software execution stack for interrupt-based multi-tasking

Figure 5.8 shows the software execution stack for interrupt-based multi-
tasking. The stack is almost identical to the RTOS-based stack shown earlier
in Figure 5.6, the difference being that here the RTOS is missing. The RAL is
larger as it implements a partial RTOS emulation, but this emulation is very thin
because it provides only a fraction of the RTOS services (e.g. simple events,
processor suspension).

In this scenario, the RAL does not provide task-management code. Instead,
the code inside a task has to be specially generated for interrupt-based multi-
tasking. To give an intuitive explanation, we can say that multi-task synthesis
converts the lowest-priority task to execute in the processor’s main function.
All other tasks are converted into state machines, which then execute in the
context of interrupt handlers.

Interrupt-based multi-tasking therefore relies heavily on state machines.
To understand why states are needed, contrast the interrupt-based against the
RTOS-based solution. Each task running on top of an RTOS has an own stack.
In a preemptive multi-tasking the RTOS can alternate between tasks at any point
within the task execution. To switch between tasks, it first stores the status and
context of the current task on the task’s stack. The RTOS then restores the
status of the new task and continues with the new task’s execution.

In interrupt-based multi-tasking, on the other hand, tasks share the same
stack. Hence, we cannot use the stack to store the task’s context when switching.
Instead, we break a task into individual states, which are executed in a state
machine. Each task gets its own state machine. After the completion of each
state, we can switch between the state machines of two different tasks. The
context of a task, i.e. where it should continue, can be reduced to the current
state of its state machine. So in interrupt-based multi-tasking, we use states to
alternate between tasks and to minimize the task context data to be kept while
switching.

The next paragraphs describe in detail the process of converting task code for
an application into a state machine for interrupt-based concurrent execution.



178 Software Synthesis

An application task is composed of application modules, which capture com-
putation, and calls to communication drivers. The driver code communicat-
ing with external hardware contains both synchronization and communication.
Therefore we can more formally assume that each task is composed of a se-
quence of computation (C), synchronization (S), and data transfers (T). We
further assume that interrupts (I) are used for synchronization.

Figure 5.9(a) shows an example sequence for one task. The tasks starts with
computation C0, followed by C1. It then triggers external communication.
The external communication is resolved into synchronization S1, which uses
interrupt I1, and data transfer T1. This communication is followed by another
set of computation C2 and communication (consisting of S2, which uses I2,
and T2). Following that, execution loops back to C1.

If only interrupts are used for synchronization (S1 and S2), then the task’s
main function can be split into a state machine. A new state is created each time
a synchronization point (S), a loop, or a conditional execution is encountered
in the generation process.

Figure 5.9(b) shows the output state machine consisting of four states. State
ST1 has been created because C1 is the first element inside a loop. The inserted
distinction between the states ST0 and ST1 accommodates the one-time exe-
cution of C0, while C1 is repeated in the loop. State ST2 was created due to
synchronization S1, while ST3 was created due to synchronization S2. During
execution, the state machine transitions to the next state upon successful syn-
chronization. In the example, S1 uses interrupt I1. Upon receiving interrupt I1,

C0

C1
S1  (     I1)

C2
S2  (     I2)

T1

T2

(a) Input

I1

C0
ST0

C1
ST1

S1
T1
C2

ST2

ST3
I2

S2
T2

(b) Output

FIGURE 5.9 Interrupt-based multi-tasking example



Multi-Task Synthesis 179

the state machine transitions from ST1 to ST2. By converting a task into states,
we can switch between tasks at the boundary of states without needing the stack
support of an RTOS-based solution. For example, if synchronization S1 has
not occurred after finishing state ST1, we can switch to executing another task’s
state machine. Then, when S1 does occur, the original state machine can resume
with ST2. We will later offer a code example that highlights that sequence.

Splitting the original task into individual states, however, demands special
attention to local variables. Local variables can still be used within a state.
However, they can not be used for storing data across states, since the state
machine may terminate and a different task’s state machine may be executed.
Hence, these local variables may lose their content when resuming the state
machine. Therefore, all variables that are used across states have to be moved
into a global data structure. In a simple approach, each local variable of a task’s
main function can be integrated into a task-specific global data structure. The
created task’s state machine is then executed in the interrupt handlers, which are
originally used for synchronization. In the above example, the state machine
is executed in the handlers of I1 and I2. The generated task code executes
incrementally in separate invocations of the interrupt handler.

To summarize the conversion, let’s look again at our goal: the task has to be
converted so that it no longer relies on an own stack when switching between
tasks. We achieve this by converting the task into a state machine and by: (a)
allowing switches between tasks only at the state boundary, (b) capturing the
execution progress within a task in its state machine status, and (c) moving
local variables that are carried between states are into a task-specific global
data structure. As a result, a task converted to a state machine can execute
incrementally in interrupt handlers.

This conversion process also allows for the preservation of task priorities
for the converted tasks. This, however, depends on the priority distribution
of the interrupts selected for synchronization. Interrupts (with their respective
priority) have to be selected according to task priority. Assume multiple bands
of interrupt priorities: to preserve the task’s priority, a higher-priority task has to
use interrupts out of the higher-priority band, exclusively. Conversely, a lower-
priority task must use interrupts only from the lower-priority band. The lowest
priority task on the processor can execute in the processor’s startup task (with
executes main(). As a result, the prioritized execution of interrupts preserves
the task priorities.

We now describe an example implementation of a task state machine. List-
ing 5.5 outlines the C implementation for the state machine introduced in Fig-
ure 5.9(b). The excerpt shows the interrupt handler in function intHandler I1()
and the task state machine in executeTask0(). The interrupt handler implements
synchronization S1 and executes the task state machine. The state machine is
implemented in exectueTask0() with a do-while loop containing a switch-case



180 Software Synthesis

1 /∗ interrupt handler ∗/
2 void intHandler I1() {
3 release(S1); /∗ set S1 ready ∗/
4 executeTask0(); /∗ task state machine ∗/
5 }
6 /∗ task state machine ∗/
7 void executeTask0() {
8 do { switch(Task0.State) {
9 /∗ ... ∗/

10 case ST1: C1(...);
11 Task0.State = ST2;
12 case ST2: if(attempt(S1)) T1 receive(...);
13 else break;
14 C2(...);
15 Task0.State = ST3;
16 case ST3: /∗ ... ∗/
17 } } while (Task0.State == ST1);
18 }

LISTING 5.5 State machine implementation

construct. The current state is captured in a global variable Task0.State. As-
sume for this explanation that the task’s state machine is currently executing in
the interrupt handler for I1and the current state is ST1.

After finishing the execution of C1 in line 10, the new state is set at ST2. At the
beginning of the new state, the synchronization S1 is checked with attempt(S1),
line 11. In case the synchronization has not yet occurred, the state machine
terminates with the break statement (line 14). Consequently, the do-while
loop, the function executeTask0(), as well as the interrupt handler, all terminate
so that the processor can serve a lower-priority interrupt or the main function.

Upon receiving the next interrupt, I1, the registered interrupt handler
intHandler I1() (line 1) is executed. In line 2, the handler signals that S1 is
ready and then calls the state machine again (line 3). The current state is still
ST2, therefore the condition in line 11 is tested again. The test attempt(S1) now
passes, since the synchronization has occurred. The task continues by receiving
the data (line 12) and subsequently executing the computation C2 in line 16.
The switch-case statement (lines 7 to 20) is surrounded by a do-while loop,
which is required to implement loops between states. In this example, the loop
is necessary to transition from state ST3 back to ST1 without terminating the
interrupt handler.

The presented approach for interrupt-based multi-tasking is an efficient alter-
native for those occasions when design constraints disallow the use of an RTOS.
It is best targeted to systems with very few tasks, which permits us to efficiently
convert those tasks into state machines. One drawback of this state machine



Internal Communication 181

conversion is that the task code may suffer in readability, since it is split across
states. Another consideration when using interrupt-based multi-tasking is that
careful planning is required for the interrupt mapping and priority distribution
to maintain the system’s responsiveness, as the application would be mainly
executing in interrupt handlers.

5.5 INTERNAL COMMUNICATION
Internal communication, or Inter Process Communication (IPC), takes place

between tasks on the same processor. In the example Figure 5.10, the channels
C1, C2, Sem1, and Sem2 are used for internal communication. These are
instances of standard channels that are supported by the design flow.

To realize a particular communication on the target system, the abstract
standard channels in the simulation model are replaced with a target-specific
implementation. The target-specific implementation then uses the primitives of
an underlying RTOS, such as semaphores and events. Note that this implemen-
tation should not recreate the simulation environment on the target. A target
specific implementation should instead recreate the same interface and same
semantics as the abstract channels.

To give an example, Listing 5.6 shows a code excerpt implementing a sin-
gle handshake channel for internal communication. A single handshake offers
one-way synchronization with storage for one event. Listing 5.6 is specific to
the Xilkernel, a Xilinx proprietary RTOS. It contains the definition of struct
tESE ch shs (lines 2-4) for capturing the channel state and variables, function
ESE shs init() for initializing the channel, as well as send and receive func-

CoreH A LO S
CP U

T a s k
B2

C1

B1

T a s k
B3C2

R T O S  M O D E L

H W
I n t

S y s I n t

Dr
ive

r
Dr

ive
r

M
AC

I N T A I N T B I N T C

U s rI n t 1 U s rI n t 2
S e m 1
S e m 2

FIGURE 5.10 Internal communication



182 Software Synthesis

1 /∗∗ SHS OS−specific struct ∗/
2 typedef struct {
3 sem t req; /∗∗< os semaphore ∗/
4 } tESE ch shs;
5 void ESE shs init(tESE ch shs ∗pThis){
6 int retVal = sem init(&pThis−>req, 0, 0);
7 /∗ ... error handling ∗/
8 }
9 void ESE shs send(tESE ch shs ∗pThis){

10 int retVal = sem post(&pThis−>req);
11 /∗ ... error handling ∗/
12 }
13 void ESE shs receive(tESE ch shs ∗pThis){
14 int retVal = sem wait(&pThis−>req);
15 /∗ ... error handling ∗/
16 }

LISTING 5.6 Internal communication example of single handshake

tions, ESE shs send() and ESE shs receive(). Due to the close match in seman-
tics, the single handshake is implemented directly with an RTOS primitive: a
semaphore. The send function directly calls sem post() (line 10) and conversely
receive calls sem wait() (line 14). Note that, similar to the principle explained
in Section 5.3, we use a data structure to maintain the status of the channel. In
the example, tESE ch shs (lines 2 - 4) contains a single member (sem t req;)
referring to the OS semaphore. A pointer to the structure instance is passed as
an argument upon calling a channel function.

As shown in the example above, internal communication channels are effi-
ciently implemented by using RTOS primitives because they often match closely
in semantics.

5.6 EXTERNAL COMMUNICATION
External communication is the communication between a software process

and an external hardware accelerator, external memory, or a communication
element. Figure 5.11 highlights external communication between the two tasks
on the processor (TaskB2 and TaskB3) and the modules B4 and B5, which are
mapped to HW1 and HW2 respectively. In the input MoC, these behaviors have
communicated directly through abstract channels. During system synthesis,
these abstract channels have been replaced with specific drivers for system
communication. Therefore, the original channels no longer appear directly in
the system TLM. Instead, the original abstract channels are resolved into stacks



External Communication 183

of half channels (namely Driver and MAC). These half channels are inserted
into the processor model. A matching stack of half channels is present in each
HW component (HW1 and HW2). These matching stacks implement the same
system-wide communication decisions and therefore enable communication.

To support heterogeneous systems, we can follow concepts from the ISO/OSI
layering model [98] as we implement external communication. To implement
this communication decisions about various aspects are needed: the network
byte layout, a selection of channels to merge, the packet size, packet switching
and routing. We discussed these communication decisions in Chapter 4. For
synthesis it beneficial, if the communication drivers inside the system TLM
contain this information The following sections detail how HdS synthesis im-
plements these decisions on a software-processing element. Note that in the
interests of brevity, our description will focus on the communication with a
synthesized hardware component. Using a synthesized component guarantees
matching communication stacks and procedures. Incorporating IP components
of other manufactures may require additional effort if the communication stacks
are not matching. Such a case would require either a synthesized hardware
wrapper, which converts the IP protocol to the system protocol, or a specialized
software driver, which produces the IP protocol.

5.6.1 DATA FORMATTING
marshalling
Communication between heterogeneous processing elements involves

unique challenges. Two communicating processing elements may have dif-
ferent memory layouts, due, for example, to different byte orders, also referred

CoreH A LO S
CP U

T a s k
B2

C1

B1

T a s k
B3C2

R T O S  M O D E L

H W
I n t

T i m erP I C

S o u r c e
S t a t u s
M a s k

Co n t r o l
L o a d
V a l u e

I N T C
I N T B
I N T A

H W 1
B4

H W 2
B5

I N T

I N T

T L M

S y s I n t

Dr
ive

r
Dr

ive
r

M
AC

I N T A I N T B I N T C

U s rI n t 1 U s rI n t 2

M A C

D r i v e r

M A C

D r i v e r

S e m 1
S e m 2

FIGURE 5.11 External communication



184 Software Synthesis

1 typedef struct stReq {
2 long startTime;
3 short coeff1;
4 unsigned short base;
5 } tReq;

LISTING 5.7 User type definition

as endianess. In that case, identical data would appear differently in memory
depending on which processing element writes the data. To communicate be-
tween two such heterogeneous processing elements, common data-formatting
rules have to be used between communication partners. This data formatting
applies both for messages transferred over the communication media as well as
for variables stored in common memory. In the simplest cases, both commu-
nicating processing elements natively have identical data-formatting rules (for
example in terms of byte order, bit widths, padding, and packing rules), so no
translation is necessary. If, however, the data formats differ, then the data has
to be converted between the processor native layout and a common network
layout.

The process of converting data from the processor native layout to the net-
work layout is called "marshalling." Marshalling converts the user data into a
flat, untyped data stream. Any processing element can interpret this data stream
by using the information about the network data layout. The reverse process,
converting from the network layout to processor native layout, is called "de-
marshalling." Marshalling data is a common issue in heterogeneous system
communication. The CORBA standard [148], for example, defines elaborate
rules for its Common Data Representation (CDR).

tReq
long
s h or t
u ns i gne d  s h or t

s t a r t T i m e

b y t e

c oe f f 1
b a s e

startTime c o ef f 1 b ase

FIGURE 5.12 Marshalling example

Figure 5.12 depicts an example of marshalling a struct tReq into a flat byte
stream. Listing 5.7 shows the corresponding data-structure definition. It shows



External Communication 185

1 void myCh send(/∗ ...∗/ ∗This, struct tReq ∗pD){
2 unsigned char ∗pB = This−>buf;
3 htonlong(pB, pD−>startTime);
4 pB += 4;
5 htonshort(pB, pD−>coeff1);
6 pB += 2;
7 htonushort(pB, pD−>base);
8 pB += 2;
9 DLink0 trans send(/∗...∗/This−>buf, 8);

10 }

LISTING 5.8 Marshalling code

struct tReq, containing three elements startTime, coeff1, and base. In the
generation process, the user data type definition has to be extracted from the
system model and application-specific marshalling code has to be generated,
which then serializes the user-specific structure data into the flat byte stream.
Listing 5.8 shows an example of data marshalling. The code iterates through
each struct member. It uses standard a conversion function to convert the
primitive data type into a flat stream. For example, line 3 shows converting a
long). Marshalling constructs the untyped message incrementally. The message
is finally passed to the next layer in line 9. Note that for explanation purposes,
we show the marshalling code as a separate function. For a more efficient
implementation, it may be inlined as well.

As indicated above, the marshalling code producing an untyped data stream
is highly application specific. If the user code only uses primitive data types,
marshalling is straight-forward. However, arbitrary complex code may be nec-
essary if the user data is constructed hierarchically out of user-defined types
and arrays.

5.6.2 PACKETIZATION
packetization

Packet 1 Packet 2

Byte stream

FIGURE 5.13 Packetization

Marshalling creates an untyped data stream. The length of this untyped data
stream depends on the user data transferred and hence is arbitrary in length.



186 Software Synthesis

1 DLink0 trans send(void ∗pMsg, unsigned int len){
2 unsigned char ∗pPos = pMsg;
3 while(len) {
4 unsigned long pktLen;
5 /∗ length is minimum of max size and len ∗/
6 pktLen = min(len, CONFIG PACKET SIZE);
7

8 DLink0 net send(pPos, pktLen); /∗ transfer ∗/
9

10 len −= pktLen; /∗ decr. transferred len ∗/
11 pPos += pktLen; /∗ advance pointer ∗/
12 }
13 }

LISTING 5.9 Packetization code example

However, only limited storage capability may exist in the communication part-
ners along the route. To reduce the storage requirements, the untyped data
stream can be split into smaller packets before transfer. On the receiving side,
the packets will then be reassembled to the complete data stream before de-
marshalling. Options for packetization include fixed-sized packets, in which
the unused portion of the packet is filled with padding bytes, and variable-sized
packets. Variable sized packets necessitate the transmission of the packet size,
unless all communication partners know the packet sizes a priori.

Figure 5.13 depicts how packetization breaks a large untyped byte stream into
smaller packets. Listing 5.9 outlines the implementation of packetization. In a
while loop (lines 3 through 12), the untyped message (pMsg) is split into smaller
packets and transmitted through the network layer (line 8). The maximum
packet size is captured in the constant CONFIG PACKET SIZE. The actual
packet size is determined in line 6 by a minimum of the remaining length and the
maximum size. After transmission, the remaining length (len) and the position
to the next packet (pPos) are updated in line 10 and 11, respectively. The while
loop terminates once all bytes in the data stream have been transferred. As result
of packetization, the arbitrary-length input data stream is split into packets with
a defined maximum size, minimizing the storage requirements for intermediate
communication partners.

5.6.3 SYNCHRONIZATION
synchronization One further aspect of external communication is synchro-

nization. Synchronization is required to signal that a communication partner
on the same link is ready for a data transfer. Synchronization applies to both
directions, for receiving, it signals that required data is available. During send-



External Communication 187

HALO S
C P U

T a s k
B2

C1

B1

T a s k
B3C2

R T O S  M O D E L

S y s I n t

Dr
ive

r
Dr

ive
r

M
AC

I N T A I N T B I N T C

U s r I n t 1 U s r I n t 2
S e m 1
S e m 2

FIGURE 5.14 Chain for interrupt-based synchronization

ing, it ensures that the HW unit is ready for receiving data. Some bus protocols
include synchronization semantics on the protocol level and demand that com-
munication partners be always available. In such a case, synchronization may
not be required at the link level in software. In the case of typical master/slave
busses, however, synchronization is required. For these situations, the designer
chooses the type of synchronization for each channel, selecting between polling
or interrupt-based synchronization. Furthermore, the designer may choose in
interrupt-based synchronization to share interrupts among sources to reduce the
overall number of interrupt pins.

The following paragraphs describe the basic two forms of synchronization.
In addition to strict interrupt and polling synchronization, hybrid forms and
variants are possible. For example, a hybrid form of synchronization may
alternate between variants based on heuristics, such as the fill status of a queue.
The choice of the most suitable synchronization method depends on various
characteristics, such as the duration between triggering a synchronization and
testing for it, latency requirements, interrupt inter-arrival time, and tolerance
for interrupt overhead.

INTERRUPT SYNCHRONIZATION
Interrupt-based synchronization uses a wire, additional to the processor bus,

for sending an asynchronous signal from a hardware unit to the processor. Upon
receiving of the interrupt, the processor saves the current state of execution, and
starts executing an interrupt handler to react to the asynchronous signal. For ex-
ample, the interrupt handler may initiate the communication with the hardware
unit, or alternatively release a user task to perform this communication.



188 Software Synthesis

For interrupt synchronization, the TLM contains a model of the interrupt
chain. Figure 5.14 highlights the interrupt chain in the system TLM for syn-
chronization with B5 mapped to HW2. The chain consists of the system in-
terrupt handler SysInt, the application-specific interrupt handler INTC, and the
user interrupt handler UsrInt2. Finally, a semaphore channel, Sem2, connects
the interrupt handler with the Driver, so that the (short) interrupt handler can
start the (long) driver to handle the communication.

HW2HW1 P I C P r o c e s s o r  C o r e
I N T T a s k B3 T a s k B2

1
2
3
4

Which Int.?

Int. S o u r ce ?

D a ta  T r a ns f e rtim
e

t0
t1 t2

t5
t4 t5

P r e e m p tio n b y  Int.I n t

r e gB5r e gB4

S e m 2.s e nd ( )

I n t C

FIGURE 5.15 Events in interrupt-based synchronization

To implement interrupt-based synchronization, the HdS generation produces
a chain of correlated code. The next paragraphs describe this interrupt-based
synchronization code. The explanation follows an event sequence of sending a
message from B5, which is mapped to hardware component HW2, to TaskB3,
which is mapped to the processor. Figure 5.15 illustrates that event sequence

At t0, the TaskB3 expects a message from B5. With the message not yet
available, TaskB3 waits on the semaphore Sem1 and yields execution to the
next lower priority task, TaskB2. At t1, behavior B5, which is mapped to HW2,
reaches the code to send the expected message. Via interrupt INTC, it signals
to the processor core the availability of the message . On the way, the PIC
sets the processor interrupt Int. This in turn triggers the interrupt chain on the
processor, which we have labeled with steps 1 through 4:

1 In step 1, the low-level assembly interrupt handler preempts the currently
running task, TaskB2. It stores the current context on the stack and then
calls the system interrupt handler. The low-level assembly interrupt handler
is part of the RTOS port and is inserted from the software database.

2 In step 2, the system interrupt handler (half channel SysInt) communicates
with the PIC. It determines through memory-mapped I/O the highest-priority
pending interrupt. It then invokes the application-specific interrupt handler



External Communication 189

(half channel INTC in the TLM). The SysInt code is one element of the
Hardware Abstraction Layer (HAL) stored in the database.

3 In the example platform, the interrupt is shared between HW1 and HW2, so
the next step in the synchronization is to determine which of these is the
source of the interrupt. The application-specific interrupt handler INTC de-
termines this by reading the status registers in HW1 and HW2. It detects that
HW2 has triggered the interrupt and subsequently calls the corresponding
User Interrupt Handler (UsrInt2).

4 Finally, UsrInt2 calls the semaphore Sem2, releasing the driver code that ex-
ecutes in TaskB3. The semaphore channel uses the internal-communication
services described in Section 5.5. HdS synthesis generates the interrupt
code based on UsrInt2 in the TLM.

The interrupt handler terminates after releasing semaphore Sem2. This fin-
ishes the interrupt sequence. As a result of the released semaphore Sem2, the
TaskB3, which is pending on that semaphore, becomes ready and is subse-
quently scheduled. After TaskB3 resumes execution, it reads the data from
HW2. Finally, the process of synchronization and data transfer is finished, and
the message from B5 has arrived at TaskB3.

POLLING SYNCHRONIZATION
For polling based synchronization, the hardware unit exposes a memory

location (a flag) to the processor bus. The hardware unit changes the value of
the flag to signal synchronization. The processor periodically reads this flag in
the hardware unit, detecting the value change. Then, it proceeds with the actual
data transfer.

The implementation of polling-based synchronization is simpler than
interrupt-based synchronization as no separate handler is needed. Instead, the
polling code is part of the driver code itself. The driver accesses the slave’s
polling flag periodically to detect successful synchronization. It uses MAC
services analogous to data transfer to access the processor bus. In addition, the
polling code uses RAL services to maintain the user-selected polling period.

To ease comparison between interrupt-based and polling-based synchroniza-
tion, we will repeat the same synchronization example between behavior B5
and TaskB3. Now, the synchronization is implemented via polling. Figure 5.16
shows the processor portion of the polling implementation. In this figure, only
the half channel Driver is highlighted as the synchronization is implemented
inside the driver itself. Figure 5.17 outlines the sequence of events during the
synchronization for sending a message from B5 to TaskB3.

1 Identical to the previous example, TaskB3 expects at t0 a message from B5.
The driver code, executed within, TaskB3 polls the status flag in HW2 to



190 Software Synthesis

HALO S
C P U

T a s k
B2

C1

B1

T a s k
B3C2

R T O S  M O D E L

S y s I n t

Dr
ive

r
Dr

ive
r

M
AC

I N T A I N T B I N T C

U s r I n t 1 S e m 1

FIGURE 5.16 Polling-based synchronization

HW2 P I C P r o c e s s o r  C o r e
I N T T a s k B3 T a s k B2

Data Transfertim
e

t0
t1

t2
t3

r e gB5
R ead y  ?

R ead y  ?

R ead y  ?
4

1
2
3

FIGURE 5.17 Events in polling-based synchronization

determine whether the message is available. Since it is not, TaskB3 suspends
for the polling period before trying again. During that time, the next lower
priority ready task, in this case TaskB2, is scheduled onto the processor.

2 At t1, TaskB3 re-awakes to poll the status flag again. The message is still
not available and therefore TaskB3 suspends again. Subsequently, TaskB2
is scheduled onto the processor. Meanwhile, at t2, the message becomes
available in B5, and the status flag changes. TaskB3 , however, does not
notice this immediately and remains suspended until the end of the polling
period.

3 At t3, TaskB3 awakes again after the expiry of the polling period. It reads
the status flag in HW2 again and detects that the message is available. Sub-
sequently, the polling loop terminates and the task can proceed to the data
transfer.



External Communication 191

4 At t4, after successful synchronization, TaskB3 performs the data transfer
and reads the message from B5.

As our example has shown, polling introduces a latency between the actual
availability of the message (at t2) and its detection in the transferring task (at t3).
This latency is at most as long as the polling period (i.e. if the flag changes just
after polling it). Using a shorter polling period reduces this latency. However,
with a shorter polling period, the number of polls increases. This increases the
system overhead, as the polling task has to be activated each time to read the
flag in the HW unit. Hence, there is a trade-off between the maximum polling
latency and the incurred system overhead.

Please note that polling without any polling delay, also called "busy waiting,"
should be avoided as a general solution. In the case of busy waiting, the CPU
spends all its processing time for polling the status flag. Hence, it cannot
schedule any lower priority tasks (such as TaskB2 in our example). Furthermore,
busy waiting leads to a pollution on the processor bus, as most of the bus capacity
is exhausted by checking the polling flag. Busy waiting may effectively block
not only the own processor for any other computation, but also may starve any
other bus traffic on the processor bus.

In the past pages, we have described the implementation of two options for
handling the synchronization necessary for external communications. Whether
a developer uses interrupt-based or polling-based synchronization depends on
the application and the system characteristics. Next, we will describe the MAC
layer for data transfer which takes place after a successful synchronization.

5.6.4 MEDIA ACCESS CONTROL

Packet

S to r eW o r d S to r eW o r d S to r eW o r d S to r eW o r dBus 
P r i m i t i v e s

FIGURE 5.18 Transferring a packet using bus primitives

The final aspect of external communication is the actual data transfer us-
ing the MAC driver. It assumes that the previously described data formatting,
packetization and synchronization are already performed. The MAC driver is
the lowest layer within the external communication stack that is implemented
in software. It communicates with the processor hardware which in turn im-
plements the bus protocol to transfer data on the processor bus.

The MAC driver inside the Hardware Abstraction Layer (HAL) provides
access to the bus medium. It allows transmission of packets over the processor
bus. It also splits packets into bus primitives. Figure 5.18 shows an example in



192 Software Synthesis

1 void masterWrite(unsigned int addr, void ∗pD, unsigned int len) {
2 unsigned char ∗p = (unsigned char∗)data;
3 while (len >= 4 ) {
4 ∗((unsigned int∗)addr) = ∗((unsigned int∗)pD);
5 len −= 4; pD += 4;
6 }
7 if (len >= 2 ) {/∗ remaning short ∗/
8 ∗((unsigned short∗)addr) = ∗((unsigned short∗)pD);
9 len −= 2; pD += 2;

10 }
11 if (len >= 1) {/∗ the last byte ∗/
12 ∗((unsigned char∗)addr) = ∗((unsigned char∗)pD);
13 len −= 1; pD += 1;
14 }
15 }

LISTING 5.10 MAC driver example

which a packet is split and transferred in words. The MAC driver is processor-
and bus-specific. The complexity of a MAC driver varies with implementation.
A MAC driver can be very simple if it connects to the processor bus, which is
available through memory accesses. More elaborate drivers are needed when
the targeted bus is not directly mapped to the processor memory and instead
is only accessible via a protocol transducer accessed through registers. For
example, a protocol transducer is typically used for Controller Area Network
(CAN) buses or IIC buses.

Listing 5.10 shows a very simple MAC driver designed to access the proces-
sor’s data bus. It can be simple, because any memory access within the address
range the processor bus, will cause a transaction on the processor bus. The
MAC driver is called with an the address to write to in the integer addr. It uses
a series of type casting resulting in a memory access to the address specified by
addr. If the address specified is within the address range of the processor bus,
a bus transaction (a read or write) will be triggered on the bus.

The MAC driver is implemented in ANSI-C and triggers bus accesses through
pointer casts. The driver splits the input packet into bus transactions, as in the
while-loop in lines 3 through 6, and the subsequent conditionals in lines 7 and
11. The data transfer is accomplished by a sequence of casts. Line 4 shows
an example of writing a word to the bus. On the right hand side, the source
pointer pD is casted to an unsigned int pointer. Then the source pointer’s value
is requested with the star operator. As a result, the right hand side contains
the value of the source data. This is assigned to the left hand side. On the left
hand side, the target address is captured in an unsigned int. It is casted to an
unsigned int pointer. Subsequently, the value of that pointer is requested with



Startup Code 193

1 /∗ processor startup code ∗/
2 void main(void) {
3 PE Struct Init(&PE0);
4 BSP init();
5 OSInit();
6

7 c os handshake init(&PE0−>sem1);
8 c os handshake init(&PE0−>sem2);
9 BSP UserIrqRegister(INT1, Int1Handler, /∗..∗/);

10 BSP UserIrqRegister(INT2, Int2Handler, /∗..∗/);
11

12 taskCreate(task b2b3, NULL,
13 B2B3 main, &this−>task b2b3);
14

15 OSStart();
16 }

LISTING 5.11 Startup code example

the star operator. As a result, the right hand side’s value is written to the memory
location identified by addr. Similarly, a short is written in line 8 and finally
a byte in line 12. The driver for this example bus uses very similar code for
reading from processor memory, with the left- and right-hand sides reversed.
This is typical of simple MAC drivers.

In summary, the MAC is the lowest layer for external communication imple-
mented in software. It provides a canonical access to the bus medium transfer
data over the bus. Its implementation hides hardware-specific details, providing
a generic API. The MAC driver is typically not generated, but instantiated from
a database.

5.7 STARTUP CODE
Specific code is required to initialize all hardware and software components

during startup of the processor. This code, sometimes called boiler plate code,
is highly platform specific.The startup code must be generated within software
synthesis to connect all previously generated code segments together.

Listing 5.11 shows an excerpt of the startup code. It first initializes the pro-
cessor specific data structures (line 3). This sets up the structure created during
code generation to represent the hierarchical composition and connectivity of
the user computation (see Chapter 5.3). Next, BSP init() in line 4 initializes
the processor’s basic support hardware and drivers (e.g. timer, PIC). This is
followed by an initialization of the operating system, OSInit(), in line 5. This



194 Software Synthesis

OS-specific step sets up the operating system data structures to prepare for the
instantiation of OS primitives in the user code. However, OSInit() does not yet
start multi-tasking.

After initializing the OS, application and platform specific code sets up
interrupt synchronization and create the user tasks. Lines 7 and 8 create
two semaphore channels, they synchronize for external communication be-
tween an interrupt handler and the driver code as we have outlined in Sec-
tion 5.6.3. Lines 9 and 10 register the corresponding interrupt handlers using
BSP UserIrqRegister(). The startup code generator can use the interrupt map-
ping information in the system TLM to connect with the appropriate external
interrupt line. Line 11, creates the user task B2B3 and with the main function
B2B3 main. Finally, line 15, enables multi-tasking by calling OSStart(). At
this point, the user task B2B3 begins to execute and may dynamically create
further tasks.

In short, the startup code consists of both platform-specific and application-
specific code. It initializes the underlying hardware, registers interrupt
handlers, and prepares multi-tasking. As a last step, it releases multi-tasking
and the user tasks start executing the user defined behavior.

5.8 BINARY IMAGE GENERATION
The final aspect of SW synthesis is the generation of a complete target binary.

Figure 5.19 outlines this process. Software synthesis, consisting of code gener-
ation and HdS generation, produces code for application, drivers, and interrupts.
In addition, HdS generation creates build and configuration files. Using these
configuration files, a cross-compiler tool chain compiles the generated code.
The cross compiler is specific to the target processor and binary format. In
the process, the build and configuration files select components needed for a
complete target implementation from the software database and configure these
components. Selected database components that are available as sources are
also cross compiled into target-object files. In a final step, all object files are
linked to the final target binary.

The software component database provides the essential elements for as-
sembly of the final target binary. An effective database design is important
for establishing a flexible synthesis flow, with a wide variety of configura-
tions and many processor and hardware combinations. It is essential to identify
the dependencies of each database component with respect to the selected hard-
ware/software configuration, e.g. the selected processor, RTOS, cross compiler,
and board components. Capturing all dependencies is necessary for correctly
selecting a component. On the other hand, overly specializing a component
may lead to code duplication within the database and yield code bloat.



Execution 195

Cross Compile
a n d  L in k

S of t w a re  S y n t h esis
TLM

G en e-
ra t ed
Cod e

L ib s

Ta r g e t  B i n a r y

A ppl.
D riv er

I n t .
B u ild  a n d  Con f ig u ra t ion

R A L
R T O S

R T O S  P ort
S t a rt u p
H A L

Pr
oc

es
so

r
RT

OS
Co

mp
ile
r

Bo
ard

Code Generation H dS  Generation

S W  D B
- R T O S
- W r a p p e r
- H A L

FIGURE 5.19 Binary image generation

The matrix of arrows in Figure 5.19 symbolize the dependencies when select-
ing a component. Usually the most specific element is the RTOS port, since it
depends on the RTOS type, the processor, and the cross-compiler (all of which,
for example, are necessary for the call frame layout and the stack layout required
for task creation). Our software generation also produces a customized Make-
file, which selects the components according to the architecture information in
the TLM and then uses the cross-compiler to generate the target binary.

Automating the step of target binary generation has many advantages. It
hides the complexities of the build process from the user. Using the TLM as an
input for generation avoids duplication of configuration information (i.e. du-
plicating between the TLM and Makefiles) and allows for a tight and optimized
integration with the component database. Overall, it minimizes the user effort.

Binary image generation completes the whole generation process. In the
preceding sections we have described the software synthesis process, starting
from task code generation, multi-tasking synthesis, communication synthesis,
and the generation of startup code. Now, after the final step, the generated target
binary is ready for execution.

5.9 EXECUTION
After successful target binary generation, the produced binaries are ready for

download onto the target platform. The target platform may be implemented
as an ASIC or using a FPGA prototyping platform. The generated embedded



196 Software Synthesis

software can then be executed on the target processor, such as a Mircoblaze or
ARM microprocessor, allowing us to validate functionality and timing.

CoreI S S  S L D L  W ra p p er

T i m erP I C

Source
St a t us
M a s k

C on t rol
L oa d
V a l ue

I N T C
I N T B
I N T A

H W 1
B4

Net

P r o t

L i n k

H W 2
B5

Net

P r o t

L i n k

I N T
I N T

Pr
ot
.

I S S  L i b ra ry  P roc es s

H A LI n t e r r u p t s
R T O S

R T O S  A b s t r a c t i o n  L a y e r
D r i v e r s
S W  A p p l i c a t i o n

FIGURE 5.20 ISS-based Virtual platform

Alternatively, the binaries can be validated using an ISS-based virtual plat-
form. Figure 5.20 depicts a processor model with an integrated ISS as part of
a system TLM. Similar to the system TLM introduced earlier in this chapter,
it contains a PIC and timer in an abstract form. Within the processor module,
the processor core is replaced with an ISS library process. The ISS is wrapped
into an SLDL wrapper. The wrapper calls the ISS cycle-by-cycle. It detects
bus access requests from the ISS and translates those into calls to the abstract
bus model. In the reverse direction, the SLDL wrapper listens to incoming
interrupts from the system simulation, and forwards those to the ISS. The ISS
interprets the generated target binary and executes the embedded software.

Both approaches of executing the target binary allow validation of the gener-
ated software for its functionality and performance. If the performance analysis
reveals opportunities for performance tuning, the designer can update commu-
nication or computation parameters, application mapping, or even update the
application specification, and then trigger the synthesis again. With the au-
tomatic generation, alternative solutions can be quickly and easily generated.
This allows for a rapid exploration of the embedded software design space.

5.10 SUMMARY
In this chapter, we introduced a software synthesis approach which can gen-

erate C code from system models described in SLDL. The generated C code
can be compiled and linked to produce a final target binary for each processor
in the system.



Summary 197

Embedded software synthesis is an essential aspect of implementing today’s
complex designs. It allows us to avoid the tedious and error prone manual
implementation for customized embedded systems. We have shown software
generation as an integral part of an ESL flow. From the system TLM, the
software synthesis automatically generates the binaries for each processor in
the system. Together with the system synthesis, it completes the ESL flow for
the software, offering a solution that is seamless from the abstract system model
down to its implementation on embedded processors.

The presented software synthesis addresses the four aspects of creating em-
bedded software: code generation, communication generation, multi-task gen-
eration, and binary image generation. It generates communication drivers, inter-
rupt handlers, and adjusts for the target multi-tasking. It supports the traditional
targeting toward an existing RTOS and, furthermore, offers an interrupt-based
alternative for multi-tasking if an RTOS-based execution is undesirable.

Today’s embedded systems are highly customized as a composition of spe-
cialized heterogeneous components. Both pre-existing IP components, as well
as synthesized of application specific hardware components are combined cre-
ating application specific platforms.. Manual code development for such cus-
tomized platforms is too error prone and time consuming for current market
demands. Traditional software engineering approaches do not sufficiently ad-
dress this problem, as they target general architectures. Therefore, customizing
embedded platforms demands an automated software synthesis. Automation
offers significant gains in productivity and allows the designer to focus on the
essential algorithm without the burden of low-level implementation details.
Automation therefore supports a shift in focus away from low-level implemen-
tation, toward a feature-oriented design.



Chapter 6

HARDWARE SYNTHESIS

HW components are synthesized as standard or custom processors or as
special custom hardware units which are also called intellectual property com-
ponents (IPs). As we explained in the previous chapter the synthesis process
starts with specification (usually an instruction set or C code) and ends with a
RTL code in an HDL that is ready for further processing with RTL tools. This
synthesis process is sometimes called C-to-RTL design.

Tool Model

R TL
C om p on en t

L i b r a r y

S p ec i f i c a t i on

R TL  Model

Model G en er a t i on

R TL  Tools

C om p i la t i on

E s t i m a t i on
H L S

A lloc a t i on B i n di n g S c h edu li n g

. . .

FIGURE 6.1 HW synthesis design flow

© Springer Science + Business Media, LLC 2009 

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,
DOI: 10.1007/978-1-4419-0504-8_6,

199



200 Hardware Synthesis

The synthesis process starts, as shown in Figure 6.1, with a given specifi-
cation, which is compiled into some intermediate tool representation, or tool
model. This model can be used for estimation of different design metrics in
the proposed or generated design. These metrics can also be used for some
partial or complete allocation, as well as binding and/or scheduling at the start
of synthesis or during design-optimization iterations.

HW component synthesis, which is usually called High-Level Synthesis
(HLS), uses the tool model to estimate metrics and performs allocation, bind-
ing, and scheduling tasks. The allocation task selects necessary and sufficient
components from the RTL component library and defines their connectivity
or component architecture. The binding task performs variable merging and
binds variables to registers, registers files, and memories, and also assigns oper-
ations to specific functional units and register-to-register transfers to available
connections. The scheduling task assigns register transfers and operations to
clock cycles. All of these tasks are designed to optimize design metrics such
as performance, cost, size, power, testability, dependability or some other met-
ric. These tasks must be coordinated since optimization in one of the tasks
requires also support from other tasks. For example, adding an extra ALU in
the datapath requires also an increase in number of ports in the register file
and number of busses to supply operands to and from the newly added ALU.
Furthermore, adding new resources may improve performance but it may also
increase the design size and power consumption. In addition, new ALU may
introduce an increase in the clock cycle duration which in turn may cancel the
gain in performance obtained through concurrent execution of some operations.

A completely optimized design is not easily achieved, since any improvement
in one metric may negatively impact some other metrics. One possibility of
simplifying design synthesis is to execute the above tasks sequentially. In this
case the final result may not be optimal, since decisions made in one task may
not be optimal for the other tasks. The other possibility is to use estimation and
predefine some architectural features or execution styles. Pre-allocation helps
in partial or full definition of processor architecture, allowing us to avoid the
timing-closure problem since it defines many or all of the register-to-register
delays ahead of time. Thus there is no need to wait until the end of HLS to
determine the clock cycle time. In addition pre-binding may bind frequently-
used variables to fast registers, register files, or a scratch-pad memory to avoid
lengthily delays from loading and storing the data to the main memory. Another
helpful technique is pre-scheduling, which can assign key inner loops to high-
speed pipelined functional units or to pre-schedule such loops to specific paths
in a pipelined datapath.

In the rest of this chapter, we will describe in detail those tasks used for
synthesis of HW components.



RTL Architecture 201

6.1 RTL ARCHITECTURE
RTL architecture consists of two basic components: a controller and a datap-

ath as shown in Figure 6.2. The controller indicates the state of the architecture
and provides control signals to the datapath for every clock cycle. It also re-
ceives some control inputs and outputs for coordination with other components
in the platform. The datapath, on the other hand, receives the data, executes
the assigned functions, and outputs the results. Each datapath also outputs sta-
tus signals to the controller, which are then used to determine the next step in
computation.

Control
S i g na ls

Controlle r

Control
O u tp u ts

Control
I np u ts

D a ta p a th

D a ta
I np u ts

D a ta
O u tp u ts

S ta tu s
S i g na ls

FIGURE 6.2 High-level block diagram

The more detailed RTL architecture of a controller and a datapath is shown
in Figure 6.3. We can define a simple controller for the simple HW components
such as memory controllers, interrupt controllers, bridges, transducers, arbiters,
and other interface components with a Finite State Machine (FSM). A FSM
consists of a State Register (SR) that contains the state of the FSM and two
logic components: input logic and output logic. Input logic computes the next
state of the FSM from the present state and the control inputs, while the output
logic defines the control signals for the Datapath and control outputs from the
present state and the control inputs.

A datapath contains different RTL components such as registers, register
files, and memories for storage of data, as well as different functional units for
computation, such as ALUs, and the MULs. Each storage and functional unit
can take one or more clock cycles and can be pipelined in one or more stages.
These units can be connected with busses or with point-to-point connections
through selectors. Of course, some of the units can be chained so that data from
one unit to the other unit goes directly or through a register. Each unit may
have input and output registers for storing temporary data or for data forwarding.
Some or all register-to-register paths can be pipelined so that several different
operations can be executed concurrently in different pipeline stages, although
each operation takes approximately the same amount of time to execute.



202 Hardware Synthesis

Output 
L o g i c B1

B2

A L U M e m o r y

R F  

M U L

B3F S M  C o n t r o l l e r

I n put 
L o g i c

D a ta pa th

C o n tr o l
I n puts

C o n t r o l
Outputs

C o n tr o l
S i g n a l s

S ta tus
S i g n a l s

D a ta
I n puts

D a ta
Outputs

SR

FIGURE 6.3 RTL diagram with FSM controller

For larger standard and custom processors and larger special function pro-
cessors, the simple FSM controller is usually replaced with a programmable
controller, as shown in Figure 6.4. In this case, the State Register becomes the
Program Counter (PC); the output logic becomes the Control Memory (CMem)
for storing control words, or the Program Memory (PMem) for storing instruc-
tions; and the input logic becomes the Address Generator (AG) for generating
the address of the next control word or the next instruction. The AG may
compute the next address from information supplied by different sources, such
as a datapath address, datapath status signals, an offset from the CW or an
instruction and data supplied by the rest of the platform through control inputs.

This type of programmable controller can be also pipelined by itself or in
conjunction with the datapath. Figure 6.4 shows such a pipelined controller
together with a pipelined datapath. In order to pipeline the controller we may
insert an Instruction Register (IR) or a Control Word Register (CWR) to store
temporarily instructions or control words. We can also insert a Status Register
(SR) to store status signals from the datapath. After insertion of these registers,
every instruction or control word as shown in Figure 6.4 needs three cycles to
be generated before applied to the datapath. In the first cycle, AG generates
the new address for PC from information in registers such as SR or IR or CWR
or some other registers in the datapath. In the second cycle a control word
from CMem or instruction from PMem is loaded into IR or CWR. Finally, in
the third cycle control word or decoded instruction is applied to the datapath.
Furthermore, the number of cycles may increase if CMem or PMem read takes
more than one clock cycle...



Input Models 203

In addition to controller pipelining, datapath can be pipelined at the same
time. For example, the datapath in Figure 6.4 has input and output registers
preceding and following every functional unit. Therefore, it takes one clock
cycle to read the data from the RF and transfer it to the ALU input register,
one clock cycle to compute the operation in the ALU and store date in the
ALU output register, and finally one clock cycle to write data back into the
RF. Of course, some functional units may be pipelined and take more than
one clock cycle to complete their operation. For example multiplier MUL in
Figure 6.4 has two pipelined stages and will take two clock cycles to complete
multiplication of two operands in its input registers before the result is stored
in the MUL output register. Therefore, data computation from RF to RF in
the datapath of Figure 6.4 may take three (arithmetic and logic operations) or
four (multiplication) clock cycles. With pipelined controller and datapath as
shown in FIGURE 6.4, new address generation takes at least four clock cycles:
one from the PC to the IR or CWR, the second one to the ALU input registers,
the third to the SR or ALU output register, and finally, the fourth one back to
the PC. It may, however, take more than four clock cycles if a new address is
delivered from the local memory which takes longer than one clock cycle to
read the address.

Status

A d d r e ss

IR or CW
R

C m e m
o r

P M e m  

A G

SR

PC B1
B2

A L U M e m o r y

R F  

M U L

B3P r o g r am m ab l e  C o n tr o l l e r D ata p ath

O f f se t

C o n t r o l
In p uts

C o n t r o l
O utp uts

C o n t r o l
Si g n al s

D ata
In p uts

D ata
In p uts

FIGURE 6.4 RTL diagram with programmable controller



204 Hardware Synthesis

6.2 INPUT MODELS
Input models for HW component synthesis come in many different forms:

from C-code to RTL to netlists. The C-code input does not contain any design
decisions, while logic netlist, for example, has all the design decisions already
implemented. Many other forms, such as CDFG or FSMD, include some but
not all of the design decisions. We will look at several different input models
using the example of the Ones Counter (OC). The OC takes in Data as a string
of 0’s and 1’s, computes the number of 1’s in the Data, and then outputs this
number of 1’s after certain amount of time. The OC waits for the Data until the
Start signal becomes 1, and then copies the Data and starts counting. It stops
when all the ones are counted, then outputs the number of ones, sets the Done
signal to 1, and goes to the waiting state, in which it waits for the Start signal to
go to 1 again. The OC example can be used to describe different input models
for HW component synthesis.

6.2.1 C-CODE SPECIFICATION
Programming languages such as C were designed to define computation exe-

cuting sequentially on a standard processor. C language describes computation
in terms of function calls that return values for a given set of parameters. Such
a description of the OC using C language function call is shown in Listing 6.1.
The function OnesCounter sets the variables Ocount to 0, Mask to 1, and leaves
temporary variable Temp undefined. After that, it computes the number of ones
by storing the least significant bit of the Data into the Temp variable by com-
puting Temp = Data & Mask and adding that Temp to the Ocount. After that
it shifts the Data to the right and repeats the computation for the next more
significant bit. It stops if there are no more 1’s in the Data. Therefore, the
Ocount computation may take a different number of clock cycles, depending
on the number and position of 1’s in the variable Data.

When the Ones counter is implemented as a function, the input is passed to the
function via a function argument in line 1. The result of the function is passed
back by a return value. The return value is given with the return statement in line
09. The function is executed on demand by calling the function and terminates
once reaching the return statement. Therefore, the call and return are the triggers
for starting and ending the computation. In this way, the function-based C-code
definition differs from a typical hardware component, which is always running
and waits for control signals to start computing while it communicates through
data signals with other components.

In order to describe operation of a HW component on RT level more accu-
rately, we need to introduce new variables for controller and datapath inputs and
outputs. Furthermore, we need to rewrite the C code in Listing 6.1 to execute



Input Models 205

1 int OnesCounter(int Data){
2 int Ocount = 0;
3 int Temp, Mask = 1;
4 while(Data > 0) {
5 Temp = Data & Mask;
6 Ocount = Data + Temp;
7 Data >>= 1;
8 }
9 return Ocount;

10 }

LISTING 6.1 Function-based C code

1 while(1) {
2 while(Start == 0);
3 Done = 0;
4 Data = Input;
5 Ocount = 0;
6 Mask = 1;
7 while(Data > 0) {
8 Temp = Data & Mask;
9 Ocount = Ocount + Temp;

10 Data >>= 1;
11 }
12 Output = Ocount;
13 Done = 1;
14 }

LISTING 6.2 RTL-based C code

indefinitely. This is shown in Listing 6.2, which executes forever in the loop
shown in line 1, with loop in line 2 waiting for Start to become 1. The C code
in Listing 6.2 has several new control and data variables added. Control signal
Done is reset to 0 in line 3 and set to 1 in line13 indicating the beginning and
ending of the component operation. The variables Input and Output represent
the data ports to the component while variables Data, Ocount, Mask and Temp
are temporary variables for computation inside the component.

In general, designers need to avoid function calls to ensure better understand-
ing and easier synthesis of hardware components. As a result of the re-coding
shown in Listing 6.2, we now have flat C-code that is suitable for high-level
synthesis. The code uses Input and Output variables for communication with
the external environment and does not contain any function calls. However, we
still can not make distinction between control and data variables in the code in
Listing 6.2.

6.2.2 CONTROL-DATA FLOW GRAPH SPECIFICATION
A Control-Data Flow Graph (CDFG) [151] represents a C-code with if,

loop, and Basic Block (BB) constructs, where a BB represents a sequence of
programming statements without ifs and loops. A CDFG is useful because
it shows control and data dependences. It allows us to easily follow control
dependences between if, loop, and BB constructs in the C-code since each of
them is represented by a graphical symbol with the control arrows between
them. It also allows us to expose concurrency of operations in the C code by
representing each BB as a Data-Flow Graph (DFG) in which every operation is
represented by a node in the graph while arrows between the nodes represent



206 Hardware Synthesis

0

1

>0

0

DoneO u t p u t

I np u t

0
Done

0
O c ou nt

1
M a s kDa t a

&

>>1 +

DoneDa t a

DoneO c ou ntDa t a

S t a r t

Da t a

1

M a s k O c ou nt

FIGURE 6.5 CDFG for Ones counter

input and output variables. Note that the order in which the statements are
written in the C code imposes unnecessary sequentially on the execution of
these statements.

A CDFG for the OC is shown in Figure 6.5. It consists of four BBs and
two if statements. The first BB is empty, while the OC is waiting for the Start
signal to become 1. The second BB does the Data, Mask, Ocount, and Done
variable initialization. The third BB is executed in the loop that a count 1’s
until Data is equal to 0. It extracts the least significant bit by masking the
rest of the bits away and ads it to Ocount after which it shifts the Data. The
last BB outputs the Data and Done values. As in the C-code in Listing 6.2,
the CDFG model does not distinguish between controller and datapath outputs.
Without this distinction we may end up with an inefficient implementation in
which controller outputs are implemented as datapath outputs and vice versa.



Input Models 207

However, CDFG can represent a waiting state in which OC waits for Start signal
to become 1, similarly to the C code in Listing 6.2 in line 2.

S5

S4

S3

S0

S1

S2

S6

S7

St a r t  =  0

D o n e  =  0;  D a t a  =  I n p u t

O c o u n t  =  0

M a s k  =  1

T e m p  =  D a t a  A N D  M a s k

O c o u n t  =  O c o u n t  +  T e m p

D a t a  =  D a t a  > >  1

D o n e  =  1;  O u t p u t  =  O c o u n tD a t a  =  0

St a r t  =  1

D a t a  =  0/

FIGURE 6.6 FSMD specification

6.2.3 FINITE STATE MACHINE WITH DATA
SPECIFICATION

A Finite State Machine with Data (FSMD) [63, 184] specification is an
upgraded version of the well-known Finite State Machine representation pro-
viding the same information as the CDFG specification. A FSMD specification,
however, can be more specific than the corresponding CDFG specification if
we assume that each state is executed in one clock cycle. This way a FSMD
specification can provide an accurate estimation of the design performance.
The FSMD specification for the OC is shown in Figure 6.6. It has eight states
and requires eight clock cycles to execute. The second BB from the CDFG
specification that contains four initialization operations is executed in states S2,
S3, and S4 and therefore requires three clock cycles. Since Done is a control
signal, it can be executed concurrently with operations on any of the other three
variables. Variables Data, Ocount and Mask, which are presumably in the same
RF, need three states or three clock cycles to execute since their initialization



208 Hardware Synthesis

goes through the same ALU in the implementation. This is also true of the
computation of the Temp, Ocount, and Data values in states S4, S5, and S6 in
the 1’s counting loop. Therefore, a FSMD specification can offer more accurate
timing information in terms of clock cycles than a CDFG specification. The
main reason for this is that the DFG in each BB in a CDFG is scheduled into
states or clock cycles in the corresponding FSMD.

status

SR O utp ut 
L o g i c

B1

A L U

S h i f t e r

B3F S M  C o n tr o l l e r

I n p ut 
L o g i c

D ata p ath

D o n e

S ta r t

B2

Selector

O utp o r t

C o n tr o l
S i g n al s

I n p o r t

R F  

FIGURE 6.7 RTL Specification

6.2.4 RTL SPECIFICATION
Register-Transfer-Level (RTL) specification provides a Datapath netlist with

all RTL components and their connections. It also includes two tables for
synthesis of input logic and output logic components in the FSM Controller.
We can automatically obtain Boolean equations for synthesis of input logic from
the input logic table after we define some state encoding for the states in the
table. Similarly, we can automatically obtain Boolean equations for the output
logic from the output logic table which defines variable bindings to storage
elements and operations to functional units.

For example, RTL specification for the OC is given in Figure 6.7, and in
Table 6.1 and Table 6.2. In the ones counter architecture, shown in Figure 6.7,
variables Data, Mask, Ocount, and Temp are in the registers RF[0], RF[1],
RF[2], and RF[3] of the two port register file RF. They communicate through
buses B1 and B2 with two chained functional units, ALU and Shifter. Shifter
also provides the status signal Data = 0 to the input logic in the FSM Controller.
The input logic table in Table 6.1 supplies logic equations for the next state and



Input Models 209

the control output signal Done. We can see that Done = 1 when the SR is in state
S7. Similarly, we can derive Boolean equations for the output logic from the
output logic table shown in Table 6.2 once control encoding for every storage
and functional unit is taken into account.

TABLE 6.1 Input logic table

S0
S7
S4
S6
S5
S4
S3
S2
S1
S0

State
N ex t

1XXS7
01XS6

X
X
X
X
X
X
1
0

Star t
I n p u ts : O u tp u t:P r es en t

0XS5
00S6

0XS4
0XS3
0XS2
0XS1
XXS0
XXS0

D o n eD ata =  0State

S0
S7
S4
S6
S5
S4
S3
S2
S1
S0

State
N ex t

1XXS7
01XS6

X
X
X
X
X
X
1
0

Star t
I n p u ts : O u tp u t:P r es en t

0XS5
00S6

0XS4
0XS3
0XS2
0XS1
XXS0
XXS0

D o n eD ata =  0State

TABLE 6.2 Output logic table

RF[0] = Data
RF[1 ] = M as k
RF[2 ] = O c o u n t
RF[3 ] = T e m p

RF[2]

RF[0 ]

RF[2]

RF[0 ]
RF[2]
RF[2]

X

X

RF Read 
P o r t  A

X

p a s s

a d d

A N D
i n c r e m e n t
s u b t r a c t

X

X

A L U

X

X

RF[3 ]

RF[1 ]
X

RF[2]

X

X

RF Read 
P o r t  B

X

B 3

B 3

B 3
B 3
B 3

I n p o r t

X

RF s el ec t o r

X

s h i f t  r i g h t

p a s s

p a s s
p a s s
p a s s

X

X

S h i f t er

d i s a b l e

RF[0 ]

RF[2]

RF[3 ]
RF[1 ]
RF[2]

RF[0 ]

X

RF W r i t e

e n a b l eS 7

ZS 6

ZS 5

ZS 4
ZS 3
ZS 2

ZS 1

ZS 0

O u t p o r tS t at e

RF[2]

RF[0 ]

RF[2]

RF[0 ]
RF[2]
RF[2]

X

X

RF Read 
P o r t  A

X

p a s s

a d d

A N D
i n c r e m e n t
s u b t r a c t

X

X

A L U

X

X

RF[3 ]

RF[1 ]
X

RF[2]

X

X

RF Read 
P o r t  B

X

B 3

B 3

B 3
B 3
B 3

I n p o r t

X

RF s el ec t o r

X

s h i f t  r i g h t

p a s s

p a s s
p a s s
p a s s

X

X

S h i f t er

d i s a b l e

RF[0 ]

RF[2]

RF[3 ]
RF[1 ]
RF[2]

RF[0 ]

X

RF W r i t e

e n a b l eS 7

ZS 6

ZS 5

ZS 4
ZS 3
ZS 2

ZS 1

ZS 0

O u t p o r tS t at e

6.2.5 HDL SPECIFICATION
RTL specification in VHDL/Verilog provides a FSMD description from

which we can derive a datapath netlist with all RTL components and their
connections, as well as a FSM description for logic synthesis of the input logic
and output logic.



210 Hardware Synthesis

1 // ...
2 always@(posedge clk)
3 begin : output logic
4 case (state)
5 // ...
6 S4: begin
7 B1 = RF[0];
8 B2 = RF[1];
9 B3 = alu(B1, B2,l and);

10 RF[3] = B3;
11 next state = S5;
12 end
13 // ...
14 S7: begin
15 bus 32 0 = RF[2];
16 Outport <= B3;
17 Done <= 1;
18 next state = S0;
19 end
20 endcase
21 end
22 endmodule
LISTING 6.3 RTL description in HDL (excerpt)

For example, Listing 6.3 shows a Verilog description of the OC presented in
Figure 6.7. It states that the case statement on line 3 always gets executed on
the positive edge of the clock signal. The case statement represents Table 6.1
and Table 6.2. For example, in state S4, variables Data and Mask in RF[0] and
RF[1] are supplied through buses B1 and B2 to ALU. ALU performs an AND

operation and outputs the result Temp to bus B3. Temp from bus B3 is written
back into register file RF at location RF[3]. After that the OC controller goes
to state S5. Similarly, Ocount from RF[2] is sent to Outport is state S7.

We can see that Verilog distinguishes between variables and signals. Verilog
uses = for variable assignment and <= for signal assignment. In many ways,
the Verilog description in Listing 6.3 is similar to the FSMD description in
Figure 6.6. It has the same number of states and the same transitions from state
to state. However, Verilog description is more detailed then FSMD description
since its variables reflect components and buses in the datapath netlist.



Estimation and Optimization 211

6.3 ESTIMATION AND OPTIMIZATION
HLS starts with the selection of some initial RTL components such as storage

components, functional units, and buses. The datapath then executes variable
assignments in every clock cycle, a process by which selected variables will
be assigned new values through arithmetic, logic, and shift operations that are
performed by functional units. To execute each variable assignment statement,
then, the datapath must take data from a storage component that stores the vari-
ables in the right-hand side of the assignment, pass this data to the functional
units that compute the new value, and then pass it back to the storage compo-
nent, which stores the variables on the left-hand side of the equation. Given
this process, it follows that we can approach datapath creation by selecting
the storage components, the functional units, and the buses that connect these
components.

By focusing on the storage components, for example, we note that the vari-
ables in the datapath must be stored in registers, register files, and memories.
However, since not all variables are alive at the same time, it is possible for
certain variables to share the same register or the same location in a register file
or a memory. In other words, we can merge the datapath variables in a way
that reduces the number of storage locations in the datapath. Furthermore, even
if certain variables are alive at the same time, they may not be accessed at the
same time, which means that we could combine them into a register file or a
scratch-pad memory so that they can share the same register file or memory
ports. In this manner, by combining storage locations we minimize the num-
ber of storage ports in the datapath and thus reduce the number of connections
needed.

We can reduce the number of functional units in the datapath in a similar
way. As mentioned above, in each state, selected variables are to be assigned
new values through various arithmetic, logic, or shift operations, each of which
can be performed by a separate functional unit. However, since most of these
operations are executed in different clock cycles, they could share the same
functional unit. In other words, we can reduce the number of units in the
datapath by combining different operations into groups, allowing each group
of operations to be executed in a single functional unit.

The third basic technique for optimization focuses on the datapath connec-
tivity. As mentioned above, the execution of an assignment statement requires
that data pass from one storage component to the functional unit that computes
the new value and then back to another storage component. The data, in other
words, is passed through connections between storage and functional units.
However, since different connections will be used in different states, we can
group connections into buses, which enable us to reduce the number of wires
in the datapath.



212 Hardware Synthesis

Controller Control
S i g na ls

S ta rt

D one

D a ta p a th

I n 1

Ou t

I n 2

(a) SRA block diagram

S0
a =  I n  1
b =  I n  2

0

1

Star t

S1

S2

S3

S4

S5

S6

S7

t1 =  |a|
t2 =  |b|

t5 =  x  – t3

x  =  m ax (  t1 ,  t2 )
y  =  m i n  (  t1 ,  t2 )

t3 =  x  > >  3
t4 =  y  > > 1 

t6 =  t4 +  t5

t7 =  m ax  (  t6 ,  x  ) 

D o n e  =  1
O u t =  t7

(b) FSMD model of SRA

FIGURE 6.8 Square-root algorithm (SRA)

The components can be selected by assuming that one operation is executed
every clock cycle or that all possible operations not dependent on each other
are executed in the same clock cycle. In the first case, we have a cost-driven
design, while in the latter, we have a performance-driven design.

These three basic allocation techniques can be demonstrated on a small ex-
ample dedicated to computing of the Square-Root Approximation (SRA) of two
signed integers, a and b, by the following formula:√

a2 + b2 ≈ max((0.875x + 0.5y), x)
where x = max(|a|, |b|) and y = min(|a|, |b|).
According to the FSMD model in Figure 6.8(a) this component has two input

ports, In1, and In2, which are used to read integers a and b, and one output port
Out. As you can see in the FSMD model in Figure 6.8(b), the component
reads the input ports and starts the computation whenever the input control



Estimation and Optimization 213

signal Start becomes equal to 1. In state S1, it computes the absolute values
of variables a and b, and in S2, it assigns the maximum of these two values to
x and the minimum to y. In state S3 it shifts x three positions to the right to
obtain 0.125x and shifts y one position to the right to obtain 0.5y. The SRA
component calculates 0.875x by subtracting 0.125x from x in state S4. In state
S5 it adds 0.875x and 0.5y, while in state S7 it computes the maximum of x
and the expression 0.875x + 0.5y. In state S7, the SRA component produces
the result and makes it available through the Out port for one clock cycle. At
the same time, it sets the control signal Done to 1, in order to signal to the
environment that the data that has appeared at the Out port is a valid result.

To determine resource requirements from this FSMD model, we would need
to generate the variable and operation usage tables shown in Table 6.3 and
Table 6.4. In the variable-usage table, each row represents one variable found
in the FSMD model and each column represents one state. For each variable,
then, we would enter an x in the columns that correspond to the states in which
the variable is alive. A variable is considered alive in the first state that follows
the rising edge of the clock signal which assigns its new value and also in all
states inclusively between the first and final states in which this new value is
used for the last time. In Table 6.3, for example, variables a and b are assigned
their values at the rising edge of the clock signal indicating the beginning of
states, but they are not used in any other states.

TABLE 6.3 Variable usage

1233222No. of live 
var iables

Xt 7
Xt 6

Xt 5

X
X

S 1

X
X

S 3

X
X

S 2

X

X

S 5

X
X

X

S 4

X

S 6

t 4
t 3
y
x
t 2
t 1
b
a

S 7

1233222No. of live 
var iables

Xt 7
Xt 6

Xt 5

X
X

S 1

X
X

S 3

X
X

S 2

X

X

S 5

X
X

X

S 4

X

S 6

t 4
t 3
y
x
t 2
t 1
b
a

S 7

Therefore, variables a and b are alive only in state S1. By contrast, variable
x is assigned its new value at the beginning of state S3, but the value of x is
also used in states S4 and S6, indicating that the variable x is alive in states S3,
S4, S5, and S6. On the basis of this table, then, we can see which variables are
alive in which states.



214 Hardware Synthesis

TABLE 6.4 Operation usage

S7

111212N o .  o f
o p e r a t i o n s

2

S1

2

S3

1
1

S2

1

S5

1

S4

1

S6

1+
1-
2> >
1m a x
1m i n
2a b s

M a x .  n o .  
o f  u n i t s

S7

111212N o .  o f
o p e r a t i o n s

2

S1

2

S3

1
1

S2

1

S5

1

S4

1

S6

1+
1-
2> >
1m a x
1m i n
2a b s

M a x .  n o .  
o f  u n i t s

More importantly, however, Table 6.3 also shows the maximum number of
variables alive in a single state. That is, it shows us that in states S4 and S5 there
are three live variables. We would therefore conclude that we will need at least
three registers in the datapath of this SRA design. Because of this, we may be
able to combine variables from Table 6.3 into three groups so that each group
that is to be stored in one of the registers contains only variables that are not
alive at the same time. On the basis of this example, then, you can see that one
of the major tasks in RTL synthesis consists of merging or grouping variables
and assigning the groups to registers or memory locations in a way that will
minimize the number of storage components or some other design metric, such
as performance, power, or testability. Since each group of variables shares a
register or memory location, this task is also frequently called register/memory
sharing.

In a similar fashion, we might determine the minimum number of units
needed to execute all the operations in the design. For this purpose we would
use Table 6.4, in which the rows represent the different operator types found
in the FSMD model and the columns represent the states, as before. From this
table we can conclude that we need two units that can compute absolute value
(indicated by | | in the FSMD model) and shift data (indicated by ») and one unit
that can perform max, min, +, and - operations. Given these requirements, the
straightforward approach to designing the datapath for the SRA is to allocate
two units for computation of absolute value, two shifters, and one unit each for
the computation of maximums and minimums, one adder, and one subtractor.
The problem with this straightforward implementation, however, is that we do
not necessarily need one functional unit per operation. Since no state uses all of
these operations simultaneously, the implementation of one unit per operation
will have functional units idling most of the time. In fact, we do not need
more than two operations in any one state, so it is more efficient to construct
functional units that can perform more than one operation, as this allows a
substantial hardware saving.



Estimation and Optimization 215

For example, in the SRA description, addition and subtraction are never
performed at the same time, which means that we can merge these operations
into one functional unit called an adder/subtractor. In this case we gain one
adder and a complementer at the expense of an additional EX-OR logic. On the
other hand, merging the 1-bit shifter and the 3-bit shifter does not save hardware
but requires an additional selector. On the basis of these examples, you can see
how we perform the second major task in RTL synthesis, which consists of
merging or grouping operators and designing a functional unit for each group,
thereby minimizing a given design metric such as area, the number of gates or
transistors, or the number of functional units in the datapath. This task is also
called functional-unit sharing.

TABLE 6.5 SRA connectivity

I
O

t5

O

I

t6

O

t7

I

O

t3

I

O

t4
I

a

I
I

O

t1

I

b

I

I
I
O

x

I
I
O

t2

I

O

y

+
-

> > 1
> > 3
m ax
m i n
abs 2
abs 1

I
O

t5

O

I

t6

O

t7

I

O

t3

I

O

t4
I

a

I
I

O

t1

I

b

I

I
I
O

x

I
I
O

t2

I

O

y

+
-

> > 1
> > 3
m ax
m i n
abs 2
abs 1

If our primary goal is to minimize wiring, we should also consider merging
connections into buses, since each single connection between any two units
would be used in very few states and would mostly remain idle. As an example,
let us consider the connections in an SRA datapath that uses one register per
variable and single-operation functional units. The connections for such a
datapath are given in the connectivity table shown in Table 6.5, in which each
row corresponds to one functional unit and each column represents one register.
To complete the table, we enter the letter I for every connection between a
register and the input of a functional unit, and for every connection between
the output of the functional unit and a register, we enter the letter O. As you
can see in Table 6.5, such an SRA requires 14 input connections and 9 output
connections, for a total of 23 connections. Of these 23 connections, however,
very few are needed in any one state. From the FSMD model, in fact, we
know that the maximum number of connections is used in state S2 is four input
connections, which link the registers storing the variables t1 and t2 to the min
and max units as well as two output connections, linking min and max units
to the registers that store the variables x and y. In other words, the maximum
number of connections needed concurrently is six.



216 Hardware Synthesis

From this example, you can see that the third major task in RTL synthesis
consists of merging or grouping connections and assigning one bus to each
group so as to minimize the connection cost. Note that this connection cost
includes the cost of bus drivers, which are required for every connection of a
unit to a bus, and the cost of input selectors, which are required whenever two
or more buses are connected to the same input of a storage or functional unit.
This task is also frequently called bus sharing.

6.4 REGISTER SHARING
As we mentioned earlier, one of the major tasks in datapath optimization

involves grouping variables so that they share a common register or memory
location. The advantage of such grouping lies in the fact that it reduces the
number and size of storage components, which in turn reduces the silicon area
and therefore the cost of fabrication. Since a register can be shared only by
those variables with non-overlapping lifetimes, this technique requires us to
determine the lifetimes of each variable.

The lifetime of a variable is defined as the set of states in which that variable
is alive, which includes the state following the state in which it is assigned a
new value (write state), every state in which it is used on the right-hand side of
an assignment statement (read state), and all the states on each path between
the write state and a read state. Note also that each variable may have multiple
assignments and that each assigned value may be used several times. Once
we determine the lifetime of each variable, we can group variables that have
non-overlapping lifetimes and assign each group to a single register.

When we group variables, one of the common goals is to try to have as few
registers as possible, which means that we would try to partition variables into
the smallest number of groups while ensuring that every variable belongs to
one of these groups. This goal can be accomplished by a simple algorithm such
as left-edge algorithm, which tries to pack as many variables as possible into
each register. Left-edge algorithm is simple and fast, but it does not take into
account the overall datapath structure.

As we demonstrated in the previous section for the SRA example, we cannot
reduce the number of registers in the datapath to fewer than three. However,
since there are many possible datapath designs with three registers, we would
like to select one that minimizes a second design metric, such as connectivity
cost. For example, the cost of connecting I/O ports, registers, and functional
units can be measured in the number of selector inputs, assuming that the cost
per selector input is constant.

To develop an algorithm that will minimize the number of registers as well
as connectivity cost, we give priority to the combining of certain variables.



Register Sharing 217

x =  a  +  b

y  =  c  +  d
S j

S i

(a) Partial
FSMD

a

S e l e ct o r S e l e ct o r

S e l e ct o r S e l e ct o r

c b d

x y

+

(b) Datapath without register
sharing

Selector Selector

a  ,  c b  ,  d

x  ,  y

+

Selector

(c) Datapath with register
sharing

FIGURE 6.9 Gain in register sharing

Priority is given to two variables that are used as the left or right operands for
the same operator type and to variables whose value is generated by the same
operator type, since merging such variables can potentially save one selector
input. This concept is demonstrated in Figure 6.9(a) for two additions (x = a +
b and y = c + d) performed in different states on different operands and assigned
to different variables. If we assume that both additions may be executed in the
same functional unit, merging operands and results may result in the saving of
selector inputs. For example, if we assign each variable to a separate register,
we may obtain the design shown in Figure 6.9(b), which requires 10 selector
inputs. However, if we merge variable a with c, b with d, and x with y, then
assign each pair to the same register, we reduce number of selector inputs by
three, as shown in Figure 6.9(c).

In general, for any n variables that are used as a source or a destination to the
same operator or functional unit, there is a potential saving of n -1 selector inputs
when these n variables share the same register. To consider this potential saving
during variable merging, we present a partitioning algorithm, which partitions a
variable compatibility graph. Such a compatibility graph consists of nodes and
edges in which each node represents a variable and each edge between two nodes
represents compatibility or incompatibility in merging variables represented by
these two nodes. There are two types of edges in the graph: an incompatibility
edge (represented by a dashed line) between two nodes indicates variables
with overlapping lifetimes, while a priority edge between two nodes indicates
variables with non-overlapping lifetimes that serve as the source or destination
to the same functional units. Each priority edge has a priority weight indicating
the number of selector inputs that can be saved. The priority weight has the
form s/d, where s is equal to the number of different functional units that use



218 Hardware Synthesis

both nodes as left or right operands, and d is equal to the number of different
functional units that generate results for both nodes.

Stop

n o y e s

C r e a te  c om pa ti b i l i ty  
g r a ph

M e r g e  h i g h e s t pr i or i ty  
n od e s

U pg r a d e  c om pa ti b i l i ty  
g r a ph

A l l  n od e s  
i n c om pa ti b l e

Sta r t

FIGURE 6.10 General partitioning algorithm

In what follows, we describe a graph-partitioning algorithm that merges
compatible nodes into supernodes until all nodes in the graph are incompatible.
More precisely, the algorithm always merges two nodes that are connected with
a priority edge with largest weight and creates from them a supernode. Next, it
deletes all the edges within the supernode and creates new edges between the
supernode and other nodes. For example, it creates an incompatibility edge for
any node that is incompatible with at least one node in the supernode. Con-
versely, it creates a priority edge for any node that is used as a common source
or destination with at least one node in the supernode and that is compatible
with all the nodes in the supernode. The weight of the new priority edge is
computed as before. This procedure is summarized in Figure 6.10.

If we apply this algorithm to the SRA example, we obtain a grouping of
variables that is slightly different from the grouping we would have obtained
with some other algorithms. First, we need to create a compatibility graph,
as shown in Figure 6.11(a). Note that all the variables that have overlapping
lifetimes have been connected with a dashed line, indicating that they cannot
be merged. To create priority edges that indicate compatibility, we assume
a simple library that includes units for computing absolute value, minimum,
maximum, shift, sum, and difference, in addition to functional units capable of
performing a combination of operations, such as an adder/subtractor, a min/max
unit, or a two-way shifter. Assuming that the units defined in this library will



Register Sharing 219

t1

t2

t3

t4

t5 t6

t7x

a y

b

��� � � � �

1/0

1/0

0/1

1/0 0/1

0/1

(a) Initial compability graph

a

b

t1

t2

y

x

t4

t3 t5 t6
t7

1/0
� � �

1/0

1/0

1/0

0/1

(b) Compatibility graph after merging t3,
t5, and t6

a

b t1t2

y

x

t4

t3 t5 t6

t7
1/0

(c) Compatibility graph after merging
t1, x, and t7

a

b t1

t2 y

x

t4

t3 t5 t6

t7

(d) Compatibility graph after merging t2
and y

a

b

t1

t2 y

x

t4

t3 t5 t6

t7

(e) Final compatibility graph

R1 =  [  a,  t1,  x,  t7 ]
R2 =  [  b,  t2,  y,  t3,  t5,  t6  ]
R3 =  [  t4  ]

(f) Final register
assignments

FIGURE 6.11 Variable merging for SRA example

be used in the final design, we find that there are priority edges between the
variables t1, t2, and x, and t1, t2, and t6. Since they are all inputs of the same
max unit; there are priority edges between the variables x, y, and t7 because
they are possible destinations of a min/max unit. There are also priority edges
between t3 and t5, and t5 and t6 because they all are possible inputs and outputs
of an adder/subtractor.

After creating this compatibility graph, we can start merging variables and
creating supernodes. In this case, all the priority edges have the same weight,
so we first select those nodes whose merging will not remove any priority edges
from the compatibility graph. In other words, we merge the variables t3, t5,
and t6 for a possible gain of two selector inputs, thereby creating the supernode
[t3, t5, t6], as shown in Figure 6.11(b). Next, we select the node that has a
maximum number of priority edges, namely x, and merge it with t7 and then
t1 as shown in Figure 6.11(c). Note that by merging x, t7, and t1, we have



220 Hardware Synthesis

removed three priority edges from the compatibility graph, one from between
y and t7, one from between t2 and x, and a third from between t1 and t6. At this
point we can merge t2 and then y with the supernode [t3, t5, t6], as shown in
Figure 6.11(d). Finally, we can randomly assign the variable a to the supernode
[t1, x, t7] and b to the supernode [t2, y, t3, t5, t6] to further reduce the number of
registers needed, so that the supernode [a, t1, x, t7] can be assigned to register
R1, while supernode [b, t2, y, t3, t5, t6] is assigned to register R2, and [t4] to
register R3.

To compute the connectivity cost for solutions generated by graph-
partitioning algorithms, we use eight single function units, as shown in Fig-
ure 6.12. From this figure, constructed for the register assignment generated
by the graph-partitioning algorithm, we see that the number of selector inputs
is nine. The number would be smaller if we had used multifunctional units for
the SRA design instead of single-function units, since there would be fewer
units and therefore fewer connections. The observation above suggests that we
should combine operations into multifunction units to further minimize the cost
of datapath resources and connections, which is discussed in the next section.

Selector Selector

R1 R2 R3

| a  | | b  | m i n m a x + - > > 1 > > 3

FIGURE 6.12 SRA datapath with register sharing

6.5 FUNCTIONAL UNIT SHARING
The main goal behind functional-unit sharing, or operator merging is to

minimize the number of functional units in a datapath. Like register sharing,
functional-unit sharing is possible because within any given state, a datapath
will not perform every operation. Therefore, similar operators can be grouped
into a single multifunction unit that will be used more frequently, thus increasing
the unit utilization. In some cases, of course, grouping operations in this manner
may not reduce the cost of the datapath; since dissimilar operators often require



Functional Unit Sharing 221

structurally different designs, grouping them can sometimes result in no gain
or even in a higher cost.

x =  a  +  b

y  =  c  +  d
S j

S i

(a) Partial
FSMD

a b  

x  

+

 c  d

 y

-

(b) Non-shared design

a

S e l e ct o r S e l e ct o r

c b d

x y

+/-

(c) Shared design

FIGURE 6.13 Gain in functional unit sharing

In many cases, however, operator merging can yield cost reductions that are
not negligible, as demonstrated in Figure 6.5. In this example, we have assumed
that the datapath will perform two different operations, addition and subtrac-
tion, on different operands in different states, as indicated in Figure 6.13(a). If
we implemented a partial FSMD in Figure 6.13(a) using single-function units,
we would get the design shown in Figure 6.13(b), in which the datapath re-
quires both an adder and a subtractor. We could, however, obtain the same
functionality by using only one adder/subtractor and two selectors, as shown
in Figure 6.13(c). Obviously, the second design would be preferable when the
cost of an adder/subtractor and two selectors is less than the cost of a separate
adder and subtractor. It is in cases like this that functional-unit sharing would be
advantageous. Thus we would like to develop an algorithm that will combine
operators into functional units in such a way that the total cost of all multifunc-
tion units and necessary selectors is minimal. For this purpose, we can use the
graph-partitioning algorithm presented in the previous section. We demonstrate
operator merging with this algorithm on the SRA example. For this example,
we assume the availability of a complex component library that includes sev-
eral multifunction units that can each compute three of more of the following
operations: absolute value, minimum, maximum, sum, and difference.

To merge the operators called for in the FSMD model, we must first construct
a compatibility graph that indicates which operators can be combined. Each
node in the compatibility graph represents one operator type from the FSMD
model, although each graph may have several nodes for each operator type. As a
rule, the number of nodes will be equal to the maximum number of occurrences
of a particular operator type in any single state. To indicate the compatibility of
the various operators, we need to connect the nodes in the graph with priority



222 Hardware Synthesis

edges or incompatibility edges. As you would expect, an incompatibility edge
indicates that its two operators cannot be merged under any circumstances, since
they are to be used concurrently in the same state. By contrast, the priority
edges indicate preferences for merging, because of the operators’similarity in
construction or because they can substantially reduce the cost of the datapath’s
connections. In the following explanation of operator merging, we consider
both of these types of cost metrics.

1/0

|a| |b|

m i n m ax

+ -

1/0

1/0 1/0

1/1 1/1

0/0 1/1

1/1

1/1
1/1 2/0

2/1

(a) Compability graph

|a| |b|

m i n m ax

+ -

1/0

1/1 1/1

1/1

2/1 2/0

1/1

1/0

(b) Compatibility graph after merg-
ing of + and -

1/0

|a| |b|

m i n m ax+ -

1/01/11/1

(c) Compatibility graph after merging
of min, +, and -

|a| m ax

|b|m i n + -

(d) Final graph partitions

FIGURE 6.14 Functional unit merging for SRA

In creating the compatibility graph shown in Figure 6.14(a), we excluded
shift operators, because their cost is zero and grouping them with other operators
would only increase the cost of the SRA datapath. As you can see, we included
two absolute-value operators in the graph, since the absolute values of a and
b are to be computed simultaneously in state S1. Including the remaining
operators, we find that the graph has six nodes and two incompatibility edges:
One connects the two absolute-value operators since they are to be used in



Functional Unit Sharing 223

the same state, while the second edge connects the maximum and minimum
operators since they are incompatible for the same reason.

If we had used single-function units, then implementing the SRA datapath
would require two absolute-value units and one unit each for maximum, min-
imum, addition, and subtraction. Intuitively, the total cost of all these units
would be too high. Therefore, we need to use complex functional units that can
do several different arithmetic operations. By merging operators in the compat-
ibility graph, we can reduce the datapath cost in several different ways. Looking
into compatibility graph we see two alternatives. One is to merge |a| and min
operators in one group, and |b|, max, +, and - into another multi-function unit.
The other alternative is to merge |a|, min, and + in one, and |b|, max, and -
operators into another functional unit. Note that either one of these alternatives
would cost much less than the original implementation using single-function
units. In general, the designs generated by operator merging have much lower
functional-unit costs, which means that as a whole, these designs are more
cost-efficient.

However, it is also possible to reduce the datapath cost further by minimizing
connectivity cost while merging operators. To achieve this, we must use the
priority edges in the compatibility graph, as we did in the case of variable
merging. Again, the weight of these priority edges is based on the number of
common sources and common destinations.

Returning to the compatibility graph shown in Figure 6.14(a), we can now
add priority edges and redesign the SRA datapath so as to reduce the number of
selector inputs while merging operators. In Figure 6.14(a), for example, we have
labeled each priority edge with a weight s/d, in which s indicates the number of
common sources and d indicates the number of common destinations. As you
can see, the edge between the + and - operators is labeled 1/1, since two source
variables (right operands), t3 and t5, and two destination variables, t5 and t6,
share register R2. Similarly, the edge between the min and - operators is labeled
2/1, since min and - have two common sources and one common destination,
that is, the left operands, t1 and x, share register R1, the right operands, t2 and
t3, share register R2, and the results, y and t5, share register R2.

At this point we can use the graph-partitioning algorithm presented in Fig-
ure 6.10 to group these operators into the appropriate functional units. Accord-
ing to this algorithm, we first try to group those operators that have a similar
design structure, such as addition and subtraction, min and max, and left shift
and right shift. In general, grouping similar operators in this manner will pro-
duce the largest cost reduction. In the case of the SRA algorithm, for example,
we could group the + and - operators into a single supernode and then redraw
the compatibility graph as shown in Figure 6.14(b). Next, we add the min
operator to this supernode, since it has the largest number of common sources
(two) and destinations (one) of all the nodes in the graph. This next version



224 Hardware Synthesis

of the compatibility graph is shown in Figure 6.14(c). Finally, we add to this
supernode the absolute-value operator for variable b, for the same reason, and
then merge the max operator with the absolute-value operator for variable a. At
this stage we have arrived at the graph partition shown in Figure 6.14(d), which
cannot be reduced further.

Selector Selector

R1 R2 R3

a b s /m a x
> > 1Selector

a b s /m i n /+ /-

> > 3

FIGURE 6.15 SRA design after register and unit merging

As you can see from this partitioned graph, we should be able to construct
a datapath for the SRA algorithm by using three registers and four functional
units. The final assignment of the variables and operators to their registers and
functional units as generated in Figure 6.10 and Figure 6.13, produces the data-
path schematic as shown in Figure 6.15. Note that this datapath design requires
only seven selector inputs, in comparison with the nine or more selector inputs
required by the other design solutions, which did not take merging priorities
into account.

6.6 CONNECTION SHARING
In previous sections we have seen how to merge variables and operators and

assign them to registers and functional units. After assigning them, however,
we still need to connect these registers and functional units into a datapath,
wiring each register output to the input of a functional unit and each functional-
unit output to the input of a register. The outputs of registers and functional
units are called connection sources, and their inputs are called connection des-
tinations. Since several connections can have the same destination at different
times, a datapath often includes selectors that are designed to provide the proper
connection at the proper time.

Since the connections of a datapath usually occupy a substantial silicon
area, we generally try to reduce the number of connections by merging several
connections into a bus, which occupies less area. As was the case when we were



Connection Sharing 225

merging variables and operators, we do this by grouping all those connections
that are not being used at the same time and assigning each of these groups
to a bus. Each connection source in the group is connected to a bus through
a tri-state bus driver which drives the bus in those states in which that source
sends data to its destination; otherwise, the source is disconnected from the bus.

The technique for merging connections is similar to those techniques we used
for merging variables and operators. First, we create a connection usage table,
which indicates the states in which each connection is to be used. Second, we
create from this usage table a compatibility graph in which each connection is
represented by a node and any two nodes can be connected by a priority edge or
an incompatibility edge. As the name implies, two nodes are connected by an
incompatibility edge whenever their corresponding connections do not originate
from the same source but are to be used at the same time. Conversely, the nodes
are connected by priority edges whenever their corresponding connections have
a common source or a common destination. Once we have constructed this
compatibility graph, we use a graph-partitioning algorithm to group connections
in a way that will maximize the number of priority edges included in all groups.

Selector Selector

R1 R2 R3

a b s /m a x
> > 1 > > 3Selector

a b s /m i n /+ /-

A B C D E F G H

I
J

K L

M N
In  1 In  2

O u t

FIGURE 6.16 SRA Datapath with labeled connections

In Figure 6.16, we demonstrate connection merging for the SRA datapath
presented in Figure 6.15. Every point-to-point connection is indicated with a
letter. From Figure 6.16 and the FSMD model, we can create a connection
usage, shown in Table 6.6. In this table, an X has been used to designate the
state in which each connection is to be used. Note that this table contains
both input connections, which link register outputs to functional unit inputs,
and output connections, which link functional unit outputs to the appropriate
register inputs. To simplify the partitioning task, it is useful to separate these
two types of connections and partition each type separately. By separating these
two types of connections, we create separate input and output buses, which will
simplify the datapath architecture.



226 Hardware Synthesis

TABLE 6.6 Connection usage table

XN
XM

XL
XK

XXXXJ
XXXI

X
X

S 6
X
S 7S 0

X

X
X
X

S 2

X

X

S 1

X

X

S 4

X
X

S 3

X
X

S 5

H
G
F
E
D
C
B
A

XN
XM

XL
XK

XXXXJ
XXXI

X
X

S 6
X
S 7S 0

X

X
X
X

S 2

X

X

S 1

X

X

S 4

X
X

S 3

X
X

S 5

H
G
F
E
D
C
B
A

Once we have completed the usage table, we can then transform it into com-
patibility graphs by assigning one node for each connection and adding the
appropriate edges between these nodes. Compatibility graphs for the input and
output buses have been shown in Figure 6.17(a) and Figure 6.17(b). Note that
incompatibility edges also exist between all those nodes that are not electrically
connected but are used at the same time. In Figure 6.17(a), for example, input
connection B is incompatible with C and D, F is incompatible with C, D, and E,
and G is incompatible with H. We have also added priority edges for those con-
nections that have the same source or destination, indicating, for example, that
connections A, C, D, and H all originate from register R1, and that connections
B, F, and G all originate from register R2. Nodes D and E in the graph have also
been connected with a priority edge because they have the same destination,
the left input of the functional unit, indicated with [abs/min/+/-].

In Figure 6.17(b) we have determined the priority edges for the output con-
nections, by proceeding in a similar fashion. At this point, after we have
determined all the priority and incompatibility edges, we can partition the con-
nections, trying to cut all the incompatibility edges while cutting as few priority
edges as possible. As shown in Figure 6.17(a), the fewest possible partitions
can be achieved by grouping connections A, C, D, E, and H into Bus1, and con-
nections B, F, and G into Bus2, which accounts for all of the input connections.
Similarly, we group I, K, and M into Bus3 and J, L, and N into Bus4, which
merges all the output connections. In Figure 6.18, you can then see that the
SRA datapath can be connected with a total of four buses, which substantially
reduces the cost of connectivity implementation.



Register Merging 227

D

A

B

C

E

F

G

H

(a) Compatibility graph
for input buses

I

J

K

L

M

N

(b) Compatibility
graph for output
buses

 Bus1  =  [  A,  C,  D,  E,  H  ]
 Bus2  =  [  B,  F,  G  ] 
 Bus3  =  [  I,  K,  M  ]
 Bus4  =  [  J,  L,  N  ]

(c) Bus assignment

FIGURE 6.17 Connection merging for SRA

Out

I n 1 I n 2

R2

> > 3 > > 1

B us 1

a b s /ma x a b s /mi n /+ /-

B us 2

B us 3

B us 4

R1 R3

FIGURE 6.18 SRA Datapath after connection merging

6.7 REGISTER MERGING
In Section 6.4 we described a procedure for variable merging which resulted

in several variables sharing the same register. As we explained, a number of
variables share the same register whenever they have non-overlapping lifetimes.
In the same fashion, registers with non-overlapping access times can be merged
into register files to share the register input and output ports, which in turn
reduces the number of connections in the datapath, because there will be fewer
ports. Unfortunately, it also increases the register-to-register delay because
an extra delay is incurred for the address decoding that occurs in the register



228 Hardware Synthesis

file. Nonetheless, this additional delay is frequently acceptable given the cost
reductions obtained by replacing many registers with a single register file.

In register merging we can use the same approach that we described for
variable, operator, and connection merging. Initially, we create a register access
table, on the basis of which we can then generate a compatibility graph. Finally,
we use a graph-partitioning algorithm to group compatible registers into register
files. Since each register file can have more than one port, we can generally
group registers so that at no time does the total number of read or write accesses
to the registers in the group exceed the number of read or write ports in the
register file.

R1 =  [  a,  t1,  x,  t7 ]
R2 =  [  b,  t2,  y,  t3,  t5,  t6  ]
R3 =  [  t4  ]

(a) Register assignment

S6 S7S0 S2S1 S4S3 S5

R 3
R 2
R 1

S6 S7S0 S2S1 S4S3 S5

R 3
R 2
R 1

(b) Register access table

R1 R2

R3

[  /  ]

(c) Compatibility
graph

FIGURE 6.19 Register merging

In Figure 6.7 we demonstrated the procedure for register merging using
the example of the SRA datapath. First, we created a register access table in
Figure 6.19(b), using one row for each register in the datapath and one column
for each state in the FSMD model of SRA. In this table, a dividing line between
the states represents the rising edge of the clock signal, which loads the data
into the registers. An open triangle pointing toward a dividing line means that
new data will be written into the register at that particular rising edge of the
clock signal. We have also drawn a black triangle pointing away from a dividing
line when we need to indicate the state in which the data will be read from the
register file.

From the register access table we can then generate a compatibility graph.
In the case of the SRA datapath, we can see that registers R1 and R2 are not
compatible because they are written or read concurrently in states S0 through
S4, and S6. Similarly, R2 and R3 are not compatible because both are written
in state S3 and read in state S5. On the other hand, registers R1 and R3 are
compatible simply because they are never accessed at the same time. These
conclusions are reflected in the compatibility graph shown in Figure 6.19(c),
which shows that we can merge registers R1 and R3 into a single register file
with one read and one write port. The final datapath using such a register file
is shown in Figure 6.20.



Chaining and Multi-Cycling 229

H

O u t

I n 1 I n 2

R1
R2

> > 3 > > 1

B u s 1

a b s /ma x a b s /mi n /+ /-

B u s 2

B u s 3

B u s 4

R3

FIGURE 6.20 Datapath schematic after register merging

From this schematic we can also see that by merging registers R1 and R3,
we have been able to reduce the number of bus drivers in the datapath because
R1 and R3 share the same read port, so we need only one bus driver instead of
two. In general, merging n registers that drive m buses into a single register file
with one read port will reduce the number of drivers by n - m. However, if we
merge n registers that are loaded from m different buses into a single register
file with one input port, we have to introduce an m-input selector in front of
the input port. Because of potential savings in bus drivers and input selectors,
the priority in merging registers is generally given to registers with a common
source or destination, that is, to registers that are loaded from the same bus or
that drive the same bus.

6.8 CHAINING AND MULTI-CYCLING
So far, we presented techniques for datapath synthesis that are based on a

simple datapath model. For example, in these datapaths, the registers were
connected by one or more buses to the functional units, and the functional units
in turn were connected by one or more buses to the registers. In some cases,
selectors were used whenever a register or a functional unit received data from
more than one bus. In this kind of datapath, the registers are clocked by a clock
signal whose cycle is equal to the worst register-to-register delay. Since the
worst register-to-register delay path goes through the slowest functional unit,
this means that other functional units are busy for only part of the clock cycle
and remain idle for the rest of the cycle. If, however, the total delay of any
two of these functional units is shorter than the clock cycle, it is possible to



230 Hardware Synthesis

connect them in series and thereby perform two operations in a single clock
cycle. This same principle can be extended to more than two functional units
if the datapath has a longer clock cycle. This technique of connecting units in
series is called chaining, since two or more units would be chained together
without a register between them, thus creating a larger combinatorial unit that
can compute assignments with two or more operations. Whenever we use this
technique, a variable assignment statement in the FSMD model will contain
two or more operators on the right-hand side of the statement.

In 2

S0
a =  I n 1
b =  I n 2

0

1

Star t =  1

S1

S2

S3

S4

S5

S6

t1 =  |a|
t2 =  |b|

t5 =  x  – t3

x  =  m ax (  t1 ,  t2 )
t3 =  m ax (  t1 ,  t2 )> > 3
t4 =  m i n  (  t1 ,  t2 )> > 1

t6 =  t4 +  t5

t7 =  m ax  (  t6 ,  x  ) 

D o n e  =  1
O u t =  t7

(a) FSMD model for functional unit
chaining

In 2

S0
a =  I n 1
b =  I n 2

0

1

Star t =  1

S1

S2

S3

S4

S5

S6

t1 =  |a|
t2 =  |b|

t5 =  x  – t3
t4 =  [m i n  (  t1,  t2 ) > > 1]

x  =  m ax (  t1 ,  t2 )
t3 =  m ax (  t1 ,  t2 )> > 3
[t4]=  m i n  (  t1 ,  t2 )> > 1

t6 =  t4 +  t5

t7 =  m ax  (  t6 ,  x  ) 

D o n e  =  1
O u t =  t7

(b) FSMD model for functional unit
multi-cycling

FIGURE 6.21 Modified FSMD models for SRA algorithm

To demonstrate chaining, we use a modified FSMD model of SRA algorithm,
as shown in Figure 6.21(a). Note that this model merges two states (S2 and S3)
from the previous FSMD model into one state (S2). As you can see, this means
that three assignment statements will be executed in state S2 of Figure 6.21(a);



Chaining and Multi-Cycling 231

the first of these statements requires one binary operation (maximum), while
the other two statements require two operations each. More specifically, the
new value would be assigned to t3 by computing the maximum of t1 and t2 and
then shifting the result to the right by three positions. At the same time, the
new value for t4 will be obtained by computing the minimum of t1 and t2 and
then shifting the result one position to the right. Since shifting to the right by
three or one positions incurs no delay, the clock cycle for this chained datapath
would be no longer than the original clock cycle. On the other hand, since this
FSMD model has only seven states instead of the eight states in the original
model, we would conclude that this modified datapath can perform the SRA
algorithm 12.5% faster.

In1

R1 R2 R3

> > 1

B u s 1

a b s /ma x

B u s 2

B u s 3

B u s 4

> > 3

In2

O u t  

a b s /mi n/+ /-

FIGURE 6.22 Datapath with chained functional units

The new datapath schematic with the chained units is shown in Figure 6.22.
Note that we had to create an additional connection from the right shifter to
register R3, so as to concurrently store the new values for variables x, t3, and t4
that were generated in state S2. Though chaining allows us to concatenate faster
units, there are instances in which we must use units which are slower, taking
more than one clock cycle to generate results, but which are less expensive. This
technique is called multi-cycling, and these slower units are called multi-cycle
units. For obvious reasons, such units can be used only for the non-critical
paths through the FSMD model. For example, in Figure 6.21(a), variable t4
will be assigned a new value (min (t1, t2) >> 1) in state S2, but this new
value will not be used until state S4. In this case, then, we could use a unit that
takes two clock cycles to compute the minimum value, and chain this unit with
a right shifter that takes no time to generate its result.

Such a multi-cycling arrangement is shown in Figure 6.21(b), in which the
FSMD model for the SRA has been modified by the introduction of square



232 Hardware Synthesis

brackets, used to indicate that the result will only be available in some suc-
cessor state or that the computation of an expression was already started in
one of the predecessor states. For example, the variable assignment [t4] =

(min(t1, t2)) >> 1 indicates that the new value will be assigned to t4 in
one of the successor states. Similarly, the expression t4 = [(min(t1, t2))

>> 1] indicates that the new value is assigned to t4 in the present state but that
computation of the expression in brackets has started in one of the previous
states. As illustrated in Figure 6.21(b), such an FSMD model is easily trans-
lated into a datapath with multi-cycle units. Such multi-cycle units show up in
many datapaths with fast clock cycle, in which some functional units need two
or more cycles to finish their operation.

At this point, we have shown how datapath performance can be improved
by chaining fast functional units and also how datapath cost can be reduced
by using multi-cycle units. As you would expect, the techniques described
previously for variable, operator, and connection merging can be extended to
include chained and multi-cycle units. For the sake of brevity, however, we
omit their discussion in this book.

In 1

R1 R2 R3

B u s  1

a b s /+ /-

B u s  2

B u s  3

B u s  4

In 2

O u t  

a b s /ma x mi n

> > 3 > > 1

FIGURE 6.23 SRA datapath with chained and multi-cycle functional units

6.9 FUNCTIONAL-UNIT PIPELINING
In previous sections, we introduced various techniques for reducing datapath

cost, mainly by reducing the number of registers, functional units, and connec-
tions. In this section, we shift focus by introducing techniques that increase
the performance of a datapath. The single most effective technique for per-



Functional-Unit Pipelining 233

formance improvement is pipelining. Pipelining can be applied to functional
units, datapaths, and controllers.

To pipeline functional units, we divide a functional unit into two or more
stages, each separated by latches so that each stage can operate on a different
set of operands. At any time, then, there are several sets of operands in the
pipeline. More precisely, the number of sets in a pipeline equals the number
of its stages. Using pipelined functional units does not affect the time taken to
generate results for the first set of operands, which is approximately the same as
the time in a non-pipelined unit. However, for every additional set of operands,
a result is available in a time equal to the delay of only one stage. For example,
for a 2-stage pipelined unit, whose non-pipelined delay is 10 ns, the result for
the first set of operands is still generated in 10 ns, but the result for the second
set of operands is available only 5 ns later, as will every subsequent result in that
pipeline . In general, if there are n stages in the pipeline, we can reduce the time
taken to generate results to approximately 1/n times the non-pipelined execution
time, with the exception of the first result. Unfortunately, functional units can
not be easily divided into n stages of equal delay. Usually different pipeline
stages have slightly different delays. Thus, the clock cycle of the pipelined unit
is the longest of all the pipelined stages delay, which results in a clock cycle
that is larger then 1/n of the clock cycle of the original non-pipelined unit.

To compare the results of pipelined and non-pipelined units, let us consider
an SRA datapath with only one non-pipelined ALU, which performs abso-
lute value, minimum, maximum, sum, and difference according to the FSMD
model shown in Figure 6.24(a). Note that this datapath requires nine states,
or nine clock cycles, to compute a square-root approximation. On the other
hand, we could redesign the datapath by replacing its non-pipelined ALU with
a 2-stage pipelined ALU, as shown in Figure 6.24(b). This new datapath with
the pipelined ALU requires 13 clock cycles to compute the square-root ap-
proximation, as shown in the timing diagram in Figure 6.24(c). However,
pipelined-datapath clock cycle will have approximately half the duration of the
non-pipelined clock cycle. Therefore, the pipelined design finishes the SRA
faster then non-pipelined design.

In the timing diagram in Figure 6.24(c), the reading and writing of each
register and the operation of each functional unit are shown on a clock-by-
clock basis. The timing diagram has one row for each register read or write,
as well as one row for each stage of the ALU and shift units. Each column
represents one clock cycle. As you can see, in the clock cycle corresponding to
state S0 in the FSMD representation, the Datapath reads the values of variables
a and b from the input ports and stores them in registers R1 and R2. In the
next clock cycle, the Datapath executes state Sl in which it reads the value
of variable a from register R1 and partially computes the absolute value of a.
This partial result is stored in the ALU pipeline latches between two stages.



234 Hardware Synthesis

In 2Done =  1
O u t =  t7

t1 =  |a|

x  =  m ax (  t1 ,  t2 )
t3 =  m ax (  t1 ,  t2 )> > 3

t4 =  m i n(  t1 ,  t2 )> > 1

t6 =  t4 +  t5

t7 =  m ax  (  t6 ,  x  ) 

Star t

a =  I n1
b =  I n2

S0

0

1S1

S2

S4

S6

S7

S8

t5 =  x  – t3
S5

t2 =  |b|
S3

(a) FSMD model

In1

R1 R2 R3

> > 1

B u s 1
B u s 2

B u s 3
B u s 4

> > 3

In2

O u t  

2-s t a g e  A LU

(b) Datapath with 2-stage pipelined ALU

t7

m ax

NO

t7

t7
S 8

T 6

+

NO

m ax

t6
X
S 7

t5

> > 1
-

NO

+
t4
t5

S 6

W r i t e  Ou t
t4W r i t e  R 3

> > 3
m i n
-

t3
X
S 5

b
a

S 0

t1

| b|

b

S 2

| a|

a
S 1

m ax

t2
t1
S 3

t2

NO

t3
X

m ax
m i n

t2
t1
S 4

W r i t e  R 2
W r i t e  R 1
S h i f t e r s

A L U  s t a g e  2
A L U  s t a g e  1
R e a d  R 3
R e a d  R 2
R e a d  R 1

t7

m ax

NO

t7

t7
S 8

T 6

+

NO

m ax

t6
X
S 7

t5

> > 1
-

NO

+
t4
t5

S 6

W r i t e  Ou t
t4W r i t e  R 3

> > 3
m i n
-

t3
X
S 5

b
a

S 0

t1

| b|

b

S 2

| a|

a
S 1

m ax

t2
t1
S 3

t2

NO

t3
X

m ax
m i n

t2
t1
S 4

W r i t e  R 2
W r i t e  R 1
S h i f t e r s

A L U  s t a g e  2
A L U  s t a g e  1
R e a d  R 3
R e a d  R 2
R e a d  R 1

(c) Timing diagram

FIGURE 6.24 Functional unit pipelining

Then, in the next clock cycle, the Datapath finishes the computation of |a| and
assigns this value to variable t1, which is stored in register R1. At the same
time, the Datapath also initiates the computation of |b| specified in state S2, and
storing the partial result of this computation in the pipeline latches. Thus in this
clock cycle both stages of the pipelined ALU are active, although they process
different operands. In next clock cycle, the Datapath finishes computation of
|b| and assigns it to variable t2 stored in register R2. Note that at this point the



Datapath Pipelining 235

Datapath cannot yet initiate the next operation because it requires the value of
t2, which has not yet been loaded in register R2. Therefore, no operation is
scheduled to start in fourth clock cycle and operation specified in state S3 is
delayed by one clock cycle. In a similar fashion, the Datapath starts execution of
maximum, minimum, and subtraction operations in the fifth, sixth, and seventh
clock cycles, and completes these operations, together with the shifts, in clock
cycles six, seven, and eight. It cannot start the addition specified in state S7,
since it must wait for the availability of the value assigned to t5. Similarly, it
starts the maximum operation in eleventh clock cycle with result being written
into register R1 in the next clock cycle. Finally, the Datapath uses the thirteenth
clock cycle to output the result.

According to this timing diagram, the SRA algorithm requires 13 clock cycles
to complete. As mentioned above, however, two of these clock cycles are equal
to one clock cycle of the non-pipelined design, which means that the datapath
with the pipelined ALU computes the square-root approximation in six and a
half clock cycles instead of the nine needed by the non-pipelined design, which
is 28% faster than the non-pipelined design. Note that this pipelined datapath
can outperform any non-pipelined design described in previous sections.

6.10 DATAPATH PIPELINING
Just as with a functional unit, we can pipeline the whole datapath by inserting

registers in some coordinated fashion on every register-to-register path. The
best way to pipeline a datapath is to divide the register-to-register delay into
stages, which is easiest to achieve by inserting registers at the inputs and outputs
of the functional units. A pipelined datapath for the SRA computation is shown
in Figure 6.25(a). The register-to-register path is divided into three stages:
registers to ALU input, ALU input to ALU output, and ALU output back to
registers. Note that ALU by itself can be also pipelined as described in previous
section.

In the timing diagram in Figure 6.25(b), the reading and writing of each
register and the operation of each functional unit are shown on a clock-by-
clock basis. The timing diagram has one row for each register read or write, as
well as one row for the ALU input and output registers and shift units. Each
column represents one clock cycle where the column headings indicate the state
of the FSMD model that is initiated in that clock cycle or if no state is initiated
in that clock cycle. As you can see, in the first clock cycle corresponding to
state S0 in the FSMD representation in Figure 6.24(a), the datapath reads the
values of variables a and b from the input ports and stores them in registers
R1 and R2. In the next clock cycle, the datapath executes state S1, in which
it reads the value of variable a from register R1 and stores it in the ALU input



236 Hardware Synthesis

In1

R1 R2 R3

> > 1

B u s 1

B u s 2

B u s 3
B u s 4

> > 3

In2

O u t  

A L U

(a) Pipelined datapath for SRA computation

t6t5t3t2t2bALUIn(R)

t7

17

t7

t7
18

x

t6
x
15

m ax

16

t1

| b|

4

t2

5

t6

14

t4
t4
t5

12

+

13

-

10

t5

11

W r i t e  O u t
t4W r i t e  R3

> > 1

x

t3
x
9

b
a

1

| a|

b

3

a

a
2

m ax

t1

t2
t1
7

t1

t2
t1
6

t3
x

> > 3
m i n

8

W r i t e  R2
W r i t e  R1
S h i f t e r s
ALUO u t

ALUIn(L)
Re a d  R3
Re a d  R2
Re a d  R1

t6t5t3t2t2bALUIn(R)

t7

17

t7

t7
18

x

t6
x
15

m ax

16

t1

| b|

4

t2

5

t6

14

t4
t4
t5

12

+

13

-

10

t5

11

W r i t e  O u t
t4W r i t e  R3

> > 1

x

t3
x
9

b
a

1

| a|

b

3

a

a
2

m ax

t1

t2
t1
7

t1

t2
t1
6

t3
x

> > 3
m i n

8

W r i t e  R2
W r i t e  R1
S h i f t e r s
ALUO u t

ALUIn(L)
Re a d  R3
Re a d  R2
Re a d  R1

(b) Timing diagram

FIGURE 6.25 Datapath pipelining

register. In the next clock cycle, it computes the absolute value of a and stores
it in the ALU output register. Then, in the following clock cycle, the datapath
finishes the computation of |a| and assigns this value to variable t1, which is
stored in register R1. In the third clock cycle, the datapath also initiates the
computation of |b| specified in state S2 and stores b in the ALU input register.
In the subsequent clock cycle it computes |b| and stores it in the ALU output
register. Finally, in the next clock cycle, it moves |b| to register R2. Note that
in the fourth and fifth clock cycle the datapath cannot initiate state S3 because
it requires the values of t1 and t2, which have not yet been loaded into registers



Control and Datapath Pipelining 237

R1 and R2. Therefore, no operation is scheduled to start in the fourth or fifth
clock cycles. Thus, the operations specified in state S3 are delayed by two clock
cycles to start in the sixth clock cycle and finish in the eight clock cycle. In a
similar fashion, the datapath starts execution the state S4 in seventh clock cycles
and completes it, together with the shift operation, in the ninth clock cycle. It
can start the subtraction operation specified in state S5, in the same clock cycle
since the values of variables to x and t3 are available in registers R1 and R3.

From the above description we can see, that this datapath needs three clock
cycles to finish any operation specified in any state of the FSMD model and may
require two no-operation (NO) cycles if there is a data dependency between two
operations in the two succeeding states in the FSMD definition. In other words,
it requires two NO cycles if a variable is assigned a value in one state of the
FSMD description and used in the next state of the same description.

According to the timing diagram in Figure 6.25(b), this SRA algorithm re-
quires 18 clock cycles to complete. As mentioned above, however, three of these
clock cycles are approximately equal to one clock cycle of the non-pipelined
design, which means that the pipelined datapath in Figure 6.25(a) computes the
square-root approximation in six clock cycles instead of the nine needed by the
non-pipelined design, so it arrives at the result 30% faster than a non-pipelined
SRA data path. Note that datapath pipelining described in this section can
outperform functional unit pipelining that has been described in the previous
section. In general, combining both types of pipelining may result in greater
performance improvement than for each type of pipelining by itself. However,
adding more pipeline stages may not be profitable in case of the SRA example
since SRA does not have enough operations that can be executed concurrently.
In general, the number of pipeline stages is equal to the number of operations
that can be executed concurrently. If there is not enough concurrency, the
pipeline has to wait for data to become available by performing no-operation
cycles.

6.11 CONTROL AND DATAPATH PIPELINING
In previous sections, we discussed two methods for improving performance

through pipelining techniques that reduce the register-to-register delay. It is
important to note, however, that the longest register-to-register delay can be
usually found in the control unit. This critical path through the controller
determines the length of the clock cycle or clock period. Consequently, if we
want to improve performance by shortening the clock cycle, it would make
sense to divide the critical path through the controller into pieces and insert
registers between them. In Figure 6.26(b), for example, registers are inserted
in three difference places. First, we introduce a Status Register (SR) between



238 Hardware Synthesis

the datapath and the controller so that all status signals leaving the datapath are
latched in that register, which has one flip-flop for each status signal. Second,
we insert a Control-Word Register (CWR) between the control unit and the
Datapath so that all control signals generated by reading the CMem are stored
in that register. Finally, we pipeline the datapath itself by inserting pipeline
registers between the storage units (register, RF, and memory) and the functional
units (ALU, multiplier/divider), and between functional units and storage units
again, as explained in previous sections. This way it takes four clocks from PC
to PC and from PC to any storage unit in the datapath.

In general, when we plan to use control and datapath pipelining, we may
need to wait for a clock cycle or two if control words or data is not available.
To demonstrate this, let us consider a small part of a FSMD model shown in
Figure 6.26(a), which in its original form has three states. In the first state, Sl,
we test whether a > b, then go to S2 if this inequality is not true or to S3 if it is
true. In state S2, we execute the assignment x = c * d, and in state S3 we would
execute the assignment y = x - 1. Note that this FSMD model does not assume
any pipelining in its definition.

The timing diagram in Figure 6.26(c) shows the execution of the FSMD
model in Figure 6.26(a) on the design in Figure 6.26(b). We will assume that
the control word for S1 is stored in the CMem at address 10. In clock cycle #1,
it is in the CWR so that data a and b are fetched from RF and stored in the ALU
Input registers. Then in clock cycle #2, a and b are compared in the ALU and
written into the SR. In the next clock cycle, CMem address 14 or 17 is written
into the PC depending on whether a > b or not. If a > b, then the Datapath
executes the control word written at location 14 in the CMem. Otherwise, it
jumps to location 17 and writes the control word written there to CWR. In case
the datapath executes S2 the control word for S2 will be in the CWR in clock
cycle #5. In that clock cycle, the datapath fetches variables c and d from the
RF and stores them in the ALU input registers. In clock cycle #6, the datapath
computes c + d and stores the result in variable x in the RF during clock cycle
#7. Assignment of the variable y = x - 1 cannot start until after clock cycle
#7, when x is written into the RF. Therefore, the execution of y = x - 1 starts
in clock cycle #8, when x and 1 are fetched from RF and stored in ALU input
registers. The computation of x - 1 is performed in clock cycle #9, while storing
the result in variable y in the RF is accomplished in clock cycle #10.

Note that states S1, S2, and S3 in the FSMD model depend on each other.
Therefore, the execution of each state can start when the address for the next
control word has been computed and loaded into the PC or when the variable
value computed in the previous state is in the RF. The control words for S1,
S2, and S3 are stored in the CMem at locations 10, 14, and 17. Other locations
store no-operation (NO) control words. Therefore, after S1 is loaded into the
CWR in clock cycle 0, it takes three clock cycles until a new address (14 or



Scheduling 239

S1

1 0a>b

x  =  c  +  d

y  =  x  - 1

S2

S3

(a) FSMD model
excerpt

ALU

R e g i s t e r

S e l e c t o r

R F M e m

B u s 2
B u s 1

S t a t u s
S i g n a l s

C o n t r o l
s i g n a l s

/∗ ÷

R e g i s t e r

Data
I n p u ts

D a t a p a t h
Data

O u tp u ts
CW

R

PC C M e m  

AG

SR

O f f s e t

C o n tr o l l e r

C o n tr o l
I n p u ts

C o n tr o l
O u tp u ts

B u s 3

(b) RTL design

14/16

N O
13
3

15

N O
14
4

2 0

x-1

19
9

y

2 0
10

19181716131211W r i t e  P C
a> bW r i t e  S R

1
x
1
x
S 3
18
8

10
0

N O
12
2

b
a
b
a
S 1
11
1

c+ d

N O
16
6

d
c
d
c
S 2
15
5

x

N O
17
7

W r i t e  R F
W r i t e  A L U O u t
W r i t e  A L U I n ( R )
W r i t e  A L U I n ( L )
R e a d  R F ( R )
R e a d  R F ( L )
R e a d  C W R
R e a d  P C

C l o c k  c y c l e  #

14/16

N O
13
3

15

N O
14
4

2 0

x-1

19
9

y

2 0
10

19181716131211W r i t e  P C
a> bW r i t e  S R

1
x
1
x
S 3
18
8

10
0

N O
12
2

b
a
b
a
S 1
11
1

c+ d

N O
16
6

d
c
d
c
S 2
15
5

x

N O
17
7

W r i t e  R F
W r i t e  A L U O u t
W r i t e  A L U I n ( R )
W r i t e  A L U I n ( L )
R e a d  R F ( R )
R e a d  R F ( L )
R e a d  C W R
R e a d  P C

C l o c k  c y c l e  #

(c) Timing diagram

FIGURE 6.26 Control and datapath pipelining

17) is loaded in the PC and one more clock cycle until the new control word is
loaded into the CWR. Therefore, the datapath executes three NO control words
stored at locations 11, 12, and 13 as it waits for a > b comparison to complete.
Similarly, datapath, while waiting for variable x to be stored in RF, executes
two NO control words stored at locations 15 and 16 in the CMem.

From this simple example, we can see that control and datapath pipelining
does not help if there is control dependency (S2 depends on S1) or data depen-
dency (S3 depends on S2). However, pipelining does help if there are at least
three not dependent states in the FSMD model or three independent statements
in a BB. Control dependency is difficult to avoid since the next address is com-
puted dynamically. But it is possible to minimize the number of NO words in
a datapath with branch prediction, as long as the prediction is correct most of
the times.



240 Hardware Synthesis

6.12 SCHEDULING
In previous sections, we have demonstrated how to synthesize custom designs

that consist of a datapath and a control unit. In general, the synthesis is based on
the FSMD model, which explicitly specifies states and the variable assignments
to be performed in each state. Unfortunately, custom designs are usually based
on algorithms that have not been specified as FSMDs, but which instead have
been described in a programming language or its CDFG, which, though it
provides control and data dependencies, does not support the concept of a
state. These models must be converted to FSMD models during synthesis. To
transform an ordinary algorithm or CDFG into a cycle-accurate FSMD, we must
schedule the variable access and operations into states under either resource or
time constraints. In this section, we demonstrate two types of this scheduling,
resource-constrained (RC) and time-constrained (TC), and give examples of
scheduling algorithms for each type [155, 45, 186, 128, 152, 34, 10, 156].

To perform scheduling, we must first convert a program into a representa-
tion, such as CDFG, which explicitly shows the control dependencies among
statements as well as the data dependencies among variable values. In Fig-
ure 6.26(a) and Figure 6.26(b), we show a C-language flowchart and its cor-
responding CDFG for the SRA algorithm. Such a CDFG representation is
frequently used by scheduling algorithms, since a scheduled CDFG is equiv-
alent to a cycle-accurate FSMD. As we mentioned earlier, a CDFG can be
scheduled using resource or timing constraints. For the former, we can specify
the resource constraints by the complete or partial number and type of func-
tional and storage units, and their connections, in the datapath. They can also
be specified by giving a complete netlist of the datapath. For scheduling using
timing constraints, the time constraints are specified as the number of states or
clock cycles the datapath will need to execute all the operations on the longest
path through the given CDFG.

However, before we detail RC and TC scheduling algorithms, we must intro-
duce as-soon-as-possible (ASAP) and as-late-as- possible (ALAP) scheduling
algorithms, which are frequently used by RC and TC scheduling algorithms to
determine operation priority and range for scheduling.

ASAP and ALAP algorithms assume, first, that each operation will take
exactly one clock cycle to execute, and second, that an unlimited number of
functional units or resources are available for each operation in each state.
Because of these assumptions, both algorithms are constrained only by data de-
pendencies. Within this context, the ASAP algorithm schedules each operation
into the earliest state in which all its operands are available. In other words, it
scans the CDFG from top to bottom and assigns to each state all the nodes in
the graph whose predecessor or parent nodes have been already assigned into



Scheduling 241

0S tar t

t1=|a|
t2=|b|

x=m ax(t1,t2)
y=m i n (t1,t2)

t3=x> > 3
t4=y> > 1
t5=x-t3

t6=t4+t5
t7=m ax(t6,x)

D o n e =1
O u t=t7

a=I n 1
b=I n 2

1

(a) Flowchart in
C

0

1
S t ar t

I n 1 I n  2

a b

a b

m i n

|a| |b|

m ax

> > 1 > > 3

-
+

m ax

O u t D o n e
1

(b) CDFG model

FIGURE 6.27 C and CDFG

previous states. Thus the ASAP algorithm generates a schedule that has the
minimum number of states or, in other words, the shortest execution time.

In contrast to the ASAP approach, the ALAP algorithm schedules each oper-
ation into the last possible state before its result is needed, the ALAP algorithm,
using the length of the final schedule in the number of states as a constraint,
schedules each operation into the last possible state before its result is needed.
In other words, it scans the CDFG from the bottom to the top and assigns to
each state all the nodes whose successor or children nodes have been already
assigned into later states. If the required schedule length is equal to the length
obtained by the ASAP algorithm, we can observe, that the ALAP algorithm
schedules all the operations on the critical path through the dataflow graph into
the same states as the ASAP algorithm. The operations that are not on the
critical path are scheduled earlier than needed in the ASAP schedule and later
than possible in the ALAP schedule. Therefore, ASAP and ALAP algorithms
give us ranges of possible states for scheduling non-critical operations. Fur-



242 Hardware Synthesis

thermore, the range length determines the operation priority or urgency to be
taken into account during scheduling.

In Figure 6.28(a) and (b), we have applied ASAP and ALAP scheduling to
the larger of the two BBs in Figure 6.26(b), limiting this demonstration to a
single BB for the sake of simplicity. Both schedules in Figure 6.12.1 require
seven states. We also see that all operations except min and »1 are on the critical
path. These two operations are scheduled as early as possible (states S2 and S3)
in the ASAP schedule and as late as possible (states S3 and S4) in the ALAP
schedule.

The fact that ASAP and ALAP algorithms schedule operations on the crit-
ical path to the same states can be used to separate critical from non-critical
operations in general scheduling algorithms. In the above example, therefore,
min and »1 are non-critical operations. The priority is always given to those
operations that are on the critical path, since delaying one of these operations
by one state would extend the schedule by one state and increase the execution
time. On the other hand, lower priority can be given to operations that are not
on the critical path, since they have greater flexibility of being scheduled in
different states and can be delayed without affecting the execution time of the
entire CDFG.

An operation’s priority during scheduling can be measured by several differ-
ent metrics. One of these metrics is the operation’s mobility, which is equal to
the number of states between the states assigned to that particular operation in
ASAP and ALAP schedules. In other words, if an operation, op, is scheduled
in state Si in the ASAP schedule and in state Sk in the ALAP schedule, its
mobility, M(op), will be equal to k - i. Thus mobility defines the operation’s
ability to be postponed without an impact on the total execution time. This can
be used for prioritizing operations because states with higher mobility can be
given lower priority.

As an alternative measure of priority, we can use the criterion of operation
urgency, which is equal to the distance in the number of states between the state
in which the operation is available for scheduling and the state in which the
operation occurs in its ALAP schedule. In other words, if an operation, op, is
available in state Sj but is not scheduled until state Sk in its ALAP schedule,
that state’s urgency U(op) will be equal to k - j.

As a third measure of operation’s priority, we could consider how many
other operations use its result as an operand, or in other words, the number
of dependencies. This measure gives priority to operations that increase the
number of operations available for scheduling in the future. There are several
other priority measures, but none of them works perfectly in all cases. In theory,
we could use any number of priority metrics in any order to determine a priority
for scheduling among several operations available at the same time.



Scheduling 243

6.12.1 RC SCHEDULING
One of the most popular algorithms for RC scheduling is the list-scheduling

algorithm, which uses a ready list of operations that are available for scheduling.
In this algorithm, the operations on the ready list are sorted by their mobilities,
so that the operations with zero mobility will be placed at the top of the list while
those operations with the greatest mobility will be placed at the bottom. In cases
where two operations have the same mobility, priority is given to the operation
with the lower urgency number. If those are identical as well, the priority
is assigned randomly. In applying this list-scheduling algorithm, we take the
following steps in each state: assign the highest-priority operations from the
ready list to the available functional units, one at a time, then delete all the
assigned operations from the list, and insert the newly schedulable operations
into the list in the positions that correspond to their mobilities and urgencies.

Out

m i n

|a| |b|

m ax

> > 1 > > 3

-

+

m ax

Out

m i n

|a| |b|

m ax

> > 1

> > 3

-

+

m ax

S5

S6

S7

S2

S3

S4

m ax

|a| |b|

> > 3

m i n

+

m ax

0

0

1

1

0

0

Out

m i n

|a|

|b|

m ax

> > 1

> > 3

-

+

m ax

|b|
0

0

0
m i n

- > > 1
1

0

S8

S1

a b a b a b

(a) ASAP (b) ALAP (c) Ready list with nobil-
ities

(d) RC schedule

FIGURE 6.28 ASAP, ALAP, and RC schedules for SRA

This list-scheduling algorithm is summarized in FIGURE 6.29. We demon-
strate this list-scheduling algorithm on the dataflow graph of the BB in Fig-
ure 6.27(b) under the assumption that we have only one arithmetic unit, which
can perform absolute value, minimum, maximum, addition, and subtraction, in



244 Hardware Synthesis

addition to two shift units. To perform RC scheduling with a list-scheduling
algorithm, we first generate ASAP and ALAP schedules, as shown in Fig-
ure 6.28(a) and (b). Then we create a ready list for the first state, as shown in
Figure 6.28(c), and compute the mobilities for the operations in that ready list.
In our case, only operations |a| and |b| are available in the first state. Since
these operations have the same mobility [M(|a|) = M(|b|) = 0], we select their
order randomly and schedule |a| first. Since scheduling |a| does not free any
more operations for scheduling, we do not change the ready list at this time.
Therefore, we must schedule |b| in state S2, which allows us to add max and
min operators to the ready list. Since the max operator is on the critical path,
it has a mobility M(max) = 0, which gives it priority over the min operator,
which has mobility M(min)= 1. Therefore, we would schedule max into state
S3, which allows us to add »3 to the ready list. Since its mobility M(»3) = 0,
this operator should be placed at the top of the ready list. At this point we have
one ALU and two shifters available, so we can now schedule both the (»3) and
the min operations in state S4. We then update the ready list, adding - and »1,
which can both be scheduled into state S5. That allows us to schedule + into
state S6 and max into state S7, and finally, output the result in state S8. The
final RC schedule is shown in Figure 6.28(d).

As we have shown, the goal of the RC scheduling algorithm is to schedule in
each state as many operations as possible given the limited number of available
units or connections. When more operations are available than there are units
or connections, we must use a priority metric, such as mobility or urgency.
In our example, we obtained a schedule that requires one more state than the
ASAP or ALAP schedules, but at lower cost since we used only one ALU
and two shifters, while the ASAP and ALAP schedules required two ALUs
and two shifters. The simple algorithm in Figure 6.29 was used to demonstrate
principles of list scheduling. There are many more sophisticated list-scheduling
in the literature that can take advantage of controller and datapath architecture
as well as the information in the input model.

6.12.2 TC SCHEDULING
In many cases, the primary goal of design optimization is to improve the

performance, not the cost, since a datapath must execute a given code in a fixed
amount of time. When execution time is our priority, we use time-constrained
(TC) scheduling, which generates a schedule comprising a particular number of
states while attempting at the same time to minimize the number of functional
units it requires in the datapath. This goal is achieved by creating a probability-
distribution graph and using it to schedule operations into states one at the
time so that the largest sum of probabilities for each operator and each state is
minimal.



Scheduling 245

no

P e r f r om  A S A P

P e r f r om  A L A P

D e t e r m i ne  m ob i l i t i e s

C r e a t e  r e a d y  l i s t

S or t  r e a d y  l i s t  b y  
m ob i l i t i e s

S c h e d u l e  op s  f r om  
r e a d y  l i s t

D e l e t e  s c h e d u l e d  
op s  f r om  r e a d y  l i s t

A d d  ne w  op s  t o 
r e a d y  l i s t

I nc r e m e nt  s t a t e  
i nd e x

A l l  op s  
s c h e d u l e d ?

y e s

FIGURE 6.29 RC algorithm

no

P e r f r om  A S A P

P e r f r om  A L A P

D e t e r m i ne  m ob i l i t i e s  
r a ng e s

C r e a t e  p r ob a b i l i t y  
d i s t r i b u t i on g r a p h s

A l l  op s  
s c h e d u l e d ?

y e s

A l l  op s  
s c h e d u l e d ?

y e s

S c h e d u l e  op s  f r om  
r e a d y  l i s t

S c h e d u l e  op s  f r om  
r e a d y  l i s t

FIGURE 6.30 TC algorithm

To use TC scheduling, we first apply the ASAP and ALAP scheduling algo-
rithms to determine the mobility range for each operation. Having established
these ranges, we then assign to each operation an equal probability of being
scheduled in each state in its range. Obviously, for each operation, the sum of
all these probabilities over the entire range equals 1.

Once we have calculated these probabilities, we can then create probability
distribution graphs, which define the probability sums in each state for each
set of compatible operations. In other words, these probability sums determine
the number of functional units of each type required in each state. Using this
information, we can attempt to minimize the number of functional units by
selecting an operation and scheduling it in the state that will reduce the largest
probability sum for this operation type in the distribution graph. If reduction
is not possible, we can select an operation and schedule it in the state in which
it will minimally increase the probability sum. The algorithm terminates only
when all operations have been scheduled as shown in Figure 6.30.



246 Hardware Synthesis

Out

m i n

|a| |b|

m ax

> > 1 > > 3

-

+

m ax

Out

m i n

|a| |b|

m ax

> > 1

> > 3

+

m ax

m i n

|a|

|b|

m ax

> > 1

> > 3

-

+

m ax

S5

S6

S7

S1

S3

S4

S8

S2

a b a b a b

Out
(a)  A S A P (b)  A L A P (c)  T C  s ch e d u l e

-

(a) ASAP (b) ALAP (c) TC schedule

FIGURE 6.31 ASAP, ALAP, and RC schedules for SRA

We demonstrate TC scheduling on the dataflow graph of the larger BB in
Figure 6.27(b), and for comparison purposes we set a goal of eight states for
the complete schedule, as this was the schedule length that we obtained with
RC scheduling using one ALU and two shift units. In our first step, we create
ASAP and ALAP schedules, as shown in Figure 6.31(a) and (b).

From these schedules, we can compute mobility ranges, concluding that
the mobility range for all the operators except »1 and min would be 2. In
other words, the probability of each of these operators being scheduled in any
particular state in its range would be 0.5. Since the operators min and »1
each have a range of three states, the probability of their being scheduled in any
particular states within that range would be 0.33. These individual probabilities
are combined in Figure 6.32(a) into two distribution graphs that we then use
for minimizing the number of ALUs and shift units.

As you can see from the distribution graphs for ALUs and shift units, schedul-
ing any operation into a particular state increases the probability sum in that
state and therefore the number of units required, except in state S7, where the



Scheduling 247

1.8 3

S5

S6

S7

S1

S2

S3

S4

|a| |b|

ma
x

mi
n

-

+

ma
x

>>
1 >>

3

1.0

.8 3

.8 3

1.0

1.0

.5

.8 3

.8 3

.3 3

A U
 u n i t s

P r o b a b i l i t y  
s u m /s t a t e

S h i f t
 u n i t s

(a) Initial probability distribution
graph

1.33

S5

S6

S7

S1

S2

S3

S4

|a| |b|

m ax

m
in

-

m ax

>>
1 > > 3

1.0

1.33

.33

1.0

1.0

1.0

A U
 u n i t s

P r o babi l i t y  
s u m /s t at e

S h i f t
 u n i t s

+
(b) Graph after max, +, and -
were scheduled

1.0

S5

S6

S7

S1

S2

S3

S4

|a| |b|

m ax

m i n

-

m ax

> > 1

> > 3

1.0

1.0

1.0

1.0

1.0

A U
 u n i t s

P r o babi l i t y  
s u m /s t at e

S h i f t
 u n i t s

+

1.0

1.0

1.0

(c) Graph after max, +, -, min, »3, and
»1 were scheduled

1.0

S5

S6

S7

S1

S2

S3

S4

|a|

|b|

m ax

m i n

-

m ax

> > 1

> > 3

1.0

1.0

1.0

1.0

1.0

A U
 u n i t s

P r o babi l i t y  
s u m /s t at e

S h i f t
 u n i t s

+

1.0

1.0

1.0

(d) Distribution graph for final sched-
ule

FIGURE 6.32 Distribution graphs for TC scheduling of the SRA example

probability sum is only 0.5. Therefore, we schedule the max operator in state S7,
which increases the probability sum to 1.0. For the same reason, we schedule +
in state S6 and - in state S5. At this point we have the option of scheduling max
or min in state S3. As you can see, however, scheduling max there decreases



248 Hardware Synthesis

the probability sum in state S2 to 1.33, while scheduling min would decreases
the probability sum to 1.5, so we schedule max in state S3 and decrease this
probability sum as much as possible. Once max has been scheduled in state S3,
we have to schedule »3 into state S4 since »3 has to use the result of the max
operation as its input. In Figure 6.32(b), you can see the distribution graphs
that correspond to the partial schedule we have developed by this point in the
algorithm. Using the same criteria as before, we then schedule the min opera-
tion into state S4 and »1 into state S5, producing the distribution graph shown
in Figure 6.32(c).

Finally, when we try to schedule either |a| or |b|, we have to increase the
probability sum of either S1 or S2, but this increase is only temporary since
when both have been scheduled, the probability sum in each state equals 1.0
for the ALU as well as for the shifter unit. In other words, we have shown that
the CDFG from Figure 6.27(b) can be scheduled into nine states using only one
ALU and one shift unit, although we will eventually use two separate shifters
instead of one shift unit, since their cost and delay is almost zero.

Although in this case the TC algorithm produced the same schedule as the RC
algorithm, in more complex cases these two algorithms will typically produce
different schedules. As a rule, we would usually select the algorithm that better
matches the primary goal of our design, using RC scheduling to satisfy cost
constraints and TC scheduling when we need to satisfy performance constraints.

6.13 INTERFACE SYNTHESIS
In the previous sections we described different tasks of HW synthesis design

flow shown in Figure 6.1. These tasks included RTL component allocation,
variable, operation and connectivity binding, pipelining, scheduling, and RTL
generation. In this section we will try to demonstrate the task of integrating
such custom HW component into the system platform whose generation was
described in Chapter 4. Similarly to software synthesis described in Chapter 5
we have to combine the application processes allocated to the HW component
with communication channels needed for message transfers between different
components in the platform.

First, we need to extract the process code and channel code from the system
TLM model and combine them into an input such as C or CDFG for the HW
synthesis tools. However, the synthesized HW component may use different
clock cycle then the bus protocol that is used for the communication among
components in the platform. To avoid this unusual constraint to HW compo-
nent synthesis we may want to separate sending a message with bus protocol
from computation performed in the HW component. For this reason we need



Interface Synthesis 249

to introduce a special bus interface that sends the message produced by HW
component to another platform component with the bus protocol timing.

Second, the main advantage of automatic HW synthesis is its ability to use
an untimed code as an input and generate a cycle-accurate RTL description.
As a result, the designer is relieved from defining cycle timing. While this
scheduling freedom is beneficial for implementing application and some of
the communication code it becomes severely limited by imposing protocol
timing constraints on synthesis tasks. In order to avoid this constraint and
still guarantee bus protocol timing is to not synthesize the bus interface, but to
instantiate a pre-implemented and tested bus interfaces from a library. In this
case, a special driver layer is used to interface the synthesized application and
communication code and the pre-implemented bus interface.

Figure 6.33 outlines an implementation stack for a custom HW component.
This implementation stack is partly contained in the system model, which we
have described in Chapter 3. The stack generation is similar to the software
synthesis described in Chapter 5. The shown HW component includes an
application process P2 which has been combined with a communication stack,
that models communication with external components. The stack layers are
divided into three groups based on the timing constraints for the generated
implementation.

Application
P r e s e ntation
S e s s ion
T r ans por t
N e tw or k
L ink
S tr e am

P2

M AC
P r otocol
P h y s ical

HW

(a) F r e e l y  
s ch e d u l abl e  
co d e

(b) S ch e d u l e  
co n s t r ai n t  co d e

(c) R T L  bu s  i n t e r f ace

FIGURE 6.33 HW Synthesis timing constraints

(a) Freely schedulable code. Most of the code inside a custom hardware
component is freely schedulable. This includes the actual application code
process P2 and most of the communication stack down to a set of MAC
layer calls for sending and receiving a word or packet on the bus.



250 Hardware Synthesis

(b) Schedule constraint code. Schedule constraint code contains timing limi-
tations that have to be observed during synthesis. The MAC driver code is
an example of the schedule constraint code. It interfaces between the freely
schedulable code, and the pre-implemented bus interface component. Its
code is implemented as a function that the freely schedulable code can call
in order to drive and sample control and data ports for communication with
the bus interface in a cycle defined fashion. The MAC driver is specific for
the selected bus interface.

(c) Bus interface. The bus interface component that connects custom pro-
cessor or HW component to a common shared bus possesses the strictest
timing constraints. The bus wires have to be sampled according to strict
cycle-timing requirements of the bus protocol. To guarantee the specific
bus timing, a pre-implemented bus-interface component can be used. It
implements the bus protocol state machine using bus clock cycle. The bus
interface is usually described in RTL and is inserted from the component
library into the RTL description of the entire platform.

S5

S4

S3

S1

S2

S6

O u t A d d r  =  B u s A d d r

O u t D a t a  =  B u s D a t a

O u t C n t r l  =  W r i t e ! ! W O R D
a c k  =  1
r e a d y  =  1

a c k  =  0
r e a d y  =  0

r e a d y  =  1

r e a d y  =  0

FIGURE 6.34 FSMD for MAC driver

Separating the custom HW implementation into the three categories based
on their scheduling constraints, allows us to flexibly synthesize any application
code, while still communicating via an arbitrary shared bus with a well-defined
bus protocol. The important bridging between the freely schedulable code and
the bus interface is the MAC driver. The driver is defined by an FSMD and



Interface Synthesis 251

callable from within the synthesized code. The FSMD defines explicit input and
output registers as well as control signals, which are used to interface custom
HW and bus interface components.

ALU

R e g R F M e m

B u s  2
B u s  1

S t a t u s
s i g n a l s

C o n t r o l
s i g n a l s

/∗ ÷

PC C M e m  

AG

o f f s e t

C o n t r o l l e r

Control

a c k

A d d re s s
DA

TA

DA
TA

AD
DR

ES
S

W ri te  
Q u e u e

R e a d  
Q u e u e

D a t a p a t h

Bu
s I

nte
rfa

ce O u tp u t log i c

I np u t 
log i c

SR

B u s  3 B u s  4

S e l e c t o r

Selector

D AT A
AD D R E S S
C O N T R O L
G R AN T
R E Q UE S T

C o n t r o l
s i g n a l s

I N C

Ap
pli

ca
tio

n P
ro

ce
ss

or

r e a d y O u tC n trl O u tA d d r O u tD a ta I n D a ta

FIGURE 6.35 Custom HW component with bus interface

Figure 6.34 shows a FSMD model of a MAC driver example for communica-
tion with a bus interface in a double handshake fashion. It uses output registers
OutAddr, OutData and OutCntrl. In addition, it uses control signals ready and
ack. This driver can be invoked from the synthesized communication code
as shown in Figure 6.33, by calling the function busif send(), which then
triggers transferring BusWord to the address BusAddr. The driver first waits
until ready indicates that the bus interface is free for the next transfer. Then
in state S2, the driver loads the address register OutAddr, in state S3the data
register OutData, and sets the a control register OutCntrl for writing a single
word on the bus in state S4. It also signals by setting ack that data is ready for
the bus transaction. The driver then waits until the bus interface responds by
lowering ready that it has received the transfer request. The driver finishes the



252 Hardware Synthesis

transaction by lowering ack in state S6. At this point in time, the bus interface
may start the bus transaction.

Figure 6.35 shows a synthesized custom HW component with a applica-
tion processor on the top and a bus interface on the bottom. The application
processor is composed of a controller and the datapath. The datapath’s micro
architecture is determined during the HLS which also includes the MAC driver
from Figure 6.34. The custom application processor and bus interface are con-
nected through the registers OutCntrl, OutAddr, OutData and InData, as well
as with the control signals ready and ack as indicated in Figure 6.35. The bus
interface is also composed of a controller and a data path. The datapath is sim-
ple, as it only drives and samples the bus wires. The controller, implemented
as an FSM, secures the bus protocol timing like one shown in Figure 6.36.

The code describing the user application is synthesized to execute on the
application processor. Each call to the MAC driver triggers the execution of the
MAC FSMD, as shown in Figure 6.34, and transfers data word or a packet into
the bus interface. The bus interface then executes the data transfer over the bus
using the bus protocol like one shown in Figure 6.36.

Figure 6.36 illustrates writing a word using the protocol of the synchronous,
pipelined AMBA AHB 2.0 [4]. To initiate the transfer, the bus interface first
requests bus access in cycle 1, by raising REQUEST and then waits for GRANT,
which appears during cycle 3. Subsequently, the bus interface drives CONTROL
in cycle 4 indicating the transfer type, and also drives the ADDRESS bus with
the address given by the application in OutAddr. In cycle 5 of the pipelined
protocol, the bus interface drives the write data bus WDATA with the data passed
by the application code. The transfer completes in cycle 6, since the receiving
slave drives READY. As a result of this bus transaction the user data has been
transfered from the application processor to the slave.

time 
[c y c l e]

GRANT
C NTRO L
AD D RE S S

W D ATA
RE AD Y

C L K
RE Q U E S T

nonseq.,w or d
0xA 000 0000

0x2F00 9 8 01

1 2 3 4 5 6

FIGURE 6.36 A typical bus protocol

The above described bus interface solves the problem of transferring data in
and out of a synthesized custom HW component. The same solution can be used
to transfer data between any two components with different communication



Summary 253

protocols. This is particularly true in a complex platform with several busses.
In this case we can combine two bus interface components into a bridge that
converts one protocol into another. More complex conversion of differently
constructed messages can be accomplished with a transducer.

Processor1
<clk1>

Processor2
<clk2 >

C on t rol l er1
<clk1>

C on t rol l er1
<clk1>

C on t rol l er2
<clk2 >

C on t rol l er2
<clk2 >

Transducer

R e a d y 1
A ck1

R e a d y 2
A ck2

M em ory 1M em ory 1 M em ory 2M em ory 2

P E 1 P E 2
B u s 1 B u s 2

I n t e r r u p t 2I n t e r r u p t 1

D a t a 1 D a t a 2

Q u eu e
<clk3 >

FIGURE 6.37 Transducer structure

Transducer is a device for protocol transformation and routing messages.
Messages may have any length and may use any format or protocol known to
the transducer. They are stored one message at the time in transducer queue.
Each transducer consists of a queue and two message controllers, Controller1
and Controller2, as shown in Figure 6.37. Each controller can write into and
read from the queue. Both controllers and the queue may run under different
clocks. One controller receives the message with one protocol, decomposes
the message into words and stores it in the queue, while the other controller
composes message from the queue and sends it out to proper destination under
the second protocol. Transducer also computes the new route if it is not encoded
in the message.

Therefore, using bus interfaces, bridges and transducers we can construct a
multi-bus or network-on-chip communication among variety of components in
a multi purpose heterogeneous platform.

6.14 SUMMARY
In this chapter we have explained how to specify and generate HW compo-

nent design for some standard input models given by CDFG and FSMD models.
In addition, we described several procedures for optimizing such designs, show-



254 Hardware Synthesis

ing how to merge variables and assign them to registers, how to merge registers
into register files or memories, how to merge operators and assign them to
multifunction units, and how to merge connections and create buses for each
group of connections. We also demonstrated how to optimize these implemen-
tations for functional units of different speed by chaining fast functional units
and multi-cycling slow units that take more than one clock cycle to produce
results.

In the later sections we introduced the concept of pipelining and showed how
we can improve performance by pipelining functional units, control units, or
entire datapaths.

In the last section we demonstrated how to transform C programs or their
corresponding CDFGs to cycle-accurate FSMDs by scheduling the assignment
statements into specific states. We described the two types of scheduling al-
gorithms that we can use to accomplish scheduling. These algorithms reflect
different optimization goals: resource-constrained scheduling minimizes ex-
ecution time for a given set of resources, while time-constrained scheduling
minimizes the resources required for a given execution time.

In summary, this chapter presented a general methodology for specifying
HW components with different models and generating RTL implementations
from these models. There are several good references on the topic [178, 35,
114, 61, 186, 139, 110, 45].

However there is lot of more work needed to improve design quality such
as control and datapath pipelining, synthesis optimization for different metrics
such as power, manufacturability, dependability, introduction of HLS or archi-
tecture cells such as different controllers and datapaths to replace standard cells
and work on pre synthesis optimization and input re-coding for synthesis.



Chapter 7

VERIFICATION

Verification is one of the key components of any system design effort. As
opposed to device testing, verification involves analysis and reasoning on a
computer model of the system before it is manufactured. It is crucial for a
designer to ascertain the highest degree of confidence in a product’s functional
correctness before it is shipped. Economic as well as safety reasons make
verification so central to system design. Safety critical systems like pace-makers
or other healthcare equipment that do not behave according to their functional
specification may cause loss of life. Even for non-critical systems, failure
after shipment will result in a product recall which means wasted money and a
loss of reputation for the company. The importance of functional correctness,
therefore, influences system design methodology. In each step of the design,
a designer needs to make sure that the model reflects the original intent of the
design and that it performs efficiently, safely and successfully. This is achieved
by verification of each system design model.

The techniques for verifying design models can be classified into two groups:

1. Simulation based methods

2. Formal methods

Verification techniques belonging to either of the above groups rely on the
same basic principle: the implementation model must be checked to ensure that
it satisfies the specification. In simulation based methods, the specification is
a set of properties that the implementation model must be checked for. Some
instances of these properties are expressed as pairs of stimulus and expected
behavior. The stimulus forms the input to the implementation model being
simulated and the expected behavior is checked by monitoring the output of the
simulated model.

© Springer Science + Business Media, LLC 2009 

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,
DOI: 10.1007/978-1-4419-0504-8_7,

255



256 Verification

In formal verification methods, a property is statically checked instead of
some instances of the property. This means that once the verification process
is complete, we can be assured that the implementation model satisfies the
property under all inputs. There are different types of formal verification, the
most popular ones being equivalence checking, model checking and theorem
proving. Each of these methods expresses the specification as well as the
implementation as a mathematical model.

In equivalence checking, the formulas for both the specification and the
implementation are reduced to some canonical form (if one exists) by apply-
ing mathematical transformations. If their canonical forms are identical, then
the specification and the implementation are said to be equivalent. In model
checking, the implementation is expressed as a state transition system and the
specification is a set of properties. Each property in the specification is checked
by traversing all the states in the transition system. Theorem proving methods
try to deduce the equivalence of formulas of the specification model and the
implementation models, which are written in a given mathematical logic. Using
the laws of the logic, the implementation formula can be reduced to that of the
specification, or vice versa.

At first sight, simulation may seem too expensive, too time consuming or
even less trustworthy than formal methods. Indeed, simulation is only a partial
test since we are checking for instances of a property and not the complete
property under all input scenarios. However, simulation is still the predominant
technique for verification. There are various historical as well as practical
reasons for this. In the first place, the application of formal methods to design
verification is relatively recent compared to simulation. Hence, we have not
yet seen the same scale of adoption for formal verification techniques and tools
as that for simulation tools. Secondly, formal verification often forces the
designer to comply with certain rules in modeling, so that the model can be
easily converted to its mathematical formulation. In contrast simulation allows
designers a high degree of independence in writing models. Almost any legally
written code in a design language can be simulated. Thirdly, typically designers
come from an engineering background and, in general, do not have the expertise
in mathematical theory to efficiently use formal verification techniques.

Simulation tools’ popularity and ease of use notwithstanding, the importance
of formal verification in system design cannot be understated. As designs be-
come larger and more complicated, simulation takes far too long to meet the
required verification quality. As a result, there has been a push towards an
efficient verification methodology to apply alongside a design methodology.
Techniques like assertion based verification are being used to complement the
traditional simulation and debugging of design models. Designers are em-
ploying formal methods like logic equivalence checking to minimize or even
eliminate the need for costly gate-level simulations.



Simulation Based Methods 257

As seen in previous chapters, a large number of system models may be used
during the design process. Verification of individual models by conventional
methods alone would not be cost efficient as design moves to the system level.
The sheer size of the designs prohibits exhaustive simulation. A possible direc-
tion for efficient verification is by formalize the model construction and develop
develop methods to ensure correctness of model refinements. This will allow
us to use conventional methods at higher levels of design abstraction, when the
model complexity is still manageable.

This chapter will provide an overview of various techniques for the verifi-
cation of systems, ranging from simulation based methods to formal methods.
We will discuss the theory behind each technique and elucidate it with helpful
examples. A comparison of the techniques is given, based on metrics like cost,
applicability to the design and coverage. We then discuss the challenges in
verifying large systems with traditional techniques and provide an outlook for
alternatives in the future.

7.1 SIMULATION BASED METHODS
Simulation is the most widely used method to verify system models. The

design to be tested is described in some modeling language and is referred to as
design under test (DUT) as shown in Figure 7.1. The DUT sits in a simulation
environment consisting of stimuli and monitors. The stimuli are a set of values
that are applied to the DUT’s inputs. These inputs then trigger a series of events
and computations as described in the DUT model. It is the job of the simulator
to keep track of all these events and propagate them through the DUT. This is
a scenario in a typical event-driven simulator.

DUT

St
im

ul
us

M
on

ito
r

Simulator

Sp e c if ic ation

FIGURE 7.1 A typical simulation environment



258 Verification

As the events are propagated through the DUT, the values of various variables
in the model are computed. Whenever the variables’ values are updated, as a
result of computation, a new event is generated to inform the simulator of this
update. Consequently, the simulator executes any computation that depends on
the updated variables. The output of these computations leads to newer events
and so on and so forth. Eventually, the variables representing the output of the
DUT are updated. This is where the monitor comes into picture.

The primary responsibility of the monitor is to make sure that the output
values during simulation of the DUT match the expected expected output values.
Note that during simulation the outputs may change over time. Hence, the
monitor must store all expected output values along with their respective time
of appearance. Once the output is updated at a given simulation time, say t, the
monitor must check if this output is equal to the expected output at time t. If it
is, the simulation is successful. However, if the simulated and expected values
are not identical, the monitor flags an error.

TEST-BENCH
The stimuli and monitor for a verification effort are created from a high

level specification of the DUT. This specification consists of properties that are
expected to hold in the model. Sometimes the specification is merely a high
level algorithmic description of the design. For instance, while designing a
JPEG Encoder, we expect the model of the DUT to encode a bitmap image
to a JPEG image. In this case, we can use the JPEG encoding algorithm as
our specification. The stimulus for simulation is simply a bitmap image. The
expected output can be generated by running the encoding algorithm on this
bitmap image. The resulting JPEG image would thus be a reference for checking
the output from simulated DUT. Once the DUT is simulated, it will produce
a JPEG image as output. The monitor can now compare this output against
the JPEG image produced by the encoding algorithm. Hence, we will be able
to verify whether the model of the DUT actually works for the given input
instance.

The paired stimulus and corresponding monitor are called a test-case. A
collection of test-cases forms the test-bench, under which the DUT is simulated.
It is important that the test-bench is efficient in catching bugs in the DUT model.
Each of the test-cases in a test-bench is applied one by one to the simulated
model. In order to get maximum productivity from the test-bench, each test-
case should uncover some bug that has not been uncovered by a previous test-
case. In other words, we should not waste time testing parts of the DUT that
have already been tested. The part of the DUT tested by a given test-case is
called its simulation coverage.



Simulation Based Methods 259

COVERAGE
Although a rigorous definition of simulation coverage for a test-bench is

hard to come by, in general, it refers to the percentage of DUT that has been
checked by the various tests applied during simulation. However, it is difficult
to quantify a DUT. We can quantify it by the lines of source code for the model
written in some design language. Alternately, we can use a state diagram which
represents all possible scenarios that might exist during a model’s execution.
The DUT can, thus, be quantified by the states and transitions in the state
diagram. Unfortunately, these representations are incomplete and do not truly
capture the entire behavior of the design. The best bet in using coverage for
generating new tests is to employ as many quantification metrics as possible.

We can use statement coverage to see how many lines of code were visited
during a verification run. If during simulation with a given test-case, 100
statements out of 1000 statements in the design were executed, then we say that
the statement coverage for the test-case is 10%. However, this is a very weak
metric of coverage, since not all possible scenarios for those 100 statements
were exercised. For instance, the statement

a = b/c

will execute correctly if b = 4 and c = 2, but will cause an exception if
c = 0. Statement coverage would tell us if the given statement were executed
during simulation but not advise the user to check for the corner case of c = 0.

In the case of state coverage, we measure the number of states and transitions
that are "traversed" during the model’s simulation. A state S is said to be
traversed if during simulation of the DUT, S was visited at least once. This
would ensure that the scenario represented by s was tested during simulation.
Hence, for the above example, if we were to cover the state with c = 0, we
would cover the overflow scenario. However, this would require that each legal
value of c (and other variables) should have different states in the state diagram.
Clearly, it will result in an unreasonably large state diagram.

PERFORMANCE IMPROVEMENTS
In an ideal scenario, one would like to run the minimum number of test cases

to cover as much of the design as possible. However, this would require some
method to estimate the coverage of test-cases and generate the test bench in an
efficient manner. In the absence of this kind of dynamic coverage feedback,
the author of the test-bench may choose to randomly generate test-cases. This
means that the testing is not directed at finding specific bugs. Instead, the
designer hopes that the random tests are fairly distributed in the range of possible
inputs. Naturally, the quality of such test-cases is in general poorer compared
to test-cases trying to cover particular scenarios.



260 Verification

The simulation performance can be improved by choosing test cases intelli-
gently to maximize coverage with minimal simulation runs. One optimization
is to reduce test generation time by giving constraints to stimuli and testing with
only valid inputs. For instance, if we know from the design specification that
a particular scenario is never going to occur, we do not need to spend time in
writing tests for such a scenario.

Besides stimulating the design with relevant test vectors, we can improve
our understanding of the design by performing white box testing. In white box
testing, we also monitor the non-primary output variables in the model. Of
course, such an approach only makes sense if the internal details of the design
are available. Since we do not need to wait for the errors to be observed on
the primary outputs, the debug time is significantly reduced because the error
is usually observed close to its origin and this minimizes the effort neccessary
to locate the bug.

Another strategy to improve simulation performance is to speed up the sim-
ulation itself. This is achieved by either using a faster simulation algorithm or
using hardware support for testing. For cycle accurate models of the design, it
is sometimes possible to use a cycle simulation algorithm over the traditional
event driven simulation algorithm. Since a cycle based algorithm does not take
into account every event during a model’s execution, it avoids the overhead of
processing each event. In the case of hardware assisted testing, a functional
prototype of the design is implemented onto an FPGA. In some cases, part of
the model can even be implemented on the FPGA and tested during the soft-
ware simulation of the remaining design. This is achieved by using hardware
emulators capable of exchanging events with the software simulator.

The speed and efficiency of simulation is critical because the rise in complex-
ity triggers a shift to a higher level of design description. We have witnessed
this in the shift from the transistor level to the gate level, RTL and now to the
system level. By eliminating any unnecessary implementation details, we can
describe the behavior of the intended system in a succinct and efficient model.
A system level modeling language aids such functional design. Its simulators
are typically several orders faster than cycle accurate simulators. Since the ma-
jority of design re-spins are due to functional errors, it is imperative that we first
focus on getting the functionality of the design right, before implementing it.
Hence, designs increasingly need to be modeled at higher levels of abstraction
to leverage the simulation performance at the system level.

7.1.1 STIMULUS OPTIMIZATION
Another way to optimize simulation is to test only those cases that the product

may actually encounter. Writing down all possible test vectors for simulation
can be a painful task. Also, generating test vectors randomly might result in



Simulation Based Methods 261

a lot of invalid vectors. Since the design is typically constrained to work for
only select scenarios, we can use this knowledge to generate only the valid test
vectors. The test scenario can thus be written in some language and a tool can be
used to generate valid test vectors for that scenario. Such languages are known
as verification languages. The key is to specify the property of the design to be
tested along with its description. These properties specify the behavior of the
design using a formal language. For example, we may specify that the value
of variable y becomes 1, two clock cycles after variable x is set to 0. Then a
test vector may be generated that sets x to 0 and observes the value of y after
two clock cycles. Therefore, we can automatically validate the assertion about
the behavior of the design. In short, the test generation tool analyzes the given
properties and produces test vectors to validate those properties.

The constraints specified in the property lead to a set of legal inputs that form
the test pattern. Some times it is not necessary to have a different language
to do this because the properties can be embedded in the design model as
special comments known as pragmas. The test generation tool can identify
these pragmas and produce tests based on them. However, for the synthesis
tool, the pragmas are merely comments and hence do not interfere with its
operation.

Test 
G en er a to r

x zy x zy

C o v er a g e
A n a l y si s

1
1

FIGURE 7.2 A test case that covers only part of the design.

Analyzing the results from coverage is another way to minimize the number
of test vectors. For instance, the code coverage feedback technique can be
visualized in Figure 7.2. A simulation of the model with input vector 11 results
in only block x being covered. This is because block x is enabled by an AND
gate whose inputs are the two signals shown in the figure. The other two blocks,
y and z, are enabled by the XOR and NAND of the inputs, respectively. Thus the
computation inside y and z is not triggered by this test. The coverage analysis
tool thus comes back with the answer that only block x has been covered.

The designer analyzes the coverage result and comes up with a vector 10
to cover blocks y and z. The enabling inputs to y and z are set to 1, thereby



262 Verification

Test 
G en er a to r

x zy x zy

C o v er a g e
A n a l y si s

1
1

1
0

FIGURE 7.3 Coverage analysis results in a more useful test case.

enabling these blocks. Note that vector 00 would not cover block y and is
thus not used. Therefore, the coverage feedback allows the designer to cover
all blocks with just two input patterns. Without this knowledge, in the worst
case one would have to use all possible input combinations to achieve complete
coverage. Although this is a simple and cosmetic example, it illustrates the
benefits of such a coverage feedback mechanism. Using the same principles,
this strategy can be applied for other coverage metrics as well.

7.1.2 MONITOR OPTIMIZATION
Another way to reduce the number of simulations is through beteer debugging

and design analysis methods [19]. Monitoring only the primary outputs of a
design during simulation lets us know if a bug exists. Tracing the bug to its
source can be difficult for complex designs. If the source code of the model is
available, assertions can be placed on internal variables or signals in the model.
For example, we can specify that the two complementary outputs of a flip-flop
never evaluate to the same value. Not only does this improve understanding
of the design, it also points out the bug much closer to the source. Assertions
can also be used to check the validity of properties over time, such as protocol
compliance. However, the designer must ensure that the assertions do not get
synthesized along with the design. Therefore, they must be written either in a
language different than the design, or as special comments that can be ignored
by the synthesis tool.

Graphical visualization of the structure and behavior of a design also helps
debugging. Specifically, visually correlating different representations, such as
waveforms, net lists, state machines and code, allows the designer to easily
identify design bugs and locate the source code for the errorneous part of the
model. As shown in Figure 7.4, the piece of code in a model source may be



Simulation Based Methods 263

...
c =  a  a n d  b
...

Code
a
b
c

a
b c

S t r u ct u r eW av ef or m

FIGURE 7.4 Graphical visualization of the design helps debugging.

visualized structurally either as a net list, shown by the AND gate, or in a
waveform showing the timing behavior of the circuit. Furthermore, if these
design representations are then correlated, debugging becomes significantly
simpler. Therefore, designers often use graphical representations for debugging
and analysis.

Different types of simulation errors are more conveniently observed in dif-
ferent representations. For instance, a timing error is most easily identified in
a waveform display. On the other hand, a logical error can be easily identified
on a gate net list. But by correlating these different representations, an error
identified in a visual representation can quickly be located in the source code.

7.1.3 SPEEDUP TECHNIQUES
Overall simulation time can also be reduced by simply increasing the sim-

ulation speed. The two common speedup techniques are cycle simulation and
emulation. Cycle simulation is used when we are concerned about the signal
and variable values only at the clock boundaries. This improves the simulation
algorithm to update signal values at clock boundaries only. In contrast, event
driven simulation needs to keep track of all events, even those that between the
clock edges, and is thus much slower.

SW
N o t

Sy n t h e s i z a b l e
s y n t h e s i z a b l e

FPGA /  E m u l a t i o n  B o x S W  s i m u l a t o r

M o d e l

FIGURE 7.5 A typical emulation setup.



264 Verification

Another speedup technique is the use of reconfigurable hardware to im-
plement the DUT. If the designer wants to simulate a component in a larger
available system, the FPGA implementation can be hardwired in the system.
This technique is called in-circuit emulation. This was the first hardware as-
sisted simulation technique developed and is still used in the rapid prototyping
of systems.

A different scenario for emulation is dubbed simulation acceleration. In
this method, the entire system is not prototyped on the FPGA. Instead, only
a part of the design is synthesized onto the FPGA board while the remaining
part is still simulated in software as illustrated in Figure 7.5. One important
consideration for choosing partial implementation is that the entire model of
the design may not be synthesizable. Increasingly, embedded systems include
a significant software component and, therefore, may not be easily prototyped
on FPGA. Also, since most HDLs are not completely synthesizable most de-
signs also contain non-synthesizable hardware. For simulation acceleration,
the synthesizable part of the hardware is implemented on an FPGA while SW
and the non-synthesizable HW runs on a software simulator, which talks to the
emulation tool via remote procedure calls.

7.1.4 MODELING TECHNIQUES
A different approach for reducing functional verification time is to model

the system at higher abstraction levels. By abstracting away unnecessary im-
plementation details, the model not only becomes more understandable, but it
also simulates faster. For instance, models with bus transactions at word level
simulate faster than those at bit level because the simulator does not have to
keep track of bit-toggling on bus wires. Similarly, models with coarse timing
result in fewer events during simulation. There are several abstract models that
we can use depending on the size and nature of the design as well as the design
methodology.

Some of the abstract system level models are as follows. Each model has its
own semantics and purpose in the design methodology.

Functional Specification Model is the executable specification that does not
contain any of the system’s structural implementation details. Its purpose is to
check the functional correctness of the intended design. It typically executes at
the speed of the reference C code. It also serves as the starting point for design
space exploration, forming the reference point for other models in the design
flow.

Platform Model considers only the partitioning of system functionality onto
various system components such as processors, IPs, memories etc. The primary
purpose of this model is to evaluate the HW/SW partitioning decision and to
serve as an input for communication synthesis.



Formal Verification Methods 265

Transaction Level Model contains the communication structure of the in-
tended design along with the HW/SW partitioning. The communication, how-
ever, is not yet pin accurate. Since we are only interested in the approximate
timing of communication, the data transfers between components are modeled
as abstract bus transactions.

These abstract system level models need not be the only ones used in a design
flow. Depending on the application and design characteristics, different models
may also be employed. However, the guiding principle in choosing such models
is the simulation speed and the possibility for design space exploration.

7.2 FORMAL VERIFICATION METHODS
Formal verification techniques use mathematical formulations to verify de-

signs [113]. The key difference from simulation based verification is the ab-
sence of a test pattern. The formal verification process either compares two dif-
ferent models of the design or shows that a property is satisfied on the model. In
either case the answer from the formal verification tool is valid for all scenarios.
This is one of the strongest points of formal methods; they can provide abso-
lute answers to verification problems. On the flip side, however, most formal
techniques involve converting the model to some abstract mathematical form,
which may not always be feasible.

In the design industry, there are three primary types of formal verification.
The first is equivalence checking, which can be used to compare two models.
In general, equivalence checking can establish whether two models will give
the same result under all possible inputs. This is particularly useful in checking
the correctness of the synthesis and optimization steps. Due to the critical im-
portance of model correctness, the designer cannot trust the synthesis tools to
preserve all the properties of the original model. Hence, equivalence checking
actually serves a validation of the synthesis step. For the purpose of equiva-
lence checking, one needs to define some notion of model equivalence such
as logical equivalence or state machine equivalence. Based on this notion, the
equivalence checker then proves or disproves the equivalence of the original
and optimized/synthesized models.

Model checking, on the other hand, takes a formal representation of both
the model and a given property and checks if the property is satisfied by the
model. More often than not, system models become too big or complicated at
lower levels of abstraction. Hence, their behavior needs to be checked against
some abstract specification. This abstract specification is essentially a set of
properties that are expected to hold on the model. These properties are similar
to the one described in Section 7.1. A model checking tool can automatically
verify if each of these properties holds in the model. Most modern assertion



266 Verification

based verification tools, compose these abstract properties from assertions in the
model and use them for model checking. The properties are temporal in nature,
i.e. they define the behavior of the system over time. A complete theory of
temporal logic forms the framework on which model checking is based. These
properties are written as formulas in the temporal logic and the model checker
tries to prove or disprove each formula.

A somewhat different approach in formal verification, known as theorem
proving, tries to prove properties under some mathematical logic by using de-
ductive reasoning. Theorem proving has the advantage of being applicable to
almost any domain of problems and is hence very versatile. This flexibility is
also a reason for its biggest disadvantage: it is extremely hard to create auto-
mated tools for theorem proving. The basic idea behind theorem proving is to
express both the specification and the implementation models as mathematical
formulas. On the basis of axioms, which are established truths in the given logic,
one can show the equality of the two formulas. Hence, the proof establishes
that the implementation model is a valid substitution for the specification.

In this section we will look at all these formal verification methods in detail.

inp
uts

ou
tpu

tsregister/
b l a c k  b o x

register/
b l a c k  b o x

1
2

inp
uts

ou
tpu

tsregister/
b l a c k  b o x

register/
b l a c k  b o x

1'
2'

… … .
1 =  1'  ?
2 =  2'  ?
… … ..

Original Model

Op t im iz ed Model

E q u iv alenc e
C h ec k er

FIGURE 7.6 Logic equivalence checking by matching of cones.

7.2.1 LOGIC EQUIVALENCE CHECKING
During the optimization of logic circuits, the design is optimized to reduce the

number of gates which thereby reduces circuit delay. The designer is responsible
for the logical correctness of any such transformation. A logic equivalence



Formal Verification Methods 267

checker verifies that the result of the synthesis or optimization is equivalent to the
original design. This is achieved by dividing the model into logic cones between
registers, latches or black-boxes as shown in Figure 7.6. The combinational
part between registers in an RTL or Gate model has as many logic cones as the
number of its outputs. After synthesis, as the combinational part is optimized,
the logic cones change their structure, but it is still possible to correlate these
cones in the original model and those in the optimized one.

a b
F T F T

a

a

b

b

a ^    b

(aV b)

a

b
F T

F b
F T

T

b

F T

a
Fb

F T

a

b
T F

a

T b
F T

a
F

b

F T

a

A N D i n g

o r d e r i n g

m e r g i n g

m e r g i n g

i n v e r t i n g

(R O B D D )

(R O B D D )

FIGURE 7.7 DeMorgan’s law illustrated by ROBDD equivalence.

These logic cones are nothing but combinational circuits and can, thus, be
described with Boolean expressions. Since the registers stay the same, we
are only interested in knowing whether the optimization on the combinational
circuit is correct. Therefore, we need to compare the Boolean formulas for
the corresponding logic cones in the two models. This is made possible by
creating directed acyclic graph representations of Boolean functions. These
graphs, known as Reduced Ordered Binary Decision Diagrams (ROBDD), have
a special property in that they define a canonical form for a given Boolean
function [27].

Moreover, if two Boolean functions are equivalence, they will have isomor-
phic ROBDDs. Consequently, we can reduce the original and optimized cones
to their respective canonical forms and check if they are isomorphic. Figure 7.7



268 Verification

illustrates this principle on the DeMorgan’s law for Boolean functions, which
states

!(a + b) = (!a).(!b)

So ROBDDs are a compact way of representing Boolean functions. Fur-
thermore, all Boolean functions, such as conjunction (AND), disjunction (OR),
and negation (NOT) may be expressed as graph manipulations of ROBDDs.
Other graph manipulations, such as merging, are used to reduce the BDDs into
canonical form. Some of these graph manipulations are shown in Figure 7.7 in
the construction of the ROBDDs for the LHS and RHS of the DeMorgan equa-
tion. Note that these ROBDDs are isomorphic. The seminal paper by Bryant
introduces ROBDDs and their manipulation for logic equivalence checking. In
logic equivalence checking, isomorphic ROBDDs ensure that an optimization
of the logic circuit is functionality preserving.

7.2.2 FSM EQUIVALENCE CHECKING
A logic equivalence checker verifies the equivalence of only the combina-

tional part of the circuit. There are also techniques to check equivalence of the
sequential part of the design [135]. In order to understand those techniques,
we have to define the notion of a finite state machine. A finite state machine
(FSM), as described in Section 3.1.2, is a tuple consisting of a set of inputs, a set
of outputs, and a set of states. Some of the states are designated as initial states
and some as final states. Transitions between states are defined as a function
of the current state and the input. An output is also associated with every state.
Formally, we can define a FSM as the tuple

< I,O,Q,Q0, F,H >,where

I is the set of inputs O is the set of outputs Q is the set of states Q0 is the
set of initial states F is the state transition function Q X I ïƒ  Q H is the output
function Q ïƒ  O

We may think of a FSM as a language acceptor. We further define Qf as the
set of final states. If we start from an initial state (in Q0), supply input symbols
from a string S and reach a final state, then S is said to be accepted by the FSM.
The set of all acceptable strings forms the language of the FSM.

We can also define the notion of a FSM product. The product of two FSMs
M1 and M2 has the same behavior as if M1 and M2 were running in parallel.
Therefore, given FSMs M1 and M2, such that

M1 : < I,O1, Q1, Q01, F1,H1 >,

M2 : < I,O2, Q2, Q02, F2,H2 >



Formal Verification Methods 269

The product FSM M1 ∗M2 may be written as
M1 ∗M2 : < I,O1UO2, Q1XQ2, QO1XQO2, F1XF2,H1XH2 > .

The total number of states in the resulting machine is the product of the
number of states in each machine. The product machine carries all possible
pairs of states, one from each of the two input machines. The paired states
are labeled with the pair of corresponding outputs as well. The inputs on the
transition arcs are also pairs of possible inputs from each machine.

Using the above definitions, we can define sequential equivalence of FSM
models through a simple metric. We must prove that if two FSMs are given
the same inputs in the same sequence, then under no circumstances would they
produce different outputs [48]. Only then can we claim that the machines
are equivalent. The specification and its implementation are both represented
as FSMs Ms and Mi respectively. We must ensure that the input and output
alphabet of the two machines is the same.

p

q

x

y

r

s

x

y

ty

pr ps pt

qtqs qr

xx xy xy

yxyy yy

a

b

a

b b

aa bb

bb

x

FIGURE 7.8 Equivalence checking of sequential design using product FSMs.

To perform FSM equivalence checking, we first derive the product machine
MsXMi. Now all the states in MsXMi that have a pair of differing outputs
are labeled as final states as shown in Figure 7.8. Ms has two states, p and q,
while Mi has three states, r, s, and t. States p and r produce output x while the
other three states generate output y. Therefore, in the FSM product, the states
ps, pt and qr have output pairs with different symbols (xy or yx) and are thus
labeled as final states. We also keep only those transitions that have the same
symbols in the input pair. What we are trying to prove is that for the same
sequence of inputs, Ms and Mi would produce the same sequence of outputs. In
other words, we should never reach a state with a pair of non-identical outputs.
Since such states are the final states in the product FSM, they should never be
reached if Ms and Mi are equivalent. Therefore the product FSM should not
accept any language.

The case of non-equivalent FSMs is shown in Figure 7.9. Here, we can see
that the state qt in the product FSM produces different outputs (y and x) for the
two FSMs amongst the final states in the product FSM reachable from the start
state pr. Therefore the two FSMs can possibly produce different outputs for
the same stream of inputs and are not equivalent.



270 Verification

p

q

x

y

r

s

x

y

tx

pr ps pt

qtqs qr

xx xy xy

yxyy yx

a

b

a

b b

aa bb

bb

x

FIGURE 7.9 Product FSM for with a reachable error state.

7.2.3 MODEL CHECKING
Model checking [42] is another formal technique for property verification.

In it, a model is represented as a state transition system, which consists of a
finite set of states, transitions between states, and labels on each state. The state
labels are atomic properties that hold true in that state. These atomic properties
are expressed as a Boolean expression of the state variables in the model. The
property to be verified on the model is expressed as a temporal formula. The
temporal formula is formed using state variables and time quantifiers like always
or eventually. For example, in the model of a D-flip flop, the state variables
would be the input, the clock, the output, its complement, and the reset. The
states would be all possible values of the state variables. A simple property
might be that if the reset signal is 0, then eventually the output will be 0.

s1 s2

s3s4

P1

P4 P3

P2
M o d e l

C h e c k e r

P =  f   (P1,  P2,  P3,  P4)

T r u e  /
F a l se  +  C o u n t e r  E x a m p l e

T

FIGURE 7.10 A typical model checking scenario.

Figure 7.10 shows a typical model checking scenario. The model checker
works on the state transition system of the model and the given property and
produces a result TRUE if the property holds in the model. If the property
does not hold, the checker gives a counter-example to show that the property is
violated. This feature of model checking is very helpful in debugging because
it provides a readymade test case. In the given figure, we see the state transition
system of model M and a temporal property composed from the properties of
the individual states.



Formal Verification Methods 271

The idea behind model checking can be visualized by unrolling the transition
system. We start with the initial state and form an infinite tree, called the
computation tree, as shown in Figure 7.11. In Figure 7.10, we can see the
transition system of the design which is being input to the model checker. This
transition system has its start state as S1. Therefore, the computation tree for this
transition diagram is rooted in S1. Starting from S1, we traverse the outgoing
arcs to reach other nodes of the transition system. This breadth first traversal
of the transition systems leads to the computation tree.

s1

s2 s4

s3 s4 s4

s2 s4 s4 s4

FIGURE 7.11 A computation tree derived from a state transition diagram.

The state traversal of the transition diagram represents the behavior of the
model as time progresses. If one were to start from the root of the computation
tree and follow some path down the tree, one would actually be executing some
possible behavior of the design. This notion allows us to define useful temporal
properties using the computation tree. Temporal properties are properties that
hold for some given time as defined by the temporal operators.

Intuitively, we can consider properties that will hold all the time or some
time in the future. These temporal notions are written using letters G and F
respectively. For example, Gp means that property p is always true. Similarly,
Fp means that property p will eventually hold true, sometime in the future.
Other factors for temporal properties may be whether the properties hold on all
paths of computation or only one path. These factors are represented by letters
A and E respectively. Using these temporal operators and the computation tree,
we can define a myriad of temporal properties, as shown in Figure 7.11. The
various temporal formulas are illustrated on the computation tree. The states
in which the property holds true are represented by shaded nodes.

In Figure 7.12(a), the property p holds true all the time on one path. This is
realized by combining the E and G operators to get the formula EGp. Similarly,
AGp in Figure 7.12(b) shows that p is true all the time on all the paths in the
model. By the same principle, we can derive partial computation tree for EFp
and AFp, as shown in Figure 7.11(c) and (d).



272 Verification

s1

s2 s4

s3 s4 s4

s2 s4 s4 s4

(a) EG p

s1

s2 s4

s3 s4 s4

s2 s4 s4 s4

(b) AG p

s1

s2 s4

s3 s4 s4

s2 s4 s4 s4

(c) EF p

s1

s2 s4

s3 s4 s4

s2 s4 s4 s4

(d) AF p

FIGURE 7.12 Various temporal properties shown on the computation tree.

Although automatic model checking provides the advantage of comprehen-
sive property veriification, it suffers from the serious problem of state space
explosion. The state transition system grows exponentially with the number
of state variables. Therefore, memory for storing the state transition system
becomes insufficient as the design size grows. Atypical modern RTL design
has hundreds of state variables, at the very least. This means that the number of
possible states in the transition diagram would be at least 2100. This many nodes
(and their related data structure) would be impossible to hold in memory. This
is one of the reasons why model checking is very effective for control oriented
designs, but performs poorly on data intensive designs. However, there have
been significant research efforts to alleviate the state explosion problem, as we
shall discuss later in this section.



Formal Verification Methods 273

7.2.4 THEOREM PROVING
An alternative approach to formal verification is verification by deductive

reasoning. Using this technique, the specification and implementation models
are written as formulas in some mathematical logic. Then a theorem is estab-
lished and proven for the equivalence of these formulas. If a proof is found, the
models are equivalent. However, if a proof is not found then the equivalence of
models is inconclusive [78].

Proof
G oa l

Th
eo

re
m
 P
ro
ve

r

Proof
A t t e m p t

Proof
D e c om p os i t i on

A s s u m p t i on s
B a c k g rou n d  

T h e ory
I n fe re n c e  R u l e s

Proof
S e a rc h

FIGURE 7.13 Proof generation process using a theorem prover.

The proof uses certain assumptions about the problem domain and axioms of
the mathematical logic. In the domain of circuit design, an assumption might
be that the power supply is always at logic level 1 while the ground is logic 0.
The proof is constructed by breaking down a complex proof goal into smaller
goals as shown in Figure 7.13. The smaller goals are then simplified using
assumptions and then passed onto an automatic theorem prover.

Theorem proving is still a largely manual process. Several steps of sim-
plifying and breaking down proof goals may be required before an automatic
prover can solve it. Typically the original theorem checking a property is a very
complex formula. The formula is decomposed into smaller formulae and then
an attempt is made to automatically check correctness of the decomposed for-
mulae. In the worst case, this decomposition process must be repeated several
times before the formulae become simple enough to be proved by the automatic
tool.

CBAA CB

FIGURE 7.14 Associativity of parallel behavior composition.

Here, we present a simple example of the use of theorem proving for verifying
the associativity of a parallel composition, as shown in Figure 7.14 in which



274 Verification

parallel behaviors A, B, C are combined in two different fashions. On the left
side, behaviors A and B are combined into a parallel behavior which is then
combined into another parallel behavior with C. On the right side, behaviors B
and C are combined first and the resulting behavior is then combined with A.
The example demonstrates the basic principle of associativity as applied to the
parallel composition of behaviors.

The proof must take place under a given theory. A theory involves objects
and composition rules that are used to create expressions. Also, there must
be basic laws to convert an expression into an equivalent one. Therefore, we
must determine what the relevant theory for system level design is. Clearly,
the primary object is a behavior, because it is the basic computation element
required to build system models. To create system models, we need compo-
sition rules that allow us to build bigger behaviors from smaller ones. One
of the composition rules is control flow, since we need to define an order for
the execution of behaviors. Let us also define an identity element in the set
of behaviors. This identity behavior does not perform any computation and,
hence, always produces the same output as the input. Therefore, from a purely
functional viewpoint, the addition of identity behaviors would not modify the
execution of the model. The basic laws for our theory of system models are
shown in Figure 7.15.

R1

b1 b2

s
a

bn b1 b2
a

bn
R2

b1 b2

t

a
bn b1 b2

a
bn

R3

a

b1 b2 b3

R4
a

b1 b3 b2

b2b1

t

b1 b2

s

FIGURE 7.15 Basic laws for a theory of system models.



Formal Verification Methods 275

With these laws in place, the proof process takes the implementation formula
and reduces it to the specification formula by a number of proof steps. Each
proof step uses an assumption, an axiom, or an already proven theorem. In
our case, the axioms are the laws as shown in Figure 7.15. Our proof goal
is to show the equivalence of parallel compositions under associativity. If the
function par(b1; b2 ::: bn) represents a parallel composition of n behaviors, we
can write our proof goal as the following equation:

par(par(a; b); c) = par(a; par(b; c))

The proof steps use the basic laws of our theory, as presented earlier, to
transform the expression on the RHS into the expression on the LHS.

7.2.5 DRAWBACKS OF FORMAL VERIFICATION
Compared to simulation based methods, formal verification methods have

not been as well accepted in the industry due to several drawbacks. Logical
equivalence checking works only for combinational logic while FSM equiva-
lence checking requires both the pecification and implementation machines to
have the same set of inputs and outputs.

Model checking, besides suffering from the state explosion problem, is not
suitable for all types of designs. Since it needs a state transition system, it works
best for control intensive designs such as bus controllers. Automatic theorem
proving has not become very popular in the industry either; the foremost reason
for this is the amount of manual intervention required in running the theorem
proving. Since different applications have different kinds of assumptions and
proof strategies, it is infeasible for a theorem proving tool to generate the entire
proof automatically. Secondly, most designers lack a background in mathemat-
ical logic. Therefore, it requires a huge investment and long training time for
them to start using theorem proving efficiently.

7.2.6 IMPROVEMENTS TO FORMAL VERIFICATION
METHODS

Recently, tools vendors and academics have made several improvements to
formal techniques, particularly in model checking. Symbolic model check-
ing [136] encodes the state transition system using BDDs, which is a much
more compact representation than exhaustively enumerating the states and tran-
sitions. Since BDDs represent sets of states, the model checking algorithm can
operate on sets of states rather than individual states.

Another innovation is bounded model checking, which checks if a model
satisfies a property on paths of length at most K. The number K is incremented



276 Verification

until a bug is found or the problem becomes intractable. Partial order reduction
techniques are usually used in model checking for asynchronous systems, in
which concurrent tasks are interleaved rather than executed simultaneously. It
uses the commutativity of concurrently executed transitions, which result in the
same state when executed in different orders.

Abstraction technique is used to create smaller state transition graphs. The
specified property is described using some state variables. The variables that
do not influence the specified property are eliminated from the model, thereby
preserving the property while reducing the model size.

7.2.7 SEMI-FORMAL METHODS: SYMBOLIC
SIMULATION

Semi-formal verification refers to the ues of formalisms and formal verifica-
tion methods in a simulation environment. The idea behind symbolic simulation
is to significantly minimize the number of simulation test vectors by using sym-
bols to achieve the same coverage. In symbolic simulation, the stimulus applies
Boolean variables as inputs to the simulation model. This is illustrated in Fig-
ure 7.16. During simulation, the internal variables and outputs are computed as
Boolean expressions. In order to check for correctness, the output expression
is compared with the expected output expression as defined by the Monitor.
BDDs can be used to store the Boolean expressions in the Monitor. The BDDs
of equivalent Boolean expressions can be reduced to identical canonical forms.
Therefore, the equivalence of a specified output expression to a simulated out-
put expression can be checked easily. For larger circuits, in which the BDD
size may blow up, we can use SAT solvers as is increasingly common.

7.3 COMPARATIVE ANALYSIS OF VERIFICATION
METHODS

Different application domains and types of systems may require different
verification methods. Formal methods, though time consuming and difficult to
deploy, may be needed for ASIC implementation of mission-critical systems
or processors because of the thoroughness of the verification they perform. On
the other hand, inexpensive reconfigurable devices may not require such ex-
haustiveness, so randomized simulation may be sufficient. It is important to
consider how to best introduce verification in a system design flow. Depend-
ing on the abstraction level of the models and the application characteristics,
different verification techniques may be employed.



Comparative Analysis of Verification Methods 277

Monitor

Combinational 
cir cu it

a

b

c

d

e

S y m bol ic S im u l ator

e  =  f(a,b,c,d)  at tim e  T

e  =  g(a,b,c,d)  at tim e  T

FIGURE 7.16 Symbolic simulation of Boolean circuits.

In order to determine the most suitable verification method, one can define
some metrics to evaluate them. The three most common metrics that we discuss
here are coverage, cost, and scalability. Coverage of a verification method
determines how much of the design functionality has been tested. Cost includes
the money spent on the purchase of tools, hiring of experts, and training users.
Scalability refers to any limitations on the size or type of design that we are
verifying.

Formal verification claims to provide complete coverage. However, the cov-
erage is limited to the given property and the model representation. For instance,
model checking covers all possible states in the state transition representation of
the model for a given property. Logic equivalence checking covers the combi-
national part of the model only. Nevertheless, the coverage of formal methods,
if they are applicable, is significantly greater than that of simulation methods
over the same run-time.

Using assertions in the design can help make better test cases because exer-
cising the assertions ensures that the tests are useful and valid. Pseudo-random
testing, on the other hand, would wastefully generate test inputs that are invalid
for the design.

The cost and effort involved in a verification method also influences the
design phase in which the method is used. For instance, the preliminary phase
usually employs random simulation to uncover most of the egregious bugs
because most designers have experience with simulation tools and debuggers
making it cost effective at this stage. Designers might also employ assertions to
generate more directed tests and to verify correctness of known corner cases. As



278 Verification

TABLE 7.1 A comparison of various verification schemes.

LLMS y m b o l i c  s i m u l a t i o n
MMHE q u i v a l e n c e  c h e c k i n g
LMHMo d e l  c h e c k i n g
MHHT h e o r e m  p r o v i n g

HMMS i m u l a t i o n  w /  a s s e r t i o n s
HLLP s e u d o  r a n d o m  s i m u l a t i o n

S c a l a b i l i t yC o s t  a n d  
E f f o r t

C o v e r a g eMe t r i c
T e c h n i q u e

the verification process continues, however, and bugs become harder to find,
more expensive, specialized techniques such as model checking or theorem
proving may be neccessary.

The performance of a verification method on different sizes and types of
models determines its scalability. A comparative analysis of various verification
schemes, based on our metric, is shown in Table 7.1. Some methods like logic
equivalence checking may be limited to RTL models or below. Similarly, model
checking is constrained by the number of state variables in the model. Compared
to other techniques, simulation scales very well; almost any executable model
at any level of abstraction can be simulated.

If we look at the trend in the acceptance of verification techniques in the
industry, we find that methods with a severe drawback have been generally
avoided. Model checking suffers from poor scalability and theorem proving is
much too expensive, thereby making equivalence checking the most commonly
used technique in the industry. Likewise, assertion based techniques may re-
quire extra cost but they are replacing pseudo random simulation because they
offer better coverage. A number of new verification and assertion languages
are testimony to this fact.

7.4 SYSTEM LEVEL VERIFICATION
The formal verification methods discussed so far are applicable to traditional

system models at the cycle accurate level or below. As the design abstraction
level rises, system level models are being used increasingly for validation.
During system level design, these models are refined into cycle accurate models
as discussed in Chapters 4, 5 and 6. As a result, we are faced with the problem



System Level Verification 279

Computation

Co
m
m
un

ic
at
io
n

A B

C

D F

Un-
t i m e d

A p p r o x i m a t e -
t i m e d

C y c l e -
t i m e d

Un-
t i m e d

A p p r o x i m a t e -
t i m e d E

C y c l e -
t i m e d A . S p e c i f i c a t i o n M o d e l  ( S M )

B . T i m e d  F u nc t i o na l  M o d e l
C . T r a ns a c t i o n-L e v e l  M o d e l  ( T L M )
D . B u s  C y c l e -A c c u r a t e  M o d e l  ( B C A M )
E . C o m p u t a t i o n C y c l e -A c c u r a t e  

M o d e l  ( C C A M )
F . C y c l e -A c c u r a t e  M o d e l  ( C A M )

FIGURE 7.17 System level models.

of verifying the equivalence of system level models and cycle accurate models.
Existing formal verification methods such as logic/FSM equivalence checking
and model checking cannot be applied because system level models have not
been defined formally. In this section, we will provide a brief overview of
existing system level models and discuss new directions in formal system level
verification.

A system level design methodology starts with a well defined executable
specification model that serves as the golden reference. The specification is
gradually refined to a cycle accurate model that can be fed to traditional simu-
lation and synthesis tools. The gradual refinement produces some intermediate
models depending on the choice of methodology. The details that are added
to models during refinement depend on the design decisions. Each decision
corresponds to one or more model transformations. If all the transformations
are formally defined, the refinement process can be automated.

In general, system level models can be distinguished by the timing accuracy
of communication and computation. In the graph, shown in Figure 7.17, the
two axes represent the granularity of communication and computation. The
functional specification at the origin is untimed, with only a causal ordering
between tasks. On the other end is the cycle accurate model. A system level
methodology takes the untimed specification to its cycle accurate implementa-
tion. The path through the intermediate models determines the refinements that
need to be performed.



280 Verification

B2 B3c
v v

B1

FIGURE 7.18 A simple hierarchical specification model.

7.4.1 FORMAL MODELING
Formalization of system level models is the first step in developing system

level verification methods. Formally, a model is a set of objects and composi-
tion rules defined on the objects. A system level model would have objects such
as behaviors for computation and channels for communication. The behaviors
can be composed as per their ordering. The composition creates hierarchi-
cal behaviors that can be further composed. Interfaces between behaviors and
channels or amongst behaviors themselves can be visualized as relations. A
simple model using objects and composition rules is shown in Figure 7.18. The
model is specified as a hierarchy of behaviors, in which hierarchy is expressed
by encapsulating behaviors inside larger boxes. The various arcs show com-
positions amongst behaviors and channels. For example, behaviors B2 and B3
run concurrently, with channel C passing a message with variable v from B2
to B3. Parallel composition of B2 and B3 executes after B1 is finished. These
compositions lead to control and data flow in the model.

A transformation of a model can be expressed by rearranging and replacing
objects. For instance, in order to distribute the behaviors in a specification onto
components of the system architecture, we need to rearrange the behaviors into
groups. In order to use IP components, we need to replace behaviors in the
model with an IP from the library. Each of these transformations has to be
proven correct using a formal notion of equivalence.

B2 B3cv v

s y n c0
0

P E I P

B2 B3cv v

B1
B1

FIGURE 7.19 Behavior partitioning and the equivalence of models.



System Level Verification 281

Intuitively, we can draw an analogy between the distributive law for natu-
ral numbers and the ‘distribution of behaviors on different components. The
distribution of multiplication over addition can be written as:

a ∗ (b + c) = a ∗ b + a ∗ c

This forms a basic axiom in the theory of natural numbers. Just as the
expression on the LHS is equal to that on the RHS in the distributive law
equation, we can demonstrate that a model on the LHS is equal to a model on
the RHS in Figure 7.19. The model on the LHS has a sequential composition
of a leaf level behavior B1 and a hierarchical concurrent composition of B and
B3. Channel c is used to send data from B2 to B3. On the RHS, the model is
transformed to create a concurrent composition at the top level by isolating B3
into the independent behavior IP. However, the syntactic transformation does
not change the function of the model. The equality is determined by the order
in which the behaviors execute.

PE

c1

I P

c3

c2

c2
PE I P

c1
c2

c1
c2

B u s 1

B u s 2

FIGURE 7.20 Equivalence of models resulting from channel mapping.

Another designer decision would be to map the abstract data channels to sys-
tem buses in order to implement the inter-component communication. To re-
flect these decisions, we need to perform certain model transformations. These
transformations would include the grouping of abstract channels as per the bus
mapping and creation of hierarchical channels as shown in Figure 7.20. The
hierarchical channels represent the system level bus architecture. Eventually,
these hierarchical channels need to be replaced with bus protocol channels and
drivers need to be added in components to implement the data transfer. The
grouping transformation can be seen as analogous to the associative rule for
addition of natural numbers which can be written as:

a + b + c + d = (a + b) + (c + d)

Irrespective of how we group the summation terms, the result would always
be the sum of all the numbers. Similarly, irrespective of how the abstract



282 Verification

channels are grouped in the transformed model, they would perform the same
data transactions as in the original model.

The system level verification problem is to determine if the model refine-
ments used to create a cycle accurate model from a system level model are
functionality preserving. This can be achieved by creating by formalizing sys-
tem level models and defining functionality preserving transformation rules.
Next, each model refinement can be expressed as a well defined sequence of
transformations. If each transformation is proved to be functionality preserv-
ing, the refinement will produces an output model that is equivalent to the input
model. Using this technique we can solve the system level verification problem.

Let us now look at a formalism for system level models, called Model Alge-
bra, that enables system level verification.

7.4.2 MODEL ALGEBRA
Model algebra [1] is a formalism for the representation and symbolic trans-

formation of system level models. In model algebra, a system can be viewed
as a block of computation with inputs and outputs for stimuli and responses.
This computation block is composed of smaller computation blocks that exe-
cute in a given order and communicate with each other. Therefore, objects for
computation and communication are defined in model algebra. The computa-
tion objects are referred to as behaviors. A behavior has ports that allow it to
communicate with other behaviors and to create hierarchical composition of be-
haviors. The primitives for communication are variables and channels. These
communication objects have different semantics. Variables allow a "read, com-
pute and store" style of communication, while channels support a synchronized
handshake style of communication. Composition rules are used to create an
execution order for behaviors and to bind their ports to either variables or chan-
nels. In model algebra, a system is thus represented as a hierarchical behavior
composed of sub-behaviors communicating via variables and channels. The
objects of model algebra can be defined using the tuple

< B,C, V, I, P,A >

in which B is the set of behaviors, C is the set of channels, V is the set of
variables, I is the behavior interface, P is the set of behavior ports, and A is the
set of address labels for links that go over channels. We also define a subset
of B representing the set of identity behaviors. Identity behaviors are those
behaviors that, upon execution, produce an output which is identical to their
input. We further define Q to be the subset of V such that all variables in Q are
of type Boolean.



System Level Verification 283

A control flow relation (Rc) determines the execution order of behaviors
during model simulation. We write the relation as

q : b1&b2&...&bn > b

in which b, b1 through bn are in B, q is in Q. The relation implies that b
executes after all the behaviors b1 through bn, have completed and condition q
evaluates to TRUE. The variable read is expressed as v → b < p >, implying
that behavior b reads variable v via port p. Similarly, a variable write can
be expressed as b < p >→ v. Variable read and writes are non-blocking.
Synchronized channel transactions can be written as

c < a >: b < p > | → b1 < p1 > b2 < p2 > ...&bn < pn >

in which b < p > is the out-port of the sending behavior and b1 < p1 >
through bn < pn > are the in-ports of the receiving behaviors. The transaction
takes place over channel c and uses the link address a. Channel read/writes are
blocking. Both variable and channel reads/writes have corresponding relations
for port mapping to create hierarchical executable models. Therefore, if a port
p of behavior b is used to write to a variable, then a sub-behavior of b may only
write to p using a non-blocking write relation. Finally, a grouping relation of
behaviors, variables, channels and their relations are used to create a hierarchical
behavior. For example, behavior b can be written as a sequential composition
of b1 and b2 as follows

b = [b1].[b2].1 : b1 > b2

Transformation rules in model algebra are used to create hierarchy, flatten
behaviors, resolve channel transactions into variable read/writes and control
dependencies, optimize or introduce identity behaviors, and add or optimize
control dependencies. Building on these transformation rules, we can apply and
verify useful model refinements such as partitioning, scheduling, and routing.

7.4.3 VERIFICATION BY CORRECT REFINEMENT
In a model refinement based system level design methodology, each model

produced by a refinement is equivalent to the input model. As shown in the
Figure 7.21, designer decisions are used to add details to a model to refine it to the
next lower level of abstraction. Each designer decision corresponds to several
transformations in the model. The transformations would either rearrange the
computation and communication objects or replace an object in the model with
one from the library.

The notion of model equivalence comes from the simulation semantics of
the model. Two models are equivalent if they have the same simulation results.



284 Verification

This translates to the same (or equivalent) objects in both models and the same
partial order of execution between them. Correct refinement, however, does
not mean that the output model is bug free. We also need to use traditional
verification techniques on the specification model and prove the equivalence of
objects that can be replaced by one another.

Refinement
T o o l
t1
t2
…
tm

M o d el  A

M o d el  B

D es ig ner
D ec is io ns

L ib r a r y  o f
O b j ec ts

FIGURE 7.21 Model refinement using functionality preserving transformations.

Since models can be expressed as formulas, they can be manipulated accord-
ing to the proven transformations of model algebra. These manipulations would
allow us to have equivalent models at different levels of abstraction. Hence the
debugging and verification effort can be spent only on the simplest and most
abstract specification model. All subsequent models that are refined from the
specification model can be proved equivalent to the specification using the rules
of model algebra. Since we do not need to simulate all models exhaustively, the
verification time is greatly reduced. Figure 7.21 illustrates such an approach
in which detailed models are refined from abstract models using a sequence of
functionality preserving transformations.

Verification may also interact with refinement in such a design methodology.
This type of verification tool may be used to abstract the input and output models
into model algebraic expressions. Such an abstraction would be possible in the
verification semantics of the system level models are well defined. Once the
model algebraic expressions are obtained, the a sequence of transformations
may be used to reduce input model A to the expected output model B. If the
model algebraic representation of the expected model is identical to the refined
model, then the refinement is functionality preserving. Hence, model algebra
enables a practical system level verification methodology that will improve
designer productivity, reduce bugs and lead to more reliable embedded systems
in the future.



Summary 285

7.5 SUMMARY
We have looked at several verification techniques ranging from simulation

based methods to formal verification techniques. We also offered a comparative
analysis of the various techniques and projected the future trend for system
level verification. As the size and complexity of designs increase, traditional
techniques might not be able to keep pace. A system design methodology with
well defined model semantics may be a possible solution to the problem.

New challenges to the verification of embedded systems result from the
growth in size and complexity of designs. Individually verified components
do not work together due to interface issues. Also the sheer size of designs
makes cycle accurate modeling and exhaustive simulation too expensive and
time consuming. To answer this challenge, we must develop a comprehen-
sive and formal system level design methodology which will require formal
semantics for system level models. Furthermore, we must define methods for
functionality preserving refinement of models from one abstraction level to the
next. As a result, traditional simulation based verification methods can still be
used for system specification model while correct refinements will avoid the
need to simulate lower level cycle accurate models.

Specifying the design at a higher level of abstraction would also make tra-
ditional simulation and debugging feasible because of the smaller model size.
Well defined model semantics would make it possible to define and prove correct
transformations for automatic model refinement. Therefore, model formaliza-
tion would make complete system verification much faster.



Chapter 8

EMBEDDED DESIGN PRACTICE

Both commercial and academic tools are available for the design of embedded
systems. These tools come in three categories: system-level design, software
design, and hardware design.

In this chapter, we will discuss the tools and frameworks available for these
various examples of system design. We will also present examples of embedded
system design and results for applications, such as JPEG encoder and an MP3
decoder. These results demonstrate the potential impact of the embedded system
modeling, synthesis and verification technologies that have been discussed in
this book.

8.1 SYSTEM LEVEL DESIGN TOOLS
The semiconductor revolution would not have been sustainable without the

help of Electronic Design Automation (EDA) tools. Historically, the break-
through of EDA came with the availability of the first Computer-Aided Design
(CAD) tools for hardware synthesis (see Section 8.3). As we move to higher
and higher levels of abstraction, new classes of tools gradually emerged with
each new level. In recent years, we have seen a push towards development
of so-called Electronic System-Level (ESL) tools. However, while there are
many approaches that claim to provide ESL solutions, such as C-to-RTL tools
implementing high-level synthesis of a single hardware unit (described in more
detail in Section 8.3), true system-level solutions have to span the complete
design space across hardware and software boundaries.

As described in detail throughout this book, a system-level design flow is
typically separated into two parts: a frontend and a backend. The system design

© Springer Science + Business Media, LLC 2009 

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,
DOI: 10.1007/978-1-4419-0504-8_8,

287



288 Embedded Design Practice

frontend takes a description of the application and target architecture at its input.
Applications are given in some MoC to describe the desired system behavior
to be implemented. Target architectures can be given in the form of archi-
tectural constraints, associated parameters, architecture templates or complete
pre-defined system-level netlists. In the frontend, application computation and
communication is then mapped onto and implemented on the selected or syn-
thesized target architecture. In the process, Design Space Exploration (DSE) is
performed to optimize design metrics under a set of constraints. At the output
of the frontend, models of the system at various levels of abstraction are gener-
ated for virtual prototyping of the system design. Predominantly, such system
models will be TLMs described in some SLDL such as SystemC. Models can
be simulated or analyzed to provide feedback about the feasibility and quality
of the generated design. In addition, modeling guidelines such as the SystemC
TLM standard [150] promise to enable easy exchange of component or design
models between companies or design divisions and across tool chains.

In the backend, high-level system descriptions are then further synthesized
down to a hardware or software implementation for each PE in the system.
ESL design flows thereby rely on the availability of corresponding software or
hardware synthesis tools (see Section 8.2 and Section 8.3, respectively). On
the software side, final target binaries for each processor are produced. On the
hardware side, high-level synthesis of behavioral, C-based component models
down to RTL descriptions is performed. In both cases, synthesized PE models
can be re-integrated into system TLMs for cycle-accurate co-simulation with
the rest of the systems. On the software side, binaries are executed in an ISS that
is integrated into the overall system simulation environment. On the hardware
side, RTL or gate-level models in SLDL form are inserted for this purpose. As
a result, a virtual prototype of the system platform is generated.

In the end, however, the desired result at the output of a system-level design
flow is a physical system prototype or a system implementation that is ready for
further manufacturing. Therefore, generated software binaries should be ready
to be directly loaded into target processors and RTL models should be created
in the form of standard HDL code (e.g., VHDL or Verilog) such that they can
feed into traditional logic and physical synthesis processes.

Overall, being based on existing commercial or proprietary backend tools,
the goal of system-level design tools is to develop and apply design automation
techniques to the steps in the frontend. At any level, the first set of tools to always
emerge are modeling and simulation solutions that allow designers to capture
models and execute them in a validation environment. Consequently, most cur-
rently available commercial system-level approaches are focused on providing
models and simulators either at the application, SLDL/TLM or HDL/RTL/ISS
level. Looking ahead, academic research, in contrast, is aimed at the develop-
ment of subsequent system-level synthesis and verification tools, which build



System Level Design Tools 289

on modeling solutions to provide an automated path from abstract system spec-
ification down to synthesized system models and eventually a system prototype
or implementation.

8.1.1 ACADEMIC TOOLS
METROPOLIS

� �"! #%$'& �'��( ) *+ ,�-/. 021�324 365 7�1	8 4 -21'9:1�-2.

;:<	$>= � ?�� ( ! )A@ #	B = C2)%$ = D�E2$>D'= <
F 1%3%4 G�-H9:1	. 0	I%J%I'K I�G2,L 1	. M�9NI%J%1'K+O4 9HP�K M%. I�Q

�"��! #	$ &"�'��( ) *R -/M'K ,	3	4 3S5 TU1'Q 4 8 4 V6M%. 4 I'-

W"D'#�E2$ ! � #X ?�<�E�! B ! E%C	$ ! � # Y:= E�Z"! $ <�E2$ D'= <X ?�<%E'! B ! E%C	$ ! � #[O<2)"! \"#E	��#	)%$>= C�! #	$ )

FIGURE 8.1 Metropolis framework

Metropolis [12] is a modeling and simulation environment originally devel-
oped at UC Berkeley. Metropolis is based on a Platform-Based Design (PBD)
paradigm (Figure 8.1) [164] in which the target system architecture, called a
platform, is assumed to be given or at least significantly pre-determined at the
input of the system design flow. This constrains and simplifies the design space
exploration process. In addition, a pre-defined and pre-determined platform fa-
cilitates the reuse of common design patterns across different design instances.
Therefore, PDB follows a meet-in-the-middle approach and the system design
problem is reduced to the mapping of a desired function onto the given target
platform to create a specific design instance.

Metropolis provides a general, proprietary metamodeling language that is
used to capture separate models for functionality (system application behav-
ior), architecture and their mapping. The metamodel employs a fundamental
discrete event-based execution model with concurrent processes communicat-
ing through channels (called media). In a similar manner to other SLDLs,
functionality is described in the form of event-driven process networks that are
general in the sense that many classes of MoCs can be represented. In addition,
functionality can be annotated with non-functional constraints. The architec-
ture is defined by using processes and media to describe available services (e.g.,
tasks) and resources (e.g., CPUs, memories or buses), respectively. Quantities
can be associated with the architecture to model metrics such as delays. Finally,



290 Embedded Design Practice

given a system functionality and architecture, synthesis or refinement is per-
formed by defining a mapping between the two in the Metropolis metamodel
as a set of additional constraints synchronizing their event execution.

Metropolis itself does not define any specific design tools but rather a general
framework and language for modeling with support for simulation, validation
and analysis of models. Metropolis includes a frontend for parsing of metamod-
els and a backend for translation of metamodels into C++/SystemC simulation
code. In addition, several backend point tools have been integrated into the
Metropolis environment to support automatic scheduling, communication de-
sign, verification, or hardware synthesis. For example, the xPilot system (see
Section 8.3.1) can be plugged into Metropolis to provide high-level synthesis
of hardware blocks.

SYSTEMCODESIGNER

hw accelerators,
etc. from the

component library 

implementation

SystemC Forte Cynthesizer
behavioral synthesis

library
includes

CPUs, busses,
hardware accelerators etc.

Model

Exploration

Model

Design Space
Exploration

Optimized
Solutions Rapid

Specify mapping

Select CPUs, busses

Model

Select
prototyping

Component

FIGURE 8.2 SystemCoDesigner tool flow

SystemCoDesigner is a system-level design space exploration environment
developed at the University of Erlangen-Nuremberg in Germany (Figure 8.2)
[105]. At its input, SystemCoDesigner supports applications written in a dy-
namic dataflow oriented MoC targeted towards streaming applications. Such
input models are captured using a well-defined subset of SystemC called Sys-
teMoC. In SysteMoC, applications are modeled as a graph of atomic actors
that communicate via FIFO queues. Internally, the behavior of each actor is
described in the form of an FSMD. In contrast to SDF models, SysteMoC sup-



System Level Design Tools 291

ports applications in which actor production and consumption rates can vary
dynamically at runtime. Thus, the SysteMoC model is similar to a KPN with
the restriction of atomic process executions.

Once the application has been defined, SystemCoDesigner will automati-
cally generate a library of software and hardware implementations of all actors.
Software implementations are created through simple transformation of the
SysteMoC input into C code. On the hardware side, Forte’s Cynthesizer tool
(see Section 8.3.2) is used for high-level synthesis of all actors down to RTL
descriptions. All generated actor implementations are stored in a component
library and are annotated with performance, area and other metrics obtained
during synthesis.

Given an application, the annotated component library, and an architecture
template, SystemCoDesigner can perform a fully automatic, multi-objective
exploration of the design space. With the architecture template, the designer
can thereby constrain the search space and restrict possible target architectures
in terms of the number and type of available processors or the allowed map-
pings of actors to processor types. Design space exploration is performed using
genetic algorithms to drive and guide the automatic search process. For every
new candidate architecture selected by the search, a SystemC performance TLM
is automatically generated and simulated. The generated virtual architecture
model represents the mapping and scheduling of actors on the selected pro-
cessors, where actors are annotated with corresponding estimated performance
metrics from the component library. Simulation results are then fed back into
the search algorithm to evaluate the current design point and direct the next
iteration of the evolutionary exploration process.

As a result of the exploration process, a set of Pareto-optimal design solutions
is obtained and presented to the user. From this optimal set, the designer can vi-
sualize the design space and subsequently select an applicable implementation
option. After an architecture has been chosen, SystemCoDesigner can proto-
type the selected implementation on a Xilinx FPGA platform. The platform is
assembled, and pre-synthesized hardware implementations of respective actors
are inserted. For actors mapped into software, code is generated, compiled and
linked together with other actors into a binary for each processor. Finally, the
resulting bitstream is downloaded into the FPGA for rapid prototyping of the
final target implementation.

DAEDALUS
Daedalus [145] is another system-level design environment targeted towards

streaming, multimedia-type applications. Deadalus is a joint project between
the University of Amsterdam and Leiden University in the Netherlands. It
combines several tools under a common, XML-based infrastructure to provide
application capture, modeling and simulation, and backend platform synthesis



292 Embedded Design Practice

Pm

Mem

HW IPPµ

Pµ FPGA
specification

specification

specification
System−level

Gate−level

RTL

Va
lid

at
io

n 
/ C

al
ib

ra
tio

n

Mem
MP−SoC

Interconnect, e.g.,
P2P, Xbar, or Bus

in XML
Platform spec.

in XML Network in XML
Kahn Process

Automated system−level synthesis:

RTL synthesis: commercial tool, e.g.

Mapping spec.

System−level architectural exploration: Sesame

ESPAM

Xilinx Platform Studio

Parallelization
KPNgen

Sequential
program in C

Models
RTL

Models
High−level

IP Library

netlist
Platform

in VHDL
IP cores

processors
C code for Auxiliary

files

FIGURE 8.3 Daedalus tool flow

functionality (Figure 8.3). At its input, Daedalus accepts applications modeled
in a KPN MoC (see Section 3.1.1) that is represented in an XML format. In
addition, through a tool called KPNgen, Daedalus can perform automatic con-
version of a well-defined subset of sequential C descriptions into a parallelized
KPN suitable for input into the Daedalus design flow.

Daedalus supports target architectures consisting of multiple programmable
processors and pre-defined hardware IPs. IP components are stored in a library
that contains both high-level, functional as well as RTL component models.
Given an input KPN and an IP library, a modeling and simulation tool called
Sesame allows the designer to assemble a target architecture and perform a
mapping of KPN processes onto architectural components. In case multiple
processes are mapped to the same processor, Sesame will try to statically sched-
ule processes or insert a lightweight OS kernel. For performance evaluation
purposes, processor and IP models in the component library are annotated with
tables of estimated execution latencies for typical function-level operations.
Sesame links KPN processes to operational latencies of library components
they are mapped to. As a result, Sesame will automatically generate a high-
level, timed simulation TLM of the specified platform for quick evaluation
of selected candidate target architectures. Sesame also allows integration of
low-level component models such as cycle-accurate ISSes into the simulation
environment. Furthermore, Sesame supports optional automation of the design



System Level Design Tools 293

space exploration process through analytical design space pruning and heuristic
search methods such as genetic algorithms.

Given a KPN application, a platform architecture specification and an
application-to-architecture mapping (all in XLM form), a final backend syn-
thesis tool called ESPAM automatically generates a description of the selected
system implementation. Pre-defined RTL models of all hardware IPs are pulled
out of the component library and C code is generated for all KPN processes
mapped to programmable processors. Finally, code for each processor is com-
piled and a hardware models are assembled into a system VHDL model for
further synthesis, download and prototyping on an FPGA platform.

PEACE

Algorithm
S p e c if ic a tion

Arc hite c tu re
S p e c if ic a tion

G ra p h An a ly s is P rof ilin g

c lu s te r.x ml time C os t.x ml

H W /S W  M a p p in g
&  P a rtition in g

s c he d .x ml

C od e  G e n e ra tion

C  C od eC  C od e C  C od eV H D L  C od e

H W /S W  M a p p in g
&  P a rtition in g

C ommu n ic a tion  
E x p lora tion

a rc h.x ml

I n te rf a c e  G e n e ra tion

C ov e rif ic a tion  &  P rototy p in g

B loc k  
L ib ra ry

S imu la tion

FIGURE 8.4 PeaCE tool flow

PeaCE (Ptolemy extension as a Codesign Environment) [83] is yet another
hardware/software co-design framework targeted towards multimedia applica-
tions. As the name implies, it is based on Ptolemy [28] as the framework for



294 Embedded Design Practice

modeling applications. Ptolemy is a general framework for composition and
co-simulation of a wide variety of heterogeneous MoCs in a hierarchical fash-
ion. However, of the many MoCs supported in Ptolemy, PeaCE only accepts
combinations of extended SDF and FSM models at its input.

PeaCE realizes a codesign flow from specification over system synthesis
down to system prototyping in several steps (Figure 8.4). In a first step, the
Ptolemy application model is translated into C code for functional simulation at
the specification level. In addition, given a user-defined architecture template
consisting of a list of processing elements, performance estimates of application
tasks are obtained by profiling each functional block on an ISS of each processor.
Annotated application and architecture specifications entered through the user
interface are then translated into a generic XML-based format. Operating on
this intermediate representation, automatic or manual component selection and
HW/SW partitioning is performed. During this step, communication overhead
is assumed to be proportional to amount of data transferred. Resulting mapping
and scheduling information is stored in another XML-based, intermediate file.
Based on this information, code for all processing elements is generated and co-
simulated to obtain memory and communication traces. Next, traces are used
to drive manual or automatic communication architecture exploration, results
of which are stored in an XML-based architecture description. Finally, hard-
ware and software interfaces are generated and the complete system platform
is assembled for accurate co-simulation or FPGA-based prototyping.

PeaCE has recently been extended towards multi-processor software devel-
opment in a framework called HOPES [115]. At its input, HOPES supports a
parallel programming model called Common Intermediate Code (CIC), where
CIC code can be generated from extended UML descriptions or Ptolemy-based
PeaCE application models. CIC provides a high-level, rich and generic API
for control or data-oriented code parallelization and inter-process communica-
tion. Generic CIC descriptions can be automatically translated into optimized,
platform-specific code for a given multi-processor target architecture. Gener-
ated code can then be simulated in an ISS-based virtual prototyping environment
or downloaded into the real processors of the chosen MPSoC platform.

SCE
The System-on-Chip Environment (SCE) [52] was developed at UC Irvine

as the successor of the SpecSyn [64, 63] tool set (the successor of SCE, called
ESE, is described in Section 8.4.1). Both SpecSyn and SCE support a PSM
MoC (see Section 3.1.2) at their inputs and follow a Specify-Explore-Refine
methodology (see Section 1.3). SpecSyn is based on a PSM extension of VHDL
called SpecCharts [185]. In contrast, SCE uses the C-based SpecC SLDL (see
Section 3.2.3) as the basis for describing all design models throughout the com-
plete design flow. The SpecC language and technology has been standardized



System Level Design Tools 295

Specification

Sy s tem  D es ig n
&  R efinem ent

SW
D B

Sy s tem
m od el s

CPUn.b i n

I m pl em entation M od el  

T L M nT L M nT L M i

H ar d w ar e 
Sy nth es is

Softw ar e 
Sy nth es isR T L

D B

R T L nR T L nR T L n I SSnI SSnI SSn CPUn.b i nCPUn.b i n
H W n.vH W n.vH W n.v

D e s i g n  
D e c i s i o n s

P E /C E /b u s
M o d e l s

FIGURE 8.5 SCE tool flow

[51] and a derivative of the SCE system-level design frontend has been com-
mercialized and integrated into a complete SpecC-based ESL design solution
commissioned by the Japanese Aerospace Exploration Agency (JAXA) [73].

As shown in Figure 8.5, SCE consists of a system design frontend and hard-
ware/software synthesis backend. The design process starts with an abstract
specification of the desired system functionality written in SpecC PSM form. In
the interactive frontend, the specification is automatically compiled down onto
a user-defined MPSoC architecture through a series of architecture, scheduling,
network and communication exploration and synthesis steps.

Design decisions such as allocation of architecture components out of the PE,
CE and bus databases, scheduling of processes, and mapping of specification
processes and channels onto allocated PEs, CEs and buses are entered by the
designer through a scripting or graphical user interface. To aid the user in the
exploration process, SCE includes retargetable profiling and estimation tools
that provide feedback about specification characteristics and effects of decisions
on design quality metrics. In addition, SCE supports a plugin mechanism for
inclusion of optimizing algorithms that perform automated decision-making.

At its output, the SCE frontend automatically generates TLMs of the system
design at successively lower levels of abstractions following a gradual, stepwise
refinement processes. Automatically generated TLMs integrate high-level per-
formance models with timing-annotated processes running on top of abstract OS
and processor models to provide fast yet accurate analysis and design validation
without the need for slow instruction-set simulation.



296 Embedded Design Practice

In a backend process, hardware and software processors in the TLMs are
then individually synthesized further down to their cycle-accurate RTL and
instruction set implementations, respectively. On the hardware side, applica-
tion processes and automatically generated bus interfaces are synthesized into
VHDL or Verilog descriptions following a high-level hardware synthesis pro-
cess. Resulting RTL models are ready to be further synthesized and manufac-
tured following traditional logic and physical design processes. On the software
side, code for application tasks, middleware and bus drivers is automatically
synthesized into final target binaries ready for download into the processors. In
addition, a cycle-accurate implementation model of the system is generated that
allows for co-simulation of hardware RTL models with software instruction-set
simulators (ISSs) running final target binaries.

8.1.2 COMMERCIAL TOOLS
COFLUENT

CoFluent Studio by CoFluent Design [43] is a commercial spin-off based on
the MCSE methodology (Méthodologie de Conception des Systèmes Electron-
iques, also known as CoMES, Co-design Methodology for Electronic Systems)
and tool set originally developed at the University of Nantes in France [33].
CoFluent studio is a modeling and simulation environment for early, high-
level design space exploration. As a graphical frontend for SystemC, it allows
capturing of application functionality, system architecture and their mapping.
Application models are specified as networks of timed processes. Processes are
described purely by annotated delay estimates, by their functionality given in
the form of C, C++ or SystemC code, or as a combination of both timing and be-
havior. Processes communicate through high-level, message-passing channels,
queues, events and shared variables that can also be annotated with estimated
communication latencies. The resulting application model can be simulated for
early functional and performance evaluation supported by a rich set of built-in
graphical analysis and visualization capabilities.

In the next step, an architecture platform can be graphically defined and
assembled out of generic processing element or interconnect components.
Through drag-and-drop, the designer can map application elements onto the
specified platform, and CoFluent studio will generate a SystemC TLM of the
resulting architecture for simulation and virtual prototyping. In contrast to
other approaches (see below), no detailed component, ISS or bus models are
employed. Instead, computation and communication remains at a high level, de-
scribed as time-annotated processes and message-passing transactions. CoFlu-
ent Studio does, however, insert network-level models of communication stacks
and OS models for dynamic scheduling of processes mapped onto software pro-



System Level Design Tools 297

cessors. All combined, this allows for fast timed simulation at early stages of
the design process (at the expense of reduced accuracy).

SPACE CODESIGN
Space Codesign is a recent startup coming out of the École Polytechnique de

Montréal in Canada [170]. Its main product is SpaceStudio, which provides a
SystemC-based system-level integrated development environment (IDE) built
on top of Eclipse (see Section 8.2.1). A specific focus of Space Codesign is
support for the increasingly important embedded software development pro-
cess. Designers can create process-based SystemC application models out of
pre-defined library blocks or by importing and wrapping existing C, C++ or Sys-
temC code, where application processes can communicate through message-
passing or shared memory channels. Next, a system architecture can be graph-
ically assembled and the application can be partitioned by dragging application
blocks onto previously allocated hardware or software processors. As a re-
sult, SpaceStudio (through a tool called Elix) will generate a SystemC TLM of
the chosen platform where timing-annotated processes are grouped into bus-
functional processor blocks, integrated with an OS simulation and connected
through register- and cycle-accurate bus models.

All SystemC application models and TLMs generated through SpaceStudio
can be simulated for analysis and performance evaluation. High-level models
are based on native, host-compiled execution of application processes for fast
simulation. In addition, a tool called Simtek will allow creation of cycle-
accurate, transaction-level virtual platforms by replacing host simulation of
software processes with processor ISS models. Finally, a tool called GenX will
take virtual platform TLMs create through SpaceStudio and synthesize them
down to a Xilinx FPGA prototyping platform. Software processes are compiled
for the selected processor and linked against the target RTOS. Hardware IPs are
replaced with pre-designed RTL descriptions, and custom hardware blocks are
synthesized using third-party high-level synthesis tools such as Mentor Catapult
or Forte Cynthesizer (see Section 8.3.2). Finally, components are assembled
into a system netlist for input to the Xilinx FPGA platform synthesis process.

COWARE
CoWare technology started originally as a project at IMEC in Belgium to

develop a process-based system-level modeling framework [188]. Since its
commercialization, CoWare has evolved into a suite of products that provide
a frontend for SystemC TLM capture, modeling and simulation [46]. At the
core of the product portfolio, the CoWare Platform Architect is a graphical
environment for capturing and assembling virtual system platform models at
the cycle-approximate implementation level. CoWare includes an extensive li-



298 Embedded Design Practice

brary of detailed component models for hardware IPs, programmable processors
and system buses. Hardware IPs are provided either in RTL or bus-functional
behavioral form. For programmable processors, ISS models are employed.
With the acquisition of LISATek [91], CoWare gained the capability to design
application-specific and configurable embedded processors, including genera-
tion of associated custom ISSes and software tool chains. Different component
models are integrated under a standard SystemC TLM framework using register-
and protocol-accurate transactional interconnect models.

Virtual platform models captured and assembled through CoWare’s Plat-
form Architect and associated Model Library and Processor Designer can then
be simulated using CoWare’s own performance-optimized SystemC simulation
kernel. Platform Architect thereby includes advanced capabilities for debug-
ging, visualization and analysis of simulation results in order to aid the designer
in the overall exploration, platform design and embedded software development
process.

SOC DESIGNER
Carbon’s SoC Designer [37] is another tool for platform architecture capture

and modeling that dates back to simulation technology originally developed at
the University of Aachen in Germany. Initially, this technology was marketed
under the product name MaxSim by a spin-off called AXYS. Later on, AXYS
got acquired by ARM and MaxSim was renamed to ARM RealView SoC De-
signer. Eventually, ARM sold the SoC Designer product family to Carbon
Design Systems.

Similar to other virtual platform tools, SoC Designer includes a graphical user
interface for assembling of system architectures out of pre-defined library or
user-made custom components. SoC Designer integrates cycle-accurate hard-
ware, ISS and bus models in a proprietary simulation setup. To avoid the
need for expensive context switches necessary in typical event-driven SLDL or
HDL simulations, components are statically scheduled into a single-threaded,
straight-line C/C++ executable that calls individual blocks cycle-by-cycle in a
round-robin fashion. This allows for fast yet fully cycle-accurate system sim-
ulation. However, components need to be modeled in a specific cycle-callable
fashion. SoC Designer includes a frontend for component model development.
In addition, existing SystemC, Matlab and VHDL or Verilog RTL models can
either be integrated into or co-simulated with the SoC Designer simulation
framework.

VAST AND VIRTUTECH
In contrast to virtual platform approaches based on standardized modeling

backplanes and languages such as the SystemC, both VaST [187] and Virtutech



Embedded Software Design Tools 299

[189] are providers of software-centric virtual prototyping solutions based on
proprietary simulation technologies. To achieve faster simulation speeds com-
pared to an interpreted ISS, such approaches are based on binary translation
or compiled instruction-set simulation of software code. In all cases, simula-
tions are functionally accurate but techniques can vary in terms of achievable
simulation bandwidth and cycle-approximate timing accuracy.

Both VaST and Virtutech include graphical environments (called CoMET and
Simics, respectively) to integrate software simulators with models of peripher-
als and other hardware in order to provide full system simulation. In contrast
to event-driven system simulation in typical SLDLs, hardware models are di-
rectly integrated into the software execution loop, reducing the need for context
switches and further speeding up simulations. However, this requires propri-
etary models to be developed for each hardware block or peripheral. While
both companies provide a large library of standard components and graphical
frontends to aid in component model development, recent extensions include
support for integration of standard SystemC models in such virtual prototyping
environments.

On top of virtual prototypes of the platform hardware created with VaST
or Virtutech tools, embedded software can then be developed and validated.
Both approaches include corresponding software development environments
coupled with extensive debugging capabilities (called METeor and Hindsight).

8.1.3 OUTLOOK
In recent years, ESL design concepts, methods and methodologies have ex-

perienced increasing interest and adoption in industry. This trend has been
accompanied by a growing number of commercially available tools mainly
aimed at modeling, simulation and virtual prototyping of complete system plat-
forms and architectures. As technologies mature, we can expect that more
and more of the advanced synthesis and design automation solutions currently
under development in academia will be transfered into such commercial set-
tings. On the one hand, as described in the following chapters, tools are already
emerging that can provide an automated path to implementation from such
system-level virtual platform models. On the other hand, additional research
and development efforts will be necessary to provide future tools for automation
of the design and design space exploration process at the system level. Only
automation of the ESL design flow from specification down to implementation
will provide the necessary productivity gains that will enable us in the future
to close the gap between continously increasing application complexities and
exponentiallly growing technological and device-level capabilities.



300 Embedded Design Practice

8.2 EMBEDDED SOFTWARE DESIGN TOOLS
The close relation between embedded software and the underlying cus-

tomized hardware platform demands special procedures when developing em-
bedded software, for example in terms of: cross compiling, host/target debug-
ging, and testing. With specialized hardware, the embedded software devel-
opment also needs to take measures for system booting and hardware specific
functionality such as system diagnostics and analysis. By its nature, embed-
ded software design has to deal with hardware-specific tools, such as processor
specific instruction set simulators, hardware simulators and emulators, and dis-
tributed debuggers. This hardware dependency necessitates the use of special
development tools.

To aid the development process, hardware vendors provide development en-
vironments geared toward their products. For example, the processor IP vendor
ARM, provides RVDS (RealView Development Suite) for developing software
for various platforms based on ARM cores. The suite integrates ARM cross
compilers, enhanced debug capabilities, ARM specific code optimization op-
tions, and libraries for common devices (such as flash devices). Similarly, RTOS
vendors offer development support tools. Examples include the Tornado tool
suite from WindRiver, and MULTI, the integrated development environment
from GreenHills. Such development environments are typically point solutions
supporting a fixed system architecture. They are less applicable in a scenario in
which the target platform remains flexible until the final stage of system design
(e.g. complex multi-processor systems), and which may be composed out of
heterogeneous components.

Many programmable logic device vendors also provide an embedded soft-
ware design tool as a part of their design environment. The SOPC Builder from
Altera is an example of this, as is the Embedded Development Kit (EDK) from
Xilinx. Both of these tools let system designers define and implement a custom
platform out of standard building blocks and user defined hardware compo-
nents. Once the developer has defined and implemented the platform, these
tools synthesize the hardware and produce custom software libraries (e.g. for
accessing a programmable interrupt controller) reflecting the target’s hardware
configuration. By generating customized libraries, embedded software design
tools like the SOPC Builder and EDK provide some level of abstraction above
the hardware (e.g. resolving addressing and basic device access). However, the
designer has to manually develop the embedded software on top of the provided
low-level primitives for basic device access. Common to both examples is the
focus on the vendor specifics of the target platform in terms of processor and
RTOS selection. For example, Altera currently supports the NIOS processor
with uC/OS-II, whereas Xilinx supports PPC and Microblaze with Xilkernel.



Embedded Software Design Tools 301

In this way, these vendor-supplied tools are point solutions, that help developers
only in case of matching target platforms.

In addition to development tools, simulation environments are important for
development of customized embedded systems as development of a hardware
prototype is time consuming and a parallel development of hardware and soft-
ware is desired. HW/SW co-simulation is one approach that allows for an
overlapped development of software and hardware, as the SW can be devel-
oped on top of a virtual prototype of the hardware. The nature of a suitable
approach for simulation highly depends on the envisioned platform complexity,
the desired amount of observable simulation features, the required prototype’s
equivalence to the final software code, and in the needed simulation speed. For
simple single core architectures, using an instruction set simulator or processor
emulator may suffice. Similarly, for a system that uses one homogeneous RTOS
type and does not feature complicated HW interaction, a minimal model may be
sufficient, such as a host-compiled RTOS. In a host-compiled RTOS, a modified
version of the target RTOS, together with the developed application, is compiled
to run on top of host operating system. However, performance limitations make
simple solutions such as these infeasible for complex multi-processor SoCs.

In summary, there are many different tools and methodologies currently
available for designers to use in developing embedded software. However,
these tools are typically point solutions, specific to a vendor or platform. In
addition, current techniques rely on the manual development of software. To
achieve higher design productivity, a more global approach is desirable, one that
can target a wide range of platforms and has, furthermore, a path to synthesis.

Next, we will outline some academic and commercially available tools for
embedded software development and generation.

8.2.1 ACADEMIC TOOLS
ECLIPSE

The open source Eclipse [59], is a multi-language software development
platform. It consists of an Integrated Development Environment (IDE) with
a flexible plug-in system. The IDE provides a source code editor with a rich
set of source annotation and browsing capabilities, integrates a compiler, a
source code debugger and many more facilities to aid the software development
process. Eclipse’s primary focus is the Java language, hoverer with various
plug-ins it addresses many other languages as well, such as C/C++, Cobol,
Python, Perl, PHP. Eclipse’s well defined plug in system makes it very attractive
for customized extensions.

With the popularity of Eclipse IDE, many academic and commercial
providers use Eclipse as a platform for their own products with a wide range



302 Embedded Design Practice

of specific functionalities. For example, plug-ins exist for UML-based captur-
ing and development (e.g. IBM Telelogic Rhapsody [94]). They extend the
IDE with an interface to graphically capture UML-diagrams and later generate
structural source code (e.g. class hierarchy) out of the diagrams. Many Eclipse
plug-ins more specifically target embedded software development. One exam-
ple is the Tensilica Xtensa Xplorer IDE [97]. It provides a GUI for customizing
an Xtensa processor, integrates a specific cross compilation tool chain and
furthermore offers co-simulation and emulation integration. Another Eclipse
plug-in example addresses automotive software component design following
the AUTOSAR standard, Greensys’ Autosar Builder [67]. It supports develop-
ing AUTOSAR Software Component (SW-C), ECU and System descriptions
at the applications level, integrates their validation and end emulation. Many
more plug-ins exist, which we can not enumerate there. The wide range of
highly specialized plug-ins make Eclipse an very versatile and powerful soft-
ware development environment.

POLIS
The POLIS system [11] developed at UC Berkeley is a hardware/software

co-design environment with a focus on reactive systems. POLIS allows the
user to specify the application in a high level language such as the Esterel
or using a graphical as FSM notation. The input specification is internally
converted into a co-design finite state machine (CFSM) model. Each FSM
within a CFSM represents a component in the system. Using this CFSM, POLIS
allows the designer to partition the design, formally verify it, co-simulate as
well as synthesize portions of the system. Software generation is performed by
transforming the CFSM sub-network chosen for SW implementation into an
S-Graph, and subsequent C code generation. In addition an application specific
scheduler and drivers are generated for each partitioned design.

DESCARTES
DESCARTES [162] is a software synthesis environment that targets real-time

signal processing systems. It focuses specially on optimization techniques for
mapping data flow oriented block diagrams onto a DSP. It provides a combi-
nation of different mapping and optimization strategies that allow comfortable
synthesis of real-time code which is highly adapted to application-specific needs
as imposed by constraints on memory consumption, sampling rate, or latency.

DESCARTES uses a data flow description (Asynchronous Data Flow (ADF)
and an extended Synchronous Data Flow (SDF)) as an input. The work provides
scheduling algorithms defining the order of execution for each computation
kernel (node) in the data flow following input constraints of latency, throughput
and memory consumption. It generates C code for each computation kernel



Embedded Software Design Tools 303

that then is compiled using a DSP specific C compiler. With the choice of
input model, DESCARTES is tightly coupled to the signal processing domain.
In contrast, a flexible generic C-programming model is desirable over these
specific input models to cater to the needs of a broader programming audience
and to capture a wider range of application domains.

8.2.2 COMMERCIAL TOOLS
MATHWORKS: REAL-TIME WORKSHOP

MathWorks offers a range of packages that are centered around Matlab, a
numerical computing environment and programming language. Simulink [132]
is a commercial model-based design tool for modeling, simulation and analysis
of multi-domain systems. As an input, Simulink has a graphical user interface
for assembling a system as a block diagram describing the system functionality.
Blocks within Simulink are typically library defined containing standard signal
processing (e.g. filters) and control functions. They are connected and hierar-
chically composed to express the system either as discrete timed or continues
timed models. Simulink is tightly integrated into the Matlab environment, and
widely used for simulation and design in the control theory and the digital signal
processing domain.

On top of Simulink, MathWorks offers Real-Time Workshop [131] for the
synthesis of an software implementation. It generates stand-alone C code for
algorithms modeled in Simulink. The generated code can be used in many real-
time and non-real-time applications, as well as for simulation acceleration and
hardware-in-the-loop testing. Real-Time Workshop generates ANSI/ISO C or
C++ code from discrete, continuous, or hybrid Simulink models for execution
on a wide range of target platforms. It can target bare processors without any
operating system, as well as multi-tasking systems with an RTOS.

DSPACE: TARGETLINK
TargetLink [53] is a code generator, by dSpace. It integrates into the Mat-

lab/Simulink environment and is similar to the above discussed Real-Time
Workshop. It uses Matlab/Simulink as a graphical editor for system capture.
However, it comes with an own library of block components for graphical design
composition.

TargetLink provides generation of production code out of a Matlab/Simulink
model for a wide range of target processors and platforms. TargetLink mainly
addresses the design of automotive systems. It supports targeting OSEK/VDX-
compliant operating systems [92] for integration of the generated function code
onto an Electronic Control Unit (ECU).



304 Embedded Design Practice

dSpace offers both hardware and software solutions for the automotive de-
sign. For validation and testing of applications, it provides three levels of
model testing. Model-in-the-Loop (MiL) executes the original model, vali-
dating functionality and dimensioning of the algorithm. Software-in-the-Loop
(SiL) executes the generated software code on the simulation host, for vali-
dation of the implementation. Hardware-in-the-Loop (HiL) executes the final
software on an actual ECU. The inputs and outputs of the ECU are controlled
by a Matlab/Simulink model simulating the physical control environment.

In summary, dSpace TargetLink, offers a comprehensive solution for the
design, synthesis and test of automotive designs with a focus on software.
Current development extensions are addressing the emerging AUTOSAR [9]
as multi-core ECU platforms.

ESTEREL TECHNOLOGIES: SCADE
Esterel Technologies’ commercial SCADE suite [57] is a development en-

vironment for system and software engineers targeted for safety-critical ap-
plications. With its editor complex systems are captured using a graphical
notation for hierarchical composition of data flow and safe state machine no-
tations. SCADE comes with a rich library of predefined blocks for operators,
linear functions, digital functions, filters, state machines and model composi-
tion. The product is internally based on the synchronous data-flow program-
ming language Lustre [85]. The tool suite is mainly used in the aerospace and
defense domains.

SCADE offers a C code generator (KCG) that is certified for the develop-
ment of airborne systems and equipment, which allow the production use of the
generated code. The code generator translates each block of the system speci-
fication into a software implementation that can be integrated for execution on
a target processor.

For the analysis of generated code, SCADES integrates with external tools
for Worst Case Execution Time (WCET) and stack utilization analysis. They
provide WCET and stack utilization information at the model level, detailed
for each function block within the specification. These analysis capabilities,
provide design quality feedback about maintaining timely execution and staying
withing resource constraints, which are important for safety critical systems
early in the process supporting an efficient design.

In addition, Esterel Technologies offers gateway integration with other mod-
eling environments that allow importing specifications and requirements into
SCADES. For example, it provides a gateway for importing of discrete con-
trollers prototyped in Matlab/Simulink. It further integrates with Rhapsody
UML/SysML for high-level system requirements. These gateways expand the
coverage of SCADES tool suite to other modeling approaches.



Embedded Software Design Tools 305

UML/SYSML PRODUCTS
The Unified Modeling Language (UML) [147] is an standardized language

for the specification of software systems. It is a language for specifying, visual-
izing, constructing, and documenting the artifacts of a system with an emphasis
on the earliest part of a design process. UML is a modeling language, in contrast
to a a programming language. It therefore focuses on capturing relevant infor-
mation required for understanding the design problem, solving it, and guiding
implementation of the solution. It excludes any irrelevant information that may
hinder that progress.

UML defines 13 different datagram types with a wide range of modeling
system structure, system behavior and the interaction of system elements. With
this range of diagram styles it is apparent that the designer has great flexibility
in capturing system structure. UML provides means to capture boundaries,
requirements and system interaction. On the other hand UML by itself is not
very suitable to concisely express formulas. For capturing algorithms in the
system, UML often relies on embedded C, C++, or Java code as a description.

The Systems Modeling Language (SysML) [149] an extension of a subset
UML by using UML’s profile mechanism. SysML reduces UML’s restriction to
software-centric systems, and is positioned as a modeling language for systems
engineering applications. It only uses 7 out of the 13 UML diagrams, but extends
it by additional diagrams and concepts. For example, it adds requirement dia-
grams for capturing parametric constraints between structural elements, which
aid performance and quantitative analysis. It also introduces additional MoCs
by extending the behavior of UML activities for the modeling of continuous
and probabilistic systems. The use of UML and SysML for system level design
of SoCs is discussed in [116, 126].

Many commercial products for model-based development exist, which are
based on UML/SysML. Examples include IBM Telelogic Rhapsody [94], Spark
Systems’ Enterprise Architect [175], Gentleware’s Poseidon for UML [69] and
Artisan Software’s Artisan Studio [169]. These tools offer graphical editors for
capturing UML/SysML diagrams, the analysis and consistency validation. In
addition these tools offer generation of targeted code for framework integration.
The framework code itself may not contain all algorithm code, however provides
a start framework for manual software development.

8.2.3 OUTLOOK
With the increasing attention to embedded software design, the tool support

for developing embedded applications has significantly improved in the recent
years. Vendors of hardware (e.g. FPGA) and software products (e.g. RTOS)
provide an added value to their products by offering integrated development en-



306 Embedded Design Practice

vironments with specialized support for their own product. In addition, many
domain specific specialized solutions guide the application development for
example in the automotive and signal processing domain. A stronger focus
on better structured, reusable, and expandable software implementations is no-
ticeable, for example through utilizing component-based principles such as in
AUTOSAR or through tighter connecting documentation and implementation
as seen in an UML-based process.

The complexities of future platforms will continue to grow. We will see
systems with diverse distributed heterogeneous components as well as systems
with many cores. As platform complexities grow, manually implementing
embedded software will become infeasible, especially when considering the
decreasing time-to-market. Therefore, there is an essential need to further
simplify the modeling and development of software and systems. In particular,
design environments are needed, which enable abstract development of complex
systems at the algorithm level, which automate the implementation process
through automatic synthesis of both hardware and software, and which allow
the designer to focus on essential functional aspects without the burden of low-
level implementation details.

8.3 HARDWARE DESIGN TOOLS
Research and tool development for hardware design-automation began four

decades ago, and progressed through four phases. The 1970s embodied the
concept phase, which gave birth to basic definitions for the languages, design
methods, and tools necessary for standard and custom processors. The 1980s
introduced the algorithm phase, which saw a flurry of research activities defin-
ing algorithms for allocation, binding, and scheduling in a new field called
High-Level Synthesis (HLS). During the decade which followed, these new
approaches were consolidated with the emergence of several seminal books on
HLS and the first commercial tools. Finally, the first decade of this century
ushered in the acceptance phase, during which the concept of automatically
generating custom hardware components from high-level programming lan-
guages (C-to-RTL) has become accepted and applied to many custom designs
by industrial designers world-wide.

The concept phase began with Bell and Newell’s seminal book on com-
puter structures [16], which introduced Instruction-Set Processor (ISP) nota-
tion. ISP was intended to precisely and unambiguously describe the behavior
of instruction-set processors. This behavior was characterized by the existence
of an interpretation algorithm that fetches, decodes, and executes "instructions"
stored in the memory. The ISP concept was refined by Barbacci at CMU who
introduced the Instruction-Set Processor Specification (ISPS) for the simula-



Hardware Design Tools 307

tion, evaluation, and synthesis of simple processors [14, 15, 13]. Barbacci,
along with Siewiorek, also developed an initial system for the synthesis of
processors called CMU RT-CAD System in 1976 [168]. That opened broader
investigations into the different aspects of synthesis process such as internal
representations [133], component allocation [84] and processor architecture
selection [179]. At this same time, Zimmermann and Marwedel at Kiel devel-
oped the MIMOLA design method to design of digital processors from a very
high-level behavioral specification [199, 127]. A key feature of this method
is the synthesis from application programs expected to run on that processor.
This was the first attempt at C-to-RTL compilation.

In the 1980s, research on algorithms for HLS spread to many different coun-
tries. This research was focused on languages and representations, algorithms
and methodologies, and tools and environments. In terms of languages every
research group used a different subset since standard languages such as C or
VHDL were not synthesizable [122]. In the representation domain CDFG be-
came popular at this time [151]. Allocation, binding and scheduling algorithms
were the most popular topic for research [155, 128, 10, 34, 49, 156, 153]. This
was a time of great diffusion of new ideas. Different methodologies for the de-
sign of controllers, datapaths or complete custom processors were introduced
based on different design paradigms [26, 50, 152, 176, 177, 181, 153, 134].
Similarly, many HLS tools came into use, the most prominent being the York-
town Silicon Compiler from IBM [25] which included high-level, logic and
layout synthesis, CATHEDRAL from IMEC in Belgium [160], which focused
on multiprocessor DSP applications, as well as The System Architect’s Work-
bench from CMU [176], and Design Environment from U of Karlsruhe [36].

The consolidation phase of HLS in 1990s is characterized by the appear-
ance of several books defining the seminal work in the field. Don Thomas
and associates published a book on CMU’s System Architect’s Workbench in
1990 [178], followed by several other books by different authors on different
aspects of HLS, including timing constraints [114], methodologies and algo-
rithms [61], digital signal processing [186], synthesis and optimization [139],
and component reuse [102]. Several edited books concerning the issues in-
volved in HLS [35, 138] were also published in that period. 1990s were also
characterized by the appearance of EDA companies offering commercial tools.
Wakabayashi introduced NECs Cyber synthesis tool [191], Synopsys intro-
duced Behavioral Compiler (BC) [110], and Mentor introduced Monet [56].
Those early tools followed basic principles of HLS as described in the above
mentioned HLS books. For example, BC accepted a behavioral description in
a subset of VHDL or Verilog. It converted the input description into a CDFG
representation that exposed control and data dependences. In order to perform
technology-specific scheduling BC converted data flow graph in each basic
block of CDFG into gates in order to produce accurate delay estimates. This



308 Embedded Design Practice

way BC could schedule two operations into the same clock cycle as long as their
joint delay was smaller than the clock cycle. After scheduling, BC performed
allocation and binding and synthesized the control FSM with gates. The last
step was logic optimization of the generated datapath and controller.

The early tools showed the possibility of HLS automation. However, there
were several obstacles for commercial success. Designers had to use a tool-
dependent subset of HDLs instead of a standard programming language such
as C or Java. Datapath and controller architectures were overly simple without
pipelining or data forwarding. The controller was implemented as an FSM with
gates, so that later upgrade or changes needed re-synthesis. Since the controller
did not use control or program memory, it was not possible to execute large
programs. Even when the synthesized result was acceptable, interfacing the
synthesized component into a larger system was not well defined.

The largest obstacle to widespread acceptance of HLS was the market’s un-
preparedness for processor-level abstraction. This has changed dramatically in
this decade because of increased system complexities. The new HLS tools use a
standard programming language as the input and generate RTL in a HDL as the
output so synthesized designs can be prototyped with FPGA tools. Moreover,
the quality of these tools has improved through the use of more sophisticated
algorithms. At the same time the complexity of synthesized components in-
creased from special functions with a FSM controller to custom processors with
a programmable controller.

8.3.1 ACADEMIC TOOLS
GAUT

The GAUT tool from UBS [157] is an academic and open-source HLS tool
dedicated to digital signal processing applications. It generates an indepen-
dent custom processor with custom interface that allows it to be inserted into
any system. Starting from an algorithmic bit-accurate specification written in
C/C++, GAUT extracts the potential parallelism before performing the alloca-
tion, scheduling and binding tasks. The mandatory synthesis constraints are
the throughput, the clock period, and the target technology while the optional
design constraints are I/O timing diagram and the variables-to-memory map-
pings. GAUT synthesizes a potentially pipelined architecture composed of a
processing unit, a memory unit, a communication interface unit that uses a
globally-asynchronous, locally-synchronous protocol.

GAUT generates an IEEE P1076 compliant RTL level VHDL file. This
VHDL file is an input for commercial, off the shelf, logical synthesis tools such
as ISE/Foundation from Xilinx, Quartus from Altera, or Design Compiler from



Hardware Design Tools 309

Synopsys. GAUT also generates a SystemC cycle-accurate simulation model
for simulation-based validation.

NO-INSTRUCTION-SET COMPUTER
The No-Instruction-Set Computer (NISC) from UCI [40] is an attempt to

overcome two of the weaknesses of HLS: programmability and metric closure.
Most HLS designs are special function components with a fixed controller that
implements the FSM of the special function executed in the datapath. Such
a controller is usually implemented with gates which limit the FSM size to a
couple of hundred states. The first problem with such an implementation is
that the complete design has to be re-synthesized for any change or upgrade
in the given function. The other problem is that this type of implementation
can not support large amounts of code. To solve this problem NISC uses a
programmable controller with a control-word memory that stores control words
for every clock cycle. This way large codes can be accommodated and even
dynamically up-loaded.

The second HLS weakness is that during synthesis and optimization the re-
quired metrics must be estimated. The exact value of delay, power, and perfor-
mance is not known until the final layout. The finalized metrics values or metric
closure is needed to fine tune the architecture and the application code. NISC
solves this problem by separating the allocation and datapath structure genera-
tion from scheduling and binding performed by the NISC compiler. Therefore,
making it possible to a create complete structure with all the metrics known
before compilation. If the final results are not acceptable, the datapath can be
modified and the application code recompiled. Furthermore, NISC methodol-
ogy leads to the concept of standard architecture-cells or templates that can be
stored in the library and used by different application designers. Having several
such templates per application domain greatly simplifies the methodology and
tools on lower levels of abstraction.

A NISC tool set as shown in Figure 8.6 consists of three different compo-
nents: a datapath generator, a NISC Compiler, and an RTL Generator. The
datapath generator is used to create a datapath structure for a given application.
This task can be done automatically by profiling the application code in C,
compiling usage statistics, selecting components and connectivity for the given
performance metrics and generating a Generic Netlist Representation (GNR)
of the datapath. A datapath template can be also selected from the template
library, or designers can specify their own datapath by creating a GNR through
GUI. The NISC cycle-accurate compiler [161] compiles the application for a
given datapath. It converts the application code into a control-words stream
controlling datapath on each clock cycle. The RTL Generator produces the
RTL description for inputing to FPGA or ASIC tools. It converts the datapath



310 Embedded Design Practice

and controller GNR into RTL with control words generated by the compiler
loaded into the control-word memory in the controller.

If synthesized results are not satisfactory, the datapath structure and/or ap-
plication code can be modified. This can be done manually by rewriting the
application code and GNR or automatically through code refinement or datapath
refinement tools.

A NISC enables the designers to control every aspect of the design. The de-
signer can select the exact points for improvement and then make the changes
quickly. For example, by changing the GNR description of the datapath archi-
tecture, the designer can reduce a critical path delay or fix complex multiplexers
and connections that consume too much power or make the layout unroutable.
Since datapath can be an input in NISC technology, the designer can selectively
explore options for quality metrics. For example, a designer can focus on dy-
namic power minimization by modifying the connections or gating or latching
them in the datapath description and quickly see the effect on the final results.

SPARK HIGH LEVEL SYNTHESIS
SPARK tool from UCSD [140] is a C-to-VHDL high-level synthesis frame-

work that employs a set of innovative compiler, and synthesis transformations
to improve the quality of high-level synthesis results. The SPARK paralleliz-
ing high-level synthesis methodology is targeted particularly to multimedia
and image processing applications along with control-intensive microproces-
sor functional blocks.

As shown in Figure 8.7, SPARK takes a behavioral description in ANSI-
C as input. It also takes additional information as input, such as a hardware

IDE

C o d e  
R e f i n e m e n t

A p p l i c a t i o n

G U I

Da t a p a t h  
R e f i n e m e n t

Da t a p a t h

C o m p o n e n t /
T e m p l a t e  
L i b r a r y

Da t a p a t h  G e n e r a t o r

N IS C  C o m p i l e r

R T L  G e n e r a t o r

S y n t h e s i s  B a c k e n d

R T L

FIGURE 8.6 NISC technology tools



Hardware Design Tools 311

resource library, resource and timing constraints and user directives for the
various heuristics and transformations. SPARK stores the input behavior in a
hierarchical intermediate representation, a CDFG derivative with dependences
across basic blocs. This is critical for enabling coarse-level transformations
and making global decisions about code motion.

SPARK first applies a set of coarse-grain and fine-grain code transformations
to the input description during a pre-synthesis phase before performing the tra-
ditional high-level synthesis tasks of scheduling, allocation and binding. The
transformations in the pre-synthesis phase include (a) coarse-level code restruc-
turing by function inlining and loop transformations, (b) transformations that
remove unnecessary and redundant operations such as common sub-expression
elimination (CSE), copy propagation, and dead code elimination (c) transfor-
mations such as loop-invariant code motion, induction variable analysis (IVA)
and operation strength reduction, which reduce the number of operations within
loops and replace expensive operations with simpler operations.

The pre-synthesis phase is followed by the scheduling and allocation phase.
Resource allocation and module selection are done by the designer and are
given as input to the synthesis tool through a hardware resource library. The
scheduler is organized into two parts: the heuristics that perform scheduling

Code Generation Back End

C I np u t

S y nth es iz ab l e R T L  V H D L ,  Beh av ioral  C

Cons traints  &  
R es ou rce 

L ib rary P ars er F ront End

S P A R K  I R

H ierarch ica
l  T as k 

Grap h s  
(H T Gs )  +  
D ata F l ow  

Grap h s

P reS y nth es is  O p tim iz ations
L oop  U nrol l ing ,  L oop  F u s ion,  L oop  I nv ariant Code M otion CS E,  

I V A ,  Cop y  P rop ag ation,  I nl ining ,  D ead Code El im ination

S ch edu l ing  and A l l ocation
H eu ris tics T rans f orm ation T ool b ox

R es ou rce Binding  &  Control  S y nth es is
O p eration/V ariab l e Binding F S M  Generation/O p tim iz .

FIGURE 8.7 The SPARK Synthesis Methodology



312 Embedded Design Practice

and a transformations toolbox. The transformations toolbox contains specula-
tive code motion transformations, the percolation and trailblazing code motion
techniques, dynamic renaming of variables et cetera. The synthesis transfor-
mations include chaining operations across conditional blocks, scheduling on
multi-cycle operations, and resource sharing.

Besides the traditional high-level synthesis transformations, the scheduling
phase also employs several compiler transformations applied "dynamically"
during scheduling. These dynamic transformations, such as dynamic CSE
and dynamic copy propagation, exploit the new opportunities created by code
motions. A branch balancing technique also dynamically adds scheduling steps
in conditional branches to enable code motions, specifically those code motions
that duplicate operations in conditional branches.

Passes from the toolbox are called by a set of heuristics that guide how the
code refinement takes place. The heuristics and the underlying transformations
that they use are kept completely independent from each other. This allows
the heuristics to employ the various transformations as and when required,
thus enabling a modular approach that allows the easy development of new
heuristics.

The scheduling phase is followed by a resource binding and control synthesis
phase. This phase binds operations to functional units, ties the functional units
together, allocates and binds registers, generates the steering logic and generates
the control circuits to implement the schedule. The focus of resource binding
approach is to minimize the interconnect between functional units and registers.
After binding, SPARK generate a FSM controller for the scheduled and bound
design.

Finally, a back-end code generation pass generates a synthesizable RTL
VHDL. SPARK also has back-end code generation passes that generate ANSI-C
and behavioral VHDL. These behavioral output codes represent the scheduled
and optimized design. The output C code can be used in conjunction with the
input C code to perform functional verification and also, to improve visualiza-
tion for the designer on the effects of the transformations applied by SPARK
on the design.

XPILOT SYNTHESIS SYSTEM
The xPilot is a behavioral synthesis system being developed at UCLA [183,

41]. The goal of xPilot is to provide novel platform-based behavior synthesis
technologies to optimize logic, interconnects, performance, and power simul-
taneously, so that designers can improve both design productivity and quality
of results.

The overall design flow of the xPilot system is shown in Figure 8.8. xPilot
accepts synthesizable C or SystemC as input. The behavioral description is first
parsed and optimized by the UIUC LLVM compiler infrastructure. A System-



Hardware Design Tools 313

level Synthesis Data Model (SSDM) is then constructed from the LLVM’s
internal representation. The basic building blocks in SSDM are processes and
channels. A process describes the behavior of one module, and each process
uses a CDFG to capture its behavior. Each process interacts with other processes
through ports and channels.

Each channel implements some interface to implement certain communi-
cation protocols. In total, an SSDM defines a process network to model the
concurrent behavior of a complex system. On top of SSDM, xPilot performs
platform-based synthesis and physical-aware optimizations during scheduling
and resource binding; these construct an optimized State Transition Diagram
(STG) and an associated datapath model. At the back end, xPilot generates
RTL implementations together with constraint files such as multi-cycle path
constraints and physical location constraints, to leverage the existing logic syn-
thesis and physical design toolset.

Compilation Front End

R T L  G e ne ration

B inding

S c h e du ling

S S D M  (S y s te m-L e v e l 
S y nth e s is  D ata M ode l)

S S D M /CD FG

S S D M /S T G

R T L  V H D L  and 
D e s ig n Cons traints

S y s te mC/C B e h av ior S pe c .

P latf orm D e s c ription and 
Cons traints

FIGURE 8.8 xPilot Synthesis System



314 Embedded Design Practice

8.3.2 COMMERCIAL TOOLS
CATAPULT SYNTHESIS

Catapult from Mentor [137] takes a behavioral description written in ANSI
C++ and a set of user directives as input and generates an RTL that is opti-
mized for the specified target technology. The input specification is behavioral
and does not include any notion of explicit parallelism, time, state or inter-
face protocol or the design structure. Required directives specify the selected
component library and the clock period. Optional directives control hardware
details such as interface and memory mappings, how much parallelism to im-
plement in loop unrolling and loop pipelining, hardware hierarchy and block
communication, latency or cycle constraints for scheduling, the number and/or
type of hardware resources for allocation , etc. Catapult supports native C++
integer types as well as C++ bit accurate integer and fixed-point datatypes are
supported for synthesis. The generated RTL faithfully reflects the bit-accurate
behavior specified in the source.

One of the advantages of keeping the input untimed is that a very wide range
of interfaces and design structures can be generated without changing the input
specification. Another advantage is that errors that are created through manual
coding are avoided. The interface and the design structure of the generated
design are all under the control of the user via synthesis directives. Interface
synthesis maps the data transfer that is implied by passing of function arguments
to a variety of hardware interfaces such as wires, registers, handshaked registers,
memories, buses or more complex user-defined interfaces. All the necessary
signals and timing constraints are generated during the synthesis process so that
the generated RTL conforms and is optimized for the desired interfaces.

Hierarchy or block-level concurrency can be also specified by user directives
with Catapult. For example, a C function can be synthesized as a separate hard-
ware block instead of being inlined in its caller(s). The blocks are connected
with the appropriate communication channels and the required handshaking
interfaces are generated to guarantee the correct execution of the specified be-
havior. The blocks may be synthesized to be driven by different clocks. The
clock domain crossing logic is generated by Catapult. Communication is opti-
mized depending on user directives to enable maximal block-level concurrency
using FIFOs and ping-pong memories to enable block-level pipelining and thus
improved throughput.

All the HLS synthesis steps are aware of accurate component area and timing
numbers for the target technology (ASIC or FPGA) for the RTL synthesis tool
of choice. Accurate timing and area numbers for components are essential
for generating an RTL that meets the timing and area constraints. During
synthesis, Catapult queries the component library so that it can allocate a variety
of combinational or pipelining components with different performance and area



Hardware Design Tools 315

tradeoffs. The queried component library is pre-characterized for the target
technology and the target RTL synthesis tool. Component libraries can also be
built by the user to incorporate specific characterization for memories, buses,
I/O interfaces or other pieces of functionality such as pipelined components..

The synthesis process generates the required verification infrastructure in
SystemC so that the input stimuli from the original C++ testbench may be
applied to the generated RTL to verify its functionality against the original
input specification using simulation. The synthesis process also generates the
required verification infrastructure for sequential equivalence checking between
the input specification and the generated RTL. Catapult has been successfully
used in over 200 ASIC tapeouts and several hundred FPGA designs. Typical
applications include computation-intensive algorithms in communications and
video and image processing.

CYNTHESIZER
Cynthesizer from Forte [58] takes a SystemC module containing hierarchy,

multiple processes, interface protocol and algorithm and produces RTL Verilog
optimized to a specific target technology and clock speed. The target technology
is specified by a user provided library file or, for FPGA implementation, by
identifying the targeted Xilinx or Altera tools.

The input to the high-level synthesis flow used with Cynthesizer is a pin- and
protocol-accurate SystemC model. The designer puts untimed high-level C++
in a hardware context using SystemC to represent the hardware elements such as
ports, clock edges, structural hierarchy, bit-accurate data types and concurrent
processes.

Clocked thread processes are used for the majority of the module functional-
ity. They contain an infinite loop that implements the bulk of the functionality
along with the reset code that initializes I/O ports and variables. Within a thread,
the designer can combine untimed computation with cycle-accurate communi-
cation. A hybrid scheduling approach is used in which the protocol sections are
scheduled in a cycle-accurate way, honoring the clock edges specified by the
designer as SystemC wait statements. The computation code is written without
any wait statements and scheduled by the tool to satisfy latency, pipelining and
other constraints given by the designer. Triggered methods can also be used
to implement behaviors that are triggered by activity on signals in a sensitivity
list, similar to a Verilog ’always’ block. This allows a mix of high-level and
low-level coding styles to be used if needed.

Complex subsystems are built and verified by combining modules using
structural hierarchy just as it would be done in Verilog or VHDL. The high-
level models used as the input to synthesis can be simulated directly to validate
both the algorithms and the way the algorithm code interacts with the inter-
face protocol code. Multiple modules are simulated together to validate that



316 Embedded Design Practice

they interoperate correctly to implement the functionality of the hierarchical
subsystem.

In order to ensure that the synthesized RTL meets timing at a given clock
rate using a specific foundry and process technology, a high-level synthesis
tool requires accurate estimates of the timing characteristics each operation.
Cynthesizer uses an internal datapath optimization engine to create a library of
gate-level adders, multipliers, etc. The timing and area characteristics of these
components are used by Cynthesizer to make tradeoffs and optimize the RTL.
Designers have the option of using the gates for implementation or of giving
their logic synthesis tool RTL representations of the datapath components.

Cynthesizer produces RTL Verilog for use with logic synthesis tools. The
RTL consists of a finite state machine and a set of explicitly instantiated data-
path components such as multipliers, adders, and multiplexors. More complex
custom datapath components that implement arithmetic expressions used in
the design are automatically created, and the user can specify sections of C++
code to be implemented as datapath components. The multiplexors directing
the dataflow through the datapath components and registers are controlled by a
conventional finite state machine implementation.

SystemC is a good fit for high-level synthesis because it combines the high-
level and object-oriented features of C++ with hardware constructs that allow
a designer to directly represent structural hierarchy, signals, ports, clock edges
etc. This provides a very efficient design and verification flow in which be-
havioral models of multiple modules can be concurrently simulated to verify
their combined algorithm and interface behavior. Most functional errors can
be found and eliminated at this high-speed behavioral level instead of through
time-consuming RTL simulation. Once the behavior is functionally correct, the
models that were simulated are used directly for synthesis, eliminating oppor-
tunities for mistakes or misunderstanding.

PICO
PICO tools developed by Synofra [45] support the development of custom

processors or application engines for a system platform consisting of standard
CPUs and DSPs, memories, IF components such as DMAs or USBs and com-
plex application engines such as video codecs and wireless modems. PICO
provides a fully automated, performance-driven, application engine synthesis
methodology that enables true algorithmic-level input specification. It produces
C-to-RTL mapping under performance constraints in terms of throughput and
cycle-time. The key to PICO’s approach is the use of an advanced parallelizing
compiler in conjunction with an optimized, compile-time configurable archi-
tecture template to generate an application-engine RTL.

PICO uses C/C++ language as the preferred mode of input specification at the
algorithmic level to allow the user to specify functionality as a sequential pro-



Hardware Design Tools 317

gram. PICO’s parallelizing compiler automatically extracts parallelism from
the input specification to meet the desired performance based on its analysis
of program dependencies and external resource constraints. PICO is intended
for applications that process data streams such as audio, video, imaging, secu-
rity, wireless, networking applications, among others. There is large amount of
parallelism in such applications at various levels of granularity. These applica-
tions consist of a sequence of transformations expressed as multiple loop-nests
encapsulated in a C procedure that is executed repetitively on a stream of data
blocks.

One invocation of this procedure is called a task. PICO optimizes parallelism
on task-level, loop-level, iteration-level, and instruction level at the same time to
satisfy performance and cost constraints. Given the parallelism available in the
application code at various levels, the PICO compiler exploits this parallelism
without violating the sequential semantics of the application code by following
the well-defined model of Kahn process networks, in which a set of sequential
processes communicate via streams through unbounded FIFOs. This Kahn
process network concept is implemented in PICO with an architectural template
defined by a Pipeline of Processing Arrays (PPA). Each of the top level loop-
nests in the C procedure is mapped to a custom processor called Processing
Array (PA) which communicates with other PAs via one or more FIFOs or
memories. Each PA is structured like a wide Very Long Instruction Word
(VLIW) processor that is customized to execute only one program: a loop
iteration.

Along with the hardware RTL and its related software, PICO also produces
SystemC-based TLM models of the hardware at two levels of abstraction: an
untimed programmer’s view and a timed programmer’s view. Knowledge of
the target technology and its design trade-offs is embedded as a part of a macro-
cell library which PICO tools use as a database of hardware building blocks.
The library consists of pre-verified, parameterized, synthesizable RTL compo-
nents such as register, adders, multipliers and interconnect elements. These
macrocells are independently characterized for various target technologies and
various macrocell parameters. PICO uses these characterization data for its
internal delay and area estimates.

CYBERWORKBENCH
CyberWorkBench (CWB) from NEC is a C-based high-level synthesis and

verification tool that has been in development since 1990s [190, 191, 144]. The
main idea behind the CWB is an "all-in-C" approach in which all the modules
in the design are described in the behavioral C language. CWB also supports
legacy RTL blocks as black boxes, which are called as C functions. At the
same time the synthesis, verification, and debugging tasks are all done in the C
source code.



318 Embedded Design Practice

CWB targets general SoC platforms which normally contain several CPUs
or DSPs, in addition to custom HW modules and some pre-designed or fixed
RTL or gate level IP modules that are connected directly or through buses in
the platform.

Initially, each custom HW module is described in a specialized behavioral C
called Cyber-C. Once its functionality is verified through the C simulator and
debugger, the HW module is synthesized with the behavioral synthesizer. The
custom processors are also synthesized from their C description in the CWB
environment. Legacy RTL blocks are described as functions and handled as
black boxes. The CPU bus and other bus interface circuits are also automat-
ically generated using a CPU bus library. After synthesis and verification of
each module, the CWB environment allows designers to create a cycle-accurate
simulation model for the entire platform including CPUs, DSPs and custom HW
modules. With this model designers can verify both the functionality and the
performance of their design, as well as the embedded software running on the
CPU, DSP and custom processors. The behavioral synthesis is fast enough to
allow designers to modify and synthesize HW modules and embedded software
many times. The input C code can also be debugged with a formal verification
tool that checks properties and model assertions. These global properties and
in-context assertions are described in the original input C code. The equivalence
between the behavioral C and the generated RTL can be verified dynamically
and statically.

Currently, the platform-level parallelization is left to the system designers.
They partition the input C code into individual HW modules and embedded
software based on the performance results of the cycle simulation or FPGA
prototyping.

BLUESPEC
Bluespec tools from Bluespec provide an alternative to the standard C-based

HLS technology by focusing on components that do not fall into the loop-
and-array paradigm: processors, caches, interconnects, bridges, DMAs, I/O
peripherals, and similarly others. These components are characterized by het-
erogeneous, irregular and complex parallelism for which the sequential com-
putational model of C is not expressive enough. They use a language in which
the concurrent behavior of a system is expressed as a collection of rewrite rules.
Each rule has a guard expressed by a Boolean predicate on the current state,
and an action that transforms the state of the system. These rules can be applied
in parallel, that is, any rule whose guard is true can be applied at any time. The
only assumption is that each rule is an atomic transaction, meaning that each
rule observes and delivers a consistent state, relative to all other rules. The rules
and their ordering are described in Bluespec System Verilog (BSV).



Case Study 319

BSV allows designers to specify the micro architecture precisely, but with
powerful generative and parameterization mechanisms which allow a single
source to flexibly represent a family of micro architectures, within which dif-
ferent choices may be appropriate for different metric optimizations. Thus BSV
provides synthesis from very high level description with a precisely-specified
micro architecture in the parameterized program structure. Bluespec Com-
piler compiles a BSV description into Verilog RTL or SystemC while Bluspec
Simulator simulates Bluespec designs with cycle accuracy.

8.3.3 OUTLOOK
The last thirty years of research and development into high-level synthesis

has proven profitable, as evinced by the increasing supply of HLS tools and
by designers’ acceptance of C-to-RTL concepts. Though there has been much
progress in the concepts, algorithms, and methods for HLS, there is more work
ahead, which is driving the surge in HLS research and tools [45].

Although some tool suppliers are offering specific languages that support
efficient descriptions of functionality or architecture, most of the market is
settling on C/C++ for describing input functionality. That decision is leading to
increasing efforts in pre-synthesis compilation to increase possible concurrency
for future optimization and to improve the quality of the synthesized design.

The synthesized architecture is usually the set of storage and functional-unit
components connected through multiplexers. Still, much work must be done
to improve the architecture by adding busses, control and datapath pipelining,
and programmable controllers in order to move the architecture into direction
of custom processors. Some suppliers offer specific pipelined-blocks architec-
ture for "loop-and-array" applications, but there is no conclusion on standard
architecture-cells or templates that will make C-to-RTL compilation more effi-
cient, as in the compilation of C to instruction-sets.

Moreover, the problem of interfacing synthesized components and merging
them into a system platform is still grossly under solved. As with component
architecture, there is a need for standard interface-cells so that any two syn-
thesized components can be easily connected. With availability of architecture
and interface standard cells and an efficient compilation from C, the directions
of the IP industry in the future still remain to be answered.

8.4 CASE STUDY
So far we have looked at a variety of system level, software and hardware

design tools. Many tools are available publicly or commercially to assist with



320 Embedded Design Practice

different aspects of embedded system design. We advocate that there will be a
need for new tool-sets or design environments that integrate different aspects of
embedded system design. These developments will be crucial to the evolution
of a model based design and verification methodology for embedded systems.
In the long term, there will be no distinction between hardware and software at
the design entry stage. The next generation of embedded system design tools
will focus on applications and enable non-experts to design embedded systems.

In this section, we will present a case study for the design of an industrial
size application, the MP3 decoder. We use the Embedded System Environment
(ESE) tool set [39] to present the model based design of the MP3 decoder on four
heterogeneous embedded platforms. The ESE tool flow embodies the design
methods and principles that have been discussed in this book. We will present
results that demonstrate the speed and accuracy of automatically generated
models, the quality of the synthesized design and the productivity gains that
results from using ESE. The case study is meant to motivate designers to adopt
the embedded system design methods and principles presented in this book.

8.4.1 EMBEDDED SYSTEM ENVIRONMENT
ESE consists of two parts, the front end and the back end, as shown in

Figure 8.9. The input to front end is the system specification consisting of an
application model mapped to a given platform. It automatically generates a
TLM of the system for fast and early design evaluation. The back end reads
this TLM and synthesizes the required software and hardware to produce the

System Definition

Component
M od el s F r ont E nd

Component
L i b r a r i es B a c k  E nd

A p p l ic a tion P l a tfor m

T L M

C A M

mapping

A SI C
fl ow

F P G A
fl ow

FIGURE 8.9 ESE tool flow



Case Study 321

cycle accurate model (CAM). The CAM is the hand-off point to standard FPGA
and ASIC design automation tools. Therefore, ESE enables a structured and
automated design flow from an abstract specification to an implementation,
based on well defined design decisions.

The application, platform and mapping entry in ESE are simplified by an
intuitive Graphical User Interface (GUI). The application is captured as a set of
concurrent communicating processes. Each process has an associated C/C++
description. Channels are used to specify communication between processes.
These channels provide a rich set of user level communication mechanisms,
such as handshake, FIFO and asynchronous read/write.

The hardware platform is composed in the GUI from a set of processing ele-
ments (PEs), buses, and interface components called transducers. The software
platform is defined by configuring the software parameters of the processing
elements. These configurations include the RTOS definition, task scheduling
policy and memory management. A mapping from application to platform may
also be defined graphically in ESE. The C/C++ processes are mapped to PEs.
Channels are mapped to buses or routes in the hardware platform.

ESE FRONT END
The goal of ESE front end is to enable fast and early design space exploration by
automatically generating fast and accurate TLMs from the system specification.
The details of the TLM generation process are shown in Figure 8.10. The basic
idea is to automatically generate a high speed TLM that can be simulated to
obtain metrics about the design; these metrics may be performance, power,
reliability, security and so on. Once the metrics are obtained, the designer may

System Definition

Processor
M od el s

T iming
E stima tion

B u s/ R T O S
M od el s T L M  G ener a tion

SystemC
Simu l a tion

A p p l ic a tion P l a tfor m

T imed  A p p l ic a tion

SystemC  T T L M M etr ic s

Desig n
O p timiz a tion

mapping

FIGURE 8.10 System level design with ESE front end



322 Embedded Design Practice

either be satisfied with them or go back to change either the application model,
the platform or the mapping decisions. A practical design space exploration
flow requires the capability to generate TLMs quickly. Therefore, manually
coding the TLMs is not an option. TLMs must also provide reliable metrics.
Perfect accuracy is desirable, but marginal error may be tolerated for a higher
simulation speed.

The metric estimation supported by ESE generated TLMs is timing. Timing
is annotated inside the TLM such that TLM simulation can predict timing for
any input. ESE uses a retarget-able technique to automatically annotate cycle-
approximate timing to the TLM. Data models of the PEs, buses and RTOS are
used for timing annotation. The PE data model includes the data path and the
memory hierarchy information of the PE. Therefore, it includes the number
and type of architectural components and the size and configuration of caches.
The bus model defines the bus transaction delays for various bus modes such
as word, burst or pipelined transfer. The RTOS model includes methods for
dynamic scheduling of processes and inter-process communication inside the
PE.

The TLM generation occurs in two steps. The first step is the computation
timing estimation where the application process code is instrumented with de-
lays. The process code is converted into a Control Data Flow Graph (CDFG)
representation. Each CDFG node represents a basic block in the application
process. Based on the mapping of the process to a given PE, each basic block
is statically scheduled on the PE data path. The scheduling provides the num-
ber of cycles needed to execute the basic block. The memory model of the
PE is used to estimate the overhead of data and instruction cache misses. The
scheduling and memory overhead delays are added to predict the delay for the
basic block. This prediction is done for all the basic blocks in all the processes
of the application model.

The processes, annotated with computation timing, are instantiated inside
PE models. The executable models of the buses, transducers and RTOSes are
instantiated and linked with the PE models. The RTOS model is used to capture
resource contention and dynamic scheduling of processes mapped to the same
PE. The abstract channel communication between the processes is transformed
into sequence of bus transactions, based on the mapping of channels to buses and
routes. The final result of the above steps is the timed TLM (TTLM) written
in SystemC, which is the de facto language for system level modeling. The
SystemC TLLM can be compiled natively on the host machine and simulated
to obtain timing metrics. These metrics can then be used for design optimization
as explained earlier.



Case Study 323

ESE BACK END
After the design optimization steps are completed, a satisfactory designed is
obtained at the system level. However, this design is still in the form of a TLM,
which is suitable for simulation but for ready for implementation with standard
EDA tools. The TLM must be transformed into the aforementioned CAM for
hand-off to ASIC and FPGA implementation tools. The synthesis of the CAM
from TLM is supported by the ESE back end as shown in Figure 8.11.

There are three modules in the back end, each working on different parts
of the TLM. The software synthesis module produces the PE specific C/C++
code for software implementation. Naturally, the PEs in consideration for SW
synthesis are embedded processors such as CPUs or DSPs. The application
code is imported as is from the TLM. If an RTOS is present, the RTOS model
is replaced with the actual RTOS kernel library from the database. Finally, the
communication layers are generated. The communication layers implement
the abstract channel based communication in the TLM using processor spe-
cific code. The synchronization with external processes is implemented using
interrupt or polling. If interrupts are used, the specific interrupt handlers are
generated and instantiated for each channel. If a polling option is chosen, then
the HW polling flag management code is generated. The abstract data transfer
of the TLM is implemented by creating an address map for the transactions and
generating specific load and store transactions. Once all the code is generated,
the cross-compiler for the embedded processor is used to generate the software
binary.

For hardware implementation, the RTL code for the specific hardware PE
must be generated. If a RTL model of the PE is already available in the IP

FIGURE 8.11 SW-HW synthesis with ESE back end



324 Embedded Design Practice

database, the C model in the TLM is simply replaced with this RTL model. If a
RTL implementation is not available, it must be synthesized from the C model in
the TLM. For this purpose, an industrial high level synthesis (HLS) tool may be
used. ESE also supports generation of PE RTL model using the No Instruction
Set Computer (NISC) technology [40]. The NISC technology is based on the
programmable controller design of hardware PEs as explained in Section 6.1.
A suitable data path template is selected based on the C profile of the process
mapped to the hardware PE. Then, the NISC compiler is used to translate the
C code of the process into control words to drive the data path. A Verilog RTL
description of the data path and the control memory is automatically generated
from the NISC tools for hardware implementation.

The final step in CAM generation is the RTL generation of the communication
structure of the system. The bus protocol library is used to instantiate the bus
controllers for all the buses in the system. The RTL description of all the
transducers is also generated automatically based on the mapping of channels to
routes in the platform. Interrupt controllers are also instantiated and configured,
if needed.

The CAM produced by the ESE back end consists of C or binary code for all
the software PEs in the system and RTL Verilog code for all the hardware PEs,
buses and transducers. The CAM may be simulated using standard Verilog
simulators available commercially. Since the Verilog code is synthesize-able,
it can be input to logic synthesis tool for ASIC implementation. Alternately,
ESE produces FPGA-ready description of the CAM for prototyping on FP-
GAs. Therefore, ESE enables a well defined and automated path from system
specification to a software/hardware implementation.

8.4.2 DESIGN DRIVER: MP3 DECODER
As explained earlier, ESE provides model automation, estimation and soft-

ware/hardware synthesis from abstract system representation. The tool support

HuffDec

FilterCoreIMDCT 

PCM

FilterCoreIMDCT 

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2granules

FIGURE 8.12 MP3 decoder application model



Case Study 325

in ESE facilitates design of complex embedded systems for large applications.
In order to demonstrate the efficacy of ESE, we have chosen the MP3 decoder
application as a design driver. The MP3 decoder is an ideal application in
many ways. It is reasonably complex, with over 13000 lines of C code, to jus-
tify a system level design approach. It is modular with well defined functions
to demonstrate partitioning and hardware-software implementation. Since it
typically has streaming input and output, there are real time constraints that
require an application specific implementation. Finally, MP3 decoder designs
are pervasive and highly relevant to mobile multimedia devices.

MP3 APPLICATION
The functional block diagram of the MP3 decoder [182] is shown in Figure 8.12.
The input to the decoder is an MP3 data stream consisting of frames. Each
frame of MP3 data is decoded using huffman decoding function (HuffDec).
The frame is then split into granules that are sent to two channels, left channel
and right channel, for stereo decoding. The two channels are data independent,
so they can work on completely independent sections of the granules. Each
granule section undergoes a sequence of transforms, namely alias reduction
(AliasRed), inverse modified discrete cosine transform (IMDCT), and discrete
cosine transform (DCT). Finally, the decoded granules are combined into pulse
code modulated (PCM) frames that are ready to be sent to speaker.

In order to play the streaming MP3 file without dropped frames, the decoding
rate must be at least 36 frames per second. As a result, after compensating for I/O
delays, each frame must be decoded within 26.12 milliseconds (ms). Therefore,
we have a real time constraint on the execution time of the decoder application.
If a pure software implementation meets the required constraint, it would be
an ideal implementation. Otherwise, a multi-core implementation, may be
required. The decoding can be sped up by adding specialized hardware PEs
for the compute intensive IMDCT and DCT functions. The data independence
between the two decoding channels can also be used to parallelize the left and
right channel transforms.

MP3 DESIGN FLOW
A design space exploration exercise is done with ESE to implement the MP3
decoder on a suitable platform that meets the real time constraint of 26.12 ms on
the frame delay. In other words, the delay for each frame from the beginning of
huffman decoding to the end of PCM output must be less than 26.12 ms. During
this design space exploration, we start with a pure software implementation and
incrementally move the compute intensive functions to hardware processors
until the timing constraint is satisfied. The timed TLMs generated by ESE and



326 Embedded Design Practice

simulated with a sample MP3 file, as input, to estimate the performance of the
design and to determine if it meets the timing constraint.

The chosen underlying implementation technology is Xilinx Virtex-II FPGA
[196]with a maximum clock rate of 100 MHz. For software implementation, a
Xilinx Microblaze (MB) processor is used on the FPGA chip. MB interfaces
with the open peripheral bus (OPB and an off-chip SRAM is used to store the
program and data. All hardware processors are generated using the NISC tools
and they interface to the double handshake bus (DHB). Since the OPB and
DHB protocols are different, a transducer is used to interface between them.
The transducer component, therefore, enables communication between MB and
the hardware processors.

We start with a software implementation, in which all the MP3 functions are
mapped to MB. We will refer to this mapping as SW+0. The 0 indicates the
lack of any hardware processors. The timed TLM for SW +0 was generated by
ESE and the frame decoding time was estimated to be 35.66ms. Based on this
estimation, the SW +0 design of the MP3 decoder does not meet the decoding
time constraint.

As a next step, we decided to add a hardware processor to implement the
DCT function. We will refer to the new design as SW+1, in which 1 refers
to the DCT hardware processor. The DCT hardware is generated using the
NISC tools and it uses the (DHB) interface protocol, as mentioned earlier. A
transducer (Tx) was also introduced to connect OPB and DHB. The timed TLM
for SW +1 was generated by ESE and the frame decoding time was estimated
to be 32.89ms. Based on this estimation, the SW + 1 design of the MP3
decoder also does not meet the decoding time constraint. The improvement
over SW +0 was not too large because of the communication overhead caused
by Tx.

To further improve the design performance, without much effort, we decided
to use two instances of the DCT hardware processor to execute the DCT function

MB1 Memory

Tx

DCT1 DCT2 IMDCT1 IMDCT2

OPB

DHB

FIGURE 8.13 MP3 decoder platform SW+4



Case Study 327

for the two decoding channels in parallel. This design is referred to as SW+2
because of the two hardware processors. The timed TLM for SW + 2 was
generated by ESE and the frame decoding time was estimated to be 29.99ms.
Again, the speed up over SW + 1 design was only marginal. The SW + 2
design of the MP3 decoder also did not meet the decoding time constraint.

As a next step, we created a SW+4 design that included two instances each
of DCT and IMDCT hardware processors. Therefore, the IMDCTs were also
accelerated using specialized hardware. This platform in shown in Figure 8.13.
The timed TLM for SW + 4 was generated by ESE and the frame decoding
time was estimated to be 15.96ms. Based on this estimation, SW + 4 design
of the MP3 decoder met the decoding time constraint of 26.12ms. As a result,
the SW + 4 design was selected for implementation.

The above four platforms and mappings were created graphically in ESE and
TLMs were automatically generated for evaluation of the respective designs.
The TLMs were then used to synthesize software and hardware for the Mi-
croblaze soft-core processor and the Xilinx FPGA by the ESE back end. The
generated software and hardware were exported to Xilinx Embedded Develop-
ment Kit (EDK) for bitstream generation and programming of the FPGA. The
programmed FPGA was tested with various MP3 sample inputs. In the next
section, we will present various results pertaining to design of the MP3 decoder
for the four platforms using ESE.

8.4.3 RESULTS
In this section we will discuss the results for system level design of the MP3

decoder with ESE. We will discuss four designs SW +0 to SW +4 as described
above. The results for ESE front end demonstrate the benefits of using TLMs
for early design performance estimation. The back end results demonstrate
that automatic software and hardware synthesis can lead to design quality that
is comparable to manual design. Automatic synthesis naturally leads to huge
productivity gain in both design development and validation time. The overall
design time is reduced from several months to less than a week as a result of
using automatic system level design tools.

TLM ACCURACY
The MP3 design flow is simplified by the interactive graphical design decisions
and automatic TLM generation. The design decisions of adding hardware pro-
cessors were based on the estimation provided by the timed TLMs. Therefore,
it is crucial that the TLM estimation is accurate enough for the design decisions
to be made reliably. To determine if TLM estimation is accurate, let us compare



328 Embedded Design Practice

the timing estimates provided by TLMs to actual board measurements for the
same designs.

Figure 8.14 compares the speed and accuracy of automatically generated
TLMs with traditional models. The X-axis shows the execution time of the
model and the Y-axis is the relative accuracy of the timing reported by the model.
The actual board design is the naturally the reference for measuring accuracy.
It can be seen that the CAM provides timing estimation that is identical to the
board measurements. Since the CAM is cycle accurate, this is to be expected.
However, the simulation time of the CAM is in the order of 15 to 18 hours for
each MP3 sample frame. This is inordinately long for any reasonable design
space exploration.

Typically, designers use instruction set simulation model (ISM) of a processor
to speed up simulation. An ISM models the processor micro-architecture in a
high level language such as C/C++. The binary of the software is loaded into
the ISM memory. During simulation, the ISM interprets the instruction stream
and updates the processor state. The hardware peripherals may be modeled in
RTL using VHDL or Verilog. The high level processor model is instantiated as
a module in Verilog. The ISM is typically faster than the CAM because it does
not model the processor at the cycle-accurate level. However, the performance
estimation accuracy of the ISM may vary based on the quality of the processor
model. In the case of the MP3 designs, the accuracy of the ISM varied from
50% to 80% compared to board measurements. The unpredictable accuracy of

<1sec0 <1 m i n 3 ~ 4  h r s 15 ~ 18 h r s
Func. TLM

Exec. Time

A ccu r a cy

100%
8 5 -9 5 %

~ 5 0-8 0%

B o a r d

Ti m e d  TLM

I S M

C A M

FIGURE 8.14. Execution speed and accuracy trade-offs for embedded system models



Case Study 329

ISMs makes them unsuitable for early design space exploration. Furthermore,
although the simulation speed of ISMs was about 5 times faster than the CAMs,
it was still in the order of few hours.

The TLMs generated automatically by the ESE front end were two orders of
magnitude faster than the ISM or the CAM. The timed TLMs were generated
for all the design in under a minute and simulated under a minute as well. In
contrast with the ISM, the timed TLMs were consistently accurate for all the
platforms. A marginal error of under 15% was found in the TLM performance
estimation. Therefore, designers can use timed TLMs for early estimation with
a high degree of confidence.

In Figure 8.14, we distinguish between timed and untimed (or functional)
TLMs. While the timed TLMs are used for performance estimation, the high
simulation speed of functional TLMs makes them ideal for software develop-
ment. It must be noted that functional TLMs may be generated even for a partial
or test application. The process code may be developed using the functional
TLM as a virtual platform. The results therefore demonstrate the efficacy and
suitability of TLMs for early application development and reliable performance
estimation.

DESIGN QUALITY
One of the primary concerns of automatic synthesis methods is the quality
of design. Various metrics for design quality may be used. Some of the most
common metrics are performance, silicon footprint and power dissipation. Gen-
erally speaking, it is difficult to evaluate the efficiency of a synthesis method
by comparing its output to a manual design. The manual design is highly sen-
sitive to the type of application, its complexity and most of all the expertise of

0

5

1 0

1 5

2 0

2 5

3 0

3 5

0
1 0
2 0
3 0
4 0
50
6 0
7 0
8 0
9 0

1 00

S W + 0 S W + 1 S W + 2 S W + 4

De
lay

[m
s]

Ch
ip 

uti
liz

ati
on

[%
]

%Slices

%B R A M s

E x ec.  t i m e

FIGURE 8.15 MP3 manual design quality



330 Embedded Design Practice

the designer. Nonetheless, a comparison of synthesized designs with an expert
manual designer may give us better insight into the industrial viability of the
synthesis tool.

To evaluate the quality of implementation produced by ESE back end, an
expert designer created the software/hardware implementations of the four MP3
decoder designs described earlier. The hardware PEs were designed in RTL
and the software was implemented directly on the FPGA using the Xilinx EDK
tools. Figure 8.15 shows the performance and area of the manual designs.

In order to evaluate the performance of the designs, a sample MP3 file was
loaded on the on-board memory and used as input. The average decoding time
for each frame is shown in milliseconds. The pure software design is too slow
to meet the 26.12 millisecond decoding time constraint. As predicted by TLM
simulation, only the SW +4 implementation was able to meet the specified real
time constraint. The design area is indicated by the percentage of block RAMs
(BRAMs) and FPGA slices used by the implementation. The hardware PEs,
namely the DCT and the IMDCT, had a hardwired controller implementation,
which justifies the high number of slices used by the SW + 4 implementation.

Figure 8.16 shows the performance and area of designs generated automat-
ically from ESE. Compared to the corresponding manual designs, the perfor-
mance of the generated designs was almost identical. In this case too, only
the SW + 4 design was able to meet the real time constraints imposed by
the application. The area of the generated designs was different compared the
manual designs. Notably, fewer slices were used in the generated design but
significantly more BRAMs were used. The reasoning is that the NISC design

0

5

1 0

1 5

2 0

2 5

3 0

3 5

0
1 0
2 0
3 0
4 0
50
6 0
7 0
8 0
9 0

1 00

S W + 0 S W + 1 S W + 2 S W + 4

De
lay

[m
s]

Ch
ip
 ut

ili
za

tio
n[
%]

%Slices

%B R A M s

E x ec.  t i m e

FIGURE 8.16 Automatically generated MP3 design quality



Case Study 331

template was used for the hardware PEs in automatically generated designs.
In contrast to the manual designed hardware PEs, NISC uses control words in
memory to drive the data path. Therefore, NISC implementations are generally
memory intensive. However, all the design could still fit on the target Virtex-II
FPGA. The total number of FPGA resources used by automatically generated
designs was comparable to the manual designs. Therefore, we can conclude
that automatically generated designs are comparable to manual designs in terms
of quality metrics of performance and area. This is a significant argument in
favor of using automatic system level design tools.

PRODUCTIVITY GAINS
The single most important factor that drives the rise in design abstraction level
is productivity gain. Typically, designs descriptions at higher abstraction levels
are more compact, understandable and easily modified. Therefore, greater
optimization opportunities are available at higher abstraction level. The two
key productivity metrics we consider here are the design development time
and validation time. Development time directly translates to design cost and
time to market. Naturally, reducing the development time is always desirable.
Similarly, design validation time directly impacts quality of design which is an
important factor is product success.

Figure 8.17 illustrates the productivity gain in development time as a result
of using ESE. Traditional design practice starts with RTL and embedded SW
coding for selected platforms. The reference C specification model is used for
developing test bench to verify the cycle accurate models. For MP3 platforms

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

S p e c . T L M C A M B o a r d

De
v. 
tim

e [
da

ys
] S W + 0

S W + 1
S W + 2
S W + 4

ESE

M a n u a l

FIGURE 8.17 Development productivity gains from model automation



332 Embedded Design Practice

with HW components, the RTL development time was in the order of months.
As a result, board prototypes for these designs took between 40 to 60 days.
ESE drastically cuts prototype development time by automatically generating
TLM and RTL models. With ESE, the final board prototypes for MP3 designs
were available in less than a week after the specification model was finalized.
Consequently, ESE results in significant savings in design cost and shorter
development cycles.

Figure 8.18 illustrates the productivity gain resulting from a TLM based
design methodology supported by ESE. As a consequence of traditional cycle
accurate modeling, designers must make design optimizations and changes on
RTL and low level SW code. Each change needs to be verified using time
consuming cycle accurate simulations. Each CAM simulation of the MP3
designs took 15 to 18 hours for MP3 designs. This is a significant component
of design time. Although at speed on-board verification is faster than even
reference application C model simulation, bugs found in on-board testing are
difficult to trace back to the CAM.

TLMs remove the burden of cycle accurate simulations by moving the design
abstraction to a higher level. ESE generated TLMs execute at the same speed
as reference C simulation. Design changes can made at the transaction level
and can hence be verified and debugged using the automatically generated high
speed TLMs. TLMs are easier to debug and maintain because their code size
is at least an order of magnitude less than corresponding CAM code size.

Automatic CAM generation from TLM is also less likely to introduce bugs
in the design compared to manual CAM optimizations. This has been true in

0
1
2
3
4
5
6
7
8
9

10

Spec. T L M C A M B o a r d

SW+0
SW+1
SW+2
SW+4

E S E

Va
lid

ati
on

 Ti
me

 [s
ec

]

1 8 . 0 6  h r s1 7 . 7 1  h r s1 7 . 5 6  h r s1 5 . 9 3  h r s
T r a d i t i o n a l

FIGURE 8.18 Validation productivity gain from using TLM vs. CAM



Summary 333

the past when the modeling abstraction moved from gate level to RTL with the
use of logic synthesis tools. Therefore, ESE reduces validation time from an
order of several hours or even days to a few seconds. As a results, designers
can use ESE to make platform and application optimizations at a higher level,
automatically generate TLMs and verify the optimizations in a few seconds.

8.5 SUMMARY
We discussed several academic and commercial tools for various aspects

of embedded system design. These range from system level modeling and
simulation to automatic synthesis of software and hardware. We also presented
a case study for design of MP3 decoder on a heterogeneous platform. The results
show that the design methods presented in this book can work for practical
embedded system design. The automatic design tools provide fast and accurate
models, design quality comparable to manual and huge productivity gains.
These results point to the significant advantages and benefits of using embedded
system design methods described in this book.



References

[1] Samar Abdi and Daniel Gajski. Functional validation of system level model transfor-
mations. International Journal of Parallel Programming, 34(1):29–59, February 2006.

[2] Samar Abdi, Dongwan Shin, and Daniel Gajski. Automatic communication refinement
for system level design. In Design Automation Conference, pages 300–305, 2003.

[3] Accellera. RTL Semantics: Draft Specification, Version 0.8. Working Group of the
Architectural Language Committee, February 2001.

[4] Advanced RISC Machines Ltd. (ARM). AMBA Specification (Revision 2.0), 1999. ARM
IHI 0011A.

[5] Perry Alexander. System Level Design with Rosetta. Morgan Kaufmann, 2006.

[6] Charles André. Representation and analysis of reactive behaviors: A synchronous ap-
proach. In Computational Engineering in System Applications (CESA), Lille, France,
July 1996.

[7] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann, December
1995.

[8] Motor Industry Research Association. MISRA-C 2004: Guidelines for the Use of the C
Language in Critical Systems. 2004.

[9] AUTOSAR Partnership. Autosar: Automotive open system architecture. http://www.
autosar.org/.

[10] M. Balakrishnan and P. Marwedel. Integrated scheduling and binding: A synthesis
approach for design space exploration. In Design Automation Conference, pages 68–74,
Las Vegas, NV, June 1989.

[11] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Lu-
ciano Lavagno, Claudio Passerone, Alberto Sangiovanni-Vincentelli, Ellen Sentovich,
Kei Suzuki, and Bassam Tabbara. Hardware-Software Co-Design of Embedded Systems:
The POLIS Approach. Kluwer Academic Publishers, 1997.

[12] Felice Balarin, Harry Hsieh, Luciano Lavagno, Claudio Passerone, Alessandro Pinto,
Alberto Sangiovanni-Vincentelli, Yosinori Watanabe, and Guang Yang. Metropolis: A



336 REFERENCES

design environment for heterogeneous systems. In Wayne Wolf and Ahmed Jerraya,
editors, Multiprocessor Systems-on-Chips. Morgan Kaufmann, 2004.

[13] M. Barbacci. Instruction set processor specification (isps): The notation and its applica-
tion. IEEE Transactions on Computers, C-30(1):24–40, January 1981.

[14] M. R. Barbacci. A comparison of register transfer level languages for describing com-
puters and other digital systems. IEEE Transactions on Computers, C-24(2), February
1975.

[15] M. R. Barbacci. Instruction set processor specifications for simulation, evaluation, and
synthesis. In Design Automation Conference, pages 64–72, San Diego, CA, United
States, 1979.

[16] C. G. Bell and A. Newell. Computer Structures: Readings and Examples. McGraw-Hill,
1971.

[17] Rudy Belliardi, Ben Brosgol, Peter Dibble, David Holmes, and Andy Wellings. The
Real-Time Specification for Java, 2006.

[18] Albert Beneviste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic,
and Robdert de Simone. The synchronous languages twelve years later. Proceedings of
the IEEE, 91(1):64–83, January 2003.

[19] L. Bening and H. Foster. Principles of Verifiable RTL Design. Kluwer Academic Pub-
lishers, 2000.

[20] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francsco Menichelli, and Mauro
Olivieri. MPARM: Exploring the multi-processor SoC design space with SystemC.
Journal of VLSI Signal Processing, 41(2):169–182, September 2005.

[21] Gerard Berry. The foundations of Esterel. In Gordon Plotkin, Colin Stirling, and Mads
Tofte, editors, Proof, Language, and Interaction: Essays in Honor of Robin Milner. MIT
Press, 2000.

[22] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. Cyclo-static
dataflow. IEEE Transactions on Signal Processing, 44(2):397–408, February 1996.

[23] Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling Language (UML)
Specification, Version 1.5. Object Management Group (OMG), March 2003.

[24] Aimen Bouchhima, Iuliana Bacivarov, Wassim Youssef, Marius Bonaciu, and Ahmed A.
Jerraya. Using abstract CPU subsystem simulation model for high level HW/SW ar-
chitecture exploration. In Asia and South Pacific Design Automation Conference (ASP-
DAC), Shanghai, China, January 2005.

[25] R. K. Brayton, R. Camposano, G. De Micheli, R.H.J.M. Otten, and J. Van Eijndhoven.
The yorktown silicon compiler system. In Daniel D. Gajski, editor, Silicon Compilation.
Addison-Wesley, 1988.

[26] Forrest D. Brewer and Daniel D. Gajski. An expert-system paradigm for design. In
Design Automation Conference, pages 203–509, Las Vegas, NV, June 1986.

[27] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computer, C-35(8):677–691, August 1986.



REFERENCES 337

[28] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogeneous systems. International Journal
of Computer Simulation, Special Issue on Simulation Software Development, 4:155–182,
April 1994.

[29] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[30] Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers,
1999.

[31] Lukai Cai and Daniel Gajski. Transaction level modeling: An overview. In International
Symposium on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
Newport Beach, CA, USA, October 2003.

[32] Lukai Cai, Andreas Gerstlauer, and Daniel Gajski. Retargetable profiling for rapid, early
system-level design space exploration. In Design Automation Conference, San Diego,
CA, USA, June 2004.

[33] Jean-Paul Calvez. Embedded Real-Time Systems: A Specification and Design Method-
ology. John Wiley and Sons, 1993.

[34] Raul Camposano. Path-based scheduling for synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 10(1):85–93, January 1991.

[35] Raul Camposano and Wayne Wolf (editors). High-Level VLSI Synthesis. Kluwer Aca-
demic Publishers, 1991.

[36] Raul Camposano and Wolfgang Rosenstiel. A design environment for the synthesis of
integrated circuits. In EUROMICRO Symposium on Microprocessing and Micropro-
gramming, Brussels, Belgium, September 1985.

[37] Carbon Design Systems. Carbon SoC Designer. http://www.carbondesignsystems.
com/.

[38] Celoxica Ltd. Handel-C Language Reference Manual, 2005.

[39] Center for Embedded Computer Systems (CECS). Embedded System Environment,
Center for Embedded Computer Systems, University of California, Irvine. http://www.
cecs.uci.edu/∼ese, 2008.

[40] Center for Embedded Computer Systems (CECS). NISC Technology. http://www.cecs.
uci.edu/∼nisc/, 2008.

[41] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. xpilot: A platform-based
behavioral synthesis system. In SRC Techcon Conference, October 2005.

[42] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, January
2000.

[43] CoFluent Design. CoFluent Studio. http://www.cofluentdesign.com/.

[44] Lockheed Martin Corporation. JSF Air Vehicle C++ Coding Standards for the System
Development and Demonstration Program, 2005.



338 REFERENCES

[45] P. Coussy and A. Morawiec, editors. High-Level Synthesis: from Algorithm to Digital
Circuit. Springer, 2008.

[46] CoWare. http://www.coware.com/.

[47] G. de Jong. A uml-based design methodology for real-time and embedded systems.
In IEEE International Conference Design and Test in Europe (DATE), pages 776–779,
Paris, France, March 2002.

[48] S. Devadas, H.K. T. Ma, and A. R. Newton. On the verification of sequential machines
at different levels of abstraction. In Design Automation Conference, pages 271–276,
Miami Beach, FL, USA, June 1987.

[49] Srinivas Devadas and A. Richard Newton. Algorithm for allocation in data path synthe-
sis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
8(7):768–781, July 1989.

[50] S. W. Director, A. C. Parker, D. P. Siewiorek, and D. E. Thomas. A design methodology
and computer design aids for digital vlsi systems. IEEE Transactions on Circuits and
Systems, 28(7):634–645, July 1981.

[51] Rainer Dömer, Andreas Gerstlauer, and Daniel Gajski. SpecC Language Reference
Manual, Version 2.0. SpecC Technology Open Consortium (STOC), 2002.

[52] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo Yu,
Samar Abdi, and Daniel Gajski. System-on-Chip Environment: A SpecC-based Frame-
work for Heterogeneous MPSoC Design. EURASIP Journal on Embedded Systems
(JES), 2008(647953):13, 2008.

[53] dSPACE (Digital Signal Processing And Control Engineering). TargetLink. http://www.
dspace.com/.

[54] Bruce Eckel. Thinking in Java. Prentice-Hall, Upper Saddle River, N.J., 2003.

[55] Stephen A. Edwards. Languages for Digital Embedded Systems. Kluwer Academic
Publishers, 2000.

[56] J. P. Elliot. Understanding Behavioral Synthesis: A Practical Guide to High-Level
Design. Kluwer Academic Publishers, 1999.

[57] Esterel Technologies. Scade suite. http://www.esterel-technologies.com/.

[58] Forte Design Systems. Cynthesizer. http://www.forteds.com/, 2008.

[59] Eclipse Foundation. Eclipse. http://www.eclipse.org/.

[60] D. Gajski and R. Kuhn. New vlsi tools. Computer Magazine, pages 11–14, December
1983.

[61] Daniel Gajski, Nikil Dutt, Allan Wu, and Steve Lin. High-Level Synthesis: Introduction
to Chip and System Design. Kluwer Academic Publishers, 1992.

[62] Daniel D. Gajski. Principles of Digital Design. Prentice-Hall, September 1996.



REFERENCES 339

[63] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Specification and Design
of Embedded Systems. Prentice-Hall, July 1994.

[64] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. SpecSyn: An environment
supporting the specify-explore-refine paradigm for hardware/software system design.
IEEE Transactions on Very Large Scale Integrated Systems (TVLSI), 6(1):84–100, March
1998.

[65] Daniel D. Gajski, Jianwen Zhu, Rainer Doemer, Andreas Gerstlauer, and Shuqing Zhao.
SpecC: Specification Language and Methodology. Kluwer Academic Publishers, March
2000.

[66] Lovic Gauthier, Sungjoo Yo, and Ahmed A. Jerraya. Automatic Generation and Targeting
of Application-Specific Operating Systems and Embedded Systems Software. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(11),
November 2001.

[67] Geensys. Autosar builder. http://www.geensys.com/.

[68] Marc Geilen and Twan Basten. Requirements on the execution of Kahn process networks.
In European Symposium on Programming (ESOP), pages 319–334, Warsaw, Poland,
April 2003.

[69] Gentleware. Poseidon for uml. http://www.gentleware.com/.

[70] Patrice Gerin, Sungjoo Yoo, Gabriela Nicolescu, and Ahmed A. Jerraya. Scalable and
flexible cosimulation of SoC designs with heterogeneous multiprocessor target architec-
tures. In Asia and South Pacific Design Automation Conference (ASP-DAC), Yokohama,
Japan, January 2001.

[71] Andreas Gerstlauer. Modeling Flow for Automated System Design and Exploration.
PhD thesis, Information and Computer Science, University of California, Irvine, May
2004.

[72] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski. System Design:
A Practical Guide with SpecC. Kluwer Academic Publishers, 2001.

[73] Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Daniel Gajski, Atsushi Nakamura,
Dai Araki, and Yuuji Nishihara. Specify-Explore-Refine (SER): From specification to
implementation. In Proceedings of the Design Automation Conference (DAC), pages
586–591, Anaheim, CA, USA, June 2008.

[74] Andreas Gerstlauer, Dongwan Shin, Junyu Peng, Rainer Doemer, and Daniel Gajski.
Automatic, layer-based generation of system-on-chip bus communication models.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(9):1676–1687, September 2007.

[75] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. RTOS modeling for system level
design. In Ahmed A. Jerraya, Sungjoo Yu, Norbert Wehn, and Diedrik Verkest, editors,
Embedded Software for SoC. Springer, September 2003.

[76] Andreas Gerstlauer, Shuqing Zhao, Daniel Gajski, and Arkady Horak. Specc system-
level design methodology applied to the design of a gsm vocoder. In SASIMI, 2000.



340 REFERENCES

[77] Frank Ghenassia, editor. Transaction-Level Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems. Springer, November 2005.

[78] Gordon. Specification and verification of hardware, October 1992.

[79] James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java Language
Specification. Addison-Wesley, third edition, 2005.

[80] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT Press, second edition, 1999.

[81] Torsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design with SystemC.
Springer, 2002.

[82] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Egon Börger, editor, Specifi-
cation and Validation Methods. Oxford University Press, 1995.

[83] Soonhoi Ha, Sungchan Kim, Choonseung Lee, Youngmin Yi, Seongnam Kwon, and
Young-Pyo Joo. PeaCE: A hardware-software codesign environment of multimedia
embedded systems. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 12(3):1–25, 2007.

[84] L. Hafer and A. C. Parker. Register transfer level automatic digital design: The allocation
process. In Design Automation Conference, Las Vegas, NV, United States, June 1978.

[85] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
dataflow programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[86] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987.

[87] David Harel and Amnon Naamad. The STATEMATE semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology (TOSEM), 5(4):293–333, Oc-
tober 1996.

[88] Graham Hellestrand. The engineering of supersystems. IEEE Computer, 38(1):103–105,
January 2005.

[89] F. Herrera, H. Posadas, P. Sanchez, and E. Villar. Systematic Embedded Software Gen-
eration from SystemC. In Proceedings of the Design Automation and Test Conference
in Europe, Munich, Germany, March 2003.

[90] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[91] Andreas Hoffmann, Heinrich Meyr, and Rainer Leupers. Architecture Exploration for
Embedded Processors with LISA. Kluwer Academic Publishers, 2003.

[92] Matthias Homann. OSEK: Betriebssystem-Standard für Automotive und Embedded Sys-
tems. mitp-Verlag, 2 edition, 2005.

[93] Yonghyun Hwang, Samar Abdi, and Daniel Gajski. Cycle-approximate retargetable per-
formance estimation at the transaction level. In IEEE International Conference Design
and Test in Europe (DATE), pages 3–8, Munich, Germany, March 2008.



REFERENCES 341

[94] IBM. Telelogic rhapsody. http://www.ibm.com/.

[95] MathWorks Inc. MATLAB and Simulink Student Edition. Pearson, 2008.

[96] National Instruments Inc. and Robert H. Bishop. LabVIEW Student Edition. Prentice-
Hall, 2007.

[97] Tensilica Inc. Xtensa xplorer design environment. http://tensilica.com/.

[98] International Organization for Standardization. Reference Model of Open System Inter-
connection (OSI), second edition, 1994. ISO/IEC 7498 Standard.

[99] International Technology Roadmap for Semiconductors (ITRS). ITRS Home. http:
//www.itrs.net/, 2008.

[100] R. S. Janka. Specification and Design Methodology for Real-Time Embedded Systems.
Kluwer Academic Publishers, 2004.

[101] Axel Jantsch. Modeling Embedded Systems and SoCs: Concurrency and Time in Models
of Computation. Morgan Kaufmann, 2004.

[102] A. A. Jerraya, H. Ding, P. Kission, and M. Rahmouni. Behavioral Synthesis and Com-
ponent Reuse with VHDL. Kluwer Academic Publishers, 1997.

[103] Ahmed A. Jerraya. Long term trends for embedded system design. In EUROMICRO
Symposium on Microprocessing and Microprogramming, pages 20–26, Rennes, France,
September 2004.

[104] Gilles Kahn. The semantics of a simple language for parallel programming. In Infor-
mation Processing, pages 471–475, Stockholm, Sweden, August 1974.

[105] Joachim Keinert, Martin Streubühr, Thomas Schlichter, Joachim Falk, Jens Gladigau,
Christian Haubelt, Jürgen Teich, and Mike Meredith. SystemCoDesigner - an auto-
matic ESL synthesis approach by design space exploration and behavioral synthesis for
streaming applications. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 14(1):1–23, 2009.

[106] Brian Kernighan and Dennis Ritchie. The C programming language. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[107] Kurt Keutzer, Sharad Malik, Richard A. Newton, Jan M. Rabaey, and Alberto
Sangiovanni-Vincentelli. System-level design: Orthogonalization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[108] A. A. Khan, Carolyn McCreary, and M. S. Jones. A comparison of multiprocessor
scheduling heuristics. In International Conference on Parallel Processing, pages 243–
250, 1994.

[109] Wolfgang Klingauf, Robert Günzel, Oliver Bringmann, Pavel Parfuntesu, and Mark
Burton. GreenBus: A generic interconnect fabric for transaction-level modeling. In
Design Automation Conference, San Francisco, CA, USA, July 2006.

[110] D. W. Knapp. Behavioral Synthesis: Digital System Design Using the Synopsys Behav-
ioral Compiler. Prentice-Hall, 1996.



342 REFERENCES

[111] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Applications.
Kluwer Academic Publishers, 1997.

[112] Matthias Krause, Oliver Bringmann, and Wolfgang Rosenstiel. Target software gen-
eration: An approach for automatic mapping of SystemC specifications onto real-time
operating systems. 10(4):229–251, December 2005.

[113] T. Kropf. Introduction to Formal Hardware Verification. Springer, 1999.

[114] D. Ku and G. De Micheli. High Level Synthesis of ASICs under Timing and Synchro-
nization Constraints. Kluwer Academic Publishers, 1992.

[115] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and Yunheung Paek. A
retargetable parallel programming framework for MPSoC. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 13(3), 2008.

[116] Luciano Lavagno, Grant Martin, and Bran Selic, editors. UML for Real: Design of
Embedded Real-Time Systems. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[117] Luciano Lavagno, Alberto Sangiovanni-Vincentelli, and Ellen Sentovich. Models of
computation for embedded system design. In Ahmed Jerraya and Jean Mermet, editors,
System-Level Synthesis. Kluwer Academic Publishers, 1999.

[118] Edward A. Lee. Consistency in dataflow graphs. IEEE Transactions on Parallel and
Distributed Systems, 2(2):223–235, April 1991.

[119] Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, May 2006.

[120] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235–1245, September 1987.

[121] INMOS Limited. Occam 2 Reference Manual. Prentice-Hall, 1988.

[122] Joe S. Lis and Daniel D. Gajski. Synthesis from vhdl. In IEEE International Conference
on Computer Design, 1988.

[123] Lucky Lo Chi Yu Lo and Samar Abdi. Automatic systemc tlm generation for custom
communication platforms. In International Conference on Computer Design, pages
41–46, 2007.

[124] H. De Man, J. Rabaey, P. Six, and L. Claesen. Cathedral-II: A Silicon Compiler for
Digital Signal Processing. IEEE Design and Test of Computers, 3(6):13–25, November
1986.

[125] Florence Maraninch. The Argos language: Graphical representation of automata and
description of reactive systems. In International Conference on Visual Languages, Kobe,
Japan, October 1991.

[126] Grant Martin and Wolfgang Müller, editors. UML for SOC Design. Springer, 2005.

[127] Peter Marwedel. The MIMOLA design system: Detailed description of the software
system. In Design Automation Conference, pages 59–63, San Diego, CA, United States,
June 1979.



REFERENCES 343

[128] Peter Marwedel. A new synthesis algorithm for mimola software system. In Design
Automation Conference, pages 131–137, Las Vegas, NV, June 1986.

[129] Peter Marwedel. Embedded Systems Design. Kluwer Academic Publishers, 2003.

[130] Peter Marwedel. Embedded System Design. Springer, 2006.

[131] MathWorks Inc. Real-Time Workshop. http://www.mathworks.com/.

[132] MathWorks Inc. Simulink - Simulation and Model-Based Design. http://www.
mathworks.com/.

[133] M. C. McFarland. The value trace: A database for automated digital design. Master’s
thesis, Carnegie-Mellon University, December 1978.

[134] M. C. McFarland. Using bottom-up design technique in the synthesis of digital hardware
from abstract behavioral descriptions. In Design Automation Conference, Las Vegas,
NV, June 1986.

[135] M.C. McFarland. Formal verification of sequential hardware: A tutorial. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 12(5):633–653,
May 1993.

[136] K.L. McMillan. Symbolic Model Checking: An approach to the State Explosion Problem.
Kluwer Academic Publishers, 1993.

[137] Mentor Graphics. The EDA Technology Leader - Mentor Graphics. http://www.mentor.
com/, 2008.

[138] P. Michel, U. Lauther, and P. Duzy, editors. Synthesis Approach to Digital System Design.
Kluwer Academic Publishers, 1992.

[139] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1994.

[140] Microelectronic Embedded Systems Laboratory. SPARK: High-Level Synthesis using
Parallelizing Compiler Techniques. http://mesl.ucsd.edu/spark/, 2008.

[141] Robin Milner. A Calculus of Communicating Systems. Springer, 1980.

[142] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

[143] Andre Nacul and Tony Givargis. Synthesis of Time-Constrained Multitasking Embedded
Software. volume 11, pages 822–847, October 2006.

[144] NEC System Technologies Ltd. CyberWorkBench - System LSI Design Environment
to implement All-in-C Concept. http://www.necst.co.jp/, 2008.

[145] H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra, R. Bose, C. Zissulescu,
and E. F. Deprettere. Daedalus: Toward composable multimedia MP-SoC design. In
Proc. of the ACM/IEEE Int. Design Automation Conference (DAC ’08), pages 574–579,
June 2008.



344 REFERENCES

[146] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich Meyr, and
Andreas Hoffmann. A universal technique for fast and flexible instruction-set archi-
tecture simulation. In Design Automation Conference, New Orleans, LA, USA, June
2002.

[147] Object Management Group (OMG). Unified modeling language (UML). http://www.
uml.org/.

[148] Object Management Group (OMG). Common Object Request Broker Architecture: Core
Specification, Version 3.0.3, 2004.

[149] Object Management Group (OMG). OMG Systems Modeling Language (OMG SysML),
Version 1.1, 2008.

[150] Open SystemC Initiative (OSCI). http://www.systemc.org/, 2008.

[151] Alex Orailoglu and Daniel D. Gajski. Flow graph representation. In Design Automation
Conference, pages 503–509, Las Vegas, NV, June 1986.

[152] Barry M. Pangrle and Daniel D. Gajski. Design tools for intelligent silicon compila-
tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
6(6):1098–1112, November 1987.

[153] Barry M. Pangrle and Daniel D. Gajski. Slicer: A state synthesizer for intelligent silicon
compilation. In IEEE International Conference on Computer Design, Rye Brook, NY,
October 1987.

[154] Thomas M. Parks. Bounded Scheduling of Process Networks. PhD thesis, Electrical
Engineering and Computer Science, University of California, Berkeley, December 1995.

[155] P. Paulin and J. P. Knight. Algorithms for high-level synthesis. IEEE Computer, 6(6):18–
31, November 1989.

[156] P. G. Paulin and J. P. Knight. Force-directed scheduling for behavioral synthesis of
asic’s. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
8(6):661–679, June 1989.

[157] Philippe Coussy and Dominique Heller. GAUT WEB SITE. http://web.univ-ubs.fr/
gaut, 2008.

[158] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60(61):17–139, July 2004.

[159] Chris Porthouse. Jazelle for execution environments. http://www.arm.com/pdfs/
JazelleRCTWhitePaper final1-0 .pdf, May 2005.

[160] J. Rabaey, H. De Man, J. Vanhoof, G. Goossens, and F. Catthoor. Cathedral-II: A
Synthesis System for Multiprocessor DSP Systems. In Daniel D. Gajski, editor, Silicon
Compilation. Addison-Wesley, 1988.

[161] Mehrdad Reshadi and Daniel Gajski. A cycle-accurate compilation algorithm for custom
pipelined datapaths. In International Symposium on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2005.



REFERENCES 345

[162] Sebastian Ritz, Matthias Pankert, Vojin Zivojnvic, and Heinrich Meyr. High-Level Soft-
ware Synthesis for the Design of Communication Systems. IEEE Journal on Selected
Areas in Communications, April 1993.

[163] Stewart Robinson. Simulation: The Practice of Model Development and Use. John
Wiley and Sons, March 2004.

[164] Alberto Sangiovanni-Vincentelli. Quo Vadis SLD: Reasoning about the Trends and
Challenges of System Level Design. Proceedings of the IEEE, 95(3):467–506, March
2007.

[165] Alberto Sangiovanni-Vincentelli and Grant Martin. The platform-based design and soft-
ware design methodology for embedded systems. IEEE Design and Test of Computers,
18(6):23–33, November 2001.

[166] Gunar Schirner, Andreas Gerstlauer, and Rainer Doemer. Abstract, multifaceted mod-
eling of embedded processors for system level design. In Asia and South Pacific Design
Automation Conference (ASP-DAC), Yokohama, Japan, January 2007.

[167] Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer
languages. Technical Report PRG-6, Oxford Programming Research Group, 1971.

[168] D. P. Siewiorek and M. R. Barbacci. The cmu rt-cad system: An innovative approach to
computer aided design. In AFIPS National Computer Conference, pages 643–655, New
York, NY, United States, June 1976.

[169] Artisan Software. Artisan studio. http://www.artisansoftwaretools.com/.

[170] Space Codesign Systems. http://www.spacecodesign.com/.

[171] SpecC Technology Open Consortium Office. SpecC Technology Open Consortium.
http://www.specc.gr.jp/, 2008.

[172] The SPIRIT Consortium. IP-XACT, Release 1.4, March 2008.

[173] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA,
1997.

[174] Stuart Sutherland, Simon Davidmann, and Peter Flake. SystemVerilog For Design: A
Guide to Using SystemVerilog for Hardware Design and Modeling. Springer, June 2003.

[175] Spark Systems. Enterprise architect. http://www.sparxsystems.com.au/.

[176] D. E. Thomas, E. M. Dirkes, R. A. Walker, J. V. Rajan, J. A. Nestor, and R. L. Blackburn.
The system architect’s workbench. In Design Automation Conference, pages 337–343,
Anaheim, CA, June 1988.

[177] D. E. Thomas, C. Y. Hitchcock, T. J. Kowalski, J. V. Rajan, and R. A. Walker. Method
of automatic data path synthesis. IEEE Computer, 16(12):59–70, December 1983.

[178] D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J.V Rajan, and R.L. Blackburn.
Algorithmic and Register-Transfer Level Synthesis: The System Architect’s Workbench.
Kluwer Academic Publishers, 1990.



346 REFERENCES

[179] Donald E. Thomas. The Design and Analysis of an Automated Design Style Selector.
PhD thesis, Department of Electrical Engineering, Carnegie-Mellon University, 1977.

[180] Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, June 2002.

[181] C. J. Tseng and D. P. Siewiorek. Automated synthesis of data paths on digital sys-
tems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
5(3):379–395, July 1986.

[182] Underbit Technologies Inc. MAD: MPEG audio decoder. http://www.underbit.com/,
2008.

[183] University of California, Los Angeles (UCLA). The xPilot System. http://cadlab.cs.
ucla.edu/soc/, 2008.

[184] Frank Vahid and Tony Givargis. Embedded System Design: A Unified Hardware/Soft-
ware Introduction. John Wiley and Sons, October 2001.

[185] Frank Vahid, Sanjiv Narayan, and Daniel D. Gajski. SpecCharts: A VHDL front-end
for embedded systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 14(6):694–706, June 1995.

[186] J. Vanhoof, K. V. Rompaey, I. Bolsens, G. Goossens, and H. DeMan. High-Level Syn-
thesis for Real-Time Digital Signal Processing. Kluwer Academic Publishers, 1993.

[187] VaST Systems Technology Corporation. http://www.vastsystems.com/.

[188] Diederik Verkest, Karl Van Rompaey, Ivo Bolsens, and Hugo De Man. CoWare: A Design
Environment for Heterogeneous Hardware/Software Systems. Design Automation for
Embedded Systems, 1(4):357–386, October 1996.

[189] Virtutech. Virtutech Simics. http://www.virtutech.com/.

[190] K. Wakabayashi and T. Yoshimura. A resource sharing and control synthesis method for
conditional branches. In International Conference on Computer Aided Design, pages
62–65, November 1989.

[191] Kazutoshi Wakabayashi. Cyber: High level synthesis system from software into asic.
In Camposano and Wolf, editors, High-Level Synthesis. Kluwer Academic Publishers,
1991.

[192] John Waldron. Introduction to RISC Assembly Language Programming. Addison-
Wesley, 1998.

[193] Andy Wellings. Concurrent and Real-Time Programming in Java. Wiley, 2004.

[194] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution time problem: Overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), 7(3):1–53, April 2008.

[195] Wayne Wolf. Computers as Components. Morgan Kaufmann, 2001.



REFERENCES 347

[196] Xilinx Inc. FPGA and CPLD Solutions from Xilinx, Inc. http://www.xilinx.com/,2008.

[197] Haobo Yu. Software Synthesis for System-on-Chip. PhD thesis, Information and Com-
puter Science, University of California, Irvine, June 2005.

[198] Henning Zabel, Wolfgang Mueller, and Andreas Gerstlauer. Accurate RTOS modeling
and analysis with SystemC. In Wolfgang Ecker, Wolfgang Mueller, and Rainer Doemer,
editors, Hardware Dependent Software: Principles and Practice. Springer, 2009.

[199] Gerhard Zimmermann. The MIMOLA design system: A computer aided digital proces-
sor design method. In Design Automation Conference, pages 53–58, San Diego, CA,
United States, June 1979.



Index

Abstract channels, 119
Abstraction levels, 4, 71
Abstract state machine, 65
Accuracy, 109
Actors, 55
Addressing, 99
Allocation, 11, 15
AND states, 61
Application, 74
Application graph, 138
Application layer, 73, 84
Application modeling, 123
Arbitration, 100, 129
Arbitration policies, 130
Architecture, 289
Argos, 62
Assembly, 157
Assertions, 262
Asynchronous message-passing, 85
Automatic TLM generation, 121, 132
Back-annotation, 74
Back-End, 31
Backend, 288
Balance equations, 56
BCAM, 110
Behavior, 3, 49, 282
Binding, 12, 15
Board-based design, 115
Board Support Package (BSP), 114
Boolean Dataflow, 58
Bottom-up methodology, 35
Bounded, 55
Bounded model checking, 275
BRAMs, 330
Bridge, 93
Bus, 83
Bus Cycle-Accurate Model (BCAM), 72, 107
Bus delay modeling, 127
Bus-Functional Model (BFM), 82
Bus-Functional Models (BFMs), 72

Bus interface, 82
Bus modes, 130
C, 157
C++, 158
Calculus of Communicating Systems (CCS), 57
CAM, 110, 119
Capacity, 147
Capture-and-simulate, 18
CDFG, 51, 57, 60
Chaining and multi-cycling, 229
Channels, 53, 64, 68, 122, 282
Client-server, 87
Code generation, 167
Co-Design Finite State Machines (CFSMs), 63
CoFluent, 296
Communicating Sequential Processes (CSP), 57
Communication, 71
Communication Element (CE), 92
Complete, 54
Component data model, 147
Component model, 121, 146
Composition rules, 50
Computation, 71
Computation capacity, 148
Computation Cycle-Accurate Model (CCAM), 72
Computation load, 141
Computation tree, 271
Computer-Aided Design (CAD), 287
Control-Data Flow Graph, 205
Controller, 60
Control Word Register, 202
Cost minimization, 133
CoWare, 297
C-to-RTL, 199
Cycle-Accurate Model, 24, 119
Cycle-Accurate Model (CAM), 72, 108
Cycle simulation, 263
Cyclo-Static Dataflow, 58
Daedalus, 291
Data-driven, 54



350

Dataflow, 55
Data Flow Graphs (DFGs), 57
Data layout, 88
Datapath, 60
Datapath pipelining, 235
Deadlocks, 52
Deductive reasoning, 273
Demand-driven, 54
Describe-and-synthesize, 18
Design constraints, 121
Design language, 65
Design model, 65
Design space exploration, 321
Design Space Exploration (DSE), 288
Design under test, 257
Determinism, 53
Discrete event, 66
Documentation, 70
Double handshake, 128
DUT, 257
Dynamic scheduling, 75
Earliest deadline first, 161
Electronic Design Automation (EDA), 287
Electronic Design Interchange Format (EDIF), 66
Electronic System-Level (ESL), 287
Embedded platform, 123
Embedded System Environment, 320
Endianess, 184
Esterel, 51, 62
Estimation, 75
Event, 85
Event-driven simulator, 67, 257
Events, 181
Extensible Markup Language (XML), 66
External communication, 182
Feasible mappings, 141
Finite State Machine, 5
Finite State Machine (FSM), 58, 201
Finite State Machine with Data (FSMD), 6, 59, 207
Fire, 55
FPGA methodology, 43
Front-End, 30
Frontend, 288
FSM, 268, 294
Functional, 51
Functionality, 50, 289
Functional-unit pipelining, 232
Globally Asynchronous, Locally Synchronous

(GALS), 63
Graphical User Interface (GUI), 69
Graph-partitioning algorithm, 218
GSM encoder, 134
HAL, 131, 173, 191
Half channel, 165
Handel-C, 57
Hardware abstraction layer, 131
Hardware Abstraction Layer (HAL), 78

Hardware-dependent Software (HdS), 162
Hardware-Description Languages (HDLs), 67
Hardware layer, 80
Heterogeneous, 184
Heuristics based mapping, 134
Hierarchical and Concurrent Finite State Machine

(HCFSM), 61
HOPES, 294
Hot spots, 136
Imperative model, 51
In-circuit emulation, 264
Inconsistent, 56
Initialization tokens, 56
Instruction Register, 202
Instruction Set, 7
Instruction set simulation, 328
Instruction Set Simulator (ISS), 2
Instrumentation-based profiling, 136
Interfaces, 64
Internal communication, 181
Inter-Process Communication (IPC), 52
Interrupt, 96
Interrupt-based multi-tasking, 176
Interrupt controller, 81
Interrupt handler, 79, 179, 187
Interrupt logic, 80
IP-XACT, 66
ISO/OSI model, 83
ISS, 83, 110, 298–299
ISS-based virtual platform, 196
Java, 52
Java, 158
Kahn Process Network (KPN), 53
KPN, 292
Link layer, 94
Load balancing algorithm, 138
Logical, 51
Logic equivalence checker, 266
Longest processing time, 143
LPT, 143
Lustre, 51, 62
Mapping, 118, 124, 132, 289
Mapping cost, 144
Marshalling, 183
Master, 95
Master PE, 129
MCSE, 296
Mealy FSM, 59
Media, 289
Media Access Control (MAC), 191
Media Access (MAC) layer, 99
Meet-in-the-middle methodology, 38
Memory-mapped I/O, 86
Message-passing, 52, 85
Message Passing Interface (MPI), 52
Metropolis, 289
Model algebra, 21, 57, 282



INDEX 351

Model-based design, 116
Model checking, 270
Modeling, 49
Modeling language, 305
Model of Computation (MoC), 50
Model refinement, 12, 16, 283
Models, 49
Moore FSM, 59
Netlist, 66
Network layer, 92
Network-on-Chip, 14
Network TLM, 104, 110
No Instruction Set Computer (NISC), 324
Non-determinism, 53
OCCAM, 57
Operating system layer, 75
OR states, 61
OSI standard, 119
OS modeling, 76
Packetization, 94, 185
Packets, 94
Packet size, 94
PeaCE (Ptolemy extension as a Codesign

Environment), 293
PE model, 126
Petri Nets, 63
Physical layer, 100
Platform, 114, 289
Platform-Based Design (PBD), 289
Platform generation, 148
Platform graph, 139
Platform methodology, 40
Polling, 98
Posix, 52
Presentation layer, 88
Priority-based scheduling, 161
Process algebra, 57
Processes, 52, 122
Process network, 53
Processor, 72
Processor model, 82
Process State Machine (PSM), 14, 64
Profiling, 135
Profiling and estimation, 15
Program State Machine Model (PSM), 63
Protocol layer, 100
Protocol TLM, 106, 110
PSM, 68, 122, 294
Ptolemy, 294
Queue, 85
Rate monotonic, 161
Reactive, 51
Real-time constraints, 121, 156
Real-time

hard, 159
Real-Time Operating System (RTOS), 75
Real-time

soft, 160
Reduced Ordered Binary Decision Diagrams, 267
Register-Transfer Level (RTL), 67
Register-Transfer-Level specification, 208
Remote Procedure Call (RPC), 87
ROBDD, 267
Round robin, 162
Routes, 125
Routing, 94
RTL components, 201
RTL specification, 209
RTOS, 159, 173
RTOS Abstraction Layer (RAL), 174
RTOS model, 76
RTSJ, 159
Safety critical systems, 255
Scheduling, 12, 16, 57, 76, 160
Scheduling policy, 161
SDF, 294
Semantics, 65
Semaphores, 181
Sequential equivalence, 269
Session layer, 90
Shared interrupt, 97
Shared memory, 52, 87
Shared variable, 85
Simulation, 257
Simulation acceleration, 264
Simulation coverage, 259
Simulation speed, 109
Simulink, 55
Single-appearance, 57
Slack, 148
Slave, 95
Slave PE, 129
SLDL, 166
Slices, 330
SoC Designer, 298
Software platform, 131
Software synthesis, 155
Space Codesign, 297
SpecC, 2, 64, 68
Specification, 70–71
Specification Model, 24
Specification model, 103
Specify, explore-and-refine, 19
Specify-Explore-Refine (SER), 69
SpecSyn, 63, 294
SPIRIT, 66
State, 58
StateCharts, 61
State explosion problem, 275
Statemate, 62
State transition system, 270
Static scheduling, 75
Store-and-forward, 92
Streaming, 55



352

Stream layer, 98
Super State FSMD (SFSMD), 60
Symbolic model checking, 275
Symbolic simulation, 276
SyncCharts, 62
Synchronization, 86, 95, 186

interrupt, 187
polling, 189

Synchronous, 51, 62
Synchronous Data Flow (SDF), 55
Synchronous message-passing, 85
Syntax, 65
System behavior, 50, 103
SystemC, 2, 68, 296–297
SystemCoDesigner, 290
System design, 68
System design methodology, 18
System-Level Design Languages (SLDLs), 2, 68
System-level methodology, 42
System model, 102
SysteMoC, 290
System-on-Chip Environment (SCE), 294
System prototype, 115
System specification, 117
SystemVerilog, 68
Temporal properties, 271
Termination, 55
Test-bench, 258
Test-case, 258
Test generation, 261

Theorem proving, 273
Time, 50
Timed TLMs, 126
Timeliness, 156
Timing annotation, 126
TLM, 110, 164, 297
Tokens, 53
Top-down methodology, 37
Traffic characteristics, 136
Transaction-Level Model (TLM), 2, 24, 71
Transducer, 92
Transformative, 51
Transition-Immediately (TI), 63
Transition-On-Completion (TOC), 64
Transport layer, 93
Turing complete, 54, 58
UML state diagrams, 63
Unified Modeling Language (UML), 61
Verification, 255
Verification languages, 261
Verilog, 67
VHDL, 67
Virtual platform, 298
Virtual platform (VP), 115
Virtual prototyping, 299
Waitfor, 74
White box, 260
Y-Chart, 3


	Embedded System Design
	Preface
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Chapter 1 INTRODUCTION
	Chapter 2 SYSTEM DESIGN METHODOLOGIES
	Chapter 3 MODELING
	Chapter 4 SYSTEM SYNTHESIS
	Chapter 5 SOFTWARE SYNTHESIS
	Chapter 6 HARDWARE SYNTHESIS
	Chapter 7 VERIFICATION
	Chapter 8 EMBEDDED DESIGN PRACTICE
	References
	Index



