

 SystemC: From the Ground Up

David C. Black ● Jack Donovan
Bill Bunton ● Anna Keist

SystemC:
From the Ground Up

David C. Black
XtremeEDA
Austin, TX 78749
USA
dcblack@eslx.com

Bill Bunton
LSI Corporation
Austin, TX 78749
USA

Jack Donovan
HighIP Design Company
Round Rock, TX 78764
USA
jack@donovanweb.org

Anna Keist
XtremeEDA
Austin, TX 78749
USA

ISBN 978-0-387-69957-8 e-ISBN 978-0-387-69958-5
DOI 10.1007/978-0-387-69958-5
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009933997

© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to our spouses
Pamela Black, Carol Donovan, Evelyn
Bunton, and Rob Keist and to our children
Christina, Loretta, & William Black,
Chris, Karen, Jenny, & Becca Donovan,
John Williams & Sylvia Headrick,
Alex, Madeline, and Michael Keist

vii

2nd Edition Preface

Why the 2nd Edition?

The reader (or prospective buyer of this book) might ask about the need for a second
edition. The first edition was highly successful and progressed to a second and third
life after being translated to Japanese and Korean.

There are three over-arching reasons for the second edition:

A fast changing technical landscape –
Incorporation of additional topic suggestions from readers –
Fixing of errors and improvement of confusing text segments and chapters –

To address the shifting technical landscape, we have significantly updated the
chapters addressing Electronic System-Level design to reflect the refinements of
ESL methodology thinking in the industry. Although this is not a complete dis-
cussion of ESL, it is an overview of the industry as currently viewed by the
authors.

We have added a chapter on TLM, a standard that will enable interoperability of
models and a model marketplace. Although this chapter discusses TLM 1.0, we
think it imparts to the reader a basic understanding of TLM. Those of you who fol-
low the industry will note that this is not TLM 2.0. This new standard was still
emerging during the writing of this edition. But not to worry! Purchasers of this
edition can download an additional chapter on TLM 2.0 when it becomes available
within the next six months at www.scftgu.com.

Although SystemC is now IEEE 1666 it is not immune from the shifting techni-
cal landscape, so the authors have included material on some proposed extensions
to the SystemC standard related to process control.

Readers have suggested several additional topics over the last several years and
we have tried to address these with an additional chapter on the SystemC
Verification (SCV) Library and an appendix on C++ fundamentals.

The chapter on the SCV library is a high level introduction and points the reader
to additional resources. The authors have found that many organizations have
started using the SCV library after becoming familiar with SystemC and ESL meth-
odologies. For those readers, we have added this chapter.

viii 2nd Edition Preface

The authors received several suggestions asking us to add examples and com-
parisons to HDL languages like Verilog and VHDL. The authors have respectfully
declined, as we feel this actually impedes the reader from seeing the intended uses
of SystemC. After exploring these suggestions, we have found that these readers
were not entirely comfortable with C++, and because C++ is fundamental to an
understanding of SystemC, this edition includes a special appendix that attempts to
highlight those aspects of C++ that are important prerequisites, which is most of the
language.

Writing a book of this type is very humbling, as most who have journeyed on
similar endeavors will confirm. Despite our best efforts at eliminating errors from
the first edition, the errata list had grown quite long. We have also received feed-
back that certain portions of the book were “confusing” or “not clear”. After
reviewing many of these sections, we had to ask: What were we thinking? (a ques-
tion asked by many developers when they revisit their “code” after several years)

In some cases we were obviously “not thinking”, so several chapters and sec-
tions of chapters have been significantly updated or completely rewritten. The topic
of concurrency proved a more challenging concept to explain than the authors first
thought. This edition effectively rewrote the chapters and sections dealing with the
concept of concurrency.

The authors have been quite gratified at the acceptance of the first edition and
the rapid adoption of SystemC. We hope we have played at least a small part in the
resulting changes to our community. We wish you good luck with SystemC and
your contributions to our community.

Jack Donovan, David Black, Bill Bunton, Anne Keist
4authors@scftgu.com

ix

Preface

Jack Donovan, David Black, Bill Bunton, and Anne Keist

Why This Book

The first question any reader should ask is “Why this book?” We decided to write
this book after learning SystemC using minimal documentation to help us through
the quest to deeper understanding of SystemC. After teaching several SystemC
classes, we were even more convinced that an introductory book focused on the
SystemC language was needed. We decided to contribute such a book.

This book is about SystemC. It focuses on enabling the reader to master the
language. The reader will be introduced to the syntax and structure of the language,
and the reader will also learn a few techniques for use of SystemC as a tool to
shorten the development cycle of large system designs.

We allude to system design techniques and methods by way of examples
throughout the book. Several books that discuss system-level design methodology
are available, and we believe that SystemC is ideally suited to implement many of
these methods. After reading this resource, the reader should not only be adept at
using SystemC constructs, but also should have an appreciation of how the con-
structs can be used to create high performance simulation models.

We believe there is enough necessary information about SystemC to learn the lan-
guage that a stand-alone book is justified. We hope you agree. We also believe that
there is enough material for a second book that focuses on using SystemC to imple-
ment these system-level design methods. With reader encouragement, the authors have
started on a second book that delves deeper into the application of the language.

Prerequisites for This Book

As with every technical book, the authors must write the content assuming a basic
level of understanding; this assumption avoids repeating most of an engineering
undergraduate curriculum. For this book, we assumed that the reader has a working
knowledge of C++ and minimal knowledge of hardware design.

For C++ skills, we do not assume that the reader is a “wizard”. Instead, we
assumed that you have a good knowledge of the syntax, the object-oriented

x Preface

features, and the methods of using C++. The authors have found that this level of
C++ knowledge is universal to current or recent graduates with a computer science
or engineering degree from a four-year university.

Interestingly, the authors have also found that this level of knowledge is lacking
for most ASIC designers with 10 or more years of experience. For those readers,
assimilating this content will be quite a challenge but not an impossible one.

As an aid to understanding the C++ basics, this edition includes an appendix on
C++. Those who have been exposed to C++ in the past are encouraged to quickly
review this appendix. For a few novices, this appendix may also work as a quick
introduction to the topics, but it is unlikely to be completely sufficient.

For readers who are C++ novices or for those who may be rusty, we recommend
finding a good C++ class at a community college, taking advantage of many of the
online tutorials, or finding a good consulting group offering an Intro to C++ class.
For a list of sources, see Appendix A. We find (from our own experience) that those
who have learned several procedural languages (like FORTRAN or PL/I) greatly
underestimate the difficulty of learning a modern object-oriented language.

To understand the examples completely, the reader will need minimal under-
standing of digital electronics.

Book Conventions

Throughout this book, we include many syntax and code examples. We’ve chosen
to use an example-based approach because most engineers have an easier time
understanding examples rather than strict Backus-Naur form1 (BNF) syntax or
precise library declarations. Syntax examples illustrate the code in the manner it
may be seen in real use with placeholders for user-specified items. For more com-
plete library information, we refer the reader to the SystemC Language Reference
IEEE 1666-2005, which you can obtain for free via www.systemc.org.

Code will appear in monotype Courier font. Keywords for both C/C++ and
SystemC will be shown in Courier bold. User-selectable syntax items are in italics
for emphasis. Repeated items may be indicated with an ellipsis (…) or subscripts.
The following is an example:

1John Backus and Peter Naur first introduced BNF as a formal notation to describe the syntax of
a given language. Naur, P. (1960, May). Revised report on the algorithmic language ALGOL 60.
Communications of the ACM, 3(5), 299-314.

wait(name.posedge_event()|eventi…);
if (name.posedge()) { //previous delta-cycle

//ACTIONS…

Fig. 1 Example of sample code

xiPreface

When referring to a class within the text it will appear as class_name or sc_
class_name. When referring to a templated class within the text, it will appear as
template_class_name<T>. When referring to a member function or method from
the text it will appear as member_name(args) or sc_member_name(args).
Occasionally, we will refer to a member function or method without the arguments.
It will appear in the text as member_name() or sc_member_name().

In addition, we have adopted standard graphical notations as shown in Fig 2. The
terminology will be presented as the book progresses. Readers of the first edition
will note that we changed the depiction of an sc_export from a dotted circle to a
diamond. This change was the result of comments that the dotted circle was too
hard to make out in some cases. We also removed arrows since in most cases, the
meaning is not always clear2.

SystemC uses a naming convention where most SystemC-specific identifiers are
prefixed with sc_ or SC_. This convention is reserved for the SystemC library, and
you should not use it in end-user code (your code).

About the Examples

To introduce the syntax of SystemC and demonstrate its usage, we have filled this
book with examples. Most examples are not real-world examples. Real examples
become too cluttered too fast. The goal of these examples is to communicate

2Does an arrow convey calling direction (i.e., C++ function call) or direction of data flow? Since
many interfaces contain a mixture of calls, some input and some output, showing data flow direc-
tion is not very useful.

Fig. 2 Standard graphical notations

xii Preface

concepts clearly; we hope that the reader can extend them into the real world. For
the most part, we used a common theme of an automobile for the examples.

By convention, we show syntax examples stylistically as if SystemC is a special
language, which it is not. We hope that this presentation style will help you apply
SystemC on your first coding efforts. If you are looking for the C++ declarations,
please browse the Language Reference Manual (LRM) or look directly into the
SystemC Open SystemC Initiative reference source code (www.systemc.org).

It should also be noted that due to space limitations and to reduce clutter, we
have omitted showing standard includes (i.e., #include) and standard namespace
prefixes in most of the examples. You may assume something such as the following
is implied in most of the examples:

#include <iostream>
#include <systemc>
#include <scv.h>
using namespace std;
using namespace sc_core;
using namespace sc_dt;

Fig. 3 Assumed code in examples

Please note that it is considered bad C++ form to include the standard namespace
in header files (i.e., do not include “using namespace std;” in a header). We believe
making the examples clear and brief warrants ignoring this common wisdom.

How to Use This Book

The authors designed this book primarily for the student or engineer new to
SystemC. This book’s structure is best appreciated by reading sequentially from
beginning to end. A reader already familiar with SystemC will find this content to
be a great reference.

Chapters 1 through 3 provide introductions and overviews of the language and
its usage. Methodology is briefly discussed.

For the student or engineer new to SystemC, the authors present the language
from the bottom up and explain the topics from a context of C++ with ties to hard-
ware concepts. We provide exercises at the end of Chapters 4 through 16 to rein-
force the concepts presented in the text. Chapters 16 through 18 strengthen the
basic language concepts. In these chapters, readers will find discussions of areas to
watch and understand when designing, writing, or using SystemC in a production
environment.

For the student or engineer already familiar with SystemC, Chapters 4 through 13
will provide some interesting background and insights into the language. You can
either skip or read these early chapters lightly to pick up more nuances of the lan-
guage. The content here is not meant to be a complete description of the language.

xiiiPreface

For a thorough description, the reader is referred to the SystemC LRM. Chapters 14
through 18 provide intermediate to advanced material.

For the instructor, this book may provide part of an advanced undergraduate
class on simulation or augment a class on systems design.

In most of the examples presented in the book, the authors show code fragments
only so as to emphasize the points being made. Examples are designed to illustrate
specific concepts, and as such are toy examples to simplify learning. Complete
source code for all examples and exercises is available for download from www.
scftgu.com as a compressed archive. You will need this book to make best use of
these files.

SystemC Background

SystemC is a system design language based on C++. As with most design languages,
SystemC has evolved. Many times a brief overview of the history of language will
help answer the question “Why do it that way?” We include a brief history of
SystemC and the Open SystemC Initiative to help answer these questions.

The Evolution of SystemC

SystemC is the result of the evolution of many concepts in the research and com-
mercial EDA communities. Many research groups and EDA companies have con-
tributed to the language. A timeline of SystemC is included in Table 1.

SystemC started out as a very restrictive cycle-based simulator and “yet another”
RTL language. The language has evolved (and is evolving) to a true system design
language that includes both software and hardware concepts. Although SystemC

Table 1 Timeline of development of SystemC

Date Version Notes

Sept 1999 0.9 First version; cycle-based
Feb 2000 0.91 Bug fixes
Mar2000 1.0 Widely accessed major release
Oct 2000 1.0.1 Bug fixes
Feb 2001 1.2 Various improvements
Aug 2002 2.0 Add channels & events; cleaner syntax
Apr 2002 2.0.1 Bug fixes; widely used
June 2003 2.0.1 LRM in review
Spring 2004 2.1 LRM submitted for IEEE standard
Dec 2005 2.1v1 IEEE 1666-2005 ratified
July 2006 2.2 Bug fixes to more closely implement IEEE 1666-2005

xiv Preface

does not specifically support analog hardware or mechanical components, there is
no reason why these aspects of a system cannot be modeled with SystemC con-
structs or with co-simulation techniques.

Open SystemC Initiative

Several of the organizations that contributed heavily to the language development
efforts realized very early that any new design language must be open to the com-
munity and not be proprietary. As a result, the Open SystemC Initiative (OSCI) was
formed in 1999. OSCI was formed to:

Evolve and standardize the language•	
Facilitate communication among the language users and tool vendors•	
Enable adoption•	
Provide the mechanics for open source development and maintenance•	

The SystemC Verification Library

As you will learn while reading this book, SystemC consists of the language and
potential methodology-specific libraries. The authors view the SystemC Verification
(SCV) library as the most significant of these libraries. This library adds support
for modern high-level verification language concepts such as constrained random-
ization, introspection, and transaction recording. The first release of the SCV
library occurred in December of 2003 after over a year of Beta testing. This edition
includes a chapter devoted to the SCV from a syntactic point of view.

Current Activities with OSCI

At present, the OSCI has completed the SystemC LRM that has been ratified as a
standard (IEEE 1666-2005) by the Institute of Electrical and Electronics Engineers
(IEEE). Additionally, sub-committees are studying such topics as synthesis subsets
and formalizing terminology concerning levels of abstraction for transaction-level
modeling (TLM). This edition includes a chapter devoted to TLM and current
activities.

xv

Acknowledgments

Our inspiration was provided by:•	
Mike Baird, President of Willamette HDL, who provided
the basic knowledge to get us started on our SystemC journey.
Technical information was provided by:•	
IEEE-1666-2005 Standard
OSCI Proof-of-Concept Library associated information on systemc.org
Andy Goodrich of Forte Design Systems, who provided technical insights.
Our reviewers provided feedback that helped keep us on track:•	
Chris Donovan, Cisco Systems Incorporated
Ronald Goodstein, First Shot Logic Simulation and Design
Mark Johnson, Rockwell-Collins Corporation
Rob Keist, Freescale Corporation
Miriam Leeser, Northeastern University
Chris Macionski, Synopsys Inc.
Nasib Naser, Synopsys Inc.
Suhas Pai, Qualcomm Incorporated
Charles Wilson, XtremeEDA Corporation
Claude Cloutier, XtremeEDA Corporation
David Jones, XtremeEDA Corporation
The team who translated the first edition of the book into Japanese and asked us •	
many thought provoking questions that have hopefully been answered in this
edition:
Masamichi Kawarabayashi (Kaba), NEC Electronics Corporation
Sanae Nakanishi, NEC Electronics Corporation
Takashi Hasegawa, Fujitsu Corporation
Masaru Kakimoto, Sony Corporation
The translator of the Korean version of the first edition who caught many •	
detailed errors. We hope that we have corrected them all in this edition:
Goodkook, Anslab Corporation
Our Graphic Artist•	
Felix Castillo
Our Technical Editors helped us say what we meant to say:•	
Kyle Smith, Smith Editing
Richard Whitfield

xvi Acknowledgments

Our Readers from the First Edition:•	
David Jones, Junyee Lee, Soheil Samii, Kazunari Sekigawa, Ando Ki,
Jeff Clark, Russell Fredrickson, Mike Campin, Marek Tomczyk,
Luke Lee, Adamoin Harald Devos, Massimo Iaculo, and many others
who reported errata in the first edition.

Most important of all, we acknowledge our spouses, Pamela Black, Carol
Donovan, Rob Keist, and Evelyn Bunton. These wonderful life partners (despite
misgivings about four wild-eyed engineers) supported us cheerfully as we spent
many hours researching, typing, discussing, and talking to ourselves while pacing
around the house as we struggled to write this book over the past year.

We also acknowledge our parents who gave us the foundation for both our fam-
ily and professional life.

xvii

Contents

1 Why SYSTEMC: ESL and TLM ... 1

1.1 Introduction .. 1
1.2 ESL Overview .. 2

1.2.1 Design Complexity .. 2
1.2.2 Shortened Design Cycle = Need For Concurrent Design 3

1.3 Transaction-Level Modeling .. 7
1.3.1 Abstraction Models .. 7
1.3.2 An Informal Look at TLM ... 8
1.3.3 TLM Methodology... 10

1.4 A Language for ESL and TLM: SystemC ... 14
1.4.1 Language Comparisons and Levels of Abstraction 15
1.4.2 SystemC: IEEE 1666 ... 16
1.4.3 Common Skill Set .. 16
1.4.4 Proper Simulation Performance and Features........................ 16
1.4.5 Productivity Tool Support .. 17
1.4.6 TLM Concept Support ... 17

1.5 Conclusion ... 18

2 Overview of SystemC .. 19

2.1 C++ Mechanics for SystemC ... 20
2.2 SystemC Class Concepts for Hardware ... 22

2.2.1 Time Model .. 22
2.2.2 Hardware Data Types ... 23
2.2.3 Hierarchy and Structure ... 23
2.2.4 Communications Management .. 23
2.2.5 Concurrency ... 24
2.2.6 Summary of SystemC Features for Hardware

Modeling .. 24
2.3 Overview of SystemC Components ... 25

2.3.1 Modules and Hierarchy .. 25
2.3.2 SystemC Threads and Methods ... 25
2.3.3 Events, Sensitivity, and Notification 26

xviii Contents

2.3.4 SystemC Data Types .. 27
2.3.5 Ports, Interfaces, and Channels .. 27
2.3.6 Summary of SystemC Components 28

 2.4 SystemC Simulation Kernel ... 29

3 Data Types ... 31

 3.1 Native C++ Data Types .. 31
 3.2 SystemC Data Types Overview .. 32
 3.3 SystemC Logic Vector Data Types .. 33

3.3.1 sc_bv<W> .. 33
3.3.2 sc_logic and sc_lv<W> .. 34

 3.4 SystemC Integer Types... 35
3.4.1 sc_int<W> and sc_uint<W> .. 35
3.4.2 sc_bigint<W> and sc_biguint<W> 35

 3.5 SystemC Fixed-Point Types ... 36
 3.6 SystemC Literal and String .. 39

3.6.1 SystemC String Literals Representations 39
3.6.2 String Input and Output .. 40

 3.7 Operators for SystemC Data Types .. 41
 3.8 Higher Levels of Abstraction and the STL 43
 3.9 Choosing the Right Data Type ... 44
3.10 Exercises .. 44

4 Modules .. 47

 4.1 A Starting Point: sc_main .. 47
 4.2 The Basic Unit of Design: SC_MODULE 49
 4.3 The SC_MODULE Class Constructor: SC_CTOR 50
 4.4 The Basic Unit of Execution: Simulation Process 51
 4.5 Registering the Basic Process: SC_THREAD 52
 4.6 Completing the Simple Design: main.cpp 53
 4.7 Alternative Constructors: SC_HAS_PROCESS 53
 4.8 Two Styles Using SystemC Macros ... 55

4.8.1 The Traditional Coding Style ... 55
4.8.2 Recommended Alternate Style ... 56

 4.9 Exercises .. 57

5 A Notion of Time ... 59

 5.1 sc_time ... 59
5.1.1 SystemC Time Resolution .. 60
5.1.2 Working with sc_time .. 61

 5.2 sc_time_stamp() ... 61
 5.3 sc_start() ... 62
 5.4 wait(sc_time) .. 63
 5.5 Exercises .. 64

xixContents

 6 Concurrency .. 65

 6.1 Understanding Concurrency... 65
 6.2 Simplified Simulation Engine .. 68
 6.3 Another Look at Concurrency and Time .. 70
 6.4 The SystemC Thread Process .. 71
 6.5 SystemC Events ... 72

6.5.1 Causing Events .. 73
 6.6 Catching Events for Thread Processes ... 74
 6.7 Zero-Time and Immediate Notifications .. 75
 6.8 Understanding Events by Way of Example.................................... 78
 6.9 The SystemC Method Process ... 81
6.10 Catching Events for Method Processes .. 83
6.11 Static Sensitivity for Processes .. 83
6.12 Altering Initialization ... 86
6.13 The SystemC Event Queue .. 87
6.14 Exercises .. 88

 7 Dynamic Processes .. 89

 7.1 Introduction .. 89
 7.2 sc_spawn .. 89
 7.3 Spawn Options ... 91
 7.4 A Spawned Process Example ... 92
 7.5 SC_FORK/SC_JOIN ... 93
 7.6 Process Control Methods ... 96
 7.7 Exercises .. 97

 8 Basic Channels .. 99

 8.1 Primitive Channels ... 100
 8.2 sc_mutex .. 100
 8.3 sc_semaphore ... 102
 8.4 sc_fifo ... 104
 8.5 Exercises .. 106

 9 Evaluate-Update Channels ... 107

 9.1 Completed Simulation Engine ... 108
 9.2 SystemC Signal Channels .. 110
 9.3 Resolved Signal Channels .. 113
 9.4 Template Specializations of sc_signal Channels............................ 115
 9.5 Exercises .. 116

10 Structure .. 117

10.1 Module Hierarchy .. 117
10.2 Direct Top-Level Implementation .. 119

xx Contents

10.3 Indirect Top-Level Implementation.. 119
10.4 Direct Submodule Header-Only Implementation 120
10.5 Direct Submodule Implementation .. 120
10.6 Indirect Submodule Header-Only Implementation 121
10.7 Indirect Submodule Implementation .. 122
10.8 Contrasting Implementation Approaches 123
10.9 Exercises .. 123

11 Communication ... 125

11.1 Communication: The Need for Ports ... 125
11.2 Interfaces: C++ and SystemC .. 126
11.3 Simple SystemC Port Declarations .. 129
11.4 Many Ways to Connect .. 130
11.5 Port Connection Mechanics ... 132
11.6 Accessing Ports From Within a Process .. 134
11.7 Exercises .. 135

12 More on Ports & Interfaces .. 137

12.1 Standard Interfaces ... 137
12.1.1 SystemC FIFO Interfaces ... 137
12.1.2 SystemC Signal Interfaces ... 139
12.1.3 sc_mutex and sc_semaphore Interfaces 140

12.2 Sensitivity Revisited: Event Finders and Default Events 140
12.3 Specialized Ports .. 142
12.4 The SystemC Port Array and Port Policy 145
12.5 SystemC Exports .. 148
12.6 Connectivity Revisited ... 153
12.7 Exercises .. 155

13 Custom Channels and Data.. 157

13.1 A Review of SystemC Channels and Interfaces 157
13.2 The Interrupt, a Custom Primitive Channel 158
13.3 The Packet, a Custom Data Type for SystemC 159
13.4 The Heartbeat, a Custom Hierarchical Channel 162
13.5 The Adaptor, a Custom Primitive Channel 164
13.6 The Transactor, a Custom Hierarchical Channel 166
13.7 Exercises .. 170

14 Additional Topics .. 171

14.1 Error and Message Reporting .. 171
14.2 Elaboration and Simulation Callbacks ... 174
14.3 Configuration ... 175
14.4 Programmable Structure .. 177
14.5 sc_clock, Predefined Processes .. 181

xxiContents

14.6 Clocked Threads, the SC_CTHREAD ... 182
14.7 Debugging and Signal Tracing ... 185
14.8 Other Libraries: SCV, ArchC, and Boost 187
14.9 Exercises .. 187

15 SCV ... 189

 15.1 Introduction .. 189
 15.2 Data Introspection .. 189

15.2.1 Components for scv_extension Interface 190
15.2.2 Built-In scv_extensions .. 192
15.2.3 User-Defined Extensions ... 193

 15.3 scv_smart_ptr Template ... 193
 15.4 Randomization ... 194

15.4.1 Global Configuration ... 194
15.4.2 Basic Randomization ... 196
15.4.3 Constrained Randomization ... 197
15.4.4 Weighted Randomization ... 198

 15.5 Callbacks .. 200
 15.6 Sparse Arrays ... 201
 15.7 Transaction Sequences ... 202
 15.8 Transaction Recording ... 203
 15.9 SCV Tips .. 204
15.10 Exercises .. 204

16 OSCI TLM ... 207

 16.1 Introduction .. 207
 16.2 Architecture .. 208
 16.3 TLM Interfaces .. 210

16.3.1 Unidirectional Blocking Interfaces 211
16.3.2 Unidirectional Non-Blocking Interfaces 211
16.3.3 Bidirectional Blocking Interface 213

 16.4 TLM Channels ... 213
 16.5 Auxiliary Components ... 214

16.5.1 TLM Master ... 215
16.5.2 TLM Slave ... 215
16.5.3 Router and Arbiter ... 216

 16.6 A TLM Example .. 217
 16.7 Summary .. 220
 16.8 Exercises .. 220

17 Odds & Ends ... 223

 17.1 Determinants in Simulation Performance 223
17.1.1 Saving Time and Clocks .. 224
17.1.2 Moving Large Amounts of Data 225

xxii Contents

17.1.3 Too Many Channels ... 226
17.1.4 Effects of Over Specification ... 227
17.1.5 Keep it Native .. 227
17.1.6 C++ Compiler Optimizations .. 227
17.1.7 C++ Compilers ... 227
17.1.8 Better Libraries .. 227
17.1.9 Better and More Simulation Computers 228

 17.2 Features of the SystemC Landscape .. 228
17.2.1 Things You Wish Would Just Go Away 228
17.2.2 Development Environment .. 230
17.2.3 Conventions and Coding Style 230

 17.3 Next Steps .. 231
17.3.1 Guidelines for Adopting SystemC 231
17.3.2 Resources for Learning More .. 231

Appendix A .. 235
 A.1 Background of C++ ... 236
 A.2 Structure of a C Program ... 236
 A.3 Comments .. 237
 A.4 Streams (I/O) .. 237

A.4.1 Streaming vs. printf .. 238
 A.5 Basic C Statements .. 238

A.5.1 Expressions and Operators ... 238
A.5.2 Conditional ... 240
A.5.3 Looping .. 241
A.5.4 Altering Flow ... 242

 A.6 Data Types.. 242
A.6.1 Built-In Data Types .. 243
A.6.2 User-Defined Data Types ... 243
A.6.3 Constants .. 246
A.6.4 Declaration vs. Definition .. 246

 A.7 Functions .. 247
A.7.1 Pass By Value and Return .. 248
A.7.2 Pass by Reference .. 248
A.7.3 Overloading .. 249
A.7.4 Constant Arguments ... 249
A.7.5 Defaults for Arguments .. 250
A.7.6 Operators as Functions ... 250

 A.8 Classes .. 251
A.8.1 Member Data and Member Functions 251
A.8.2 Constructors and Destructors ... 252
A.8.3 Destructors ... 255
A.8.4 Inheritance .. 256
A.8.5 Public, Private and Protected Access 258
A.8.6 Polymorphism .. 258

xxiiiContents

A.8.7 Constant Members ... 260
A.8.8 Static Members .. 260

 A.9 Templates ... 261
A.9.1 Defining Template Functions ... 261
A.9.2 Using Template Functions ... 261
A.9.3 Defining Template Classes ... 262
A.9.4 Using Template Classes ... 262
A.9.5 Template Considerations .. 262

A.10 Names and Namespaces ... 263
A.10.1 Meaningful Names ... 263
A.10.2 Ordinary Scope .. 263
A.10.3 Defining Namespaces .. 264
A.10.4 Using Names and Namespaces 264
A.10.5 Anonymous Namespaces ... 264

A.11 Exceptions .. 265
A.11.1 Watching for and Catching Exceptions 265
A.11.2 Throwing Exceptions ... 266
A.11.3 Functions that Throw ... 267

A.12 Standard Library Tidbits .. 268
A.12.1 Strings .. 268
A.12.2 File I/O ... 268
A.12.3 Standard Template Library .. 270

A.13 Closing Thoughts ... 270
A.14 References .. 271

Index ... 273

1D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_1, © Springer Science+Business Media, LLC 2010

1.1 Introduction

The goal of this chapter is to explain why it is important for you to learn SystemC.
If you already know why you are studying SystemC, then you can jump ahead to
Chapter 2. If you are learning SystemC for a college course or because your boss
says you must, then you may benefit from this chapter. If your boss doesn’t know
why you need to spend your time learning SystemC, then you may want to show
your boss this chapter.

SystemC is a system design and modeling language. This language evolved to
meet a system designer’s requirements for designing and integrating today’s com-
plex electronic systems very quickly while assuring that the final system will meet
performance expectations.

Typically, today’s systems contain both application-specific hardware and
software. Furthermore, the hardware and software are usually co-developed on a
tight schedule with tight real-time performance constraints and stringent require-
ments for low power. Thorough functional (and architectural) verification is
required to avoid expensive and sometimes catastrophic failures in the device. In
some cases, these failures result in the demise of the company or organization
designing the errant system. The prevailing name for this concurrent and multi-
disciplinary approach to the design of complex systems is electronic system-level
design or ESL.

The drive for concurrent engineering through ESL has side effects that affect
more than the design organizations of a company. ESL affects the basic business
model of a company and how companies interact with their customers and with
their suppliers.

ESL happens by modeling systems at higher levels of abstraction than traditional
methods used in the past. Portions of the system model are subsequently iterated
and refined, as needed. A set of techniques has evolved called Transaction-Level
Modeling or TLM to aide with this task.

ESL and TLM impose a set of requirements on a language that is different than
the requirements for hardware description languages (HDLs) or the requirements

Chapter 1
Why SYSTEMC: ESL and TLM

2 1 Why SYSTEMC: ESL and TLM

for traditional software languages like C, C++1, or Java. The authors believe that
SystemC is uniquely positioned to meet these requirements.

We will discuss all these topics in more detail in the following sections.

1.2 ESL Overview

ESL techniques evolved in response to increasing design complexity and increas-
ingly shortened design cycles in many industries. Systems, Integrated Circuits
(ICs), and Field Programmable Gate Arrays (FPGAs) are becoming large. Many
more multi-disciplinary trade-offs are required to optimize the hardware, the soft-
ware, and the overall system performance.

1.2.1 Design Complexity

The primary driver for an ESL methodology is the same driver that drove the evolu-
tion of previous design methodologies: increasing design complexity.

Modern electronic systems consist of many subsystems and components. ESL
focuses primarily on hardware, software, and algorithms at the architectural level.
In modern systems, each of these disciplines has become more complex. Likewise,
the interaction has become increasingly complex.

Interactions imply that trade-offs between the domains are becoming more
important for meeting customer requirements. System development teams find
themselves asking questions like:

Should this function be implemented in hardware, software, or with a better •	
algorithm?
Does this function use less power in hardware or software?•	
Do we have enough interconnect bandwidth for our algorithm?•	
What is the minimum precision required for our algorithm to work?•	

These questions are not trivial and the list could go on and on. Systems are so
complex, just deriving specifications from customer requirements has become a
daunting task. Hence, this task brings the need for higher levels of abstraction and
executable specifications or virtual system prototypes.

Figure 1.1 illustrates the complexity issues for just the hardware design in a large
system-on-a-chip (SoC) design. The figure shows three sample designs from three
generations: yesterday, today, and tomorrow. In reality, tomorrow’s systems are
being designed today. The bars for each generation imply the code complexity for
four common levels of abstraction associated with system hardware design:

Architecture •	
Behavioral•	
RTL•	
Gates•	

1 We will see later that SystemC is actually a C++ class library that “sits on top” of C++.

31.2 ESL Overview

Today’s integrated circuits often exceed 10 million gates, which conservatively
translates to one hundred thousand lines of RTL code. Today’s designs are practical
because of the methodologies that apply RTL synthesis for automated generation
of gates. Tomorrow’s integrated circuits, which are being designed today, will
exceed one hundred million gates. This size equates to roughly one million lines of
RTL code, if written using today’s methodologies.

Notice that Figure 1.1 considers only a single integrated circuit. It does not
reflect the greater complexity of a system with several large chips (integrated circuits
or FPGAs) and gigabytes of application software. Many stop-gap approaches are
being applied, but the requirement for a fundamentally new approach is clear.

1.2.2 Shortened Design Cycle = Need For Concurrent Design

Anyone who has been part of a system design realizes that typical design cycles are
experiencing more and more schedule pressure. Part of the reason for the drive for
a shortened design cycle is the perceived need for a very fast product cycle in the
marketplace. Anyone who has attempted to find a cell phone or a laptop “just like
my last one”, even just nine months after buying the “latest and greatest” model,
will find themselves looking long and hard throughout the web for a
replacement2.

Complexity

E
xp

on
en

tia
l L

in
es

 o
f C

od
e

A B
eh

R
T

L

G
at

es

A
rc

h

R
T

L

B
eh

av
io

ra
l

G
at

es

A
rc

h
it

ec
tu

ra
l

B
eh

av
io

ra
l

R
T

L

G
at

es

Yesterday Today Tomorrow

Unwieldy

Spreadsheet

Impossible

10K

1M

100M

1M

10 M

100M

100

1.5K

8K

100K

Fig. 1.1 Code complexity for four levels of abstraction

2 This scenario describes a recent experience by one of the authors.

4 1 Why SYSTEMC: ESL and TLM

Many are under the misguided assumption that shorter design cycles imply
reduced development expenses. If the scope of the new system is not reduced and
the schedule is reduced, then additional resources are required. In this scenario, a
shorter design cycle actually requires more resources (expenses). The project
requires more communication between development groups (because of concurrent
design), more tools, more people, and more of everything. ESL and TLM are an
approach to reduce the cost of development through more efficient communication
and through reduced rework.

1.2.2.1 Traditional System Design Approach

In the past, when many systems were a more manageable size, a system could be
grasped by one person. This person was known by a variety of titles such as system
architect, chief engineer, lead engineer, or project engineer. This guru may have
been a software engineer, hardware engineer, or algorithm expert depending on the
primary technology leveraged for the system. The complexity was such that this
person could keep most or all of the details in his or her head. This technical leader
was able to use spreadsheets and paper-based methods to communicate thoughts
and concepts to the rest of the team.

The guru’s background usually dictated his or her success in communicating
requirements to each of the communities involved in the design of the system. The
guru’s past experiences also controlled the quality of the multi-disciplinary trade-
offs such as hardware implementation versus software implementation versus
algorithm improvements.

In most cases, these trade-offs resulted in conceptual disconnects among the
three groups. For example, cellular telephone systems consist of very complex
algorithms, software, and hardware. Teams working on them have traditionally
leveraged more rigorous but still ad-hoc methods.

The ad-hoc methods usually consist of a software-based model. This model
is sometimes called a system architectural model (SAM), written in C, Java, or
a similar language. The SAM is a communication vehicle between algorithm,
hardware, and software groups. The model can be used for algorithmic refine-
ment or used as basis for deriving hardware and software subsystem specifica-
tions. The exact parameters modeled are specific to the system type and
application, but the model is typically un-timed (more on this topic in the fol-
lowing section). Typically, each team then uses a different language to refine the
design for their portion of the system. The teams leave behind the original multi-
discipline system model and in many cases, any informal communication among
the groups.

The traditional approach often resulted in each design group working serially
with a series of paper specifications being tossed “over the wall” to the other orga-
nization. This approach also resulted in a fairly serial process that is many times
described as a “waterfall schedule” or “transom engineering” by many program
managers and is illustrated in Fig. 1.2.

51.2 ESL Overview

Architecture Hardware Hardware
Verification

SoftwareArchitectural
Verification

Hardware
Development

Hardware
Verification

Software
Development

System
Integration

Program Management

Fig. 1.2 The traditional approach of waterfall scheduling

To minimize the serialization of the design process, many techniques have been
used to create some design concurrency. These techniques include processor devel-
opment boards using a single-chip implementation of the processor. These imple-
mentations were used on the SoC or embedded system, FPGA prototypes of
algorithms, and hardware emulation systems, just to name a few. These techniques
were focused on early development of software, usually the last thing completed
before a system is deployed.

The ESL approach uses these existing techniques. ESL also leverages a virtual
system prototype or a TLM model of the system to enable all the system design
disciplines to work in parallel. This virtual system prototype is the common
specification among the groups. The resulting Gantt chart is illustrated next in
Fig. 1.3.

Even though all of the electronic system design organizations will finish their
tasks earlier, the primary reason for ESL is earlier development of software. Even
getting a product to market a month earlier can mean tens of millions of dollars of
business to a company.

Not using ESL methods will likely result in the under-design or over-design of
the system. Both of these results are not good. Under-design is obviously not good.
The product may be bug-free, but it doesn’t necessarily meet the customer’s
requirements. The product may not operate fast enough, may not have long enough
battery life, or just may not have the features required by the customer.

Over-design is not as obvious, but it is not good either. Over-design takes signifi-
cantly more resources and time to achieve, and it adds a heavy cost to an organization.
In addition, over-designed products usually are more complex, more expensive to
manufacture, and are not as reliable.

The authors have significant anecdotal stories of under-design and over-design
of systems. One company built an ASIC with multi-processors that made “timing
closure” and paired those processors with software that made the “timing budget.”

6 1 Why SYSTEMC: ESL and TLM

Unfortunately, the ASIC didn’t meet the customers requirements because of “on
chip” bottlenecks. Another company related how a significant function on a chip
caused weeks of schedule slip for design and verification. However, the function
was later found not to be used by the software.

Things become even more interesting if a system, say a cell phone, are really a
subsystem for the customer, who is a mobile phone and infrastructure provider.
Now, the customer needs models very early in their design process and will be making
system design trade-offs based on a model provided by the subsystem provider
(previously system). In addition, the subsystem provider likely relies on third-party
intellectual property. The subsystem cell phone supplier will then need a model of
the intellectual property used in their subsystem very early in the development
cycle to enable their design trade-offs. Customers up and down the value chain may
now be making business decisions based on the type and quality of the model
provided by their supplier. This hierarchy of reliance is fundamentally a different
way of doing business.

The virtual system prototype may have different blocks (or components or
subsystems) at different levels of abstraction for a particular task to be performed
by one of the system disciplines. Initially, most of the system may be very abstract
for software development until the software team is reasonably sure of the function-
ality. At this point, a more detailed model of the blocks that closely interact with
the software can be introduced into the model.

Architecture

Hardware

Software

Architectural
Verification

Hardware
Development

Hardware
Verification

Software
Development

System
Integration

Program Management

Hardware
Verification

Virtual System
Prototype

Fig. 1.3 The ESL approach of parallel schedule

71.3 Transaction-Level Modeling

The technique that allows this “mixing and matching” of blocks at different
levels of abstraction is called Transaction-Level Modeling or TLM. We will discuss
TLM in much greater detail in the following section.

1.3 Transaction-Level Modeling

TLM and the associated methodologies are the basic techniques that enable ESL
and make it practical. To understand TLM, one must first have a terminology for
describing abstraction levels. Secondly, one must understand the ways the models
will probably be used (the use cases).

1.3.1 Abstraction Models

Several years ago, Professor Gajski from UC Irvine proposed a taxonomy for
describing abstraction levels of models. The basic concept states that refinement of
the interface or communication of a logical block can be refined independently of
functionality or algorithm of the logical block [3]. We have significantly modified
his concept and presented the result in the figure below.

3 Gajski and L. Cai, “Transaction Level Modeling,” First IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS 2003), Newport Beach,
CA, October 1, 2003

M
o

d
el

 F
u

n
ct

io
n

al
it

y

Model Interface

UT

AT

UT AT PCA

LT

LT

RTL
– Un-Timed (UT)

– Loosely Timed (LT)

– Approximately Timed (AT)

– Register Transfer Logic
 (RTL)

– Pin and Cycle Accurate
 (PCA)

Fig. 1.4 Decoupling of abstraction refinement

8 1 Why SYSTEMC: ESL and TLM

The y-axis of this graph is the abstraction level of the model functionality. The
x-axis is the abstraction level of the model or logical block interface or communica-
tion. The key thing to notice is that the functionality can be refined independent of
the Interface and the reverse is also true. A logical block may be approximately
timed (AT) for the model functionality. For instance, it may be a basic “c call” to a
graphics algorithm with a “lump” delay for the algorithm, possibly the specified
number of pipeline delays. The corresponding interface for the block may be pin
and cycle accurate (PCA). The interface replicates all the “pin wiggles” of the
communication between blocks. This type of block is many times referred to as a
bus functional model for functional verification.

When we map some common ESL use cases to this graph, the model interface
can be loosely timed (LT) or approximately timed (AT) with an occasional bus
cycle accurate (BCA) representation. When communication with RTL represented
blocks is required, a transactor will be used to bridge to PCA. Model functionality
can be un-timed (UT), LT, or AT abstraction level. This modeling use cases are
graphically represented in the following figure:

For those from a software background, one can think of TLM style modeling as call-
ing an application programming interface (API) for block-level model communication.

1.3.2 An Informal Look at TLM

In this section, we ease the reader into an understanding of TLM by presenting a
less rigorous and more example-based discussion of TLM. We will assume a

Abstraction Terminology

AT PCA

SAM

RTL

TLM

TLM

TLM TLMUT

AT

RTL

F
un

ct
io

na
lit

y

Communication
More Accurate

More
Accurate

LTUT

TLM

LT TLM

TLM

TLM

BFM

TLM TLM

Fig. 1.5 TLM model mapping

91.3 Transaction-Level Modeling

generic system containing a microprocessor, a few devices, and memory connected
by a bus.

The timing diagram in Figure 1.6 illustrates one possible design outcome of a
bus implementation. When first defining and modeling the system application, the
exact bus-timing details do not affect the design decisions. All of the important
information contained within the illustration is transferred between the bus devices
as one event or transaction.

Further into the development cycle, the number of bus cycles may become
important (to define bus cycle-time requirements, etc.). The information for each
clock cycle of the bus is transferred as one transaction or event (bus-arbitration or
cycle-accurate computation models).

When the bus specification is fully chosen and defined, the bus is modeled
with a transaction or event per signal transition (bus functional or RTL model).
Of course, as more details are added, more events occur and the speed of the model
execution decreases.

In this diagram, the higher abstraction level model takes 1 “event” and the bus
arbitration model takes approximately 5 “events.” The RTL model takes roughly 75
“events” (the exact number depends on the number of transitioning signals and the
exact simulator algorithm). This simple example illustrates the magnitude of com-
putation required and why more system design teams are employing a TLM-based
methodology.

Generic Bus Timing

clock

bus_req<0..1> device 0 request

bus_gnt<0..1> device 0 grant

bus_ack acknowledge

addr_data addr data0 data1 data2

Component Assembly Model Transaction

Bus Arbitration Model Transactions

Fig. 1.6 Timing for generic bus

10 1 Why SYSTEMC: ESL and TLM

1.3.3 TLM Methodology

Now that we have discussed some of the TLM concepts, we can look more closely
at a TLM-based methodology as illustrated in Figure 1.7.

In this methodology, we still start with the traditional methods used to capture
the customer requirements: a paper-based Product Requirements Document (PRD).
Sometimes, the product requirements are obtained directly from a customer. More
likely, the requirements are captured through the research of a marketing group.

From the PRD, a high-level TLM model is developed. The TLM model develop-
ment effort may cause changes or refinement of the PRD. The TLM model is usually
written by an architect or architecture group. This model captures the product
specification or system-critical parameters. In an algorithmic intensive system, the
TLM model will be used to refine the system algorithms.

The TLM model is refined further as software design and development and
hardware verification environment development progresses.

Requirements Definition

Requirements
Document

System Architecture Model
Development

SAM

Transaction Level Model
Development

TLM

SW
Design

and
Development

HW
Verification

Environment
Development

HW
Refinement

RTL

RTL to GDSII Flow

Fig. 1.7 TLM methodology

111.3 Transaction-Level Modeling

If the proper design language and techniques are used consistently throughout the
flow, then the TLM can be reused and refined. The TLM has several use cases:

1. Architectural modeling
2. Algorithmic modeling
3. Virtual software development platform
4. Functional verification
5. Hardware refinement

We will further discuss these use cases in the next few sections.
At first, looked at from a particular development group’s point of view, the

development of the TLM appears to be a task with low return on investment (ROI).
However, the TLM creates high value benefits including:

Earlier software development, which is usually the schedule limiting task for •	
deployment of a system
Earlier and better hardware functional verification testbench•	
A clear and unbroken path from customer requirements to detailed hardware and •	
software specifications

After reading this book, you and your team should have the knowledge to imple-
ment TLM models quickly and effectively. The following section discusses in more
detail the benefits that TLM modeling will bring to your organization.

1.3.3.1 Algorithmic Modeling

Algorithmic modeling is about the definition of application-specific algorithms
such as those for cell phone receivers, encryption, video, and many forms of digital
signal processing. Refining in a software environment provides a much friendlier
environment for debug compared to RTL debug. In addition, a software model
within the context of an ESL methodology provides the architect a platform for
asking and answering a series of questions such as:

How do we want to specify this for the hardware or software implementers?•	
How sloppy can we get with our arithmetic and have the algorithm still work?•	
Can I get away with a software-only solution?•	
Can I use a lower clock rate for my processor (with the resulting power savings) •	
if I implement this algorithm with a hardware co-processor?

After completing the design of the actual algorithm (getting it to work), the
algorithm architect usually refines the algorithm from a floating-point implementa-
tion to a fixed-point (supported by SystemC) implementation (for hardware imple-
mentation). This architect also partitions the algorithm between hardware and
software. An architect with broad experience will understand the different trade-
offs between software and hardware and will shape the algorithm implementation
to be very implementable in the chosen space (for instance minimizing memory use
for hardware implementation).

12 1 Why SYSTEMC: ESL and TLM

This activity is usually performed in SystemC, C/C++ or in MATLAB, or other
commercial tools. This work is usually augmented with libraries for a particular
application space such as a fixed-point library, a digital signal processing library,
and others.

1.3.3.2 Architectural Modeling

Architectural modeling is about hardware and software partitioning, subsystem
partitioning. It is also about bus performance analysis, and other initial refinements
based on a power management concept. This modeling also includes existing intel-
lectual property and designs as well as other product-based technical and manage-
ment critical parameters and trade-offs. Some of the questions asked during this
activity are:

Is there enough performance in the bus architecture to implement our algorithm •	
in hardware and realize performance gains?
Is the bus performance adequate? Will we require multiple busses or a multi-•	
tiered bus concept?
Is the arbitration scheme sufficient?•	
Is the estimated size and cost within our product goals?•	
Would a different processor help performance? How would a lower clock rate or •	
less capable processor affect performance?

This activity can be performed using SystemC or another language that supports
modeling or simulation concurrency. In the past, some teams have used C or C++.
These teams have been forced to develop a custom simulation kernel to support
concurrency.

Many times for this activity, non-critical portions of the system are modeled
using “traffic generators”. These generators are based on an estimate of the bus
traffic generated by the non-critical elements. As the model is refined, the blocks
are refined to add the details required to start running software. There are several
vendors of EDA tools that have offerings that can help accelerate this activity.

1.3.3.3 Virtual Software Development Platform

The Virtual software development platform allows very early development of sys-
tem software. During this activity, the following questions are sometimes asked and
answered:

Does the hardware have the advertised features?•	
Are the control and status registers supplied to the software sufficient? Does the •	
software have the necessary control and observably to meet the customer
requirements?
Can the software meet the software timing budget with the current architecture?•	

131.3 Transaction-Level Modeling

SystemC is the language of choice for this set of activities. SystemC provides
the necessary simulation features (simulation concurrency), ability to easily inte-
grate with C and C++, and simulation performance.

The ability to easily integrate with C and C++ lets engineers wrap the instruction
set simulators (ISS) within the model. In addition, early in the development pro-
cess, C or C++ code can be wrapped and executed on the host modeling processor
(versus the ISS). We call this technique direct execution. Even as the software is
refined and OS calls are required, additional techniques can be used to enable direct
execution.

1.3.3.4 Hardware Refinement

Depending on the nature of the system, the hardware refinement activities can be
focused on the creation of an executable specification to unambiguously specify the
hardware. This specification accelerates hardware development. Alternatively,
activities can be focused on refinement for behavioral synthesis with even greater
schedule and productivity improvements. Some of the questions asked during this
set of activities are:

What is the required gate count or size for this function?•	
What is the expected latency and clock speed?•	
What additional control and status is easy and inexpensive to provide to •	
software?
What is the estimated power consumption of this block?•	

Refining the specification for hardware designers eliminates potential over-
design. Many times during the development process, an RTL designer will ask an
architect specific questions where the answer will significantly (or even slightly)
affect performance. When the architect is asked about option A or option B, he or
she will answer yes or both because of the absence of information, thus adding
complexity. With a model that can be refined, the architect can model the affect of
A and B and possibly come back with the answer that neither option helps. The
refined model saves design time, verification time, and silicon area.

1.3.3.5 Functional and Architectural Verification

Traditional functional verification of hardware involves verifying the hardware to a
functional specification. Unfortunately, as systems become more complex, the func-
tional specs can be measured in feet (not inches) of paper. Obviously, any process
requiring a natural language like English (or German, Chinese, French, etc.) is very
susceptible to error (just check out the errata list for the first edition of this book).

We have added a new term (at least for us): architectural verification. The goal
of this activity is to answer a few big questions:

14 1 Why SYSTEMC: ESL and TLM

Does this system architecture meet the customer requirements?•	
Does this system architecture work for all customer use cases?•	

We have purposely used the term, system architecture, because this involves
integrating at least the lowest level software and a hardware model. The authors
have a background in computer system design and have previously lived by the
maxim “it isn’t verified until the software runs.” Since almost all of today’s com-
plex electronic systems have a significant component of “computer system,” we
have reverted to this maxim from our “youth” by emphasizing architectural
verification.

Functional verification is also enhanced through the early availability of a target
for testbench development and a “reference model” for newer functional verifica-
tion methodologies such the Open Verification Methodology (OVM) and the meth-
odology originally defined in the Verification Methodology Manual for
SystemVerilog (VMM).

Verification teams are always complaining that they are not allowed to start
until too late. Some of the reason for this trend is that management is reluctant to
assign resources to project activities that will not show results or progress until
much later in the project. The TLM modeling activity allows a target for early
development. TLM has the added benefit of reuse of some portions of the “test-
bench” for the system-level TLM model and for later functional verification with
the RTL.

Many of the newer verification methodologies such as OVM and VMM make
heavy use of constrained-random test stimulus generation. These methodologies
require the development of a “reference model” to check the results of the “ran-
domized inputs.” Given a well thought out methodology, the TLM model or a
portion of the TLM model can be used by the functional testbench to check the
RTL results.

1.4 A Language for ESL and TLM: SystemC

ESL and TLM impose a set of requirements upon a language. Some of these
requirements are:

Abstraction spans several levels•	
Standard and open language•	
Common skill set•	
Proper simulation performance and features•	
Productivity tool support•	
Supports TLM concepts•	

We hope that by the end of this section we will have made the case that SystemC
is the best modeling language available today, and that it is the language to launch
the adoption of ESL and TLM modeling.

151.4 A Language for ESL and TLM: SystemC

1.4.1 Language Comparisons and Levels of Abstraction

Strictly speaking, SystemC is not a language. SystemC is a class library within a well-
established language, C++. SystemC is not a panacea that will solve every design
productivity issue. However, when SystemC is coupled with the SystemC Verification
Library, it does provide in one language many of the characteristics relevant to system
design and modeling tasks that are missing or scattered among the other languages.
In addition, SystemC provides a common language for software and hardware, C++.

Several languages have emerged to address the various aspects of system design.
Although Java has proven its value, C/C++ is predominately used today for embed-
ded system software (at least the lower software levels). The hardware description
languages, VHDL and Verilog, are used for simulating and synthesizing digital
circuits. Vera, e, and recently SystemVerilog are the languages of choice for func-
tional verification of complex application-specific integrated circuits (ASICs).
SystemVerilog is a new language that evolved from the Verilog language to address
many hardware-oriented system design issues. MATLAB and several other tools
and languages such as Signal Processing Workbench (SPW4) and CoCentric®
System Studio5 are widely used for capturing system requirements and developing
signal processing algorithms.

Figure 1.8 highlights the application of these and other system design languages.
Each language occasionally finds use outside its primary domain, as the overlaps in
the figure illustrate.

Language Comparison
Requirements

Architecture

HW/SW

Behavior

Functional
Verification

Testbench

RTL

Gates

Transistors

Verilog VHDL

System
Verilog

Vera
e

PSL

SystemC

* Modified from DVCon
 – Gabe Moretti EDN

Matlab
C/C++

Fig. 1.8 Use of languages

4SPW is available from CoWare, Inc. (www.coware.com).
5CoCentric System Studio is available from Synopsys, Incorporated (www.synopsys.com).

http://www.coware.com
http://www.synopsys.com

16 1 Why SYSTEMC: ESL and TLM

1.4.2 SystemC: IEEE 1666

When a language is standard and open to the industry, then a wide array of benefits
are available. These benefits include access to a set of commercial and freeware-based
tools and support. SystemC was honored as a standard in December of 2006 when
it was approved as IEEE 16666.

The Open SystemC Initiative (OSCI) provided much pre-standardization work
to refine the SystemC language. Today, the OSCI continues this effort. The most
notable effort is the standardization of a set of TLM interfaces.

OSCI also provides a proof of concept implementation of the IEEE 1666 stan-
dard. It is provided freely from the OSCI website at www.systemc.org.

1.4.3 Common Skill Set

SystemC is not yet a common skill set among all system engineers whether they
be of a hardware or software orientation. However, SystemC is based on C++
and object-oriented techniques, which are a common skill set to all recent
graduates of leading engineering schools. Many older engineers have also
upgraded themselves by learning C++ or Java and the corresponding object-
oriented techniques and thinking. These are the skills that enable a great
SystemC modeler.

1.4.4 Proper Simulation Performance and Features

Obviously models need to execute swiftly. Not so obviously to some, the language
needs to support concurrent simulation (we will talk about this extensively later in the
book). The language must also support a series of additional productivity features.
These features include the ability to manage the model complexity through hierarchy,
debug features, and a list of other features discussed throughout this book.

Any model needs to execute relatively swiftly. A model is never fast enough, so
what is fast enough. One can look at the requirements for model speed when used
for common ESL purposes like early software development. To keep software
developers from extreme frustration, the model needs to boot its operating system
in just a couple of minutes or close to “real time”.

No modeling language can make up for inefficient modeling practices. The
compiled nature of SystemC coupled with the availability of very good C++ com-
pilers complemented with good modeling practices can produce a model that meets
the speed requirements for all but the very largest systems.

As the reader may have guessed by now, developing a model is different than
developing an application program. The difference is that in an ESL model, the

http://www.systemc.org

171.4 A Language for ESL and TLM: SystemC

code modules need to appear as if they are executing in parallel or concurrently.
When a digital system is running, then many, many computations are running at the
same time or are running concurrently. SystemC provides a simulation kernel to
give this illusion of concurrency. This feature, as well as several others, helps man-
age the complexity of the model. These features are discussed in detail in subsequent
chapters.

1.4.5 Productivity Tool Support

Since SystemC is based on C++, there are a wealth of productivity tools and
application-specific libraries that are available. In addition, SystemC is supported
by a large and growing ecosystem of commercial suppliers.

Many of the popular C++ tools are freely available under various open source
licenses. Some of these tools include integrated development environments (IDEs),
performance analysis tools, and lint tools to illustrate just a few. There are many
more tools available from leading software tool vendors for a small fee. These tools
come with varying degrees of support.

Many of the groups using SystemC are large organizations that require ESL-
specific productivity tools and technology as well as significant support. The three
largest electronic design automation (EDA) vendors and an extensive list of smaller
EDA companies now support SystemC. The last time we counted, the list was over
40 companies and growing.

The tools range from co-simulation with their HDL simulators to behavioral
synthesis tools.

Possibly the biggest productivity boost is the availability of application libraries
on the web in C or C++. The availability of graphic algorithms, DSP algorithms,
and a plethora of other application libraries make the writing of initial models very
easy. An extreme example is the use of an H.264 algorithm freely available on the
web that is matched with about 20 lines of SystemC code to produce a graphics
model in a matter of hours for an initial system model.

1.4.6 TLM Concept Support

Lastly, a language for ESL model development needs to support TLM concepts. It
must support the easy substitution of one communication implementation with
another without changing the interface to that implementation. As we progress
through this book, we will show that C++ and the concept of interfaces imple-
mented through a class of pure virtual functions coupled with a few coding styles
enables TLM concepts efficiently.

18 1 Why SYSTEMC: ESL and TLM

1.5 Conclusion

We hope that we have motivated you to not only read our book, but also to study it
and apply it to the examples provided at our web site. You will then be equipped to
charge into the brave new world of ESL and TLM modeling and to bring about
significant changes in your organization, company, and the industry.

19

The previous chapters gave a brief context for the application of SystemC. This
chapter presents an overview of the SystemC language elements. Details are dis-
cussed in-depth in subsequent chapters.

Despite our best efforts not to use any part of the language before it is fully explained,
some chapters may occasionally violate this goal due to the interrelated nature of
SystemC. This chapter briefly discusses the major components of SystemC and their
general usage and interactions as a way of giving context for the subsequent chapters.

The following diagram, Fig. 2.1, illustrates the major components of SystemC.
As a form of roadmap, we have included a duplicate of this diagram at the beginning
of each new chapter. Bolded type indicates the topics discussed within that chapter.

For the rest of this chapter, we will discuss all of the components within the
figure that are outlined in bold; but first, we will discuss the mechanics of the
SystemC development environment.

SystemC addresses the modeling of both hardware and software using C++.
Since C++ already addresses most software concerns, it should come as no surprise
that SystemC focuses primarily on non-software issues. The primary application
area for SystemC is the design of electronic systems. However, SystemC also pro-
vides generic modeling constructs that can be applied to non-electronic systems1

Chapter 2
Overview of SystemC

1 For example, the book, Microelectrofluidic Systems: Modeling and Simulation by Tianhao Zhang
et al., CRC Press, ISBN: 0849312760, describes applying SystemC to a non-electronic system.

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_2, © Springer Science+Business Media, LLC 2010

Fig. 2.1 SystemC language architecture

20 2 Overview of SystemC

2.1 C++ Mechanics for SystemC

We would like to start with the obligatory Hello_SystemC program; but first we
will look at the mechanics of compiling and executing a SystemC program or model.

As stated before, SystemC is a C++ class library. Therefore, to compile and run
a Hello_SystemC program, one must have a working C++ and SystemC
environment.

The components of a SystemC environment include a:

SystemC-supported platform•	
SystemC-supported C++ compiler•	
SystemC library (downloaded and compiled for your C++ compiler)•	
Compiler command sequence make file or equivalent•	

The latest Open SystemC Initiative (OSCI) SystemC release (2.2 at this writing)
is available for free from www.systemc.org. The download contains scripts and
make files for installation of the SystemC library as well as SystemC source code,
examples, and documentation. The install scripts are compatible with the supported
operating systems, and the scripts are relatively straightforward to execute by care-
fully following the documentation.

The latest OS requirements can be obtained from the download in a ReadMe file
currently called INSTALL. SystemC is supported on various versions of Sun
Solaris, Linux, HP/UX, Windows, and Mac OS X. At this time, the OS list is lim-
ited by the use of minor amounts of assembly code that is used for increased simu-
lation performance in the SystemC simulation kernel. The current release is also
supported for various C++ compilers including GNU C++, Sun C++, HP C++, and
Visual C++. The currently supported compilers and compiler versions can also be
obtained from the INSTALL ReadMe file in the SystemC download.

For beginners, this OS and compiler list should be considered exhaustive.
Notably, some hardy souls have ported various SystemC versions to other unsup-
ported operating systems and C++ compilers. In addition to one of these platforms
and compilers, you will need GNU make installed on your system to compile and
quickly install the SystemC library with the directions documented in the
INSTALL file.

The flow for compiling a SystemC program or design is very traditional and is
illustrated in Fig. 2.2 for GNU C++. Most other compilers will be similar. The C++
compiler reads each of the SystemC code file sets separately and creates an object
file (the usual file extension is .o). Each file set usually consists of two files, typi-
cally with standard file extensions. We use .h and .cpp as file extensions, since
these are the most commonly used in C++. The .h file is generally referred to as the
header file and the .cpp file is often called the implementation file.

Note that the compiler and linker need to know two special pieces of informa-
tion. First, the compiler needs to know where the SystemC header files are located.
Second, the linker needs to know the location of the compiled SystemC libraries.
This information is typically passed by providing an environment variable named

http://www.systemc.org.

212.1 C++ Mechanics for SystemC

SYSTEMC and by ensuring the makefile rules use the information.2 If using gcc, the
command probably looks something like Fig. 2.3.

The downloadable examples available from our web site include a makefile setup
for Linux and gcc. Please refer to your C++ tool manuals for more information.

Compilation Flow

g++ ld

systemc

STL
…

file1.h
file1.cpp

:
filen.h

filen.cpp

systemc.h

file1.o
:
:

filen.o

.exe

Source
Files

Object
Files

Executable
File

Compiler Linker

Fig. 2.2 SystemC compilation flow

2 For some installations, dynamic libraries may also be referenced if using the SystemC Verification
library.

g++ -I$(SYSTEMC)/include \
–L$(SYSTEMC)/lib-$(ARCH) –lsystemc \
$(SRC)

Fig. 2.3 Partial gcc options to compile and link SystemC

After creating the object files, the compiler (actually the loader or linker) will
link your object files and the appropriate object files from the SystemC library (and
other libraries such as the standard template library or STL). The resulting file is
usually referred to as an executable, and it contains the SystemC simulation kernel
and your design functionality.

For the hardcore engineer types, you now have everything you need to compile
and run a Hello_SystemC program; we have provided the obligatory program in
Fig. 2.4 Keywords for both C++ and SystemC are in bold. The rest of you now have
an overview of how to compile and run the code examples in this book as well as your
own SystemC creations. Everyone is now ready to dive into the language itself.

22 2 Overview of SystemC

2.2 SystemC Class Concepts for Hardware

SystemC provides mechanisms crucial to modeling hardware while using a lan-
guage environment compatible with software development. SystemC provides
several hardware-oriented constructs that are not normally available in a software
language; however, these constructs are required to model hardware. All of the
constructs are implemented within the context of the C++ language. This section
looks at SystemC from the viewpoint of the hardware-oriented features. The major
hardware-oriented features implemented within SystemC include:

Time model•	
Hardware data types•	
Module hierarchy to manage structure and connectivity•	
Communications management between concurrent units of execution•	
Concurrency model•	

The following sections briefly discuss the implementation of these concepts
within SystemC.

2.2.1 Time Model

SystemC tracks time with 64 bits of resolution using a class known as sc_time.
Global time is advanced within the kernel. SystemC provides mechanisms to
obtain the current time and implement specific time delays. To support ease of

#include <systemc>
SC_MODULE(Hello_SystemC) { // declare module class

SC_CTOR(Hello_SystemC) { // create a constructor
SC_THREAD(main_thread);// register the process

}//end constructor

void main_thread(void) {
SC_REPORT_INFO(" Hello SystemC World!");

}
};

int sc_main(int sc_argc, char* sc_argv[]) {

//create an instance of the SystemC module
Hello_SystemC HelloWorld_i("HelloWorld_i");

sc_start(); // invoke the simulator

return 0;
}

Fig. 2.4 Hello_SystemC program example

232.2 SystemC Class Concepts for Hardware

use, an enumerated type defines several natural time units from seconds down
to femtoseconds.

For those models that require a clock, a class called sc_clock is provided.
Since many applications in SystemC do not require a clock (but do require a notion
of time), the clock discussion is deferred to later chapters of the book. Additionally,
clocks do not add to the fundamental understanding of the language. By the later
chapters, you should be able to implement the clock class yourself with the funda-
mentals learned throughout the book.

2.2.2 Hardware Data Types

The wide variety of data types required by digital hardware are not provided inside
the natural boundaries of C++ native data types, which are typically 8-, 16-, 32-,
and 64-bit entities.

SystemC provides hardware-compatible data types that support explicit bit
widths for both integral and fixed-point quantities. Furthermore, digital hardware
requires non-binary representation such as tri-state and unknowns, which are pro-
vided by SystemC.

Finally, hardware is not always digital. SystemC does not currently directly
support analog hardware; however, a working group has been formed to investi-
gate the issues associated with modeling analog hardware in SystemC. For those
with immediate analog issues, it is reasonable to model analog values using
floating-point representations and provide the appropriate behavior.

2.2.3 Hierarchy and Structure

Large designs are almost always broken down hierarchically to manage complexity,
easing understanding of the design for the engineering team. SystemC provides
several constructs for implementing hardware hierarchy. Hardware designs tradi-
tionally use blocks interconnected with wires or signals for this purpose. For mod-
eling hardware hierarchy, SystemC uses the module entity interconnected to other
modules using channels. The hierarchy comes from the instantiation of module
classes within other modules.

2.2.4 Communications Management

The SystemC channel provides a powerful mechanism for modeling communica-
tions. Conceptually, a channel is more than a simple signal or wire. Channels can
represent complex communications schemes that eventually map to significant

24 2 Overview of SystemC

hardware such as the AMBA bus3. At the same time, channels may also represent
very simple communications such as a wire or a FIFO (first-in first-out queue).

The ability to have several quite different channel implementations used inter-
changeably to connect modules is a very powerful feature. This feature enables an
implementation of a simple bus replaced with a more detailed hardware implemen-
tation, which is eventually implemented with gates.

SystemC provides several built-in channels common to software and hardware
design. These built-in channels include locking mechanisms like mutex and sema-
phores, as well as hardware concepts like FIFOs, signals and others.

Finally, modules connect to channels and other modules via port classes.

2.2.5 Concurrency

Concurrency in a simulator is always an illusion. Simulators execute the code on a
single physical processor. Even if you did have multiple processors performing the
simulation, the number of units of concurrency in real hardware design will always
outnumber the processors used to do the simulation by several orders of magnitude.
Consider the problem of simulating the processors on which the simulator runs.

Simulation of concurrent execution is accomplished by simulating each concur-
rent unit. Each unit is allowed to execute until simulation of the other units is
required to keep behaviors aligned in time. In fact, the simulation code itself deter-
mines when the simulator makes these switches by the use of events. This simula-
tion of concurrency is the same for SystemC, Verilog, VHDL, or any other hardware
description languages (HDLs). In other words, the simulator uses a cooperative
multitasking model. The simulator merely provides a kernel to orchestrate the
swapping of the various concurrent elements, called simulation processes. SystemC
provides a simulation kernel that will be discussed lightly in the last section of this
chapter and more thoroughly in the rest of the book.

2.2.6 Summary of SystemC Features for Hardware Modeling

SystemC implements the structures necessary for hardware modeling by providing
constructs that enable concepts of time, hardware data types, hierarchy and structure,
communications, and concurrency. This section has presented an overview of
SystemC relative to a generic set of requirements for hardware design. We will
now give a brief overview of the constructs used to implement these requirements
in SystemC.

3 See AMBA AHB Cycle-Level Interface Specification at www.arm.com.

http://www.arm.com

252.3 Overview of SystemC Components

2.3 Overview of SystemC Components

In this section, we briefly discuss all the components of SystemC that are high-
lighted in Fig. 2.1 from the beginning of this chapter, that we will see at the beginning
of each chapter throughout the book.

2.3.1 Modules and Hierarchy

Hardware designs typically contain hierarchy to reduce complexity. Each level of
hierarchy represents a block. VHDL refers to blocks as entity/architecture pairs,
which separate an interface specification from the body of code for each block. In
Verilog, blocks are called modules and contain both interface and implementation in
the same code.

SystemC separates the interface and implementation similar to VHDL. The C++
notion of header (.h file) is used for the entity and the notion of implementation
(.cpp file) is used for the architecture.

Design components are encapsulated as “modules”. Modules are classes that
inherit from the sc_module base class. As a simplification, the SC_MODULE
macro is provided.

Modules may contain other modules, processes, and channels and ports for
connectivity.

2.3.2 SystemC Threads and Methods

Before getting started, it is necessary to have a firm understanding of simulation
processes in SystemC. As indicated earlier, the SystemC simulation kernel
schedules the execution of all simulation processes. Simulation processes are
simply member functions of sc_module classes that are “registered” with the
simulation kernel.

Because the simulation kernel is the only caller of these member functions, they
need no arguments and they return no value. They are simply C++ functions that
are declared as returning a void and having an empty argument list.

An sc_module class can also have processes that are not executed by the
simulation kernel. These processes are invoked as function calls within the simula-
tion processes of the sc_module class. These are normal C++ member functions
or class methods.

From a software perspective, processes are simply threads of execution.
From a hardware perspective, processes provide necessary modeling of indepen-
dently timed circuits. Simulation processes are member functions of an sc_module
that are registered with the simulation kernel. Generally, registration occurs
during the elaboration phase (during the execution of the constructor for the

26 2 Overview of SystemC

sc_module class) using an SC_METHOD, SC_THREAD, or SC_CTHREAD4
SystemC macro.

The most basic type of simulation process is known as the SC_METHOD.
An SC_METHOD is a member function of an sc_module class where time
does not pass between the invocation and return of the function. In other
words, an SC_METHOD is a normal C++ function that happens to have no
arguments, returns no value, and is repeatedly and only called by the simula-
tion kernel.

The other basic type of simulation process is known as the SC_THREAD. This
process differs from the SC_METHOD in two ways. First, an SC_METHOD is
invoked (or started) multiple times and the SC_THREAD is invoked only once.
Second, an SC_THREAD has the option to suspend itself and potentially allow time
to pass before continuing. In this sense, an SC_THREAD is similar to a traditional
software thread of execution.

The SC_METHOD and SC_THREAD are the basic units of concurrent execu-
tion. The simulation kernel invokes each of these processes. Therefore, they are
never invoked directly by the user. The user indirectly controls execution of the
simulation processes by the kernel as a result of events, sensitivity, and
notification.

2.3.3 Events, Sensitivity, and Notification

Events, sensitivity, and notification are very important concepts for understanding
the implementation of concurrency by the SystemC simulator.

Events are implemented with the SystemC sc_event and sc_event_queue
classes. Events are caused or fired through the event class member function,
notify. The notification can occur within a simulation process or as a result of
activity in a channel. The simulation kernel invokes SC_METHOD and SC_THREAD
when they are sensitive to an event and the event occurs.

SystemC has two types of sensitivity: static and dynamic. Static sensitivity is
implemented by applying the SystemC sensitive command to an SC_METHOD
or SC_THREAD at elaboration time (within the constructor). Dynamic sensitivity
lets a simulation process change its sensitivity on the fly. The SC_METHOD imple-
ments dynamic sensitivity with a next_trigger(arg) command. The SC_
THREAD implements dynamic sensitivity with a wait(arg) command. Both
SC_METHOD and SC_THREAD can switch between dynamic and static sensitivity
during simulation.

4 SC_CTHREAD is a special case of SC_THREAD. This process type is a thread process that has
the requirement of being sensitive to a clock. SC_CTHREAD is under consideration for depreca-
tion; however, several synthesis tools depend on it at the time of writing.

272.3 Overview of SystemC Components

2.3.4 SystemC Data Types

Several hardware data types are provided in SystemC. Since the SystemC language
is built on C++, all of the C++ data types are available. Also, SystemC lets you
define new data types for new hardware technology (i.e., multi-valued logic) or for
applications other than electronic system design.

These data types are implemented using templated classes and generous
 operator overloading, so that they can be manipulated and used almost as easily as
native C++ data types. Hardware data types for mathematical calculations like
sc_fixed<T> and sc_int<T> allow modeling of complex calculations like
DSP functions. These data types evaluate the performance of an algorithm when
implemented in custom hardware or in processors without full floating-point capa-
bility. SystemC provides all the necessary methods for using hardware data types,
including conversion between the hardware data types and conversion from hard-
ware to software data types.

Non-binary hardware types are supported with four-state logic (0,1,X,Z) data
types (e.g., sc_logic). Familiar data types like sc_logic and sc_lv<T> are
provided for RTL hardware designers who need a data type to represent basic logic
values or vectors of logic values.

2.3.5 Ports, Interfaces, and Channels

Processes need to communicate with other processes both locally and in other
modules. In traditional HDLs, processes communicate via ports/pins and sig-
nals or wires. In SystemC, processes communicate using channels or events.
Processes may also communicate across module boundaries. Modules may
interconnect using channels, and connect via ports. The powerful ability to
have interchangeable channels is implemented through a component called an
interface. SystemC uses the constructs sc_port<T>, sc_export<T>, and
the base classes sc_interface, and sc_channel to implement
connectivity.

SystemC provides some standard channels and interfaces that are derived from
these base types. The provided channels include the synchronization primitives
sc_mutex and sc_semaphore, and the communication channels sc_fifo<T>,
sc_signal<T>, and others. These channels implement the SystemC-provided inter-
faces sc_mutex_if, sc_semaphore_if, sc_fifo_in_if<T>, sc_fifo_
out_if<T>, sc_signal_in_if<T>, and sc_signal_inout_if<T>.

Interestingly, module interconnection happens programmatically in SystemC
during the elaboration phase. This interconnection lets designers build regular
structures using loops and conditional statements. From a software perspective,
elaboration is simply the period of time when modules invoke their constructor
methods.

28 2 Overview of SystemC

2.3.6 Summary of SystemC Components

Now, it is time to tie together all of the basic concepts that we have just discussed
into one illustration, Fig. 2.5 This illustration is used many times throughout
the book when referring to the different SystemC components. It can appear
rather intimidating since it shows almost all of the concepts within one diagram.
In practice, a SystemC module typically will not contain all of the illustrated
components.

The figure shows the concept of an sc_module that can contain instances of
another sc_module. An SC_METHOD or SC_THREAD can also be defined within
an sc_module.

Communication among modules and simulation processes (SC_METHOD and
SC_THREAD) is accomplished through various combinations of ports, interfaces,
and channels. Coordination among simulation processes is also accomplished
through events.

We will now give a brief initial overview of the SystemC simulation kernel that
coordinates and schedules the communications among all of the components illus-
trated in Fig. 2.5

Fig. 2.5 SystemC components

292.4 SystemC Simulation Kernel

2.4 SystemC Simulation Kernel

The SystemC simulator has two major phases of operation: elaboration and execu-
tion. A third, often minor, phase occurs at the end of execution; this phase could be
characterized as post-processing or cleanup.

Execution of statements prior to the sc_start() function call are known as the
elaboration phase. This phase is characterized by the initialization of data structures, the
establishment of connectivity, and the preparation for the second phase, execution.

The execution phase hands control to the SystemC simulation kernel, which
orchestrates the execution of processes to create an illusion of concurrency.

The illustration in Fig. 2-6 should look very familiar to those who have studied
Verilog and VHDL simulation kernels. Very briefly, after sc_start(), all simu-
lation processes (minus a few exceptions) are invoked in unspecified deterministic
order 5 during initialization.

After initialization, simulation processes are run when events occur to which
they are sensitive. The SystemC simulator implements a cooperative multitasking
environment. Once started, a running process continues to run until it yields con-
trol. Several simulation processes may begin at the same instant in simulator time.
In this case, all of the simulation processes are evaluated and then their outputs are
updated. An evaluation followed by an update is referred to as a delta cycle.

If no additional simulation processes need to be evaluated at that instant (as a
result of the update), then simulation time is advanced. When no additional simulation
processes need to run, the simulation ends.

This brief overview of the simulation kernel is meant to give you an overview
for the rest of the book. This diagram will be used again to explain important

sc_main()

Elaborate

sc_start()

While
processes
Ready

Execute code possibly
issuing events or
updates. Either suspend
waiting or exit entirely.

.notify()
immediate

.notify(SC_ZERO
_TIME)delayed

.notify(t)
timed

SystemC Simulation Kernel

Initialize Evaluate
Advance

Time

Cleanup Update

Delta
Cycle

Fig. 2.6 SystemC simulation kernel

5 Discussed later.

30 2 Overview of SystemC

intricacies later. It is very important to understand how the kernel functions to fully
understand the SystemC language.

We have provided an animated version of this diagram walking through a small
code example at our web site, www.scftgu.com. The IEEE Standard 1666-2005
SystemC LRM (Language Reference Manual) specifies the behavior of the
SystemC simulation kernel. This manual is the definitive source about SystemC.
We encourage the reader to use any or all of these resources during their study of
SystemC to fully understand the simulation kernel.

http://www.scftgu.com.

31

This chapter provides an overview of the data types available to a user creating
SystemC simulation models. The SystemC Language Reference Manual (LRM)
IEEE Standard 1666 uses over 190 pages to specify the SystemC data types. We
have attempted to be considerably briefer.

The reader will consequently need to refer to the SystemC LRM for a full definition
of the SystemC data types and other resources for the C++ data types and other librar-
ies. The SystemC library provides integer, logic, and fixed-point data types designed
for modeling hardware. In addition to the SystemC data types, SystemC simulations
may use native C++ data types, other library data types, and user-defined data types.

The use of SystemC data types is not restricted to models using the simulation
kernel; they may be used in non-simulation applications as other data types would
be used. Though simulation models may be created using any of the available data
types, the choice of data types affects simulation speed, synthesizability, and syn-
thesis results. The use of the native C++ data types can maximize simulation per-
formance, at the cost of hardware fidelity and synthesizability.

3.1 Native C++ Data Types

The native C++ data types available on most systems include the logic data type
bool, and signed and unsigned versions of the following arithmetic data types in
Table 3.1.

Chapter 3
Data Types

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_3, © Springer Science+Business Media, LLC 2010

Modules &
Hierarchy

Channels &
Interfaces

Events, Sensitivity
& Notifications

Threads & Methods

Simulation
Kernel

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Data types:
Logic,

Integers,
Fixed point

Table 3.1 Example of C++ built-in data type on a 32-bit architecture

Name Description Size

char Character 1 byte
short int (short) Short integer 2 bytes
int Integer 4 bytes
long int (long) Long integer 4 bytes
long long int Long long integer 8 bytes
float Floating point 4 bytes
double Double precision floating point 8 bytes

32 3 Data Types

The Standard Template Library (STL) has a rich set of additional data types. The
beginner will want to become familiar with string from the STL. The string data
type provides operators for appending (+=, +, and assign()) and comparison
(==, !=, <, <=, >, >=, and compare()) as well as many others includ-
ing a conversion to a c-string (c_str()).

For many SystemC models, the native C++ data type in Fig. 3.1 are more than
sufficient. The native C++ data types are most efficient in terms of memory usage
and simulator execution speed because they can be mapped directly to processor
instructions.

3.2 SystemC Data Types Overview

The SystemC library provides data types that are designed for modeling digital
logic and fixed-point arithmetic. There are two SystemC logic vector types: 2-val-
ued and 4-valued logic; and two SystemC numeric types: integers and fixed-point.
The SystemC data types are designed to be freely mixed with the native C++ data
types, other SystemC data types, and C++ strings. SystemC data types may be used
in C++ applications just as any other C++ library.

With the exception of the single-bit sc_logic type, all of the SystemC data
types are length configurable over a range much broader than the native C++ data
types. SystemC provides assignment and initialization operations with type conver-
sions, allowing C++ data types, SystemC data types, and C++ strings to be used for
initialization or in assignment operation to SystemC data types. All SystemC data
types implement equality and bitwise operations.

The SystemC arithmetic data types (integer and fixed-point) implement arithme-
tic and relational operations. The SystemC implementations of these operations are
semantically compatible with C++. SystemC also supports the conversion between
SystemC data types and C++ data types.

The SystemC data types allow single-bit and multi-bit select operations. The
results of these select operations may be used as the source (right-hand side) or

// Example native C++ data types
const bool WARNING_LIGHT(true);// Status
int spark_offset; // Adjust ignition
unsigned repairs(0); // # of repairs
unsigned long mileage; // Miles driven
short int speedometer; // -20..0..100 MPH
float temperature; // Engine temp in C
double time_of_last_request; // bus activity
string license_plate;// license plate text
enum Direction { N,NE,E,SE,S,SW,W,NW };
Direction compass;

Fig. 3.1 Example of C++ built-in data types

333.3 SystemC Logic Vector Data Types

target (left-hand side) of assignment operations or concatenated with other bit-
selects or with SystemC integers or vector data types.

All of the SystemC data type are part of the sc_dt namespace, which may be used
with the scope operator (::) to avoid naming collisions with other C++ libraries.

3.3 SystemC Logic Vector Data Types

SystemC provides two logic vector types: sc_bv<W> (bit vector) and sc_lv<W>
(logic vector), and a single-bit logic type sc_logic. Early versions of SystemC
defined sc_bit, a single-bit version of sc_bv<W>, which was deprecated by the
IEEE SystemC Standard. Older applications that used the sc_bit data type may
replace instances of sc_bit with the C++ bool data type.

The SystemC logic vector types are intended to model at a very low level (near
RTL) and do not implement arithmetic operations. They do implement a full range
of assignment and logical operations, given some obvious restrictions. For example,
an sc_lv<W> with high-z or unknown bit values cannot be assigned to an
sc_bv<W> without losing some information.

3.3.1 sc_bv<W>

The SystemC bit vector data type sc_bv<W> has the same capabilities as the
sc_lv<W> with the bit values restricted to logic zero or logic one. The sc_bv<W>
is a templated class where T specifies bit width.

sc_bv<BITWIDTH> NAME…;

Fig. 3.2 Syntax of Boolean data types

SystemC bit vector operations include all the common bitwise-and, bitwise-or,
and bitwise-xor operators (i.e., &, |, ̂). In addition to bit selection and bit ranges (i.e.,
[] and range()), sc_bv<W> also supports and_reduce(), or_reduce(),
nand_reduce(), nor_reduce(), xor_reduce(), and xnor_reduce()
operations. Reduction operations place the operator between all adjacent bits.

sc_bv<5> positions = "01101";
sc_bv<6> mask = "100111";
sc_bv<5> active = positions & mask;// 00101
sc_bv<1> all = active.and_reduce(); // SC_LOGIC_0
positions.range(3,2) = "00";// 00001
positions[2] = active[0] ^ flag;

Fig. 3.3 Examples of bit operations

34 3 Data Types

3.3.2 sc_logic and sc_lv<W>

More interesting than the Boolean data types are the four-value data types used to
represent unknown and high impedance (tri-state) conditions. SystemC uses
sc_logic and sc_lv<W> to represent these data types (Fig. 3.4). The logic state
of these data types are represented as:

logic 0 - •	 SC_LOGIC_0, Log_0, or ‘0’
logic 1 - •	 SC_LOGIC_1, Log_1, or ‘1’
high-impedance - •	 SC_LOGIC_Z, Log_Z, ‘Z’ or ‘z’
unknown - •	 SC_LOGIC_X, Log_X, ‘X’ or ‘x’

Because of their overhead, these data types are considerably slower than bool
and sc_bv. The sc_logic data type is a single-bit version of the templated
sc_lv<W> class where the single template parameter is the bit width.

SystemC does not have representations for other multi-level data types or drive
strengths like Verilog’s 12-level logic values or VHDL’s 9-level std_logic values.
However, you can create custom data types if truly necessary, and you can manipulate
them by operator overloading in C++.

sc_lv<5> positions = "01xz1";
sc_lv<6> mask = "10ZX11";
sc_lv<5> active = positions & mask; // 0xxx1
sc_lv<1> all = active.and_reduce(); // SC_LOGIC_0
positions.range(3,2) = "00"; // 000Z1
positions[2] = active[0] ^ flag; // !flag

Fig. 3.5 Examples of bit operations

sc_logic NAME[,NAME]…;
sc_lv<BITWIDTH> NAME[,NAME]…;

Fig. 3.4 Syntax of multi-value data types

SystemC logic vector operations (Fig. 3.5) include all the common bitwise-
and, bitwise-or, and bitwise-xor operators (i.e., &, |, ^). In addition to bit
selection and bit ranges (i.e., [] and range()), sc_lv<W> also supports
and_reduce(), or_reduce(), nand_reduce(),nor_reduce(),
xor_reduce(), and xnor_reduce() operations. Reduction operations
place the operator between all adjacent bits.

353.4 SystemC Integer Types

3.4 SystemC Integer Types

SystemC provides signed and unsigned two’s complement versions of two basic
integer data types. The two data types are a limited precision integer type, which has
a maximum length of 64-bits, and a finite precision integer type, which can be much
longer. These integer data types provide functionality not available in the native C++
integer types. The native C++ data types have widths that are host processor and com-
piler dependent. The native data types are optimized for the host processor instruction
set and are very efficient. These data types are typically 8, 16, 32, or 64 bits in length.
The SystemC integer data types are templated and may have data widths from 1 to
hundreds of bits. In addition to configurable widths, the SystemC integer data types
allow bit selections, bit range selections, and concatenation operations.

3.4.1 sc_int<W> and sc_uint<W>

Most hardware needs to specify actual storage width at some level of refinement.
When dealing with arithmetic, the built-in sc_int<W> and sc_uint<W>
(unsigned) numeric data types (Fig. 3.6) provide an efficient way to model
data with specific widths from 1- to 64-bits wide. When modeling numbers
where data width is not an integral multiple of the simulating processor’s data
paths, some bit masking and shifting must be performed to fit internal computa-
tion results into the declared data format.

sc_int<LENGTH> NAME…;
sc_uint<LENGTH> NAME…;

Fig. 3.6 Syntax of arithmetic data types

3.4.2 sc_bigint<W> and sc_biguint<W>

Some hardware may be larger than the numbers supported by native C++ data
types. SystemC provides sc_bigint<W> and sc_biguint<W> data types
(Fig. 3.7) for this purpose. These data types provide large number support at the
cost of speed.

sc_bigint<BITWIDTH> NAME…;
sc_biguint<BITWIDTH> NAME…;

Fig. 3.7 Syntax of sc_bigint<W> and sc_biguint<W>

36 3 Data Types

3.5 SystemC Fixed-Point Types

The SystemC fixed-point data types address the need for non-integer data types
when modeling DSP applications that cannot justify the use of floating-point
hardware. Early DSP models should be developed using the native C++ float-
ing-point data types due to the much higher simulation speed. As a design
evolves, fixed-point data types can provide higher fidelity modeling of the sig-
nal processing logic and can be used to provide a path to a synthesizable
design.

SystemC provides multiple fixed-point data types: signed and unsigned, com-
pile-time (templated) and run-time configurable, and fixed-precision and limited-
precision (_fast) versions.

The SystemC fixed-point data types (Fig. 3.9) are characterized by word length
(total number of bits) and their integer portion length. Optional parameters provide
control of overflow and quantization modes.

Unlike other SystemC data types, fixed-point data types may be configured at
compile time, using template parameters or at run time using constructor parame-
ters. Regardless of how a fixed-point data object is created, it cannot be altered later
in the execution of the program.

// SystemC integer data types
sc_int<5> seat_position=3; //5 bits: 4 plus

// sign
sc_uint<13> days_SLOC(4000); //13 bits: no sign
sc_biguint<80> revs_SLOC; // 80 bits: no sign

Fig. 3.8 Example of SystemC integer data types

sc_fixed<WL,IWL[,QUANT[,OVFLW[,NBITS]> NAME;
sc_ufixed<WL,IWL[,QUANT[,OVFLW[,NBITS]> NAME;
sc_fixed_fast<WL,IWL[,QUANT[,OVFLW[,NBITS]> NAME;
sc_ufixed_fast<WL,IWL[,QUANT[,OVFLW[,NBITS]> NAME;

sc_fix NAME(WL,IWL[,QUANT[,OVFLW[,NBITS]);
sc_ufix NAME(WL,IWL[,QUANT[,OVFLW[,NBITS]);
sc_fix_fast NAME(WL,IWL[,QUANT[,OVFLW[,NBITS]);
sc_ufix_fast NAME(WL,IWL[,QUANT[,OVFLW[,NBITS]);

Fig. 3.9 Syntax of fixed-point data types

373.5 SystemC Fixed-Point Types

// to enable fixed-point data types
#define SC_INCLUDE_FX
#include <systemc>
// fixed-point data types are now enabled
sc_fixed<5,3> compass // 5-bit fixed-point word

Fig. 3.10 Example of fixed-point data types

Due to their compile-time overhead, fixed-point data types are omitted from the
default SystemC include file. To enable fixed-point data types, SC_INCLUDE_FX
must be defined prior to including the SystemC header file (Fig. 3.10).

The fixed-point data types have several easy-to-remember distinctions. First,
those data types ending with fast are faster than the others, because their preci-
sion is limited to 53 bits internally; fast types are implemented using C++
double1.

Second, the prefix sc_ufix indicates unsigned just as uint indicates unsigned
integers. Third, the past tense ed suffix to fix indicates a templated data type that
must have static parameters defined using compile-time constants.

Remember that fixed is past tense (i.e., already set in stone), and it cannot
be changed after compilation. At run time, you may create and use new objects
of the non-templated (fix versions) data types varying the configuration as
needed.

Though the sc_fix, sc_ufix, sc_fix_fast, and sc_ufix_fast are
run-time configurable, once an object of these types is created, its configuration
cannot be modified.

The parameters needed for fixed-point data types are the word length (WL),
integer-word length (IWL), quantization mode (QUANT), overflow mode (OVFLW),
and number of saturation bits (NBITS). Word length (WL) and integer word length
(IWL) have no defaults and must be set.

The word length establishes the total number of bits representing the data type.
The integer word length indicates where to place the binary point and can be posi-
tive or negative. Figure 3.11 below shows how this works.

The preceding figure shows examples with the binary point in several positions.
Consider example b in Fig. 3.11. This could be declared as sc_fixed<5,3>, and
would represent values from –4.00 up to 3.75 in 1/4 increments.

1 This implementation takes advantage of the linearly scaled 53-bit integer mantissa inside a 64-bit
IEEE-754 compatible floating-point unit. On processors without an FPU, this behavior must be
emulated in software, and there will be no speed advantage.

38 3 Data Types

Fig. 3.11 Fixed-point formats

Name Overflow Meaning

SC_SAT Saturate
SC_SAT_ZERO Saturate to zero
SC_SAT_SYM Saturate symmetrically
SC_WRAP Wraparound
SC_WRAP_SYM Wraparound symmetrically

Table 3.2 Overflow mode enumer-
ated constants

Name Quantization Mode

SC_RND Round
SC_RND_ZERO Round towards zero
SC_RND_MIN_INF Round towards minus infinity
SC_RND_INF Round towards infinity
SC_RND_CONV Convergent roundinga

SC_TRN Truncate
SC_TRN_ZERO Truncate towards zero
a Convergent rounding is probably the oddest. If the most
significant deleted bit is one, and either the least significant
of the remaining bits or at least one of the other deleted bits
is one, then add one to the remaining bits.

Table 3.3 Quantization mode
enumerated constants

You can select several overflow modes from a set of enumerations that are listed
in Table 3.2. A similar table for the quantization modes is also shown in Table 3.3.
Overflow mode, quantization mode, and number of saturation bits all have defaults.
You can modify the defaults by setting up a sc_fxtype_context object for the
run-time configurable data types.

393.6 SystemC Literal and String

The following examples in Fig. 3.12 should help explain the syntax for the fixed-
point data types:

const sc_ufixed<19,3> PI("3.141592654");
sc_fix oil_temp(20,17,SC_RND_INF,SC_SAT);
sc_fixed_fast<7,1> valve_opening;

Fig. 3.12 Examples of fixed-point data types

Only the word length and integer word length are required parameters. If not
specified, the default overflow is SC_WRAP, the default quantization is SC_TRN,
and saturation bits default to one.

A special note applies if you intend to set up arrays of the _fix types. Since a
constructor is required, but C++ syntax does not allow arguments for this situation,
it is necessary to use the sc_fxtype_context type to establish the defaults.

3.6 SystemC Literal and String

Representation of literal data is fundamental to all languages. C++ allows for inte-
gers, floats, Booleans, characters, and strings. SystemC provides the same capabil-
ity for its data types and uses C++ representations as a basis.

3.6.1 SystemC String Literals Representations

The SystemC string literals may be used to assign values to any of the SystemC
data types. SystemC string literals consist of a prefix, a magnitude and an optional
sign character “+” or “-”. The optional sign may precede the prefix for decimal
and sign and magnitude forms, but is not allowed with unsigned, binary, octal, and
hexadecimal. Negative values for binary, octal, and hexadecimal may be expressed
using a two’s complement representation. The supported prefixes are listed in
Table 3.4.

Instances of the SystemC data types may be converted to a standard C++ string
using the data type’s to_string method. The format of the resulting string is
specified using sc_numrep enumeration shown in the left-hand column of Table
3.4. Examples of this formatting are shown in the right-most column of the above
table; the values used are 13 and -13. The to_string method has two arguments:
a numbers representation from column one of the table; and bool to add a repre-
sentation prefix to the resulting string.

40 3 Data Types

string to_string(sc_numrep rep, bool wprefix);

Fig. 3.13 Syntax of to_string

3.6.2 String Input and Output

SystemC string literal representations and streaming IO represent data using
the same formats. SystemC supports the input stream using the input extractor
(operator>>) and output stream using the output inserter (operator<<).

Input streams use the literal prefixes shown in the second column of Table 3.4
to define the format of data being read from an input stream. This is the same for-
mat used when assigning a literal to a SystemC variable.

Output streams may use the C++ output stream manipulators dec, oct, and
hex to control the display format of the SystemC data types. Additional display
control may be obtained by using the data type’s to_string methods.

Earlier versions of SystemC LRM defined a unique string type sc_string,
which is now deprecated. New SystemC applications should use standard C++
string and the to_string method described in this section.

Table 3.4 Unified string representation for SystemC

sc_numrep Prefix Meaning
sc_int<5> = 13
sc_int<5> = -13

SC_DEC 0d Decimal 0d13
-0d13

SC_BIN 0b Binary 0b01101
0b10011

SC_BIN_US 0bus Binary unsigned 0bus1101
negative

SC_BIN_SM 0bsm Binary signed magnitude 0bsm01101
-0bsm01101

SC_OCT 0o Octal 0o15
0o63

SC_OCT_US 0ous Octal unsigned 0ous15
negative

SC_OCT_SM 0osm Octal signed magnitude 0osm15
-0osm15

SC_HEX 0x Hex 0x0d
0xf3

SC_HEX_US 0xus Hex unsigned 0xusd
negative

SC_HEX_SM 0xsm Hex signed magnitude 0xsm0d
-0xsm0d

SC_CSD 0csd Canonical signed digit 0csd10-01
0csd-010-

413.7 Operators for SystemC Data Types

//---
// sc_lv<8> 8-bit logic vectors
//---
sc_lv<8> LV1;
LV1 = 15;
cout << " LV1= " << LV1;
sc_lv<8> LV2("0101xzxz"); // literal string init
cout << " LV2= " << LV2;
cout << endl;
//---
// sc_int<5> 5-bit signed integer
//---
sc_int<5> Int1; // 5-bit signed integer
Int1 = "-0d13"; // assign -13
cout << " Int1=" << Int1;
cout << " SC_BIN=" << Int1.to_string(SC_BIN);
cout << " SC_BIN_SM=" << Int1.to_string(SC_BIN_SM);
cout << " " << endl;
cout << " SC_HEX=" << Int1.to_string(SC_HEX);
cout << endl;
//---
// sc_fixed<5,3> fixed 3-bit int & 2 bit fraction
//---
sc_fixed<5,3> fix1; // fixed point
fix1 = -3.3;
cout << " fix1=" <<fix1;
cout << " SC_BIN=" << fix1.to_string(SC_BIN);
cout << " SC_HEX=" << fix1.to_string(SC_HEX);
cout << endl;

Output:

LV1=00001111 LV2=0101XZXZ
Int1=-13 SC_BIN=0b10011 SC_BIN_SM=-0bsm01101

SC_HEX=0xf3
fix1=-3.5 SC_BIN=0b100.10 SC_HEX=0xc.8

Fig. 3.14 Example of literals and to_string

Below are a few examples in Fig. 3.14 that demonstrate the use of SystemC liter-
als, the to_string method, and output stream:

3.7 Operators for SystemC Data Types

The SystemC data types support all the common operations with operator overload-
ing as illustrated in Table 3.5.

In addition, SystemC provides special methods to access bits, bit ranges, and
perform explicit conversions as illustrated in Table 3.6.

The bit and part select and concatenation operations support much like the hard-
ware descriptions languages. This support allows the simple isolation of fields in

42 3 Data Types

packed data or the concatenation of multiple bit or bit-fields to create packed data
objects. Several examples are shown in Fig. 3.15.

One often overlooked aspect of these data types (and C++ data types) is mixing
types in arithmetic operations. It is OK to mix similar data types of different
lengths, but crossing types is dangerous. For example, assigning the results of an
operation involving two sc_int<W> variables to an sc_bigint<W> does not
automatically promote the operand to sc_bigint for intermediate calcula-
tions. To accomplish that, it is necessary to have one of the arguments be an
sc_bigint<W> or perform an explicit conversion of one of at least one of the
operand arguments. Below is an example of addition.

//---
// bit-select and part-select examples
//---
sc_uint<8> I1 = "0x35"; // 8-bit signed integer
sc_uint<5> I2 = "0b01010"; // 5-bit signed integer
sc_uint<4> I3 = 0; // 5-bit signed integer

sc_uint<16> I4 = 0; // 16-bit signed
integer

I3 = I2.range(3,0); // I3= 0b1010
I3[2] = true; // I3= 0b1110
I3[0] = true; // I3= 0b1111

I4 = (I3,I1.range(7,4),I2(3,0),I1(3,0));
// I4 = 0x0f3a5 HEX format
// I4 = 0b01111001110100101 BIN format

Fig. 3.15 Bit-select, part-select, and concatenation

Table 3.6 Special methods

Bit Selection bit(idx), [idx]

Range Selection range(high,low), (high,low)

Conversion (to C++ types) to_double(),to_int(), to_int64(),to_long(),
to_uint(),to_uint64(), to_ulong(),to_
string(type)

Testing is_zero(), is_neg(), length()
Bit Reduction and_reduce(),nand_reduce(), or_reduce(),nor_

reduce(), xor_reduce(), xnor_reduce()

Comparison == != > >= < <=

Arithmetic ++ -- * / % + - << >>

Bitwise ~ & | ^
Assignment = &= |= ^= *= /= %= += -= <<= >>=

Table 3.5 Operators

433.8 Higher Levels of Abstraction and the STL

sc_int<3> d(3);
sc_int<5> e(15);
sc_int<5> f(14);
sc_int<7> sum = d + e + f;// Works
sc_int<64> g("0x7000000000000000");
sc_int<64> h("0x7000000000000000");
sc_int<64> i("0x7000000000000000");
sc_bigint<70> bigsum = g + h + i; // Doesn’t work
bigsum = sc_bigint<70>(g) + h + i;// Works

Fig. 3.16 Example of conversion issues

#include <vector>
int main(int argc, char* argv[]) {

vector<int> memory(1024);
for (unsigned i=0; i!= 1024; i++) {

// Following checks access (safer than
// memory[i])
memory.at(i) = -1; // initialize to known values

}//endfor
…
memory.resize(2048); // increase size of memory
…

}//end main()

Fig. 3.17 Example of STL vector

3.8 Higher Levels of Abstraction and the STL

The basic C++ and SystemC data types lack structure and hierarchy. For these, the
standard C++ struct and array are good starting points. However, a number of
very useful data type classes are freely available in C++ libraries, which provides
another benefit of having a modeling language based upon C++.

The STL is the most popular of these libraries, and it comes with all modern
C++ compilers. The STL contains many useful data types and structures, including
an improved character array known as string, and generic containers such as the
vector<T>, map<T,T>, set<T>, list<T>, and deque<T>. These contain-
ers can be manipulated by STL algorithms such as for_each(), count(), min_
element(), max_element(), search(), transform(), reverse(), and
sort(). These are just a few of the algorithms available. This book will not
attempt to cover the STL in any detail, but a brief example may stimulate you to
search further.

The STL container vector<T> closely resembles the common C++ array, but
with several useful improvements. Unlike arrays, vectors can be assigned and com-
pared. Also, the vector<T> may be resized dynamically. Perhaps more impor-

44 3 Data Types

tantly, accessing an element of a vector<T> can have bounds checking for safety.
The example below demonstrates use of an STL vector<T>.

Your mileage will vary, but the authors are certain you will benefit from using
the STL with SystemC.

3.9 Choosing the Right Data Type

A frequent question is, “Which data types should be used for this design?” The best
answer is, “Choose a data type that is closest to native C++ as possible for the
modeling needs at hand.” Choosing native data types will always produce the fast-
est simulation speeds. Table 3.7 gives an idea of performance.

Table 3.7 Data type performance

Speed Data type

Fastest Native C/C++ Data Types (e.g., int, double
and bool)

sc_int<W>, sc_uint<W>

sc_bv<W>
sc_logic, sc_lv<W>
sc_bigint<W>, sc_biguint<W>
sc_fixed_fast<WL,IL,…>, sc_fix_fast,
sc_ufixed_fast<WL,IL,…>, sc_ufix_fast

Slowest sc_fixed<WL,IL,…>, sc_fix,
sc_ufixed<WL,IL,…>, sc_ufix

Do not use sc_int<W> or sc_bigint<W> unless you require more detail
than available by native C++ data types. It is preferred to use sc_int<W> for 64
or fewer bits over sc_bigint<W> for higher performance. In general, SystemC
data types are slower than native C++ data types, and more complex SystemC types
are slower than simpler smaller types.

RTL synthesis tools generally require all data to be SystemC data types. Some
behavioral synthesis tools allow native C++ data types. SystemC data types may be
used to guide the behavioral synthesis tool.

3.10 Exercises

For the following exercises, use the samples provided at www.scftgu.com

Exercise 3.1: Examine, compile, and run the examples from the web site,
datatypes and uni_string_rep. Note that although these examples include
systemc, they only use data types.

http://www.scftgu.com/Book/.

453.10 Exercises

Exercise 3.2: Write a program to read data from a file using the unified
string representation and store in an array of sc_uint<W>. Output the values as
SC_DEC and SC_HEX_SM.

Exercise 3.3: Write a program to generate 100,000 random values and compute
the squares of these values. Do the math using each of the following data types:
short, int, unsigned, long, sc_int<8>, sc_uint<19>, sc_
bigint<8>, sc_bigint<100>, sc_fixed<12,12>. Be certain to gen-
erate numbers distributed over the entire range of possibilities. Compare the run
times of each data type.

Exercise 3.4: Write a program to explore data accuracy of fixed-point numbers
for an application needing to add two sine waves with amplitudes of 14 and 22,
where the larger of the two is also 2½ times the frequency of the smaller. There are
512 samples over the longest period. Assume you are limited to 12 bits for both
input and output. Try different modes. HINT: Start modeling using double.
Progress to using sc_fix.

Exercise 3.5: Examine, compile, and run the example addition. What would
it take to fix the problems noted in the source code? Try adding various sizes of
sc_bigint<W>.

47

This chapter lays the foundation for SystemC models. Here, we explore how to write
a minimal SystemC program in preparation for an exploration of time and concur-
rency in later chapters. With respect to hierarchy, this chapter only touches the very
top level. A later chapter on structure will discuss hierarchy in more detail.

4.1 A Starting Point: sc_main

All programs need a starting point. In C/C++, the starting point is called main().
In SystemC, the starting point is called sc_main(), and this is where you will
start your code. SystemC as in Verilog and VHDL, might superficially appear to
start every process simultaneously. In reality, all of these simulation languages have
initialization requirements that are handled here.

The top level of a C/C++ program is a function named main(). Its declaration
is generally:

Chapter 4
Modules

int main(int argc, char* argv[]) {
BODY_OF_PROGRAM

return EXIT_CODE; // Zero indicates success
}

Fig. 4.1 Syntax of C++ main()

In Fig. 4.1, argc represents the number of command-line arguments including
the program name itself. argv[] is an array of C-style character strings representing
the command line that invoked the program. Thus, argv[0] is the program
name itself.

SystemC usurps this procedure and provides sc_main() as replacement. The
SystemC library provides its own definition of main(), which in turn calls
sc_main() and passes along the command-line arguments. The syntax for sc_
main() is shown in Fig. 4.2.

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_4, © Springer Science+Business Media, LLC 2010

Channels &
Interfaces

Events, Sensitivity
& Notifications

Threads & Methods

Simulation
Kernel

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Data types:
Logic,

Integers,
Fixed pointModules &

Hierarchy

48 4 Modules

By convention, SystemC programmers simply name the file containing sc_main(),
as main.cpp to indicate to the C/C++ programmer that this is the place where every-
thing begins1. The actual main() routine is located in the SystemC library itself
and is not exposed to the user.

SystemC provides access to argc and argv throughout the model hierarchy by
providing the functions as shown in Fig. 4.3.

int sc_main(int argc, char* argv[]) {
ELABORATION
sc_start(); // <-- Simulation begins & ends

// in this function!
[POST-PROCESSING]
return EXIT_CODE; // Zero indicates success

}

Fig. 4.2 Syntax of sc_main()

1 This naming convention is not without some controversy in some programming circles; however,
most groups have accepted it and deal with the name mismatch.

int sc_argc(); //access to argc
const char* sc_argv(); //access to argv

Fig. 4.3 Syntax of sc_argc() and sc_argv()

Within sc_main(), code executes in three distinct major stages. We will now
examine these stages, which are elaboration, simulation, and post-processing.

During elaboration, connectivity for the model is established. This includes
hierarchal modules, leaf modules, channels, simulation processes, and data structures.
Elaboration invokes code to register simulation processes and performs the connections
between design modules.

At the end of elaboration, sc_start() invokes the simulation stage. During
simulation, code representing the behavior of the model executes. Within the simulation
stage, the scheduler is responsible for process execution. A following chapter on
concurrency will explore this stage in greater detail.

Finally, after returning from sc_start(), the post-processing stage begins.
Post-processing is mostly optional. During post-processing, code may read data
created during simulation and format reports or otherwise handle the results of
simulation.

Post-processing finishes with the return of an exit status from sc_main().
A nonzero return status indicates failure that can be a computed result of post-
processing. A zero return should indicate success (i.e., confirmation that the model
correctly passed all tests). Many developers neglect this aspect and simply return
zero by default. We recommend that you explicitly confirm that the model passed
all tests.

494.2 The Basic Unit of Design: SC_MODULE

Callbacks may be used to intercept some points in the preceding stages.
For instance, end_of_elaboration(), start_of_simulation(), and
end_of_simulation(). These are discussed later in the book.

We now turn our attention to the components used to create a system model.

4.2 The Basic Unit of Design: SC_MODULE

Complex systems consist of many independently functioning components. These
components may represent hardware, software, or any physical entity. Components
may be large or small, and often contain hierarchies of smaller components. The
smallest components represent behaviors and state. In SystemC, we use a concept
known as the SC_MODULE to represent components.

DEFINITION: A SystemC module is the smallest container of functionality
with state, behavior, and structure for hierarchical connectivity.

A SystemC module is simply a C++ class definition. For convenience, the macro
SC_MODULE is used to declare the class in Fig. 4.4.

2 cpp is the C/C++ pre-processor that handles # directives such as # define.

#include <systemc>
class module_name : public sc_module {
public:

MODULE_BODY
};

Fig. 4.6 Syntax without the SC_MODULE macro

#define SC_MODULE(module_name) \
struct module_name: public sc_module

Fig. 4.5 SC_MODULE macro definition

#include <systemc>
SC_MODULE(module_name) {

MODULE_BODY
};

Fig. 4.4 Syntax of SC_MODULE

where SC_MODULE is a simple cpp2 macro as shown in Fig. 4.5. Don’t forget the
trailing semicolon, which is a fairly common error.

We prefer the following method for coding an SC_MODULE as illustrated in
Fig. 4.6.

50 4 Modules

Within this derived module class, a variety of elements make up the MODULE
BODY:

Ports•	
Member channel instances•	
Member data instances•	
Member module instances (sub-designs)•	
Constructor•	
Destructor•	
Simulation process member functions (processes)•	
Other methods (i.e., member functions)•	

Of these, only the constructor is required. However, to contain any useful behavior
in your design, you must include either a process or a sub-design. We will first look
at the constructor, followed by a simple process. This sequence lets us finish with
a basic example of a minimal design and a few alternatives.

4.3 The SC_MODULE Class Constructor: SC_CTOR

Since SC_MODULE is a C++ class, it requires a constructor. The SC_MODULE
constructor performs several tasks specific to SystemC. These tasks include:

Initializing/allocating sub-designs•	
 – Chapter 10 Structure

Connecting sub-designs•	
 – Chapter 10 Structure
 – Chapter 11 Connectivity

Registering processes with the SystemC kernel•	
 – Chapter 6 Concurrency

Providing static sensitivity•	
 – Chapter 6 Concurrency

Miscellaneous user-defined setup•	

To simplify coding, SystemC provides the macro, SC_CTOR(). The syntax
using this macro follows in Fig. 4.7.

In a simple design, you may only require process registration and setup, whereas
in complicated designs, you may need to include multiple designs as well as mul-
tiple processes. Let us now examine processes, and see how they fit into the design
concept.

10.1007/_10
10.1007/_10
10.1007/_11
10.1007/_6
10.1007/_6

514.4 The Basic Unit of Execution: Simulation Process

4.4 The Basic Unit of Execution: Simulation Process

The SystemC simulation process is the basic unit of execution. All simulation pro-
cesses are registered with the SystemC simulation kernel and are called by the
kernel, and only from the SystemC simulation kernel. We discuss the SystemC
simulation kernel in excruciating detail in a following chapter on concurrency.
From the time the simulator begins until simulation ends, all executing code is initi-
ated from one or more processes. Simulation processes appear to execute
concurrently.

DEFINITION: A SystemC simulation process is a method (member function) of
an SC_MODULE that is invoked by the scheduler in the SystemC simulation
kernel.

The prototype of a basic simulation process for SystemC is:

SC_MODULE(module_name) {
SC_CTOR(module_name)
: Initialization // C++ initialization list
{

Subdesign_Allocation
Subdesign_Connectivity
Process_Registration
Miscellaneous_Setup

}
};

Fig. 4.7 Syntax of SC_CTOR

void PROCESS_NAME(void);

Fig. 4.8 Syntax of SystemC process

There are several kinds of simulation processes, and we will discuss all of them
eventually. For the purpose of simplification, we will look only at the most basic
simulation process type in this chapter.

The most straightforward type of process to understand is the SystemC thread,
SC_THREAD. Conceptually, a SystemC thread is similar to a single software
thread.

A SystemC simulation is a simple C/C++ program. There is only one thread
running for the entire program. The SystemC simulation kernel, on the other hand,
allows the illusion that many SystemC simulation threads are executing in parallel,
as we shall learn in the chapters on concurrency.

A simple SC_THREAD begins execution when the scheduler calls it. An
SC_THREAD may also suspend itself, but we will discuss that topic in the next two
chapters.

52 4 Modules

4.5 Registering the Basic Process: SC_THREAD

Once you have defined a process method in the module, you must identify and
register it with the simulation kernel. This step allows the thread to be invoked by
the simulation kernel’s scheduler. The registration occurs within the module class
constructor, SC_CTOR, as previously indicated in Fig. 4.7.

To register a SystemC thread, use the cpp macro SC_THREAD inside the con-
structor as shown in Fig. 4.9.

SC_THREAD(process_name);//Must be INSIDE constructor

Fig. 4.9 Syntax of SC_THREAD

The process_name is the name of the corresponding method of the class and
also needs to be declared as a method within the SC_MODULE class. Figure 4.10 is
a complete example of an SC_THREAD defined within a module:

//FILE: basic_process_ex.cpp
void basic_process_ex::my_thread_process(void) {

cout << "my_thread_process executed within "
<< name() //returns sc_module instance name
<< endl;

}

Fig. 4.11 Example of basic SC_THREAD implementation

//FILE: basic_process_ex.h
SC_MODULE(basic_process_ex) {

SC_CTOR(basic_process_ex) {
SC_THREAD(my_thread_process);

}
void my_thread_process(void);

};

Fig. 4.10 Example of basic SC_THREAD

Traditionally, the code above is placed in a header file that has the same name
as the module and has a .h filename extension. Thus, the preceding example could
appear inside a file named basic_process_ex.h.

Notice that my_thread_process is not implemented in the module defini-
tion, but only declared. In the manner of C++, it is legal to implement the member
function within the class, but implementations are traditionally placed in a separate
file, the .cpp file.

It is also possible to place the implementation of the constructor in the .cpp file, as
we shall see in the next section. In the following example, we show an implementation for
the my_thread_process in the implementation file basic_process_ex.cpp.

534.7 Alternative Constructors: SC_HAS_PROCESS

Testbench code typically uses SC_THREAD processes to accomplish a series
of tasks and to eventually stop the simulation. On the other hand, high-level
abstraction hardware models commonly include infinite loops to model hardware
logic. It is a requirement that such loops explicitly hand over control to other
parts of the simulation. This topic will be discussed in a later chapter on
concurrency.

4.6 Completing the Simple Design: main.cpp

Now we complete the design with an example of the top-level file for basic_
process_ex. The top-level file for a SystemC model is placed in the traditional
file, main.cpp as illustrated in Fig. 4.12.

Notice the string name constructor argument “my_instance” in the preceding
example. The reason for this apparent duplication is to store the name of the
instance internally for use when debugging. The SC_MODULE class member func-

//FILE: main.cpp
int sc_main(int argc, char* argv[]) { // args unused

basic_process_ex my_instance("my_instance");
sc_start();
return 0; // unconditional success (not

// recommended)
}

Fig. 4.12 Example of simple sc_main()

tion name() may be used to obtain the name of the current instance to print infor-
mation or debug messages.

4.7 Alternative Constructors: SC_HAS_PROCESS

Before leaving this chapter on modules, we need to discuss an alternative approach
to creating constructors. The alternative approach uses a cpp macro named
SC_HAS_PROCESS. An explanation of the name will become clear in the chapter
on concurrency.

You can use this macro in two situations. First, use SC_HAS_PROCESS when
you require constructors with arguments beyond just the SystemC module instance
name string passed into SC_CTOR (e.g., to provide configurable modules). Second,
use SC_HAS_PROCESS when you want to place the constructor in the implemen-
tation (i.e., .cpp) file.

54 4 Modules

My_memory instance("instance", 1024);

Fig. 4.13 Example of SC_HAS_PROCESS instantiation

You can use constructor arguments to specify sizes of included memories,
address ranges for decoders, FIFO depths, clock divisors, FFT depth, and other
configuration information. For instance in Fig. 4.13, a memory design might allow
selection of different sizes of memories with an argument:

//FILE: module_name.h
SC_MODULE(module_name) {

module_name(sc_module_name
instname[,other_args…]);

};

Fig. 4.15 Syntax of SC_HAS_PROCESS separated

//FILE: module_name.h
SC_MODULE(module_name) {

SC_HAS_PROCESS(module_name);
module_name(sc_module_name

instname[, other_args…])
: sc_module(instname)
[, other_initializers]
{

CONSTRUCTOR_BODY
}

};

Fig. 4.14 Syntax of SC_HAS_PROCESS in the header

To use this alternative approach, invoke SC_HAS_PROCESS, just prior to the
definition of your conventional constructor. One caveat applies. You must construct
or initialize the module base class, sc_module, with an instance name string.
This requirement is why SC_CTOR has an argument.

There are alternate forms using SC_HAS_PROCESS. We will first describe in Fig. 4.14
a prevalent style with all of the constructor code defined in the header file. We will then
present our preferred approach, which cleanly separates declaration from definition.

The syntax for using SC_HAS_PROCESS in a separate implementation (i.e., sepa-
rate compilation situation) is similar as shown in Fig. 4.15 and Fig. 4.16. SC_HAS_
PROCESS can also reside in additional locations but the authors prefer to keep it in
the module class definition and close to the constructor or constructor declaration.

In the preceding examples, the other_args are optional.

554.8 Two Styles Using SystemC Macros

4.8 Two Styles Using SystemC Macros

We finish this chapter with two styles for coding SystemC designs. First, we pro-
vide the more traditional style, which depends heavily on headers. Second, our
recommended style places more elements into the implementation. Creating a C++
templated module usually precludes this style due to C++ compiler restrictions.

You may use either one of these styles for your project, though separating your
implementation code in a different file will have certain advantages. We’ll visit these
topics again in more detail when we discuss the details of hierarchy and structure.

4.8.1 The Traditional Coding Style

The traditional style illustrated in Fig. 4.17 and Fig. 4.18 places all the instance
creation and constructor definitions in the header (.h) files. Only the implementa-
tion of processes and helper functions are coded in the compiled (.cpp) file.

//FILE: module_name.cpp
SC_HAS_PROCESS(module_name);
module_name::module_name(

sc_module_name instname[, other_args…])
: sc_module(instname)
[, other_initializers]
{

CONSTRUCTOR_BODY
}

Fig. 4.16 Syntax of SC_HAS_PROCESS in the implementation file

#ifndef NAME_H
#define NAME_H
#include "submodule.h"
…
SC_MODULE(NAME) {

Port declarations
Channel/submodule instances
SC_CTOR(NAME)
: Initializations
{

Connectivity
Process registrations

}
Process declarations
Helper declarations

};
#endif

Fig. 4.17 Traditional style NAME.h

56 4 Modules

Let’s remind ourselves of the basic components in each file. First, the
#ifndef/#define/#endif preprocessor directives prevent compile problems
when the header file is included in multiple files. Using NAME_H definition is a
standard name for the conditional directive. This definition is followed by file
inclusions of any submodule header files by way of #include.

Next, the SC_MODULE{…}; defines the class definition. Within the class defi-
nition, ports are usually the first constructs declared because they represent the
interface to the module. Local channels and submodule instances come next.

Next, we place the class constructor, and optionally the destructor. In most cases,
using the SC_CTOR(){…}; macro proves sufficient in declaring the constructor. Note
that SC_CTOR(){…}; implies SC_HAS_PROCESS and can only be used when no
additional constructor arguments are needed. The body of the constructor usually
includes initializations, connectivity of submodules, and registration of processes. The
constructs mentioned will be discussed in greater detail in the following chapters.

The header finishes out with the declarations of processes, helper functions and
possibly other private data. Note that C++ and SystemC do not dictate the ordering
of the elements within the class declaration.

The body of a traditional style for the implementation simply includes the
SystemC header file, and the corresponding module header described above. The
rest of this file simply contains external function member implementations of the
processes and functions. Note that it is possible to have no implementation file if
there are no processes or helper functions in the module.

4.8.2 Recommended Alternate Style

Here is another style that has some advantages over the preceding style and is illus-
trated in Fig. 4.19 and Fig. 4.20.

First, the header contains the same #define and SC_MODULE components as
the traditional style. The differences reside in how the channel and submodule defi-
nitions are implemented and how the constructor is placed into the implementation
body. Notice in the first case that the channel and submodules are implemented
using pointers instead of direct instantiation. This method allows for dynamic
design configuration that is not possible with direct instantiation. In the second
case, placing the constructor code in the implementation file hides the details from
potential users.

#include <systemc>
#include "NAME.h"
NAME::Process {implementations }
NAME::Helper {implementations }

Fig. 4.18 Traditional style NAME.cpp

574.9 Exercises

#ifndef NAME_H
#define NAME_H
Submodule forward class declarations
SC_MODULE(NAME) {

Port declarations
Channel/Submodule* definitions
// Constructor declaration:
SC_CTOR(NAME);
Process declarations
Helper declarations

};
#endif

Fig. 4.19 Recommended style NAME.h

#include <systemc>
#include "NAME.h"
SC_HAS_PROCESS(NAME);
NAME::NAME(sc_module_name nm)

: sc_module(nm)
, Initializations
{

Channel allocations
Submodule allocations
Connectivity
Process registrations

}
NAME::Process {implementations }
NAME::Helper {implementations }

Fig. 4.20 Recommended style NAME.cpp

4.9 Exercises

For the following exercises, use the samples provided at www.scftgu.com
Exercise 4.1: Compile and run the basic_process_ex example from the

web site. Add an output statement before sc_start() indicating the end of
elaboration and beginning of simulation.

Exercise 4.2: Rewrite basic_process_ex using SC_HAS_PROCESS.
Compile and run the code.

Exercise 4.3: Create two concurrent threads by adding a second SC_THREAD to
basic_process_ex. Be sure the output message is unique. Compile and run.

Exercise 4.4: Create two design instances (and hence two concurrent threads)
by adding a second instantiation of basic_process_ex. Compile and run.

Exercise 4.5: Write a module from scratch using what you know. The output
should count down from 3 to 1 and display the corresponding words “Ready”,
“Set”, “Go” with each count. Compile and run.

http://www.scftgu.com/Book/.

58 4 Modules

Try writing the code without using SC_MODULE. What negatives can you think
of for not using SC_MODULE? [HINT: Think about EDA vendor-supplied tools that
augment SystemC.]

59

As a SystemC simulation runs, there are three unique time measurements: wall-clock
time, processor time, and simulated time:

The simulation’s wall-clock time is the time from the start of execution to •	
completion, including time waiting on other system activities and applications.
The simulation’s processor time is the actual time spent executing the simula-•	
tion, which will always be less than the simulation’s wall-clock time.
The simulated time is the time being modeled by the simulation, and it may be •	
less than or greater than the simulation’s wall-clock time. For example, it might
take 2 seconds by your watch (wall-clock time) to simulate 15 ms (simulated
time) of your design, but it may only take 1 second (processor time) of the CPU
because another program was hogging the processor.

SystemC simulation performance is a combination of many factors: the host sys-
tem, system load, the C++ compiler, the SystemC simulator, and the model being
simulated. Of these factors, the model development team has direct control over the
model being simulated in various ways including using efficient coding styles and
selecting the correct level of abstraction. This and other chapters identify coding
styles and techniques that help create high performance SystemC models.

The remainder of this chapter focuses on the representation and control of
simulated time. The SystemC simulator kernel tracks simulated time using a 64-bit
unsigned integer. This integer is set to zero as the simulation starts and is increased
during simulation in response to the model’s behavior.

5.1 sc_time

The data type sc_time is used by the simulation kernel to track simulated time and
to specify delays and timeouts. Internal to SystemC, sc_time is represented by a
minimum of a 64-bit unsigned integer and a time unit sc_time syntax is illustrated
in Fig. 5.1.

Chapter 5
A Notion
of Time

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_5, © Springer Science+Business Media, LLC 2010

Channels &
Interfaces

Events, Sensitivity
& Notifications

Threads & Methods

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Data types:
Logic,

Integers,
Fixed pointModules &

Hierarchy

Simulation
Kernel

60 5 A Notion of Time

Objects of sc_time data type are declared using the following syntax:

5.1.1 SystemC Time Resolution

All objects of sc_time use a single (global) time resolution that has a default of
1 picosecond. The sc_time class provides get and set methods to read the time reso-
lution and to change time resolution. The get method sc_get_time_resolution
shown in Fig. 5.2 returns time resolution as sc_time. Because time resolution is
a global variable that is used by the simulation kernel and all objects of sc_time,
changes to time resolution are restricted.

sc_time name…; // no initialization
sc_time name(double, sc_time_unit)…;
sc_time name(const sc_time&)…;

Fig. 5.1 Syntax of sc_time

//positive power of ten for resolution
sc_set_time_resolution(double, sc_time_unit);

Fig. 5.2 Syntax of sc_set_time_resolution()

The time units are defined by the enumeration sc_time_unit. Table 5.1 lists the
available time units:

The method sc_set_time_resolution() may be used to change time
resolution once and only once in a simulation. The change must occur before both
creating objects of sc_time and starting the simulation. The time resolution set
method requires two parameters: the first argument is a double that must be a
positive power of ten, and the second argument is an sc_time_unit. This
method has the following syntax:

enum Units Magnitude

SC_FS femtoseconds 10-15

SC_PS picoseconds 10-12

SC_NS nanoseconds 10-9

SC_US microseconds 10-6

SC_MS milliseconds 10-3

SC_SEC seconds 100

Table 5.1 SystemC time units

615.2 sc_time_stamp ()

5.1.2 Working with sc_time

Objects of sc_time may be used as operands for assignment, arithmetic, and
comparison operations. All operations accept operands of sc_time; multiplica-
tion allows one of its operands to be a double; and division allows the divisor to
be a double. Table 5.2 lists the operations supported by the sc_time data_type.
Figure 5.3 illustrates the syntax for sc_time.

In addition to the operations listed above, the sc_time data type provides
conversion methods to convert sc_time to a double (to_double()) or to a
double scaled to seconds (to_seconds()).

ostream_object << desired_sc_time_object;

Fig. 5.4 Syntax of ostream << overload

sc_time t_PERIOD(5, SC_NS);
sc_time t_TIMEOUT(100, SC_MS);
sc_time t_MEASURE, t_CURRENT, t_LAST_CLOCK;
t_MEASURE = (t_CURRENT-t_LAST_CLOCK);
if (t_MEASURE > t_HOLD) { error("Setup violated") }

Fig. 5.3 Examples of sc_time

Also the sc_time data type overloads the output stream inserter (opera-
tor<<) allowing a formatted version of sc_time to be placed in an output stream
for display or printing as shown in Fig. 5.4.

Comparison == != < <= > >=

Arithmetic + - * /

Assignment = += -= *= /=

Table 5.2 sc_time operators

5.2 sc_time_stamp ()

The SystemC simulation kernel tracks simulated time using an sc_time object.
Simulated time cannot be directly modified. The method sc_time_stamp()
can be used to obtain the current simulated time_value as illustrated in Fig.
5.5. The returned value is an sc_time object. This return value allows sc_time_
stamp() to be used as any other object for assignment, arithmetic, and comparison
operations or to be inserted in an output stream for display or printing.

62 5 A Notion of Time

The example in Fig. 5.9, which is based on the previous chapter’s basic process
example, illustrates limiting the simulation to 60 seconds.

Figures 5.6 and 5.7 is a simple example and corresponding output:

The time is now 0 ns!

Fig. 5.7 Output of sc_time_stamp() and ostream << overload

cout << " The time is now "
<< sc_time_stamp()
<< "!" << endl;

Fig. 5.6 Example of sc_time_stamp() and ostream << overload

//sim "forever"
sc_start();
//sim no more than max_sc_time
sc_start(const sc_time& max_sc_time);
//sim no more than max_time time_unit’s
sc_start(double max_time, sc_time_unit time_unit);

Fig. 5.8 Syntax of sc_start()

//FILE: main.cpp
int sc_main(int argc, char* argv[]) { // args unused

basic_process_ex my_instance("my_instance");
sc_start(60.0,SC_SEC); // Limit sim to one minute
return 0;

}

Fig. 5.9 Example of sc_start()

5.3 sc_start()

The method sc_start() is used to start simulation and the syntax is shown in
Fig. 5.8. Of interest to this chapter, the sc_start() method takes an optional argu-
ment of type sc_time. This syntax allows the specification of a maximum simulation
time. Without an argument to sc_start(), a simulation is allowed to run until it
is stopped by some other method, until there is no more activity left in the simulation
model, or until the simulator’s time counter runs out. If you provide a time argument,
simulation stops after the specified simulation time has elapsed.

sc_time current_time = sc_time_stamp();

Fig. 5.5 Example of sc_time_stamp()

635.4 wait(sc_time)

wait(delay_sc_time); // wait specified amount of

// time

Fig. 5.10 Syntax of wait() with a timed delay

5.4 wait(sc_time)

Simulations use delays in simulated time to model real world behaviors, mechanical
actions, chemical reaction times, or signal propagation. The wait() method pro-
vides a syntax to allow this delay in SC_THREAD processes. When a wait() is
invoked, the SC_THREAD process blocks itself and is resumed by the scheduler after
the requested delay in simulated time. The SC_THREAD processes will be discussed
in detail in the next chapter and will include additional syntaxes for wait().

Fig. 5.11 Example of wait()

//FILE: wait_ex.cpp
void wait_ex::my_thread_process(void) {

wait(10,SC_NS);
cout << "Now at " << sc_time_stamp() << endl;
sc_time t_DELAY(2,SC_MS);
t_DELAY *= 2;
cout << "Delaying " << t_DELAY<< endl;
wait(t_DELAY);
cout << "Now at " << sc_time_stamp()<< endl;

}

Now at 10 ns
Delaying 4 ms
Now at 4000010 ns

output:

When the resolution of sc_time used in a wait request is finer than the current
time resolution, rounding must occur. The rounding of sc_time is not specified.
This lack of rounding specification lets different simulators implement different
rounding algorithms. The algorithms may vary from vendor to vendor. For exam-
ple, if the specified time resolution is 100 ps and the request wait time is 20 ps, one
simulator could round to zero resulting in an effective 0 ps delay. Another simulator
could round to the minimum delay possible for the time resolution resulting in an
effective delay of 100 ps.

The examples in Figs. 5.11 and 5.12 use the sc_time data type and several of
the methods discussed in this chapter.

In the Fig. 5.11 example wait() is used to let simulated time advance. Other
methods and overloaded operators are used to modify the display of simulated
time.

64 5 A Notion of Time

5.5 Exercises

For the following exercises, use the samples provided in www.scftgu.com

Exercise 5.1: Examine, compile, and run the example time_flies, found on
the web site.

Exercise 5.2: Modify time_flies to see how much time you can model
(days? months?). See how it changes with the time resolution.

Exercise 5.3: Copy the basic structure of time_flies and model one cylinder
of a simple combustion engine. Modify the body of the thread function to represent
physical actions using simple delays. Use cout statements to indicate progress.

Suggested activities include opening the intake, adding fuel and air, closing the
intake, compressing gas, applying voltage to the spark plug, igniting fuel, expanding
gas, opening the exhaust valves, closing the exhaust valves. Use delays representative
of 800 RPM. Use time variables with appropriate names. Compile and run.

For the Fig. 5.12 example, we know that the simulation will not run for more
than two simulated hours (or 7200 seconds) as implied from the line containing
sc_start(7200, SC_SEC). The initial value of t will be between 0.000 and
7200000.000 since the resolution is in milliseconds.

//FILE: main.cpp
int sc_main(int argc, char* argv[]) {// args unused

sc_set_time_resolution(1,SC_MS);
basic_process_ex my_instance("my_instance");
sc_start(7200,SC_SEC); // Limit simulation to 2

// hours (or 7200 secs.)
double t = sc_time_stamp(); //max is 7200 x 10**3
unsigned hours = int(t / 3600.0);
t -= 3600.0*hours;
unsigned minutes = int(t / 60.0);
t -= 60.0*minutes;
double seconds = t;
cout<< hours<< " hours "

<< minutes<< " minutes "
<< seconds<< " seconds" //to the nearest ms
<< endl;

return 0;
}

Fig. 5.12 Example of sc_time data type

http://www.scftgu.com/Book/.

65

This chapter examines the topic of concurrency, which is fundamental to simulating
with SystemC. We will first take a look at some types of concurrency, and then we
will visit the simulation kernel used by SystemC. This examination will let us discuss
SystemC thread processes, events, and sensitivity.

6.1 Understanding Concurrency

Many activities in a real system occur at the same time or concurrently. For example,
when simulating something like a traffic pattern with multiple cars, the goal is to
model the vehicles independently. In other words, the cars operate in parallel.

Software typically executes using a single thread of activity because there is
usually only one processor on which to run, and partly because a thread is much
easier to manage. On the other hand, in real systems many things occur simultane-
ously. For example, when an automobile executes a left turn, it is likely that the left
turn indicator is flashing, the brakes are engaged to slow down the vehicle, engine
power is decreased as the driver lets off the accelerator, and the transmission is
shifting to a lower gear. All of these activities can occur at the same instant.

SystemC uses simulation processes to model
concurrency. As with most event-driven simula-
tors, concurrency is not true concurrent execution.
In fact, simulated concurrency works like coop-
erative multitasking. When a simulation process
runs, it is expected to execute a small segment of
code and then return control to the simulation
kernel. The SystemC simulator depends on a cooperative multitasking (non-pre-
emptive) kernel that cannot force a running process to return control. This feature
is unlike many operating systems that preemptively interrupt running processes to
switch to a different process. A poorly behaved process that hogs control and

Chapter 6
Concurrency

Processes
and Events

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_6, © Springer Science+Business Media, LLC 2010

Channels &
Interfaces

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Data types:
Logic,

Integers,
Fixed pointModules &

Hierarchy
Events, Sensitivity

& Notifications

Threads & Methods

Simulation
Kernel

66 6 Concurrency

doesn’t yield control to the simulation kernel will cause SystemC simulation to
hang. We’ll look closer at this subject of control after we explain how SystemC uses
C++ to model the process.

SystemC simulation processes are simply C++ functions designated by the
programmer to be used as processes. You simply tell the simulation kernel which
functions are to be used as simulation processes. This action is known as process
registration. The simulation kernel then schedules and calls each of these functions
as needed.

We’ve already seen how to register one type of process back in the chapter on
SystemC modules using the SC_THREAD. Its syntax was simple as shown below
(Fig. 6.1).

SC_THREAD has a few restrictions. First, it can be used only within a SystemC
module; hence, the function must be a member function of the module class.
Second, it must be used only during the elaboration stage, which we will talk about
shortly. Suffice it to say that placing SC_THREAD in the module’s constructor
meets this requirement. Lastly, the member function must exist and the function can
take no arguments and return no values. In other words, the function argument list
is void, and the return value is void.

Let go back to the issue of control. We stated that processes must voluntarily
yield control. Yielding control may take one of two forms. For one form, simulation
processes yield control by executing a return. For the processes registered with
SC_THREAD, executing return is uninteresting because it means the process has
ended permanently.

The more interesting form is calling SystemC’s wait() function. The wait()
function suspends the process temporarily while SystemC proceeds to execute
other processes, and then the function resumes by returning.

We’ve already seen one syntax for wait(delay_sc_time) in the last chapter.
There are several more syntaxes, but we will only introduce one more for the
moment (Fig. 6.2), which relates to time delays.

While we’re on the subject of waiting for a time delay, note that waiting on a
negative time does not make sense and is not defined in the standard. In any case,
you should avoid using negative time delays. Simulators should probably issue a
fatal error for this situation.

SC_THREAD(MEMBER_FUNCTION);

Fig. 6.1 Syntax of SC_THREAD macro

wait(TIME_DELAY,TIME_UNITS); // Convenience

Fig. 6.2 Another syntax of wait()

676.1 Understanding Concurrency

Let’s see how normal time-out waits affect simulation. Here (Fig. 6.3) is a simple
example with two processes. Both processes uses wait(TIME_DELAY) to simu-
late the passage of time. One process models a windshield wiper. The other process
models the emergency blinkers in a similar manner.

It is instructive to compile and run this code. You should download the examples
that accompany this book and run the two_processes example. Notice how
both processes use infinite loops. The loops are useful because if the processes ever
return, they will never run again.

SystemC thread simulation processes typically begin execution at the start
of simulation and continue in an endless loop until the simulation ends. Thread
processes are started once; if they terminate, they cannot be restarted. Thread
processes are required to periodically return control to the simulation kernel, allowing
other processes to run. A thread process returns control to the simulation kernel by
executing a wait() method call specifying an event or a time-out. Each time a
thread returns control to the simulation kernel, its execution state is saved, which
lets the process be resumed when the wait() returns.

//FILE: two_processes.h
SC_MODULE(two_processes) {

void wiper_thread(void); // process
void blinker_thread(void); // process
SC_CTOR(two_processes) {

SC_THREAD(wiper_thread); // register process
SC_THREAD(blinker_thread); // register process

}
};

//FILE: two_processes.cpp
void two_processes::wiper_thread(void) {

while (true) {
wipe_left();
wait(500,SC_MS);
wipe_right();
wait(500,SC_MS);

}//endwhile
}

void two_processes::blinker_thread(void) {
while (true) {

blinker = true;
cout << "Blink ON" << endl;
wait(300,SC_MS);
cout << "Blink OFF" << endl;
blinker = false;
wait(300,SC_MS);

}//endwhile
}

Fig. 6.3 Two processes using wait()

68 6 Concurrency

6.2 Simplified Simulation Engine

Before continuing into the details of the SystemC syntax, we should examine the
operation of the SystemC simulator. In this section, we explain thread processes
using a simplified version (Fig. 6.4) of the simulation kernel. The remaining details
will be covered later in this and other chapters. SystemC simulations consist of four
major stages: elaboration, initialization, simulation, and post-processing.

Fig. 6.4 Simplified SystemC simulation engine

Fig. 6.5 Process sets

In the previously described elaboration stage, SystemC components are instanti-
ated and connected to create a model ready for simulation. This stage is also where
process registration occurs. The elaboration stage ends with a call to sc_start(),
which invokes the simulation kernel and begins the initialization stage.

In the initialization stage, the simulation kernel identifies all simulation processes
and places them in either the runnable or waiting process set as illustrated in the
next figure. By default, most simulation processes are placed into the set of runnable
processes. Those processes explicitly requesting no initialization are placed into the set
of waiting processes.

696.2 Simplified Simulation Engine

The simulation stage is commonly described as a state machine that schedules
processes to run and advances simulation time. In this simplified simulation stage
there are two internal phases: evaluate and advance-time. Simulation
begins with evaluate.

During evaluate, all runnable processes are run one at a time. Each process runs
until either it executes a wait(TIME_DELAY) or a return. If a wait(TIME_DELAY)
is executed, then the time information is stored as an upcoming time event in the
scheduling priority queue shown in the next (figure 6.6). The evaluate continues
until there are no runnable processes left.

It is important to note that the ordering of processes to run is unspecified in the
standard. This means that when selecting which process to run from the set of run-
nable processes, any process may be chosen. Remember, we are simulating concur-
rency, which means that ideally we would run all of the processes simultaneously;
however, we have only one processor to actually execute the simulation and so
one process at a time is chosen. Different implementations of the simulator may run
processes in different orderings; however, a given implementation must run pro-
cesses in the same order to allow repeatability.

Once the set of all runnable processes has been emptied, then control passes to
the advance-time phase to advance simulation time. Simulated time is moved for-
ward to the closest time with a scheduled event. Time advancement moves pro-
cesses waiting for that particular time into the runnable set, allowing the evaluation
phase to continue.

This progression from evaluate to advance-time continues until one of three
things occurs:

All processes have yielded (i.e., there’s nothing in the runnable set)•	
A process has executed the function •	 sc_stop()
Internal 64-bit time variable runs out of values (i.e., maximum time is reached)•	

At this point, simulation stops and we proceed into the post-processing stage
(AKA cleanup).

We’ll now turn our attention to some details of the processes.

Scheduled

@t1

@t2

@t3

@t4

Fig. 6.6 Scheduling priority queue

70 6 Concurrency

6.3 Another Look at Concurrency and Time

Let’s take a look at a hypothetical example to better understand how time and
execution interact. Consider a design with four processes as illustrated in Fig.
6.7. For this discussion, assume the times, t

1
, t

2
, and t

3
 are non-zero. Each pro-

cess contains lines of code or statements (stmt
A1

, stmt
A2

, …) and executions of wait
methods (wait(t

1
), wait(t

2
),…)

Notice that Process_D skips t
2.
 At first glance, it might be perceived that time

passes as shown below in Fig. 6.8. The uninterrupted solid and gray line portions
indicate program activity. Vertical discontinuities indicate a wait.

Each process’ statements take some time and are evenly distributed along
simulation time. Perhaps surprisingly that is not how it works at all. In fact, actual
simulated activity is shown in Fig. 6.9.

Each set of statements executes in zero time! Let’s expand the time scale to
expose the simulator’s internal activity as well. This expansion exposes the opera-
tion of the scheduler at work (Fig. 6.10).

Fig. 6.7 Four processes

C3; C4;

A3; A4; A5; A6;

B5; B6;B3;B4;

D3; D4;

C5; C6;

A1; A2;

B1; B2;

C1; C2;

D1; D2;

Process_A

Process_B

Process_C

Process_D

t0 t1 t2 t3

Fig. 6.8 Simulated activity—perceived

716.4 The SystemC Thread Process

Notice that process execution order appears random in this example. This apparent
random sequencing is allowed by the SystemC standard. Now for any given simula-
tor and set of code, there is also a requirement that the simulation be deterministic
in the sense that one may rerun the simulation and obtain the same results.

All of the executed statements in this example execute during the same
evaluate phase.

As a final consideration, the previous diagrams would be equally valid with any or all
of the indicated times t

1
, t

2
, or t

3
 as zero (i.e., SC_ZERO_TIME). Once you grasp these

fundamental concepts, understanding SystemC behaviors will become much easier.

6.4 The SystemC Thread Process

SystemC has two basic types of simulation processes: thread processes and method
processes. Thread processes are the easiest to code and are the most popular for
SystemC applications. They are named thread processes because their behavior
most closely models the usual software connotation of a thread of execution. We
look at the SystemC method processes later in this chapter.

SystemC thread processes begin execution at the start of simulation and typically
continue in an endless loop until the simulation ends. SystemC thread processes are
started once and only once by the simulator.

Fig. 6.10 Simulated activity with simulator time expanded

C3; C4;

A3; A4; A5; A6;

B5; B6;B3;B4;

D3; D4;

C5; C6;

A1; A2;

B1; B2;

C1; C2;

D1; D2;

Process_A

Process_B

Process_C

Process_D

t0 t1 t2 t3

Fig. 6.9 Simulated activity—actual

72 6 Concurrency

As we have noted, a running thread process has complete control of the simulation
until it decides to yield control to the simulator kernel. A thread process can return
control in two ways. First, by waiting, which suspends the process to be resumed
later, and second, by simply exiting (returning). A thread that exits cannot be
resumed and will not be restarted for the duration of the simulation.

Thread processes that implement endless loops must have at least one explicit or
implicit call to the wait() function. One or more calls to wait() may be included
in the endless loop; these calls are explicit waits. A wait call may be contained in a
function called from the threads; this is called an implicit wait. For instance, a
blocking read() call to an instance of the sc_fifo<T> invokes wait() when
the FIFO is empty.

6.5 SystemC Events

Before discussing threads more extensively, it is necessary to discuss events.
SystemC is an event-driven simulator. In fact, we have already discussed one type
of event: the time-out event that occurs implicitly with the wait(TIME_DELAY)
syntax.

An event is something that happens at a specific instant in time. An event has no
value and no duration. SystemC uses the sc_event class to model events. This

class allows explicit triggering (launching, firing, causing) of events by means of a
notification method.

DEFINITION: A SystemC event is the occurrence of an sc_event notification
and happens at a single instant in time. An event has no duration or value.

Once an event occurs, there is no trace of its occurrence other than the side
effects that may be observed as a result of processes that were waiting for the event.
We will explain how processes wait a few sections ahead. The next diagram
(Fig. 6.11) illustrates an event e_rdy triggering at three different instants. Note
that unlike a waveform, events have no time width.

Because events have no duration, you must be watching to catch them. Quite a
few coding errors are due to not understanding this simple rule. Let’s restate it.

RULE: To observe an event, the observer must be watching for the event prior to
its notification.

If an event occurs and no processes are waiting to catch it, the event goes unnoticed.
The syntax to declare a named event is simple and shown in Fig. 6.12.

Remember that an sc_event has no value, and you can perform only two actions
with a sc_event: wait for it or cause it to occur.

Event
Timeline

e_rdy
t0 t1 t2 t3Fig. 6.11 Graphical representation of an event

736.5 SystemC Events

6.5.1 Causing Events

Events are explicitly caused using the notify() method of an sc_event
object. Here (Fig. 6.13) is the syntax:

Invoking an immediate notify(void) causes any processes waiting for the
event to be immediately moved from the waiting set into the runnable set for execu-
tion. This topic will be examined in more detail in an upcoming section.

Delayed notification occurs when a time of zero is specified. The predefined
constant SC_ZERO_TIME is simply sc_time(0,SC_SEC) Processes waiting
for a delayed notification will execute only after all runnable processes in the cur-
rent evaluation state have executed. For now, it is sufficient to consider that delayed
notification is treated the same as a timed notification with a time of zero. This
feature is quite useful as we will see later.

Timed notification would appear to be the easiest to understand. Timed events
are scheduled to occur at some time in the future.

One confounding aspect of timed events, which includes delayed events, con-
cerns multiple notifications. An sc_event may have no more than a single out-
standing scheduled event, and only the nearest time notification is allowed. If a
nearer notification is scheduled, the previous outstanding scheduled event is can-
celed. For example, consider the following (Fig. 6.14):

Outstanding scheduled events may be canceled with the cancel() method
(Fig. 6.15). Note that immediate events cannot be canceled because they happen at
the precise instant they are notified (i.e., immediately).

sc_event event_name1[,event_namei]…;

Fig. 6.12 Syntax of sc_event

event_name.notify(void); // Immediate
event_name.notify(SC_ZERO_TIME);// Delayed
event_name.notify(sc_time); // Timed (time>0)
event_name.notify(double,units);// Convenience

Fig. 6.13 Syntax of sc_event::notify()

sc_event A_event;
A_event.notify(10,SC_NS);
A_event.notify(5,SC_NS); // only this one stays
A_event.notify(15,SC_NS);

Fig. 6.14 Syntax of notify() method

event_name.cancel();

Fig. 6.15 Syntax of cancel() method

74 6 Concurrency

6.6 Catching Events for Thread Processes

Thread processes rely on the wait() method to suspend their execution. The
wait() method supplied by SystemC has several syntaxes shown in the next fig-
ure, Fig 6.16.

When the wait function is called, control is returned to the simulator kernel,
the state of the current thread process is saved, and eventually a new process is
allowed to run.

When a suspended thread process is selected to run, the simulation kernel
restores the calling context, and the process resumes execution at the statement
following the call to wait().

The first two syntaxes for wait (time) provide a delay for a period of simula-
tion time as described in the Chapter 5.

The next several forms specify events and suspend execution until one or all
the events have occurred. The operator | is defined to mean any of these events;
whichever one happens first will cause a return to wait. The operator & is defined
to mean all of these events in any order must occur before wait returns. The last
syntax, wait(), will be deferred to a joint discussion with static sensitivity later
in this chapter.

The three forms that have time with a second argument constitute a time-out.
This result is really just the logical or of a time event with other events. Use of a

time-out is handy when testing protocols and various error conditions and an
example is given in Fig. 6.17.

wait(time); // timeout is the event
wait(double,time_unit); // convenience
wait(event); // single event
wait(event1 | eventn…); // any of these
wait(event1 & eventn…); // all of these
wait(time,event); // event or timeout
wait(time,event1 | eventn…);// any event or timeout
wait(time,event1 & eventn…);// all events or timeout
wait(); // static sensitivity – discussed later

Fig. 6.16 Syntax of SC_THREAD wait()

…
sc_event ack_event, bus_error_event;
…
sc_time start_time(sc_time_stamp());
wait(t_MAX_DELAY, ack_event | bus_error_event);
if (sc_time_stamp()-start_time == t_MAX_DELAY) {

break; // path for a time out
…

Fig. 6.17 Example using time-out variation of wait()

756.7 Zero-Time and Immediate Notifications

Notice when multiple events are or’ed, it is not possible to know which event
occurred in a multiple event wait situation as events have no value. Thus (Fig. 6.18),
it is illegal to test an event for true or false.

It is legal to test a flag that is set by the process that caused an event; however,
it is problematic to clear this flag properly.

6.7 Zero-Time and Immediate Notifications

Two concepts, zero-time delays and immediate notification, bear special treatment.
Consider again the simulation engine diagram below Fig. 6.19 (reproduced for
convenience).

Consider what it means to execute wait(SC_ZERO_TIME). What does it
mean to advance time by zero? The primary effect is that a process waiting for
zero-time will resume after all the runnable processes have yielded. Since zero is

if (ack_event) do_something; // syntax error!

Fig. 6.18 Example of illegal Boolean compare of sc_event

Fig. 6.19 Simplified SystemC simulation engine

76 6 Concurrency

always closer than any other time, then all processes waiting for zero-time will be
next in line to become runnable.

SC_MODULE(missing_event) {
SC_CTOR(missing_event) {

SC_THREAD(B_thread); // ordered to cause
SC_THREAD(A_thread); // problems
SC_THREAD(C_thread);

}
void A_thread() {

a_event.notify(); // immediate!
cout << "A sent a_event!" << endl;

}
void B_thread() {

wait(a_event);
cout << "B got a_event!" << endl;

}
void C_thread() {

wait(a_event);
cout << "C got a_event!" << endl;

}
sc_event a_event;

};

Fig. 6.20 Example of zero-time

This feature can be very useful. Recall the rule that to observe an event, the
observer must be watching for the event prior to its notification. Now imagine
we have three processes, A_thread, B_thread, and C_thread. The
implementation code is shown in Fig. 6.20.

Suppose they execute in the order A_thread, B_thread, C_thread.
Furthermore, notice that A_thread does an immediate notification of an event,
a_event, which B_thread and C_thread are going to wait for.

If either B_thread or C_thread have not issued the wait(a_event) call
prior to A_thread notifying the event, then they will miss the event. If the event
never happens again, then when B_thread or C_thread issue the wait(a_
event) call, they will wait forever.

If the event happened a second time, then B_thread or C_thread would
continue, but they would have missed one of the events. Missing an event can be
devastating to a simulation. This situation can be avoided by use of the zero-time
delayed notification, notify(SC_ZERO_TIME). The reason is that delayed
notifications are issued only after completing all runnable processes.

Lest you think that you can simply fix the problem by ordering the processes
appropriately, recall that SystemC implementations are free to choose processes from

776.7 Zero-Time and Immediate Notifications

Here is another difficulty that can arise when using immediate notifica-
tion. When a process executes notify(void), it may cause one or more
processes in the waiting set to be moved into the runnable set. Consider the
example in Fig. 6.22.

the runnable set in any order. This unpredictability of selection is because we are
simulating concurrency. Also, consider that in a real-world simulation, there may
be hundreds of processes. The bottom line is that you must write your code so that
it does not depend on the order of process execution except by design (e.g., using
an event to force ordering). Consider the example in Fig. 6.21 that correctly handles
this case.

SC_MODULE(ordered_events) {
SC_CTOR(ordered_events) {

SC_THREAD(B_thread); // ordered to cause
SC_THREAD(A_thread); // problems
SC_THREAD(C_thread);

}
void A_thread() {

while (true) {
a_event.notify(SC_ZERO_TIME);
cout << "A sent a_event!" << endl;
wait(c_event);
cout << "A got c_event!" << endl;

}//endwhile
}
void B_thread() {

while (true) {
b_event.notify(SC_ZERO_TIME);
cout << "B sent b_event!" << endl;
wait(a_event);
cout << "B got a_event!" << endl;

}//endwhile
}
void C_thread() {

while (true) {
c_event.notify(SC_ZERO_TIME);
cout << "C sent c_event!" << endl;
wait(b_event);
cout << "C got b_event!" << endl;

}//endwhile
}
sc_event a_event, b_event, c_event;

};

Fig. 6.21 Example of properly ordered events

78 6 Concurrency

6.8 Understanding Events by Way of Example

The best way to understand events is by way of example. Notice in the code of Fig.
6.23 that all notifications execute at the same instant.

SC_MODULE(event_hogs) {
SC_CTOR(event_hogs) {

SC_THREAD(A_thread);
SC_THREAD(B_thread);
SC_THREAD(C_thread);
// Following ensures sc_stop() works
sc_set_stop_mode(SC_STOP_IMMEDIATE);

}
sc_event a_event, b_event;
void A_thread() {

while(true) {
cout << "A@" << sc_time_stamp() << endl;
a_event.notify(); // immediate!
wait(b_event);

}
}
void B_thread() {

int count(8); // limit execution
while(true) {

cout << "B@" << sc_time_stamp() << endl;
b_event.notify(); // immediate!
wait(a_event);
if (count-- == 0) sc_stop();

}
}
void C_thread() {

while(true) {
cout << "C@" << sc_time_stamp() << endl;
wait(1,SC_NS);

}
}

};

Fig. 6.22 Example of improper use of events

…
sc_event action;
sc_time now(sc_time_stamp()); //observe current time
//immediately cause action to fire
action.notify();
//schedule new action for 20 ms from now
action.notify(20,SC_MS);
//reschedule action for 1.5 ns from now
action.notify(1.5,SC_NS);
//useless, redundant
action.notify(1.5,SC_NS);
//useless preempted by event at 1.5 ns
action.notify(3.0,SC_NS);
//reschedule action for evaluate cycle
action.notify(SC_ZERO_TIME);
//useless, preempted by action event at SC_ZERO_TIME
action.notify(1,SC_SEC);
//cancel action entirely
action.cancel();
//schedule new action for 1 femto sec from now
action.notify(20,SC_FS);
…

Fig. 6.23 Example of sc_event notify() and cancel() methods

turn_knob_thread

stop_signal_thread

signals_off

signal_stop

stop_indicator_on

stop_indicator_off

Fig. 6.24 Turn of events illustration

To illustrate the use of events, let’s consider how one might model the interac-
tion between switches on a steering wheel column and the remotely located signal
indicators (lamps). The example illustrated in Fig. 6.24 models a mechanism that
detects switching activity and notifies the appropriate indicator. For simplicity, only
the stop light interaction is modeled here.

In this model, the process turn_knob_thread provides a stimulus and
interacts with the process stop_signal_thread. The idea is to have several
threads representing different signal indicators. The turn_knob_thread
process directs each indicator to turn on or off via the signal_stop and
signals_off events. The indicators provide their status via the stop_
indicator_on and stop_indicator_off events.

80 6 Concurrency

An interesting aspect of the example shown in Fig. 6.25 through Fig. 6.27 is consid-
eration of process ordering effects. Recall the rule that “To see an event, a process
must be waiting for it.” It is because of this requirement that the turn_knob_
thread implementation starts out with wait(SC_ZERO_TIME). Without
that pause, if turn_knob_thread runs first, then the stop_signal_thread will
never see any events because it will not have executed the first wait(). As a result,
the simulation would starve and exit.

//FILE: turn_of_events.cpp
void turn_of_events::turn_knob_thread() {

// This process provides stimulus to the design
// by way of standard I/O.
enum directions {STOP=’S‘, OFF=’F’};
char direction; // Selects appropriate indicator
bool did_stop = false;
// allow other threads to get into waiting state
wait(SC_ZERO_TIME);
while(true) {

// Sit in an infinite loop awaiting keyboard
// or STDIN input to drive the stimulus…
cout << "Signal command: ";
cin >> direction;
switch (direction) {

case STOP:
// Make sure the other signals are off
signals_off.notify();
signal_stop.notify(); // Turn stop light on
// Wait for acknowledgement of indicator
wait(stop_indicator_on);
did_stop = true;
break;

case OFF:
// Make the other signals are off
signals_off.notify();
if (did_stop) wait(stop_indicator_off);
did_stop = false;
break;

}//endswitch
}//endforever

}//end turn_knob_thread()

Fig. 6.26 Example of turn_of_events stimulus

//FILE: turn_of_events.h
SC_MODULE(turn_of_events) {

// Constructor
SC_CTOR(turn_of_events) {

SC_THREAD(turn_knob_thread);
SC_THREAD(stop_signal_thread);

}
sc_event signal_stop, signals_off;
sc_event stop_indicator_on, stop_indicator_off;
void turn_knob_thread(); // stimulus process
void stop_signal_thread(); // indicator process

};//endclass turn_of_events

Fig. 6.25 Example of turn_of_events header

816.9 The SystemC Method Process

Similarly, consider what would happen if the signals_off event were issued
before signal_stop. If an unconditional wait for acknowledgement occurred,
the simulation would exit. It would exit because the turn_knob_thread would
be waiting on an event that never occurs because the stop_signal_thread
was not in a position to issue that event.

The preceding example, turn_of_events, models two processes with
SystemC threads. The turn_knob_thread takes input from the keyboard and
notifies the stop_signal_thread.

6.9 The SystemC Method Process

As mentioned earlier, SystemC has more than one type of process. The SC_METHOD
process is in some ways simpler than the SC_THREAD; however, this simplicity
makes it more difficult to use for some modeling styles. To its credit, SC_METHOD
may be slightly more efficient in some situations than SC_THREAD.

What is different about an SC_METHOD? One major difference is invocation.
SC_METHOD processes never suspend internally (i.e., they can never invoke wait().
Instead, SC_METHOD processes run completely and return.

In some sense, SC_METHOD processes are similar to the Verilog always@
block or the VHDL process. By contrast, if an SC_THREAD terminates, it never
runs again in the current simulation.

Because SC_METHOD processes are prohibited from suspending internally,
they may not call the wait() method. Attempting to call wait() either directly or
indirectly from an SC_METHOD will result in a run-time error.

void turn_of_events::stop_signal_thread() {
while(true) {

wait(signal_stop);
cout << "STOPPING !!!!!!" << endl;
stop_indicator_on.notify();
wait(signals_off);
cout << "Stop off ------" << endl;
stop_indicator_off.notify();

}//endforever
}//end stop_signal_thread()

Fig. 6.27 Example of turn_of_events indicator

% ./turn_of_events.x
Signal command: S
STOPPING !!!!!!
Signal command: F
Stop off ------…

Fig. 6.28 Example of turn_of_events output

82 6 Concurrency

Implicit waits result from calling functions that are defined such that they may
issue a wait(). These are known as blocking methods. As discussed later in this
book, the read() and write() methods of the sc_fifo<T> data type are
examples of blocking methods. Thus, SC_METHOD processes must avoid using
calls to blocking methods.

The syntax for SC_METHOD processes follows (Fig. 6.29) and is identical to
SC_THREAD except for the keyword SC_METHOD:

SC_METHOD(process_name);//Located INSIDE constructor

Fig. 6.29 Syntax of SC_METHOD

next_trigger(time);
next_trigger(timeout,time_unit); //convenience
next_trigger(event);
next_trigger(event1 | eventi…); //any of these
next_trigger(event1 & eventi…); //all of these

//required
next_trigger(timeout,event); //event with timeout
next_trigger(timeout,event1 | eventi…);//any +

next_trigger(timeout,event1 & eventi…);//all + timeout

timeout

next_trigger(void); //re-establish static sensitivity

Fig. 6.30 Syntax of SC_METHOD next_trigger()

A note on the choice of these keywords might be useful. The similarity of names
between an SC_METHOD process and a regular object-oriented method betrays its
name. An SC_METHOD executes without interruption and returns to the caller (the
simulation kernel). By contrast, an SC_THREAD process is more akin to an operating
system thread, which suspends (waits) returning control to the simulation kernel
and later the kernel can resume that thread process.

Variables allocated in SC_THREAD processes are persistent. SC_METHOD
processes must declare and initialize variables each time the method is invoked. For
this reason, SC_METHOD processes typically rely on module local data members
declared within the SC_MODULE. SC_THREAD processes tend to use locally
declared variables.

GUIDELINE: To differentiate threads from methods, we strongly recommend
adopting a naming style. One naming style appends _thread or _method as
appropriate. Being able to differentiate processes based on names becomes useful
during debug.

836.11 Static Sensitivity for Processes

6.10 Catching Events for Method Processes

SC_METHOD processes dynamically specify their sensitivity by means of the
next_trigger() method as shown in Fig 6.30. This method has the same syn-
tax as the wait() method but with a slightly different behavior.

As with wait(), the multiple event syntaxes do not specify order. Thus, with
next_trigger(evt1 & evt2), it is not possible to know which occurred
first. It is only possible to assert that both evt1 and evt2 happened.

The wait() method suspends SC_THREAD processes; however, SC_METHOD
processes are not allowed to suspend. The next_trigger() method has the
effect of temporarily setting a sensitivity list that affects the SC_METHOD. The
next_trigger() method may be called repeatedly, and each invocation
encountered overrides the previous. The last next_trigger() executed before
a return from the process determines the sensitivity for a recall or of the process.
The initialization call is vital to making this work. See the next_trigger()
code in the downloads section of the web site for an example.

You should note that it is critical for every path through an SC_METHOD to
specify at least one next_trigger() for the process to be called by the sched-
uler. Without a next_trigger() or static sensitivity (discussed in the next sec-
tion), an SC_METHOD will never be executed again.

You might be tempted to place a default next_trigger() as the first state-
ment of the SC_METHOD, since subsequent calls to next_trigger() will over-
write any previous calls. For fairly simple designs, this approach may work; however,
there is a potential problem since it could mask problem where you intended a
different trigger. It might be better to both allow the possibility of hanging and insert
some code to determine if the process is active. An even better solution is to use a tool
that can statically analyze your code for correctness. Having said that, the next
section discusses a technique that guarantees a default next_trigger().

6.11 Static Sensitivity for Processes

Thus far, we’ve discussed techniques of dynamically (i.e., during simulation)
specifying how a process will resume (either by SC_THREAD using wait() or by
SC_METHOD using next_trigger(). The concept of actively determining
what will cause a process to resume is often called dynamic sensitivity.

SystemC provides another type of sensitivity for processes called static sensi-
tivity. Static sensitivity establishes the parameters for resumption during elabora-
tion (i.e., before simulation begins). Once established, static sensitivity parameters
cannot be changed (i.e., they’re static).

The purpose of specifying static sensitivity is simply a convenience. Some pro-
cesses have a single list of items to which they are sensitive. To preserve code and
make this clearer to the reader, use a static list rather than dynamically specifying
the same thing over and over again. It is possible to override static sensitivity with

84 6 Concurrency

For the next few sections, we will examine the problem of modeling access to a gas
station to illustrate the use of sensitivity coupled with events. Initially, we model a single
pump station with an attendant and only two customers as illustrated in Fig. 6.33.
The declarations for this example in Fig. 6.32 illustrate the use of the sensitive
method.

dynamic sensitivity, but this is rarely used. Static sensitivity is most commonly used
with the RTL level of coding.

Static sensitivity is established for each process immediately after its process
registration. Events may be added to a processes static sensitivity list, which is
initially empty, using the insertion operator (<<) on a special sc_module data
member called sensitive. The syntax is shown in Fig. 6.31.

The event object on the right has several variations that we need to defer until we
have a more concrete notion of the concepts of channels, ports, and event finders.
Suffice it to say that some objects can return events to be added to the sensitivity list.

For method processes, simply not specifying next_trigger() at all implies
that static sensitivity, if any exists, will be used. Thus static sensitivity is most com-
monly used with method processes; however, use of the wait(void) syntax lets
thread processes also use static sensitivity. In fact, next_trigger() was origi-
nally invented as a technique to alter the method process sensitivity.

// IMPORTANT: Must follow process registration
sensitive << event [<< event]…; // streaming style

Fig. 6.31 Syntax of sensitive

SC_MODULE(gas_station) {
sc_event e_request1, e_request2;
sc_event e_tank_filled;
SC_CTOR(gas_station) {

SC_THREAD(customer1_thread);
sensitive(e_tank_filled); // functional

// notation
SC_METHOD(attendant_method);

sensitive << e_request1
<< e_request2; // streaming notation

SC_THREAD(customer2_thread);
}
void attendant_method();
void customer1_thread();
void customer2_thread();

};

 Fig. 6.32 Example of gas station declarations

Fig. 6.33 Initial Gas Station Illustration

…
void gas_station::customer1_thread() {

while (true) {
wait(EMPTY_TIME);
cout << "Customer1 needs gas" << endl;
m_tank1 = 0;
do {

e_request1.notify();
wait(); // use static sensitivity

} while (m_tank1 == 0);
}//endforever

}//end customer1_thread()

// omitting customer2_thread (almost identical
// except using wait(e_request2);)

void gas_station::attendant_method() {
if (!m_filling) {

…
cout << "Filling tank" << endl;
m_filling = true;
next_trigger(FILL_TIME);
…

} else {
…
e_filled.notify(SC_ZERO_TIME);
cout << "Filled tank" << endl;

…
m_filling = false;
…

}//endif
}//end attendant_method()

Fig. 6.34 Example of gas station implementation

The gas_station module has two processes with different sensitivity lists
and one, customer2_thread, which has none. The attendant_method
implicitly executes every time an e_request1 or e_request2 event occurs
(unless dynamic sensitivity is invoked by the simulation process).

Notice the indentation used in Fig. 6.32. This format helps draw attention to the
sensitivity being associated with only the most recent process registration.

Figure 6.34 has some fragments of the implementation code focused on the elements
of this chapter. You can find the full code in the downloads section of the web site.

86 6 Concurrency

6.12 Altering Initialization

The simulation engine description specifies that processes are executed at least
once initially by placing processes in the runnable set during the initialization stage.
This approach makes no sense in the preceding gas_station model as the
attendant_method would fill the tank before being requested.

Thus, it may be necessary to specify that some processes should not be
made runnable at initialization. For this situation, SystemC provides the
dont_initialize() method. The syntax follows:

Note that the use of dont_initialize() requires a static sensitivity list;
otherwise, there would be nothing to start the process. Now our gas_station module
looks like Fig. 6.37.

// IMPORTANT: Must follow process registration
dont_initialize();

Fig. 6.36 Syntax of dont_initialize()

…
SC_METHOD(attendant_method);

sensitive(fillup_request);
dont_initialize();

…

Fig. 6.37 Example of dont_initialize()

sc_event_queue event_name1("event_name1")…;

Fig. 6.38 Syntax of sc_event_queue

…
Customer1 needs gas
Filling tank
Filled tank
…

Fig. 6.35 Example of gas station sample output

876.13 The SystemC Event Queue

6.13 The SystemC Event Queue

In light of the limitation that sc_event may only have a single outstanding event
scheduled, the sc_event_queue was added with the syntax shown in Fig. 6.38.
This addition allows a single event to be scheduled multiple times even for the same
instant in time! When events are scheduled for the same instant in time, each hap-
pens in a separate evaluation.

There are certain situations in which one may wish to catch multiple events;
however, often it may indicate a misunderstanding of the model. Most modeling
only requires the sc_event. Furthermore, sc_event_queue has a perfor-
mance impact. Since events impact a huge portion of simulation time, performance
in this area needs to be carefully considered.
sc_event_queue is slightly different from sc_event. First, sc_event_

queue objects do not support immediate notification since there is obviously no need
to queue these. Second, the cancel() method is replaced with cancel_all() to
emphasize that it cancels all outstanding sc_event_queue notifications.

The following diagram may clarify what the preceding code does:

sc_event_queue action;
wait(10,SC_NS)//assert time=10ns
sc_time now1(sc_time_stamp());//observe current time
action.notify(20,SC_NS);//schedule for 20ns from now
action.notify(10,SC_NS);//schedule for 20ns from now
action.cancel_all();//cancel all actions entirely
action.notify(8,SC_NS);//schedule for 8 ns from now
action.notify(1.5,SC_NS);// 1.5 ns from now
action.notify(1.5,SC_NS);// another identical action
action.notify(3.0,SC_NS);// 3.0 ns from now
action.notify(SC_ZERO_TIME);//after all runnable
action.notify(SC_ZERO_TIME);//and yet another
action.notify(12,SC_NS);// 12 ns from now
sc_time now2(sc_time_stamp());//observe current time

Fig. 6.39 Example of sc_event_queue

Fig. 6.40 Example of sc_event_queue

88 6 Concurrency

Notice that the first two events were completely cancelled as was explicitly
stated and that all seven remaining events occurred. In fact, the evaluation phase
may be entered seven distinct times, if there are processes waiting on the event.
Finally, observe that time never passes between now1 and now2 because the code
never yielded to the simulation kernel in that section of code. Seven events then
remain to be waited upon.

6.14 Exercises

For the following exercises, use the samples provided in www.scftgu.com
Exercise 6.1: Examine and run the turn_of_events example. Remove the

wait(SC_ZERO_TIME) in the turn_knob_thread process. Is this guaran-
teed to give different behavior? If your implementation of SystemC does not create
different behavior, insert a wait (SC_ZERO_TIME) at the top of stop_signal_
thread. What is the behavior that you observe? Why?

Exercise 6.2: Learn how to delay time using an SC_METHOD. Examine, predict
the behavior, compile, and run the method_delay example from the down-
loaded examples.

Exercise 6.3: This exercise illustrates some of the complexities of SC_METHOD
processes. Examine, predict the behavior, compile, and run the next_trigger
example.

Exercise 6.4: This exercise will clarify the differences between sc_event and
sc_event_queue constructs. Examine, predict the behavior, compile, and run
the event_filled example.

89

In this chapter, we will focus on a discussion of dynamic threads and SC_FORK/SC_
JOIN constructs. Dynamic processes can be particularly useful in testbench sce-
narios to track transaction completion or to spawn traffic generators dynamically.
In the following sections, we will cover the syntax required to generate dynamic
processes as well as some application examples.

7.1 Introduction

Thus far, all the process types discussed have been static. In other words, once the
elaboration phase completes, all SC_THREAD and SC_METHOD processes have
been established. SystemC 2.1 introduced the concept of dynamically spawned
processes.

Dynamic processes are important for several reasons. At the top of the list is the
ability to perform temporal checks such as those supported by PSL Sugar, Vera, and
other verification languages. For instance, consider a bus protocol with split trans-
actions and timing requirements. Once a request is issued, it is important to track
the completion of that transaction for verification of that transaction. Since transac-
tions may be split, each transaction will require a separate thread to monitor.
Without dynamic process support, it would be necessary to pre-allocate a number
of statically defined processes to accommodate the maximum number of possible
outstanding requests.

7.2 sc_spawn

Let’s look at the syntax and requirements that enable dynamic processes. First, to
enable dynamic processes, it is necessary to use a pre-processor macro prior to the
invocation of the SystemC header file. Figure 7.1 is one way to do this:

Chapter 7
Dynamic
Processes

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_7, © Springer Science+Business Media, LLC 2010

Data types:
Logic,

Integers,
Fixed pointModules &

Hierarchy
Events, Sensitivity

& Notifications

Threads & Methods
Channels &
Interfaces

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Simulation
Kernel

90 7 Dynamic Processes

Other mechanisms involve the C++ compilation tools. For example, GNU gcc
has a –D option (e.g., –DSC_INCLUDE_DYNAMIC_PROCESSES), which pre-
defines the macro.

Next, declare the functions to be spawned as processes. Functions may be either
normal functions or methods (i.e., member functions of a class). The dynamic
facilities of SystemC allow for either SC_THREAD or SC_METHOD style processes.
Unlike static processes, dynamic processes may have up to eight arguments and a
return value. The return value will be provided via a reference variable in the
actual spawn function. For example, consider the declarations in Fig. 7.2.

Having declared a function (possibly a member function) to be used as spawned
process, you need to define the implementation and register the function with the ker-
nel. You can register the dynamic processes within an SC_THREAD or with restric-
tions within an SC_METHOD. The basic syntax is shown in Fig. 7.3 and Fig. 7.4.

// Ordinary function declarations
void inject(void); // no args or return
int count_changes(sc_signal<int>& sig);

// Method function declarations
class TestChan : public sc_module {

…
bool Track(sc_signal<packet>& pkt);
void Errors(int maxwarn, int maxerr);
void Speed(void);
…

};

Fig. 7.2 Example functions used as dynamic processes

sc_process_handle hname = // ordinary function
sc_spawn(

sc_bind(&funcName, ARGS…)//no return value
,processName
,spawnOptions

);

sc_process_handle hname = // member function
sc_spawn(

sc_bind(&methName, object, ARGS…)//no return
,processName
,spawnOptions

);

Fig. 7.3 Syntax to register dynamic processes with void return

#define SC_INCLUDE_DYNAMIC_PROCESSES
#include <systemc>

Fig. 7.1 Syntax to enable dynamic threads

917.3 Spawn Options

Note in the preceding that object is a reference to the calling module,
and normally we just use the C++ keyword this, which refers to the calling
object itself.

By default, arguments are passed by value. To pass by reference or by con-
stant reference, a special syntax is required. This syntax is required to make
sc_bind() practical.

The processName and spawnOptions are optional; however, if spaw-
nOptions are used, then a processName is mandatory. All processes should
have unique names. Fortunately, uniqueness of a process name includes the hierar-
chical instance as a prefix (i.e., name()). If a process spawns a process, then its
name is used to prefix the spawned process name.

7.3 Spawn Options

Spawn options are determined by creating an sc_spawn_option object and then
invoking one of several methods that set the options. Figure 7.6 is the syntax:

sc_process_handle hname = // ordinary function
sc_spawn(

&returnVar
,sc_bind(&funcName, ARGS…)
,processName
,spawnOptions

);

sc_process_handle hname = // member function
sc_spawn(

&returnVar
,sc_bind(&methodName, object, ARGS …)
,processName
,spawnOptions

);

Fig. 7.4 Syntax to register dynamic processes with return values

sc_ref(var) // reference
sc_cref(var) // constant reference

Fig. 7.5 Syntax to pass process arguments by reference

92 7 Dynamic Processes

By default, spawned processes are thread processes. To specify a method process,
you must call spawn_method() as shown above.

One last comment before we look at an example. The method sc_get_
current_process_handle() may be used by the spawned process to
reference the calling object. In particular, it may be useful to access name().

7.4 A Spawned Process Example

That’s a lot of syntax. Fortunately, you don’t need to use all of it. Let’s take
a look at an example of the simplest case in Fig. 7.7. This example is an
SC_THREAD that contains no parameters and returns no result. In other words,
it looks like an SC_THREAD that just happens to be dynamically spawned.
We highlight the important points.

sc_spawn_option objname;
objname.spawn_method();// register as SC_METHOD
objname.dont_initialize();
objname.set_sensitivity(event_ptr);
objname.set_sensitivity(port_ptr);
objname.set_sensitivity(interface_ptr);
objname.set_sensitivity(event_finder_ptr);
objname.set_stack_size(value); // experts only!

Fig. 7.6 Syntax to set spawn options

#define SC_INCLUDE_DYNAMIC_PROCESSES
#include <systemc>
…
void spawned_thread() {// This will be spawned

cout << "INFO: spawned_thread "
<< sc_get_current_process_handle().name()
<< " @ " << sc_time_stamp() << endl;

wait(10,SC_NS);
cout << "INFO: Exiting" << endl;

}

void simple_spawn::main_thread() {
wait(15,SC_NS);
// Unused handle discarded
sc_spawn(sc_bind(&spawned_thread));
cout << "INFO: main_thread " << name()

<< " @ " << sc_time_stamp() << endl;
wait(15,SC_NS);
cout << "INFO: main_thread stopping "

<< " @ " << sc_time_stamp() << endl;
}

Fig. 7.7 Example of a simple thread spawn

937.5 SC_FORK/SC_JOIN

If you keep a handle on the spawned process, then it is also possible to await the
termination of the process via the sc_process_handle::terminated_
event() method. For example:

Be careful not to wait() on an SC_METHOD process; currently, there is no way
to terminate an SC_METHOD.1

An interesting observation about sc_spawn is that it may also be used within
the constructor, and it may be used with the same member function multiple times
as long as the process name is unique. This capability also means there is now a
way to pass arguments to SC_THREAD and SC_METHOD as long as you are willing
to use the longer syntax.

A dangerous aspect of spawned threads relates to the return value. If you pass a
function or method that returns a value, it is critical that the referenced return
location remains valid throughout the lifetime of the process. The result will be
written without respect to whether the location is valid upon exit, possibly resulting
in a really nasty bug.

The creation and management of dynamic processes is not for the faint of
heart. On the other hand, learning to manage dynamic processes has great rewards.
One of the simpler ways to manage dynamic processes is discussed in the next
section on fork/join.

7.5 SC_FORK/SC_JOIN

Another use of dynamic threads is dynamic test configuration. This feature is
exemplified with a verification strategy sometimes used by Verilog suites using
fork/join. Although this technique does not let you create new modules or channels
dynamically (because processes may choose to stimulate ports differently on the
fly), you can reconfigure tests. Let’s see how this might be done.

sc_process_handle h =
sc_spawn(sc_bind(&spawned_thread));

// Do some work
…
// Wait for spawned thread to return
wait(h.terminated_event());

Fig. 7.8 Example of waiting on a spawned process

1However, see the last section of this chapter for a preview of upcoming features.

94 7 Dynamic Processes

Consider the DUT in the following figure:

For each interface (AXI, USB2, etc.), an independent process can be created
either to send or receive information likely to be generated in a real system.

Using these processes and fork/join, a high-level test might look like Fig. 7.10
(Note: Syntax will be explained shortly.):

The syntax for the SystemC fork/join is shown in Fig. 7.11.

Let’s look at an example that involves a number of syntax elements discussed
thus far. First, let’s inspect the header for this module in Fig. 7.12.

Fig. 7.9 High-level testbench

DataStream d1, d2;
SC_FORK

sc_spawn(
sc_bind(&dut::AXI_xmt,this,sc_ref(d1)), "p1")

,sc_spawn(
sc_bind(&dut::PCIX_rcv,this,sc_ref(d1)),"p2")

,sc_spawn(
sc_bind(&dut::USB2,this,sc_ref(d1)), "p3")

,sc_spawn(
sc_bind(&dut::HT1_xtm,this,sc_ref(d2)), "p4")

,sc_spawn(
sc_bind(&dut::HT2_rcv,this,sc_ref(d2)), "p5")

SC_JOIN

Fig. 7.10 Example of fork/join application

SC_FORK
COMMA_SEPARATED_LIST_OF_SPAWNS

SC_JOIN

Fig. 7.11 Syntax for fork/join

957.5 SC_FORK/SC_JOIN

Notice that we pass a FIFO channel by reference so that road_thread can
possibly access the FIFO channel. Passing ports or signals by reference would be a
natural extension of this idea.

Now, let’s inspect the rest of the code in Fig. 7.13.

//FILE: Fork.h
SC_MODULE(Fork) {

…
sc_fifo<double> wheel_lf, wheel_rt;
SC_CTOR(Fork);// Constructor
// Declare processes to be used with fork/join
void fork_thread();
bool road_thread(sc_fifo<double>& which);

};

Fig. 7.12 Example header for fork/join example

//FILE: Fork.cpp
#define SC_INCLUDE_DYNAMIC_PROCESSES
#include <systemc>
#include "Fork.h"
…
Fork::Fork(sc_module_name nm) //{{{
: sc_module(nm)
{

SC_THREAD(fork_thread);
…

}
void Fork::fork_thread() { //{{{

bool lf_up, rt_up; // use for return values
SC_FORK

sc_spawn(
&lf_up

,sc_bind(
&Fork::road_thread

,this
,sc_ref(wheel_lf)

)
,"lf" // process name

)
,sc_spawn(

&rt_up
,sc_bind(

&Fork::road_thread
,this
,sc_ref(wheel_rt)

)
,"rt" // process name

)
SC_JOIN

}
bool Fork::road_thread(sc_fifo<double>& which) { //

// Do some work
return (road > 0.0);

}

Fig. 7.13 Example of fork/join

96 7 Dynamic Processes

The full example may be found in the downloaded examples as Fork. This
downloaded example also illustrates the use of sc_spawn instead of SC_THREAD.
Using a capitalized word fork avoids collision with the Unix system call fork, which
has nothing to do with SystemC’s SC_FORK. Recall that SystemC is a cooperative mul-
titasking system. You should not confuse Unix’s fork facilities with these concepts.

7.6 Process Control Methods

The following information is being considered for addition to the SystemC stan-
dard. We include it here because we are fairly certain these extensions will be part
of the standard within the lifetime of this book’s publication. You may not be able
to use these until you get access to OSCI version 2.3 or later. It is also possible that
syntax could change slightly.

SystemC process control constructs are proposed as methods in the sc_process_
handle class. Since spawning processes could occur in a hierarchical manner, there are
options for the controls to affect either just the specified process, or the process and all of
its descendants. This is accomplished with the enumeration shown in Fig. 7.14.

Given the above, there are nine control constructs as shown in Fig. 7.15. Each of these
takes a descendants argument that defaults to SC_NO_DESCENDANTS.

enum sc_descendant_inclusion_info {
SC_NO_DESCENDANTS,
SC_INCLUDE_DESCENDANTS

};

Fig. 7.14 Specifying descendants

// Add "& resume" to sensitivity while suspended
void sc_process_handle::suspend(descend);
void sc_process_handle::resume(descend);

// Ignore sensitivity while disabled
void sc_process_handle::disable(descend);
void sc_process_handle::enable(descend);

// Complete remove process
void sc_process_handle::kill(descend);

// Asynchronously restart a process
void sc_process_handle::reset(descend);

// Reset process on every resumption event
void sc_process_handle::sync_reset_on(descend);
void sc_process_handle::sync_reset_off(descend);

// Throw an exception in the specified process
template<typename T>

void sc_process_handle::throw_it(
const T&,descend);

Fig. 7.15 Process control constructs

977.7 Exercises

Suspend and resume are used in situations where it is desirable to continue
to collect events that the process is sensitive to even while suspended. This is likely
to be used for high-level modeling. Keep in mind that the process might start
evaluating immediately after resuming.
Disable and enable cause the process to ignore events in the sensitivity

until re-enabled. For example, one might disable a process sensitive to the clock
rather than resume it. Disabling is done because resume will start processing
immediately if an event occurred while suspended. For clock synchronized
processes resume is probably not desirable since resume might happen at a time
not on the clock boundary.

The reset and synchronous reset methods will finally make it possible to deprecate
the SC_CTHREAD process2. Resetting simplifies SystemC by reducing the number
of process types. The idea is that a reset is issued whenever returning from a wait
and the sync_reset_on is in effect.

Lastly, the throw_it method enables the concept of an interrupt. This of course
requires use of the C++ exception handling mechanism try{CODE}catch
(TYPE){HANDLER}.

Look in the downloadable examples for this edition of the book for more
information.

7.7 Exercises

For the following exercises, use the samples provided in www.scftgu.com

Exercise 7.1: Rewrite the turn_of_events example in Chapter 6 using dynamic
simulations processes for turn_knob_thread and stop_signal_thread.

Exercise 7.2: Modify your dynamic simulation process version of the turn_of_
events example in Chapter 6 so that the turn_knob_thread and stop_signal_thread
do not rely on the event names signal_stop, signal_off, stop_indica-
tor_on, and stop_indicator_off. (Hint: Pass a reference to the appropriate
events to the turn_know_thread and the stop_signal_thread simulation
processes.)

Exercise 7.3: As an advanced exercise, see if you can devise a classical software
interrupt handler for a hardware environment that has two interrupts, a 1 us timer,
and an incoming data packet. Assume data arrives randomly with separations of
500 ns to 2 us. This exercise is as much an exercise in planning as it is an exercise
in using the syntax. Feel free to use the process controls if you have access to a
SystemC version that supports it.

2SC_CTHREAD is discussed in a later chapter on Additional Topics.

99

Thus far, we have communicated information between concurrent processes using
events and using ordinary module member data. Within one instance of time (a
delta cycle), the order of execution is not defined; therefore, we must be extremely
careful when sharing data.

Events let us manage simulation concurrency, but they require careful coding.
Because the code may miss capturing an event, it is important to update a hand-
shake variable indicating when a request is made, and clear it when the request is
acknowledged. This mechanism also allows safe data communication between
concurrent simulation processes.

Let’s consider the gas station example again (Fig. 8.1). The customer notices an
empty tank and arrives at the pump . The attendant has to be watching when the
customer requests a fill-up , and has to make note of it if in the middle of filling
up another customer . In the case of two arriving customers, if the attendant
waits on either customer’s request (i.e., wait (e_request1|e_request2)),
the sc_event semantics do not allow the attendant to know which customer made
the request. In other words, the attendant does not know which request triggered the
wait() to return. This is why the gas_station model uses the status of the gas
tank as an indicator to choose whether to fill the tank. Similarly, the customer must
watch to see if the tank was actually filled when the attendant yells done .

Chapter 8
Basic
Channels

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_8, © Springer Science+Business Media, LLC 2010

Data types:
Logic,

Integers,
Fixed pointModules &

Hierarchy
Events, Sensitivity

& Notifications

Threads & Methods
Channels &
Interfaces

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Simulation
Kernel

Data Communication

Customer1

Attendant

Customer2

tank1

pump

tank21

2

3

4

Fig. 8.1 Gas station processes and events

100 8 Basic Channels

SystemC has built-in mechanisms, known as channels, to reduce the tedium of
these chores, to aid communications, and to encapsulate complex communications.
SystemC has two types of channels: primitive and hierarchical. This chapter covers
the topic of primitive channels. Hierarchical channels are the subject matter of the
chapter on Custom Channels.

8.1 Primitive Channels

SystemC’s primitive channels are known as primitive because they contain no hierarchy,
no simulation processes, and are designed simple to be very fast. All primitive channels
inherit from the base class sc_prim_channel. Because they are SystemC channels,
they must also inherit from and implement one or more SystemC interface classes.

The SystemC library contains several built-in primitive channels. This chapter
focuses on the simplest channels, sc_mutex, sc_semaphore, and sc_fifo<T>.
Additional primitive channel topics will be discussed in later chapters.

8.2 sc_mutex

Mutex is short for mutually exclusive text. In computer programming, a mutex is a
program object that lets multiple program threads share a common resource, such
as file access, without colliding.

During elaboration, a mutex is created with a unique name. Subsequently, any
process that needs the resource must lock the mutex to prevent other processes from
using the shared resource. The process should unlock the mutex when the resource
is no longer needed. If another process attempts to access a locked mutex, that
process is prevented from doing so until the mutex becomes available (unlocked).

SystemC provides the mutex function via the sc_mutex channel. The sc_mutex
class implements the sc_mutex_if interface class (Fig. 8.2). This class contains
several access methods including both blocked and unblocked styles. Remember
that blocking methods can only be used in SC_THREAD processes.

sc_mutex NAME;

NAME.lock(); // Lock the mutex,
// wait until unlocked if in use

int NAME.trylock() // Non-blocking, returns success

NAME.unlock(); // Free a previously locked mutex

Fig. 8.2 Syntax of sc_mutex_if and sc_mutex

1018.2 sc_mutex

The example of the gas station attendant is a good example of a resource that
needs to be shared. Our gas station only has a single pump, so only one car at a time
is filled.

Another example of a resource requiring a mutex is automobile controls. Only
one driver at a time can sit in the driver’s seat. In a simulation modeling the interac-
tion of drivers across town with a variety of vehicles, having one driver per set of
controls might be interesting to model (Fig. 8.3).

class bus : public sc_module {
sc_mutex bus_access;
…
void write(int addr, int data) {

bus_access.lock();
// perform write
bus_access.unlock();

}
…

};

Fig. 8.4 Example of sc_mutex used in bus class

class car : public sc_module {
sc_mutex drivers_seat;

public:
 void drive_thread(void);
 …
};

void car::drive_thread(void) {
drivers_seat.lock(); // sim driver acquires seat
start();

 … // operate vehicle
stop();
drivers_seat.unlock(); // sim driver leaves

 // vehicle
 …
}

Fig. 8.3 Example of sc_mutex

An electronic design application of an sc_mutex is arbitration for a shared bus.
Here the ability of multiple masters to access the bus must be controlled. In lieu of
an arbiter design, the sc_mutex might be used to manage the bus resource quickly
until an arbiter can be designed. In fact, the mutex might even be part of the class
implementing the bus model as illustrated in the following example (Fig. 8.4):

102 8 Basic Channels

Used with an SC_METHOD process, access might look like this (Fig. 8.5):

void grab_bus_method() {
if (bus_access.trylock() == 0) {

// access bus
 …
 bus_access.unlock();

}
}

Fig. 8.5 Example of sc_mutex with an SC_METHOD

One downside to the sc_mutex is the lack of an event that signals when an
sc_mutex is freed. This drawback necessitates using trylock() repeatedly
based on some other event or time-based delay to use the shared resource. Assuming
one process has locked a resource using sc_mutex, the second process wanting
the same resource must call trylock() in conjunction with a wait() or return.
The second process must use wait() or return between calls to trylock() to
allow the first process some simulation cycles to finish and unlock the resource.
Otherwise, the simulation will hang with infinite calls to trylock().

8.3 sc_semaphore

For some resources, you may want to model more than one copy or owner. A good
example of this would be parking spaces in a parking lot.

To manage this type of resource, SystemC provides the sc_semaphore class
(Fig. 8.6). The sc_semaphore class inherits from and implements the sc_
semaphore_if class. When creating an sc_semphore object, it is necessary
to specify how many are available. In a sense, a mutex is merely a semaphore with
a count of one. An sc_semaphore access consists of waiting for an available
resource and then posting notice when finished with the resource.

sc_semaphore NAME(COUNT);

NAME.wait(); // Lock one semaphore
 // Wait until available if in use
int NAME.trywait() // Non-blocking, return success

int NAME.get_value() // Returns available semaphores

NAME.post(); // Free one previously locked
// semaphore

Fig. 8.6 Syntax of sc_semaphore_if and sc_semaphore

1038.3 sc_semaphore

It is important to realize that the sc_semaphore::wait() is a distinctly
different method from the wait() method previously discussed in conjunction
with SC_THREAD. In fact, under the hood, the sc_semaphore::wait() is
implemented with the wait(event).

A modern gas station with self-service would be a good example (Fig. 8.7) for
using semaphores. Gas pumps can be represented with a semaphore where the
count is set to the number of available pumps.

SC_MODULE(gas_station) {
sc_semaphore pump(12);
void customer1_thread {

for(;;) {
// wait till tank empty
…
// find an available gas pump
pump.wait();
// fill tank & pay

}
};

Fig. 8.7 Example of sc_semaphore—gas_station

A multiport memory model is a good example (Fig. 8.8) of an electronic system-
level design application using an sc_semaphore. You might use the semaphore
to indicate the number of concurrent read or write accesses allowed.

class multiport_RAM {
sc_semaphore read_ports(3);
sc_semaphore write_ports(2);
…
void read(int addr, int& data) {

read_ports.wait();
// perform read
read_ports.post();

}
void write(int addr, const int& data) {

write_ports.wait();
// perform write
write_ports.post();

}
…

};//endclass

Fig. 8.8 Example of sc_semaphore —multiport_RAM

Other examples might include allocation of timeslots in a TDM (time division
multiplex) scheme used in telephony, controlling tokens in a token ring, or perhaps
even switching information to obtain better power management.

104 8 Basic Channels

8.4 sc_fifo

Probably the most popular channel for modeling at the architectural level is the
sc_fifo<T> channel (Fig. 8.9). First-in first-out queues (i.e., FIFOs) are a com-
mon data structure used to manage data flow. FIFOs are some of the simplest
structures to manage.

In the very early stages of architectural design, the unbounded1 STL list<T>
(singly linked list) provides an easy implementation of a FIFO. Further in the
design process, when FIFO depths are determined and SystemC elements come
into stronger play, the sc_fifo<T> may be used to model at a higher level of
detail.

The sc_fifo<T> class inherits from and implements two interface classes:
sc_fifo_in_if<T> and sc_fifo_out_if<T>. It may not be intuitive at
first, but the “in” interface is used for reading from the FIFO, and the “out” inter-
face is for writing to the FIFO.

By default, an sc_fifo<T> has a depth of 16. The data type (i.e., typename)
of the FIFO elements also needs to be specified. An sc_fifo<T> may contain
any data type including large and complex structures (e.g., a TCP/IP packet or a
disk block).

For example, FIFOs may be used to buffer data between an image processor and
a bus, or a communications system might use FIFOs to buffer information packets
as they traverse a network.

sc_fifo<ELEMENT_TYPENAME> NAME(SIZE);

NAME.write(VALUE);
NAME.read(REFERENCE);
… = NAME.read() /* function style */
if (NAME.nb_read(REFERENCE)) { // Non-blocking
 // true if success

…
}
if (NAME.num_available() == 0)

wait(NAME.data_written_event());
if (NAME.num_free() == 0)

next_trigger(NAME.data_read_event());

Fig. 8.9 Syntax of sc_fifo<T>—abbreviated

1 This queue is limited only by the resources of the simulation machine itself.

1058.4 sc_fifo

Some architectural models are based on Kahn process networks2 for which
unbounded FIFOs provide the interconnect fabric. Although sc_fifo<T> is not
unbounded, because reads and writes are blocking, it is possible to use them for this
purpose given an appropriate depth. The depth needs to be set such that consumers
and producers don’t end up in a deadlock. This is illustrated in the next very simple
example (Fig. 8.10).

SC_MODULE(kahn_ex) {
…
sc_fifo<double> a, b, y;
…

};
// Constructor
kahn_ex::kahn_ex() : a(24), b(24), y(48)
{

…
}
void kahn_ex ::stim_thread() {

for (int i=0; i!=1024; ++i) {
a.write(double(rand()/1000));

 b.write(double(rand()/1000));
 }
}
void kahn_ex::addsub_thread() {

while(true) {
y.write(kA*a.read() + kB*b.read());
y.write(kA*a.read() - kB*b.read());

}//endforever
}
void kahn_ex::monitor_method() {

cout << y.read() << endl;
}

Fig. 8.10 Example of sc_fifo<double> kahn_ex

2Kahn, G. (1974). The semantics of a simple language for parallel programming. In J.L. Rosenfeld
(Ed.), Proceedings of IFIP Congress 74 (pp.471–475). Amsterdam: North-Holland.

Software uses for FIFOs are numerous and include such concepts as mailboxes
and other types of queues.

Note that when considering efficiency, passing pointers to large objects is most
efficient. Be sure to consider using a safe pointer object if using a pointer. The
shared_ptr<T> of the GNU publicly licensed Boost library (http://www.boost.
org) makes implementation of smart pointers very straightforward.

Generally speaking, the STL may be more suited to software FIFOs. The STL
list<T> might be used to manage an unknown number of stimulus data from a
testbench.

In theory, an sc_fifo<T> could be synthesized at a behavioral level. It currently
remains for a synthesis tool vendor to provide the functionality.

http://www.boost.org
http://www.boost.org

106 8 Basic Channels

8.5 Exercises

For the following exercises, use the samples provided in www.scftgu.com

Exercise 8.1: Examine, predict the output, compile, and run mutex_ex.
Exercise 8.2: Examine, compile, and run semaphore_ex. Add another fam-

ily member. Explain discrepancies in behavior.
Exercise 8.3: Examine, compile, and run fifo_fir. Add a second filter stage

to the network.
Exercise 8.4: Examine, compile, and run fifo_of_ptr. Discuss how one

might compensate for the simulated transfer of a large packet.
Exercise 8.5: Examine, compile, and run fifo_of_smart_ptr. Notice the

absence of delete.

107

The preceding chapter considered high-level synchronization mechanisms. This
chapter delves into electronic hardware1.

Electronic signals behave in a manner approaching instantaneous activity.
Generally, electronic signals have a single source (producer), but multiple sinks
(consumer). It is quite important that all sinks “see” a signal update at the same time.

The easiest way to understand this concept is to consider the common hardware
shift register. This model has a number of registers or memory elements as indicated
in the diagram (Fig. 9.1) below.

Data moves from left to right synchronous to the clock labeled SYNC. In software
(e.g., C/C++), this flow would be modeled with four ordinary assignments (Fig. 9.2):

Chapter 9
Evaluate-
Update
Channels

SC_SIGNALS

Hardware Shift Register

QD QD QD QD

reg1 reg2 reg3 reg4

SYNC

DATA
Q1 Q2 Q3 Q4

Fig. 9.1 Shift register

1It is unclear whether the concepts discussed here have any application outside of electrical signals.

Q4 = Q3;
Q3 = Q2;
Q2 = Q1;
Q1 = DATA;

Fig. 9.2 Example of modeling a software-only shift register

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_9, © Springer Science+Business Media, LLC 2010

Data types:
Logic,

Integers,
Fixed pointModules &

Hierarchy
Events, Sensitivity

& Notifications

Threads & Methods
Channels &
Interfaces

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Simulation
Kernel

108 9 Evaluate-Update Channels

For this register to work, ordering is very important. In hardware, things are
more difficult. Each register (reg1…reg4) is an independent concurrent process.
Recall that the simulator places no order requirements on the processes. Below
(Fig. 9.3) is a diagram from Chapter 6 Concurrency. Consider each process to rep-
resent a register from the preceding design.

Since there is no guarantee that one assignment will take place before the
other, we need to find some other solution. One idea might be to use events
to force an ordering. This design would have Process_A wait for an event
from Process_B before assigning its register, Process_B wait for an event
from Process_C before assigning its register, and so on. This design requires cod-
ing both a wait and notify for each register, and it can become quite
tiresome.

Another solution involves representing each register as a two-deep FIFO. This
approach seems unnecessarily complex requiring two storage locations for the data
and two pointers/counters to manage the state of the FIFO.

9.1 Completed Simulation Engine

To solve this problem, simulators have a feature known as the evaluate-update
paradigm. The next diagram (Fig. 9.4) is the complete SystemC simulation kernel with
the added update state. It is possible to go from evaluate to update and back. This cycle
is known as the delta-cycle. Even when the simulator moves from evaluate to
update to advance time, we say that at least one delta-cycle has occurred. Let’s
see how the delta-cycle is used.

Fig. 9.3 Simulated activity with four concurrent processes

10.1007/_6

1099.1 Completed Simulation Engine

Referring back to Chapter 6 on Concurrency, you’ll recall that we discussed the
notions of immediate notification, delayed notification, and timed notification. In the
preceding diagram (Fig. 9.4) you will notice we’ve annotated the state bubble to indi-
cate where each of these event notifications actually occur. It is important to realize that
in the case of notify(SC_ZERO_TIME), the notification occurs in the update phase
after evaluation has completed. This means that processes waiting on events notified in
this manner, will all see the event at the same instant. This contrasts starkly with imme-
diate notification that uses the notify(void) syntax. Immediate notification may
cause some processes to miss the event if they are not already waiting for it. These
processes may miss the event because they have not run in the current evaluate phase.

Special channels, known as signal channels, use this update phase as a point of
data synchronization. To accomplish this synchronization, every channel has two
storage locations: the current value and the new value. Visually, there are two sets
of data: new and current.

Referring to the preceding figure (Fig. 9.5), when a process writes to a signal
channel, the process stores into the new value rather than into the current value. The
process then calls request_update() to notify the simulation kernel. When
the update phase occurs, the simulation kernel calls the update() methods of all
channels that requested update during the preceding evaluate phase.

sc_main()

Elaborate

sc_start()

While
processes
Ready

Execute code possibly
issuing events or
updates. Either suspend
waiting or exit entirely.

.notify()
immediate

.notify(SC_ZERO
_TIME) delayed

.notify(t)
timed

SystemC Simulation Kernel

Initialize Evaluate
Advance

Time

Cleanup Update

Delta
Cycle

Fig. 9.4 Full SystemC simulation engine

s1=v2

s2=v3

update()

New Current

s1

s2

v0

v1

Fig. 9.5 Signal channel data storage

10.1007/_6

110 9 Evaluate-Update Channels

The update() method may do more than simply copy the new value into the
current value. It may resolve contentions and, most importantly, notify sc_event’s
(e.g., to indicate a change and wake up a process in the waiting state).

An important aspect of this paradigm is the current value remains unchanged
until the end of the update phase. If a process writes to an evaluate-update channel
and then immediately (i.e., without suspending) accesses the channel, it will find
the current value unchanged.

This behavior is a frequent cause for confusion for simulation neophytes. Those
familiar with HDLs should not be surprised. Shortly, we will discuss techniques to
make this behavior less of a surprise.

Another consideration is that the new value will contain only the last value written
to a signal channel during the evaluate phase. Thus, writing repeatedly overwrites
the previous new value.

9.2 SystemC Signal Channels

The sc_signal<T> primitive channel and its close relative, sc_buffer<T>,
both use the evaluate-update paradigm. Here (Fig. 9.6) is the syntax for declaration,
reading, and writing:

The sc_signal::write() method contains the evaluate phase portion of
the evaluate-update behavior. The write() method includes a call to the protected
sc_prim_channel::request_update() method. The call to sc_
signal::update() is hidden, and the call occurs during the update phase when
the kernel calls it as a result of the request_update().

The sc_signal::read() method returns the current value. If the signal has
been written to in the current evaluate phase, the new value is not reflected in the
returned value. This behavior may come as a surprise to some folks (especially to
non-hardware background folks).

The sc_signal::value_changed_event() method returns a reference
to an sc_event. This event is notified any time the update causes a change in
value. This behavior lets code wait on changes in the channel.

The sc_signal::default_event() method is simply an alias for the
via method. This method is used by the sensitive class to allow use of the
simplified syntax shown (Fig. 9.7) below (recall that this aliasing must be done

sc_signal<datatype> signame[, signamei]…;//define
…
signame.write(newvalue);
varname = signame.read();
wait(signame.value_changed_event()|...);
wait(signame.default_event()|...);
if (signame.event() == true) {
// occurred in previous delta-cycle

Fig. 9.6 Syntax of sc_signal<T>

1119.2 SystemC Signal Channels

during elaboration, normally in the constructor). Several other channels include
this same aliasing to an event referencing. In fact, sc_event_queue returns
this same method to allow it to be used in static sensitivity.

The event() method is special. Normally, it is impossible to determine which
event caused a return from wait(); however, for sc_signal channels (includ-
ing other derivatives mentioned in this chapter), the event() method may be
called to see if the channel issued an event in the immediately previous delta-cycle.
This ability to determine which event caused the last return from wait() does not
preclude the occurrence of other events in the previous cycle.

It should be noted that sc_signal<T> is essentially identical to VHDL’s
signal. For Verilog, the analogy is a reg that uses the Verilog non-blocking
assignment operator exclusively.

// Declare variables
int count;
string message_temp;
sc_signal<int> count_sig;
sc_signal<string> message_sig;

cout << "Initialize during 1st delta cycle" << endl;
count_sig.write(10);
message_sig.write("Hello");
count = 11;
message_temp = "Whoa";
cout << "count is " << count << " "

<< "count_sig is " << count_sig << endl
<< "message_temp is '" << message_temp << "' "
<< "message_sig is '" << message_sig << "'"
<< endl << "Waiting" << endl << endl;

wait(SC_ZERO_TIME);

cout << "2nd delta cycle" << endl;
count = 20;
count_sig.write(count);
cout << "count is " << count << ", "

<< "count_sig is " << count_sig << endl
<< "message_temp is '" << message_temp << "', "
<< "message_sig is '" << message_sig << "'"
<<endl << "Waiting" << endl << endl;

wait(SC_ZERO_TIME);

cout << "3rd delta cycle" << endl;
message_sig.write(message_temp = "Rev engines");
cout << "count is " << count << ", "

<< "count_sig is " << count_sig << endl
<< "message_temp is '" << message_temp << "', "
<< "message_sig is '" << message_sig << "'"
<< endl << endl << "Done" << endl;

Fig. 9.8 Example of sc_signal<T>

sensitive << signame;

Fig. 9.7 Static sensitivity to sc_signal<T>

112 9 Evaluate-Update Channels

An example of usage and the slightly surprising results2 are in order.
The example in Fig. 9.8 produces the result shown in Fig. 9.9. Notice how the

current value of the signals, count_sig and message_sig, remain unchanged
until a delta-cycle has occurred. On the other hand, the non-signal values, count
and message_temp, get immediately updated.

Because the code uses a naming convention (i.e., appended _sig to the sig-
nals), it is relatively easy to spot the evaluate-update signals and make the mental
connection to the behavior. Without the naming convention, one might wonder if
the identifiers represent some other channel (e.g., sc_fifo<T>).

In addition to the preceding syntax, SystemC has overloaded the assignment and
copy operators to allow the following dangerous syntaxes:

The reason we consider these syntaxes dangerous relates to the issue of the
evaluate-update paradigm. Consider the following example, assuming that r is an
sc_signal<int>:

Initialize during 1st delta cycle
count is 11, count_sig is 0
message_temp is 'Whoa', message_sig is ''
Waiting

2nd delta cycle
count is 20, count_sig is 10
message_temp is 'Whoa', message_sig is 'Hello'
Waiting

3rd delta cycle
count is 20, count_sig is 20
message_temp is 'Rev engines', message_sig is
'Hello'

Done

Fig. 9.9 Example of sc_signal<T> output

signame = newvalue;//implicit .write() dangerous
varname = signame;// implicit .read() mild danger

Fig. 9.10 Syntax of sc_signal<T> (dangerous)

// Convert rectangular to polar coordinates
r = x;
if (r != 0 && r != 1) r = r * r;
if (y != 0) r = r + y*y;
cout << "Radius is " << sqrt(r) << endl;

Fig. 9.11 Dangerous sc_signal<T>

2This usage may surprise non-HDL experienced folks. HDL-experienced users should understand
the VHDL or Verilog analogy.

1139.3 Resolved Signal Channels

Without sufficient context, the casual reader would be quite surprised at the
results shown below. Assume on entry x=3, y=4, r=0.

Even when using what might be considered the safer syntax, you must be careful.
We strongly suggest that you use a naming style.

One beneficial aspect of sc_signal<T> and sc_buffer<T> channels is a
restriction that only a single process may write to a given signal during a specific
delta-cycle. This restriction avoids the potential danger of two processes non-
deterministically asserting a value and creating a race condition.

For the OSCI simulator, the run-time error is flagged in this situation if and only
if you have defined the compile-time macro DEBUG_SYSTEMC. This macro is not
part of the IEEE-1666 standard, but it was defined for the OSCI implementation to
reduce simulation overhead. We recommend you define this macro early in the
project, and only remove it once you are certain your code doesn’t violate the signal
process writer rule and need more performance. You can find an example of this
danger in the danger_ex in the downloaded examples.

9.3 Resolved Signal Channels

There are times when it is appropriate to have multiple writers. One of these
situations involves modeling buses that have the possibility of high impedance
(i.e., Z) and contention (i.e., X).

Radius is 0

Fig. 9.12 Example of sc_signal output (dangerous)

Multiple Drivers on a Bus

SA

EA

SB

EB

SC

EC

SR
BUS

Fig. 9.13 Tri-state bus

114 9 Evaluate-Update Channels

SystemC provided the specialized channels sc_signal_resolved and
sc_signal_rv<T> (Fig. 9.14). The _rv means resolved vector.

The base functionality has identical semantics to sc_signal<sc_logic>;
however, it allows for multiple writers and provides built-in resolution func-
tionality as follows (Table 9.1):

One minor failing of SystemC is the lack of direct support for several common
system-level bus concepts. Specifically, SystemC has no mechanisms for pull-ups,
pull-downs, nor various open-source or open-drain variations.

For these, you have to create your own channels, which is not too difficult. The
easiest way is to create a class derived from an existing class that almost works.
Here is the resolution table (Table 9.2) for a pull-up functionality:

Notice that there is only one difference in the table (shaded). The custom
channel in Fig. 9.15 implements this resolution for a single-bit pull-up
functionality.

Table 9.2 Resolution functionality for eslx_pullup

A\B ‘0’ ‘1’ ‘X’ ‘Z’

‘0’ ‘0’ ‘X’ ‘X’ ‘0’
‘1’ ‘X’ ‘1’ ‘X’ ‘1’
‘X’ ‘X’ ‘X’ ‘X’ ‘X’
‘Z’ ‘0’ ‘1’ ‘X’ ‘1’

Table 9.1 Resolution functionality for sc_signal_resolved

A\B ‘0’ ‘1’ ‘X’ ‘Z’

‘0’ ‘0’ ‘X’ ‘X’ ‘0’
‘1’ ‘X’ ‘1’ ‘X’ ‘1’
‘X’ ‘X’ ‘X’ ‘X’ ‘X’
‘Z’ ‘0’ ‘1’ ‘X’ ‘Z’

sc_signal_resolved name;
sc_signal_rv<WIDTH> name;

Fig. 9.14 Syntax of sc_signal_resolved and sc_signal_rv

1159.4 Template Specializations of sc_signal Channels

9.4 Template Specializations of sc_signal Channels

SystemC has several template specializations that bear discussion. A template spe-
cialization occurs when a definition is provided for a specific template value. If
there is more than one template variable involved, we call it a partial
specialization.

For example, sc_signal<T> has a single template variable representing the
typename. SystemC defines some additional behaviors for sc_signal<bool>
that are not available for the general case. Thus, an sc_signal<char> does not
support the concept of a posedge_event().

The specialized templates sc_signal<bool> and sc_signal<sc_
logic> have the following (Fig. 9.16) extensions:

For sc_logic, a posedge_event occurs on any transition to SC_LOGIC_1,
which includes SC_LOGIC_X and SC_LOGIC_Z. The same is true of transitions
to SC_LOGIC_0 and the negedge_event.

sensitive << signame.posedge_event()
<< signame.negedge_event();

wait(signame.posedge_event()
|signame.negedge_event());

if (signame.posedge_event()
|signame.negedge_event()) {

Fig. 9.16 Syntax of specializations posedge and negedge

class eslx_pullup
: public sc_core::sc_signal_resolved {

public:
// constructors
eslx_pullup()
: sc_signal_resolved(sc_gen_unique_name("pullup"))
{}
explicit eslx_pullup(const char* nm)
: sc_signal_resolved(nm)
{}
const sc_dt::sc_logic& read() const {
const sc_dt::sc_logic& result
(sc_core::sc_signal_resolved::read());

static const sc_dt::sc_logic
ONE(sc_dt::SC_LOGIC_1);

if (result == sc_dt::SC_LOGIC_Z) {
return ONE;

} else {
return result;

}//endif
}

};

Fig. 9.15 Example of eslx_signal_pullup

116 9 Evaluate-Update Channels

The Boolean posedge() and negedge() methods apply similarly to the
event() method, and they only apply to the immediately previous delta-cycle.

It is notable that sc_buffer does not support these specializations.

9.5 Exercises

For the following exercises, use the samples provided in www.scftgu.com

Exercise 9.1: Examine, compile, and run signal_ex. Does this type of chan-
nel lend itself to higher level modeling? Why or why not?

Exercise 9.2: Examine, compile, and run buffer_ex. Contrast this with the
previous example. In what situations might you prefer sc_buffer<T> over sc_
signal<T> or visa versa?

Exercise 9.3: Examine, compile, and run danger_ex. Change the code to make it
less dangerous.

Exercise 9.4: Examine, compile, and run resolved_ex. Observe the definition
of DEBUG_SYSTEMC in ../Makefile.defs. See if you can measure the per-
formance difference.

Exercise 9.5: Examine the interactive simulation illustrating the simulation
engine model in the downloaded examples. Notice how the update() method
was used to extract information. Would you consider this an acceptable use for
normal modeling? Why?

http://www.scftgu.com/Book/.

117

This chapter describes SystemC’s facilities for implementing structure, sometimes
known as design hierarchy. Design hierarchy concerns both the hierarchical
relationships of modules discussed here and the connectivity that lets modules com-
municate in an orderly fashion. Connectivity will be discussed in the next chapter.

10.1 Module Hierarchy

Thus far, we have examined modules containing only a single level of hierarchy
with all processes residing in a single module. This level of complexity might be
acceptable for small designs. However, larger system designs require partitioning
and hierarchy to enable understanding and project management. We consider project
management to include documentation and practical issues such as integration of
third-party intellectual property (IP).

Design hierarchy in SystemC uses instantiations of modules as member data of
parent modules. In other words, to create a level of hierarchy, create an sc_mod-
ule object within a parent sc_module. The new sc_module is the submodule
within the parent module.

Consider the hierarchy in Fig. 10.1 for the following discussions and examples.
In this case, we have a parent module named Car, with submodules named
Engine and Body. To obtain the hierarchical relationship, we create an Engine
and Body object within the definition of the Car class.

Chapter 10
Structure

Design Hierarchy

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_10, © Springer Science+Business Media, LLC 2010

Data types:
Logic,

Integers,
Fixed pointEvents, Sensitivity

& Notifications

Threads & Methods
Channels &
Interfaces

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Simulation
Kernel

Modules &
Hierarchy

118 10 Structure

C++ offers two basic ways to create submodule objects within the definition of
a parent module or object. First, a submodule object may be created directly by
declaration just like any simple member data of the module class. Second, a sub-
module object may be indirectly referenced by means of a pointer in combination
with dynamic allocation.

When submodules are created outside of sc_main, the submodule objects
must be, at minimum, initialized within the module constructor. When using
indirect reference by means of a pointer, the pointer must be initialized within the
constructor using new. Constructors can be implemented within the header file
(.h file) or within the implementation file (.cpp file). Since hierarchy reflects
an internal implementation decision, the authors prefer to see the constructor
defined in the implementation file. The only time construction cannot be done
within the implementation file is when you are defining a templated module,
which triggers compiler restrictions1. Templated modules are a relatively rare
occurrence.

Creation of hierarchy at the top level (sc_main) is slightly different from instantiation
within modules. This difference results from differences in C++ syntax requirements
for initialization outside of a class definition.

Design Hierarchy
sc_main

car_i

eng_i

fuelmix_i

exhaust_i

wheel_FL

Wheel_FR

body_i

Car

Engine

FuelMix

Exhaust

Body

Wheel

SC_MODULE’s

Cylinder
cyl_i1

cyl_i2

Fig. 10.1 Design hierarchy

1Future versions of C++ compiler/linker tool sets may fix this restriction.

11910.3 Indirect Top-Level Implementation

Since it is likely you may see any combination of these approaches, we will
illustrate all six approaches:

Direct top-level (•	 sc_main)
Indirect top-level (•	 sc_main)
Direct submodule header-only•	
Direct submodule•	
Indirect submodule header-only•	
Indirect submodule•	

There are likely a few more variants, but understanding these should suffice. For
easy reference, Table 10.1 at the end of this chapter lists the pros and cons of these
approaches.

10.2 Direct Top-Level Implementation

First, we illustrate (Fig. 10.2) top-level implementation with direct instantiation,
which has already been presented in Hello_SystemC and is used in all the
succeeding discussions in the book. It is simple and to the point. Sub-design
instances are simply instantiated and initialized in one statement. The name
given via the constructor is the hierarchical instance name used by the SystemC
kernel and is very useful during debug. The SystemC instance string is the name
used by SystemC when printing error or informational messages. Normally the
C++ instance name and the SystemC string name are defined to be identical. This
comment applies to all SystemC module instantiation styles.

10.3 Indirect Top-Level Implementation

A minor variation on this approach is top-level implementation with indirect instan-
tiation (Fig. 10.3). This approach adds two lines of syntax with both a pointer
declaration and an instance creation via new. This variation takes more code; how-
ever, it adds the possibility of dynamically configuring the design with the addition
of if-else and looping constructs.

//FILE: main.cpp
 #include <systemc>

#include "Car.h"
int sc_main(int argc, char* argv[]) {

Car car_i("car_i");
sc_start();

 return 0;
}

Fig. 10.2 Example of main with direct instantiation

120 10 Structure

A design with a regular structure might even construct an array of designs and
programmatically instantiate and connect them. We have used the suffix_iptr
to indicate that car_iptr is a pointer to an instantiation.

10.4 Direct Submodule Header-Only Implementation

When dealing with submodules (i.e., beneath or within a module), things become
mildly more interesting because C++ semantics require the use of an initializer list for
the direct approach. Remember that SC_CTOR is a macro that hides the C++ construc-
tor syntax. The constructor implemented in SC_CTOR requires initialization with a
SystemC instance name, therefore the requirement to initialize the submodules. The
next figure (Fig. 10.4) shows an example of direct instantiation in the header.

10.5 Direct Submodule Implementation

One disadvantage of the preceding approach is that it exposes the complexities of the
constructor body to all potential users, even those who just want to use your module and
don’t care to know about your hierarchy partitioning choices. Moving the constructor
into the implementation (i.e., the module.cpp file) requires the use of SC_HAS_
PROCESS. The next figure (Fig. 10.5) shows an example of using direct instantiation.

//FILE: main.cpp
#include <systemc>
#include "Car.h"
int sc_main(int argc, char* argv[]) {

Car* car_iptr; // pointer to Car
car_iptr = new Car("car_i"); // create Car
sc_start();
delete car_iptr;

 return 0;
}

Fig. 10.3 Example of main with indirect instantiation

//FILE:Car.h
#include "Body.h"
#include "Engine.h"
SC_MODULE(Car) {

Body body_i;
Engine eng_i ;
SC_CTOR(Car)
: body_i("body_i") //initialization
, eng_i("eng_i") //initialization
{

// other initialization
}

};

Fig. 10.4 Example of module with direct instantiation in header

12110.6 Indirect Submodule Header-Only Implementation

10.6 Indirect Submodule Header-Only Implementation

Use of indirection renders the instantiation a little bit easier to read for the
 submodule header-only case; however, no other advantages are clear. The next
figure (Fig. 10.6) shows an example of indirect instantiation in the header.

//FILE:Car.h
#include "Body.h"
#include "Engine.h"
SC_MODULE(Car) {

Body body_i;
Engine eng_i;
Car(sc_module_name nm);

};

//FILE:Car.cpp
#include <systemc>
#include "Car.h"
// Constructor
SC_HAS_PROCESS(Car);
Car::Car(sc_module_name nm)
: sc_module(nm)

 , body_i("body_i")
, eng_i("eng_i")
{

// other initialization
}

Fig. 10.5 Example of module with direct instantiation and separate compilation

//FILE:Body.h
#include "Wheel.h"
SC_MODULE(Body) {

Wheel* wheel_FL_iptr;
Wheel* wheel_FR_iptr;
SC_CTOR(Body) {

wheel_FL_iptr = new Wheel("wheel_FL_i");
wheel_FR_iptr = new Wheel("wheel_FR_i");
// other initialization

}
};

Fig. 10.6 Example of module with indirect instantiation in header

122 10 Structure

10.7 Indirect Submodule Implementation

Moving the module indirect approach into the implementation file has the advantage
of possibly supplying pre-compiled object files making this approach good for IP
distribution. This advantage is in addition to the possibility of dynamically deter-
mining the configuration discussed previously. The figure below (Fig. 10.7) shows
an example of indirect instantiation with separate compilation.

Notice the absence of # include FuelMix.h, Exhaust.h, and Cylinder.h
in Engine.h of the preceding example. This omission could be a real advantage
when providing Engine for use by another group. You need to provide only
Engine.h and a compiled object or library (e.g., Engine.o or Engine.a)
files. You can then develop your implementation independently. This approach is
good for both internal and external IP distribution.

//FILE:Engine.h
class FuelMix;

 class Exhaust;
class Cylinder;
SC_MODULE(Engine) {

FuelMix* fuelmix_iptr;
Exhaust* exhaust_iptr;

 Cylinder* cyl1_iptr;
 Cylinder* cyl2_iptr;

Engine(sc_module_name nm); // Constructor
};

//FILE: Engine.cpp
#include <systemc>
#include "FuelMix.h"
#include "Exhaust.h"
#include "Cylinder.h"
// Constructor
SC_HAS_PROCESS(Engine);
Engine::Engine(sc_module_name nm)
: sc_module(nm)
{

fuelmix_iptr = new FuelMix("fuelmix_i");
exhaust_iptr = new Exhaust("exhaust_i");
cyl1_iptr = new Cylinder("cyl1_i");
cyl2_iptr = new Cylinder("cyl2_i");
// other initialization

}

Fig. 10.7 Example of module with indirect separate compilation

12310.9 Exercises

10.8 Contrasting Implementation Approaches

The following table (Table 10.1) contrasts the features of the six approaches.
Some groups have the opinion that the top-level module should instantiate a

single design with a fixed name (e.g., Design_top) and then apply a consistent
approach for all the submodules. Some EDA tools perform all this magic for you.

10.9 Exercises

For the following exercises, use the samples provided at www.scftgu.com.
Exercise 10.1: Examine, compile, and run the sedan example. Which styles are

simplest?
Exercise 10.2: Examine, compile, and run the convertible example. Notice the

forward declarations of Body and Engine. How might this be an advantage when
providing IP?

Table 10.1 Comparison of hierarchical instantiation approaches

Level Allocation Pros Cons

Main Direct Least code Inconsistent with
other levels

Main Indirect Dynamically configurable Involves pointers
Module Direct header only All in one file Easier to

understand
Requires submodule

headers
Module Indirect header only All in one file Dynamically

configurable
Involves pointers

Requires submodule
headers

Module Direct with separate
compilation

Hides implementation Requires submodule
headers

Module Indirect with separate
compilation

Hides submodule headers
and implementation
Dynamically
configurable

Involves pointers

http://www.scftgu.com/Book/.

125

This chapter describes SystemC’s facilities for implementing connectivity, which
enables orderly communication between modules.

11.1 Communication: The Need for Ports

Hierarchy without the ability to communicate between modules is not very useful,
but what is the best way to communicate? There are two concerns: safety and ease
of use. Safety is a concern because all activity occurs within processes, and care
must be taken when communicating between processes to avoid race conditions.
Events and channels are used to handle this concern.

Ease of use is more difficult to address. Let us dispense with any solution involving
global variables, which are well known as a poor methodology. Another possibility is
to have a process in an upper-level module. This process would monitor and manage
events defined in instantiated modules. This mechanism is awkward at best.

SystemC takes an approach that lets modules use channels inserted between the
communicating modules. SystemC accomplishes this communication with a concept
called a port. Basically, a port is a pointer to a channel outside the module.

For simplicity, this chapter only covers the sc_port<T>. We will cover an alter-
nate and related concept, the sc_export<T>, in a later chapter. An sc_
export<T> is a pointer to a channel inside another module.

Consider the following example (Fig. 11.1):

Chapter 11
Communication

Ports

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_11, © Springer Science+Business Media, LLC 2010

Data types:
Logic,

Integers,
Fixed pointEvents, Sensitivity

& Notifications

Threads & Methods
Channels &
Interfaces

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Simulation
Kernel

Modules &
Hierarchy

126 11 Communication

The process A_thread in module modA communicates a value contained
in local variable v by calling the write method of the parent module’s chan-
nel c. Process B_thread in module modB may retrieve a value via the read
method of channel c.

Notice that access is accomplished via pointers pA and pB. Notice also that the
two processes really only need access to the methods write and read. More
specifically, modA only needs access to write, and modB only needs access to
read. This separation of access is managed using a concept known as an inter-
face, which is described in the next section.

11.2 Interfaces: C++ and SystemC

C++ defines a concept known as an abstract class. An abstract class is a class that
is never used directly, but it is used only via derived subclasses. Partly to enforce
this concept, abstract classes usually contain pure virtual functions. Pure virtual
functions are not allowed to provide an implementation in the abstract class where
they are defined as pure. This restriction in turn compels any class derived from the
abstract class to override all the pure virtual functions, or in other words, the class
derived from the abstract class must provide an implementation for all the pure
virtual functions.

The following (Fig. 11.2) diagram illustrates the concept. Pure virtual func-
tions are identified by 1) the keyword virtual and 2) the =0; to indicate
they’re pure.

Communication Via sc_ports

modA mA

pA->write(v);

modB mB

v=pB->read();

sc_fifo<int> c;

Pointer Access

read()…

write()…

Port pA Port pB
A_thread B_thread

Fig. 11.1 Communication via ports

12711.2 Interfaces: C++ and SystemC

If a class contains no data members and only contains pure virtual methods, it is
known as an interface class. Here is a short example of an interface class:

The concept of interfaces has a powerful property when used with polymorphism.
Recall from C++ that polymorphism is the following idea: A derived class can be
processed by a function referencing the parent class.

Consider the preceding figure (Fig. 11.3) of C++ interface class relation-
ships. A function using My_Interface might access My_methA(). If the
current object is of class My_Derived2, then the actual My_methA() call results
in My_Derived2::My_methA().

If an object is declared as a pointer to an interface class, it may be used
with multiple derived classes. Suppose we define two derived classes as fol-
lows (Fig. 11.4):

C++ Interface Relationships

class My_Derived1
: public My_Interface {

T1 My_methA(…) {…}

T2 My_methC(…) {…}
private:

T5 my_data1;
};

struct My_Derived2
: public My_Interface {

T1 My_methA(…) {…}

T2 My_methC(…) {…}
private:

T3 my_data2;
};

:

struct My_Interface {
virtual T1

virtual T2 My_methB(…)=0;
};

Abstract Class
• Pure virtual methods
• No data

};

Fig. 11.2 C++ interface class relationships

class my_interface {
 public:

virtual void write(unsigned addr, int data) = 0;
virtual int read(unsigned addr) = 0;

};

Fig. 11.3 Example of C++ interface

128 11 Communication

Now we write some C++ code to access the aforementioned derived classes.

As seen in the preceding example (Fig. 11.5), the same code may access multiple
variations of a design. You can think of an interface as the application programming
interface (API) to a set of derived classes. This same concept is used in SystemC to
implement ports.

DEFINITION: A SystemC interface is an abstract class that inherits from
sc_interface and provides only pure virtual declarations of methods refer-
enced by SystemC channels and ports. No implementations or data are provided in
a SystemC interface.

We now provide the concise definition of the SystemC channel.

class multiport_memory_arch: public my_interface {
public:

 void write(unsigned addr, int data) {
mem[addr] = data;

}// end write
int read(unsigned addr)) {

return mem[addr];
}//end read

private:
int mem[1024];

};

class multiport_memory_RTL: public my_interface {
public:

void write(unsigned addr, int data) {
// complex details of RTL memory write

}// end write
int read(unsigned addr)) {

// complex details of RTL memory read
}// end read

private:
// complex details of RTL memory storage

};

Fig. 11.4 Example of two derivations from interface class

void memtest(my_interface& mem) {
// complex memory test

 }

multiport_memory_arch fast;
multiport_memory_RTL slow;
memtest(fast);

 memtest(slow);

Fig. 11.5 Example of C++ interface

12911.3 Simple SystemC Port Declarations

DEFINITION: A SystemC channel is a class that inherits from either sc_chan-
nel or from sc_prim_channel, and the channel should1 inherit and imple-
ment one or more SystemC interface classes. A channel implements all the pure
virtual methods of the inherited interface classes.

By using interfaces to connect channels, we can implement modules independent
of the implementation details of the communication channels.

Consider the following diagram (Fig. 11.6):

In one design, modules modA and modB are connected via a FIFO. With no
change to the definition of modA or modB, we can swap out the FIFO for a different
channel. All that matters is for the interfaces used to remain constant. In this exam-
ple, the interfaces are sc_fifo_out_if<T> and sc_fifo_in_if<T>. In the next
few sections, the mechanics of using interfaces are described.

11.3 Simple SystemC Port Declarations

Given the definition of an interface, we now present the definition of a port.

DEFINITION A SystemC port is a class templated with and inheriting from
a SystemC interface. Ports allow access of channels across module boundaries.

Specifically, the syntax of a simple SystemC port follows (Fig. 11.7):

Fig. 11.6 The power of interfaces

1However, without an interface, a SystemC channel cannot be used with a SystemC port.

130 11 Communication

SystemC ports are always defined within the module class definition. Here is a
simple example (Fig. 11.8):

Notice the extra blank space following the greater-than symbol (>). This is
required C++ syntax when nesting templated classes.

11.4 Many Ways to Connect

Given the declaration of a port, we now address the issue of connecting ports, channels,
modules, and processes. The following diagram (Fig. 11.9) illustrates the types of
connections that are possible with SystemC:

sc_port<interface> portname;

Fig. 11.7 Syntax of basic sc_port

SC_MODULE(stereo_amp) {
sc_port<sc_fifo_in_if<int> > soundin_p;
sc_port<sc_fifo_out_if<int> > soundout_p;
…

};

Fig. 11.8 Example of defining ports within module class definition

Port Connections

p1

p2

connections top

Ch1 c1i

pr1

pr3

if3if1

Ch2 c2i

ifDifB

if4

p3

p4

ev1

pr2

Ch3 c3i

ifYifXif2

M2 mi2

pD[0]

pE

pF

ev2

ifZ

ifF

M1 mi1

pA

pB

ifW

p5
if5

pC
ifD

pD[1]
if6

pGp6

Fig. 11.9 Connectivity possibilities

13111.4 Many Ways to Connect

This diagram (Fig. 11.9) is quite busy. Let’s examine the pieces by name, and
then discuss the rules of interconnection.

First, there are three modules represented with rectangles. The enclosing module
instance is named top. The two submodule instances within top are named mi1 and
mi2.

Each of the modules has one or more ports represented with squares. Directional
arrows within the ports indicate the primary flow of information. The ports for top
are p1, p2, p3, p4, p5, and p6, which use interfaces named if1, if2, if3,
if4, if5, and if6, respectively.

The ports for mi1 are pA, pB, pC, and pG, which are connected to interfaces
named if1, ifB, ifD, and if6, respectively.

Module M1 also provides interfaces ifW and if6.
The ports for mi2 are pD[0], pD[1], pE, and pF, which are connected to inter-

faces named if3, ifD, and ifF, respectively.
Next, three instances of channels represented with hexagonal shapes exist within

top. These are named c1i, c2i, and c3i.
Each channel implements one or more interfaces represented by circles with a

bent arrow. The arrow is intended to indicate the possibility of a call returning a
value. It is possible for a channel to implement only a single interface. Channel c1i
implements interfaces ifB and ifD. Channel c2i implements interfaces ifX and
ifY. Finally, channel c3i implements interfaces if5, ifF, and ifZ.

Last, there are three processes named pr1, pr2, and pr3. For this description,
we don’t need to know what type of processes (i.e., threads vs. methods). There are
two explicit events, ev1 and ev2 used for signaling between processes.

From this diagram, several rules may be observed. As we already know, pro-
cesses may communicate with processes:

At the same level either via channels or synchronized via events•	
Outside the local design module through ports bound to channels by way of •	
interfaces
In submodule instances via interfaces to channels connected to the submodule •	
ports or by way of interfaces through the module itself of an sc_export

Any other attempt at inter-process communication is either forbidden or
dangerous.
Ports may connect via interfaces only to local channels, ports of submodules, or to
processes indirectly.

There are a few interesting features that will be discussed later. First, module
instance mi1 implements an interface ifW. Second, port pD appears to be an array
of size 2. This is known as a port array. Finally, port p5 and port pC illustrate the
sc_export.

As a summary, let’s view this information in a tabular format (Table 11.1).

132 11 Communication

Table 11.1. Ways to interconnect

From To Method

Port Submodule Direct connect via sc_port
Process Port Direct access by process
Submodule Submodule Local channel connection
Process Submodule Local channel connection or via sc_export

or interface implemented by sub-modulea

Process Process Events or local channel
Port Local channel Direct connect via sc_export
aIn this case, the module is also known as a hierarchical channel, which will be discussed later.

11.5 Port Connection Mechanics

Modules are connected to channels after both the modules and channels have been
instantiated. There are two syntaxes for connecting ports: by name and by position.
Due to the error-prone nature of positional notation (especially since the number of
ports on modules tends to be large and changes), the authors strongly prefer con-
nection by name. Here are both syntaxes (Fig. 11.10):

An example should help greatly. We’ll use a simple video mixer example
with a color space transformation. For this example, we will use two standard
SystemC interface classes, sc_fifo_in_if and sc_fifo_out_if, which
support read() and write(value), respectively. First, we introduce the mod-
ule definitions (Fig. 11.11, 11.12 & 11.13).

Fig. 11.10 Syntax of port connectivity

mod_inst.portname(channel_instance); // Named
mod_instance(channel_instance,…); // Positional

//FILE: Rgb2YCrCb.h
SC_MODULE(Rgb2YCrCb) {

sc_port<sc_fifo_in_if<RGB_frame> > rgb_pi;
sc_port<sc_fifo_out_if<YCRCB_frame> > ycrcb_po;

};

Fig. 11.11 Example of port interconnect setup (1 of 3)

13311.5 Port Connection Mechanics

Fig. 11.12 Example of port interconnect setup (2 of 3)

//FILE: YCRCB_Mixer.h
SC_MODULE(YCRCB_Mixer) {

sc_port<sc_fifo_in_if<float> > K_pi;
sc_port<sc_fifo_in_if<YCRCB_frame> > a_pi,b_pi;
sc_port<sc_fifo_out_if<YCRCB_frame> > y_po;

};

Fig. 11.13 Example of port interconnect setup (3 of 3)

//FILE: VIDEO_Mixer.h
SC_MODULE(VIDEO_Mixer) {

// ports
sc_port<sc_fifo_in_if<YCRCB_frame> > dvd_pi;
sc_port<sc_fifo_out_if<YCRCB_frame> > video_po;
sc_port<sc_fifo_in_if<MIXER_ctrl> > control;
sc_port<sc_fifo_out_if<MIXER_state> > status;
// local channels
sc_fifo<float> K;
sc_fifo<RGB_frame> rgb_graphics;
sc_fifo<YCRCB_frame> ycrcb_graphics;

 // local modules
Rgb2YCrCb Rgb2YCrCb_i;
YCRCB_Mixer YCRCB_Mixer_i;
// constructor
VIDEO_Mixer(sc_module_name nm);
void Mixer_thread();

};

Now, let’s look at interconnection of the preceding modules using both named
(Fig. 11.14) and positional (Fig. 11.15) syntaxes.

Fig. 11.14 Example of port interconnect by name

SC_HAS_PROCESS(VIDEO_Mixer);
 VIDEO_Mixer::VIDEO_Mixer(sc_module_name nm)

: sc_module(nm)
, Rgb2YCrCb_i(“Rgb2YCrCb_i”)

 , YCRCB_Mixer_i(“YCRCB_Mixer_i”)
{

// Connect
Rgb2YCrCb_i.rgb_pi(rgb_graphics);
Rgb2YCrCb_i.ycrcb_po(ycrcb_graphics);
YCRCB_Mixer_i.K_pi(K);
YCRCB_Mixer_i.a_pi(dvd_pi);
YCRCB_Mixer_i.b_pi(ycrcb_graphics);
YCRCB_Mixer_i.y_po(video_po);

}

134 11 Communication

Although slightly more code than the positional notation, the named port syntax
is more robust, and tools exist to reduce the typing tedium.

The problem with positional connectivity is that of keeping the ordering correct. In
large designs, middle- and upper-level modules frequently have a large number of ports
(potentially multiple 10s), and it is common to add or remove ports late in the design.
Using a positional notation can quickly lead to debug problems. That is why we recom-
mend avoiding the positional syntax entirely, and always using a named port approach.

GUIDELINE: Whenever possible, use the named port interconnection style.

How does it work? Whereas the complete details require an extensive investigation
of the SystemC library code, we can provide a short answer. When the code instan-
tiating an sc_port executes, the operator() is overloaded to take a channel
object by reference and saves a pointer to that reference internally for later access
by the port. Thus, we recall a port is an interface pointer to a channel that imple-
ments the interface.

11.6 Accessing Ports From Within a Process

Connecting ports between modules and channels is of no great value unless
a process somewhere in the design can initiate activity over the channels. This
section will show how to access ports from within a process. The sc_port

Fig. 11.15 Example of port interconnect by position

SC_HAS_PROCESS(VIDEO_Mixer);
VIDEO_Mixer::VIDEO_Mixer(sc_module_name nm)
: sc_module(nm)
{

// Instantiate
Rgb2YCrCb_iptr = new Rgb2YCrCb(

 "Rgb2YCrCb_i"
);

YCRCB_Mixer_iptr = new YCRCB_Mixer(
"YCRCB_Mixer_i"

);
// Connect
(*Rgb2YCrCb_iptr)(rgb_graphics

 ,ycrcb_graphics
);

(*YCRCB_Mixer_iptr)(K
 ,dvd_pi
 ,ycrcb_graphics
 ,video_po
);

}

13511.7 Exercises

overloads the C++ operator->(), which allows a simple syntax (Fig.
11.16) to access the referenced interface.

Continuing the previous example, we now illustrate (Fig. 11.17) port access in
action. In the following, control and status are the ports; whereas, K is a
local channel instance. Notice use of the operator-> when accessing ports.

Ports feel and behave as if they were pointers. Indeed that is a good way to think
of them even though this is not precisely correct. A mnemonic may help here. P is
for port and P is for pointer. When accessing channels through ports, always use the
pointer operator (i.e., ->).

11.7 Exercises

For the following exercises, use the samples provided in www.scftgu.com.

Exercise 11.1: Examine, compile, and run the sedan example. Which styles are
simplest?

Exercise 11.2: Examine, compile, and run the convertible example.
Notice the forward declarations of Body and Engine. How might this be an
advantage when providing IP?

Exercise 11.3: Examine, compile, and run the VIDEO_Mixer examples.
Change the port ordering, and insert a new port (with no functionality). What problems
does this cause?

Exercise 11.4: In the VIDEO_Mixer port interconnect by name example,
change the code from direct to indirect submodule instantiation.

Fig. 11.16 Syntax of port access

portname->method(optional_args);

Fig. 11.17 Example of port access

void VIDEO_Mixer::Mixer_thread() {
…
switch (control->read()) {

case MOVIE: K.write(0.0f); break;
case MENU: K.write(1.0f); break;
case FADE: K.write(0.5f); break;
default: status->write(ERROR); break;

}
…

}

http://www.scftgu.com/Book/.

137

This chapter continues our discussion of ports as we go beyond the basics and explore
more advanced concepts. We start out with a look at some standard interfaces that can
be used to build ports. Next, we discuss built-in specialized ports and their conve-
niences, especially with regard to static sensitivity. Finally, we present the concept of
port arrays, and finish the chapter with a different type of port, sc_export<T>.

12.1 Standard Interfaces

SystemC provides a variety of standard interfaces that go hand in hand with the
built-in channels discussed previously. This section describes these interfaces. This
section is a more precise definition of the interface syntax, and it provides a basis
for creating custom channels that will be discussed in the following chapter.

12.1.1 SystemC FIFO Interfaces

Two interfaces, sc_fifo_in_if<T> andsc_fifo_out_if<T>, are pro-
vided for the sc_fifo<T>channel. Together, these interfaces provide all of the
methods implemented by sc_fifo<T>. In fact, the interfaces were defined prior
to the creation of the channel. The channel simply becomes the place to implement
the interfaces and holds the data implied by the functionality of a FIFO.

The interface, sc_fifo_out_if<T>, partially shown in the following figure,
provides all the methods for output from a module into an sc_fifo<T>. The mod-
ule pushes data onto the FIFO using write()or nb_write(). The num_free()
indicates how many locations are free. The data_read_event() method may be
used dynamically to wait for free space. We’ve discussed all of these methods in
Chapter 8, Basic Channels, in the sc_fifo<T>channel discussion.

Notice in the following figure (Fig. 12.1) that the interface itself is templated on
a class name just like the corresponding channel.

Chapter 12
More on Ports
& Interfaces

Specialized
& sc_export

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_12, © Springer Science+Business Media, LLC 2010

Data types:
Logic,

Integers,
Fixed pointEvents, Sensitivity

& Notifications

Threads & Methods
Channels &
Interfaces

Predefined Primitive Channels: Mutexes, FIFOs, & Signals

Simulation
Kernel

Modules &
Hierarchy

138 12 More on Ports & Interfaces

The other interface, sc_fifo_in_if<T>, provides all the methods for input
to a module from an sc_fifo<T>. The module pulls data from the FIFO using
read()or nb_read(). The num_available() indicates how many locations
are occupied, if any. The data_written_event() method may be used to
dynamically wait for a new value to become available.

Again, all of these methods were discussed in Chapter 8 in the sc_fifo<T>
channel discussion.

Here (Fig. 12.2) is the corresponding portion of the sc_fifo_in_if<T>
interface definition:

Something interesting to notice about the sc_fifo<T> interfaces is that if you
use the read() and write() methods in your module and do not rely on the other
methods, then your use of these interfaces is very compatible with the correspond-
ing sc_signal<T> interfaces, which we will discuss next. In other words, you
might want to simply swap out the interfaces and the channels; however, doing so
would be dangerous. Remember sc_fifo<T>::read()1 and sc_
fifo<T>::write() are blocks waiting for the FIFO to empty; whereas, sc_
signal<T>::read() and sc_signal<T>::write()arenon-blocking. This
likely result is undesirable behavior.

1 If you are having a hard time with this syntax, refer to the C++ scope resolution operator in
Appendix A.

// Definition of sc_fifo<T> input interface
template<class T>
class sc_fifo_in_if: virtual public sc_interface {
public:
virtual void read(T&) = 0;
virtual T read() = 0;
virtual bool nb_read(T&) = 0;
virtual int num_available() const = 0;
virtual const sc_event&

data_written_event() const = 0;
};

Fig. 12.2 sc_fifo input interface definitions—abbreviated

// Definition of sc_fifo<T> output interface
template <class T>
class sc_fifo_out_if: virtual public sc_interface {
public:

virtual void write(const T&) = 0;
virtual bool nb_write(const T&) = 0;
virtual int num_free() const = 0;
virtual const sc_event&

data_read_event() const = 0;
};

Fig. 12.1 sc_fifo output interface definitions—abbreviated

13912.1 Standard Interfaces

12.1.2 SystemC Signal Interfaces

Similar to sc_fifo<T>, two interfaces, sc_signal_in_if<T> and
sc_signal_inout_if<T>, are provided for the sc_signal<T>channel.
These two interface classes provide all of the methods provided by
sc_signal<T>. Again, the interfaces were defined prior to the creation of the
channel. The channel simply becomes the place to implement the interfaces and
provides the request-update behavior implied for a signal.

Here (Fig. 12.3) is a portion of the sc_signal_inout_if<T> interface

definition:
There are two rather interesting things to notice in the preceding interface. First,

if you need an sc_signal<T> output interface, use the sc_signal_inout_
if<T>. This interface lets a module have access to the value of an output signal
directly through a read, rather than being forced to keep a local copy in the manner
required by VHDL.

Previous versions of SystemC included an sc_signal_out_if<T>interface
that was type defined to sc_signal_inout_if<T>. That interface has been
deprecated, and so you may see this in older code.

The update portion of the behavior is provided as a result of a call to
request_update () that is provided indirectly as a result of a call from
sc_signal<T>::write(). The update is implemented with the protected
sc_signal<T>::update() method call. The sc_signal_in_if<T> interface
(Fig. 12.4) provides access to the results through sc_signal<T>::read().

// Definition of sc_signal<T> input interface
template<class T>
class sc_signal_in_if: virtual public sc_interface {
public:

virtual const sc_event&
value_changed_event() const = 0;

virtual const T& read() const = 0;
virtual bool event() const = 0;

};

Fig. 12.4 sc_signal input interface definitions

// Definition of sc_signal<T> input/output interface
template<class T>
class sc_signal_inout_if: public sc_signal_in_if<T>
{
public:

virtual void write(const T&) = 0;
};

Fig. 12.3 sc_signal input/output interface definitions—abbreviated

140 12 More on Ports & Interfaces

12.1.3 sc_mutex and sc_semaphore Interfaces

The two channels, sc_mutex and sc_semaphore, also provide interfaces
(Figs. 12.5 & 12.6) for use with ports. It is interesting to note that neither interface
provides any event methods for sensitivity. If you require event sensitivity, you
must write your own channels and interfaces as discussed in the next chapter.

12.2 Sensitivity Revisited: Event Finders and Default Events

Recall from Chapter 6, Concurrency, that processes can be made sensitive to
events. Also recall from Chapter 8, Basic Channels, that standard channels often
provide methods that provide references to events (e.g., sc_fifo::data_writ-
ten_event()). Since ports are defined on interfaces to channels, it is only natural
to want sensitivity to events defined on those channels.

For example, it might be nice to create an SC_METHOD process statically sensi-
tive to the data_written_event() or perhaps to monitor an sc_signal<T>
for any change in the data using the value_changed_event(). You might
even want to monitor a subset of possible events such as a positive edge transition
(i.e., false to true) on a sc_signal<bool>.

Using static sensitivity for the situations above has a hidden complexity.
Ports are pointers that become initialized during elaboration, and they are unde-
fined at the time when the sensitive method needs to know about them.
SystemC provides a solution for this difficulty in the form of a special class, the
sc_event_finder.

// Definition of sc_mutex_if interface
class sc_mutex_if: virtual public sc_interface {
public:

virtual int lock() = 0;
virtual int trylock() = 0;
virtual int unlock() = 0;

};

Fig. 12.5 sc_mutex interface definitions

// Definition of sc_semaphore_if interface
class sc_semaphore_if: virtual public sc_interface
{
public:

virtual int wait() = 0;
virtual int trywait() = 0;
virtual int post() = 0;
virtual int get_value() const = 0;

};

Fig. 12.6 sc_semaphore interface definitions

14112.2 Sensitivity Revisited: Event Finders and Default Events

The sc_event_finder defers the determination of the actual event until after
elaboration. Unfortunately, the sc_event_finder has a minor complication. An
sc_event_finder must be defined for each event defined by the interface. Thus,
it is commonplace to define template specializations of port/interface combinations to
instantiate a port and to include an sc_event_finder in the specialized class.

Suppose you want to create a port with sensitivity to the positive edge event of
a Boolean signal port using the sc_signal_in_if<bool>::posedge_
event() member function as shown in the following example (Fig. 12.7):

Let’s examine the preceding example. First, our custom event finder is inheriting
from a specialized port on the second line. Second, to save some typing, we’ve created
a typedef called if_type, which refers to the interface specialization. The new
method, ef_posedge_event()3, creates a new event_finder object and returns a
reference to it. The constructor for an sc_event_finder takes two arguments: a
reference to the port being found (*this), and a reference to the member function,
(posedge_event()) that returns a reference to the event of interest. The preceding
example returns a reference to the event finder, which can be used by sensitive.

Now, the preceding specialization may be used as follows (Fig. 12.8):

classeslx_port
:public sc_port<sc_signal_in_if<bool>,1>

{
public:
// Use a typedef to shorten syntax below

typedef sc_signal_in_if<bool>if_type;
sc_event_finder& ef_posedge_event() const {

return *newsc_event_finder_t<if_type>(
*this,
&if_type::posedge_event

);
}//end ef_posedge_event

};

Fig. 12.7 Example of specialized port2 implementing an event finder

SC_MODULE(my_module) {
eslx_port my_p;
…
SC_CTOR(…) {

SC_METHOD(my_method);
sensitive<< my_p.ef_posedge_event();

}
void my_method();
…

};

Fig. 12.8 Example of event finder use

2 See next section for a discussion of specialized ports.
3 The prefix ef_ is a convention. Some groups might prefer a suffix, _ef. In any case, a convention
should be adopted.

142 12 More on Ports & Interfaces

A related and useful concept for sensitivity lists in SystemC is the ability to be sensi-
tive to a port. The idea is that a process sensitive to a port, typically an SC_METHOD, is
concerned with any change on that port. Obviously, this may be coded similar to Fig.
12.7 using value_changed_event() instead of posedge_event().

As a syntactical simplification, SystemC also allows specifying a port name if
and only if the associated interface provides a method called default_event()
that returns a reference to an sc_event. The standard interfaces for sc_
signal<T> and sc_buffer<T> provide this method. If you design your own
interfaces, you will need to supply this method yourself.

12.3 Specialized Ports

Event finders are not particularly difficult to code; however, they are additional
coding and understanding the implementation is challenging. To reduce that bur-
den, SystemC provides a set of template specializations that provide port defini-
tions on the standard interfaces and include the appropriate event finders.

It is important to know the port specializations for two reasons. First, you will
doubtless have need for the common event finders at some point. Second, you will
encounter their use in code from other engineers.

Let’s take a look at the syntax of FIFO specializations (Fig. 12.9):

These specializations have a minor downside that has to do with how ports are
to be referenced. Notice in the following syntax figures that methods such as
read() are defined. Recall from the last chapter that processes invoke port meth-
ods using the pointer operator (->). With specialized ports, you may also use dot
(e.g., my_sig.read()). This syntax has the unfortunate effect of creating bad
habits that could cause you to stumble later.

// sc_port<sc_fifo_in_if<T>>
sc_fifo_in<T>name_fifo_ip;
sensitive<<name_fifo_ip.data_written();
value = name_fifo_ip.read();
name_fifo_ip.read(value);
if (name_fifo_ip.nb_read(value))...
if (name_fifo_ip.num_available())...
wait(name_fifo_ip.data_written_event());

// sc_port<sc_fifo_out_if<T>>
sc_fifo_out<T>name_fifo_op;
sensitive<<name_fifo_op.data_read();
name_fifo_op.write(value);
if (name_fifo_op.nb_write(value))...
if (name_fifo_op.num_free())...
wait(name_fifo_op.data_read_event());

Don’t use
dot (.) Use
arrow (->)
syntax.

Fig. 12.9 Syntax of FIFO port specializations

14312.3 Specialized Ports

You may still use the pointer methods in processes. With exception to the new
sc_event_finder methods and initialization, we recommend you use the arrow form
whenever possible.

GUIDELINE: Use dot (.) in the elaboration section of the code, but use arrow (->)
in processes.

This style will help you differentiate port accesses from local channel accesses
and reduce confusion.

Let’s look at an example (Fig. 12.10) using the FIFO port specializations using
the guideline:

Now we’ll examine specialized ports (Fig. 12.11) for evaluate-update channels
such as sc_signal<T>. We left out the obvious duplication of member functions

such as read() that are better handled using the pointer operator (->).
In the sc_signal speicalized port syntax (Fig. 12.11), there are sev-

eral features to note. First, there is the initialize() method. This method may
be used at elaboration to establish the initial values of signal ports. This approach
models start-up conditions properly, rather than waiting a delta-cycle and synchro-
nizing processes at the start.

We also included one additional syntax that we especially don’t like4, the assign-
ment operator (=), on the last line. When used, this operator can be especially
confusing. Unless you realize the name on the left is a signal port, the behavior will
seem bizarre. Remember that signals have an evaluate-update behavior; therefore the

// Equalizer.h
SC_MODULE(Equalizer) {

sc_fifo_in<double> raw_fifo_ip;
sc_fifo_out<double> equalized_fifo_op;
void equalizer_thread();
SC_CTOR(Equalizer) {

SC_THREAD(equalizer_thread);
sensitive<< raw_fifo_ip.data_written();

}
};

// Equalizer.cpp
void Equalizer::equalizer_thread() {

for(;;) {
double sample; result;
wait(); // uses static sensitivity
raw_fifo_ip->nb_read(sample);
... /* process data */
equalized_fifo_op->write(result);

}//endforever
}

Only available in
port specialization.

Fig. 12.10 Example using FIFO port specializations

4 Some of this syntax was provided for backwards compatibility with earlier versions of SystemC
(specifically 1.x).

144 12 More on Ports & Interfaces

changes from this assignment are not reflected until the next delta-cycle. This is quite
different from ordinary assignment, and very confusing to most programmers.

GUIDELINE: To avoid confusion, never use the assignment operator with
sc_signal<T> or sc_port<sc_signal_inout_if<T> >. Instead, use
the write() method.

Let’s look at an example using signal port specializations (Fig. 12.12 & 12.13).
This example is a typical hardware block, a 32-bit linear feedback shift register
(LFSR) commonly used with built-in self-test (BIST). Notice the use of pos() and
initialize().

//FILE: LFSR_ex.h
SC_MODULE(LFSR_ex) {

// Ports
sc_in<bool> sample;
sc_out<sc_int<32>> signature;
sc_in<bool> clock;
sc_in<bool> reset;
// Constructor
SC_CTOR(LFSR_ex) {

// Register process
SC_METHOD(LFSR_ex_method);
sensitive<< clock.pos() << reset;
signature.initialize(0);

}
// Process declarations & Local data
void LFSR_ex_method();
sc_int<32> LFSR_reg;

};

Fig. 12.12 Example of signal port specializations—header

// sc_port<sc_signal_in_if<T>>
sc_in<T> name_sig_ip;
sensitive << name_sig_ip.value_changed();

// Additional sc_in specializations...
sc_in<bool> name_bool_sig_ip;
sc_in<sc_logic >name_log_sig_ip;
sensitive << name_sig_ip. pos();
sensitive << name_sig_ip. neg();

// sc_port<sc_signal_out_if<T>>
sc_inout<T> name_sig_op;
sensitive << name_sig_op.value_changed();
sc_inout_resolved<N> name_rsig_op;
sc_inout_rv<N> name_rsig_op;
sc_inout<T> name_rsig_op;
sc_inout_resolved<T> name_rsig_op;
sc_inout_rv<T> name_rsig_op;
// everything under sc_in<T> plus the following...
name_sig_op.initialize(value);
name_sig_op = value; // <-- DON’T USE!!!

Fig. 12.11 Syntax of signal port specializations

14512.4 The SystemC Port Array and Port Policy

12.4 The SystemC Port Array and Port Policy

The sc_port<T> provides additional template parameters we have not yet dis-
cussed: the array size parameter and the port policy parameter. The array size
parameter allows the creation of a number of identical ports. This construct is
referred to as a multi-port or port array. The port policy specifies whether zero, one,
or all ports must be connected.

For example, a communication system might have a number of T1 interfaces all
with the same connectivity. Another example might be an abstract hierarchical
communication that may have any number of devices connected to it. The full
sc_port<T> syntax follows (Fig. 12.14).

N indicates the number of channels to be connected to the port. When N = 0, we
have a special case that allows an almost unlimited number of ports. In other words,
you may connect any number of channels to the port.

POL is of type sc_port_policy and it is an enumerated type and has three legal values:

•	 SC_ONE_OR_MORE_BOUND
SC_ZERO_OR_MORE_BOUND•	

•	 SC_ALL_BOUND

//FILE: LFSR_ex.cpp
#include "LFSR.h"
void LFSR_ex::LFSR_ex_method() {

if (reset->read() == true) {
LFSR_reg = 0;
signature->write(LFSR_reg);
}

else {
bool lsb =LFSR_reg[31]^LFSR_reg[25]^LFSR_reg[22]

^LFSR_reg[21]^LFSR_reg[15]^LFSR_reg[11]
^LFSR_reg[10]^LFSR_reg[9]^LFSR_reg[7]
^LFSR_reg[6]^LFSR_reg[4]^LFSR_reg[3]
^LFSR_reg[1]^LFSR_reg[0]
^ sample->read();

LFSR_reg.range(31,1) = LFSR_reg.range(30,0);
LFSR_reg[0] = lsb;
signature->write(LFSR_reg);

}//endelse
}

Fig. 12.13 Example of signal port specializations—implementation

sc_port<interface[,N[,POL]]> portname;
// N=0..MAX Default N=1
// POL is of type sc_port_policy
// POL defaults to SC_ONE_OR_MORE_BOUND

Fig. 12.14 Syntax of sc_port<> declaration complete

146 12 More on Ports & Interfaces

The value of POL enables different checking regarding the connectivity to the
port. The default is SC_ONE_OR_MORE_BOUND. SC_ZERO_OR_MORE_BOUND
allows a port with no connections. SC_ALL_BOUND requires that there are N and
only N channels connected to the port (unless N=0 and then the checking associated
with SC_ONE_OR_MORE_BOUND is used), which was the only implementation in
earlier versions of SystemC.

An example with a drawing may help with understanding the use of multiports.
In the figure (Fig. 12.15), four distinct channels connected to four ports T1_ip[0…3]
on the left, and on the right, nine separate channels connect to nine ports request_
op[0…8]. The block with the ports represents an imaginary switch.

Here is the header code (Fig. 12.16) for the switch in the above drawing:

Channels are connected to port arrays the same way ordinary ports are con-
nected, except port arrays have more than one connection. In fact, the basic port

Multiports

Switch switch_i

T1_ip

switch_thread

request_op

request[0]

t1A

t1B

t1C

t1D

request[1]

request[2]

request[3]

request[4]

request[5]

request[6]

request[7]

request[8]

Fig. 12.15 Illustration of sc_port<T> array connectivity

//FILE: Switch.h
SC_MODULE(Switch) {

sc_port<sc_fifo_in_if<int>
,5
,SC_ONE_OR_MORE_BOUND
> T1_ip;

sc_port<sc_signal_inout_if<bool>
,0
> request_op;

...
};

Fig. 12.16 Example of sc_port array declaration

14712.4 The SystemC Port Array and Port Policy

syntax simply relies on the default that N = 1. Each connection is assigned a
position in the array on a first-connected first-position basis.

Here (Fig. 12.17) is the corresponding example for the connections:

The preceding example illustrates several things. First, a fixed port array of size
4 is connected directly to four FIFO channels. Second, an unbounded array is con-
nected to an array of channels using a for-loop.

Access to port arrays from within a process is accomplished using the array
syntax. This class also provides a method, size(), that may be used to examine
the declared port size. This method is useful for situations where the array bounds
are unknown (i.e., N = 0 or using SC_ONE_OR_MORE_BOUND or SC_ZERO_OR_
MORE_BOUND).

Here (Fig. 12.18) is the code implementing the process accessing the multiports
from within the Switch module:

Notice that the size() method requires the dot operator because it’s defined in
the specialized port class (e.g., request_op or T1_ip), rather than in the external
channel (e.g., request[i] or t1A, t1B, t1C, t1D). On the other hand, port access to
the channel uses the arrow operator as would be expected.

One current syntactical downside to wait() syntax may be seen in the preced-
ing syntax. If you need to use “any event in the attached channels,” current syntax
requires an explicit listing.

//FILE: Board.h
#include "Switch.h"
SC_MODULE(Board) {

Switch switch_i;
sc_fifo<int> t1A, t1B, t1C, t1D;
sc_signal< bool> request[9];

SC_CTOR(Board): switch_i("switch_i")
{

// Connect 4 T1 channels to the switch
switch_i.T1_ip(t1A);
switch_i.T1_ip(t1B);
switch_i.T1_ip(t1C);
switch_i.T1_ip(t1D);
// Connect 9 request channels to the
// switch request output ports
for (unsigned i=0;i!=9;i++) {

switch_i.request_op(request[i]);
}//endfor
...

}//end constructor
...

};

From preceding
example.

Fig. 12.17 Example of sc_port array connections

148 12 More on Ports & Interfaces

There is an alternate possibility with dynamic threads. One could create and
launch a separate thread to monitor each port and provide communication back via a
shared local variable. We will examine this feature in the Advanced Topics chapter.

12.5 SystemC Exports

There is a second type of port called the sc_export<T>. The export is similar to
standard ports in that the declaration syntax is defined on an interface. However, this
port differs in connectivity. The idea of an sc_export<T> is to move the channel
inside the defining module, thus hiding some of the connectivity details and using the
port externally as though it were a channel. The following figure (Fig. 12.19) illus-
trates this concept:

Contrast this concept with Fig. 11.9 where we originally investigated ports.
The observant programmer might ask, Why use sc_export at all? After all,

one could just access the internal sc_channel instance name directly using a
hierarchical access. That approach works only if the interior channel is publicly
accessible. For an IP provider, it may be desirable to export only specific channels
and keep everything else private. Thus, sc_export<T> allows control over the
interface.

Another reason for using sc_export<T> is to provide multiple interfaces at
the top level. For example, consider the situation where you wish to create a
 channel that has two distinct interfaces for sc_signal<T>. Normally, it is
not possible to inherit more than once from the same base class. However, with
sc_export<T>, it is now possible to do this. Without sc_export<T>, we are

//FILE: Switch.cpp
void Switch::switch_thread() {

// Initialize requests
for (unsigned i=0;i!=request_op.size();i++) {

request_op[i]->write(true);
}//endfor
// Startup after first port is activated
wait(T1_ip[0]->data_written_event()

|T1_ip[1]->data_written_event()
|T1_ip[2]->data_written_event()
|T1_ip[3]->data_written_event()

);
while(true) {

for (unsigned i=0;i!=T1_ip.size();i++) {
// Process each port...
int value = T1_ip[i]->read();

}//endfor
}//endwhile

}//end Switch::switch_thread

Fig. 12.18 Example of sc_port array access

14912.5 SystemC Exports

left to using the hierarchical channel, which allows for only a single top-level set
of interfaces.

With an export, each sc_export<T> contains a specific interface. Since a
connection is not required, sc_export<T> also allows creation of hidden inter-
faces. For example, a debug or test interface might be used internally by an IP
provider, but not documented for the end user. Additionally, an export lets a devel-
opment team or IP provider develop an instrumentation model. This model can be
used extensively during architectural exploration and then dropped during regres-
sion runs when visibility is needed less and performance is key.

A hidden interface has the benefit of making the channel simpler to read and
understand in the module where the IP is instantiated. The channel is easier to read
since any programmatic instantiation of channels is hidden as well as much of the
connectivity.

Another reason for using sc_export<T> is communications efficiency down
the SystemC hierarchy. The sc_export<T> provides symmetry to the direction
of C++ calls. Without sc_export<T>, SystemC ports would require additional
channels and processes to allow an external process to pull information from a
lower point in the model hierarchy. Efficiency is gained because sc_export<T>
allows direct access to information (data) without intermediate channels.

The sc_export<T> syntax shown following (Fig. 12.20) sc_port<T>, but
without the additional template parameters. This means that you cannot currently
have an array for sc_export<T>.

sc_export<interface> portname;

Fig. 12.20 Syntax of sc_export declaration

Communication Via sc_exports

modA mA

c.write(v);

modB mB

v=pB->read();

Pointer Access

sc_export pA

sc_port pB
B_thread

sc_fifo<int> c;

read()…

write()…

A_thread

Fig. 12.19 How sc_export works

150 12 More on Ports & Interfaces

Connectivity to an sc_export<T> requires some slight changes since the
 channel connections have now moved inside the module. Thus, we have (Fig. 12.21):

Let’s look at a simple example (Fig. 12.22). This example provides a process
that is toggling an internal signal periodically. The sc_export<T> in this case is
simply the toggled signal. For compactness, this example includes the entire mod-
ule definition in the header.

To use the above sc_export<T>, we provide (Fig. 12.23) the corresponding
instantiation of this simple module.

SC_MODULE(modulename) {
sc_export<interface> portname;
channel cinstance ;
SC_CTOR(modulename) {

portname(cinstance);
}

};

Fig. 12.21 Syntax sc_export internal binding to channel

SC_MODULE(clock_gen) {
sc_export<sc_signal<bool>> clock_xp;
sc_signal<bool> oscillator;
SC_CTOR(clock_gen) {

SC_METHOD(clock_method);
clock_xp(oscillator); // connect sc_signal

// channel
// to export clock_xp

oscillator.write(false);
}
void clock_method() {

oscillator.write(!oscillator.read());
next_trigger(10,SC_NS);

}
};

Fig. 12.22 Example of simple sc_export declaration

#include "clock_gen.h"
…
clock_gen clock_gen_i(“clock_gen_i”);
collision_detector cd_i(“cd_i”);
// Connect clock
cd_i.clock(clock_gen_i.clock_xp);
…

Fig. 12.23 Example of simple sc_export instantiation

15112.5 SystemC Exports

Another powerful possibility with sc_export<T> is to let interfaces be
passed up the design hierarchy as illustrated in the next figure (Fig. 12.24).

Just like sc_port<T>, the sc_export<T> can be bound directly to another
sc_export<T> in the hierarchy. Here (Fig. 12.25) is how to accomplish this
binding:

sc_export<T> has some caveats that may not be obvious. First, it is not pos-
sible to use sc_export<T> in a static sensitivity list. On the other hand, you can
access the interface via the pointer operator (->). Thus, one can use
wait(xportname->event()) on suitably defined interfaces accessed within
an SC_THREAD process.

Second, as previously mentioned, it is not possible to have an array of
sc_export<T> in the same manner as sc_port<T>. On the other hand, suit-
able channels may allow multiple connections, which may make this issue moot.

The following is an example of how an sc_export<T> might be used to
model a complex bus including an arbiter to be provided as an IP component. First,
let’s look at the customer view (Fig. 12.26):

SC_MODULE(modulename) {
sc_export<interface> xportname;
module minstance;
SC_CTOR(modulename)
, minstance("minstance")
{

xportname(minstance.subxport);
}

};

Fig. 12.25 Syntax of sc_export internal binding to submodule

Hierarchy with sc_exports

modA mA modB mB

sc_export pA

sc_port pB

modC mC

sc_export pC

Fig. 12.24 sc_export used with hierarchy

152 12 More on Ports & Interfaces

This view would be defined using the following (Fig. 12.27) header file:

Notice how the preceding code is independent of the implementation, and the end
user is not compelled to hook up either bus. In addition, the debug interface is not
provided in this example header. Here is the implementation view (Fig. 12.28):

CBus

South_Bus_if

Debug_if

North_Bus_if

Customer ViewFig. 12.26 Example of customer view of IP

//CBus.h
#include "CBus_if.h"
class North_bus; // Forward declarations
class South_bus;
class Debug_bus;
class CBus_rtl;
SC_MODULE(CBus) {

sc_export<CBus_North_if> north_p;
sc_export<CBus_South_if> south_p;
SC_CTOR(CBus);

private:
North_bus* nbus_ci;
South_bus* sbus_ci;
Debug_bus* debug_ci;
CBus_rtl* rtl_i;

};

Fig. 12.27 Example of sc_export applied to a bus

Cbus_rtl

North_Bus

South_Bus

D
e
b
u
g
_
B
u
s

Vendor View

Fig. 12.28 Example of vendor view of IP

15312.6 Connectivity Revisited

Here (Fig. 12.29) is the implementation code, which may be kept private:

In the preceding code, notice that the debug interface is not provided to the
customer. Providing this interface would be an optional aspect of the IP that could
be connected at compile time using an #ifdef or at run time using a “switch”
from a control file or the command line.

12.6 Connectivity Revisited

Let’s review port connectivity. The following diagram (Fig. 12.30) is copied from
the previous chapter. It should become second nature to understand how to accom-
plish all the connections illustrated.

All of the possible connections are illustrated in this one figure. This figure is a
handy reference when reviewing the SystemC connection rules, which are listed
below:

1. A process may communicate with another process in the same module using a chan-
nel. For example, process pr2 to process pr3 via interface ifX on channel c2i.

2. A process may communicate with another process in the same module using an
event to synchronize exchanges of information through data variables instanti-
ated at the module level (e.g., within the module class definition). For example,
process pr2 to process pr1 via event ev1.

//FILE: CBus.cpp
#include "CBus.h"
#include "North_bus.h"
#include "South_bus.h"
#include "Debug_bus.h"
#include "CBus_rtl_bus.h"
CBus::CBus(sc_module_name nm): sc_module(nm) {

// Local instances
nbus_ci = new North_bus("nbus_ci");
sbus_ci = new South_bus("sbus_ci");
debug_ci = new Debug_bus("debug_ci");
rtl_i = new CBus_rtl("rtl_i");
// Export connectivity
north_p(*nbus_ci);
south_p(*sbus_ci);
// Implementation connectivity
…

}

Fig. 12.29 Example of sc_export applied to a bus constructor

154 12 More on Ports & Interfaces

3. A process may communicate with a process upwards in the design hierarchy
using the interfaces accessed via sc_port<T>. For example, process pr3 via
port p4 using interface if4.

4. A process may communicate with processes in submodule instances via inter-
faces to channels connected to the submodule ports. For example, process pr3
to module mi2 via interface ifZ on channel c3i.

5. Ansc_export<T> may connect to another sc_export<T> via interfaces to
local channels. For example, port p5 to channel c3i using interface if5.

6. An sc_port<T> may connect directly to an sc_port<T> of submodules.
For example, port p1 is connected to port pA of submodule mi1.

7. An sc_export<T>may connect directly to an sc_export<T> of a submod-
ule. For example, port p6 is directly connected to port pG of submodule mi1.

8. An sc_port<T> may connect indirectly to a process by letting the process
access the interface. This is just a process accessing a port described previ-
ously. For example, process pr1 communicates with submodule mi1 through
interface ifW.

9. An sc_port<T,N> array may be used to create multiple ports using the same
interface. For example, pD[0] and pD[1] of submodule mi2.

Finally, we present an equivalent diagram (Fig. 12.31) to the preceding. In this
diagram, channels appear as slightly thickened lines. An sc_port<T> is repre-
sented with a square containing a circle to indicate the presence of an interface.
This style is often used to simplify the schematic representation at the expense of
slightly hiding the underlying functionality. In the next chapter, we will investigate
more complex channels known as hierarchical channels.

Port Connections

p1

p2

connections top

Ch1 c1i

pr1

pr3

if3if1

Ch2 c2i

ifDifB

if4

p3

p4

ev1

pr2

Ch3 c3i

ifYifXif2

M2 mi2

pD[0]

pE

pF

ev2

ifZ

ifF

M1 mi1

pA

pB

ifW

p5if5

pC ifD
pD[1]

if6 pGp6

Fig. 12.30 Connectivity possibilities

15512.7 Exercises

12.7 Exercises

For the following exercises, use the samples provided at www.scftgu.com.

Exercise 12.1: Examine, compile, and run the static_sensitivity
example.

Exercise 12.2: Examine, compile, and run the connections example. See if
you can identify all the connections shown in the figures in this chapter.

Hidden Channels

p2

Ch1 c1i

pr1

pr3

Ch2 c2i

ifDifB

if4
p4

ev1

pr2

Ch3 c3i

ifYifXif2

ev2

ifZ

ifFifW

p5

if5

connections top

p3

if3

M2 mi2

pE

pF

p1

p6
ifD

if1
pB

if6
pG

M1 mi1

pA

pC

pD[0]

pD[1]

Fig. 12.31 Hidden channels

http://www.scftgu.com/Book/

157

We’ve already covered much of the syntax of SystemC. Now, we will focus on some
of the more abstract concepts from which SystemC derives much of its power. This
chapter illustrates how to create a variety of custom channels including: primitive
channels, custom signals, custom hierarchical channels, and custom adaptors. Of
these, custom signals and adaptors are probably the most commonly encountered.

13.1 A Review of SystemC Channels and Interfaces

In this section, we will review two of the four most important aspects of SystemC,
channels and interfaces. The other two, modules and ports, have already been dis-
cussed in detail. Remember, SystemC channels implement communication between
modules. SystemC interfaces provide an API and a means to allow independence
of modules from the mechanisms of communication channels.

The basic structure of a channel is a class that inherits from one or more inter-
faces and a SystemC base class. The interface makes a channel usable with ports.
Channels come in two flavors: primitive and hierarchical. Channels must inherit
either from sc_prim_channel or sc_channel, which defines them as either
primitive or hierarchical, respectively. This distinction in these latter two SystemC
base classes is one of distinct capabilities and features. In other words, sc_prim_
channel has capabilities not present in sc_channel and vice versa.

Primitive channels are intended to provide very simple and fast communica-
tions. They contain no hierarchy and no ports; primitive channels do not contain
simulation processes. Primitive channels have the ability to use the evaluate-update
paradigm as they inherit some specialized methods. These channels are discussed
in the following section.

By contrast, hierarchical channels can have their own ports and processes, and they
can contain hierarchy as the name suggests. In fact, hierarchical channels are really just
modules that implement one or more interfaces. Hierarchical channels are intended to
model complex communications buses such as PCI, HyperTransportTM, AMBATM, or
AXITM. Custom hierarchical channels are discussed later in this chapter.

Chapter 13
Custom
Channels
and Data

Primitive & Hierarchical

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_13, © Springer Science+Business Media, LLC 2010

158 13 Custom Channels and Data

Channels are important in SystemC because they enable several concepts:

Appropriate channels enable safe communication among concurrent simulation •	
processes.
Channels in conjunction with ports clarify and delineate the relationships of •	
communication (producer vs. consumer, master vs. slave, initiator vs. target).

Interfaces are important in SystemC because they enable the separation of com-
munication from processing and allow independent refinement of the communica-
tion and functionality of a system.

13.2 The Interrupt, a Custom Primitive Channel

We discussed events in Chapter 6, Concurrency, and we saw how processes can use
events to coordinate activities. We introduced hierarchy and ports in Chapter 10,
Structure. This section answers the question of how we can provide a simple event
or interrupt between processes located in different modules. Obviously, this inter-
rupt is not the usual preemptive interrupt as used in software; instead, it is a hand-
shake signal between modules or processes.

One approach might take a channel that has an event and simply use the side effect.
For example, this approach could use sensitivity to sc_signal<bool> by use of
the value_changed_event() method. However, using side effects is unsatisfy-
ing. Let us see how we might create a custom channel just for this purpose.

A proper channel must have one or more interfaces to implement. The ideal
interface provides only the methods required for a particular purpose. For our
channel, we’ll create two interfaces: one interface for sending events,
eslx_interrupt_gen_if, and another interface for receiving events,
eslx_interrupt_evt_if. To allow and simplify use in static sensitivity
lists, we’ll specify a default_event().

The interfaces are shown in the next figure (Fig. 13.1). Notice that interfaces are
required to inherit from the sc_interface base class. Also, notice in eslx_inter-
rupt_evt_if that default_event() has a specific calling signature. This
signature is required for default_event() to be recognized by sensitive.

class eslx_interrupt_gen_if: public sc_interface {
public:
virtual void notify() = 0;
virtual void notify(sc_time t) = 0;

};

class eslx_interrupt_evt_if: public sc_interface {
public:
virtual const sc_event& default_event() const = 0;

};

Fig. 13.1 Examples of custom channel interfaces

15913.3 The Packet, a Custom Data Type for SystemC

Next, we look at the implementation of the primitive channel shown in Fig. 13.2.
The implementation has four features of interest.

First, the channel must inherit from sc_prim_channel and both of the inter-
faces we defined previously.

Second, the constructor for the channel has similar requirements to an sc_
module; the constructor must construct the base class sc_prim_channel. This
class has a single constructor that requires an instance name string.

Third, the channel must implement the methods compelled by the pure virtual
functions in the interfaces from which it inherits. Thus, this channel must implement
two versions of the notify() method and one default_event() method.

Fourth, we specify a private implementation of the copy constructor to prevent
its use. Simply put, a channel should never be copied. This feature of the implemen-
tation provides a compile-time error if copying is attempted.

13.3 The Packet, a Custom Data Type for SystemC

Creating custom primitive channels is not very common; however, instantiating an
sc_signal<T> channel or an sc_fifo<T> is very common. SystemC defines all
the necessary features for both of these channels when used with built-in data types.

#include "eslx_interrupt_evt_if.h"
#include "eslx_interrupt_gen_if.h"

class eslx_interrupt
: public sc_prim_channel
, public eslx_interrupt_evt_if
, public eslx_interrupt_gen_if
{
public:
// Constructors
explicit eslx_interrupt()
:sc_prim_channel(

sc_gen_unique_name("eslx_interrupt"))
{}//end constructor
explicit eslx_interrupt(sc_module_name nm)
:sc_prim_channel(nm)
{} //end constructor
// Methods
void notify() { m_interrupt.notify(); }
void notify(sc_time t) { m_interrupt.notify(t); }
const sc_event& default_event() const

{ return m_interrupt; }
private:
sc_event m_interrupt;
// Copy constructor so compiler won't create one
eslx_interrupt(const eslx_interrupt& rhs)
{} //end copy constructor

};

Fig. 13.2 Example of custom interface implementation (AKA channel)

160 13 Custom Channels and Data

For custom data types, SystemC requires you to define several methods for your
data type.

The reasons for the required methods are easy to understand. As an example,
both channels support read and write methods, which involve copying the custom
data type. For this reason, SystemC requires the definition of the assignment opera-
tor (i.e., operator=()). Also, sc_signal<T> supports the method value_
changed_event(), which implies the use of comparison. In this case, SystemC
requires the definition of the equality operator (i.e., operator==()).

Finally, there are two other methods required by SystemC, streaming output
(i.e., ostream& operator<<()) and sc_trace(). Streaming output allows
for a pleasant printout of your data structure during debug. The trace function
allows all or parts of your data type to be used with the SystemC trace facility. This
function enables viewing of trace data with a waveform viewer. We’ll explain
waveform data tracing in the next chapter.

Consider the following C/C++ custom data type (Fig. 13.3), which might be
used for PCI-X transactions:

This structure or record contains all the information necessary to fully commu-
nicate a PCI-X transaction; however, it is not usable with an sc_signal<T>
channel or an sc_fifo<T>. Let’s add the necessary methods (Fig. 13.4) to sup-
port this usage.

Note the friend declarations, which also need to be declared outside the class
definition in the header file, are required because ostream and sc_trace are
globally defined.

We provide example implementations of the latter two methods here (Fig. 13.5):
It should be noted that the sc_trace() method is optional; however, best

practices suggest that you should always provide this method. Observe that this
method is always expressed in terms of other traces that are already defined (e.g.,
the built-in ones).

In some cases, it may be difficult to determine an appropriate representation. For
sc_trace() as an example, char* or string have no real logical equivalent.

struct eslx_pcix_trans {
int devnum;
int addr;
int attr1;
int attr2;
int cmnd;
int data[8];
bool done;

};

Fig. 13.3 Example of user-defined data type

16113.3 The Packet, a Custom Data Type for SystemC

In these cases, you may either convert to an unsigned fixed-bit-width vector (e.g.,
sc_bv), or omit it completely. However, remember that converting these represen-
tations is for ease of debug operations. Providing a complete and clear sc_trace
is usually of much more value than you might originally think. The same can be
said of appropriate representation for ostream.

You may also want to implement ifstream or ofstream to support verifica-
tion needs.

As you can see, the added support is really quite minimal, and it is only required
for custom data types.

//FILE: eslx_pcix_trans.h
class eslx_pcix_trans {// previously as struct
int devnum; // May need get and set methods
int addr; // and could rename member data to
int attr1; // match m_ naming conventions.
int attr2;
int cmnd;
int data[8];
bool done;

public:
// Required by sc_signal<> and sc_fifo<>
eslx_pcix_trans& operator =(
const eslx_pcix_trans& rhs

) {
devnum = rhs.devnum; addr = rhs.addr;
attr1 = rhs.attr1; attr2 = rhs.attr2;
cmnd = rhs.cmnd; done = rhs.done;
for (unsigned i=0;i!=8;i++) data[i]=rhs.data[i];
return *this;

}
// Required by sc_signal<>
bool operator==(const eslx_pcix_trans& rhs)

const {
return (

devnum ==rhs.devnum && addr ==rhs.addr
&& attr1 ==rhs.attr1 && attr2 ==rhs.attr2
&& cmnd ==rhs.cmnd && done ==rhs.done
&& data[0]==rhs.data[0]&& data[1]==rhs.data[1]
&& data[2]==rhs.data[2]&& data[3]==rhs.data[3]
&& data[4]==rhs.data[4]&& data[5]==rhs.data[5]
&& data[6]==rhs.data[6]&& data[7]==rhs.data[7]
);

}
friend ostream& operator<<(ostream& file,

const eslx_pcix_trans& trans);
friend void sc_trace(sc_trace_file*& tf,

const eslx_pcix_trans& trans,
string nm);

};

Fig. 13.4 Example of SystemC user data type

162 13 Custom Channels and Data

13.4 The Heartbeat, a Custom Hierarchical Channel

Hierarchical channels are interesting because they’re really hybrid modules. Technically,
a hierarchical channel must inherit from sc_channel; however, sc_channel is
really just a typedef for sc_module. Hierarchical channels must also inherit from
an interface to let them be connected to an external sc_port<T>.

Why would you define a hierarchical channel? One use of hierarchical channels
is to model complex buses such as PCI, AMBA, HyperTransport, or AXI. Another
common use of hierarchical channels, adaptors, and transactors will be discussed in
the next section.

To keep things simple, we’ll model a basic clock or heartbeat. This clock will
differ from the standard hardware concept that typically uses a Boolean signal.
Instead, our heartbeat channel will issue a simple event. This usage would corre-
spond to the posedge_event() used by so many hardware designs.

Because it’s basic, the heartbeat is more efficient simulation-wise than a Boolean
signal. Here (Fig. 13.6) is the header for our simple interface:

//FILE: eslx_pcix_trans.cpp
#include "eslx_pcix_trans.h"
ostream& operator<<(ostream& os,

const eslx_pcix_trans& trans)
{
os << "{" << endl << " "

<< "cmnd: " << trans.cmnd << ", "
<< "attr1:" << trans.attr1 << ", "
…
<< "done:" << (trans.done?"true":"false")
<< endl << "}";

return os;
} // end
// trace function, only required if actually used
void sc_trace(sc_trace_file*& tf,

const eslx_pcix_trans& trans,
string nm)

{
sc_trace(tf, trans.devnum, nm + ".devnum");
sc_trace(tf, trans.addr, nm + ".addr");
…
sc_trace(tf, trans.data[7], nm + ".data[7]");
sc_trace(tf, trans.done, nm + ".done");

} // end trace

Fig. 13.5 Example of SystemC user data type implementation

class eslx_heartbeat_if: public sc_interface {
public:
virtual const sc_event& default_event() const = 0;
virtual const sc_event& posedge_event() const = 0;

};

Fig. 13.6 Example of hierarchical interface header

16313.4 The Heartbeat, a Custom Hierarchical Channel

It’s no different than a primitive channel interface. Notice that we use method
names congruent with sc_signal<T>. This convention will simplify design refine-
ment. The careful design of interfaces is key to reducing work that is done later.

Let’s look at the corresponding channel header (Fig. 13.7), which inherits from
sc_channel instead of sc_prim_channel and has a process, SC_METHOD.

Let’s see how it’s implemented (Fig. 13.8):

In the next chapter, we’ll see the built-in SystemC clock, which has more flex-
ibility at the expense of performance.

include "eslx_heartbeat_if.h"
class eslx_heartbeat
:public sc_channel
,public eslx_heartbeat_if {
public:
SC_HAS_PROCESS(eslx_heartbeat);
// Constructor (only one shown)
explicit eslx_heartbeat(sc_module_name nm

,sc_time _period)
:sc_channel(nm)
,m_period(_period)
{
SC_METHOD(heartbeat_method);
sensitive << m_heartbeat;

}
// User methods
const sc_event& default_event() const
{ return m_heartbeat; }
const sc_event& posedge_event() const
{ return m_heartbeat; }
void heartbeat_method(); // Process

private:
sc_event m_heartbeat; // *The* event
sc_time m_period; // Time between events
// Copy constructor so compiler won't create one
eslx_heartbeat(const eslx_heartbeat&);

};

Fig. 13.7 Example of hierarchical channel header

#include <systemc>
#include "eslx_heartbeat.h"

void eslx_heartbeat::heartbeat_method(void) {
m_heartbeat.notify(m_period);

}

Fig. 13.8 Example of hierarchical channel interface header

164 13 Custom Channels and Data

13.5 The Adaptor, a Custom Primitive Channel

Also known in some circles as transactors, adaptors are a type of channel
 specialized to translate between modules with different interfaces. Adaptors are
used when moving between different abstractions. For example, an adaptor is
commonly used between a testbench that models communications at the transac-
tion level (i.e., TLM), and an RTL implementation that models communications
at the pin-accurate level. Transaction-level communications might have methods
that transfer an entire packet of information (e.g., a PCI-X transaction). Pin-
accurate level communications use Boolean signals with handshakes, clocks,
and detailed timing.

To make it easy to understand, we’re going to investigate two adaptors. In this
section, we’ll see a simple primitive channel that uses the evaluate-update
 mechanism. In the following section, we’ll investigate a hierarchical channel. For
many of the simpler communications, an adaptor needs nothing more than some
member functions and a handshake to exchange data. This setup often meets the
requirements of a primitive channel. Many of the simpler adaptors could be of
either type, since they don’t require an evaluate-update mechanism.

We will now discuss an example design. The example design includes a
 stimulus (stim) and a response (resp) that is connected via an eslx_interrupt
channel described in an earlier section. We now would like to replace resp with
a refined RTL version, resp_rtl, which requires a sc_signal<bool>
channel interface. The before and after example design is graphically shown in
Fig. 13.9.

ea_interrupt_gen_if

ea_interrupt_evt_if

respstim

stim

resp_rtl

sc_signal<bool>

i
n
t
e
r
r
p
t
2
s
i
g
b
o
o
l

ea_interrupt

Adaptor - Primitive channel

Fig. 13.9 Before and after adaptation

16513.5 The Adaptor, a Custom Primitive Channel

Here (Fig. 13.10) is the adaptor’s header:

#include "eslx_interrupt_gen_if.h"
class interrupt2sigbool
: public sc_prim_channel
, public eslx_interrupt_gen_if
, public sc_signal_in_if<bool>
{
public:
// Constructors
explicit interrupt2sigbool()
: sc_prim_channel(

sc_gen_unique_name("interrupt2sigbool")) {}
explicit interrupt2sigbool(sc_module_name nm)
: sc_prim_channel(nm) {}
// Methods for eslx_interrupt_gen_if
void notify() {
m_delay = SC_ZERO_TIME; request_update(); }

void notify(sc_time t) {
m_delay = t; request_update(); }

// Methods for sc_signal_in_if<bool>
const sc_event& value_changed_event() const
{ return m_interrupt; }
const sc_event& posedge_event() const
{ return value_changed_event(); }
const sc_event& negedge_event() const
{ return value_changed_event(); }
const sc_event& default_event() const
{ return value_changed_event(); }
// true if last delta cycle was active
const bool& read() const {
m_val = event(); return m_val;

}
// Did value change in the previous delta cycle?
bool event() const {
return (sc_delta_count() == m_delta+1);

}

Fig. 13.10 Example of primitive adaptor channel header

bool posedge() const { return event(); }
bool negedge() const { return event(); }

protected:
// every update is a change
void update() {
m_interrupt.notify(m_delay);
m_delta = sc_delta_count();

}
private:
sc_event m_interrupt;
mutable bool m_val;
sc_time m_delay;
uint64 m_delta; // delta of last event
// Copy constructor so compiler won't create one
interrupt2sigbool(const interrupt2sigbool&);

};

166 13 Custom Channels and Data

The first thing to notice is all the methods. Most of these are forced upon us
because we are inheriting from the sc_signal_in_if<bool> class. Fortunately,
most of them may be expressed in terms of others for this particular adaptor.
Another way to handle excess methods is to provide stubbed SC_FATAL1
messages with the assumption that nobody will use them.

The second feature of interest is the manner in which evaluate-update is handled.
In the notify() methods, we update the delay and make a request_update() call
to the scheduling kernel. When the delta-cycle occurs, the kernel will call our
update() function that issues the appropriately delayed notification.

For the most part, this adaptor was simple. The hard part was obtaining a list of
all the routines that needed to be implemented as a result of the interface. Listing
the routines is accomplished easily enough by simply examining the interface defi-
nition in the Open SystemC Initiative library source code.

A third feature to note is the use of sc_delta_count(). It is used to deter-
mine that the interrupt event has occurred in the previous delta-cycle. The value
returned by sc_delta_count() is incremented by one for each delta-cycle
while the simulator is running.

Finally, for those not completely up on their C++, a comment on the mutable
bool. The keyword mutable means changeable even if const. The read()
method is defined in sc_signal_in_if<bool> interface, so we have to
implement it. The read() method is defined as const, and it is required to return
a const reference (&). We are using the member function event() to obtain a
value, which is not a reference. So, we create a member data m_val to store the
return value temporarily. Because the value is mutable, we are able to change it
(even though the method is const) and return it as a const reference.

13.6 The Transactor, a Custom Hierarchical Channel

When a more complex communications interface is encountered; such as one that
requires processes, hierarchy, or ports; then a hierarchical channel solution is
required. The following processor interface problem demonstrates this type of
channel.

Suppose we have a testbench connected to an abstract model of a memory, and
wish to replace the abstract memory with an RTL model. On one side, we have a
testbench that needs to use simple transaction calls to verify the functionality of the
memory. On the other side, we have a peripheral, an 8K x 16 memory. To not
change the testbench, we insert an adaptor between the testbench and the RTL
memory. This adaptor allows the testbench to convert transactions into pin-level
stimulus.

1 SC_FATAL is discussed in Chapter 14, Additional Topics.

16713.6 The Transactor, a Custom Hierarchical Channel

This figure actually has two hierarchical channels. The architectural model of
the memory is a module implementing an interface, in this case the CPU_if. Our
memory was designed to hang directly off the CPU.

Let’s take a look at the CPU interface (Fig. 13.12):

The corresponding memory implementation is a straightforward channel
(Fig. 13.13):

Transactor - Hierarchical Channel

CPU_if

mem_archtest bench

test bench

mem_rtl

sc_signal <bool>
C
p
u
_
b
u
s
2
p
c
a
_
b
u
s

sc_signal <int>

LD

RW

A

D

CK

ea_heartbeat

Architectural
model

Memory as
RTL model

Fig. 13.11 Testbench adaptation using hierarchical channels

class CPU_if: public sc_interface {
public:
virtual void write(unsigned long addr

,long data) = 0;
virtual long read(unsigned long addr) = 0;

};

Fig. 13.12 Example of simple CPU interface

Graphically, here (Fig. 13.11) are the elements of the design:

168 13 Custom Channels and Data

//FILE: mem_arch.h
#include "CPU_if.h"
class mem
: public sc_channel
, public CPU_if
{
public:
// Constructors & Destructor
explicit mem(sc_module_name nm

,unsigned long ba
,unsigned sz)

:sc_channel(nm)
,m_base(ba)
,m_size(sz)
{ m_mem = new long[m_size]; }
~mem() { delete [] m_mem; }
// Interface Implementations
virtual void write(unsigned long addr

,long data) {
if (m_start <= addr && addr < m_base+m_size) {
m_mem[addr-m_base] = data;

}
}//end write
virtual long read(unsigned long addr) {
if (m_base <= addr && addr < m_base+m_size) {
return m_mem[addr-m_base];

} else {
cout << "ERROR:"<<name()<<"@"<<sc_time_stamp()

<< ": Illegal address: " << addr << endl;
sc_stop(); return 0;

}
}//end read

private:
unsigned long m_base;
unsigned m_size;
long* m_mem[];
mem_arch(const mem_arch&); // Disable

};

Fig. 13.13 Example of hierarchical channel memory implementation

CPU PCA Timing

Read Read2Idle

w1 w3 w4r2 r5 r6

a4a2 a3a1 a5 a6

LD

RW

A

D

CK

Write Write2

Fig. 13.14 CPU pin-cycle accurate timing

Now, suppose we have the following timing diagram (Fig. 13.14) for the pin-
cycle accurate interface:

16913.6 The Transactor, a Custom Hierarchical Channel

#include "CPU_if.h"
#include "eslx_heartbeat_if.h"
class cpu2pca
:public sc_module
,public CPU_if

{
public:
// Ports
sc_port<eslx_heartbeat_if> ck; // clock
sc_out<bool> ld; // load/exec cmd
sc_out<bool> rw; // read high

// write low
sc_out<unsigned long> a; // address
sc_inout_rv<32> d; // data
// Constructor
SC_CTOR(cpu2pca):FLOAT("ZZZZZZZZ") {}
// Interface implementations
void write(unsigned long addr

,long data);
long read(unsigned long addr);
// Useful constants
const sc_lv<32> FLOAT;

private:
cpu2pca(const cpu2pca&); // Disable

};

Fig. 13.15 Example of hierarchical transactor channel header

Notice that write transactions take place in a single clock cycle; whereas, the
read transaction has a one-cycle delay for the first read in a burst. Also, this inter-
face assumes a bidirectional data bus. Address and read/write have a non-asserted
state. For this design, we’ll allow this setup.

Here is the transactor’s header (Fig. 13.15):

Clearly, with the preceding example, the basics of a module are present.
Inheriting from CPU_if simply adds a few methods to be implemented, namely
read() and write().

An interesting point to ponder with channels (especially adaptors) is the issue of
member function collisions. What if two or more interfaces that need to be imple-
mented have identically named member functions with identical argument types?

There are two solutions. One solution is to modify the interface method in a
renamed interface. This solution is ugly. Another solution is to isolate each inter-
face to an sc_export<T>. This improved solution lets you use the implementa-
tion in a locally instantiated channel to complete your implementation.

Here (Fig. 13.16) is the implementation code for the transactor:

170 13 Custom Channels and Data

The code for an adaptor can be very straightforward. For more complex applica-
tions; such as a PCI, AMBA, or AXI; the design of an adaptor may be more
complex.

Because adaptors allow high-level abstractions to interface with lower-level
implementations, they are very common in SystemC designs. Sometimes these
hybrids are used as part of a design refinement process. At other times, they merely
aid the development of verification environments. There are no fixed rules defining
abstraction levels or how to use them.

13.7 Exercises

For the following exercises, use the samples provided in www.scftgu.com.

Exercise 13.1: Examine, compile, and run the interrupt example. Write a
specialized port for this channel to support the method pos().

Exercise 13.2: Examine, compile, and run the pcix example. Could this process of
converting a struct to work with an sc_signal be automated? How?

Exercise 13.3: Examine, compile, and run the heartbeat example. Extend
this channel to include a programmable time offset.

Exercise 13.4: Examine, compile, and run the adapt example. Notice the
commented-out code from the adaptation of resp to resp_rtl.

Exercise 13.5: Examine, compile, and run the hier_chan example. Examine
the efficiency of the calls. Extend the design to allow back-to-back reads and writes
while using cycles efficiently.

#include "cpu2pca.h"
enum operation {WRITE=false, READ=true};
void cpu2pca::write(unsigned long addr

,long data) {
wait(ck->posedge_event());
ld->write(true);
rw->write(WRITE);
a->write(addr);
d->write(data);
wait(ck->posedge_event());
ld->write(false);

}
long cpu2pca::read(unsigned long addr) {
wait(ck->posedge_event());
ld->write(true);
rw->write(READ);
a->write(addr);
d->write(FLOAT);
wait(ck->posedge_event());
ld->write(false);
return d->read().to_long();

}

Fig. 13.16 Example of hierarchical transactor channel implementation

http://www.scftgu.com/Book

171

Congratulations for keeping up to this point. This chapter begins with important
discussions of reporting, configuration and programmable structure, and a basic
discussion of clocks. The chapter then quickly accelerates to a discussion of the
SC_CTHREAD, which is followed by a discussion on debugging and waveform
tracing.

If you are able to follow this section, then you are ready to take on the world.
However, if you become discouraged, come back and reread the chapter after gain-
ing a little more SystemC coding experience.

14.1 Error and Message Reporting

Reporting information about the state and status of a simulation as it progresses is
an important art. Many teams create utilities to standardize this reporting within the
project because of the large volume of data from reporting. Many a project has seen
thousands, if not millions of lines of output from simulations. In fact, controlling
output can have a significant effect on run-time performance. At the same time, it
is crucial that engineers have a solid handle on any errors that are produced and
have enough information to efficiently debug the problems that arise.

Messages have classifications including informational, warning, error, and fatal.
Additionally, messages usually apply to a variety of areas and need to be isolated
to their source to aid debugging. For simulations, it is also important to identify the
time that a message occurs. Because simulations provide a tremendous amount of
output data, it is important that messages be standardized and easy to identify.

SystemC has an error reporting system that greatly simplifies this task.
Throughout our examples thus far, you have seen a stylized format of error manage-
ment. In this short section, we will examine a subset of the error-reporting facilities
in SystemC. For more information, you are referred to the SystemC LRM and the
example documentation that accompanies the release.

We need a few definitions first. Every message is associated with an identifying
name. This labeling is used to keep messages from different parts of the design
properly identified. It can be anything; however, we recommend something along

Chapter 14
Additional Topics

Reporting, Clocks, Clocked Threads, Programmable
Hierarchy, and Signal Tracing

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_14, © Springer Science+Business Media, LLC 2010

172 14 Additional Topics

the lines of “/COMPANY/PROJECT_OR_IP/FUNCTIONAL_AREA”. A message
identifier is simply a character string (Fig. 14.1):

Next, all messages need to be classified. SystemC has the following classifica-
tions (Fig. 14.2):

For each classification, a variety of actions may be taken. For the most part,
defaults are sufficient. Possible actions include the following actions taken from the
SystemC example documentation (Table 14.1):

SC_INFO – informational only–this includes debug
SC_WARNING – possible problem, possibly harmless
SC_ERROR – problem identified probably serious
SC_FATAL – extremely serious problem probably

ending simulation

Fig. 14.2 Error classifications

const char* MSGID = "UNIQUE_STRING";

Fig. 14.1 Syntax of message identifier

Table 14.1 Error actions

Error Classification Action

SC_UNSPECIFIED Take the action specified by a configuration rule of a lower
precedence.

SC_DO_NOTHING Don’t take any actions for the report. The action will be ignored, if
other actions are given.

SC_THROW Throw a C++ exception (sc_exception) that represents the
report. The method sc_exception::get_report() can
be used to access the report instance later.

SC_LOG Print the report into the report log, which is typically a file on disk.
The actual behavior is defined by the report handler function.

SC_DISPLAY Display the report to the screen, which is typically done by writing
it into the standard output channel using std::cout.

SC_INTERRUPT Interrupt simulation if simulation is not being run in batch mode.
Actual behavior is implementation-defined; the default
configuration calls sc_interrupt_here(…) debugging
hook and has no further side effects.

SC_CACHE_REPORT Save a copy of the report for the current process. The report could
be read later using sc_report_handler::get_cached_
report(). The reports saved by different processes do not
overwrite each other; however, the default behavior is to save
only one cached report per process.

SC_STOP Call sc_stop(). See sc_stop() manual for further detail.
SC_ABORT The action requests the report handler to call abort().

17314.1 Error and Message Reporting

SystemC has a large class of setup that may be specified for message reporting.
For basic designs, the following syntax should suffice (Fig. 14.3):

The following code, named report, illustrates the basics of message handling
(Figs. 14.4 and 14.5):

extern char* MSGID;
void mymod::some_thread() {

wait(2,SC_NS);
SC_REPORT_INFO(MSGID,"Sample info");
SC_REPORT_WARNING(MSGID,"Sample warning");
SC_REPORT_ERROR(MSGID,"Sample error");
SC_REPORT_FATAL(MSGID,"Sample fatal");

}

Fig. 14.5 Example of reporting in a module

const char* MSGID = "/ESLX/Examples/mysim";
const char* sim_vers = "Version 5.2"; // Code ver-
sion
int sc_main(int argc, char* argv[]) {

sc_report rp;
sc_report_handler::set_log_file_name("run.log");
sc_report_handler::stop_after(SC_ERROR, 100);
sc_report_handler::set_actions(

MSGID, SC_INFO, SC_DISPLAY|SC_LOG
);
SC_REPORT_INFO(MSGID,sim_vers);
…/* Body of main */
sc_start();
if (sc_report_handler::get_count(SC_ERROR) > 0
|| sc_report_handler::get_count(SC_FATAL)

)
{

cout << rp.->get_msg() << endl;
cout << MSGID << " FAILED" << endl;
return 1;

} else {
cout << MSGID << " PASSED" << endl;
return 0;

}
}

Fig. 14.4 Example of main.cpp with SystemC error reporting

sc_report_handler::set_log_file_name("filename");
sc_report_handler::stop_after(SC_ERROR, MAXERRORS);
sc_report_handler::set_actions(MSGID,CLASS,ACTIONS);

Fig. 14.3 Syntax for basic message setup

174 14 Additional Topics

Here is a sample of the log file output (Fig. 14.6):

Notice that all the messages have a standard format. SystemC has added some
useful information to the messages: the simulated time, filename, line number, and
process identification. Also notice that the Info messages do not include module
name and line number information by default. This is controlled by the
sc_report_handler.

You can enhance the output by using a syntax-highlighting editor and setting up
a coloring scheme for log files. A slightly more involved route involves supplanting
the default report handler with your own. An advantage to this is that you can
enhance the output options including perhaps providing an XML output as we have
done for some of our customers.

Along the line of enhancing reporting, it is useful to have standard preludes and
summaries. In the prelude, it is nice to specify such things as the versions of files,
the name of the running host computer, and date of execution. In the summary, it is
essential to know if the simulation passed or failed. It is also useful to know the
clock wall time (i.e., how long did it take to simulate), and how many errors, warn-
ings, etc. (i.e., statistics) were encountered.

All of this information can be reported by creating an object in the topmost
design as the first instance in the module. The object should be a class that issues
the prelude in the constructor and the summary in the destructor. This approach will
guarantee execution at the correct times in the simulation lifetime. Other things
should happen outside of simulation and they are discussed in the next section.

14.2 Elaboration and Simulation Callbacks

The SystemC sc_module class provides four routines that may be overridden,
and they are executed at the boundaries of simulation. These routines provide
modelers with a place to put initialization and clean-up code that has no place to
live. For example, checking the environment, reading run-time configuration

0 s: Info: /ESLX/Examples/mysim: Version 5.2
2 ns: Info: /ESLX/Examples/mysim: Sample info
2 ns: Warning: /ESLX/Examples/mysim: Sample warning
In file: mymod.cpp:21
In process: mymod_i.some_thread @ 2 ns
2 ns: Error: /ESLX/Examples/mysim: Sample error
In file: mymod.cpp:22
In process: mymod _i.some_thread @ 2 ns
…

Fig. 14.6 Example of output messages

17514.3 Configuration

information and generating summary reports at the end of simulation. The member
functions are as follows (Fig. 14.7).

It is important to realize these are called once for every module instance in a
design. In many cases, it is desirable to execute code only once per module. A static
variable may be invoked to serve this purpose. Below (Fig. 14.8) is an example
using the sc_module callbacks.

14.3 Configuration

Configuring the design and its environment is a very important topic, and it has
three techniques. Selection of these techniques affects the development time,
compile time and run time. There is a time and a place for using each of these
techniques.

void before_end_of_elaboration(void);
void end_of_elaboration(void);
void start_of_simulation(void);
void end_of_simulation(void);

Fig. 14.7 sc_module callbacks

void top::before_end_of_elaboration(void) {
// Can add to elaboration here
// Can setup reporting here
sc_report_handler::stop_after(SC_ERROR,100);

}
void top::end_of_elaboration(void) {

this->count++; // count instances
static bool once(false);
if (!once) {

once = true;
// possible to examine netlist here

}
}
void top::start_of_simulation(void) {

// report on counts talled beforehand
// initialize channels/ports

}
void top::end_of_simulation(void) {

static bool once(false);
if (!once) {

once = true;
// provide post-processing/cleanup code here

}
}

Fig. 14.8 Example using callbacks

176 14 Additional Topics

First, there is configuration affected by the designer’s choice of data types
and constructors coded directly into the source code. This type of configuration
is static, and it is not very easy to modify. Changes involve both editing (usually
manual) and recompilation. This technique may be appropriate early in the
design cycle.

Second, configuration of the design at compile time using C pre-processor
(cpp) constructs allows for some variation provided re-compilation is acceptable.
This form of configuration is limited to simple conditional forms (e.g., #if,
#ifdef, #ifndef, #else) and to more complex text substitution. It has the
undesirable aspect of being difficult to debug, and changes invoke recompilation,
which may be lengthy for larger projects. This technique is appropriate for selec-
tions that may be affected by platform OS and tool versions (e.g., Linux vs.
Windows).

The third form of configuration is the most interesting: run-time configuration.
This form has the advantage of not requiring recompilation, but it has the potential
disadvantage of more coding than the other two forms. Configuration information
for run time can be obtained from environment variables using the getenv1, from
the command line, from files, from cin, or a combination of all the preceding (Fig.
14.9). Here is an example using an environment variable:

One can also use the command line. To help with the command line,
SystemC provides two global functions, sc_argc() and sc_argv(), that
correspond to the values passed to main() and correspondingly sc_main().
These may be called anywhere in your code. In the following example (Fig.
14.10), we create a simple function that specifies an option to check for and
return an optional value:

#include <cstdlib>

const char* varname = "MYVAR";
string result("*UNDEFINED*”);
char* value = getenv(varname);
if (value != NULL) {

result = value;
} else {

if (setenv(varname,"x",0) == -1) {
result = ""; // failed means it is defined

} else {
unsetenv(varname); // undo the setenv

}
}//endif

Fig. 14.9 Example of run-time environment variable retrieval

1 See the manual page for getenv in a Linux environment.

17714.4 Programmable Structure

We will leave reading a file to establish run-time configuration as an exercise for
the reader. Quite simply, this option is straightforward C++ programming. Ever
since our undergraduate days, we’ve wanted to say this.

The run-time configuration information may be used at any time (i.e., during
elaboration or simulation). The next section discusses how to use run-time configu-
ration at elaboration.

14.4 Programmable Structure

Programmable structuring is an aspect of SystemC that may be obvious to
some but not to others. Structure for SystemC occurs at elaboration time
before sc_start () is called. The code that performs elaboration
(i.e., instantiates modules, channels, and connects them) is executable C++
code in the form of one or more constructor functions. This means that it is
possible to use standard C++ constructs such as if-then-else, switch,
for, and while loops to dynamically establish the design’s structure
(e.g., connectivity).

Thus, it is conceivable to have simulations that use run-time configuration to
alter their code structure. In some cases, this dynamic connectivity is a matter of
convenience. For instance, configurability is appropriate for a large regular struc-
ture. In other cases, configurability may be a way to test various aspects of the
design. Let’s look at a couple of examples.

bool uint_option(string opt, unsigned &value) {
string arg;
for (unsigned i=1; i!=sc_argc(); ++i) {

arg = sc_argv()[i];
if (arg.find(opt,0) != 0) continue;
if (arg.length() == 0) continue;
arg.erase(0,opt.length());
if (isdigit(arg[0])) {

istringstream ins(arg);
ins >> value;
return true;

}//endif
}//endfor
return false;

}
…
// usage
if (uint_option("-n=", n)) {

size = n;
}//endif

Fig. 14.10 Example of command-line run-time configuration

178 14 Additional Topics

First, we consider a design that supports a variable number of devices attached
externally. Take for example, an Ethernet or USB port. The specification diagram
looks something like the previous figure (Fig. 14.11).

To test this design, the verification team would like a single executable that can
be configured at run time to handle 0 to 16 devices with varying FIFO depths. The
supporting code is shown in Fig. 14.12 on the next page.

The preceding example uses arrays of pointers to both the instances and the
channels connecting them. We could have dynamically set the array size; however,
it would not save enough resources to justify the complexity and effort.

Our next example recognizes the importance of configuration management. A
design may start out with a TLM and eventually be refined to RTL. It is desirable
to be able to run simulations that easily select portions of the design to run at TLM
or RTL levels. TLM portions will simulate quickly; RTL portions will represent
something closer to the final implementation and will simulate more slowly. This
configurability lets the verification engineer keep simulations running quickly, and
he or she can focus on finding problems in a particular area.

Configurability may be achieved by using conditional code (e.g., if–else)
around the areas of interest. For example, consider the hierarchical channel design
of the previous chapter (hier_chan example). Suppose we package both the
architectural model and the behavioral model within a wrapper that lets us config-
ure the design at run time.

varports

varports_i device_i[0]

device_i[0]

device_i[N]

xmt_p

rcv_p

xmt_p

rcv_p

xmt_p

rcv_p

rcv_p

xmt_p

rcv_p

xmt_p

rcv_p

xmt_p

sc_fifo<int>(D) d2v[i]

sc_fifo<int>(D) v2d[i]

sc_fifo<int>(D) d2v[i]

sc_fifo<int>(D) v2d[i]

sc_fifo<int>(D) d2v[i]

sc_fifo<int>(D) v2d[i]

Fig. 14.11 Design with 1-N ports

17914.4 Programmable Structure

We can read the configuration instance names into an STL map<KEY,VALUE>.
An example of the wrapper code in a memory module and sc_main() is shown
in the next figure (Figs. 14.13 & 14.14). The code shown defaults to an architectural
implementation, mem_arch. Both an RTL and bsyn configuration are supported;
although, the selection of an RTL version only produces a warning message.

#include <sstream>
#include "varports.h"
#include "device.h"
class testbench : public sc_module {
public:

varports* varports_i;
device* device_i[N]; //N previously set to

16
sc_fifo<int>* v2d[N];
sc_fifo<int>* d2v[N];
SC_CTOR(testbench);

};

// Constructor
SC_HAS_PROCESS(testbench);
testbench::testbench(sc_module_name mdl)
: sc_module(mdl)
{

/* Figure out N from command-line */
unsigned nDevices, depth;
uint_option("-n=",nDevices);//See 2 pages back
varports_i = new varports(…init parameters…);
for (unsigned i=0;i!=nDevices;i++) {

stringstream nm; // for unique instance names
// Create instances
nm.str(""); nm << "device_name_i[" << i << "]";
device_i[i] = new device(nm.str().c_str());
nm.str(""); nm << "v2d[" << i << "]";
v2d[i]=new sc_fifo<int>(nm.str().c_str(),depth);
nm.str(""); nm << "d2v [" << i << "]";
d2v[i]=new sc_fifo<int>(nm.str().c_str(),depth);
// Connect devices to varports using channels
device_i[i]->rcv_p(*v2d[i]);
device_i[i]->xmt_p(*d2v[i]);
varports_i->rcv_p(*d2v[i]);
varports_i->xmt_p(*v2d[i]);

}//endfor
}

Fig. 14.12 Example of configurable code with 1-N ports

The supporting code is shown in Fig 14.12

180 14 Additional Topics

#include <map>
std::map<string, string> cfg;

int sc_main(int argc, char *argv[])
{

ifstream cf(“sim.cfg”);
if (!cf) {

SC_REPORT_FATAL(“EX”,”Unable to read file”);
} else {

string inst, model;
while(cf>>inst) {

if (cf>>model) {
cfg[inst] = model;

}
}

}
…

};

Fig. 14.14 Example of configurable code in sc_main()

#include <sstream>
#include <map>
extern std::map<sc_string, sc_string> cfg;

SC_MODULE(mem) {
mem_arch* mem_arch_i;
mem_bsyn* mem_bsyn_i;
…
SC_HAS_PROCESS(mem);
explicit mem(sc_module_name nm

,unsigned long ba // mem base address
,unsigned sz) // mem size

: sc_channel(nm)
{

if (cfg[name()] == "rtl") {
SC_REPORT_FATAL(MSGID, “RTL not supported”);

}
if (cfg[name()] == "bsyn") {

SC_REPORT_INFO(MSGID, “Configuring bsyn”);
mem_bsyn_i = new mem_bsyn("mem_bsyn_i",ba,sz);
// module instantiations and connections
…

} else {
SC_REPORT_INFO(MSGID, “Configuring arch”);
mem_arch_i = new mem_arch("mem_arch_i",ba,sz);
…

}//endif
}

};

Fig. 14.13 Example of configurable code to manage modeling levels

18114.5 sc_clock, Predefined Processes

14.5 sc_clock, Predefined Processes

Clocks represent a common hardware behavior, that of a repetitive Boolean value.
If you are a hardware designer, it is likely you’ve been concerned about the late
discussion of this topic. This topic is delayed for a reason.

Clocks add many events, and much resulting simulation activity is required to
update those events. Consequently, clocks can slow simulations significantly.
Additionally, quite a lot of hardware can be modeled adequately without clocks. If you
need to delay a certain number of clock cycles, it is much more efficient to execute a
wait for the appropriate delay than to count clocks as illustrated in Fig. 14.15.

More importantly, many designs can be modeled without any delays. It all
depends on information to be derived from the model at a particular stage of a
project.

A clock can be easily modeled with SystemC. Indeed, we have already seen an
example of a clock modeled with just an event, namely the heartbeat example.
More commonly, clocks are modeled with a sc_signal<bool> and the associ-
ated event.

Clocks are so common that SystemC provides a built-in hierarchical channel
known as a sc_clock (Fig. 14.6). Clocks are commonly used when modeling
low-level hardware where clocked logic design currently dominates.

Notice the optional items indicated by their defaults.
Some caveats apply to sc_clock. First, if declared within a module,

sc_clock must be declared and initialized prior to its use. Second, if you want
to communicate a clock as an output to the module, you must use an
sc_export<sc_signal_in_if<bool> >.

sc_clock name("name",period
[,duty_cycle=0.5
,start_time=0
,posedge_first=true]);

Fig. 14.16 Syntax of sc_clock

wait(N*t_PERIOD) // one event -> FAST!
-OR-
for(i=1;i<=N;i++) // creates many events -> slow

wait(clk->posedge_event())

Fig. 14.15 Comparing wait statements to clock statements

182 14 Additional Topics

The preceding example exports a clock and uses a method to produce a derived
clock at half the frequency. This approach inevitably slows the simulation. This
method also entails more code.

14.6 Clocked Threads, the SC_CTHREAD

SystemC has two basic types of processes: the SC_THREAD and the SC_METHOD.
A variation on the SC_THREAD that is popular for behavioral synthesis tools is the
clocked thread or SC_CTHREAD. This popularity is partly because synthesized
logic tools currently produce fully synchronous code, and it is partly because the
SC_CTHREAD provides some new facilities to simplify coding (Fig. 14.18).

One of the simpler facilities provided by this new simulation process is a new
behavior of wait(void) (Fig. 14.19).

SC_MODULE(clock_gen) {
sc_export<sc_signal_inout_if<bool> > clkout_p;
sc_port<sc_signal_inout_if<bool> > clkdiv_p;
sc_clock clk;
SC_CTOR(clock_gen)
: clk("clk",sc_time(6,SC_NS))
{

SC_METHOD(clk_method);
sensitive << clk.posedge_event();
clkout_p(clk);

}
void clk_method() {

clkdiv_p->write(!clkdiv_p->read());
}

};

Fig. 14.17 Example of sc_clock generation

SC_CTOR(module_name) {
SC_CTHREAD(NAME_cthread, clock_name.edge());

}

Fig. 14.18 Syntax of SC_CTHREAD

wait(void); // go to start of next clock cycle

Fig. 14.19 Syntax of clocked wait

For example (Fig. 14.17):

18314.6 Clocked Threads, the SC_CTHREAD

In versions of SystemC prior to standardization, there is another syntax for
wait(N) and a level-sensitive wait, called wait_until (). We mention
this because you are likely to see this in legacy code for several years. The
syntaxes are (Fig. 14.20):

The syntax for wait_until () requires the delay expression, delay_expr,
must be expressed using delayed signals. In other words, the argument for wait_
until () must be of the form signal.delayed (). The delayed() method is a
special method that provides the value at the end of a delta-cycle. Keep in mind that
all of this is deprecated in the standard, and this syntax only applies to versions
prior to OSCI version 2.2.

Neither of these is extremely interesting (Fig. 14.21). They are correspondingly
almost equivalent to the following SC_THREAD code assuming the thread is stati-
cally sensitive to a clock edge:

Of greater interest, SC_CTHREAD provides the concept of reset signals, which
effectively changes the behavior of wait(). When a reset signal activates, execu-
tion jumps back to the start of the function upon return from wait() rather than
proceeding to the next statement. The syntax is simple and follows (Fig. 14.22):

Previous versions of SystemC also included other constructs to watch signals.
These constructs included calls to watching(), and the use of macros named
W_BEGIN, W_DO, W_ESCAPE, and W_END. Check the documentation for the ver-
sion of SystemC used with legacy code that you may need to reuse.

SC_CTOR(module_name) {
SC_CTHREAD(NAME_cthread);
reset_signal_is(signal,true);

}

Fig. 14.22 Syntax of watching

for(i=0;i!=N;i++) wait();//similar as wait(N)
do wait() while(!expr);// sames as

// wait_until(dexpr)

Fig. 14.21 Example of code equivalent to clocked thread wait() and wait_until()

wait(N); // delay N clock edges
wait_until(delay_expr); // until expr true @ clock

Fig. 14.20 Older syntax of clocked waits

184 14 Additional Topics

Here (Fig. 14.23) is an example of how to implement similar functionality in
SystemC:

We’ll note one last point. Just like SC_THREAD, upon exiting an SC_CTHREAD
never runs again. Normally, SC_CTHREAD contains an infinite loop.

There has been some discussion of deprecating SC_CTHREAD. However,
SC_THREAD functionality may need to be augmented by the extra mecha-
nisms of watching and the resulting simplified syntax before eliminating this
feature.

#include "processor.h"
SC_HAS_PROCESS(processor);
processor::processor(sc_module_name nm)
//Constructor
: sc_module(nm)
{

// Process registration
SC_CTHREAD(processor_cthread,clock_p.pos());
reset_signal_is(reset_p, false);

}//endconstructor }}}
class Aborted {}; // used for throwing
#define WAIT_CYCLE \

wait(); if (abort_p->read()==true) throw Aborted
void processor::processor_cthread() { //{{{

// Initialization
pc = RESET_ADDR;
for(;;) {

try {
WAIT_CYCLE(); // use instead of wait();
read_instr();
switch(opcode) {

case LOAD_ACC:
acc = bus_p->read(operand1);
break;

case STORE_ACC:
bus_p->write(operand1,acc);
break;

case INCR:
acc++;
result = (acc != 0);
break;

}
…

} catch (Aborted) {
SC_REPORT_WARNING("Aborting");

}//endtry
}//endforever

}//endcthread

Fig. 14.23 Example code using clocked threads

18514.7 Debugging and Signal Tracing

14.7 Debugging and Signal Tracing

Until this point, we have assumed the use of standard C++ debugging techniques
such as in-line print statements or using a source code debugger such as gdb.
Hardware designers are familiar with using waveform viewing tools that display
values graphically.

While SystemC does not have a built-in graphic viewer, it can copy data values
to a file in a format compatible with most waveform viewing utilities. The format
is known as VCD or Value Change Dump format. It is a simple text format.

Obtaining VCD files involves three steps. First, open the VCD file. Next, select
the signals to be traced. These two steps occur during elaboration. Running the
simulation (i.e., calling sc_start()) will automatically write the selected data
to the dump file. Finally, close the trace file. Here is the syntax presented in
sequence (Fig. 14.24):

It is required that the signal names being traced are defined before calling
sc_trace. Also, it is possible to use hierarchical notation to access signals in
submodules. It is possible to trace ordinary C++ data values and ports as well. The
trace filename should not include the filename extension since the sc_create_
vcd_trace_file automatically does this. Notice the error checking of the file
creation using the Boolean complement operator (!).

A simple coding example using sc_trace is show in an example in Fig. 14.25.
Notice the use of a destructor to close the file. Using a destructor is the safest

way to ensure the file will be closed. If additional modules are instantiated in the
example above, they would need to include appropriate sc_trace syntax within
their constructors.

sc_trace_file* tracefile;

tracefile =

sc_create_vcd_trace_file(tracefile_name);

if (!tracefile) cout <<"There was an error."<<endl;

…
sc_trace(tracefile,signal_name,"signal_name");
…
sc_start(); // data is collected
…
sc_close_vcd_trace_file(tracefile);

Fig. 14.24 Syntax to capture waveforms

2 Available from http://www.cs.man.ac.uk/apt/tools/gtkwave

http://www.cs.man.ac.uk/apt/tools/gtkwave

186 14 Additional Topics

//FILE: wave.h
SC_MODULE(wave) {

sc_signal<bool> brake;
sc_trace_file* tracefile;
…
double temperature;

};

//FILE: wave.cpp
wave::wave(sc_module_name nm) //Constructor
: sc_module(nm) {

…
tracefile = sc_create_vcd_trace_file("wave");
sc_trace(tracefile,brake,"brake");
sc_trace(tracefile,temperature,"temperature");

}//endconstructor
wave::~wave() {

sc_close_vcd_trace_file(tracefile);
cout << "Created wave.vcd" << endl;

}

Fig. 14.25 Example of simple waveform capture

Fig. 14.26 Sample waveform display from gtkwave

Another moderately complex example of signal tracing may be found in the
tracing example from the book web site. A simple coding example (Fig.
14.25):

Here is some sample output viewed with the open source gtkwave2 viewer
(Fig. 14.26):

18714.9 Exercises

This manual designation of waveforms is required when using the OSCI simula-
tor. Many of the commercial SystemC implementations let you bypass this step and
do signal tracing interactively.

14.8 Other Libraries: SCV, ArchC, and Boost

Beyond the core of SystemC, several libraries are available for the serious SystemC
user to explore. These include:

The SystemC Verification library, the SCV, has an extensive set of features use-•	
ful for verification. The original set was donated by Cadence Design Systems.
This library is discussed in a later chapter.
The ArchC architecture description language is an open source architecture •	
description language used to describe processors and create SystemC models.
Several models are already available. ArchC was designed at the Computer
Systems Laboratory (LSC) of the Institute of Computing of the University of
Campinas (IC-UNICAMP). See www.archc.org for more information.
The Boost web site provides free peer-reviewed portable C++ source libraries. •	
The emphasis is on libraries that work well with the C++ Standard Library. See
www.boost.org for more information.

14.9 Exercises

For the following exercises, use the samples provided at www.scftgu.com

Exercise 14.1: Examine, compile, and run the clock_gen example. Change
clk_method to a thread. Measure the performance difference.

Exercise 14.2: Examine, compile, and run the processor example. Notice
the clocked thread constructs. Can you think of better ways to code this from an
execution performance standpoint?

Exercise 14.3: Examine, compile, and run the varports example.
Exercise 14.4: This exercise examines design configuration. Examine, compile,

and run the manage example. Can you think of a simpler way to manage different
implementations that leverages C++?

Exercise 14.5: Examine, compile, and run the wave example. View the VCD
data using a waveform viewer. Obtain gtkwave from http://intranet.cs.man.ac.uk/
apt/projects/tools/gtkwave/ if necessary.

Exercise 14.6: Examine, compile, and run the tracing example.
Exercise 14.7: Examine, compile, and run the report example. Apply these

concepts to an earlier example.

http://www.archc.org
http://www.boost.org
http://www.scftgu.com/Book/
http://intranet.cs.man.ac.uk/apt/projects/tools/gtkwave/
http://intranet.cs.man.ac.uk/apt/projects/tools/gtkwave/

189

15.1 Introduction

In the course of this book, we have covered the SystemC language and its many
uses. We have explored the SystemC constructs that let us model hardware easily,
including clocks, hardware data types, concurrency constructs, threads, etc. With
this knowledge, you are equipped with the ability to construct a sophisticated sys-
tem model and most of the features required to develop a robust testbench. There
is an additional library, the SystemC Verification Library (SCV), which provides
much of the features required to implement a robust reusable testbench without
having to develop these on your own. This library is described in detail in the down-
loadable PDF document “SystemC Verification Standard Specification [Version
1.0b]” from <www.systemc.org>. Please note that the document references some
aspects of SystemC that have changed from version 2.0.1 upon which it was origi-
nally based.

The SCV library includes many add-on features to SystemC including data
introspection, extended data types, random data types, transaction monitoring, and
transaction recording.

It is beyond the scope of this book to cover specific verification methodologies.
We will, however, lightly touch on the topic of developing transaction-based veri-
fication and how this allows for higher levels of abstraction test cases, promotes
reusable verification IP, and shortens the overall verification cycle.

15.2 Data Introspection

Data introspection is one of the key features of SCV. Introspection allows for vari-
able manipulation without compile-time knowledge of the variable type. SCV
implements this feature using partial template specialization. From the user point
of view, SCV provides a standard abstract interface, scv_extensions_if,
through which the user can access and manipulate the desired data.

Chapter 15
SCV

SystemC Verification Library

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_15, © Springer Science+Business Media, LLC 2010

http://www.systemc.org>.

190 15 SCV

The scv_extensions_if class is an abstract interface. This means that the
class does not implement any methods directly. Instead, this interface contains five
components, which in turn provide the methods to manipulate the data. The com-
ponent interfaces are:

•	 scv_extension_util_if
scv_extension_type_if•	
scv_extension_rw_if•	
scv_extension_rand_if•	
scv_extension_callbacks_if•	

These components can be further categorized (Fig. 15.1) into two groups: static and
dynamic extensions. Static extensions do not require additional data to be associ-
ated with the extended data type. The type and rw interfaces provide the methods
for static extensions by letting the user extract data type information and to read and
write to the data object. On the other hand, dynamic extensions require additional
data to be associated with the extended data object for the purpose of storing con-
straints for randomization, and for storing callback function pointers.

We will present each of the sc_extension interface components, but will not

give an exhaustive coverage of all the methods, which are covered in detail in the
SCV specification.

15.2.1 Components for scv_extension Interface

As mentioned above, there are five components in the scv_extension inter-
face. This section will give a quick overview of the five components, and then we
will develop some of the details in later sections.

The util component provides the utility methods to obtain information about
the data, including the name of the data object, whether dynamic extensions are
supported, and whether the data object is a valid extension. SCV supports both C/
C++ and SystemC built-in data types. In the following example (Figs. 15.2 & 15.3),
the code tests whether the user-defined type has valid extensions.

In the example (Figs. 15.1 & 15.2), the test for valid extensions will fail unless the
Packet struct is extended. We will cover user-defined data type extensions in the next
section.

sc_extensions_if

static dynamic

util type rw rand callbacks

Fig. 15.1 sc_extensions_if components

19115.2 Data Introspection

Another sc_extension component, type, provides methods to extract data
type information, including type name and bit width. SCV provides the data types
shown in Fig. 15.4:

//File: Packet.h
struct Packet { // user-defined type

enum type { SIMPLE, EXTENDED };
 type mode;
sc_uint<16> address;
sc_uint<32> data;
};
ostream&operator<<(ostream& os, const Packet& p) {
os<< "{"
<<((p.mode==p.SIMPLE)?"SIMPLE":"EXTENDED")
<<hex
 << ":addr ess=0x"
<<p.address

<<",data=0x" << p.data

<<"}";
return os
}

Fig. 15.2 User-defined type

#include "Packet.h"
if (scv_get_extensions(Packet).has_valid_extensions())

{
 // Tests to see if
 // Packet has a valid
 // extension
 ….

}

Fig. 15.3 Test for extensions on user-defined type

enum data_type {
 BOOLEAN,
 ENUMERATION,
 INTEGER,
 UNSIGNED,
 FLOATING_POINT_NUMBER,
 BIT_VECTOR,
 LOGIC_VECTOR,
 FIXED_POINT_INTEGER,
 UNSIGNED_FIXED_POINT_INTEGER,
 RECORD,
 POINTER,
 ARRAY,
 STRING
}

Fig. 15.4 Supported data types for sc_extensions_if

192 15 SCV

The next component of the sc_extension interface is rw, which provides
methods to read and write to the data object. Using this interface might seem cum-
bersome, when all you want is to obtain or set the data, but it lets your code be
written more generically and thus, it is more maintainable. The example in Fig.
15.5 shows how the type and rw components might be used.

The last two components are rand and callback, which provide the meth-
ods to perform random operations on the data and register for callbacks. Recall that
rand and callback are dynamic components that require additional data associ-
ated with the object. These components will add some overhead to your code
execution.

As the name implies, the rand component provides the interface to generate a
random data stream for your extended object. Used with the SCV constraint class
and weighted randomization techniques, this interface becomes a powerful tool for
building a full-featured testbench. We will cover this interface in more detail later
in the chapter.

As for the callback interface, the methods provided let the user register
for callback if the value of the extended object has either changed or been
deleted. You will need to write your own callback function and implement the
actions required upon such a change. We will present more on callbacks later
in this chapter.

15.2.2 Built-In scv_extensions

As we mentioned before, SCV provides extensions for all the built-in C/C++ and
SystemC data types.In addition to the extension methods discussed so far, the tem-
plate extensions also include operators that let you manipulate the extended objects
as you would a built-in type. For example, you can use +=, <<=, *=, etc. on the
extended data objects to perform simple operations. The template extensions also
provide read() and write() functions to access the data.

void print_data(scv_extensions_if* data_ptr) {
 switch(data_ptr->get_type()) {
 case scv_extensions_if::BOOLEAN:

cout<<data_ptr ->get_type_name()
<<“_value is: “
<<data_ptr ->get_bool();

…
 }//end switch
}// end print_data

Fig. 15.5 Using type and rw components

19315.3 scv_smart_ptr Template

15.2.3 User-Defined Extensions

In some cases, you may want data introspection on your user-defined type. To extend the
user data object, you must implement the partial template specialization of the scv_
extensions. Let us demonstrate in Fig. 15.6 by using the example shown earlier.

Fortunately, Cadence Design provided an open source Perl script,
tb_wizard_ext, that takes your user-defined type as input and generates the
appropriate partial template specialization. We have included the script in the
examples that go with this book.

15.3 scv_smart_ptr Template

In most cases, it is easier to use a template provided by SCV to handle the scv_
extensions pointer. The scv_smart_ptrclass acts just like a C++ pointer to
the scv_extensionsobject. Under the hood, the template incorporates both
scv_extensions and scv_shared_ptrobjects:

The scv_shared_ptr lets multiple threads share data objects by implement-
ing the necessary memory management. To use this template, instantiate the object
with the appropriate data type.

scv extensions
object

scv shared
pointer object

scv_smart_ptr

Fig. 15.7 scv_smart_ptr template

//File: Packet_ext.h
#include "Packet.h"

// Extend above user-defined type as follows:
SCV_EXTENSIONS(Packet) {
public:

scv_extensions<sc_uint<16>> address;
scv_extensions<sc_uint<32>> data;
SCV_EXTENSIONS_CTOR(Packet) {
SCV_FIELD(address);
SCV_FIELD(data);

 }
bool has_valid_extensions() { return true; }
};

Fig. 15.6 Extending user-defined types

194 15 SCV

An important feature of the smart pointer is that it implements both the static and
dynamic components of the scv_extensions_if. This feature means that you
can use the smart pointers to implement randomization and register callbacks. We
will revisit the smart pointers later in the chapter.

15.4 Randomization

Traditionally, hardware designs have been verified using directed testing methodology.
In recent years, there has been more focus on using random testing methodology to
achieve wider test coverage. In many situations, verification engineers implement a
combination of directed and random tests to achieve their testing goals.

In directed testing, one creates certain scenarios to test each feature of the
design. If you want to vary sequences of reads/writes, packet size, address, block
sizes, or data values, you must do so manually. When one creates tests using ran-
domization, the stimulus is created using constrained randomization. The expected
results can be calculated with a reference model, possibly your system model.

In a unit test environment, it may be desirable to use directed testing and make
sure your design block is behaving correctly as you walk through all the scenarios.
Some others advocate doing directed unit testing by way of a fully constrained
(constrained to one value) random testbench.

In system-level verification, this approach becomes tedious and time consuming. It
becomes difficult for the human to consider all possible combinations of test vectors that
are required to test all features in normal and boundary conditions. Using random testing
methodology, you can easily create many different scenarios for the test stimulus.

SCV provides the infrastructure for you to create basic randomization, con-
strained randomization, and weighted randomization tests. We will cover the basics
of these random concepts and provide some demonstration of how to use the SCV
library using the standard API. We will also cover two important sc_inter-
face_if templates used for randomization: scv_smart_ptr, and scv_bag.

15.4.1 Global Configuration

SCV provides a random class, which provides the basis for the random stream
generator. Before generating a random number for your data variable, you may

scv_smart_ptr<Packet> pPkt;

pPkt->address = 0;
pPkt->data = 0;

Fig. 15.8 Using scv_smart_ptr on user-defined type

19515.4 Randomization

want to set some global configuration parameters to define the desired random
distribution or seed value. By default, SCV uses the jrand48 () algorithm from
the standard C library, but you may choose a different algorithm or customize your
own by using the set_default_algorithm method. The following is a list of
possible algorithms to choose from:

In addition to the algorithm, you can also specify the method by which the ran-
dom values are generated. By default, the mode is set to RANDOM, which enables
the data to be generated across all possible values for that data. For example, ran-
domizing an sc_uint<8> with this mode allows 28 possible values to be gener-
ated in the data stream. On the other hand, you can specify regions of values to keep
in or out from the generated data by specifying the DISTRIBUTION mode.
Specify the mode by calling the set_modemethod and selecting one of the four
modes described next:

•	 RANDOM—uniform distribution across all legal values
•	 SCAN—maintains the history; starts with the smallest legal value
•	 RANDOM_AVOID_DUPLICATE—maintains the history; avoids duplicated val-

ues until all legal values have been generated, at which point it resets the
history

•	 DISTRIBUTION—uses specified constraints to affect generated values

Another important configuration is the seed value. Through the scv_
random::set_global_seed method, the user can change the default seed at
the start of simulation. If unspecified, SCV defaults the seed to 1. You may also
reset the seed during the simulation by calling scv_random::set_current_
seed, which will set the seed for the next generated random number. While most

enum value_generation_algorithm {
 RAND,
 RAND32,
 RAND48, // default
 CUSTOM // requires further configuration setup
}

Fig. 15.9 List of randomization algorithms

enum mode_t {
 RANDOM,
 SCAN,
 RANDOM_AVOID_DUPLICATE,
 DISTRIBUTION

}

Fig. 15.10 Supported modes using the set_mode method

196 15 SCV

users will set the global seed, you may want to consider generating a unique seed
for each process thread. This implementation allows for better repeatability that is
independent of your SystemC simulator, and therefore independent of any sched-
uler differences.

Lastly, you can further control your randomization by enabling or disabling the
random feature on a per-data-object basis. If you have a composite type, you can also
choose to turn off randomization for just one of the data members. The methods to
do this are enable_randomization() and disable_randomization().

15.4.2 Basic Randomization

When you have decided to use randomization in your testbench, the most basic
feature you need is to generate random sequences for your data object. If you have
extended your object using scv_extensions, you can generate a random
sequence by calling the next method in the scv_extensions_if random
component interface as shown in Fig. 15.11.

In the example, next() returns one of 232 possible integer values for address
and data. In a composite type such as Packet above, you can opt to disable selective
data members for randomization. For instance, the code in Fig. 15.12 allows only
the data to be randomized:

Alternatively, you can call next() on just the data member you want to ran-
domize as shown in Fig. 15.13.

scv_smart_ptr<Packet> pPkt;
pPkt->address.next();

Fig. 15.13 Selective randomization

scv_smart_ptr<Packet> pPkt;
pPkt->address.disable_randomization();
pPkt->next();

Fig. 15.12 Disable randomization

#include “Packet.h”
scv_smart_ptr<Packet> pPkt;
pPkt->next();//creates random values for address &
data

Fig. 15.11 Generating random stream on user-defined type

19715.4 Randomization

If you need to constrain the randomization to a range of values, or weigh small
packets to occur more often, you will need to use constrained random or weighted
random methods as described in the following sections.

15.4.3 Constrained Randomization

Constrained randomization restricts the random generated data stream by letting
you specify allowable regions or values. SCV provides a constraint class, scv_
constraint_base, with convenient macros to specify each constraint rule. The
following is a list of the macros:

•	 SCV_CONSTRAINT_CTOR—constructor for the constraint class
•	 SCV_CONSTRAINT—defines a hard constraint
•	 SCV_SOFT_CONSTRAINT—defines a soft constraint
•	 SCV_BASE_CONSTRAINT—defines a base constraint

The constraint class uses scv_smart_ptr to implement the randomized data. To
define a constraint, first create a constraint class to define rule(s) for constraining
your data type. This class must inherit from the base constraint class, scv_con-
straint_base, and implement the constructor.

An important point to note in the constraint macros concerns the use of the
parenthesis operator to construct Lamda1 expressions. Notice that every reference
to a data member is followed by an empty parenthesis pair (i.e., “()”). This syntax
is needed because the class creates an internal representation of the constraint equa-
tions, which are used with a solver. Detailed explanation of how this is accom-
plished goes beyond the scope of this book, but suffice it to say that these
parenthesis pairs are required. It should also be noted this it is a common error to
forget to supply these pairs when coding.

1 The inquisitive reader may choose to research Lamda calculus to understand the reasons for this.
Basically, the SCV needs to store equations to allow it to do constraint solving.

class Pkt_constraint
 :virtual public scv_constraint_base {
public:
scv_smart_ptr<Packet> pPkt;
SCV_CONSTRAINT_CTOR(Pkt_constraint) {
 // define constraints
SCV_CONSTRAINT(
 (pPkt->address() != 0x00000000) &&
 (pPkt->address() < 0x00000800)
);
SCV_CONSTRAINT(pPkt->data() >= 0x00001000);
}
};

Fig. 15.14 Constraint class

198 15 SCV

To use the constraint, instantiate as you would any class as illustrated in Fig. 15.15:

By default, SCV_CONSTRAINT specifies hard constraints. Using hard con-
straints means that if SCV cannot find a legal value for this constraint, it will gener-
ate an error and ignore the constraint. You can specify a soft constraint,
SCV_SOFT_CONSTRAINT, and SCV will generate only a warning if it cannot
find a legal value.

Since constraints are captured in a constraint class, you can build hierarchical
constraints using inheritance. Start with a basic constraint class defining fundamen-
tal constraints and add in more complicated constraints using hierarchy to define
more specific or complicated constraints.

15.4.4 Weighted Randomization

While constraints are used to define legal values of the random data stream, weighted
randomizations are used to define frequency of certain generated values. SCV pro-
vides some methods to define simple distribution through scv_extensions:

•	 keep_only—define a value or range of values to include in distribution
•	 keep_out—define a value or range of values to exclude in distribution

When you call these methods, SCV automatically sets the randomization mode to
DISTRIBUTION and disregards any previous set_mode distributions for that par-
ticular data object. Likewise, any previous constraints defined for the data object are
also disregarded. Note that you can define multiple keep_only and keep_out
ranges for the data object, and the result is a cumulative effect of the defined ranges.

In some cases, you may want to define more complicated distribution rules for
your data. In this case, SCV provides a templated class, scv_bag, to define rela-
tive weight of particular values that is illustrated in Fig. 15.17.

Pkt_constraint cPkt;

cPkt.next();
cout<< “data = “ << cPkt.pPkt->data <<endl;

Fig. 15.15 Using constraint class

scv_smart_ptr<Packet> pPkt;
pPkt->address.keep_only(1,9999);
pPkt->data.keep_out(0);
pPkt->data.keep_out(10000U,(1U<<30));

Fig. 15.16 Using keep_only and keep_out to define random distribution

19915.4 Randomization

In dealing with multiple smart pointer variables within a constraint, you can
specify distributions for each data member by using the set_mode method as
shown in Fig. 15.18.

class Pkt_constraint
: virtual public scv_constraint_base
{
public:
scv_smart_ptr<sc_uint<16>> address;
scv_smart_ptr<sc_uint<32>> data;
SCV_CONSTRAINT_CTOR(Pkt_constraint) {

// define constraints
SCV_CONSTRAINT(

(address() != 0x00000000) &&
(address() < 0x00001000));

SCV_CONSTRAINT(data() >= 0x1000);
}

};

void test() {

typedef pair <sc_uint<32>, sc_u int<32>> data_range;
scv_bag<data_range> data_dist;
//set range distribution for data
//data range (0x1000, 0xffff) occurs 30%
//data range (0x10000, 0x20000) occurs 70%)
data_dist.add(data_range(0x1000, 0xffff), 30);
data_dist.add(data_range(0x10000, 0x20000), 70);

Pkt_constraint cPkt;
cPkt.next(); //generate addr and data using

//constraints
cPkt.data->set_mode(data_dist);
cPkt.next(); //generate addr using

//constraints and generate
//data using ‘data_dist’
//distribution

}

Fig. 15.18 Changing randomization modes

// define a bag
scv_bag<int> intBag;

intBag.add(0, 25); //add 25 objects of value 0 to bag

intBag.add(1, 25); //add 25 objects of value 1 to bag

intBag.add(2, 50); //add 50 objects of value 2 to bag

scv_smart_ptr<int> smart_int;
smart_int->set_mode(intBag); //set smart_int

//distribution

Fig. 15.17 Using scv_bag to define random distribution

200 15 SCV

15.5 Callbacks

Callbacks present a powerful mechanism for monitoring variables (Fig 5.19). For
that purpose, the SCV provides two main methods, register_cb and remove_
cb. Once a function has been registered as a callback, it will be called anytime the
referenced object changes. It should be obvious that if abused, this usage can result
in a lot of overhead for the simulation. Therefore, you should use caution when
selecting which variables to use callbacks on.

Let’s look at a simple example in Fig. 15.20 of how to use a callback. For this
example, we will use the previously used Packet type.

This example illustrates the concept that more than one callback may be regis-
tered on an object.

enum callback_reason {
 VALUE_CHANGE,
 DELETE
}
// Register a simple callback function
callback_h register_cb (
void (*f)(
scv_extensions_if& OBJ,
callback_reason REASON
)
);
// Template method registers a callback function
// with an extra argument in a type-safe manner
template<typename T>
callback_h register_cb(
void (*f)(
scv_extensions_if& OBJECT,
callback_reason REASON,

T ARG
),
 T arg
);
// Remove existing callback
virtual void remove_cb(callback_h HANDLE);

Fig. 15.19 Interface for callbacks

20115.6 Sparse Arrays

15.6 Sparse Arrays

Almost a seemingly unrelated topic, a model for a sparse array is included in the
SCV, but it is not completely unrelated. Memories and large memories are a part of
almost every electronic system today. When simulating memories in a system, it is
not possible to simulate a 4 GB memory while running on a 2 GB simulation com-
puter without some compromises.

Fortunately, most of the time, simulations only use a tiny fraction of a large memory.
For that reason, it makes sense to model memories as sparsely populated. Although, one
could use a standard STL map<> container for this purpose; there are several useful
extensions that make the scv_sparse_array a better choice. For one, reading an

#include “Packet.h”

static unsigned changes;
// A function to monitor changes on a Packet
void Packet_cbA(
scv_extensions_if& obj,
scv_extensions_if::callback_reason reason
) {
if (reason == scv_extensions_if::VALUE_CHANGE) {
cout<< "Packet " << obj.get_name()
<< " value change to " << obj.get_unsigned()
<<endl;
 } else {
cout<< "Packet " << obj.get_name()
<< " deleted." <<endl;
 }
}
void Packet_cbB(
scv_extensions_if& obj,
scv_extensions_if::callback_reason reason
) {
 if (reason == scv_extensions_if::VALUE_CHANGE) {
 changes++;
 } else {
cout<< changes << " distinct values"
<<endl;
 }
}
scv_smart_ptr<Packet> pPkt1(“pPkt1”),pPkt2(“pPkt2”);
scv_extensions_if::callback_h
 h1A(pPkt1->register_cb(Packet_cbA)),
h1B(pPkt1->register_cb(Packet_cbB)),
 h2A(pPkt2->register_cb(Packet_cbA));

for (int i=0; i!=10; ++i) {
 pPkt1->next(); pPkt2->next();
}
pPkt1->remove_cb(h1A);

Fig. 15.20 Example callback

202 15 SCV

unwritten location returns a default value. Another aid is the definition of memory bounds
(i.e., upper and lower limits for the address). Fig. 15.21 is the constructor syntax.

The first typename, T1, designates the type of the index for the sparse array. The
second typename, T2, designates the data value types. Accessing the memory is
straightforward. Here is an example:

One thought that comes to mind when modeling a system that may use
 consistently sized chunks of memory (e.g., a 256 or 1024 block of data), suggests
deriving a custom sparse array that contains blocks of data (e.g., a vector<T>)
sized to contain the data. Using a custom sparse array may prove more efficient
when treating small groups of locations repeatedly.

15.7 Transaction Sequences

In many systems today, test teams are faced with the obstacle of verifying complex
designs. In some cases, the testbench itself requires a great deal of work, including
code partitioning, design for reusability, and flexibility. In many cases, you can use
the concept of transaction-based testing to help achieve these goals. Throughout the
book, you have been exposed to various SystemC constructs that let you design a
transaction-based testbench.

scv_sparse_array<T1,T2> NAME(
const char * name,
const T2& default_value,
const T1& indexLB = 0,
const T1& indexUB = INT_MAX
);

Fig. 15.21 Creating a sparse array

scv_sparse_array<unsigned,short> mem(“mem”,0,0,1e6);
scv_smart_ptr<unsigned> a_ptr;
scv_smart_ptr<short> d_ptr;
a_ptr->keep_only(0,1e6);
d_ptr->keep_out(0);
for (unsigned count=0; count!=30; ++count) {
 a_ptr->next(); d_ptr->next();
 mem[*a_ptr] = *d_ptr;
}
for (unsigned count=0; count!=30; ++count) {
 a_ptr->next();
 *d_ptr = mem[*a_ptr];
cout<< *d_ptr <<endl;
}

Fig. 15.22 Sparse array example

20315.8 Transaction Recording

A transaction is a set of activities defined by a start and finish and lasting a
 certain duration. For example, a read or write to memory is considered a transac-
tion, including arbitration and transfer of data.

15.8 Transaction Recording

The SCV 1.0 library provides a set of APIs that lets the user record transactions.
According to the OSCI documentation, this set of APIs is not an official part of the stan-
dard yet; however, many companies are using the interface. So, it is unlikely to go away.
Furthermore, several commercial EDA tools are available to help visualize the results.

The APIs are categorized into three classes:

•	 scv_tr_db—transaction database containing a collection of transaction streams
•	 scv_tr_stream—transaction stream containing a collection of transactions
•	 scv_tr_generator—transaction generator for a specific transaction type

In a given simulation, you can instantiate one or more collections of transaction
streams. This instantiation is usually done in sc_main. Then, within your mod-
ules, instantiate the scv_tr_stream and scv_tr_generator objects.
A simple data recording example follows is shown in Fig. 15.23.

// note, scv_tr_db instantiated in sc_main.

class simple_transactor : public simple_ports {
scv_tr_stream read_stream;
scv_tr_generator<sc_uint<8>, sc_uint<8>> read_tr;
SC_CTOR(simple_transactor)
 // assign a name and type to your read_stream
 :read_stream(“read_stream”, “transactor”)
 // assign name to this transaction generator
 // associated with the stream, and assign names
 // to the associated attributes.
 ,read_tr(“read”, read_stream, “addr”, “data”)
 {…}

sc_uint<8> read(sc_uint<8>&* addr) {
 // signals the start of a transaction
 scv_tr_handle xactionHandle =
 read_tr.begin_transaction(addr);
sc_uint<32> data;
 //process read
 …
 // signals the end of the transaction
 read_tr.end_transaction(xactionHandle
 ,data);
return data;
 }
};

Fig. 15.23 Transaction recording

204 15 SCV

Every time the read function is called, it records the transaction to the stream
with a unique handle, and the transaction is terminated when the read transaction is
done.

We encourage the reader to explore more advanced features of transaction
recording in the SCV documentation. Be sure to see the exercises at the end of this
chapter.

15.9 SCV Tips

Some simple observations are in order:

1. SCV extensions carry overhead both in execution speed and size. Be judicious in
their use.

2. When designing constraints, remember to use the operator() to reference
values.

3. Consider the option of overriding the next() method as a means to controlling
the randomization.

4. Understand the distribution of your data when using a sparse array. For small
arrays, a normal vector may be sufficient.

5. Don’t abuse callbacks. Be strategic.
6. There is no substitute for a well thought out design.

15.10 Exercises

For the following exercises, use the samples provided at www.scftgu.com

Exercise 15.1: Randomize 1000 structs containing two ints and display a
histogram of their distribution. Divide the space into approximately 100 buckets.

Exercise 15.2: Using the same base code as in exercise 15.1, add restrictions to
keep the random numbers in the ranges of 0–10 and 16–100.

Exercise 15.3: Create a distribution of –p to +p using floats. Using scv_
bag, create a sinusoidal distribution.

Exercise 15.4: Create a custom structure to represent a configuration register
space for a cell phone. Include fields for transmit/receive frequencies, display types
(LCD, plasma, none), supported email and the phone number. Be sure the phone
numbers are the correct number digits for your region. Restrict randomization of
phone numbers to legal values for your region (e.g., USA uses athree-digit area
code and a seven-digit number and neither group may begin with 0 or 1). Randomize
16 times and display. Use constraints to ensure numbers are not duplicates.

Exercise 15.5: Use callbacks to implement functional coverage with an STL
map.

http://www.scftgu.com/Book/

20515.10 Exercises

Exercise 15.6: Try using a sparse memory to model automobiles on a grid. Try
using an STL pair as the index to model the x,y coordinate system.

Exercise 15.7: Explore transaction recording by reviewing, compiling and run-
ning the recording_ex code in the downloads.

207

In Chapter 2, we introduced the concept of transaction-level modeling-based
(TLM) methodology. In the chapter, we talked about some of the reasons why one
would use a TLM methodology, including design exploration, early hardware/software
integration, and early verification development. Clearly, any one of the above is a
good reason to develop a TLM model.

To implement a TLM methodology, there needs to be a precise definition of a
TLM standard. This standard should be flexible enough to work at different levels
of abstraction and be protocol-independent. Currently, there are various working
groups defining a TLM specification. In this chapter, we will focus only on the
Open SystemC Initiative (OSCI) TLM 1.0 standard, and we will provide a glimpse
of objectives planned for the next release at the time of this writing.

16.1 Introduction

The OSCI TLM 1.0 specification was created in response to a need to standardize
a TLM definition. The core component of the specification offers a set of TLM
interfaces that define the APIs required for unidirectional blocking interface, unidi-
rectional non-blocking interface, and bidirectional blocking interface. The specifi-
cation also defines a set of channels that implement the above interfaces. While it
is possible to define your own channels, the supplied example channels should be
sufficient for the user to connect most system components.

In addition to a set of APIs, the OSCI TLM standard offers other benefits includ-
ing abstraction, speed, and reuse. Using the TLM components, you can design a
very high-level abstract model, refine portions of the design, or mix a variety of
models at different abstraction levels. Of course, there are speed trade-offs to con-
sider as you develop your model. Earlier in this book, we discussed the different
abstraction levels including un-timed, approximate-timed, and cycle-timed. At the
most abstract level, the un-timed models give the best performance in terms of
speed. In many cases, this model can be refined further to an approximate-timed
model to achieve better accuracy, though with some simulation performance

Chapter 16
OSCI TLM

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_16, © Springer Science+Business Media, LLC 2010

208 16 OSCI TLM

degradation. Lastly, we need to mention the benefit of reuse in developing TLM
models. As with any standardized API, one of the benefits is being able to reuse the
components in different projects. In cases where there is a mixture of model
abstractions, you can develop specific transactors or adaptors and still model the
components together.

In the remainder of the chapter, we talk about the architecture of the TLM 1.0
standard, including the interface and channels, as well as offer an example of a
TLM-based design.

16.2 Architecture

The TLM 1.0 specification provides a definition for the TLM architecture, including
the transport layer, protocol layer, and user layer as shown below:

The transport layer is the heart of the TLM 1.0 specification. This layer focuses
on the fundamental APIs that define the transfer of generic data, using either block-
ing or non-blocking low-level calls. The SystemC components here include the
TLM interfaces that define the unidirectional put() and get() functions, as well
as examples of the channels that implement them. As we mentioned previously, the
user has the option to use the TLM channels supplied with the standard, or to create
their own custom channels that implement the underlying TLM interfaces. Some of
the components in the transport layer may include some generic system blocks such
as routers and arbiters to assist in the transport of data.

Fig. 16.1 TLM 1.0 Architecture

20916.2 Architecture

The protocol layer consists of the classes that interface directly with the trans-
port layer by calling the appropriate APIs. The OSCI standard provides simple
initiator and target example classes that you may use, but in most cases, you will
need to develop protocol-dependent code to interface with specific model
components.

Lastly, the user layer contains convenience methods that let the user access data
through simple function calls, such as reads, writes, block reads, and block writes.
Since user class definitions inherit from the protocol class definitions, the user
classes normally don’t need to change when the underlying protocols change.
The following diagram shows the interactions among the layers.

In the preceding diagram, the user layer defined by master, instantiates a specialized
port, the init_port, and calls the write() method in this class from an SC_
THREAD process. The initiator_port class implements the protocol layer
and calls the appropriate transport() function in the TLM channel, my_chan.
This example illustrates one of many possibilities. In an alternative example,
the transport() function could have been implemented in the target via an
sc_export<if> connection, which we will explore later.

Fig. 16.2 OSCI TLM approach

210 16 OSCI TLM

16.3 TLM Interfaces

The OSCI TLM 1.0 Standard is focused on specifying interfaces. There are three
interface categories defined in the OSCI TLM standard:

Unidirectional blocking interface•	
Unidirectional non-blocking interface•	
Bidirectional blocking interface•	

For abstract models, the SC_THREAD process style of coding is easier and more
convenient to use when implementing. Thread processes are allowed to use the block-
ing calls, which simplify the use of the TLM channels. Method processes may use
TLM channels, but are required to use the non-blocking functions. Using the non-
blocking interface will tend to be more complex than using the blocking style. Though
more tedious, some components may need to use this non-blocking style. The blocking
and non-blocking interfaces are supplied to allow the user flexibility in using either
SC_THREAD or SC_METHOD to their design modules. The following figure illustrates
the class hierarchy that implements all of the TLM 1.0 interfaces. The interfaces are
broken into get and put categories. As you can see, the standard divides the interfaces
into quite a few fine-grained classes to provide maximum flexibility.

Let us look at each of the interface categories in more detail. Because all
the methods are in the base classes, the methods are really not as daunting as the

Blocking,
Nonblocking
Interfaces

Unidirectional
Interfaces

tlm_fifo
Interfaces

tlm_blocking_get_if

tlm_blocking_put_if

tlm_nonblocking_get_if

tlm_noblocking_put_if

tlm_get_if tlm_put_if

tlm_blocking_peek_if

tlm_nonblocking_peek_if

tlm_peek_if

tlm_blocking_get_peek_if

tlm_nonblocking_get_peek_if

tlm_get_peek_if

tlm_master_if

tlm_slave_if

tlm_fifo_debug_if

tlm_fifo_put_iftlm_fifo_get_if

Fig. 16.3 TLM 1.0 class hierarchy

21116.3 TLM Interfaces

preceding figures might imply. The derived interface classes represent convenience
groupings.

16.3.1 Unidirectional Blocking Interfaces

The following code shows the APIs defined in the OSCI TLM standard for a uni-
directional blocking interface, which loosely has behavior matching a FIFO.

The functions get() and put() correspond to the sc_fifo<T> read() and
write(). It should be no surprize that the get() and put() functions can contain
waits and only return when data is transferred. Thus, these functions can only be
called from an SC_THREAD process because SC_METHOD processes are not
allowed to wait.

The get interface contains an additional API that uses the tlm_tag<T>,
which allows a target to implement multiple versions of an interface.

The blocking interfaces also include classes used to check for data availability
without actually consuming the data. This is useful when designing a distributed
decode and each target needs to determine if the value presented is for the interogat-
ing target before consuming the data.

16.3.2 Unidirectional Non-Blocking Interfaces

Methods in the non-blocking category all have the prefix nb_. The following code
shows the syntax for the basic unidirectional non-blocking interfaces:

tlm_uni_channel<T> instance("instance");
instance.get(result_ptr);
result = get();
instance.put(value);

Fig. 16.4 Unidirectional blocking get interface syntax

tlm_uni_channel<T> instance("instance");
instance.peek(result_ptr);
instance.peek(result_ptr, offset);
result = peek();
result = peek(offset);
instance.poke(value);
instance.poke(value, offset);

Fig. 16.5 Unidirectional blocking interface syntax

212 16 OSCI TLM

As with the blocking counterparts discussed above, these APIs include nb_get()
and nb_put() functions.

These methods let users check whether data transfer will succeed before actually
calling the transfer functions. This set includes functions with return values or
events that indicate it is ok to proceed with the data transfer. Depending on the
FIFOs and number of requestors, the user is not guaranteed the success of the data
transfer even after waiting on the ok_to_put() and ok_to_get() events. You
can verify the success of your transfer by the fail/success return value from the
transfer functions.

Note that the non-blocking functions return a bool type. This return data type
indicates whether the data transfer actually occurred. These non-blocking interfaces
can be called from within both SC_METHOD and SC_THREAD processes.

There are also non-blocking debug interface methods that provide additional
features used primarily for verification.

Debug interfaces never consume time, because they are intended for debug.
The idea of the offset in the peek and poke routines is that the interface has
some depth (e.g., a FIFO). An offset of zero would indicate the topmost piece of

tlm_uni_channel<T> instance("instance");
if (!instance.nb_peek(variable, offset) {

next_trigger(instance.ok_to_peek())&
}
if (instance.nb_can_peek(offset)) {

cout << "instance available for get" << endl;
}
if (!instance.nb_poke(value) {

next_trigger(instance.ok_to_poke())&
}
if (instance.nb_can_poke()) {

cout << "instance available for poke" << endl;
}

Fig. 16.7 TLM non-blocking debug interfaces

tlm_uni_channel<T> instance("instance");
if (not instance.nb_get(variable) {

next_trigger(instance.ok_to_get());
}
if (instance.nb_can_get()) {

cout << "instance available for get" << endl;
}
if (not instance.nb_put(value) {

next_trigger(instance.ok_to_put());
}
if (instance.nb_can_put()) {

cout << "instance available for put" << endl;
}

Fig. 16.6 Unidirectional non-blocking syntax

21316.4 TLM Channels

information (i.e., what is retrieved with get()). Other values would probe deeper
into the interface. For a FIFO, the offset is somewhat obvious. For other constructs,
it is not obvious and would be documented by the channel creators.

16.3.3 Bidirectional Blocking Interface

The bidirectional blocking interfaces are provided for cases where there is a one-to-one
relationship between the request and response. This interface is provided as a con-
venience, since the underlying implementation can call the unidirectional blocking
put() and get() functions. In fact, the OSCI TLM standard implements the
transport channel example in this manner.

The request and response must be different classes to avoid ambiguities within
the class. This structure can be accomplished by deriving one function from the
other. This structure avoids a C++ ambiguity to differentiate the signatures of two
get()functions and put()functions within the class implementation.

Keep in mind that the unidirectional and bidirectional interfaces we just covered
are OSCI TLM’s core interfaces. The specification provides additional interfaces
that bundle some of the core interface APIs in addition to providing a debug
interface.

16.4 TLM Channels

As we mentioned before, channels implement the APIs of the interfaces they
inherit. The OSCI TLM standard provides three different example channels:

•	 tlm_fifo<T> - implements unidirectional interfaces
•	 tlm_req_rsp_channel<Req,Rsp> - implements two unidirectional

interfaces
•	 tlm_transport_channel<Req,Rsp> - implements bidirectional interface

Note that these channels are not part of the TLM specification. These channels
are provided as supplementary communication components. In some cases, you
may need to develop protocol-specific channels as required by your design.

The tlm_fifo<T> channel is modeled after the SystemC FIFO class, and
this channel implements the unidirectional interfaces, including both blocking

tlm_transport<REQ,RSP> instance;
result = instance.transport(request);

Fig. 16.8 Bidirectional blocking syntax

214 16 OSCI TLM

and non-blocking interfaces. The FIFO depth can be defined as any size from zero
to infinite depth.

The tlm_req_rsp_channel<Req,Rsp> implements two unidirectional
interfaces, using TLM FIFOS. One FIFO is used for request and the other is used
for response. From the connectivity point of view, the tlm_req_rsp_
channel<Req,Rsp> exports the put request FIFO interface and get response
FIFO interface to the master. Likewise, the slave is connected to the get request
FIFO interface and the put response interface.

The last example channel provided by TLM 1.0 is the tlm_transport_
channel<Req,Rsp>. Internally, this channel is implemented by a tlm_req_
rsp_channel<Req,Rsp> with a FIFO size of 1. The master is connected via a
tlm_transport_if<Req,Rsp> sc_export<T>, while the slave is con-
nected via the unidirectional interfaces.

16.5 Auxiliary Components

Thus far in this chapter, we have focused on the core TLM 1.0 APIs that define the
communication between design components. We also covered some basic OSCI
TLM channels that are provided as optional components to the TLM standard.
In this section, we focus on the components you will need to model your designs.

In many systems, designs typically contain multiple components including masters,
slaves, routers, and arbiters. Regardless of function, each component is connected
via a port/export pair, or through an intermediate channel.

The OSCI TLM 1.0 kit provides documentation, working examples, and example
components masters, slaves, an arbiter, and a router. These components and example
configurations provide a base for developing your own TLM components. Developers
new to SystemC should study these examples closely; some features are subtle such
as model connectivity and the use of specialized ports for detail abstraction.
Developers would be well served, if they created their own block diagrams to trace
model connectivity, and review the previous chapter on specialized ports.

tlm_fifo_get_if
tlm_fifo_put_if

tlm_req_rsp_channel

master slave

Fig. 16.9 tlm_req_resp_channel

21516.5 Auxiliary Components

16.5.1 TLM Master

The figure below shows a master instantiating a port using the tlm_trans-
port_if<Req,Rsp> interface.

Notice that the master can be easily modified to use a different interface by
changing its port specification. Of course, the channel will need to match the cor-
responding interface. In this example, we have defined a single port master, but you
may find it necessary to instantiate multiple ports, each of which may be connected
via different interfaces.

Next, note that the request and response types are user-defined and can be
customized to your design requirements. Lastly, the example shows a master
connected to a channel. In some cases, you may want to directly connect the master to
a memory target, bypassing channels entirely. This structure is possible if the target also
defines the same port TLM interface and implements the associated APIs, as
described in the next section.

16.5.2 TLM Slave

A TLM slave contains similar components. The following figure shows a slave
target connected to a master via an sc_export<T> and sc_port<I> connec-
tion, respectively. In the example, both ports are declared with the bidirectional
interface, tlm_transport_if<Req,Rsp>. Subsequently, the slave must
implement the interface API, transport() function.

tlm_channel

 transport()…

tlm_transport_if

class master : public sc_module {
public:
sc_port<
tlm_transport_if<

 basic_request< ADDR, DATA >,
 basic_response< DATA >
 >
 > init_port;
 …
};

Fig. 16.10 Master connected to TLM channel

216 16 OSCI TLM

The designer is free to choose any of the TLM interface, transfer data type, and
number of ports for the module. Just make sure the interface is the same between
connections and the data type is consistent between modules.

16.5.3 Router and Arbiter

Routers and arbiters are often used in designs to model real systems. As components
in TLM modeling, they transfer data in the same manner as master and slave components
we just discussed. The router uses the sc_export<I> construct for connection,
and the router master interface uses the sc_port<I> construct for connection as
shown below. Note that the TLM 1.0 kit examples have some interesting names.

sc_port<tlm_transport_if<…> >

class slave

:public sc_module
,public virtual
tlm_transport_if<…>
{
public:
sc_export<
tlm_transport_if<

 basic_request< ADDR, DATA >,
 basic_response< DATA >
 >
 > target_port;
 …
 // declare TLM API to implement
 basic_response<DATA> transport(…);
};

master

sc_export<tlm_transport_if<…> >

Fig. 16.11 TLM slave and TLM master connection

Fig. 16.12 TLM router

21716.6 A TLM Example

The OSCI TLM provides an example of a basic router utility that uses a specialized
port to communicate to TLM targets.

The OSCI TLM arbiter uses polling to get requests from its master interface
ports as shown below. When the arbiter finds a request on the master ports, it
forwards the request onto the TLM target. The OSCI arbiter uses a starving
priority algorithm, which you may want to consider modifying based on your
design.

As with the TLM channels, the master, slave, router, and arbiter components are
not part of the OSCI TLM 1.0 specification. However, these utilities can be used to
start off a high-level abstract design with very little effort.

16.6 A TLM Example

In this section, we will discuss using the TLM methodology to design a realistic
system. When creating a system-level design, it is important to ask yourself what
the purpose of your model is. As we mentioned earlier in the chapter, a TLM model
can be used to aid architectural exploration, verify system performance, assist in
early software development, or aid in functional verification.

In some cases, your model may be used for multiple purposes, which means
your system-level model architecture should also facilitate modeling at different
levels of abstraction. The example in this section will focus on a high-level abstract
system model that can be used for architectural exploration and software develop-
ment. In addition, we will present some simulation performance statistics that show
significant incentives for using TLM modeling.

The figure below shows the system block diagram for a Voice-Over-IP (VoIP)
design. This system uses many typical SoC components, including a processor,
flash memory, RAM, and IO devices. All system components are connected
using TLM.

Fig. 16.13 TLM arbiter

218 16 OSCI TLM

This system model simulates a home network with multiple PCs and a phone.
The WAN model generates incoming Ethernet traffic, the LAN model generates
output Ethernet traffic, and the phone model generates in/out phone traffic.
Specifically, we would like to simulate a 20 second phone call during simultaneous
network traffic.

Each IO device uses the same initiator class, configured to generate different
types of traffic. In addition, each IO device also instantiates a target port to support
programmer’s view, which allows bit accurate control and status register access.
The target models are simple memories with storage capabilities and read/write
timing delays. The router is an address decoder, and the arbiter uses a simple round-
robin algorithm. Our CPU model simulates random traffic to memory and also
loads device drivers for each IO device. The device drivers manage transmit and
receive queues on the IO devices, transfer received packets to destination NICs, and
manage buffer allocation.

The following figure shows how the target finally processes an initiator request
using the tlm_transport_if<Req,Rsp> interface. First, a SystemC process
(e.g., testbench, stimulus generator, etc.) calls the initiator to issue a memory write
request. The initiator calls the transport() function via the TLM interface port,
init_port. At this point, the request may travel through other components,
including channels, routers, and arbiters, before finally arriving at the memory
target.

The target “receives” the write request in the form of a function call to its
transport() function and processes the request accordingly. Note that this inter-
face, tlm_transport_if<Req,Rsp>, is a blocking interface. This means that
the originating SystemC thread will block until it receives a response from the
slave.

Router
(Addr Decode)

Flash RAM RAM

CPU WAN
Model

LAN
Model

Phone
Model

Arbiter

sc_port<T>

sc_export<T>

router_port
initiator_port specialized

m1_to_ram

m0_to_ram

m2_to_ram

m3_to_ram

Fig. 16.14 VoIP system

21916.6 A TLM Example

By using this system model, we are able to validate and analyze several charac-
teristics about our design, including:

Bus sizing•	
Single cycle vs. block transfer vs. bus widths•	
Block diagram—identify all required blocks and IO•	
HW/SW partitioning•	
Memory partitioning and performance—separating instruction and data memory.•	
Memory access contention using the arbiter•	
Memory transmit/receive processing queue size•	
HW/SW interface•	

One advantage to designing a model at this level of abstraction is the simulation
performance. We simulated our model for 20 seconds, which only required 8.43

class slave : public sc_module,
public virtual tlm_transport_if<…>

{
public:
sc_export<…>target_port;

 …
 // implemented TLM API
 basic_response<DATA> transport(…){

switch(req) {
case WRITE:
mem_array[req.ADDR] =

req.DATA;
wait(write_delay);

 …
 }
 }
private:
unsigned mem_array[1024*1024];

};

class master:public sc_module{
public:
sc_port<…> init_port;
mem_write(…) {

rsp = init_port-

>transport(req);
 }
};

possible
intermediate
components

channels,
routers,
arbiters

Fig. 16.15 Transaction sequence via tlm_transport_if interface

220 16 OSCI TLM

seconds of CPU time; 42% of simulated time. Of course, your simulation performance
is heavily dependent on your designs and your host computer. We used timed
approximations for all read/write transactions, used an event-driven vs. polling
where possible, and used burst transactions for data transactions.

To summarize, TLM modeling is great for system design feedback. Doing so
requires a reasonable amount of effort, and the simulation performance lets you change
your design and re-simulate very quickly. Some important thoughts to remember are
to focus on what you are trying to achieve with your model, and leverage the existing
IP where possible.

16.7 Summary

In this chapter, we presented the OSCI TLM 1.0 standard, which defines a set of
TLM API interfaces. We also presented some of the main components for TLM
designs, including channels, initiator, target, router, and arbiter. With this knowledge,
you are ready to design a TLM system-level model.

Before you start your design you may want to review the TLM methodology
chapter earlier in the book. While we have focused on the “how” of TLM-based
design in this chapter, the TLM methodology discussion earlier in the book
discusses the “why” of TLM design and how it fits with project flow.

It will become apparent, that while one design group may use this methodology
for architectural exploration, another group may extend the design for another pur-
pose, such as early software development. It is important to understand the usage
model and create the system-level design to be flexible and to allow for different
levels of abstraction.

Finally, keep in mind that the material in this chapter applies to the OSCI TLM
1.0 standard. The OSCI TLM Working Group is currently developing the TLM 2.0
standard. The updated standard is targeting improvements in the TLM APIs, adding
generic data structures, and adding timing annotation capabilities. The API improve-
ments and generic data structures will help greatly in model interoperability, and the
timing annotation capabilities will allow faster simulations. We strongly encourage
the reader to find out more on both the TLM 1.0 and planned features for TLM 2.0
on the OSCI SystemC site, www.systemc.org.

16.8 Exercises

For the following exercises, use the samples provided at www.scftgu.com

Exercise 16.1: Using the TLM 1.0 example channels, create a simple design that
uses both the sc_fifo<T> and the tlm_fifo<T>. Discuss how these differ from
one another. In what situations might you prefer the TLM FIFO over the core FIFO?

http://www.systemc.org
http://www.scftgu.com/Book/.

22116.8 Exercises

Exercise 16.2: Write your own TLM FIFO derived from the tlm_fifo<T>
that adds the following features:

Add a monitor to efficiently count the number of times the FIFO becomes full •	
or empty, and report the count at the end of the simulation.
Add a monitor to determine the average FIFO depth.•	
Add a functional coverage monitor to determine how many different values •	
were placed in the FIFO and report the coverage at the end of simulation.
Create a testbench to exercise your FIFO.•	

Exercise 16.3: Discuss the advantages and disadvantages of passing arguments
by-value vs. by-reference. Explain data ownership and data lifetime. How might
the boost.org shared pointer class help this situation?

223

This chapter wraps up with a few simple observations on using SystemC to its
greatest advantage. The authors provide hints about ways to keep simulation per-
formance high and provide observations about the modeling language in general.
This chapter contains no exercises. We leave application to your individual
creativity.

17.1 Determinants in Simulation Performance

We sometimes hear comments from folks such as, “We tried SystemC, but our
simulations were slower than Verilog.” Such comments betray a common miscon-
ception. SystemC is not a faster simulator. The OSCI reference version of the
SystemC simulator has several opportunities for optimization, and there are EDA
vendors hoping to capitalize on that situation. More importantly, simulation perfor-
mance is not so much about the simulator as it is the way the system is modeled.

KEY POINT: SystemC simulation speed is linked directly to the use of higher
levels of modeling using un-timed and transaction-level concepts.

For all simulators (e.g., SPICE, Verilog, VHDL, or SystemC), there are a funda-
mental set of tasks that must be performed: moving data, updating event queues,
keeping track of time, etc. Any simulator simulating detailed pin-level activity and
timing information will provide a certain level of performance. Almost all simula-
tors for a given class of detail will perform within a factor of two or so.

No so long ago, cycle-based simulators were all the rage due to their advertised
speed. Problems arose when designers discovered that these simulators didn’t pro-
vide the same level of accuracy as their event-driven counterparts. Indeed, that was
exactly the reason they ran faster!

That said, RTL simulates at RTL speeds. Certainly, there are simulators that do
RTL better than others, but they still have the limitation of keeping track of all the
same details. A good optimizer may improve performance by finding commonali-
ties, but the improvement will be bounded.

Chapter 17
Odds & Ends

Performance, Gotchas, and Tidbits

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_17, © Springer Science+Business Media, LLC 2010

224 17 Odds & Ends

GUIDELINE: To improve simulation performance, reduce details and model at
higher levels of abstraction whenever possible.

It is possible to obtain dramatic speed improvements by keeping as much of the
system as possible at very high levels of abstraction, and only using details where
absolutely required. This approach has the effect of minimizing the number of simula-
tion context switches, which will keep performance high. That said, even if you are at
the right level of abstraction, it is necessary to limit the number of calls to wait().

Part of the problem lies with understanding what a given simulation is supposed
to accomplish. Ask yourself, “What question is this simulation model supposed to
answer?” For example, early in the design process the architect may wish to know
if a new algorithm even works. At this level, timing and pins are not really interest-
ing. A simple executable that takes input data and produces output for analysis is
all that is required. Timing should not be a part of this model. Sequential execution
is probably sufficient.

Another set of questions might be, “Have all the parts been connected? Have we
defined paths for all the information required to perform the system functions?”
These questions may be answered by creating a module for every component and
using a simple transaction-level model to interconnect the pieces. Cycle accuracy
should not be a concern at this point in the design.

17.1.1 Saving Time and Clocks

How can you live without time or clocks1? This is really quite simple. For instance,
suppose you need to model time to determine performance. Rather than coding a wait
for N rising edges, it is much more efficient to simply delay by N*clock_period.

Another common technique occurs when using handshakes. If you need to wait
for a signal, then simply wait on the signal directly. The hardware may do sampling
at clock edges, but that wastes time. If you really need to synchronize to the clock,
then do both, as follows:

Perhaps you need to transfer information from one port to another in the design. Even
though you know the result will be delayed through a FIFO over multiple clocks, there
is no need to create a FIFO. Just read it from the input, delay, and write it to the output.

1 We ask this question from an electronic system design perspective, not from a philosophical
perspective.

wait(acknowledge->posedge_event());
if (not clock->event()) wait(clock->posedge_event());

Fig. 17.1 Synchronized wait for a signal

22517.1 Determinants in Simulation Performance

Events are also a powerful way of communicating information. If you don’t really
need to test the value of a signal but are only interested in the change, it is more effi-
cient to use an event than an sc_signal<bool>. Earlier in the book, we illustrated
some primitive channels to do just this (e.g., in the heartbeat example).

Does your clock really need to oscillate at 100 GHz? Perhaps it would suffice to use
a higher level clock. Do you really need GHz, or are MHz or even KHz sufficient?

Another overlooked issue is using too much or too little resolution. For instance,
resolution should probably allow distinguishing at least ➮ clock periods for the fast-
est modeled clock.

17.1.2 Moving Large Amounts of Data

So, the model is efficiently using time, but it still seems to be simulating too slowly.
Perhaps you are attempting to move too much data. Do you really need to move the
data or do you just need to record the fact that data was moved and that an appropri-
ate amount of time has passed?

For example, perhaps you could model the movement of a chunk of data as fol-
lows instead of moving the actual data:

Now, you will need to modify the read/write routines in the channels to do some-
thing like this:

In->read(packet);
wait(50*clock_period);
Out->write(packet);

Fig. 17.2 Example of FIFO elimination

struct payload {
unsigned long byte_count;
unsigned value; // a single unique value
};

Fig. 17.3 struct for payload

void Bus<payload>::write(unsigned addr, payload data)

{
wait(data.byte_count*t_BYTE_DELAY);
// transfer the data

}

Fig. 17.4 Bus write with payload

226 17 Odds & Ends

Perhaps, you need to transfer the data, but how much data do you really need to
test the problem at hand? For instance, if dealing with video graphics, would a
small 64 x 48 pixel buffer suffice to test an algorithm, rather than a full 640 x 480
or larger frame?

Perhaps, you need to transfer a large block of data across the bus, but can you
model it using smart pointers instead? In other words, manage the chunk of simula-
tor memory with a pointer. We recommend you use a Boost.org smart pointer, or
the equivalent, to avoid problems with memory leaks or corruption.

Thus, you might have:

struct payload {
unsignedlong byte_count;
smart_ptr<int> pValues;
payload(unsignedlong bc)
: byte_count(bc)
{

pValues = new int[bc];
}

};

Fig. 17.5 Smart pointer with payload

Now, you are simply passing around a pointer and only manipulating the data
when it really needs to be manipulated.

Do you really need to fully populate a memory, or would a sparse memory
model suffice? The SystemC Verification library contains a very nice sparse mem-
ory model that is very easy to use.

17.1.3 Too Many Channels

Another interesting area for SystemC designers to watch is channels. Every channel
interaction involves at least two calls (producer and consumer), two events, and
possibly two copy operations. Hierarchical sc_port to sc_portconnections are
very efficient because they simply pass a pointer to the target channel at elabora-
tion. You will also find sc_export to sc_export hierarchical connections are
similarly efficient. Another efficient way of communicating is sc_port to sc_
export, since it can be implemented as a simple function call. If you find yourself
writing a process that merely copies one port to another, consider the possibility of
re-architecting the connectivity.

22717.1 Determinants in Simulation Performance

17.1.4 Effects of Over Specification

Often designers tend to think in terms of the final implementation rather than the
general problem being designed. This approach sometimes results in too much
specification. For instance, a behavior may be specified as a finite state machine
(FSM), when the real issue is simply a handshake or data transfer. Be careful when
presented with myriads of detail to abstract the real needs of the design.

17.1.5 Keep it Native

Keeping data native has already been discussed under data types earlier in the book,
but this topic bears repeating. Data types are an abused subject. Does the model at
hand really need to specify 17 bits, or would a simple int suffice? Native C++
data types will simulate many times faster than their SystemC hardware-specific
counterparts. Similarly, what do you gain using sc_logic? Is the unknown value
relevant to the current level of modeling? Once again, the issue is to model only
those items that will affect the results of the simulation.

17.1.6 C++ Compiler Optimizations

Depending on the stability of your model, you may want to consider looking at
optimizing your use of the C++ compiler. Many times, default make scripts assume
that the developer wants maximum debug visibility, and the compiler obliges with
additional visibility that may affect simulation performance.

When looking for maximum performance, make sure that your SystemC library
and your system design are compiled without a debug option. Additionally, some
compilers have switches that perform additional run-time optimizations at the
expense of increased compile time. If you plan to run extensive simulation with the
same model, it may pay to wade through the documentation for your compiler.

Another example, ensuring that #ifndef is on the first line of a header file
improves performance for some compilers.

17.1.7 C++ Compilers

Many folks begin their SystemC explorations on the native C++ compiler that comes
with their system, usually either GNU g++ or Microsoft Visual C++. It should not
be a surprise that commercial alternatives exist with even better optimization.

17.1.8 Better Libraries

The STL library that comes with most C++ compilers is not always the most effi-
cient implementation. There are commercial implementations of the STL that

228 17 Odds & Ends

should have much higher performance. The same can be said for the SystemC
libraries that come from OSCI. If you are concerned with performance, it is prob-
ably worth your time to investigate your options with commercial solutions if you
can afford it.

17.1.9 Better and More Simulation Computers

At the current rate of improvement in cost-performance, be sure you are running on
the latest technology. It’s a shame to not be spending $300-$1,000 for a potential
2x-3x performance gain. Similarly, why not increase the number of compute
engines and run two, three, ten, or even hundreds of simulations at the same time.
Compute farms are very effective for many types of modeling problems.

17.2 Features of the SystemC Landscape

Because SystemC is a C++ class library rather than a truly independent language,
SystemC has some aspects that seem to annoy its users (particularly experienced
designers from an RTL background). This section simply notes these aspects. Keep
in mind that part of the power of SystemC is the fact that it is C++, and therefore,
it is extremely compatible with application software.

17.2.1 Things You Wish Would Just Go Away

For the novice, just getting a design to compile can be a challenge. This section lists
some of the most common problems. All of them relate directly to C++.

Syntax errors in #include files often are reported as errors in the including
implementation (i.e., .cpp file). The most common error is forgetting to put the
trailing semicolon on a SC_MODULE, which is really a class.

The use of semicolons in C++ may seem odd at times. The class and
struct require a closing semicolon.

On the other hand, function definitions and code blocks do not require a
semicolon.

class myclass {
// Body

};
Required semi-

colon

Fig. 17.6 C++ class requires semicolon

22917.2 Features of the SystemC Landscape

Similarly, SC_FORK/SC_JOINhave the odd convention of using commas. This
punctuation is used because they are really just fancy macros.

SystemC relies heavily on templates. The templates have the annoying space
between the greater than brackets.

Inside the basic syntax of a module, sensitive and dont_initialize
methods must be tied to the immediately preceding SC_THREAD, SC_METHOD or
SC_CTHREAD registration. This tying is usually a lot easier to deal with if you
indent the code slightly relative to the registration. For example:

SC_CTOR(SomeModule) {
SC_METHOD(sync_method);

sensitive<< clock;
dont_initialize();

SC_METHOD(monitor_method);
sensitive<< rqst << ack;
dont_initialize();

SC_THREAD(compute_thread);
}

Indented relative
to registration

Fig. 17.10 Example of using indents to highlight registrations

sc_port<sc_signal_in_if<int> > data_ip;

Required space

Fig. 17.9 C++ template idiosyncrasy

void myfunction {
// Body

} No semicolon

Fig. 17.7 C++ function does not use semicolon

SC_FORK
sc_spawn(…),
sc_spawn(…),
sc_spawn(…)

SC_JOIN

Commas except
for last one

No braces

No semicolon

Fig. 17.8 C++ fork/join idiosyncrasy

230 17 Odds & Ends

dont_initialize brings up another issue common to SC_METHOD. Unless
you specify otherwise, all processes are executed once at initialization despite the
appearance of static sensitivity unless dont_initialize is used. For some, this
behavior can be confusing at first. Try to remember that all simulation processes are
run during initialization unless dont_initialize is applied.

17.2.2 Development Environment

What is the best way to address these idiosyncrasies besides just learning them? We
highly recommend obtaining language-sensitive text editors with color highlight-
ing, and we recommend obtaining lint tools designed specifically for SystemC. The
authors’ favorite text editor is vim in graphical mode, also known as gvim. You can
obtain a copy of vim from www.vim.org for almost any platform.

Other users are quite successful using emacs (graphical of course) or nedit. All
three of these editors have environments available for download that support
SystemC. You can obtain these from our web site.

Another interesting environment is Eclipse.
There are a few C++ lint tools and at least one lint tool focused on SystemC that

is commercially available2. Some EDA tools have built-in lint-like checkers. Your
mileage will vary, and we highly recommend a careful evaluation before commit-
ting to any of these tools.

17.2.3 Conventions and Coding Style

Coding styles are a well-known issue, and lots of C++ rules and guidelines exist.
Since SystemC is C++, this is a good starting point for SystemC coding guidelines.

Hardware designers have special issues to consider. Probably one of the best books
written on this subject for hardware design is the Reuse Methodology Manual for
System-on-a-Chip Designs by Michael Keating and Pierre Bricaud. Most of the con-
cepts presented there have direct application to SystemC. Let’s just touch on a few.

A name is a name, right? Wrong! Names of classes, variables, functions, and
other matters are a critical part of making your code readable and understandable.
If you have been observant, you will notice we’ve inserted various naming conven-
tions specific to SystemC in the examples. For instance, processes always have a
suffix of _thread, _method or _cthread. This convention is used because
wait() results in a run-time error when used with SC_METHOD, and visa versa
for next_trigger().

2 Actis Design www.actisdesign.com.

http://www.vim.org
http://www.actisdesign.com

23117.3 Next Steps

Similarly, we adopted a convention when addressing ports and probably you
should do likewise for using anything sc_signal<T> or otherwise supporting
the evaluate-update paradigm.

17.3 Next Steps

If you have read this far, you are probably considering adopting SystemC for an
upcoming project. Or, perhaps you have already started, and you are looking for
help moving forward. This section provides some ideas.

17.3.1 Guidelines for Adopting SystemC

In the fall of 2003, the authors presented a paper on the subject of language adop-
tion, “How to Really Mess Up Your Project Using a New Language” at the
Synopsys User’s Group in Boston, MA. We included a number of key points, which
we provide for your consideration.

 1. Don’t do it alone—Obtain management support.
 2. Doing things the same way will produce the same results regardless of the

language.
 3. Look at the big picture, the product or system—Not the small tasks.
 4. Don’t skimp on training—Obtain good formal training.
 5. Obtain mentoring.
 6. Adopt the new paradigm to gain the advantages of a new language.
 7. Specifications should use the appropriate level of abstraction for the new paradigm.
 8. Put coding discipline in place quickly with coding guidelines, lint tools, and

reviews.
 9. Choose templates approved by seasoned experts in the new language.
 10. Start automation and environment simply and cleanly.
 11. Evaluate EDA tools for the big picture.
 12. Insist on well-documented and supported tools in all areas including tools ver-

sion and configuration.
 13. Apply the technology to a pilot project that focuses on the big picture.

There are a number of companies supporting SystemC methodologies. A quick
visit to the OSCI web site www.systemc.org can provide a starting point. Or, visit
our web site, www.scftgu.com, for our view.

17.3.2 Resources for Learning More

For the readers who would like more information on SystemC extensions, we rec-
ommend the following resources for further study.

http://www.systemc.org
http://www.scftgu.com

232 17 Odds & Ends

For the readers still gasping for help with C++, here are some additional recom-
mendations for further study.

Table 17.2 C++ resources

Type Details

1 Book Koenig, A., Moo, B. Accelerated C++. Boston: Addison-Wesley, 2000.
A highly recommended textbook for learning to speak C++ natively.

2 Book Stroustrup, B. The C++ Programming Language. Florham Park, New
Jersey:Addison_Wesley, 2000. Probably the best C++ reference and
is written by the creator of C++.

3 Book Loudon, K. C++ Pocket Reference. Sebastopol, California: O’Reilly
& Associates, Inc., 2003. A convenient and reasonably organized
quick reference. Good for those who are not yet C++ experts.

4 Book Josuttis, N. The C++ Standard Library: A Tutorial and Reference.
Indianapolis, Indiana: Addison-Wesley, 1999. A complete reference
and good tutorial for the STL, a very useful library for modeling.

5 Web site Stroustrup, B. Definitive reference for C++ by the author of C++.
Retrieved March 2004 from:http://www.research.att.com/~bs/C++.
html

6 Tool van Heesch, D. Documentation system for C++ code. Retrieved March
2004 from: http://www.stack.nl/~dimitri/doxygen/index.html

7 Web site References for C++ programming. Retrieved March 2004 from: http://
www.cplusplus.com/

8 Book Henricson, M., Nyquist. E. Industrial Strength C++. Upper Saddle
River, New Jersey: Prentice Hall, 1996. (Online Version: http://
www.elho.net/dev/doc/industrial-strength.pdf)

9 Web book A free online book. Retrieved March 2004 from: http://www.mindview.
net/Books/TICPP/ThinkingInCPP2e.html

10 Article Hoff, T. C++ Coding Standard. Retrieved March 2004 from: http://
oopweb.com/CPP/Documents/CodeStandard/VolumeFrames.html

Table 17.1 SystemC resources

Type Details

1 Web site Starting point for SystemC. Retrieved March 2004 from: http://www.
systemc.org/. This site has several great papers and white papers as
well as email forums for getting help or discussing SystemC.

2 Web site The European SystemC Users Group web site. This site has additional
quality papers and additional news and activities. Retrieved March
2004 from: http://www-ti.informatik.uni-tuebingen.de/~systemc/

3 Web site The web site for the North American SystemC Users Group. Focused on
SystemC activities in North America. Retrieved March 2004 from:
http://www.nascug.org/

4 Web site References for SystemPerl HDL tools. Retrieved March 2004 from:
http://www.veripool.com/

5 Web site The web site for sharing Open Source SystemC IP, tool and concepts.
Retrieved July 2007 from http://www.greensocs.org/

6 Web site The web site for the Latin America SystemC Users Group. Focused on
SystemC activities in South America. Retrieved August 2007 from
http://www.lascug.org/

(continued)

http://www.research.att.com/~bs/C++.html
http://www.research.att.com/~bs/C++.html
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.cplusplus.com/
http://www.cplusplus.com/
http://www.elho.net/dev/doc/industrial-strength.pdf
http://www.elho.net/dev/doc/industrial-strength.pdf
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://oopweb.com/CPP/Documents/CodeStandard/
http://oopweb.com/CPP/Documents/CodeStandard/
http://www.systemc.org/
http://www.systemc.org/
http://www-ti.informatik.uni-tuebingen.de/~systemc/
http://www.nascug.org/
http://www.veripool.com/
http://www.greensocs.org
http://www.lascug.org/

23317.3 Next Steps

We hope you’ll be ready for our next book when we introduce topics such as the
SystemC assertions, and we go deeper into a discussion of SystemC design meth-
odologies and design styles. We also expect to provide updates as SystemC version
2.3, which is just now appearing on the horizon and will effect changes to the
standard.

Type Details

11 Article Baldwin, J. 1992. An Abbreviated C++ Code Inspection Checklist.
Retrieved March 2004 from: http://www.chris-lott.org/resources/
cstyle/Baldwin-inspect.pdf

12 Book Pressman, R. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 2001. (Online Version: http://www.rspa.com/about/
sepa.htm)

13 Web class Free C++ class based on an inexpensive tool. Retrieved March 2004
from: http://www.codeWarriorU.com/

14 Web class Free C++ class. Retrieved March 2004 from:http://www.free-ed.net/
fr03/lfc/030203/120/

15 Book Sutter,H & Alexandrescu, A. C++ Coding Standards, Addison-Wesley,
2004

16 Book McConnell, S. Code Complete, 2nd Ed., Microsoft Press, 2004

Table 17.2 (continued)

http://www.chris-lott.org/
http://www.rspa.com/about/sepa.htm
http://www.rspa.com/about/sepa.htm
http://www.codeWarriorU.com
http://www.free-ed.net/fr03/lfc/030203/120/
http://www.free-ed.net/fr03/lfc/030203/120/

235

This appendix provides an extremely quick review of C++ with an eye towards
those features used by the typical SystemC designer. We assume you already have
a programming background that includes C/C++. If you do not have this back-
ground, you might consider this appendix as a guide to topics you need to master.

Here’s what is covered:

Background of C++ Defaults for arguments
Structure of a C program Operators as functions
Comments Classes
Streams (I/O) Member data & member functions
Streaming vs. printf Constructors & destructors
Basic C Statements Initialization
Expressions & operators Inheritance
Conditional Access
Looping Polymorphism
Altering flow Constant members
Data Types Static members
Built-in data types Templates
User-defined data types Defining
Constants Using
Declaration vs. definition Names and Namespaces
Functions Meaningful names
Pass by value & return Ordinary scope
Pass by reference Defining namespace
Overloading Using names & namespaces
Constant arguments Anonymous namespace
Exceptions Standard Library tidbits
Watching & catching exceptions Strings
Throwing exceptions File I/O
Functions that throw STL

References

Appendix A
C++ Basics

A Quick Refresher

236 Appendix A

A.1 Background of C++

C++ is a multi-paradigm programming language that owes much of its existence to
BjarneStroustrup starting in 1980. It was originally designed to extend the C pro-
gramming language to add features to enable easier object-oriented programming.
In the end, it also added features that enabled modular programming, better data
abstractions, and generic programming. C++ was eventually standardized in late
1998 as ISO/IEC 14882 (current version is 2003). C++ is not completely backward
compatible with C, but it is close enough that probably 95% of C programs will
compile quite easily as C++. For more information on the history of C++, please
refer to the web page http://www.cplusplus.com/info/history.html.

A.2 Structure of a C Program

All C/C++ programs begin execution with a function known as main(). From there
(Fig. A-1), data types are instantiated (created), statements are executed, and func-
tions are called.

#include “headers”
// Declarations & definitions
int main(intargc,char* argv[]) {
 your_code_here
}

Fig. A-1. main.cpp

Normally, code is broken into separately compiled units consisting of two files:
a header file, and an implementation file. Header files usually consist of pure dec-
larations; whereas, implementation files contain the definitions of those declara-
tions. A common file pair might look like (Fig. A-2 & A-3):

#ifndef ADVANCE_H
#define ADVANCE_H
int get_count(void);
void advance(void);
#endif

Fig. A-2. advance.h

http://www.cplusplus.com/info/history.html

237A.4 Streams (I/O)

#include “advance.h”
namespace { int count(0); }// Initialize count to 0
int get_count(void) {
return count;
}//end get_count
void advance(void) {
 ++count;
}//end advance()

Fig. A-3. advance.cpp

A.3 Comments

Comments (Fig. A-4) and white space should be used liberally in any programming
language. White space helps guide the reader, which may be you several years
down the line. Comments should not describe the syntax, but should focus on the
nature of the algorithm, tricks employed to solve the problem, or some other non-
intuitive aspect of the code.

// Comment to end of line – recommended style
/* Embedded comment – does NOT nest */

Fig. A-4. C/C+ comments

The “/* */” comment style is recommended for use only when debugging. The
“//” comment style is preferred for general commenting because it is less likely
to result in errors (e.g., when a code segment is temporarily commented out with
“/* */”).

A.4 Streams (I/O)

One of the most notable features to C users is the manner of handling I/O. In particu-
lar, C++ programmers use a feature known as streaming I/O rather than the familiar
printf. The following is an example (Fig. A-5) of output followed by input:

238 Appendix A

#include<iostream>

using namespace std;

main() {
float f1, f2;
cout << “Enter 2 numbers separated by blanks: ”;
cin >> f1 >> f2;
cout <<“You entered “ << f1 << “ “ << f2 << endl;

return 0;

}

Fig. A-5. Example of streaming I/O

We illustrate this now to let us use it in subsequent discussion. Note that the
iostream objects, cout, cin, and endl, are part of the std namespace. To use
these objects, you must tell the compiler you are using the std namespace as indi-
cated above. Otherwise, you must specify std:: before each object in the stan-
dard library, i.e., std::cout.

A.4.1 Streaming vs. printf

Many C programmers wonder why they should use streaming I/O. One reason
is that it is type checked unlike the %s and %d arguments of printf. The second
reason relates to code reuse and ease of use when using complex types. This reason
will become evident later when considerations of object definitions are discussed.

A.5 Basic C Statements

This section will briefly touch on standard C statements, which form a foundation
for C++.

A.5.1 Expressions and Operators

Expressions normally take the form of assignment statements with arithmetic or
Boolean computations taking place on the right-hand side (RHS). In C, it is not required
that you store the result of an expression; however, C++ compilers will normally warn
about this situation. Consider the following (Fig. A-6) common expressions:

239A.5 Basic C Statements

a = b + (c = 7*j); // Notice assignment to c

error = (a < max) && (a > min);

++b;

c + 9; // results in a warning

Fig. A-6. Example of C++ expressions

Table A.1 shows a list of all the operators allowed in C++ in order of precedence.
The last column indicates the order of associativity, which is either left to right
(L2R) or right to left (R2L):

Table A.1. C++ operators

Prec Operator Description Assoc

1 ::
::

Scoping, global
Scoping, class

R2L
L2R

2 ()
[]
->
.
++ --

Grouping
Array access
Member access from pointer
Member accessa

Post-increment/decrement

L2R

3 !
~
++ --
+ -
*
&
(Type)
sizeof

Logical negation
Bitwise complement
Pre-increment/decrement
Unary plus/minus
Dereference
Address of
Cast
Return size in bytesa

R2L

4 ->*
.*

Member dereference from pointer
Member dereferencea

L2R

5 * / % Multiply, divide, modulus L2R
6 + - Addition, Subtraction L2R
7 <<

>>
Bitwise shift left
Bitwise shift right

L2R

8 <
<=
>
>=

Less than
Less than or equal
Greater than
Greater than or equal

L2R

9 == != Equality, inequality L2R
10 & Bitwise AND L2R
11 ^ Bitwise exclusive OR L2R
12 | Bitwise inclusive OR L2R
13 && Logical AND (shortcut) L2R
14 | | Logical OR (shortcut) L2R
15 ?: Ternary conditionala R2L
16 =

+= -=
*= /=
%= &=
^= | =
<<= >>=

Assignment R2L

17 , Sequential evaluation L2R
a Cannot be overloaded

240 Appendix A

A few important notes on operators are useful:
1. Mixing more than one pre/post-increment/decrement operator may have unde-

fined consequences. Consider (Fig. A-7):

a = i++ + i++; // legal syntax, undefined behavior

Fig. A-7. Abusing post-increment operators

2. The shortcut operators (&& and ||) can surprise you if the secondary expres-
sions have side effects or depend on side effects of the primary expression. For
instance, in the example below (Fig. A-8) if the right-hand side is uncondition-
ally evaluated, the code would abort when the pointer is a null (0). The shortcut
behavior avoids the abort.

ptr != 0 && ptr->next(); // avoids null pointer

Fig. A-8. Taking advantage of shortcut operators

3. Several operators have keyword alternatives that may be easier to read, espe-
cially when your text editor has keyword highlighting (e.g., vim, emacs, or
nedit). Here (Table A-2) is a list with our recommendations:

Table A.2. Alternate names for operators

Useful Distracting Annoying

&& and ^ xor &= and_eq
| | or & bitand | = or_eq
! not | bitor != not_eq
~ compl ^= xor_eq

4. Be careful not to abuse the ternary operator ?: because it can be confusing to
debug if nested. Often if-then-else is better.

5. Most of the operators have a second name, not shown, that is constructed by
preceding the symbol with keyword operator. For instance, operator+ is
the addition operator. This alternative name is for use with operator overloading
discussed in Section A.7.6.

6. Overloading syntax of pre/post-increment/decrement is a bit odd in order to dis-
tinguish between pre and post. Look them up if needed.

7. The operators dot (.), scope (::), ?:, and sizeof cannot be overloaded.

A.5.2 Conditional

There are two conditional statements (Fig. A-9): the if and the switch. It is
strongly suggested that you use curly brackets ({}) around all statements.

241A.5 Basic C Statements

if (expression) statement
else statement

switch (expression) {
case integral: statement
 …
default: statement
}

Fig. A-9. Conditional statement syntax

It is good practice to place a break statement after each case, since the behav-
ior without a break is to drop through into the succeeding case. It is also good
practice to always have a default case. Thus, a typical case statement might look
as follows (Fig. A-10):

switch (c) {
case ‘a’:
cout<< “Aborting…” <<endl;
break;
case ‘q’:
case ‘x’:
cout<< “Quiting” <<endl;
break;
case ‘c’:
cout<< “Quiting” <<endl;
break;
default:
cout<< “Unknown command ‘” << c << “’” <<endl;
break;
}//endswitch

Fig. A-10. Switch statement

A.5.3 Looping

Loops (Fig. A-11) are the essence of most functional programming.

while (expression)statement
do statement while expression;
for (init_expr;test_expr2;next_expr3)statement

Fig. A-11. Looping statement syntax

242 Appendix A

It is common to define for loops as the following examples (Fig. A-12)
demonstrate:

#include<vector>
for (int i(0); i!=10; ++i) {
code
}//endfor

std::vector <int> v;

typedef std::vector <int::iterator vint _iterator;

for(vint _iterator i(v. begin()); i!=v.end(); ++i) {
code; // iterator over elements of v
}//endfor

Fig. A-12. Typical for loops

Notice the local definition of the indexing variable. Also notice the code pattern
for iterating over an STL container (e.g., std::vector<>).

A.5.4 Altering Flow

With exception of the return and break statements, the following statements
(Fig. A-13) are used sparingly. The return statement is best used once at the end
of a function. The goto statement is almost never used.

break; // exit a case, while, do or for loop
continue; // skip to the end of a loop
goto LABEL; // jump to a label with restrictions
LABEL:;
return [type]; // exit from a function

Fig. A-13. Flow altering statement syntax

A.6 Data Types

This section reviews built-in and user-defined data types as well as constants.
Lastly, this section explains the difference between a declaration and a definition.

243A.6 Data Types

A.6.1 Built-In Data Types

C/C++ has several simple built-in data types as follows (Fig. A-14):

enum bool{false, true}// preferred over 0/non-0
int i; // 32 bit signed integers
char c; // single ‘c’ characters
float f; // single precision floating point
double d; // double precision floating point
long l; // 4bytes; machine dependent;
short s; // 2bytes; machine dependent;
unsigned u; // modifies int

Fig. A-14. Built-in data type definitions

A.6.2 User-Defined Data Types

User-defined data types are constructed from arrays, structures, or unions. Unions
are rarely used. In addition, pointers and references may be specified as modifiers
to any data type. In the following figures, the name T is used to denote a generic
“type” and may be replaced with any predefined data type including other user-
defined types.
One simple way to create the appearance of a user-defined type is using the
typedef statement (Fig. A-15). Typedefs do not create a new type, but are simply
an alias or shortcut to specifying a type. Here is the syntax to alias an int with T:

typedef int T;
T i; // i is really just an int

Fig. A-15. Built-in data type definitions

A.6.2.1 Pointers, Arrays, and References

Pointers and arrays come from C syntax; whereas, references are a new construct
for C++.

Pointers underlie many complex types, but due to their nature they are extremely
bug prone. When possible, avoid using pointers. It is preferred to use containers
from the STL (later in this section).

244 Appendix A

References are more commonly used in functions and will be discussed in
Section A.7.2.

Arrays are familiar to most programmers; however, due to the lack of bounds
checking, most C++ programmers prefer to use STL vectors for this purpose
(discussed later in this section). In any event, arrays are really pointers pointing
to an area containing N copies of the base type. The notation arr[i] is equivalent
to *(arr + i).

An important point for C++ is the use of the free store, which is managed by
new and delete. Do not use malloc or free in C++ code. Here (Fig. A-16)
is the syntax for new and delete:

// definitions used below
typedef int T;
const int N = 5;
T value(3);

// Simple pointer
T* my_ptr; // define pointer
my_ptr = new T; // allocate space
*my_ptr = value; // dereference/use pointer
delete my_ptr;

// Simple array
T arr[N]; // Array of homogenous elements
arr[0] = value; // using the array
*(arr+1) = value; // another way to use

// Create pointer to an array
T* my_arr;
my_arr = new T[N];
my_arr[3] = *my_ptr; // example of use
delete [] my_arr; //important syntax for array ptr

T & ref(N); // Reference to an object v of type T

Fig. A-16. Using new and delete

A.6.2.2 Structures

The following syntax (Fig. A-17) denotes declarations of new user types:

245A.6 Data Types

// Structures contain heterogeneous elements
struct Name {
 T1 element1;
 T2 element2;
 …
};

class Name { // Almost a struct with a twist
T1 element1;
T2 element2;

 …
};

union Name {
 T1 element1;
 T2 element2;
 …
};

Fig. A-17. Container declarations for user-defined data types

Each of the preceding types contains zero1 or more elements. The user may then
reference each element of the construct using the dot operator as illustrated in the
following figure (Fig. A-18) for a struct:

using namespace std;
struct Race_Driver {

string first_name, middle_name, last_name;
unsigned age;
int win_vs_loss;
string prev_race;
int prev_year;

};

Race_Driver Andy; // Instantiation of a race driver
Andy.first_name = ″Andrew″;
Andy.last_name = ″Priaulx″;
Andy.age = 2006-1976;
Andy.win_vs_loss = 1;
Andy.prev_race = ″British Touring Car Championship″;
Andy.prev_year = 2001;

Fig. A-18. Example using a struct

Classes will be discussed in Section A.8. Unions are a method of saving memory
space. At any one point in time, only one of the union’s elements is valid since they
all share the same memory location. The size of a union is the size of the largest
element type. Unions are rarely used.

1 Usually one or more.

246 Appendix A

A.6.2.3 STL

It is worth mentioning that the STL has some alternative containers that may be
preferable to the built-in types. The next example (Fig. A-19) shows a few. The
syntax of templates is covered in Section A.9.

std::pair<T1,T2> p; // 2-tuple (.first & .second)
std::vector<T> v(N); // improved array type
std::list<T> l; // linked list
std::map<T1,T2> m; // associative array
std::set<T> s; // set of unique values

Fig. A-19. Common STL containers

We do not go further into the STL types here; however, you are strongly urged
to learn more about them (there are many books on this subject) and use them
whenever possible.

A.6.3 Constants

C++ provides the const construct (Fig. A-20) to denote constants. The const
construct has a marked advantage over the traditional C #define approach because
data types are checked during compilation and the error messages are easier to
understand. It is also possible to use the enum construct for integral constants.

using namespace std;
int const CYLINDERS(10);
string const ERROR42(“Earth does not exist”);
enum { WHEELS=18 };
string * const mesg = &ERROR42; // constant pointer

Fig. A-20. Examples of constants

An important aspect of constants is that their values need to be initialized at the
time they are constructed. More about initialization will be discussed with the topic
of classes in Section A.8.

A.6.4 Declaration vs. Definition

It is important to recognize the difference between declaration and definition:
Declaration states the existence of an identifier and its characteristics.

247A.7 Functions

Definition allocates memory space and defines functionality.
For global data, the extern directive serves to declare a variable. The absence

of this keyword is a definition since space is allocated. For functions the distinction
is easier to see. Consider the following (Fig. A-21) code snippet:

extern int A; // Declare existence of an integer A,
 //in global scope
int A; // Define storage for an integer named A
int F(); // Declare a function F with no parameters
int F() { return 5; } //Define function F’s behavior

struct S; // Declare a struct P exists
S* as_p; // Define a pointer to structure object S
struct S { // Declare the contents of structure S
float a;
bool b;

};
as_p = new S; // Allocate storage for instance S
class T; // Declare a class T exists
class T { // Declare contents of class T

int m_i; // - has an integer data member m_i
public:
void H();// - has a public member function H

};
void T::H() { // Define implementation of H
cout<< “Hi” <<endl;

}
T x; // Define an object of type T

Fig. A-21. Declaration vs. definition

A.7 Functions

Functions are known as subroutines, procedures, or methods in other languages.
Functions are an encapsulation of programming behavior that may be used to break
down a problem. Functions have three syntaxes.

First (Fig. A-22), functions are declared to establish their argument syntax.

float add_time(float curr_hrs, int delta_secs);

void display(string message);

Fig. A-22. Examples of function declaration

248 Appendix A

Second, (Fig. A-23) functions are defined to establish their implementation code and
behavior.

float add_time(float curr_hrs, int delta_secs) {
return (curr_hrs + delta_secs/3600.0);

}

void display(string message) {
cout << message <<endl;
return; // optional

}

Fig. A-23. Examples of function definitions

Third (Fig. A-24), functions are called from other functions to initiate their
behavior.

float total(0.0);
total = add_time(total,15);
display(“Drivers, start your engines”);

Fig. A-24. Examples of function calls

A.7.1 Pass By Value and Return

By default, arguments to functions are passed by value. This means they are copied into
the arguments storage placed on the executing computer’s stack. As demonstrated in the
preceding example of add_time, a value may be returned using the return statement.

A.7.2 Pass by Reference

In addition to pass by value, C++ allows pass by reference. This feature reduces a
common error in C that occurs when passing pointers. The purpose of references is
twofold. First, references let us modify variables passed through the arguments of
a function. For instance (Fig. A-25):

249A.7 Functions

#include<iostream>
void advance(int & var, int max = 10) {

if (var == max) var = 0;
else ++var;

}

int n(5); // n starts at 5
while (n != 4) {
cout << “n is “ << n << endl;
advance(n);

}//endwhile

Fig. A-25. Example of reference usage

In the preceding (Fig. A-25), values printed out will be 5, 6, 7, 8, 9, 10, 0, 1, 2, 3.
A second use of pass by reference is to reduce copying (and hence, decrease

computation time). If you pass a large structure by reference, the compiler doesn’t
have to copy the entire structure onto the stack.

A.7.3 Overloading

C++ has the useful ability to overload a function name and provide more than one
function of the same name. Which function to use is determined by comparing the
types of arguments and the number of arguments. The return type is not used to
determine the signature of a function when overloading. Thus, the following (Fig.
A-26) is a legal set of functions:

float add_time(float curr_hrs, int delta_secs);
void add_time(float & total_hrs, int delta_secs);
float add_time(float curr_hrs, float delta_hrs);
float add_time(float curr,int mins, int secs);

Fig. A-26. Example of overloaded function name

A.7.4 Constant Arguments

Using the const keyword in C++ indicates to the compiler that values will not be
modified inside a function. If modification is attempted, a compile-time error will
result. This usage is most commonly used with pass by reference. Consider the fol-
lowing (Fig. A-27):

250 Appendix A

#include <vector>
typedef std::vector<int>::const_iterator

vint_iterator;
int average(std::vector<int> const & v){
int sum(0);
for (vint_iterator i=v.begin();i!=v.end();++i) {
sum += *i;

}//endfor
return sum/v.size();

}

Fig. A-27. Example of constant arguments usage

A.7.5 Defaults for Arguments

It is possible to specify default values for arguments as illustrated in the next
example. Defaults may be specified for trailing arguments only. Furthermore, the
default should be specified in one place only (typically in the declaration). Here
(Fig. A-28) are a couple of examples:

void test(int data, bool random=false,
bool debug=false);

typedef int packet;
void put(packet& p, int inject_errors=0);

Fig. A-28. Example of default arguments specification

Default arguments can create ambiguities that need to be considered. For
instance (Fig. A-29), consider the following:

void test(int data, bool random=false,
bool debug=false);

void test(int data); // Error: ambiguous

Fig. A-29. Example of ambiguity

The above is a problem because you can omit both the random and debug
arguments. This omission causes the compiler to be confused over which test you
mean to use.

A.7.6 Operators as Functions

C++ treats operators as functions and provides special names for all of the func-
tions. This treatment allows operator overloading. Operator overloading is

251A.8 Classes

really no different than function overloading. Consider the following (Fig.
A-30) simple examples:

// Create a custom data type
enum color {black, red, magenta, yellow,
green, cyan, blue, white };

color operator+(color lhs, color rhs) {
 // Define what it means to add colors
if (lhs == rhs) return lhs;
else if (lhs == black) returnrhs;
else if (rhs == black) return lhs;
else if (lhs == white) return white;
else if (rhs == white) return white;
else if (lhs == red &&rhs == blue) return green;

 // etc…
}

// Modulus rotation through colors
color operator+(color lhs, intrhs) {

return color((int(lhs) + rhs) % 8);
}

Fig. A-30. Operator overloading

A.8 Classes

For many programmers, the object-oriented (OO) aspect of C++ is the reason for
using C++. Certainly OO is an important part of the language.

A.8.1 Member Data and Member Functions

The concept of an object is really quite simple. In C++, all data types are funda-
mentally objects. Objects have certain functions they can perform. For instance, an
int may be queried (i.e., its value determined and displayed), set/modified
(assigned to), and operated on with another int or even perhaps another data type.
For user-defined types, we use a struct to describe an object type with a minor
extension. Functions are allowed as members of a struct in C++.

We also introduce a new keyword, class, to document our intent when defin-
ing a class. The keyword has one minor difference from a struct, which relates
to data encapsulation (hiding). This difference necessitates the introduction of a
second keyword public, which allows class members to be visible from the out-
side. The next example (Fig. A-31) illustrates class declaration and definition.

252 Appendix A

One important aspect of a class is that it creates its own namespace. Thus, when
member functions (methods) are defined, they must be prefixed with the class name.
This prefix distinguishes member functions from ordinary functions and other classes.

// Declaration of a class
class Thermometer {

int m_temp;
string m_name;

public:
void set_temp(intval);
int get_temp();
void set_name(string nm);
int get_name();

};

// Definition of member functions
void Thermometer::set_temp(int val) {

m_temp = val;
}
int Thermometer::get_temp() { returnm_temp; }
void Thermometer::set_name(string nm) {

m_name = nm;
}
string Thermometer::get_name() { returnm_name; }

// Use of a class
#include<iostream>
int main(intargc, char *argv[]) {
 Thermometer dashboard;
 dashboard.set_temp(72);
 dashboard.set_name(“inside”);

cout << dashboard.get_name() << “=“
<< dashboard.get_temp() << endl;

}

Fig. A-31. Example of trivial class definition and usage

Notice that using the class follows the same syntax used for accessing member
data in a struct.

This example (Fig. A-31) instantiates two simple object members, an integer,
m_temp, and a string, m_name. We refer to the class as having a “has a” relation-
ship with respect to the integer and string. Classes are typically built of many other
classes this way. This usage is known as construction by composition.

A.8.2 Constructors and Destructors

Something assumed by most programmers is that when an object such as an integer
is defined, the compiler allocates space for it, and ideally initializes it to an initial
value (e.g., zero). This process of allocation and initialization is called construction.

253A.8 Classes

For a non-trivial class (i.e., a class other than the built-in types) these steps may
involve a bit of work.

C++ provides for a constructor method that is automatically called when con-
struction occurs. The name of the constructor is the same as the name of the class.
It is distinguished from other methods in that it has no return value.

Constructors may take zero or more arguments. If no constructor is defined by
the programmer, then C++ provides a default constructor that takes no arguments.
The default constructor simply allocates data member objects and calls their default
constructors. Because C++ allows for function overloading, there may be more than
one constructor defined in a class. Here (Fig. A-32) is an example:

// Declaration of a class
class Thermometer {

int m_temp;
string m_name;

public:
 // 4 Distinct Constructors

Thermometer(); // Default constructor
Thermometer(int val);
Thermometer(string nm);
Thermometer(string nm, int val);

 // Ordinary methods
void set_temp(int val);
int get_temp();
void set_name(string nm);
string get_name();

};

// Definition of methods
Thermometer::Thermometer() {m_name = “unknown”; }
Thermometer::Thermometer(int val) { m_temp = val; }
Thermometer::Thermometer(string nm) { m_name = nm; }
Thermometer::Thermometer(string nm, int val) {
m_name = nm;
m_temp = val;

}
void Thermometer::set_temp(int val) {

m_temp = val;
}
int Thermometer::get_temp() { return m_temp; }
string Thermometer::get_name() { return m_name; }

// Use of a class
int main() {
 Thermometer i1, i2();
 Thermometer i3(15), i4(“inside”),

i5(“inside”, 72);
 Thermometer i6(‘B’);
}

Fig. A-32. Example of a class with constructors

254 Appendix A

In the example, the default constructor is defined to initialize the initial name to
“unknown”. In the usage section, we illustrate six different instantiations of
Thermometer class objects using the four different constructors. The first and sec-
ond instances are identical in that they invoke the default constructor.

The last instance, i6 illustrates a problem. The character value ‘B’ in single
quotes is implicitly converted to an integer (value 66), and is probably not the
intended result. To fix this situation, use the keyword explicit in the declaration
as follows (Fig. A-33).

explicit Thermometer(int val);

Fig. A-33. Declaring a function to have explicit arguments

Now, the char situation becomes illegal. C++ enforces that the data type of the
argument must be int explicitly, and C++ will not perform implicit conversions,
which makes i6 illegal.

A.8.2.1 Initialization

It may seem that all issues with initialization are taken care of with constructors;
however, there is one more syntactical device needed. Consider (Fig. A-34) a class
member that comes from a class that has only a single constructor and that con-
structor requires an argument (i.e., there is no default constructor).

class Tire {
unsigned m_size;

public:
 // Constructor declared & defined
explicit Tire(unsigned size) {m_size = size;}

};
class Wheel {
 Tire tire_i;

bool chrome;
public:

Wheel(unsigned size);
};
Wheel::Wheel(unsigned size) { //Error
 // How to supply argument to tire_i?
}

Fig. A-34. A class with a single constructor instantiated in a second class

Because a constructor (Fig. A-34) is defined for Tire, the default constructor
does not exist. This usage creates a problem because a constructor must be called

255A.8 Classes

when the Wheel class is constructed. C++ solves this problem (Fig. A-35) by creat-
ing syntax for construction known as an initialization list as shown in the next
example. The list is defined in the constructor and begins with a colon after the
constructor signature. The list continues with comma-separated items.

Wheel::Wheel(unsigned size)
: tire_i(size), chrome(true)
{
 // other initialization
}

Fig. A-35. Class initialization list

In fact, most initialization can occur inside the initialization list. The order of
initialization follows the order in which data members are declared—not the order
of the initialization list.

A.8.3 Destructors

Suppose a class is created containing a pointer and during construction, the pointer
is set to point at a new data object allocated on the heap with new. To avoid a
memory leak, it will be necessary to delete the object when any instance of the class
is destroyed.

This usage is an example of the need for a destructor method. A destructor is a
method that is called whenever an object is destroyed. An object is destroyed when
the object goes out of scope, an explicit delete is issued, or the program termi-
nates. An object goes out of scope when the block of code in which it was defined
terminates.

C++ defines a destructor method to have the same name as the name of the class
prefixed with a tilde (~). A destructor has no arguments and there is only one per
class. Here (Fig. A-36) is an example:

class Pickup {
public:
 ~Pickup(); // destructor declared
};
Pickup::~Pickup() { // destructor defined

cout<< “Pickup destroyed” <<endl;
}

Fig. A-36. A destructor

256 Appendix A

A.8.4 Inheritance

One of the main features of object-oriented programming is the notion of code
reuse through the mechanism of inheritance. Inheritance lets one define a class to
inherit the functionality of a parent class (also known as a base class). The inherit-
ing class is known as a child or derived class. Inheritance is established by specify-
ing the parent class immediately after the child class name separated with a colon.
Here (Fig. A-37) is a simple example:

class Tire {
unsigned m_size;

public:
Tire(unsigned size) { m_size = size; }
unsigned size() { return m_size; }

};
class Allweather
: public Tire // inherit from Tire class
{
int traction;
public:
Allweather(int size);
int friction();

};

Fig. A-37. A class with a single constructor instantiated in a second class

The child class Allweather inherits from the parent class Tire. Hence,
Allweather has the methods of the parent class available. Because the inheri-
tance specified public, these methods are available to users of the child class,
Allweather. Thus, inheritance allows the child class to reuse the code already
written for the parent.

The mechanism of inheritance establishes an “is a” relationship for the child.
The Allweather class is a Tire. The converse is not true.

A.8.4.1 Adding Members

The class Allweather also extends the capabilities to include a traction data item
and a friction() method. Thus, this class has extended capabilities.

A.8.4.2 Initialization of a Base Class

If the parent class requires a specific constructor to be called, call out the parent class
with appropriate arguments (Fig. A-38) in the constructors’ initialization list.

257A.8 Classes

Allweather::Allweather(int size)
: Tire(size)
{
 // other initialization
}

Fig. A-38. Specifying a parent class constructor

A.8.4.3 Overriding Inherited Member Functions

A derived class may specify different behaviors for an inherited method.
Furthermore, the behaviors of the parent class may be called by adding scope infor-
mation to the name. Here (Fig. A-39) is an example:

class Tire {
unsigned m_size;
public:
Tire(unsigned size) { m_size = size; }
unsigned size() { return m_size; }
};
class Allweather
: public Tire
{
int traction;

public:
Allweather(int size):Tire(size){};
int friction();
unsigned size() {
cout<< “overrides Tire’s size()” <<endl;
return m_size+1;

 }
};

Fig. A-39. A class with a single constructor instantiated in a second class

A.8.4.4 Multiple Inheritance

C++ allows for inheriting from more than one parent. Simply add additional parents
as a comma-separated list in the inheritance specification. Although debated in
some circles, multiple inheritance has proven quite useful in a number of applica-
tions including SystemC.

258 Appendix A

A.8.5 Public, Private and Protected Access

C++ supports data hiding. In Section A.8.1, we introduced the keyword public.
There are two other related keywords, private and protected, related to this
concept of access:

Public members are available for access by users of a class and internally.
Private members are only available to member functions of the class in which

they are defined.
Protected members are available to both the class and derived (inheriting)

classes. Thus, protected members are private with respect to users.

A.8.5.1 Friends

A class may have private or protected members that it wishes to make available to non-
class member functions. It can do so by explicitly declaring a function to be a friend.
Friend functions have complete access to anything inside the class. In other words, a friend
is considered to have public access to all the members of a class that declares it a friend.

A.8.6 Polymorphism

Sometimes it is useful to create functions that operate on more than one class by means
of a parent class. For instance, a Vehicle class might have common weight property
(member data). It would be useful to have a function determine the aggregate weight of a
variety of vehicles that are described with various derived classes. However, the weight()
method shown in the following example (Fig. A-40) may have been overridden:

class Vehicle {
public:
unsigned weight()
{ abort(); } // No valid implementation

};
class Truck : public Vehicle {

unsigned m_weight;
public:

unsigned weight() { return m_weight; }
};
class AirShip : public Vehicle {

unsigned m_weight;
bool m_inflated;

public:
unsigned weight()
{ return (m_inflated ? 0 : m_weight); }

};
unsigned add_weights(Vehicle& v1, Vehicle v2) {

return v1.weight() + v2.weight(); // Aborts!
}

Fig. A-40. The need for polymorphism

259A.8 Classes

This preceding implementation does not implement polymorphism. For that we
need an additional construct, the virtual designation.

A.8.6.1 Virtual

Adding the virtual qualifier to a method’s declaration causes the compiler to
add a small indirection table to the object structure for each member declared
virtual. Each time the method is invoked, the compiler uses this table to determine
where the method’s code lives. Notice the designation must be added at the point
where polymorphism is desired. For the example of figure A-41, we must designate
the vehicle’s weight() method to be virtual.

class Vehicle {
public:
virtual unsigned weight()
{ abort(); return 0; } // No valid implementation

needs a return value
};
class Truck : public Vehicle {
unsigned m_weight;

public:
unsigned weight() { return m_weight; }

};
class AirShip : public Vehicle {

unsigned m_weight;
bool m_inflated;

public:
unsigned weight()
{ return (m_inflated ? 0 : m_weight); }

};
unsigned add_weights(Vehicle& v1, Vehicle v2) {

return v1.weight() + v2.weight(); // Aborts!
}

Fig. A-41. Using polymorphism

Notice that the keyword virtual only needs to be added once to the topmost
class.

A.8.6.2 Abstract and Interface Classes

Although adding the virtual designator to the preceding example enables polymor-
phism, it leaves an undesirable feature. It is possible to instantiate an object of the
Vehicle class and call its weight() method. Sadly, this results in an abort. It would
be desirable to prevent this situation from arising in the first place. For that reason, C++
has the concept of a pure virtual method. The syntax is modified by replacing the imple-
mentation with “= 0”. Conceptually, this state of the method has no implementation.

260 Appendix A

Here (Fig. A-42) is the modified Vehicle class:

class Vehicle {
public:

virtual unsigned weight() = 0; // Pure virtual
};

Fig. A-42. Pure virtual method makes an abstract class

With the addition of pure virtual methods to a class, it now becomes a compile-time
error to attempt to instantiate an object of that class. The only way to use this class
is to derive another class from it and provide an overriding implementation.

A.8.7 Constant Members

C++ constants must be given a value at the point of construction. For a class, this
means (Fig. A-43) the construction must be specified in the initialization list.

class A {
int const the_answer;
A() // Constructor
:the_answer(42) // Initialization list
{} // Body of constructor

};

Fig. A-43. A class constant

A.8.8 Static Members

Member data and member functions of a class declared static are common to the
entire class (Fig. A-44). A static data member that needs a non-default constructor
must be constructed external to the class declaration. A static function member may
call other static member functions only.

class A {
static int m_count;
static int count() { return m_count; }
A() { m_count++; } // Constructor
~A() { m_count--; }// Destructor

};
int A::m_count(0); // initialize

Fig. A-44. Static class members

261A.9 Templates

A.9 Templates

C++ supports the paradigm of generic programming through the use of the template
construct. Templates apply to both functions and classes. The STL is a collection
of classes that make heavy use of the template concept.

A.9.1 Defining Template Functions

Defining a template is best considered with a small example (Fig. A-45). Consider
the problem of creating a destroy function that takes a pointer by reference, deletes
it and sets the pointer to the null pointer value. Since C++ is heavily typed, we need
to create a function for every pointer type. Here is how to do this with templates:

template<typename T>
void destroy(T*& p) { delete p; p = 0; }

Fig. A-45. Defining a function template

For every type, T, we can now have a destroy function.
Template parameters are limited to typenames (keywords typename or

class) and integral types (e.g., int, unsigned, and enumerations).
It is possible (Fig. A-46) to have more than one template parameter and option-

ally specify default values for a templated class.

template<int max, int min, typename T>a
T limit(T val) {

assert(min > max);
if (val< min) return min;
else if (val> max) return max;
else return val;

}

Fig. A-46. Defining a function template

A.9.2 Using Template Functions

Using function templates is much easier than defining them. Simply (Fig. A-47)
specify the function name with the template parameters inside angle brackets.

262 Appendix A

string* msg_ptr = new string(“Hello”);
…
destroy<string>(msg_ptr);

cin>> v;
cout<< “Limit value “ << limit<15,-3>(v) <<endl;

Fig. A-47. Using function templates; does not compile

A.9.3 Defining Template Classes

Class templates are very similar to function templates. Class templates just carry
more complexity because they are larger. Consider (Fig. A-48) a FIFO template
class that allows FIFOs of any data type:

template<typename T, int maxdepth=1>
class fifo {
vector<T> m_fifo;
public:
void push(T v);
T pop();
bool full() { return m_fifo.size() >= maxdepth; }
bool empty() { return m_fifo.size() == 0; }
};

Fig. A-48. Defining a class template

A.9.4 Using Template Classes

Usage of a template class (Fig. A-49) is practically trivial.

fifo<double> readout_fifo;
fifo<string> message_fifo;

readout_fifo.push(2.71);

Fig. A-49. Using a class template

A.9.5 Template Considerations

There are many subtle aspects to templates that are well beyond the scope of this
appendix. For example, many (99%) C++ compiler implementations restrict

263A.10 Names and Namespaces

templates from being compiled separately. One common gotcha happens when
using a class template of a class template.

Most of the subtleties are related to defining the templates. Well-defined tem-
plates are easy to use. Entire books are devoted to discussing templates, and we
advise consulting them if you intend to define your own templates.

A.10 Names and Namespaces

Names are used for many things including keywords, which are reserved, and user
identifiers, which are used for variables, constants, and functions.

A.10.1 Meaningful Names

Please consider that using carefully chosen meaningful names is a very important
part of any programming activity. Obtaining and using a coding standard is strongly
recommended.

A.10.2 Ordinary Scope

Variables defined inside a block have a scope that exists from the point of declara-
tion forward until the end of the block. They are constructed at the point of defini-
tion, and destroyed upon exit from the block. Unlike C, variables in C++ may be
defined just in time for usage. Consider (Fig. A-50):

int main() {
cout<< “Hello. Computing the answer…” <<endl;
int the_answer(42);
for (unsigned i=10; i>=0; --i) {

cout<< i <<end l;
 }
 {

int i(-10); // a different i
 }
cout<<the_answer<<endl;

}

Scope of i

Different i.

Scope of _the answer

Fig. A-50. Ordinary scope

264 Appendix A

A.10.3 Defining Namespaces

Because there are many libraries with many identifiers, names can collide. To rem-
edy this situation, C++ includes (Fig. A-51) the concept of an explicit namespace.

namespace your_name {
your_code
}

Fig. A-51. Declaring a namespace

A namespace may be added to by simply reusing the same name. Namespaces
may also be nested.

A.10.4 Using Names and Namespaces

To use a namespace, the using directive can be specified in one of two syntaxes
(Fig. A-52):

using your_name::identifier; //for a single variable
using namespace your_name; // to include all names

Fig. A-52. Using namespaces

Some namespaces are predefined. For example, the standard C++ library con-
tains several hundred identifiers, some of which are common words. Thus, the
standard library is wrapped inside a namespace called std (Fig. A-53).

using namespace std; //should only use in .cpp files

Fig. A-53. Using namespace std

A.10.5 Anonymous Namespaces

Occasionally, you may need to define global objects that have a scope limited to the
file in which they appear. For this situation, C++ introduces the notion of an anony-
mous namespace (Fig. A-54). Code within or following the namespace defini-
tions may use the names specified.

265A.11 Exceptions

void func1(void) {
// Cannot use hidden or secret() here, because

 // they have not been defined yet
}

namespace {
int hidden(42);
int secret(int v) { return v+7; }

}

int func2(void) {
// OK to use hidden and secret, since they've
// been defined previously.
return hidden * secret(3);

}

Fig. A-54. Using anonymous namespace

It would also be impossible in the preceding example to attempt to access hidden
or secret in another file (e.g., via extern directive) since there is no way to define a
reference to these names.

A.11 Exceptions

Like several other modern languages, C++ has the ability to manage exceptions. An
exception is a condition that is usually considered out of the ordinary. It might
represent an improper value (e.g., attempting to divide by zero). In SystemC, an
exception might represent a hardware interrupt or reset situation. To handle excep-
tions, there are two components, which are discussed in the next sections.

A.11.1 Watching for and Catching Exceptions

The first component is the code that watches (Fig. A-55), catches, and handles the
exception condition.

266 Appendix A

try {
//Code to monitor for exceptions.
//In other words, this is where the
//exceptions will occur. It is possible,
// they occur within calls to functions
// several levels down.

}
catch (type1 the_exception) {
 // Handle an exception of type1
}
catch (type2 the_exception) { // As many as desired
 // Handle an exception of type1
}
catch (...) { // This is optional
 // All uncaught exceptions here
}

Fig. A-55. try-catch syntax

To be sensible, the preceding example must have at least one catch block. Notice
the type parameter of the catch clause. This parameter is usually a class, and the
object caught may contain additional information about the exception.

A.11.2 Throwing Exceptions

The second component to handle exceptions is the code (Fig. A-56) that throws the
exception to the catcher. To communicate what the exception situation is, C++
requires that the thrown object be able to be used by the catch clause.

throw OBJECT;
throw; // Only used to re-throw from within catch

Fig. A-56. throw syntax

Given the preceding syntax, we can present a complete example (FIg. A-57).

267A.11 Exceptions

class Error {
public:
string message;
short value;
Error(string msg, short val)
:message(msg)
, value(val)
{}

};

short div(short a, short b) {
short result = 0;
try {
if (a > 150) {

throw Error("Bad value: a=",a);
 } else if (b == 0 or b > 150) {

throw Error("Bad value: b=",b);
 }

result =a/b;
 }
catch (Errorwhat) {

cout<<what.message<<what.value<<endl;
 }
catch (...) {

cout<< "Something bad happened in div" <<endl;
throw;

 }
return result;
}

Fig. A-57. Exception handling example

A.11.3 Functions that Throw

When designing a function, C++ lets you explicitly document exceptions (Fig.
A-58) that your code might throw. This documentation is useful in a header file to
let the user know what to expect.

int div(int a; short b) throw (Error);

Fig. A-58. Declaring exception capabilities

268 Appendix A

A.12 Standard Library Tidbits

Finally, we need to cover a few topics in the C++ Standard Library lightly, but with
the hope you will go much deeper. The C++ Standard Library is separate from the
language itself; however, no coder can claim to be a C++ programmer without some
familiarity with this library. All members of the C++ Standard Library are part of
the namespace std. To keep things manageable, the library is broken into smaller
header files, which conventionally do not have a “.h” appended to their file name.
We show the #include statements for these in the examples that follow.

A.12.1 Strings

The C++ Standard Library provides a string class that is far superior to the old
C-style char* string concept. This class allows for safe and convenient appending,
searching, and even replacement of substrings. Here (Fig. A-59) is a brief sample
of things you can do:

#include<string>
using std::string;
string mesg("Hello SystemC!");
mesg += " I concatenate";
cout

<<mesg<<endl
<< "length=" <<mesg.length() <<endl
<< "substr(6,6)=" <<mesg.substr(6,6) <<endl
<< "find(\"stem\")=" <<mesg.find("stem") <<endl
<< "mesg[12]=" <<mesg[12] <<endl
;

// Convert to C-style string for use with printf
printf("%s\n", mesg.c_str());

Fig. A-59. Examples of std::string

A.12.2 File I/O

We’ve already discussed streaming I/O; however, the C++ Standard Library pro-
vides much more in the way of classes that support this concept. For instance, you
can naturally open, close, and use files with the fstream header. The iomanip
header provides I/O manipulation routines. There are a lot of different types of
formatting options.

269A.12 Standard Library Tidbits

The following example (Fig. A-60) shows some useful operations:

#include<fstream>
#include<iomanip>
#include<stdlib.h>
using namespace std;
…
// Examples of input
ifstream infile("my.txt"); //Declare & implicit open
if (!infile) { // Make sure no open errors

cerr<< "Unable to read file my.txt!?" <<endl;
exit(1);

}//endif
string first_line;
infile>>first_line;
cout<< "first_line='" <<first_line<< "'" <<endl;
double dave;
infile>>dave;
cout<< "dave=" <<setprecision(3) <<dave<<endl;
infile.close(); // explicit close
// Examples of output
{

ofstream fout; // Declare - open deferred
fout.open("save.txt"); // explicit open
if (!fout) { // Make sure no open errors
cerr<< "Unable to read file my.txt!?" <<endl;
exit(1);

 }//endif
fout
<<setw(5) // width of output is five
<<setfill("#") // filler character is asterisk
<<first_line.length() // some data
<<flush// force output buffer to write
// notice lack of parens

 ;
} // Leaving scope destroys output variable,
 // which implicitly closes the file

Fig. A-60. Examples of fstream and iomanip

You are referred to the C++ library manual (or Google) to learn about more of
the I/O options and manipulators.

Another example (Fig. A-61) is the string stream class that lets you treat
std::string as an object for streaming I/O. The following example shows
some useful string stream operations:

270 Appendix A

#include<sstream>
// First examine an output string stream
using namespace std;
ostringstream sout;
sout << "Use I/O to create strings" <<endl;
sout << hex << 1234 << endl;
sout <<setprecision(3)<< 4.9 << endl;
// Extract the string
string mesg = sout.str();
// Now try an input string stream
mesg = "height 5.78";
istringstream sin;
sin.str(mesg);
int i;
sin>> i >> mesg;
cout << "Field:" << mesg << " Value:"<< i << endl;

Fig. A-61. Examples of ostringstream and istringstream

String streams support most of the operations used with standard I/O because
they are in fact streams. You are referred to the documentation elsewhere for more
details (e.g. try Google).

A.12.3 Standard Template Library

We couldn’t leave the discussion of C++ without one last reminder that the Standard
Template Library is an essential part of every C++ programmer’s toolkit. You
should become familiar with the basic containers pair<T1,T2>, vector<T>,
list<T>, deque<T>, map<T1,T2>, and set<T>. You should learn to add,
fetch, remove, and loop through these basic containers. They are really quite simple
to learn, and they have a lot of uses.

It is worth noting that there are many implementations of the STL available. For
best performance, you may wish to consider purchasing a commercial version.

A.13 Closing Thoughts

There is a lot more to C++. What is covered in this appendix includes the essentials
needed to code effectively in SystemC.

271A.14 References

A.14 References

Many books are written about C++, and each addresses a different audience. Some
of our favorites in no particular order include the following:

The C++ ProgrammingLanguage – Special Edition, Bjarne Stroustrup
Accelerated C++, Andrew Koenig& Barbara Moo
C++ How to Program, Harvey & Paul Deitel
Thinking in C++, Bruce Eckel http://www.mindview.net/Books/TICPP/

ThinkingInCPP2e.html
Exceptional C++, Herb Sutter
C++ Templates: TheComplete Guide, David Vandevoorde& Nicolai Josuttis

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

273

A
Abort, 172, 184, 240, 258, 259
Abstraction, 1–3, 6–9, 14–15, 42–43, 59, 169,

189, 207, 214, 217, 219, 220, 224, 231
Adaptor, 164–166, 169
AMBA, 24, 157, 162, 169
Analog, 23

and_reduce, 33, 34, 41
Approximately-timed, 207
ArchC, 187
Automation, 17, 231

B
before_end_of_elaboration, 175
BFM. See Bus functional model
bind, 90–95
Bit, 41
Blocking, 72, 81, 82, 100, 105, 207, 210–213, 218
Boost library, 187

shared_ptr, 105
Bus functional model (BFM), 8

C
C++, mutable, 166
cancel, 73, 79, 87
Channels, 23–25, 27, 28, 48, 56, 84, 93,

99–105, 107–116, 125, 128–135, 137,
138, 143, 145–149, 151, 154, 155,
157–170, 175, 177–179, 207, 208, 210,
213–215, 217–220, 225, 226

primitive, 99
sc_buffer, 110, 116
sc_channel, 129, 148, 157, 162, 163
sc_clock, 23
sc_fifo, 100, 104, 106, 138–140, 159, 160
sc_mutex, 99–102, 140

sc_prim_channel, 99, 129, 157, 159, 163
sc_semaphore, 100, 102, 103, 140
sc_signal, 110, 111, 144, 158, 160, 163
sc_signalbool, 115
sc_signal_resolved, 114
sc_signal_rv, 114
specialized signals, 115
write, 110, 113

Channels, hierarchical, 149, 157, 162–164,
166–170, 178, 181

Cleanup, 29, 69, 109, 175
Clocks, 23, 164, 171–187, 189, 224–225

sc_clock, 181, 182
Closing semicolon, 228
CMM. See Capability maturity model
Coding styles, 17, 59, 230–231
Compilers, 227, 238

gcc, 21
HP, 20
Sun, 20

Complexity, 2–4, 13, 16, 23, 25, 117, 140,
178, 262

Concurrency, 5, 12, 16, 22, 24, 26, 29, 48, 51,
53, 65–87, 99, 108, 109, 140, 158, 189

Concurrency and time, 69
Constants, 37, 38, 169, 235, 242, 246–247,

260, 263
Conversions, 40, 254

to_double, 41
to_int, 41
to_int64, 41
to_long, 41
to_string, 41
to_uint, 41
to_uint64, 41

csd, 39
CT. See cycle-timed
cycle-timed, 207

Index

274 Index

D
Data type performance, 44
Data types, 22–24, 31–44, 159–161, 176,

189–192, 235, 236, 242–247, 251
native, 227
sc_bigint, 35, 42
sc_biguint, 35
sc_bv, 33, 34
sc_event, 66–68, 72, 75
sc_fixed, 27
SC_INCLUDE_FX, 37
sc_int, 27, 35, 42
sc_logic, 27, 34
sc_lv, 27, 34
sc_string, 40
sc_time, 23, 59, 62
sc_uint, 35

Default, 36, 48, 60, 68, 83, 91, 92, 104, 110,
140–142, 145–147, 158, 159, 162, 163,
165, 172, 174, 195, 198, 202, 227, 241,
248, 250, 253, 254, 261

SC_TRN, 38
SC_WRAP, 38

Default_event, 110, 142, 158, 159,
162, 163

Delayed, 166, 181, 183, 224
Delayed notification, 73, 75, 109, 166
delta_count, 165, 166
Delta-cycle, 29, 71, 108, 110–113, 116, 143,

144, 166, 183
deque, 43, 104, 105, 270
Design reuse, 230
Direct, 13, 56, 59, 114, 118–121, 123, 132,

149, 230
Double, 32, 37, 41, 44, 60–62, 64, 73, 74, 95,

105, 143, 186, 243, 262
Dynamic, 26, 56, 83, 85, 119, 148, 177, 190,

192, 194
Dynamic process, 89–97

E
Editors

emacs, 230
nedit, 230
vim, 230

Elaboration, 26, 27, 29, 48, 56, 66, 68, 89, 100,
140, 143, 174–175, 177, 185

emacs, 230, 240
end_of_elaboration, 49, 175
end_of_simulation, 49, 175
Environment, 10, 11, 19–22, 29, 97, 174–176,

194, 230, 231

Errors, common, 49, 197, 248
closing semicolon, 228
#include, 228
required space for template, 229
SC_FORK/SC_JOIN, 229

Evaluate phase, 71, 109, 110
Evaluate-update, 107–116, 143, 144, 157, 164,

166, 230
Event finder, 140–142
Events, 9, 11, 20, 24, 28, 69, 71, 75–77,

80, 84–87, 97, 99, 102, 108, 109,
111, 116, 140–142, 147, 153, 158,
181, 223, 244

cancel, 73, 79
default_event, 142
delayed, 73
next_trigger, 82
notify, 26, 73, 79, 166
sc_event, 26, 66–68, 72, 75
sc_event_finder, 140, 141, 143

Execution, 9, 13, 22, 24–26, 29, 31, 36, 48, 51,
59, 65, 67, 69, 71, 73, 77, 99, 174, 192,
204, 224, 236

F
FIFO, 24, 53, 95, 104, 108, 129, 137–138,

142, 143, 147, 178, 213, 214, 224,
225, 262

Fixed-point, 11, 23, 31, 32, 36–39
SC_INCLUDE_FX, 37

Fork, 93, 96

G
gcc, 21, 90
get_extension, 191
get_value, 102, 140
GNU, 20, 90, 105, 227
Gtkwave, 186, 187
gtkwave, 13, 186

H
Hardware data types, 22–24, 27, 189
Hardware description language (HDL), 1, 15,

17, 24
Hardware verification language (HVL), 10
HDL. See Hardware description language
Heartbeat, 162–163, 170, 181, 225
Hello_SystemC, 19, 22, 119, 268
Hierarchical channels. See Channels,

hierarchical

275Index

Hierarchy, 6, 16, 22–25, 42, 47, 48, 55, 99,
117–119, 121, 125, 149, 151, 154, 157,
158, 166, 171–187, 198, 210

HP, 20
HP/UX, 20
HVL. See Hardware verification language

I
#ifndef, 55–57, 176, 227, 236
#include, 22, 37, 43, 49, 55, 56, 90, 92, 95,

119–122, 145, 147, 150, 152, 153, 159,
162, 163, 165, 168–170, 176, 179, 180,
184, 191, 193, 196, 201, 228, 236–238,
242, 249, 250, 252, 268–270

Indirect, 118–123
Initialization, 29, 32, 47, 51, 60, 68, 83, 86,

118, 120, 121, 143, 174, 184, 230, 235,
246, 252, 254–257, 260

Install, 20
Install environment, 19
Instantiate, 9, 119, 123, 134, 141, 193, 198,

203, 215, 259, 260
Instantiation, 23, 54, 56, 57, 119–122, 149,

150, 203, 245
Interfaces, 16, 17, 27, 28, 126–129, 131,

137–155, 157–159, 163, 164, 169, 190,
207, 208, 210–215, 220

sc_fifo_in_if, 137, 138
sc_fifo_out_if, 137
sc_interface, 128
sc_signal_inout_if, 139
sc_signal_out_if, 139

J
Join, 93

K
Kahn process networks, 105

L
Language comparison, 14, 15
Language reference manual (LRM), 30, 31,

40, 171
Length, 41
Linux, 20, 21
List, 2, 13, 16, 17, 20, 25, 43, 51, 66, 83, 84,

86, 89, 121, 151, 166, 195, 197, 239,
240, 246, 255–257, 260, 270

Lock, 100–102, 140

LOG, 172
Log_0, 34
Log_1, 34
Log_X, 34
Log_Z, 34
Long, 4, 5, 44, 93, 174, 223, 243
LRM. See Language reference manual

M
main.cpp, 48, 53, 62, 64, 119, 120, 173
Make, 7, 14, 16, 17, 20, 50, 66, 83, 91, 97, 99,

110, 112, 151, 164, 166, 194, 201, 216,
227, 258, 261

Map, 8, 24, 43, 179, 270
Modules, 16, 23–25, 27, 28, 47–56, 66, 93,

117, 118, 125, 129–134, 157, 158, 162,
164, 177, 185, 210, 216

SC_HAS_PROCESS, 120
sc_module, 117

Multi-port, 145
Mutable, 166
Mutex, 3–6, 24, 100–102

N
Naming convention, 112
nand_reduce, 33, 34, 41
Native, 23, 27, 31–32, 35, 36, 43, 44, 227
nedit, 230, 240
Negedge, 115–116
negedge_event, 115–116
next_trigger, 26, 82–84, 88, 230
nor_reduce, 33, 34, 41
Notify, 26, 73, 76, 79, 87, 163, 165, 166
notify_delayed, 29, 109, 165, 166
Notify immediate, 73, 76, 78

O
Open SystemC Initiative (OSCI), 16, 20, 96,

113, 166, 183, 186, 203, 207–220, 223,
228, 231

Operators, 31, 40–42, 61, 63, 112, 192, 235,
238–240, 250–251

and_reduce, 33, 34, 41
length, 41
nand_reduce, 33, 34, 41
nor_reduce, 33, 34, 41
or_reduce, 33, 34, 41
range, 33, 34, 41
xnor_reduce, 33, 34, 41
xor_reduce, 33, 34, 41

276 Index

or_reduce, 33, 34, 41
OSCI. See Open SystemC Initiative

P
Port array, 131, 137, 145–148
Port declarations, 55, 57, 129–130
Ports, 25, 27, 28, 50, 56, 84, 93, 95, 125–135,

137–155, 157, 158, 166, 169, 175, 178,
179, 185, 203, 214–217, 230

sc_export, 131, 132, 137, 148
sc_port, 131, 132, 134, 144, 146
sc_port array, 145

Posedge, 115–116
posedge_event, 115–116, 141, 142, 162, 163,

165, 170, 181, 182, 224
Post, 102, 103, 240
PRD. See Product requirements document
Primitive, 99, 157–170
Primitive channels. See Channels, primitive
Processes, 24–29, 48, 50, 53, 55, 56, 63,

65–87, 89–97, 99, 108, 109, 113, 118,
126, 127, 131, 132, 140, 142, 143, 149,
154, 157, 158, 166, 172, 181–182,
210–212, 218

dynamic, 89
fork, 93, 96
join, 93
naming convention, 230
SC_CTHREAD, 26, 28, 171, 182
SC_FORK, 89, 93, 96
SC_JOIN, 89, 93
SC_METHOD, 26, 28, 81–82
sc_spawn, 91, 93, 96
SC_THREAD, 26, 51, 52, 71, 81, 100,

103, 183, 184
wait, 93, 181–183

Product requirements document (PRD), 10
Programmable hierarchy, 171–187
Programmable structure, 177
Project reuse, 208

R
Range, 17, 32–34, 41, 42, 145, 197–199
Register-transfer level (RTL), 7–11, 13–15,

27, 33, 44, 83, 164, 166, 167, 178, 179,
223, 228

Release, 20, 171, 207
Report, 172–175, 187
Request_update, 109, 110, 139, 165, 166
Required space for template, 229
reset, 96, 97, 144, 145
reset_signal_is, 183, 184

resize_extensions, 43
Resolution, 23, 60, 114, 225
Resources, 4, 5, 14, 30, 31, 102, 178, 231–233
RTL. See Register-transfer level

S
SAM. See System architectural model
SC_ABORT, 172
SC_ALL_BOUND, 145, 146
sc_argc, 48, 176
sc_argv, 48, 176
sc_assert, 83, 261
sc_bigint, 35–36, 42–44, 54
sc_biguint, 35–36
SC_BIN, 39, 91
SC_BIN_SM, 39, 41
SC_BIN_US, 39
sc_bit, 33
sc_buffer, 110, 113, 116, 142
sc_bv, 33, 34, 44, 161
SC_CACHE_REPORT, 172
sc_channel, 27, 129, 148, 157, 162, 163, 168,

180
sc_clock, 23, 181–182
sc_create_vcd_trace_file, 185, 186
SC_CSD, 39
SC_CTHREAD, 26, 28, 97, 171, 182–184, 229

wait_until, 181, 183
watching, 184

SC_CTOR, 22, 50–57, 67, 76–79, 84, 95, 120,
121, 141, 143, 144, 147, 150–152, 169,
179, 182, 183, 203, 229

SC_DEC, 39, 44
SC_DEFAULT_ERROR_ACTIONS, 172
SC_DEFAULT_FATAL_ACTIONS, 166, 172,

173, 180
SC_DEFAULT_INFO_ACTIONS, 22, 92,

172–174, 180
SC_DEFAULT_WARNING_ACTIONS, 32,

172–174, 184
sc_delta_count, 165, 166
SC_DISPLAY, 172, 173
SC_DO_NOTHING, 172
sc_dt, 33, 115
sc_end_of_simulation_invoked, 49, 175
SC_ERROR, 172, 173, 175
sc_event, 26, 66–68, 72–79, 84, 86–88, 99,

110, 138, 139, 141, 142, 158, 159, 162,
163, 165

sc_event_finder, 140, 141, 143
sc_exception, 172
sc_export, 27, 125, 131, 132, 137–155, 169,

181, 182, 209, 214–216, 218, 219, 226

277Index

SC_FATAL, 166, 172, 173
sc_fifo, 27, 72, 81, 95, 100, 104–106, 112,

126, 137–140, 147, 149, 159–161, 178,
179, 210, 220

data_read_event, 104
data_written_event, 104
nb_read, 104
num_available, 104
num_free, 104
read, 104
write, 104

sc_fifo_in_if, 27, 104, 129, 130, 132, 133,
137, 138, 142, 146

sc_fifo_out_if, 104, 129, 130, 132, 133, 137,
138, 142

sc_fixed, 27, 36–38, 41, 44
SC_FORK, 89, 93–96, 229
SC_FORK/SC_JOIN, 89, 93–96, 229
SC_FS, 60, 79
SC_HAS_PROCESS, 53–57, 120–122, 133,

134, 163, 179, 180, 184
SC_HEX, 39, 41
SC_HEX_SM, 39, 44
SC_HEX_US, 39
SC_INCLUDE_DYNAMIC_PROCESSES,

90, 92, 95
SC_INCLUDE_FX, 36, 37
SC_INFO, 172, 173
sc_int, 27, 35, 36, 39, 41–44, 144
sc_interface, 27, 128, 138–140, 158, 162, 167
SC_INTERRUPT, 172
sc_is_running, 51
SC_JOIN, 89, 93–96, 229
SC_LOG, 172, 173
sc_logic, 27, 32–34, 44, 114, 115, 144, 227
SC_LOGIC_0, 33, 34, 115
SC_LOGIC_1, 34, 115
SC_LOGIC_X, 34, 115
SC_LOGIC_Z, 34, 115
sc_lv, 27, 33, 34, 41, 44, 169
sc_main, 22, 29, 47–49, 53, 62, 64, 109,

118–120, 173, 176, 179, 180, 203
SC_METHOD, 26, 28, 81–84, 86, 88, 90, 92,

93, 102, 140–142, 144, 150, 163, 182,
210–212, 229, 230

SC_MODULE, 22, 25, 26, 28, 49–57, 67,
76–79, 82–84, 90, 95, 101, 103, 105,
117, 118, 120–122, 130, 132–134, 141,
143, 144, 146, 147, 150–153, 159, 162,
163, 165, 168, 169, 174, 175, 179, 180,
182, 184, 186, 215, 216, 219, 228

SC_MS, 60, 61, 63, 64, 67, 79
sc_mutex, 27, 100–102, 140

lock, 100

trylock, 100
unlock, 100

sc_mutex_if, 27, 100, 140
SC_NS, 60, 61, 63, 73, 78, 79, 87, 92, 150,

173, 182
sc_numrep, 39, 40
SC_OCT, 39
SC_OCT_SM, 39
SC_OCT_US, 39
SC_ONE_OR_MORE_BOUND, 145–147
sc_port, 27, 125, 126, 130–134, 141, 142,

144–149, 151, 154, 162, 169, 182, 215,
216, 218, 219, 226, 229

sc_port array, 145–148
sc_prim_channel, 99, 110, 129, 157, 159,

163, 165
request_update, 166
update, 166

SC_PS, 60
sc_release, 20
sc_report, 22, 172–175, 180, 184
SC_REPORT_ERROR, 173
SC_REPORT_FATAL, 173, 180
SC_REPORT_INFO, 22, 173, 180
SC_REPORT_WARNING, 173, 184
SC_RND, 38
SC_RND_CONV, 38
SC_RND_INF, 38
SC_RND_MIN_INF, 38
SC_RND_ZERO, 38
SC_SAT, 38
SC_SAT_SYM, 38
SC_SAT_ZERO, 38
SC_SEC, 60, 62, 64, 73, 79
sc_semaphore, 27, 100, 102–103, 140

post, 102
trywait, 102
wait, 102

sc_set_time_resolution, 60
sc_signal, 5, 7, 27, 90, 107–116, 138–141, 143,

144, 146–148, 150, 158–161, 163–167,
170, 181, 182, 186, 225, 229, 230

event, 108, 111, 116
sc_signalbool, 115, 147, 150, 164, 186

negedge, 115–116
negedge_event, 115–116
posedge, 115–116
posedge_event, 115–116

sc_signal_inout_if, 27, 139, 146, 182
sc_signal_out_if, 139, 144
sc_signal_resolved, 114, 115
sc_signal_rv, 114
sc_simulation_time, 62, 86
SC_SLAVE, 214–216, 219

278 Index

sc_spawn, 89–96, 229
sc_start, 22, 29, 48, 53, 56, 62, 64, 68, 109,

119, 120, 173, 177, 185
sc_start_of_simulation_invoked, 49, 62, 175
SC_STOP, 69, 78, 168, 172
SC_STOP_IMMEDIATE, 78
sc_string, 40, 180
SC_THREAD, 22, 26, 28, 51–53, 57, 63, 66,

67, 71, 74, 76–79, 81–84, 89, 90, 92,
93, 95, 96, 100, 103, 143, 151,
182–184, 209–212, 229

SC_THROW, 172
sc_time, 23, 59–64, 66, 73, 74, 78, 79, 87, 92,

158, 159, 163, 165, 168, 182
sc_set_time_resolution, 60

sc_time_stamp, 61–64, 74, 78, 79, 87, 92, 168
sc_trace, 160–162, 185, 186
SC_TRN, 38
SC_TRN_ZERO, 38
sc_ufixed, 36, 38, 44
sc_uint, 35, 36, 42, 44, 191, 193, 195, 199, 203
SC_UNSPECIFIED, 172
SC_US, 60
sc_version, 33, 34, 61, 96, 164, 223
SCV library, 187, 189–204
SC_WARNING, 172
SC_WRAP, 38
SC_WRAP_SYM, 38
SC_ZERO_OR_MORE_BOUND, 145, 146
SC_ZERO_TIME, 71, 73, 75–77, 79, 80, 85,

87, 88, 109, 111, 165
Semaphore, 27, 100, 102–103, 140
Sensitive, 26, 29, 83, 86, 97, 110, 111, 115,

140–144, 158, 163, 182, 183, 229, 230
Sensitivity, 50, 65, 82–86, 92, 96, 97, 111,

137, 140–143, 151, 155, 158, 230
dynamic, 26
next_trigger, 26, 82
sensitive, 26, 29
static, 26
wait, 63–64, 74, 78

shared_ptr, 105, 193
short, 32, 100, 127
Signed, 31, 35, 36, 39, 41, 42, 243
Signed magnitude, 39
Simulation engine, 68–69, 75, 86, 108–110
Simulation kernel, 12, 16, 20, 21, 24–26,

28–31, 51, 52, 59–61, 65–68, 74,
82, 87

delta cycle, 29, 71
evaluate phase, 71
evaluate-update, 29, 108, 112
request_update, 109, 110
sc_start, 29, 62

Simulation performance, 12, 14, 16, 20, 59,
207, 217, 219, 220, 223–228

Simulation process, 24–26, 28, 29, 48, 50, 51,
59, 65–68, 71, 85, 99, 157, 158, 182, 230

Simulation speed, 31, 36, 43, 223
Solaris, 20
Specialized port, 137, 141–145, 147, 209, 214,

217
Specialized signals, 109, 115–116, 143–145
Standard template library (STL), 21, 31, 104,

105, 270
list, 43
map, 43
string, 43
vector, 43

start_of_simulation, 49, 175
Static, 26, 37, 50, 74, 82–86, 89, 90, 111, 115,

137, 140, 143, 151, 155, 158, 175, 176,
183, 190, 194, 230, 235, 260

Static sensitivity, 26, 50, 74, 83–86, 111, 137,
140, 143, 151, 155, 158, 230

STL. See Standard template library
String, 31, 32, 39–41, 43, 53, 54, 111, 119,

159–162, 172, 176, 177, 180, 191,
246–248, 252, 253, 262, 267–270

Structure, 22–24, 27, 29, 42, 43, 47–50, 55,
104, 117–123, 157, 158, 160, 171,
177–180, 204, 213, 215, 220, 235–237,
243–245, 247, 249, 259

Sun, 20
System architectural model (SAM), 4
SystemC environment, 20
SystemC Verification (SCV) library, 14, 187,

189–204, 226
SystemVerilog, 14, 15

T
Team discipline, 5
Time, 23, 59–64, 66, 67, 69, 71, 72

resolution, 225
sc_time_stamp, 61
time display, 61

Time display, 61, 63
Time model, 22, 23
Time units, 23, 59, 60, 62, 66, 74, 82
TLM. See Transaction-level model
tlm_blocking_transport_if, 213, 218
tlm_bw_transport_if, 215, 216, 218
tlm_delayed_write_if, 219
tlm_event_finder_t, 141
tlm_fw_transport_if, 215, 216, 218
tlm_generic_payload, 225–226
tlm_transport_dbg_if, 215, 216, 218

279Index

TLM_UPDATED, 220
to_double, 41, 56
to_int, 41
to_int64, 41
to_long, 41, 170
Top-level, 53, 118–120, 123, 149
to_string, 40, 41
to_uint, 41
to_uint64, 41
Transaction-level model (TLM), 4, 7–14,

207, 224
Transactor, 8, 162, 164, 166–170, 203, 208
trylock, 100, 102, 140
trywait, 102, 140

U
Unified, 39
Unified string, 44
Unlock, 100–102, 140
Un-timed (UT), 4, 7, 8, 207, 223
Update, 29, 99, 107–116, 139, 143, 144, 157,

164–166, 181, 220, 230, 233
UT. See Un-timed

V
Value change dump (VCD), 185, 187
VCD. See Value change dump
Vector, 27, 32–34, 41, 43, 114, 161, 191, 194,

202, 204, 242, 244, 246, 250, 262, 270

Verilog, 14, 15, 24, 25, 29, 34, 47, 81, 93,
111, 223

VHDL, 15, 24, 25, 29, 34, 47, 81, 111, 139, 223
Vim, 230, 240

W
Wait, 26, 63–64, 66, 67, 70, 72, 74–76, 78,

80–85, 87, 92, 93, 97, 99, 102–104,
110, 111, 115, 142, 143, 147, 148, 151,
170, 173, 181–184, 219, 224, 225, 231

wait_until, 181, 183
Watching, 72, 76, 99, 183, 184, 235, 265–266
Waveforms, 72, 171

Gtkwave, 186, 187
sc_create_vcd_trace_file, 185
sc_trace, 160, 185
value change dump (VCD), 185, 187

W_BEGIN, 183
W_DO, 183
W_END, 183
W_ESCAPE, 183
write, 81, 101, 103–105, 110–113, 126–128,

132, 135, 137–139, 142–145, 148–150,
160, 167–170, 182, 184, 185, 190, 192,
209, 211, 219, 225

X
xnor_reduce, 33, 34, 41
xor_reduce, 33, 34, 41

	Black_Frontmatter_O.pdf
	Anchor 1
	Anchor 3
	Anchor 4
	Anchor 5
	Anchor 6
	Anchor 7
	Anchor 8
	Anchor 9
	Anchor 10

	Black_Ch01_O.pdf
	Chapter 1
	Why SYSTEMC: ESL and TLM
	1.1 .Introduction
	1.2 .ESL Overview
	1.2.1 .Design Complexity
	1.2.2 .Shortened Design Cycle = Need For Concurrent Design
	1.2.2.1 .Traditional System Design Approach

	1.3 .Transaction-Level Modeling
	1.3.1 .Abstraction Models
	1.3.2 .An Informal Look at TLM
	1.3.3 .TLM Methodology
	1.3.3.1 .Algorithmic Modeling
	1.3.3.2 .Architectural Modeling
	1.3.3.3 .Virtual Software Development Platform
	1.3.3.4 .Hardware Refinement
	1.3.3.5 .Functional and Architectural Verification

	1.4 .A Language for ESL and TLM: SystemC
	1.4.1 .Language Comparisons and Levels of Abstraction
	1.4.2 .SystemC: IEEE 1666
	1.4.3 .Common Skill Set
	1.4.4 .Proper Simulation Performance and Features
	1.4.5 .Productivity Tool Support
	1.4.6 .TLM Concept Support

	1.5 .Conclusion

	Black_Ch02_O.pdf
	Chapter 2
	Overview of SystemC
	2.1 .C++ Mechanics for SystemC
	2.2 .SystemC Class Concepts for Hardware
	2.2.1 .Time Model
	2.2.2 .Hardware Data Types
	2.2.3 .Hierarchy and Structure
	2.2.4 .Communications Management
	2.2.5 .Concurrency
	2.2.6 .Summary of SystemC Features for Hardware Modeling

	2.3 .Overview of SystemC Components
	2.3.1 .Modules and Hierarchy
	2.3.2 .SystemC Threads and Methods
	2.3.3 .Events, Sensitivity, and Notification
	2.3.4 .SystemC Data Types
	2.3.5 .Ports, Interfaces, and Channels
	2.3.6 .Summary of SystemC Components

	2.4 .SystemC Simulation Kernel

	Black_Ch03_O.pdf
	Chapter 3
	Data Types
	3.1 .Native C++ Data Types
	3.2 .SystemC Data Types Overview
	3.3 .SystemC Logic Vector Data Types
	3.3.1 .sc_bv.<W>
	3.3.2 .sc_logic and sc_lv.<W>

	3.4 .SystemC Integer Types
	3.4.1 .sc_int.<W>. and sc_uint.<W>
	3.4.2 .sc_bigint.<W>. and sc_biguint.<W>

	3.5 .SystemC Fixed-Point Types
	3.6 .SystemC Literal and String
	3.6.1 .SystemC String Literals Representations
	3.6.2 .String Input and Output

	3.7 .Operators for SystemC Data Types
	3.8 .Higher Levels of Abstraction and the STL
	3.9 .Choosing the Right Data Type
	3.10 .Exercises

	Black_Ch04_O.pdf
	Chapter 4
	Modules
	4.1 .A Starting Point: sc_main
	4.2 . The Basic Unit of Design: SC_MODULE
	4.3 .The SC_MODULE Class Constructor: SC_CTOR
	4.4 .The Basic Unit of Execution: Simulation Process
	4.5 .Registering the Basic Process: SC_THREAD
	4.6 .Completing the Simple Design: main.cpp
	4.7 .Alternative Constructors: SC_HAS_PROCESS
	4.8 .Two Styles Using SystemC Macros
	4.8.1 .The Traditional Coding Style
	4.8.2 .Recommended Alternate Style

	4.9 .Exercises

	Black_Ch05_O.pdf
	Chapter 5
	A Notion of Time
	5.1 .sc_time
	5.1.1 .SystemC Time Resolution
	5.1.2 .Working with sc_time

	5.2 .sc_time_stamp()
	5.3 .sc_start()
	5.4 .wait(sc_time)
	5.5 .Exercises

	Black_Ch06_O.pdf
	Chapter 6
	Concurrency
	6.1 .Understanding Concurrency
	6.2 .Simplified Simulation Engine
	6.3 .Another Look at Concurrency and Time
	6.4 .The SystemC Thread Process
	6.5 .SystemC Events
	6.5.1 Causing Events

	6.6 .Catching Events for Thread Processes
	6.7 .Zero-Time and Immediate Notifications
	6.8 .Understanding Events by Way of Example
	6.9 .The SystemC Method Process
	6.10 .Catching Events for Method Processes
	6.11 .Static Sensitivity for Processes
	6.12 .Altering Initialization
	6.13 .The SystemC Event Queue
	6.14 .Exercises

	Black_Ch07_O.pdf
	Chapter 7
	Dynamic Processes
	7.1 .Introduction
	7.2 .sc_spawn
	7.3 .Spawn Options
	7.4 .A Spawned Process Example
	7.5 .SC_FORK/SC_JOIN
	7.6 .Process Control Methods
	7.7 . Exercises

	Black_Ch08_O.pdf
	Chapter 8
	Basic Channels
	8.1 .Primitive Channels
	8.2 .sc_mutex
	8.3 .sc_semaphore
	8.4 .sc_fifo
	8.5 .Exercises

	Black_Ch09_O.pdf
	Chapter 9
	Evaluate-Update Channels
	9.1 .Completed Simulation Engine
	9.2 .SystemC Signal Channels
	9.3 .Resolved Signal Channels
	9.4 .Template Specializations of sc_signal Channels
	9.5 .Exercises

	Black_Ch10_O.pdf
	Chapter 10
	Structure
	10.1 .Module Hierarchy
	10.2 .Direct Top-Level Implementation
	10.3 .Indirect Top-Level Implementation
	10.4 .Direct Submodule Header-Only Implementation
	10.5 .Direct Submodule Implementation
	10.6 .Indirect Submodule Header-Only Implementation
	10.7 .Indirect Submodule Implementation
	10.8 .Contrasting Implementation Approaches
	10.9 .Exercises

	Black_Ch11_O.pdf
	Chapter 11
	Communication
	11.1 .Communication: The Need for Ports
	11.2 .Interfaces: C++ and SystemC
	11.3 .Simple SystemC Port Declarations
	11.4 .Many Ways to Connect
	11.5 .Port Connection Mechanics
	11.6 .Accessing Ports From Within a Process
	11.7 .Exercises

	Black_Ch12_O.pdf
	Chapter 12
	More on Ports & Interfaces
	12.1 .Standard Interfaces
	12.1.1 .SystemC FIFO Interfaces
	12.1.2 SystemC Signal Interfaces
	12.1.3 sc_mutex and sc_semaphore Interfaces

	12.2 .Sensitivity Revisited: Event Finders and Default Events
	12.3 .Specialized Ports
	12.4 .The SystemC Port Array and Port Policy
	12.5 .SystemC Exports
	12.6 .Connectivity Revisited
	12.7 .Exercises

	Black_Ch13_O.pdf
	Chapter 13
	Custom Channels and Data
	13.1 .A Review of SystemC Channels and Interfaces
	13.2 .The Interrupt, a Custom Primitive Channel
	13.3 .The Packet, a Custom Data Type for SystemC
	13.4 .The Heartbeat, a Custom Hierarchical Channel
	13.5 .The Adaptor, a Custom Primitive Channel
	13.6 .The Transactor, a Custom Hierarchical Channel
	13.7 .Exercises

	Black_Ch14_O.pdf
	Chapter 14
	Additional Topics
	14.1 .Error and Message Reporting
	14.2 .Elaboration and Simulation Callbacks
	14.3 .Configuration
	14.4 .Programmable Structure
	14.5 .sc_clock, Predefined Processes
	14.6 .Clocked Threads, the SC_CTHREAD
	14.7 .Debugging and Signal Tracing
	14.8 .Other Libraries: SCV, ArchC, and Boost
	14.9 .Exercises

	Black_Ch15_O.pdf
	Chapter 15
	SCV
	15.1 .Introduction
	15.2 . Data Introspection
	15.2.1 .Components for scv_extension Interface
	15.2.2 .Built-In scv_extensions
	15.2.3 .User-Defined Extensions

	15.3 .scv_smart_ptr Template
	15.4.1 .Global Configuration
	15.4.2 .Basic Randomization
	15.4.3 .Constrained Randomization

	15.5 .Callbacks
	15.6 .Sparse Arrays
	15.7 .Transaction Sequences
	15.8 .Transaction Recording
	15.9 .SCV Tips
	15.10 .Exercises

	Black_Ch16_O.pdf
	Chapter 16
	OSCI TLM
	16.1 .Introduction
	16.2 .Architecture
	16.3 .TLM Interfaces
	16.3.1 .Unidirectional Blocking Interfaces
	16.3.2 .Unidirectional Non-Blocking Interfaces
	16.3.3 .Bidirectional Blocking Interface

	16.4 .TLM Channels
	16.5 .Auxiliary Components
	16.5.1 .TLM Master
	16.5.2 .TLM Slave
	16.5.3 .Router and Arbiter

	16.6 .A TLM Example
	16.7 .Summary
	16.8 .Exercises

	Black_Ch17_O.pdf
	Chapter 17
	Odds & Ends
	17.1 .Determinants in Simulation Performance
	17.1.1 .Saving Time and Clocks
	17.1.2 .Moving Large Amounts of Data
	17.1.3 .Too Many Channels
	17.1.4 .Effects of Over Specification
	17.1.5 .Keep it Native
	17.1.6 . C++ Compiler Optimizations
	17.1.7 .C++ Compilers
	17.1.8 .Better Libraries
	17.1.9 .Better and More Simulation Computers

	17.2 .Features of the SystemC Landscape
	17.2.1 .Things You Wish Would Just Go Away
	17.2.2 .Development Environment
	17.2.3 .Conventions and Coding Style

	17.3 .Next Steps
	17.3.1 .Guidelines for Adopting SystemC
	There are a number of companies supporting SystemC methodologies. A quick visit to the OSCI web site www.systemc.org can

	Black_Backmatter_O.pdf
	Appendix A
	C++ Basics
	A.1 Background of C++
	A.2 Structure of a C Program
	A.3 Comments
	A.4 Streams (I/O)
	A.4.1 Streaming vs. printf

	A.5 Basic C Statements
	A.5.1 Expressions and Operators
	A.5.2 Conditional
	A.5.3 Looping
	A.5.4 Altering Flow

	A.6 Data Types
	A.6.1 Built-In Data Types
	A.6.2 User-Defined Data Types
	A.6.2.1 Pointers, Arrays, and References
	A.6.2.2 Structures
	A.6.2.3 STL

	A.6.3 Constants
	A.6.4 Declaration vs. Definition

	A.7 Functions
	A.7.1 Pass By Value and Return
	A.7.2 Pass by Reference
	A.7.3 Overloading
	A.7.4 Constant Arguments
	A.7.5 Defaults for Arguments
	A.7.6 Operators as Functions

	A.8 Classes
	A.8.1 Member Data and Member Functions
	A.8.2 Constructors and Destructors
	A.8.2.1 Initialization

	A.8.3 Destructors
	A.8.4 Inheritance
	A.8.4.1 Adding Members
	A.8.4.2 Initialization of a Base Class
	A.8.4.3 Overriding Inherited Member Functions
	A.8.4.4 Multiple Inheritance

	A.8.5 Public, Private and Protected Access
	A.8.5.1 Friends

	A.8.6 Polymorphism
	A.8.6.1 Virtual
	A.8.6.2 Abstract and Interface Classes

	A.8.7 Constant Members
	A.8.8 Static Members

	A.9 Templates
	A.9.1 Defining Template Functions
	A.9.2 Using Template Functions
	A.9.3 Defining Template Classes
	A.9.4 Using Template Classes
	A.9.5 Template Considerations

	A.10 Names and Namespaces
	A.10.1 Meaningful Names
	A.10.2 Ordinary Scope
	A.10.3 Defining Namespaces
	A.10.4 Using Names and Namespaces
	A.10.5 Anonymous Namespaces

	A.11 Exceptions
	A.11.1 Watching for and Catching Exceptions
	A.11.2 Throwing Exceptions
	A.11.3 Functions that Throw

	A.12 Standard Library Tidbits
	A.12.1 Strings
	A.12.2 File I/O
	A.12.3 Standard Template Library

	A.13 Closing Thoughts
	A.14 References

	Black_Index_O.pdf

